
University of Thessaly
Greece, October 2020

Robust energy-aware routing in

multilayer wireless ad hoc networks

Εύρωστη ενεργειακά-αποδοτική

δρομολόγηση σε πολυεπίπεδα

ασύρματα ad hoc δίκτυα

Georgios Tziokas

Supervisor: Dimitrios Katsaros

Committee Members: Athanasios Korakis, Eleni Tousidou

Diploma Thesis

Department of Electrical and Computer Engineering

University of Thessaly

Volos, Greece

This Thesis was written as part of the requirements for the Diploma of Electrical and

Computer Engineering at University of Thessaly.

https://faculty.e-ce.uth.gr/dkatsar/
https://engineering.nyu.edu/faculty/thanasis-korakis
https://www.researchgate.net/profile/Eleni_Tousidou
https://www.e-ce.uth.gr/
http://www.uth.gr/

i

ΥΠΕΥΘΥΝΗ ΔΗΛΩΣΗ ΠΕΡΙ

ΑΚΑΔΗΜΑΪΚΗΣ ΔΕΟΝΤΟΛΟΓΙΑΣ

ΚΑΙ ΠΝΕΥΜΑΤΙΚΩΝ ΔΙΚΑΙΩΜΑΤΩΝ

«Με πλήρη επίγνωση των συνεπειών του νόμου περί πνευματικών δικαιωμάτων, δηλώνω

ρητά ότι η παρούσα διπλωματική εργασία, καθώς και τα ηλεκτρονικά αρχεία και πηγαίοι

κώδικες που αναπτύχθηκαν ή τροποποιήθηκαν στα πλαίσια αυτής της εργασίας, αποτελεί

αποκλειστικά προϊόν προσωπικής μου εργασίας, δεν προσβάλλει κάθε μορφής δικαιώματα

διανοητικής ιδιοκτησίας, προσωπικότητας και προσωπικών δεδομένων τρίτων, δεν περιέχει

έργα/εισφορές τρίτων για τα οποία απαιτείται άδεια των δημιουργών/δικαιούχων και δεν είναι

προϊόν μερικής ή ολικής αντιγραφής, οι πηγές δε που χρησιμοποιήθηκαν περιορίζονται στις

βιβλιογραφικές αναφορές και μόνον και πληρούν τους κανόνες της επιστημονικής παράθεσης.

Τα σημεία όπου έχω χρησιμοποιήσει ιδέες, κείμενο, αρχεία ή/και πηγές άλλων συγγραφέων,

αναφέρονται ευδιάκριτα στο κείμενο με την κατάλληλη παραπομπή και η σχετική αναφορά

περιλαμβάνεται στο τμήμα των βιβλιογραφικών αναφορών με πλήρη περιγραφή. Αναλαμβάνω

πλήρως, ατομικά και προσωπικά, όλες τις νομικές και διοικητικές συνέπειες που δύναται να

προκύψουν στην περίπτωση κατά την οποία αποδειχθεί, διαχρονικά, ότι η εργασία αυτή ή

τμήμα της δεν μου ανήκει διότι είναι προϊόν λογοκλοπής».

ii

Περίληψη

Τα Ad-hoc δίκτυα αποτελούνται από συσκευές οι οποίες είναι αυτόνομα αυτοοργανώμενες

μέσα στο δίκτυο. Οι περιπτώσεις χρήσης περιλαμβάνουν, χωρίς να περιορίζονται σε αυτές:

Ad-hoc δίκτυα για αυτοκινούμενα οχήματα (VANETs), Ad-hoc δίκτυα για κινητά τηλέφωνα

(SPANs), Ad-hoc στρατιωτικά δίκτυα (MANETs).

Υπάρχουν δύο βασικά προβλήματα τα οποία πρέπει να μελετηθούν όσον αφορά τα Ad-hoc

δίκτυα. Το πρώτο από αυτά τα προβλήματα είναι ότι στερούνται προϋπάρχουσας υποδομής

π.χ. απουσία προκαθορισμένων κανόνων δρομολόγησης, ενώ το δεύτερο έχει να κάνει με

την περιορισμένη διάρκεια ζωής της μπαταρίας των συσκευών που απαρτίζουν το δίκτυο.

Η βιβλιογραφία περιέχει σημαντική προσπάθεια στα προαναφερθέντα θέματα και αυτή η

διπλωματική θα προσπαθήσει να προσθέσει περιεχόμενο στον τομέα αυτό.

Στο δικό μας πρόβλημα, δουλεύουμε με πολυεπίπεδα Ad-hoc δίκτυα με σκοπό να προτείνουμε

δύο διαφορετικούς αλγορίθμους για να δημιουργήσουμε μία υποδομή κορμού (backbone).

Αυτή η δομή θα εφοδιάζει το δίκτυο με ένα βελτιωμένο σχήμα επικοινωνίας, το οποίο

θα αντιμετωπίζει άμεσα θέματα που σχετίζονται με την κατανάλωση της μπαταρίας, τις

περιττές μεταδόσεις καθώς και με την εκφόρτιση της κίνησης μέσα στο δίκτυο, δηλαδή

λιγότερες συγκρούσεις πακέτων μεταξύ των κόμβων του δικτύου. Πραγματοποιούνται

επίσης πειραματισμοί και αξιολόγηση διάφορων εφαρμοζόμενων προσεγγίσεων, αναλύοντας

και συγκρίνοντας τις συμπεριφορές τους.

iii

Abstract

Ad-hoc networks consist of devices that are autonomously self-organized into networks.

Use cases include but are not limited to: Vehicular Ad-hoc NETworks (VANETs),

Smartphone Ad-hoc NETworks (SPANs), Military Ad-hoc NETworks (MANETs).

There are two main problems to consider when working with networks of this type.

The first is that they lack a pre-existing infastructure i.e. absence of predefined

routing rules , while the second involves the limited battery-life of the participating

network components/devices. Literature contains a significant amount of effort on the

aforementioned topics and this thesis will attempt to add to this field with additional

content.

On to our problem, we work with Multi-layer Ad-hoc Networks with the aim of proposing

two different algorithms for creating a backbone infrastructure for our networks. This

structure will provide the network with an improved communication scheme, directly

tackling issues of battery consumption, unnecessary transmissions and client traffic

offloading to the backbone sub-network. A number of approaches were implemented

and employed in this thesis, while experimentation and evaluation of their behavior is

also carried out.

iv

Acknowledgments

First of all, i would like to express my appreciation for my supervisor, Dimitrios Katsaros,

whose quidance and support has been very helpfull throughout this thesis. I am extremely

thankful for our friendly chats, your personal support and for all advice during this thesis.

Secondly, I am just as grateful, to professor Thanasis Korakis for being also my thesis

supervisor. Last but not least, I want to thank Christos Nanis and Thodoris Deligianidis

for providing feedback throughout this thesis.

In addition, I should thank my family for their unlimited love. You are there always for

me when I need you. Finally I am thankful to all my friends who helped and supported

me all these years.

Contents

1 Introduction 1
1.1 Introduction to Ad Hoc Networks . 1
1.2 Virtual Backbone in Ad Hoc Networks 2
1.3 Network Model . 3
1.4 Thesis Structure . 4

2 Definition of PCIs 5
2.1 Power Community Index . 5
2.2 Multi-Layer PCIs Definitions . 6
2.3 Experimental Settings . 8

3 Implementation 9
3.1 Dataset . 9
3.2 Library Description . 11
3.3 MILCOM Algorithm . 12
3.4 BCA Algorithm . 13

3.4.1 Selection Algorithm Description 16
3.5 Robust Algorithm . 18
3.6 Pruning Phases . 21
3.7 Libraries used in implementation . 23

4 Server Client Tool 24
4.1 Tool Description . 24
4.2 Packet Structures . 25
4.3 Server Client Flow Chart . 26

5 Results 27
5.1 First Algorithm Results . 28

5.1.1 CDS per PCI per Layer Plots . 28
5.2 Robust Algorithm Results . 31

5.2.1 CDS for every k-m combination per Layer for a particular PCI
(cross-layer) Plots . 31

6 Conclusion 39
References . 40

v

List of Figures

1.1 Ad hoc network representation . 1
1.2 Dominating Set (DS) example . 2
1.3 Dominating Set (DS) example . 2
1.4 Unit Disk Graph (UDG) . 3

2.1 Single Layer PCI of each node for a simple network 5
2.2 Layer-Agnostic PCI of each node for a simple multi-layer network 6
2.3 Military multi-layer Network . 7
2.4 Comparison between default and 80-20 settings 8

3.1 Red nodes are nodes of backbone . 13
3.2 Single Layer PCI of each node for a simple network 15

4.1 Server Client Tool Flow Chart . 26

5.1 Two Layers Plots . 28
5.2 Three Layers Plots . 29
5.3 Four Layers Plots . 30
5.4 Two Layers Plots . 31
5.5 Three Layers Plots . 32
5.6 Four Layers Plots . 33
5.7 Average CDS per layer per algorithm . 34
5.8 Average MCDS per layer per algorithm 34
5.9 Average CDS per layer of topologies based on Degree 35
5.10 Average CDS per layer of topologies based on Diameter 35
5.11 Average CDS per layer of topologies based on Layers 36
5.12 Average CDS per layer of topologies based on a percentage of nodes per layer 36
5.13 Average MCDS per layer of topologies based on Degree 37
5.14 Average MCDS per layer of topologies based on Diameter 37
5.15 Average MCDS per layer of topologies based on Layers 38

vi

List of Tables

4.1 Client Packets Format . 25
4.2 Server Packets Format . 25

vii

Chapter 1

Introduction

1.1 Introduction to Ad Hoc Networks

Ad Hoc networks’ popularity in usage owes mainly to their main ability to temporarily

formulate a set of connections amongst a set of given nodes. This is explained by their

infrastructure-distributed nature, unlike the case of router networks. The way that any

node in an Ad-Hoc Network communicates with another, is by routing its packets in a

distributed way. That means that collisions are common and care must be taken in order

to impose a non-battery draining profile for nodes in Ad-Hoc networks. Emerging concepts

build around that, the most popular one being the IoT (Internet of Things) concept.

In contrast to networks with permanent infrastructure, ad hoc networks can easily

and rapidly be deployed, additionally providing a reliable communication in numerous

situations. Further, ad hoc networks introduce a low operating cost and are highly robust

(Figure from [1]).

Figure 1.1: Ad hoc network representation

1

1.2. Virtual Backbone in Ad Hoc Networks 2

1.2 Virtual Backbone in Ad Hoc Networks

Ad hoc networks do not have a permanent infrastructure as mentioned before, so the way

to communicate nodes in a network is to form a virtual backbone.

A Virtual Backbone is a subset of nodes in ad hoc network which relays all packets

between nodes in the network. Hence if there is a way to minimize the routing paths

in the network you can reduce the search time and the routing time of packets. A real

popular way to do that are the Dominating Sets (DS).

Dominating set is a set where every node in the network is either in the set or have at

least one neighbor inside the set. Nodes that belong to DS called dominators and all other

nodes in the network called dominates.

In the same way a Connected Dominating Set (CDS) is a DS where dominators are

connected. The CDS has become one of the most popular way to construct a virtual

backbone to ad hoc networks. An additional problem is to keep virtual backbone as small

as possible. The objective is to minimize the connected dominating set. There are many

different algorithms to construct a MCDS. Some of the proposed pruning algorithms for

this purpose is descripted at [2].

Figure 1.2: Dominating Set (DS) example

Figure 1.3: Connected Dominating Set (CDS) example

1.3. Network Model 3

1.3 Network Model

Assume an ad hoc network as a unit disk graph G(V,E) where V is the set of all vertexes

in graph and E is the set of all “edges” in the graph. The edges or links between two

nodes which are within communication range share a bidirectional link which represents

the edge between them.

In Unit Disk Graphs (UDG) each node has an equal communication range. Two different

nodes in graph are neighbors if and only if the first are within communication range of

second vice versa. So 2-hop neighbors are the nodes which cannot reach one each other

directly but have in common one 1-hop neighbor.

This thesis deals only with the topology of network and simulate the construction of a

virtual backbone.

Figure 1.4: Unit Disk Graph (UDG) (Figure from [3])

1.4. Thesis Structure 4

1.4 Thesis Structure

The remainder of the thesis is organized as follows:

• In chapter 2, we introduce all the different types of PCI metrics used in this thesis

and an additional PCI metric created.

• In chapter 3, we present the implementation of the three algorithms, MILCOM,

BCA and ROBUST.

• In chapter 4, we present a server client tool which is created for the purpose of this

thesis.

• In chapter 5, we present the results of algorithms for all PCIs.

• Finally, in chapter 6, we provide a conclusion to this thesis and some notes for future

work that can extend our methodology.

Chapter 2

Definition of PCIs

2.1 Power Community Index

Power Community index or simply PCI is a metric which measure the importance of

every node in network. It measures the importance of each node in its community, by

checking the connectivity of it’s neighbors. In this thesis we use 8 different PCI metrics

and 7 of them are used for multi-layer networks. Below we describe these metrics.

Figure 2.1: Single Layer PCI of each node for a single network

Definition 2.1.1. Single-Layer PCI or simply slPCI metric is utilized as an index for a

node u in a network that equals to k , when there are up to k nodes in its 1-hop vicinity

with a degree higher or equal to k. The rest of the nodes in that 1-hop vicinity have a

degree less or equal to k.

5

2.2. Multi-Layer PCIs Definitions 6

2.2 Multi-Layer PCIs Definitions

Definition 2.2.1. Layer-Agnostic PCI or simply laPCI of a node in network is equal to

k, if it has k 1-hop relationships with other nodes , which in turn can have k or greater,

inter- or intra-layer 1-hop relationships. laPCI gives greater weight to nodes with the

most connections with nodes in different layers , while handling all nodes equally , despite

the underlying generating distribution of the layers in the network [4].

Figure 2.2: Layer-Agnostic PCI of each node for a single multi-layer network

Definition 2.2.2. Minimal-Layer PCI or simply mlPCI of a node in network is equal to

k, if it has k neighbors in its 1-hop vicinity who ,in turn, have at least n>=k inter-layer

connections. Within the metric that is called mlPCI, a node is characterized as good

node if it is well connected in many layers. As it is stated in the above definitions, we can

conclude, that the original PCI ignores the connectivity of nodes that do not participate

in its definition. So we have to take into account the ignored nodes. (Equation from [4])

mlPCI(v) =

#layers∑
i=1

mlPCIi(v)

2.2. Multi-Layer PCIs Definitions 7

Definition 2.2.3. Exhaustive PCI or simply xPCI is the next PCI definition. In order

to obtain the xPCI value for a given layer, we add the PCI index of a node with the PCI

value of the remaining nodes. We do this for all layers and add all the values together.

Finally we have obtained our xPCI value. The xPCI metric evaluation method cannot be

considered a suitable ranking metric because it creates a lot of ties [4].

Definition 2.2.4. Cross-Layer PCI of simply clPCI is an extend of xPCI metric that

gives us better ranking results compared to xPCI metric. To obtain the clPCI value we

calculate the number of unique links between the nodes that participate in the index

of xPCI . In order to get reasonable numbers even for large networks, we multiply the

log2(uniqueLinks) with each xPCI value.

The above PCI metrics are used for multi-layer networks. So we need to define what a

multi-layer network is. A multi-layer network can be constructed by different categories

that represent and characterize some of the nodes, that are called layers. A multi-layer

network is a network that has more than one layer in which nodes are connected within

the same layer, called intra-layer, or between different layers, inter-layer.

So for a multi-layer of n layers we have a pair of (GML, EML) where GML = {Gi, i =

1, ..., n} is a set of networks (Gi, Ei) and a set of interlayer links EML = {Ei,j ⊆

Gi ×Gj; i, j ∈ {1, ..., n}, i 6= j} [4]

Figure 2.3: Military multi-layer Network (Figure from [4])

2.3. Experimental Settings 8

2.3 Experimental Settings

Continuing to operate in a similar manner to the approaches presented before, we

developed a new metric for the purpose of this thesis. This metric effectively combines a

node’s PCI value with the PCI values of its one-neighborhood, applying weights to each.

Experimentation on the assignment of these values showed that it can be beneficial for the

network if the node’s PCI is more heavily weighted e.g. 0.8, while the one-hop neighbors

can be assigned the remaining 0.2. In this way, high scoring nodes can still retain their

importance, while allowing diversity that is introduced by the node’s neighborhood to be

accomodated in our approach.

Figure 2.4: Comparison between default and 80-20 settings

Chapter 3

Implementation

3.1 Dataset

As of the input to our algorithms, we used a MATLAB generator that creates multi-layer

network topologies, providing high flexibility for post-experiment inference from its results.

Each generated layer consists of a number of wireless nodes on the 2-D plane, with a

respective maximum transmission range R. Each pair of network nodes with an in-between

Euclidean distance equal or less than R are considered as connected or, alternatively,

form a Unit Disk Graph (UDG). In this manner, upon connectivity inference, the

actual location of the nodes is incorporated in the procedure. In addition, to efficiently

tackle cases of obstructed direct communication of adjacent nodes, non-uniform intra-

layer models are utilized, in order to distribute evenly the nodes on the aforementioned

two-dimensional plane. The construction of our multi-layer network is affected by the link

density of each layer, measured by means of:

• Average Degree (D) of a node

• Per-layer number of nodes i.e. layer size

• Number of layers in out multi-layer network(L)

In order to create the inter-layer connections, two parameters are of particular interest:

• The number of inter-layer links of a given node.

• Distribution of intra-layer connections.

9

3.1. Dataset 10

In cases where a specific layer has a higher degree of utilization due to the underlying

purpose of the generated links e.g. in the case of a drone layer creating inter-layer

connections with the soldiers network. Having successfully considered the above experiment

hyperparameters, the Zipfian distribution is applied as the interconnectivity generator.

Resulted skewness is managed by the s parameter, which ranges in (0,1). We then utilize

3 different Zipfian laws for each hyperparameter. First, we impose the restriction of

Sdegree ranging in (0,1), in order to generate the frequencies of appearance of highly

interconnected nodes. Secondly, we impose (0,1) range restriction to Slayer , to control

how frequently a specific layer is selected. Last, we impose analogously for Snode, to

evaluate the frequency of node-specific selection for a given layer.

In order to create the required conditions for the experiment, the input data have been

divided into four major categories:

• Degree

• Diameter

• Nodes per Layer

• Number of Layers

First of all, in order to determine the effect degree imposes on the algorithms’ performance

input files that refer to degree are being altered in the density of a single layer while the

remaining layers’ degree stays close to initial values. Next we allow the diameter of each

layer to vary while at the same time the other variables stay the same. This permits us to

find the correlation between the size of the diameter and that of the constructed CDS for

each method respectively. Later, we examine the relation of number and size of layers

with respect to Connected Dominating Set. We alter the number of layers and check

its effect on the CDS. Lastly, we vary the size of layers by sorting them in increasing

order, starting at 500 nodes in top layer and increasing by a percentage of 500, then we

compare the differences in the resulting CDS. [5]

3.2. Library Description 11

3.2 Library Description

As per this thesis, we developed a library in Python for backbone construction either

for a single-layer networks either for multi-layer networks. The library consists of three

different algorithms. The first is the MILCOM algorithm [4] which constructs a CDS as

backbone of the network. The rest of the algorithms are the Backbone Construction

Algorithm (BCA) and the ROBUST. BCA algorithm is an extension of MILCOM

algorithm with an extra step during the CDS construction while the ROBUST algorithm

constructs a kmCDS as backbone. These three algorithms use as topology metrics the

PCIs described in chapter 2. Table below shows all the possibilities that library offers.

Arguments Description
–help Print man page in stdout

-fp <filepath> The path where input file is stored
-p <pci name> The name of the pci metric
-a <algorithm> The ID for the algorithm (1: MILCOM, 2: NEW, 3: ROBUST)

-k <integer> Physical number refers to connectivity of nodes
belongs to backbone

-m <integer> Physical number refers to connectivity having external
nodes to internal nodes in backbone

-tol <tolerance> Quotient between PCI metric and centrality
–centrality Add node centrality as an extra metric

–cds Creates a Connected Dominating Set as backbone

–mcds Creates a Minimum Connected Dominating Set as
backbone

–rmcds Creates a Robust Minimum Connected Dominating Set
as backbone

–plot Plot initial and final multi-layer network
–clock Print duration of each step
–log Print log messages to stdout

-lv <log level> Level of logging (Debug, Info, Warning, Error)
–store_log Write log messages to file

-lf <log file> Name of file where store log messages
–testing This argument used for testing and in Server Client tool

3.3. MILCOM Algorithm 12

3.3 MILCOM Algorithm

The Milcom algorithm starts its execution by discovering every 1 and 2-hop neighbor

for each node. Next, when each node has figured out its neighborhood of 1 and 2 hops,

the algorithm calculates the PCI metric, e.g. slPCI, clPCI etc, which the user has

chosen, by giving it as input for execution, and then transmits the result value to all the

1-hop neighbors. After that, each node respectively, sorts the results transmitted by its

neighboring nodes, in decreasing order. Then each node selects and sets, if it exists, as

dominator a neighbor which had already been selected from other nodes. The procedure

extends with the 2-hop neighbors of each node. This means that nodes check the 2-hop

neighborhood and if there is at least one neighbor without a dominator, they set as

dominator the neighbor in the 1-hop neighborhood with the highest PCI score.

Algorithm 1 MILCOM Algorithm
1: for node = 1, 2, . . . , N do
2: if pci = cl then
3: Find unique links between nodes
4: Calculate clPCI
5: end if
6: Get PCI of all neighbors
7: Pick the neighbor with biggest PCI as dominator
8: end for
9: for node = 1, 2, . . . , N do

10: Add node to CDS
11: end for
12: if MCDS = True then
13: Minimize CDS
14: end if

3.4. BCA Algorithm 13

3.4 BCA Algorithm

In this algorithm we use an extra step in process of backbone construction. In this extra

step we use shortest paths between all pairs of nodes in backbone to calculate a prefferedBy

value for the nodes. So in this point need to define what sortest path is.

Definition 3.4.1. Shortest Path is a problem in graph theory, of finding a path between

two vertices. Adjacent vertices called that they have a common edge. A path in graph

subscripted as a sequence of vertices P = (u1,u2,..,un) ∈ V, (G = (V,E)).Assume that ei,j

is an edge that indicent to both ui,uj then the sortest path between vertices u, u’ where u

=u1 and u’=un is the path over all n paths that minimizes the sum
∑n−1

n=1 f(ei,i+1).

This algorithm works in two phases. In the first phase, it works exactly like the Milcom

algorithm in that it follows the process of creating the first Connected Dominating Set. In

the second phase, each dominator node traces the shortest paths to every other dominator

in backbone and increases a counter, called preferred by, of every node that belongs to

the shortest path. If one node has zero preferred by value and is not a fundamental node

of the backbone it is being ignored and will not be included as dominator in the final

backbone. On the other hand, if node does not belong in backbone already and it has

high preferred by value then it is being included in the final backbone. This extra step

aids us in optimizing and stabilizing the backbone of the network.

(a) CDS as backbone (b) MCDS as backbone

Figure 3.1: Red nodes are nodes of backbone

The above figure shows two type of backbones given the same network topology as input.

3.4. BCA Algorithm 14

The first figure graphs a Connected Dominating Set while the second shows the resulting

minimized set after the pruning process which was applied on the initial. The nodes

shown red are dominators while the black are the dominates.

Algorithm 2 BCA Algorithm
1: Input: listOfNodes
2: for Every node in network do
3: Discover 1-hop and 2-hop neighbors
4: end for
5: for Every node do
6: Calculate input PCI metric for every 1-hop neighbor
7: Sort neighbors by their PCI values
8: Transmit the PCI of node having the higher value
9: end for

10: for Every node do
11: Every node add as dominator a neighbor which has already been
12: selected from other node, if it exists
13: if not all 2-hop neighbors have dominator then
14: Add a neighbor from 1-hop as dominator if it is cover at least one node in

2-hop neigborhood
15: end if
16: end for
17: for Every node in CDS do
18: Find the sortest paths to every other dominator
19: Increase a prefferedBy value of every intermediate node in the sortest paths
20: end for

A no fundamenta l node have p r e f f e r e dBy va l u e e qua l s to z e r o

21: for Non fundamental node in backbone do
A no fundamenta l node can be removed from CDS i f a l l
dominato r s a r e s t i l l connected and e v e r y o th e r node
con t i n u e s to have at l e a s t one r e l a t i o n s h i p w i th some
dominator

22: Remove it if it is possible
23: end for
24: for Every significant node do
25: Try to add node to CDS
26: end for

3.4. BCA Algorithm 15

In this library we have included an extra topological metric, called betweenness centrality.

Definition 3.4.2. Betweenness Centrality measures the centrality of nodes in graph

theory based on shortest paths described in 3.4.1. Betweenness centrality for a vertex u is

the number of shortest paths those which include vertex u.

g(u) =
∑
s6=u6=t

σst(u)

σst

σst refers to the total number of shortest paths and σst(u) to those which include vertex u.

Figure 3.2: Single Layer PCI of each node for a single network (Figure from [6])

3.4. BCA Algorithm 16

3.4.1 Selection Algorithm Description

When betweeness centrality is added as a considered metric, the local (max 2-hops

distance) betweeness centrality is calculated for every neighbor of each node. Firstly,

we sort the nodes by their respective PCI value. Then in order to have more accurate

results, we find the ratio of the two nodes with the greater PCI values and compare it

with their centralities’ ratio. If the difference is greater than a fixed tolerance value of

e.g. 0.2, we swap the two nodes i.e. if the two most significant nodes are characterized

by PCI and centrality values of 1100,0.2 and 1000,0.6 respectively,the difference in

the ratios is greater than the tolerance value. We thus select the latter node as the

most significant and we perform a swap. Below the procedure described above is presented.

As we can see from the two figures above, when we use both PCI and centrality metrics,

we get better results of average CDS size.

3.4. BCA Algorithm 17

Algorithm 3 Selection Algorithm
1: function choose_node(first_node,second_node)
2: if first_node.centrality

second_node.centrality
<= 1− tolerance then

3: return second_node
4: else
5: if second_node.pci

first_node.pci
> 1− first_node.centrality

second_node.centrality
then

6: return first_node
7: else
8: return second_node
9: end if

10: end if
11: end function
12: if first_node.pci > 0 then
13: if second_node.pci

first_node.pci
>= 1− tolerance then

14:
15: if second_node.centrality > first_node.centrality then
16: return choose_node(first_node, second_node)
17: else
18: if first_node.centrality > 0 then
19: return choose_node(second_node, first_node)
20: else
21: return first_node
22: end if
23: end if
24: end if
25: else
26: if second_node.centrality > first_node.centrality then
27: return second_node
28: else
29: return first_node
30: end if
31: end if

3.5. Robust Algorithm 18

3.5 Robust Algorithm

This algorithm works by giving as input two natural numbers k and m. At the end of

this procedure we will have created a k-m-Connected Dominating Set or kmCDS. A

kmCDS is a CDS where the dominators are k connected and all dominates have at least

m dominators as 1-hop neighbors. This algorithm consists of 4 phases.

The first phase of the algorithm is a combination of the Milcom algorithm and an extra

node decision method. The extra node decision method starts with each node finding the

number of links to dominators in their 1-hop neighborhood. If the number of dominators

is smaller than a given natural number m, it checks if there are any neighbors which

belong to the CDS and set them as additional dominators. After this, it checks again the

number of dominators in its 1-hop neighborhood and if it is higher than or equal to m,

the node becomes a dominatee. If the number of dominators is smaller than m then the

node checks if it has links to at least k dominators in its 1-hop neighborhood and sets

itself as a dominator. This is the end of phase 1 of the Robust algorithm.

Algorithm 4 Phase 1 of Robust Algorithm
if node.num_of_dominators < m then

for neighbor ∈ N(u) do
if neighbor /∈ node.dominators then

Add neighbor to dominators
end if

end for
if node.num_of_dominators < m then

if node /∈ backbone then
if node.dominators >= k then

Add node to backbone
end if

end if
else

Add node to dominates
end if

else
Add node to dominates

end if

3.5. Robust Algorithm 19

In phase 2 of the algorithm we need to check a constraint that has been analyzed in [7]

This constraint tells us that every dominator needs to have at least k dominators in its

1-hop neighborhood and all dominates need to have at least m dominators in their 1-hop

neighborhood respectively. Before initiating phase 2 of the algorithm, we assign a large

value to K. In phase 2 of the algorithm a node checks for dominators in its neighborhood.

If this node is a dominator then if it has less than k dominators then it becomes a

non-connected dominator. On the other hand, if the node is a dominate then if it has less

than m dominators as neighbors, it becomes a non-connected dominatee. When phase 2

ends, a set of dominators which added to dominators graph is returned. Assume a binary

decision variable xi:

xi =

1, if vertex is chosen to be a dominator

0, if vertex is chosen to be a dominate

We thus can describe our second phase using the equation below:

∑
j∈N(i)

>= kxi +m(1− xi),∀i ∈ V

If a node is close to be a dominator, xi = 1, then it should have at least k dominators in

one-hop neighborhood. On the other hand, if a node is close to be dominatee, xi = 0,

then it should have at least m dominators in its one-hop neighborhood.

In this moment starts the phase 3 of the algorithm. In phase 3 there are two subphases,

the first executes only the first iteration and the second is executed repeatedly. In the

first subphase, as of the nodes that selected the previous phase’s dominators, they will

start searching for all minimum vertex cuts with all other dominators in backbone and

if a minimum vertex cut size is smaller than k then all dominators that belong in the

minimum vertex cut will be removed from CDS. In the second subphase, we will use the

nodes which selected the previous phase’s dominators and if they have k one hop neighbors

3.5. Robust Algorithm 20

which are dominators, then we will set this node as a dominator. The algorithm stops

when it finds a number K which is higher than or equal to natural number k and moreover

every dominator is k-connected with every dominate having at least m dominators in

their one hop neighborhood, consequently returning a kmCDS.

∑
i∈c

xi >= min(m, k), ∀c ∈ C

Algorithm 5 Phase 3 of Robust Algorithm
1: function nodes_removal(new_nodes)
2: for u ∈ new_nodes do
3: for dominator ∈ CDS do
4: if dominator /∈ N(u) then
5: c = minimum_vertex_cut()
6: end if
7: if size_c < k then
8: for vertex ∈ c do
9: Remove vertex of CDS

10: end for
11: end if
12: end for
13: end for
14: end function
15: if first_time then
16: nodes_removal(new_nodes)
17: else
18: for u ∈ new_nodes do
19: if dominators(u) >= k then
20: Add u to CDS
21: end if
22: end for
23: end if

3.6. Pruning Phases 21

3.6 Pruning Phases

We have two different implementations for the pruning phase. MILCOM and our BCA

algorithm share a common pruning phase in contrast to the Robust algorithm which has

its own pruning phase. The pruning phase for the first two algorithms begins with the

removal of a node from the backbone. Next each node should have at least one neighbor

in its 1-hop neighborhood which belongs to the Connected Dominating Set. Furthermore

all nodes which belong to the CDS should remain connected after the removal of a node.

If the two restrictions above are satisfied, then the node removed permanently from the

CDS, proceeding with the next dominator in the set. Otherwise, we add the node back to

the CDS. When this phase ends, we have create a MCDS for backbone of the network

Algorithm 6 Prunning Phase
1: Input: CDS
2: while CDS size > 1 do
3: Mark node for removal from CDS
4: _to_remove = 1
5: for u ∈ V do
6: if dominators(u) == 0 then
7: Add node again to CDS
8: _to_remove = 0
9: end if

10: end for
11: if _to_remove == 1 then
12: Remove dominator from CDS
13: end if
14: end while

3.6. Pruning Phases 22

This algorithm has a slightly different pruning phase than the above presented algorithms.

The main difference is that it needs to take into consideration the natural numbers k

and m. Pruning phase begins in the same way like the pruning phase of the other two

algorithms, by removing the first dominator of the final CDS. After the removal of the

node, we check if all other dominators in the backbone are k connected with each other

and if all dominates of the whole network stay m connected with other dominators. If the

two restrictions above are satisfied, then the node is removed permanently from the CDS

and we proceed with the next dominator, otherwise we add the node back to CDS.On

this phase’s end, we have created a kmMCDS as backbone of our network.

Algorithm 7 Prunning Phase
1: Input: CDS,k,m
2: while CDS size > 1 do
3: Mark node for removal from CDS
4: _to_remove = 1
5: for u ∈ V do
6: if u ∈ Dominatees then
7: if dominators(u) < m then
8: Add node again to CDS
9: _to_remove = 0

10: end if
11: end if
12: if u ∈ Dominators then
13: if dominators(u) < k then
14: Add node again to CDS
15: _to_remove = 0
16: end if
17: if Dominators not k-connected then
18: Add node again to CDS
19: _to_remove = 0
20: end if
21: end if
22: end for
23: if _to_remove == 1 then
24: Remove dominator from CDS
25: end if
26: end while

3.7. Libraries used in implementation 23

3.7 Libraries used in implementation

In this thesis, we use 2 different libraries for network topologies simulation, networkx and

multilayer-networks-library (Pymnet). Both are open-source libraries in Python. The first

is used for constructing all the network related structures while the second is used for

plotting the result networks in a multi-layer way. Both are very flexible and easy to use

with many functionalities as shown in the examples below, concerning the installation

procedure for the two libraries [8], [9].

networkx installation:

$ pip install networkx

multilayer-networks-lybrary installation:

$ hg clone https://bitbucket.org/bolozna/multilayer-networks-library

$ python setup.py install

Simple networkx example:

>> import networkx as nx # Import library

>>

>> G = nx.Graph() # Creates an instance of network

>> edges = [(1,2),(1,3),(2,3)] # List of edges (nodes: [1,2,3])

>> G.add_edges_from(edges) # Create a network representation

based on above connectivity

Simple multilayer-networks-library example:

>> from pymnet import * # Import library

>> edges = [(,),...,(,)] # A list of tuples (node_name,node_layer)

>> for edge in edges:

>> # Add edges between neighbor nodes in any layer

>> mnet[node1_name,node1_layer][node2_name,node2_layer()] = 1

>> draw(mnet,show=False) # Visualize network

Chapter 4

Server Client Tool

4.1 Tool Description

Server-Client Tool is merely an additional feature of our framework, instrumenting the

data distribution amongst the network client nodes. It is developed and maintained in

Python, starting its execution by initiating the server side. Next, the server side awaits

for client connections.By sending an identification packet, the client informs the server

on how many cores can be allocated in this scope. When the server side accepts a client

connection, it creates an instance of this client and sends it back as a chunk of files that

need to be analyzed and a unique ID, in order to be informed on the ordering of that

specific client among all client connections. When clients receive input data chunks, they

deploy multiple processes, equal in number to the number of cores that are able to be

allocated. The processes are then started and are waited on until all processes have

finished. The last process is responsible for merging all results and returning them to the

client. Analogously, the client sends its results back to the server. This process extends

for all clients that are connected to server. When the server receives results from a client,

it writes the results to a file and send the next available chunk of files to the client. This

continues for all input files that the server has. The communication between server and

clients uses TCP/IP connections. The way they communicate is with one purpose protocol

which is created for the sole purpose of this thesis. Below I will elaborate on the subject

of packet creation. There are two types of packets. The first is the packet which sends

the client to server and the second is the packet which sends the server to client, named

24

4.2. Packet Structures 25

client_packet and server_packet respectively. The client packet has 5 different message

IDs while the client packet has 4. The two tables below shown the format of the two

packets:

4.2 Packet Structures

Table 4.1: Client Packets Format

PacketID Packet Headers Packet Payload Description

1 packetID
sizeOfPayload numberOfCores Send number of cores to server

2 packetID - Request from server the next
chunk of input files

3
packetID
fileID
sizeOfPayload

resultString Send results to server

4 packetID lastFileID
offset

Close session with specific client
because closed unexpectedly

5 messageID lastFileID
offset

Tells server to resend last
chunk of input files

Table 4.2: Server Packets Format

PacketID Packet Headers Packet Payloas Description

1 packetID
chunkStart
chunkEnd
fileID

Send to client the next
chunk of input files

2 packetID - Close session with client

3
packetID
fileID
sizeOfPayload

listOfFiles Send to client a list with all regular
paths of input files

4 messageID
chunkStart
chunkEnd
fileID

Resend last chunk of input
files to client

4.3. Server Client Flow Chart 26

4.3 Server Client Flow Chart

Figure 4.1: Server Client Tool Flow Chart

27

5.1. First Algorithm Results 28

Chapter 5

Results

5.1 First Algorithm Results

5.1.1 CDS per PCI per Layer Plots

Figure 5.1: Two Layers Plot

5.1. First Algorithm Results 29

Figure 5.2: Three Layers Plot

In our experiments we use 4 different types of network topologies, as they are described

in 3.1. Every type of input network topologies have various number of layers. More

specifically, each input topology has 2,3,4,5 or 7 number of layers with varying number of

nodes in every layer. In the above figures, we represent the results for every layer. Each

layer has a set of input files in which every PCI metric is represented by a different color.

Show that the relative performance is similar for all PCI metrics. Some of the resulted

CDS related with input files as its shown in figure 5.3 have more dominators per layer.

This happens because in these networks there is smaller number of linked nodes. This

extends for every layer.

5.1. First Algorithm Results 30

Figure 5.3: Four Layers Plot

5.2. Robust Algorithm Results 31

5.2 Robust Algorithm Results

5.2.1 CDS for every k-m combination per Layer for a

particular PCI (cross-layer) Plots

Figure 5.4: Two Layers Plot

5.2. Robust Algorithm Results 32

Figure 5.5: Three Layers Plot

5.2. Robust Algorithm Results 33

Figure 5.6: Four Layers Plot

We can derive from the plots above that although there are 9 different combinations of

physical numbers k and m we see that not all those are graphed. This happens because,

as k increases it becomes more difficult to construct k-CDS. On the other hand, as m

increases there is no need for dominatees to be m-connected but they have to be linked to

m dominators. Furthermore, as we can see on the figures above, the most of the input

network topologies have 4 number of layers. Finally, we see that as both number increase

5.2. Robust Algorithm Results 34

so does the number of nodes that belong to CDS.

Figure 5.7: Average CDS per layer per algorithm

Figure 5.8: Average MCDS per layer per algorithm

5.2. Robust Algorithm Results 35

Figure 5.9: Average CDS per layer of topologies based on Degree

Figure 5.10: Average CDS per layer of topologies based on Diameter

5.2. Robust Algorithm Results 36

Figure 5.11: Average CDS per layer of topologies based on Layers

Figure 5.12: Average CDS per layer of topologies based on a percentage of nodes per
layer

5.2. Robust Algorithm Results 37

Figure 5.13: Average MCDS per layer of topologies based on Degree

Figure 5.14: Average MCDS per layer of topologies based on Diameter

5.2. Robust Algorithm Results 38

Figure 5.15: Average MCDS per layer of topologies based on Layers

The first two figures shows the average CDS and MCDS sizes or each layer for all network

types. The rest of the figures shown the average size of CDSs and MCDSs which the two

algorithms construct for all the network types (Network Degree, Network Diameter etc.).

As we can see in all figures, robust algorithm construct smaller CDSs of BCA algorithm.

This happens because the BCA algorithm costruct an initial CDS and continues by

removing nodes from the existing CDS if those nodes are not significant for the others

while add other nodes which not already included in CDS but are more important for the

other nodes within CDS for the better stability of it. The robust algorithm has the same

initial CDS but the extra steps leads to removal of nodes in existing CDS in higher rate

than add nodes to.

Chapter 6

Conclusion

In this thesis, we represent a solution for constructing backbones for multi-layer networks.

We used two different algorithms, one that creates 1-1-CDS and the other k-m-CDS as

backbone. In the second algorithm the highest value of k and m is 3 because for a higher

number it is not probable that a CDS will be created, because the complexity increases

vastly. These two algorithms use 9 different PCI metrics or a combination of a PCI and

the local centrality of each node. We have execute various input topology networks and

get resulted backbones and we compare the results of the two algorithms.

Nevertheless, we don’t compare these algorithms with some of the existing ones.

Furthermore, we don’t testing in depth the combination of PCI and centrality metrics as

well as the ratio between them for better efficiency. Finally, we can also run some tests

for values of k and m above 3.

39

Bibliography

[1] https://www.geeksforgeeks.org/introduction-of-mobile-ad-hoc-network-manet/,.

[2] N. Al-Nabhan, M. Al-Rodhaan, and A. Al-Dhelaan, “Distributed energy-efficient
approaches for connected dominating set construction in wireless sensor networks,”
International Journal of Distributed Sensor Networks, Jun. 2014.

[3] https://en.wikipedia.org/wiki/Unit_disk_graph,.

[4] D. Papakostas, P. Basaras, D. Katsaros, and L. Tassiulas, “Backbone formation
in military multi-layer ad hoc networks using complex network concepts,” IEEE
Transactions on Network Science and Engineering, 2016.

[5] D. Papakostas, S. Eshghi, D. Katsaros, and L. Tassiulas, “Energy-aware distributed
edge domination of multilayer networks,” International Journal of Distributed Sensor
Networks, Jul. 2019.

[6] https://medium.com/@julien.carbonnell/theoretical-background-stakeholder-engagement-and-network-science-in-urban-studies-cca349c59e0d,.

[7] N.-S. Ahn and S.-S. Park, “An optimization algorithm for the minimum k-connected
m-dominating set problem in wireless sensor networks.”

[8] https://networkx.github.io/,.

[9] http://www.mkivela.com/pymnet/,.

40

https://www.geeksforgeeks.org/introduction-of-mobile-ad-hoc-network-manet/
https://en.wikipedia.org/wiki/Unit_disk_graph
https://medium.com/@julien.carbonnell/theoretical-background-stakeholder-engagement-and-network-science-in-urban-studies-cca349c59e0d
https://networkx.github.io/
http://www.mkivela.com/pymnet/

	Introduction
	Introduction to Ad Hoc Networks
	Virtual Backbone in Ad Hoc Networks
	Network Model
	Thesis Structure

	Definition of PCIs
	Power Community Index
	Multi-Layer PCIs Definitions
	Experimental Settings

	Implementation
	Dataset
	Library Description
	MILCOM Algorithm
	BCA Algorithm
	Selection Algorithm Description

	Robust Algorithm
	Pruning Phases
	Libraries used in implementation

	Server Client Tool
	Tool Description
	Packet Structures
	Server Client Flow Chart

	Results
	First Algorithm Results
	CDS per PCI per Layer Plots

	Robust Algorithm Results
	CDS for every k-m combination per Layer for a particular PCI (cross-layer) Plots

	Conclusion
	References

