ΣΧΟΛΗ ΓΕΩΠΟΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΓΕΩΠΟΝΙΑΣ ΦΥΤΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΑΓΡΟΤΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΕΡΓΑΣΤΗΡΙΟ ΒΙΟΜΕΤΡΙΑΣ

"Εφαρμογή και χρήση λογισμικών στατιστικής ανάλυσης σε συνήθη πειραματικά σχέδια"

Επιβλέποντας Καθηγητής: Νάκας Χρήστος

Μανουσοπούλου Μαριάννα

«Πτυχιακή Εργασία»

Βόλος, Οκτώβριος 2020

Πτυχιακή Διατριβή:

"Εφαρμογή και χρήση λογισμικών στατιστικής ανάλυσης σε συνήθη πειραματικά σχέδια"

"Application and use of statistical analysis software for common experimental designs"

Η τριμελής συμβουλευτική επιτροπή αποτελείται από τους:

- 1. Νάκα Χρήστο Καθηγητή (Βιομετρία, Πανεπιστήμιο Θεσσαλίας) (Επιβλέπων)
- Δαναλάτο Νικόλαο Καθηγητή (Γεωργία-Οικολογία Φυτών Μεγάλης Καλλιέργειας)
- 3. Παυλή Ουρανία Επίκουρος Καθηγήτρια (Γενετική Βελτίωση Φυτών)

«Βεβαιώνω ότι είμαι συγγραφέας αυτής της πτυχιακής εργασίας, η οποία εκπονήθηκε σύμφωνα με τον Κανονισμό Εκπόνησης Πτυχιακής Εργασίας του ΤΓΦΠΑΠ»

Ευχαριστίες

Θα ήθελα να ευχαριστήσω τον επιβλέποντα καθηγητή κ. Χ Νάκα που μου έδωσε την ευκαιρία να έρθω σε επαφή και να ασχοληθώ με ένα τόσο ενδιαφέρον κλάδο του χώρου της βιομετρίας.

Περιεχόμενα

1.Εισαγωγή
1.1 Ανάλυση διακύμανσης6
1.2 One-way anova
1.3 Two-way anova
1.4 Post-hoc tests
1.5 Πλήρως τυχαιοποιημένο σχέδιο7
1.6 Τυχαιοποιημένων πλήρων ομάδων8
1.7 Ανάλυση συνδιακύμανσης9
1.8 Λατινικό τετράγωνο11
1.9 Πλήρες παραγοντικό με δύο παράγοντες12
1.10 Υποδιαιρεμένων τεμαχίων14
2. SPSS17
2.1 Πλήρως τυχαιοποιημένο σχέδιο18
2.2 Τυχαιοποιημένων πλήρων ομάδων24
2.3 Ανάλυση συνδιακύμανσης
2.4 Λατινικό τετράγωνο
2.5 Πλήρες παραγοντικό με δύο παράγοντες
2.6 Υποδιαιρεμένων τεμαχίων
3.JASP
3.1Πλήρως τυχαιοποιημένο σχέδιο60
3.2 Τυχαιοποιημένων πλήρων ομάδων
3.3 Ανάλυση συνδιακύμανσης71
3.4 Λατινικό τετράγωνο
3.5 Πλήρες παραγοντικό με δύο παράγοντες80
3.6 Υποδιαιρεμένων τεμαχίων
4. R
4.1Πλήρως τυχαιοποιημένο σχέδιο
4.2 Τυχαιοποιημένων πλήρων ομάδων93
4.3 Ανάλυση συνδιακύμανσης97
4.4 Λατινικό τετράγωνο
4.5 Πλήρες παραγοντικό με δύο παράγοντες

4.6 Υποδιαιρεμένων τεμαχίων	106
5. jamovi	110
5.1Πλήρως τυχαιοποιημένο σχέδιο	111
5.2 Τυχαιοποιημένων πλήρων ομάδων	115
5.3 Ανάλυση συνδιακύμανσης	120
5.4 Λατινικό τετράγωνο	125
5.5 Πλήρες παραγοντικό με δύο παράγοντες	130
5.6 Υποδιαιρεμένων τεμαχίων	136
6.Βιβλιογραφία	

1.Εισαγωγή

Σκοπός της παρακάτω εργασίας ήταν η ανάλυση των βασικότερων και πιο κοινών πειραματικών σχεδίων με τη χρήση των τεσσάρων διαφορετικών λογισμικών SPSS, JASP, R i386 3.6.3, jamovi. Στην εργασία παρουσιάζεται ένας εύκολος τρόπος χρήσης των διαφορετικών προγραμμάτων με σκοπό την ανάλυση των δεδομένων του κάθε πειραματικού σχεδίου.

1.1. Ανάλυση διακύμανσης.

Η ανάλυσης διακύμανσης ή παραλλακτικότητας αναπτύχθηκε από τον Sir R.A. Fisher και έχει κεντρικό ρόλο στο τομέα των βιολογικών επιστημών και κυρίως στον γεωργικό πειραματισμό.

1.2. One-way anova.

Η μέθοδος της απλής (ή one-way) ANOVA χρησιμοποιείται για τη σύγκριση δύο ή παραπάνω μέσων όρων από διαφορετικά δείγματα. Στην περίπτωση της one-way ANOVA για τη σύγκριση των διαφορετικών μέσων όρων είναι αναγκαίος ο υπολογισμός του στατιστικού F ο οποίος φαίνεται στον παρακάτω πίνακα. Στην περίπτωση αυτή συγκρίνουμε την παραλλακτικότητα μεταξύ των διαφορετικών μεταχειρίσεων με την παραλλακτικότητα εντός των διαφορετικών ομάδων, γνωστό και ως σφάλμα.

	SS	Df	MS	F
Treatment	SST	k-1	$\frac{SST}{(k-1)}$	MST MSE
Error	SSE	N-k	$\frac{SSE}{(N-k)}$	
Total	SS	N-1		

1.3. Two way anova.

Η two-way anova χρησιμοποιείται σε πειραματικά σχέδια όπου εξετάζεται η παράλληλη επίδραση δύο παραγόντων που συμβαίνουν ταυτόχρονα.

1.4. Post-hoc tests.

Οι έλεγχοι αυτοί αποτελούν το επόμενο βήμα μετά την ανάλυση διακύμανσης, αφού καταλήξουμε στο γενικό συμπέρασμα ότι υπάρχει διαφορά η οποία οφείλεται στις διαφορετικές μεταχειρίσεις. Για να εντοπίσουμε μεταξύ ποιων μεταχειρίσεων συγκεκριμένα υπάρχουν στατιστικά σημαντικές διαφορές εφαρμόζουμε έναν post hoc έλεγχο. Οι έλεγχοι αυτοί καταφέρνουν να ελέγξουν το πειραματικό σφάλμα (experiment-wise error rate) έναντι των πολλαπλών t-tests. Οι επιλογές που έχουμε είναι πολλές ωστόσο στη συγκεκριμένη εργασία εφαρμόστηκαν οι LSD και Tukey-HSD.

1.5.Πλήρως τυχαιοποιημένο σχέδιο.

Το πλήρως τυχαιοποιημένο σχέδιο είναι το πιο απλό πειραματικό σχέδιο που μπορεί να εφαρμοστεί για τη σύγκριση πολλών διαφορετικών μεταχειρίσεων όταν το περιβάλλον στο οποίο διεξάγεται το πείραμα είναι ομοιογενές. Έστω ότι έχουμε g μεταχειρίσεις να συγκρίνουμε και N πειραματικές μονάδες για να τις εφαρμόσουμε στον αγρό. Η κάθε μεταχείριση θα εφαρμοστεί σε υποομάδες $n_1, n_2, ..., n_a$ του N, με $n_1+n_{2+}...+n_a = N$.

Σχηματικά μια γενική μορφή ενός πλήρως τυχαιοποιημένου σχεδίου στο οποίο θα εξεταστούν 3 μεταχειρίσεις (A,B,C), ο αγρός θα χωριστεί σε τεμάχια έτσι ώστε η κάθε μεταχείριση να έχει εφαρμοστεί σε τουλάχιστον 3 πειραματικά τεμάχια. Στη συγκεκριμένη περίπτωση η κάθε μεταχείριση θα εφαρμοστεί τυχαία σε 5 πειραματικά τεμάχια. Η τυχαία εφαρμογή της κάθε ποικιλίας γίνεται με τη δημιουργία κληρωτίδας. Δημιουργούνται κλήροι (5 κλήροι για κάθε ποικιλία) και για κάθε πειραματικό τεμάχιο επιλέγεται ένας. Έτσι προκύπτει το παρακάτω σχέδιο.

1/A	2/C	3/C	4/B	5/A
6/C	7/B	8/B	9/A	10/C
11/B	12/B	13/A	14/C	15/A

Σχέδιο 1: Πλήρως τυχαιοποιημένο σχέδιο

Πείραμα 1 : Έλεγχος τριών διαφορετικών λιπασμάτων σε καλλιέργεια ρυζιού.

Σε ομοιόμορφο πειραματικό αγρό με σπαρμένο ρύζι έγινε έλεγχος 3 διαφορετικών λιπασμάτων προκειμένου να διαπιστωθεί ποιο από τα 3 είχε τη καλύτερη απόδοση. Για το παραπάνω πείραμα εφόσον ο αγρός είναι ομοιογενής σχεδιάστηκε και εφαρμόστηκε το πλήρως τυχαιοποιημένο σχέδιο. Αρχικά ο αγρός χωρίστηκε σε πειραματικά τεμάχια, σπάρθηκε με ρύζι και εφαρμόστηκε στο κάθε τεμάχιο διαφορετική λίπανση (Trt). Τα τρία είδη λιπάσματος που ελέγχθηκαν ήταν το θειικό αμμώνιο (NH4SO), Green Leaf (τύπος compost, οργανικής ουσίας), και συνδυασμός των δύο. Τέλος στο ¹/₄ των πειραματικών τεμαχίων δεν εφαρμόστηκε καμία μεταχείριση (Control). Στο τέλος της καλλιεργητικής περιόδου μετρήθηκε η απόδοση (Yield), σε κιλά, για κάθε διαφορετική μεταχείριση ξεχωριστά. Τα δεδομένα καταγράφηκαν στο Excel (*Εικόνα* 1) και έγινε η ανάλυση τους σε 4 διαφορετικά λογισμικά με στόχο να απορριφθεί ή όχι η αρχική υπόθεση *Ho*: $\mu_1 = \mu_2 = \mu_3 = \mu_4$, ότι δηλαδή οι διαφορετικές μεταχειρίσεις (στη συγκεκριμένη περίπτωση διαφορετικά λιπάσματα) δεν επηρεάζουν την απόδοση. Τα λογισμικά που χρησιμοποιήθηκαν είναι τα SPSS, JASP, R i386 3.6.3, jamovi.

	Α	В	С
1	trt	rep	yield
2	Control	1	20,1
3	NH4SO4	1	22,5
4	Green Lea	1	24,7
5	NH4SO4+(1	24,4
6	Control	2	19,1
7	NH4SO4	2	23
8	Green Lea	2	25,5
9	NH4SO4+(2	26,8
10	Control	3	19
11	NH4SO4	3	23,6
12	Green Lea	3	23,9
13	NH4SO4+(3	25,9
14	Control	4	19,5
15	NH4SO4	4	25,2
16	Green Lea	4	23,6
17	NH4SO4+(4	25,9

Εικόνα 1: Δεδομένα από πείραμα μέτρησης απόδοσης ρυζιού μετά από εφαρμογή διαφορετικών λιπασμάτων καταγεγραμμένα σε Excel.

1.6.Τυχαιοποιημένων πλήρων ομάδων.

Το επόμενο πειραματικό σχέδιο που θα αναλυθεί είναι αυτό των τυχαιοποιημένων πλήρων ομάδων. Το πειραματικό σχέδιο αυτό βασίζεται στη τεχνική της ομαδοποίησης με την οποία μπορούμε να περιορίσουμε την ανεπιθύμητη παραλλακτικότητα που προκαλείται από έναν παράγοντα που υπάρχει στο περιβάλλον στον οποίο ωστόσο δεν μπορούμε να επέμβουμε. Σε ιδανικές συνθήκες θα έπρεπε οι μεταχειρίσεις να εφαρμόζονται σε ομοιογενή τεμάχια έτσι ώστε η παραλλακτικότητα εντός των ομάδων στις οποίες θα τις εφαρμόσουμε να είναι όσο το δυνατόν μικρότερη. Ωστόσο οι ομοιογενείς αυτές συνθήκες είναι πολύ σπάνιο να υπάρχουν στο περιβάλλον τυχαία. Με τη μέθοδο αυτή της ομαδοποίησης, δημιουργούνται ομάδες πειραματικών τεμαχίων τα όποια είναι κατά μια έννοια όμοια, για παράδειγμα είναι πειραματικά τεμάχια που βρίσκονται στην ίδια ευρύτερη γεωγραφική περιοχή ή δείγματα που μελετήθηκαν περίπου τον ίδιο χρόνο. Εντός των ομάδων αναμένεται η παραλλακτικότητα να είναι μικρή (Oehlert, 2010, σελ. 318)

Σε αυτό το σημείο θα μπορούσε να δοθεί μια γενική προσέγγιση του σχεδίου. Έστω g μεταχειρίσεις κάθε μεταχείριση θα εφαρμοστεί σε r αριθμό πειραματικών τεμαχίων με g*r=N όπου N το σύνολο των πειραματικών τεμαχίων. Με άλλα λόγια ο N αριθμός τεμαχίων χωρίζεται σε r ομάδες και σε κάθε ομάδα εφαρμόζεται διαφορετική μεταχείριση. Εντός της κάθε ομάδας ο αγρός χωρίζεται σε τμήματα τόσα όσα και οι μεταχειρίσεις που θα ελεγχθούν, εντός του κάθε πειραματικού τεμαχίου εφαρμόζεται τυχαία η κάθε μεταχείριση. Σχηματικά ένα πείραμα τυχαιοποιημένων πλήρων ομάδων στο οποίο θα εξεταστούν 5 μεταχειρίσεις (A, B, C, D, E) και ο αγρός θα χωριστεί σε τέσσερις ομάδες (Block 1, Block 2, Block 3, Block 4) θα έχει τη παρακάτω μορφή:

Block 1	Block 2	Block 3	Block 4
1/A	2/E	3/C	4/B
5/C	6/B	7/D	8/A
9/E	10/A	11/E	12/D
13/B	14/C	15/A	16/E
17/D	18/D	19/B	20/C

Σχέδιο 2: Πειραματικό σχέδιο τυχαιοποιημένων πλήρων ομάδων.

Πείραμα 2: Έλεγχος περιεκτικότητας σπόρων μελιτζάνας σε έλαιο.

Από καλλιέργεια μελιτζάνας (Solanum melongena) η οποία για ερευνητικούς σκοπούς είχε μολυνθεί με τον μικροοργανισμό Septoria linocola συλλέχθηκαν καρποί σε 3 διαφορετικά στάδια ανάπτυξης. Το πρώτο στάδιο αυτό της εκβλάστησης (Seedling) το δεύτερο στάδιο νωρίς την άνθηση (Early Bloom) το τρίτο στάδιο στην πλήρη άνθιση (Full Bloom) και τέταρτο στάδιο στην πλήρη ωρίμανση (Ripening). Τέλος συλλέχθηκε δείγμα από μη μολυσμένα φυτά (Uninoculated). Η αρχική υπόθεση είναι ότι ανεξάρτητα της μεταχείρισης (στάδιο ανάπτυξης) οι μέσοι όροι των περιεκτικοτήτων των καρπών σε έλαιο είναι ίσοι. Τα δεδομένα καταγράφηκαν σε Excel (Εικόνα 2) και αναλύθηκαν SPSS, JASP, R i386 3.6.3, jamovi.

	Α	В	С	D	Е	F
1	block1	block2	block3	block4	treat	
2	3,3	1,9	4,9	7,1	Seedling	
3	4,4	5,9	6	4,1	Early bloor	n
4	4,4	4	4,5	3,1	Full bloom	
5	6,3	4,9	5,9	7,1	Full bloom	(1/100)
6	6,4	7,3	7,7	6,7	Ripening	
7	6,8	6,6	7	6,4	Uninoculat	ed

Εικόνα 2: Δεδομένα από πείραμα μέτρησης ελαίου σε σπόρους μελιτζάνας, καταγεγραμμένα σε Excel.

1.7.Ανάλυση συνδιακύμανσης.

Η τεχνική της ομαδοποίησης δεν είναι ο μόνος τρόπος για να περιοριστεί η ανεπιθύμητη διακύμανση. Ένας άλλος τρόπος να περιλάβουμε στη μελέτη μας τη δράση ενός τρίτου παράγοντα είναι η ανάλυση συνδιακύμανσης. Στην περίπτωση που υπάρχει μεταβλητή η οποία είναι συνεχής και για την οποία πιστεύεται ότι επηρεάζει το αποτέλεσμα επιλέγουμε να αναλύσουμε τα αποτελέσματα κάνοντας ανάλυση συνδιακύμανσης γνωστή και ως ancova προκειμένου να ελέγξουμε στατιστικά την επίδρασή της.

Πείραμα 3: Μέτρηση ασκορβικού σε 11 διαφορετικές ποικιλίες φασολιών lima.

Στο παρακάτω πείραμα σκοπός ήταν η μέτρηση της περιεκτικότητας ασκορβικού σε φασόλια lima (*Phaseolus lunatus*). Σε ομοιογενή αγρό φυτεύτηκαν 11 διαφορετικές ποικιλίες (Var) φασολιών και έγιναν τέσσερις επαναλήψεις. Το πείραμα είχε τη μορφή τυχαιοποιημένων πλήρων ομάδων και παράλληλη καταγραφή 2 ανεξάρτητων συνεχών μεταβλητών όπως φαίνεται στο παρακάτω σχέδιο ενώ η αρχική υπόθεση ήταν ότι και οι 11 ποικιλίες έχουν την ίδια περιεκτικότητα σε ασκορβικό. Η καταγραφή των δεδομένων έγινε σε Excel (Εικόνα 3) και τα δεδομένα αναλύθηκαν σε SPSS, JASP, R i386 3.6.3, jamovi.

	Α	В	С	D
1	var	rep	COV	ascorbic
2	1	1	34	93
3	2	1	39,6	47,3
4	3	1	31,7	81,4
5	4	1	37,7	66,9
6	5	1	24,9	119,5
7	6	1	30,3	106,6
8	7	1	32,7	106,1
9	8	1	34,5	61,5
10	9	1	31,4	80,5
11	10	1	21,2	149,2
12	11	1	30,8	78,7
13	1	2	33,4	94,8
14	2	2	39,8	51,5
15	3	2	30,1	109
16	4	2	38,2	74,1
17	5	2	24	128,5
18	6	2	29,1	111,4
19	7	2	33,8	107,2
20	8	2	31,5	83,4
21	9	2	30,5	106,5
22	10	2	25,3	151,6
23	11	2	26,4	116,9
24	1	3	34,7	91,7
25	2	3	51,2	33,3
26	3	3	33,8	71,6
27	4	3	40,3	64,7
28	5	3	24,9	125,6

29	6	3	31,7	99
30	7	3	34,8	97,5
31	8	3	31,1	93,9
32	9	3	34,6	76,7
33	10	3	23,5	170,1
34	11	3	33,2	71,8
35	1	4	38,9	80,8
36	2	4	52	27,2
37	3	4	39,6	57,5
38	4	4	39,4	69,3
39	5	4	23,5	129
40	6	4	28,3	126,1
41	7	4	35,4	86
42	8	4	36,1	69
43	9	4	30,9	91,8
44	10	4	24,8	155,2
45	11	4	33,5	70,3
46	1	5	36,1	80,2
47	2	5	56,2	20,6
4 8	3	5	47,8	30,1
49	4	5	41,3	63,2
50	5	5	25,1	126,2
51	6	5	34,2	95,6
52	7	5	37,8	88,8
53	8	5	38,5	46,9
54	9	5	36,8	68,2
55	10	5	24,6	146,1
56	11	5	43,8	40,9

Εικόνα 3: Δεδομένα από πείραμα μέτρησης ασκορβικού σε φασόλια lima καταγεγραμμένα σε Excel.

1.8. Λατινικό τετράγωνο.

Το πειραματικό σχέδιο του λατινικού τετραγώνου χρησιμοποιείται στη περίπτωση που στο περιβάλλον όπου διεξάγεται το πείραμα υπάρχουν δυο παράγοντες που προκαλούν ανομοιογένεια κάθετα ο ένας με τον άλλον. Προκειμένου να ομοιογενοποιηθεί το περιβάλλον θα πρέπει οι δύο αυτοί παράγοντες να περιοριστούν. Αυτό γίνεται με τον διαχωρισμό του αγρού σε ζώνες ομοιογένειας οι οποίες θα πρέπει να είναι παράλληλές με τον παράγοντα που προκαλεί την παραλλακτικότητα. Όπως σε όλα τα πειραματικά σχέδια έτσι και σε αυτό είναι απαραίτητη η τυχαία εφαρμογή των διαφορετικών επιπέδων της μεταχείρισης σε κάθε πειραματική μονάδα. Η τυχαία αυτή εφαρμογή γίνεται με τη δημιουργία 4 κλήρων σε κάθε μεταχείριση. Στη συνέχεια ξεκινώντας αλφαβητικά εφαρμόζουμε τη κάθε μεταχείριση στα πειραματικά τεμάχια με κατεύθυνση από τα αριστερά προς τα δεξιά και συνεχίζουμε όπως φαίνεται στο παρακάτω σχήμα.

Σχηματικά ένα πείραμα λατινικού τετραγώνου όπου θα ελεγχθεί η επίδραση τεσσάρων διαφορετικών μεταχειρίσεων (A, B, C, D) σε περιβάλλον όπου υπάρχουν δύο διαφορετικές πηγές διακύμανσης, η μια εκ των δύο προκαλεί παραλλακτικότητα μεταξύ των γραμμών και η άλλη μεταξυ των στηλών, θα έχει την παρακάτω μορφή.

	Block 1	Block 2	Block 3	Block 4
Block 1	1/A	2/B	3/C	4/D
Block 2	5/B	6/C	7/D	8/A
Block 3	9/C	10/D	11/A	12/B
Block 4	13/D	14/A	15/B	16/C

Σχέδιο 4: Πειραματικό σχέδιο λατινικό τετράγωνο

Πείραμα 4: Μέτρηση πυρουβικού οξέος μετα από εφαρμογή τεσσάρων διαφορετικών δόσεων λίπανσης με θείο.

Το πυρουβικό οξύ είναι το κύριο παράγωγο της γλυκόλησης και το στοιχείο με βάση το οποίο μπορούμε να εκτιμήσουμε τη καυστική γεύση των κρεμμυδιών. Στο πείραμα αυτό εφαρμόστηκαν τέσσερις διαφορετικές λιπάνσεις (Trt) οι οποίες διέφεραν ως προς τη περιεκτικότητά τους σε θείο. Η πρώτη λίπανση η οποία ήταν και ο «μάρτυρας» δεν είχε καμία περιεκτικότητα σε θείο η δεύτερη είχε 2,22 η τρίτη 4,44 και η τέταρτη 6,7 κιλά ανα στρέμμα. Στη τέλος της καλλιεργητικής περιόδου συλλέχθηκαν 10 βολβοί από κάθε πειραματικό τεμάχιο και σε αυτούς μετρήθηκε η περιεκτικότητα σε πυρουβικό (Pyr). Τα αποτελέσματα καταγράφηκαν στο Excel (Εικόνα 4) και στη συνέχεια αναλύθηκαν σε σε SPSS, JASP, R i386 3.6.3, jamovi.

	Α	В	С	D
1	trt	row	column	pyr
2	0kg	1	1	3,08
3	0kg	2	2	2,56
4	0kg	3	3	3,19
5	0kg	4	4	4,24
6	2.22kg	1	2	3,45
7	2.22kg	2	1	3,66
8	2.22kg	3	4	4,45
9	2.22kg	4	3	3,35
10	4.44kg	1	3	3,4
11	4.44kg	2	4	4,35
12	4.44kg	3	2	3,72
13	4.44kg	4	1	4,51
14	6.7kg	1	4	5,35
15	6.7kg	2	3	3,93
16	6.7kg	3	1	4,56
17	6.7kg	4	2	3,98

Εικόνα 4: Δεδομένα από πείραμα μέτρησης πυρουβικού σε βολβούς κρεμμυδιών, καταγεγραμμένα σε Excel.

1.9.Πλήρες παραγοντικό με δυο παράγοντες.

Μέχρι τώρα αναλύθηκαν πειραματικά σχέδια που χρησιμοποιούνται για τον έλεγχο μεταχειρίσεων που δεν έχουν κάποια δομή, ήταν απλές μεταχειρίσεις όπως για παράδειγμα

ποικιλία ή διαφορετικές δόσεις λιπάσματος. Σε αυτό το κεφάλαιο θα ασχοληθούμε με μεταχειρίσεις οι οποίες έχουν πολυπαραγοντική δομή (factorial treatment structure) και πρόκειται για εκείνες οι οποίες προκύπτουν από το συνδυασμό διαφορετικών επιπέδων δύο ή παραπάνω διαφορετικών μεταχειρίσεων. Θα μπορούσαμε να παρουσιάσουμε τέτοιου τύπου μεταχειρίσεις με τη μορφή πίνακα.

	B1	B2	B3
A1	y ₁₁₁	y ₁₂₁	y 131
	y ₁₁₂	y ₁₂₂	y ₁₃₂
	y _{11n}	y _{12n}	y _{13n}
A2	y ₂₁₁	y ₂₂₁	y 231
	y ₂₁₂	y ₂₂₂	y ₂₃₂
	y 21n	y 22n	y 23n
A3	y 311	y 321	y 331
	y ₃₁₂	y ₃₂₂	y ₃₃₂
	y _{31n}	y _{32n}	y _{33n}
A4	y ₄₁₁	y ₄₂₁	y ₄₃₁
	y ₄₁₂	y ₄₂₂	y ₄₃₂
	y _{41n}	y _{42n}	y _{43n}

Μεταχειρίσεις πολυπαραγοντικής δομής

Το συγκεκριμένο πειραματικό σχέδιο μπορεί να χρησιμοποιηθεί για τον έλεγχο δύο ή και παραπάνω παραγόντων, ωστόσο στη συγκεκριμένη εργασία θα περιοριστούμε στους δύο. Για την τυχαία εφαρμογή του επιπέδου του κάθε παράγοντα μπορεί να δημιουργηθούν κλήροι ένας για κάθε ζεύγος διαφορετικών επιπέδων, διαφορετικών παραγόντων. Στη συνέχεια ο αγρός χωρίζεται σε τεμάχια και στο κάθε τεμάχιο κληρώνεται ένας διαφορετικός συνδυασμός. Για παράδειγμα ένα πείραμα 2 παραγόντων, όπου ο παράγοντας 1 έχει τρία επίπεδα και ο παράγοντας 2 τέσσερα, θα έχει την παρακάτω μορφή.

1A	2B	3A
2Γ	2 ^A	1B
3B	1Γ	1Δ
2Δ	3Δ	ЗГ

Σχέδιο 5: Πειραματικό σχέδιο με δύο παράγοντες ενδιαφέροντος.

Πείραμα 5: Επιρροή ηλικίας και ποικιλίας στην άνθιση του κρεμμυδιού.

Σκοπός του συγκεκριμένου πειράματος ήταν να προσδιοριστεί η επιρροή που έχει ο χρόνος καθώς και η ποικιλία στην άνθιση των φυτών κρεμμυδιού. Αρχικά ο αγρός χωρίστηκε σε πειραματικά τεμάχια και στη συνέχεια σπάρθηκε με κοκκάρια κρεμμυδιού τεσσάρων διαφορετικών ποικιλιών (A, B, C, D). Στη συνέχεια επιλέχθηκαν τρείς ημερομηνίες (5 Οκτωβρίου, 15 Οκτωβρίου, 29 Οκτωβρίου) στις οποίες έγιναν συγκομιδές από τέσσερα διαφορετικά φυτά στο κάθε αγροτεμάχιο. Η αρχική υπόθεση ήταν ότι οι δύο παράγοντες δεν αλληλεπιδρούν μεταξύ τους και ότι οι μέσοι όροι είναι ίσοι. Τα δεδομένα καταγράφηκαν στο Excel (Εικόνα 5) και στη συνέχεια αναλύθηκαν SPSS, JASP, R i386 3.6.3, jamovi.

4	•	Р	0	D	26	Nirvana	29 Oct	1	
1	A	D	C C	D	27	Nirvana	5 Oct	4	(
2	Dogosus	5 Oct	1ep	12	28	Nirvana	5 Oct	2	Ę
2	Pogasus	20 Oct	1	0	29	Nirvana	15 Oct	1	(
4	Pegasus	15 Oct	2	0	30	Nirvana	29 Oct	2	(
5	Pegasus	15 Oct	3	0	31	Nirvana	15 Oct	3	(
6	Pegasus	29 Oct	4	0	32	Nirvana	5 Oct	3	(
7	Pegasus	5 Oct	2	15	33	Nirvana	5 Oct	1	17
8	Pegasus	15 Oct	4	1	34	Nirvana	15 Oct	4	
9	Pegasus	29 Oct	2	0	35	Ninyana	29 Oct	3	1
10	Pegasus	5 Oct	3	2	26	Ninvana	29 Oct	3	
11	Pegasus	15 Oct	1	0	30	Nirvaria	29 001	4	
12	Pegasus	5 Oct	4	8	31	Nirvana	15 Oct	2	U
13	Pegasus	29 Oct	3	0	38	PS 7092	5 Oct	3	2
14	Sweet Vida	15 Oct	1	2	39	PS 7092	29 Oct	3	0
15	Sweet Vida	5 Oct	1	35	40	PS 7092	15 Oct	1	0
16	Sweet Vid	29 Oct	2	0	41	PS 7092	29 Oct	1	0
17	Sweet Vid	15 Oct	3	15	42	PS 7092	15 Oct	2	1
18	Sweet Vida	5 Oct	4	46	43	PS 7092	15 Oct	3	0
19	Sweet Vide	29 Oct	1	0	44	PS 7092	15 Oct	4	0
20	Sweet Vid	5 Oct	3	23	45	PS 7092	29 Oct	4	0
21	Sweet Vid	29 Oct	4	0	46	DS 7002	20 Oct		0
22	Sweet Vid	29 Oct	3	0	40	FS 7092	29 UU	2	U 7
23	Sweet Vide	15 Oct	4	0	47	PS 7092	5 000	2	1
24	Sweet Vide	15 Oct	2	3	48	PS 7092	5 Oct	4	14
25	Sweet Vida	5 Oct	2	19	49	PS 7092	5 Oct	1	12

Εικόνα 5: Δεδομένα από πείραμα μέτρησης βλαστών κρεμμυδιού, καταγεγραμμένα σε Excel.

1.10. Υποδιαιρεμένων τεμαχίων.

Ta split-plots χρησιμοποιούνται όταν ο ένας από τους δύο παράγοντες είναι τόσο δύσκολο στο να εφαρμοστεί σε μικρά πειραματικά τεμάχια, όσο και οικονομικά ασύμφορο. Ένας τέτοιος παράγοντας είναι για παράδειγμα η άρδευση η οποία δεν μπορεί τεχνικά να περιοριστεί σε μικρά πειραματικά τεμάχια χωρίς να επηρεάζονται τα γειτονικά. Ta split-plots είναι τύπος πειραματικών σχεδίων με τα οποία μπορούμε να ελέγξουμε τέτοιους τύπους μεταχειρίσεων, χωρίς ωστόσο η χρήση τους να περιορίζεται σε αυτό.

Το παραπάνω πειραματικό σχέδιο είναι ένα είδος πολυπαραγοντικού πειράματος και χρησιμοποιείται όταν υπάρχει κάποιος περιορισμός προκειμένου να διευκολυνθεί η εφαρμογή του. Σε αυτού του τύπου το πείραμα υπάρχουν δυο τυχαιοποιήσεις και δύο διαφορετικές πειραματικές μονάδες, μία για τον κάθε παράγοντα. Ο παράγοντας που εφαρμόζεται στη μεγαλύτερη πειραματική μονάδα είναι ο main plot και αυτός ο οποίος εφαρμόζεται στις μικρότερες πειραματικές μονάδες είναι ο sub plot. Ο παράγοντας main plot είναι αυτός στον οποίο υπάρχει η δυσκολία στην εφαρμογή του και γι' αυτό εφαρμόζεται στη μεγαλύτερη πειραματική μονάδα, ωστόσο δεν υπάρχει μεγάλη ακρίβεια και γι' αυτό ο παράγοντας που είναι πιο σημαντικός θα πρέπει εάν είναι δυνατόν να εφαρμοστεί στα subplots. Κάτι που αξίζει να σημειωθεί είναι το ότι όταν η αλληλεπίδραση μεταξύ των παραγόντων είναι σημαντική δεν υπάρχει νόημα στο να μιλάμε για την επίδραση του κάθε παράγοντα ξεχωριστά. Για τον κάθε παράγοντα γίνεται διαφορετική τυχαιοποίηση για να καταχωρηθεί στα πειραματικά τεμάχια. Επίσης μπορεί να γίνει τυχαία καταχώρηση διαφορετικών συνδυασμών των δύο παραγόντων σε κάθε πειραματικό τεμάχιο. Σχηματικά ένα πειραματικό σχέδιο όπου ο main plot παράγοντας έχει δύο επίπεδα (A,B) και sub plot 4 (A,B,C,D) θα έχει την παρακάτω μορφή.

Main plot Factor Level 1

Main plot Factor Level 2

Main plot Factor Level 3

Σχέδιο 6: Πειραματικό σχέδιο υποδιαιρεμένων τεμαχίων.

Πείραμα 6: Μελέτη αλληλεπίδρασης χλωρής λίπανσης με χημική λίπανση.

Σε δύο διαφορετικούς αγρούς εφαρμόστηκαν δύο διαφορετικά επίπεδα χημικής αζωτούχου λίπανσης. Στον πρώτο εφαρμόστηκε δόση λιπάσματος 29,6 κιλά αζώτου ενώ στο άλλο δεν εφαρμόστηκε καμία ποσότητα αζώτου. Στη συνέχεια ο κάθε αγρός χωρίστηκε σε τεμάχια έτσι ώστε το κάθε διαφορετικό επίπεδο του sub plot παράγοντα να εφαρμοστεί τρεις φορές και εντός του κάθε τεμαχίου εφαρμόστηκε τυχαία ένας από τους τέσσερις διαφορετικούς τύπους χλωρής λίπανσης. Οι διαφορετικοί τύποι ήταν κριθάρι (Barley) (*Horedeum vulgare*), βίκος (Vetch) (*Vicia*), συνδυασμός των δύο παραπάνω (Barley-Vetch) και τέλος η τεχνική της αγρανάπαυσης (Fallow) οπού το χωράφι δεν καλλιεργήθηκε με κάποιο συγκεκριμένο φυτό. Στο παραπάνω πείραμα μελετήθηκε η αλληλεπίδραση των δύο παραγόντων. Στη συνέχεια και οι δύο αγροί φυτεύτηκαν με ζαχαρότευτλα. Στο τέλος της καλλιεργητικής περιόδου έγινε η συγκομιδή και η απόδοση του κάθε πειραματικού τεμαχίου καταγράφηκε στο Excel (Εικόνα 6) και στη συνέχεια αναλύθηκαν SPSS, JASP, R i386 3.6.3, jamovi. Η αρχική υπόθεση του πειράματος ήταν ότι όλοι οι μέσοι όροι είναι ίσοι.

	А	В	С	D
1	Fert	Green	Rep	Yield
2	0kg	Fallow	1	13,8
3	0kg	Barley	1	15,5
4	0kg	Vetch	1	21
5	0kg	Barley-vet	1	18,9
6	29,6kg	Fallow	1	19,3
7	29,6kg	Barley	1	22,2
8	29,6kg	Vetch	1	25,3
9	29,6kg	Barley-vet	1	25,9
10	0kg	Fallow	2	13,5
11	0kg	Barley	2	15
12	0kg	Vetch	2	22,7
13	0kg	Barley-vet	2	18,3
14	29,6kg	Fallow	2	18
15	29,6kg	Barley	2	24,2
16	29,6kg	Vetch	2	24,8
17	29,6kg	Barley-vet	2	26,7
18	0kg	Fallow	3	13,2
19	0kg	Barley	3	15,2
20	0kg	Vetch	3	22,3
21	0kg	Barley-vet	3	19,6
22	29,6kg	Fallow	3	20,5
23	29,6kg	Barley	3	25,4
24	29,6kg	Vetch	3	28,4
25	29,6kg	Barley-vet	3	27,6

Εικόνα 6: Δεδομένα από πείραμα μέτρησης απόδοσης ζαχαρότρυτλων, καταγεγραμμένα στο Excel.

2.Spss

2.1.Πλήρως τυχαιοποιημένο.

Όπως προαναφέρθηκε τα δεδομένα καταγράφονται στο Excel σε αρχείο .xlsm. Η ανάλυση ξεκινά με την εισαγωγή και προβολή των δεδομένων. Αρχικά κάνουμε «κλικ» στην επιλογή «Variable View» στο κάτω αριστερά μέρος της οθόνης και εμφανίζεται η Εικόνα 7. Στη συνέχεια κάνοντας «κλικ» στα κελιά κάτω από το όνομα της κάθε στήλης μπορούμε να επεξεργαστούμε τα δεδομένα. Στη συγκεκριμένη περίπτωση όπως φαίνεται στην Εικόνα 7 ορίζουμε τον τύπο (Type) των μεταβλητών και επίσης όπως φαίνεται στην Εικόνα 8 δίνουμε στα διαφορετικά επίπεδα του υπό εξέταση παράγοντα (Trt) αντίστοιχα ονόματα. Ως αποτέλεσμα έχουμε στο «Data View» τον Πίνακα δεδομένων 1 στον οποίο βλέπουμε την απόδοση (σε κιλά) του κάθε ατόμου καθώς και τη μεταχείριση που του έχει εφαρμοστεί.

Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure	Role
Trt	String	17	0		{Control, A}	None	17	≣ Left	🚴 Nominal	🔪 Input
Rep	Numeric	11	0		None	None	11	I Right	💑 Nominal	🔪 Input
Yield	Numeric	12	3		None	None	12	I Right	Scale Scale	🔪 Input

Εικόνα 7: «Variable View», περιβάλλον μορφοποίησης δεδομένων.

- Value Lab	els	
Value: Co	ntrol	
Label: A		
Bot Chan Remo	Control = "A" Green Leaf = "C" NH4SO4 = "B" NH4SO4+Green Leaf = "D" we	

Εικόνα 8: Ορισμός ονομάτων των διαφορετικών επιπέδων του παράγοντα «Trt».

Trt	Rep	Yield	
A	1	20,100	
В	1	22,500	
С	1	24,700	
D	1	24,400	
A	2	19,100	
В	2	23,000	
С	2	25,500	
D	2	26,800	
A	3	19,000	
В	3	23,600	
С	3	23,900	
D	3	25,900	
A	4	19,500	
В	4	25,200	
С	4	23,600	
D	4	25,900	

Πίνακας δεδομένων 1: «Data View», Δεδομένα από «Πείραμα 1» σε SPSS.

Ωστόσο από τον Πίνακα δεδομένων I δεν μπορούμε να βγάλουμε κανένα συμπέρασμα για την αρχική υπόθεση (Ho: $\mu_1 = \mu_2 = \mu_3 = \mu_4$) γι' αυτό είναι απαραίτητη η ανάλυση των παραπάνω δεδομένων. Αρχικά ξεκινάμε με τη δημιουργία ενός πίνακα ο οποίος περιλαμβάνει τα μέτρα θέσης και τα μέτρα διασποράς (Πίνακας I). Για τη δημιουργία του Πίνακα I ακολουθείται η εξής διαδρομή : «Analyze», «Descriptive Statistics», «Descriptives» και καταλήγουμε στην Εικόνα 9.

	Variable(s):	Options
💑 Rep 🔗 Yield		Style
		Bootstrap
	S	

Εικόνα 9: Παράθυρο «Descriptives».

Σε αυτό το σημείο τοποθετούμε στη θέση «Variable» τη μεταβλητή «Yield» και κάνοντας «κλικ» στο εικονίδιο «Options» επιλέγουμε ποια μέτρα θέσης και μέτρα διασποράς θέλουμε να εμφανιστούν στον πίνακα. Στη συγκεκριμένη περίπτωση επιλέχθηκαν τα παρακάτω.

	Ν	Mean		Std. Deviation	Variance
	Statistic	Statistic	Std. Error	Statistic	Statistic
yield	16	23.294	.6438	2.5751	6.631
Valid N (listwise)	16				

Descriptive Statistics

Πίνακας 1: Βασικά μέτρα θέσης και μέτρα διασποράς του πληθυσμού.

Στον Πίνακα 1 βλέπουμε ότι το πλήθος των πειραματικών μονάδων (N Statistic) ισούται με 16, ο μέσος όρος (Mean Statistic) ισούται με 23,29 το τυπικό σφάλμα (Std. Error Mean Statistic) ισούται με 0,6438, η τυπική απόκλιση (Std. Deviation Statistic) ισούται με 2,5751 και τέλος η διακύμανση (Variance Statistic) ισούται με 6,631.

Επίσης χρήσιμο θα ήταν σε αυτό το σημείο να δημιουργηθεί ένα διάγραμμα που να απεικονίζει τους τέσσερις διαφορετικούς πληθυσμούς έτσι ώστε να αποκτήσουμε μια καλύτερη εικόνα του πως και εάν οι μεταχειρίσεις επηρεάζουν τον πληθυσμό. Για να γίνει αυτό ακολουθείται η εξής διαδρομή: «Analyze», «Descriptive Statistics», «Explore» και καταλήγουμε στη *Εικόνα 10*. Στο σημείο αυτό μπορούμε να δημιουργήσουμε πίνακες με αναλυτικά τα μέτρα θέσης και μέτρα διασποράς του πληθυσμού της κάθε μεταχείρισης καθώς και διαγράμματα. Αρχικά θέτουμε ως «Dependent List» τη μεταβλητή «Yield» και ως «Factor List» τη μεταβλητή «Trt».

💑 Trt	Dependent List	Statistics
💑 Rep 🎺 Yield	Factor List	Options Bootstrap
	Label Cases by:	
Both Statistic	s O Plots	

Εικόνα 10: Παράθυρο «Explore»,δημιουργία πινάκων και διαγραμμάτων.

Κάνοντας «κλικ» στο εικονίδιο «Statistics» εμφανίζεται η Εικόνα 11 εκεί επιλέγοντας το «Descriptives» εμφανίζεται το Διάγραμμα 1.

	Dependent List:		Statistics.
💑 Trt 💦 Rep	Explore: Statistics	×	Plots
Yield	✓ Descriptives		Options
	Confidence Interval for Mean: 9 M-estimators Outliers Percentiles	5 %	Bootstrap
Display <u>B</u> oth C	Continue Cancel Help		

Εικόνα 11: Παράθυρο «Explore:Statistics».

Διάγραμμα 1: : Θηκόγραμμα/Boxplot διαφορετικών μεταχειρίσεων, Άζονας x: «Μεταχείριση»(«Trt»), Άζονας y: «Απόδοση» («Yield»).

Το επόμενο βήμα είναι η ανάλυση διακύμανσης. Για να τη κάνουμε ακολουθείται η εξής διαδρομή: «Analyze», «General Linear Model», «Univariate» και εμφανίζεται η Εικόνα 12. Σε αυτό το σημείο θέτοντας στον πίνακα της εικόνας, ως «Dependent Variable» τη μεταβλητή «Yield» και ως «Fixed Factors» τη μεταβλητή «Trt» καταλήγουμε στον Πίνακα 3 ο οποίος πρόκειται για πίνακα ανάλυσης διακύμανσης γνωστός και ως anova.

Εικόνα 12: Παράθυρο προσδιορισμού μεταβλητών για ανάλυση διακύμανσης.

Dependent Variable: yield								
Source	Type III Sum of Squares	df	Mean Square	F	Sig.			
Corrected Model	89.437ª	3	29.812	35.659	.000			
Intercept	8681.581	1	8681.581	10384.146	.000			
trt	89.437	3	29.812	35.659	.000			
Error	10.033	12	.836					
Total	8781.050	16						
Corrected Total	99.469	15						

Tests of Between-Subjects Effects

a. R Squared = .899 (Adjusted R Squared = .874) Πίνακας 2: Πίνακας ανάλυσης διακύμανσης.

Στον Πίνακα 2 βλέπουμε ότι το άθροισμα τετραγώνων (Sum of Squares) του παράγοντα «Trt» ισούται με 89,437 και το Σφάλμα «Mean Square» ισούται με 29,812. Το άθροισμα τετραγώνων δείχνει τη διακύμανση που οφείλεται στην αλλαγή που προκαλεί στο πληθυσμό η εφαρμογή της κάθε διαφορετικής μεταχείρισης, ενώ το σφάλμα δείχνει τη διακύμανση εντός των διαφορετικών ομάδων στις οποίες έχουν εφαρμοστεί οι μεταχειρίσεις. Τέλος το στατιστικό F που στη συγκεκριμένη περίπτωση ισούται με 35,659 εκφράζεται από το κλάσμα <u>Mst</u>. Στην περίπτωση που οι δύο διακυμάνσεις είναι περίπου ίσες (δηλαδή η εφαρμογή της μεταχείρισης δεν προκαλεί κάποια αλλαγή στον πληθυσμό) η τιμή του στατιστικού F θα είναι κοντά στη μονάδα. Συμπερασματικά στη συγκεκριμένη περίπτωση οι εφαρμογή των διαφορετικών λιπάνσεων επηρεάζει την απόδοση των φυτών ρυζιού, ωστόσο δεν γνωρίζουμε ποια μεταχείριση προκαλεί τη μεγαλύτερη απόδοση. Για να καταλήξουμε σε αυτό το συμπέρασμα θα εφαρμόσουμε Post hoc ελέγχους και συγκεκριμένα αυτόν της Ελάχιστης Σημαντικής Διαφοράς (LSD) και τον έλεγχο Tukey-HSD. Για να γίνει κάνουμε «κλικ» στο εικονίδιο «Post Hoc» (*Εικόνα 12*) και στη συνέχεια επιλέγουμε τους δύο αυτούς ελέγχους που θέλουμε να εφαρμόσουμε και τοποθετούμε στη θέση «Post Hoc Tests for» τη μεταβλητή «Trt» (*Εικόνα 13*). Έτσι καταλήγουμε στον Πίνακα 3 στον οποίο βλέπουμε τη στατιστική διαφορά που υπάρχει μεταξύ ζευγών μεταχειρίσεων (η μεταχείριση Α από τη μεταχείριση Β, η μεταχείριση Α από τη μεταχείριση C κ.ο.κ).

Εικόνα 13: Παράθυρο επιλογής post hoc ελέγχων.

Dependent Variable: vield

			Mean Difference (I-			95% Confide	ence Interval
	(I) trt	(J) trt	J)	Std. Error	Sig.	Lower Bound	Upper Bound
Tukey HSD	А	С	-5.00000*	.646545	.000	-6.91953	-3.08047
		В	-4.15000^{*}	.646545	.000	-6.06953	-2.23047
		D	-6.32500*	.646545	.000	-8.24453	-4.40547
	С	A	5.00000^{*}	.646545	.000	3.08047	6.91953
		В	.85000	.646545	.572	-1.06953	2.76953
		D	-1.32500	.646545	.224	-3.24453	.59453
	В	А	4.15000^{*}	.646545	.000	2.23047	6.06953
		С	85000	.646545	.572	-2.76953	1.06953
		D	-2.17500*	.646545	.025	-4.09453	25547

Multiple Comparisons

	D	А	6.32500*	.646545	.000	4.40547	8.24453
		С	1.32500	.646545	.224	59453	3.24453
		В	2.17500^{*}	.646545	.025	.25547	4.09453
LSD	А	С	-5.00000^{*}	.646545	.000	-6.40870	-3.59130
		В	-4.15000*	.646545	.000	-5.55870	-2.74130
		D	-6.32500*	.646545	.000	-7.73370	-4.91630
	С	А	5.00000^{*}	.646545	.000	3.59130	6.40870
		В	.85000	.646545	.213	55870	2.25870
	_	D	-1.32500	.646545	.063	-2.73370	.08370
	В	А	4.15000^{*}	.646545	.000	2.74130	5.55870
		С	85000	.646545	.213	-2.25870	.55870
		D	-2.17500*	.646545	.006	-3.58370	76630
	D	А	6.32500*	.646545	.000	4.91630	7.73370
		С	1.32500	.646545	.063	08370	2.73370
		В	2.17500^{*}	.646545	.006	.76630	3.58370

Based on observed means.

The error term is Mean Square(Error) = .836.

*. The mean difference is significant at the 0.05 level.

Πίνακας 3: Αποτελέσματα από την εφαρμογή των ελέγχων LSD, Tukey HSD.

Στον παραπάνω πίνακα φαίνονται τα αποτελέσματα των post-hoc ελέγχων. Τόσο το LSD test όσο και το HSD test έδειξαν ότι υπάρχει διαφορά μεταξύ της μεταχείρισης «Control» και των τριών άλλων μεταχειρίσεων καθώς το p είναι πολύ κοντά στο 0 (p<<0,05). Επίσης εντοπίστηκε διαφορά μεταξύ των μεταχειρίσεων «NH4SO4» (B) και «NH4SO4+Green Leaf» (D) καθώς p ισούται με 0,006 (p<<0,05). Μεταξύ των υπόλοιπων ζευγών δεν εντοπίστηκαν στατιστικά σημαντικές διαφορές σε επίπεδο 5%.Συνδιάζοντας τις πληροφορίες από τον Πίνακα 3 και από το Διάγραμμα 1, παρατηρείται ότι ο μέσος όρος της μεταχείρισης «NH4SO4» είναι μικρότερος από τον μέσο όρο της μεταχείρισης «NH4SO4+ Green Leaf» συνεπώς η καλύτερη μεταχείριση είναι ο συνδυασμός NH4SO4 με Green Leaf.

2.2. Τυχαιοποιημένων πλήρων ομάδων.

Η ανάλυση ξεκινά με την εισαγωγή και προβολή των δεδομένων. Όπως και πριν κάνουμε «κλικ» στην επιλογή «Variable View» στο κάτω αριστερά μέρος της οθόνης και εμφανίζεται η Εικόνα 14. Στη συγκεκριμένη περίπτωση όπως φαίνεται ορίζουμε τον τύπο (Type) των μεταβλητών «Trt» και «Block» και επίσης όπως φαίνεται στην Εικόνα 15 δίνουμε στα διαφορετικά επίπεδα του υπό εξέταση παράγοντα (Trt) καθώς και των διαφορετικών επιπέδων των ομάδων (Blocks) αντίστοιχα ονόματα. Ως αποτέλεσμα έχουμε στο «Data View» τον Πίνακα δεδομένων 2 στον οποίο βλέπουμε την περιεκτικότητα του κάθε σπόρου σε έλαιο, την μεταχείριση που του έχει εφαρμοστεί, καθώς και την ομάδα (Block) στην οποία ανήκει.

Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure	Role
Trt	String	18	0	Trt	{Early bloo	None	18	📰 Left	💑 Nominal	🔪 Input
Block	Numeric	12	0		{1, 1}	None	12	I Right	🚴 Nominal	> Input
Yield	Numeric	12	3		None	None	12	Right	Scale Scale	🔪 Input

Εικόνα 14: «Variable View», περιβάλλον μορφοποίησης δεδομένων.

Εικόνα 15: Ορισμός ονομάτων των διαφορετικών επιπέδων του παράγοντα «Trt» και «Block».

Trt	Block	Yield
A	B1	3,300
В	B1	4,400
С	B1	4,400
D	B1	6,300
E	B1	6,400
F	B1	6,800
A	B2	1,900
в	B2	5,900
С	B2	4,000
D	B2	4,900
E	B2	7,300
F	B2	6,600
A	B3	4,900
В	B3	6,000
С	B3	4,500
D	B3	5,900
E	B3	7,700
F	B3	7,000
A	B4	7,100
В	B4	4,100
С	B4	3,100
D	B4	7,100
E	B4	6,700
F	B4	6,400

Πίνακας δεδομένων 2. : «Data View», Δεδομένα από «Πείραμα 2» σε SPSS.

Συνεχίζουμε δημιουργώντας τον πίνακα με τα μέτρα θέσης και μέτρα διασποράς. Για να γίνει αυτό ακολουθούνται τα βήματα : «Analyze», «Descriptive Statistics», «Descriptives» και καταλήγουμε στην Εικόνα 16. Έχοντας θέσει ως «Variable» τη μεταβλητή «Yield» κάνουμε «κλικ» στο εικονίδιο «Options» επιλέγουμε ποια μέτρα θέσης και μέτρα διασποράς επιθυμούμε να εμφανιστούν στο πίνακα και το αποτέλεσμα είναι ο Πίνακας 5.

Valiabie(3).	Options
	Style
	Bootstrap
	(Decoundra
(
s as variables	

Εικόνα 16: Παράθυρο «Descriptives».

Descriptive Statistics									
	Ν	Mean		Std. Deviation	Variance				
	Statistic	Statistic	Std. Error	Statistic	Statistic				
yield	24	5.52917	.314244	1.539475	2.370				
Valid N (listwise)	24								

Πίνακας 4: Βασικά μέτρα θέσης και μέτρα διασποράς του πληθυσμού.

Από το παραπάνω πίνακα βλέπουμε ότι ο αριθμός των παρατηρήσεων (N Statistic) είναι 24, ο μέσος όρος (Mean Statistic) είναι 5.529, το Τυπικό Σφάλμα (Std. Error Mean) είναι 0,314, η τυπική απόκλιση (Std. Deviation Statistic) είναι 1,539, και τέλος η παραλλακτικότητα (Variance Statistic) είναι 2.37.

Συνεχίζοντας θα μπορούσαμε να φτιάξουμε ένα διάγραμμα αντίστοιχο με εκείνα του προηγούμενου πειραματικού σχεδίου. Για να γίνει αυτό ακολουθούνται τα εξής βήματα: «Analyze», «Descriptive Statistics», «Explore» και καταλήγουμε στη Εικόνα 17. Θέτοντας ως «Dependent List» τον παράγοντα «Yield» και ως «Factor List» τον παράγοντα «Trt» και κάνοντας «κλικ» στη συνέχεια στο εικονίδιο «Statistics» εμφανίζεται η Εικόνα 18 εκεί επιλέγοντας το «Descriptives» εμφανίζεται το Διάγραμμα 2.

🔏 Trt (Trt)	Dependent List	Statistics
🗞 Block 🔗 Yield	Factor List	Plots Options Bootstrap
	Label <u>C</u> ases by:]
 Display Both O Statistic 	s © Plots	

Εικόνα 17: Παράθυρο «Explore»,δημιουργία πινάκων και διαγραμμάτων.

Εικόνα 18: Παράθυρο Descriptives.

Διάγραμμα 2: Θηκόγραμμα/Boxplot διαφορετικών μεταχειρίσεων, Άζονας x: «Μεταχείριση» («Ttr»), Άζονας y: «Απόδοση» («Yield»).

Από τη μελέτη των παραπάνω μπορούμε να υποθέσουμε ότι η μεταχείριση Ε (Ripening) είναι η πιο αποτελεσματική αλλά αυτό δεν αρκεί, πρέπει να αποδειχθεί ότι υπάρχουν στατιστικά σημαντικές διαφορές μεταξύ των μεταχειρίσεων.

Έτσι συνεχίζουμε κάνοντας ανάλυση διακύμανσης. Για να δημιουργήσουμε τον πίνακα anova ακολουθείται η εξής διαδρομή «General Linear Model», «Univariate» και καταλήγουμε στην Εικόνα 19. Στη συνέχεια θέτουμε ως «Dependent Variable» τη μεταβλητή «Yield», ως «Fixed Factors» τη μεταβλητή «Trt» και ως «Random Factors» τη μεταβλητή «Blocks». Τέλος στην επιλογή «Model» κάνουμε τα παρακάτω βήματα, τοποθετούμε στο πλαίσιο «Model» και τις δύο μεταβλητές επιλέγοντας «Type» «Main effects» (Εικόνα 20). Τελικά καταλήγουμε στον Πίνακα 5.

	Dependent Variat	ble: <u>M</u> odel
Block	Eived Factor(a):	Contrasts
Yield	Fixed Factor(s).	Plots
		Post Hoc
	Random Factor(s	Save
		Options
	*	Bootstrap
	Covariate(s):	_
	WI S Weight	

Εικόνα 19: Παράθυρο προσδιορισμού μεταβλητών για ανάλυση διακύμανσης.

actors & Covariates:	Model	
U ¹ Trt U ¹ Block	Build Term(s) Type: Main effects	

Εικόνα 20: Διαμόρφωση μοντέλου.

Tests of Between-Subjects Effects

Dependent Variable: yield					
	Type III Sum of				
Source	Squares	df	Mean Square	F	Sig.

Intercept	Hypothesis	733.720	1	733.720	700.728	.000
	Error	3.141	3	1.047 ^a		
trt	Hypothesis	31.652	5	6.330	4.816	.008
	Error	19.716	15	1.314 ^b		
block	Hypothesis	3.141	3	1.047	.797	.515
	Error	19.716	15	1.314 ^b		

a. MS(block)

b. MS(Error)

Πίνακας 5: Πίνακας ανάλυσης διακύμανσης.

Από το F μπορούμε να δούμε ότι μεταξύ των διαφορετικών μεταχειρίσεων υπάρχει διαφορά η οποία είναι στατιστικά σημαντική σε επίπεδο 5%. Μεταξύ των blocks ωστόσο μπορούμε να δούμε ότι δεν υπάρχει στατιστικά σημαντική διαφορά (F=0,797, sig>0.05) στη συγκεκριμένη περίπτωση δεν είναι απαραίτητη η δημιουργία Blocks. Εφόσον καταλήξαμε στο ότι υπάρχει σημαντική διαφορά μεταξύ των μεταχειρίσεων θα προβούμε σε ελέγχους post-hoc για να εντοπίσουμε ποια είναι η καλύτερη.

Στο ίδιο σημείο που ήμασταν πριν (Εικόνα 19) επιλέγουμε «Post hoc» και διαλέγουμε τους ελέγχους «LSD» και «TukeyHSD» τοποθετώντας στη στήλη «Post Hoc Tests for» τη μεταβλητή «Trt» (Εικόνα 21). Το αποτέλεσμα είναι ο Πίνακας 6.

Εικόνα 21: Παράθυρο επιλογής post hoc ελέγχων.

Multiple Comparisons

Dependent Var	iable: yie	ld					
			Mean Difference			95% Confide	ence Interval
	(I) trt	(J) trt	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Tukey HSD	В	С	1.10000	.810684	.750	-1.53389	3.73389
		D	95000	.810684	.843	-3.58389	1.68389
		E	-1.92500	.810684	.226	-4.55889	.70889
		А	.80000	.810684	.915	-1.83389	3.43389
		F	-1.60000	.810684	.400	-4.23389	1.03389
	С	В	-1.10000	.810684	.750	-3.73389	1.53389
		D	-2.05000	.810684	.177	-4.68389	.58389
		Е	-3.02500*	.810684	.020	-5.65889	39111
		А	30000	.810684	.999	-2.93389	2.33389
		F	-2.70000*	.810684	.043	-5.33389	06611
	D	В	.95000	.810684	.843	-1.68389	3.58389
		С	2.05000	.810684	.177	58389	4.68389
		Е	97500	.810684	.829	-3.60889	1.65889
		А	1.75000	.810684	.311	88389	4.38389
		F	65000	.810684	.963	-3.28389	1.98389
	Е	В	1.92500	.810684	.226	70889	4.55889
		С	3.02500^{*}	.810684	.020	.39111	5.65889
		D	.97500	.810684	.829	-1.65889	3.60889
		А	2.72500^{*}	.810684	.041	.09111	5.35889
		F	.32500	.810684	.998	-2.30889	2.95889
	А	В	80000	.810684	.915	-3.43389	1.83389
		С	.30000	.810684	.999	-2.33389	2.93389
		D	-1.75000	.810684	.311	-4.38389	.88389
		Е	-2.72500*	.810684	.041	-5.35889	09111
		F	-2.40000	.810684	.084	-5.03389	.23389
	F	В	1.60000	.810684	.400	-1.03389	4.23389
		С	2.70000^{*}	.810684	.043	.06611	5.33389
		D	.65000	.810684	.963	-1.98389	3.28389
		Е	32500	.810684	.998	-2.95889	2.30889
		А	2.40000	.810684	.084	23389	5.03389
LSD	В	С	1.10000	.810684	.195	62793	2.82793
		D	95000	.810684	.260	-2.67793	.77793
		Е	-1.92500*	.810684	.031	-3.65293	19707
		A	.80000	.810684	.339	92793	2.52793

	F	-1.60000	.810684	.067	-3.32793	.12793
С	В	-1.10000	.810684	.195	-2.82793	.62793
	D	-2.05000*	.810684	.023	-3.77793	32207
	Е	-3.02500*	.810684	.002	-4.75293	-1.29707
	А	30000	.810684	.717	-2.02793	1.42793
	F	-2.70000*	.810684	.005	-4.42793	97207
D	В	.95000	.810684	.260	77793	2.67793
	С	2.05000^{*}	.810684	.023	.32207	3.77793
	Е	97500	.810684	.248	-2.70293	.75293
	А	1.75000^{*}	.810684	.047	.02207	3.47793
	F	65000	.810684	.435	-2.37793	1.07793
Е	В	1.92500*	.810684	.031	.19707	3.65293
	С	3.02500*	.810684	.002	1.29707	4.75293
	D	.97500	.810684	.248	75293	2.70293
	А	2.72500*	.810684	.004	.99707	4.45293
	F	.32500	.810684	.694	-1.40293	2.05293
А	В	80000	.810684	.339	-2.52793	.92793
	С	.30000	.810684	.717	-1.42793	2.02793
	D	-1.75000*	.810684	.047	-3.47793	02207
	Е	-2.72500*	.810684	.004	-4.45293	99707
	F	-2.40000*	.810684	.010	-4.12793	67207
F	В	1.60000	.810684	.067	12793	3.32793
	С	2.70000^{*}	.810684	.005	.97207	4.42793
	D	.65000	.810684	.435	-1.07793	2.37793
	Е	32500	.810684	.694	-2.05293	1.40293
	А	2.40000^{*}	.810684	.010	.67207	4.12793

Based on observed means.

The error term is Mean Square(Error) = 1.314.

*. The mean difference is significant at the .05 level.

Πίνακας 6: Αποτελέσματα από την εφαρμογή των ελέγχων LSD, Tukey HSD.

Από τον παραπάνω πίνακα βλέπουμε ότι διαφέρουν μεταξύ τους οι μεταχειρίσεις "Full bloom"-"Ripening" (C-E) διότι p=0.020, "Full bloom"-"Uninoculated" (C-F) διότι p=0.043, "Ripening"-"Seedling" (E-A) διότι p=0.041. Μεταξύ των υπόλοιπων μεταχειρίσεων από τον Πίνακα 8 παρατηρείται πως δεν υπάρχουν στατιστικά σημαντικές διαφορές (p>0.05). Συνδυάζοντας τις πληροφορίες των Πίνακα 6 και Διάγραμμα 2 καταλήγουμε στο ότι η καλύτερη μεταχείριση είναι η πέμπτη (Ripening-E).

2.3.Ανάλυση συνδιακύμανσης.

Ξεκινάμε με την προβολή των δεδομένων και όπως στην προηγούμενη περίπτωση. Αρχικά κάνουμε «κλικ» στην επιλογή «Variable View» στο κάτω αριστερά μέρος της οθόνης και εμφανίζεται η Εικόνα 22. Ορίζουμε τα είδη των μεταβλητών (Εικόνα 22) καθώς και τα ονόματά τους (Εικόνα 23). Στη συνέχεια εμφανίζεται ο Πίνακας δεδομένων 3.

Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure	Role
Var	String	11	0		{1, A}	None	11	≣ Left	뤚 Nominal	🔪 Input
Rep	Numeric	11	0		None	None	11	≡ Right	💰 Nominal	S Input
Cov	Numeric	11	0		None	None	11	≡ Right	Scale Scale	> Input
Ascorbic	Numeric	11	0		None	None	11	를 Right	Scale 8	S Input

Εικόνα 22: «Variable View», περιβάλλον μορφοποίησης δεδομένων..

Εικόνα 23: Ορισμός ονομάτων των διαφορετικών επιπέδων του παράγοντα «Var».

Ascorbic	Cov	Rep	Var	Ascorbic	Cov	Rep	Var
72	34	3	С	93	34	1	4.
65	40	3	D	47	40	1	3
126	25	3	E	81	32	1	2
99	32	3	F	67	38	1)
98	35	3	G	120	25	1	
94	31	3	н	107	30	1	
77	35	3	L.	106	33	1	3
170	24	3	J	62	35	1	4
72	33	3	К	81	31	1	
81	39	4	A	149	21	1	
27	52	4	В	79	31	1	0
58	40	4	С	95	33	2	
69	39	4	D	52	40	2	2
129	24	4	E	109	30	2	
126	28	4	F	74	38	2	
86	35	4	G	129	24	2	r.
69	36	4	н	125	24	2	
92	31	4	I	107	23	2	
155	25	4	J	107	34	2	2
70	34	4	K	03	32	2	
80	36	5	A	107	31	2	-
21	56	5	В	152	25	2	
- 30	48	5	C	117	26	2	ς
63	41	5	D	92	35	3	4
126	25	5	E	33	51	3	3
96	34	5	F	72	34	3	2

Var	Rep	Cov	Ascorbic
G	5	38	89
Н	5	39	47
1	5	37	68
J	5	25	146
К	5	44	41

Συνεχίζουμε φτιάχνοντας τον Πίνακα7 στον οποίο φαίνονται τα μέτρα θέσης και μέτρα διασποράς του δείγματος. Για να γίνει αυτό ακολουθείται η εξής διαδρομή : «Analyze», «Descriptive Statistics», «Descriptives» και καταλήγουμε στην Εικόνα 24. Σε αυτό το σημείο, έχοντας επιλέξει για τη θέση «Variable» τη μεταβλητή «Ascorbic», κάνουμε «κλικ» στο εικονίδιο «Options» επιλέγουμε ποια μέτρα θέσης και μέτρα διασποράς θέλουμε να εμφανιστούν στον πίνακα. Στη συγκεκριμένη περίπτωση επιλέχθηκαν τα παρακάτω.

	-	Variable(s):	Options
💑 Rep			Ship
Cov			Style
ASCORDIC			Bootstrap.
	4		
	1.1		
	luniune neuroi	ablas.	
Course standardine.		anies	

Εικόνα 24: Παράθυρο «Descriptives».

		Descriptive	Statistics		
	Ν	М	ean	Std. Deviation	Variance
	Statistic	Statistic	Std. Error	Statistic	Statistic
Ascorbic	55	88,92	4,567	33,866	1146,934
Valid N (listwise)	55				

Πίνακας 7: Βασικά μέτρα θέσης και μέτρα διασποράς του πληθυσμού.

Από τον Πίνακα 7 βλέπουμε ότι ο αριθμός των ατόμων είναι 55, ο μέσος όρος είναι 88,918, το τυπικό σφάλμα είναι 4,567, η τυπική απόκλιση είναι 33,866, η διακύμανση είναι 1146,934.

Συνεχίζουμε με τον έλεγχο της κατανομής των κατάλοιπων . Αυτό θα ελεγχθεί με το παρακάτω διάγραμμα σκέδασης. Για τη δημιουργία του θα πρέπει και οι δύο μεταβλητές να είναι ποσοτικές, γιαυτό στη συγκεκριμένη περίπτωση ορίσαμε τη μεταβλητή «Var» ως ποσοτική και με τη διαδρομή «Graphs», «Legacy Plots», «Scatter/Dot», «Simple Scatter» καταλήξαμε στο Διάγραμμα 3.

Διάγραμμα 3: Διάγραμμα σκέδασης, Άζονας χ: «Περιεκτικότητα σε ασκορβικό» («Ascorbic»), Άζονας y: «Ποικιλία» («Var»).

Για τη προσθήκη της ευθείας ελαχίστων τετραγώνων κάνουμε διπλό «κλικ» πάνω στο

διάγραμμα και στη συνέχεια την επιλογή και της Εικόνας 25, με αυτή την επιλογή εμφανίζεται η Εικόνα 26 από την οποία επιλέγουμε «Linear». Το αποτέλεσμα είναι το Διάγραμμα 4.

Εικόνα 25: Παράθυρο επεξεργασίας Διαγράμματος.

hart Size Line	Fit Line	Variables
Display Spike	s 📃 Su	ppress intercept
-it Method	m of V	Quedrotio
Mea Mea		
 Line 	ear	
CL0e	SS	
% 0	f points to fi	t 50
Ken	nel: Enane	chusikov +
	The second second	
Confidence Inte	rvais	
None		
⊘ <u>Me</u> an		
O Individual		
%: 95		
Attach label to	line	

Εικόνα 26: Επιλογή τύπου εξίσωσης που θα εφαρμοστεί στο διάγραμμα.

Διάγραμμα 4: Διάγραμμα σκέδασης παραγόντων «Ascorbic» και «Var», με την ευθεία ελαχίστων τετραγώνων (y=2,88+0,4*x).
	-	Dependent Variable:	Mandal
🔏 Var			Moder
💑 Rep	F	ixed Factor(s):	Contrasts
Cov			Plots
ASCOTOIC	*		Post Hoc
			Save
		(andom Factor(s):	Options
	4		Bootstran
			Doorsnap
	<u>c</u>	ovariate(s):	_
		VI S Weight	_
	- i -	Lee Height	

Εικόνα 26: Παράθυρο προσδιορισμού μεταβλητών για ανάλυση διακύμανσης.

Στη συνέχεια θα πρέπει να ελεγχθεί εάν η συμμεταβλήτη και η ανεξάρτητη μεταβλητή είναι ανεξάρτητες μεταξύ τους. Για τη δημιουργία του Πίνακα 8 έγιναν τα βήματα «Analyze», «General Linear Model», «Univariate» και καταλήξαμε στην Εικόνα 24. Στη συνέχεια επιλέχθηκαν στη θέση «Dependent Variable» η μεταβλητή «Ascorbic» στη θέση «Fixed Factors» η μεταβλητή «Var» και στη θέση «Covariates» η μεταβλητή «Cov».

Dependent Variable: Ascorbic									
Source	Type III Sum of Squares	Df	Mean Square	F	Sig.				
Corrected Model	60124,426 ^a	21	2863,068	52,200	,000				
Intercept	6026,362	1	6026,362	109,873	,000				
Var * Cov	1149,850	10	114,985	2,096	,054				
Var	990,351	10	99,035	1,806	,099				
Cov	1409,143	1	1409,143	25,692	,000				
Error	1809,997	33	54,848						
Total	496788,793	55							
Corrected Total	61934,423	54							

Tests of Between-Subjects Effects

a. R Squared = ,971 (Adjusted R Squared = ,952)

Πίνακας 8:Πίνακας ανάλυσης διακύμανσης στον οποίο έχει προστεθεί η αλληλεπίδραση «Var*Cov».

Από τον Πίνακα 8 συμπεραίνουμε ότι η αλληλεπίδραση μεταξύ των δύο αυτών μεταβλητών «Var» και «Cov» είναι στατιστικά σημαντική σε επίπεδο 5%.

2.4. Λατινικό τετράγωνο.

Όπως και στα προηγούμενα πειραματικά σχέδια έτσι και εδώ η ανάλυση ξεκινά με προβολή των δεδομένων τα οποία έχουν αποθηκευτεί σε αρχείο .xlsm.Κάνοντας «κλικ» στο εικονίδιο «Variable View» στο κάτω αριστερά μέρος της οθόνης εμφανίζεται η Εικόνα 27, στην οποία όπως φαίνεται κάνοντας «κλικ» στα κελιά κάτω από το όνομα της κάθε στήλης ορίζουμε τον τύπο (Type) των μεταβλητών, στη συνέχεια ορίζουμε τα ονόματα (Value Labels) των διαφορετικών παραγόντων (Εικόνα 28). Το αποτέλεσμα είναι ο Πίνακας δεδομένων 4 στον οποίο φαίνεται η περιεκτικότητα του κάθε ατόμου σε πυρουβικό καθώς και η μεταχείριση η οποία του εφαρμόστηκε. Τέλος βλέπουμε και σε ποια σειρά και στήλη βρισκόταν.

Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure	Role
Trt	String	6	0		{0kg, A}	None	6	≣ Left	💑 Nominal	S Input
Row	Numeric	12	0		{1, 1}	None	12	疆 Right	💦 Nominal	> Input
Column	Numeric	12	0		{1, 1}	None	12	를 Right	💦 Nominal	🔪 Input
Pyr	Numeric	18	3		None	None	17	를 Right	Scale Scale	> Input

Εικόνα 27: «Variable View», περιβάλλον μορφοποίησης δεδομένων.

Εικόνα 28: Ορισμός ονομάτων των διαφορετικών επιπέδων των παραγόντων «Trt», «Row», «Column».

Trt	Row	Column	Pyr
A	R1	C1	3,080
A	R2	C2	2,560
A	R3	C3	3,190
A	R4	C4	4,240
в	R1	C2	3,450
в	R2	C1	3,660
в	R3	C4	4,450
В	R3	C3	3,350
С	R1	C3	3,400
С	R2	C4	4,350
С	R3	C2	3,720
С	R4	C1	4,510
D	R1	C4	5,350
D	R2	C3	3,930
D	R3	C1	4,560
D	R4	C2	3,980

Πίνακας δεδομένων 4. : «Data View», Δεδομένα από «Πείραμα 4» σε SPSS.

Η ανάλυση ξεκινάει με τον Πίνακα 9. Για να τον δημιουργήσουμε ακολουθείται η παρακάτω διαδρομή: «Analyze», «Descriptive Statistics», «Descriptives» και καταλήγουμε στην Εικόνα 29. Σε αυτό το σημείο θέτοντας στον πίνακα της εικόνας ως «Variables» τη μεταβλητή «Pyr» και στη συνέχεια κάνουμε «κλικ» στο εικονίδιο «Options».

Row	Variable(s):	Options
Column		Style
	-	Dousaap.

Εικόνα 29 Παράθυρο «Descriptives».

Descriptive Statistics								
	Ν	Mean		Std. Deviation	Variance			
	Statistic	Statistic	Std. Error	Statistic	Statistic			
Pyr	16	3.86125	.174776	.699103	.489			
Valid N (listwise)	16							

Decori	ntivo	Static	tio
Descri	puve	Statis	uc

Πίνακας 9: Βασικά μέτρα θέσης και μέτρα διασποράς του πληθυσμού.

Από τον Πίνακα 9 βλέπουμε ότι το πλήθος των ατόμων (N Statistic) είναι 16, ο μέσος όρος (Mean) είναι 3,86, το Τυπικό Σφάλμα είναι 0,174, η τυπική απόκλιση (Std. Deviation Statistic) είναι 0,699 και τέλος η διακύμανση (Variance Statistic) είναι 0,489.

Συνεχίζουμε με τη δημιουργία θηκογράμματος (Διάγραμμα 5).Για να γίνει αυτό ακολουθούνται τα εξής βήματα: «Analyze», «Descriptive Statistics», «Explore» και καταλήγουμε στη Εικόνα 30. Στο σημείο αυτό μπορούμε να δημιουργήσουμε πίνακες με αναλυτικά τα μέτρα θέσης και μέτρα διασποράς του πληθυσμού της κάθε μεταχείρισης καθώς και διαγράμματα. Θέτοντας ως «Dependent List» τον παράγοντα «Pyr» και ως «Factor List» τον παράγοντα «Trt» και κάνοντας «κλικ» στη συνέχεια στο εικονίδιο «Statistics» εμφανίζεται η Εικόνα 31 εκεί επιλέγοντας το «Descriptives» εμφανίζεται το Διάγραμμα 5.

Explore	Dependent List:	Statistics
<mark>ea Trt</mark> ea Row ea Column e Pyr	Eactor List	Plots Options Bootstrap
- Dieplay	Label <u>C</u> ases by:	
Both O Statistics	O Plots	
. @k	Paste Reset Cancel Help	

Εικόνα 30: Παράθυρο «Explore»,δημιουργία πινάκων και διαγραμμάτων

Εικόνα 31: Επιλογή στοιχείων που θα εμφανιστούν στην ανάλυση.

Διάγραμμα 5: Θηκόγραμμα διαφορετικών μεταχειρίσεων, Άζονας x: «Μεταχείριση» («Trt»), Άζονας y: «Περιεκτικότητα σε πυρουβικό»(«Trt»).

Από το Διάγραμμα 5 μπορούμε να υποθέσουμε ότι η τέταρτη μεταχείριση είναι η πιο αποτελεσματική ωστόσο πρέπει να το αποδείξουμε, γι' αυτό συνεχίζουμε με ανάλυση διακύμανσης ακολουθώντας τα βήματα: «Analyze», «General Linear Model», «Univariate». Εμφανίζεται η Εικόνα 32 και όπως φαίνεται τοποθετούμε στη θέση «Dependent Variable» μεταβλητή «Pyr» στη θέση «Fixed Factors» τη μεταβλητή «Trt» και στη θέση «Random Factor(s)» τη μεταβλητή «Column» και «Row». Στη συνέχεια στην επιλογή «Model» θέτουμε: «Specify Model» «Custom» και στην επιλογή «Type», «Main effects» τέλος τοποθετούμε στη λίστα «Model» και τους τρεις παράγοντες (Εικόνα 33). Έτσι καταλήγουμε στον Πίνακα 15.

Εικόνα 32: Παράθυρο προσδιορισμού μεταβλητών για ανάλυση διακύμανσης.

actors & Covariate:	s:	Model:	
<u>//</u> Trt		Trt	
Row Column		Column	
	Main effects *		

Εικόνα 33: Προσδιορισμός μοντέλου.

Dependent V	/ariable: pyr					
Source		Type III Sum of Squares	df	Mean Square	F	Sig.
Intercept	Hypothesis	238.548	1	238.548	190.409	.001
	Error	4.101	3.273	1.253ª		
trt	Hypothesis	2.963	3	.988	14.591	.004
	Error	.406	6	.068 ^b		
column	Hypothesis	3.574	3	1.191	17.599	.002
	Error	.406	6	.068 ^b		
row	Hypothesis	.387	3	.129	1.907	.230
	Error	.406	6	.068 ^b		

Tests of Between-Subjects Effects

a. MS(column) + MS(row) - MS(Error)

b. MS(Error)

Πίνακας 10: Πίνακας ανάλυσης διακύμανσης.

Από τον Πίνακα 10 συμπεραίνουμε ότι μεταξύ των διαφορετικών μεταχειρίσεων υπάρχει διαφορά (F=14,591, sig<0,05). Επίσης υπάρχει διαφορά μεταξύ των διαφορετικών στηλών (F=17,599, sig<0,05) ωστόσο δεν υπάρχει έντονη διαφορά μεταξύ των διαφορετικών γραμμών (F=1,907, sig>0,05). Συνεχίζουμε κάνοντας Post Hoc ελέγχους για να δούμε ποιες μεταχειρίσεις διαφέρουν περισσότερο. Από την επιλογή «Post Hoc» επιλέγουμε τους ελέγχους LSD και Tukey HSD και στη θέση «Post Hoc Tests for» τη μεταβλητή «Trt» (Εικόνα 34), και καταλήγουμε στον Πίνακα 11.

actor(s): Trt	Post Hoc Tests for:		
Equal Variances Assumed	Waller-Duncan		
Bonferroni 🔲 Tukey	Type //Type // Error Ratio 100		
Sidak Tukey's-b	Dunnett		
Scheffe Duncan	Control Calegory: Last *		
R-E-G-W-F Hochberg's (GT2 Test		
R-E-G-W-Q Gabriel	@ 2-sided @ < Control @ > Control		
	1		
Equal Variances Not Assumed-			
Tamhane's T2 📰 Dunnett's	T <u>3</u> 🔲 Games-Howell 📕 Dunnett's C		

Εικόνα 34: Παράθυρο επιλογής post hoc ελέγχων.

Multiple Comparisons

			Mean Difference (I-			95% Confide	ence Interval
	(I) trt	(J) trt	J)	Std. Error	Sig.	Lower Bound	Upper Bound
Tukey HSD	А	В	46000	.183984	.157	-1.09690	.17690
		С	72750*	.183984	.029	-1.36440	09060
		D	-1.18750*	.183984	.003	-1.82440	55060
	В	А	.46000	.183984	.157	17690	1.09690
		С	26750	.183984	.515	90440	.36940
		D	72750*	.183984	.029	-1.36440	09060
	С	А	.72750*	.183984	.029	.09060	1.36440
		В	.26750	.183984	.515	36940	.90440
		D	46000	.183984	.157	-1.09690	.17690
	D	А	1.18750^{*}	.183984	.003	.55060	1.82440
		В	.72750*	.183984	.029	.09060	1.36440
		С	.46000	.183984	.157	17690	1.09690
LSD	А	В	46000*	.183984	.047	91019	00981
		С	72750*	.183984	.008	-1.17769	27731
		D	-1.18750*	.183984	.001	-1.63769	73731
	В	А	$.46000^{*}$.183984	.047	.00981	.91019
		С	26750	.183984	.196	71769	.18269
		D	72750*	.183984	.008	-1.17769	27731

Dependent Variable: pyr

С	А	.72750*	.183984	.008	.27731	1.17769
	В	.26750	.183984	.196	18269	.71769
	D	46000*	.183984	.047	91019	00981
D	А	1.18750*	.183984	.001	.73731	1.63769
	В	.72750*	.183984	.008	.27731	1.17769
	С	$.46000^{*}$.183984	.047	.00981	.91019

Based on observed means.

The error term is Mean Square(Error) = .068.

*. The mean difference is significant at the 0.05 level. Πίνακας 11:Αποτελέσματα από την εφαρμογή των ελέγχων LSD, Tukey HSD.

Από τον παραπάνω πίνακα φαίνεται ότι υπάρχουν διαφορές μεταξύ των μεταχειρίσεων 0kg-4.44kg (A-C) (p=0.029) καθώς και οι 0kg-6.7kg (A-D) (p=0.003) και οι 2.22kg-6.7kg(p=0.029) (B-D) ενώ μεταξύ των υπόλοιπων ζευγών δεν υπήρχαν στατιστικά σημαντικές διαφορές σε επίπεδο 5%. Από τη μελέτη του Διαγράμματος 5 καθώς και του Πίνακα 11, καταλήγουμε στο συμπέρασμα ότι η μεταχείριση η οποία οδήγησε στην μεγαλύτερη παραγωγή πυρουβικού είναι αυτή με τα 6.7kg.

2.5.Πλήρες παραγοντικό με δύο παράγοντες.

Όπως και στα προηγούμενα πειραματικά σχέδια ξεκινάμε με προβολή των δεδομένων και και κάνοντας «κλικ» στο εικονίδιο «Variable View» ορίζουμε το είδος καθώς και τα ονόματα των διαφορετικών μεταβλητών (Εικόνα 35, Εικόνα 36) και καταλήγουμε στον Πίνακα δεδομένων 5.

Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure	Role
Variety	String	13	0		{Nirvana, C}	None	13	≣ Left	🚓 Nominal	🔪 Input
Date	String	6	0		{15 Oct, D2}	None	6	≣ Left	🙈 Nominal	🔪 Input
Rep	Numeric	11	0		None	None	11	≣ Right	🚴 Nominal	🔪 Input
Seedstem	Numeric	11	0		None	None	11	疆 Right	Scale 8	🔪 Input

Εικόνα 35: «Variable View», περιβάλλον μορφοποίησης δεδομένων.

Value: Dage		Onallina
value. Pega	isus	Spelling
Label: A		
	Nirvana = "C"	
500	PS 7092 = "D"	
Citizante	Pegasus = "A"	
Ensitive	Sweet Vidalia = "B"	
Remove	U	
		1
	OK Cancel Help	
Value Labels	OK Cancel Help	
Value Labels	OK Cancel Help	
Value Labels Value Labels	OK Cancel Help	
Value Labels Value Labels Value: 5 Oct	OK Cancel Help	Spelling.
Value Labels Value Labels Value: 5 Oct Label: D1	OK Cancel Help	Speiling.
Value Labels Value Labels Value: 5 Oct Label: D1	OK Cancel Help	Spelling.
Value Labels Value Labels Value: 5 Oct Label: D1	OK Cancel Help	Spelling.
Value Labels Value Labels Value: <u>5 Oct</u> Label: D1	OK Cancel Help	Spelling.
Value Labels Value Labels Value: <u>5 Oct</u> Label: D1	OK Cancel Help	Spelling.

Εικόνα 36: Ορισμός ονομάτων των διαφορετικών επιπέδων των παραγόντων «Variety», «Date».

Variety	Date	Rep	Seedstem
A	D1	1	12
A	D3	1	0
A	D2	2	0
A	D2	3	0
A	D3	4	0
A	D1	2	15
A	D2	4	1
A	D3	2	0
A	D1	3	2
A	D2	1	0
A	D1	4	8
A	D3	3	0
В	D2	1	2
В	D1	1	35
в	D3	2	0
в	D2	3	15
В	D1	4	46
в	D3	1	0
в	D1	3	23
в	D3	4	0
В	D3	3	0
в	D2	4	0
в	D2	2	3
в	D1	2	19
с	D3	1	0
0	D1		c
0	DI	4	0
0	01	2	5
0	D2	1	0
0	03	2	0
0	02	3	0
0	01	3	17
0	01		17
0	02	4	0
0	03	3	1
0	03	4	0
D	02	2	0
D	01	3	2
D	03	3	0
D	02	1	0
D	03	1	0
D	02	2	1
D	02	3	0
D	02	4	0
0	03	4	0
0	03	2	0
D	DI	2	1
D	01	4	14
U	D1	1	12

Πίνακας δεδομένων 5: «Data View», Δεδομένα από «Πείραμα 5» σε SPSS.

Στη συνέχεια ακολουθούμε τη διαδρομή: «Analyze», «Descriptive statistics», «Descriptives», θέτουμε στον πίνακα της Εικόνας 37 στη θέση «Variables» τη μεταβλητή «Seedstem» και για να δημιουργήσουμε τον Πίνακα 12 στην επιλογή «Options» επιλέγουμε τα στατιστικά που θέλουμε να εμφανιστούν σε αυτόν.

Rep Seedstem	Variable(s):	Options Style
		Bootstrap.
Save standardized	values as variables	

Εικόνα 37: Παράθυρο «Descriptives».

Descriptive Statistics									
	N	Mean		Std. Deviation	Variance				
	Statistic	Statistic	Std. Error	Statistic	Statistic				
Seedstem	48	5,13	1,395	9,666	93,431				
Valid N (listwise)	48								

Πίνακας 12 : Βασικά μέτρα θέσης και μέτρα διασποράς του πληθυσμού.

Στον Πίνακα 12 βλέπουμε ότι το πλήθος των ατόμων (N Statistic) ισούται με 48, ο μέσος όρος (Mean Statistic) ισούται με 5,13, το Τυπικό Σφάλμα (Std. Error) ισούται με 1,395, η τυπική απόκλιση (Std. Deviation Statistic) ισούται με 9,666, και τέλος η παραλλακτικότητα (Variance Statistic) ισούται με 93,431.

Για τη δημιουργία των θηκογραμμάτων ακολουθείται η διαδρομή: «Analyze», «Descriptive statistics», «Explore», και έχοντας τοποθετήσει τις μεταβλητές όπως φαίνεται στην Εικόνα 38 κάνουμε «κλικ» στην επιλογή «Statistics» και στη συνέχεια «Descripitves» (Εικόνα 39) καταλήγουμε στο Διάγραμμα 5 και Διάγραμμα 6.

💦 Rep	Dependent List:	Statistics Plots
	Eactor List:	<u>O</u> ptions <u>B</u> ootstrap
Display	Label <u>C</u> ases by:	
Both Statistics	O Plots	

Εικόνα 38: Παράθυρο «Explore»,δημιουργία πινάκων και διαγραμμάτων.

_	Dependent List:	Statistics.
Rep	Explore: Statistics X	Plots
	Descriptives	Options.
	Confidence Interval for Mean: 95 %	Bootstrap.
	M-estimators	
	Outliers	
	Percentiles	
Display	Continue Cancel Help	
● Both C	Statistics O Plots	1

Εικόνα 39: Προσδιορισμός στοιχείων που θε εμφανιστούν στην ανάλυση.

Διάγραμμα 6 : Θηκόγραμμα παράγοντα «Ποικιλία», Άζονας x: «Ποικιλία» («Variety»), Άζονας y: «Βλαστοί» («Seedstem»).

Διάγραμμα 7: Θηκόγραμμα παράγοντα «Ημερομηνία», Άζονας x: «Ημερομηνία» («Date»), Άζονας y: «Βλαστοί» («Seedstem»).

Για τη δημιουργία του Διαγράμματος 7 στο οποίο φαίνεται η αλληλεπίδραση μεταξύ των παραγόντων ακολουθούμε τη διαδρομή: «Analyze», «General Linear Model», «Univariate», «Plots» και στη συνέχεια θέτουμε όπως φαίνεται στην Εικόνα 40.

Factors:			Horizontal Axis:	del
Variety		*	Date	uer.
Date		*	<u>S</u> eparate Lines: Variety	pts
		*	Separate Plots:	ve
Plots:	Add	Cha	nge Remove	ons
	Continue	Cance	Help	

Εικόνα 40: Παράθυρο «Univariate».

Διάγραμμα 8: Διάγραμμα αλληλεπίδρασης Άζονας x: «Ημερομηνία»(«Date»), Άζονας y: : προσαρμοσμένοι μέσοι όροι μεταβλητής «Βλαστοί» («Seedstem»).

Από το παραπάνω διάγραμμα μπορούμε να υποθέσουμε ότι υπάρχει σημαντική αλληλεπίδραση λόγω της μη-παραλληλίας των γραμμων.

Στη συνέχεια για τον πίνακα ανάλυσης διακύμανσης ορίζουμε ως «Dependent Variable» τη μεταβλητή «Seedstem» και ως «Fixed Factor(s)» τις μεταβλητές «Variety» και «Date» (Εικόνα 41) και στη συνέχεια στην επιλογή «Model» ορίζουμε όπως φαίνεται στην Εικόνα 42. Έτσι καταλήγουμε στον Πίνακα 12από τον οποίο συμπεραίνουμε σημαντικές κύριες επιδράσεις και σημαντική αλληλεπίδρασή τους.

Εικόνα 41: Παράθυρο προσδιορισμού μεταβλητών για ανάλυση διακύμανσης.

actors & Covariates		Model:	
11 Variety		Variety	
11 Date		Date	
	Type: Interaction *		
		-	
		1	

Εικόνα 42: Προσδιορισμός μοντέλου.

Dependent Variable: Seedstem									
Source	Type III Sum of Squares	df	Mean Square	F	Sig.				
Corrected Model	3466,750ª	11	315,159	12,272	,000				
Intercept	1260,750	1	1260,750	49,094	,000				
Variety	741,750	3	247,250	9,628	,000				
Date	1877,625	2	938,812	36,557	,000				
Variety * Date	847,375	6	141,229	5,499	,000				
Error	924,500	36	25,681						
Total	5652,000	48							
Corrected Total	4391,250	47							

Tests of Between-Subjects Effects

a. R Squared = ,789 (Adjusted R Squared = ,725)

: Πίνακας 13: Πίνακας Ανάλυσης διακύμανσης.

Συνεχίζουμε επιλέγοντας τους ελέγχους Tukey HSD και
ια LSD όπως στα προηγούμενα πειράματα .

Dependent Var	iable: Seedste	m	-				
			Mean Difference			95% Confid	ence Interval
	(I) Variety	(J) Variety	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Tukey HSD	А	В	-8,75*	2,069	,001	-14,32	-3,18
		С	,75	2,069	,983	-4,82	6,32
		D	,17	2,069	1,000	-5,41	5,74
	В	А	8,75*	2,069	,001	3,18	14,32
		С	9,50*	2,069	,000	3,93	15,07
		D	8,92*	2,069	,001	3,34	14,49
	С	А	-,75	2,069	,983	-6,32	4,82
		В	-9,50*	2,069	,000	-15,07	-3,93
		D	-,58	2,069	,992	-6,16	4,99
	D	А	-,17	2,069	1,000	-5,74	5,41
		В	-8,92*	2,069	,001	-14,49	-3,34
		С	,58	2,069	,992	-4,99	6,16
LSD	А	В	-8,75*	2,069	,000	-12,95	-4,55
		С	,75	2,069	,719	-3,45	4,95
		D	,17	2,069	,936	-4,03	4,36
	В	А	8,75*	2,069	,000	4,55	12,95
		С	9,50*	2,069	,000	5,30	13,70
		D	8,92*	2,069	,000	4,72	13,11
	С	А	-,75	2,069	,719	-4,95	3,45
		В	-9,50*	2,069	,000	-13,70	-5,30
		D	-,58	2,069	,780	-4,78	3,61
	D	A	-,17	2,069	,936	-4,36	4,03
		В	-8,92*	2,069	,000	-13,11	-4,72
		С	.58	2,069	,780	-3.61	4.78

Multiple Comparisons

Based on observed means.

The error term is Mean Square(Error) = 25,681.

*. The mean difference is significant at the 0,05 level.

Πίνακας 14: Αποτελέσματα από την εφαρμογή των ελέγχων LSD, Tukey HSD.

2.6. Υποδιαιρεμένων τεμαχίων.

Όπως και στα προηγούμενα πειραματικά σχέδια έτσι και εδώ ξεκινάμε με την διαμόρφωση των δεδομένων. Κάνοντας «κλικ» στην επιλογή «Variable View» εμφανίζεται η Εικόνα 47. Συνεχίζουμε ορίζοντας το είδος των μεταβλητών καθώς και τα ονόματα των διαφορετικών επιπέδων του κάθε παράγοντα (Εικόνα 47, 48). Έτσι καταλήγουμε στο Πίνακα δεδομένων 6 στον οποίο φαίνεται η απόδοση του κάθε φυτού καθώς και οι μεταχειρίσεις οι οποίες του εφαρμόστηκαν.

Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure	Role
Fert	String	6	0		{0kg, F1}	None	6	≣ Left	🚓 Nominal	> Input
Green	String	12	0		{Barley, B}	None	12	≣ Left	💰 Nominal	> Input
Rep	Numeric	12	0		None	None	12	疆 Right	💑 Nominal	> Input
Yield	Numeric	12	3		None	None	12	署 Right	Scale	> Input

Εικόνα 43: «Variable View», περιβάλλον μορφοποίησης δεδομένων.

🚱 Value Labels	×	Value Labels	2
Value Labels Value: Okg Label: F1	Spelling	Value Labels Value: Fallow Label: A	Spelling
0kg = 'T1' 29,6kg = 'T2" Remove		Adds Barley-Vetch = "D" Fallow = 'A" Vetch = "C"	
OK Cancel Help		OK Cancel Help	_

Εικόνα 44: Ορισμός ονομάτων των διαφορετικών επιπέδων του παράγοντα «Fert» και «Green».

Fert	Green	Rep	Yield
F1	A	1	13,800
F1	В	1	15,500
F1	С	1	21,000
F1	D	1	18,900
F2	A	1	19,300
F2	В	1	22,200
F2	С	1	25,300
F2	D	1	25,900
F1	A	2	13,500
F1	В	2	15,000
F1	C	2	22,700
F1	D	2	18,300
F2	A	2	18,000
F2	В	2	24,200
F2	С	2	24,800
F2	D	2	26,700
F1	A	3	13,200
F1	В	3	15,200
F1	C	3	22,300
F1	D	3	19,600
F2	A	3	20,500
F2	В	3	25,400
F2	С	3	28,400
F2	D	3	27,600

Πίνακας δεδομένων 6: «Data View», Δεδομένα από «Πείραμα 6» σε SPSS.

Συνεχίζοντας θα δημιουργήσουμε τον Πίνακα 15 στον οποίο φαίνονται τα βασικά μέτρα θέσης και μέτρα διασποράς. Για τη δημιουργία του ακολουθήθηκε η διαδρομη: «Analyze», «Descriptive Statistics», «Descriptives» και καταλήγουμε στην Εικόνα 45. Από την επιλογή «Options» διαλέγουμε τα μέτρα θέσης και μέτρα διασποράς που θέλουμε να εξετάσουμε.

Εικόνα 45: Παράθυρο «Descriptives».

Descriptive Statistics

	Ν	Me	ean	Std. Deviation	Variance	
	Statistic	Statistic	Std. Error	Statistic	Statistic	
Yield	24	20.72083	.966954	4.737086	22.440	
Valid N (listwise)	24					

Πίνακας 15: Βασικά μέτρα θέσης και μέτρα διασποράς του πληθυσμού.

Στον παραπάνω πίνακα βλέπουμε ότι ο αριθμός των παρατηρήσεων (Valid) είναι 24, ο μέσος όρος (Mean) είναι 20,72, το Τυπικό Σφάλμα (Std. Error of Mean) είναι 0,967, η τυπική απόκλιση (Std. Deviation) είναι 4,737, και η διακύμανση (Variance) είναι 22,44.

Το επόμενο βήμα είναι η δημιουργία διαγραμμάτων για κάθε μεταχείρισης ξεχωριστά. Για να γίνει αυτό ακολουθήθηκε η διαδρομή «Analyze», «Descriptive statistics», «Explore» η οποία οδήγησε στην Εικόνα 46. Για τη δημιουργία των παρακάτω δυο διαγραμμάτων στη θέση «Dependent List» τοποθετήθηκε η μεταβλητή «Yield». Για το Διάγραμμα 8 στη θέση «Factor List» επιλέχθηκε η μεταβλητή «Green» ενώ για το Διάγραμμα 9 στη θέση αυτή τοποθετήθηκε η μεταβλητή «Fert».

Sert .	Dependent List:	Statistics
🔏 Green 🚴 Rep 🔗 Yield	Eactor List	Plots Options Bootstrap
Display	Label <u>C</u> ases by:	
Both Statistics	O Plots	

Εικόνα 46: Παράθυρο «Explore»,δημιουργία πινάκων και διαγραμμάτων.

	Dependent List	Statistics
Rep	Explore: Statistics ×	Plots
	Descriptives	Options.
	Confidence Interval for Mean: 95 %	Bootstrap
	M-estimators	
	Outliers	
	Percentiles	
Display-	Continue Cancel Help	
Both	Statistics O Plots	

Εικόνα 47: Παράθυρο επιλογής στοιχείων που θα εμφανιστούν στην ανάλυση.

Διάγραμμα 9: Θηκόγραμμα για τον παράγοντα «Χλωρή λίπανση» («Green»), Άζονας x: «Χλωρή Λίπανση», Άζονας y: «Απόδοση» («Yield»)-.

Διάγραμμα 10: Θηκόγραμμα για τον παράγοντα «Χημική αζωτούχος λίπανση» («Fert»), Άζονας x: «Χημική αζωτούχος λίπανση» («Fert»), Άζονας y: «Απόδοση»(«Yield»).

Από τη στιγμή που από τα παραπάνω διαγράμματα δε μπορεί να εξαχθεί κάποιο συμπέρασμα για την αλληλεπίδραση μεταξύ των δύο παραγόντων, στο επόμενο βήμα θα ήταν πολύ χρήσιμο να δημιουργηθεί ένα διάγραμμα στο οποίο να φαίνεται η μεταξύ τους αλληλεπίδραση (χλωρής και χημικής λίπανσης). Για το παρακάτω διάγραμμα (Διάγραμμα 10) ακολουθήθηκε η διαδρομή «Analyze», «General Linear Model», «Univariate» η οποία οδήγησε στη Εικόνα 48. Στο σημείο αυτό στη θέση «Dependent Variable» τοποθετήθηκε η μεταβλητή « Yield», στη θέση «Fixed Factors» η μεταβλητή «Fert» και στη θέση «Random Factor(s)» οι μεταβλητές «Fert» και «Green». Στη συνέχεια έγινε η επιλογή «Plots» και καταλήξαμε στην Εικόνα 49.

ta Univariate		×
iva Fert Green Rep Ivield	Eixed Factor(s):	Model Contrasts Plots Post Hoc Save Options
	Covariate(s):	Eootstrap)

Εικόνα 48: Παράθυρο προσδιορισμού μεταβλητών για ανάλυση διακύμανσης.

Univariate:	Profile Plots		×
Eactors:		Horizontal Axis:	st
Green	6	Separate Lines:	00
		Separate Plots:	15
Plo <u>t</u> s:	Add	Change Remove	ra
	Continue	ncel Help	

Εικόνα 49:Ορισμός των δύο αζόνων.

Στο σημείο αυτό για τη θέση «Horizontal Axis» επιλέγεται η μεταβλητή «Fert» και για τη θέση «Separate Lines» η μεταβλητή «Green» στη συνέχεια κάνουμε «κλικ» στο εικονίδιο «Add» και στη θέση «Plots» προσθέσαμε τον παράγοντα «Fert*Green». Το αποτέλεσμα είναι το Διάγραμμα 10.

Διάγραμμα 11: Διάγραμμα αλληλεπίδρασης παραγόντων «Χημική αζωτούχος λίπανση» και «Χλωρή λίπανση».

Από το Διάγραμμα 10 μπορούμε να υποθέσουμε ότι ο συνδυασμός της αζωτούχου λίπανσης (fert=29,6 kg/στρ) με χλωρή λίπανση κριθαριού και βίκου είναι η μεταχείριση που οδηγεί στη μεγαλύτερη απόδοση.

Στη συνέχεια για την ανάλυση διακύμανσης θα πρέπει να δώσουμε στα δεδομένα τη παρακάτω μορφή (Πίνακας δεδομένων 7)). Στη συνέχεια ακολουθώντας τη διαδρομή «Analyze», «General Linear Model», «Repeated Measures» καταλήγουμε στην Εικόνα 50. Στο σημείο αυτό θέτουμε τον αριθμό των επιπέδων του παράγοντα «Χλωρή λίπναση» «Number of Levels» ίσο με τέσσερα. Έπειτα κάνουμε «κλικ» στην επιλογή «Add», «Define» και οδηγούμαστε στην Εικόνα 51 όπου τοποθετούμε τους παράγοντες όπως φαίνεται. Στη συνέχεια κάνοντας «κλικ» στην επιλογή «Options» ορίζουμε όπως φαίνεται στην Εικόνα 52. Το αποτέλεσμα είναι ο Πίνακας 15.

Fallow	Barley	Vetch	BarleyVetch	Fert
13,800	15,500	21,000	18,900	F1
13,500	15,000	22,700	18,300	F1
13,200	15,200	22,300	19,600	F1
19,300	22,200	25,300	25,900	F2
18,000	24,200	24,800	26,700	F2
20,500	25,400	28,400	27,600	F2

Πίνακας δεδομένων 7: Δεδομένα από «Πείραμα 6» σε SPSS.

Repeated Measures Define Factor(s)
Within-Subject Factor Name:
factor1
Number of Levels:
Add Change Remove
Measure <u>N</u> ame:
A <u>d</u> d Change Remoye
Define Reset Cancel Help

Εικόνα 50: Ορισμός επιπέδων παράγοντα «Χλωρή λίπανση».

a Repeated Measures		×	Repeated Measures			×
 ✓ Fallow ✓ Barley ✓ Vetch ✓ Barley-Vetch [Barley ✓ Fertbilzer ✓ 	Within-Subjects Variables (factor1): [-?_(1) [-?_(2) _?_(3) _?_(4)	Model Cogtrasts Piots Post <u>H</u> oc Save Options		*	Within-Subjects Variables (factor1): Fallow(1) Barley(2) Vetch(3) Barley/Vetch(4) Between-Subjects Factor(s): Fertilizer	Model Contrasts Plots Post Hoc Save Options
OK Paste	Reset Cancel Help		ОК	Paste f	Reset Cancel Help	

Εικόνα 51: Προσδιορισμός «Within-Subjects Variables».

	Display Means for:
(OVERALL) Fertilizer factor1 Fertilizertactor1	Fertilizer*factor1
	Complete main effects Confidence Interval amustment
Hsplay	
Asplay	Transformation matrix
Asplay 2 Descriptive statistics 2 Estimates of effect size	Transformation matrix ✓ Homogeneity tests
NSplay Z Descriptive statistics Z Estimates of effect size Z Observed power	 Transformation matrix ✓ Homogeneity tests Spread vs. level plot
Asplay 2 Descriptive statistics 2 Estimates of effect size 3 Observed power 1 Parameter estimates	 Transformation matrix ✓ Homogeneity tests Spread vs. level plot Residual plot
Asplay 2 Descriptive statistics 2 Estimates of effect size 3 Observed power Parameter estimates 3 SCP matrices	Transformation matrix Homogeneity tests Sgread vs. level plot Residual plot Lack of fit

Εικόνα 52: Ορισμός στοιχείων που θα εμφανιστούν στην ανάλυση.

Tests of Within-Subjects Effects

Source		Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared	Noncent. Parameter	Observed Power ^a
fertilization	Sphericity Assumed	215,261	3	71,754	118,956	,000	,967	356,869	1,000
	Greenhouse-Geisser	215,261	2,219	97,004	118,956	,000	,967	263,974	1,000
	Huynh-Feldt	215,261	3,000	71,754	118,956	,000	,967	356,869	1,000
	Lower-bound	215,261	1,000	215,261	118,956	,000	,967	118,956	1,000
fertilization * Fertilizer	Sphericity Assumed	18,698	3	6,233	10,333	,001	,721	30,998	,985
	Greenhouse-Geisser	18,698	2,219	8,426	10,333	,004	,721	22,929	,945
	Huynh-Feldt	18,698	3,000	6,233	10,333	,001	,721	30,998	,985
	Lower-bound	18,698	1,000	18,698	10,333	,032	,721	10,333	.676
Error(fertilization)	Sphericity Assumed	7,238	12	,603					
	Greenhouse-Geisser	7,238	8,876	,81.5					
	Huynh-Feldt	7,238	12,000	.603					
	Lower-bound	7,238	4,000	1,810		10000			

a. Computed using alpha = .05 Πίνακας 16: Πίνακας Ανάλυσης διακύμανσης.

3.Jasp

3.1.Πλήρως τυχαιοποιημένο.

Όπως και στο SPSS η ανάλυση ξεκινά με εισαγωγή και προβολή των δεδομένων. Αρχικά να σημειωθεί πως για την ανάλυση τους στο συγκεκριμένο λογισμικό προτιμήθηκε η μορφή αρχείου .csv. Ξεκινώντας κάνοντας «κλικ» πανω στο σύμβολο -δίπλα στο όνομα- της μεταβλητής ορίζουμε το είδος της (Εικόνα 53) και τα ονόματα των διαφορετικών επιπέδων του παράγοντα (Εικόνα 54). Καταλήγουμε στον Πίνακα δεδομένων 8 στον οποίο βλέπουμε την απόδοση (σε κιλά) του κάθε ατόμου καθώς και τη μεταχείριση που του έχει εφαρμοστεί.

T	🕭 Trt	Rep	📏 Yield	+
1	Scale		20.1	1
2	I Ordina	al	22.5	
3	в	1	24.7	

Εικόνα 53: Ορισμός του είδους της μεταβλητής «Trt», «Yield».

Column Name/Title here					
Filter	Value	Label			
\checkmark		A			
\checkmark	Green Leaf	В			
\checkmark	NH4SO4	с			
\checkmark	NH4SO4+Green Leaf	D			

Εικόνα 54: Ορισμός ονομάτων των διαφορετικών επιπέδων της μεταβητής «Trt».

٣	ᡖ Trt	Rep	📏 Yield	+
1	А	1	20.1	
2	C	1	22.5	
3	В	1	24.7	
4	D	1	24.4	
5	А	2	19.1	
6	C	2	23	
7	В	2	25.5	
8	D	2	26.8	
9	А	3	19	
10	С	3	23.6	
11	В	3	23.9	
12	D	3	25.9	
13	Α	4	19.5	
14	С	4	25.2	
15	В	4	23.6	
16	D	4	25.9	

Πίνακας δεδομένων 8: Δεδομένα από «Πείραμα 1» σε JASP.

Ωστόσο από το παραπάνω πίνακα δεν μπορεί να προκύψει κανένα συμπέρασμα για το αρχικό ερώτημα το οποίο έχει τεθεί, δηλαδή αυτό του ποια μεταχείριση δίνει τη μεγαλύτερη απόδοση. Έτσι πρέπει να συνεχίσουμε στην ανάλυση των παραπάνω δεδομένων.

Το πρώτο βήμα είναι η δημιουργία ενός πίνακα με τα σημαντικότερα μέτρα θέσεις και μέτρα διασποράς προκειμένου να αποκτήσουμε μια εικόνα για τα δεδομένα. Για να γίνει αυτό επιλέγουμε το εικονίδιο «Descriptives» και οδηγούμαστε στην Εικόνα 56. Σε αυτό το σημείο μπορούμε να δημιουργήσουμε πίνακες περιγραφικής στατιστικής καθώς και διαγράμματα.

Εικόνα 55: Παράθυρο δημιουργίας πινάκων περιγραφικής στατιστικής και Διαγραμμάτων.

Ξεκινώντας ορίζουμε στον πίνακα της Εικόνας 56 ως «Variables» τη μεταβλητή «Yield» και αφήνουμε την θέση «Split» κενή. Στη συνέχεια πατώντας το εικονίδιο «Statistics» επιλέγουμε ποια μέτρα θέσης και διασποράς επιθυμούμε να εξετάσουμε. Έτσι οδηγούμαστε στον Πίνακα 17.

Descriptive Statistics				
	yield			
Valid	16			
Missing	0			
Mean	23.29			
Std. Error of Mean	0.6438			
Std. Deviation	2.575			
Variance	6.631			

Πίνακας 17: Βασικά μέτρα θέσης και μέτρα διασποράς του πληθυσμού.

Στον παραπάνω πίνακα βλέπουμε ότι ο αριθμός των παρατηρήσεων (Valid) είναι 16, ότι ο μέσος όρος (Mean) είναι 23,29 το τυπικό σφάλμα (Std. Error of Mean) είναι 0,643, η τυπική απόκλιση (Std. Deviation) είναι 2,575, και τέλος η διακύμανση είναι (Variance) 6,631.

Σε αυτό το σημείο θα δημιουργήσουμε ένα θηκόγραμμα που να απεικονίζει τους τέσσερις διαφορετικούς πληθυσμούς έτσι ώστε να αποκτήσουμε μια καλύτερη εικόνα του πως και εάν οι μεταχειρίσεις επηρεάζουν τον πληθυσμό. Στο συγκεκριμένο λογισμικό για να γίνει αυτό αρχικά στη θέση «Split» επιλέγουμε τη μεταβλητή «Trt» και στη συνέχεια κάνουμε «κλικ» στην επιλογή «Plots», «Boxplot», «Boxplot element». Το αποτέλεσμα είναι το Διάγραμμα 12.

Διάγραμμα 12: Θηκόγραμμα/Boxplot διαφορετικών μεταχειρίσεων, Άζονας x: «Μεταχείριση» («Trt»), Άζονας y: «Απόδοση» («Yield»).

Παρατηρούμε ότι η καλύτερη μεταχείριση είναι ο συνδυασμός των δύο λιπασμάτων, ωστόσο πρέπει να σημειωθούν οι στατιστικές διαφορές μεταξύ των μέσων όρων προκειμένου να αποδειχθεί η παραπάνω παρατήρηση. Συνεχίζουμε κάνοντας ανάλυση διακύμανσης (anova).

Για να γίνει ανάλυση διακύμανσης στο Jasp κάνουμε «κλικ» στο εικονίδιο «ANOVA» και εμφανίζεται η *Εικόνα 56*. Θέτουμε -στον πίνακα που φαίνεται στην εικόνα - ως «Dependent Variable» τη μεταβλητή «Yield» και ως «Fixed Factors» τη μεταβλητή «Trt». Το αποτέλεσμα είναι ο Πίνακας 18.

* ANOVA		000	9
🛃 Trt 🔢	10	Dependent Variable	
Yield		Fixed Factors	
			Model Assumption Checks
		WLS Weights	Contrasts Post Hoc Tests Descriptives Plots
Display Descriptive statistics			▶ Marginal Means
Estimates of effect size			► Smple Main Effects
Vovk-Sellke maximum p-ratio			Nonparametrics

Εικόνα 56: Παράθυρο ορισμού μεταβλητών για την ανάλυση διακύμανσης.

ANOVA

<u>Cases</u>	<u>Sum of</u> Squares	<u>df</u>	<u>Mean Square</u>	F	p
trt	89.44	3	29.812	35.66	< .001
Residual	10.03	12	0.836		

Note. Type III Sum of Squares

Πίνακας 18:Πίνακας ανάλυσης διακύμανσης.

Από τον παραπάνω πίνακα βλέπουμε ότι το άθροισμα τετραγώνων (Sum of Squares) του παράγοντα «trt» ισούται με 89,44 και το Σφάλμα «Mean Square» ισούται με 29,812. Όπως και στο SPSS το στατιστικό F ισούται με 35,66 οπότε καταλήγουμε πάλι στο συμπέρασμα ότι οι μεταχειρίσεις διαφέρουν και συνεχίζουμε κάνοντας Post Hoc για να δούμε ανάμεσα σε ποιες υπάρχει στατιστικά σημαντική διαφορά. Στην επιλογή «Post Hoc Tests» επιλέγουμε μόνο τον έλεγχο Tukey-HSD καθώς ο έλεγχος LSD δεν υπάρχει. Το αποτέλεσμα είναι ο Πίνακας 19.

	<u>*</u>	
pe		Correction
Standard		Iukey.
From 1000 bolkprese		Scheffe
		Donformani
Effect sze		Butilentia
Effect sze Games-Howell		Holm
Effect sze Games-Howell Dunnett		Holm
Effect sze Games Howell Dunnett Dunn		Hoim Satúk
Effect sze Games-Howell Dunnett Dunn		Hoim Sadúk

Εικόνα 57:Παράθυρο επιλογής post hoc.

Post	Hoc	test
------	-----	------

Pos	Post Hoc Comparisons - trt								
		Mean Difference	SE	t	p tukey				
А	С	-5.000	0.647	-7.733	< .001				
	В	-4.150	0.647	-6.419	< .001				
	D	-6.325	0.647	-9.783	< .001				
С	В	0.850	0.647	1.315	0.572				
	D	-1.325	0.647	-2.049	0.224				
В	D	-2.175	0.647	-3.364	0.025				

Note. P-value adjusted for comparing a family of 4 Πίνακας 19: Αποτελέσματα ελέγχου TukeyHSD.

Στον παραπάνω πίνακα φαίνονται τα αποτελέσματα των post-hoc ελέγχων. Το HSD test έδειξε ότι υπάρχει διαφορά μεταξύ της μεταχείρισης «Control» (A) και των τριών άλλων μεταχειρίσεων καθώς το p είναι πολύ κοντά στο 0 (p<<0,05). Επίσης εντοπίστηκε διαφορά μεταξύ των μεταχειρίσεων «NH4SO4» (B) και «NH4SO4+Green Leaf» (D) καθώς p ισούται με 0,006 (p<<0,05). Μεταξύ των υπόλοιπων δεν παρατηρήθηκαν στατιστικά σημαντικές αλλαγές σε επίπεδο 5%. Τόσο από το Διάγραμμα 12 όσο και από τον Πίνακα 19, παρατηρείται ότι ο μέσος όρος της μεταχείρισης «NH4SO4» είναι μικρότερος από τον μέσο όρο της μεταχείρισης «NH4SO4+ Green Leaf» συνεπώς η καλύτερη μεταχείριση είναι ο συνδυασμός NH4SO4 με Green Leaf.

3.2.Τυχαιοποιημένων πλήρων ομάδων.

Ξεκινάμε ορίζοντας το είδος της μεταβλητής (Εικόνα 59) και τα ονόματα των διαφορετικών επιπέδων του παράγοντα καθώς και των διαφορετικών επιπέδων των ομάδων (Blocks) (Εικόνα 58). Καταλήγουμε στον Πίνακα δεδομένων 9 στον οποίο βλέπουμε την περιεκτικότητα του κάθε σπόρου σε έλαιο, την μεταχείριση που του έχει εφαρμοστεί καθώς και την ομάδα (Block) στην οποία ανήκει.

т	💑 Trt	A Block	📏 Yield	+
1	Scale	1	3.3	
2	I Ordinal	1	4.4	
3	L	81	4.4	

Εικόνα 58: Ορισμός είδους μεταβλητών «Trt» «Block» και «Yield»».

Trt		Block					
Filter	Value	Label	Filter	Value	Label		
\checkmark	Early bloom	В	\checkmark		B1		
\checkmark	Full bloom	с	\checkmark	2	B2		
\checkmark	Full bloom (1/100)	D	\checkmark	3	B3		
\checkmark	Ripening	E	\checkmark	4	B4		
\checkmark	Seedling	Α					
\checkmark	Uninoculated	F					

Εικόνα 59: Ορισμός ονομάτων διαφορετικών επιπέδων των παραγόντων «Trt» και «Block».

T	ᡖ Trt	🐣 Block	📏 Yield 🕇	•
1	A	B1	3.3	
2	В	B1	4.4	
3	с	B1	4.4	
4	D	B1	6.3	
5	E	B1	6.4	
6	F	B1	6.8	
7	A	B2	1.9	
8	В	B2	5.9	
9	с	B2	4	
10	D	B2	4.9	
11	E	B2	7.3	
12	F	B2	6.6	
13	А	B3	4.9	
14	В	B3	6	
15	с	B3	4.5	
16	D	B3	5.9	
17	E	B3	7.7	
18	F	B3	7	
19	А	4	7.1	
20	В	4	4.1	
21	С	4	3.1	
22	D	4	7.1	
23	E	4	6.7	
24	F	4	6.4	

Πίνακας δεδομένων 9: Δεδομένα από «Πείραμα 2» σε JASP.

Συνεχίζουμε κάνοντας τον παρακάτω πίνακα ο οποίος δημιουργήθηκε από το εικονίδιο «Descriptives» θέτοντας ως «Variables» τη μεταβλητή «Yield» ενώ η θέση «Split» μένει κενή (Εικόνα 60). Στη συνέχεια επιλέγοντας το εικονίδιο «Statistics» εμφανίζονται τα μέτρα θέσης και διασποράς από τα οποία μπορούμε να επιλέξουμε. Το αποτέλεσμα είναι ο Πίνακας 20.

 • • • • • • • 			Variables	
Block Yield	12	-		
			Split	
Frequency tables (nomi	nal and ordinal varial	oles)		

Εικόνα 60 : Παράθυρο δημιουργίας πινάκων περιγραφικής στατιστικής και Διαγραμμάτων.

Descriptive Statistic	cs
	yield
Valid	24
Missing	0
Mean	5.529
Std. Error of Mean	0.3142
Std. Deviation	1.539

 Variance
 2.370

 Πίνακας 20: Βασικά μέτρα θέσης και μέτρα διασποράς του πληθυσμού.

Από το παραπάνω πίνακα βλέπουμε ότι ο αριθμός των παρατηρήσεων (N) είναι 24, ο μέσος όρος (Mean) είναι 5.529, το Τυπικό Σφάλμα (Std. Error of Mean) είναι 0,314, η τυπική απόκλιση (Std. Deviation) είναι 1,539, και τέλος η παραλλακτικότητα (Variance) είναι 2.370.

Προχωράμε στη δημιουργία του Διαγράμματος 13 με σκοπό να δούμε αναλυτικότερα τα δεδομένα της κάθε μεταχείρισης . Για τη δημιουργία του προσθέτουμε στην επιλογή «Split» τη μεταβλητή «Trt»(Εικόνα 60).

Διάγραμμα 13: Θηκόγραμμα/Boxplot διαφορετικών μεταχειρίσεων, Άζονας x: «Μεταχείριση» («Trt»), Άζονας y: «Απόδοση» («Yield»).

Συνεχίζουμε με ανάλυση διακύμανσης, ακολουθώντας τη διαδρομή «Anova», «Anova»έχοντας θέσει τις μεταβλητές όπως περιεγράφηκε παραπάνω. Ωστόσο βλέπουμε ότι εμφανίζεται πρόβλημα (Εικόνα 61) και δεν είναι δυνατό να συνεχιστεί η διαδικασία.

ANOVA

NOV 🚯 The fo	llowing problem(s)	occurred while	e running the ana	alysis:	
C • Nu	mber of observation	ons is < 2 in Yi	eld after grouping	g on Block, Trt	р
Blo					0.515
Trt	31.652	5	6.330	4.816	0.008
	10 710	45	4.244		

Εικόνα 61: εικόνα προβλήματος που προκύπτει κατά την ανάλυση διακύμανσης.

Για να μπορέσουμε να συνεχίσουμε θα πρέπει να αφαιρεθεί από την παρακάτω στήλη η επιλογή «trt*block» όπως φαίνεται στην *Εικόνα 62*.

omponents			Model Terms	
Block	1±	4	📥 Block	
💤 Trt			🚓 Trt	_
			Block * Trt	

Εικόνα 62: Τρόπος επίλυσης του προβλήματος.

Μετά την επίλυση του προβλήματος εμφανίζεται ο παρακάτω πίνακας (Πίνακας 21) στον οποίο φαίνεται ότι υπάρχουν στατιστικά σημαντικές διαφορές μεταξύ των μεταχειρίσεων (F=4,816, p<0,05). Μεταξύ των ομάδων ωστόσο μπορούμε να δούμε ότι δεν υπάρχει σημαντική διαφορά και αυτή που υπάρχει δεν είναι στατιστικά σημαντική (F=0,797, p>0,05). Συνεχίζουμε κάνοντας Post Hoc έλεγχο στην μεταβλητή «Trt». Για να γίνει αυτό επιλέγουμε το εικονίδιο «Post Hoc Tests» και από τη λίστα που εμφανίζεται τον έλεγχο Tukey HSD (Εικόνα 63).

 ANOVA – yield

 Cases
 Sum of Squares of Mean Square
 F
 p

 trt
 31.652
 5
 6.330
 4.816
 0.008

 block
 3.141
 3
 1.047
 0.797
 0.515

 Residual
 19.716
 15
 1.314
 1.314

Note. Type III Sum of Squares

Πίνακας 21: Πίνακας ανάλυσης διακύμανσης.

Εικόνα 63: Παράθυρο επιλογής post hoc ελέγχων.

		Mean Difference	SE	t	p tukey
В	С	1.100	0.811	1.357	0.750
	D	-0.950	0.811	-1.172	0.843
	Е	-1.925	0.811	-2.375	0.226
	А	0.800	0.811	0.987	0.915
	F	-1.600	0.811	-1.974	0.400
С	D	-2.050	0.811	-2.529	0.177
	Е	-3.025	0.811	-3.731	0.020
	А	-0.300	0.811	-0.370	0.999
	F	-2.700	0.811	-3.331	0.043
D	Е	-0.975	0.811	-1.203	0.829
	А	1.750	0.811	2.159	0.311
	F	-0.650	0.811	-0.802	0.963
Е	А	2.725	0.811	3.361	0.041
	F	0.325	0.811	0.401	0.998
А	F	-2.400	0.811	-2.960	0.085

Post Hoc Comparisons - trt

Πίνακας 22: Αποτελέσματα ελέγχου TukeyHSD.

Από τον παραπάνω πίνακα βλέπουμε ότι διαφέρουν μεταξύ τους οι μεταχειρίσεις "Full bloom"-"Ripening" (C-E) διότι p=0.020, "Full bloom"-"Uninoculated" (C-F) διότι p=0.043, "Ripening"-"Seedling" (E-A) διότι p=0.041. Συμπερασματικά, λαμβάνοντας υπόψιν τον Πίνακα 30 και το Διάγραμμα 12 καταλήγουμε ότι η καλύτερη μεταχείριση είναι η πέμπτη «Ripening».

3.3. Ανάλυση συνδιακύμανσης.

Ξεκινάμε με την προβολή των δεδομένων και όπως στην προηγούμενη περίπτωση ορίζουμε τα είδη των μεταβλητών καθώς και τα ονόματά τους Εικόνα 64, Εικόνα 65. Στη συνέχεια εμφανίζεται ο Πίνακας δεδομένων 10.

📏 Var	Rep	Scov	Ascorbic	+
Scale	1	34	93	
Ordinal	1	39.6	47.3	
J	1	31.7	81.4	

Εικόνα 64: Ορισμός είδους μεταβλητών «Var», «Cov», «Ascorbic».

Var		
Filter	Value	Label
\checkmark	1	Α
✓	2	В
\checkmark	3	С
\checkmark	4	D
✓	5	E
1	6	F

Εικόνα 65: Ορισμός ονομάτων διαφορετικών επιπέδων του παράγοντα «Var».

▼ → var → rep • cov → ascorbic 29 G 3 94.8 1 A 1 34 93 30 10 31.1 31.1 2 B 1 39.6 47.3 31 1 31.1 31.1 31.1 3 C 1 31.7 81.4 32 1 3.1 31.1 4 D 1 37.7 66.9 33 K 3.2 3.2 5 E 1 30.3 106.6 33 K 3.2 3.4 3.9 6 F 1 30.3 106.1 34 A 3.0 3.0 8 H 1 31.4 80.5 32 B 4 20.1 3.0 10 J 1.1 30.8 78.7 38 E 4 23.1 11 K 1 30.8 73.7 64.1 14.1 3	_										
1 A 1 34 93 3 3 A 3.1 2 8 1 39.6 47.3 31 1 3.1 3.1 3 C 1 31.7 81.4 32 1 3.2 3.3 4 D 1 37.7 66.9 33 K 3.2 3.2 5 E 1 3.3 106.6 34 3.4 3.0 6 F 1 3.2,7 106.1 3.6 4 5 7 6.9 1 3.4 80.5 36 6.2 3.0 3.0 8 H 1 3.4 80.5 38 E 4 3.0 10 J 1 3.14 80.5 38 E 3.1 11 K 1 3.14 80.5 38 E 3.1 12 A 2 3.3 78.7 38 E 3.1 13 B 2 3.3 94.8 4 6 4 3.1 14 K 3.1 109 4 14 14 4 3.1 15 D <	r	🔥 var	🐣 rep	📏 соч	Ascorbic	29	G	3		34.8	97.5
2 8 1 39,6 47.3 3 1 3 <t< td=""><td>1</td><td>Α</td><td>1</td><td>34</td><td>93</td><td>30</td><td>н</td><td>3</td><td></td><td>31.1</td><td>93.9</td></t<>	1	Α	1	34	93	30	н	3		31.1	93.9
3 C 1 31.7 81.4 32 3 3 3 3 3 4 0 1 37.7 66.9 3 3 3 3 3 3 3 3 5 1 1 24.9 119.5 34 4 3 <t< td=""><td>2</td><td>В</td><td>1</td><td>39.6</td><td>47.3</td><td>31</td><td>I</td><td>3</td><td></td><td>34.6</td><td>76.7</td></t<>	2	В	1	39.6	47.3	31	I	3		34.6	76.7
4 0 1 37.7 66.9 3 $A = A = A = A + A + A + A + A + A + A + $	3	С	1	31.7	81.4	32	J	3		23.5	170.1
5 F. 1 24.9 119.5 1 1 1 1 3 6 F. 1 30.3 106.6 3 3 8 3<	4	D	1	37.7	66.9	33	к	3		33.2	71.8
6 F 1 30.3 106.6 F R R 0 0 0 0 7 6 1 32.7 106.1 35 8 0 3 3 0 8 H 1 34.5 61.5 36 36 2 39.6 9 1 1 31.4 80.5 37 0 3 3 10 1 31.4 80.5 38 6.5 38 6.5 38 11 K 1 31.4 80.5 38 6.5 38 6.5 39.4 39.4 10 1 1 31.4 80.5 38 6.5 38 6.5 39.4 30.4 11 K 1 30.8 78.7 38 6.0 4 50.5 12 A 2 33.4 94.8 40 6 4 50.5 14 C 30.1 109 42 14.8 4 30.9 15 D 2 31.4 128.5 44 14.8 4 50.5 16 E 2 31.4 111.4 44 14.9 14.9	5	E	1	24.9	119.5	24	۰. ۵	4		28.0	80.8
7 6 1 32.7 106.1 33 8 4 52 8 H 1 34.5 61.5 36 6 4 96.6 9 I 1 34.5 61.5 36 27 39.4 39.6 9 I 1 31.4 80.5 37 0.0 4 96.6 9 I 1 31.4 80.5 37 0.0 4 39.4 10 J 1 21.2 149.2 38 E. 37 0.5 39.4 23.5 11 K 1 30.8 78.7 38 E. 35.7 38 E. 35.3 35.4 13 B 2 33.4 94.8 40 6 4 5.0 35.4 14 C 39.8 51.5 41 43 31.4 4.1 36.1 15 G 33.8 107.2	6	F	1	30.3	106.6			-		50.9	00.0
8 H 1 34.5 61.5 36 C 4 39.6 9 1 1 31.4 80.5 37 0 4 39.4 10 1 1 21.2 149.2 38 E 4 23.5 11 K 1 30.8 78.7 38 F 4 23.5 12 A 2 33.4 94.8 30 6 4 28.3 13 B 2 33.4 94.8 40 6 4 51.5 14 C 39.8 51.5 41 H 4 30.9 15 D 2 30.1 109 42 14.3 31.4 31.6 15 D 2 30.1 109 43 31.0 4 30.9 16 E 2 31.4 11.4 44 K 4 31.6 16 E 2 31.5 83.4 44 K 4 51.6 17 F 2 31.5 83.4 46 80.0 5 60.1 18 G 2 35.3 151.6 48 80.	7	G	1	32.7	106.1	35	в	4		52	27.2
9 1 31.4 80.5 37 0 4 93.4 10 1 1 21.2 149.2 38 6.0 38 6.0 38 6.0 38 6.0 3.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 39.0 30.0 39.0 30.0	8	н	1	34.5	61.5	36	С	4		39.6	57.5
10 1 21.2 149.2 38 E $4 ext{ }$ 23.3 11 K 1 30.8 78.7 39 F 4 23.3 12 A 2 33.4 78.7 39 F 4 23.3 12 A 2 33.4 94.8 40 40 4 3.5 3.5 13 B 2 39.8 51.5 41 H 4 3.6 3.6 14 C 2 30.1 109 42 1.0 4 3.6 3.6 3.6 15 D 2 30.1 109 43 3.0 4 3.6 3.6 16 E 2 3.1 11.4 43 4 4 3.6 3.6 17 F 2 3.1 11.4 43 4 5 5.2 5.2 18 G 2 3.1 11.4 45 4 6 6 5 6.2 5.2 5.2 5.2	9	I	1	31.4	80.5	37	D	4		39.4	69.3
11 K 1 30.8 78.7 39 F 4 28.3 12 A 2 33.4 94.8 40 6.0 4 5.4 5.4 13 B 2 39.8 51.5 41 H 4 5.4 5.4 14 C 2 39.8 51.5 41 H 4 5.4 5.4 14 C 2 30.1 109 41 H 4 5.4 5.4 15 D 2 30.1 109 41 H 4 5.0 5.4 15 D 2 38.2 74.1 43 1.4 4 5.0 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.2 5.2 5.2 5.2 5.2 5.1	.0	J	1	21.2	149.2	38	E	4		23.5	129
12 A 2 33.4 94.8 40 G 4 35.4 13 B 2 39.8 51.5 41 H 4 36.1 14 C 2 30.1 109 4 30.1 30.1 15 D 2 30.1 109 4 30.1 30.1 15 D 2 30.1 109 4 30.1 30.1 16 D 2 30.1 109 4 30.1 30.1 16 D 2 30.1 109 4 4 30.1 30.1 17 F 2 2 2 11.4 4 4 30.1 30.1 18 G 2 3.3 107.2 4 6 6 5 5.2 19 H 2 3.1 10.5 4 6 6 5 5.2 2 H 2 5.4 10.5 4 5 5.1 5 2 H	.1	К	1	30.8	78.7	39	F	4		28.3	126.1
13 8 2 39.8 51.5 41 H 4 56.1 14 C 2 30.1 109 42 1.0 4 30.9 15 D 2 30.1 109 42 1.0 4 30.9 15 D 2 38.2 74.1 43 1.0 4 3.0 16 E 2 2 12.6 44 K 4 3.0 17 F 2 2.0 11.4 45 A 5 5.1 18 G 2 3.3 107.2 46 8.0 5.2 5.2 19 H 2 3.3 10.5 46 16.9 4.0 5.2 5.2 10 I 2.0 3.5 16.5 48 0.0 5 6.2 12 I 2 2.0 16.9 16.9 49 6.0 5 6.1 12 K 3.4 16.9 16.9 5 5.2 7.2	.2	Α	2	33.4	94.8	40	G	4		35.4	86
14 C 2 30.1 109 42 I. 30.9 15 D 2 38.2 74.1 43 J. 24.3 3.5 16 E 2 24 128.5 4 K 4 3.5 17 F 2 20.1 111.4 45 A 3.5 3.6 18 G 2 33.8 107.2 46 B 3 5 6.2 19 H 2 3.5 106.5 46 B 3 7.8 7.8 20 I 2 5.3 105.6 47 C 5 6.2 21 J 2 25.3 151.6 48 0 5 0 5.1 2.5 22 K 2 26.4 116.9 49 6 5 3.4 3.4 23 A 3 3.4 9.1 5.5 5.1 3.4 3.4 24 B 3 3.2 3.3 5.2 <td< td=""><td>.3</td><td>В</td><td>2</td><td>39.8</td><td>51.5</td><td>41</td><td>н</td><td>4</td><td></td><td>36.1</td><td>69</td></td<>	.3	В	2	39.8	51.5	41	н	4		36.1	69
15 0 2 38.2 74.1 43 3.2 24.8 16 2 24 128.5 44 K 3.5 3.5 17 7 2 2.0 21.14 46 8.0 3.5 3.6 18 6 2 3.8 10.2 4 6 8.0 3.5 3.6 19 4 2 3.8 10.7 46 8.0 $5 \cdot \cdot \cdot$ 5.0 10 10 2 3.5 3.6 3.4 4 6 8.0 $5 \cdot \cdot \cdot \cdot$ 5.0 10 10 2 3.5 106.5 47 6.0 $5 \cdot \cdot \cdot \cdot \cdot \cdot \cdot$ 5.0 11 10 2 5.3 151.6 48 6.0 $5 \cdot \cdot$ 5.0 12 K 3 3.4 16.9 49 6.0 $5 \cdot \cdot$.4	С	2	30.1	109	42	I	4		30.9	91.8
16 2	.5	D	2	38.2	74.1	43	J	4		24.8	155.2
17 \mathbf{F} 2 2 2 11 45 \mathbf{A} 5 36 36 18 6 2 35 63 66 8 5 56 19 4 2 35 665 47 60 5 47 20 5 67 7	.6	E	2	24	128.5	44	к	4		33.5	70.3
18 6 2 33.8 107.2 $(1, 1, 2, 3)$ $(1, 2, 3)$.7	F	2	29.1	111.4	45	Α	5		36.1	80.2
19 H 2 31.5 83.4 H I I I I I 20 I 2 30.5 106.5 47 C 5 47.8 21 J 2 25.3 151.6 48 D 5 Duble/Ict to 22 K 2 26.4 116.9 49 E 5 25.1 23 A 3 34.7 91.7 50 F 5 34.2 24 B 3 51.2 33.3 51 6 5 37.8 25 C 3 38.8 71.6 52 H 5 38.5 26 D 3 40.3 64.7 53 1 5 38.5	.8	G	2	33.8	107.2	46	B	5		56.2	20.6
20 1 2 30.5 106.5 47 C 3 17.5 21 1 2 25.3 151.6 48 0 5 Double C 22 K 2 26.4 116.9 49 E 5 25.1 23 A 3 34.7 91.7 50 F 5 34.2 24 B 3 51.2 33.3 51 6 5 37.8 25 C 3 33.8 71.6 52 H 5 38.5 26 D 3 40.3 64.7 53 1 5 36.8	.9	Н	2	31.5	83.4	47	с С	5		47.9	20.0
21 3 2 25.3 151.6 48 6 5 22 K 2 26.4 16.9 49 E 5 25.1 23 A 3 34.7 91.7 50 F 5 34.2 24 B 3 51.2 33.3 51 6 5 37.8 25 C 3 33.8 71.6 52 H 5 38.5 26 D 3 40.3 64.7 53 1 5 36.8	20	I	2	30.5	106.5	40	-	-	Double	e click to edit da	ta
22 K 2 26.4 116.9 49 E 5 25.1 23 A 3 34.7 91.7 50 F 50 34.2 24 B 3 51.2 33.3 51 6 5 37.8 25 C 3 38.8 71.6 52 H 5 38.5 26 D 3 40.3 64.7 53 1 5 36.8	21	J	2	25.3	151.6	48	U	5	L		3.2
23 A 3 34.7 91.7 50 F 5 34.2 24 B 3 51.2 33.3 51 6 5 37.8 25 C 3 33.8 71.6 52 H 5 38.5 26 D 3 40.3 64.7 53 1 5 36.8	22	К	2	26.4	116.9	49	E	5		25.1	126.2
24 8 3 51.2 33.3 51 6 5 37.8 25 C 3 33.8 71.6 52 H 5 38.5 26 D 3 40.3 64.7 53 I 5 36.8	23	A	3	34.7	91.7	50	F	5		34.2	95.6
25 C 3 33.8 71.6 52 H 5 38.5 26 D 3 40.3 64.7 53 I 5 36.8	24	В	3	51.2	33.3	51	G	5		37.8	88.8
26 D 3 40.3 64.7 53 I 5 36.8	25	С	3	33.8	71.6	52	н	5		38.5	46.9
	26	D	3	40.3	64.7	53	I	5		36.8	68.2
27 E 3 24.9 125.6 54 J 5 24.6	27	E	3	24.9	125.6	54	J	5		24.6	146.1
28 F 3 31.7 99 55 K 5 43.8	28	F	3	31.7	99	55	к	5		43.8	40.9

Πίνακας δεδομένων 10: Αποτελέσματα «Πειράματος 3» σε JASP.
Συνεχίζουμε δημιουργώντας έναν πίνακα με τα μέτρα θέσης και μέτρα διασποράς κάνοντας «κλικ» στο εικονίδιο «Descriptives», εμφανίζεται ο πίνακας της Εικόνας 66 επιλέγουμε στη θέση «Variables» την μεταβλητή «Ascorbic» και αφήνουμε τη θέση «Split» κενή. Συνεχίζοντας από τη λίστα «Statistics» (Εικόνα 66) επιλέγουμε τα στατιστικά που επιθυμούμε να εμφανιστούν στον Πίνακα 23.

Εικόνα 66: Παράθυρο δημιουργίας πινάκων περιγραφικής στατιστικής και Διαγραμμάτων.

Descriptive	Statistics
-------------	------------

	ascorbic	
Valid	55	
Missing	0	
Mean	88.918	
Std. Error of Mean	4.567	
Std. Deviation	33.866	
Variance	1146.934	

Πίνακας 23: Βασικά μέτρα θέσης και μέτρα διασποράς του πληθυσμού.

Από τον Πίνακα 23 βλέπουμε ότι ο αριθμός των ατόμων είναι 55, ο μέσος όρος είναι 88,918, το τυπικό σφάλμα είναι 4,567, η τυπική απόκλιση είναι 33,866, η διακύμανση είναι 1146,934.

Όπως φαίνεται από τον Πίνακα δεδομένων 10 στο συγκεκριμένο πείραμα υπάρχει μια συμμεταβλητή (cov) η οποία πρέπει να ληφθεί υπόψιν στην ανάλυση των δεδομένων.

Αρχικά γνωρίζουμε ήδη ότι η ανεξάρτητη μεταβλητή και η συμμεταβλητή είναι συνεχείς μεταβλητές, ότι η ανεξάρτητη μεταβλητή έχει πάνω από δύο υποομάδες (11 ποικιλίες) και ότι οι παρατηρήσεις είναι ανεξάρτητες μεταξύ τους.

Συνεχίζουμε με τη δημιουργία διαγράμματος σκέδασης προκειμένου να ελεγχθεί ότι τα κατάλοιπα ακολουθούν κανονική κατανομή.

* ANCOVA		000	
📥 var 🛛 🛔		Dependent Variable	
cov ascorbic		Fixed Factors	
		*.a.	
	147	Covariates	
			Model Assumption Charles
			Contrasts
	-	WLS Weights	Post Hoc Tests.
Display			Descriptives Plots
Descriptive statistics			Marginal Means
Estimates of effect size			Single Main Effects
Vovk-Selke maximum p-ratio			Nonparametrics

Εικόνα 67: Παράθυρο ορισμού μεταβλητών για την ανάλυση συνδιακύμανσης.

Τοποθετώντας στη θέση «Dependent Variable» την μεταβλητή «Ascorbic», στη θέση «Fixed Factors» τις μεταβλητές «Var», «Rep» και στη θέση «Covariates» τη μεταβλητή «Cov» και επιλέγοντας από τη στήλη «Assumption Checks» την επιλογή «QQ plot for residuals» καταλήγουμε στο Διάγραμμα 14.

Διάγραμμα 14: «QQ plot» για τα κατάλοιπα.

Από το Διάγραμμα 14 βλέπουμε ότι το δείγμα είναι ομοσκεδαστικό και τα κατάλοιπα ακολουθούν κανονική κατανομή.

Στο επόμενο βήμα θα πρέπει να ελεγχθεί η ομοιογένεια των regression slopes. Να αποδειχθεί δηλαδή ότι μεταξύ της συμμεταβλητής και της εξαρτημένης μεταβλητής δεν υπάρχει αλληλεπίδραση. Αυτό μπορούμε να το ελέγξουμε βλέποντας αν η αλληλεπίδραση των παραγόντων είναι στατιστικά σημαντική. Για τη δημιουργία του Πίνακα 24 επιλέχθηκαν στη θέση «Dependent Variable» την μεταβλητή «Ascorbic» στη θέση «Fixed Factors» τις μεταβλητές «Var» και στη θέση «Covariates» τη μεταβλητή «Cov» και από την επιλογή «Model» δεν αφαιρέθηκε η αλληλεπίδραση «Var*Cov».

ANCOVA - ascorbic

ANCOVA - ascol bic						
Cases	Sum of Squares	df	Mean Square	F	р	
var	990.351	10	99.035	1.806	0.099	
cov	1409.143	1	1409.143	25.692	< .001	
var * cov	1149.850	10	114.985	2.096	0.054	
Residuals	1809.997	33	54.848			

Note. Type III Sum of Squares

Πίνακας 24: Πίνακας ανάλυσης συνδιακύμανσης.

Από τα παραπάνω διαγράμματα φαίνεται ότι πράγματι τα «κατάλοιπα» είναι ομαλώς κατανεμημένα και ότι η συμμεταβλητή με την ανεξάρτητη μεταβλητή έχουν γραμμική σχέση.

3.4. Λατινικό τετράγωνο.

Η ανάλυση ξεκινά με την προβολή των δεδομένων. Συνεχίζουμε ορίζοντας τα είδη των μεταβλητών κάνοντας διπλό «κλικ» πάνω στο όνομα της μεταβλητής που θέλουμε να επεξεργαστούμε . Στη συνέχεια ορίζουμε το είδος των μεταβλητών καθώς και τα ονόματα των επιπέδων των παραγόντων (Εικόνα 68, Εικόνα 69) και καταλήγουμε στον Πίνακα δεδομένων 11, στον οποίο φαίνεται η περιεκτικότητα του κάθε ατόμου σε πυρουβικό καθώς και η μεταχείριση η οποία του εφαρμόστηκε. Τέλος βλέπουμε και σε ποια σειρά και στήλη βρισκόταν.

T	🚴 Trt	Row	Column	📏 Руг	+
1	Scale		1	3.08	
2	I Ordina	al	2	2.56	
3	A Nomir	iai	3	3.19	

Εικόνα 68: Ορισμός του είδους της μεταβλητής «Trt», «Row», «Column», «Pyr».

Trt	Trt					
Filter	Value	Label				
\checkmark	0kg	Α				
\checkmark	2,22kg	В				
✓	4,44kg	с				
\checkmark	6,7kg	D				

Εικόνα 69: Ορισμός ονομάτων διαφορετικών επιπέδων του παράγοντα «Trt».

ಿ Trt	Row	Column	📏 Pyr	+
Α	R1	C1	3.08	
Α	R2	C2	2.56	
Α	R3	C3	3.19	
Α	R4	C4	4.24	
В	R1	C2	3.45	
в	R2	C1	3.66	
В	R3	C4	4.45	
В	R4	СЗ	3.35	
С	R1	C 3	3.4	
С	R2	C4	4.35	
C	R3	C2	3.72	
С	R4	C1	4.51	
D	R1	C4	5.35	
D	R2	C 3	3.93	
D	R3	C1	4.56	
D	R4	C2	3.98	

Πίνακας δεδομένων 11: Δεδομένα από «Πείραμα 4» σε JASP.

Συνεχίζοντας για να φτιάξουμε τον Πίνακα 25 με τα μέτρα θέσης και μέτρα διασποράς ξεκινάμε κάνοντας «κλικ» στη επιλογή «Descriptives». Εμφανίζεται η Εικόνα 70. Στο σημείο αυτό τοποθετούμε στη θέση «Variables» τη μεταβλητή «Pyr» ενώ η θέση «Split» μένει κενή. Το αποτέλεσμα είναι ο Πίνακας 25.

Εικόνα 70: Παράθυρο δημιουργίας πινάκων περιγραφικής στατιστικής και Διαγραμμάτων.

Descriptive Statistics				
	Pyr			
Valid	16			
Missing	0			
Mean	3.861			
Std. Error of Mean	1 0.1748			
Std. Deviation	0.6991			
Variance	0.4887			

Πίνακας 25: Βασικά μέτρα θέσης και μέτρα διασποράς του πληθυσμού.

Από τον Πίνακα 25 βλέπουμε ότι το πλήθος των ατόμων (Valid) είναι 16, ο μέσος όρος (Mean) είναι 3,86, το Τυπικό Σφάλμα (Std. Error of Mean) είναι 0,174, η τυπική απόκλιση (Std. Deviation) είναι 0,699 και τέλος η διακύμανση (Variance) είναι 0,489.

Στη συνέχεια δημιουργούμε το Διάγραμμα 15. Για το διάγραμμα αρχικά τοποθετήθηκε στη θέση «Split» η μεταβλητή «Trt» και έπειτα έγιναν τα βήματα «Plots», «Boxplot» (Εικόνα 70)

Διάγραμμα 15: Θηκόγραμμα διαφορετικών μεταχειρίσεων, Άζονας x: «Μεταχείριση» («Trt»), Άζονας y: «Περιεκτικότητα σε πυρουβικό» («Pyr»).

Από τα παραπάνω φαίνεται ότι η καλύτερη μεταχείριση είναι η τέταρτη ωστόσο για να το αποδείξουμε συνεχίζουμε με ανάλυση διακύμανσης. κάνουμε «κλικ» στην επιλογή «ANOVA» και στη συνέχεια στη θέση «Dependent Variable» τοποθετούμε την μεταβλητή «Pyr» και ως «Fixed Factors» τις μεταβλητές «Trt», «Row», «Column» (*Εικόνα 71*).

			0000	Display
ANOVA			Dependent Variable	Estimates of effect size
now	15		Dependent Variable	\Im η^2 \square partial η^2 \square ω^2
de column			Fixed Factors	Vovk-Sellke maximum p-ratio
				Model
				Assumption Checks
				► Contrasts
				Post Hoc Tests
				Descriptives Plots
				Marginal Means
			a al	Simple Main Effects
		- 10	WLS Wegnes	► Nonparametrics

Εικόνα 71:Παράθυρο ορισμού μεταβλητών για την ανάλυση διακύμανσης.

-

Όπως παρατηρούμε η διαδικασία δεν συνεχίζεται καθώς εμφανίζεται το παρακάτω πρόβλημα (Εικόνα 72). Για την επίλυση του οποίου θα πρέπει να αφαιρεθούν από τη στήλη «Model terms» τα παρακάτω (Εικόνα 73). Έτσι καταλήγουμε στον Πίνακα 26.

ANOVA -

▲ residual df = 0	lean Square	F	р
column			
row			
trt * column			
trt * row			
column * row			
trt * column * row			

Warning. Singular fit encountered; one or more predictor variables are a linear combination of other predictor variables

Εικόνα 72: Εικόνα προβλήματος που προκύπτει κατά την ανάλυση διακύμανσης.

t	rt
0	column
ľ	'OW
t	rrt * column
t	trt * row
(column * row
t	rt * column * row
L	

Εικόνα 73: Τρόπος επίλυσης του προβλήματος.

Cases	Sum of Squares	df Mean	Square	F	р
trt	2.963	3	0.988	14.591	0.004
column	3.574	3	1.191	17.599	0.002
row	0.387	3	0.129	1.907	0.230
Residual	0.406	6	0.068		

Note. Type III Sum of Squares

Πίνακας 26: Πίνακας ανάλυσης διακύμανσης.

Από τον Πίνακα 26 συμπεραίνουμε ότι μεταξύ των διαφορετικών μεταχειρίσεων υπάρχει διαφορά (F=14,591, sig<0,05). Επίσης υπάρχει διαφορά μεταξύ των διαφορετικών στηλών (F=17,599, sig<0,05) ωστόσο δεν υπάρχει έντονη διαφορά μεταξύ των διαφορετικών γραμμών (F=1,907, sig>0,05). Συνεχίζουμε κάνοντας Post Hoc ελέγχους για να δούμε ποιες μεταχειρίσεις διαφέρουν περισσότερο. Από την επιλογή «Post Hoc» (*Εικόνα 74*) επιλέγουμε τους ελέγχους LSD και Tukey HSD, και καταλήγουμε στον Πίνακα 27.

		Mean Difference	SE	t	p tukey
А	В	-0.460	0.184	-2.500	0.157
	С	-0.728	0.184	-3.954	0.029
	D	-1.188	0.184	-6.454	0.003
В	С	-0.268	0.184	-1.454	0.515
	D	-0.728	0.184	-3.954	0.029
С	D	-0.460	0.184	-2.500	0.157

Post Hoc Comparisons - trt

Πίνακας 27: Αποτελέσματα ελέγχου TukeyHSD.

Από τον παραπάνω πίνακα φαίνεται ότι υπάρχουν διαφορές μεταξύ των μεταχειρίσεων 0kg-4.44kg (p=0.029) καθώς και οι 0kg-6.7kg(0.003) και οι 2.22kg-6.7kg(0.029) ενώ μεταξύ των υπόλοιπων ζευγών δεν υπήρχαν στατιστικά σημαντικές διαφορές σε επίπεδο 5%. Από τη μελέτη του Διαγράμματος 14 καθώς και του Πίνακα 26, καταλήγουμε στο συμπέρασμα ότι η μεταχείριση η οποία οδήγησε στην μεγαλύτερη παραγωγή πυρουβικού είναι αυτή με τα 6.7kg.

3.5.Πλήρες παραγοντικό με δύο παράγοντες.

Ακολουθώντας την ίδια διαδικασία κάνουμε διπλό «κλικ» στο όνομα της μεταβλητής που θέλουμε να προσδιορίσουμε και όπως βλέπουμε στην Εικόνα 74 και Εικόνα 75 έτσι ορίζουμε το είδος των μεταβλητών και τα ονόματα των διαφορετικών επιπέδων τους και καταλήγουμε στον Πίνακα δεδομένων 12.

T	🔒 Variety	💑 Date	Rep	Seedstem	+
19	Scale	D1	3	23	
20	Ordinal Nominal	D3	4	Ö	
21	B	D3	3	0	
		-			

Εικόνα 74: Ορισμός του είδους της μεταβλητής «Variety», «Date», «Seedstem».

Variety			Date	Date		
Filter	Value	Label	Filter	Value	Label	
\checkmark	Nirvana	С	<u> </u>	15 Oct	D2	
\checkmark	PS 7092	D	•			
\checkmark	Pegasus	Α	×.	29 Oct	D3	
\checkmark	Sweet Vidalia	В	\checkmark	5 Oct	D1	

Εικόνα 75: Ορισμός ονομάτων διαφορετικών επιπέδων των παραγόντων «Variety», «Date».

T	ಿ Variety	ಿ Date	\rm Rep	Seedstem	+	26	с	D1	4	6
1	А	D1	1	12		27	с	D1	2	5
2	Α	D3	1	0		28	с	D2	1	0
3	Α	D2	2	0		20	C	D3	2	0
4	А	D2	3	0		2.5	-		-	
5	Α	D3	4	0		30	L	DZ	3	U
6	Α	D1	2	15		31	С	D1	3	0
7	А	D2	4	1		32	С	D1	1	17
8	А	D3	2	0		33	с	D2	4	0
9	Α	D1	3	2		34	с	D3	3	1
10	Α	D2	1	0		35	с	D3	4	0
11	A	D1	4	8		36	с	D2	2	0
12	А	D3	3	0		27	- D	 D1	-	2
13	В	D2	1	2		- 57	U	DI	3	2
14	В	D1	1	35		38	D	D3	3	0
15	В	D3	2	0		39	D	D2	1	0
16	В	D2	3	15		40	D	D3	1	0
17	В	D1	4	46		41	D	D2	2	1
18	В	D3	1	0		42	D	D2	3	0
19	В	D1	3	23		43	D	D2	4	0
20	В	D3	4	0		44	D	D3	4	0
21	В	D3	3	0		45				<u> </u>
22	В	D2	4	0		45	U	03	2	U
23	В	D2	2	3]	46	D	D1	2	7
24	В	D1	2	19	1	47	D	D1	4	14
25	с	D3	1	0]	48	D	D1	1	12

Πίνακας δεδομένων 12: Δεδομένα από «Πείραμα 5» σε JASP.

🛃 Date	49		Seedstem	
			split	
Frequency tables (nom	nal and ordinal variab	les)		

Εικόνα 76: Παράθυρο δημιουργίας πινάκων περιγραφικής στατιστικής και Διαγραμμάτων.

Στη συνέχεια επιλέγουμε το εικονίδιο «Descriptives» τοποθετούμε την μεταβλητή «Seedstem» όπως φαίνεται στην Εικόνα 76 και από την επιλογή «Statistics» επιλέγουμε τα στατιστικά που θέλουμε να εμφανίσουμε στον πίνακα. Το αποτέλεσμα είναι ο Πίνακας 28.

Descriptive Statistics

	Seedstem
Valid	48
Missing	0
Mean	5.125
Std. Error of Mean	1.395
Std. Deviation	9.666
Variance	93.431

Πίνακας 28: Βασικά μέτρα θέσης και μέτρα διασποράς του πληθυσμού.

Από τον Πίνακα 28 βλέπουμε ότι ο αριθμός τω ατόμων (Valid) ισούται με 48, ο μέσος όρος (Mean) ισούται με 5,125, το Τυπικό Σφάλμα (Std. Error of Mean) ισούται με 1,395, η τυπική απόκλιση (Std. Deviation) με 9,666 και η διακύμανση (Variance) ισούται με 93,431.

Συνεχίζοντας δημιουργούμε θηκογράμματα που αφορούν ξεχωριστά το κάθε επίπεδο της κάθε μεταχείρισης. Για τη δημιουργία του Διαγράμματος 16, στη θέση «Split» τοποθετήθηκε η μεταβλητή «Variety», ενώ για τη δημιουργία του Διαγράμματος 17, στην αντίστοιχη θέση τοποθετήθηκε η μεταβλητή «Date».

Διάγραμμα 16: Θηκόγραμμα παράγοντα «Ποικιλία», Άξονας x: «Ποικιλία» («Variety»), Άζονας y: «Βλαστοί» («Seedstem»).

Διάγραμμα 17: Θηκόγραμμα παράγοντα «Ημερομηνία», Άξονας x: «Ημερομηνία» («Date»), Άξονας y: «Βλαστοί»(«Seedstem»).

Στο παρακάτω διάγραμμα (Διάγραμμα 18) φαίνεται η αλληλεπίδραση μεταξύ των διαφορετικών παραγόντων. Για τη δημιουργία του παρακάτω διαγράμματος ακολουθήθηκε η διαδρομή «ANOVA», «Descriptives Plots» και θέτοντας όπως φαίνεται στην Εικόνα 77 καταλήξαμε στο Διάγραμμα 18.

Factors		Horizontal Axis	
	- P.	👌 Date	
		Separate Lines	
	-	🚴 Variety	
		Separate Plots	
Display			
Display error bars			
Confidence interval 195.0 %			
wind have been			

Εικόνα 77: Ορισμός αξόνων x, y του Διαγράμματος 16.

Διάγραμμα 18: Διάγραμμα αλληλεπίδρασης παράγοντα Ποικιλία («Variety») με παράγοντα Χρόνο(«Date»).

Συνεχίζοντας με ανάλυση διακύμανσης παρατηρούμε ότι εμφανίζεται το πρόβλημα που φαίνεται στην Εικόνα 78, για τη λύση του οποίου πρέπει να αφαιρεθεί η αλληλεπίδραση των παραγόντων «Date*Variety». Ωστόσο αυτή η αλληλεπίδραση είναι πολύ σημαντική για τη διεξαγωγή των συμπερασμάτων, οπότε μπορούμε να καταλήξουμε στο ότι το JASP δεν προσφέρει κάποιον εύχρηστο τρόπο για την ανάλυση πολύπλοκων πειραματικών σχεδίων όπως το πλήρως παραγοντικό και -όπως θα δούμε παρακάτω- αυτό των υποδιαιρεμένων τεμαχίων.

ANOVA **•**

Εικόνα 78: Πρόβλημα κατά τη διεξαγωγή της ανάλυσης διακύμανσης.

3.6. Υποδιαιρεμένων τεμαχίων.

Η ανάλυση του συγκεκριμένου πειράματος στο JASP δεν διαφέρει από αυτή των προηγούμενων πειραμάτων. Για την αρχική ανάλυση που περιλαμβάνει τον πίνακα με τα μέτρα θέσης και διασποράς καθώς και τα διαγράμματα η ανάλυση ξεκίνησε με τον ως τώρα γνωστό τρόπο. Αρχικά τα δεδομένα καταγράφηκαν σε αρχείο .csv και όπως και στις προηγούμενες περιπτώσεις ορίστηκε το είδος της κάθε μεταβλητής καθώς και τα ονόματα των διαφορετικών επιπέδων του κάθε παράγοντα (Εικόνα 79, Εικόνα 80). Έτσι καταλήγουμε στον Πίνακα δεδομένων 13.

ert			Green		
Cile	Mahaa	Labal	Filter	Value	Label
Filter	value	Labei		Barley	8
\checkmark	0kg	F1	1	Backywetch	D
			1	talow	A
\checkmark	29,6kg	F2	1	Vebb	c

Εικόνα 79: Ορισμός ονομάτων για τους παράγοντες «Green» και «Fert».

T	💑 Fert	💑 Green	Rep	📏 Yield	+
1	Scale	Ą	1	13.8	
2	Ordinal Nominal	3	1	15.5	
3	FI	с	1	21	

Εικόνα 80 Ορισμός του είδους της μεταβλητής «Trt».

٣	🛃 Fert	Green	Rep	Yield	+
1	F1	A	1	13.8	-
2	F1	в	1	15.5	
3	F1	с	1	21	
4	F1	D	1	18.9	
5	F2	A	1	19.3	
6	F2	в	1	22.2	
7	F2	С	1	25.3	
8	F2	D	1	25.9	
9	F1	A	2	13.5	
10	F1	в	2	15	
11	F1	с	2	22.7	
12	F1	D	2	18.3	
13	F2	A	2	18	
14	F2	в	2	24.2	
15	F2	с	2	24.8	
16	F2	D	2	26.7	
17	F1	A	3	13.2	
18	F1	в	3	15.2	
19	F1	с	3	22.3	
20	F1	D	3	19.6	
21	F2	A	3	20.5	
22	F2	В	3	25.4	
23	F2	с	3	28.4	
24	F2	D	3	27.6	

Πίνακας δεδομένων 13:. Δεδομένα από «Πείραμα 6» σε JASP.

Συνεχίζουμε με τον Πίνακα 29 στον οποίο φαίνονται τα βασικά μέτρα θέσης κι μέτρα διασποράς. Για τη δημιουργία του πίνακα κάναμε «κλικ» στο εικονίδιο «Descreptives» και εμφανίστηκε η Εικόνα 81. Στο σημείο αυτό θέτουμε ως «Variables» τη μεταβλητή «Yield» και η θέση «Split» μένει κενή. Τέλος από την επιλογή «Statistics» επιλέγουμε τα μέτρα θέσης και μέτρα διασποράς που εμφανίζονται στον πίνακα.

			Variables	
fert fert	19	- P	10.00100	
green				
vield				
- ficia				
			Split	
				14.4
Frequency tables (nor	ninal and ordinal variat	oles)		
Plots				
11003				

Εικόνα 81: Παράθυρο δημιουργίας πινάκων περιγραφικής στατιστικής και Διαγραμμάτων.

Descriptive Statistics

	Yield
Valid	24
Missing	0
Mean	20.72
Std. Error of Mean	0.9670
Std. Deviation	4.737
Variance	22.44

Πίνακας 29: Βασικά μέτρα θέσης και μέτρα διασποράς του πληθυσμού.

Στον παραπάνω πίνακα βλέπουμε ότι ο αριθμός των παρατηρήσεων (Valid) είναι 24, ο μέσος όρος (Mean) είναι 20,72, το Τυπικό Σφάλμα (Std. Error of Mean) είναι 0,967, η τυπική απόκλιση (Std. Deviation) είναι 4,737, και η διακύμανση (Variance) είναι 22,44. Συνεχίζουμε με τη δημιουργία των Διαγραμμάτων 19, 20 Για τη δημιουργία αυτών στην επιλογή «Split» (Εικόνα 81) επιλέγουμε τη μεταβλητή «Fert» για το Διάγραμμα 19 και τη μεταβλητή «Green» για το Διάγραμμα 20.

Διάγραμμα 19: Θηκόγραμμα για τον παράγοντα «Χημική αζωτούχος λίπανση» («Fert»), Άζονας x: «Χημική αζωτούχος λίπανση» («Fert»), Άζονας y: «Απόδοση» («Yield»).

Διάγραμμα 20: Θηκόγραμμα για τον παράγοντα «Χλωρή λίπανση» («Green»), Άζονας x: «Χλωρή λίπανση» («Green»), Άζονας y: «Απόδοση» («Yield»).

Ωστόσο από τα δύο παραπάνω διαγράμματα δεν μπορούμε να βγάλουμε κάποιο συμπέρασμα για την αλληλεπίδραση των δύο παραγόντων, θα μας ενδιέφερε περισσότερο ένα διάγραμμα στο οποίο θα φαινόταν η αλληλεπίδραση τους όπως το Διάγραμμα 21. Για να δημιουργήσουμε ένα τέτοιο διάγραμμα κάνουμε «κλικ» στην επιλογή «ANOVA», «ANOVA». Στη συνέχεια ορίζουμε ως «Dependent Variable» τη μεταβλητή «Yield» και ως «Fixed Factors», τις μεταβλητές « Green» και «Fert» (Εικόνα 82). Στη συνέχεια κάνουμε «κλικ» στην επιλογή «Descriptives Plot» και για τη θέση «Horizontal Axis» τη μεταβλητή «Fert» και στη θέση «Separate Lines» τη μεταβλητή «Green όπως φαίνεται στην Εικόνα 83.

* ANOVA			0000	
🚓 тер		Dependent Varable	-	
		Fixed Factors		
				 ▶ Model ▶ Assumption Checks
		WI S Wainhts	. 4.4	► Contrasts
	1.01	indy indy id	1.1	P POST HOC TESS
Display Descriptive statistics				Descretores vols Margnal Means
Estimates of effect size				► Simple Main Effects
Vovk-Selike maximum p-ratio				Nonparametrics

Εικόνα 82: Παράθυρο ορισμού μεταβλητών για την ανάλυση διακύμανσης.

Factors			Horizontal Axis
🚴 green	12	<u>P</u>	
📥 fert			Separate Lines
		4	
			Separate Plots
		- 10	
Display			
Display error bars			
Confidence rite	vai 95.0 %		
Standard error			

Εικόνα 83: Ορισμός μεταβλητών των αξόνων x,y του Διαγράμματος 22..

Διάγραμμα 21: Διάγραμμα αλληλεπίδρασης παραγόντων «Χημική αζωτούχος λίπανση» και «Χλωρή λίπανση».

Από το Διάγραμμα 21 είναι εμφανές ότι ο συνδυασμός της αζωτούχου λίπανσης (Fert=29,6 kg/στρ) με χλωρή λίπανση κριθαριού και βίκου είναι η μεταχείριση που οδηγεί στη μεγαλύτερη απόδοση.

Όπως αναφέρθηκε και στο κεφάλαιο 4.5 το JASP δεν προσφέρει κάποιον εύκολο και απλό τρόπο για τη συνέχιση της ανάλυσης του πειραματικού σχεδίου υποδιαιρεμένων τεμαχίων

4.R

4.1.Πλήρως τυχαιοποιημένο.

Η ανάλυση ξεκινάει όπως και στα δύο προηγούμενα λογισμικά με την εισαγωγή και την εμφάνιση των δεδομένων. Γενικά για την ανάλυση όλων των πειραματικών σχεδίων, είναι απαραίτητη η εγκατάσταση των πακέτων (packages) : «ggplot2», «pastecs», «car». Η εγκατάστασή τους γίνεται με την εντολή install.packages() και για περαιτέρω χρήση τους γίνεται χρήση της εντολής library().

Θα μπορούσαμε να πούμε ότι η ανάλυση ξεκινά με την εγκατάσταση των πακέτων όπως φαίνεται παρακάτω.

>install.packages ("pastecs")

>library("pastecs")

>install.packages("ggplot2")

>library("ggplot2")

Για να εμφανιστεί ο πίνακας με τα δεδομένα (Πίνακας δεδομένων 14) στον οποίο βλέπουμε την απόδοση (σε κιλά) του κάθε ατόμου καθώς και τη μεταχείριση που του έχει εφαρμοστεί εκτελούνται με σειρά οι παρακάτω εντολές. Το αρχείο "Rice Fertilizer Comparisons R.csv" είναι το csv αρχείο στο οποίο έχουν καταγραφεί τα δεδομένα, σε αυτό το σημείο θα ήταν καλό να διευκρινισθεί ότι έχει γίνει αντικατάσταση των ονομάτων των μεταχειρίσεων Control, Green Leaf, NH4SO4, Green Leaf+NH4SO4 με τα γράμματα A, B, C, D αντίστοιχα.

>getwd()

>Data<- read.csv2("Rice Fertilizer Comparisons.csv")

>Data

	Trt	Rep	Yield
1	A	1	20
2	В	1	22
3	C	1	25
4	D	1	24
5	A	2	19
6	В	2	23
7	C	2	26
8	D	2	27
9	A	3	19
10	В	3	24
11	C	3	24
12	D	3	26
13	A	4	20
14	В	4	25
15	C	4	24
16	D	4	26

Πίνακας δεδομένων 14: Δεδομένα από «Πείραμα 1» σε R.

>str (Data)

```
'data.frame': 16 obs. of 3 variables:
$ Trt : Factor w/ 4 levels "A","B","C","D": 1 2 3 4 1 2 3 4 1 2 ...
$ Rep : int 1 1 1 1 2 2 2 2 3 3 ...
$ Yield: num 20.1 22.5 24.7 24.4 19.1 ...
```

Πίνακας 30: Είδη και επίπεδα των μεταβλητών.

Από τον Πίνακα 30 βλέπουμε ότι ο παράγοντας «Treatment» («Trt)»έχει 4 επίπεδα A, B, C, D όπου Control, NH4SO4, Green Leaf, NH4SO4 + Green Leaf αντίστοιχα. Στη συνέχεια

σκοπός είναι όπως και στα προηγούμενα λογισμικά να φτιάξουμε τον πίνακα με τα μέτρα θέσης και μέτρα διασποράς, γι' αυτό τον σκοπό θα εγκατασταθεί το πακέτο «pastecs». Με την εγκατάσταση αυτού μας δίνεται η δυνατότητα να χρησιμοποιήσουμε την εντολή «stat.desc()» στη ποσοτική μεταβλητή «Yield» και έτσι να δημιουργήσουμε ένα πίνακα με όλα τα μέτρα θέσης και μέτρα διασποράς.

> stat.desc(data\$yield)

nbr.val	nbr.null	nbr.na	min	max	range
16.00	0.00	0.00	19.00	26.80	7.80
sum	median	mean	SE.mean	CI.mean.0.95	var
372.70	23.75	23.29	0.64	1.37	6.63
std.dev	coef.var				
2.58	0.11				

Πίνακας 31: Βασικά μέτρα θέσης και μέτρα διασποράς του πληθυσμού.

Από το παραπάνω πίνακα βλέπουμε ότι ο αριθμός των παρατηρήσεων (nbr.val) είναι 16, ότι ο μέσος όρος (Mean) είναι 23,29, το τυπικό σφάλμα (SE.mean) είναι 0,643, η τυπική απόκλιση (std.dev) είναι 2,575, και τέλος η διακύμανση (Var) είναι 6,631.

Συνεχίζοντας θα πρέπει να δημιουργήσουμε ένα διάγραμμα Boxplot για τον πληθυσμό της κάθε μεταχείρισης ξεχωριστά (Διάγραμμα 22). Για τη δημιουργία του θα εγκαταστήσουμε το πακέτο «ggplot2» με χρήση της εντολής «install.packages». Σε περίπτωση που το έχουμε ήδη εγκατεστημένο απλά θα το καλέσουμε με την εντολή «library()». Συνοπτικά τα βήματα που ακολουθούνται για να καταλήξουμε στο Διάγραμμα 22 είναι τα εξής:

>install.packages("ggplot2")

>library("ggplot2")

>ggplot(data,aes(x=factor(trt),y=yield))+geom_boxplot(color="red",fill="orange",alpha=0.2)

Διάγραμμα 22: Θηκόγραμμα/Boxplot διαφορετικών μεταχειρίσεων, Άζονας x: «Μεταχείριση» («Trt»), Άζονας y: «Απόδοση» («Yield»).

Όπως και στο SPSS αλλά και στο Jasp έτσι και εδώ, παρατηρούμε ότι η καλύτερη μεταχείριση είναι ο συνδυασμός των δύο λιπασμάτων, ωστόσο πρέπει να σημειωθούν οι στατιστικές διαφορές μεταξύ των μέσων όρων προκειμένου να αποδειχθεί η παραπάνω παρατήρηση. Για να προχωρήσουμε σε ανάλυση διακύμανσης θα πρέπει να επιβεβαιωθεί ότι το δείγμα ακολουθεί κανονική κατανομή. Συνεχίζουμε κάνοντας ανάλυση διακύμανσης. Για την ανάλυση διακύμανσης χρησιμοποιείται η εντολή aov() όπως φαίνεται παρακάτω και το αποτέλεσμα είναι ο Πίνακας 32.

>Anova<- aov(Yield~as.factor(Trt), data=Data)

Πίνακας 32: Πίνακας ανάλυσης διακύμανσης.

Από τον πίνακα της Anova (Πίνακας 32) βλέπουμε ότι το άθροισμα τετραγώνων (Sum of Squares) του παράγοντα «Trt» ισούται με 89,44 και το Σφάλμα «Mean Square» ισούται με 29,812. Όπως και στο SPSS και στο Jasp το στατιστικό F ισούται με 35,66 οπότε καταλήγουμε πάλι στο συμπέρασμα ότι οι μεταχειρίσεις διαφέρουν και συνεχίζουμε κάνοντας Post Hoc για να δούμε ανάμεσα σε ποιες υπάρχει στατιστικά σημαντική διαφορά. Για την εφαρμογή του ελέγχου Tukey-HSD χρησιμοποιείται η εντολή «TukeyHSD()» και εφαρμόζεται στον πίνακα anova (Πίνακας 32) όπως φαίνεται παρακάτω. Το αποτέλεσμα είναι ο Πίνακας 33.

>TukeyHSD(Anova)

```
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = Data$Yield ~ as.factor(Data$Trt), data = Data)
$`as.factor(Data$Trt)`
diff lwr upr p adj
B-A 4.15 2.23 6.1 0.00
C-A 5.00 3.08 6.9 0.00
D-A 6.32 4.41 8.2 0.00
C-B 0.85 -1.07 2.8 0.57
D-B 2.17 0.26 4.1 0.03
D-C 1.32 -0.59 3.2 0.22
```

Πίνακας 33: Αποτελέσματα ελέγχου Tukey HSD

Στον παραπάνω πίνακα φαίνονται τα αποτελέσματα των post-hoc ελέγχων. Το HSD test έδειξε ότι υπάρχει διαφορά μεταξύ της μεταχείρισης «Control» και των τριών άλλων μεταχειρίσεων καθώς το p είναι πολύ κοντά στο 0 (p<<0,05). Επίσης εντοπίστηκε διαφορά μεταξύ των μεταχειρίσεων «NH4SO4» (B) και «NH4SO4+Green Leaf» (D) καθώς p ισούται με 0,006 (p<<0,05). Από το Διάγραμμα 23παρατηρείται ότι ο μέσος όρος της μεταχείρισης «NH4SO4» είναι μικρότερος από τον μέσο όρο της μεταχείρισης «NH4SO4+ Green Leaf» συνεπώς η καλύτερη μεταχείριση είναι ο συνδυασμός NH4SO4 με Green Leaf.

4.2.Τυχαιοποιημένων πλήρων ομάδων.

Η ανάλυση ξεκινάει όπως σε όλα με την εισαγωγή και την εμφάνιση των δεδομένων. Στο αρχείο το οποίο χρησιμοποιήθηκε για το R τροποποιήθηκε αντικαθιστώντας τα ονόματα των μεταχειρίσεων Seedling, Early bloom, Full bloom (1/100), Full bloom, Ripening, Uninoculated με τα γράμματα "A", "B", "C", "D", "E", "F" αντίστοιχα. Για την ανάλυση χρησιμοποιήθηκαν όπως προαναφέρθηκε τα πακέτα (packages) : «ggplot2», «pastecs», «car»,. Με την εντολή install.packages() γίνεται η εγκατάσταση των πακέτων και για περαιτέρω χρήση γίνεται χρήση της εντολής library().

>install.packages("ggplot2")

>library("ggplot2")

>install.packages ("pastecs")

>library("pastecs")

Για να εμφανιστεί ο πίνακας με τα δεδομένα (Πίνακας δεδομένων 15) ακολουθούνται τα παρακάτω βήματα.

>Data<- read.csv2("FlaxseedoilcontentR.csv")

>Data

	Trt	Block	Yield
1	A	B1	3.3
2	В	B1	4.4
3	C	B1	4.4
4	D	B1	6.3
5	E	B1	6.4
6	F	B1	6.8
7	A	B2	1.9
8	В	B2	5.9
9	C	B2	4.0
10	D	B2	4.9
11	E	B2	7.3
12	F	B2	6.6
13	A	B3	4.9
14	В	B3	6.0
15	C	B3	4.5
16	D	B3	5.9
17	E	B3	7.7
18	F	B3	7.0
19	A	B4	7.1
20	В	B4	4.1
21	C	B4	3.1
22	D	B4	7.1
23	E	B4	6.7
24	F	B4	6.4

Πίνακας δεδομένων 15: Δεδομένα από «Πείραμα 2» σε R.

> str(Data)

```
'data.frame': 24 obs. of 3 variables:

$ Trt : Factor w/ 6 levels "A","B","C","D",..: 1 2 3 4 5 6 1 2 3 4 ...

$ Block: Factor w/ 4 levels "B1","B2","B3",..: 1 1 1 1 1 2 2 2 2 ...

$ Yield: num 3.3 4.4 4.4 6.3 6.4 ...
```

Πίνακας 34: Είδη και επίπεδα των μεταβλητών.

Με την εκτέλεση της παραπάνω εντολής εμφανίζεται ο Πίνακας 35 στον οποίο βλέπουμε τη δομή των δεδομένων, τον αριθμό των παρατηρήσεων, τον αριθμό και το είδος των μεταβλητών, καθώς και των αριθμό των επιπέδων των παραγόντων. Στη συνέχεια όπως και στα προηγούμενα λογισμικά θα συνεχίσουμε δημιουργώντας τον πίνακα με τα μέτρα θέσης και μέτρα διασποράς.

>stat.desc(Data\$Yield)

nbr.val	nbr.null	nbr.na	min	max	range	sum	median
24.00	0.00	0.00	1.90	7.70	5.80	132.70	5.95
mean	SE.mean CI.	.mean.0.95	var	std.dev	coef.var		
5.53	0.31	0.65	2.37	1.54	0.28		

Πίνακας 35: Βασικά μέτρα θέσης και μέτρα διασποράς του πληθυσμού.

Από το παραπάνω πίνακα βλέπουμε ότι ο αριθμός των παρατηρήσεων (nbr.val) είναι 24, ο μέσος όρος (mean) είναι 5.529 το Τυπικό Σφάλμα (SE.mean) είναι 0,314, η τυπική απόκλιση (std.dev) είναι 1,539, και τέλος η παραλλακτικότητα (var) είναι 2.37. συνεχίζουμε δημιουργώντας το Διάγραμμα 20.

Για τη δημιουργία του Διαγράμματος 23 ακολουθήθηκαν τα παρακάτω βήματα. Να σημειωθεί ότι το πρώτο βήμα παραλείπεται στην περίπτωση που έχουμε ήδη εγκατεστημένο το πακέτο στον υπολογιστή.

```
>install.packages("ggplot2")
```

```
>library("ggplot2")
```

>ggplot(Data,aes(x=factor(Trt),y=Yield))+geom_boxplot(color="red",fill="orange",alpha=0. 2)

Διάγραμμα 23: Θηκόγραμμα/Boxplot διαφορετικών μεταχειρίσεων, Άζονας x: «Μεταχείριση» («Trt»), Άζονας y: «Απόδοση» («Yield»).

Όπως και πριν έτσι και τώρα υποπτευόμαστε ότι η καλύτερη μεταχείριση είναι η Πέμπτη. Προκειμένου να το αποδείζουμε θα κάνουμε ανάλυση διακύμανσης. Συνεχίζουμε κάνοντας ανάλυση διακύμανσης (Πίνακας 36). Οι εντολές που πρέπει να εκτελεσθούν είναι οι παρακάτω.

> Anova<-aov(Yield~Trt+Block,data=Data)

```
> summary(Anova)
```

```
Df Sum Sq Mean Sq F value
                                        Pr(>F)
Trt
             5
                31.65
                         6.330
                                 4.816 0.00796 **
Block
             3
                 3.14
                         1.047
                                 0.797 0.51472
                         1.314
Residuals
            15
                19.72
                0 '**** 0.001 '*** 0.01 '** 0.05 '.' 0.1 ' 1
Signif. codes:
```

Πίνακας 36: Πίνακας ανάλυσης διακύμανσης.

Από το F μπορούμε να δούμε ότι μεταξύ των διαφορετικών μεταχειρίσεων υπάρχει διαφορά η οποία είναι στατιστικά σημαντική αφού το sig<0.05. Μεταξύ των blocks ωστόσο μπορούμε να δούμε ότι δεν υπάρχει σημαντική διαφορά (F=0,797) και αυτή που υπάρχει δεν είναι στατιστικά σημαντική αφού το sig>0.05. Συνεχίζουμε κάνοντας τον έλεγχο Tukey HSD για να δούμε μεταξύ ποιων μεταχειρίσεων υπάρχει πιο σημαντική διαφορά.

```
> TukeyHSD(Anova)
```

```
Tukey multiple comparisons of means
    95% family-wise confidence level
Fit: aov(formula = Yield ~ Trt + Block, data = Data)
ŞTrt
    diff
            lwr upr p adj
B-A 0.80 -1.834 3.4 0.92
C-A -0.30 -2.934 2.3 1.00
D-A 1.75 -0.884 4.4 0.31
E-A 2.72 0.091 5.4 0.04
F-A 2.40 -0.234 5.0 0.08
C-B -1.10 -3.734 1.5 0.75
D-B 0.95 -1.684 3.6
                     0.84
E-B 1.92 -0.709 4.6 0.23
F-B 1.60 -1.034 4.2 0.40
D-C 2.05 -0.584 4.7 0.18
E-C 3.02 0.391 5.7 0.02
F-C 2.70 0.066 5.3 0.04
E-D 0.97 -1.659 3.6 0.83
F-D 0.65 -1.984 3.3 0.96
F-E -0.32 -2.959 2.3 1.00
```

Πίνακας 37: Αποτελέσματα ελέγχου Tukey HSD.

Από τον παραπάνω πίνακα βλέπουμε ότι διαφέρουν μεταξύ τους οι μεταχειρίσεις "Full bloom"-"Ripening" (C-E) διότι p=0.020, "Full bloom"-"Uninoculated" (C-F) διότι p=0.043, "Ripening"-"Seedling" (E-A) διότι p=0.041. Συμπερασματικά, συνδυάζοντας τις πληροφορίες και του Διαγράμματος 7,Πίνακα 31 καταλήγουμε ότι η καλύτερη μεταχείριση είναι η πέμπτη «Ripening».

4.3. Ανάλυση συνδιακύμανσης.

Αρχικά προβάλουμε τα δεδομένα χρησιμοποιώντας την εντολή

>Data <- read.csv2("Covariance.csv")

>Data

1	A	1	34	93	29	G	3	35	98
2	в	1	40	47	30	H	3	31	94
3	C	1	32	81	31	I	3	35	77
4	D	1	38	67	32	J	3	24	170
5	Е	1	25	120	33	K	3	33	72
6	F	1	30	107	34	A	4	39	81
7	G	1	33	106	35	B	4	52	27
8	н	1	34	62	36	c	4	40	58
9	I	1	31	80	37	D	4	30	60
10	J	1	21	149	38	F	4	24	120
11	K	1	31	79	30	5	4	20	125
12	A	2	33	95	40	6	-	20	120
13	в	2	40	52	40	G	-	35	00
14	C	2	30	109	41	н	4	36	69
15	D	2	38	74	42	1	4	31	92
16	E	2	24	128	43	J	4	25	155
17	F	2	29	111	44	K	4	34	70
18	G	2	34	107	45	A	5	36	80
19	H	2	32	83	46	в	5	56	21
20	I	2	30	106	47	C	5	48	30
21	J	2	25	152	48	D	5	41	63
22	K	2	26	117	49	Е	5	25	126
23	A	3	35	92	50	F	5	34	96
24	в	3	51	33	51	G	5	38	89
25	C	3	34	72	52	H	5	38	47
26	D	3	40	65	53	I	5	37	68
27	Е	3	25	126	54	J	5	25	146
28	F	3	32	99	55	K	5	44	41

Πίνακας δεδομένων 16: Δεδομένα από «Πείραμα 3» σε R.

> str(Data)

```
'data.frame': 55 obs. of 4 variables:

$ Var : Factor w/ 11 levels "A","B","C","D",..: 1 2 3 4 5 6 7 8 9 10 ...

$ Rep : int 1 1 1 1 1 1 1 1 1 ...

$ Cov : num 34 39.6 31.7 37.7 24.9 ...

$ Ascorbic: num 93 47.3 81.4 66.9 119.5 ...
```

Πίνακας 38: Είδη και επίπεδα των μεταβλητών.

Από τον Πίνακα 38 βλέπουμε τη δομή των δεδομένων. Στη συγκεκριμένη περίπτωση βλέπουμε ότι ο παράγοντας «Var» αναγνωρίζεται ως παράγοντας ενώ η μεταβλητή «Rep» αναγνωρίζεται ως σταθερά. Οι μεταβλητές «Cov» και «Ascorbic» αναγνωρίζονται ως αριθμοί.

Συνεχίζουμε με τα μέτρα θέσης και μέτρα διασποράς του πληθυσμού.

nbr.val	nbr.null	nbr.na	min	max	range
55.00	0.00	0.00	20.60	170.10	149.50
sum	median	mean	SE.mean	CI.mean.0.95	var
4890.50	86.00	88.92	4.57	9.16	1146.93
std.dev	coef.var				
33.87	0.38				

Πίνακας 39: Βασικά μέτρα θέσης και μέτρα διασποράς του πληθυσμού.

> ggplot(Data, aes(x=Ascorbic, y=Var))+geom_point()+ geom_smooth(method=Im)

Διάγραμμα 24: Σημειόγραμμα απεικόνισης της μεταβολής της Y σε σχέση με τη μεταβολή της X.

4.4. Λατινικό τετράγωνο.

Η ανάλυση ξεκινάει όπως σε όλα με την εισαγωγή και την εμφάνιση των δεδομένων. Για την ανάλυση χρησιμοποιήθηκαν όπως προαναφέρθηκε τα πακέτα (packages) : «ggplot2», «car», «pastecs»,. Με την εντολή install.packages() γίνεται η εγκατάσταση των πακέτων και για περαιτέρω χρήση γίνεται χρήση της εντολής library(). Τα βήματα για να εμφανιστεί ο πίνακας με τα δεδομένα στον οποίο φαίνεται η περιεκτικότητα του κάθε ατόμου σε πυρουβικό καθώς και η μεταχείριση η οποία του εφαρμόστηκε και σε ποια σειρά και στήλη βρισκόταν, είναι τα παρακάτω.

>Data<-read.csv2("Latin square 1.csv")

>Data

	Trt	Row	Column	Pyr
1	A	Rl	C1	3.1
2	A	R2	C2	2.6
3	A	R3	C3	3.2
4	A	R4	C4	4.2
5	в	Rl	C2	3.5
6	В	R2	C1	3.7
7	В	R3	C4	4.4
8	В	R4	C3	3.3
9	C	R1	C3	3.4
10	C	R2	C4	4.3
11	C	R3	C2	3.7
12	C	R4	C1	4.5
13	D	Rl	C4	5.3
14	D	R2	C3	3.9
15	D	R3	C1.	4.6
16	D	R4	C2	4.0

Πίνακας δεδομένων 17: Δεδομένα από «Πείραμα 4» σε R.

> str(Data)

```
'data.frame': 16 obs. of 4 variables:
$ Trt : Factor w/ 4 levels "A","B","C","D": 1 1 1 1 2 2 2 2 3 3 ...
$ Row : Factor w/ 4 levels "R1","R2","R3",..: 1 2 3 4 1 2 3 4 1 2 ...
$ Column: Factor w/ 4 levels "C1","C2","C3",..: 1 2 3 4 2 1 4 3 3 4 ...
$ Pyr : num 3.08 2.56 3.19 4.24 3.45 ...
```

Πίνακας 40: Είδη και επίπεδα των μεταβλητών.

Με την εγκατάσταση του package "pastecs" μας δίνεται η δυνατότητα να χρησιμοποιήσουμε την εντολή "stat.desc()" στη ποσοτική μεταβλητή "Pyr" και έτσι να δημιουργήσουμε ένα πίνακα με όλα τα μέτρα θέσης και μέτρα διασποράς.

```
>install.packages(pastecs)
```

```
> library(pastecs)
```

```
> stat.desc(Data$pyr)
```

nbr.val	nbr.null	nbr.na	min	max	range	sum	median
16.00	0.00	0.00	2.56	5.35	2.79	61.78	3.83
mean	SE.mean	CI.mean.0.95	var	std.dev	coef.var		
3.86	0.17	0.37	0.49	0.70	0.18		

Πίνακας 41: Βασικά μέτρα θέσης και μέτρα διασποράς του πληθυσμού.

Από τον Πίνακα 41 βλέπουμε ότι το πλήθος των ατόμων (nbr.val) είναι 16, ο μέσος όρος (mean) είναι 3,86, το Τυπικό Σφάλμα (Std. Error Mean) είναι 0,174, η τυπική απόκλιση (Std. Deviation) είναι 0,699 και τέλος η διακύμανση (Variance) είναι 0,489.

Συνεχίζουμε με τη δημιουργία του Διαγράμματος 25.

>library(ggplot2)

>ggplot(Data,aes(x=factor(Trt),y=Pyr))+geom_boxplot(color="red",fill="orange",alpha=0.2)

Διάγραμμα 25 Θηκόγραμμα διαφορετικών μεταχειρίσεων, Άζονας x: «Μεταχείριση» («Trt»), Άζονας y: «Περιεκτικότητα σε πυρουβικό» («Pyr»).

Από τα παραπάνω φαίνεται και πάλι, ότι η καλύτερη μεταχείριση είναι η τέταρτη ωστόσο για να το αποδείξουμε συνεχίζουμε με ανάλυση διακύμανσης.

Συνεχίζουμε κάνοντας τα παρακάτω βήματα και καταλήγουμε στον πίνακα ανάλυσης διακύμανσης (Πίνακας 42)

> Anova<-aov(Pyr~Trt+Row+Column, data=Data)

> summary(Anova)

	Df	Sum Sq	Mean Sq	F value	Pr(>F)					
Trt	3	2.96	0.988	14.59	0.0037	**				
Row	3	0.39	0.129	1.91	0.2296					
Column	3	3.57	1,191	17.60	0.0022	**				
Residuals	6	0.41	0.068							
Signif. cod	ies:	0 ****	0.001	**** 0.0	1 1** (0.05	1.1	0.1	11	1

Πίνακας 42: Πίνακας ανάλυσης διακύμανσης.

Από τον Πίνακα 42 συμπεραίνουμε ότι μεταξύ των διαφορετικών μεταχειρίσεων υπάρχει διαφορά (F=14,591, sig<0,05). Επίσης υπάρχει διαφορά μεταξύ των διαφορετικών στηλών (F=17,599, sig<0,05) ωστόσο δεν υπάρχει έντονη διαφορά μεταξύ των διαφορετικών γραμμών (F=1,907, sig>0,05). Συνεχίζουμε όπως πριν κάνοντας Post Hoc ελέγχους για να δούμε ποιες μεταχειρίσεις διαφέρουν περισσότερο. Εκτελώντας την παρακάτω εντολή καταλήγουμε στον Πίνακα 43.

> TukeyHSD(Anova)

```
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = Pyr ~ Trt + Row + Column, data = Data)
$Trt
diff lwr upr p adj
B-A 0.46 -0.177 1.1 0.16
C-A 0.73 0.091 1.4 0.03
D-A 1.19 0.551 1.8 0.00
C-B 0.27 -0.369 0.9 0.51
D-B 0.73 0.091 1.4 0.03
D-C 0.46 -0.177 1.1 0.16
```

Πίνακας 43: Αποτελέσματα ελέγχου Tukey HSD.

Από τον παραπάνω πίνακα φαίνεται ότι υπάρχουν διαφορές μεταξύ των μεταχειρίσεων 0kg-4.44kg (p=0.029) καθώς και οι 0kg-6.7kg(0.003) και οι 2.22kg-6.7kg(0.029) ενώ μεταξύ των υπόλοιπων ζευγών δεν υπήρχαν στατιστικά σημαντικές διαφορές σε επίπεδο 5%. Από τη μελέτη του Διαγράμματος 25 καθώς και του Πίνακα 43, καταλήγουμε στο συμπέρασμα ότι η μεταχείριση η οποία οδήγησε στην μεγαλύτερη παραγωγή πυρουβικού είναι αυτή με τα 6.7kg.

4.5.Πλήρες παραγοντικό με δύο παράγοντες.

Ξεκινάμε όπως και στα προηγούμενα πειραματικά σχέσια με τη προβολή των δεδομένων και την εγκατάσταση των πακέτων που θα χρησιμοποιηθούν για την ανάλυσή τους.

> Data<-read.csv2("SeedstemFactorR.csv")

> Data

	Variety	Date	Rep	Seedstem					
1	A	D1	1	12					
2	A	D3	1	0					
3	A	D2	2	0					
4	A	D2	3	0					
5	A	D3	4	0					
6	A	D1	2	15					
7	A	D2	4	1					
8	A	D3	2	0					
9	A	D1	3	2					
10	A	D2	1	0					
11	A	D1	4	8	31	C	D1	3	0
12	A	D3	3	0	32	C	D1	1	17
13	в	D2	1	2	33	C	D2	4	0
14	В	D1	1	35	34	C	D3	3	1
15	В	D3	2	0	35	C	D3	4	0
16	В	D2	3	15	36	C	D2	2	0
17	В	Dl	4	46	37	D	DI	3	2
18	В	D3	1	0	20	5	D2	2	-
19	В	D1	3	23	30	5	105	3	0
20	В	D3	4	0	39	D	D2	1	0
21	В	D3	3	0	40	D	D3	1	0
22	В	D2	4	0	41	D	D2	2	1
23	В	D2	2	3	42	D	D2	3	0
24	В	D1	2	19	43	D	D2	4	0
25	C	D3	1	0	44	D	D3	4	0
26	C	D1	4	6	45	D	D3	2	0
27	C	D1	2	5	45	5	DI	2	7
28	C	D2	1	0	47	D	DI	4	3.4
29	C	D3	2	0	47	D	DI	4	14
30	C	D2	3	0	48	D	D1	1	12

Πίνακας δεδομένων 18: Δεδομένα από «Πείραμα 5» σε R.

>Str(Data)

```
'data.frame': 48 obs. of 4 variables:

$ Variety : Factor w/ 4 levels "A","B","C","D": 1 1 1 1 1 1 1 1 1 1 ...

$ Date : Factor w/ 3 levels "D1","D2","D3": 1 3 2 2 3 1 2 3 1 2 ...

$ Rep : int 1 1 2 3 4 2 4 2 3 1 ...

$ Seedstem: int 12 0 0 0 0 15 1 0 2 0 ...
```

Πίνακας 44: Είδη και επίπεδα των μεταβλητών.

> library(pastecs)

> stat.desc(Data\$Seedstem)

nbr.val	nbr.null	nbr.na	min	max	range	sum	median	mean
48.0	27.0	0.0	0.0	46.0	46.0	246.0	0.0	5.1
SE.mean	CI.mean.0.95	var	std.dev	coef.var				
1.4	2.8	93.4	9.7	1.9				

Πίνακας 45: Βασικά μέτρα θέσης και μέτρα διασποράς του πληθυσμού.

Από τον Πίνακα 45 βλέπουμε ότι ο αριθμός τω ατόμων (Valid) ισούται με 48, ο μέσος όρος (Mean) ισούται με 5,125, το Τυπικό Σφάλμα (Std. Error of Mean) ισούται με 1,395, η τυπική απόκλιση (Std. Deviation) με 9,666 και η διακύμανση (Variance) ισούται με 93,431.

>ggplot(Data,aes(x=factor(Variety),y=Seedstem))+geom_boxplot(color="red",fill="orange",al pha=0.2)

Διάγραμμα 26:

Θηκόγραμμα παράγοντα «Ποικιλία», Άζονας χ: «Ποικιλία» («Variety»), Άζονας y: «Βλαστοί» («Seedstem»).

ggplot(Data,aes(x=factor(Date),y=Seedstem))+geom_boxplot(color="red",fill="orange",alpha =0.2)

Διάγραμμα 27: Θηκόγραμμα παράγοντα «Ημερομηνία», Άζονας x: «Ημερομηνία» («Date»), Άζονας y: «Βλαστοί»(«Seedstem»)

Διάγραμμα 28: Διάγραμμα αλληλεπίδρασης παράγοντα Ποικιλία («Variety») με παράγοντα Χρόνο(«Date»).

Συνεχίζουμε δημιουργώντας τον πίνακα ανάλυσης διακύμανσης (Πίνακας 46) και στη συνέχεια εφαρμόζοντας την εντολή TukeyHSD() στο στοιχείο «Anova».

> Anova<-

aov(Seedstem~factor(Variety)+factor(Date)+factor(Variety)*factor(Date),data=Data)

> summary(Anova)

Df Sum Sq Mean Sq F value Pr(>F) Variety 3 742 247 9.63 8.4e-05 *** Date 2 1878 939 36.56 2.1e-09 *** Variety:Date 6 847 141 5.50 4e-04 *** Residuals 36 925 26 ---Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Πίνακας 46: Πίνακας ανάλυσης διακύμανσης.

> TukeyHSD(Anova)

\$Variety						
	diff	lwr	upr	p adj		
B-A	8.75	3.2	14.3	0.00		
C-A	-0.75	-6.3	4.8	0.98		
D-A	-0.17	-5.7	5.4	1.00		
C-B	-9.50	-15.1	-3.9	0.00		
D-B	-8.92	-14.5	-3.3	0.00		
D-C	0.58	-5.0	6.2	0.99		

Πίνακας 47: Αποτελέσματα ελέγχου Tukey HSD.

4.6.Υποδιαιρεμένων τεμαχίων.

Η ανάλυση ξεκινάει όπως σε όλα με την εισαγωγή και την εμφάνιση των δεδομένων. Για την ανάλυση χρησιμοποιήθηκαν όπως προαναφέρθηκε τα πακέτα (packages): ggplot2, pastecs,. Με την εντολή install.packages() γίνεται η εγκατάσταση των πακέτων και για περαιτέρω χρήση γίνεται χρήση της εντολής library().

>install.packages ("pastecs")

>library("pastecs")

>install.packages("ggplot2")

>library("ggplot2")

> getwd()

> Data<-read.csv2("Factorial.csv")

> Data

	Fert	Green	Rep	Yield
1	F1	A	1	13.8
2	F1	В	1	15.5
3	F1	C	1	21.0
4	F1	D	1	18.9
5	F2	A	1	19.3
6	F2	В	1	22.2
7	F2	C	1	25.3
8	F2	D	1	25.9
9	F1	A	2	13.5
10	F1	В	2	15.0
11	F1	C	2	22.7
12	F1	D	2	18.3
13	F2	A	2	18.0
14	F2	В	2	24.2
15	F2	C	2	24.8
16	F2	D	2	26.7
17	Fl	A	3	13.2
18	F1	В	3	15.2
19	F1	C	3	22.3
20	F1	D	3	19.6
21	F2	A	3	20.5
22	F2	В	3	25.4
23	F2	C	3	28.4
24	F2	D	3	27.6

Πίνακας δεδομένων 19 : Δεδομένα από «Πείραμα 6» σε R.

Με την εγκατάσταση του package "pastecs" μας δίνεται η δυνατότητα να χρησιμοποιήσουμε την εντολή "stat.desc()" στη ποσοτική μεταβλητή "Yield" και έτσι να δημιουργήσουμε ένα πίνακα με όλα τα μέτρα θέσης και μέτρα διασποράς.

>str(data)

```
'data.frame': 24 obs. of 5 variables:
$ Fert : Factor w/ 2 levels "F1","F2": 1 1 1 1 2 2 2 2 1 1 ...
$ Green : Factor w/ 4 levels "A","B","C","D": 1 2 3 4 1 2 3 4 1 2 ...
$ Rep : int 1 1 1 1 1 1 1 2 2 ...
$ Yield : num 13.8 15.5 21 18.9 19.3 ...
$ Green1: Factor w/ 4 levels "A","B","C","D": 1 2 3 4 1 2 3 4 1 2 ...
```

Πίνακας 48: Είδη και επίπεδα των μεταβλητών.

>library("pastecs")

nbr.val	nbr.null	nbr.na	min	max	range
24.0000000	0.0000000	0.0000000	13.1999998	28.3999996	15.1999998
sum	median	mean	SE.mean	CI.mean.0.95	var
497.2999983	20.7500000	20.7208333	0.9669536	2.0002959	22.4399821
std.dev	coef.var				
4.7370858	0.2286146				

Πίνακας 49: Βασικά μέτρα θέσης και μέτρα διασποράς του πληθυσμού.

Λόγω του ότι δεν μπορούμε να επιλέξουμε τα μέτρα θέσης και μέτρα διασποράς ο παραπάνω πίνακας περιέχει παραπάνω στοιχεία σε σχέση με τα άλλα λογισμικά χωρις αυτό να αποτελεί ωστόσο πρόβλημα.

Με την εγκατάσταση του παρακάτω πακέτου μας δίνεται η δυνατότητα να φτιάξουμε boxplot.

```
> library("ggplot2")
```

```
>ggplot(data,
```

aes(x=factor(green),y=yield))+geom_boxplot(color="red",fill="orange",alpha=0.2)

Διάγραμμα 28: Θηκόγραμμα για τον παράγοντα «Χημική αζωτούχος λίπανση» («Fert»), Άξονας x: «Χημική αζωτούχος λίπανση» («Fert»), Άξονας y: «Απόδοση» («Yield»).

ggplot(Data,

 $aes(x=factor(Fert), y=Yield)) + geom_boxplot(color="red", fill="orange", alpha=0.2)$

Διάγραμα 29:

Θηκόγραμμα για τον παράγοντα «Χλωρή λίπανση» («Green»), Άζονας x: «Χλωρή λίπανση» («Green»), Άζονας y: «Απόδοση» («Yield»).

Ωστόσο θα ήταν χρήσιμο ένα διάγραμμα στο οποίο να φαίνεται η αλληλεπίδραση των δύο μεταβλητών. Για τη δημιουργία του παρακάτω διαγράμματος καθώς και για την ανάλυση διακύμανσης τα δεδομένα θα πρέπει να έχουν την παρακάτω δομή

	Fert	Green	Rep	Yield	Greenl
1	Fl	A	1	13.8	A
2	Fl	В	1	15.5	В
3	Fl	C	1	21.0	C
4	Fl	D	1	18.9	D
5	F2	A	1	19.3	A
6	F2	В	1	22.2	В
7	F2	C	1	25.3	C
8	F2	D	1	25.9	D
9	Fl	A	2	13.5	A
10	Fl	В	2	15.0	В
11	F1	C	2	22.7	C
12	F1	D	2	18.3	D
13	F2	A	2	18.0	A
14	F2	В	2	24.2	В
15	F2	C	2	24.8	C
16	F2	D	2	26.7	D
17	Fl	A	3	13.2	A
18	Fl	В	3	15.2	В
19	Fl	C	3	22.3	C
20	Fl	D	3	19.6	D
21	F2	A	3	20.5	A
22	F2	В	3	25.4	В
23	F2	C	3	28.4	C
24	F2	D	3	27.6	D

Πίνακας δεδομένων 20: Δεδομένα από Πείραμα 6 σε R.

Στη συνέχεια ακολουθείται η εξής διαδρομή :

> data <- within(data, Green1 <- factor(Green))

> library(lattice)

> with(data, xyplot(Yield ~ Green1 | Fert, groups = Rep))

Διάγραμμα 30: Διάγραμμα αλληλεπίδρασης παραγόντων «Χημική αζωτούχος λίπανση» και «Χλωρή λίπανση».

Συνεχίζοντας κάνουμε ανάλυση διακύμανσης ως εξής και προκύπτει ο Πίνακας 50:

> anova<- aov(Yield ~ Fert * Green1 + Error(Rep:Fert), data = data)</pre>

```
> summary(anova)
```

```
Error: Rep:Fert
          Df Sum Sq Mean Sq F value Pr(>F)
Fert
           1 248.12
                     248.12
                               37.42 0.103
Residuals 1
               6.63
                        6.63
Error: Within
            Df Sum Sq Mean Sq F value
                                         Pr(>F)
Fert
                18.01
                         18.01
                                26.792 0.000141
             1
             3 215.26
                         71.75 106.768 6.97e-10 ***
Greenl
                18.70
                          6.23
Fert:Greenl
             3
                                 9.274 0.001244
                                                A.A
Residuals
            14
                 9.41
                          0.67
----
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
```

Πίνακας 50: Πίνακας ανάλυσης διακύμανσης.

Στη συνέχεια εφαρμόζουμε την εντολή TukeyHSD() στο στοιχείο «anova» όπως στις προηγούμενες αναλύσεις.

5.Jamovi

5.1.Πλήρως τυχαιοποιημένο.

Ξεκινάμε όπως και στα προηγούμενα με την εισαγωγή και προβολή των δεδομένων. Ορίζουμε το είδος των μεταβλητών καθώς και τα ονόματα των διαφορετικών επιπέδων της μεταχείρισης (Εικόνα 84) κάνοντας «κλικ» στο όνομα της μεταβλητής. Τέλος καταλήγουμε στον Πίνακα δεδομένων 21 στον οποίο βλέπουμε την απόδοση (σε κιλά) του κάθε ατόμου καθώς και τη μεταχείριση που του έχει εφαρμοστεί.

DATA VARIABLE			A
Trt			Q
D=			
💿 🤌 Cantinuous		Levels	
问 📶 Ordinal	A		2
Nominal		Control	2
🥹 🗞 (D)	0	Green Leid	
Data type Text +	С		
	n	*	
		Retain unused levels	

Εικόνα 84: Ορισμός του είδους και των επιπέδων του παράγοντα «Trt».

🛃 Trt	🔥 Rep	Yield
A	1	20.1
С	1	22.5
В	1	24.7
D	1	24.4
A	2	19.1
C	2	23.0
В	2	25.5
D	2	26.8
A	3.	19.0
C	3	23.6
В	3	23.9
D	3.	25.9
А	4	19.5
С	4	25.2
В	4	23.6
D	-4	25.9

Πίνακας δεδομένων 21: Δεδομένα από «Πείραμα 1» σε jamovi.

Όπως και πριν δεν μπορεί να βγει κάποιο συμπέρασμα από το παραπάνω πίνακα και έτσι συνεχίζουμε φτιάχνοντας ένα πίνακα έτσι ώστε να δούμε τα μέτρα θέσης και μέτρα διασποράς του δείγματος. Για να γίνει αυτό κάνουμε «κλικ» στο εικονίδιο «Exploration», «Descreptives» και εμφανίζεται η Εικόνα 85. Στο σημείο αυτό μας δίνεται η επιλογή να δημιουργήσουμε πίνακα με μέτρα θέσης και διασποράς καθώς και διαφορετικά διαγράμματα.

Trt	Variables	
Rep	Yield	
	Split by	
1		4

Εικόνα 85: Παράθυρο δημιουργίας πινάκων περιγραφικής στατιστικής και Διαγραμμάτων.

Ξεκινώντας, για τη δημιουργία του Πίνακα 51 επιλέγουμε μόνο τη μεταβλητή «Yield» στη θέση «Variables» και αφήνουμε τη θέση «Split by» κενή. Πατώντας την επιλογή «Statistics» μας δίνεται η δυνατότητα να επιλέξουμε τα μέτρα θέσης και μέτρα διασποράς που θα εμφανιστούν.

Descriptives			
	yield		
Ν	16		
Missing	0		
Mean	23.3		
Std. error mean	0.644		
Standard deviation	2.58		
Variance	6.63		

Πίνακας 51: Βασικά μέτρα θέσης και μέτρα διασποράς του πληθυσμού.

Από το παραπάνω πίνακα βλέπουμε ότι ο αριθμός των παρατηρήσεων (N) είναι 16, ότι ο μέσος όρος (Mean) είναι 23,3, το τυπικό σφάλμα (Std. error mean) είναι 0,644, η τυπική απόκλιση (Standard deviation) είναι 2,58, και τέλος η διακύμανση (Variance) είναι 6,63.

Στο επόμενο βήμα όπως και στα προηγούμενα λογισμικά είναι πολύ χρήσιμη η δημιουργία του Διαγράμματος 31. Για τη δημιουργία του στη θέση «Variables» επιλέχθηκε η μεταβλητή «Yield» και στη θέση «Split by» επιλέχθηκε η μεταβλητή «Trt», κάνοντας «κλικ» στο «Plots» και θέτοντας ως «Variables» τη μεταβλητή «Yield» και ως «Split by» τη μεταβλητή «Trt».

Διάγραμμα 31: :

Θηκόγραμμα/Boxplot διαφορετικών μεταχειρίσεων, Άζονας x: «Μεταχείριση» («Trt»), Άζονας y: «Απόδοση» («Yield»).

Από το Διάγραμμα 31, παρατηρούμε ότι η καλύτερη μεταχείριση είναι ο συνδυασμός των δύο λιπασμάτων, ωστόσο πρέπει να σημειωθούν οι στατιστικές διαφορές μεταξύ των μέσων όρων προκειμένου να αποδειχθεί η παραπάνω παρατήρηση. Συνεχίζουμε κάνοντας ανάλυση διακύμανσης.

Για την ανάλυση διακύμανσης κάνουμε «κλικ» στο εικονίδιο «ANOVA» και στην επιλογή «ANOVA» και εμφανίζεται η Εικόνα 86. Στη συνέχεια ορίζεται ως «Dependent Variable» η μεταβλητή «Yield» και ως «Fixed Factors» η μεταβλητή «Trt». Έτσι οδηγούμαστε στον πίνακα ανάλυσης διακύμανσης (Πίνακας 52).

Εικόνα 86: παράθυρο ορισμού παραγόντων για ανάλυση διακύμανσης.

ANOVA

	Sum of Squares	df	Mean Square	F	р
trt	89.4	3	29.812	35.7	<.001
Residuals	10.0	12	0.836		

Πίνακας 52: Πίνακας ανάλυσης διακύμανσης.

Από τον πίνακα της Anova βλέπουμε ότι το άθροισμα τετραγώνων (Sum of Squares) του παράγοντα «trt» ισούται με 89,4 και το Σφάλμα «Mean Square» ισούται με 29,812. Το στατιστικό F ισούται με 35,7 οπότε καταλήγουμε πάλι στο συμπέρασμα ότι οι μεταχειρίσεις διαφέρουν και συνεχίζουμε κάνοντας Post Hoc για να δούμε ανάμεσα σε ποιες υπάρχει στατιστικά σημαντική διαφορά. Στην επιλογή «Post Hoc Tests» (*Εικόνα* 86) επιλέγουμε μόνο τον έλεγχο Tukey-HSD καθώς ο έλεγχος LSD δεν υπάρχει. Το αποτέλεσμα είναι ο Πίνακας 53.

Post Hoc Comparisons - trt

Comparison		rison					
trt		trt	Mean Difference	SE	df	t	Ptukey
А	-	С	-5.000	0.647	12.0	-7.73	<.001
	-	В	-4.150	0.647	12.0	-6.42	<.001
	-	D	-6.325	0.647	12.0	-9.78	<.001
С	-	В	0.850	0.647	12.0	1.31	0.572
	-	D	-1.325	0.647	12.0	-2.05	0.224
В	-	D	-2.175	0.647	12.0	-3.36	0.025

Πίνακας 53 Αποτελέσματα ελέγχου Tukey HSD.

Στον παραπάνω πίνακα φαίνονται τα αποτελέσματα των post-hoc ελέγχων. Το HSD test έδειξε ότι υπάρχει διαφορά μεταξύ της μεταχείρισης «Control» και των τριών άλλων μεταχειρίσεων καθώς το p είναι πολύ κοντά στο 0 (p<<0,05). Επίσης εντοπίστηκε διαφορά μεταξύ των μεταξύ των μεταχειρίσεων «NH4SO4» (B) και «NH4SO4+Green Leaf» (D) καθώς p ισούται με 0,006 (p<<0,05) ενώ μεταξύ των υπόλοιπων συγκρίσεων οι διαφορές δεν ήταν στατιστικά σημαντικές από το Διάγραμμα 31 παρατηρείται ότι ο μέσος όρος της μεταχείρισης «NH4SO4+ Green Leaf» συνεπώς η καλύτερη μεταχείριση είναι ο συνδυασμός NH4SO4 με Green Leaf.

5.2. Τυχαιοποιημένων πλήρων ομάδων.

Ξεκινάμε όπως και στα προηγούμενα με την εισαγωγή και προβολή των δεδομένων τα οποία στη συγκεκριμένη περίπτωση έχουν καταγραφεί σε αρχείο της μορφής .csv. Ορίζουμε το είδος των μεταβλητών καθώς και τα ονόματα των διαφορετικών επιπέδων της μεταχείρισης (Εικόνα 87). Τέλος καταλήγουμε στον Πίνακα δεδομένων 22 στον οποίο βλέπουμε την περιεκτικότητα του κάθε σπόρου σε έλαιο, την μεταχείριση που του έχει εφαρμοστεί καθώς και το Block στο οποίο ανήκει.

Εικόνα 87: Ορισμός του είδους και των επιπέδων του παράγοντα «Trt», «Block».

🛃 Trt	👶 Block	🥜 Yield
A	B1	3.3
В	B1	4.4
С	B1	4.4
D	B1	6.3
E	B1	6.4
F	B1	6.8
A	B2	1.9
B	B2	5.9
C	B2	4.0
D	82	4.9
E	B2	7.3
F	B2	6.6
A	B3	4.9
В	B3	6.0
C	B3	4.5
D	B3	5.9
E	B3	7.7
F	B3	7.0
A	B4	7.1
в	B4	4.1
C	B4	3.1
D	B4	7.1
E	B4	6.7
F	B4	6.4

Πίνακας δεδομένων 22: Δεδομένα από «Πείραμα 2» σε jamovi.

Στη συνέχεια πατώντας το εικονίδιο «Exploration», «Descreptives» μας δίνεται η επιλογή να δημιουργήσουμε πίνακα με μέτρα θέσης και διασποράς καθώς και διαφορετικά διαγράμματα (Εικόνα 88). Σε αυτό το σημείο δημιουργούμε τον Πίνακα 54 επιλέγοντας όπως φαίνεται στην Εικόνα 88, στη θέση «Variables» τη μεταβλητή «Yield» και από τη λίστα «Statistics» επιλέγουμε τα μέτρα θέσης και μέτρα διασποράς που επιθυμούμε να εμφανιστούν στον πίνακα.

Descriptives	$\overline{\Im}$
💏 Trt 👼 Block	Variables → Vield
	Split by →
Frequency tables 🤗 🚽	a
Statistics Plots	

Εικόνα 88: Παράθυρο δημιουργίας πινάκων περιγραφικής στατιστικής και Διαγραμμάτων..

D '	
Descri	ptives

	yield
Ν	24
Missing	0
Mean	5.53
Std. error mean	0.314
Standard deviation	1.54
Variance	2.37

Πίνακας 54: Βασικά μέτρα θέσης και μέτρα διασποράς του πληθυσμού.

Από το παραπάνω πίνακα βλέπουμε ότι ο αριθμός των παρατηρήσεων (N) είναι 24, ο μέσος όρος (Mean) είναι 5.53, το Τυπικό Σφάλμα (Std. Error mean) είναι 0,314, η τυπική απόκλιση (Standard deviation) είναι 1,539 (Std. Deviation= 1,539), και τέλος η παραλλακτικότητα (Variance) είναι 2.37.

Συνεχίζοντας δημιουργούμε το Διάγραμμα 32 κάνοντας «κλικ» στην επιλογή «Plots».

Διάγραμμα 32: Θηκόγραμμα/Boxplot διαφορετικών μεταχειρίσεων, Άζονας x: «Μεταχείριση» («Trt»), Άζονας y: «Απόδοση» («Yield»).

Για την ανάλυση διακύμανσης αρχικά κάνουμε «κλικ» στην επιλογή «anova», στη συνέχεια Επιλέγουμε την επιλογή ANOVA εμφανίζεται η Εικόνα 89 και στο σημείο αυτό θέτουμε ως «Variables» τη μεταβλητή «Yield» και ως «Fixed Factors» τις μεταβλητές «Trt» και «Block».

ANOVA			$\overline{\mathbf{G}}$
🔷 yield 😪 trt 🚳 block	-	Dependent Variable	
	+		
Effect Size $\eta^2 = partial \eta^2 = w^2$			
3 Medel			
b Assumption Checks			
> Contràsts			
Post Hoc Tests			
> Estimated Marginal Mevre			

Εικόνα 89 : Παράθυρο ορισμού μεταβλητών για την ανάλυση διακύμανσης.

Ωστόσο εμφανίζεται το παρακάτω πρόβλημα (Εικόνα 90) για τη λύση του οποίου αρκεί να αφαιρέσουμε από τη στήλη «Model Terms» την αλληλεπίδραση των δυο παραγόντων (Εικόνα 91).

Residual sur	n of squares and/or o	degrees (of freedom is zero, ir	ndicating a	perfect fi
	Sum of Squares	df	Mean Square	F	р
Trt					
Block					
Trt * Block					
Residuals					

Εικόνα 90: Εεικόνα προβλήματος που προκείπτει κατά την ανάλυση διακύμανσης.

✔ Model		
Components		Model Terms
Trt	\rightarrow	Trt
Block		Block
	→ •	Trt * Block

Εικόνα 91: Τρόπος επίλυσης του προβλήματος.

Έπειτα από αυτό το βήμα εμφανίζεται ο παρακάτω πίνακας (Πίνακας 55) στον οποίο φαίνεται ότι υπάρχει στατιστικά σημαντική διαφορά μεταξύ των μεταχειρίσεων (p<0.05 και F=4,816). Έτσι συνεχίζουμε σε post-hoc έλεγχο για να δούμε συγκεκριμένα ποιες μεταχειρίσεις διαφέρουν περισσότερο μεταξύ τους (Πίνακας 56).

ANOVA	
-------	--

	Sum of Squares	df	Mean Square	F	р
Trt	31.65	5	6.33	4.816	0.008
Block	3.14	3	1.05	0.797	0.515
Residuals	19.72	15	1.31		

Πίνακας 55: Πίνακας ανάλυσης διακύμανσης.

Post Hoc Comparisons - B

Comparison		_					
В		В	Mean Difference	SE	df	t	p _{tukey}
А	-	В	-0.800	0.811	15.0	-0.987	0.915
	-	С	0.300	0.811	15.0	0.370	0.999
	-	D	-1.750	0.811	15.0	-2.159	0.311
	-	Е	-2.725	0.811	15.0	-3.361	0.041
	-	F	-2.400	0.811	15.0	-2.960	0.084
В	-	С	1.100	0.811	15.0	1.357	0.750
	-	D	-0.950	0.811	15.0	-1.172	0.843
	-	Е	-1.925	0.811	15.0	-2.375	0.226
	-	F	-1.600	0.811	15.0	-1.974	0.400
С	-	D	-2.050	0.811	15.0	-2.529	0.177
	-	Е	-3.025	0.811	15.0	-3.731	0.020
	-	F	-2.700	0.811	15.0	-3.331	0.043
D	-	Е	-0.975	0.811	15.0	-1.203	0.829
	-	F	-0.650	0.811	15.0	-0.802	0.963
Е	-	F	0.325	0.811	15.0	0.401	0.998

Πίνακας 56: Αποτελέσματα ελέγχου Tukey HSD.

Από τον παραπάνω πίνακα βλέπουμε ότι διαφέρουν μεταξύ τους οι μεταχειρίσεις "Full bloom"-"Ripening" (C-E) διότι p=0.020, "Full bloom"-"Uninoculated" (C-F) διότι p=0.043, "Ripening"-"Seedling" (E-A) διότι p=0.041. αντιθέτως μεταξύ τον υπόλοιπων συγκρίσεων δεν εντοπίστηκε στατιστικά σημαντική διαφορά. Συμπερασματικά καταλήγουμε ότι η καλύτερη μεταχείριση είναι η πέμπτη «Ripening».

5.3.Ανάλυση συνδιακύμανσης.

Ξεκινάμε με τον προσδιορισμό του είδους των μεταβλητών κάνοντας «κλικ» στο όνομα της μεταβλητής που θέλουμε να επεξεργαστούμε, όπως φαίνεται στην Εικόνα 96 και στη συνέχεια προβολή των δεδομένων (Πίνακας δεδομένων 23).

DATA VARIABLE					
var					
Continuous	-	Levels			T.
Ordinal	A			4	4
e 🐣 Nominal			1	8	
0 / 10	Б		2		
Data type Integer 🔹	С		1.0		
	0		3		

Εικόνα 92: Ορισμός του είδους και των επιπέδων του παράγοντα «Var».

🛃 Var	💑 Rep	Cov	Ascorbic	G	3	34.8	97.5
A	1	34.0	93.0	н	3	31.1	93.9
В	1	39.6	47.3	1	3	34.6	76.7
C	1	31.7	81.4	J	3	23.5	170.1
D	1	37.7	66.9	К	3	33.2	71.8
E	1	24.9	119,5	A	4	38.9	80.8
F	1	30.3	106.6	B	4	52.0	27.2
G	Ì	32.7	106.1	C	4	39.6	57.5
H	1	34.5	61.5	D	4	20.4	60.2
1	1	31.4	80.5	r.	4	39.4	120.0
J	1	21.2	149.2	E	4	23.5	129.0
ĸ	1	30.8	78.7	F	4	28.3	126.1
A	2	33.4	94.8	G	4	35.4	86.0
В	2	39.8	51.5	Н	4	36.1	69.0
C	2	30.1	109.0	I.	4	30.9	91.8
D	2	38.2	74.1	J	4	24.8	155.2
E	2	24.0	128.5	К	4	33.5	70.3
F	2	29.1	111.4	A	5	36.1	80.2
G	2	33.8	107.2	В	5	56.2	20.6
H	2	31.5	83,4	С	5	47.8	30.1
1	2	30.5	106.5	D	5	41.3	63.2
Ţ	2	25.3	151.6	F	5	25.1	126.2
K	2	26.4	116.9	E	5	24.2	95.6
A	3	34.7	91.7	r C	5	34.2	95.0
В	3	51.2	33.3	G	5	37.8	88.8
C	3	33.8	71.6	Н	5	38.5	46.9
D	3	40.3	64.7	I	5	36.8	68.2
E	3	24.9	125.6	J	5	24.6	146.1
F	3	31.7	99.0	К	5	43.8	40.9

Πίνακας δεδομένων 23: Δεδομένα από «Πείραμα 3» σε jamovi.

Πατώντας το εικονίδιο «Exploration», «Descriptives» μας δίνεται η επιλογή να δημιουργήσουμε πίνακα με μέτρα θέσης και διασποράς καθώς και διαφορετικά διαγράμματα (Εικόνα 92). Σε αυτό το σημείο δημιουργούμε τον Πίνακα 57 επιλέγοντας στον πίνακα που φαίνεται στην Εικόνα 93, στη θέση «Variables» τη μεταβλητή «Ascorbic» και από τη λίστα «Statistics» επιλέγουμε τα μέτρα θέσης και μέτρα διασποράς που επιθυμούμε να εμφανιστούν στον πίνακα.

Descriptives		()
 var rep. cov ascorbic 	Variables	
	Split by	
Frequency tables 🎂 🛓		
> Plots		

Εικόνα 93: Παράθυρο δημιουργίας πινάκων περιγραφικής στατιστικής και Διαγραμμάτων.

Descriptives

	ascorbic
Ν	55
Mean	88.9
Std. error mean	4.57
Standard deviation	33.9
Variance	1147

Πίνακας 57: Βασικά μέτρα θέσης και μέτρα διασποράς του πληθυσμού.

Από τον Πίνακα 57 βλέπουμε ότι ο αριθμός των ατόμων είναι 55, ο μέσος όρος είναι 88,918, το τυπικό σφάλμα είναι 4,567, η τυπική απόκλιση είναι 33,866, η διακύμανση είναι 1146,934.

Scatterplot

Διάγραμμα 33: Νέφος σημείων) απεικόνισης της μεταβολής της Υ σε σχέση με τη μεταβολή της Χ.

Στη συνέχεια πρέπει να επιβεβαιωθεί ότι το δείγμα είναι ομοσκεδαστικό και ότι τα κατάλοιπα ακολουθούν κανονική κατανομή. Αυτό μπορεί να επιβεβαιωθεί με ένα Q-Q Plot. Για τη δημιουργία του παρακάτω διαγράμματος στη θέση «Variables» τοποθετήθηκε η μεταβλητή «Ascorbic» και από την επιλογή «Plots» (*Εικόνα 93*) επιλέχθηκε το «Q-Q Plots», «Q-Q».

Από το Διάγραμμα 34 βλέπουμε ότι το δείγμα είναι ομοσκεδαστικό και ότι τα κατάλοιπα ακολουθούν κανονική κατανομή.

Έπειτα θα πρέπει να αποδειχθεί ότι η συμμεταβλητή είναι γραμμική συνάρτηση όλων των επιπέδων του παράγοντα της ανεξάρτητης μεταβλητής, καθώς και ότι τα «κατάλοιπα»

ακολουθούν κανονική κατανομή. Για τη δημιουργία των παρακάτω διαγραμμάτων στη θέση «Variables» τοποθετήθηκε η μεταβλητή «Cov» και στη θέση «Split by» η μεταβλητή «Var» στη συνέχεια έγινε η επιλογή «Plots», «Q-Q Plots», «Q-Q».

Διάγραμμα 35:QQ plot, x: Standardized Residuals, y: Theoretical Quantiles.

Στο επόμενο βήμα μπορεί να ελεγχθεί η ομοιογένεια των regression slopes. Για τη δημιουργία του Πίνακα 57 επιλέχθηκαν στη θέση «Dependent Variable» την μεταβλητή «ascorbic» στη θέση «Fixed Factors» τις μεταβλητές «Var» και στη θέση «Covariates» τη μεταβλητή «Cov» και από την επιλογή «Model» δεν αφαιρέθηκε η αλληλεπίδραση «Var*Cov».

Εικόνα 94

ANCOVA - ascorbic

	Sum of Squares	df	Mean Square	F	р
var	990	10	99.0	1.81	0.099
COV	1409	1	1409.1	25.69	<.001
cov * var	1150	10	115.0	2.10	0.054
Residuals	1810	33	54.8		

Πίνακας 58: Πίνακας ανάαλυσης διακύμανσης.

Από τον Πίνακα 58 βλέπουμε ότι το p της αλληλεπίδρασης είναι μεγαλύτερο από 0,05 άρα η αλληλεπίδραση δεν είναι στατιστικά σημαντική.

5.4. Λατινικό τετράγωνο.

Ξεκινάμε με το άνοιγμα του αρχείου .csv και συνεχίζουμε με τον ορισμό του είδους των μεταβλητών (Εικόνα 96) κάνοντας «κλικ» στο όνομα της κάθε μεταβλητής για να την επεξεργαστούμε. Έτσι εμφανίζεται ο Πίνακας δεδομένων 24 στον οποίο φαίνεται η περιεκτικότητα του κάθε ατόμου σε πυρουβικό καθώς και η μεταχείριση η οποία του εφαρμόστηκε. Τέλος φαίνεται και η σειρά και η στήλη στη οποία βρισκόταν.

Εικόνα 95 : Ορισμός του είδους και των επιπέδων του παράγοντα «Trt», «Row», «Column».

👶 Trt	🚴 Row	👌 Column	🤌 Pyr
A	R1	C1	3.08
A	R2	C2	2.56
A	R3	C3	3.19
A	R4	C4	4,24
В	R1	C2	3.45
В	R2	C1	3.66
В	R3	C4	4.45
В	R4	C3	3,35
C	R1	C3	3.40
С	R2	C4	4.35
C	R3	C2	3.72
С	R4	C1	4.51
D	R1	C4	5.35
D	R2	C3	3,93
D	R3	C1	4.56
D	R4	C2	3.98

Πίνακας δεδομένων 24: Δεδομένα από «Πείραμα 4» σε jamovi.

Όπως και πριν έτσι και εδώ συνεχίζουμε την ανάλυση με τη δημιουργία του Πίνακα 59 στον οποίο φαίνονται τα μέτρα θέσης και μέτρα διασποράς. Για τη δημιουργία του Πίνακα κάναμε «κλικ» στο εικονίδιο «Exploration», «Descriptives» και καταλήγουμε στην Εικόνα 96. θέτουμε ως «Variables» τη μεταβλητή «Pyr» και αφήνουμε τη θέση «Split by» κενή το αποτέλεσμα είναι ο Πίνακας 59.

Descriptives	Ð
💏 Trt 🌦 Row 😘 Column	Variables → Pyr Split by.
Frequency tables 🚑 🛃	
> Piots	

Εικόνα 96: Παράθυρο δημιουργίας πινάκων περιγραφικής στατιστικής και Διαγραμμάτων.

Descriptives							
	pyr						
Ν	16						
Mean	3.86						
Std. error mean	0.175						
Standard deviation	0.699						
Variance	0.489						

Πίνακας 59: Βασικά μέτρα θέσης και μέτρα διασποράς του πληθυσμού.

Από τον Πίνακα 59 βλέπουμε ότι το πλήθος των ατόμων (Valid) είναι 16, ο μέσος όρος (Mean) είναι 3,86, το Τυπικό Σφάλμα (Std. error Mean) είναι 0,174, η τυπική απόκλιση (Standard Deviation) είναι 0,699 και τέλος η διακύμανση (Variance) είναι 0,489.

Συνεχίζοντας δημιουργούμε το Διάγραμμα 36. Για να γίνει αυτό θέτουμε στη θέση «Split by» τη μεταβλητή «Trt», και στη συνέχεια κάνοντας την επιλογή «Plots», «Box plot».

Διάγραμμα 36: Θηκόγραμμα διαφορετικών μεταχειρίσεων, Άζονας x: «Μεταχείριση» («Trt»), Άζονας y: «Περιεκτικότητα σε πυρουβικό» («Pyr»).

Από τα παραπάνω φαίνεται ότι η καλύτερη μεταχείριση είναι η τέταρτη ωστόσο για να το αποδείξουμε συνεχίζουμε με ανάλυση διακύμανσης. Για τη δημιουργία του πίνακα ανάλυσης διακύμανσης (Πίνακας 60) αρχικά κάνουμε «κλικ» στο εικονίδιο «ANOVA», «ANOVA» και όπως φαίνεται στην Εικόνα 97 παρουσιάζεται σφάλμα. Για την επίλυση του προβλήματος οποίου χρειάζεται να αφαιρεθούν από τη στήλη «Model Terms» οι αλληλεπιδράσεις μεταξύ της μεταχείρισης και των «Blocks» (Εικόνα 98).

ANOVA

	Sum of Squares	df	Mean Square	F	р
trt					
row					
column					
trt * row					
trt * column					
row ≭ column					
trt * row * column					
Residuals					

Εικόνα 97: Εικόνα προβλήματος που προκείπτει κατά την ανάλυση διακύμανσης.

✓ Model		
Components		Model Terms
trt	←	trt
column		column
row	\rightarrow .	row
		trt ∦ column
		trt * row
		column * row
		trt * column * row

Εικόνα 98: τρόπος επίλυσης του προβλήματος.

Μετά από την επίλυση του προβλήματος καταλήγουμε στον Πίνακα 60 από τον οποίο συμπεραίνουμε ότι μεταξύ των διαφορετικών μεταχειρίσεων υπάρχει διαφορά (F=14,591, sig<0,05) και ότι επίσης υπάρχει διαφορά μεταξύ των διαφορετικών στηλών (F=17,599, sig<0,05) ωστόσο δεν υπάρχει έντονη διαφορά μεταξύ των διαφορετικών γραμμών (F=1,907, sig>0,05). Συνεχίζουμε κάνοντας Post Hoc ελέγχους για να δούμε ποιες μεταχειρίσεις διαφέρουν περισσότερο.

ANOVA

	Sum of Squares	df	Mean Square	F	р
trt	2.963	3	0.9878	14.59	0.004
row	0.387	3	0.1291	1.91	0.230
column	3.574	3	1.1914	17.60	0.002
Residuals	0.406	6	0.0677		

Πίνακας 60: Πίνακας ανάλυσης διακύμανσης.

Για την εφαρμογή του post hoc ελέγχου, από την επιλογή «Anova», «Post Hoc Tests», διαλέγουμε τον έλεγχο Tukey HSD και το αποτέλεσμα είναι ο Πίνακας 61.

Post	Post Hoc Comparisons - trt										
Co	Comparison										
tr t		Trt	Mean Difference	SE	df	t	Ptukey				
А	-	В	-0.460	0.184	6.00	-2.50	0.157				
	-	С	-0.728	0.184	6.00	-3.95	0.029				
	-	D	-1.188	0.184	6.00	-6.45	0.003				
В	-	С	-0.268	0.184	6.00	-1.45	0.515				
	-	D	-0.728	0.184	6.00	-3.95	0.029				
С	-	D	-0.460	0.184	6.00	-2.50	0.157				

Πίνακας 61: Αποτελέσματα ελέγχου Tukey HSD

Από τον παραπάνω πίνακα φαίνεται ότι υπάρχουν διαφορές μεταξύ των μεταχειρίσεων 0kg-4.44kg (p=0.029) καθώς και οι 0kg-6.7kg(0.003) και οι 2.22kg-6.7kg(0.029), ενώ μεταξύ των υπόλοιπων συγκρίσεων δεν υπάρχουν..Από τη μελέτη του Διαγράμματος 36 καθώς και του Πίνακα 61, καταλήγουμε στο συμπέρασμα ότι η μεταχείριση η οποία οδήγησε στην μεγαλύτερη παραγωγή πυρουβικού είναι αυτή με τα 6.7kg.

5.5.Πλήρες παραγοντικό με δύο παράγοντες.

Μετά το άνοιγμα του αρχείου .csv κάνοντας «κλικ» στο όνομα της μεταβλητής που θέλουμε να επεξεργαστούμε, ορίζουμε το είδος και τα ονόματα των διαφορετικών επιπέδων των παραγόντων. Το αποτέλεσμα είναι ο Πίνακας δεδομένων 25.

DATA VARIABLE				6	DATA VARIABLE	(2)	
Variety			O	Date		U	
				Desagaras			
Continuaus			Levels		🕖 🤌 Continuous	Leveis	
🕘 🛃 Ordinal	🕞 🚮 Ordinal 🛛 🖸	С			🕑 🚮 Ordinal	D2	1502 - 3
 Nominal ID 		D	Devana	1	Nominal	D3	1004
Data type Text		A	95.7042		Data type Text •	D1	5.04
		n	Pegasus -				5.04
			Retain unused levels 🥥			Retain unu	sed levels

Εικόνα 99: Ορισμός του είδους και των επιπέδων του παράγοντα «Variety», «Date».

Sa Variety	💏 Date	🚴 Rep	🤌 Seedstem	С	D1	4	
A	D1	1	12	С	D1	2	
A	D3	.1	0	С	D2	1	
A	D2	2	0	С	D3	2	
A	D2	3	0	C	D2	3	
A	D3	4	0	C	D1	2	
A	D1	2	15		DI	5	
A	D2	4	1	C	D1	1	1
A	D3	2	0	С	D2	4	
A	D1	3	2	С	D3	3	
А	D2	1	0	С	D3	4	
A	D1	-4	8	С	D2	2	
A	D3	3	0	D	D1	3	
В	D2	.1	2	D	D3	2	
В	D1	1	35	5	53	1	
В	D3	2	0	D	D2	1	
В	D2	3	15	D	D3	1	
В	D1	4	46	D	D2	2	
B	D3	1	0	D	D2	3	
В	D1	3	23	D	D2	4	
В	D3	4	0	D	D3	4	
В	D3	3	0	D	D3	2	
B	D2	4	0	D	D1	2	
В	D2	2	3	U		2	
В	D1	2	19	D	D1	4	1
C	D3	1	0	D	D1	1	1

Πίνακας δεδομένων 25: Δεδομένα από «Πείραμα 5» σε jamovi.

Συνεχίζουμε δημιουργώντας όπως και πριν τον πίνακα με τα μέτρα θέσης και μέτρα διασποράς ακολουθώντας τα βήματα «Exploration», «Descriptives».

	Variables	-
🚰 Variety 🚰 Date 🌉 Rep	→	
	Split by	
Frequency tables 🔒 🛔		
Statistics		

Εικόνα 100: Παράθυρο δημιουργίας πινάκων περιγραφικής στατιστικής και Διαγραμμάτων.

Descriptives

	seedste m
Ν	48
Mean	5.13
Std. error mean	1.40
Standard deviation	9.67
Variance	93.4

Πίνακας 62: Βασικά μέτρα θέσης και μέτρα διασποράς του πληθυσμού.

Από τον Πίνακα 62 βλέπουμε ότι ο αριθμός τω ατόμων (Valid) ισούται με 48, ο μέσος όρος (Mean) ισούται με 5,125, το Τυπικό Σφάλμα (Std. Error of Mean) ισούται με 1,395, η τυπική απόκλιση (Std. Deviation) με 9,666 και η διακύμανση (Variance) ισούται με 93,431.

Θηκόγραμμα παράγοντα «Ποικιλία», Άζονας x: «Ποικιλία» («Variety»), Άζονας y: «Βλαστοί» («Seedstem»).

Διάγραμμα 38: Θηκόγραμμα παράγοντα «Ημερομηνία», Άξονας x: «Ημερομηνία» («Date»), Άξονας y: «Βλαστοί»(«Seedstem»).

Θα ήταν χρήσιμη η δημιουργία διαγράμματος στο οποίο να φαίνεται η αλληλεπίδραση των δύο παραγόντων ωστόσο το συγκεκριμένο λογισμικό δεν μας δίνει τη δυνατότητα να το δημιουργήσουμε.

Συνεχίζουμε κάνοντας ανάλυση διακύμανσης ακολουθώντας τη διαδρομή «ANOVA», «ANOVA»και θέτουμε ως «Dependent Variable» τη μεταβλητή «Seedstem» και ως «Fixed Factors» τη μεταβλητή «Variety» και «Date».

Τέλος καταλήγουμε στον παρακάτω πίνακα (Πίνακα 63) από τον οποίο συμπεραίνουμε ότι υπάρχουν στατιστικά σημαντικές διαφορές μεταξύ των ποικιλιών και λόγω αυτού συνεχίζουμε με post-hoc ελέγχους.

ANOVA

	Sum of Squares	df	Mean Square	F	р
variety	742	3	247.3	9.63	<.001
date	1878	2	938.8	36.56	<.001
variety * date	847	6	141.2	5.50	<.001
Residuals	925	36	25.7		

Πίνακας 63: Πίνακας ανάλυσης διακύμανσης.

	Cor	npar	rison						
variety	date		variety	date	Mean Difference	SE	df	Т	ptukey
С	"2"	-	С	"3"	-0.250	3.58	36.0	-0.0698	1.000
		-	С	"1"	-7.000	3.58	36.0	-1.9535	0.719
		-	D	"2"	-0.250	3.58	36.0	-0.0698	1.000
		-	D	"3"	9.55e-15	3.58	36.0	2.66e-15	1.000
		-	D	"1"	-8.750	3.58	36.0	-2.4419	0.406
		-	А	"2"	-0.250	3.58	36.0	-0.0698	1.000
		-	А	"3"	1.29e-14	3.58	36.0	3.59e-15	1.000
		-	А	"1"	-9.250	3.58	36.0	-2.5814	0.327
		-	В	"2"	-5.000	3.58	36.0	-1.3953	0.957
		-	В	"3"	4.88e-15	3.58	36.0	1.36e-15	1.000
		-	В	"1"	-30.750	3.58	36.0	-8.5814	<.001
	"3"	-	С	"1"	-6.750	3.58	36.0	-1.8837	0.761
		-	D	"2"	-5.33e-15	3.58	36.0	-1.49e-15	1.000
		-	D	"3"	0.250	3.58	36.0	0.0698	1.000
		-	D	"1"	-8.500	3.58	36.0	-2.3721	0.449
		-	А	"2"	1.22e-15	3.58	36.0	3.41e-16	1.000
		-	А	"3"	0.250	3.58	36.0	0.0698	1.000
		-	А	"1"	-9.000	3.58	36.0	-2.5116	0.365
		-	В	"2"	-4.750	3.58	36.0	-1.3256	0.970

Post Hoc Comparisons - variety * date

Post Hoc	Comparisons	-	variety	*	date
----------	-------------	---	---------	---	------

	Cor	npa	rison						
variety	date		variety	date	Mean Difference	SE	df	Т	Ptukey
		-	В	"3"	0.250	3.58	36.0	0.0698	1.000
		-	В	"1"	-30.500	3.58	36.0	-8.5116	<.001
	"1"	-	D	"2"	6.750	3.58	36.0	1.8837	0.761
		-	D	"3"	7.000	3.58	36.0	1.9535	0.719
		-	D	"1"	-1.750	3.58	36.0	-0.4884	1.000
		-	А	"2"	6.750	3.58	36.0	1.8837	0.761
		-	А	"3"	7.000	3.58	36.0	1.9535	0.719
		-	А	"1"	-2.250	3.58	36.0	-0.6279	1.000
		-	В	"2"	2.000	3.58	36.0	0.5581	1.000
		-	В	"3"	7.000	3.58	36.0	1.9535	0.719
		-	В	"1"	-23.750	3.58	36.0	-6.6279	<.001
D	"2"	-	D	"3"	0.250	3.58	36.0	0.0698	1.000
		-	D	"1"	-8.500	3.58	36.0	-2.3721	0.449
		-	А	"2"	6.55e-15	3.58	36.0	1.83e-15	1.000
		-	А	"3"	0.250	3.58	36.0	0.0698	1.000
		-	А	"1"	-9.000	3.58	36.0	-2.5116	0.365
		-	В	"2"	-4.750	3.58	36.0	-1.3256	0.970
		-	В	"3"	0.250	3.58	36.0	0.0698	1.000
		-	В	"1"	-30.500	3.58	36.0	-8.5116	<.001
	"3"	-	D	"1"	-8.750	3.58	36.0	-2.4419	0.406
		-	А	"2"	-0.250	3.58	36.0	-0.0698	1.000
		-	А	"3"	3.33e-15	3.58	36.0	9.29e-16	1.000
		-	А	"1"	-9.250	3.58	36.0	-2.5814	0.327
		-	В	"2"	-5.000	3.58	36.0	-1.3953	0.957
		-	В	"3"	-4.66e-15	3.58	36.0	-1.30e-15	1.000
		-	В	"1"	-30.750	3.58	36.0	-8.5814	<.001
	"1"	-	А	"2"	8.500	3.58	36.0	2.3721	0.449
		-	А	"3"	8.750	3.58	36.0	2.4419	0.406
		-	А	"1"	-0.500	3.58	36.0	-0.1395	1.000
		-	В	"2"	3.750	3.58	36.0	1.0465	0.995
		-	В	"3"	8.750	3.58	36.0	2.4419	0.406
		-	В	"1"	-22.000	3.58	36.0	-6.1395	<.001
А	"2"	-	А	"3"	0.250	3.58	36.0	0.0698	1.000
		-	А	"1"	-9.000	3.58	36.0	-2.5116	0.365
		-	В	"2"	-4.750	3.58	36.0	-1.3256	0.970
		-	В	"3"	0.250	3.58	36.0	0.0698	1.000
		-	В	"1"	-30.500	3.58	36.0	-8.5116	<.001
	"3"	-	А	"1"	-9.250	3.58	36.0	-2.5814	0.327
		-	В	"2"	-5.000	3.58	36.0	-1.3953	0.957
		-	В	"3"	-7.99e-15	3.58	36.0	-2.23e-15	1.000
		-	В	"1"	-30.750	3.58	36.0	-8.5814	<.001
	"1"	-	В	"2"	4.250	3.58	36.0	1.1860	0.987
		-	В	"3"	9.250	3.58	36.0	2.5814	0.327

[134]

Comparison									
variety	date		variety	date	Mean Difference	SE	df	Т	p _{tukey}
		-	В	"1"	-21.500	3.58	36.0	-6.0000	<.001
В	"2"	-	В	"3"	5.000	3.58	36.0	1.3953	0.957
		-	В	"1"	-25.750	3.58	36.0	-7.1860	<.001
	"3"	-	В	"1"	-30.750	3.58	36.0	-8.5814	<.001

Post Hoc Comparisons - variety * date

Πίνακας 64: Αποτελέσματα ελέγχου Tukey HSD.

5.6.Υποδιαιρεμένων τεμαχίων.

Η ανάλυση όπως και στα προηγούμενα ξεκινά με τον ορισμό του είδους των μεταβλητών καθώς και των ονομάτων των διαφορετικών επιπέδων των δύο παραγόντων κάνοντας «κλικ» στο όνομα της μεταβλητής που θέλουμε να επεξεργαστούμε (Εικόνα 101) και εμφανίζεται ο Πίνακας δεδομένων 26.

Εικόνα 101: Ορισμός του είδους και των επιπέδων του παράγοντα «Fert» και «Green».

🔓 Fert	👌 Green	📥 Rep	Vield
F1	A	1	13.8
F1	В	1	15.5
F1	C	1	21.0
F1	D	1	18.9
F2	A.	1	19.3
F2	В	1	22.2
F2	C	1	25.3
F2	D	1	.25.9
F1	A	2	13.5
F1	В	2	15.0
F1	C	2	22.7
F1	D	2	18.3
F2	A.	2	18.0
F2	В	2	24.2
F2	C	.2	.24.8
F2	D	2	26.7
F1	A	3	13.2
F1	В	3	15.2
F1	C	3	22,3
F1	D	3	19.6
F2	A	3	20.5
F2	В	3	25.4
F2	C	3	.28.4
F2	D	3	27.6

Πίνακας δεδομένων 26: Δεδομένα από «Πείραμα 6» σε jamovi.

Στη συνέχεια όπως στις προηγούμενες αναλύσεις συνεχίζουμε με τους πίνακες με τα μέτρα θέσης και μέτρα διασποράς. Για να δημιουργήσουμε τον παρακάτω πίνακα (Πίνακα 65) κάνουμε «κλικ» στην επιλογή «Exploration», «Descriptives», και εκεί κάνοντας «κλικ» στο εικονίδιο «Statistics» επιλέγουμε τα μέτρα θέσης και μέτρα διασποράς που θέλουμε να εξετάσουμε.

🔗 Fert	Variables	
🔗 Green	→	
🐣 Rep 🥟 Vield		
	Split by	
	→	
		-
Frequency tables 🐣 🍙	1	
> Statistics		
> Plots		

Εικόνα 102:Παράθυρο δημιουργίας πινάκων περιγραφικής στατιστικής και Διαγραμμάτων.

Descriptives

	yield
Ν	24
Missing	0
Mean	20.7
Std. error mean	0.967
Standard deviation	4.74
Variance	22.4

Πίνακας 65: Βασικά μέτρα θέσης και μέτρα διασποράς του πληθυσμού.

Στον παραπάνω πίνακα βλέπουμε ότι ο αριθμός των παρατηρήσεων (N) είναι 24, ο μέσος όρος (Mean) είναι 20,72, το Τυπικό Σφάλμα (Std. error Mean) είναι 0,967, η τυπική απόκλιση (Standard deviation) είναι 4,737, και η διακύμανση (Variance) είναι 22,44. Συνεχίζουμε όπως και πριν με τη δημιουργία των Διαγραμμάτων 40 και 41. Για τη δημιουργία αυτών στην επιλογή «Split by» (Εικόνα 103) επιλέγουμε τη μεταβλητή «Fert» για το Διάγραμμα 40 και τη μεταβλητή «Green» για το Διάγραμμα 41.

Διάγραμμα 40: Θηκόγραμμα για τον παράγοντα «Χημική αζωτούχος λίπανση» («Fert»), Άζονας x: «Χημική αζωτούχος λίπανση» («Fert»), Άζονας y: «Απόδοση» («Yield»).

Διάγραμμα 41:

Θηκόγραμμα για τον παράγοντα «Χλωρή λίπανση» («Green»), Άζονας x: «Χλωρή λίπανση» («Green»), Άζονας y: «Απόδοση» («Yield»).

Στο σημείο αυτό θα πρέπει να αναφερθεί ότι το jamovi δεν υποστηρίζει κάποιον απλό και εύκολο τρόπο για την ανάλυση δεδομένων πειραματικών σχεδίων όπως αυτό των υποδιαιρεμένων τεμαχίων.

6. Βιβλιογραφία.

- 1. George Boyhan, Agricultural Statistical Data Analysis Using Stata.
- 2. Gary W. Oehlert, A First Course in Design and Analysis of Experiments.
- 3. Κατσιλέρος Αναστάσιος, Αναλύσεις δεδομένων γεωργικού πειραματισμού με το στατιστικό πακέτο R.
- 4. Robert R. Sokal, F. James Rolhf, Biometry: The Principles and Practice of Statistics in Biological Research.