

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Ανάπτυξη ενός ασύρματου δικτύου αισθητήρων

χρησιμοποιώντας το Zephyr RTOS

Διπλωματική Εργασία

Αντώνιος Σιούτας

Επιβλέπων καθηγητής: Σπύρος Λάλης

Συνεπιβλέποντες καθηγητές: Νικόλαος Μπέλλας

Αθανάσιος Κοράκης

Βόλος 2020

UNIVERSITY OF THESSALY

SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Development of a wireless sensor network using

Zephyr RTOS

Diploma Thesis

Antonios Sioutas

Supervisor: Spyros Lalis

Co-supervisors: Nikolaos Mpellas

Athanasios Korakis

Volos 2020

iii
Acknowledgments

Acknowledgments

First, I would like to thank my supervisor Spyros Lalis for his guidance in carrying out this thesis.

I would also like to thank my family that always been there for me. Finally, I would like to thank

my friends and coworkers for their support.

iv
Υπεύθυνη Δήλωση Περί Ακαδημαϊκής Δεοντολογίας και Πνευματικών Δικαιωμάτων

Υπεύθυνη Δήλωση Περί Ακαδημαϊκής Δεοντολογίας και Πνευματικών

Δικαιωμάτων

«Με πλήρη επίγνωση των συνεπειών του νόμου περί πνευματικών δικαιωμάτων, δηλώνω ρητά

ότι η παρούσα διπλωματική εργασία, καθώς και τα ηλεκτρονικά αρχεία και πηγαίοι κώδικες που

αναπτύχθηκαν ή τροποποιήθηκαν στα πλαίσια αυτής της εργασίας, αποτελεί αποκλειστικά

προϊόν προσωπικής μου εργασίας, δεν προσβάλλει κάθε μορφής δικαιώματα διανοητικής

ιδιοκτησίας, προσωπικότητας και προσωπικών δεδομένων τρίτων, δεν περιέχει έργα/εισφορές

τρίτων για τα οποία απαιτείται άδεια των δημιουργών/δικαιούχων και δεν είναι προϊόν μερικής

ή ολικής αντιγραφής, οι πηγές δε που χρησιμοποιήθηκαν περιορίζονται στις βιβλιογραφικές

αναφορές και μόνον και πληρούν τους κανόνες της επιστημονικής παράθεσης. Τα σημεία όπου

έχω χρησιμοποιήσει ιδέες, κείμενο, αρχεία ή/και πηγές άλλων συγγραφέων, αναφέρονται

ευδιάκριτα στο κείμενο με την κατάλληλη παραπομπή και η σχετική αναφορά περιλαμβάνεται

στο τμήμα των βιβλιογραφικών αναφορών με πλήρη περιγραφή. Αναλαμβάνω πλήρως, ατομικά

και προσωπικά, όλες τις νομικές και διοικητικές συνέπειες που δύναται να προκύψουν στην

περίπτωση κατά την οποία αποδειχθεί, διαχρονικά, ότι η εργασία αυτή ή τμήμα της δεν μου

ανήκει διότι είναι προϊόν λογοκλοπής».

Ο Δηλών
Αντώνιος Σιούτας
29/9/2020

v
Περίληψη

Περίληψη

Τα ασύρματα δίκτυα αισθητήρων αποτελούν ένα σημαντικό κόμματι του διαδικτύου των

πραγμάτων και λύνουν το πρόβλημα της παρακολούθησης περιβαλλοντικών συνθηκών χωρίς

να χρειάζεται η φυσική παρουσία του διαχειριστή. Αυτή η μέθοδος έχει αρκετά πλεονεκτήματα

όπως ευελιξία και χαμηλό κόστος που την καθιστούν ελκυστική σε πολλές εφαρμογές. Καθώς

το διαδίκτυο των πραγμάτων εξελίσσεται, αυξάνεται η ζήτηση για ασύρματα δίκτυα

αισθητήρων τόσο για βιομηχανικές όσο και για οικιακές εφαρμογές. Για αυτό το λόγο η

τεχνολογική πρόοδος στον αντίστοιχο τομέα έχει μεγάλη σημασία. Παρόλο αυτά, υπάρχουν

αρκετές προκλήσεις, όπως η αξιοπιστία, ο ρυθμός μετάδοσης δεδομένων και η διάρκεια ζωής,

που πρέπει να αντιμετωπιστούν, για να επιτευχθεί η επιθυμητή λειτουργία. Συνήθως κάθε

περίπτωση χρειάζεται διαφορετική προσέγγιση, το οποίο κάνει τις εμπορικές λύσεις λιγότερο

ελκυστικές λόγω της αύξησης του κόστους και της περιορισμένης ευελιξίας.

Το αντικείμενο αυτής της διπλωματικής εργασίας είναι η ανάπτυξη ενός συστήματος

ασύρματων δίκτυών αισθητήρων, χρησιμοποιώντας τεχνολογίες ανοιχτού κώδικα. Η ανάπτυξη

έγινε πάνω σε ένα λειτουργικό σύστημα βασισμένο στο Linux. Για την υποστήριξη των συσκευών

από το λειτουργικό σύστημα χρειάζεται η ανάπτυξη των αντίστοιχων driver. Η επικοινωνία

μεταξύ των συσκευών σχεδιάστηκε από την αρχή. Βασίζεται στο πρότυπο IEEE 802.15.4, πάνω

από το οποίο χρησιμοποιείται ένα πρωτόκολλο δρομολόγησης τύπου δέντρου, που δεν απαιτεί

τη γνώση των διευθύνσεων των ενδιάμεσων κόμβων για την αποστολή δεδομένων και μειώνει

τον αριθμό των αποστολών μέσα στο δίκτυο. Επιπλέον, ένας μηχανισμός εξοικονόμησης

ενέργειας μειώνει την κατανάλωση ενέργειας των κόμβων. Το σύστημα υποστηρίζει ένα σύνολο

από εντολές που επιτρέπουν στο χρήστη να ελέγχει τη συμπεριφορά των κόμβων καθώς και την

εύκολη εγκατάσταση τους. Το σύστημα που αναπτύχθηκε δοκιμάστηκε στο εργαστήριο για να

επιβεβαιωθεί ότι είναι αξιόπιστο καθώς επίσης και για τη μέτρηση χαρακτηριστικών του

δικτύου όπως ρυθμός μετάδοσης δεδομένων και κατανάλωση ενέργειας.

vi
Abstract

Abstract

Wireless sensor networks, a key part of the Internet of Things, solve the problem of measuring

environmental conditions, without requiring physical presence of the owner. This method has

many advantages, like flexibility and low cost, that make it popular to many applications. As the

Internet of Thing grows, the demand for WSN in both industrial and home application increases.

For this reason, the technological improvement for these networks has big significance. Apart

from that, there are many challenges like reliability, high throughput and long battery life, that a

wireless sensor network needs to overcome to achieve the desired outcome. Usually each

application requires custom implementations to work, that makes the commercial solutions less

appealing due to increased cost and limited flexibility.

This thesis describes the development of a system for wireless sensor networks, using open

source technologies. As a platform, a Linux based real-time operating system is used to facilitate

the system implementation. The development of hardware drivers is needed to integrate the

hardware to the OS. The communication between devices is designed by scratch. It is based on

the IEEE 802.15.4 standard, over which a tree-based routing protocol is used to make the network

address free and minimize the network traffic. A synchronous sleeping mechanism is highly

increasing the lifetime of each device to prevent any power related issues. The system supports

a set of commands that enable the user to control the behavior of the network and permits easy

deployments. The performance of the system is tested in the lab to verify the reliability and

measure important network characteristics like throughput and energy consumption.

vii
Table of Contents

Table of Contents

Acknowledgments... iii

Υπεύθυνη Δήλωση Περί Ακαδημαϊκής Δεοντολογίας και Πνευματικών Δικαιωμάτων iv

Περίληψη ... v

Abstract ... vi

Table of Contents ... vii

Abbreviations .. ix

Chapter 1 Introduction .. 1

Chapter 2 Background ... 3

2.1 IEEE 802.15.4 .. 3

2.1.1 Devices .. 3

2.1.2 Network Topology... 3

2.1.3 Stack Architecture ... 4

2.1.4 Data Transfers ... 5

2.1.5 Frame Structure .. 7

2.2 CSMA-CA Algorithm ... 8

2.3 Zephyr OS ... 10

2.3.1 Threads and Scheduling .. 10

2.3.2 Data Passing .. 12

2.3.3 Timing .. 13

2.3.4 Logging .. 13

2.3.5 Network Stack ... 14

Chapter 3 User Model .. 16

3.1 Overview .. 16

3.2 Commands.. 16

3.3 Network deployment, node addition/removal, node grouping 17

viii
Table of Contents

Chapter 4 System Design ... 18

4.1 Routing Algorithm .. 18

4.2 Routing Gradient ETX ... 19

4.3 Frame Types ... 21

4.3.1 Data Frame .. 21

4.3.2 Network Frame ... 23

4.3.3 Command Frame... 24

4.4 Command Subsystem ... 26

4.5 Duty Cycle ... 27

Chapter 5 System Implementation .. 29

5.1 Hardware .. 29

5.2 Software Architecture .. 31

5.2.1 MRF24J40 Driver ... 32

5.2.2 Network Layer ... 33

5.2.3 Protocol Layer ... 34

Chapter 6 Experiments and Evaluation ... 38

6.1 Power Consumption ... 38

6.2 Topology ... 39

6.2.1 Star Topology .. 39

6.2.2 Chain topology .. 42

6.3 Throughput ... 43

6.4 Various other tests ... 45

Chapter 7 Conclusion and Future Work .. 46

7.1 Summary .. 46

7.2 Possible extensions .. 46

References .. 48

ix
Abbreviations

Abbreviations

API Application Program Interface

BE Back-Off Exponent

CCA Clear Channel Assessment

CRC Cyclic Redundancy Check

CS Carrier Sense

CSMA-CA Carrier-Sense Multiple Access with Collision Avoidance

CTP Collection Tree Protocol

ED Energy Detection

ETX Expected Transmission

FCS Frame Check Sequence

FFD Full Function Device

FIFO First in First Out

GTS Guaranteed Timed Slot

IEEE Institute of Electrical and Electronics Engineers

LIFO Last in First Out

LQI Link Quality Indication

LQI Link Quality Indicator

MAC Medium Access Control

MCU Microcontroller Unit

MPDU Mac Protocol Data Units

MQTT MQ Telemetry Transport

MSDU Mac Service Data Unit

NB Number of Back-Off Periods

OSI Open System Interconnection

OTG On the Go

PAN Personal Area Network

PCB Printed Circuit Board

PHR PHY Header

PHY Physical Layer

PPDU PHY Protocol Data Units

PRR Packet Reception Rate

PSDU Physical Service Data Unit

RF Radio Frequency

RFD Reduced Function Device

RSSI Received Signal Strength Indicator

x
Abbreviations

SHR Synchronization Header

SPI Serial Peripheral Interphase

SRAM Static Random-Access Memory

TCP Transmission Control Protocol

THL Time Has Lived

UART Universal Asynchronous Receiver Transmitter

UDP User Datagram Protocol

WPAN Wireless Personal Area Network

WSN Wireless Sensor Network

1
Introduction

Chapter 1 Introduction

Internet of Things is an emerging topic of technical, social, and economic significance that

promises to transform our lives. It is an ecosystem of connected devices accessible through the

Internet. Computers, smart devices like smartphones or TVs, wearables and sensors are examples

of IoT devices. Especially sensors have a wide range of applications in industry and domestic use

such as health care, security, agriculture, automation, industrial production and smart homes.

Wireless sensor networks refer to a group of distributed sensor nodes (nodes) dedicated to

monitoring environmental conditions such as temperature and pressure, machinery

maintenance, structural health for buildings and thread detection. The nodes are composed of a

sensor element, responsible for converting the measured conditions to electrical impulses, a

micro-controller, which is the brain of the node, and a radio transceiver capable of transmitting

and receiving messages. The radio typically has a limited range of a few meters or tens of meters,

depending on the technology and antennas used.

Nodes cooperatively communicate with a device called gateway that has the ability to transfer

data to the Internet. Usually the target is to cover a large area, thus increasing the number of

nodes in the network and the distance between them. Most times there are accessibility issues

not allowing a person to attend and solve problems on site, such as missing nodes or nodes with

exhausted battery. For this reason, the network must be capable of self-healing from

communication failures. Also, it must be able to operate in low-power mode for an extensive

period.

In order to communicate, all the devices in the network use a specific protocol. A network

protocol is a set of rules that all the devices follow to communicate. Obviously, the network

protocol plays a central role in the system’s ability to operate successfully even when there are

individual node failures. Although there are many commercial solutions, most of them have

limitations because of closed source policy that does not facilitate any optimizations or

extensions.

In this thesis, a wireless sensor network is developed, using an open source operating system. A

tree-based routing protocol is used to keep network maintenance related traffic as low as

possible. To minimize energy consumption, nodes operate in two states, normal and low-power

mode. The network can recover from communication and node failures. Also, the system can be

easily deployed with minimum human intervention.

2
Introduction

The rest of the thesis is organized as follows. Chapter 2 summarizes the technologies used to

implement the system. Chapter 3 introduces the functional objectives. Chapters 4 and 5 describe

the design and implementation of the system. Chapter 6 presents the experiments that were

performed to evaluate the implemented system prototype. Finally, Chapter 7 summarizes the

work and proposes possible extensions.

3
Background

Chapter 2 Background

2.1 IEEE 802.15.4

IEEE stands for the Institute of Electrical and Electronics Engineers, a non-profit organization,

founded in 1884 for the purpose of consolidating ideas dealing with electrotechnology [1]. IEEE

produces over 30% of the world's literature in the electrical and electronic engineering and

computer science fields, publishing well over 100 peer-reviewed journals and magazines [2].

IEEE 802.15.4 is a technical standard which defines the protocol and interconnection of devices

via radio communication [3] [4]. This standard defines the Physical Layer (PHY) and the Medium

Access sub-layer (MAC). Those two are the lower network layers of a Wireless Personal Area

Network (WPAN).

2.1.1 Devices

IEEE 802.15.4 systems include so-called devices. A device taking part in a WPAN can operate as a

full function device (FFD) or as a reduced function device (RFD). In turn, FFD devices can operate

either as a coordinator or as a normal device. At least one FFD in the network should be a

coordinator.

RFD devices communicate only with FFD devices, while FFD devices have no restriction. The basis

for this distinction is that RFD intend for applications that are simple, while keeping low cost and

complexity.

2.1.2 Network Topology

The standard supports two types of network topologies, the star topology and the peer-to-peer

topology. A WPAN operates in a star topology must include a central node working as a PAN

coordinator. The remaining nodes communicate directly with this central node as shown in Figure

2-1. Most of the times the central node is mains powered while the devices are battery powered.

This topology can be useful for applications like home automation or PC peripherals.

4
Background

Figure 2-1: Star Topology.

In the peer-to-peer topology, nodes communicate with each other as long as they are in

transmission range, shown in Figure 2-2. This topology includes a coordinator and both FFD and

RFD devices. The peer-to-peer topology is the basis of more complex network structures like

mesh networks.

Figure 2-2: Peer-to-peer Topology.

In both network topologies, every device has a unique 64-bit identification number that is used

for direct communication. This long address can be exchanged for a shorter 16bit address,

allocated by the Coordinator.

In each independent PAN, a unique identification number is chosen by the Coordinator and is

used to communicate within the network using short addresses or with another PAN.

2.1.3 Stack Architecture

The IEEE 802.15.4 stack architecture defined by several blocks called layers, as shown in Figure

2-3. The standard describes the two bottom layers (PHY and MAC).

5
Background

Figure 2-3: IEEE 802.15.4 stack.

The PHY layer contains the low-level control mechanisms of the radio transceiver. Each country

has a license-free band available to use. There is also a worldwide license free band at 2400–

2483.5MHz. The radio device must comply with one of those frequencies.

The PHY layer is responsible for transmission and reception of PHY protocol data units (PPDU),

activation and deactivation of the radio transceiver, channel selection, energy detection (ED)

within the current channel, clear channel assessment (CCA) and link quality indication (LQI) of

received data units.

The MAC layer is responsible for the transmission and reception of MAC protocol data units

(MPDU) across the PHY data service, beacon management, guaranteed timed slot (GTS)

management, channel access, frame validation, frame acknowledgment and security

mechanisms.

2.1.4 Data Transfers

Communication between devices follows one of three types of data transfers: (i) device to

coordinator, (ii) coordinator to device and, in peer-to-peer topology, (iii) data transfer between

two normal devices. The procedure for each data transfer depends on whether the network

supports beacon transmissions.

6
Background

If beacon transmission is enabled, a device first waits to hear a beacon and then sends a data

request using the slotted CSMA-CA algorithm. The request should be acknowledged by the

coordinator and then the data are transmitted using the CSMA-CA algorithm. If beacons are not

enabled, devices send data using an unslotted CSMA-CA algorithm. Figure 2-4 shows both cases.

Figure 2-4: Transmission from a device to the coordinator with beacons enabled (left, disabled (right).

Figure 2-5: Transmission from the coordinator to a device with beacons enabled (left, disabled (right).

If the coordinator wants to send data to a device in a beacon-enabled network, it first sends a

beacon, indicating that data is pending. The device then sends a data request using the slotted

CSMA-CA algorithm. The coordinator sends an acknowledgement, followed by the data, using

the slotted CSMA-CA algorithm. The device finally sends an acknowledgement. If beacons are not

enabled, the procedure is the same without the beacon message, and the slotted CSMA-CA

algorithm is replaced by the unslotted CSMA-CA algorithm. Figure 2-5 shows both cases.

7
Background

2.1.5 Frame Structure

The IEEE 802.15.4 standard defines four frame types: (i) the beacon frame used by the

coordinator, (ii) the data frame, (iii) the acknowledgement frame, used for confirmation of frame

reception and (iv) the MAC command frame.

In each case, the MAC layer forwards the data unit to the physical layer. The latter forms the PHY

Protocol Data Unit (PPDU) containing the synchronization header (SHR), the PHY header (PHR)

and the Physical Service Data Unit (PSDU). The SHR contains the preamble sequence, used for

symbol synchronization, the start of frame delimiter indicating the start of the physical header,

the frame length of the PSDU and the PSDU containing the Mac Protocol Data Unit (MPDU),

shown in Figure 2-6. Figure 2-7 to 2-10 show the MPDU for each frame type.

Figure 2-6: The PPDU structure.

Figure 2-7: The MPDU structure of the data frame.

Figure 2-8: The MPDU structure of the command frame.

Figure 2-9: The MPDU structure of the beacon frame.

8
Background

Figure 2-10: The MPDU structure of the acknowledgement frame.

The frame control field provides relevant information about the frame. The sequence number,

which increases by one for each new frame, serve as the unique identifier. The addressing fields

have the source and destination address, and the frame control determine the length. All the

payload fields contain the data of the packet. The Frame Check Sequence (FCS) field is the cyclic

redundancy check (CRC), used for error detection. The super frame specification, the pending

address and the GTS fields provide information relevant to beacon enabled networks.

2.2 CSMA-CA Algorithm

The Carrier-sense multiple access with collision avoidance algorithm decides if the RF medium is

ready to transmit a packet. Prior to transmitting, the node listens if someone else is transmitting.

If so, the node waits for a random period before trying again. If the channel is free, the node

sends the packet. Figure 2-11 shows the unslotted version of CSMA-CA algorithm. The node

maintains two variables, the back-off exponent BE, which means how much time the node has to

wait and the number of back-off periods NB that the algorithm was required to wait. NB is

initialized to zero. After a delay, the node assesses the channel and if it is not idle, increases NB

and tries again.

9
Background

Figure 2-11: CSMA-CA algorithm.

There are three techniques, used by the CSMA-CA algorithm, to assess if the channel is clear [4],

[5]. The first, called energy detection (ED), reports that the medium is busy if there is a signal

above a threshold. The second, called carrier sense (CS), considers that the medium is busy when

it detects a signal with the modulation and spread characteristics of IEEE 802.15.4. This signal

level may be below the ED threshold. The third technique is a combination of the previous ones

and reports that the medium is busy only upon detecting a signal above the ED threshold with

the modulation and spread characteristics of IEEE 802.15.4.

The energy detection refers to the ability of the receiver to detect energy level present on the

current channel based on the noise floor, ambient energy and interference sources. The

threshold should be at most 10 dB greater than the specified receiver sensitivity. The carrier

sense refers to the ability of the receiver to detect the IEEE 802.15.4 signal preamble.

10
Background

2.3 Zephyr OS

Zephyr OS [6] [8] is a real time operating system based on Linux, suitable for embedded devices.

The neutral policy and small memory footprint of Zephyr make it perfect for IoT applications. It

is an open source project, written in C language and support many boards and peripherals. The

source code is available in GitHub [7] along with a command-line tool called West, which provides

a multiple repository management system.

2.3.1 Threads and Scheduling

The Zephyr kernel services support two types of thread, cooperative and preemptible threads.

Each thread can be in ready or unready state and has a priority level. The kernel supports a

virtually unlimited number of thread priority levels, as shown in Figure 2-12. A thread with

negative priority level is cooperative. Once it becomes the current thread, it remains the current

thread until it explicitly makes an action through which control is given to another thread, as

shown in Figure 2-13. Positive priority level means that the thread is preemptible and execution

can be interrupted by other ready preemptible threads with higher priority or cooperative

threads, shown in Figure 2-14.

Figure 2-12: Priority level of threads.

11
Background

Figure 2-13: Cooperative thread scheduling.

Figure 2-14: Preemptible thread scheduling.

The kernel also supports so-called work queue threads, dedicated to the processing of specific

work items added to a work queue. Work queue threads are typically used by interrupt handlers

to offload non-urgent processing.

The kernel includes semaphores and mutexes, used for thread synchronization. A thread can

“give” a semaphore in order to allow other threads to enter a critical region, and “take” a

semaphore in order to enter a critical region, as shown in Figure 2-15. Semaphores maintain a

counter that increases each time when the semaphore it is given and decreases each time it is

taken. When it is zero, the semaphore does not allow any threads to enter.

12
Background

Figure 2-15: Thread synchronization using a semaphore.

Figure 2-16: Thread synchronization using a mutex.

Mutexes provide exclusive access to a critical region. A thread can lock a mutex, if unlocked, to

enter and then unlock it, shown in Figure 2-16. Else, if the mutex is already locked, the thread is

blocked until the mutex is unlocked by another thread.

2.3.2 Data Passing

The operating system supports several data structures to pass data between threads. The FIFO

object implements the traditional first-in first-out queue. Data flows from one direction to

another, maintaining their initial order. The LIFO object supports data passing in the reverse

order. There are also pipes that allow threads to send byte streams either synchronously or

13
Background

asynchronously. The ring buffer object is a circular buffer where data stored in FIFO order. It is

used for sending small byte streams or raw data. Figure 2-17 presents all the above structures.

Figure 2-17: Push and pull data from (a) FIFO, (b) LIFO and (c) ring buffer.

2.3.3 Timing

Timer is a kernel object used to measure time based on the kernel’s clock. When a timer reaches

the specific limit, the handler function takes control by interrupting the execution of the current

thread, similar to interrupt functions. Timers can measure time in a range of milliseconds and

used in cases that high precision is a requirement.

2.3.4 Logging

The operating system provides a logging interface. Log messages pass from a front end and are

processed by the back end. There are four severity levels of logs, information, warning, error and

debugging. The default configuration has the UART as a back end and output contains the time,

the relevant string along with the thread and function that recorded it.

14
Background

2.3.5 Network Stack

The network stack comprises different layers, and each one offers services to the others as shown

in Figure 2-18.

The Network Application is the top layer. It can access the application-level protocol libraries to

send or receive data. This layer can also access the Network Management API to configure

network parameters.

Figure 2-18: Network Stack.

15
Background

The Network Protocol layer implements different popular protocols. It is divided to two sub-

layers: Application-level protocols like MQTT, and the Core-level protocols like TCP and UDP.

The L2 Network Technologies layer hides the complexity of different networking technologies

from the upper layers. It provides a generic API that includes basic functions for sending/receiving

data, enabling/disabling traffic over the network interface, and retrieving information regarding

the capabilities of the hardware like multi-cast or promiscuous mode. Includes protocols like

Ethernet, Bluetooth and IEEE 802.15.4.

The Network Device Drivers is the bottom layer. It includes the driver implementation for the

supported hardware and handles the physical data send and receive.

16
User Model

Chapter 3 User Model

3.1 Overview

The user can communicate with the coordinator to receive information and configure/control

the WSN, using a command-line program. The user sees the real time measurement of each node.

Alongside the measurements, the user sees information about the existence of weak links

between them. This feature gives the ability to find weak points in the network.

3.2 Commands

The user is able to send commands to the nodes, to change the configuration settings and see

relevant information about the links between them. The target can be either a specific node or

all the nodes in the network. After the command request, the user gets a response with the

requested information or an error message for wrong input.

The complete list of the commands can be seen below:

Command Description

TX power level Change the transmission power level of the
radio. There are four available options: low,
medium, high and highest.

Average Sampling

Change the number of samples the node
collects.

Weak link report The nodes report along with data the
existence of “child” nodes with quality below
the threshold. The evaluation uses the LQI
system of the radio module, when they
receive data frames from their child nodes.

Short address

The frames contain an address of 16-bit length
or 64-bit length. Changing to 16-bit addresses
increases the available data length.

ID Change the network ID.

Enable/disable routing for different ID The nodes can forward frames regardless of
the Network ID

Enable/disable aggregation for data frames Reduce the traffic by concatenating frames
wherever this is possible

Enable/disable Duty Cycle Enable the transition to low power mode.

Discover Network

Discover all the nodes in the network and all
their links and ETX values

17
User Model

Discover Node Discover the communication path of a node
and their ETX values

Change routing timer Change the timer to send network frames.

Reset ETX Value Force a node to reset the ETX value. This may
change its parent node.

Clear routing table Clear the routing table of a node.

SP Change the sleep period of the network

WT Change the wake period of the network.

OS Read the time until the end of the current
sleep period.

OW Read the time until the end of the current
wake period.

3.3 Network deployment, node addition/removal, node grouping

To deploy the network, the user, first, has to execute the command-line tool and then has to

power on the coordinator and connect him to the PC. Changing the sleep period is optional, but

a small sleep period leads to faster synchronization. Afterward, the user should power on the

devices. All of them are synchronized by the coordinator or by other synchronized devices and

find the optimal communication path. Once the network is ready, the user can change again the

sleep period in order to meet the requirements of the particular application.

Adding new nodes is easy, as they can be synchronized by other nodes directly, if they are awake.

If the network is configured to operate with a large sleep period, the user should activate a new

node near the coordinator (to avoid long synchronization delay and battery depletion). Removing

a node affects temporarily the nodes relying on him, but they automatically find alternative

paths.

The user may form groups of nodes and control them without affecting all the nodes. This can be

achieved by changing the identification number of a few nodes. Then, by sending a single

command, the user can change, for example, the sampling rate of the entire group of sensors.

Although the nodes with different identification number receive and forward the command, they

will not execute it as they do not belong to the group.

For applications that require large data transfers, the user can enable the option to use short

address (16bit) to give nodes the largest payload size. For small data transfers, the user can

enable packet aggregation to improve the network performance (note that all data packets have

the same destination).

18
System Design

Chapter 4 System Design

4.1 Routing Algorithm

The routing algorithm is based on the Collection Tree Protocol [9]. The entire network operates

like a tree, with the coordinator being the root of the tree. Each node is connected with a node

above and closer to the root, as shown in Figure 4-1. The data flows from the leaves to the root.

Nodes generates routes to the root using a routing gradient. The CTP algorithm is address free,

meaning that nodes do not send packets to specific destinations, but choose only the next hop.

Figure 4-1: Tree based WSN.

The CTP uses expected transmission (ETX) as the routing gradient. The ETX metric is a measure

of the quality of the path between two nodes. The ETX value of a path varies from 1, which

indicates a perfect transmission, to infinity, which indicates a non-functional path. The root has

always ETX value of 0, while the other nodes take the ETX value of their parent node plus the ETX

of the link to the parent node. For example, assuming node 𝑛𝑖 has node 𝑛𝑗 as its parent, as

shown in Figure 4-1, the ETX value of 𝑛𝑖 is calculated as: 𝐸𝑇𝑋𝑖 = 𝐸𝑇𝑋𝑗 + 𝐸𝑇𝑋𝑙𝑖𝑛𝑘. If more than

one candidate nodes exist, CTP chooses the node with the lowest ETX value.

As shown in Figure 4-2, the three nodes initially have an invalid ETX value, so all of them send a

local broadcast to their neighbors (4-2i). The root node receives the frames for the first two nodes

and replies with another local broadcast (4-2ii). The two nodes after the reception of the root’s

broadcast message, calculate their ETX value and send another broadcast message to inform

their neighbors (4-2iii). The last node receives the messages and calculates his ETX value (4-2iv).

19
System Design

Figure 4-2: The node’s procedure to estimate their ETX value.

4.2 Routing Gradient ETX

As mentioned, the node’s ETX value is based on the ETX value of its parent plus the estimation of

ETX value for the link between them. The ETX link value measures the performance of the link

between two nodes. The estimation [9]–[11] is based on the packet reception ratio of the data

and network frames and can be summarized in Equations 1 and 2.

𝐸𝑇𝑋𝑙𝑖𝑛𝑘 =

𝐸𝑇𝑋𝑙𝑖𝑛𝑘 + 𝑃𝑅𝑅𝑎𝑐𝑘

2

(1)

𝐸𝑇𝑋𝑙𝑖𝑛𝑘 =
𝐸𝑇𝑋𝑙𝑖𝑛𝑘 +

1
𝑃𝑅𝑅𝑟𝑜𝑢𝑡𝑖𝑛𝑔

2

(2)

The ETX value changes when a node forwards data frames or command replies to the parent

node, following Equation 1. The 𝑃𝑅𝑅𝑎𝑐𝑘 is the packet reception rate and is measured every five

packets following Equation 3. The numerator is the number of transmitted frames and the

denominator is the number of the acknowledged frames. This method is based on a method

proposed by Woo [12].

20
System Design

𝑃𝑅𝑅𝑎𝑐𝑘 =

#𝑝𝑎𝑐𝑘𝑒𝑡 𝑠𝑒𝑛𝑑

#𝑝𝑎𝑐𝑘𝑒𝑡 𝑎𝑐𝑘

(3)

When all the frames are not acknowledged, then the 𝑃𝑅𝑅𝑎𝑐𝑘 is the total number of the fames

plus one. Figure 4-3 shows the estimation of 𝑃𝑅𝑅𝑎𝑐𝑘, while transmitting frames to the parent

node. Green squares represent acknowledged frames and red squares not acknowledged frames.

Figure 4-3: PRRack estimation.

The ETX value changes when a node receives network frames, following Equation 2. The

𝑃𝑅𝑅𝑟𝑜𝑢𝑡𝑖𝑛𝑔 is the network packet reception rate and is measured every two received network

frames, following Equation 4 proposed by Woo [12]. Nodes keep information about the

𝑃𝑅𝑅𝑟𝑜𝑢𝑡𝑖𝑛𝑔, for every node that sent a network frame. The average of the previous value and the

number of the received network frames divided by the total number of network frames that the

node sent is used to estimate the 𝑃𝑅𝑅𝑟𝑜𝑢𝑡𝑖𝑛𝑔. The number of network frames that a node missed

can be calculated by keeping the sequence number of the received network frames.

(4)

First, we calculate the division (#𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑁𝐹 / #𝑡𝑜𝑡𝑎𝑙 𝑁𝐹) every two received network

frames (from the same node) and then we calculate the 𝑃𝑅𝑅𝑟𝑜𝑢𝑡𝑖𝑛𝑔, that is the average with the

previous result. Figure 4-4 shows the estimation of ETX value.

𝑃𝑅𝑅𝑟𝑜𝑢𝑡𝑖𝑛𝑔 =
𝑃𝑅𝑅𝑟𝑜𝑢𝑡𝑖𝑛𝑔 + (

#𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑁𝐹
#𝑡𝑜𝑡𝑎𝑙 𝑁𝐹

)

2

21
System Design

Figure 4-4: PRRrouting estimation.

The 𝐸𝑇𝑋𝑙𝑖𝑛𝑘 is the average of the previous value of 𝐸𝑇𝑋𝑙𝑖𝑛𝑘 and either the 𝑃𝑅𝑅𝑎𝑐𝑘

or the inverted 𝑃𝑅𝑅𝑟𝑜𝑢𝑡𝑖𝑛𝑔 (Equation 1 and 2). Figure 4-5 shows the 𝐸𝑇𝑋𝑙𝑖𝑛𝑘 estimation.

Figure 4-5: ETX link estimation.

4.3 Frame Types

There are 3 types of frames in this protocol, the data frame, the network frame, and the

command frame. These are discussed in more detail in the following.

4.3.1 Data Frame

The data frame is used to transfer data to the parent node, using a unicast transmission. When a

node receives a data frame, this is forwarded to its parent node. Figure 4-6 shows the structure

of the data frame. The first two bytes are the frame control bytes and exist in every frame type.

22
System Design

Figure 4-6: CTP Data Frame.

The role of each field is briefly as follows:

• The Rooting Pull bit allows the node to request routing information from its neighbor

nodes. When a node receives a frame with the routing pull bit set, it must transmit a

network frame.

• The Congestion bit informs the neighbor nodes that the node is forced to drop a packet.

• The Frame Type bits denote the type of the frame.

• The Address Type bit denotes whether the address has 16bit or 64bit length.

• The Aggregation bit indicates the existences of a piggy-back frame.

• The Weak Connection bit informs the coordinator that there is an inferior quality link

along this route.

• The Reserved bit is currently not used.

• The ID byte is the network ID of the source node.

• The ETX bytes contain the routing gradient of the source node. When a node forwards a

data frame, it replaces this information with its own ETX value.

• The THL (Time Has Lived) byte is the number of hops for this route. When a node

generates a data frame, it sets this to zero. Every other node in the routing path increases

it by one.

• The Sequence Number byte is an identification for this data frame. The origin node

increases it for every generated data frame.

• The Collection ID byte serve as an identification for the type of data embedded to this

frame.

• The Origin bytes declare the origin node. The length of the address depends on the

address type.

• Finally, the payload contains the actual application-specific data.

23
System Design

The ETX and THL are the only fields that change during the forwarding. The origin and sequence

number fields denote a unique origin packet and along with THL denote a unique packet instance

within the network. The nodes keep a small cache with information (origin, sequence number,

THL) about the frames they forward.

There are some ground rules that every node has to follow when receives a valid data frame.

First, the ETX value inside the packet should always be greater than the receiving node's ETX

value, else there is a network inconsistency and the receiving node should transmit a network

frame before forwarding this frame. This rule comes from the fact that the ETX value produced

by the parent’s node ETX plus the link ETX. The link ETX value cannot be zero, therefore a node’s

ETX value is greater than the parent’s. Secondly, if a node receives a data frame and the tuple

(origin, THL, sequence number) exists in the cache, then it has to drop the frame as this is a

duplicate (it has already been received at an earlier point in time). Thirdly, if a node receives a

data frame and the tuple (origin, sequence number) exists in the cache, but the THL value is

different, then there is a routing loop (the node has already received and also forwarded this

packet in the past. To solve this problem, the node transmits a network frame and delays the

transmission of this frame.

4.3.2 Network Frame

The network frame provides routing and duty cycle information to nodes, and it is a local

broadcast transmission. Figure 4-7 shows the structure of the network frame.

Figure 4-7: CTP Network Frame.

24
System Design

The first four bytes are similar to the data frame. The role of all other fields is briefly as follows:

• The Sequence Number byte serve as an identification for this network frame. The origin

node increases it for every generated network frame.

• The Wake Time Left is the time until this node enters the low-power mode.

• The Sleep Time Left is the time until this node enters the normal-power mode.

Since all the synchronized nodes cannot receive or send frames while operating in low-

power mode, this field contains the sleep period of the current cycle. On the other hand,

the coordinator remains active and uses this field to inform a new node about the time

that he must wait until the network will be in an active state.

• The Sleep Time bytes declares the next cycle configuration for the sleep period.

• The Wake Time bytes declares the next cycle configuration for the wake period.

• The Parent bytes contain the address of the parent node.

Each node needs to receive at least one network frame to join the network. When a node receives

a network frame, it compares the Sleep Time and Wake Time values with his own. If the

configuration has changed, the node must transmit a network frame to notify the other nodes.

When a node receives a network frame, it must update his routing table and calculate the new

ETX value. If this is significantly less than the old ETX value, transmits a network frame to notify

the other nodes.

When a node receives a network frame with the routing pull bit set, it transmits a network frame.

Nodes use an exponentially increasing timer to transmit network frames. If for any reason a node

has to transmit a network frame, it resets the timer.

4.3.3 Command Frame

The command frame is used to send commands and receive the result. The coordinator is the

only node able to send new commands.

When a node receives a command frame, it compares the target address with his own. If it is the

same, the node executes the command and generates a command reply. Else, the node transmits

it with local broadcast. The command replies are transmitted to the parent node using unicast

transmission, like a data frame. Figure 4-8 shows the command frame structure.

25
System Design

Figure 4-8: CTP Command Frame.

The first four bytes are the same as the data frame. The role of all other fields is briefly as follows:

• The THL (Time Has Lived) byte is the number of hops for this path. When a node generates

a command reply, it sets this to zero. Every other node in the routing path increases it by

one. If this is a command request, this field is zero.

• The Sequence Number byte serve as an identification for this command frame. The

coordinator increases it for every generated command frame.

• The Read bit denotes if the coordinator request to set or read the value of the command

register.

• The Command ID byte contains the command identification.

• The Target Node bytes are the address of the target node.

• The Parameter byte contains the command’s parameter. If this is a command reply, this

field contains the length of the reply.

• The Response Payload bytes contains the command reply. The command request does

not use this field.

There is a small cache to recognize and ignore duplicate command frames using the sequence

number for command requests and THL along with the sequence number for command replies.

When a node receives a command request, it updates the ETX value of the origin node in the

routing table. When a node receives a command reply, it increases the THL value, updates the

ETX value inside the frame with his own, and then sends it to its parent node.

After each transmission, there is a delay to prevent self-interference. The delay depends on the

transmission time. For a transmission time p, the delay is a random number between

(1,5𝑝, 2,5𝑝).

26
System Design

4.4 Command Subsystem

The commands sent by the user are transferred to the coordinator using the UART. The

coordinator is responsible for verifying that the received data compose a valid command, a

parameter and the target address. The target may be a specific node or all the nodes.

There are two types of command frames the command request and the command reply. The

command request is used to send a command to the target node. The command reply is used by

the target node to send a response back to the coordinator.

The command request is transmitted with broadcast and contains the sequence number, the

read field, the command ID, the target node, and the parameter. The command reply is

transmitted with unicast and contains the THL, the sequence number, the read field, the

command ID, the target, the response length and the response. Both instances contain the frame

control byte, the ID and the ETX field. To distinct the two instances, the first bit of the command

ID is 0 for command request and 1 for command reply.

Figure 4-9: Command transmission from the user to the device.

Figure 4-9 shows the command transmission from the user to the target node and the command

reply back to the coordinator. The command from the user is received by the coordinator and

the command frame is constructed. Then it is transmitted with broadcast from the nodes. The

target node receives the command request, generates the command reply and sends it with

unicast to the coordinator.

27
System Design

4.5 Duty Cycle

The coordinator oversees the operation of duty cycle and is the only node that can change the

sleep time and wake time. All other nodes try to synchronize their clocks, to maintain a global

network state. Figure 4-10 shows the coordinator’s process.

Figure 4-10: The Coordinator’s duty cycle.

Four variables are used to drive system operation. The wake time (WT) and sleep time (ST) are

the times for the new cycle. The operational wake time (OS) and operational sleep time (OS) are

the times of the current wake and sleep period. At the start of the cycle, OS and OW take their

values from ST and WT, then a timer counts for OW time. At the end a handler function changes

the state to sleep state, and the timer counts for OS time.

The coordinator sends periodically network frames during the wake network state, containing

the ST and WT for next cycle, the wake timer value until the network state changes and the

current OS value.

28
System Design

A node synchronizes when receiving one network frame from the coordinator or any other

synchronized node. This is done by setting the timer values as temporary wake and sleep period,

and the WT and ST for the next cycle.

Synchronization of a node during sleep network state is possible only by the coordinator. A new

node that joins the network, sends a network frame requesting routing information, and the

coordinator replies with another network frame containing the ST, WT, the wake timer value,

that is zero as the network is in sleeping state and the sleep timer value. The new node uses the

sleep timer value to wait until the start of the next cycle.

The clocks of the nodes may drift in time, possibly at a different rate. To compensate such drifts,

nodes estimate the difference between their clocks and the Wake Time Left value that exists in

every received network frame. If the difference is greater than a threshold, the nodes will correct

their clock next time they receive a network frame from their parent node, by adjusting the

remaining wake time. In this way, each node remains synchronized with its parent node.

29
System Implementation

Chapter 5 System Implementation

5.1 Hardware

The system includes two types of nodes, the coordinator and the ordinary nodes. All nodes have

an RF module to communicate with each other. In addition, the coordinator needs at least one

USB port to communicate with an external computer, such as PC, and an optionally second one,

can be used to print runtime logs (the logging interface implemented by the OS uses the

debugger’s USB port).

The current implementation uses the NUCLEO-L496ZG platform [13], [14] as the coordinator, and

the NUCLEO-L476RG and NUCLEO-F401RE platforms [15], [16] for the nodes. All platforms are

supported by Zephyr OS. The radio module used in this implementation is the Microchip

MRF24J40MAT-I/RM, which needs a suitable driver to be used with Zephyr OS.

Figure 5-1: Left the Nucleo-L496ZG and right the Nucleo-L476RG.

Figure 5-2: MRF24J40MAT-I/RM.

The NUCLEO-L496ZG board features an ARM Cortex-M4 based STM32L496ZG MCU, with 1MB

flash memory and 320KB SRAM, USB OTG 2.0 ports and supports up to 20 communication

interfaces. The NUCLEO-L476RG board features an ARM Cortex-M4 based STM32L476RG MCU,

with 1MB flash memory and 128KB of SRAM and up to 18 communication interfaces. The

30
System Implementation

NUCLEO-F401RE board features an ARM Cortex-M3 based STM32LQFP64 package with 512KB

flash memory and 96KB of SRAM. All boards have integrated the ST-LINK debugger/programmer

for easy access.

Figure 5-3: Nucleo Boards Layout.

The Microchip MRF24J40MAT-I/RM [5], [17] is a 2.4 GHz IEEE 802.15.4 compliant RF transceiver

module. It is compatible with ZigBee®, MiWi™, MiWi™ P2P and Proprietary Wireless

Networking Protocols. It has a small size (7.8 mm x 27.9 mm), integrated crystal, internal

voltage regulator, matching circuitry and a PCB antenna, as shown in Figure 5-4. The module

has a hardware CSMA-CA mechanism, an automatic acknowledgment response and an FCS

check. It also supports all CCA modes and provides estimates of RSSI and LQI. It is also capable

of automatic retransmission and features a hardware security engine.

Figure 5-4: MRF24J40MA layout.

31
System Implementation

The radio module is connected to the nucleo boards via a 4-wire SPI interface and has 3 more

pins, the interrupt, the wake and the reset, as shown in Figure 5-5. The interrupt pin is used to

trigger the interrupt function of the driver. The wake pin is used to put the module to low-power

mode and the reset pin to do a hard reset when this is necessary.

Figure 5-5: MRF24J40MA pin layout.

5.2 Software Architecture

The coordinator and the ordinary nodes both follow the same software architecture, which

comprises three layers, as shown in Figure 5-6.

Figure 5-6: Software Architecture.

32
System Implementation

5.2.1 MRF24J40 Driver

The bottom layer includes the radio device driver that is responsible for communication with the

radio device and the network layer. The driver is implemented using the C language, and the

hardware is imported to the operating system using device-tree bindings and kernel

configuration described with YAML language and Kconfig symbols.

The driver includes two preemptible threads, the first initializes and controls the radio device,

and the second receives incoming frames and stores them temporarily. There is also a worker

thread that triggered after the frame reception. The worker thread is responsible for verifying

that the received frame is a valid frame, allocating the memory needed and notifying the network

layer.

The radio driver also provides an API to network layer that includes the following functions:

• The Transmit Function transfers the packet to radio device and returns the result from

the interrupt handler. The transmission is considered as failed if an expected

acknowledgement is not received within the expected time window or the radio device

reports that channel is busy.

• The Start and Stop Functions put the radio device in normal and low-power mode,

respectively.

• The Filter Function changes the IEEE 802.15.4 configurations like the address or the PAN

ID.

• The CCA Function performs an energy detection on the channel.

• The Get Capabilities Function reports the radio module specifications to the network

layer.

Figure 5-7 shows the internal structure of the driver. Colored with green are the major

components like thread and handler functions. Colored with blue are the relevant libraries,

interfaces and data structures. Colored with red is the hardware.

33
System Implementation

Figure 5-7: Radio Driver Internal Structure.

5.2.2 Network Layer

The Network layer includes the IEEE 802.15.4 drivers and the network interface. The

implementation is based on the existing infrastructure of the operating system, with a few

extensions in order to better support this particular type of network. The API consists of the

following functions:

• The Init function is called from the protocol level and initializes the network interface and

the IEEE drivers as a non-beacon IEEE802.15.4 network.

• The Send function is called from the protocol level to send a packet. It takes as a

parameter the payload of the packet and creates the MAC header. Then the MSDU is

passed on the driver layer.

• The Receive function is called from the driver layer when a new packet is received. The

function checks and decomposes the packet. If it is a valid MAC frame, the functions push

the packet to the RX FIFO queue.

• The Enable function can be used to enable or disable the network interface.

34
System Implementation

5.2.3 Protocol Layer

The protocol layer is responsible for the CTP routing algorithm, the duty cycle and either the data

collection (normal nodes) or the communication with the PC (coordinator). This layer

implemented using the C language. Figures 5-8 and 5-9 show the internal structure for this layer.

It consists of three threads, described in the following.

Figure 5-8: Internal structure of a normal node.

Figure 5-9: Internal structure of the coordinator.

35
System Implementation

Figure 5-10: Protocol thread diagram.

36
System Implementation

The first thread implements the basic functions of the CTP protocol. It receives and decodes

incoming frames from the lower layer, constructs new frames and stores them to the TX queue,

maintains and synchronizes the duty cycle and executes received commands. Incoming frames

are stored in a lower level FIFO. As shown in Figure 5-10, the protocol thread pulls the new frame

and compares the THL, sequence number and origin node with corresponding values in cache.

This procedure reveals if the new frame is a duplicate, or if there is a network inconsistency. For

incoming data frames or command replies, the packets are added to TX FIFO to be forwarded

from the TX thread. For incoming network frames, the thread compares the wake time left to

find the drift and updates the duty cycle configurations (sleep time and wake time). For command

frames targeting other nodes, the frames are added to TX FIFO. If the target is this node, the

thread executes the command and a new frame (command reply) is constructed.

Figure 5-11: TX thread diagram.

The second thread or TX thread, shown in Figure 5-11, pulls frames from the TX FIFO and

transmits them using the network’s layer functions. For each unicast transmission, the ETX value

37
System Implementation

is updated. If a unicast frame cannot reach the destination, the TX thread tries one more time. If

it fails, transmits a network frame, waits for incoming network frames to update the parent node

and then retries. To avoid transmissions at the end of the wake period, the thread stops

transmitting new frames, approximately one second before the transition to low-power mode.

When the network operates in low-power mode, only the coordinator is able to transmit network

frames to synchronize new nodes.

The third thread for a device that operates as an ordinary node is used to collect measurements

from the sensors and store them in a queue. Then waits until the next cycle. It is active only for

a brief period in each cycle. In the coordinator, the third thread is used to establish

communication with the PC, via a UART, and to transfer incoming data and command replies. The

incoming command request from the user are decoded and added to a command queue.

38
Experiments and Evaluation

Chapter 6 Experiments and Evaluation

6.1 Power Consumption

The power consumption of a node can be broken down to the consumption of the micro-

controller and the consumption of the radio module. To measure the consumption of the micro-

controller, we remove the JP6 (IDD) jumper on the top side of the nucleo board and then connect

an ammeter. To measure the consumption of the radio module, we connect the ammeter

between the nucleo device and the radio device.

There are three execution phases, each one with different power consumption: (i) the RX phase,

when the radio device waits for or is receiving incoming frames; (ii) the TX phase, when the radio

device is transmitting frames; (iii) the sleep phase, when the radio device is not operating and

the MCU enters a low-power mode. Figure 6-1 shows the power consumption for each phase.

Figure 6-1: With blue the power consumption of the radio device in each phase. With red the power

consumption of the nucleo board.

The power consumption for the sleeping period is relatively low and can be further improved, if

the MCU enters the deep sleep mode

39
Experiments and Evaluation

6.2 Topology

As power consumption depends on the total number of transmitted frames, the network

topology is a significant factor for network performance.

6.2.1 Star Topology

First, an evaluation is conducted using a star topology, as shown in Figure 6-2. In this case, three

nodes communicate directly with the coordinator.

Figure 6-2: Network Topology.

We measure the traffic of each node in each wake period. Figure 6-3 shows the results. All nodes

send at least one data frame in each wake period. The spikes are network frames send from the

nodes to inform their neighbors about their ETX values. As time passes by and the network

becomes stable, between the 7th and 21st wake period, the transmission of network frames

becomes less frequent.

40
Experiments and Evaluation

Figure 6-3: Total number of transmitted frames for each node.

At point A, we change the duration of the sleep period of the network, thus each node transmits

network frames. At point B we change the duration of the wake period and, as expected, the

nodes send network frames frequently. Finally, at point C, the old coordinator is replaced with a

new one, which has different sleep settings, while the old coordinator is removed from the

network, as shown in Figure 6-4 (i).

Figure 6-4: Network topology while replacing the coordinator.

41
Experiments and Evaluation

The new coordinator transmits a network frame. All nodes take the new duty cycle settings from

the new coordinator and transmit network frames to inform their neighbors. However, for a

while, nodes 1-2-3 keep as their parent node the old coordinator because the last ETX value that

each node had for the old coordinator is equal to the estimate for the new one. This changes as

they are trying to send data frames and fail. The estimated ETX value increases, causing more

network frames to be transmitted in order to find an alternative route. At this point, the estimate

ETX value for the old coordinator is higher than the estimate for the new one, that causes the

change of the parent node.

Interestingly, after nodes update their parent, node 3 selects node 2 as its parent node (instead

of the new coordinator), thus it appears to be 2-hops away from the new coordinator, as shown

in Figure 6-4 (ii). This can be explained as follows. When the node 3 requests additional routing

information, it first receives the network frame from node 2, which it sets as its parent.

Subsequently, it receives the network frame of the new coordinator, but the estimated ETX value

is not low enough to change its parent from node 2 to the new coordinator. From that point,

node 2 has to forward the incoming data frames of the node 3, which explains the increase in the

number of frames sent by it.

Figure 6-5: ETX estimation of each device. The spike is the moment that the coordinator is replaced. For a
moment, the ETX value increases as they cannot send data frames. As they select the new coordinator as

their parent node the ETX value decreases again. The Node 3 select another node as the parent node,
which explains the higher ETX value.

The ETX value of each node is shown in Figure 6-5. Every node starts with ETX 1. Until the replace

of the coordinator, there are no transmission failures, thus the ETX is stable. After replacing the

coordinator, every node transmits network frames and synchronizes with the new duty cycle,

without changing their parent node. All nodes maintaining an ETX value for the new coordinator

42
Experiments and Evaluation

that is equal to the old. The following failed data frame transmissions, causing the ETX value to

grow (which is the estimated value for the old coordinator) and as a result, nodes request

additional routing information. At 29th wake period, they change their parent and the ETX value

becomes again 1 as there is no failed transmission to the new coordinator. For node 3 which

chooses node 2 as a parent node, the ETX value fluctuates for a few cycles, because of the

network frame reception rate, before it stabilizes to a higher value than other nodes due to the

extra hop that is made to reach the new coordinator.

6.2.2 Chain topology

In the next experiment, we use a chain topology where each node has a different hop distance

to the coordinator. The topology is shown in Figure 6-6.

Figure 6-6: Chain topology.

In this case, each node must forward to the coordinator incoming frames sent by its immediately

preceding nodes. The total number of transmitted frames for each node is shown in Figure 6-7.

Figure 6-7: Total Number of transmitted frames.

As expected, the nodes closer to the coordinator transmit more frames. After synchronization,

there are two small spikes, at 4th and 8th wake period, caused by network frame transmission. At

the points A and B, we send a network command to change the sampling rate of all nodes. The

43
Experiments and Evaluation

purpose of the command transmissions is to evaluate the reaction of the network when they are

sent. The command frames cause the two spikes at the points A and B, because they are

forwarded using both broadcast (to forward the command request to the network) and unicast

transmissions (to send the command reply to the coordinator). Between the 10th and 26th wake

period, the nodes are not transmitting network frames, because the two command requests

contain routing information. At point C, we change the sleeping period and the nodes send a

network frame. Node 1 failed to transmit a data frame and requests new routing information,

thus the total number of transmitted frames of the nodes in range of node 1, slightly increases

too

Figure 6-8: ETX Estimation.

This can be seen in the ETX value of each node in Figure 6-8. The ETX value of node 1 after the

failed attempt to send the data frame, at 27th wake period, slightly increases, and subsequently

the ETX value of the other two nodes, because node 1 exists in their route to the coordinator.

6.3 Throughput

In this experiment, the system throughput is measured. The topology includes two ordinary

nodes in range of the coordinator, as shown in Figure 6-9. Each node tries to send the maximum

number of frames in each cycle. To avoid unbounded memory usage/allocation, the nodes

produce a new frame only after the successful transmission of the previous one. If a transmission

is unsuccessful, the node tries to send it again.

44
Experiments and Evaluation

Figure 6-9: Test Topology

The produced frames are 128 bytes long with an application payload of 108 bytes. The rest 20

bytes of each frame are the IEEE 802.15.4 header, the CTP header and the FCS, as shown in Figure

6-10.

Figure 6-10: Data Frame Length.

The number of frames that can be transmitted depends on the wake period of the network,

therefore the test was repeated for wake periods of 10, 15, 20 and 25 seconds. To calculate the

system throughput, we use the payload length of the total number of frames send by the two

nodes. Figure 6-11 shows the results.

Figure 6-11: Throughput during different wake periods.

The results show that increasing the duration of the wake period generally leads to a small boost

in throughput. This is because a small part of the wake period not used to send data but it is

45
Experiments and Evaluation

necessary for the system in order to maintain synchronization between the nodes, either by

sending network frames or by preventing the nodes to send frames right before the transition to

low-power mode. As wake period increases, the amount of time where the node is free to send

data frames increases too and the overhead becomes less significant, leading to higher

throughput.

To support networks with large traffic, the increase of the wake period can achieve the desire

outcome but lead to higher power consumption. By using the wake periods mentioned before, a

sleep period of an hour and a typical AA battery of 2100 mAh, the number of continuous

operating days drops from 292 days for 10 seconds to 197 days for 25 seconds. The other two

configurations last for 252 and 221 days respectively.

6.4 Various other tests

More experiments were performed to test the recovery process of the network, by replacing or

removing nodes. In all cases, the rest of the node adapt to the changes and find another path.

This proves that the protocol is robust.

The duty cycle was tested for various configurations of the wake and sleep period, over an

extended period of time. All nodes and the coordinator had no deviation in their clocks.

In general, the number of the protocol-related frames is relatively low. In addition, the protocol

is address free, meaning that there is no discovery process before data transmissions. During an

experiment with two normal nodes and the coordinator over 360 wake periods, the total number

of transmitted network frames is 40.

46
Conclusion and Future Work

Chapter 7 Conclusion and Future Work

7.1 Summary

In this thesis, a system for WSN is developed as an alternative to other commercial WSN systems.

The system is built using Zephyr OS and comprises 3 layers. The lower layer is the physical layer

that communicates with the radio device to send and receive data. The middle layer is the MAC

layer that uses the IEEE 802.15.4 standard to form and decode the transmitted frames over the

medium. The top layer, which was developed as part of this thesis, implements the CTP protocol,

a tree-based routing algorithm to select and maintain an optimal path for the data flow.

Furthermore, the top layer implements a command subsystem to configure and control the

nodes remotely, a duty cycle subsystem to improve the lifetime of the nodes, and a sensor

subsystem to collect the relevant measurements. The radio module used in this implementation

complies with the IEEE 802.15.4 standard. It offers the low-level control mechanisms like the

CSMA-CA algorithm to sufficient use the medium, the FCS check and the automatic

acknowledgment response to speed up the frame transmission process.

A series of experiments were performed to verify that the system is working under different

topologies and duty cycle configurations. In addition, the recovery process of the nodes was

tested to verify the reliability of the system. Furthermore, metrics like the power consumption,

and the throughput of the system were measured to verify the performance of the network. The

system prototype performed as expected in all cases.

7.2 Possible extensions

A graphical interface could be developed to present the node’s data, communication statistics

and routing position as well as to support the control of the coordinator, beyond the command-

line tool that is used for this purpose in the current prototype.

The UART connection between the coordinator and the computer could be replaced by an

Ethernet cable, and the data transfer could be implemented using a standard web protocol. This

requires a new board for the coordinator node and a web-based interface for handling the

incoming data. The advantage of this approach is that the coordinator could be directly accessed

online, without requiring an intermediate computer.

The experiments show that a better memory handling may increase the performance of the

network as there will be more memory available to handle more outgoing frames. During the

47
Conclusion and Future Work

throughput experiment, this problem introduced a difficulty to support large traffic (a new data

packet is produced only after the previous one is successfully transmitted).

The procedure for maintaining alternative paths can be improved, if a garbage collector removes

all inactive paths. This could reduce the number of network frames needed to find an alternative

path because the routing table would have only recent entries.

Last but not least, data encryption and frame integrity should be integrated to the protocol to

enhance security. The MAC layer offers a complete solution that could be integrated to the CTP

protocol. The drawback is the reduction of the payload size in the frames, since extra bytes are

needed to support the corresponding encoding and decoding procedures.

48
References

References

[1] J. Geier, Wireless LANs, Second Edition. 2001.
[2] “List of IEEE publications - Wikipedia.”

https://en.wikipedia.org/wiki/List_of_IEEE_publications.
[3] E. Engineers, Wireless Medium Access Control (MAC) and Physical Layer (PHY)

Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs), vol. 13, no. 9.
2012.

[4] I. Standard and I. C. Society, IEEE Standard for Local and metropolitan area networks--
Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs), vol. 2011, no.
September. 2011.

[5] Microchip, MRF24J40 Data Sheet. 2008.
[6] “Zephyr Project | Home.” https://www.zephyrproject.org/ .
[7] “GitHub - zephyrproject-rtos/zephyr: Primary Git Repository for the Zephyr Project.

Zephyr is a new generation, scalable, optimized, secure RTOS for multiple hardware
architectures.” https://github.com/zephyrproject-rtos/zephyr .

[8] “Zephyr Project Documentation — Zephyr Project Documentation.”
https://docs.zephyrproject.org/latest/index.html .

[9] R. Fonseca, O. Gnawali, K. Jamieson, and S. Kim, “The collection tree protocol (CTP),”
TinyOS TEP, no. January 2006, pp. 1–7, 2006.

[10] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis, “Collection tree protocol,”
Proc. 7th ACM Conf. Embed. Networked Sens. Syst. SenSys 2009, pp. 1–14, 2009, doi:
10.1145/1644038.1644040.

[11] O. Gnawali, R. Fonseca, K. Jamieson, M. Kazandjieva, D. Moss, and P. Levis, “CTP: An
efficient, robust, and reliable collection tree protocol for wireless sensor networks,” ACM
Trans. Sens. Networks, vol. 10, no. 1, 2013, doi: 10.1145/2529988.

[12] A. Woo, T. Tong, and D. Culler, “Taming the underlying challenges of reliable multihop
routing in sensor networks,” SenSys’03 Proc. First Int. Conf. Embed. Networked Sens.
Syst., pp. 14–27, 2003, doi: 10.1145/958491.958494.

[13] STMicroelectronics, “Getting started with STM32 Nucleo board software development
tools,” no. January 2016, p. 22, 2016, [Online]. Available: www.st.com.

[14] A. Analysis and U. Manual, “User Manual User Manual,” vol. 3304, no. January, pp. 1–
148, 2012.

[15] S. T. M. N.- Mb, “UM1724 User manual STM32 Nucleo-64 boards (MB1136),”
SpringerReference, no. April 2019, p. 69, 2011, doi: 10.1007/springerreference_28001.

[16] R. B. J. Brinkgreve and S. Kumarswamy, “Reference Manual Reference Manual,”
Technology, vol. 1, no. November, pp. 720–766, 2008, doi: 10.1093/cid/ciq238.

[17] M. Technology, “MRF24J40MA Data Sheet,” Technology, 2008.

