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Abstract

With the ongoing development in the telecommunications field, new technologies emerge,
raising the bar in security demands.The Internet of Things (IoT), advancement in satellite,
civil and military communications provide applications sensitive to adversarial attacks. In
this paper, we explore the concept of signal classification as a means towards transmitter
configuration identification. The topics of modulation and number of transmitter antennas
classification are initially examined independently and then combined in a joint classifier,
able to achieve accuracy up to 90% in certain Signal to Noise Ratio (SNR) conditions. To
achieve these results, two different types of classifiers, equipped with a variety of Machine

Learning (ML) algorithms, are proposed based on the way the antennas are classified.
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Iepiinyn

Me 1t oAoéva cuveyOUEVT aVATTLEN GTOV TOUEN TOV TNAETIKOWOVIDV, VEES TEXVOLO-
Yieg avadvOVTAL Kot QVEAVOVVY TIG OMOUTNGELS 6TOV TOUEN TNG aopaielns. To AwadikTvo TV
[Ipayudtov (Internet of Things), 1 TpO0O60G GTIC SOPLPOPIKES, TOMTIKES KOl GTPUTIWTIKES
EMKOWVOVIES TapEYOLV EQUPLOYES evaiotnTes o exBpikég embéoelg acpaieiog. e avTo TO
apBpo, diepeuvoipe TNV Evvola TG TaSvOUNoNg ONUATOS MG LEGO Yol TV OVOLYVAOPLoT O10-
uopemong toumov. Ta OEpata g S1pdpPMONG KoL THG KOTIYOPLOoToinomg Tov aptipov Tov
KEPOLMV TOUTOV, £E€TAlOVTaL apyIkd aveEdptnTo Kot 6T cLVEXEL cuvOLAlovTal 6E Evay
Kowo ta&vounty], wovo va emttiyel akpifeta €wg kot 90 % og opiopéveg cuvinkeg Adyov
onpatog mpog BopvPo (Signal to Noise Ratio). ['a va emttevyBovv avtd To0 amoteAécpata,
TpoteEivovTal 000 JPOPETIKOL TUTTOL TOEWVOUNTOV, EEOMMGUEVOL IE ol TotKIAlo adyopi-
pnov Machine Learning (ML) Bacilopevol otov 1pdmo katnyoptomoinong tov apbiyod tov

KEPOLDV TOUTOV.
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Chapter 1

Introduction

Classification of wireless communication signals is a multidimensional concept with em-
phasis on the classification of the way that the transmitted signal is modulated. While most
of the related work focuses on the latter part, it is important to think of signal classification
as a potentially multi-step process.

In this thesis, we examine the potential of deep learning in a blind scenario. In that way,
both the modulation classification and the classification of the number of Tx antennas prob-

lems are examined.

1.1 Automatic Modulation Classification

In a modern communications system, the type of modulation used has a great impact on
various aspects of its performance and security. As mentioned in [2], different modulations
provide different levels of noise immunity, data rate, and robustness in various transmission
channels. In order to demodulate the modulated signals and to recover the transmitted mes-
sage, the receiving end of the system must be equipped with the knowledge of the modulation
type. However, that knowledge is not to be taken for granted. In that case, the receiver is to
be considered as blind and new methods of demodulation should be taken into account.

Automatic Modulation Classification (AMC) is increasingly important as the number and
sophistication of digital signaling systems increase [3]. That results in a great need of having
reliable intelligent models to distinguish between various signals. AMC’s ultimate goal is
to detect and classify the way an unknown received signal is modulated. In that way, a so

called blind receiver can guarantee the correct demodulation and, in some cases, the recovery

1



2 Chapter 1. Introduction

of the transmitted signal. In the real world, applications that require a form of modulation
classification can be found in both civil and military environments.

In a civil scenario, AMC can be used in applications such as Link Adaptation. Consider-
ing a LA scene, where having matching modulations is of high importance, the transmitter
can be replaced by a adaptive modulation unit. Even though LA seems to be the most im-
portant of AMC'’s civil applications, in [4] the authors examine the modulation classification
problem for a distributed wireless spectrum sensing network. In their work AMC is an inte-
gral part of spectrum enforcement since such a classifier can assist in identifying suspicious
transmissions.

Research in the military scene establishes AMC as an important asset in the field of Elec-
tronic Warfare (EW). The applications vary from recovering the transmitted signal between
adversary units to even locating them. For example, in [J], it is mentioned that EW equipment
should be capable of not only detecting and identifying the received signal, but locating it as
well. In that way, jamming responses and countermeasures can be generated efficiently. An
example of a detection and Electronic Attack (EA) application in a military scenario can be
found in Figure [1.1].

The AMC scheme is well documented throughout the available literature, since plenty
of research over the years is focused on recognizing the modulation type of an incoming
signal. In [6], the reader can have an extensive report on numerous AMC approaches and
applications. Most of the work is focused on the different approaches on modulation clas-
sification. The differentiation between various methods proposed, can be found mainly in
the algorithms proposed, as well as in their input type. With the continuous development of
Deep Learning algorithms (DL), many of their applications can be found in the physical layer
[7]. A number of DL methods, both supervised and unsupervised, where developed towards
AMC [8,9,]10,11,12,13]. In[3] and []1]], hierarchical classifiers are proposed using statistical

features extracted from the incoming signal.

1.2 Number of Antennas Classification

A second idea related to signal classification, that is studied to a lesser extend, is the identi-
fication of the number of antennas used by the transmitter. This knowledge can have a crucial

impact on the modulation classification performance. For example, consider scenarios where
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Figure 1.1: Jamming EA application

the transmitter uses multiple antennas. If a single antenna is present in the receiver, symbol
interference is inevitable. Thus, the classification performance might be affected negatively.

In scenarios where the communication between the transmitter and the receiver is es-
tablished, this type of classification could be vital regarding the energy consumption levels.
When Maximal-Ratio Combining (MRC) is not necessary, using a small (or even a single)
number of antennas can be proven very energy-efficient. In Multiple-Input and Multiple-
Output (MIMO) systems, dynamic antenna selection is another method that can be helpful in
managing energy efficiency [[14]. Additionally, receiving antenna redundancy can be proven
useful in some applications. Moreover, the design of the preamble structure for MIMO chan-
nel estimation in an ad-hoc system depends on the number of transmit antennas in the system
[15]. In military communications, this scheme introduces more challenges regarding cogni-

tive radios and surveillance systems.

1.3 Related Work

Signal Classification is not a new challenge in the Communications and ML fields. In

space missions that are being developed with automation as an essential part of them, the
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creation of autonomous radios that can receive signals without a priori knowledge of their
characteristics is of high importance. This is evident in []16].

Regarding the number of antennas detection procedure, approaches exploiting pilot pat-
terns have been followed in []17, [18, [15] examining cooperative scenarios with cognitive
receivers. In a non-cooperative scheme, this type of classification is present in [|19] and done
with the use of the Akaike Information Criterion (AIC) and the Minimum Description Length
(MDL) estimators. Although both AMC and antenna detection are studied separately, to our
knowledge, only one work examines these two problems in a joint manner. In their work [20],
Merve Turan et al. proposed a decision theoretic approach for spatial multiplexing MIMO
systems considering the modulation classification and the antenna detection as a joint prob-
lem in a non-cooperative scenario. The aforementioned joint problem is dealt with by mini-

mizing the extended MDL criterion.



Chapter 2

System Model

2.1 Modeling the Communications System

Over the past decades, Wireless Communication has evolved in a great extend so as to
meet an on-going demand for high and efficient data rates. Many systems have emerged
having both indoor and outdoor applications. That transition, from wired to wireless com-
munication, added a whole lot of new parameters in the modeling equation. From weather
conditions, to the relative motion between the transmitter and the receiver, there is a plethora
of characteristics that affect our signal. It is, thus, understandable that the knowledge of the
aforementioned characteristics plays a major role in not only theoretically modeling the sys-
tem but also in designing it. In general, when trying to model a wireless Communications

System, one can divide it into three main parts:

* the Transmitter
* the Channel and

» the Receiver

That high level configuration, which we are using throughout this paper, can be seen in
Figure P.1|. Based on the figure, a Communications System can be mathematically modeled
as follows

y(t) = H(t)x(t) +n(t)
In the above equation, y(¢) can be perceived as the received signal at the 7-th sampling time.
It is the result of the channel’s time variant modification, H(¢), of the transmitted signal, =(t),

plus the Additive White Gaussian Noise (AWGN), which is denoted as n(t) in our equation.

5



6 Chapter 2. System Model

Figure 2.1: Simplified block diagram of a Communications System

Raw bits are encoded by the transmitter. In our case Grey encoding is used. Next, the
bits are converted to complex baseband symbols. Both the real and imaginary parts of the
baseband signal are filtered through the transmitter (Tx) filter. For this work the filter is
chosen to be a square pulse, where its impulse response is determined by the oversampling
factor and its amplitude is adjusted so that the energy per bit is constant regardless of the
oversampling selected. The next step is the conversion of the previous information into an
analog waveform suitable for transmission. That process, where one of the properties of the
periodic analog signal (the carrier wave) like amplitude, phase or the frequency is altered
according to the message signal (baseband signal) is called modulation.

A transmitted signal, being an electromagnetic Radio Frequency (RF) one, is highly af-
fected by the medium that it is transmitted through. As a result, it might be reflected, diffracted
or scattered. Other characteristics of the medium that highly affect the signal can be traced in
the atmospheric conditions, the relative mobility between the transmitters and the receivers,
types of antennas used etc. In [21], David Tse and Pramod Viswanath refer to the fading phe-
nomenon as one of the two most fundamental aspects of wireless communication. The second
aspect is the interference between wireless users as a result of the non existent isolation in
the wireless point-to-point communication. Thus, the reader can realise the importance of
modeling the channel. In the applications examined though out this paper, the existence of a
fading channel, on its own, adds another level of complexity to the classification problem.

We consider flat fading channels which means that the channel can be modeled with a
single tap, while the PDF of the random channel is assume to follow a Rayleigh distribution
[21]. This channel is modeled as a complex number composed by two zero mean Gaussian
random values. In the case where both the transmitter and the receiver have one antenna
(as can be seen in Figure P.2), the channel is represented by a scalar random complex value

h = a + bj. Assuming that a and b are independent normal random values, it stands that
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h ~ CN(0, \/%) A channel like the one mentioned is also referred to as Single Input and

Single Output (SISO) channel.

Figure 2.2: Topology of a SISO channel.

Thus, when transmitting K symbols, the vectorized representation of the channel is the

following:
Y S1 n
Y- S n
2| _ L (t) 2 n 2
Yk SK nkg

When the transmitting and the receiving part of the system are equipped with multiple
antennas, the system is characterized as a MIMO one. Each set of antennas is modeled with
a new complex number /;; and overal MIMO model can be seen in Figure R.3. In this case

H(t) isan N x M matrix. We, thus, have:

(ha(t) hs(t) oo haw()
o - hgl'(t) hgg.(t) hw(t)
_th(t) hNg(t) hNM(t)_

The corresponding vector form of the channel is:

Yi hn(t> hlg(t) e th(t) T n;
Yit1 ho1(t)  hoa(t) ... ham(2) Tht1 Nit1

Yien—1] hni(t) hweo(t) ... hawm(t) | ThiM—1 | Mt N1
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One can easily realize that the defined H(¢) matrix will be square when the communi-
cating parts of the system use the same number of antennas. Additionally, in that case, the
received signal vector has the same dimensions as the originally transmitted one. On the other
hand, when an inequality between the number of antennas is spotted (M # N), the corre-
sponding ’channel” matrix will be orthogonal. In the course of this paper, there are cases that
concern a type of system where the number of transmitting antennas is /V, while the receiving
part is equipped with only one. This system is known as a Multiple-Input and Single Output
(MISO) system. Hence, the channel is modeled as a 1 x N vector, that is multiplied with the
corresponding N symbols. Note that this type of channel is prone to symbol interference at
the receiver. Modeling this special case in vector form is a subtractive version of the MIMO

one.

Tk

Tk41

Y; = [hll(t) hlg(t) th(t) : +n,;

Tr+M-1

Figure 2.3: Topology of a M x N MIMO channel.

It is, of course, worth noting that the effect of the channel (i.e multiplying with a complex
number) can be found both in the amplitude and the phase of the transmitted signal. The reader

can observe this effect in Figure 2.4 where phase shift illustrated for a QPSK modulation.
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Figure 2.4: The effect of fading in the QPSK constellation

In this paper, the thermal noise that affects the transmitted signal is considered to be
Additive White Gaussian Noise (AWGN). As such, n(-) is a zero mean Gaussian random
value ,n(-) ~ CN (0, Ny), which is uncorrelated with {x; }. Another property induced by the

fact that the thermal noise is white, is that F[n(¢;)n(ty)] = 026(7), where 7 = t5 — t;.

2.2 MATLAB Based Simulator

Throughout this work, the feature extraction process is solely based on the raw I/Q data
composing the received signal y (t). Therefore, the creation of a corresponding simulator cov-
ering the needs of the described system was of high importance. Reflecting the significance
of the channel in a communications system as detailed in P.1], a large proportion of effort was
put into simulating it. Using MATLAB programming language, a combined transmitter and
channel simulator was constructed. During its design, scalability and reusability were largely
considered, as a result of the multiple and different experiments run in the span of this thesis.

A more generalized form of the proposed simulator can be seen in Figure 2.5,

2.2.1 The transmitter

Starting off with the transmitter part of the simulator, the first step of any iteration is
to generate the random bits to be transmitted over the channel. Depending on the type of
the modulation chosen by the user, zero padding is performed in the bit vector if necessary.
Following the zero padding, gray coding is applied just before modulating the bits into the

desired symbols. In this way, the symbol vector x(t) mentioned in is created. It is this
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vector that will later be distorted by the communications channel. An option for Orthogonal
Frequency-Division Multiplexing (OFDM) is also offered but not used in this thesis. In the Tx

Ev and length of

oS

filter, convolution is performed by a square pulse having a magnitude of
0s, where os is the desired oversampling value. The effect of oversampling at the transmitter
filter can be observed in Figure P.6. In Table R.1], the reader can have a detailed overview of

the parameters regarding the transmitter part of the simulator.

Figure 2.5: Topology of the Transmitter including the channel.

Figure 2.6: The output of the Tx filter with £, = 1 and os = 5.
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id | Parameter Description

I | Rb Bit rate (b/s)

2 | Eb Energy per bit

3 | os value Oversampling factor

4 | nbits Number of bits to be transmitted

5 | ofdm (Boolean) Use of OFDM

6 | n_subcarriers | No. total subcarriers (without cyclic prefix)
7 | cyclic_prefix | No. subcarriers composing the cyclic prefix

Table 2.1: List of Tx input parameters along a short description.

2.2.2 The communication channel

It is obvious in subsection P.1], that modeling the distortion induced by the communica-
tions system in a fading channel is a crucial part of this thesis. Because of the signal prop-
agation in space, reflections are unavoidable. Consequently, the receiver receives multiple
and delayed distorted copies of the transmitted signal through time. This phenomenon is the
cause of another unwanted event called Inter Symbol Interference (ISI) that negatively ef-
fects the received signal, making the communication less reliable. It is common to simulate
channels as Linear Time Invariant (LTI) systems having certain magnitude and duration. In
this way, each instance of the channel h(t) in a SISO channel, will be a vector containing
the impulse response of the corresponding channel. Thus, the effect of the channel can be
modeled by performing the convolution operation between the transmitted symbols and the
channel impulse response vector. In the case where multiple antennas are present, such as
in MIMO systems, the corresponding convolution procedure can be simulated by equipping
Toeplitz matrices. A corresponding channel response can be examined in Figure 2.7. In this
work, we simplify things by making the assumption of having only Line of Sight (LoS) com-
munication. In this scenario, transmit and receive stations are in view of each other without
any sort of an obstacle between them. This fact cancels the delay spread caused by reflec-
tion in obstacles, annihilating the effect of ISI. Hence, the process of simulating the fading
channel effect is reduced into multiplying x(t) with the corresponding channel’s complex

value.

Following the methodology mentioned in the previous section, the transmitted signal vec-
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ERERN

v

Delay spread

Figure 2.7: Representative impulse response of a frequency selective channel.

tor is shifted and multiplied with the corresponding matrix (MIMO), vector (MISO) or scalar
(SISO) value. This procedure affects highly the dimension of the y vector and might in-
troduce interference from other symbols. Another issue to consider is the alteration of the
communications channel through time. To simulate this occurrence, both the channel period
and the symbol rate are taken into consideration. Simply dividing the channel period by the
corresponding symbol one can provide insight into the number of symbols that will be trans-
mitted during a certain channel state before it changes. As a last step, the thermal AWGN
noise addition is done directly by creating the respective noise vector that matches the di-
mensions of y. A detailed presentation of this simulator’s tunable parameters regarding the

modeling of the channel can be found in Table 2.2.

id | Parameter Description

1 | T channel Channel period

2 | transmitter antennas | No. transmitter’s antennas

3 | receiver antennas No. receiver’s antennas

4 | channel type Channel type

5 | equalization (Boolean) Equalization application

Table 2.2: List of Rx input parameters along a short description.
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2.3 Receiver & Feature Extraction

2.3.1 Receiver Functionality

In this section, we introduce the receiver functionality. The receiver examined in this
thesis does perform any kind of channel equalization or demodulation. This is because our
receiver has no knowledge regarding the used modulation at the Tx. It is important to think
of the receiver as blind having no a-priori Channel Side Information (CSI). Independently
of the application, either trying to identify the transmitter topology or adapt itself to new
transmission protocols, the first task performed by the receiver is feature extraction. Feature
extraction is necessary for the ML or DL algorithms used for the classification process. After
classifying the incoming signal, the receiver will be able to perform other tasks such as de-
modulating the signal, re-configuring itself to match the needs of its communication with the

transmitter and even estimating the channel using pilots induced by a cooperative transmitter.

Figure 2.8: Receiver functionality flow graph.

The signal classification performed by the receiver module is composed of two phases.
In the first phase, the receiver is responsible of classifying the modulation of the incoming
signal. This first step highly impacts the signal classification performance. Having recog-
nized the way that the received signal is modulated, the next step is to classify the number
of transmitting antennas. The proposed hierarchical classification procedure is described in
Figure 2.8. In the next two chapters of this thesis, the two stages of the signal classification
performed by the receiver are examined at first as independent tasks. In Chapter 5, the two

phases are combined into the proposed detector.

2.3.2 Feature extraction

It is well documented that, in general, AMC algorithms can be categorized into two

groups, the Likelihood-Based (LB) and the Feature-Based (FB) schemes. The way in which
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the LB schemes cope with the AMC problem is by equipping methods such as the Generalized-
Likelihood-Ratio-Test (GLRT), the Average-Likelihood-Ratio-Test (ALRT), the Hybrid-Likelihood-
Ratio-Test (HLRT) as well as other variations of the LRT. Regarding the FB approach, a big
advantage in following it is the simplicity of its implementation as well as the performance
which approaches the one achieved by the LB schemes. In [22, 6] one can have a detailed
report on various methods based on the LB approach. A plethora of different features is pro-
posed regarding FB algorithms, ranging from raw signal characteristics [23, 24, 25, 26, 27]
to other statistically extracted features. The latter type comprises of features such as high or-
der moments (HOMs) [28, 3], high order cumulants (HOCs) [29], very high order statistics
(VHOS) [30] and others [31]].

To perform the signal classification in this work, HOCs were used as features fed into the
ML and DL models. HOCs can be thought of as functions containing HOMs. In this work,

HOMs extracted from the unknown received signal are calculated as shown bellow:

My, = Ely"(y")9]

The above equation describes the pth order moment as computed using the complex-

valued received signal y. Continuing, the HOCs expression based on HOMs is described.

Cy = My
Second Order Cumulants

C121 = M21

040 = M40 — 3M220

Fourth Order Cumulants Cy1 = Myg — 3Moyg Moy

Cao = Mo + [ Myo|* — 2M3,

060 — M60 - ]_5M20M4() + 30M230
Co1 = Mg — 5May Myg — 10Mog My + 30M 3 Moy
StxthOrderCumulants Coz = Mgy — 6 Moo Mo — 8 Moy Myy — Moo Mg + 6 M3, Moy + 24 M3 My

Coz = Mgz — 9May My + 12M3, — 3MogMyz — 3 Moy My

+18 Moo Moy Moo
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As proposed in [32], HOCs are normalized having each cumulant raised to the power of
%. Additionally as done in [|I]], the magnitudes of the corresponding cumulants are used as

actual input to the ML and DL models.

2.3.3 Dataset creation

The first step of the experiments conducted through chapters 3 to 5, is the simulation
procedure which provides the necessary dataset as described in .3.2. Experiments were per-
formed using two different datasets. Each dataset was produced using 1, 2 and 4 Tx anten-
nas, transmitting 1024 symbols modulated in six different ways. The samples per symbol is
set to one and 600 samples of each modulation and Tx antennas number combination were
taken. The number of Rx antennas equipped is what differentiates the two datasets. In the
first dataset the receiver is equipped with one antenna, while in the second one two Rx an-
tennas are present. In addition, the number of channel realizations is the same for each bunch
of transmitted symbols and equal to 21. For simplicity, we refer to the dataset with one Tx
antenna as Dataset I and use the term Dataset 2 for the one where two antennas are present

in the transmitter. Hence, each one of them has the following form (Table 2.3):

C20 C21 C40 C41 C42 C60 C61 C62 C63 Modulation | Tx antennas

Numerical (Used as input features) Nominal (Used as Classes)

Table 2.3: Dataset description.






Chapter 3

Modulation classification

For this chapter, we first reproduced the work of Abdelmutalab et al [1]. Throughout
their work, a hierarchical structure is presented classifying between six types of modulation.
These six types are: BPSK, QPSK, 8-PSK, 16-QAM, 64-QAM and 256-QAM. Additionally,
a form of preprocessing is applied to the cumulant features other than their normalization.
These obtained features are expanded into a higher dimensional space by a second degree

polynomial fit.

3.1 The Hierarchical Scheme

Due to the hierarchical structure, the multi-class classification procedure is split into sev-
eral binary detection problems. First and foremost, a division is made into the two main
modulation types, PSK and QAM. This is the first step of the classification procedure as can
be seen in Figure B.1].

In the second level, the PSK branch classifier is responsible of distinguishing between
BPSK and the rest of the PSK modulations faced as a single class. Respectively, in the QAM
branch the corresponding classifier distinguishes between 16-QAM and the rest of QAM
modulation types in the same manner. In case the signal is classified as BPSK or 16-QAM,
the classification procedure is completed. Otherwise, an additional binary classification is
performed between QPSK and 8-PSK for the PSK branch or 64-QAM and 256-QAM for the
QAM one.

For the sake of experimenting, different classifiers were used. Firstly, the classifier pro-

posed in [[l]] was examined. During the training phase in each level, the expanded feature

17



18 Chapter 3. Modulation classification

Figure 3.1: The hierarchical scheme proposed in [[1]]

vectors are combined, forming a matrix. Having the appropriate target values, ¢, the goal is to
calculate the classifier weights which are selected to minimize the Mean Square Error (MSE)
as:

wy = argmin ||Vw, — tlH2
wy

Where V' is the matrix containing the expanded feature vectors and wy, the corresponding
level weights necessary for the classification procedure. The above equation can be rewritten

in a simpler way as:

lec =t = wf = VTtl

Note that (-)' stands for Moore—Penrose generalized inverse (also known as the Pseu-
doinverse). For example, the weights that are used for classifying a BPSK signal in the first
second level of the hierarchical scheme are computed as w{ = V' 1¢,. In the testing phase, the

expanded feature vectors are multiplied by each node weights. The class is chosen as:

Class identity | = argmax{s;}
!

Where s; is the product of the expanded feature vector and the corresponding weights.
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Additionally, tests were performed using the k-Nearest-Neighbors (kNN) algorithm. Pro-
posed by Thomas Corver in 1967 [33], kNN is a non-parametric method for classification
and regression. As a classification algorithm, an object is classified by a majority vote of its
k neighbors and it is assigned to the class that is most common amongst them. Moreover, a
number of ensemble ML algorithms were used as well. Ensemble methods use multiple but
finite individually trained classifiers to obtain better predictive performance [34]. Random
Forest (RF) algorithm is an ensemble method suitable for tasks such as classifying objects.
Initially proposed by Tin Kam Ho [35] and later extended by Leo Breiman [36], it consists of
multiple decisions trees. Using bagging and feature randomness when constructing each tree,
the algorithm aims to create an uncorrelated forest of trees whose prediction by committee
is more accurate than that of any individual tree. Extra-Trees (ET), proposed in [37], is an-
other ensemble ML algorithm that was used. Similarly to the RF algorithm, it also combines
the predictions from numerous decision trees, with the difference between them found in the
sampling approach and the selection of cut points in order to split nodes. The third ensemble
method used in our experiments was them Adaptive-Boosting, or AdaBoost. AdaBoost can
be used in concurrence with other classification algorithms, also mentioned as weak learners.
These weak models are added sequentially and trained using the weighted training data until
a given number of learners are created. In the testing phase, predictions are made by calculat-
ing the weighted average of the weak models. Thus, the used classifiers can be categorized

into ensemble and non-ensemble ones as seen in Table B.1.

Polynomial
Non-Ensemble
k-Nearest-Neighbors

Random Forests

Ensemble Extra Trees

Adaptive-Boosting

Table 3.1: List of classifiers used in the experiments.

3.2 Simulations & Results

As mentioned in two types of datasets were used. Notice that even though the num-

ber of Tx antennas is present each one of them, for the modulation classification problem, the
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class is set as the Modulation column. The Tx Antennas column is disregarded in this case.
Regarding the classification methods, kNN was used with the number of neighbors set equal
to one. The RF and ET models were build having each 100 estimators, while the AdaBoost
ones used Decision Trees (having max depth of one) as their base method. Each of them had
a maximum number of estimators being equal to 100.

Splitting the dataset into 60 for training purposes and 40 for testing, we fitted and tested
the suggested algorithms using as input either the extracted cumulants or the extended fea-
ture vectors (referred to as polynomial features). Their performance was evaluated in terms
of accuracy. Indicative accuracy scores for each algorithm on Dataset 1 can be found in Table
B.2. A corresponding accuracy report for Dataset 2 is depicted in Table §.2). It is evident that
all classifiers performed much better in Dataset 2, where the receiver is equipped with two
antennas. The most obvious reason of this happening seems to be the symbol interference
that the receiver suffers in Dataset 1. When the receiver has only one antenna available, sym-
bol interference is inevitable in the cases where the transmitter uses 2 and 4 antennas. For
example in the case where 2 antennas are present in the transmitter, the incoming y symbol
is written as: y; = hq1(t)zy, + hia(t)xy1. Respectively, when 4 antennas are present in the
transmitter, the received y symbol is the derivative of four interfering symbols. This means
that 66% of Dataset 1 contains features extracted from incoming interfered symbols which
alter dramatically the statistical properties of each symbol. On the other hand, Dataset 2 pos-
sesses a much lower percentage of interfered information at 33%. Regarding each classifier’s
accuracy in more detail, the reader can be referred to Figures #.29 and 4.4, The classifiers have
similar performance in Dataset 1, with the worst one being the AdaBoost classifier using raw
cumulant features. RF and ET algorithms presented an almost equal performance either using
raw cumulants or the polynomial features. In Dataset 2, the classifiers achieve higher accu-
racy scores, while maintaining the same behavior. The Polynomial classifier proposed in [[1]]
reports a lower saturation point. At the same time, RF and ET classifiers achieve scores up

to 92%.
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Classifier -10dB | 0dB | 10dB | 20dB
Polynomial 40.46 | 53.45 | 63.24 | 63.47
kNN (Polynomial Features) 38.5 54.97 | 65.74 | 65.74
kNN (Cumulant Features) 38.56 | 54.58 | 65.83 | 66.25
RF (Polynomial Features) 42.66 | 57.89 | 67.66 | 68.26
RF (Cumulant Features) 42.54 | 57.89 | 67.66 | 68.37
ET (Polynomial Features) 42.12 | 57.89 | 67.45 | 68.35
ET (Cumulant Features) 41.78 | 57.52 | 67.54 | 68.07
AdaBoost (Polynomial Features) | 41.55 | 54.81 | 63.93 | 65.34
AdaBoost (Cumulant Features) | 41.18 | 52.1 | 62.47 | 53.65
Table 3.2: Classification accuracy in Dataset 1.
Classifier -10dB | 0dB | 10dB | 20dB
Polynomial 7293 | 84.74 | 87.8 | 87.83
kNN (Polynomial Features) 69.9 85.48 | 90.37 | 90.87
kNN (Cumulant Features) 69.69 | 85.46 | 90.37 | 90.81
RF (Polynomial Features) 74.86 | 87.43 | 91.62 | 92.29
RF (Cumulant Features) 74.02 | 87.4 | 91.29 | 91.99
ET (Polynomial Features) 74.81 | 87.84 | 91.75 | 92.31
ET (Cumulant Features) 74.39 | 87.22 | 91.64 | 92.38
AdaBoost (Polynomial Features) | 73.21 | 85.5 | 89.9 | 91.78
AdaBoost (Cumulant Features) | 73.12 | 84.51 | 90.2 | 90.85

Table 3.3: Classification accuracy in Dataset 2.
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Figure 3.2: Percentage of correct classification plot on Dataset 1
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Figure 3.3: Percentage of correct classification plot on Dataset 2






Chapter 4

Number of Transmitting Antennas

Classification

In this chapter, the concept of the number of Tx antennas classification is introduced. As
mentioned earlier, this type of classification is a crucial part towards the transmitter config-

uration identification.

4.1 Problem Description

Through this scenario, the blind receiver should be able to detect the number of Tx anten-
nas using only the raw I/Q data of the received signal. Two approaches are considered. In the
first, the modulation type is totally ignored and focus is given to the classification of the num-
ber of the antennas only. On the contrary, in the second aspect the modulation type is known,
and the number of Tx antennas classification is performed in a stream of data modulated in
a constant way (i.e. using the BPSK modulation). Thus, one can view the classifier in the
first scenario as a more universal one. In the second scheme, the classifiers are dedicated to
each of the possible modulations present. In this way, to make the antenna detection possible
throughout the second scenario, there must be knowledge on the type of modulation used.
That knowledge can be passed from the transmitter to the receiver in an established commu-
nication scenario, or obtained through the modulation classification procedure described in
Chapter f3|.

Throughout the rest of this chapter, we will refer to the universal classifier scheme as

Scenario 1, and to the dedicated classifier one as Scenario 2

25
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Figure 4.1: A universal classifier approach.

Figure 4.2: Example of a dedicated BPSK Antennas Classifier

4.2 Simulations & Results

Using the datasets mentioned in P.3.3, the goal of this section is to examine the ability of
each proposed classification scheme in detecting the number of antennas used by the trans-
mitter. For both scenarios, kNN classifier was used, having the number of neighbors set to 5.
RF was tested, having 100 estimators, while ET was equipped with 200. Finally, AdaBoost
was used having RF with 100 estimators as its base method. In Scenario 1, the Modulation
column is disgarded completely, as the modulation type of the received signal is not taken
into consideration. On the other hand, in Scenario 2, the modulation type plays a major role
in the construction of the necessary classifiers. Thus, the dataset is split into six groups (the
same number as the number of the available modulations) and each one assists in the creation
of a corresponding classification model. The performance of each classifier is evaluated in

terms of their accuracy as done in the previous chapter.

4.2.1 The Universal Classifier

Using a train-test split of 60%-40%, the classification algorithms were trained on 6480
samples and tested on 4320. It is evident that the ensemble methods (RF, ET, AdaBoost)

performed considerably better than the kNN classifier in both datasets especially in low SNR
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values. Examining the percentage of correct classification plot in Figure §.3, the fact that us-
ing multiple Rx antennas contributes to a higher classification accuracy score is proven. This
is more evident in low SNR values, such as -10, where a rise up to 14.56% in classification
accuracy is spotted. In higher SNR values, such as 20, there is still an important rise of 5.51%
(in the kNN classifier). In table, the reader can have an analytical report of the accuracy scores

in a variety of SNR values.

Classifier | -10dB | 0dB 10dB | 20dB

kNN 56.96 | 75.32 | 85.09 | 85.32
RF 61.82 | 79.37 | 87.12 | 87.52
ET 62.17 | 79.46 | 87.43 | 88.1

AdaBoost | 62.77 | 78.95 | 87.08 | 87.66

Table 4.1: Classification accuracy in Dataset 1 - Scenario 1.

Classifier | -10dB | 0dB 10dB | 20dB

kNN 71.52 | 85.53 | 90.76 | 90.83
RF 7631 | 87.8 | 91.41 | 91.75
ET 76.41 | 88.72 | 92.59 | 92.84

AdaBoost | 75.94 | 88.05 | 91.43 | 92.26

Table 4.2: Classification accuracy in Dataset 2 - Scenario 1.

4.2.2 Dedicated Tx Antennas Classifiers

Even though the Universal classifier proposed in the previous subsection performed con-
siderably well, multiple classifiers dedicated to each of the available modulation scheme were
tested. This leads to the creation of a total of six classifiers for every SNR value. Using the
same split between train and test set as in §.2.1], less data is used in the training process, since
each classifier is trained on 1080 samples and tested on 720. The classifiers were evaluated
in both Dataset 1 and Dataset 2 and analytical accuracy reports can be found in Tables %.3
to #.6. The usage of two antennas by the receiver benefits the QAM modulations to a great

extent (Table §.6) especially in lower SNR values where a rise of up to 45.14% is spotted at
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Figure 4.3: Percentage of Correct Classification in both datasets - Scenario 1.

-10dB. What can be spotted right away, is that the 16QAM modulation achieves a very high
accuracy score, even with the presence of only one antenna in the receiver as seen in 4.3,
Pair-plotting the corresponding features in a concept where the SNR value is equal to —10dB
(Figure [4.7), proved that the features are in fact more distinguishable (as are their distribu-
tions over the available classes) than the ones derived from a BPSK modulated signal (Figure
K.6). Comparing these two pair plots, it is easy to conclude that, through their distributions,

the 16QAM features are more likely to be classified correctly.
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Modulation | Classifier | -10dB | 0dB 10dB | 20dB
KNN 55.5 90.5 | 97.08 | 97.08
RF 60.55 | 93.47 | 97.63 | 97.22
BPSK
ET 60.55 | 93.19 | 97.63 | 98.05
AdaBoost | 60.55 | 9291 | 97.36 | 97.5
KNN 61.94 | 95 9791 | 97.22
RF 64.44 | 95.69 | 97.91 | 97.36
QPSK
ET 63.33 | 95.83 | 98.19 | 97.63
AdaBoost | 63.19 | 95.83 | 97.5 | 9791
KNN 72.08 | 93.75 | 95.83 | 95.13
RF 78.47 | 94.44 | 95.69 | 96.11
8-PSK
ET 78.05 | 94.72 | 96.25 | 95.83
AdaBoost | 77.63 | 94.44 | 96.66 | 96.25

Table 4.3: Classification accuracy in Dataset 1 for PSK dedicated classifiers.

Modulation | Classifier | -10dB | 0dB 10dB | 20dB
KNN 86.52 | 94.72 | 96.52 | 96.94
RF 91.66 | 94.86 | 96.94 | 97.91
16-QAM
ET 91.38 | 95.69 | 97.36 | 97.77
AdaBoost | 91.11 | 95.13 | 97.08 | 97.91
KNN 61.94 | 95 97.91 | 97.22
RF 64.44 | 95.69 | 97.91 | 97.36
64-QAM
ET 63.33 | 95.83 | 98.19 | 97.63
AdaBoost | 63.19 | 95.83 | 97.5 | 9791
KNN 51.8 90.13 | 96.25 | 96.52
RF 56.52 | 90.97 | 95.97 | 97.22
256-QAM
ET 57.63 | 92.22 | 95.55 | 96.94
AdaBoost | 57.63 | 91.52 | 95.83 | 97.08

Table 4.4: Classification accuracy in Dataset 1 for QAM dedicated classifiers.
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Modulation | Classifier | -10dB | 0dB 10dB | 20dB
KNN 52.77 | 94.16 | 98.47 | 99.3
RF 60.41 | 94.58 | 98.88 | 99.58
BPSK
ET 60.69 | 95 98.88 | 99.58
AdaBoost | 60.55 | 96.66 | 98.75 | 99.58
KNN 65.55 | 97.83 | 99.58 | 99.3
RF 72.63 | 97.91 | 99.16 | 99.3
QPSK
ET 71.25 | 98.05 | 99.58 | 99.44
AdaBoost | 71.25 | 97.77 | 99.3 | 99.16
KNN 73.33 | 97.63 | 98.47 | 98.33
RF 79.72 | 97.63 | 98.75 | 98.88
8-PSK
ET 81.66 | 98.19 | 98.61 | 99.44
AdaBoost | 80.55 | 97.77 | 98.61 | 98.88

Table 4.5: Classification accuracy in Dataset 2 for PSK dedicated classifiers.

Modulation | Classifier | -10dB | 0dB 10dB | 20dB
KNN 92.22 | 97.77 | 98.61 | 98.33
RF 94.44 | 98.19 | 98.75 | 98.75
16-QAM
ET 94.44 | 98.61 | 98.88 | 98.61
AdaBoost | 94.3 98.33 | 98.61 | 98.61
KNN 96.52 | 96.8 | 98.19 | 96.94
RF 98.05 | 98.05 | 98.88 | 98.05
64-QAM
ET 98.33 | 98.33 | 98.75 | 98.19
AdaBoost | 97.77 | 97.91 | 98.8 | 98.05
KNN 96.94 | 96.38 | 97.91 | 97.91
RF 98.47 | 98.19 | 99.16 | 98.61
256-QAM
ET 98.33 | 98.47 | 99.44 | 98.88
AdaBoost | 98.33 | 98.05 | 99.16 | 98.61

Table 4.6: Classification accuracy in Dataset 2 for QAM dedicated classifiers.
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Figure 4.4: No. of Antennas Classification in BPSKs modulated signals
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Figure 4.5: No. of Antennas Classification in 16QAM modulated signals
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Figure 4.6: Pair plot of features found in BPSK modulated signals
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Figure 4.7: Pair plot of features found in 16QAM modulated signals



Chapter 5

Joint Classification

In this chapter, the joint nature of signal classification is examined. In Chapters 3 and
H, the problems of modulation and antennas classification, respectively, were addressed sep-
arately as independent procedures. Combining the two procedures, one joint classifier can
emerge. In the following two sections, the two different approaches discussed in Chapter {4

are applied to form each joint classifier.

5.1 Joint Classification Using the Universal Classifier

In this type of joint classification, the two parts composing it can be viewed as indepen-
dent. That is since the antennas detection procedure is not subject to the modulation classifica-
tion results. Thus, as seen in Figure B.1|, during the training stage, both classifiers are provided
with the same training data. What differs their training processes, are the corresponding target
values. In the case of the Hierarchical Modulation Classifier, the target values in the training
procedure are present in the Modulation column of each dataset used. During this procedure,
the Antennas column is ignored. Simultaneously, the training of the antennas classifier is
taking place, this time using the values of the Antennas column as target values.

The independence between these two classifiers is mainly found during the testing phase.
Once again, provided the same test set, predictions are made by each model separately. The
Hierarchical Modulation model will predict the modulation type of each received signal. In
the same time, the Universal Antenna Classifier model makes predictions on the number of
Tx antennas for each signal contained in the test set. Then, the predictions are combined in a

two column matrix and compared with the true corresponding values. In this work, we used

35
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Figure 5.1: The proposed joint classifier using the Universal concept in No. of antennas classification

the same type of classification algorithm for both the modulation and antennas classifier.

5.2 Joint Classification Using Dedicated Classifiers

As discussed in Chapter [, the antennas classification problem can be dealt with creating
classifiers dedicated to each modulation type present. Unlike the Universal approach of the
previous section, where one model is built classifying the number of antennas regardless
of the way the signal is modulated, in this approach six different models are being created.
Once again, the training stage can be seen as an independent procedure for the two different
classifier types. As in Section f.1l, the Hierarchical Modulation Classifier is trained, having
the Modulation column as its target values. On the other hand, the training of each dedicated

classifier requires the fitting of six different models. Hence, the train data is split into six
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parts according to the corresponding modulation type. In this way, the dedicated antennas
classifiers are constructed.

During the testing procedure, a pipeline shown in Figure is followed. It should be
noted that for the dedicated models to work properly, data with constant modulation type
should be used as input. First the modulation classification takes place, and with the predic-
tions made by the corresponding model the test set is split into six parts depending on the
classified modulation type. It is then up to each antennas classification model to effectively
classify the No. of antennas transmitting the received signal. Finally, the No. of antennas pre-
dictions are combined with the modulation classification ones to form a two column matrix

that will make the derivation of the joint classification accuracy possible.

Figure 5.2: The proposed joint classifier using the Dedicated Classifiers concept in No. of antennas

classification
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5.3 Simulations & Results

As done in the previous chapters, Dataset 1 and Dataset 2 are used in order to provide
insight into whether a diversity in the number of Tx antennas leads to better classification
accuracy. The train-test split is set to 60%-40% as in every experiment run in the course of
this thesis. The classification algorithms are cosen to be kNN with 100 neighbours, RF with
100 estimators, ET with 200 estimators and AdaBoost classifier having 100 estimators and
the previously described RF model as its base estimator. These models are used both in the
Hierarchical Modulation and the Antennas classifiers, universal or not.

For simplicity reasons, we refer to the proposed signal classifier with the Universal an-
tennas classifier as Classifier 1, and to the one with the multiple Dedicated antennas classifier
as Classifier 2.

Starting with the scenario involving Classifier 1, the contribution of multiple antennas
usage is evident as can be seen in Figure 5.3. From the results presented in the previous
chapters, it was expected that the use of two antennas at the receiver would result in a rise
of the classification accuracy in the joint scenario as well. For once more, the use of two
Rx antennas improved the performance by a percentage up to 26%, with the most notable
improvement spotted in low SNR values. For example, kNN algorithm achieves an accuracy
score of 26.22% in —10dB using one antenna, while the accuracy reaches up to 58.5% in
the same SNR conditions using two Rx antennas. Experiments do not show any particular
advantage in using a certain classification algorithm over the others, since their performances
are almost identical. The only exception is kNN, which seems to underperform slightly in
lower SNR values. The reader may refer to Tables 5.3 and 5.4 for a more detailed report on

the classification accuracy in Dataset I and Dataset 2 respectively.

Classifier | -10dB | 0dB 10dB | 20dB

kNN 26.22 | 4891 | 63.12 | 63.14
RF 30.32 | 50.94 | 64.05 | 64.35
ET 30.23 | 51.34 | 64.81 | 65.16

AdaBoost | 29.32 | 51.27 | 63.57 | 64.42

Table 5.1: Classification accuracy in Dataset 1 regarding Classifier 1.

In the second scenario, where dedicated classifiers for each modulation are present, the
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Figure 5.3: Percentage of correct classification for Classifier 1

Classifier | -10dB | 0dB 10dB | 20dB

kNN 58.05 | 82.38 | 88.88 | 89.37
RF 61.89 | 83.31 | 88.49 | 89.72
ET 62.73 | 84.51 | 89.79 | 90.74

AdaBoost | 62.56 | 83.4 | 88.37 | 89.37

Table 5.2: Classification accuracy in Dataset 2 regarding Classifier 1.

same behavior can be spotted regarding the multiple antennas contribution. For once more, it
is proven in Figure [5.4 that diversity the number of Rx antennas leads to better classification
accuracy. What is more clear in this scenario, is the underperformance of the kNN algorithm,

at least in lower SNR values.

What would be interesting to examine is the improvement that the use of the dedicated

classifiers induces to the overall classification performance. In Figures 5.9 and 5.4 it is proved
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that indeed by using dedicated classifiers, a higher classification accuracy can be achieved

even in its slightest form.

Figure 5.4: Percentage of correct classification for Classifier 2

Classifier | -10dB | 0dB 10dB | 20dB

kNN 2729 | 50.87 | 64.18 | 64.44
RF 31.08 | 54.6 | 66.18 | 66.22
ET 31.08 | 54.32 | 66.22 | 66.82

AdaBoost | 31.27 | 54.6 | 66.18 | 66.87

Table 5.3: Classification accuracy in Dataset 1 regarding Classifier 2.
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Classifier | -10dB | 0dB 10dB | 20dB

kNN 59.05 | 82.98 | 89.23 | 89.72
RF 64.42 | 85.39 | 90.55 | 91.01
ET 64.32 | 86.22 | 91.04 | 91.73

AdaBoost | 64.21 | 85.6 | 90.46 | 90.94

Table 5.4: Classification accuracy in Dataset 2 regarding Classifier 2.

Figure 5.5: Comparison of the two Classifiers in Dataset 1
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Figure 5.6: Comparison of the two Classifiers in Dataset 2



Chapter 6

Conclusion & Future Work

In the span of this work, the signal classification problem was tackled. Considering its
nature, signal classification was treated as a multidimensional concept, splitting it into two
categories: Modulation and Antennas Classification. To acquire the much needed data for
our experimentation, a simulator was developed using MATLAB programming language.
The simulator simulates the transmission of a signal from the transmitter through the fad-
ing channel. Through it, the I/Q data is received, leading to the feature extraction which
consists of the HOCs calculation. Having the dataset containing the corresponding features
for each transmitted signal, the classification problems were initially examined separately.
It was proved that the classification performance was strongly correlated with the SNR val-
ues in both cases. It was also proved that a diversity in the number of Rx antennas results to
a considerably better classification accuracy. During the joint classification experiments, it
was shown that classifiers using dedicated antennas classification models for each modula-
tion type performed slightly better than the ones using the universal antennas classifier. The
concept of signal classification and its derivatives could be examined further using more state-
of-the-art algorithms. As a future step, concepts such as transmitter localization, or equipment
identification could be examined. Furthermore, another scenario worth analyzing is the one

where the transmitter is trying to affect the classification performance via spoofing attacks.
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