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Abstract

The emergence of cloud and edge computing has changed the waywe design applications.

It has also created some challenges that we need to handle regarding infrastructure. Some of

them are processing large amounts of data in a short amount of time and providing resilience

and security. In this thesis, we attempt to address some of these challenges by designing

an infrastructure for applications that we want to deploy at the edge or the cloud. We use

Apache Kafka to provide communication between our services, allowing for high throughput

in messages produced at the edge, while delivering reliability and scalability. Moreover, we

make use of Kubernetes to deploy our application. In this manner, we provide fault-tolerance,

monitoring, self-healing, and scalability features for our applications hosted on the fog or the

cloud. Then, we put our infrastructure to the test, by using a real-world application that we

designed, in order to evaluate the performance of our system.
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Περίληψη

Η εμφάνιση του cloud και του edge computing έχει αλλάξει τον τρόπο με τον οποίο

σχεδιάζονται οι εφαρμογές. Επίσης έχει δημιουργήσει κάποιες προκλήσεις που πρέπει να

διαχειριστούμε, οι οποίες αφορούν την υποδομή. Κάποιες από αυτές είναι η επεξεργασία

μεγάλης ποσότητας δεδομένων σε σύντομο χρονικό διάστημα και η εξασφάλιση ανθεκτικό-

τητας και ασφάλειας. Σε αυτήν τη διπλωματική εργασία, επιχειρούμε να αντιμετωπίσουμε

κάποιες από αυτές τις προκλήσεις σχεδιάζοντας μια υποδομή για εφαρμογές που θέλουμε

να διαχειριστούμε στο edge και στο cloud. Χρησιμοποιούμε το Apache Kafka για την επι-

κοινωνία ανάμεσα στα services μας, ώστε να έχουμε υψηλή ρυθμαπόδοση στα μηνύματα

που παράγονται στο edge, ενώ ταυτόχρονα εξασφαλίζεται η αξιοπιστία και η επεκτασιμό-

τητα. Επιπρόσθετα, χρησιμοποιούμε το Kubernetes για να διαχειριστούμε την εφαρμογή μας.

Με αυτόν τον τρόπο, παρέχουμε ανοχή βλαβών, παρακολούθηση, αυτο-θεράπευση και επε-

κτασιμότητα στις εφαρμογές μας που φιλοξενούνται στο edge και το cloud. Στη συνέχεια,

δοκιμάζουμε την υποδομή μας, χρησιμοποιώντας μια εφαρμογή που χρησιμοποιείται στον

πραγματικό κόσμο, η οποία σχεδιάστηκε από εμάς, ώστε να αξιολογήσουμε τις επιδόσεις του

συστήματός μας.
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Chapter 1

Introduction

1.1 Introduction

1.1.1 Motivation

Cloud computing has become more and more popular over the last few years. Many com-

panies use the cloud for backup storage, as a backend infrastructure for their Internet of Things

applications, of for big data analytics. One of the main reasons for its wide adoption is the

fact that it provides the power of enormous data centers at a significantly lower cost than

building and maintaining one’s own IT systems. Moreover, the cloud is flexible and it allows

scaling up or down on demand, reducing costs for the businesses that use it.

One of the disadvantages of cloud computing is the increased latency when accessing

the datacenter from the outside. This can be a problem for applications that demand frequent

communication with the cloud. To solve this problem, edge computing attempts to bring

computation and storage closer to the location where the data are generated and used. To

achieve this, it creates an extra layer between the edge devices and the cloud, as illustrated

in Figure 1.1. Edge computing is significant for Internet of Things applications since they

produce massive amounts of data and require small latency so that they can function properly.

Moreover, since we reduce the amount of data sent to the cloud, we reduce the risks related

to security and privacy.

Using edge computing, though, introduces some other challenges. First, in order to reduce

1



2 Chapter 1. Introduction

latency, we need to process large volumes of data in real-time. Then, we have to aggregate the

data and send them to the cloud for further processing. There is also the need for resiliency

and fault-tolerance in order to maintain stability. Monitoring is essential for this purpose.

One more difficulty of working at the edge is the limited hardware available, accompanied

by little to no IT support.

1.1.2 Contribution

This Thesis presents ourwork on evaluating an infrastructure suitable for edge computing,

focusing on the challenges stated above. More specifically, we used Apache Kafka [1] for the

communication between the services hosted in the edge devices, the fog, and the cloud. We

made this choice because Kafka focuses on offering high throughput and high volume real-

timemessage processing while providing reliability and replication features to our data. Also,

Kafka gives us the ability to reprocess data even after they have been consumed since it stores

the messages to the disk, which is very useful for use at the edge.

In order to deploy an application, our infrastructure makes use of Kubernetes [12]. First

of all, this provides our infrastructure with the flexibility to deploy on any kind of hardware,

supporting heterogeneous systems. Moreover, we can provide resiliency to our application,

by exploiting the fault-tolerance and self-healing features that Kubernetes offers.

1.1.3 Thesis Structure

The rest of the Thesis is structured as follows:

Chapter 2 provides background information, presenting the details of the frameworks,

namely Docker, Kubernetes and Apache Kafka, that we simultaneously used in this Thesis.

Chapter 3 elaborates on the details of the communication and deployment infrastructure.

It also describes the application that we created for the purpose of testing and evaluating the

system.

Chapter 4 discusses the results of the evaluation of our system.

Chapter 5 concludes with a summary of the Thesis and introduces some ideas for future

work.
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Figure 1.1: Edge computing Architecture [15]





Chapter 2

Background

In this chapter we will introduce the main technologies that we used, elaborating on their

features and their architecture.

2.1 Docker

Docker [8] is an open-source containerization platform. It allows developers to create,

deploy, and run applications by using containers.

2.1.1 Docker Containers

Containers make use of Operating System (OS) virtualization and process isolation. They

allow multiple applications to share the resources of a single instance of an OS kernel. Con-

tainers can have their own processes, their own networking interfaces, their own file systems,

similar to machine virtualization. However, as shown in Figure 2.1, unlike conventional Vir-

tual Machines (VMs), each container does not have its own Operating System, as they access

the kernel of the host Operating System. Thus, containers have significantly reduced over-

head compared to Virtual Machines. They use less disk space, take less time to boot, and are

much more efficient in CPU usage. In most cases, except for the OS kernel, each container

also shares the binaries and libraries with its host. As a result, there is no need to reproduce

the OS code and a server can run multiple workloads with a single OS installation.

5



6 Chapter 2. Background

Figure 2.1: Virtual Machines vs. Containers [5]

Building containers would not be possible if it were not for two very important Linux

kernel capabilities:

• Namespaces, that provide processes with an isolated view of the system. There are 6

types of namespaces. For instance, processes that are part of the same pid namespace

can only see processes within that namespace. Moreover, processes in the same net

namespace are provided with their own private network stack, while processes in the

same mnt namespace have their own root file system.

• cgroups, which limit the resources that a process or group of processes can use. These

resources can be CPU utilization, memory usage, network I/O, or access to the file

system.

2.1.2 Docker Architecture

Docker uses a client-server architecture. As Figure 2.2 shows, it comprises three main

components:

• the Docker Client, which is the main way of interaction between Docker and the user.

When the user enters a command, such as docker run, the client sends it to the
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Docker daemon.

• the Docker Host, which provides a complete environment to execute and run applica-

tions. It includes the Docker daemon, images, containers, networks, and storage. The

Docker daemon listens for Docker API requests sent from the client and manages all

the objects included in the Docker host. For example, if a docker run command is

received, the daemon will create a container based on the requested image.

• the Docker Registry, which contains Docker repositories that host Docker images.

There exist private registries as well as public registries, such as Docker Hub.

Figure 2.2: Docker architecture [6]

Images are read-only binary blueprints that are used to build containers. They contain

application source code along with all the tools, libraries, and dependencies that the applica-

tion code needs to run as a container. It is possible to create a container image from scratch,

though it is more common to use images uploaded on the Docker Hub as a reference. In both

cases, when building your own image, you have to create a Dockerfile in order to specify

the steps needed to create and to run the image. The Dockerfile contains a list of commands,

written in simple syntax, that the Docker Engine will execute to assemble the image.
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2.2 Kubernetes

Kubernetes [12] is an open-source system for automating deployment, scaling, and man-

agement of containerized applications. It provides the orchestration andmanagement capabil-

ities required to deploy containers, at scale, for real production app workloads. Kubernetes

orchestration allows us to build application services that make use of multiple containers,

schedule those containers across a cluster, scale them, and manage their health over time.

[18]. Kubernetes runs on top of an operating system and interacts with groups of containers

running on the nodes. The developer interacts with Kubernetes through its CLI, by executing

specific commands as well as providing manifests in YAML files, that contain information

about the desired architecture of the system. The architecture of Kubernetes is depicted in

Figure 2.3.

Figure 2.3: Kubernetes Architecture [20]

The highest-level Kubernetes abstraction, the cluster, refers to the group of machines

running Kubernetes and the containers managed by it. A Kubernetes cluster must contain a

master node. The Kubernetes master takes the commands from an administrator and relays

those commands to the subservient nodes. It performs the scheduling required to spread the
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workload across multiple nodes. Also, it is responsible for reconfiguring the workload in

cases of node failures. Each cluster contains Kubernetes nodes. Nodes might be physical ma-

chines or VMs. These nodes run pods, collections of one or more containers. The containers

within a pod always run on the same node and they also share the same IP address, memory,

and volumes. The pod serves as Kubernetes’ core unit of management. However, they are

not usually launched directly on a cluster. Instead, they are managed by one more layer of

abstraction, the deployment. A deployment is responsible for maintaining a sufficient number

of replicas of an image at any time. If, for example, a pod dies the deployment is responsi-

ble for creating another one. Each node includes two main components, the kubelet and the

kube-proxy. The kubelet manages the communication between the node and its master. The

kube-proxy allows network traffic to come in and then be redirected into the various pods.

A service is defined as a set of pods that work together. Each service has its IP address in

the cluster, enabling effective communication between different types of pods (e.g. front-

end servers and back-end servers). There are different types of services. For example, the

ClusterIP service enables communication within the cluster, while the NodePort service also

allows for external communication. Figure 2.4 displays the use of a ClusterIP service.

An important aspect of services is that they do not live on a specific node, but they belong

to the whole cluster. Hence, every container that belongs to the cluster can communicate with

the service transparently. It is essential to know that services are implemented by the kube-

proxy component, that runs on every node. The kube-proxy creates iptables rules that redirect

requests to pods and it receives updates from the Kubernetes API whenever a change in the

configuration of a service occurs.

When a container shuts down, all of its data are deleted. This does not cause problems in

stateless applications, but it is not compatible with stateful applications. To work this issue

around, Kubernetes provides Persistent Volumes, a persistent storage mechanism for contain-

ers. They allow the developer to mount a file system to the cluster and to share information

between nodes. Persistent volumes are hosted in their own pods so that they can remain alive

for long periods.
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Figure 2.4: Kubernetes Request [10]

2.3 Apache Kafka

Kafka [1] is a distributed messaging system that is used for collecting and delivering high

volumes of data with low latency. It was created by LinkedIn in order to manage the large

amount of log data generated by user activity as well as operational metrics.

Kafka combines features from existing messaging systems and log aggregators and it

is suitable for both offline and online message consumption. However, it also incorporates

some unconventional features, in order to improve the performance and the scalability of

the system. In contrast to Kafka, conventional messaging systems usually offer strong de-

livery guarantees, such as allowing each individual message to be acknowledged after it is

consumed. Such mechanisms are excessive for collecting log data and they increase the over-

head and the complexity of those systems. Moreover, most messaging systems are weak in
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Figure 2.5: Kafka Architecture [21]

distributed support and they assume near-immediate consumption of messages received. [11]

As shown on Figure 2.5 the important structures of Kafka are the producers, brokers, and

consumers, and the key concept is the topic. A topic is defined as a stream of messages of a

particular type and it is labeled with a specific name. The producer publishes messages to a

topic. Then, the messages are managed by the broker. Multiple Kafka brokers form a Kafka

cluster. The cluster manages the data between producers and consumers. The consumers

subscribe to one or more topics in order to receive the messages.

In Kafka, producers can submit a set of messages in a single request. Also, consumers

receive multiple messages in every request, even when they are processing them one by one.

The Kafka broker is stateless and the information about the consumer offsets is maintained

by the consumers themselves.

A topic can be divided into several partitions, as can be seen in Figure 2.6. Different

partitions can reside in different brokers, enabling for multiple consumers to consume from

the same topic, while making sure that each message is only provided to one consumer. It is

also possible to create multiple copies of a partition, allowing for fault tolerance.

Kafka provides at-least-once delivery guarantee. It is, however, possible for the consumer

to achieve exactly-once delivery by removing duplicates, using the built-in Kafka offsets. A

producer can decide how many replicas have to receive the message, in order to consider the

send operation complete. By setting the ACKS variable to 0, the producer will not wait for a
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Figure 2.6: Kafka Topics are divided in partitions, which consist of ordered messages. Mes-

sages are given a unique sequential id, the offset. [2]

reply from the broker. By setting it to ACKS=1, it will wait until just one acknowledgment is

received, while by setting it to ACKS=all, it will wait until all the brokers confirm that they

received the message.

ZooKeeper is used for broker synchronization and coordination in a cluster. It updates

producers and consumers on information regarding broker availability, load-balancing, and

coordination. Kafka also persistently stores messages, which allows the user to index back-

wards in a topic while still providing high throughput. Instead of flushing the messages to

disk, Kafka relies on the operating system to do it in a more efficient manner, improving

performance.



Chapter 3

System Architecture and Implementation

In this chapter, we will present the design of our application. Then, we will discuss the

communication and deployment infrastructure that we configured.

3.1 Application design

In order to showcase our work, we decided to create a simple application that would ben-

efit from using an efficient way of communication and cloud deployment. Thus, we needed

an application that we could split into multiple microservices. For this reason, we created an

app that takes camera frames as input and performs face detection.

In its first phase, the Camera Service must use a web camera in order to capture frames.

In order to do so, we used the OpenCV [16] library. The application captures a frame every

X seconds. At first, X is set at an arbitrary value, which can be modified by the user. Later,

we will discuss how this value can change dynamically, in order to maximize efficiency. At

the same time, using the datetime python library, the current date and time are captured.

In the second phase, the Processing Service processes each frame using the Haar Cas-

cade Classifier, a machine learning object detection algorithm used to identify objects in an

image or video [19]. At first, the algorithm uses a lot of positive images (images of faces)

and negative images (images without faces) to train the classifier. Then, the Haar features,

demonstrated in Figure 3.1, have to be collected. In order to calculate them, the classifier

selects adjacent rectangular regions at a specific location. Subsequently, the algorithm sums

13
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Figure 3.1: Haar Features

up the pixel intensities in each region and calculates the difference between them.

However, out of potentially millions of Haar features found in an image, only a few are

actually useful to us. In our case, to perform face detection, the features corresponding to the

eyes, the nose, the mouth, and the outline of a person’s face are important. In order to separate

these, the algorithm uses theCascade classifier, amore accurate and complexmethod. Instead

of applying all of the features at the same time, this method splits them into multiple stages

of classifiers and applies them one at a time.

In the third phase, theDatabase Service gathers the information about the number of faces

that were spotted, along with the timestamp of the frame, which are combined into a string,

and inserts them into a MongoDB [9] database. The data pipeline formed by our application

is demonstrated with a diagram in Figure 3.2.

3.2 Application communication

To provide communication between the services in our infrastructure, we used Apache

Kafka, since it is a modern solution, focused on maximizing the throughput. Hence, the de-

cision to create an app that produces large amounts of data.

(α) The three basic types of Haar features used

for face detection.

(β) The first two features that are selected by the

algorithm, which correspond to the regions of the

eyes and the nose respectively. [19]
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Figure 3.2: Simplified diagram of our data pipeline. The Camera Service captures the camera

frames, which are processed by the Processing Service. The output is stored in a database by

the Database Service.

3.2.1 Using Kafka to create our data pipeline

First of all, we created a Kafka producer at the Camera Service. Every time a video frame

is captured, the frame itself as well as the date and time of the capture are packaged and

serialized using the Python picklemodule. Then, the Kafka producer proceeds to publish the

serialized message to a topic that we created, the Camera topic, as illustrated in Figure 3.3.

At the other end, the Processing Service receives the messages published to the Camera

topic, by using a Kafka consumer, which subscribes to that topic. When the Processing Ser-

vice consumes a new message, it deserializes it using pickle and then forwards to the face

detection algorithm.

In order to improve the scalability of our application, we wanted to have the ability to

run multiple instances of the Processing Service at the same time. To do so efficiently, we

needed a way to split the message consumption between the different instances of the ser-

vice. Conveniently, Kafka offers a solution to our problem through the concept of consumer

groups.

When consumers join a consumer group and subscribe to a certain topic, only one con-

sumer from the group consumes each message from the topic. The messages will effectively

be load-balanced over the multiple consumer instances that subscribe to the topic. [4] Hence,

by utilizing this mechanism, we gain the advantages of both message queuing and publish-

subscribe models.

When the processing is completed, the algorithm outputs the number of faces found in

the camera frame. If one or more people are spotted, the application sends this information
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Figure 3.3: Diagram of our data pipeline, including the two Kafka topics that we use.

as well as the timestamp of the frame to the Database Service. This task is carried by a Kafka

producer that publishes it to another topic we created, the Database topic.

TheDatabase Service, subsequently, has aKafkaConsumer that subscribes to theDatabase

topic. Whenever a new message arrives, the application deserializes the data and creates a

new database entry for the event.

3.2.2 Creating a feedback loop to adjust the frame rate dynamically

The data pipeline in its current state is fully functional. We do, however, face a troubling

issue regarding the rate with which we produce data (frames in our case). As noted in section

3.1, the amount of frames captured by the Camera Service every second in our application is

set arbitrarily by the user, since we do not have a clear indication of what the ideal value is.
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This could lead to a number of issues.

First, suppose that the amount of frames we chose is more than our data pipeline can

handle because of a bottleneck caused by the Processing Service. In this case, an increasing

number of frames would be concentrating on our Camera Topic. However, this is not an

issue for Kafka, since it writes the messages to disk and retains them for a long time period,

set to 7 days by default. In addition, considering that the data is persistent, the only size

limitation is the free space on our hard disk. Despite that, we would have an issue regarding

the processing latency. As long as the Camera Service continues producing frames at the

same rate, the number of messages stacked in the Camera topic would continuously increase,

to a point where it would take days in order to process a frame from the time it was captured.

Additionally, in case our application is bottlenecked because of the network bandwidth,

we would face a problem at the Camera Service. More specifically, Kafka producers tem-

porarily maintain the messages produced by the application in a buffer, so that they can send

them to the broker in a more efficient manner. As this buffer is of limited size, when the

size limit is reached, the new messages will be evicted. This could result in messages getting

discarded for a certain amount of time, making our application less consistent.

Finally, if the number of frames we selected arbitrarily is less than the actual capacity

of the pipeline, we are wasting bandwidth that we could use to process more frames and

potentially identify faces that we would otherwise miss.

To work the aforementioned issues around, we decided to create a feedback loop, so the

Processing Service can share information that will help the Camera Service determine an

efficient frame rate. This reconfiguration of the frame rate occurs every 5 seconds by default.

Every 5 seconds, we count the number of frames processed by the Processing Service. Then,

we divide that number by 5, in order to obtain the rate of processing for the frames.

In order to send this information to the Camera Service, we had to create another Kafka

producer at the Processing Service. When the frame rate reconfiguration algorithm is trig-

gered, the application produces the frame processing rate to a new topic, the Feedback topic.

On the other side, the Camera Service has a consumer, which is a subscriber to that topic.

When it receives a new message, it proceeds to modify the camera frame rate, so that it

matches the rate with which the frames are being processed, as indicated in Figure 3.4.
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Figure 3.4: Final diagram of our data pipeline, including the Feedback topic used for updating

the frame rate.

As this approach can only reconfigure the frame rate to a lower value, we decided to

double the camera frame rate every 30 seconds, in order to motivate the system to improve

its throughput at the next reconfiguration, in case the network bandwidth has increased.

3.3 Application deployment

Having designed the application, including the communication logic, we then had to de-

ploy our application on an edge-cloud environment. As Figure 3.5 demonstrates, the Camera

Service resides on the edge devices, the Processing Service on the fog nodes, and theDatabase
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Figure 3.5: The Camera Service runs on the edge devices, the Kafka broker and the Processing

Service run on the fog nodes and the Database Service is hosted on the cloud.

Service on the cloud servers. We also thought that the best option would be to place the Kafka

and Zookeeper brokers on the fog instead of the cloud, in order to minimize the latency of

the messages sent from the edge devices to the fog.

3.3.1 Deploying our application with Kubernetes

Since most of the processing load of our application would be on the Processing Service,

we decided to use Kubernetes in order to deploy it on the fog servers to benefit from its scal-

ability and resiliency features. To deploy on Kubernetes, we first had to package the service

in a Docker container. To do so, we created a Dockerfile for our container, which includes all

the dependencies and the commands required for our program to run. After making sure that

the application functions correctly, we pushed the container image to Docker Hub, so that it

is ready to be used by Kubernetes.

Before deploying our app, we have to set up our Kubernetes cluster, by running the

kubeadm init and kubeadm join commands. After creating our cluster, we config-

ured it using a YAML file. We configured a Kubernetes deployment in our YAML file instead

of configuring a pod since it provides more capabilities we can benefit from. Figures 3.6 and

3.7 show the state of our Kubernetes cluster shortly after we created it.

By using a Kubernetes deployment, we can rollout a ReplicaSet, which ensures that a

specific amount of pods are up and running at all times. If for example, we choose to have

3 replicas of our application running, the ReplicaSet will maintain them, by observing their
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Figure 3.6: Output of the kubectl get all command, which lists all Kubernetes re-

sources, such as pods, deployments and services.

state. Whenever a pod crashes, the ReplicaSet will spin up a new one, making sure that 3

pods are active at all times.

Figure 3.7: Screenshot of the Kubernetes Dashboard, which provides a graphical overview

of the system. We can see the state of our system under light load.
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3.3.2 Kubernetes Autoscaling

Another tool that we benefited from by using a Kubernetes deployment is the Horizontal

Pod Autoscaler (HPA). Its job is to automatically scale the number of pods in the deployment

based on the CPU or memory usage. When defining an HPA, the user sets the desired CPU

or memory target. Kubernetes uses the miliCPU unit when setting CPU targets. For example,

a 100m CPU limit corresponds to 10% of a processor core. The user also specifies the mini-

mum and maximum amount of replicas allowed to run at the same time. The desired number

of replicas is calculated using the following formula:

desiredReplicas = ceil[currentReplicas * ( currentMetricValue /

desiredMetricValue )] [13]

The HPA calculates the currentMetricValue by taking the average of the values of

the respective resource metric (CPU or memory) across all pods that are active. In order to

avoid noise that can be affecting the metrics when adding or removing replicas, scaling up

the deployment will not happen if any other rescaling process has happened in the last three

minutes, whereas scaling down the deployment will not happen if any other rescaling process

has happened in the last five minutes. Moreover, in order to take account of the potentially

unstable load, the rebalancing process will only take place if the difference between the cur-

rent CPU or memory usage and the desired one exceeds a specific tolerance. Figures 3.8 and

3.9 display the state of our Kubernetes cluster under heavy load.

Figure 3.8: Output of the kubectl get all command when our system is under heavy

load. The Horizontal Pod Autoscaler has increased the number of the pods to 4, as a reaction

to the increased load.
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Figure 3.9: Screenshot of the Kubernetes Dashboard when our system is under heavy load.

We observe that our CPU and Memory usage have both significantly increased.
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Experimental Evaluation

To evaluate the performance of our implementation, we conducted several experiments.

We compared different settings for our data pipeline and then, simulated a less optimal edge-

cloud environment to observe the performance of our application in a scenario closer to the

real world.

4.1 Experimental Setup

4.1.1 Hardware

For testing purposes, we interconnected the computers that we used in our evaluation with

a Local Area Network. As the edge device, we used a Raspberry, Pi 3 connected to a web

camera that is capable of recording video at a resolution of 640x480 at 30 frames per second.

We also used a laptop as the fog node and a desktop as the cloud server. The specifications

of these computers are listed in Table 4.1.

4.1.2 Network connection

As shown in Figure 4.1, both the edge and cloud systems were connected to the network

via Ethernet cable. Regarding the edge device, we conducted experiments using either an

Ethernet cable or Wi-Fi to connect it to the local network.

23
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Table 4.1: Device Hardware Specifications

Edge Device Fog Node Cloud Server

CPU ARM Cortex A53

(ARMv8)

Intel i7 6700HQ Intel i5 4570

Cores (Threads) 4 (4) 4 (8) 4 (4)

RAM 1 GB 8 GB 8 GB

OS Raspberry Pi OS 10 Linux Mint 19.1 Ubuntu 18.04.4

Linux Kernel 5.4.51-v7+ 4.15.0-20 4.15.0-118

NIC spec 100Mb/s 100Mb/s 100Mb/s

To evaluate the performance of our network, we measured the throughput and latency

between the edge device (Raspberry Pi) and the fog node (laptop). The results can be seen in

Table 4.2. We used the iperf tool to measure the bandwidth of our network and the ping tool

to evaluate the latency of our connection.

Table 4.2: Network performance

Pi connection Throughput Latency

Ethernet 11.3 MB/s 0.511 ms

Wi-Fi 5.17 MB/s 6.429 ms

4.2 System Evaluation

While setting up the communication aspects of our data pipeline, we identified three main

Kafka clients for Python, kafka-python [7], pykafka [17] and confluent-kafka-python [3]. We
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Figure 4.1: Network diagram

decided to try all three of them and compare their performance. The performance was mea-

sured by observing the number of messages received by the consumer at the Processing Ser-

vice within a specific time window (10 seconds). To count the elapsed time, the time()

function from the time Python module was used. Then, we calculated the throughput using

the following formula:

Throughput =
frames_received ∗ frame_size

time_elapsed

As shown in Tables 4.3, 4.4 and in Figure 4.2, it was obvious that confluent-kafka-python

was, by far, the better performing library. It was capable of reaching the limits of the through-

put of our network connection, both when usingWi-Fi and Ethernet. This can be accounted to

the fact that confluent-kafka-python is a python wrapper of the librdkafka C library. Pykafka

and kafka-python on the other hand, while being slower, they emphasize on offering a more

user-friendly API. Since this is not an issue for us, we decided to go ahead with the client

developed by Confluent.
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Table 4.3: Throughput measurements when connecting the edge device to the network using

Wi-Fi

Kafka Client Mean Throughput

(MB/s)

Median Throughput

(MB/s)

Standard Deviation

(MB/s)

confluent-kafka-python 5.118 5.115 0.011

pykafka 1.021 1.023 0.0205

kafka-python 0.43 0.446 0.0476

Table 4.4: Throughput measurements when connecting the edge device to the network using

Ethernet

Kafka Client Mean Throughput

(MB/s)

Median Throughput

(MB/s)

Standard Deviation

(MB/s)

confluent-kafka-python 11.136 11.138 0.009

pykafka 1.056 1.066 0.0215

kafka-python 0.425 0.445 0.0438
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Figure 4.2: Python Kafka client throughput comparison

4.3 Taking advantage of edge computing

To evaluate the potential benefits of edge computing in our data pipeline, we assessed

the performance of our application when processing takes place on the fog node and when

it takes place on the edge device itself. Since the fog node is more powerful, it is evident

that the face detection algorithm will run faster there than on the edge device. The question

that needs to be answered, then, is whether the communication overhead of sending all of

the frames over the network, from the edge device to the fog, will overcome the processing

deficit of running the algorithm on the edge device.

As demonstrated in Figure 4.3 and in Tables 4.5 and 4.6, using the fog nodes improves

the overall time required to process a frame. More specifically, when the edge device is con-

nected via Wi-Fi we experience a speedup of 2.6x, while when it is connected via Ethernet

we experience a speedup of 4.34x. Thus, as long as the network connection between the edge

and the fog is fast enough, we can benefit significantly from using the power of the fog nodes.

In most cases, applications will run much faster on fog hardware, especially when there is

the possibility of using GPUs to accelerate the performance.
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Figure 4.3: Total frame processing time measurements, including both communication and

processing time

Table 4.5: Communication time

Processing Service

location

Mean Time (sec) Median Time (sec) Standard Deviation

(sec)

Edge Device 0 0 0

Fog using Ethernet 0.0796 0.0784 0.0083

Fog using Wi-Fi 0.1795 0.1788 0.0071
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Table 4.6: Processing time

Processing Service

location

Mean Time (sec) Median Time (sec) Standard Deviation

(sec)

Edge Device 0.6394 0.6237 0.0614

Fog Node 0.0676 0.0509 0.0314

4.4 Evaluating our application in more realistic conditions

To further test our application, we used the ns-3 network simulator [14]. We tested the

data pipeline with various latency and packet loss values to evaluate its behavior in non-

perfect real-world conditions. To configure the ns-3 simulation environment as shown in

Figure 4.4, we first set up some virtual interfaces. Then, the physical Ethernet interface of

our machine was connected to the first virtual interface using an Ethernet bridge. Thus, the

packets received by our host were forwarded through the interfaces to the simulator. Using

the simulator, we created an emulated link, which we then used to tamper with the quality of

the connection.

Firstly, we startedmonitoring the throughput of our systemwhile progressively increasing

the amount of latency in our emulated network connection. As can be seen in Figure 4.5 and

in Table 4.7, while latency is increased until it reaches 250ms, the throughput is decreasing at

a relatively steady rate. For values over 250ms, however, that rate is substantially increased.

Then, we used the ns-3 simulator to simulate packet loss in our network connection. As

shown in Figure 4.6 and in Table 4.8, the throughput decreases as we increase the packet loss

rate. For values greater than 10%, the throughput starts decreasing at a significantly higher

rate.

We should note that in both tests, despite the throughput reduction, our data pipeline was

functional even at high latency. The consumer still received messages in the same order that

they were published, as a result of the at-least-once delivery guarantees provided by Kafka.
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Figure 4.4: ns-3 simulation setup

Figure 4.5: Throughput measurements with various amounts of latency
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Table 4.7: Throughput measurements with various latency values

Latency (ms) Throughput

(MB/s)

0 11.219

50 11.051

100 10.673

150 10.589

200 10.379

250 10.184

300 9.163

350 7.773

400 6.798

450 5.919

500 5.266

Figure 4.6: Throughput measurements with various amounts of packet loss
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Table 4.8: Throughput measurements with various amounts of packet loss

Packet Loss (%) Throughput

(MB/s)

0% 11.228

5% 11.087

10% 10.357

15% 7.794

20% 4.614

25% 0.946
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Conclusion

We experimented with deploying applications on edge-cloud environments. To achieve

communication between the different services of applications we have used Kafka, because

of its scalability, high throughput, and fault-tolerance.We have also used Kubernetes to create

and manage the deployments, since it provides useful features such as self-healing and auto-

scaling.Moreover, we have created an application based on themicro-services architecture, in

order to test and evaluate our infrastructure. The results of our evaluation show that our system

can utilize the edge-cloud architecture efficiently, increasing the performance of applications.

In the future, we can investigate the performance of our such hierarchical edge/fog/cloud

deployments with more applications in order to achieve a more thorough understanding of

its capabilities and disadvantages. It would be interesting to try applications with various

characteristics, such as high or low CPU and memory usage and applications that have to

communicate using messages of various sizes. Furthermore, we can use the Kafka Connect

API to stream data between Kafka and other applications efficiently. We can also utilize the

Kafka Streams Java API for real-time processing in applications that interact heavily with

Kafka topics. Last but not least, we can also deploy our infrastructure at a larger scale in

order to perform more tests regarding Kubernetes’ scalability features. By using a computer

cluster as the fog node as well as a public cloud provider or private cloud infrastructure, we

can examine its performance more thoroughly under real-world conditions.
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