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Abstract

Security Defects cost firms millions of dollars in terms of downtime, disruption and confidentiality
breaches. The U.S National Institute of Standards and Technology has estimated the cost of faulty
software in the U.S in the tens of billions of dollars per year. Such defects and particularly, security
related ones can be noticed in the early stages of development through the use of static analysis
tools. Conventional static analysis tools rely on detecting patterns in source code based on prede-
fined, manually-set rules. With the emergence of the open source code software community it has
become possible to use data-driven techniques in order to discover vulnerabilities. Such techniques
employ the use of Machine Learning in order to replace heuristics and increase adaptation in real-
life data as well as decrease the cost of manual labor required for the development of conventional
static analysis tools. Such models require labeled data-sets that resemble real-life data. Their per-
formance is also closely linked to the quality and quantity of those data-sets. We present a labeled
data-set of pieces of vulnerable source code and its patched counterparts which is extracted from
Open Source Software repositories. A support data-set of commit messages related to the sources
of the source code data-set is also presented and used to create a scalable semi-automatic data
acquisition system which mines and labels vulnerable source code from publicly available Open
Source Repositories.



Περίληψη

Τα ελαττώματα ασφαλείας κοστίζουν στις επιχειρήσεις εκατομμύρια δολάρια λόγω διακοπών ή διαταρα-

χών λειτουργίας και παραβιάσεων του απορρήτου. Το Εθνικό Ινστιτούτο Προτύπων και Τεχνολογίας

των Η.Π.Α. εκτιμά το κόστος του ελαττωματικού λογισμικού σε δεκάδες δισεκατομμύρια δολάρια

ετησίως εγχώρια. Τέτοια ελαττώματα, ιδιαίτερα αυτά που σχετίζονται με την ασφάλεια, μπορούν

να παρατηρηθούν στα πρώτα στάδια της ανάπτυξης λογισμικού μέσω της χρήσης εργαλείων στατι-

κής ανάλυσης. Τα συμβατικά εργαλεία στατικής ανάλυσης βασίζονται στην ανίχνευση μοτίβων στον

πηγαίο κώδικα με βάση προκαθορισμένους, χειροκίνητα ορισμένους κανόνες. Με την ανάπτυξη της

Κοινότητας Λογισμικού Ανοιχτού Κώδικα έχει καταστεί δυνατή η χρήση τεχνικών που βασίζονται

σε δεδομένα προκειμένου να ανακαλυφθούν ευπάθειες. Τέτοιες τεχνικές χρησιμοποιούν τη χρήση

Μηχανικής Μάθησης για την αντικατάσταση ευρετικών μεθόδων και την αύξηση της προσαρμογής

σε πραγματικά δεδομένα, καθώς και για τη μείωση του κόστους της μη αυτόματης εργασίας που

απαιτείται για την ανάπτυξη συμβατικών εργαλείων στατικής ανάλυσης. Τέτοια μοντέλα απαιτούν

επισημασμένα σύνολα δεδομένων που μοιάζουν ή προέρχονται από πραγματικά δεδομένα. Η απόδο-

σή τους συνδέεται επίσης στενά με την ποιότητα και το μέγεθος αυτών των συνόλων δεδομένων.

Παρουσιάζουμε ένα επισημασμένο σύνολο δεδομένων από κομμάτια ευπαθή πηγαίου κώδικα και τα

διορθωμένα αντίστοιχά μέρη του που εξάγονται από αποθετήρια λογισμικού ανοιχτού κώδικα. Πα-

ρουσιάζεται επίσης ένα συμπληρωματικό σύνολο δεδομένων από commit messages που σχετίζονται
με τις πηγές του προηγούμενου συνόλου δεδομένων πηγαίου κώδικα και χρησιμοποιείται για τη δη-

μιουργία ενός κλιμακούμενου ημι-αυτόματου συστήματος απόκτησης δεδομένων, το οποίο εξορύσσει

και επισημαίνει ευάλωτο πηγαίο κώδικα από δημόσια διαθέσιμα αποθετήρια ανοιχτού κώδικα.
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Chapter 1

Introduction

Security defects cost firms millions of dollars in terms of downtime, disruption and confidentiality
breaches. [1] Even though it is hard to size the economic implications of such attacks, the National
Institute of Standards and Technology has estimated the cost of faulty software at 60 Billion
U.S. Dollars per year. [2] In 2011 the Ponemon institute published a benchmark study of 50 U.S
companies. [3] According to this report Cyber crimes can do serious harm to an organization’s
bottom line as they have found that it costs an average of 5.9 Million USD per year per organization.

Such security defects can be found in the early stages of development through the use of analysis
tools such as static analyzers and dynamic analyzers. Static analysis, as opposed to dynamic
analysis, does not require the execution of programs, as it operates by analyzing the code of the
program in order to detect flaws present in it. Simple static analysis tools like Flawfinder [4] are
no more sophisticated than a simple grep or find command.[5] [6] More sophisticated tools use a
variety of techniques such as parsing the source code files into an Abstract Syntax Tree (AST)
and then analyzing it [7]. Another technique involves using the Control Flow Graph (CFG) of
the program in order to symbolically execute the program by replacing input data with symbolic
values and then analyzing their use over the CFG paths [8]. All those techniques rely on predefined
rule-based detection systems which capture a limited subset of possible errors. With the recent
boom of the open source code community it has become possible to use data-driven techniques in
order to discover vulnerabilities. [9]

Machine Learning (ML) techniques opt to replace heuristics by finding features automatically.
In comparison, rule-based systems are too brittle and cannot handle the diversity of real-life data as
well as statistical-based methods can. In classic static analysis rules are empirically derived which
is something that requires manual effort, whilst ML based analysis automatically generates rules
through training. [10] The disadvantage is that Machine Learning models require labeled data-sets
that resemble real-life data in order to train them. The quality and size of those labeled data-sets
are closely linked with the performance of the model as well as with its ability to generalize, namely,
to have the ability to be effective over new data.

1.1 Data Resources

1.1.1 Relevant Source Code Management

Git is a distributed version control system used by many software developers during project de-
velopment as it helps them to manage source code and enables them to keep every version of the
project they have worked on. [11] Open Source Software (OSS) projects have adopted Git and
other Distributed Version Control Systems (DVCS) as it allows developers to work collaboratively
without a single point of failure, contrary to Centralised Version Control Systems. Git gives each
developer a local copy of the full development history and changes are copied from one such repos-
itory to another. [12] These changes are imported as added development branches and can be
merged in the same way as a locally developed branch. Git has five types of objects one of which
is of particular interest to us (the commit):

• A blob (binary large object) is the content of a file. Blobs have no metadata. (A blob’s name
internally is a hash of its content.)
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• The equivalent of a directory in git is the tree object. A list of file names is contained, each
with some type bits and a reference to a blob or tree object that is that file, symbolic link,
or directory’s contents. The source tree is described by this object.

• A history is comprised by linking tree objects together with commit objects. They contain
the name of a tree object (of the top-level source directory), a timestamp, a log message also
known as the commit message, and the names of zero or more parent commit objects.

• A tag object can reference another object and can hold added metadata related to that ob-
ject. Most commonly, it is used to store a digital signature of a commit object corresponding
to a particular release of the data being tracked by Git. Example: v1.2 for version 1.2.

• A packfile object is a zlib version compressed of various other objects for compactness and
ease of transport over network protocols.[13]

A developer makes changes into the repository by creating commits. When a software vulnerability
is patched in an Open Source Software repository, the file changes will be described through one
or multiple commits. Usually the developer that wrote the patch will reference his action through
the log message (also referred to as commit message). By finding the commit the vulnerability
was patched, one can retrieve the vulnerable and non-vulnerable version of a file by viewing the
versions of the same file before and after that particular commit.

Github is a platform which provides hosting for software development and version control using
Git. It hosts over 100 million repositories many of which are public. This makes Github the largest
host of source code in the world to date. [14] It provides an application programming interface
(API), which is used extensively in this project, that enables the access of its resources. It also offers
the feature of Pull Requests (PR). Pull Requests make it easier for users to collaborate through
Github as they provide a method for developers to notify other team members that they have
finished the creation of a feature branch (multiple commits) in order to allow its inclusion in the
master branch. Pull requests can be tagged in Github by topic which allows the search of security
related PRs. Unfortunately, through experimentation with this method of searching commits that
fix vulnerabilities, it was discovered that a very small amount of patches are employed by this
manner which renders this method of finding vulnerable source code cost ineffective.

1.1.2 NVD
The National Vulnerability Database (NVD) is the United States government repository of stan-
dards based vulnerability management data represented using the Security Content Automation
Protocol (SCAP). This data enables automation of vulnerability management, security measure-
ment, and compliance. The NVD includes databases of security checklist references, security-
related software flaws, misconfigurations, product names, and impact metrics. [15] It provides a
list of Common Vulnerabilities and Exposures (CVEs) which are publicly known information se-
curity vulnerabilities and exposures. Each CVE contains information description about the issue
such as a text description, a Common Weakness Enumeration ID, references and other data such
as the severity of the issue etc.

Common Weakness Enumeration

Common Weakness Enumeration (CWE) is a community-developed list of common software and
hardware weakness types that have security ramifications. [16] Each CWE ID is referring to a type
of weakness. Weaknesses in this context can be flaws, vulnerabilities, bugs or other errors. CWEs
are more of a graph than a list. There are weakness classes which fan out to more weakness bases
which can include weakness variances. For example, the SQL Injection weakness base (CWE-89) is
the child of the Improper Neutralization of Special Elements in Data Query Logic (CWE-943) class,
which is a sub-class of the Injection Class (CWE-74). This tree structure is allowing researchers
to group related weaknesses and subsequently vulnerabilities.

References

References are URL links and other information which can point at third party advisories, patches,
vulnerability reports, exploits, mailing lists reporting the issue etc. Throughout this project refer-
ence Github URLs which contain patches are utilized.
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1.2 Related Work
The data-set presented is designed to be used for the purposes of training Machine Learning (ML)
models upon source code. Many efforts to create such models have been made in past years using a
variety of data sources. Scandariato et al. (2014) [17] used a data-set of a single software repository
in order to train a Support Vector Machine (SVM) model on a bag-of-words representation. Pang
et al. (2015) [18] used the code of four Java-android applications in order to do similar research
using also SVMs, but with the inclusion of n-grams. Walden, Stuckman and Scandariato (2014)
[19] used three open source projects (Moodle, PHPMyAdmin, Drupal) including 223 vulnerabilities
to train a Random Forest model in a bag of words (BOW) representation of the source code in
order to compare it with a software metrics based prediction system.

Retrieving data-sets from a limited source of repositories results in the limited variance of the
data which could further over-inflate performance results and limit the ability of the model to
generalize. The above data-sets used are also very limited in size. To combat the drawbacks of
training on a small data-set, researchers use the Software Assurance Reference Dataset (SARD)[20]
which includes test suites such as the Static Analysis Tool Exposition (SATE) IV [21] Juliet Test
Suite. These data-sets are used by related work involving deep-learning based systems. Prime
examples of such work are R Russell et al. (2018)[9], Zhen Li et al. (2018) [22] and Xin Li et al.
(2020) [23]. They demonstrate the potential of using Deep Learning to detect vulnerabilities from
source code. The problem with using this resource of source code is that the test cases presented
in them are synthetic, according to the National Institute of Standards and Technologies. This
lowers, of course, the ability of the models to generalize their knowledge over real world data.
Russell et al. (2018) [9] include Open Source repository data from Github in the data-set by using
a suite of conventional static analysis tools to generate the labels (vulnerable, non vulnerable).
This of course results in a quality of data limited by the accuracy of the actual static analysis tools
used to label it.

More targeted attempts to gather vulnerability information from open source software publicly
available software have been made. Antonios Gkortzis et al. (2018)[24] present a dataset of security
vulnerabilities in open-source systems. The versions of the vulnerable repositories as well as data
about the severity and type of vulnerability are included as well as a method to clone these versions.
No labeling is included of which files or functions are vulnerable. Razvan Raducu et al. (2020)
[25] collect vulnerable source code from open source repositories linked to SonarCloud, which is
enterprise software that performs conventional static analysis on those repositories, a method of
operation closely resembling the effort of R. Russell et al. (2018) [9] and sharing the same quality
problems.

1.3 Research Contribution
In this thesis, we present a labeled data-set of vulnerable source code and its patched versions
which is extracted from real-life data as it is retrieved from Open Source Software repositories.
The quality of the dataset is supported by and linked to the quality of the inspection of professionals
in the MITRE Corporation and other CVE Numbering Authorities (CNAs) who review requested
CVE IDs before they are assigned. A support dataset of labeled commit messages that were
included in vulnerability patches is also presented and used to extract features in order to make
targeted searches in the web. Repositories involved in CVEs are also kept in order to make
searches even more targeted. Implementations of those searching systems were created as well as
an assisted manual inspection User Interface tool which create new data for the support data-sets,
thus constructing a feedback cycle which allows for the scalability of this data acquisition system
into a possibly fully autonomous one. Figure 1.1 shows a graph of how commit message data is
processed and fed back into the system.
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Chapter 2

Datasets

The datasets presented in this chapter were generated using the method detailed in Chapter 3.
The data contained in them is derived from publicly available open source software repositories.
Metadata about the origin of each data point is kept in separate json files which are available in
the release of the project.

2.1 Vulnerable Source Code Data-set
This data-set contains 911 Megabytes of source code containing overall 32520 files. Exactly half
of those files contain vulnerabilities and the other half are the respective patched versions of the
vulnerable source code. The data-set is ordered by the type of vulnerability and then grouped by
file extension name. This allows researchers to quickly retrieve files of a specific language involving
a particular class of security vulnerabilities. The file hierarchy of the data-set is shown in Figure
2.1 where <Filename> is referring to the following naming convention: <good-or-bad>_<CVE-
ID>_<Number_of_file>. The first tag denotes if it is old vulnerable code or the corrected and
patched version of the file. The following file extensions are kept in the data-set: c, php, js, py, h,

Figure 2.1: File Hierarchy

rb, java, cpp, go, html, xml, tpl, json, cs, cc, pm, sh, phpt, m, inc, scala, cxx, jsp, ctp, jelly, t, htm,
scss, tt, as, rs, pl, S, spec, conf, vim, htaccess, hh, lua, coffee, ts, css, phtml, cgi, yml, sql, yaml.
The heat-map in Figure 2.2 describes the distribution of each file extension prevalence in respect
to its respective weakness. The most prevalent Weakness to File extension pairs are (From left to
right, Top to Bottom):

• CWE-119 to .c files. CWE-119 refers to Improper Restriction of Operations within the
Bounds of a Memory Buffer which includes one of the most prevalent vulnerabilities in the
CVE list, the buffer overflow. Buffer overflows are most prevalent in C and C++ [26] due to
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the lack of built-in protection against accessing or overwriting data in any part of memory,
its error-prone idioms such as null-terminated strings and its culture that favors performance
over correctness.

• CWE-125 to .c files. Out of bounds, also very prevalent in C and C++

• CWE-20 to .c files. Improper Input Validation, a language independent weakness that looks
to be most prevalent in C files in this data-set.

• CWE-264 to .c files. Permissions, Privileges, and Access Controls. Another language inde-
pendent weakness.

• CWE-79 to .js files. JavaScript is the language of the web so it is not at all surprising that
Cross-site Scripting vulnerabilities would involve JavaScript.

• CWE-79 to .php files. Another language of the web, php, is expected to be very prone to
Cross-Site scripting vulnerabilities.

• CWE-89 to .php files. SQL Injections seem to affect mostly php.

Figure 2.2: CWE to File Extension Heat-Map
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One can see the distribution of vulnerable commits per type of vulnerability by looking at
Figure 2.3. The five most prevalent vulnerability types being:

• CWE-79: Cross-Site Scripting Vulnerability. A web application vulnerability which enables
attackers to inject scripts into web-pages which can then be executed by other users viewing
them. These vulnerabilities are very prevalent and popular and occur when web applications
include untrusted data into their web-pages without escaping special characters or validating
the input.

• CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer: This
is an "umbrella" CWE which includes the classic buffer overflow attack. Buffer overflows are
still a very prevalent vulnerability. In the year 2019 alone over a thousand buffer overflow
vulnerabilities were documented by CVEDetails [27].

• CWE-20: Improper Input Validation. A pretty general type of weakness which can cause an
application to crash, use more resources or be exploited.

• CWE-125: Out of bounds read. A weakness associated with other such as buffer overflows,
integer overflows etc.

• CWE-200: Exposure of Sensitive Information to an Unauthorized Actor

Figure 2.3: Commits by CWE (20 most prevalent ones)
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Figure 2.3 is not indicative of the total material one has in order to investigate source code
for a particular type of vulnerability. Figure 2.4 displays the total count of files for each type of
vulnerability.

Figure 2.4: Number of files associated with each CWE (20 Top ones)
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2.2 Commit Message Dataset
The commit message data-set is generated from the commit URLs that contain the vulnerabilities
to assist the further growth of the source code data-set. One can use this data-set as a knowledge
base to train Machine Learning models to classify between commit messages which originate from
commits that fix vulnerabilities and ones that do not. This data-set contains 13091 commit mes-
sages. Generic commit messages are retrieved by following the parents of the vulnerability patch
commits (in a depth of N). N needs to be a number no close to 1 because it seems that a lot of
vulnerability patches come in succession to one another, which would result in the false labeling
of an actual vulnerability patch commit. The intricacies of each class of commit messages are
explained more in Chapter 5, but one can see the general differences between them by looking at
word clouds [28].

In Figure 2.5 one can see words and phrases associated with the process of auditing and fixing
security errors (such as ’fix’, ’check’, ’cve’, ’fix xss’, ’buffer overflow’, ’sql injection’ etc.) Below in

Figure 2.5: Word Cloud generated by commit messages associated with vulnerability patches

Figure 2.6 one can see the distribution of word count of all the commit messages of commits that
are vulnerability patches. This information is important to a researcher using machine learning
models on this data-set in order to determine the maximum sequence length of the input vector
during training.

Figure 2.6: Distribution of amount of words in each commit for vulnerability patches
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Looking at Figure 2.7 one can easily see the differences between the world cloud associated with
vulnerabilities depicted in Figure 2.6. Words such as ’use’, ’merge’, ’pull’ and ’fix’ are common in
both of them but, as one can expect, words that are usually associated with the addition of features
such as ’function’, ’add’ and ’update’ are not at all prevalent in commit messages associated with
vulnerability patches.

Figure 2.7: Word Cloud generated by commit messages not associated with vulnerability patches

The average word count for vulnerability patch commits is 301 words per commit message and
the average for a generic commit message is 215 words per commit message. Figure 2.8 displays
the distribution of word count between commits which are of generic purpose.

Figure 2.8: Distribution of amount of words in each commit for generic commits
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Machine Learning Model Precision Recall F1 Accuracy
Models Using Glove Embeddings

None -8% -6% -7% -6%
Lancaster Stemming -10% -1% -5% -8%
Lemmatized -9% -8% -8% -9%
Porter Stemming -11% -3% -7% -9%

Models Without Glove Embeddings
None -12% -2% -7% -8%
Lancaster Stemming -11% +6% -5% -8%
Lemmatized -13% 0% -6% -9%
Porter Stemming -9% -7% -9% -10%

Table 2.1: Performance metrics difference of models using N = 1 as training data compared to the
ones using N = 5

Of course half of the data-set containing generic commit messages can be replaced for different
values of N in the process of obtaining N-th ancestors. It was mentioned that low values of N
will corrupt the data labeled as non vulnerability patch commit messages with commit messages
from vulnerability patches. This property is demonstrated by training our models in the data-set
with N = 1 and N = 5 and observing the difference in performance. Table 2.1 shows how worse
models trained with a dataset of depth N = 1 by demonstrating the percentage differences in
performance from models trained at N = 5. Setting the parameter of N to five is the standard by
which the actual performance of the models was evaluated. Tables 5.3 and 5.4 demonstrate these
measurements
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Chapter 3

Method

There are three simple main concepts in the methodology by which we extract vulnerable source
code data. The first methodology is collecting all known Github references from the National
Vulnerability directory. This allows for the retrieval of reliable data which can then be used to
further expand the data-set. The second methodology searches for commits that fix vulnerabilities
in repository lists generated by the first methodology using keyword matching inside the commit
message. The third methodology is essentially looking in the entirety of Github public repositories
for targeted Vulnerability Types (CWEs) using keyword searching through the Github API.

3.1 Retrieving vulnerable source code referenced in the Na-
tional Vulnerability Database

3.1.1 Parse Module

This module requires the obtained National Vulnerability Database Feed json files. The json files
contain data about each year’s CVE reports. This module parses each file and looks for Github
links using string matching in the reference_data field. It then associates it with its assigned CWE
and creates a comma separated file with the URL and its relevant CWE identification number.

3.1.2 Flattening Module

This module receives the comma separated file created by the Parse Module and looks for URLs that
are Pull Requests. Pull Requests contain a multitude of commits each, which are then extracted
by querying the page response using an XPath. XPath stands for XML Path Language which can
be used to query XML documents as well as HTML documents which have a very similar structure
to XML. The separation of this module is crucial to the architecture of the workflow because it
serves as an entry-point to pull request links.

3.1.3 File Retrieval Module

This module takes as an input the comma separated file created by the Flattening Module now con-
taining only commits which are CWE labeled. Out of those links the parent commits are obtained
(the commit hashes) for each of them and then the parent commit links are constructed. Next, for
all of the files changed in the vulnerability fix commit two versions of them are obtained, one from
the vulnerability fix commit (the fixed file) and one from the parent commit (the vulnerable file).
They then are labeled good_<commit_id>_<file_id> and bad_<commit_id>_<file_id> re-
spectively. At the same time, it creates a file_names.list file containing the original filename (which
is important for later filtering) associated with the data-set file named according to the convention
described above.

3.1.4 File Hierarchy Creation Module

This module takes as an input the filenames list, the csv created by the Flattening Module and the
directory of all the files downloaded by the File Retrieval Module. It then associates each file with
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its respective CWE and filename extension and places it in the /<cwe_id>/<filename_extension>
path under the root directory thus creating the file hierarchy detailed in Chapter 2.1.

3.2 Searching the web for possibly vulnerable commits
The U.S. National Vulnerability Database and any other vulnerability database like the Chinese
National Vulnerability Database (CNNVD) [29] upload only a limited number of vulnerabilities
each year compared to the amount of vulnerable code that is patched every single day by security
professionals. The downside of searching the web is the fact that no trusted party is guaranteeing
the quality of the data.

3.2.1 Targeted Commit Search Module
This module takes as an input a list of repositories that are known to be audited by security
professionals. Two options were used on the course of this project as input lists one being a list of
the highest CVE rated open source systems created by the project VulinOSS [24] and repository
lists generated by the data-set which could target specific repositories that contained vulnerabilities
of certain types. This module uses those repositories to search each commit history to find keywords
related to types of vulnerabilities inside the commit message data field. The keyword matching
is done by comparing Stemmed (Lancaster[8]) words. This method allows for a type of fuzzy
string searching. Commits that are found to possibly be vulnerability patches are then scored by
Machine Learning models described in paragraphs 5.3.5 to 5.4.2, based on their commit message.
The list of the commit urls, scores, CWEs and data regarding activations of the Convolutional
Neural Network are then outputted in a quoted comma separated file for further inspection

3.2.2 Github Search API Module
This module takes as an input keywords related to a specific type of vulnerability as well as a list
of programming languages. It then searches Github for commits related to those keywords. This
has to be done iteratively and by date because the Github Search API limits search results to
1000. The process that follows resembles the one followed by the Target Commit Search Module.
Commits are scored by the same Machine Learning models described in paragraphs 5.3.5 to 5.4.2,
based on their commit message. The list of the commit urls, scores, CWEs and data regarding
activations of the Convolutional Neural Network are then outputted in a quoted comma separated
file for further inspection. The output files generated by the Github Search API Module and the
Targeted Commit Search Module have to be the same in order for Classification UI to process
them.

3.2.3 Classification UI
The classification UI which is further explained in chapter 4 is allowing a user to distinguish between
commits that fix vulnerabilities and false positives. It is important to keep false positives because
the machine learning models will have representative data of commits that look like vulnerability
commits but really aren’t.

3.3 Paths
One can use Figure 3.1 as a guideline to get a general idea of the project architecture. To retrieve
the baseline data-set the {1, 2, 3, 12, 14} path must be followed alongside {11, 13}. Then, in order
to search the web for possibly vulnerable commits either path {9, 10, 12} or {8, 10, 12} can be
used.
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Figure 3.1: Project Architecture Diagram
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Chapter 4

Commit Classification User Interface

This interface serves the purpose of distinguishing between commits that fix vulnerabilities and
ones that do not. It is a terminal application controlled only by the keyboard. This allows the
researcher to quickly audit the commit messages and the commits. The curseXcel [30] open source
library was used to order the commits in rows whilst the columns contain information about each
commit. The ncurses library [31] is used as the underlying user interface framework.

4.1 Layout

The main menu is organised in four columns. Column one contains the URL of the commit. It is
important to display this information to a researcher because one can recognise from it the project
in which the commit exists. The second column displays the activations of the final layer of neurons
of the Convolutional Neural Network that scores the commit message. The third column displays
the decision of the Random Forest Model that scores the commit message. The fourth column
displays the type of the vulnerability that either the Github Search API Module or the Targeted
Commit Search Module detected through fuzzy string matching. Upon inspection the user can
display a pop-up window of the commit message to further audit it. It is recommended that this
application is used in conjunction with a browser in order to also review the changes in the source
code of the files.

Figure 4.1: The main menu layout
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4.2 Combating information overload with saliency maps
One of the most severe problems of perception is information overload. [32]It is very time costly for
a researcher to cognitively discard the unimportant parts of the commit message and focus on the
phrases or sentences that signify that the candidate commit is indeed a vulnerability patch. Thus,
a saliency map can be used to prioritize selection e.g identify the most important information in
visual input streams and to use this to improve performance in generating visual data. [33] Saliency
maps in this application’s context are displayed through gradiently coloured text. Words that are
signifying more that indeed the audited commit is a vulnerability patch are brighter red than the
ones that aren’t. Saliency maps are created by representing the knowledge of the Convolutional
Neural Network classifier. Chapter 5.4.3 covers more thoroughly the process by which this is
achievable.

Figure 4.2: Pop up window displaying a coloured commit message saliency map

4.3 Controls
The user interface is designed to only be controlled by the keyboard. In a typical QWERTY layout
keyboard, the controls for scrolling through the commits and commit messages are grouped on the
right hand side whilst the controls for the actual discarding, collecting or auditing of the commits
is on the left hand side.

4.4 Enhancing the Data-set and sentiment classification mod-
els

The list generated by the collected commits and commit messages can be added to the already
existing data-set to increase its size and therefore the classifying capabilities of the models used
for commit message classification. This allows for the scaling of this project’s capabilities. The
discarded commits are also kept to have a representation in the data-set of what a False Positive
commit message that includes keywords related to vulnerabilities looks like. This allows for further
improvement of the efficiency of the sentiment classification models.

Figure 4.3: A Commit Message flagged correctly as a False Positive one
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Chapter 5

Commit Messages

Commit messages were mentioned in Chapter 1.1.1. They contain a lot of information about the
reason for each commit. In the process of mining commits that fix vulnerabilities one can leverage
commit messages in order to determine if a certain commit is indeed a vulnerability fix or not.

5.1 A preferable commit message
A real world typical example message that implies a fix of a vulnerability would be commit
b1197e489c330f75c7c11c4b3f382d47c7ffb996 by the usvn project with commit message: "Fix JVN
73794686 Cross-site scripting vulnerability". Unfortunately for us most commit messages aren’t
such textbook telltales of vulnerability fixes. Not every commit message is as short as our afore-
mentioned example. Commit messages often tend to be wordy and contain a lot of information
specific to the patch or the problem at hand. Also, not every commit mentions a vulnerability
database identification number such as "JVN#73794686", or the words "fix" and "vulnerability"
which are very positive indicators that we have a good commit in our hands. Additionally, very con-
veniently this commit message also contains the type of the vulnerability ("Cross-site scripting")
which we know refers to CWE-79: Improper Neutralization of Input During Web Page Generation
(’Cross-site Scripting’) 1.

5.2 A non-preferable commit message
Non preferable commit messages generally constitute messages that have opposite qualities to the
preferable example i. e are too lengthy in size, they don’t clearly mention that they cover a security
issue etc. in the sense that it is hard for a person to verify the vulnerability. But there is a more
detrimental kind of commit that needs to be avoided. A typical example of such commit is commit
ae9b6a1b784d9cb45c6eb3273da42440da701996 from the liferay-portal repository [34] with commit
message: "LRQA-34933 Add test to view no XSS issue in Mobile Device Rules". Such commit
looks like a vulnerability patch commit due to it containing the word "XSS" (Cross-site scripting)
and the identification number which could constitute vulnerability database identification just like
the previous commit. This commit is a test-case addition though and not a vulnerability patch.
Such commits are very often test case additions or commits that fix functionality bugs. Also very
prevalent are commits from security-educational repositories that actually add vulnerable code
into a project. So it is the commits that contain important keywords and that are not actually
vulnerability patches the ones that really need to be avoided.

5.3 Word Frequency
A common method used in computational linguistics for analyzing text is to construct a list of
words accompanied by their respective frequency, where frequency here is referred to how many
times they appear in a certain set of texts. In this case it is very useful to group texts that belong
in the same weakness (Common Weakness Enumeration) since we can obtain important words
specific to each weakness.

1CWE stands for Common Weakness Enumeration. Refer to Chapter 1.1.2
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5.3.1 Stemming
Furthermore, words were grouped together in similarity using stemming. Stemming is the process
of reducing a word to its root form. This helps group together words that have different suffixes
but similar roots such as the words "vulnerabilities" and "vulnerability". The algorithm used for
stemming in our case is the Lancaster Stemmer [35] which is a more aggressive alternative to the
more popular Porter Stemmer[36]. This was a deliberate choice since we want as much grouping
as possible between similar words in this case.

5.3.2 Lemmatization
Lemmatization is a method of grouping together the inflected forms of a word to its dictionary
form, or lemma. [37] In linguistics inflection refers to the process by which a word is formatted to
express different grammatical categories such as tense, case, voice, aspect, person, gender, mood,
number, animacy and difiniteness. [38] For example, by the process of lemmetization the words
"vulnerability" and "vulnerabilities" would both result in the word "vulnerability" because they
differ in number. Lemmatization is differing from the process of stemming as the resulting words
are actual words of the English language. Thus, it can be seen as a less invasive method of word
normalization.

5.3.3 Stop Words
Stop words are words that are very common in the English language and therefore are filtered
out to obtain more important words. Words such as the word "the" or "is" are not of particular
importance to us in this case. The word list used for filtering out stop words is the Natural
Language Toolkit’s [39] stop word list.

The cases for Cross-Site Scripting and SQL Injection weaknesses are showcased as an example
bellow.

Stemmed Word Original Word
fix fix
sql sql
inject injection
us use
sec security
vuln vulnerability
report report
sanit sanitize
param paramater
remov remove
escap escape
cve cve
bug bug

Stemmed Word Original Word.
xss xss
fix fix
us use
sec security
issu issue
vuln vulnerability
php php
escap escape
report report
bug bug
sanit sanity
attack attack
inject injection

Table 5.1: Words with significant frequencies. Left: SQL Injection, Right: Cross-Site Scripting.
Note: Original words are indicative examples. Multiple words can result to the same stemmed
word.

This data can be used fairly easily to score text based on individual words. Scoring could be
used to distinguish commits that are highly likely to be indeed a vulnerability patch.

5.3.4 A Simple Scoring Algorithm
A simple scoring algorithm would be to keep a list of N most frequent stemmed and stop-word
filtered terms and count occurrences of them in any original text. So for example, the text "Fix
SQL injection" would have a score of 3 based on the SQL Injection word-list and a score of 2
based on the Cross-Site Scripting word-list. One can then find the highest score to even classify
the weakness the vulnerability belongs to.

Obviously scoring at the level of words completely ignores the context that they are used in.
The presence of the word "vulnerability" could score a commit message in the direction of it being
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a vulnerability commit message but in the context of "not a vulnerability" it should have obviously
scored against it being a vulnerability patch. In order to maintain the context one needs to examine
the text not in an individual word level but in a ’set-of-words’ level commonly referred as n-grams.

5.3.5 A more complex scoring algorithm: Random Forest / Bag of
Words (BOW)

The Bag Of Words (BOW) model is a simplifying representation used in natural language process-
ing and information retrieval (IR). In this model, a text is represented as an unordered collection
of its words, disregarding grammar and even word order. In case of text classification, a word
in a document is assigned a weight according to its frequency in the document and frequency in
between different documents. Words together with their weights form the bag of words model. [40]
In the Bag of Words model, in this particular case, the length of the vector for each piece of text
is equal to the number of distinct words to the corpus, i.e the length of the dictionary.

So for example if the dictionary is the set of words W = {”The”, ”Sun”, ”is”, ”a”, ”star”, ”beautiful”,
”Moon”, ”satellite”} then the phrase "The Sun is a star. Sun is beautiful" would be vectorized into
[1, 2, 2, 1, 1, 1, 0, 0].

Random Forests are a method of classification invented by Leo Breiman in 2001 [41]. They use
a set of decision trees like the one in Figure 5.1. Each tree in this case makes predictions based on
the number of occurrences of certain words. Each of these decision tree’s predictions will have some
variance between them. The Random Forest algorithm combines and averages these predictions
to [42] correct the decision trees’ habit of overfitting. The name Random Forest derives from the
fact that each decision tree takes into account a random subset of the set of all features as well as
having access only to a random subset of the training data.

Figure 5.1: Decision Tree
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5.4 n-grams

In a document classification task, a single key phrase (or an n-gram) can help in determining the
topic of the document[43]. N-grams are sequences of N items from a sample of text. The items
can be syllables, letters etc. In this application’s context n-grams refer to sets of words. [44].
The example mentioned in paragraph 4.3.2 ("not a vulnerability") is a tri-gram because it consists
of 3 words. n-grams of words in computational linguistics are also referred to as "shingles" [45].
N-grams essentially allow us to have an idea of the context in which a word is used because the
order of the words is kept. This feature of n-grams opposes the bag-of-words model which is an
orderless model.

5.4.1 CountVectorizer and Classic Models

In a sense it is easy for one to imagine how one can mimic the bag-of-words functionality and
extend it to operate in a range of n-grams. The CountVectorizer class in the scikit-learn package
[46] does exactly that. One needs to define through the ’analyzer’ parameter if the features should
be made of word n-grams or character n-grams and then through the ’ngram_range’ parameter
the upper and lower boundary of n-values.

One can then apply any popular classifier like the Multinomial Naive Bayes Classifier, the
Support Vector Machine (SVM) or as mentioned above and used throughout this thesis project
the Random Forest Classifier.

Tf-Idf

TF-IDF (Term Frequency times Inverse Document Frequency) is a measure of how many occur-
rences of a given word is observed (frequency) normalized by its prevalence into the corpus (rarity).
It is normally computed as follows. Suppose we have a collection of N documents. Define fij to
be the frequency (number of occurrences) of term (word) i in document j. Then, define the term
frequency TFij to be:

TFij =
fij

maxk fkj
(5.1)

That is, the term frequency of term i in document j is fij normalized by dividing it by the maximum
number of occurrences of any term (in this case excluding stop words) in the same document. Thus,
the most frequent term in document j gets a TF of 1, and other terms get fractions as their term
frequency for this document. The IDF for a term is defined as follows. Suppose term i appears in
ni of the N documents in the collection. Then IDFi = log2(N/ni). The TF-IDF score for term i
in document j is then defined to be TFij × IDFi . The terms with the highest TF.IDF score are
often the terms that best characterize the topic of the document. [47]

Experimentally one can see that Tf-Idf, as shown on Table 5.2, is definitely improving the
performance of classic ML Models.

Machine Learning Model Precision Recall F1 Accuracy
Naive Bayes with CountVectorizer 0.77 0.80 0.78 0.77
Naive Bayes with TfIdfVectorizer 0.77 0.83 0.80 0.79
RF with CountVectorizer 0.77 0.81 0.79 0.78
RF with TfIdfVectorizer 0.78 0.79 0.79 0.79

Table 5.2: Performance metrics of classic Machine Learning Models using different vectorizers

5.4.2 Convolutional Neural Networks

Another way one can take into account n-grams without the involvement of any grouping of words
in the feature vector is the use of Convolutional Neural Networks. Convolutional Neural Networks
are usually used in the field of computer vision but have a big use in Natural Language Processing.
They take as input word embeddings which are vectors of real numbers mapped directly from
words or phrases (n-grams). When those embeddings are derived from the Bag Of Words model
(BOW) the model is referred as bow-CNN.
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One-Hot embedding

One-hot vectors are binary vectors. Their dimension in the Natural Language Processing case is as
big as the dictionary length. The vector consists of 0s in all cells with the exception of a single 1 in
a cell used uniquely to identify a word. They are used in Neural Networks to avoid the assumption
that words which are next to each other in the dictionary order are similar. One-Hot embedding
preserves the word order information unlike the bag-of-words model.

Convolutional Neural Networks utilize convolutions of the input layer (embedding layer). Then
subsequent layers apply filters of certain lengths which are then combined by a process called
pooling.

Let xi ∈ <k be the k-dimensional word vector corresponding with the i-th word in the text.
A text of length n is represented as the embedding x1:n = x1 ⊕ x2 ⊕ ... ⊕ xn where ⊕ is the
concatenation operator. Let xi:i+j refer to the concatenation of words xi, xi+1, ..., xi+j i.e an j-
gram. A convolution operation involves a filter w ∈ <hk, which is applied to a window of h words
to produce a new feature. A CNN automatically learns the values of its filters based on the task
you want to perform without needing to represent the whole vocabulary. A feature ci is generated
from a window of words xi:i+h−1 by ci = f(w · xi:i+h−1 + b). Here b ∈ < is a bias term and f is a
non-linear function such as the hyperbolic tangent or ReLU. This filter is applied to each possible
window of words in the text to produce a feature map c = [c1, c2, ..., cn−h+1]. [48]

The pooling operation mentioned above in the case of max-pooling is picking the maximum
value off of the vector c. In the case of average-pooling the average value is picked. Max-pooling
almost in all cases in practice is more effective than average-pooling. Max-Pooling or sub-sampling
offers the purpose of picking the most important feature for each map and it also reduces the
output dimensionality.

The model uses a multitude of those filters in varying lengths so as to capture multiple features
in different n-gram lengths. So in conclusion each filter specializes in a closely related family of
n-grams and max-pooling extracts the ones which are relevant. [49]

Hyperparameters

The filter sizes - sometimes also referred to as kernel_sizes - are chosen to be 3, 4 and 5. Keeping
features for n-grams of length more than five is usually redundant. The number of filters for each
kernel size is chosen to be 150. Batch size in the training phase is set to a 100. Additionally, the
Adam optimizer is used with a learning rate of 0.001, using the binary cross entropy function.

GloVe Embeddings

The GloVe model was presented by Jeffrey Pennington, Richard Socher, and Christopher D. Man-
ning. (2014) [50]. GloVe which stands for global vector is a way to represent words as vectors
in multidimensional spaces. This model captures semantic and syntactic regularities using vector
arithmetic. It is an unsupervised model meaning that it does not require labeled data. In the
vectors created, the cosine similarity or the distance between the vectors can be used to find other
vectors that represent similar words. Searching for similar keywords to vulnerabilities is very easy
using this model’s representations. A GloVe model trained on the commit message corpus for ex-
ample shows the words ’reflected’, ’stored’, ’persistent’, ’possible’, ’fixed’, ’attacks’, ’vulnerability’
and ’potential’ as the eight most related words to ’xss’ which stands for cross-site scripting. Here
one can see that a lot of these words are indeed correlated to this type of vulnerability.

A very impressive property of word vector models is the ability to perform arithmetic operations
between word vectors to semantically add or subtract meaning. This is used as a sanity check for
the purposes of the project so as to verify the efficiency by which the model captures linguistic
regularities. According to GloVe model, the following vector operation demonstrates beautifully
the semantic relation between the words sqli, injection, buffer and overflow.

~sqli− ~injection+ ~buffer ≈ ~overflow (5.2)

The embedding layer of a convolutional neural network essentially maps the word indices into
low dimensional vector representations. The GloVe embeddings are used to initialize this layer
with the pre-trained values.
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Convolutional Neural Network Performance

Different versions of the commit message data-set were created to find the optimal way to pre-
process the data before training or predicting. Two stemmed versions of the data-set were created
one using the Porter stemmer and one using the Lancaster one. Additionally, a lemmatized version
was created. A version of the original commit message data-set was also tested.

Normalization Algorithm Precision Recall F1 Accuracy
Lancaster Stemming 79% 80% 79% 79%
Lemmatization 79% 82% 80% 79%
None 79% 77% 78% 77%
Porter Stemming 80% 80% 80% 80%

Table 5.3: Performance metrics of the CNN Model (For the vulnerability patch class) using GloVe
embeddings

Of course, the model without the pre-trained GloVe embeddings has slightly worse performance,
as seen on Table 5.4.

Normalization Algorithm Precision Recall F1 Accuracy
Lancaster Stemming 77% 80% 79% 78%
Lemmatization 80% 77% 78% 78%
None 79% 76% 77% 77%
Porter Stemming 76% 83% 80% 79%

Table 5.4: Performance metrics of the CNN Model (For the vulnerability patch class) without the
GloVe embeddings

Improving Vulnerable Commit retrieval relevance

One can improve the performance of a model by recognizing which statistic is the most important
in a certain application. In a data mining setting where the underlying problem is that one can
not boil down a lot of candidate commits into the ones that are actually vulnerability patches the
statistic of precision is the most crucial one.

Precision =
tp

tp+ fp
(5.3)

Essentially, when the goal is to remove False Positives the Precision statistic has to be as close to
1.0 as possible. One can sacrifice the increasing of False Negatives in order to improve this statistic.
This, in the context of neural networks can be done by moving the decision threshold. The neural
network outputs a probability of p = [0, 1] ∈ < that the commit belongs in the vulnerability patch
class. By default, commits that output a probability of p > 0.5 are selected to be classified as
vulnerability patches. One can increase the number of False Negatives and reduce the number of
False Positives by increasing this threshold. Indicatively, one can increase this threshold to 0.7 or
0.8 to achieve precision rates upwards of 85% to 90%. This is roughly a 5% to 10% improvement
from the precision rates displayed in Table 5.3

5.4.3 Convolutional Neural Network Attention and creating Saliency
Maps

Due to the huge potential of deep learning, interpreting neural networks has become one of the
most critical research directions. Deep learning works as a black box model in the sense that
although it performs quite well in practice, it is difficult to explain its underlying mechanism and
understand its behaviors. [51] In this section the method used to interpret the attention of the
Neural Network model (Simonyan et. al. (2013)) [52] is outlined and the adaptation of it in the
context of Natural Language Processing is explained.
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Vanilla Gradients for Images

This technique computes a class saliency map, specific to a given input and class. Given an image
I0 (with m rows and n columns) and a class c, the class saliency map M ∈ <m×n is computed as
follows. First, the derivative w is found by back-propagation.

w =
∂Sc

∂I

∣∣∣∣
I0

(5.4)

Where w is the derivative of Sc (the scoring function) with respect to the image I at the point
(image) I0. After that, the saliency map is obtained by rearranging the elements of the vector w
as Mij = |wh(i,j)| , where h(i, j) is the index of the element of w, corresponding to the image pixel
in the i-th row and j-th column.

NLP Adaptation

Adapting this algorithm for images to work in a Convolutional Neural Network that takes as an
input sequences of indexes of words is fairly straight forward. Following the same procedure as
above one obtains a saliency map Mij ∈ <mxn where m are the embedding dimensions and n is
the maximum number of words kept in a sequence. The saliency map is then reduced to a map of
Mj ∈ <n where:

Mj =
m∑

k=1

= Mk,j = |wh(k,j)| (5.5)

So here we are summing the absolutes of the gradients of the embedding dimension together to
reduce the dimensions of the saliency map. Mj is essentially a measure of which word j needs to
be changed the least in order to affect the prediction the most.

The values of Mj are then normalized to the range of [0, 1] by calculating which helps in further
scaling the values to the [0, 255] range in order to be used for text colouring purposes.

M̂j =
Mj −min(Mj)

max(Mj)−min(Mj)
(5.6)
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Chapter 6

Conclusion

We have presented a data-set of vulnerable source code and its respective patched/secure coun-
terparts retrieved from open source software repository git commits. We have also obtained the
commit messages involved in those commits and trained models to distinguish vulnerability patch
related commit messages. A technique to interpret the decision of one of those models is performed.
A complete semi-automatic system of vulnerable source code discovery integrating those models
is also implemented and tested. To date this project as far as we know is the first complete solu-
tion to retrieving vulnerable source code from publicly available open source repositories without
requiring the occurrence of any reference from a vulnerability database. It is also the first system
which employs machine learning to discover commit messages involved in vulnerability patches.

Future Work

We hope that this system will be deployed in the future in a web application which will allow
multiple people at the same time to update its knowledge in order to hopefully scale it into full
automaticity. This will not only increase the size of the available vulnerable source code that we
have but also increase the ability to retrieve more of it. This subsequently will allow static analysis
based on Machine Learning tools to be used not only experimentally but in large scale and in the
workplace to improve the early detection of security weaknesses.
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Appendix A

Abbreviations

API: Application Programming Interface
AST: Abstract Syntax Tree
BLOB: Binary Large OBject
BOW: Bag Of Words
BOF: Buffer OverFlow
CFG: Control Flow Graph
CNA: CVE Numbering Authority
CNN: Convolutional Neural Network
CNNVD: China National Vulnerability Database
CVE: Common Vulnerability and Exposures
CWE: Common Weakness Enumeration
DVCS: Distributed Version Control System
GloVe: Global Vector
IR: Information Retrieval
ML: Machine Learning
NLP: Natural Language Processing
NVD: National Vulnerability Database
OSS: Open Source Software
PR: Pull Request
SARD: Software Assurance Reference Dataset
SATE: Static Analysis Tool Exposition
SCAP: Security Content Automation Protocol
SQL: Structured Query Language
SVM: Support Vector Machine
TF-IDF: Term Frequency–Inverse Document Frequency
UI: User Interface
XML: Extensible Markup Language
XPath: XML Path Language
XSS: Cross Site Scripting
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