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Abstract

Nowadays, e-learning environments have become a great addition to the traditional ed-

ucational field. Their relatively low-cost and highly-adaptive nature has enabled more and

more people around the world to start or continue their studies. MOOC (massive online open

courses) platforms are an essential element in this transition to online learning and an evolving

software domain. This Thesis submits a proposal for combining this area with the developing

area of learning analytics, a powerful instrument to understand and enhance students’ perfor-

mance via the collection and analysis of vast data. The tool to achieve that merge is the use

of recommender system technology.

To elaborate, this Thesis initially investigates the possible data selection for forming a

predictive model for the user’s behavior that will be beneficial for him. Then, this Thesis

proceeds to the assessment of the available recommendation techniques to choose the most

suitable for the given data. This assessment leads to the software development of the rec-

ommendation system. Alongside comes the web platform development for an interface that

integrates the recommender. After configurations and optimizations, the DCG (discounted

cumulative gain) algorithm is used to judge the efficiency of our results. Finally, the system

is considered to result in adequate recommendations according to the preference profile of

the user.

Keywords

MOOC, Learning Analytics, Collaborative Filtering, Recommender Systems, Personal-

ization
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Περίληψη

Τη σημερινή εποχή τα περιβάλλοντα διαδικτυακής μάθησης έχουν ενισχύσει σημαντικά

το τομέα της καθιερωμένης εκπαίδευσης. Το σχετικά χαμηλό κόστος τους και η προσαρμο-

στική φύση τους έχει δώσει την ευκαίρεια σε πλήθος κόσμου από όλο τον κόσμο να ξεκί-

νησει ή να συνεχίσει τις σπουδές του και τη μάθησή του. Οι πλατφόρμες MOOC (massive

online open courses), δηλαδή οι πλατφόρμες που παρέχουν μαζικά διαδικτυακά ανοιχτά μα-

θήματα στο κοινό, είναι ένα δομικό στοιχείο της μεταβολής στη διαδικτυακή μάθηση, ενώ

παράλληλα είναι ένας τομέας συνεχούς εξέλιξης. Η παρούσα Διπλωματική εργασία θέτει

μια πρόταση συνδυασμού του παραπάνω αντικειμένου με το πεδίο των Learning Analytics,

εκπαιδευτικών αναλύσεων, ένα τομέα-εργαλείο για την κατανόηση και την ενίσχυση των μα-

θητικών αποδόσεων, μέσω της συλλογής και της ανάλυσης μεγάλου όγκου δεδομένων. Το

μέσο για να πραγματοποιηθεί αυτή η σύνθεση είναι η χρήση ενός συστήματος συστάσεων

(Recommender System).

Πιο συγκεκριμένα, η παρούσαΔιπλωματική αρχικά ερευνά την κατάλληλη διαλογή δεδο-

μένων, τα οποία μπορουν να χρησιμοποιηθούν για να δημιουργηθεί ένα μοντέλο πρόβλεψης

της συμπεριφοράς του χρήστη που θα είναι ταυτόχρονα ωφέλιμο για εκείνον. Στην συνέ-

χεια, προχωρά στην αξιολόγηση των υπάρχοντων τεχνικών για συστάσεις ώστε να επιλε-

χθεί αυτή που ενδεικνυταί για τα δεδομένα. Η παραπάνω αξιολόγηση οδηγεί στη ανάπτυξη

του λογισμικού του συστήματος συστάσεων, ενώ παράλληλα,πραγματοποιείται και η ανά-

πτυξη λογισμικού της διαδικτυακής πλατφόρμας που θα ενσωματώσει το προαναφερόμενο

σύστημα.Έπειτα από ρυθμίσεις και βελτιστοποιήσεις, χρησιμοποιείται ο αλγόριθμος μειω-

μένου αθροιστικού όφελους (DCG algorithm) για να κριθεί η αποδοτικότητα των αποτελε-

σμάτων. Τελικά, το σύστημα θεωρείται να αποδίδει επαρκή αποτελέσματα σε σχέση με την

συνολική εικόνα και τις προτιμήσεις του χρήστη.
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Chapter 1

Introduction

A smart MOOC platform falls into the category of e-learning platforms. It is a technolog-

ical tool with educational aspects, taking advantage of various multimedia. Even though the

majority of current online learning systems are closed learning environments where courses

and learning materials have a static nature [1], there is a vast turn in analytics tools to change

this status quo. Nowadays, several fields, including teaching academics and data scientists,

are combined to provide adaptive personalized learning environments to contribute to the

performance and comfort of the learner.

1.1 Learning analytics and recommendation systems

LearningAnalytics is the cycle of measurement, collection, analysis, and reporting of data

about learners and their acting environment, for purposes of understanding and optimizing

learning and the environments in which it occurs. [2] It benefits the learner by offering more

timely, precise, actionable feedback, and it facilitates adaptation to the individual’s needs and

preferences. [3] Learning Analytics achieves e all of the above by utilizing a variety of tools

involving primarily data mining as well as recommender system techniques.

Burke defines a recommender system for learning as any system that produces personal-

ized recommendations as output or has the effect of guiding the learner in a personalized way

to interesting or useful learning resources in a large space of possible options [4]. This Thesis

will try to answer the fundamental steps of implementing a system like that. The following

are the problems occurring in this course of actions that are to be answered are [5]:

• Dataset Selection

1



1.2 Thesis structure 2

• Offline Data Study

• Performance Evaluation

• Deployment of the Recommender System

1.2 Thesis structure

The remainder of this Thesis is organized as follows:

Chapter 2:gives an outline of our model approach and the theoretical background for

drawing conclusions about the personalization parameters used. This section defines the or-

ganization of the wanted platform.

Chapter 3: gives an analytic overview of the recommender systems’ theory and tech-

niques and then specifies the formation of this thesis’ hybrid system.

Chapter 4: focuses on the design and the development of each component of the final

platform. This section provides technical details about the user interface, the database, and

the recommender system.

Chapter 5: contains the evaluation process for the resulting recommendations and the

measurements of effectiveness.

Chapter 6: presents the conclusions for the overall system.



Chapter 2

Model approach

2.1 Introduction

In the bigger picture, the wanted outcome of this Thesis is an adaptive e-learning en-

vironment that aims to improve students’ performance and satisfaction. It is stated that for

these particular improvements, studies suggest the adjustment of learning methods based on

individual profiles and information [6]. This acquired intelligence can be exploited by two

leading techniques: Learning Analytics and Educational Data Mining. The first one aims

at providing insights to teachers and learners, and the second one focuses on the automatic

adaptation of the learning process with not necessarily any human interference.. [7]

Practically for this Thesis, what is mentioned above translates to the implementation of

a unified system, representing a downsized, limited MOOC platform where the user is pro-

vided with a list of recommended courses to choose from. More specifically, the system

gathers students’ ratings and progress-statuses from currently taken courses and merges this

information with courses’ metadata to offer the mentioned recommendations. This proposed

model can be considered to be a gray area between Learning Analytics and educational data

mining because it offers adaptive options and guidance to a learner, and parallelly it functions

as an external automated process.

2.2 Related work

There have been other approaches to connecting MOOC and RS technology in the past.

To begin with, there is a group of studies that utilizes an interface to accumulate learners’ in-

3



2.3 Personalization parameters and student satisfaction 4

formation and search for external sources of material. For example, Symeonidis and Malak-

oudis [8] proposed a system that recommends courses from different MOOC platforms. A

similar plan was implied by Bousbahi and Chorfi [4], and Ya Tang and McCalla suggested a

system that could recommend helpful material from the open web [1]. Furthermore, studies

that did focus on the course recommendation field, differentiate from this study due to their

recommending methods. Gulzar, Leema, Deepak [9] utilized the ontology method, and Jie

Lu utilized fuzzy matching rules to produce recommendations. [10].

Even though our approach utilizes the common technique of collaborative filtering, it can

be distinguished from the previous discussion because of its integrated implementation with

the interface and the explicit submissions of the users. This interconnection with the user’s

activity targets the likeability and satisfaction enhancement of the student since it is stated

that these elements are major factors of the usability and success of a course platform. [11]

[12]

2.3 Personalization parameters and student satisfaction

As outlined above, the recommendation process takes advantage of the following criteria:

the individual’s ratings, the individual’s score, and the content types of courses’ material, e.g.

video, audio means, etc. This selection of attributes for the system is an effort to approach

a personalization strategy of e-learning scenarios suggested by previous studies [13]. It is

stated that among other parameters, learner’s level of knowledge, media preference (content

types), and progress on tasks (course’s score) are key values to implement a learning strategy

that is adequate and satisfactory for the student. Moreover, satisfactory user experience is

also considered to be one of the key factors of usability and efficiency. That is why there is

an attempt to amplify this factor’s value by providing feedback from the user in the form of

ratings. Furthermore, these values are in coordination with the shared schemas of observation,

submission, collaboration, and feedback, that are suggested for MOOC related information

[14].



2.4 Features and data generator 5

2.4 Features and data generator

After research, there was no adequate data set found to satisfy these requirements. The

following solution was to generate dummy data that corresponds to the model. Python pro-

vided randomization functions for the dummy data resulting to the creation of two data sets.

1. Courses data set: with the respective fields of courseId, title, course field, professor

involvement, types of content, and difficulty. The model utilized the courseId field as

the primary identification key for courses and the types of content field for recommen-

dations. There were a total of one thousand entries in this set.

Figure 2.1: Extract from courses data set.

2. Users Attendance data set: with the respective fields of userId, courseId, score, and

ratings. These entries represent the enrollment of a student to a course. The model uti-

lizes the courseId and the userId as a unique key for this relationship and the other two

fields are used for the recommendation procedure. There were a total of twenty thou-

sand different userId fields, representing different users, as an effort to approximate

the number of active students in a greek university.

Figure 2.2: Extract from users’ attendance data set.



Chapter 3

Recommender Systems

3.1 Introduction

Recommender Systems (RSs) are software tools and techniques providing suggestions

for items to be of use to a user [15]. They are a subcategory of information filtering systems

meaning that they are capable of processing a stream of information and result in a targeted

result of actions and/or feedback information without the need of human intervention. [16]

Their integration in contemporary platforms has changed the needs and expectations of enter-

tainment and consuming habits online. The use of RSs today is continually growing, mainly

in the business field but also academically and recreationally. There are several variations

in respect to the algorithmic approach of the issue, starting with the input data information

all the way to efficiency measurements. For example, consumers and users might be giving

explicit and declared ratings to a system or they may not even know their implicit data is

saved to be used. Typical explicit data that are asked for are ratings or rankings. On the other

hand, typical implicit data are closer to user’s navigation behavior such as viewing time or

mouse clicks counting. [17]

3.2 Categories

The fundamental goal of a RS is to leverage knowledge with an appropriate algorithm to

generate various utility predictions and hence recommendations [18]. The classification of

RSs is based upon this knowledge, essentially meaning their input information. Specifically,

the prominent categorization is the following [19] [20]:

6
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1. Content Based: In this case, the RS focuses on item attributes such as descriptive key-

words. The goal of the algorithm is to find similarity between the existing items. Here

the outcome is recommending items similar to what the user liked in the past exploiting

only the interested user’s history.

2. Knowledge Based: Here, an RS provides recommendations after computing a specific

model for the user, based on his own needs and preferences. This model is paired with

the available items (model solutions) to detect the most successful match.

3. Utility Based: In this less utilized proposition, the information submitted is related to

an item’s benefits, for instance, the availability of a product.

4. Demographic Base:In this condition, the recommendations are dependent on the sim-

ilarity with the user’s demographic group.

5. The leading scenario of the recommendation world is CF. In simple words, this tech-

nique makes recommendations of items to a user derived from similar users’ history. If

one user has resembling history with another, one can predict that their future choices

- ratings will align. More to follow.

6. Hybrid model: It is not rare to combine some of the aforementioned techniques to

achieve better results and overcome individual problems.

For this particular project, the Hybrid model is made of use, utilizing the frequent com-

bination of Collaborative Filtering and the Content-Based model. On top of its ability to

eliminate weaknesses between those two, for instance, resolving the cold start problem of the

CF method to a certain extent [21], Hybrid models have promise better recommendations for

plenty of projects in the past.

3.3 Used method analysis

More meticulously, this Thesis approaches a weighted hybrid model, in which the main

focus of the technique remains the CF prediction of the users’ ratings, but there is also a

weighted contribution from some items’ metadata. In particular, the memory-based CF tech-

nique utilizes explicit users’ ratings, gained from previous history and knowledge, in the form

of positive ordinal values. These accumulated values (the input data) are taken advantage of
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to form classes of similar users, meaning if several users liked the same content before they

are put in the same group because theoretically they are expected to have converging tastes

either in the future or in areas of unknown ratings. Consequently, whether there is a miss-

ing rating or there is a need for a rating prediction, the system exploits those groups’ ratings

by calculating a value for an item’s missing value. The fact that this system focuses on the

information of the user and not the information of the item, renders it a user-based RS. The

following step is the ranking procedure where the known and the predicted values are com-

pared and numerically ranked in order to separate the highest values which depict the actual

recommendations.

Figure 3.1: Logic of user-based CF.

Figure 3.2: Explanatory figure of the CF process.

On the other hand, regarding the Content-Based part of the system, the established the-

ory declares that the recommendations are not related to others’ interactions but solemnly
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to the past preference history of the interested user. In opposition to CF, according to this

technique, the similarity correlation is between items’ features. Firstly, the system samples

items with high values from the user’s interaction pool to compare them with the rest of the

available items. For this comparison, the items are remodeled as a set of keywords. Con-

sequently, the final similarity measurement hands out the closest sets, which represent the

recommendations.

Figure 3.3: Logic of Content Based model.

Figure 3.4: Explanatory figure of the CB process.

As mentioned before, ultimately, the two recommendation groups are fused to a single

hybrid algorithm. This fusion is a procedure of weighted averaging of the models, which

remains a black box matter for the programmer. Further information in chapter 4.

Figure 3.5: Logic of the Hybrid model.



Chapter 4

Platforms and software tools

4.1 Introduction

A primary objective for this Thesis was the integral implementation of a functional plat-

form from the user’s perspective. Therefore, there was thorough research of available tools

for the three components of the system, including the web platform, the database, and the rec-

ommendation system. The goal of this chapter is to elaborate on the applied software tools.

4.2 The overall system

As noted, the overall system consists of three components:

1. The Web Platform

2. The Database

3. The Recommender System.

The linking of these components intends to complete the use cases triggered by the main

actor of the system: the interested student. A use case is a process or an action that the actor

expects to fulfill via the indicated system. Thereby, to comprehend the functionality of the

implemented structure, it is necessary to study the responses of the system to these use cases.

Scenarios, like logging in, obtaining a recommendation list, viewing the material of a

course, require, first of all, the communication between the client-side and the server-side of

the web application. The user handles the client-side from the browser interface and prompts

requests, which expect responses with valuable information from the server. To achieve this

10



4.3 Database details 11

back and forth communication the two sides utilize a REST API protocol ensuring quick and

safe data transmission. In reality, the only side getting requests is the side of the server, which

also connects to the system’s database. To respond to the client’s requests, in most instances

the server needs to retrieve data information from the DB consequently, the connection be-

tween them remains always open.

In parallel, there is a separate program running the recommender system. After obtain-

ing the required information about content types of the courses and users’ ratings from the

DB, it proceeds to its computations and finally updates the database in terms of the new rec-

ommended courses. This connection does not have to retain a stable connection since the

program will run only a few times a day because of its demand for major changes in the cur-

rent data. An RS of this size will readjust its results after hundreds of modifications on the

available data, so logically one cannot expect this to happen very often.

Figure 4.1: System context figure.

4.3 Database details

The database is a core component of the system. Not only, both the recommender and the

application necessitate data retrieval to function properly, but also, the DB is the common

link between the other two components. The wanted retrievals, depending on their content,

are intertwined with three sets of information that are stored.In MongoDB theory, these sets

are called collections.
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• Firstly, all the information about the available courses is stored in the courses set, for

example, the ids of the courses. It needs to be initialized by an external actor such as

the professor of the course.

• Secondly, the users’ info set where the personal details of each user are stored, for

example, his username and his recommended courses. This set initializes automatically

when a user signs up and is modified when a user has updates regarding his courses.

• And thirdly, the users’ attendance set records the relation between users and taken

courses. The included information here is the ratings and the scores needed for the

RS system. Its initialization takes place also automatically when a user enrolls in a

new course and updates due to the user’s activity.

As for the technical aspect of this component, the database program chosen is MongoDB,

a NoSQL database that communicates via JSON format documents with the other two com-

ponents. In MongoDB language, the above collections are defined by declared schemas and

have the following appearance when documented:

Figure 4.2: Courses’ set example.

Figure 4.3: User’s information set example.

Figure 4.4: User’s Attendance set example.

4.4 Recommendation system software

The Recommendation Systems are associated with prediction and classification tech-

niques that are in close affiliation with the machine learning field. In addition, it is gener-

ally admitted that the Python programming language is currently a go-to language for re-

lated frameworks [22]. With those two things in consideration, research between Python RS
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frameworks took place, and the result was to adopt the TensorRec framework. “TensorRec is

a Python recommendation system that allows you to quickly develop recommendation algo-

rithms and customize them using TensorFlow” [23]. It is open-sourced and utilizes Tensor-

Flow, one of the leading software libraries when it comes to machine learning and modeling.

Its inputs are the users’ features vector, the items’ features vector, and the interaction matrix.

For this study, the user’s features include students’ ids, the items’ features include the

content type metadata for each course and the interactions matrix consists of the estimated

scorementioned in chapter 3, related to the ratings and the scores of the users. In the first stage,

the system transforms the features to representational graphs to start a training procedure for

a given model. The programmer is called to adjust these representation graphs but just as well

the loss and prediction graphs too. These last adjustments are responsible for themethods used

to compute the loss of a set of recommendations and the recommendation score accordingly.

The training that follows is a repeated process that aims to minimize the distance between

the predicted ranks, which are a depiction of the recommendation scores, and the original

interactions.

Figure 4.5: Logic of the TensorRec framework.

Source: https://github.com/jfkirk/tensorrec

After a trial and error process, the final adjustments chosen for this Thesis are the follow-
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ing:

User representation graph: Normalized Linear Representation Graph, Calculates the rep-

resentation by passing the features through a linear embedding where all latent representa-

tions have the same magnitude.

Item representation graph: Weighted Feature Pass Through Representation Graph, uses

the features as representations and learns weights for each one of them.

Prediction graph: Cosine Similarity Prediction Graph, calculates the prediction as the co-

sine between the user and item representations.

Loss graphWMRB (WeightedMargin-RankBatch) LossGraph, takes account of positive

interactions only and ignores magnitude. It implements the idea of ordered weighted average

loss in a batch training algorithm. [24].

It should be noted that the values ”Rating” and ”Score” from chapter 2 are combined to a

single value for every relation between user and course, to fit the requirements of the system.

FinalScore = 0.6 ∗ Score+ 0.4 ∗Rating (4.1)

Regarding the performance of the model, the fitting needs about 20 minutes to be com-

pleted and produce the final results. Moreover, the qualitative effectiveness of this adaptation

is discussed in chapter 5.

4.5 Web application software

As described earlier, the web application is a collaboration of the ’client’ and the ’server ’

side, which translates to the front and back end of the platform. To achieve this inclusive de-

velopment, the components of the MERN stack are deployed. This stack consists of the Mon-

goDB program, the express JavaScript framework for the implementation of the server-side,

the REACT JavaScript framework for the implementation of the user interface and the client-

side, and the node JS environment. This allows the development of the platform solemnly

with the JavaScript programming language.

4.5.1 User interface

The implementation of a MOOC platform is not a simple task, primarily because of the

“massive” term. At this stage, due to the lack of content and for the sake of simplicity, the
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developed interface delivers an environment only for the students. A user can log in and

navigate to the “courses table” page where according to the tab he chooses, he can view his

taken, available, or recommended courses. Fromwithin this page, he can enroll in new classes

or cancel old ones by checking the corresponding box and submitting his changes. Another

service of the platform is that the user can choose a specific course and view its material. In

this “course” page, he can also rate the curriculum and submit his progress. This translates

to updating the database and ultimately providing new data to the recommender. The figures

below give a better picture of the interface.

Figure 4.6: Use cases diagram.

Figure 4.7: Login page.
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Figure 4.8: Table of recommended courses.

Figure 4.9: Rating functionality.

Figure 4.10: Progress score submission.



Chapter 5

Results and evaluation

5.1 Introduction

Evaluation of effectiveness is a critical part of the developing cycle of the RS. Τhe final

results ought to be qualitatively and quantitatively assessed. Beyond numerical predictions

and algorithmic outcomes, there is a further need to understand users’ satisfaction. One can

easily find a plethora of approaches adjusted to different decisions of the developers, such as

the previous data manipulation, parameters of the system, or the available means and audi-

ence.

First of all, there are mainly three methodologies from which a researcher may start his

course of action. [25] [26]

1. This tool utilizes real-time recommendation options and feedback from real users. A

user is called to select between two recommendations produced by different systems.

The deviations between the systems may be specific parameters or the total structure of

the model. This evaluation takes into account explicit or implicit signals of users’ se-

lection and suggests the system with the most preferred out-turns. Possible and mostly

used metrics are click-through-rate.

2. User studies: Similar to the approach above, real users are provided with differenti-

ated recommendations, but in this case, they are asked to give explicit ratings for the

recommendations provided. In later time these ratings are evaluated by the developing

team to conclude the best approach for their system.

3. Offline evaluation: Finally, Offline evaluations typically measure the accuracy of a

17
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recommender system based on a ground-truth hypothesis and a more mathematical or

statistical analysis [27]. Here, all the information needed is provided from the config-

ured data and the results of the model. This method requires an effectiveness metric,

a comparable numerical value, that assigns a numeric score to a ranking, as an assess-

ment of its quality, or its accuracy. [28]

In the first two propositions, the objective is to decide between two unrelated recom-

mender models, but in the last one, the objective is to improve the metrics variables by read-

justing one existing model. In our study, the lack of real users to provide feedback and the

predominance of offline evaluations in the recommender community [29] led to the adoption

of the latter method.

5.2 The DCG algorithm

As mentioned before, offline evaluation comes hand to hand with a specific metric. A

variety of different metrics can be categorized to belong to:

• accuracy and error base methods,

• decision support methods,

• and ranking based methods

respectively with what is considered to be more important by the programmers.

The first method aims to bring the final predicted scores of a test set closer to what it

is known to be true. Usually, it utilizes popular metrics such as root mean square error. The

second one aims to make a clear separation between “good” and “bad” items, assuring that

only positively weighted items are recommended. Finally, the third option analyzes how the

items were ordered, and assures the relevance of the recommendation

Ranking based evaluation methods assist us in understanding how suggested items are

ordered in terms of their relevance for the users. This is the chosen method for this study not

only because they help us to measure the ranking quality of the model [30], but also because

the highly uncorrelated input data restricts us from safe use of the two first methods.

Discounted Cumulative Gain is a prominent metric for this category. In practice, it is

a measure of ranking quality that is used often to measure the effectiveness of web search
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engine algorithms or related applications [31]. In theory, every recommendation accumulates

a graded score, which is computed by the relevance values extracted from the data history.

DCGp =

p∑
i=1

2reli − 1

log2(i+ 1)
(5.1)

In simple words, for a given set of values [1,2,3,4], the final score is the sum of these

values, weighted accordingly to their position in the set. It is inferred that the first values of

the set, are considered to be more pivotal for the recommendations.

Cumulative Gain of [3,1,2,3,2,0] = 11

Discounted Cumulative Gain of [3,1,2,3,2,0] = 13.30

After the computation of the recommendations’ score, one can proceed to analyze the

results and make comparisons with the forenamed metric. A drawback to face is that while

using DCG, there is not a clear picture of the ideal rankings, but previous studies have shown

sufficient results [32] using normalized DCG.

5.3 Evaluation methodology

Asmentioned before, the result of the RS is a ranked table of all available courses for each

user. After sorting and selection, the database is updated with the best top five recommenda-

tions for each one. These top five recommendations will be evaluated by accumulating a score

for each content type for some arbitrary total of users. The quoted DCG score is computed

based on the input set:

contentXvalues = [Score,Taken]

The score value is the sum of the scores of courses, including the respective content type.

Taken value is the counted appearances of the corresponded content type in all courses, taken

and rated. So after the first step of accumulating the data for the contentXvalues set, the

next step is to proceed to the computation of the DCG value. When the final results are

in disposition for the observer, then follows the stage of comparison to weightiness if the

observations are sufficient to be conclusions.

Examples and observations

Below there is a list of randomly selected users’ metrics that contributed to the conclu-

sions of the evaluation study.



5.3 Evaluation methodology 20

Figure 5.1: DCG results for the user 456.

Figure 5.2: DCG results for the user 645.

Figure 5.3: DCG results for the user 3586.

Figure 5.4: DCG results for the user 7000.
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Figure 5.5: DCG results for the user 8790.

Figure 5.6: DCG results for the user 13564.

Figure 5.7: DCG results for the user 18569.
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1. It is improbable to achieve identification between the orderByFinalValue set and the

orderByDCGValue set.

2. There is a high probability that content types that never appeared in the recommenda-

tions results will have the lowest metrics.

3. Additionally there is a high probability that the two most recommended types will

remain in the first two positions of the proposition order.

4. Lower values for the SCORE and TAKEN column is noticed to contribute to more

hazed and unordered propositions.(5.3)

5.4 Results overview

To summarize, the recommendations are judged to be adequate since there is noticeable

convergence between the two sets of ordering. The RS model mainly counts on the score

attribute but also considers content types of the courses as metadata, a supplementary source

of information to be assisted. This association is reemerging in the evaluation method, verify-

ing, simultaneously, the initial model, and the results. Even if there is no correlation proven,

these conclusions are based upon the proportional nature of the measurements.



Chapter 6

Summary

6.1 Conclusion

This Thesis was an attempt to organize a fully functional smart MOOC platform. The

original goal was the implementation of a hands-on interface for the user that incorporates a

page of recommended courses based on the implemented recommender system mentioned in

the above chapters.

The first step of our process was to study the bibliography for pedagogically based pa-

rameters to justify the reasonability of the recommendations. Consequently, the theoretical

grounds of the system relied on three factors: the likeability of the courses, the level of

progress of each individual, and the preferenced type of content.

Secondly, an examination of available implemented recommender systems occurred, re-

sulting in selecting a Python TensorFlow framework, named TensorRec. Reasonably, the next

step was the configuration of the system and the trial and error stage of improving it. Finally,

the DCG algorithm was applied to validate our hypothesis of qualitative consistency. The

results were judged sufficient because of proportional measurements.

Alongside the RS development, took place the formation of a service-oriented web plat-

form. The tools employed for this basic user interface were the JavaScript components of

the MERN stack. At this stage, the platform meets limited functionalities but is capable of

providing a contextual environment for the recommending results.

Overall, this Thesis was focused on the technical aspects of the system’s development

even though its starting point was of theoretical background.

23
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6.2 Future work

It is acknowledged that the model at the current stage displays basic functionalities and

that there is room for improvement. In respect to recommender results, our primary concern

is the lack of real data, which would be vital for the learning analytics approach. Real life

data would enable the researcher to perform real life experiments in the future and ensure

a better evaluation of the system. Furthermore, there is a definite need to distinguish rec-

ommendations between fields, because presently there is no distinction between the enrolled

courses. Finally, concerning the user’s interface, it would be useful to develop a profile page

to include the user’s statistics, a feature once again helpful for analyzing his behavior.
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Appendix

Programming code

1 Recommender system programming code

1.1 Data generator code

Courses data

1 import csv

2 import random

3 fields=[’physics’,’arts’,’formalscience’,’medicine’,’history’,’

naturalscience’,’economics’]

4 professor_involvement=[’low’,’medium’,’high’]

5 content=[’scripts’,’videos’,’audios’,’extraliterature’,’exercises’]

6 difficulty=[’low’,’medium’,’high’]

7 courses =[]

8

9 #”This scripts creates a csv file where the item feuatures of each course

is stored ”

10 #”These features are determined by the instructor when the course is

uploaded to the platform”

11 #”Here the data is randomly produced to signify existing courses”

12 #”They may be determined explicitly by the professor or taken from the

web platform depending the professor’s actions”

13

14 with open(’courses_item_features.csv’, ’w’, newline=’’) as csvfile:

15 writer = csv.writer(csvfile, delimiter=’,’ )

28
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16 writer.writerow([’courseid’,’title’,’coursefield’,’

professor_involvement’,’types_of_content’,’difficulty’])

17 for i in range(1000):

18 course_string=[]

19 course_string.append(str(i))

20 course_string.append(’title’)

21 course_string.append(random.sample(fields,k=1)[0])

22 course_string.append(random.sample(professor_involvement,k=1)[0])

23

24 num_of_content_types = random.randint(1,5)

25 content_list= random.sample(content,k=num_of_content_types)[:(

num_of_content_types)]

26 course_string.append(’|’.join(x for x in content_list))

27 course_string.append(random.sample(difficulty,k=1)[0])

28

29 writer.writerow(course_string)

User attendance data

1 import csv

2 import random

3 import pandas as pd

4

5 #This dataset is also randomly produced to represent the attendance of

existing students

6 #Each student has a unique id and there should be only one unique

interrelation between a student id and a course id

7 # Τhe size of this dataset (= 10.000 samples) is determined by a quick

estimation of the number of uth-eclass users

8

9 score = []

10 weights= []

11 for i in range(100):

12 score.append(i)

13 if i>50:

14 weights.append(0.66)

15 else:

16 weights.append(0.34)

17

18
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19 with open(’users_implicit_data.csv’, ’w’, newline=’’) as csvfile:

20 writer = csv.writer(csvfile, delimiter=’,’)

21 writer.writerow([’userid’,’courseid’,’score’,’ratings’])

22 for i in range(20000):

23 num_of_courses_taken = random.randint(5,100)

24 ids_of_courses = random.sample(range(0,300),num_of_courses_taken)

25

26 for j in range(num_of_courses_taken-1):

27 attendance_string = []

28 attendance_string.append(str(i))

29 attendance_string.append(str(ids_of_courses[j]))

30 attendance_string.append(random.choices(score,weights)[0])

31 attendance_string.append(random.randint(0,5))

32

33 writer.writerow(attendance_string)

34

35 df = pd.read_csv(’users_implicit_data.csv’)

36 print(df.info())

1.2 TensorRec code

1 #def function: Where we combine ratings and score

2 #via trial and error Multiplying the rating by 20

3 #is to bring in the same numerical

4 #scale as the score metric

5 # Weights were tried to achieve a reasonable outcome

6 def final_score(users_data,users_header):

7 for i in users_data:

8 i[2]=0.6 * i[2] + 0.4*20*i[3]

9 i = i.pop(3)

10 users_header.pop(3)

11

12 #!!!!!!!!!!!!!!!!!!!!!!!CONNECTION WITH SERVER!!!!!!!!!!!!!!!!!!

13 print(”@Connected to webappdbs db on mongodb://127.0.0.1:27017/”)

14 client = MongoClient(’mongodb://127.0.0.1:27017/’)

15 db = client.webappdbs

16

17 ....

18
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19 # Transform the content_types into binarized labels

20 #using scikit’s MultiLabelBinarizer

21 courses_content_features = MultiLabelBinarizer().fit_transform(

courses_content)

22 n_types_content = courses_content_features.shape[1]

23 print(”@Binarized content types for course {}: {}”.format(0,

courses_content_features[0]))

24

25 ....

26

27 #!!!!!!!!!!!!!!!!!!!!!!!TRAINING AND FITTING!!!!!!!!!!!!!!!!!!!!!

28 start_time = time.time()

29 print(”@Training hybrid recommender”)

30 hybrid_model = tensorrec.TensorRec(

31 n_components= 305,

32 user_repr_graph=tensorrec.representation_graphs.

NormalizedLinearRepresentationGraph(),

33 item_repr_graph=tensorrec.representation_graphs.

WeightedFeaturePassThroughRepresentationGraph(),

34 prediction_graph=tensorrec.prediction_graphs.

CosineSimilarityPredictionGraph(),

35 loss_graph=tensorrec.loss_graphs.WMRBLossGraph()

36 )

37 print(”@Fitting the trained model”)

38 hybrid_model.fit(interactions=users_data_train,

39 user_features=user_indicator_features,

40 item_features=full_item_features,

41 epochs = 100,

42 learning_rate = 0.1,

43 verbose = True,

44 n_sampled_items= int(n_items*0.1))

45 print(”@Finished fitting in %s min ---” % ((time.time() - start_time)/60)

)

46 print(”@Hybrid recommender:”)

47 predicted_ranks = hybrid_model.predict_rank(user_features=

user_indicator_features,

48 item_features=

full_item_features)

49
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50 ...

51

52 #!!!!!!!!!!!!!!!!!!!!!!!RESULTS!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

53 # To insert all new recommendations to database

54 counter_user=0

55 for user in predicted_ranks:

56 u_rankings = user

57 u_top_five_recs = numpy.where(u_rankings <= 5)[0]

58 new_five = []

59 for i in u_top_five_recs:

60 new_five.append(int(list(internal_item_ids.keys())[i]))

61 db.userinfo.find_and_modify(query={’userid’:counter_user}, update={”

$set”: {’proposed’:new_five}}, upsert=False, full_response= True)

62 counter_user += 1

1.3 Recommender program output

Figure .1: Console output of the recommendation procedure.

2 User interface code

2.1 Client side

Εxtract from courses’ table page component

1

2 ....

3

4 export default class coursesTable extends React.Component{

5 constructor(props){

6 super(props);



2 User interface code 33

7 this.state = {courses :[],file:null,TabValue:’0’,page:0};

8 this.handleTabChange = this.handleTabChange.bind(this);

9 }

10

11 handleTabChange(e,value){

12 e.preventDefault();

13 axios.get(’http://localhost:4000/webappdbs/courses?ID=’+localStorage.

id+’|’+value)

14 .then(response => {

15 this.setState({

16 courses: response.data,

17 TabValue: value

18 });

19 })

20 .catch(function (error ){

21 console.log(error);

22 })

23 }

24 componentWillMount(){

25 console.log(”FirstMounting, should appear once”)

26 axios.get(’http://localhost:4000/webappdbs/courses?ID=’+localStorage.

id+’|0’)

27 .then(response => {

28 response.data.forEach(element => {

29 selectedInit = selectedInit.concat(element.courseid)

30 });

31 this.setState({courses: response.data});

32 })

33 .catch(function (error ){

34 console.log(error);

35 })

36

37 }

38 render(){

39 return(

40 <Container>

41 <Header/>

42 <TabContext value={this.state.TabValue}>

43 <AppBar position=”static”>
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44 <TabList onChange={this.handleTabChange} aria-label=”simple

tabs example”>

45 <Tab label=”Taken” value=”0”/>

46 <Tab label=”Available” value=”1”/>

47 <Tab label=”Proposed” value=”2”/>

48 </TabList>

49 </AppBar>

50 <TabPanel value=”0”>

51 <Table columns={columns} data={this.state.courses}/>

52 </TabPanel>

53 <TabPanel value=”1”>

54 <Table columns={columns} data={this.state.courses}/>

55 </TabPanel>

56 <TabPanel value=”2”>

57 <Table columns={columns} data={this.state.courses}/>

58 </TabPanel>

59 </TabContext>

60 </Container>

61

62 )

63 }

64 };

2.2 Server side

Extract from the server side

1 mongoose.connect(’mongodb://127.0.0.1:27017/webappdbs’, {useNewUrlParser:

true});

2 const connection = mongoose.connection;

3

4 connection.once(’open’, function() {

5 console.log(”MongoDB database connection established successfully.”);

6 })

7

8 ....

9

10 //Handling of the courses table request

11 Routes.route(’/coursessubmit’).post(function(req,res) {
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12 let selectedNew = req.body.selected;

13 let id = Number(req.body.id);

14 let selectedPrev = [];

15 UserInfo.findOne({’userid’: id},(err,user)=>{

16 selectedPrev = user.courses;

17 selectedNew.forEach((element) => {

18 if(!selectedPrev.includes(element)){

19 UserAttend.create({’userid’:id,’courseid’:Number(element)

,’score’:0,’ratings’:2})

20 .then(e=>{

21 console.log(’added new subject’)

22 });

23 }

24 })

25 selectedPrev.forEach(element => {

26 if(!selectedNew.includes(element)){

27 UserAttend.findOneAndDelete({’userid’:id,’courseid’:

Number(element)})

28 .then(e=>{

29 console.log(’deleted old subject’)

30 });

31

32 }

33 })

34 }).then(exit =>{

35 UserInfo.findOneAndUpdate({’userid’:id}, { $set: {”courses”:

selectedNew}})

36 .then(res.json(’user edited successfully’))

37 .catch(e => console.log(e));

38 })

39

40 });

41

42

43 app.use(’/webappdbs’, Routes);

44 app.listen(PORT, function() {

45 console.log(”Server is running on Port ”+PORT);

46 });
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