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Abstract 

 

The rarefied polyatomic gas flow occurs in many industrial and research applications. 

Typical examples are the design of gas distribution systems, vacuum pumps, micro-propulsion 

(in satellite maneuvering) and design of mass spectrometer. Many of these applications can 

be found in aerospace technology. In most of these, the dimensions of the applications are 

small or the pressure of gas is too low. The gas flow in this type of applications cannot be 

described accurately by the Navier-Stokes equations. So, the problem is described by the 

Boltzmann‘s equation by substituting its collision term with a reliable kinetic model. The 

current Thesis uses the Rykov’s kinetic model. 

Rarefied gas flows appear in many applications. In the literature, the monoatomic gas 

flow has been studied extensively for various channel cross-sections including fixed radius and 

tapered channels. In contrast, the literature for polyatomic gases is limited. In the present 

Thesis, the gas flow in a circular cross section of a fixed radius channel and the gas flow of 

Nitrogen through tapered channels is being investigated. where Nitrogen is considered both 

as monoatomic and polyatomic molecule.  

The kinetic model of Rykov demands the determination of many parameters in order to 

describe the flow through a circular cross section of a cylindrical tube. The value of these 

parameters is defined using two different methods. In the first method, the parameters stated 

in Rykov’s model are defined by the hypothesis that the thermal conductivity obtained by the 

kinetic model is close to experimental data while the value of Prandtl Number is known. 

However, in the second method, the value of Prandtl Number is unknown and the parameters 
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are determined by the same hypothesis.  The results of the two methods are compared with 

databases for the mass and heat flow from the literature, in order to verify their validity. All 

databases are dimensionless, so they can be used in many dimensional cases in order to 

provide sufficient results for the flow of N2. 

Tapered channels are being used in many micro devices. The research of the flow of the 

tapered channels is investigated as a sum of many circular cross sections with different radius 

as the mass is preserved in every cross section. Tapered channels are being used to connect 

vessels with various temperatures or pressures. The results for the mass and heat flow for 

circular cross sections are used in order to calculate the flow of the tapered channel. Ιn the 

present Thesis, the flow of Nitrogen as a monoatomic or a polyatomic molecule is being 

studied in tapered channels. The rarefied polyatomic gas flow through long tapered channels 

is also being investigated for isothermal and non-isothermal flow and for various pressure 

ratios, as the literature for these cases is limited. 

 

Key words: rarefied gas dynamics, polyatomic gasses, polyatomic gas flow, tapered 

channels, Rykov’s model, Nitrogen 
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Περίληψη 

 

           Η ροή αραιοποιημένων πολυατομικών αερίων συναντάται σε πολλές βιομηχανικές και 

ερευνητικές εφαρμογές. Μερικά παραδείγματα αυτών είναι ο σχεδιασμός συστημάτων 

διανομής αεριών, αντλιών κενού, προώθησης μικροσυσκευών (διαστημικών συσκευών) και 

σχεδιασμού φασματογράφων. Επίσης, μερικές από αυτές τις εφαρμογές συναντώνται στον 

αεροδιαστημικό τομέα. Στις περισσότερες από αυτές, οι διαστάσεις των συσκευών είναι 

μικρές ή η πίεση που χαρακτηρίζει το αέριο είναι μικρή. Η ροή του αερίου σε αυτού του 

είδους τις εφαρμογές δεν μπορεί να περιγραφεί με ακρίβεια από τις εξισώσεις Navier-Stokes. 

Σαν αποτέλεσμα, η περιγραφή αυτών των προβλημάτων γίνεται με την χρήση της εξίσωσης 

του Boltzmann υποκαθιστώντας τον όρο που αφορά τις συγκρούσεις με ενός αξιόπιστου 

κινητικού μοντέλου. Στην παρούσα διπλωματική εργασία χρησιμοποιείται το κινητικό 

μοντέλο του Rykov. 

           H αραιοποιημένη ροή αερίων συναντάται σε πολλές εφαρμογές. Στην βιβλιογραφία, 

έχει γίνει εκτενής μελέτη της ροής αερίων ως μονοατομικά για ποικίλες διατομές 

περιλαμβάνοντας τους αγωγούς σταθερής διατομής και τα κωνικά κανάλια. Αντίθετα, η 

βιβλιογραφία για ροές πολυατομικών αερίων είναι περιορισμένη. Στην παρούσα 

διπλωματική εργασία, μελετάται η ροή αερίων σε μία τυχαία κυκλική διατομή ενός αγωγού 

και η ροή του Αζώτου μέσω κωνικών αγωγών, όπου το Άζωτο θεωρείται τόσο ως μονοατομικό 

όσο και ως πολυατομικό μόριο. 

           Το κινητικό μοντέλο του Rykov απαιτεί τον προσδιορισμό αρκετών παραμέτρων 

προκειμένου να μπορεί να περιγραφεί η ροή διαμέσου μια τυχαίας διατομής ενός κυκλικού 
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αγωγού. Ο καθορισμός αυτών των παραμέτρων γίνεται με δύο μεθόδους. Στην πρώτη 

μέθοδο, ο καθορισμός των παραμέτρων του μοντέλου του Rykov γίνεται υποθέτοντας πως η 

θερμική αγωγή του κινητικού μοντέλου είναι ίδια με τα πειραματικά δεδομένα  με την τιμή 

του αριθμού Prandtl να είναι γνωστή. Αντίθετα, στην δεύτερη μέθοδο, η τιμή του Prandtl δεν 

είναι γνωστή και ο καθορισμός των παραμέτρων πραγματοποιείται χρησιμοποιώντας την 

ίδια υπόθεση. Τα αποτελέσματα που προκύπτουν από τις δύο μεθόδους συγκρίνονται με 

δεδομένα που αφορούν την ροή μάζας και θερμότητας από την βιβλιογραφία προκειμένου 

να αποδειχθεί η ορθότητα τους. Όλα τα παραπάνω αποτελέσματα είναι αδιάστατα και 

μπορούν να χρησιμοποιηθούν στην μελέτη ροής αερίου Ν2 σε αγωγούς διαφόρων 

διαστάσεων.  

        Οι κωνικοί αγωγοί χρησιμοποιούνται σε πολλές μικροσυσκευές. Η μελέτη της ροής ενός 

κωνικού αγωγού μελετάται ως ένα σύνολο κυκλικών διατομών διαφορετικής ακτίνας όπου η 

μάζα διατηρείται σταθερή. Οι κωνικοί αγωγοί χρησιμοποιούνται για να συνδέσουν δοχεία με 

διάφορες θερμοκρασίες ή πιέσεις. Τα αποτελέσματα της ροής μάζας και θερμότητας 

κυκλικών διατομών χρησιμοποιούνται για να υπολογισθεί η ροή σε ένα κωνικό αγωγό. Στην 

παρούσα πτυχιακή εργασία, η ροή αζώτου ως μονοατομικό ή πολυατομικό αέριο μελετάται 

για τους κωνικούς αγωγούς. Στην παρούσα διπλωματική εργασία μελετώνται επίσης ροές 

αραιοποιημένου πολυατομικού αερίου σε αγωγούς μεταβλητής διατομής για 

ισοθερμοκρασιακή και μη ισοθερμοκρασιακή ροή για ποικίλους λόγους πίεσης, καθώς δεν 

υπάρχει εκτεταμένη έρευνα στην υπάρχουσα βιβλιογραφία. 

 

Λέξεις-κλειδιά: δυναμική αεροποιημένου αερίου, πολυατομικά αέρια, ροή πολυατομικού 

αερίου, κωνικά κανάλια, μοντέλο του Rykov, Άζωτο 

 

  



ix 

Contents 

Chapter 1. INTRODUCTION................................................................................................ 1 

1.1 General concepts ..................................................................................................................... 2 

1.2 Content and structure .............................................................................................................. 2 

1.3 Scientific contribution of this research ..................................................................................... 3 

Chapter 2. POLYATOMIC KINETIC MODEL .......................................................................... 4 

2.1 Introduction in polyatomic kinetic model ................................................................................ 4 

2.2 Elastic and inelastic collion terms in models ............................................................................ 5 

Chapter 3. POLYATOMIC FLOWS TROUGH LONG TUBES ..................................................... 8 

3.1 Pressure and temperature driven polyatomic flow through long tubes ................................... 8 

3.2 Linearization for long tubes  ..................................................................................................... 9 

3.3 Thermomolecular pressure effect  ......................................................................................... 13 

Chapter 4.FULLY DEVELOPED GAS FLOW THROUGH LONG TUBE…………………………………………………..…..15 

4.1 Flow rate and thermomolecular pressure effect analysis... .................................................... 15 

4.2 Non-Dimensional gas flow through tube ................................................................................ 16 

4.2.1 Method 1: Analysis and results .............................................................................................. 16 

4.2.2 Method 2: Analysis and results .............................................................................................. 23 

4.3             Comparison of the two methods…………………….…………………………………………………………………...29 

4.4 Dimenional gas flow through through tube ........................................................................... 34 

Chapter 5. FULLY DEVELOPED GAS FLOW THROUGH TAPERED CHANNELS ....................... 41 

5.1 Verification of database ......................................................................................................... 41 

5.2 Monoatomic Nitrogen gas flow through tapered channels .................................................... 51 

5.3 Polyatomic Nitrogen gas flow through fixed radius channels ................................................. 58 

5.4 Polyatomic Nitrogen gas flow through tapered channels ....................................................... 61 

Chapter 6. CONCLUSIONS – SUGGESTIONS FOR FURTHER STUDY ..................................... 68 

6.1 Concluding Remarks............................................................................................................... 67 

6.2 Future Work ........................................................................................................................... 68 

REFERENCES 69 

 

 

 

 

  



x 

LIST OF TABLES  

Table 4.1: Prandtl Number of N  in terms of temperature ……………………………..……………………………….16 

Table 4.2: Rotational collision number Z(R) and Zrot in terms of temperature…..………………………………17 

Table 4.3: Parameters ω  and ω  in terms of temperature…………...………………………………………………..17 

Table 4.4: Dimensionless mass flow due to pressure, WP, in terms of rarefaction parameter δ0  

and temperature…………………………………………………………..………………………………………………………………...18 

Table 4.5: Dimensionless mass flow due to pressure, EP, in terms of rarefaction parameter δ0  

and temperature…………………………………………………………..…………………………………………………………………19 

Table 4.6: Dimensionless mass flow due to pressure, WT, in terms of rarefaction parameter δ0  

and temperature…………………………………………………………..…………………………………………………………….…..20 

Table 4.7: Heat flow related to translational degrees of freedom due to temperature in terms of 

rarefaction parameter δ0 and temperature Εtr,T  and Heat flow related to translational degrees of 

freedom due to temperature in terms of rarefaction parameter δ0 and temperature, Erot,T .………….21 

Table 4.8: Parameters Zrot, Z, Prandtl Number, ω  and ω  in terms of temperature………………….......23 

Table 4.9: Dimensionless mass flow due to pressure, WP, in terms of rarefaction parameter δ0  

and temperature…………………………………………………………..…………………………………….………………………….24 

Table 4.10: Dimensionless mass flow due to pressure, EP, in terms of rarefaction parameter δ0  

and temperature……………………………………………….…..……………………………………………………………………….25 

Table 4.11: Dimensionless mass flow due to pressure, WT, in terms of rarefaction parameter δ0  

and temperature…………………………………………………………..…………………………………………………………….….26 

Table 4.12: Dimensionless heat flow related to translational degrees of freedom due to temperature 

in terms of rarefaction parameter δ0 and temperature Εtr,T  and dimensionless heat flow related to 

translational degrees of freedom due to temperature in terms of rarefaction parameter δ0 and 

temperature, Erot,T .…………………………………………………………………………………………………………………………27 

Table 4.13: Comparison of Prandtl Number of the two methods in terms of temperature………………29 

Table 4.14: Comparison of value of parameter ω1 of the two methods in terms of temperature.……30 

Table 4.15: Comparison of Εtr,T and Εrot,T of the two methods for T=423.15K……………………………………33 

Table 4.16: Viscosity and  P u  in terms of temperature…………………………………………………………………35 

Table 4.17: Dimensional mass flow due to pressure Wp in terms of temperature……………………………36 

Table 4.18: Dimensional heat flow due to pressure Ep in terms of temperature……………………………..37 

Table 4.19: Dimensional heat flow due to pressure WT in terms of temperature…………………………….38 

Table 4.20: Dimensional heat flow related to translational degrees of freedom due to temperature 

 Etr,T in terms of temperature…………………………………………………………………………………………………………..39 

Table 4.21: Dimensional heat flow related to rotational degrees of freedom due to temperature 



xi 

Erot,T in terms of temperature………………………………………………………………………………………………………….40 

Table 5.1: Comparison of dimensionless mass flow due to pressure in terms of rarefaction  

parameter δ0 and temperature for monoatomic Nitrogen..….………………………………………………………..42 

Table 5.2: Comparison of dimensionless mass flow due to temperature in terms of rarefaction 

parameter δ0 and temperature for monoatomic Nitrogen…….…………………………………………………….…44 

Table 5.3: Τ*, Zrot and ω in terms of temperature and  ω ……………………………………………………………..46 

Table 5.4: Comparison of dimensionless mass flow due to pressure in terms of rarefaction  

parameter δ0 and temperature for polyatomic Nitrogen……………………………………………………..………..47  

Table 5.5: Comparison of dimensionless mass flow due to temperature in terms of rarefaction 

parameter δ0 and temperature for polyatomic Nitrogen…..………………………………………………………….49 

Table 5.6: Comparison of the reduced mass flow for isothermal flow and monoatomic Nitrogen in 

terms of pressure ratio and the inlet rarefaction parameter…………………………..…………………………....53 

Table 5.7: Comparison of the reduced mass flow for non-isothermal flow and monoatomic  

Nitrogen in terms of pressure ratio and the inlet rarefaction parameter……………….……………………..55  

Table 5.8:  Comparison of the reduced mass flow for polyatomic Nitrogen in terms of the inlet 

 rarefaction parameter for T2/T1 = 2 and isobaric flow in fixed radius channel…………………………...60 

Table 5.9:  Comparison of the reduced mass flow for polyatomic Nitrogen in terms of the inlet  

rarefaction parameter for T2/T1 = 3 and isobaric flow in fixed radius channel…………………………….60 

Table 5.10: Comparison of the reduced mass flow for isothermal flow and polyatomic Nitrogen 

 in terms of pressure ratio and the inlet rarefaction parameter……………………………….……….…………62 

Table 5.11: Comparison of the reduced mass flow for non-isothermal flow and polyatomic  

Nitrogen in terms of pressure ratio and the inlet rarefaction parameter.………….………….……….……64 

 

 

 

 

 

 

 

 

 

 



xii 

 

 

LIST OF FIGURES 

Figure 4.1: Value of Prandtl Number of the two methods in terms of temperature……………….....29 

Figure 4.2: Value of Parameter ω1 of the two methods in terms of temperature……………………...30 

Figure 4.3: Value of dimensionless mass flow due to pressure, WP, in terms of rarefaction 

 parameter δ0 and temperature ………………………………………………………………………………………………..31 

Figure 4.4: Value of dimensionless heat flow due to pressure, EP, in terms of rarefaction  

parameter δ0 and temperature ………………………………………………….……………………………………………..31 

Figure 4.5: Value of dimensionless mass flow due to temperature, WT, in terms of  

rarefaction parameter δ0 and temperature ……….……………………………………………………………………..31                   

Figure 4.6 Dimensionless heat flow related to translational degrees of freedom due to  

temperature Erot,T  in terms of rarefaction parameter δ0 and temperature ………………...…………...31          

Figure 4.7: Dimensionless heat flow related to rotational degrees of freedom due to 

temperature Erot,T  in terms of rarefaction parameter δ0 and temperature ……...……………………...32            

Figure 4.8: Comparison of Εtr,T of the two methods….…………………………….………….…………………..…33                                                                                

Figure 4.9: Comparison of Εrot,T of the two methods….……………..……………………….………………………33      

Figure 4.10: Dimensional mass flow due to pressure Wp in terms of temperature.……………………36 

Figure 4.11: Dimensional mass flow due to pressure Ep in terms of temperature..……………………37 

Figure 4.12: Dimensional mass flow due to temperature WT in terms of temperature……………..38 

Figure 4.13: Dimensional heat flow related to translational degrees of freedom due to  

temperature Etr,T in terms of temperature……………………………………………………….……………………....39 

Figure 4.14: Dimensional heat flow related to rotational degrees of freedom due to 

 temperature Erot,T in terms of temperature…………………………………………..……….………………………..40 

Figure 5.1: δ along x-axis  [ δ0 = 0.1 ]………………………………………….……………………………………………..53 

Figure 5.2: Pressure along x-axis  [ δ0 = 0.1]………………………….….……………………………………………….53 

Figure 5.3: δ along x-axis  [ δ0 = 1 ]…………………………………….…….……………………………………………….54 

Figure 5.4: Pressure along x-axis  [ δ0 = 1]………………….……….…….……………………………..……………….54 

Figure 5.5: δ along x-axis  [ δ0 = 10 ]………………………….……….……………………………………………………..54 

Figure 5.6: Pressure along x-axis  [ δ0 = 10]…………..………….……………………………………………………….54 

Figure 5.7: δ along x-axis  [ δ0 = 0.1 ]………………….……………………………………………………………………..56 

Figure 5.8: Pressure along x-axis  [ δ0 = 0.1]……………………….….………………………………………………….56 

Figure 5.9: δ along x-axis  [ δ0 = 1 ]…………………………….……….…………………………………………………….56 

Figure 5.10: Pressure along x-axis  [ δ0 = 1]………………….……….…………………………………………………..56 



xiii 

Figure 5.11: δ along x-axis  [ δ0 = 10 ]…………………………..……………………………………………………………57 

Figure 5.12: Pressure along x-axis  [ δ0 = 10]…………..…….…………………………………………………………..57 

Figure 5.13: δ along x-axis  [ δ0 = 0.1 ]………………….……………………………………………………………………62 

Figure 5.14: Pressure along x-axis  [ δ0 = 0.1]…………….……………….……………………………………………..62 

Figure 5.15: δ along x-axis  [ δ0 = 1 ]……………………………………….…………………………………………………63 

Figure 5.16: Pressure along x-axis  [ δ0 = 1]…………………….…………………………………………………………63 

Figure 5.17: δ along x-axis  [ δ0 = 10 ]………………………….…………………………………………………………….63 

Figure 5.18: Pressure along x-axis  [ δ0 = 10]…………..…………………………………………………………………63 

Figure 5.19: δ along x-axis  [ δ0 = 0.1 ]……………………………………………………………………………………….65 

Figure 5.20: Pressure along x-axis  [ δ0 = 0.1]………………………….…………………………………………………65 

Figure 5.21: δ along x-axis  [ δ0 = 1 ]…………………………………….……………………………………………………65 

Figure 5.22: Pressure along x-axis  [ δ0 = 1]………………….……………………………………………………………65 

Figure 5.23: δ along x-axis  [ δ0 = 10 ]………………………….…………………………………………………………….66 

Figure 5.24: Pressure along x-axis  [ δ0 = 10]…………..…………………………………………………………………66 

Figure 2.25.: Parameter ftr along x-axis for rarefaction parameter inlet δ0 and  

pressure ratios 0.9 and 0.5…………………………………………………………………..…………………………………..66



1 

Chapter 1. INTRODUCTION 

The rarefied gas flow has attracted the interest of many researchers due to its 

importance in many industrial and research applications. These gas flows appear in small 

dimension devices or in applications where the pressure is low. The flow cannot be described 

by the Navier-Stokes’ equations accurately, so the Boltzmann’s equation is selected to 

describe the flow by substituting its collision term with a reliable kinetic model, in the current 

Thesis with Rykov’s kinetic model. 

The investigation of rarefied gas flow on monoatomic gases has been mainly based 

either on the linearized Boltzmann’s equation [9] or on kinetic models named Bhatnagas-

Gross-Krook [3] and Shakhov [33]. The polyatomic gases have not been investigated 

extensively in the literature due to their complexity. 

In the literature, there is extensive investigation for different cross sections. Parallel 

plates have been researched for both monoatomic (Ohwada[5], Sharipov and Seleznev[6]) and 

polyatomic gases (Loyalka and Storvick[7]). Furthermore, long and short circular and elliptic 

tubes (Sharipov[34], Graur and Sharipov[35], Alexeenko[36] and Pantazis[37]), long 

rectangular, triangular and trapezoidal cross sections  (Sharipov[38] and Ritos[39]) have been 

investigated in the literature. 

Rarefied monoatomic gas flows based on Rykov’s model have been extensively 

investigated in the past. Monoatomic gas flows have been researched for both fixed radius 

circular tube and variable circular radius tubes (Sharipov and Bertoldo[30]) . For polyatomic 

gas flow in fixed radius circular tube, there is an extensive research by Loyalka[8] and 

Tantos[29]. 

In the present Thesis, the rarefied gas flow for both monoatomic and polyatomic gases 

in a circular cross section of a circular tube is investigated, using two different methods. The 

investigation of monoatomic and polyatomic gas flow through a long tapered channel 

demands the research of mass and heat flow in circular cross sections. 
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1.1 General concepts 

The pressure-driven flow and the thermal flow through long diverging or converging 

channels, has attracted the scientific attention of many researchers. This happens due to its 

presence in many technological applications including vacuum technology, high altitude 

aerodynamics, pumping and leak detection. In the aerospace technology, a lot of researchers 

focus on satellite propulsion and maneuvering of spacecrafts. In the diode effect, where the 

inlet and the outlet are the same, the mass flow is lower when the flow is in the diverging 

direction compared to a converging channel. This phenomenon is significant, especially in 

micro devices. 

In the present Thesis, there is an investigation for the rarefied monoatomic and 

polyatomic gas flow in a circular cross section of fixed radius tube. The investigation of 

monoatomic and polyatomic non-dimensional gas flow for long tapered is based on this 

database. 

1.2 Content and Structure 

In Chapter 2, the polyatomic kinetic problem and the kinetic models required to solve 

the Boltzmann equation numerically are introduced. Following that, there is an extensive 

description of Holway’s and Rykov’s models. 

             In Chapter 3, the pressure and temperature driven polyatomic flow through long tubes 

is introduced. Two reservoirs, with different pressure and temperature, are connected with a 

long fixed-radius tube. Based on this model, the flow through a circular cross section of the 

tube is researched. The results of the flow in circular cross section, for different rarefaction 

parameters and temperatures, are used in order to investigate the flow for long tapered 

channels both for monoatomic and polyatomic gases (N2). In order to research the gas flow, 

the Boltzmann equation is needed to be linearized for long tubes. 

             In Chapter 4, in order to specify the mass and heat flow through a circular cross section 

of a long tube, some parameters for Rykov’s model that are used in order to determine the 

flow of N2  should be specified. Two methods are used for the definition of these parameters. 

In the first method, the value of the Prandtl Number is known from the literature [27] and the 

parameters ω0 and ω1 are defined from a system of equations, either eq. (2.4) or eq. (2.5) 

from Mason and Monchick [1] and eq. (2.6) from Rykov [11]. In this Thesis eq. (2.4) is used. 
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On the contrary, in the second method the parameters are specified from [10] and the 

theoretical value of Prandtl number is calculated by eq. (2.6) from [11].  

            In Chapter 5, the databases of Chapter 4 are being verified. So, the results calculated of 

mass and heat flow are being compared with results from literature. In addition, the databases 

of bibliography, which are the same with the results of Chapter 4, are used in order to specify 

the flow of N2 in a tapered channel. The flow, for different pressure ratios between inlet and 

outlet of the channel, is researched both as isothermal and non-isothermal. In the first case it 

is assumed that Nitrogen is a monoatomic, where in the second case it is a polyatomic gas. All 

the results are being verified by data from bibliography. 

1.3 Contribution of this research 

All the results that occurred in this Thesis can be used in many scientific researches. 

Both the codes and the databases that were developed and investigated in this Thesis can be 

used in order to specify the flow of many gases through long tubes and tapered channels in 

micro vacuums. Furthermore, this research concludes that the mass and heat flow in both 

methods are the same. These methods had been used in order to specify some parameters of 

the flow. The results of the two methods can be used in order to validate and calculate the 

flow for dimensional gas flows for a variety of temperatures, pressures, dimensions and 

rarefaction parameters for both theoretical and real conditions experiments. The database of 

rarefied polyatomic gas flow in tapered channels which is investigated in this Thesis based on 

Rykov’s model is valuable for the current scientific literature as future research can be based 

upon it.  
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Chapter 2. POLYATOMIC KINETIC MODEL 

2.1 Introduction to polyatomic kinetic modeling 

The solution to Boltzmann’s equation, either numerical or analytical, needs great 

computational effort. This effort can be reduced substituting with a reliable kinetic model, the 

term of collision number. Reliable kinetic models can be the Holway [12], Hanson and Morse 

[13], Brau [4], Wood [14], McCormack [15], Rykov [16], Andries [17], Marques [18] and 

Fernandes and Marques [19]. 

 In the Holway’s model, the kinetic equations have been obtained by the employment 

of the diagonal approximation in the linear operator of the Boltzmann’s equation for diatomic 

gases. The Hanson and Morse model is similar to Holway’s model but it does not satisfy the 

requirements in every state. Furthermore, in Morse’s model, it is stated that heat capacity at 

constant volume and at all degrees of freedom is independent from the temperature only for 

high temperatures. In Brau’s model, the elastic collisions are treated by a single relaxation-

time term and the inelastic collisions are described by a FokkerPlanck term. The Wood model 

is an ellipsoidal statistical model which allows the calculation of the correct value of the 

Prandtl number of the gas. The model proposed by McCormack is an extension based on the 

model described by Hanson and Morse. The Rykov model can be written as Holway’s model 

and consists of two components, the elastic and inelastic collisions. A detailed analysis of 

Rykov’s model follows in paragraph 2.2. The model provided by Andries, provides correct 

expression of viscosity and thermal conductivity coefficients. In Marques work, the 

replacement of Boltzann’s collision operator by a single relaxation-time term states its kinetic 

model equation for polyatomic gases. The Fernandes and Marques model is similar to the 

model by Marques but the collision operator is replaced by a single relaxation-time term with 

Grads 6-moment. The disadvantage of this model is, that it is valid for some cases in which the 

energy exchange of translational and internal degrees of freedom is slow. The Wood, 

McCormack, Marques and Fernandes and Marques belong to linearized kinetic theory models. 

In the past, it was proved that the Holway, Andries and Rykov models provide results similar 

to experimental data. This is the reason for selecting Rykov’s model in the present Thesis.  
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2.2 Elastic and inelastic collision terms in models 

    In rarefied polyatomic gas flows and heat transfer problems, the use of Holway’s or 

Rykov’s problem has been applied with significant success. In a one-dimensional heat transfer 

problem, the models of Holway and Rykov can be described in a similar form.  

      𝜉 = 𝑃𝑟 1 −
( )

𝐿
( )

− 𝐿 + ( ) (𝐿
( )

− 𝐿)                                         (2.1)  

where 𝑖 = 𝐻 for the model of Holway and 𝑖 = 𝑅 for the model of Rykov. In the right hand of 

the eq. (2.1), the pressure is defined only by the translational temperature, 𝑃 = 𝑛𝑘 𝑇 . The 

𝜇 = 𝜇(𝑇 ) is the viscosity of gas which is also defined only by the translational temperature. 

The term of 𝑃𝑟 is for the Prandl number and the parameter 𝜒, where 𝜒 = 1 for the model of 

Ηolway and 𝜒 = 0 for the model of Rykov respectively. The parameter 𝑍( ) is the fraction of 

rotational collisions of the total number and its value is between 0 and 1. The first two terms 

of the right side of q. (2.1) describes the elastic collisions, which conserves the translational 

energy of molecules and inelastic collisions which exchanges the rotational and the 

translational energies respectively. 

    The 𝐿 = 𝑔, ℎ  vector describes the unknown distribution functions and depends 

on the velocity vector of molecules 𝜐 = (𝜉 , 𝜉 , 𝜉 ) and spatial variable 𝑦. Also, on the right 

side of the Eq. (2.1), are the translational distribution function 𝐿
( )

= 𝑔
( )

, ℎ
( )

  and the 

rotational distribution function 𝐿
( )

= 𝑔
( )

, ℎ
( )

  where their parameters are analyzed 

bellow: 

 

 Holway kinetic model (Eq. 2.2) 

     𝑔
( )

= 𝑛
/

𝑒𝑥𝑝                                                                             (2.2𝑎)  

     ℎ
( )

=  𝑔
( )

                                                                                                         (2.2𝑏)  

    𝑔
( )

= 𝑛
/

𝑒𝑥𝑝                                                                                  (2.2𝑐)  

    ℎ
( )

=  𝑔
( )

                                                                                                             (2.2𝑑)  

 

 Rykov kinetic model (Eq. 2.3) 

    𝑔
( )

= 𝑔
( )

1 +
( )

−                                                                   (2.3𝑎)  
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    ℎ
( )

= 𝑔
( )

𝑘 𝛵 1 +
( )

− +  

   (1 − 𝜅)                                                                                                           (2.3b) 

   𝑔
( )

= 𝑔
( )

1 + 𝜔
( )

−                                                                 (2.3𝑐)  

   ℎ
( )

= 𝑔
( )

𝑘 𝑇 1 + 𝜔
( )

− + 𝜔 (1 − 𝜅)
( )

                 (2.3𝑑)  

 

 

    On the eqs. (2.3), the parameter 𝜅 = 𝜇/(𝑚𝑛𝐷) is a constant where the value is 1/1.2 

for hard spheres and 1/1.543 for Maxwell molecules [22] or somewhere between these two 

values. On the next chapter, in order to investigate the flow in long channels, the parameter 

κ is being chosen from the hard spheres’ model. The parameters 𝜔  and 𝜔  can either be 

defined from bibliography or using the theory in [10]. Using this theory, the value of rotational 

collision number 𝑍( ) can be defined through the value of parameter 𝑍 .  The parameters 

𝜔  and 𝜔  can be defined from the eqs. (2.4), (2.5) and (2.6) by [10], [11]: 

 

1 + ( ) = 1 − ( ) 1 −                                                                                   (2.4)   

1 + 
( )( )

( ) = 1 +  ( ) 1 −                                                                        (2.5)   

 

 

 Prandtl number depends on the characteristics of fluid or gas. Its equation is given by 

[11]: 

𝑃𝑟 =
( ) ( )

+
.

( ) ( )( )
                                                              (2.6)  

 

which derives from the equations (2.4) and (2.5). 

In this equation, Prandtl number depends on κ, 𝑍( ), ω  and ω .  

In the current Thesis, for the determination of the parameters (𝜔  and 𝜔 ) two 

different methods are used. In the first method, the value of the two parameters is specified 

using eqs. (2.4) and (2.5) which is independent from the temperature and the value of Prandtl 

number of the gas. In the second method, the temperature’s value is known and so is the 
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value of Prandtl number. But for the investigation of the mass flow and heat flow, the value 

of the parameters 𝜔  and 𝜔  is needed to be determined. This occurs by specifying the value 

of the parameters 𝜔  and 𝜔  through eq. (2.6) and eqs. (2.4) or (2.5). The comparison of the 

results of the two methods concludes in the fact that dimensionless results are the same. In 

both methods, the values of 𝜅 and 𝑍( ) are given. It should be mentioned that eqs (2.4) and 

(2.5) derive from [10] and eq. (2.6) from [11] as a combination of eqs. (2.4) and (2.5). 
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Chapter 3. POLYATOMIC FLOWS THROUGH LONG TUBES 

                  In this chapter, there is an extensive analysis of the problem that is being solved in 

order to specify the flow in a circular cross section. In order to specify the rarefied gas flow in 

a circular tube, the parameters and the conditions of the problem are needed to be specified.  

There are two reservoirs which are connected with a long tube with different temperature 

and pressure conditions. The solution of the problem requires the linearization of the kinetic 

model (Rykov) that is being used. Also, a case is mentioned, where the flow due to pressure 

difference is opposite to the flow due to temperature difference and as result, the total mass 

flow is zero. 

3.1  Pressure and temperature driven polyatomic flow through long tubes 

    Two large reservoirs A and B are connected with a long circular tube of radius R. In 

reservoir A the conditions are 𝛵  for temperature and 𝑃  for pressure. In reservoir B, the 

temperature and pressure are 𝛵  and 𝑃  respectively. The temperature and pressure are 

constant in both reservoirs and their values are given. The correlation of pressure A and B is 

𝑃 < 𝑃  and the correlation of temperature A and B is 𝑇 > 𝑇 . In addition, the differences 

between pressures and temperatures of reservoirs A and B are too small. 

   𝑃 − 𝑃 ≪                                                                                                                 (3.1) 

  𝑇 − 𝑇 ≪                                                                                                                  (3.2) 

    When the two reservoirs are connected, with different temperatures and same 

pressure, the polyatomic gas flows from the cold reservoir (𝑇 ) to the hot one (𝑇 ). This is 

called thermal creep flow. If the whole system is closed, then there is a drop of pressure 

between the two reservoirs.  The polyatomic flow is opposite to the thermal creep due to the 

pressure drop. This phenomenon is called thermomolecular pressure effect and it is mainly 

seen in monoatomic gases flows. It is also assumed that the length of the tube is much bigger 

than its radius (𝑅 ≪ L). In this study, the thermal creep flow and the thermomolecular 

pressure effect phenomenon is being investigated for the flow of polyatomic gases through 

long circular tubes. 
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3.2  Linearization for long tubes 

 There are small temperature and pressure differences between the two ends of the 

long circular tube. Also, according to the correlation of radius and length of the tube, the flow 

is considered fully developed without end effects in the inlet and outlet of tube. As a result, 

the equations of the problem can be linearized and are defined by the eqs. (3.3) and (3.4) from 

[21] and [22]: 

𝑔 = 𝑓
( )

(1 + 𝐿)                                                                                                                      (3.3) 

             ℎ =
𝑗

2
𝑘 𝑇 𝑓

( )
(1 + 𝐻)                                                                                                       (3.4) 

where:  𝑓
( )

= 𝑛 𝑒𝑥𝑝  

The 𝐿 and 𝐻 are linearized distribution functions which are unknown. Both 𝐿 and 𝐻 

depend on radial spatial coordinate �̂� (0≤ �̂� ≤ 𝑅) and the molecular velocity vector 

(cylindrical coordinates) 𝑢 = (𝜉𝑐𝑜𝑠𝜃, 𝜉𝑠𝑖𝑛𝜃, 𝜉𝑧) with 𝜃 = tan , 𝐿(�̂�, 𝑢), and 𝐻(�̂�, 𝑢). 

The two former equations are independent from the z-coordinate. In the local-Maxwellian 

function 𝑓
( ) , there is the �̂�-dependence. At each cross section, the rotational 𝑇 , 

translational 𝑇  and local temperature 𝑇 is equal to 𝑇 . Also, the temperature 𝑇 , the number 

density 𝑛  and the pressure 𝑃 = 𝑛 𝑘 𝑇  are constant in each cross section of the tube.  

 

According to [21], [22], [23] the unknown equations of L and H can be defined by the 

equations: 

             𝜉 cos 𝜃
̂
−

̂
= 𝑢(𝐿 − 𝐿) − 𝜉

̂
− 𝜉 −

̂
                        (3.5a) 

𝜉 cos 𝜃
̂
−

̂
= 𝑢(𝐻 − 𝐻) − 𝜉

̂
− 𝜉 −

̂
                (3.5b) 

𝐿 = 2 + + 1 𝑄 −                                                 (3.5c)                 

             𝛨 = 2 + + 1 𝑄 − + 

+ 1 (1 − 𝜅)𝑄                                                                                     (3.5d)                                                                                                        

    In the eqs. (3.5), the term 𝑢 = 𝑃 /𝜇(𝑇 ) is the collision frequency. The viscosity 

𝜇(𝑇 ) is at temperature 𝑇 . The parameter 𝛧  describes the rotational degrees of the 

rotational collisions of their total number. The parameter j indicates the rotational degrees of 
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freedom and its value is 2 or 3 for linear and nonlinear polyatomic molecules. The 

parameters 𝜔  and 𝜔  need to be defined as described in Chapter 3 by eqs. (2.4) and (2.5) in 

order to obtain the correct values of translational and rotational thermal conductivity 

coefficients. Furthermore, the parameter  𝜅 = 𝜇/(𝑚𝑛𝐷) is constant and its value is 1/1.2 for 

hard spheres and 1/1.543 for Maxwell molecules. In the eq. (3.5) the terms of velocity 𝑢 , the 

translational heat flux 𝑄  and the rotational heat flux 𝑄  need to be analyzed and defined 

as functions with the functions of 𝐿 and 𝐻. The equations are defined as: 

𝑢 (�̂�) = ∫ ∫ ∫ 𝜉𝜉 𝑓
( )

𝐿𝑑𝜉𝑑𝜃𝑑𝜉                                                                      (3.6)  

𝑄 (�̂�) = ∫ ∫ ∫ 𝜉𝜉 𝑢 − 𝑇 𝑓
( )

𝐿𝑑𝜉𝑑𝜃𝑑𝜉                                           (3.7)  

𝑄 (�̂�) = ∫ ∫ ∫ 𝜉𝜉 𝑓
( )

(𝐿 − 𝐻)𝑑𝜉𝑑𝜃𝑑𝜉                                                  (3.8)  

 

In eqs (3.6), (3.7) and (3.8), 𝑚 is the molecular mass and 𝑘  is the Boltzmann constant 

and all of them apply in each cross section of the tube.  

    For a certain cross section �̂� = 𝑧  of the long cylindrical tube, the non-dimensional 

quantities are defined as: 

𝑟 =
̂
    (3.9𝑎) , 𝜁 =   (3.9𝑏) , 𝑐 =   (3.9𝑐) , 𝑓( )

=
( )

 (3.9𝑑)     

 𝑢 =  (3.9𝑒) , 𝑞 =  (3.9𝑓) , 𝑞 =    (3.9𝑒) 

where 𝑢  is the probable molecular speed and 𝑃  is the reference pressure. The 

equations of probable molecular speed and reference pressure are described as: 

𝑢 =
2𝑘 𝑇

𝑚  , 𝑃 = 𝑛 𝑘 𝑇    , 𝑛 = 𝑛   , 𝑇 =  𝑇   ,   𝑃 = 𝑃  

    The problem needs to be simplified, so that parameter 𝑐  can be replaced. For this 

simplification, the integrals are introduced: 

𝐹 =  
√

∫ 𝐿𝑐 𝑒𝑥𝑝(−𝑐 )𝑑𝑐                                                                                           (3.10)  

𝐺 =  
√

∫ 𝐿𝑐 𝑒𝑥𝑝(−𝑐 )𝑑𝑐                                                                                         (3.11)  

𝑆 =  
√

∫ 𝐻𝑐 𝑒𝑥𝑝(−𝑐 )𝑑𝑐                                                                                          (3.12)  

    All the equations of the system of eqs. (3.5) can be rewritten, using the eqs. (3.10), 

(3.11) and (3.12) as: 

𝜉 cos 𝜃 − = 𝛿 (𝐹 − 𝐹) − [𝑋 + (𝜉 − 1)𝑋 ]                                   (3.12𝑎)  
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𝜉 cos 𝜃 − = 𝛿 (𝐺 − 𝐺) − (𝑋 + 𝜉 𝑋 )                                             (3.12𝑏)  

𝜉 cos 𝜃 − = 𝛿 (𝑆 − 𝑆) − (𝑋 + 𝜉 𝑋 )                                               (3.12𝑐)  

𝐹 = 𝑢 + + 1 𝑞 (𝜉 − 1)                                                                          (3.12𝑑)  

𝐺 = + + 1 𝑞 𝜉                                                                                        (3.12𝑒)  

𝑆 = 𝑢 + + 1 𝑞 (𝜉 − 1) + + 1 (1 − 𝜅)                        (3.12𝑓)  

 

where the 𝑢 , 𝑞 , 𝛿  and 𝑞  are defined as: 

𝑢 = ∫ ∫ 𝜉𝐹𝑒𝑥𝑝(− 𝜉 )𝑑𝜉𝑑𝜃                                                                                   (3.13)  

 𝑞 = ∫ ∫ 𝜉 𝐹 𝜉 − + 𝐺 𝑒𝑥𝑝(− 𝜉 )𝑑𝜉𝑑𝜃                                                  (3.14)  

𝑞 = ∫ ∫ 𝜉(𝑆 − 𝐹)𝑒𝑥𝑝(− 𝜉 )𝑑𝜉𝑑𝜃                                                                  (3.15)  

𝛿 =                                                                                                                                (3.16)  

and the parameters of dimensionless pressure 𝑋  and dimensionless temperature 𝑋  

are described as: 

𝑋 =
 ̂

                                                                                                                          (3.17𝑎)  

𝑋 =
 ̂

                                                                                                                          (3.17𝑏)  

 

    The total heat flux is  q = 𝑞 + 𝑞 . 

    The interaction between the wall and the gas molecules is modeled by a diffuse-

specular reflection condition as described in [23]. 

On the boundaries of the system, on the wall, the equation that relates the particles 

which arrive and depart is described as: 

𝑔 = 𝑎 𝑓
( )

+ (1 − 𝑎 )𝑔                                                                                          (3.18𝑎)  

ℎ = 𝑎 𝑘 𝑇 𝑓
( )

+ (1 − 𝑎 )ℎ                                                                              (3.18𝑏)  

where 𝑔 , ℎ  are the distributions representing particles which depart from the wall 

and ℎ , ℎ  are the distributions representing particles which arrive at the wall. The parameter 

𝑎  is the tangential momentum accommodation coefficient and characterizes the portion of 

particles which are reflected from the wall. Furthermore, 𝑓( )is the Maxwellian and its value 

is defined by the temperature of the wall.  
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    The boundary conditions need to be specified. So, applying nondimensionalization, 

linearization and projection for the wall boundaries for 𝑟 = 1, the distribution functions 𝐹, 𝐺 

and 𝑆 are simplified as: 

𝐹 (1, 𝜁, 𝜃) =  (1 − 𝑎 )     𝐹 (1, 𝜁, 𝜋 − 𝜃)                                                                (3.20𝑎)  

𝐺 (1, 𝜁, 𝜃) =  (1 − 𝑎 )     𝐺 (1, 𝜁, 𝜋 − 𝜃)                                                                (3.20𝑏)  

𝑆 (1, 𝜁, 𝜃) =  (1 − 𝑎 )     𝑆 (1, 𝜁, 𝜋 − 𝜃)                                                                 (3.20𝑐)  

In contrast to the eqs. (3.20), for 𝑟 = 0, in the middle of the cross section of the long 

cylindrical tube, the distribution functions 𝐹, 𝐺 and 𝑆 are described as: 

𝐹 (0, 𝜁, 𝜃) =  𝐹 (0, 𝜁, 𝜋 − 𝜃)                                                                                      (3.21𝑎)  

𝐺 (0, 𝜁, 𝜃) =  𝐺 (0, 𝜁, 𝜋 − 𝜃)                                                                                      (3.21𝑏)  

𝑆 (0, 𝜁, 𝜃) =  𝑆 (0, 𝜁, 𝜋 − 𝜃)                                                                                       (3.21𝑐)  

The boundary conditions of eqs. (3.20) are valid for  𝜃 ∈  [𝜋/2,3𝜋/2] 𝑜𝑟 𝑟 =  1. In 

addition, the eqs. (3.21) are valid for 𝜃 ∈  [−𝜋/2, 𝜋/2] 𝑜𝑟 𝑟 =  0.  

 In system of eqs. (3.12) the linear integrodifferential equation is described in addition 

with corresponding macroscopic quantities, eqs. (3.13), (3.14) and (3.15). Also, the boundary 

conditions and their numerical solutions are added in the system, eqs. (3.20) and (3.21). 

    The kinetic solution of gas flow in cylindrical tube needs the specification of 

parameters κ, ω  and ω  as described in Chapter 2 in eqs. (2.4), (2.5) and (2.6). Furthermore, 

the rarefaction parameters 𝛿 , the accommodation coefficient 𝛼  and the parameter 𝑍 need 

to be defined before the solution. 

 

    The dimensionless mass flow rate (𝑊) and heat flow rate (𝐸) are defined as: 

 𝑊 =
̇

= 4 ∫ 𝑢 𝑟𝑑𝑟                                                                                                  (3.22) 

 𝐸 =
̇

= 4 ∫ 𝑞𝑟𝑑𝑟                                                                                                  (3.23) 

with �̇� and �̇� being the dimensional mass flow and the dimensional heat flow 

respectively. In research of polyatomic gas, the dimensional heat flow (𝐸) is a sum of the heat 

related to translational degrees of freedom (𝐸 ) and the heat related to rotational degrees of 

freedom (𝐸 ). In extremely high temperatures, this sum is affected by the vibration of the 

gas particles. 

 𝐸 = 4 ∫ 𝑞 𝑟𝑑𝑟                                                                                                            (3.24𝑎) 

 𝐸 = 4 ∫ 𝑞 𝑟𝑑𝑟                                                                                                         (3.24𝑏) 
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 𝐸 = 𝐸 + 𝐸                                                                                                                   (3.24𝑐) 

where 𝑞  and 𝑞  are defined in eqs. (3.14) and (3.15). 

    As it is described in Chapter 2, the flow rate of mass and heat can be split in two 

dividends, because of the small differences in temperature and pressure between both ends 

of the long cylindrical tube. 

W = −𝑊 𝑋  + 𝑊 𝑋                                                                                                           (3.25𝑎)   

 E = 𝐸 𝑋  - 𝐸 𝑋                                                                                                                 (3.25𝑏)   

 𝐸  = 𝐸 ,  + 𝐸 ,                                                                                                               (3.25𝑐)     

 𝐸  = 𝐸 ,  + 𝐸 ,                                                                                                                (3.25d) 

    The thermal creep flow problem is solved by replacing the terms  𝑋 = 0 and 𝑋 = 1 

in eqs. (3.25). The coefficients 𝑊 , 𝐸 ,  and 𝐸 ,  do not participate in the solution of the 

problem while only 𝑊 , 𝐸 ,  and 𝐸 ,  participate in the solution. The Poiseuille problem is 

being solved when  𝑋 = 1 and 𝑋 = 0. The only terms obtained in this solution are 𝑊 , 𝐸 ,  

and 𝐸 , . The eq. (3.26) is used in order to verify the results of the calculations. According to 

Onsager’s relation [21], in the Poiseuille problem the mass flow rate due to the temperature 

is equal to the heat flow due to the pressure. 

  𝑊 = 𝐸                                                                                                                               (3.26) 

 

3.3  Thermomolecular pressure effect 

The thermomolecular pressure effect is extremely significant in flow studies. In 

practice, this method is used in order to calculate the pressure of a reservoir B when its 

temperature is constant, 𝑇  and the temperature 𝑇  and pressure 𝑃  are known for the 

reservoir A which is connected with the tube. 

    Maxwell [24] explained this phenomenon theoretical, while Knudsen [25] continued 

the investigation of the thermomolecular pressure effect based on Reynold’s study [26]. 

    The equation that is used in order to correlate the terms of pressure and 

temperature of reservoir A, 𝑇  and 𝑃  and pressure and temperature of reservoir A, 𝑇  and 

𝑃  is: 

=
 

                                                                                                                           (3.27)  

where: 
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𝛾 =                                                                                                                                    (3.28)  

with 𝑊  being the mass flow due to temperature and 𝑊  being the mass flow due to 

pressure. In order to specify accurately the coefficient γ, the sum of mass flow is set to zero, 

𝑊 = 0. The coefficient parameter γ depends on many other parameters which are related 

with the characteristics of gas and the tube. Coefficient γ depends on rarefaction parameter 

𝛿 , length-to-radius ratio of the tube, the nature of the gas-surface interaction and the type 

of the gas.  
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Chapter 4 FULLY DEVELOPED GAS FLOW THROUGH LONG TUBE 

            The specification of mass and heat flow is based on the solution of kinetic model of 

Rykov which was analytically described in Chapter 2. In order to define the flows in a fixed-

radius channel, the parameters of the gas, 𝜅, 𝑍( ), ω  and ω   need to be specified. In this 

chapter, these parameters are determined by following two different methods. Both in first 

and in the second method, the parameters 𝜅 and 𝑍( ) have the same value. In contrast, the 

other two parameters are defined using two different methods. In the second method, the 

parameters ω  and ω  are being specified from the eqs. (2.4) and (2.5) while in the first 

method a different approach is used. The temperatures are chosen in advance and thus the 

value of the Prandtl number of the gas is also determined. The value of the parameter ω  is 

specified from the eq. (2.4) and the value of parameter 𝜔  is defined through the value of 

Prandtl number.  

4.1  Flow rate and thermomolecular pressure effect analysis 

The solution of mass and heat flow in long cylindrical tubes needs the definition of 

many parameters, both for the characteristics of tube and for the characteristics of gas. The 

rarefaction parameter 𝛿 , the parameters 𝜅, 𝑍( ), ω , ω , the rotational degrees of freedom 

j and the tangential momentum accommodation coefficient 𝛼  need to be defined. 

 In paragraph 4.2, various values for parameter 𝛿  between 0.01 and 50 are used, the 

parameter 𝑍( ) is defined analytically in the next sub-chapter according to Bird ‘s theory and 

the parameters 𝜅, ω  𝑎𝑛𝑑 ω  are replaced by the values from the eqs. (2.4), (2.5) and (2.6). 

The accommodation coefficient 𝛼  is usually replaced in many studies by values 0.5, 0.8 and 

1.0. In this Thesis, the parameter 𝛼 is chosen to be equal to 1. The results are for 400 angles 

in [0,π], 800 nodes in radial direction and for 80 discrete magnitudes. The algorithm that is 

used, is confirmed by the results of the current bibliography. The thermal creep flow problem 

is solved using  𝑋 = 0 and 𝑋 = 1 while the Poiseuille problem (pressure driven flow) is solved 

using  𝑋 = 1 and 𝑋 = 0 based on Rykov’s kinetic problem.  

For  𝑁  (𝑗 =  2, 𝜔  =  0.2354, 𝜔  =  0.3049, 𝜅 =  0.645), the preciseness of the 

algorithms’ results, developed for the present Thesis for the problems of the mass and the 

heat flow, in comparison with [22] and [23] was confirmed. The relative error is less than 1%.  



16 

4.2  Non-Dimensional gas flow through tube 

 Initially, in every method all the parameters needed for each temperature in both 

methods are defined. As it is seen in the results, the temperature affects the flow mainly in 

low temperatures. The calculations were carried out for temperatures T = 300 K, 373.15 K, 

423.15 K, 573.15 K, 1000 K and 1500 K and for tangential momentum accommodation 

coefficient 𝛼  = 1. 

4.2.1 Method 1: Analysis and results 

The Prandtl number is given for the temperatures T=300K, 373.15K, 423.15, 573.15K 

1000K and 1500K from Uribe [27]. In Table 4.1 it is shown the value of Prandtl number in terms 

of temperature.  

Table 4.1: Prandtl Number of 𝑁  in terms of temperature 

 Temperature Prandtl Number 
Τ1 300 Κ 0.7215 
Τ2 373.15 K 0.7102 
Τ3 423.15 K 0.7043 
Τ4 573.15 K 0.6917 
Τ5 1000 Κ 0.6884 
Τ6 1500 Κ 0.6886 

 

Furthermore, the value of parameter 𝑍  is obtained by eq. (4.1) 

Z  =
 

∗ ∗
                                                                                          (4.1)  

 

where Τ  is the temperature of gas and the parameters Z  and 𝑇∗ are determined by Lordi 

and Mates model as 𝑍  = 23.0 and 𝑇∗ = 91.5. 

The rotational collision number 𝑍( ) is specified using the equation (4.2): 

𝑍( ) =  
( )

𝑍                                                                                                                  (4.2)  

where d = 2 the rotational degrees of freedom j. 

Both eqs. (4.1) and (4.2) are solved for all temperatures. The Table 4.2 contains all the results 

of solving eqs. (4.1) and (4.2). 
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Table 4.2: Rotational collision number 𝑍( )and 𝑍𝑟𝑜𝑡 in terms of temperature 

 Temperatures Prandtl 
Number 

𝑍  𝑍(𝑅) 

Τ1 300 Κ 0.7215 7.1871 3.3868 
Τ2 373.15 K 0.7102 8.1728 3.8513 
Τ3 423.15 K 0.7043 8.7620 4.1290 
Τ4 573.15 K 0.6917 10.2243 4.8181 
Τ5 1000 Κ 0.6884 12.9119 6.0846 
Τ6 1500 Κ 0.6886 14.7339 6.9432 

 

In order for the parameters ω  and ω  to be specified, in the first method the eqs. 

(2.4) and (2.6) are used. The equation (2.4) is solved for ω  where the parameter of power 

intermolecular potential is 𝜅 = 1/1.2. In eq. (2.6), the value of Prandtl number, parameters ω  

and 𝑍( ) are replaced as given from Table 4.2. The eq. (2.6) is solved in order to specify the 

parameter ω . 

Table 4.3: Parameters ω  and ω  in terms of temperature 

Temperatures Prandtl 𝑍  𝑍(𝑅)  𝝎𝟎 𝝎𝟏 

Τ1 300 Κ 0.7215 7.1871 3.3868 0.4368 3.3030 

Τ2 373.15 K 0.7102 8.1728 3.8513 0.4424 4.1124 

T3 423.15 K 0.7043 8.7620 4.1290 0.4451 4.6253 

Τ4 573.15 K 0.6917 10.2243 4.8181 0.4503 5.9756 

Τ5 1000 Κ 0.6884 12.9119 6.0846 0.4568 6.9949 

Τ6 1500 Κ 0.6886 14.7339 6.9432 0.4598 7.4380 

 

The numerical results of dimensionless mass flow rate (𝑋  = 1, 𝑋  = 0) and the 

dimensionless heat flow rate (𝑋  = 0, 𝑋  = 1) are calculated for many values of the rarefaction 

parameter 𝛿 . It is noticed that in pressure driven flow, the heat flow rate is always 0, 𝐸 ,  = 

0. The results of 𝑊 , 𝐸 , 𝑊 , 𝐸 ,  and 𝐸 , are given in Tables 4.4 to 4.7. 
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Table 4.4: Dimensionless mass flow due to pressure, 𝑊 , in terms of rarefaction parameter 𝛿  and 
temperature 

 δ0 300Κ 373.15 K 423.15Κ 573.15 K 1000Κ 1500Κ 

Wp 0.01 1.4769 1.4769 1.4769 1.4769 1.4770 1.4770 

0.1 1.4081 1.4083 1.4083 1.4084 1.4085 1.4086 

0.5 1.3995 1.3983 1.3984 1.3987 1.3991 1.3993 

0.55 1.4035 1.4039 1.4040 1.4044 1.4048 1.4050 

0.60 1.4097 1.4101 1.4102 1.4106 1.4110 1.4112 

0.65 1.4164 1.4168 1.4170 1.4173 1.4176 1.4180 

0.70 1.4235 1.4239 1.4241 1.4245 1.4249 1.4252 

0.75 1.4311 1.4315 1.4316 1.4320 1.4325 1.4327 

1 1.4729 1.4733 1.4735 1.4740 1.4745 1.4747 

1.5 1.5690 1.5695 1.5697 1.5702 1.5708 1.5711 

2 1.6737 1.6742 1.6744 1.6749 1.6756 1.6759 

5 2.3616 2.3621 2.3623 2.3628 2.3633 2.3636 

10 3.5735 3.5738 3.5740 3.5743 3.5747 3.5749 

20 6.0481 6.0483 6.0484 6.0486 6.0489 6.0489 

 50 13.5305 13.5306 13.5306 13.5308 13.5309 13.5310 

 

         The results, in Table 4.4, of dimensionless mass flow due to pressure in a circular long 

tube are based on the first method. The value of 𝑊𝑃 is increasing in terms of the rarefaction 

parameter 𝛿 . For 𝛿  between 0.01 and 1, the value of WP is decreasing and after a specific 

point is increasing again. At this point, the value of 𝑊𝑃 is the lowest and is known in literature 

as Knudsen Minimum. In terms of temperature, the value of 𝑊𝑃 is about stable because the 

results are dimensionless. 
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Table 4.5: Dimensionless heat flow due to pressure, 𝐸 , in terms of rarefaction parameter 𝛿  and 
temperature  

 δ0 300Κ 373.15 K 423.15Κ 573.15 K 1000Κ 1500Κ 

Ep 0.01 0.7205 0.7206 0.7206 0.7207 0.7207 0.7208 

0.1 0.6169 0.6174 0.6176 0.6181 0.6187 0.6190 

0.5 0.4670 0.4685 0.4692 0.4705 0.4722 0.4730 

0.55 0.4560 0.4575 0.4583 0.4597 0.4615 0.4623 

0.60 0.4458 0.4474 0.4481 0.4496 0.4515 0.4521 

0.65 0.4362 0.4378 0.4386 0.4401 0.4421 0.4430 

0.70 0.4272 0.4289 0.4297 0.4313 0.4332 0.4342 

0.75 0.4187 0.4204 0.4212 0.4229 0.4249 0.4258 

1 0.3819 0.3838 0.3847 0.3865 0.3887 0.3897 

1.5 0.3271 0.3291 0.3300 0.3319 0.3343 0.3354 

2 0.2868 0.2888 0.2897 0.2916 0.2940 0.2951 

5 0.1642 0.1657 0.1664 0.1678 0.1696 0.1704 

10 0.0944 0.0953 0.0958 0.0967 0.0978 0.0983 

20 0.0574 0.0511 0.0513 0.0518 0.0525 0.0528 

50 0.0210 0.0213 0.0214 0.0216 0.0218 0.0220 

 

         The results of dimensionless heat flow due to pressure in a circular long tube on the Table 

4.5 are based on the first method. The value of 𝐸𝑃 is decreasing in terms of the rarefaction 

parameter 𝛿 . In terms of temperature, the value of 𝐸𝑃 is about stable because the results are 

dimensionless. 
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Table 4.6: Dimensionless mass flow due to temperature, 𝑊 , in terms of rarefaction parameter 𝛿  
and temperature 

 δ0 300Κ 373.15 K 423.15Κ 573.15 K 1000Κ 1500Κ 

WT 0.01 0.7205 0.7206 0.7206 0.7207 0.7207 0.7208 

0.1 0.6169 0.6174 0.6176 0.6181 0.6187 0.6190 

0.5 0.4670 0.4685 0.4692 0.4705 0.4722 0.4730 

0.55 0.45660 0.4575 0.4583 0.4597 0.4615 0.4623 

0.60 0.4458 0.4474 0.4481 0.4496 0.4515 0.4523 

0.65 0.4362 0.4378 0.4386 0.4402 0.4421 0.4430 

0.70 0.4272 0.4289 0.4297 0.4313 0.4332 0.4342 

0.75 0.4187 0.4204 0.4212 0.4229 0.4249 0.4258 

1 0.3819 0.3838 0.3847 0.3865 0.3887 0.3897 

1.5 0.3271 0.3291 0.3300 0.3319 0.3343 0.3354 

2 0.2868 0.2888 0.2897 0.2916 0.2940 0.2951 

5 0.1642 0.1657 0.1664 0.1678 0.1696 0.1704 

10 0.0944 0.0953 0.0958 0.0967 0.0978 0.0983 

20 0.0506 0.0511 0.0513 0.0518 0.0525 0.0528 

50 0.0211 0.0213 0.0214 0.0216 0.0219 0.0220 

 

  In Table 4.6 the results of dimensionless mass flow due to temperature in a circular 

long based on the first method are presented. The value of WT is decreasing in terms of the 

rarefaction parameter 𝛿 . In terms of temperature, the value of WT is about stable because 

the results are dimensionless. According to Onsager’s relation [21], in the Poiseuille problem, 

the mass flow rate due to temperature is equal to heat flow due to pressure, which is 

confirmed comparing the results from Table 4.5 and 4.6. 
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     Table 4.7: Dimensionless heat flow related to translational degrees of freedom due to 
temperature in terms of rarefaction parameter 𝛿  and temperature 𝐸 ,  and dimensionless heat 

flow related to translational degrees of freedom due to temperature in terms of rarefaction 
parameter 𝛿  and temperature, 𝐸 ,  

 

 

 

 

 

 

 

 

 

 

 

δ0 300K 373.15 K 423.15K 

Εtr,T Εrot,T Εtr,T Εrot,T Εtr,T Εrot,T 

0.01 3.2824 1.4606 3.2829 1.4613 3.2832 1.4618 

0.1 2.8615 1.2730 2.8650 1.2784 2.8673 1.2827 

0.5 2.0853 0.9164 2.0918 0.9257 2.0949 0.9309 

0.55 2.0242 0.8881 2.0309 0.8978 2.0341 0.9031 

0.60 1.9671 0.8618 1.9740 0.8716 1.9773 0.8771 

0.65 1.9136 0.8371 1.9206 0.8472 1.9240 0.8528 

0.70 1.8633 0.8138 1.8705 0.8241 1.8739 0.8299 

0.75 1.8158 07919 1.8231 0.8024 1.8267 0.8082 

1 1.6129 0.6986 1.6244 0.7156 1.6318 0.7294 

1.5 1.3212 0.5656 1.3291 0.5764 1.3329 0.5824 

2 1.1190 0.4746 1.1261 0.4847 1.1302 0.4904 

5 0.5779 0.2382 0.5852 0.2482 0.5900 0.2566 

10 0.3167 0.1288 0.3211 0.1346 0.3240 0.1395 

20 0.1658 0.0707 0.1673 0.0689 0.1681 0.0700 

50 0.0681 0.0290 0.0687 0.0283 0.0691 0.0287 
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Table 4.7: Continue 

δ0 573.15 K 1000K 1500K 

Εtr,T Εrot,T Εtr,T Εrot,T Εtr,T Εrot,T 

0.01 3.2827 1.4610 3.2835 1.4617 3.2837 1.4615 

0.1 2.8638 1.2765 2.8700 1.2814 2.8713 1.2798 

0.5 2.1010 0.9425 2.1085 0.9389 2.1120 0.9345 

0.55 2.0404 0.9151 2.0482 0.9114 2.0519 0.9069 

0.60 1.9838 0.8895 1.9919 0.8857 1.9956 0.8810 

0.65 1.9308 0.8655 1.9390 0.8615 1.9429 0.8568 

0.70 1.8808 0.8428 1.8893 0.8388 1.8932 0.8339 

0.75 1.8337 0.8214 1.8423 0.8173 1.8463 0.8124 

1 1.6206 0.7095 1.6409 0.7251 1.6451 0.7199 

1.5 1.3403 0.5962 1.3496 0.5920 1.3539 0.5868 

2 1.1373 0.5035 1.1462 0.4994 1.1504 0.4945 

5 0.5828 0.2445 0.5960 0.2539 0.5988 0.2508 

10 0.3197 0.1325 0.3275 0.1380 0.3292 0.1361 

20 0.1696 0.0727 0.1716 0.0718 0.1725 0.0798 

50 0.0697 0.0298 0.0705 0.0294 0.0709 0.0290 

 

   On the Table 4.7, the results of dimensionless heat flow related to translational 

degrees of freedom due to temperature in terms of rarefaction parameter δ0 and temperature 

𝐸 ,  and dimensionless heat flow related to translational degrees of freedom due to 

temperature in terms of rarefaction parameter δ0 and temperature, 𝐸 ,  in a circular long 

based on the first method are presented. The value of both 𝐸 ,  and 𝐸 ,  is decreasing in 

terms of the rarefaction parameter 𝛿 . In terms of temperature, the value of 𝐸 ,  and 𝐸 ,  

is about stable with ascending tendency because the results are dimensionless.  
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4.2.2 Method 2: Analysis and results 

 

   In contrast with the first method, eqs. (2.4) and (2.5) are used in order to determine 

the values of ω   and ω  while the value of Prandtl number is defined from eq. 2.6 as a result 

of the value of the parameters 𝜔  and ω . 

The parameters 𝜔 , 𝑍  and 𝑍( ) have the same values as were calculated in 

paragraph 4.2.1 and are shown in Table 4.3. 

    In Table 4.8 the results of system of eqs. (2.5) and (2.6) for ω  and Prandtl number 

respectively are given. 

 

Table 4.8: Parameters 𝑍 , 𝑍( ), Prandtl Number, ω  and ω  in terms of temperature 

Temperature 𝑍  𝑍( )  𝝎𝟎 𝝎𝟏 Prandtl 

Τ1 300 Κ 7.1871 3.3868 0.4367 2.7486 0.7291 

Τ2 373.15 K 8.1727 3.8513 0.4424 2.7707 0.7264 

T3 423.15 K 8.7620 4.1290 0.4451 2.7817 0.7251 

Τ4 573.15 K 10.2243 4.8181 0.4503 2.8040 0.7224 

Τ5 1000 Κ 12.9119 6.0846 0.4568 2.8325 0.7192 

Τ6 1500 Κ 14.7339 6.9432 0.4598 2.8463 0.7177 

 

In Tables 4.9 to 4.12, the results of dimensionless mass flow due to temperature  

𝑊 , dimensionless heat flow due to pressure 𝐸 , dimensionless mass flow due to temperature 

𝑊 , dimensionless heat flow related to translational degrees of freedom due to temperature 

in terms of rarefaction parameter 𝛿  and temperature 𝐸 ,  and dimensionless heat flow 

related to translational degrees of freedom due to temperature in terms of rarefaction 

parameter 𝛿   and temperature, 𝐸 ,  in a circular long tube based on the second method are 

presented. 
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Table 4.9: Dimensionless mass flow due to pressure, , 𝑊𝑃, in terms of rarefaction parameter 

𝛿0 and temperature. 

 δ0 300Κ 373.15 K 423.15Κ 573.15 K 1000Κ 1500Κ 

Wp 0.01 1.4769 1.4769 1.4769 1.4769 1.4769 1.4770 

0.1 1.4081 1.4083 1.4083 1.4084 1.4085 1.4086 

0.5 1.3980 1.3983 1.3984 1.3987 1.3991 1.3993 

0.55 1.4035 1.4039 1.4040 1.4044 1.4048 1.4050 

0.60 1.4097 1.4101 1.4102 1.4106 1.4110 1.4112 

0.65 1.4164 1.4168 1.4170 1.4173 1.4178 1.4180 

0.70 1.4235 1.4239 1.4241 1.4245 1.4249 1.4252 

0.75 1.4311 1.4315 1.4316 1.4320 1.4325 1.4327 

1 1.4729 1.4733 1.4735 1.4740 1.4745 1.4748 

1.5 1.5690 1.5695 1.5697 1.5702 1.5708 1.5711 

2 1.6737 1.6742 1.6744 1.6749 1.6756 1.6759 

5 2.3616 2.3621 2.3623 2.3628 2.3633 2.3636 

10 3.5735 3.5738 3.5740 3.5743 3.5747 3.5749 

20 6.0481 6.0483 6.0484 6.0486    6.0489  6.0490 

 50 13.5305 13.5306   13.5307 13.5308   13.5309 13.5310 
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Table 4.10: Dimensionless heat flow due to pressure, 𝐸 , in terms of rarefaction parameter 𝛿  and 
temperature  

 δ0 300Κ 373.15 K 423.15Κ 573.15 K 1000Κ 1500Κ 

EP 0.01 0.7205 0.7206 0.7206 0.7207 0.7207 0.7208 

0.1 0.6169 0.6174 0.6176 0.6181 0.6187 0.6190 

0.5 0.4670 0.4685 0.4692 0.4705 0.4722 0.4730 

0.55 0.4560 0.4575 0.4583 0.4597 0.4615 0.4623 

0.60 0.4458 0.4474 0.4481 0.4496 0.4515 0.4523 

0.65 0.4362 0.4378 0.4386 0.4402 0.4421 0.4430 

0.70 0.4272 0.4289 0.4297 0.4313 0.4332 0.4342 

0.75 0.4187 0.4204 0.4212 0.4229 0.4289 0.4258 

1 0.3819 0.3838 0.3847 0.3865 0.3887 0.3897 

1.5 0.3271 0.3291 0.3300 0.3319 0.3343 0.3354 

2 0.2868 0.2888 0.2897 0.2916 0.2940 0.2951 

5 0.1642 0.1657 0.1664 0.1678 0.1696 0.1704 

10 0.0944 0.0953 0.0958 0.0967 0.0978 0.0 983 

20 0.0506 0.0511 0.0513 0.0518 0.0525 0.0528 

50 0.0210 0.0213 0.0214 0.0216 0.0219 0.0220 
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Table 4.11: Dimensionless mass flow due to temperature, 𝑊 , in terms of rarefaction parameter 𝛿  
and temperature 

 δ0 300Κ 373.15 K 423.15Κ 573.15 K 1000Κ 1500Κ 

WT 0.01 0.7205 0.7206 0.7206 0.7207 0.7207 0.7208 

0.1 0.6169 0.6174 0.6176 0.6181 0.6187 0.6190 

0.5 0.4670 0.4685 0.4692 0.4705 0.4722 0.4730 

0.55 0.4560 0.4575 0.4583 0.4597 0.4615 0.4623 

0.60 0.4458 0.4474 0.4481 0.4496 0.4515 0.4523 

0.65 0.4362 0.4378 0.4386 0.4402 0.4421 0.4430 

0.70 0.4272 0.4289 0.4297 0.4313 0.4332 0.4342 

0.75 0.4187 0.4204 0.4212 0.4229 0.4249 0.4258 

1 0.3819 0.3838 0.3847 0.3865 0.3887 0.3897 

1.5 0.3271 0.3291 0.3300 0.3319 0.3343 0.3354 

2 0.2868 0.2888 0.2897 0.2916 0.2940 0.2951 

5 0.1642 0.1657 0.1664 0.1678 0.1696 0.1704 

10 0.0944 0.0953 0.0958 0.0967 0.0978 0.0983 

20 0.0506 0.0511 0.0513 0.0518 0.0525 0.0528 

50 0.0210 0.0213 0.0214 0.0216 0.0219 0.0220 
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Table 4.12: Dimensionless heat flow related to translational degrees of freedom due to temperature 
in terms of rarefaction parameter 𝛿  and temperature 𝐸 ,  and dimensionless heat flow related to 

translational degrees of freedom due to temperature in terms of rarefaction parameter 𝛿  and 
temperature, 𝐸 ,  

  δ0 300 K 373.15 K 423.15 K 

Εrot,T Εtr,T Εrot,T Εtr,T Εrot,T Εtr,T 

0.01 3.2824 1.4500 3.2827 1.4598 3.2829 1.4597 

0.1 2.8615 1.2685 2.8638 1.2670 
 

2.8650 1.2662 

0.5 2.0854 0.9048 2.0918 0.9009 2.0949 0.8990 

0.55 2.0242 0.8762 2.0309 0.8721 2.0341 0.8701 

0.60 1.9671 0.8495 1.9740 0.8453 1.9772 0.8433 

0.65 1.9136 0.8245 1.9206 0.8202 1.9240 0.8181 

0.70 1.8633 0.8011 1.8705 0.7967 1.8739 0.7946 

0.75 1.8158 0.7790 1.8231 0.7746 1.8267 0.7724 

1 1.6129 0.6852 1.6206 0.6807 1.6244 0.6784 

1.5 1.3213 0.5525 1.3291 0.5481 1.3329 0.5459 

2 1.1191 0.4623 1.1265 0.4582 1.1302 0.4561 

5 0.5779 0.2306 0.5828 0.2280 0.5852 0.2268 

10 0.3167 0.1244 0.3197 0.1229 0.3211 0.1222 

20 0.1657 0.0645 0.1673 0.0637 0.1681 0.0634 

50 0.0680 0.0264 0.0687 0.0261 0.0691 0.0259 
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Table 4.12: Continue 

  δ0 573.15 K 1000K 1500K 

Εrot,T Εtr,T Εrot,T Εtr,T Εrot,T Εtr,T 

0.01 3.2832 1.4595 3.2835 1.4592 3.2837 1.4591 

0.1 2.8673 1.2646 2.8700 1.2626 2.8713 1.2617 

0.5 2.1010 0.8950 2.1085 0.8900 2.1120 0.8877 

0.55 2.0404 0.8661 2.0482 0.8609 2.0519 0.8585 

0.60 1.9838 0.8391 1.9919 0.8339 1.9956 0.8313 

0.65 1.9307 0.8139 1.9390 0.8086 1.9429 0.8060 

0.70 1.8808 0.7903 1.8893 0.7849 1.8932 0.7823 

0.75 1.8337 0.7681 1.8423 0.7626 1.8463 0.7600 

1 1.6318 0.6740 1.6409 0.6683 1.6451 0.6656 

1.5 1.3403 0.5416 1.3496 0.5361 1.3539 0.5335 

2 1.1373 0.4521 1.1462 0.4471 1.1504 0.4446 

5 0.5900 0.2243 0.5960 0.2212 0.5988 0.2197 

10 0.3240 0.1208 0.3275 0.1190 0.3292 0.1182 

20 0.1696 0.0626 0.1716 0.0616 0.1725 0.0612 

50 0.0697 0.0256 0.0705 0.0252 0.0709 0.0250 

 

The results of Tables 4.9 to 4.12 (Method 1) are similar with the results of Tables 4.4 

to 4.7 (Method 2). 
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4.3  Comparison of the two methods 

    It is significant to compare the Prandtl number that was used in both cases. In the 

first method, the Prandtl number is stated in any temperature from [27]. In the second 

method, the system of equations that were described analytically is needed to be solved. 

Prandtl number is a dimensionless parameter and depends on the fluid properties. There are 

many equations that can be used in order to specify its value. Also, its value can be defined by 

experimental studies. In the Table 4.13, the value of Prandtl number from Table 4.1, Table 4.7 

and EES program [28] is compared. 

 

Table 4.13: Comparison of Prandtl Number of the two methods in terms of temperature 

 Temperature Prandtl 

[18] 

(Method 1) 

Prandtl 

Table 4.5 

(Method 2) 

Prandtl 

[19] 

Τ1 300 Κ 0.7215 0.7291 0.7134 

Τ2 373.15 K 0.7102 0.7264 0.7056 

T3 423.15 K 0.7043 0.7250 0.7025 

Τ4 573.15 K 0.6917 0.7224 0.7078 

Τ5 1000 Κ 0.6884 0.7192 0.7243 

Τ6 1500 Κ 0.6886 0.7177 0.6632 

 

 
Figure 4.1: Value of Prandtl Number of the two methods in terms of temperature 
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The value of parameter 𝜔  is the same in Method 1 and Method 2. In the first method, 

the eq. (2.6) in order to specify the parameter 𝜔  was used, while in the second method the 

eq. (2.5) was used. As it is seen, the growth rate of parameter 𝜔  is bigger in the first method 

than it is in the second. In Table 4.14 and Figure 4.2, the value of 𝜔  is compared. 

 

Table 4.14: Comparison of value of parameter 𝜔  of the two methods in terms of temperature 

Temperature 𝜔   

(Method 1) 

𝜔   

(Method 2) 

Τ1 300 Κ 3.3030 2.7486 

Τ2 373.15 K 4.1124 2.7707 

T3 423.15 K 4.6253 2.7817 

Τ4 573.15 K 5.9756 2.8040 

Τ5 1000 Κ 6.9949 2.8325 

Τ6 1500 Κ 7.4380 2.8463 

 

 

Figure 4.2: Value of Parameter 𝜔  of the two methods in terms of temperature 
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Figure 4.3: Value of dimensionless mass flow due 

to pressure, 𝑊 , in terms of rarefaction 

parameter 𝛿  and temperature 

Figure 4.4: Value of dimensionless heat flow due 

to pressure, 𝐸 , in terms of rarefaction 

parameter 𝛿  and temperature 

 

 

                                          
Figure 4.5: Value of dimensionless mass flow due 

to temperature, 𝑊 , in terms of rarefaction 

parameter 𝛿  and temperature 

Figure 4.6: Dimensionless heat flow related to 

translational degrees of freedom due 

to temperature, 𝐸 , , in terms of rarefaction 

parameter 𝛿  and temperature 
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Figure 4.7: Dimensionless heat flow related to rotational degrees of freedom due to 

temperature 𝐸 ,  in terms of rarefaction parameter 𝛿0 and temperature 

 

It is needed to be remarked that in Figure 4.7, there seems to be an ubnormal behavior 

of value of 𝐸 ,  especially for 𝛿  =  1.5 𝑎𝑛𝑑  𝛿  =  1 . So, it is obligatory to check the results 

of the non-dimensional calculations for a dimensional solution in paragraph 4.4. 

    There are no differences between using the two methods in the determination of 

𝑊 ,  𝐸   𝑎𝑛𝑑 𝑊 . The only differences that can be detected are in parameters 𝐸 ,  and 𝐸 , . 

On the Table 4.15, there is a comparison between the value of 𝐸 ,  and 𝐸 ,   for temperature 

𝑇 = 423.15 𝐾. 
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Table 4.15: Comparison of 𝐸 ,  and 𝐸 ,  of the two methods for 𝑇 = 423.15𝐾  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

              Figure 4.8: Comparison of 𝐸 ,  of the two         Figure 4.9: Comparison of 𝐸 ,  of the two 

methods                                                                     methods 

 



E
tr

,T

10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5
Method1
Method2



E
ro

t,
T

10 20 30 40 50
0

0.5

1

1.5
Method1
Method2

δ0 423.15K 

𝐸 ,  

Method 1 

𝐸 ,  

Method 2 

𝐸 ,  

Method 1 

𝐸 ,  

Method 2 

0.01 3.2832 3.2829 1.4618 1.4597 

0.1 2.8673 2.8650 1.2827 1.2662 

0.5 2.0949 2.0949 0.9309 0.8990 

0.55 2.0341 2.0341 0.9031 0.8701 

0.60 1.9773 1.9772 0.8771 0.8433 

0.65 1.9240 1.9240 0.8528 0.8181 

0.70 1.8739 1.8739 0.8299 0.7946 

0.75 1.8267 1.8267 0.8082 0.7724 

1 1.6318 1.6244 0.7294 0.6784 

1.5 1.3329 1.3329 0.5824 0.5459 

2 1.1302 1.1302 0.4904 0.4561 

5 0.5900 0.5852 0.2566 0.2268 

10 0.3240 0.3211 0.1395 0.1222 

20 0.1681 0.1681 0.0700 0.0634 

50 0.0691 0.0691 0.0287 0.0259 



34 

It should be mentioned that the value of 𝐸 ,  is almost the same in both methods. In 

contrast, the value of 𝐸 ,  is not the same. The calculation of dimensionless heat flow related 

to rotational degrees of freedom due to temperature depends on the value of the parameter 

𝜔  while the calculation of dimensionless heat flow related to translational degrees of 

freedom due to temperature depends on the value of 𝜔 . In both methods, the value of the 

parameter 𝜔  is the same and as a result the value of heat flow due to translational degrees 

of freedom. The different value of the parameter 𝜔  results to different values for 𝐸 , . 

4.4  Dimensional gas flow through tube 

   The experimental results of the mass flow in tubes are dimensional. The databases 

that were presented in paragraphs 4.2.1 and 4.2.2 are dimensionless, so they can be used for 

many cases. They are needed to be dimensionalized using the parameters of the experimental 

research in order to be compared. Because in paragraphs 4.2 and 4.3 the results of both 

methods were the same, all the calculations are conducted in order to verify that the results 

are valid based on the dimensionless results of Method 1. 

In Figures 4.3, 4.4, 4.5, 4.6 and 4.7 the dimensionless results of Method 1 are 

presented, which are the same as method 2. The value of the dimensionless parameters in 

terms of temperature are almost stable. In order for the dimensionless results to be verified, 

they are required to be dimensional.  

The dimensionless results are converted to dimensional through eq. (4.3), where the 

parameters are assigned dimensional values. 

𝛿  =    ⇒      𝛿  𝜇 𝑢 = 𝑃 𝑅  ⇒     𝑃 =  𝛿  𝜇 𝑢 /𝑅  ⇒     

⇒    𝑃 𝑢 = 𝛿  𝜇 𝑢   /𝑅  ,  {where     𝑅 = 𝐷}  ⇒ 

⇒    𝑃 𝑢 = 𝛿  𝜇 𝑢  /𝐷  ,{with 𝑢 = 2𝑅𝑇 = 2𝑅𝑇 }   ⇒   

⇒    𝑃 𝑢 = 𝛿  𝜇 2𝑅𝑇 /𝐷    (4.3) 

with radius 𝐷 = 5 ∗ 10  {𝑚}  

        parameter  𝛿  = 0.5 , 

        dimensionless pressure  𝑃 , dimensionless velocity 𝑢 ,  

        constant of N2 𝑅 = 296.80 {𝐽/(𝐾𝑔 𝐾)},  viscosity 𝜇   
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In Table 4.16 the viscosity of N2 is given by [28] the results of solving the eq. 4.3 for 

P u  for the temperatures 𝑇 =  300 𝐾, 373.15 𝐾, 423.15 𝐾, 573.15 𝐾, 1000 𝐾 and 1500 𝐾 

are presented below. 

Table 4.16: Viscosity and  P u  in terms of temperature 

Temperature (Τ0) {K} Viscosity (𝜇 ) {𝐾𝑔/𝑚 ∗ 𝑠} 𝑷𝟎𝒖𝟎 

300 0.00001768 314.8454 

373.15 0.00002094 463.8249 

423.15 0.000023 577.7182 

573.15 0.00002849 969.2920 

1000 0.00004013 2382.1168 

1500 0.0000504 4487.6160 

               

             As it is already mentioned, the values of 𝑊 , 𝐸 , 𝑊 , 𝐸 ,  and 𝐸 ,  in both methods, 

have no differences. The results were converted to dimensional for the chosen value of the 

rarefaction parameter 𝛿  = 0.5. 
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 Dimensional mass flow due to pressure 𝑊  in terms of temperature 

Table 4.17: Dimensional mass flow due to pressure 𝑊  in terms of temperature 

 

 

 

 

                       

 

 

 

 

 

Figure 4.10: Dimensional mass flow due to pressure 𝑊  in terms of temperature 
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 Dimensional heat flow due to pressure EP in terms of temperature 

       Table 4.18: Dimensional heat flow due to pressure 𝛦  in terms of temperature 

 

 

 

 

 

 

 

 

 

 
Figure 4.11: Dimensional mass flow due to pressure 𝐸𝑃 in terms of temperature 
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 Dimensional mass flow due to temperature 𝑊  in terms of temperature 

           Table 4.19: Dimensional heat flow due to pressure 𝑊  in terms of temperature. 

 

 

 

 

 

 

 

 

 

 
Figure 4.12: Dimensional mass flow due to temperature 𝑊  in terms of temperature. 
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 Dimensional heat flow related to translational degrees of freedom due to 

temperature 𝐸 ,  in terms of temperature 

 Table 4.20: Dimensional heat flow related to translational degrees of freedom due to 

temperature 𝐸 ,  in terms of temperature 

 

 

 

 

 

 

 

 

 

 
Figure 4.13: Dimensional heat flow related to translational degrees of freedom due to temperature 

𝐸 ,  in terms of temperature 
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 Dimensional heat flow related to rotational degrees of freedom due to temperature 

𝐸 ,  in terms of temperature 

Table 4.21: Dimensional heat flow related to rotational degrees of freedom due to 

temperature 𝐸 ,  in terms of temperature 

 

 

 

 

 

 

 

 

 

 
Figure 4.14: Dimensional heat flow related to rotational degrees of freedom due to temperature 

𝐸 ,  in terms of temperature 

 

All the functions of Figures 4.10 to 4.14 are monotonically increasing, which proves the 

validity of the dimensionless results. In paragraph 5.1, the dimensionless results of  paragraphs 

4.2.1 and 4.2.2 are compared with database from [29]. 
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Chapter 5. FULLY DEVELOPED GAS FLOW THROUGH TAPERED 
CHANNELS 

             A tapered channel is a sum of circular cross-sections of different radius. In order to 

specify the mass and heat flow, the results of Chapter 4 should be compared with validated 

data from literature. In the literature, there is an extensive research for rarefied monoatomic 

gas flow in fixed radius tubes and tapered channels, while for polyatomic gases there is limited 

research for tapered channels, due to its complexity. In the Chapter 5, the flow for 

monoatomic Nitrogen in tapered channels and for polyatomic Nitrogen in fixed radius tube 

and tapered channels is investigated. 

5.1 Verification of database 

In order to validate the results of the databases that were developed in paragraphs 

4.2.1 and 4.2.2, the database of the paragraph 4.2.1 is compared with the database of [29], 

because the results in both databases in paragraphs 4.2.1 and 4.2.2 are the same. 

The first comparison is database of 4.2.1 with [29] where the Nitrogen is assumed that 

it is a monoatomic molecule. In contrast, for the second comparison, the Nitrogen is 

considered to be a polyatomic molecule. 

In [29] the mass flow is presented in terms of the rarefaction parameter δ0 and ω. 

Contrariwise, in the databases that were developed in Chapter 4, the mass flow is presented 

in terms of the rarefaction parameter δ0 and temperature. The value of 𝜔 for monoatomic 

Nitrogen, is equal to 1. In Table 4.5, the results of mass flow due to pressure and temperature 

in terms of rarefaction parameter δ0 from paragraph 4.2.1 and [29] are being compared.  
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Table 5.1: Comparison of dimensionless mass flow due to pressure in terms of rarefaction 

parameter δ0 and temperature for monoatomic Nitrogen   

  Database 

Sub. 4.2.1 

[29] Database 

Sub. 4.2.1 

[29] 

 

Database 

Sub. 4.2.1 

[29] 

 

 δ0 300Κ 373.15 K 423.15Κ 

WP 0.01 1.4769 1.4770 1.4769 1.4770 1.4769 1.4770 

0.1 1.4081 1.4090 1.4083 1.4090 1.4083 1.4090 

0.5 1.3995 1.4005 1.3983 1.4005 1.3984 1.4005 

0.55 1.4035 1.4062 1.4039 1.4062 1.4040 1.4062 

0.60 1.4097 1.4125 1.4101 1.4125 1.4102 1.4125 

0.65 1.4164 1.4194 1.4168 1.4194 1.4170 1.4194 

0.70 1.4235 1.4266 1.4239 1.4266 1.4241 1.4266 

0.75 1.4311 1.4342 1.4315 1.4342 1.4316 1.4342 

1 1.4729 1.4764 1.4733 1.4764 1.4735 1.4764 

1.5 1.5690 1.5730 1.5695 1.5730 1.5697 1.5730 

2 1.6737 1.6779 1.6742 1.6779 1.6744 1.6779 

5 2.3616 2.3654 2.3621 2.3654 2.3623 2.3654 

10 3.5735 3.5761 3.5738 3.5761 3.5740 3.5761 

20 6.0481 6.0496 6.0483 6.0496 6.0484 6.0496 

50 13.5305 13.531 13.5306 13.531 13.5306 13.531 
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Table 5.1: Continue 

  Database 

Sub. 4.2.1 

[29] Database 

Sub. 4.2.1 

[29] 

 

Database 

Sub. 4.2.1 

[29] 

 

 δ0 573.15 K 1000Κ 1500Κ 

WP 0.01 1.4769 1.4770 1.4770 1.4770 1.4770 1.4770 

0.1 1.4084 1.4090 1.4085 1.4090 1.4086 1.4090 

0.5 1.3987 1.4005 1.3991 1.4005 1.3993 1.4005 

0.55 1.4044 1.4062 1.4048 1.4062 1.4050 1.4062 

0.60 1.4106 1.4125 1.4110 1.4125 1.4112 1.4125 

0.65 1.4173 1.4194 1.4176 1.4194 1.4180 1.4194 

0.70 1.4245 1.4266 1.4249 1.4266 1.4252 1.4266 

0.75 1.4320 1.4342 1.4325 1.4342 1.4327 1.4342 

1 1.4740 1.4764 1.4745 1.4764 1.4747 1.4764 

1.5 1.5702 1.5730 1.5708 1.5730 1.5711 1.5730 

2 1.6749 1.6779 1.6756 1.6779 1.6759 1.6779 

5 2.3628 2.3654 2.3633 2.3654 2.3636 2.3654 

10 3.5743 3.5761 3.5747 3.5761 3.5749 3.5761 

20 6.0486 6.0496 6.0489 6.0496 6.0489 6.0496 

50 13.5308 13.531 13.5309 13.531 13.5310 13.531 

 

In Table 5.1, the results of the dimensionless mass flow due to pressure are being 

compared with [29] from the literature. The differences of the dimensionless mass flow, due 

to pressure, for a tapered channel between paragraph 4.2.1 and [29] are miniscule. 
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Table 5.2: Comparison of dimensionless mass flow due to temperature in terms of 

rarefaction parameter δ0 and temperature for monoatomic Nitrogen N2   

  Database 

Sub. 4.2.1 

[29] Database 

Sub. 4.2.1 

[29] 

 

Database 

Sub. 4.2.1 

[29] 

 

 δ0 300Κ 373.15 K 423.15Κ 

WΤ 0.01 0.7205 0.7210 0.7206 0.7210 0.7206 0.7210 

0.1 0.6169 0.6209 0.6174 0.6209 0.6176 0.6209 

0.5 0.4670 0.4784 0.4685 0.4784 0.4692 0.4784 

0.55 0.45660 0.4680 0.4575 0.4680 0.4583 0.4680 

0.60 0.4458 0.4582 0.4474 0.4582 0.4481 0.4582 

0.65 0.4362 0.4491 0.4378 0.4491 0.4386 0.4491 

0.70 0.4272 0.4404 0.4289 0.4404 0.4297 0.4404 

0.75 0.4187 0.4323 0.4204 0.4323 0.4212 0.4323 

1 0.3819 0.3967 0.3838 0.3967 0.3847 0.3967 

1.5 0.3271 0.3430 0.3291 0.3430 0.3300 0.3430 

2 0.2868 0.3027 0.2888 0.3027 0.2897 0.3027 

5 0.1642 0.1762 0.1657 0.1762 0.1664 0.1762 

10 0.0944 0.1020 0.0953 0.1020 0.0958 0.1020 

20 0.0506 0.0548 0.0511 0.0548 0.0513 0.0548 

50 0.0211 0.0223 0.0213 0.0223 0.0214 0.0223 
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Table 5.2: Continue 

  Database 

Sub. 4.2.1 

[29] Database 

Sub. 4.2.1 

[29] 

 

Database 

Sub. 4.2.1 

[29] 

 

 δ0 573.15 K 1000Κ 1500Κ 

WΤ 0.01 0.7207 0.7210 0.7207 0.7210 0.7208 0.7210 

0.1 0.6181 0.6209 0.6187 0.6209 0.6190 0.6209 

0.5 0.4705 0.4784 0.4722 0.4784 0.4730 0.4784 

0.55 0.4597 0.4680 0.4615 0.4680 0.4623 0.4680 

0.60 0.4496 0.4582 0.4515 0.4582 0.4523 0.4582 

0.65 0.4402 0.4491 0.4421 0.4491 0.4430 0.4491 

0.70 0.4313 0.4404 0.4332 0.4404 0.4342 0.4404 

0.75 0.4229 0.4323 0.4249 0.4323 0.4258 0.4323 

1 0.3865 0.3967 0.3887 0.3967 0.3897 0.3967 

1.5 0.3319 0.3430 0.3343 0.3430 0.3354 0.3430 

2 0.2916 0.3027 0.2940 0.3027 0.2951 0.3027 

5 0.1678 0.1762 0.1696 0.1762 0.1704 0.1762 

10 0.0967 0.1020 0.0978 0.1020 0.0983 0.1020 

20 0.0518 0.0548 0.0525 0.0548 0.0528 0.0548 

50 0.0216 0.0229 0.0219 0.0229 0.0220 0.0229 
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In order to compare the database that was introduced in paragraphs 4.2.1 and 4.2.2 

with [29], for polyatomic Nitrogen, the eq. (5.1) needs to be used, which connects the 

parameter ω with ω0, because the value of ω is not 1 as for monoatomic N2. 

 

𝜔 =
( )

                                                                                                                      (5.1)  

 

In order to solve the eq. 5.1., the parameters 𝛧  and 𝜔  need to be specified. The 

value of 𝜔  is given in Table 4.3 for different temperatures. The value of collision number 𝛧  

can be found from the equation: 

 

= 1 +
√ ∗

+ 2 +
∗

+
∗

                                                                           (5.2)  

where 𝛵∗ =
𝑘𝑇

𝜀  and the values of Z  and 𝜀 𝑘 are tabulated from the literature 

[27].  

 

The mass flow due to pressure and due to temperature in [18] is presented in terms of 

rarefaction parameter δ0 and ω. In order to compare the results of paragraph 4.2.1 and [29], 

the value of the mass flow of [29] is calculated using linear interpolation. 

The results for the value of 𝛵∗, Zrot and ω are given in Table 5.3. 

 

Table 5.3: 𝜯∗, Zrot and ω in terms of temperature and  𝝎𝟎 

 Temperatures   𝝎𝟎 𝜯∗ Zrot ω 

Τ1 300 Κ 0.4368 3.0488 5.7776 0.9025 

Τ2 373.15 K 0.4424 3.7922 6.7633 0.9176 

Τ3 423.15 K 0.4451 4.3003 7.3641 0.9246 

Τ4 573.15 K 0.4503 5.8247 8.8944 0.9382 

Τ5 1000 Κ 0.4568 10.1626 11.8721 0.9542 

Τ6 1500 Κ 0.4598 15.2439 14.0495 0.9616 
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Table 5.4: Comparison of dimensionless mass flow due to pressure in terms of rarefaction 

parameter δ0 and temperature for polyatomic Nitrogen   

  Database 

Sub. 4.2.1 

[29] Database 

Sub. 4.2.1 

[29] 

 

Database 

Sub. 4.2.1 

[29] 

 

 δ0 300Κ 373.15 K 423.15Κ 

WP 0.01 1.4769 1.4769 1.4769 1.4769 1.4769 1.4770 

0.1 1.4081 1.4085 1.4083 1.4086 1.4083 1.4086 

0.5 1.3995 1.3990 1.3983 1.3992 1.3984 1.3993 

0.55 1.4035 1.4046 1.4039 1.4049 1.4040 1.4050 

0.60 1.4097 1.4109 1.4101 1.4111 1.4102 1.4112 

0.65 1.4164 1.4176 1.4168 1.4179 1.4170 1.4180 

0.70 1.4235 1.4248 1.4239 1.4251 1.4241 1.4252 

0.75 1.4311 1.4323 1.4315 1.4326 1.4316 1.4327 

1 1.4729 1.4743 1.4733 1.4746 1.4735 1.4747 

1.5 1.5690 1.5706 1.5695 1.5710 1.5697 1.5711 

2 1.6737 1.6753 1.6742 1.6757 1.6744 1.6759 

5 2.3616 2.3631 2.3621 2.3634 2.3623 2.3636 

10 3.5735 3.5745 3.5738 3.5747 3.5740 3.5748 

20 6.0481 6.0485 6.0483 6.0487 6.0484 6.0488 

50 13.5305 13.5303 13.5306 13.5304 13.5306 13.5305 

 

 

 

 

 

 

 

 

 

 

 



48 

Table 5.4: Continue 

  Database 

Sub. 4.2.1 

[29] Database 

Sub. 4.2.1 

[29] 

 

Database 

Sub. 4.2.1 

[29] 

 

 δ0 573.15Κ 1000K 1500Κ 

WP 0.01 1.4769 1.4770 1.4770 1.4770 1.4770 1.4770 

0.1 1.4084 1.4087 1.4085 1.4087 1.4086 1.4088 

0.5 1.3987 1.3995 1.3991 1.3998 1.3993 1.3999 

0.55 1.4044 1.4052 1.4048 1.4055 1.4050 1.4056 

0.60 1.4106 1.4115 1.4110 1.4117 1.4112 1.4118 

0.65 1.4173 1.4182 1.4176 1.4185 1.4180 1.4187 

0.70 1.4245 1.4254 1.4249 1.4257 1.4252 1.4259 

0.75 1.4320 1.4330 1.4325 1.4333 1.4327 1.4335 

1 1.4740 1.4751 1.4745 1.4754 1.4747 1.4756 

1.5 1.5702 1.5714 1.5708 1.5719 1.5711 1.5720 

2 1.6749 1.6762 1.6756 1.6767 1.6759 1.6769 

5 2.3628 2.3639 2.3633 2.3643 2.3636 2.3644 

10 3.5743 3.5750 3.5747 3.5753 3.5749 3.5754 

20 6.0486 6.0489 6.0489 6.0490 6.0489 6.0492 

50 13.5308 13.5306 13.5309 13.5306 13.5310 13.5307 
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Table 5.5: Comparison of dimensionless mass flow due to temperature in terms of 

rarefaction parameter δ0 and temperature for polyatomic Nitrogen  

  Database 

Sub. 4.2.1 

[29] Database 

Sub. 4.2.1 

[29] 

 

Database 

Sub. 4.2.1 

[29] 

 

 δ0 300Κ 373.15 K 423.15Κ 

WΤ 0.01 0.7205 0.7207 0.7206 0.7208 0.7206 0.7208 

0.1 0.6169 0.6185 0.6174 0.6189 0.6176 0.6190 

0.5 0.4670 0.4717 0.4685 0.4727 0.4692 0.4732 

0.55 0.45660 0.4609 0.4575 0.4620 0.4583 0.4625 

0.60 0.4458 0.4509 0.4474 0.4520 0.4481 0.4525 

0.65 0.4362 0.4415 0.4378 0.4426 0.4386 0.4431 

0.70 0.4272 0.4326 0.4289 0.4338 0.4297 0.4343 

0.75 0.4187 0.4242 0.4204 0.4255 0.4212 0.4260 

1 0.3819 0.3879 0.3838 0.3893 0.3847 0.3899 

1.5 0.3271 0.3335 0.3291 0.3350 0.3300 0.3356 

2 0.2868 0.2932 0.2888 0.2947 0.2897 0.2953 

5 0.1642 0.1690 0.1657 0.1701 0.1664 0.1706 

10 0.0944 0.0974 0.0953 0.0981 0.0958 0.0984 

20 0.0506 0.0523 0.0511 0.0526 0.0513 0.0528 

50 0.0211 0.0218 0.0213 0.0219 0.0214 0.0220 
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Table 5.5: Continue 

  Database 

Sub. 4.2.1 

[29] Database 

Sub. 4.2.1 

[29] 

 

Database 

Sub. 4.2.1 

[29] 

 

 δ0 573.15Κ 1000K 1500Κ 

WΤ 0.01 0.7207 0.7208 0.7207 0.7209 0.7208 0.7209 

0.1 0.6181 0.6194 0.6187 0.6198 0.6190 0.6199 

0.5 0.4705 0.4741 0.4722 0.4752 0.4730 0.4757 

0.55 0.4597 0.4634 0.4615 0.4647 0.4623 0.4652 

0.60 0.4496 0.4535 0.4515 0.4548 0.4523 0.4553 

0.65 0.4402 0.4442 0.4421 0.4454 0.4430 0.4461 

0.70 0.4313 0.4354 0.4332 0.4367 0.4342 0.4373 

0.75 0.4229 0.4271 0.4249 0.4284 0.4258 0.4291 

1 0.3865 0.3911 0.3887 0.3926 0.3897 0.3932 

1.5 0.3319 0.3369 0.3343 0.3384 0.3354 0.3392 

2 0.2916 0.2966 0.2940 0.2982 0.2951 0.2989 

5 0.1678 0.1715 0.1696 0.1728 0.1704 0.1733 

10 0.0967 0.0990 0.0978 0.0998 0.0983 0.1002 

20 0.0518 0.0532 0.0525 0.0536 0.0528 0.0538 

50 0.0216 0.0222 0.0219 0.0223 0.0220 0.0224 

 

In Tables 5.4 and 5.5, the results of the dimensionless mass flow due to pressure and 

temperature are being compared with [29] from the literature. The results of polyatomic 

Nitrogen from paragraph 4.2.1 with [29] differ less than than the results of monoatomic 

Nitrogen with [29]. 
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5.2 Monoatomic Nitrogen gas flow through tapered channels 

In many applications, the two vessels are not connected with a cylindrical, fixed-radius 

tube but with a conical form with increasing radius in the direction of gas flow. In this 

paragraph 5.2, a method is presented, where the mass flow is calculated for different pressure 

ratios and inlet rarefaction parameters. 

    Two vessels are assumed, which are connected with a long tube with variable radius 

(tapered channel). The pressure and the temperature of the first vessel is 𝑃  and 

𝑇  respectively. The pressure of the second vessel is 𝑃 and its temperature is 𝑇 . The flow rate 

is given as in [30]: 

𝐺 = �̇�                                                                                                           (5.3)  

with 𝛼  being the radius of the tube in vessel 1, 𝑘 is Boltzmann’s constant and 𝑀 is the 

mass flow rate through the variable radius tube. 

   If it is assumed that the length of the tube, 𝐿, is much bigger than the biggest radius 

of the tube, then the mass flow is given as in [30]: 

𝑀 = 𝜋𝛼̇ 𝑃 (−𝐺 𝜉 + 𝐺 𝜉 )                                                                              (5.4)  

where 𝜉 , 𝜉  are considered as: 

𝜉 =                                                                                                                                  (5.5)  

𝜉 =                                                                                                                                  (5.6)  

with 𝑎 = 𝑎(𝑥) being the local radius of long tube according to longitudinal coordinate 

and 𝑃 = 𝑃(𝑥) the local pressure respectively. 

   For 𝛿 >  50 the coefficients 𝐺  and 𝐺 , which depend on the value of rarefaction 

parameter 𝛿, are calculated using the equations from [30]: 

𝐺 = + 𝜎                                                                                                                              (5.7)  

𝐺 =                                                                                                                                     (5.8)  

while 𝛿 ≤  50, the value of 𝐺  and 𝐺  is specified from the database presented at [29] 

for 𝜔 = 1. 

             The parameters 𝜎  and 𝜎  are equal to 1.018 and 1.175 respectively, according to the 

S-model kinetic theory from [31]. 
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   The value of the rarefaction parameter is defined as [30]: 

𝛿 =                                                                                                                       (5.9)  

where μ is characterized as the viscosity of the gas. 

   Redefining the eq. (5.1), the flow rate equation is: 

𝐺 = −𝐺 (𝛿) + 𝐺 (𝛿)                                                            (5.10)  

and the pressure numerically calculated in Jean [20]: 

𝑃 = 𝑃 +
( )

𝐺 (𝛿 ) (𝑇 − 𝑇 ) − 𝐺𝑃                             (5.11)  

where 0 ≤ 𝑖 ≤ 𝑁 − 1 , 𝛥𝑥 = 𝐿/𝑁. 

 

In eq. (5.9), the Pressure at node 𝑖 + 1 is calculated numerically and the values of 

Pressure, Temperature, 𝐺  and 𝐺  are needed to be already specified. 

 

 ISOTHERMAL FLOW 

   It is considered that the gas flow is isothermal, so the temperature in every node is 

𝑇(𝑥) = 𝑇 = 𝑇 . The radius of the conical tube is given through the function: 

𝑎(𝑥) = 𝑎 + (𝑎 − 𝑎 )                                                                                                    (5.12)  

where 𝑎  the radius of the tube in vessel 1 and 𝑎  the radius of the tube in vessel 2 

and the ratio of radius of vessel 1 to vessel 2. 

The nodes of z-direction in the algorithm are 𝑁 = 90000. The temperature in Vessel 

1 is 300, so in the tube of variable radius and Vessel 1 the temperature is 300. The radius in 

the first node is 0.005. The reduced flow rate 𝐺 is calculated as a function of 𝑃  and the 

temporary pressure of the last node of z-direction in every loop until the temporary pressure 

is equal to 𝑃 . In Table 5.6 the results of these calculations for variable inlet 𝛿  and pressure 

ratios are given. Furthermore, these results are compared to the database from [30]. 

 

 

 

 

Table 5.6: Comparison of the reduced mass flow for isothermal flow and monoatomic 

Nitrogen in terms of pressure ratio and the inlet rarefaction parameter  
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 P
P  = 0 0.01 0.1 0.5 0.9 

𝛿  =0 [30] 27.35 27.08 24.62 13.68 2.735 

𝛿  =0 27.3525 27.079 24.6172 13.6768 2.7461 

𝛿  =0.01 [30] 27.04 26.76 24.29 13.42 2.672 

𝛿  =0.01 26.9909 26.7152 24.2448 13.3947 2.6782 

𝛿  =0.1 [30] 25.95 25.67 23.21 12.78 2.547 

𝛿  =0.1 25.9388 25.6589 23.2097 12.769 2.5553 

𝛿  =1 [30] 25.99 25.73 23.57 13.80 2.910 

𝛿  =1 25.9768 25.718 23.563 13.7902 2.9217 

𝛿   =10 [30] 52.29 52.17 50.66 35.56 8.531 

𝛿   =10 52.2833 52.1610 50.6528 35.5579 8.5727 

 

    The results of the reduced flow rate 𝐺 calculated for tapered channel of 90000 nodes 

and for isothermal flow, by considering Nitrogen as a monoatomic molecule, are shown on 

the Table 5.6.  

 

 

   

Figure 5.1: 𝛿 along x-axis  [ 𝛿  = 0.1]                          Figure 5.2: Pressure along x-axis  [ 𝛿  = 0.1] 
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Figure 5.3: 𝛿 along x-axis  [ 𝛿  = 1]                               Figure 5.4: Pressure along x-axis  [ 𝛿  = 1] 

 

     

Figure 5.5: 𝛿 along x-axis  [ 𝛿  = 10]                         Figure 5.6: Pressure along x-axis  [ 𝛿  = 10] 
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along the x-axis in the tapered channel. It is evident that for a pressure ratio 𝑃 𝑃⁄ =  0.9, the 

value of the dimensionless pressure is not changing significantly. 

 

 ΝΟΝ-ISOTHERMAL FLOW 

The gas flow is considered to be non-isothermal, so the temperature in every node is: 

 T(x)=𝑇 + (𝑇 − 𝑇 )                                                                                                         (5.13) 

   The radius of the conical tube is given by eq. (5.12), as in Isothermal flow. The nodes 

of z-direction in the algorithm are N=90000. The temperature in Vessel 1 is 300K and in Vessel 

2 is 78.9K and the temperature in the tube of variable radius can be calculated by eq. (5.13). 

The radius in the first node is 0.005. The reduced flow rate 𝐺 is calculated as a function of 𝑃  

and the temporary pressure of the last node of z-direction in every loop, until the temporary 

pressure is equal to 𝑃 . In Table 5.7 the results of these calculations for variable 𝛿  and 

pressure ratios are given. Furthermore, the results are being compared to the database from 

[30]. 

 

Table 5.7: Comparison of the reduced mass flow for non-isothermal flow and monoatomic 

Nitrogen in terms of pressure ratio and the inlet rarefaction parameter  

 P
P  = 0 0.01 0.1 0.5 0.9 

𝛿  =0 [30] 27.35 26.82 22.03 0.7090 -20.61 

𝛿  =0 27.3525 26.819 22.02 0.6846 -20.648 

𝛿  =0.01 [30] 27.05 26.51 21.84 2.495 -15.49 

𝛿  =0.01 26.465 26.465 21.7663 2.4813 -15.5053 

𝛿  =0.1 [30] 26.00 25.48 21.34 6.526 -6.268 

𝛿  =0.1 25.9938 25.4722 21.3311 6.4951 -6.3035 

𝛿  =1 [30] 26.32 25.92 23.26 12.74 1.232 

𝛿  =1 26.315 25.916 23.2491 12.7196 1.2266 

𝛿   =10 [30] 54.83 54.73 53.26 37.41 8.818 

𝛿   =10 54.8192 54.7215 53.2575 37.4267 8.8571 
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    The results of reduced flow rate 𝐺 calculated for tapered channel of 90000 nodes 

and for non-isothermal flow, while Nitrogen being considered as a monoatomic molecule, are 

shown in the Table 5.7.  

 

     

Figure 5.7: 𝛿 along x-axis  [ 𝛿  = 0.1]                            Figure 5.8: Pressure along x-axis  [ 𝛿  = 0.1] 

 

     

Figure 5.9: 𝛿 along x-axis  [ 𝛿  = 1]                                Figure 5.10: Pressure along x-axis  [ 𝛿  = 1] 
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Figure 5.11: 𝛿 along x-axis  [ 𝛿  = 10 ]                           Figure 5.12: Pressure along x-axis  [ 𝛿  = 10] 
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5.3 Polyatomic Nitrogen gas flow through fixed radius channels 

    In order to specify the pressure in each node and mass flow, a system of equations 

is required to be solved. In this case, the gas of Nitrogen is not considered as monoatomic 

molecule, like in paragraph 5.2, but as a polyatomic molecule. 

   In monoatomic gases, the value of the parameter 𝜔 =  1. But in polyatomic gases, 

the value of the parameter 𝜔 must be set properly. In [18], the following equation is 

suggested: 

𝜔 = 1 +                                                                                                                    (5.12)  

The correction to the thermal conductivity interaction of molecular and translational 

energy is given by Uribe [27] as: 

𝛥 =  
.

                                                                                                    (5.13)  

In order to solve the equation (5.11), the rotation degrees of freedom need to be 

specified. For N2 j=2 and the temperature collision number 𝑍  can be specified by the eq. 

(5.2), where 𝑍  can be found from [27]. The reduced temperature 𝑇 ∗=  𝑘𝑇 /𝜀 where 𝜀 is 

the energy scaling factor, can be defined from [27] where the value of expression 𝜀/𝑘 is 

tabulated. The other term that is needed to be specified in order to define 𝑍  through 

equation (5.2) is 𝜌𝐷 /𝜇.  

The ratio 𝜌𝐷 /𝜇 can be given in two parts according to temperature. 

For 𝑇∗ ≤ 𝑇∗  

=  
( )

1.122 +
.

∗
                                                                                        (5.14)    

For 𝑇∗ ≥ 𝑇∗  

=
∗

1 +
.

−
.

−
.                                                                                (5.15) 

where 𝐴∗ is the ratio of collision integral for viscosity 𝛺( , )∗ to collision integral for 

diffusion 𝛺( , )∗. The 𝑇∗  is the reduced crossover temperature as given in [27] and is equal 

to 6.70 for N2. The collision integral for viscosity and collision integral for diffusion are defined 

from the following equations as a function of reduced temperature 𝑇∗as being defined in [32]. 
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 𝛺( , )∗ 

  For    1 < 𝑇∗ < 10 

𝛺( , )∗ = exp [0.46641 − 0.56991(𝑙𝑛𝑇∗) + 0.19591(𝑙𝑛𝑇∗) − 0.03879(𝑙𝑛𝑇∗)   +

0.00259(𝑙𝑛𝑇∗)                                                                                                                               (5.16𝑎)  

               For     𝑇∗ > 10 

𝛺( , )∗ = (𝜌∗) 𝑎  [1.04 + 𝛼 (𝑙𝑛𝑇∗) + 𝛼 (𝑙𝑛𝑇∗) − 𝛼 (𝑙𝑛𝑇∗) +

𝛼 (𝑙𝑛𝑇∗)  ]                                                                                                                                   (5.16𝑏)  

 

where: 

              𝑎 = 0 

𝑎 = −33.0838 + (𝑎 𝜌∗) 20.0862 +
.

+
.   

𝛼 = 0.01571 − (𝑎 𝜌∗) 56.4472 +
.

+
.   

𝛼 = −87.7036 + (𝑎 𝜌∗) 46.3130 +
.

+
.   

with 𝑎 = ln (
∗

) and  𝑎 = ln (
∗

∗
) . The values of 𝑉∗ , 𝜌∗and 𝜀/𝑘 are 5.308x104, 

0.1080 and 98.4 for 𝑁  respectively as are given from Clifford [32].𝛺( , )∗ 

 

For    1 < 𝑇∗ < 10 

𝛺( , )∗ = exp [0.295402 − 0.510069(𝑙𝑛𝑇∗) + 0.189395(𝑙𝑛𝑇∗) −

0.045427(𝑙𝑛𝑇∗) + 0.0037928(𝑙𝑛𝑇∗)                                                                                  (5.17𝑎)  

For     𝑇∗ > 10 

𝛺( , )∗ = (𝜌∗) 𝑎  [0.89 + 𝑏 (𝑇∗) + 𝑏 (𝑇∗) − 𝑏 (𝑇∗)  ]                           (5.17𝑏)  

 

where: 

𝑏 = −267.00 + (𝑎 𝜌∗) 201.570 +
.

+
.   

𝑏 = −26700 + (𝑎 𝜌∗) 19.2265 +
.

+
.

𝑥 10   

𝑏 = −8.90 𝑥 10 + (𝑎 𝜌∗) 6.31013 +
.

+
.

 𝑥 10    
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    The procedure of calculating the reduced flow 𝐺 is the same as in paragraph 5.2 but 

the value of ω is in the range 0 to 1. 

    To investigate the flow of polyatomic Nitrogen, the parameter g*  must be calculated 

for temperature ratios 𝑇 𝑇⁄ =  2 and 𝑇 𝑇⁄ =  3 and for 𝑃 = 𝑃 , in order for the method of 

calculations to be verified with [29]. 

    In Table 5.8 and 5.9, the results of the calculations are compared with the previous 

temperature ratios and for fixed radius channel. 

 

Table 5.8:  Comparison of the reduced mass flow for polyatomic Nitrogen in terms of the 

inlet rarefaction parameter for T2/T1 = 2 and isobaric flow in fixed radius channel 

 
Tantos [29] 
  

Shakhov  
  

Results 
  

𝛿  =0.01 0.4258 0.426 0.4257 
𝛿  =0.1 0.3731 0.3745 0.373 
𝛿  =0.5 0.2924 0.2967 0.2922 
𝛿  =1 0.2456 0.2513 0.2452 
𝛿  =5 0.11954 0.1252 0.11924 
𝛿  =10 0.07274 0.07667 0.07255 
𝛿  =20 0.04049 0.04281 0.04036 
𝛿  =30 0.02789 0.02952 0.02779 

 

Table 5.9:  Comparison of the reduced mass flow for polyatomic Nitrogen in terms of the 

inlet rarefaction parameter for T2/T1 = 3 and isobaric flow in fixed radius channel 

 
Tantos [29] 
  

Shakhov  
  

Results 
  

𝛿  =0.01 0.6163 0.6165 0.6162 
𝛿  =0.1 0.5444 0.5461 0.5443 
𝛿  =0.5 0.438 0.4358 0.4304 
𝛿  =1 0.3642 0.3709 0.3636 
𝛿  =5 0.1861 0.1928 0.1854 
𝛿  =10 0.1176 0.1224 0.1171 
𝛿  =20 0.06743 0.07034 0.06705 
𝛿  =30 0.04714 0.0492 0.04685 

 

   The comparison Tables 5.8 and 5.9 validates the method that was followed and its 

calculations. The method is being used in order to calculate the flow of polyatomic Nitrogen 

in tapered channel for different pressure ratios and temperature ratios as in paragraph 5.2. 
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5.4 Polyatomic Nitrogen gas flow through tapered channels 

In paragraph 5.1 it the reduced mass flow in tapered channel considering Nitrogen as 

monoatomic gas was investigated. The current analysis considers Nitrogen as a polyatomic 

molecule. It is necessary to be stated that there is no extensive research for mass flow of 

rarefied polyatomic Nitrogen in long tapered channels, in contrast with monoatomic Nitrogen, 

due to its complexity. The results that are presented in this chapter, are being compared with 

[30] due to the unavailability in the literature of results for rarefied polyatomic Nitrogen for 

tapered channels. 

 

 ISOTHERMAL FLOW 

In paragraph 5.3, the method of researching the rarefied polyatomic Nitrogen flow in 

fixed radius channels was thoroughly presented. In contrast with fixed radius channels, in 

tapered channels, the radius is not fixed but is specified by eq. (5.12). The parameters of the 

researching case are the same as for monoatomic Nitrogen. The parameters of the polyatomic 

Nitrogen are specified as in the paragraph 5.2. The results of the reduced mass flow of 

polyatomic Nitrogen in tapered channel in isothermal flow is presented in Table 5.10. 

The coefficients 𝐺  and 𝐺  depend on the value of rarefaction parameter δ. Their 

analytical expressions are given as for 𝛿 >  50 by: 

𝐺 = + 𝜎                                                                                                                              (5.7)  

𝐺 = 0.3
.

ftr                                                                                                                      (5.19)  

where 𝑓𝑡𝑟 =  and 𝜎 = 1.1018 

while for 𝛿 ≤  50, the value of 𝐺  and 𝐺  is specified from the database from [30]. 
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Table 5.10: Comparison of the reduced mass flow for isothermal flow and polyatomic 

Nitrogen in terms of pressure ratio and the inlet rarefaction parameter 

 P
P  = 0 0.01 0.1 0.5 0.9 

𝛿  =0 [30] 27.35 27.08 24.62 13.68 2.735 

𝛿  =0 27.3517 27.0781 24.6165 13.6758 2.7350 

𝛿  =0.01 [30] 27.04 26.76 24.29 13.42 2.672 

𝛿  =0.01 26.9883 26.7126 24.2424 13.3928 2.6675 

𝛿  =0.1 [30] 25.95 25.67 23.21 12.78 2.547 

𝛿  =0.1 25.9279 25.6480 23.1984 12.7595 2.5426 

𝛿  =1 [30] 25.99 25.73 23.57 13.80 2.910 

𝛿  =1 25.9264 25.6674 23.5126 13.7585 2.8996 

𝛿   =10 [30] 52.29 52.17 50.66 35.56 8.531 

𝛿   =10 52.2295 52.1075 50.6052 35.5367 8.5253 

  

  The results of the reduced flow rate 𝐺 calculated for tapered channel of 90000 nodes 

and for isothermal flow, while Nitrogen is considered to be a polyatomic molecule, are shown 

on the Table 5.10. It is obvious that all databases calculated on Chapter 4 are being validated. 

Differences between the results of the research and the [30] occur due to the precision of 

calculations due to the fact that the results of the Table 5.10 are for polyatomic Nitrogen while 

in [30] for monoatomic Nitrogen.   

    

Figure 5.13: 𝛿 along x-axis  [ 𝛿  = 0.1]                         Figure 5.14: Pressure along x-axis  [ 𝛿  = 0.1] 
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Figure 5.15: 𝛿 along x-axis  [ 𝛿  = 1]                                   Figure 5.16: Pressure along x-axis  [ 𝛿  = 1] 

 

     

Figure 5.17: 𝛿 along x-axis  [ 𝛿  = 10]                                Figure 5.18: Pressure along x-axis  [ 𝛿  = 10] 

 

          The Figures 5.13, 5.15 and 5.17 present the value of the rarefaction parameter 𝛿 along 

the x-axis of the tapered channel. Along the x-axis, the dimensional and rarefaction 𝛿 values 

of the tube are almost the same with the values calculated for the monoatomic Nitrogen, 

where 𝛿   is 0.1 or 1 or 10. 

        The pressure’s value along the x-axis in a tapered channel is presented on Figures 

5.14, 5.16 and 5.18. For smaller pressure ratios, 𝑃 𝑃⁄ =  0, 0.01 and 0.1, the value of 

dimensionless pressure is rapidly decreasing, while for the pressure ratio 𝑃 𝑃⁄ =  0.5 is 

decreasing at a slower rate along the x-axis in the tapered channel likewise the case of 
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monoatomic Nitrogen. Also, the dimensional value of the pressure along the x-axis for 

pressure ratio 𝑃 𝑃⁄ =  0.9 is similar with the results of monoatomic Nitrogen. 

 ΝΟΝ-ISOTHERMAL FLOW 

          The rarefied polyatomic Nitrogen gas flow through tapered channel, where the 

temperature of the two reservoirs is different, as described in paragraph 5.2, and are 

connected with the tapered channel, demand more complex calculations. The coefficients 𝐺  

and 𝐺  are calculated as for isothermal flow (polyatomic Nitrogen). 

 

Table 5.11: Comparison of the reduced mass flow for non-isothermal flow and polyatomic 

Nitrogen in terms of pressure ratio and the inlet rarefaction parameter 

 P
P  = 0 0.01 0.1 0.5 0.9 

𝛿  =0 [30] 27.35 26.82 22.03 0.7090 -20.61 

𝛿  =0 27.3515 26.8182 22.0183 0.6856 -20.6472 

𝛿  =0.01 [30] 27.05 26.51 21.84 2.495 -15.49 

𝛿  =0.01 26.9967 26.4628 21.8034 2.6276 -15.1182 

𝛿  =0.1 [30] 26.00 25.48 21.34 6.526 -6.268 

𝛿  =0.1 25.9853 25.4650 21.3701 6.8351 -5.7435 

𝛿  =1 [30] 26.32 25.92 23.26 12.74 1.232 

𝛿  =1 26.2755 25.8821 23.2661 12.8191 1.3548 

𝛿   =10 [30] 54.83 54.73 53.26 37.41 8.818 

𝛿   =10 54.7761 54.6802 53.2243 37.4116  8.8325 

 

The results for reduced flow rate G calculated for tapered channel of 90000 nodes and 

for isothermal flow, while Nitrogen is considered to be a polyatomic molecule, are shown on 

the Table 5.11. Differences between the results of the research and [30] occur due to the 

precision of calculations and due to the results from Table 5.11 for polyatomic Nitrogen, while 

in [30] being for monoatomic Nitrogen.   
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Figure 5.19: 𝛿 along x-axis [ 𝛿  = 0.1]                          Figure 5.20: Pressure along x-axis [ 𝛿  = 0.1] 

 

     
Figure 5.21: 𝛿 along x-axis [ 𝛿  = 1]                            Figure 5.22: Pressure along x-axis [ 𝛿  = 1] 
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Figure 5.23: 𝛿 along x-axis [ 𝛿  = 10]                            Figure 5.24: Pressure along x-axis [ 𝛿  = 10] 

 

        In Figures 5.19 to 5.24 the rarefaction parameter δ0 and dimensionless pressure along the 

x-axis for rarefied polyatomic Nitrogen through long tapered channel for non-isothermal flow 

is presented. It should be noted that the value of the parameters is similar with the value of 

the same case flow for monoatomic Nitrogen. Furthermore, it is imperative to be noted that 

the 𝑓𝑡𝑟 parameter is used for non-isothermal flow and for polyatomic Nitrogen. In this case, 

the 𝑓𝑡𝑟 is calculated when 𝛿 > 50 because for rarefaction parameters 𝛿 ≤ 50, the value of 

mass flow due to pressure and temperature is derived from [29]. In Figure 2.25, the value of 

parameter 𝑓𝑡𝑟 along the x-axis where the value of rarefaction parameter δ was bigger than 

50 is presented.   

 
Figure 2.25.: Parameter 𝑓𝑡𝑟 along x-axis for rarefaction parameter inlet δ0 

and pressure ratios 0.9 and 0.5  
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Chapter 6. CONCLUSIONS – SUGGESTIONS FOR FURTHER STUDY 

6.1 Concluding Remarks 

   In the current Thesis, the rarefied polyatomic flow of Nitrogen through long tapered 

channels and long cylindrical (fixed radius) tubes is investigated. In the flows under 

consideration a wide range of temperature (300 K to 1500 K) and rarefaction parameters is 

used.  

   The gas flow in this type of applications cannot be described by the Navier-Stokes 

equations, so it is being described through the Boltzmann’s equation based on the Rykov 

model. The Rykov model demands the determination of many parameters. The specification 

of these parameters is accomplished by two different methods using the theoretical analysis 

by Mason and Monchick [1]. In the first method, the Prandtl of the gas is provided by 

bibliography [27]. The determination of the other parameters, more precisely the parameters 

ω0 and ω1, is completed as a function of Prandtl Number. In contrast, the specification of these 

two parameters is determined the theoretical analysis of Mason and Monchick [1] which is 

extensively described in Chapter 4. The comparison of the results of these two methods 

conclude to the fact that there is no significant difference among them. This can be applied in 

both industrial and research sectors. The databases presented provide information and results 

for a circular cross-section in a long tube for a wide range of temperatures, Prandtl numbers, 

rarefaction parameters and radius, as the results are dimensionless. The databases that were 

constructed are verified by existing literature. 

  The main subject of the current thesis is the research of the rarefied polyatomic gas 

through long tapered channels. There is extensive research in the literature for polyatomic 

molecules in tapered channels and also for different cross-sections. The flow is investigated 

for both isothermal and non-isothermal conditions and for a wide range of pressure ratios. In 

the first case, the Nitrogen is assumed to be a monoatomic molecule while in the second case 

it is assumed to be a polyatomic molecule.  

The databases that were obtained in the current Thesis can be used in order to specify 

the dimensional results in fixed radius tubes and tapered channels in many applications. 

Typical examples include the design of gas distribution systems and vacuum pumps.  
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6.2 Future Work 

In the current Thesis, the collision term of Boltzamann ‘s equation was substituted by 

Rykov ‘s kinetic model. The substitution of other kinetic models would result in different 

results. The comparison of the results from the use of different kinetic models is highly 

recommended. The advantages and disadvantages of each kinetic model would be noted. 

The database, that was developed for a wide range of temperature and rarefaction 

parameters provides the capability to research many long channels with fixed and variable 

radius, converging and diverging for different pressure ratios, different temperature ratios 

and radius ratios between the two edges of the channel. 

The current Thesis is focused on the research of the N2. The databases and the 

methods which are provided in this Thesis can be used in order to research the flow, in variable 

and fixed radius, of other gases as SF6, CO2 and CH4. 

The investigation of gas flows through various cross section should not be limited in 

coaxial radius tubes. Parallel plates, trapezoidal, triangular and rectangular cross sections can 

be found in many industrial applications. 
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