University of Thessaly
Faculty of Engineering
Department of Electrical & Computer Engineering

Study of Direct Methods for Solving Sparse Linear
Systems

Diploma Thesis

ATHANASIOS POLYCHRONOU

Supervisor
Panagiota Tsompanopoulou
Associate Professor

Volos, July 2020

University of Thessaly
Faculty of Engineering
Department of Electrical & Computer Engineering

Study of Direct Methods for Solving Sparse Linear
Systems

Diploma Thesis

ATHANASIOS POLYCHRONOU

Supervising committee

Supervisor Co-supervisor Co-supervisor
Panagiota Tsompanopoulou Nestor Evmorfopoulos Lefteris Tsoukalas
Associate Professor Associate Professor Professor

Volos, July 2020

University of Thessaly
Faculty of Engineering

Department of Electrical & Computer Engineering

The present thesis is an intellectual property of the student who authored it. It is forbidden to
copy, store and distribute it, in whole or in part, for commercial purposes. Reproduction, storage
and distribution are permitted for non-profit, educational or research purposes, provided that the

source is referenced and this message is retained.

The content of this thesis does not necessarily reflect the views of the Department, the Supervisor,
or the committee that approved it.

The author of this thesis assures that any help he has had for its preparation is fully acknowledged
and mentioned in this thesis. He also assures that he has referenced any sources from which he
used data, ideas or words, whether these are included in the text verbatim, or paraphrased.

«Being fully aware of the consequences of copyright law, I expressly state that this dissertation,
as well as the electronic files and source codes developed or modified in the course of this work,
are solely the product of my personal work and do not infringe any rights. intellectual property,
personality and personal data of third parties, does not contain works / contributions of third
parties for which permission of the creators / beneficiaries is required and is not a product of
partial or complete copy, and the sources used are limited to bibliographic references and only
meet the rules of scientific quotation mark. The points where I have used ideas, text, files and /
or sources of other authors, are clearly mentioned in the text with the appropriate citation and the
relevant report is included in the bibliographic references section with full description. I undertake
in full, individually and personally, all the legal and administrative consequences that may arise
in the event that it is proven, over time, that this work or part of it does not belong to me because

it is a product of plagiarism.»

Athanasios Polychronou,
July 2020

Mavemoto Oecoaliog

> TTolvteyvikn Zyolq

Tuqpo Hiektpoldywv Mnyovikdv & Mnyavik®v YToAoylotdv

Meriétn Apesmv MgBodwv Yo v Eridvon Apai@v

I'pappikov Xvetnpatov

Awmiouotikn Epyoacia

AGANAXIOX [TOAYXPONOY

Empiémovoa
[Moavayuwta Toopuravomoviov
Avaminpotpio Kadnynqrpu

Boéiog, lovAtog 2020

Abstract

Computing large linear systems in a reasonable amount of time and space is still an ongoing
challenge for computational scientist. In general, it is very common practice that the systems that
need to be computed are sparse. Exploiting, sparsity to achieve better execution times and less
storage space is one of the key factors in cutting-edge computer algorithms. This thesis, focuses on
the theory behind those algorithms, the data structured and the algorithms itself which are currently
used by sparse system libraries. More specific the Direct Methods Cholesky, QR, LU for factorizing
sparse linear matrices are examined and methods to reduce fill-in as well. Afterwards, experimental

cases are performed in Matlab to emphasize the benefits of sparsity exploitation.

Keywords

direct methods, sparse matrices, fill-in, graph theory of sparse matrices, Cholesky Factorization,

QR Factorization, LU Factorization, fill-in, multifrontal methods, supernodal methods, Matlab

IHeptinyn

O VTOAOYIOUOG HEYAAW®Y YPALUIKDY GUGTNUATOV GE £V AOYIKO YOPIKO KoL ¥POVIKO TAAIG10
glvar o S10pKNG TPOKANGT Y10 TOVG EMIGTIUOVES TNG VIOAOYIOTIKNG unyavikng. [evikd, eivon
TOAD GLYVO POVOLEVO TO GUGTHILOTO OV XPELALETAL VO VTOAOYIGTOOV Vva givor apaid. Evag amd
TOVG POCIKOVE CUVTEAEGTEG GTOVG KOPLPALNG KATOOKEDTG VTOAOYIOTIKOVS ohyopifuovg Yo emi-
TEVEN KAADEPWOV YPOVOV EKTELECTG, KABMG Kl AyOTEPOL OOONKELTIKOD YDPOVL, EIVOL 1] EKUETAA-
AEVOMN TOV APAMG SOUNG TOV CLGTNUATOV. AVTH 1] SITAONATIKY €oTldlel oty Bempio Tiow and
VTOVG TOLG aAyopiflovg, 6TIg dopEG dedopévmv KOBMS Kol 6Tovg i310V¢ ToVG aAYopiBpovg Tov
nephapPdvovtal otic PifAodnkeg Aoyiopkol exilvong apaidv cvetnudtoy. ITo cuykekpuéva,
avaivovtot ot apecot pébodot Cholesky, QR, LU 6mov emtAvovy €vo GOOTN IO TAPOYOVTOTOIOVTAG
Tov apotd wivaka. Emiong, e€etalovrat pébodot ehayiotomoinong fill-in oroygiowv mov TpokvdITOULY
Kot TV Tapayovromoino. Eneita, eKTeAO0VTOL LEPIKES TEPAUATIKES TEPITTOOELS 6€ Matlab ot

oToleg 0tvoLuV ELLPACT] 0T TAEOVEKTILLOTOL TOV TOPATAV® OAYopiOuwV.

Aé&Eearg Kheroug

duecotl pébodot, apatoi nivakes, Bewpia ypapnuatwv ya aparodc mivaxes, Cholesky Ilopa-

yovtonoinon, QR Ilapayovtomoinom, LU Ilapayoviomoinon

iii

Acknowledgements

I'would like to thank associate professor Panagiota Tsompanopoulou for her advice and assistance
throughout the whole paper.

Table of contents

E

Acknowledgements

[Table of contents

ist of tables

I Introduction
1.1 Main Objectivd
[1.2 Thesis Structurd

2 Theoretical Background

R.1 Introduction
R.2 Linear Algebra
.3 GraphTheoryl

B Data Structures and Basic Algorithms

B.1 Introductionf
B.2 DataStructured
B.3 Matrix-Vector Multiplicationj . . .
B.4 Matrix Multiplication
B.5 Matrix Addition
B.6 Solving a Triangular System Lx=b
B.7 Solving a Triangular System Ux=Y

B.8

Solving a Triangular System LTx=H

B.9

Solving a Triangular System U’ x=H

vii

iii

vii

xi

xiii

AW W W

O 0 0 3 O L L W

10

viii

Table of contents

4 Sparse Lower Triangular Solvd

U1 Introduction
#.2 Sparse Right-Hand Sidd
#.3 Finding the non-zeroset Xl
#3.1 Determining Xl
U32 Computing Xl
#.4 Solvinga Sparse Systeml

5 Cholesky Decomposition

5.1 Introduction
5.2 Method Overview|
5.3 Elimination Tredo ...
5.4 Computing the Elimination Tred

5.5 Solving Sparse Lx=b using the Elimination Tred

5.6 Postordering the Elimination Treg
5.7 RowCounty
5.8 ColumnCounty
5.9 SymbolicAnalysi§
5.10 Up-Looking Cholesky|
5.11 Left-Looking Choleskyl
5.12 Supernodal Cholesky|
5.13 Multifrontal Cholesky.

6 OR Decomposition

6.1 Introduction
6.2 Method Overview|
6.3 Householder Reflectiony
6.4 Left/Right-Looking Dense QR Decomposition
6.5 Sparse QR Decomposition|
6.5.1 _Row Set-Union Property|
6.5.2 Computation of Rud v v oo v oo
6.5.3 Computationof V{
6.5.4 Sparse QR Algorithm

7 LU Decomposition

[[.1 Introduction
[7.2 Method Overview|
[7.3 Right-Looking LU Decomposition
[7.4 Numerical Issued
[[.4.1 Numerical Issue§
[[.4.2 Partial Pivoting

7.5 Upperfill-inbound

Table of contents X
[7.6 Left-Looking LU Decomposition] oo v v i 67
[1.6.1 Left-Looking Dense LU Algorithnf 68

[1.6.2 Left-Looking Sparse LU Algorithm 69

[7.7 Multifrontal Method 73
Fill-in Reduction Methods 77
B.1 Introduction 77
8.2 Minimum Degree Ordering 77
8.3 Maximum Matching 82
8.4 Block Triangular Form 83
Experiments 87
D.1 Introductionl i 87
D.2 Data Structured e 87
D.3 Cholesky Factorization]o v i 88
D.4 QRFactorization v v it 90
D.5 LUFactorization v vt v i 91
0.6 Fill-in Reduction] 93
D.7 LUvsCholesky o o i 94
pilog 97
[[0.1 Conclusions 97
[[0.2 Further Workl 97
grapny 99

[Computer Algorithms 105
.1 __Data Structures and Basic Algorithmg 105
.2 Sparse Lower Triangular Solve 107
[.3 Cholesky Decomposition v v v v v e 108
.4 QR Decomposition oi e 114
L5 LUDecompoSition oot v e 118

List of figures

U1 RulesExampld 14
#.2 Corresponding Graphof G;| 16
5.1 Elimination Tree Relations 19
5.2 IS'Ruld 20
5.3 Elimination Tree of A and Row Subtrees 20
5.4 _Elimination Tree of A (second example) 22
5.5 Postordered Elimination Tred 26
5.6 First Descendant Function Example (the number on the left is the /; and on the right

the level of eachnode) 29
5.7 _Row Subtrees of the postordered eliminationtred 29
5.8 Path Decomposition of 77 . .« v v v v e e e 31
5.9 The £;is the union of its children 34
5.10 Multifrontal Elimination Tree and Frontal Matrice§ 43
b6.1 Parent-Descendant Relation]. o v v v i i 53
6.2 Disjoint Childrenl 53
6.3 Nodewithnochildren 56
6.4 Column Elimination Tred o v i e 59
[7.1 _New and Old Data Space Relation] 69
[7.2__Sparse Solve Example Between New and Old Data Space 72
[7.3 Multifrontal Elimination Tree and Frontal Matriced 73
[7.4 Column Elimination Tree and And Amalgamated Column Elimination Tred . . . 75
[7.5 Frontal Matrices Relation v i v 75
8.1 Elimination and Quotient Graphs 81
B2 Directed graphof Aand AY. 85
D.1 Dense Cholesky vs Sparse Choleksyl 88
D.2 Dense Choleksy vs Supernodal Choleskyl 89
D.3 Sparse Choleksy vs Supernodal Choleskyl 89
D.4 Multifrontal QR vs Dense QRl 90

X1

xii List of figures
D.5 Multifrontal QR vs Sparse QR| 91
D.6 Dense LUvsSparse LU 92
D.7 _Dense LU vs Multifrontal LU 92
D.8 Sparse LU vs Multifrontal LU 93
0.9 Minimum Degree Ordering 94

D.10 Supernodal Choleksy vs Multifrontal LU 95

List of tables

xiii

Chapter 1

Introduction

A Sparse Matrix is defined as a matrix which most of the elements are zero and the non zero
elements of a matrix may be concentrated or distributed less systematically resulting in a regular
or irregular shape.Thus,we shall refer to a matrix as sparse if taking advantage of the percentage
of its non-zero elements and shape results in solving a problem more economically.

Sparse matrices are usually encountered in a wide variety of problems in engineering, machine
learning as well as scientific areas of study. Problems from the real world that are formulated with
the use of partial differential equations are commonly solved with the use of finite element method.
Typical problems solved in such a way are structural analysis,heat transfer, fluid flow to name just
a few. Also, sparse matrices often arise for example due to encoding or in processing data that
contains counts or even in language processing in the field of machine learning.

Thus, the construction of algorithms or the modification of existing ones in a way that sparsity
is exploited to solve these linear systems more efficiently is a thriving field of study. Algorithms
which solve linear systems are divided into two subgroups. The first group consists of Direct
Methods and the second one of Iterative Methods. A Direct Method is one which gives an exact
solution to the system assuming no round-off error occur and an lterative Method is one which

uses successive approximate solutions obtaining a more accurate solution in each step.

1.1 Main Objective

This thesis focuses on studying in depth the Data Structures as well as the the Algorithms
used for obtaining the Direct Solution of a sparse system. More importantly, ways to reduce the
storage cost, as well as the execution cost of typical factorization methods, in regards to the sparsity
of a matrix, are inspected.

The reduction of storage cost is of high importance because computer systems have physical
memory limitations, due to their hardware, and many linear systems tend to be arbitrarily big,
exceeding the memory capacity of the system. However, if a considerable amount of entries in
the element are zeros, they can be discarded and thus, the remaining entries can be stored without
causing memory overflows.

Lowering the actual time of an algorithm’s execution time is a desired fact for every algorithm.

2 Chapter 1. Introduction

Exploiting the sparsity can lead to huge difference in execution time of many common algorithms
operating on sparse systems. The theory behind those modified algorithms is analyzed in depth,
and some pseudo-code examples are given.

The important fact is that the underlying theory discussed is the basis of all the cutting edge
matrix solvers, used currently by numerical analysis and numerical computing software, such as
MATLAB. Thus, after the theory, some test-cases are executed in MATLAB, to show the benefits

mentioned above.

1.2 Thesis Structure

In Chapter P, some basic linear algebra and graph theory is discussed.

In Chapter [J, the data structures for sparse matrices and basic matrix operations are shown.

In Chapter [, the solution of a sparse triangular system is implemented, which is very significant
because subsequent algorithms rely a lot on it.

From Chapter [J the modified matrix factorizations are discussed, how matrices are decomposed
into a product of more convenient matrices. Starting from the Cholesky factorization, then moving
on to the QR factorization in Chapter f and finally the LU factorization in Chapter [1. These three
are the predominant chapters of the thesis.

In Chapter § some methods to reduce fill-in entries are shown. Fill-in entries are those who
arise due to the factorization of a matrix and are not in the original matrix.

Finally, in Chapter [the experiments in MATLAB are done.

Chapter 2

Theoretical Background

2.1 Introduction

In this section some basic linear algebra and graph theory will be described as well as the

notations used in this thesis. More information can be found in [64][32].

2.2 Linear Algebra

A real m-by-n matrix is denoted as : 4 € R™ *". An entry in the 4 matrix in row i and column
J corresponds to a;;. The notation a;;,a; or a will be used for row or column vectors or for scalars
depending on the context.

The symbols for lower upper and triangular are L U respectively. In L for every /;; withi >
holds /;; = 0.In U for every u;; withi < jholdu; = 0. The diagonal of a matrix 4 € R™*" is
the set of entries ay|{k = 1,...,n}.

The identity matrix is denoted as I € R"* " whose diagonal is 1 and all the other entries are 0.

The transpose of a vector,otherwise a row vector, is a’ and the transpose of a matrix is and
AT = a;; for every a;;. A;x and A(i,:) is the whole i row of a matrix. Likewise, 4,; and A(:,j) is the
whole j column.

Matrix Addition is defined as 4 = B + C where a; = b;; + ¢;;. Matrix-Scalar multiplication is

defined as 4 = ¢B where a;; = ¢ * b;; Matrix-Matrix multiplication is defined as 4 = BC where
P

ifBe R"*7andC € RF*"thend € R"*" and a;; = Z bir * c;. Notice that the number of

k=1
columns of B and rows of C must agree.
n

For two vectors x, y € R” the inner product is defined as x”y = Zxk * Pk
k=1
The inverse of a matrix is denoted 4! where 4~'4 = 44~ = I.1fa matrix Q holds that 070 = I

then Q is called orthonormal. If Q is a square orthogonal matrix then also QQ7 = I holds and
QT = Q7! this matrix is an orthogonal matrix.
P denotes a permutation matrix meaning an identity matrix [with its rows or columns permuted.

The symbol |4| denotes the number of non-zero elements in matrix A. The set containing the

3

4 Chapter 2. Theoretical Background

non-zero pattern of a matrix 4 is denoted with A.

2.3 Graph Theory

Any entry in a graph is called a node and any line connecting two separate nodes is called an
edge. Denoting V' = {1,2,...,n} as a set of nodes and E = {(i,j)|i,j € V} as a set of edges. In a
directed graph the edge connecting two nodes has a specific direction from node 4 to node B for
instance. In an undirected graph any edge is a path from node 4 to B as well as from B to 4.

If a path from i ~ j exists, it means that there are edges connecting the nodes (i, k, ..., [,j). A cycle
in a graph is a path j ~ j, starting and ending at the same node.

A graph with no cycles is called acyclic, a directed acyclic graph is called DAG. A forest is an
undirected graph in which any two vertices are connected by at most one path,or equivalently a
DAG. A tree is an undirected graph n which any two vertices are connected by exactly one path,
or equivalently a connected acyclic undirected graph. Thus, a forest is a disjoint union of trees.

Usually the tree data structures used are rooted trees where root refers to the very first node
of the data structure. Parent of a node V is the first node connected to / on the path to the root.
The parent of every node is unique except the root which has no parent. Equivalently, the child of
anode Vis a node whose parent is V. A node with no children is called a /eaf.

A descendant node of a node is any node in the path from that node to the leaf node, including
the leaf node. An ancestor node of a node is any node in the path from that node to the root node,
including the root node as well. Thus, the first ancestor of a node is its parent.

A cligue is a subset of vertices of a graph G where every two vertices of the clique are adjacent
to each other.

The set of all nodes in a graph G reached by a node V' is denoted as Reachg(V).

Chapter 3

Data Structures and Basic Algorithms

3.1 Introduction

In this chapter the basics of which data structures are used to store sparse matrices efficiently
and how the basic matrix algorithms are modified according to this specific type of structure.

3.2 Data Structures

Considering a random sparse matrix 4 =

S W O ==
~ O wn O
[
—
(=]

This matrix could be stored in a triplet form data structure which for a matrix 4 € R"*" every
non-zero row and column index is stored as well as every value. Triplet form is easily read and
created and many files containing sparse matrices use this method of storage. For this particular
example:

row=1[1 2 233 44 4cl=[1 231323 4,

value:[l 583 11 4 3 17]

The size of each array is equal to the number of non-zero entries.In the example above is equal to 8.
This storage method is highly inefficient for use in most sparse matrix algorithms It preferable to
use another storing method that suits those algorithms more. Thus, let us introduce the Compressed
Sparse Column Format or CSC Format([1].

In the CSC Format three matrices are used, one Cp of size n+ 1 for storing the column pointers
and in the final position the nz 4 1 value, one i_indices of size nz for storing the row indices of the
non-zero entries and finally one va/ of size nz storing the values of the non-zero entries.

The logic behind this format is the following: in the Cp matrix an entry Cp[i] translate to the
the place in the rowldx matrix where the iy column is stored.So, row indices of column i are
placed from rowldx[Cpl[i]] to rowldx[Cp[i+1]-1]. Equivalently, the numerical values are placed
from val(Cp(i)) to val(Cp(i+1)-1). For the example above, the corresponding matrices are:

5

6 Chapter 3. Data Structures and Basic Algorithms

Cp:[l 35 8 9],rowldx:[1 32423 4 4],.
valz[l 35 48 11 3 17]

The values of the third column of A, A3 can be accessed and printed by:

for p=Cp(3):Cp(4)—1

print(val(p))
end

The output is: p=5 val[5]=8, p=6 val[6]=11, p=7 val[7]=3
We observe that for storing the matrix above two arrays of size nz = 8 are required and one of size
n+ 1 = 5. Already, from the storage method it easy to note that a lot less space is used for Cp=[]
opposed to col=[] for matrices with a large number of non-zeros.

Transforming a matrix from triplet to a CSC format is easily done with the following algorithm[23].

function C=TripToSparse(A)
row=A.row
value=A. value
col=A.col
for k=1:nz
count(col (k))++
end
Cp=cumsum (count)
for k=1:nz
p=col (k)++
rowldx (p)=row (k)
val (p)=value (k)
end
end

Where cumsum function computes the cumulative sum of a matrix. For instance for T=[2,4,5], the
cumsum(T) equals [2,6,11].

The above function is simpler model of the function S=sparse(A) in Matlab stated just for observing
the logic behind CSC format and understanding the differences between the former and the triplet
format.

From now on let’s use for a matrix 4 the notation Ai for rowldx Ap for column pointers Cp and Cx

for val.

3.3 Matrix-Vector Multiplication

Suppose we want to computer z = Ax + y. We have A4 stored by column so if we consider A
split into column vectors the above equation is z = [, Asp -+ Aun) * [X1x2 - - x,,]T + .

So to compute it the following algorithm is used:

3.4 Matrix Multiplication 7

function z=gaxpy(A,x,y)
for k=1:n
for p=Ap(k):Ap(k+1)—1
y(Ai(p))=Ax(p)*x(k)
end
end
end

We see that the two loops are taking time proportional to the non-zero entries in A, so O(n + f),

where f'is the number of float point operations[23].

3.4 Matrix Multiplication

Since a matrix is stored by column the multiplication method used is Column at a Time. For
calculating C = 4B column-wise, Cy; = AB,; forj = 1--- n is computed. Considering the split
used in the previous section C; = AB,; becomes Cy; = [Au1 Asa -+ Aun]¥[b1j by -+~ byj]". The

non-zero pattern of C,; is the set union of 4,; for all i which b;; is non-zero. Thus, C; = U A;. For

ieB;
computing C numerical cancellation is ignored. So the resulting matrix has a new non-zero pattern
which must be computed simultaneously with multiplication.

function C=mat multiply (A,B)
nz=0

for j=1:n

Cpljl=nz
for k=Bp(j):Bp(j+1)—1
b=Bx (k)
for p=A(k):A(k+1)—1
i=Ai(p)

if (1 not in nz pattern of col j)
Ci[nz++]=i
x(1)+=bxAx(p)
end
for p=Cp(j):nz
Cx(p)=x(Ci(p))
end
end
end
Cp[n]=nz
end

The time taken is proportional to n, |B| as well as fwhich notes the count of floating point operations.
Therefore, the algorithm is O(f+ n + |B|)[23].

8 Chapter 3. Data Structures and Basic Algorithms

3.5 Matrix Addition

Matrix addition is a similar to Matrix Multiplication if the following transformation from C =
oA + BB to C = [4 B][od BI)T is noted.

function C=mat add(A,B)
nz=0
for j=1:n
Cp(j)=nz
for Ap(j):Ap(j+1)—1
i=Ai(p)
if(i not in nz pattern of col j)
Ci[nz++]=i
x(1)+=alpha*Ax(p)
end

for Bp(j):Bp(j+1)—1

i=Bi(p)
if (i not in nz pattern of col j)
Ci[nzt+]=i

x(i)t=beta%xBx(p)
end
for p=Cp(j):nz
Cx(p)=x(Ci(p))
end
end
end

3.6 Solving a Triangular System Lx=b

Let’s consider a system Lx = b where L is square and lower triangular. Taking into account
the storing format used, the matrix should be accessed by column to solve the system efficiently.
Let us consider the following decomposition:

ETHE
b Lol |x| |k
The equations deriving are ¢11x; = by and £31x] + Looxy = by, where 11, x; and b; are scalars and
0>1,x; and b, are vectors of sizen — 1. Ly isa (n — 1)x(n — 1) matrix. Unwinding the recursion
leads to an algorithm that accesses the matrix L column-by-column. Hence, solving for x leads to

x1 = b1 /411 and Lyx, = by — £51x1 and observing that b is used once so it is more convenient to

replace it with x, the following algorithm is introduced:

function x=lsolve(A,b)

3.7 Solving a Triangular System Ux=b 9

x=b
for j=1:n
x(j) =x(j)/Lx(Lp(j))
for p=Lp(j)+1:Lp(j+1)—1
x(Li(p))=x(Li(p))—Lx(p)*x(j)

end
end
end
{1y X1 by
Let’s see a more detailed example for a 3x3 matrix. |5, ¢2n x| = |b
l31 3 l33] [x3 b;
Considering the previous notation: ¢11,x1, by are the same, €1 = [(21 (31], X2 = [x2 x3], by =
1 0
[bz b3] and L22 = 22 .
U3 l33
b 14
Following the algorithm: x; = by /11, by — ly1x) = ;] s X1, that’s the first iteration
3 31
followed by recursion unwinding so now: £;; = {2, €1 = [{32],x2 = [x3],by = [by] and
Loy = [433].
Solving, results in: xo = ba/lr, by — lyx; = bz — {3x2 and then the final step is solving
X3 = b3/€33.

It easy to note in the above example that the columns of of L are accessed one time each from left

to right which is the desired way, this is called a forward solve.

3.7 Solving a Triangular System Ux=b

Considering the system Ux = b where U is an upper triangular matrix and x, b are vectors. A

.. (e . U u X b
similar decomposition is used as the one for the L matrix. o Ho= |
un| |x)

The equations derived are: uxyx, = by and Ujjx1 + uz1xo = by, where uy;, x3, by are scalars and
up1,x1, b are vectors of length n — 1, Ujy is a (n — 1)x(n — 1) matrix. Solving for x results in

Xy = bz/uzz and Uy1x; = by — up1x; and the algorithm deriving is:

function x=usolve(A,b)

x=b
for j=n:1
x(j)=x(j)/Lx(Li(j+1)~1)
for p=Up(j):Up(j)-2
x (Ui (p))=x(Ui(p)) ~Ux(p)*x(j)
end
end

end

10 Chapter 3. Data Structures and Basic Algorithms

In the algorithm above, the columns of U are accessed one at a time from right to left, that is called

a backward solve.

3.8 Solving a Triangular System L’x=b

The matrix L7 is an upper triangular matrix because L is a lower triangular. It’s easy to observe
that because L is stored by column, now L' is stored by row. So, it’s optimal way to access this
matrix is done by row. Let’s consider once again the decomposition used in section B.g but with
matrix L transposed.

Gy] x| b
5 i) -l
The equation the above system produces are: Lszxz = by and f11x1 —|—€2Tlx2 = by, note that €2T 1X2isan

inner product that results in a scalar. Solving for x produces: L1,x; = by andx; = (b —£3,x2) /£11.

Hence, the algorithm is:

function x=Itsolve (A,b)

Xx=b
for j=n:1
for p=Lp(j)+1:Lp(j+1)—1
x(j)=x(j)~Lx(p)*x(Li(p))
end
x(j)=x(j)/Lx(Lp(j))
end

end

The algorithm iterates from n to 1 because as it is a backward solve, also accessing a row at at time

resembles the common way of solving a problem of this kind.

3.9 Solving a Triangular System U’x=b

Since U is an upper triangular stored by column, U is a lower triangular and as above it is
optimal to access it by row. Considering the decomposition used in section and transposing the
matrix results in:

U 0] |xi| b
u3 uxn| |x [bzl
Solving for x derives the following equations: Ul x; = b; and x, = (b — u3,x1)/u2, Where again

ub x| is an inner product. The algorithm for this system is:

function x=utsolve(A,b)
x=b
for j=1:n
for p=Lp(j)+1:Lp(j+1)-2
x(1)=x(j)~Ux(p)#x(Ui(p))

3.9 Solving a Triangular System U'x=b 11

end

x(j)=x(j)/Ux(Up(j+1)—1)
end
The algorithm iterates from 1 to n as it is a forward solve. Once again this algorithm resembles
the common way of solving this kind of systems, because many readers are familiar with solving

a system by rows and not columns.

Chapter 4

Sparse Lower Triangular Solve

4.1 Introduction

The algorithms used in the previous chapter, only took into consideration the sparsity of the
left-hand side matrix, but it is very common in practice to have a sparse right-hand side as well.
It is of high importance to come up with an algorithm that exploits these features to their fullest

because the lower triangular solve is a basis for plenty factorization algorithms.

4.2 Sparse Right-Hand Side

For a sparse b and assuming that the diagonal of the L matrix is unity, the pseudo-code for

solving the system is:

x=b
for j=1:n
if x; #0
for each i>j for which /; #0

Xi:Xi_gij % X;

An algorithm based in the above pseudo-code would take O(n + f'+ |b|). Floating operations
dominate |b| so O(n +f). But this is not very efficient because if there is a single non zero element
in b, fis O(1) but the whole loop would be executed again so the total work would be O(n) which
is clearly unacceptable.

Suppose all the x; # 0 where known before hand and were sorted in ascending order, then the
Jj loop could be avoided using the following pseudo-code:

x=b
for each je X
for each i>j for which 1;#0

X=Xl * x;

The complexity of this algorithm is O(|b| + f), which is basically O(f)[42]. It’s a great time
improvement but a way to find A must be implemented.

13

14 Chapter 4. Sparse Lower Triangular Solve

Y Istrule

Xi 2nd rule

Figure 4.1: Rules Example

4.3 Finding the non-zero set X

4.3.1 Determining X

The entries of x become non-zero only in two cases, ignoring numerical cancellation:
1. bi 7é 0 — X; ;é 0
2. XJ#O/\H(IU#O) = x;#0

The first rule is pretty straight forward, if there is a non-zero entry in b, then the corresponding x;
is also non-zero. The second rule implies that in an line equation for instance:

»
lnxy + -+ -+ Lxj + - - + [x; = 0. If at least one x; # 0 then x; = —%xj, so x; # 0.

il

These rules that define the set X’ can be expressed as a graph traversal problem. Suppose there
is an acyclic directed graph G; = (V,E) where V' = {1---n} and E = {(j,i) | l; # 0}. For
each x; # 0 the corresponding node j is marked. So from the first rule all nodes {i | i € B} are
marked. The second rule means that all nodes which can be reached from a marked node shall also
be marked. Hence, X is the set union of all nodes that can be reached from the nodes in 5. In graph
terminology this is symbolized by X = Reach; (B)[32].

4.3.2 Computing X

Considering the graph Gz, doing a depth-first search of Gy starting at nodes B, can compute
the set X'. Depth-First Search (DFS) algorithm starts at the root node and explores as far as
possible along each branch before backtracking. Time used by DFS is analogous to the number
of edges traversed, plus the number of the initial starting nodes, the nodes belonging in B. Each
edge translates into two floating point operations since an edge reflects the second rule hence,
the total time taken is O(|b| + f). Because for each {(i,/)| j < i} inx; = x; — [;x;, x; must be
first computed, the DF'S algorithm must be done in a topological order, an order that preserves
precedence. In topological order, for every edge i — j, node i comes before node j in the ordering.

So the pseudo-codes for computing X" are shown below[23]:

function X=reach(L,B)
for each i for which b; #0

if node 1 is unmarked

4.4 Solving a Sparse System 15

dfs (i)

function dfs(j)
mark (j)
for each i for which I;#0
if node(i) is unmarked
dfs (1)
push j onto stack for X

Note that dfs(i) is a recursive function, but beware because recursive function can create stack

overflow for very large inputs, so an iterative approach that mimics the recursion is suggested
though recursion is used here since for easier comprehension.

4.4 Solving a Sparse System

Now, a way has been found for calculating X" so the pseudo-code for solving the lower triangular
system from section ¢.2 can be rephrased to the following algorithm:

function x=Isparse solve (L,B,k)
X=cs _reach(L,B,k)
for p=Bp(k):Bp(k)—1 % b is stored in a CSC format
x(Bi(p))=Bx(p) % so it is scattered

end
for s=1:length (X)
J=X(s)
x(j)=x(J)/Lx(Lp(J));
for p=Gp(j)+1:Gp(j+1)—1
x(Li(p))=x(Li(p))—Lx(p)*x(j)
end
end

end

In a similar manner, the algorithm for solving an upper triangular can be implied, just be changing
the forward solve to a backward one. The algorithm takes an optimal O(|b| + f) time to execute.

An example follows showing all the theory discussed above. Consider the following system Lx=b:

2% 0
) 0
by L33 b3

Uy lay v by

lys Uss 0

61 L6 be

{73 l16 L77
| (81 lg7 Lgs | 0]

16 Chapter 4. Sparse Lower Triangular Solve

(—©
ORNO
OO

Figure 4.2: Corresponding Graph of G,

So, the set B is {3, 4, 6}. Calculating the Reach for each node in 3 results in: Reach(3) = {3,7,8}
Reach(4) = {4,5}, and finally Reach(6) = {6,7,8}, but nodes {7, 8} are already marked from
Reach(3). The final output is stored in topological order, thus X = {6,4,5,3,7,8}. Note that,
due to topological ordering node 6 comes before node 7,8 although they are derived from the first
Reach. Observing the matrix it is easy to see that x4 and x3 are needed for computing x7, which is

why the node precedence must be maintained.

Chapter 5

Cholesky Decomposition

5.1 Introduction

A matrix decomposition or factorization is a way of reducing a matrix into its constituent
parts. That way, complex matrix operations can be performed on decomposed matrix rather than
the original matrix itself which leads to easier computations. Additionally, if a plenty of systems
include a specific matrix it is convenient to decompose it once, which is the computationally intense
part, and then reuse it for as many times as needed. In this Thesis three decomposition methods
will be examined, starting with Cholesky Decomposition in this chapter. The order in which the

methods are presented is in a way that is favors the gradually development of their theory.

5.2 Method Overview

For a Cholesky Decomposition to be applied to a real matrix 4 two criteria must hold:
1. The matrix must be symmetric, 47 = A.
2. The matrix must be positive definite, (x? Ax) > 0 for every non-zero vector x.

Then the decomposition is the product LLT = A where L is a lower triangular matrix with positive
diagonal entries. Note that for a n-by-n A matrix only its lower triangular component needs to be
stored after the decomposition which saves a big amount of space. Also, Ax = b = LL'x =b
which is a lower and followed by an upper triangular solve, which is easier than solving an arbitrary
square system.

If a a 2-by-2 decomposition is used in a similar manner like the chapters above LLT = 4 results

Ly Lyt _ Ay oan
o ity 159 ay an|’

£12 and a, are vectors of size n, ayy and ¢5, are scalars and L;; and 4;; are matrices of size

n:

(n — 1)x(n — 1). The deriving equations from the above system are: L”LITI = A1, L1412 = ann

17

18 Chapter 5. Cholesky Decomposition

and 6{2512 + @2 =ay = flp =+/ay— €1T2€12, where ay; > EITZEQ due to 4 being positive-
definite. The algorithm yielding a solution to the system is:

function L=up cholesky (A)
n=size (A)
L=zeros(n)
for k=1:n
L(k,1:k—1)=(L(1:k—1,1:k—1)\A(l:k—1,k)) ’;
L(k,k)=sqrt(A(k,k)-L(k,1:k—1)%L(k,1:k—1)")
end
end

This algorithm is called up because it is up-looking, meaning it looks at (k — 1) rows before
constructing k™ row of L. It can be seen from the above equations and the algorithm that a triangular
solve is used. If A is a sparse matrix that leads to a sparse triangular solve and the theory developed
in Chapter f| can be used but for this algorithm the theory can be taken a step further.

5.3 Elimination Tree

Consider again the equation L{1¢15 = aj» of a sparse matrix. After the sparse triangular solve
the vector ¢1, becomes the 2™ or generally the k™ row of L. So X = Reach; (B) becomes any
given row k, £y = Reachy,_,(Ay) where Ly is the non-zero pattern of line k, L;_; is the already
calculated part, in the above decomposition L1, as well as A, is the non-zero pattern of the upper
triangular part of the k™ column of A. Bearing in mind this pattern the subsequent relation is
established.

Consider any i < j < k where a;; # 0 and ¢;; # 0 corresponding to the Figure B.1|. Traversing
the graph corresponding to L;_; would start from node i since i € Ay, hence i € L. Then, the
traversal would visit node j because ¢; # 0 so from the 2" rule in x; # 0thusj € Ly.
Thereafter, the computed vector x will become the k™ row of L so ¢ # 0 and /;; # 0. So, two
non-zeros in column i imply that there is a non-zero in column j(¢y), £x; # OAL; # 0 = £ # 0.

So the following two rules derive for a Cholesky Decomposition LL” = A4 and neglecting

numerical cancellation :
2. i<j<k/\€j,~7é0/\£k,-750 — Ekj#o

Note that from the second rule, in the L matrix appear some non-zero entries which are not in the
original A matrix, these are called fill-in entries.

In graph notion the above translates in an edge (i,j) and an edge (i,k) imply and edge (j,k). If
there is a path from j to k the path from i to k is redundant to compute Reach(i) because i would
be reached viaj. This of course does not affect the Reach(t) of any other nodes t<i. Thus, only the

least numbered node j withj > i is needed to compute Reach(i). The previous sentence leads to an

5.4 Computing the Elimination Tree 19

Figure 5.1: Elimination Tree Relations

remarkable observation that any node would have have at most one outgoing edge and since two
vertices are connected by exactly one path, this results in a tree.

The tree produced is called an Elimination Tree. Node ; is the parent of node i in the tree,
where J is the first off-diagonal entry in the i column. If a column has no off-diagonal entries it
has no parent thus it is a tree by itself. So, an elimination tree is actually an elimination forest
but the former term is used. For a Cholesky Matrix L its elimination tree is denoted as 7 as well
as for any sub-matrix Lj...; 1., of L is denoted as T;. Computing L only takes O(Ly) time using
the Elimination Tree which of course is a better time complexity than using the method from the
previous chapter. Having established the Elimination Tree the theorems and methods to compute
it efficiently follow[54].

5.4 Computing the Elimination Tree

Before proceeding to the computational part the subsequent theorems, which will enable us to
compute the tree efficiently, must be established. Also, bear in mind that numerical cancellation is
once again neglected[52][58][61]].

1. Considering a Cholesky Decomposition LLT = A, if {;; # 0Nk > i = iis a descendant
of kin T and the path i ~ k exists in 7.

2. The non-zero pattern £y = Reachy, (Ax) = Reachy,_, (Ay)
3. Node jis a leaf of T# = aj; # 0 A ay = 0 for every descendant i of j in T

4. Considering LLT = 4, if a; # 0 and k > i = iis a descendant of k in T and the path

i~ kexistsin 7.

Let us examine closer the previous rules. The [rule is easier understood by looking at Figure
b.2. Let j be the parent of i that is the first off-diagonal entry in column i with ;i # 0. The parent
must exist because £; # 0 holds. If k = j then k = parent(i) and i ~ k is indeed a direct path in 7.
For (k> j > i) A ({iy # 0) A (¢;; # 0) and recalling rule | from previous chapter implies £;; # 0
so the path j ~» k exists and combined with (i,j) edge results in a path i ~ kin 7. So removing

removing redundant edges to obtain 7 has no effect in the Reach of any node.

20 Chapter 5. Cholesky Decomposition

Figure 5.2: 1% Rule

Figure 5.3: Elimination Tree of A and Row Subtrees

From the above statements the ™ as well as B rules derive easily and show that any sub-tree
T* is characterized by its leaves. They are also leading to the H™ rule which is quite similar to the
first only this time the relation can be established from the original matrix.

Let us view an example in order to comprehend better the concept of the Elimination Tree.
Consider the following matrix and its corresponding Cholesky Decomposition:

ai aie _gll]
an ay, ass ayy 145
ass ass asy 33
4= asg ass ass ag7| L= Ly o
asy asy asy ass asy lsy Us3 lsq Uss
agl ace 61 Los
i ap ap ain ars ar | i by t73 ls s b7 |

The Elimination Tree is in Figure 5.3, where we observe that its actually a forest and that no
fill-in entries exist, thus no element came from rule P of previous chapter. Also, each row sub-tree
T* fork =1---7 in ascending order.

Another example is given below. Once again consider the matrix A and its Choleksy Factor L.
The vector parent denotes is the Elimination Tree parent-child relations, where parent(i) is the

parent of node i in the tree, for example parent(2) = 3 and parent(10) = 0 because 10 is the root

of T:

5.4 Computing the Elimination Tree 21

an app ap aie aio
a ay are azi1o
a3 a3
as ags ay; azy aso
4= asq ass asy ,
a1 ae ace a9 aglo
azp ars arn arg
agg agy ago
agy a9 A97 dAg9g A99
(@101 @102 aios aioe aios a1010
I
(ST 5
b1l 433
o
I— lsq Ass
le1 Llex Le3 7% 7
by A5 b7
{3
log Llos Log Lo Log Log
o1 o2 fro3 Lioa ros Lios L0 Lrog Lio9 Lrono]

parent = [2 3657999 10 o]

In this example, the entries in L matrix written in bold denote the fill-in entries that are produced
from the Cholesky Decomposition. For example notice the entry ¢3;, because entries ¢5; and £3,
exist then by rule [} /3, is a non-zero entry as well. Same thing goes for instance for entry £95, due
to lsq #= 0 A log #0 = Los # 0, as well as for all other fill-in entries.

From rules [I] and f an algorithm that computes the Elimination Tree in nearly O(|4|) time can
be constructed. Assume that 7;_; is computed, which is a subset of Ty, then to compute 7 the
children of node £ must be found, which are roots in 7;_;. Since there holds a;; # 0 for i < k the
path i ~ k exist in 7 and it can be traversed up until reaching a root node in 7;_;, and since the
path leading to node £ exist the root node reached is a child of node £.

The traversal to meet the upper time complexity needs a small modification. Let us introduce
the concept of ancestors. The ancestor of i in the partially constructed tree 7;_; is ideally the root
of the tree that contains i. Then traversing the path from i to the root would take constant time O(1).
Thus, the method used leads to a complexity that is O(|4| log n) but in practice the bound is hardly
reached and the complexity is practically almost O(|4])[23]. So the algorithm that computes the

Elimination Tree is the one below:

function parent=etree (A)
n=size (A)
parent=zeros(n,l)

22 Chapter 5. Cholesky Decomposition

Figure 5.4: Elimination Tree of A (second example)

ancestor=zeros(n,1)
for k=1:n
for p=Ap(k):Ap(k+1)—1
1=Ai(p)
while (i~=0 && i < k)
inext=ancestor (i)
ancestor (i)=k
if inext=—=—
parent (i)=k
end
i=inext
end
end
end
end

5.5 Solving Sparse Lx=b using the Elimination Tree

Recall from Chapter that for solving a Sparse Lx = b system we need to compute the
Reach of the lower triangular matrix in respect to the right hand side vector thatis X = Reachy (B).
But in this specific case, the matrix L emerges from a Choleksy Decomposition and so it has a
more particular pattern than the general case.

To compute the £ = Reachy_1(Ai) where k— 1 denotes the Graph of L;_; and A denotes the
non-zero pattern of column k of A which is the next candidate column for the next step in Cholesky

Decomposition. The Reachy (i) is computed simply and fast by traversing the Elimination Tree

5.5 Solving Sparse Lx=b using the Elimination Tree 23

from node i to the root, i ~» r. This needs less time than the general case Reach due to the graph
being a Tree and not a DAG. Thus, to compute the Reach of £; the k th yow sub-tree needs to be
traversed for the input Ay, that is every non-zero entry in the k™ column of A or the the k'™ row
equivalently. The algorithm computing the Elimination Tree Reach is the following[23)]:

function Lk=ereach (A, parent ,k)

n=size (A,1)
Lk=zeros(n,1) % output array
w=zeros (n,1) % work space array for marking values
s=zeros(n,l) % stack array
top=n
mark (w,k) % mark node k as visited
for p=Ap(k):Ap(k+1)—1

i=Ai(p)

if i>k

continue
end
len=1

while i=parent(i)

if mark(w,i) % check if node i has already been visited
break

end

s(len)=1

len=len+1

mark (w, 1)
end
while len>0
Lk(top)=s(len)
top=top —1
len=len —1
end
end
Lk=Lk(Lk~=0) % remove if there are any zeros
for p=1:length (Lk)—1
mark(w,Lk(1)) % unmark node Lk(i)
end
mark (w, k)
end

The code takes as an input the matrix A, the step k and the parent array which is the result of
the etree function. In the beginning, the variables are set up and the node k is marked as visited.

Then, the path i ~» r is traversed and every node in the path is marked as visited. Every node

24 Chapter 5. Cholesky Decomposition

encountered is placed in the s array and then is copied to Lk from the end to the front so as to
preserve the topological order. Afterwards, the iteration continues with the next i node.

The function mark is taking as an input a work space array w and a node 7 and if the node is
unmarked it marks it and vice versa. As an output it returns true if the node is already marked
otherwise false. The implementation code for mark function is omitted.

The total time taken for ereach function, £; = Reach is O(Ly) which is arguably faster than the
reach function from Chapter §.3.2.

5.6 Postordering the Elimination Tree

If a matrix A is permuted according to the postordering matrix P so as C = PAPT and LLT =
C, then L has the same non-zero elements as before but it would be in better structure resulting
often to a faster decomposition. Additionally, the postorder of the Elimination Tree is essential for
computing the non-zero entries of each column in L, which is of high importance as will be shown
in the future chapters.

The filled graphs of A and PAPT are isomorphic if P is a postordering of the elimination tree
of A. Likewise, the elimination trees of A and PAPT are isomorphic[54].

An isomorphism is a mapping between two structures of the same type that can be reversed by
an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between
them[24].

In a postordering traversal the algorithm processes all nodes of a tree by recursively processing
all sub-trees, then finally processing the root. So for the child-parent relation to be preserved the
elimination tree, every child must have a smaller node number than its parent. For instance if a node
j has m descendants the latter must be numbered from j —m to j — 1. For a postordering permutation
array post, post(k)=j means that original node j is now numbered as k in the postordered tree. The
relative ordering of the children of a node j is also preserved after a postordering. So if ¢;<c<...<c,
are the n children of j then post(c;)<post(c;)<...<post(c,) holds.

The recursive logic behind computing recursively the postordering using a depth-first search

1s shown below:

function P=postorder(T)
k=0
for j=1:length(T)
dfstree (j)
end
end

function dfstree(j)
for i=1:n
if i is a child of j
dfstree (i)

5.6 Postordering the Elimination Tree

25

end
end

end

post(k)=]j
k=k+1

Once again, this recursive algorithm can cause stack overflow for very large inputs as mentioned

in Chapter #.3.2. So an iterative approach that mimics the recursive functions above is suggested.

An example of postordering is following:

ar
asl
as

ael

Ly =

lio1

C11
21
C3]

C41

€101

a2

az

ae2

aio2

0
U3

ler

o2

12
€22

C42

€102

as

ass

(33

63

l103

13

€33

asq

asq4

a4

agq

aio4

o
Us4

on

o4
l104
cl4

€24

C44

€94
€104

a45

ass

ars

lss

475

2%
l10s

Css
C65

C7s5

€95

€105

aie ario
are azio
asy azy asno
asy
a6 a9y ae10
ar a9
agg agy aglo
age Ag97 dg9g A99
aioe aios aio10 |
L6
{77
L3

log Lo7 log Log

Lo L107 108 L1090 Cio10

€110
€210
C49 €410
€56 Cs57 €59 €510
Ce6 Co67 ’
€76 €77 €79

Ccgg €89 (810

C97 €98 €99

€108 €1010

26 Chapter 5. Cholesky Decomposition

Figure 5.5: Post ordered Elimination Tree

Iy
by A
31l L33
by lan laz Ly
Lo— Uss ’
les Los

U5 b6 {77
lgg
log los log Lo7 Log Log

lio1 o2 fros Lioa Cros Lios Lio7 Lrog Lio9 £ro10]
post=[1 23 6 45789 10
The matrix A is the same as in the second example in Chapter 5.4.C is A(post,post) where
post is shown below. So the corresponding elimination tree is shown in .4 and the postordered
elimination tree is shown in Figure @ The matrices L¢ and L4 have the same number of non-zero
values so obviously the have the same number of fill-in entries. But, it is easy to note that the

elements in matrix C as well as in matrix L are distributed in a better pattern.

5.7 Row Counts

The Row Count algorithm computes the number of non-zero entries in each row of the matrix
L. The Row Count algorithm is a precursor to the Column Count. So many of the features of the
latter algorithm are used in this one too. Since row counts is a simpler algorithm it is presented first
although the in practice only the column counts algorithm is used[23].

To calculate the non-zeros of a row i a simple tree traversal method would suffice. For each

a; # 0 start traversing the tree from node j up to node i or until finding a node which has been

5.7 Row Counts 27

already visited. This is the same as traversing all the nodes in the subtree 7. The construction of
an algorithm in the sense presented above would result in a time complexity of O(|L|). Hopefully,
an algorithm with better time complexity of nearly O(|4|) time can be implemented, if some new

concepts are introduced first. These concepts are the subsequent:
1. First Descendant
2. Skeleton Matrix
3. Least Common Ancestor
4. Path Decomposition

The key notion behind the algorithm is to decompose each row subtree in a set of paths which
are disjoint. Each path will start at a leaf node, where a;; # 0 in this subtree T, and will end in
least common ancestor of the current and the previous leaf nodes. Thus the length of each path is
found by computing the difference between the level of the starting and ending node, where level
denotes the distance of a node to the root of the tree. Now, let us take an better inspection at the
rules mentioned before.

The First Descendant of a node j is the node with the smallest postorder value in the set of all
the descendants of j. Considering the function introduced below the time needed to compute the
first descendant is O(n).

function [first ,level]=first descendant(n,post,parent, first ,level)
first=zeros(n,l)
for k=1:n

i=post (k)

len=0

r=i

while ((r!=0) && (first (r)==0)
first (r)=k
r=parent(r)
len=len+1

end

if r==
len=len —1

else
len=len+level (r)

end

s=i

while (s~=r1)
level (s)=1len
len=len —1

s=parent(s)

28 Chapter 5. Cholesky Decomposition

end

end
end

The function starts at node k=1 in the postordered tree and goes all the way up to the root. All
the nodes in the way gain 1 as their first descendant. For a node k>1 the algorithm terminates at a
node » whose first descendant has already been found and so has it’s level. The first in the path is
once again the starting node k. Once the path has been determined, it is traversed again so as to set
the level of the nodes along the way. An example is given in Figure 5.4

The next step is to divide the tree into disjoint paths. To do so, the leaf nodes must be found.
The Skeleton Matrix is a structure created for that cause. The entries that are leaves in each row
subtree form the Skeleton Matrix A. Thus, all the entries in the matrix A are a subset of the entries
in the matrix A. The non-zero pattern of the Cholesky factorization for both A and A matrices is
the same.

Below a prototype of the skeleton function is presented, although the actual code is implemented
in the row count function. Suppose the matrix is postordered and so the leaves of each row subtree
can be determined by using the first descendant of each node in the following manner:

function skeleton(first ,n)
maxfirst=zeros(n,1)
for j=1:n
for each i>j for which a; #0
if first(j)>maxfirst(i)
j is a leaf in T'
maxfirst(i)=first(j)
end
end
end

The algorithm starts considering a node j and all the row subtrees that contain this node. First(j)
is the first descendant in the eliminatrion tree as seen before and maxfirst(i) is the biggest first(j)
met so far in the 7. If first(j) < maxfirst(i) then node j must have a descendant d < j in 7", for
which first(d)=maxfirst(i)>first(j). Thus, j is not a leaf of the subtree 7". On the other hand, if
first(j)>maxfirst(i) then node j has no descendants in 7" and so j is a leaf. These rules are listed
together below considering a postordered tree:

1. If f; <j is the first descendant of j then all the descendants of j are f;,f; + 1,--- ,j — 1.

2. for two nodes ¢t < jtheneither f; < ¢t < f; < jorf, < f; <t < j. In the first case
t ¢ descendants(j). In the second case ¢ € descendants(j). As an example for the first case
considerz = 2,f; = landj = 6,f; = 5 and for the second case t = 7,f, = Sandj = 9,f; = 1
in Figure f.4.

5.7 Row Counts 29

@
©
@ ©
O
Figure 5.6: First Descendant Function Example (the number on the left is the f; and on the right

the level of each node)

@ OO O OE® OGO O ®

Figure 5.7: Row Subtrees of the postordered elimination tree

3. for a node j and a set S for which holds {Vs € S,s < j}. If node ¢+ € S has the largest
first descendant f; then j has a descendant in S'if and only if ; > f; , {fi > f; < s €
descendants(j)}. Consider as s = 8,f; = 8 and j = 10,f; = 1 in Figure f.6.

Consider the row subtrees presented in Figure .7 as an input to the skeleton function. The
algorithm output is show below. The postordered matrix is shown again for convenience.

aily apz aiz ay aiio

ax axn az4 a210

as] as3

asr ag a44 ase a4
ass ase asy asg asio

des deo de7
ars die A an
agg dgy dglo
a94 Aags dg7 a9y A99

aolr a2 aio4 aios aios aioio

Computation of A using skeleton function:

30 Chapter 5. Cholesky Decomposition

j=1: first(1)=1, i=2 max(2)=0—1 leaf, i=3 max(3)=0—1 leaf,
i=4 max(4)=0—1 leaf, i=10 max(10)=0—1 leaf

first(2)=1, i=4 max(4)=1 not leaf, 1=10 max(10)=1 not leaf
first (3)=1

first(4)=1, 1=9 max(9)=0—1 leaf, i=10 max(10)=1 not leaf
first(5)=5, i=6 max(6)=0—5 leaf, i=7 max(7)=0—5 leaf,
1i=9 max(9)=1—5 leaf, 1i=10 max(10)=10—5 leaf

Il
BN NS N

R T I S

first (6)=5, 1=7 max(7)=5 not leaf,

first(7)=5, i=9 max(9)=5 not leaf

first(8)=8, i=9 max(9)=5—8 leaf, i=10 max(10)=5—8 leaf
first(9)=1, 1i=10 max(10)=8 not leaf

0: first(10)=1

— e e et
Il
— O 0 3 O

apy ap a3 ang aiio
a1 axn
asy ass
as Q44 a9
A ass ase asy ase asio
ags ae6
azs any
agg agy aglo
Qg4 Q95 agg a9y
| @101 aios aios ai010 |

Recall the elements of the list introduced in the beginning of the chapter. The first two concepts
are by now known. The least common ancestor of two nodes 7, j is an ancestor of both 7 and j which
has the smallest number and is denoted as g=lca(i,j). For instance, in the subtree 7° 9=lca(4,5) in
Figure 5.7,

Now, Path Decomposition can be presented. Path Decomposition is a method which decomposes
any row subtree into a set of disjoint paths. This can easily be be implemented by using the leaves
and the theorems discussed previously. Consider two consecutive leaves j,.., < j. Each path starts
atj and ends at g=lca(j,.y,/). An example of the 3 distinct paths produced by this method for row
subtree 7° which has 3 leaves is shown at Figure 5.8.

At this point computing the Row Counts is quite easy. That is because the non-zero entries of
a particular row i can be computed by summing the length of all the distinct paths in 7°. The length
of each path can be found by calculating the level difference between the ending and the starting
node.

The least common ancestor is efficiently computed by taking into account the following observation.
Considering a postordered tree the least common ancestor of node i and j where i < j, can be found

by traversing the path i ~ root. The first node ¢ found along the way for which holds g > j is the

5.7 Row Counts 31

©
CmOs—"

Figure 5.8: Path Decomposition of 7°

least common ancestor.

The leaf function presented below determines if a node ; is a leaf of 7" and if so it computes
the least common ancestor between this and the previous leaf in this subtree. Again the ancestor
concept is used as in etree function in Chapter [5.4. In the beginning each element is each own

ancestor and the root of a set is always it’s own ancestor[39].

function [q, maxfirst, prevleaf, ancestor, jleaf] =leaf(i, j, first,

maxfirst, prevleaf, ancestor, jleaf)

jleaf=0

if (i<=) || first(j)<=maxfirst(i))
q=0 %not a leaf
return

end

maxfirst(i)=first(j) % leaf — update maxfirst
jprev=prevleaf(i) % load previeaf and upate the new
prevleaf(i)=]j

if (jprev==—1) % first leaf

q=1 %i is the root of i subtree
jleaf=1
return

end

jleaf=2 % not first leaf

q=jprev

while (q~=ancestor(q)) % find the root of tree
g=ancestor(q)

end

s=jprev

while (s~=q)

32 Chapter 5. Cholesky Decomposition

sparent=ancestor(s) % path compression with ancestor method
ancestor(s)=q
s=sparent
end
end

The total Row Count algorithm then is[41]:

function rcount=rowcount(A, parent, post)
n=A.n
Ap=A.p
Ai=A. i
[first , level]= first descendant(n, post, parent, first, level)
for i=1:n
rcount(i)=1 % for the diagonal
prevlieaf(i)=0
maxfirst(i)=0
ancestor(i)=1 % every node is its own ancestor
end
for k=1:n
j=post(k) % use postordering through permutation vector
for p=Ap(k):Ap(k+1)—1
i=Ai(p)
[q, maxfirst, prevleaf, ancestor, jleaf] =leaf(i, j, first,
maxfirst, prevleaf, ancestor, jleaf)
if jleaf
rcount(i)=rcount(i)+(level(j)—level(q))
end
end
if (parent(j)~=—-1)
ancestor (j)=parent(j)
end
end
end

An example of the row count algorithm is presented below using as an input the postordered
elimination tree which was used at the Skeleton matrix in 5.7. The max and first values are the

same as well as the level.

j=1: i=2 prevleaf(2)=0—1 q=2 rcount(2)=1+(5-4)=2,
i=3 prevleaf(3)=0—1 gq=3 rcount(3)=1+(5-3)=3 —,
i=4 prevleaf(4)=0—1 q=4 rcount(4)=1+(5-2)=4,
i=10 prevleaf(10)=0—1 =10 rcount(10)=1+(5-0)=6,
ancestor (1)=2

5.8 Column Counts 33

i=4 not leaf, i=10 not leaf, ancestor(l)=3

i=3 not leaf, ancestor(3)=4

i=9 prevleaf(9)=0—4 q=9 rcount(9)=1+(2—-1)=2,

i=10 not leaf, ancestor(4)=9

i=6 prevleaf(6)=0—5 q=6 rcount(6)=1+(4—-3)=2,

i=7 prevleaf(7)=0—5 rcount(7)=1+(4—-2)=3,

i=9 prevleaf(9)=4—5 q=9 rcount(9)=2+(4—-1)=5,

i=10 prevleaf(10)=1—5 q=9 rcount(10)=6+(4—-1)=9, ancestor(5)=6
i=7 not leaf, ancestor(6)=7

[S
Il
E NS I]

—
Il
W

i=9 not leaf, ancestor(7)=9

i=9 prevleaf(9)=5—8 q=9 rcount(9)=5+(2—-1)=6,
i=10 prevleaf(10)=1—8 q=9 rcount(10)=9+(2—-1)=10
ancestor (8)=9

j=9: i=10 not leaf ancestor(9)=10

—_— e
I
e BN BN

rcounts=[1 2 3 4 1 2 3 1 6 10]

Additionally if a node k has ancestor(k)=j and then ancestor(j)=i when this path is traversed
again the ancestor array will be updated and ancestor(k)=i, this is the path compression which is
omitted in the example above.

5.8 Column Counts

Column counts can be computed in the same time as row counts, nearly O(|4|). Let A; be the
non-zero pattern of j column of A matrix, flj be the non-zero pattern of j column of A matrix, L;
be the non-zero pattern of column j of L matrix and finally c; be the count of non-zero elements in
Lj, so c; = |Lj].

If £; denotes the non-zero pattern of the j™ column of L and Aj denotes the nonzero pattern of
the strictly lower triangular part of the j column of A, then

L=Au0ju(|J £\ {s)Bsl

s=child(j)
In order to comprehend the previous relation consider the Figure B.9. Suppose d is a descendant

of j then the path d ~» j exists in the elimination tree 7. For anode s that is a child of j the path d ~» s
exists also in 7. Consideranode i > jif liy #0 => d~s—j €T = (s #0 & £; #0.
Thus the row index i € Ly, £;. So to construct £; only L, with s being a child of j, is needed of
all the descendants of j. Finally, ifi € £; = j € T" so j is either a leaf or not. Ifj is a leaf then
i€ ./le C A;. If not, then j has a child s € Tiandsoi € L.

So the nonzero pattern of the j column of L is a subset of the path j ~» » from j to the root of
the elimination tree 7.

Using only the upper relation the time needed for computing the column counts is O(|L|). If
the least common ancestor concept is taken into account then the time drops to O(|4]).

If anode; is a leaf of the elimination tree then j will be a leaf for every entry i in column j that

34 Chapter 5. Cholesky Decomposition

Figure 5.9: The £; is the union of its children

a; # 0. So every such entry will be in the skeleton matrix A. The count of non-zero entries in L;
will be the number of A; = A; plus 1 for the diagonal entry ¢;;. So, ¢; = |.A;| + 1, for j leaf of 7.
On the other hand, if a node j is not a leaf of 7 then from B.§ £; = A; Uj U (U L\ {s}). But

s=child(j)
if an entry is in A then it is not in the pattern of the children of j so ¢ = |flj| +| U L\ {s}]-
s=child(j)
If the number of children of j is computed in variable e; then ¢; = |Aj| + | U Lg| — ej. The
s=child(j)

union of the children of j may have so overlapping nodes. If the overlap count was computed an
stored in o; then ¢; = |Aj| — 0; — ¢; + Z Cs.
s=child(j)

For instance, to calculate the L9 of the tree in Figure @ the children the relationship takes the
following form: L9 = ft9U£4\{4}U£7\{7}U£g\{8}2{0}U{9, 10}U{9, 10}U{9, 10} = {9, 10}.
Also, cg = /lg—09—eg+ Z ¢y = 0—4—3+9 = 2. Node 9 has three children so eg = 3, nodes

s=child(9)
{9, 10} appear both in the three children so overlap o; = 4 and finally Z Cs =cC4+c7+cg =

s=child(9)
3+3+3=0.

The method to find the Skeleton matrix is show in the previous section. Only the method to
Figure out the overlaps is then needed, to be able to compute ¢; from the relation shown above.
The overlaps are closely related to the row subtrees of the elimination tree. If a node j is in the row

subtree 7" that means i € L;. So, there are three possible cases:
1. Ifj ¢ T' <= i¢ L}, sono contribution to o;

2. Ifjis aleaf of 7" then a;; # 0 and since the skeleton matrix and the children set are disjoint,

no contribution to o; here either.

3. Ifj € 7" and not a leaf then j has at least one child and their number is denoted by d;;. Since
row i belongs to every non-zero pattern of the children the overlap o; = d;; — 1.

The 3" rule derives from the fact that if j has d;; number of children in 7 then it will be the
least common ancestor of d;j — 1 pairs of leaves. Thereby, each time node j becomes a Ica the

overlap count o; can be incremented by 1.

5.8 Column Counts 35

Suppose A; = | A;| — e; — o; for a non-leaf node. If j is a leaf then A; = |A;| + 1. Then,

¢ =|Al -0 — e+ Z ¢ = ¢ =40+ Z Cs.
s=child(j) s=child(j)
A; is initialized as 1 if j is a leaf and as 0 if not. For every a; # 0 A, is incremented by 1 and

decremented by 1 for every child of j as well as when j becomes the /ca of two pair of leaves. The

algorithm for computing the Column Count is given below[41][39].

function ccount=colcounts (A, parent,post)

n=A.n
Ai=A. 1
Ap=A.p
w=zeros (1,n)
for k=1:n
j=post (k)
if (first(j)==0) % j is a leaf
delta (j)=1
else
delta(j)=0 % j not a leaf
end

while ((j~=0) && (first(j)==0)) % construct the first of each node
first (j)=k
j=parent(j)

end

ancestor(k)=k % every node is each own ancestor at first

end
for k=1:n
j=post (k)
for p=Ap(j):Ap(j+1)—1
1=Ai(p)
[q, maxfirst, prevleaf, ancestor, jleaf]=leaf(i, j, first,
maxfirst, prevleaf, ancestor, jleaf)
if (jleaf>=1) delta(j)=delta(j)+1 % a;; € A
if (jleaf==2) delta(q)=delta(q)—1 % j is subsequent leaf
% so delta (lca)— —
end
if (parent(j)~=-0)
ancestor(j)=parent(j) % every set belongs to its father
end
end

ccount=delta

for j=1:n

36 Chapter 5. Cholesky Decomposition

if (parent(j)~=0)
ccount(parent(j))=ccount(parent(j))+ccount(j)
% the colcount of a node j is the sum of its children count
end
end
end

5.9 Symbolic Analysis

The Symbolic Analysis of a matrix is the computing the information that do not depend on
each numerical values but mainly on the structure of the matrix, the non-zero pattern that is. This
can be helpful because permutations that result in less fill-in entries can be found also because it
is common practice for matrices of the same study area to have the same non-zero structure.

Everything computed so far in this chapter is part of the symbolic analysis of a sparse matrix.
So, all of this information needs to be stored in a concise data structure for instance A_symb.

A symb.parent=etree (A) % find the elimination tree

A symb.post=post(A symb.parent) % find the post order permutation

A symb.cp=colcounts (A,A symb.parent ,A symb.post)

A _symb.cp=cumsum(c) % store the column pointers found using colcounts

A symb.Inz=sum(A symb.cp) % the number of nz entries in L

The entries in the struct A_symb can be extended by storing the permutation found suitable
for this kind of matrix as well as the permuted matrix. For now, the elimination tree of A, the

postordering of the tree, the column counts of L and the total number of non-zeros in L are computed.

5.10 Up-Looking Cholesky

At this moment, the final step is to compute the numerical values of the factorization using the
up-looking method, it is the 2-by-2 decomposition introduced in chapter f.2.

function L=up chol(A,A symb)

n=A.n

cp=A_symb.p

Lp=c=cp

Ap=A.p

Ai=A. 1

parent=A symb. parent

for k=1:n
% Find the non zero pattern of Ay
Lk=ereach (A, parent ,k) % find ereach
x(k)=0

5.10 Up-Looking Cholesky 37

for p=Ap(k):Ap(k+1)—1
if Ai(i)<=k
x (Ai(p)=Ax(p)
end
end
d=x(k)
x(k)=0
% Triangular solve for ka;
for Lk c=1:length (Lk)
i=Lk(Lk ¢) % pattern of Lk
lki=x(i)/Lx(Lp(i)) % L(k,i)=x(i)/L(i,i)
x(1)=0
for p=Lp(i)+1l:c(i)—1
x(Li(p)=x(Li(p))—Lx(p)* lki
end
d=d—Ilkix*lki
p=c(i)
c(i)=c(i)+1
Li(p)=k
Lx(p)=1ki
end
% Check if positive definite and find L
if (d<=0) %not positive definite
L=0
return
end
p=c(k)
c(k)=c(k)+1
Li(p)=k
Lx(p)=sqrt(d)
end
Lp(n)=cp(n)
L.p=Lp
L.i=Li
L.x=Lx
L.n=Ln

end

The time taken to compute the Cholesky Decomposition using up_chol function is O(f), the
floating point operations performed, where 1" = Z |(L.x)|[*Factorization to LDLT, with column
counts complexity O(|L|) is shown here[[18].

38 Chapter 5. Cholesky Decomposition

5.11 Left-Looking Cholesky

The left-looking Cholesky is used more often than the up-looking one as it forms the basis of
the Supernodal Method. For the left-looking method consider the following decomposition:

T T

Ly Liy fin Ly A an Az

T | _|.r T

by xn by l3| = |ap an a3
T

Ly1 l3 L33 L3, A3z1 azy Asz

For this decomposition the k™ row and column are the middle ones. If the k — 1 columns of L are

known then €1T2€12+€%2 =ay = lpn=+/an —€1T2€12.Also, L3l + b3l = app —
tyy = 92 —£L31512.
A functiéil prototype is given below for this decomposition:
function L=chol left(A)
n=size (A,1)
L=zeros(n)
for k=1:n
L(k,k)=sqrt(A(k,k)-L(k,1:k—D*L(k,1:k—1)")
L(k+1:n,k)=(A(k+1:n,k)—L(k+1:n,1:k—1)*L(k,1:k—1)")/L(k,k)
end

end

An example of how this algorithm proceeds is shown:
I_St iter:Ly) = []7£t12 - []71‘31 = H

I by iy U3 Uy aijl ap az as
by I Uy U3 Iy ap ax axn apn
* = = 511 = \/arl
O Uz U3 U3z l43 az| a3 as as
lyr Ly ly3 Ly lag as) Qg a4z Q44

by = an/li, l31 =az/li, a1 =an/ln
ond iter: L1 = 51_1, fsz =V, L3 = [431641]

a3 by by U1 Iy aiy ap asz; as
by I by Uz Iy aiy axp azp ag Jan i
* = = I =an —lip* {1
Gy U3 433 U335 {43 az; az; asy a43
a1 Lar a3 lag la4 a41 A4 a43 Q44
PR L1243 0y = 42~ l12ly
p=—— = ————
2% 129
14
d o 11 T
3iter: Ly = Ay = [031032], L3 = [la1442]
iy U
n by by U1 Uy ail ap az; as
by A by U lgn app axp axp asp T
* = = l33 = 1/ay3 — Ll =
Gy U3 U3 l33 {43 az| az; azy a4s
Uy Ly L3 lag o as1 A4 a43 Qa4

2 2 ass —L31liy asz — larlz) — Lanlsp
azpy — 03, — 15, ly= =
31 32 633 €33

5.12 Supernodal Cholesky 39

lyy
4Miter: Ly = |41y fy ATy = [larlanlas), L3y = ||
31 l3 33
1 by by U3 Ay ay aip az; a4

by Al by [l lp app ap ax agp T
* = = l44 = \/a4s — L}yl =
31 b33 La3

az| ay az ag
lyy Ly Uy Ly la4 a41 a4 Q43 Q44

lyy
14 Y4

[|G f2
b1 U3 33

Uy Ly laz Uy
In each iteration with bold are marked the already known elements. Also, in each iteration

the same variables are used L11,£1T2,L31, which correspond to the decomposition shown in the
beginning of the chapter, for convenience.

5.12 Supernodal Cholesky

It is easy to recall that because of the properties of Cholesky factorization many columns end
up having the same pattern as in matrix L below if the diagonal entry block.

Ly
ky
o Ly

L{z e o

I— o o ok
L3

[] [] []
[] [} [}

L3y L33
[] [} [}

The columns from k; through k, can be grouped together. The matrix L,; denotes the diagonal
block and the matrix L3, the supernode consisting of the non-zero elements below the diagonal
block.

For a set of nodes k,k + 1,..,k — 1 to form a supernode S the following must hold: for i =
1,2,9—1,where g = k, —k; the node k+i— 1 is the only child of node £+ in the elimination tree,
children(k+1i) = k+i— 1. These nodes can be grouped together into a single supernode[[13][57].

Consider the computation of L,; for some j > k. Suppose column A4,; has to be modified by
L,;, where i € S. It follows from the notion of supernodes that column 4,; will be modified by
every i € S. Thus, a column j > k; is either modified by no column in S or by every column in
it. So, a supernode can be treated as a single unit in the computations. Since, they have the same

sparsity structure dense vector operations can be used and then applied to the target vector using a

40 Chapter 5. Cholesky Decomposition

single sparse vector operation that employs indirect addressing.
Consider in the decomposition mentioned in the previous Section B.11. It can be modified to
solve for the blocks introduced above and so:

L Ly L L} Ay A AL
Lsz Ly Lsz L3T2 = Asz Ax A3T2 .
L3 L3y L33 L1 Az Az Az

For this decomposition the k'™ row and column are the middle ones. If the k — 1 columns of L are
known then:

L,Liy + LooLly = Ay = LoL3, = A — L], L1,

L3i\Lia + LypL)y, = A3y => LypL}y = A3y — LyjLyy => Ll = AL, — L)LY,

The first equation results into a dense Cholesky factorization which needs no exploitation of
sparsity at all. The second equation is a triangular solve. L3Tz transpose is a dense matrix, in this
particular example a 3x3 dense matrix. In general it is an orthogonal dense matrix of dimension
(|nz|x(ka — k1)) where |nz| is the number of non-zeros in the supernode.

The algorithm for computing the supernodal cholesky follows:

function L=chol super(A,s)
n=size (A)
L=zeros(n)
ss=cumsum ([1 s])
for j=1:length(s)

kl=ss(j)
k2=ss(j+1)
k=k1:(k2-1)

L(k,k)=chol (A(k,k)-L(k,1:kl—-1)*L(k,1:kl1—1)")"
L(k2:n,k)=(A(k2:n,k)-L(k2:n,1:kl1—-1)%L(k,kl:k1 —1)")/L(k,k)’
end
end

In the above code s is an integer vector of where s(j) > 0V j and sum(s) = n. The j™ supernode
consists of s(j) columns of L which can be stored as a dense matrix.
So all the key operations of a supernodal Cholesky are:
1. A(kk)-L(k,1:k1-1)*L(k,1:k1-1)’). A(k,k) is dense. L(k,1:k1-1) are the rows in a subset of
the descendants of j™ supernode. The update from each descendant can be done with a single

dense matrix multiplication.
2. L(k,k)=chol(A(k,k)-L(k,1:k1-1)*L(k,1:k1-1)")’. A dense Cholesky factorization

3. A sparse matrix product (A(k2:n,k)-L(k2:n,1:k1-1)*L(k,k1:k1-1)"), where the L terms come
from the descendants of the j supernode.

4. A dense triangular solve L(k2:n,k)=(A(k2:n,k)-L(k2:n,1:k1-1)*L(k,k1:k1-1)")/L(k,k)’.

Supernodal method is among the ones which can exploit dense matrix kernels. So, it can

achieve a percentage of computers theoretical peak performance on modern computers.[|13]

5.13 Multifrontal Cholesky 41

5.13 Multifrontal Cholesky

The Multifrontal Cholesky is based on the Right-Looking Cholesky Decomposition which is

2 AT _ |an aj,
by Ly Ll ay Axn|

where ¢11, a1 are scalars £, ap; are vectors and Ly, App are submatrices. Expanding the relations:

2 an
0y =an = i =+/an Ol =ayn = by = 70
11

presented below:

Lol + 0103, = Ay = LypL}, = Ayy — (2103).

The Multifrontal method organizes the operations that take place during the factorization of
sparse matrices in such a way that the entire factorization is performed through partial factorizations
of a sequence of dense and small submatrices [2]. This method was first developed for solving
problems arising from finite-element analysis and then was generalized for solving sparse matrix
systems[30]. This method is based on the Elimination Tree examined before and two new concepts
frontal and update matrices. Consider a matrix A with its Cholesky Factor L and the nonzero

pattern of L,; = {io,i1,...,i-}, where iy = j, thejth column has r off-diagonal entries and 7 [k]
symbolized the sub-elimination tree with root k.
bik
The subtree update matrix is given by U = — Z if’k {Ej’k Cok oo ikl
keT[j1—{/}
Uik

These are the outer-products updates of all the descendants of j. Thus, the frontal matrix F; for A
is defined as:
aj; Qi -.-4q;
=" +T
iy j
The nonzeros of the j column of L are r+1 and so is the order of the matrices F and U. The
+1 because the diagonal is counted. This relation resembles the last update of the right-looking
algorithm, only in this scenario the node j is updated only by the contribution of its descendants.
The subtree update matrix U can be split into two sums. The first containing all the descendants
k for whom ¢, # 0, k < j and the other all the descendants of j for whom £;; = 0.

g 0
— gihk fl'l,k
Thus, T=— > | [@-,k ik - e,-r,k} -3 [o ik -er bk
kT~ | - kT~ | -
éj]?j]-o eir,k Lik=0 gir,k
Gk

Gk
The first component — Z Lik l{’ is named as complete update column to column j and
ke T~ '
0470

k<j birk

42 Chapter 5. Cholesky Decomposition

contains all the nonzero updates to j[6]. Thus, F; is obtained by the nonzero pattern A; and the
complete update column to j. Hence, when Fj is computed the first row/column is already completely
updated.

Performing an elimination of the first column of the frontal matrix results in the nonzero pattern
of L,; and gives the update matrix from column j as well. That is like the 621£le term which is
propagated to the rest (n-1)-by-(n-1) matrix but only the part that j contributes to the update of the
rest of the matrix. Consider F; expressed as follows:

b
iy 0 0 . .
F; = i i l;, J] + o Ul where the first term is the completed j row and
J
fl'rJ

column, and Uj is the update matrix from j. If from the term U the first row and column which are
removed, the submatrix left is the same as U;. Therefore, the following relation arises:

Ui, liy j

- > | [&hk &‘,,k}z : {ﬁil,/ Ez;,/}JFUj-[Sﬂ-
KT g L
Gk=0 " | “ir, i

Note that because F; has as first row and column the pattern L,; is a full matrix of dimension
|L;|-by-|L;|. Then, the submatrix after the elimination U; must be also full. Thus it can exploit the
dense matrix BLAS and obtain full performance[62]. The U; block or contribution block to its
ascendants frontal matrices is the Schur compliment of its pivot row and column([[12]

Another helpful notion introduce to help with the formation of frontal matrices is the extend-
add operator:®. This can help adding two matrices of different size, using extended algebra[9].

Consider, a r-by-r R submatrix and a s-by-s S submatrix with », n < n. Each row and column
of these matrices correspond to a row and column in the original n-by-n A matrix. Assume that the
subscripts of R in A are denoted by i; < --- <i,and of Sbyj; < --- <, as well. Consider now
the union of the two sets and k7 < --- < k; be the corresponding subscripts. Then, the two matrices
R,S can be extended by adding zero rows and column in order to match the desired {ki, ..., &}
indexing thus making the addition between them possible. Therefore, R & S is the resulting t-by-t
T matrix formed by the extended R and S matrices. This process is referred to as the generalized
matrix superposition[55][63].

b
An example follows of this operations. Consider R = ¢ d] , S = [e Z , where {3,4}
¢ g
a b 0 e 0 f
and {3,6} are the subscripts of R and S respectively. R®& S = |[¢ d 0| + |0 0 0| =
00 0 g 0 &

at+e b f
¢ d 0| =T, where T is 3-by-3 matrix with subscripts the union R U S = {3,4, 6}.
g 0 h

Thus, the previous gcome using the extended addition operator:

5.13:frontal_relation#frontal equation.b

5.13 Multifrontal Cholesky

43

Figure 5.10: Multifrontal Elimination Tree and Frontal Matrices

QGij iy - - -Gy
ai, j

Fp=1 . eoU, @ - & U, wherecy,..
a,'hj

An example of the multifrontal method is shown below. Let 4 =

and its Cholesky factor L =

sy

U5y

le3

4
6

o

o

and the frontal matrices relation is shown in 5.10.

2
les

los

T g

arl

asl

asi

., ¢, are the children of node j.

an
an
asjz
asy4
asa
ae3 Q64

ais

azs

ass

aes

ase
ase
ase

aee

. The corresponding elimination tree

Us = 0,Us = 0, U; = 0 since they are leaves of the tree and have no children.

asz ase

F3: 7U3_

aes

Q44 a4

Fy= ,Us

Aae4

arl

Fy

asl

1451

azy azs

Fy, = o U =

ass
Uy =— [@1 +£§z}

- 6]
[t

ai dais
7U1 = - [

2
64

anzn

ars

By Ials
boils 3
as| @1
0145

U145

2
5

|-|

2
an — 43

azs — {145

ars — £r14s
2
L5,

44 Chapter 5. Cholesky Decomposition
Fo— |95 96| g, = 955 ass| G+ 0 _|ass— (51— (3, as
ass ase 0 0 ase 0
Us = — Pgs}
Fo = [ags| © Us ® Uy @ Us = [ags| — 5] =[] = 5] = |ass — @5 — 24 — 3]

Finally, it is instructive to observe that except from the extended-add operation, the rest of

the computations are carried out in full matrix form, which has advantages of course over sparse

computations. It is only natural, that this method can yet be improved.

In each frontal matrix there is only one variable fully assembled and may result in small fronts

to exploit memory hierarchy available in new hardware as well as all the BLAS subroutines to their

fullest[2]. Thus, it is common practice to form supernodes of nodes with same nonzero structure

and creating an amalgamated elimination tree[5].

Chapter 6

QR Decomposition

6.1 Introduction

QR Decomposition or QR Factorization is a method of decomposing a matrix A into an
orthogonal Q and a matrix R in upper triangular shape or right triangular, so that A=QR.
In contrast to Cholesky Method mentioned in Chapter [, matrix A does not need to be symmetric,

positive-definite, it does not need to be square as well.

6.2 Method Overview

This method results in two components, matrices Q and R. R is in an upper triangular shape
meaning R= ol where U is upper triangular, which has the benefits of solving a system with just

back substitution. Q is an orthogonal matrix, meaning its columns are orthonormal or orthogonal

unit vectors. These kind of matrices have an interesting set of properties[|10].
1. Q'Q=QQ’=I
2. QT=Q7!

3. Let a vector x and ||x||, = VxTx its second norm. For a Q matrix ||Ox||2 = /(Ox)TOx =
VxTOTOx = VxTIx = VxTx = ||x|)».

The third property is very useful because it preserves the second norm. That means that the
multiplication with a an orthogonal matrix just rotates a vector in space without affecting its length.

Lets consider an overdetermined system, a system with more equations than unknowns, Ax=b,
AeR™ " xeR"™! peR" ! Very often these systems are inconsistent, meaning they have
no exact solution.

To find an approximate solution to this problem the method of Ordinary Least Squares(LST)
is usually used. Consider the residual vector r=Ax-b, minimizing r will result in an approximate
solution for the inconsistent system. The LST method minimizes the sum of the squares or the root

of the sum of the squares as well, which is the second norm.Thus, ||7||> = ||4x — b||>.

45

46 Chapter 6. QR Decomposition

Consider a QR Decomposition of A, QR=A where 4 € R"*" Qe R"*" Re R"*" m >
nOR=A4 < Q0 'OR=0"'4 <= R=0"'4 «— R=0"4
Substituting this in the LST residual results in: |||, = ||Q7r|], = ||0Tdx — O"b|» = ||Rx —
Obl> = ||Rx — &'

R R b Rix — b]
If R is split as R= ! , Rl € R"*" then P x= ,1 = = '] and thus

the residual is |[Rx — ||5 = ||[Rix — b} |3 + ||65]15-

In the equation above the only variable which is free is x, the others are fixed. Thus, an to
minimize the expression an x should be chosen which sets ||Rjx — b}]|, =0 <= R;x = b). This
is an upper triangular solve which results in the minimum residual possible.

There are various ways to compute the QR Decomposition such as Householder Reflections,
Gram-Schmidt process, Givens rotations, each one has its own advantages and disadvantages.
In this project the Householder Reflections method is going to be used.

6.3 Householder Reflections

T
Let H be an orthogonal matrix whose first row is x/||x||2, so H = [x /[_|[]x]2] .
1

L N
Then Hx; = | |x|2 | = [2].
) 0
I"T
Let a matrix 4 — (X A >.HA - (Hx Hd,) - p(;l A”
22

If this process is recursively applied to 4, the result then is an upper triangular matrix R. Thus,
R
HA=H,H, .. HA= o | The essential feature of this algorithm is that Hx = ce;.

A Householder Transformation or Reflection is a matrix of the form:
H = I— Buu”, where B||u||3 = 2. u, § are chosen so as the multiple of Hx; is one described above.
In space notion, u is the vector perpendicular to the mirror that transforms the the vector from n
dimensions to one.
It follows that the second Householder reflection should be chosen so as to have the same effect on
the first column of X4,, while not affecting the column already modified by the previous reflection.
A Householder operation takes about O(4n) because Hx = (I — fuu’) = x — u(B(u’x))[48].

The non-zero pattern of the vector v is symbolized by the notion V and X is the non-zero
pattern of the x vector on which the reflection is applied, evidently)V = X. The hypothesis that the
matrix A has a zero free diagonal (non-singular matrix) is made for convenience of calculations.

Each Householder Reflection is multiplied by the whole matrix. So lets consider another vector
y with non-zero pattern Y. Hy = (I — Buu’)y = y — B(u(u’y)). The dot product u”y will be non-
zero only if y has at least one non-zero value in the same place as u, which has the same pattern
as x. So, if the two columns x,y have non-zero values in the same row of the matrix. If the two
columns are disjoint then the transformation has zero effect on the column y and)’ =). On the
other hand, if they intersect) = Y U (Y N X) = Y U X[23].

6.4 Left/Right-Looking Dense QR Decomposition 47

xx 0 0 O
)) . . 0 » 0 O .
For instance consider the following matrix: 4 = 0 . If the H which reflects
X3 z3
0 ya 0 wy
x is applied the non-zero pattern of y, w will remain the same because u’y = u’w = 0. On the
contrary, ulz = u3xz3 = cand so, Hz = z— 3xc*u = z+c *u with non-zero pattern Z = ZUX.
Xp 0 2 0
0 0 0
So, HA = 72 ,
0 0 =z O
0 ya 0 wy
In general, if a matrix is defmed as follows:
X | share | no share
X1 0
A = ' Y 0 , where x is the vector the transformation will annihilate and it
Xk
0 z
Yi

is formatted with its non-zero elements from top until x; and the rest are zero, the share column
contains the columns which share a non-zero pattern with x , the no share column contains the
columns which do not share a non-zero pattern with x. The sets share, no share is assumed that
they exist.

After the Householder is applied the bottom half of the split will remain unchanged as well as the no

share column. On the other hand, the columns contained in the second set because they have at least

X | share | no share
x| N 0
one match with x, they will all inherit its pattern,)’ = YUX. So HA = ,
Xk | Yk 0
0 z
Vi

So there is a very interesting pattern emerging from the Householder Reflections, which will be
investigated in forward chapters because it is of significant importance for the Symbolic Analysis

of QR Factorization.

6.4 Left/Right-Looking Dense QR Decomposition

Consider a matrix 4 € R"*" m > n, the Decomposition can still be applied if m = n or
m < n. LetAY) = 4 and 4*TD) = H<k)A(k), k=1...n. HY is constructed from the first column
of A and has length m and is HY =1 - Bru lulr. H® is constructed from the k” column of the
modified A’ matrix and x¥) = A,(ck;:)k which has length m-k+1 and is H® =] ﬁkuku,{ .

The QR Factorization of AisR = H,H, .. HHA = H <= H\H,...H,R = A, so
QO = H|H,...H,and QR = A. That holds because the Householder matrix is obviously symmetric,

48 Chapter 6. QR Decomposition

H' = (I - uu”)T = I" — (Buu”)" = I — Buu’ = H. Bear in mind that Q does not need to be
explicitly computed[44].

Recall from the previous section that each next reflection should leave the previous unchanged.
For instance, after the first Householder suppose that the entry a;, exists. Then, an arbitrary chosen
Householder Reflection for the second column will change the first column again, due to the
properties of the reflection described. So, to leave the first column unmodified the second Reflection
n r 1T2

1 0
should be in the form: , which if right-multiplied by = P
0 H 0 Axn

0 « |P1) _ |P i

0 H 0 Ap 0 Hdnl|
I 0 I 0 I 0 I 0 I 0

The block matrix is orthogonal: * = * o = sl =
0 H 0 H, 0 H 0 H 0 HH,

I 0

=1
)

T
. . I 0 1 0 I 0
Of course, it is symmetric as well: = sl =
0 H 0 H, 0 H

The right-looking Algorithm qr_right applies the Householder Reflections to the matrix A as

] result in:

soon as it is constructed.

function [V,beta ,R]=qr right(A)
[m n]=size (A);
V=zeros (m,n);
Beta=zeros(1,n);

for k=1:n
[v,beta,s]=gallery(house’ ,A(k:m,k) ,2);
V(k:m,k)=v;

Beta(k)=beta;
A(k:m,k:n)=A(k:m,k:n)—v*(betax(v’*xA(k:m,k:n)));
end
R=A;
end

In the code above, V is a data structure where every column is a Householder Transformation.
Beta is the collection of all scalar 5 values as well. Gallery function computes the Householder
transformation of the & column, from diagonal and below, since the elements above the diagonal
should remain intact. The final line is the expansion of HA = (I — fuxu’)4 = A — Bu(u’4). Note
that in the latter form the computations are O(n?) while in the former is O(n>). The total work of
the Algorithm is O(r?).

The left-looking algorithm qr_left postpones the application of Householder Reflections to the
whole matrix and only applies them to the current column.

Consider a matrix 4 = (a; ‘ a ‘ . ‘ ap) and H, the Reflection annihilating the first column.
In order to compute the second Householder Reflection only H5a; is needed, the rest computations

6.5 Sparse QR Decomposition 49

H, (a3 ‘ e ‘ ap) can be postponed until it is time for their own Reflection to be computed.
Thus, to compute H3, HiH»as is needed and so forth.

function [V,beta ,R]=qr left(A)
[m n]=size (A);
V=zeros (m,n);
Beta=zeros(1,n);

R=zeros(m,n);

for k=1:n
x=A(:,k);
for i=1:k-—1
v=V(i:m,i);

beta=Beta(i);
x(1:m)=x(i:m)—vk(betax(v’*x(i:m)));

end

[v,beta,s]=gallery(’ house’ ,x(k:m),2);

V(k:m,k)=v;

Beta(k)=beta;

R(1:(k—=1),k)=x(1:(k—1));

R(k,k)=s

end
end

In the code above, V and Beta serve the same purpose as before. For each column k, the
innermost loop extracts all the previous k-1 Reflections(v and beta) and applies them to column k.
Then the 4" transformation is computed and stored without making any further computations to
matrix A. Then the & column of R is computed, note that the output argument s from gallery is
the ||.||2 of that particular column.

6.5 Sparse QR Decomposition

Sparse QR Factorization algorithm is based on qr_left algorithm which is analyzed in this

chapter. For the matrix A which will be factorized the following assumptions are made:
1. Every element in the diagonal of A is nonzero.
2. A has the strong Hall Property
3. Numerical cancellation is ignored.

A matrix A € R"*" m > n has the strong Hall property if for every subset of k columns,
0 < k < m, the corresponding submatrix has nonzero elements in at least k+1 rows. (Thus, when
m > n, every subset of & < n columns has the required property, and when m = n, every subset

of k < n columns has the property.) For matrix with that property, structural cancellation will not

50 Chapter 6. QR Decomposition

occur[[11]]. For instance, consider the two following matrices, where * denotes nonzero elements:
* ok ox ok ok kook %k Xk

* *

* * The first matrix does not have the strong Hall property since

* *
for £ = 1 the first column has nonzero elements in first row. On the contrary, in the second matrix

for k = 1, each column has two nonzeros, for k = 2, four nonzeros and so forth, so the matrix has

the strong Hall property.

6.5.1 Row Set-Union Property

Let R« and R,; denote the nonzero pattern of the row i and column j respectively, V; is the

nonzero pattern of u; and A® the matrix A after the k — 1 Householder Reflection.

Consider HA = A — u(B(u"A)). Then (HA),, is equal to row i of A, if i ¢ V. If, i € V, the

nonzero pattern of (HA);, is U Ay,

ey
That means the nonzero pattern of any modified row i € V is replaced with the set union of all
rows modified by the Householder Reflection H[34].

The product u(3(u’4));; is nonzero only if i € V andj € U A

i i iV
* *
* *
Consider 4 = | * * |, then for the Householder Reflection of first column:
* *
L * J
- . -
* *
V:{1,3,5}.uTA:[* 0 *« 0 x| | % * :[* 0 *« 0 x|.
* *
L * J
[+ [« 0 % 0 x|
0 00 0 00O
Then, u * (u’4) = |« [* 0 « 0 x|=1|x 0 % 0 x|.
0 0 00 00O
* *x 0 x 0 =

Fori = {2,4} ¢ V the whole line is 0. Fori = {1,3,5} € Vand; = {2,4} ¢ (A}, U A3, U As,)
the elements are 0. For i = {1,3,5} andj = {1,3,5} € (A1« U A3« U As,) the elements are

nonzero.

Then the product u(3(u’4)); is subtracted by A to get HA. Thus,

6.5 Sparse QR Decomposition

51

T [« 0 =« 0 «| [= * *]
00 0 00O *
HA = * | — %« 0 % 0 x| =1]o * % | . The nonzero pattern of
* 00 00O *
i i [+ 0 x 0 x| | o * * |
rowsi € V = {1, 3,5} are replaced by U A = (A UA3 UAs,) = ({1,3}U{1,5}U{l1}) =
icv

{1, 3,5}, while the nonzero pattern of the other rows remain intact.

Consider the resulting matrix R of QR=A is of the following form:

* *
* 0 x * *
* *
* *
R= A=
* * 0 x
* *
* * 0 *
* *

The element R>4 = 0 means that the Householder for the second column of A did not involve
the fourth column because then the second line would have become the set union of both and the
element (2,4) would have been made nonzero by (4,4). This means that for every nonzero element
in the second column of A the corresponding in the fourth column of A are zero.

On the contrary, the element R, 5 # 0 and R, 7 # 0 as well. This means that the elements 45> # 0
and 47> # 0 and in the /4 matrix these lines will become the set-union of each other.

So the matrix R is shows which Householder transformation should be applied to each column.
Thus, the nonzero pattern of R,; should be computed before applying the actual transformations,

in a similar manner as in Cholesky Factorization seen in Chapter .

6.5.2 Computation of R,

Let OR = 4 <= (OR)'OR = (OR)"4 = RTQ'QR = A"4 <= R'R = A"4.
RT is a lower triangular matrix and R is an upper triangular so, if L = R’ then L = R and thus
LLT = 474, which is the Cholesky Factorization of ATA[45)].

The following theorems are useful for exploiting the QR-Cholesky relation[37]:

1. If A,({],z_l) is structurally nonzero for all 1 < k < n, then R, = A(k).

]

2. R. = Reachr,(Ci), where Cy is the upper triangular part of column k of A4

m
LetC=AT4 = ZAI.T*A,-*. For instance C = =
i=1

52 Chapter 6. QR Decomposition

*
* *x
* k% * * * ok ok
+ + + =
* ok * ok
* * * *

If ay. # 0, every entry ¢y x» # 0 for any pair of column indices k1,42 € A;,. Consider A3, =
{2, 3}, the third submatrix shows that c[237}2, CEL, c?}z, cg3]3 = 0 (All the combinations).
Recall from Chapter B.8 that k1 < k2 means the path k1 ~» k2 exists in 7%, thus only k; is needed
to compute the Reachp(Ck). So, for every entry a;; # 0 and because all the combinations of A;,
will exist on the C matrix, only the j € A;, with minimum index value is needed to compute the
Reachp(Cy), or in other words the leftmost entry of the row i. Thus,

Rk = Reachr,(Cr)=R. = Reachr, ({minA;.|i € As})[B3].

6.5.3 Computation of V,

Consider the figure b.1. &2 = parent(k1) and k = parent(k2), because R = L the first off
diagonal entry in the upper triangular is the parent. If the element (i, k1) is nonzero then by the
reflection properties (i, k2) will be as well. Subsequently, (7, k) will become nonzero due to (i, k2).
So to find, the nonzero structure of k column after all the Householders have been applied it is
sufficient to consider only the pattern of the children, all the other descendants are redundant.

Now, consider the figure where k = parent(k1,k2). The set of nonzeros of k1, A2 must
be disjoint. Bear in mind the transformation for column 1 and assuming the element (i2, k1) is
nonzero, this will cause the lines 7, i2 to become the set-union of each other that is why (2, k) must
be nonzero. On the other hand, if the element (2, k2) was nonzero then the element (i, £2) would
have become nonzero, which means that k2 = parent(k1) which is a contradiction with our first

assumption. Thus, the sets of the children of a node are disjoint.

So the computation of V is given by: Vj = U Vi\{i} | U {ilk = minA;.}.
k=parent(i)
The term {i|k = minA;. } accounts for all the elements in column k that are the leftmost nonzero in

a line and being so, the previous Reflections did not affect those lines. For instance in this
the second column has two leftmost entries in lines {2,4} accounted by the previous term.

Because all the sets are disjoint the count of nonzeros of V is:

Vil = Y Wil=1] +{ilk=minAu}|
k=parent(i)
All the theoretical background needed has been analyzed, so now its time to have a look at the

algorithmic procedure[23].

6.5 Sparse QR Decomposition

53

ki k2

Figure 6.1: Parent-Descendant Relation

i R

Kl =

k2 o

12

Figure 6.2: Disjoint Children

6.5.4 Sparse QR Algorithm
An overview of the algorithm is the following:

function [V,5,R]=left qr sparse (A)
T=etree (474)
|R|=colcounts (474)

Vil= Y. Wil-1]+{ilk=minAL}|, k=1..
k=parent(i)
for k=1:n
Rk = Reachy,({minAi|i € Asr})
x=Asx
Vi = Auk

for ecach i€ Ry
x = x — u;(Bi(u]x))
if parent(i)=k
Vi = Ve UV ¢ {i}
end

.n

54 Chapter 6. QR Decomposition

end
Ry k1, = X1..4-1
[, Br, rie]=householder (xx._)
end
end

Now, let us take a deeper insight into this algorithm, analyzing the basic its mechanics and

concepts. First of all, a function must be created which computes |Vy| = Z Vil—1|+
k=parent(i)
{ilk = minA;.}|.
Recall from Chapter 5.9 the structure A_symb used for the symbolic analysis and enter three

new fields: leftmost, pinv, unz.

A symb.pinv % store the inverse permutation (OR)

A symb.parent % store the etree (Cholesky , OR)

A symb.post % store the post order permutation

A symb.cp % store the column pointers found using colcounts (Chol),
% row counts (QR)

A symb.leftmost % the leftmost entry (QR)

A symb.Inz % the number of nz entries in L (Cholesky) or in V (QR)

A symb.unz % the number of nz entries in R (QOR)

Leftmost is an array in which leftmost(i)=min.A;, namely the column where the first nonzero entry
in each row lies. Pinv is a row permutation which is needed to make sure the matrix A has nonzero
diagonal. Finally, unz is a variable which contains the number of nonzero elements of each column

of R matrix.

function [unz, pinv, leftmost]=vcount(A, parent)
[m n]=size (A);
next=array(m,1); % next entry in col k
head=array(n,l); % first entry in col k
tail=array(n,1); % last entry in col k

nque=array (n,l); % number of entries each col

for i=1:n
leftmost (i)=min(find (A(i,:)));
end

for i=m:1
pinv(i)=0;
k=lefmost(i);
if (nque(k)==0)
nque (k)=nque(k)+1;
tail (k)=1;

6.5 Sparse QR Decomposition 55

end
next(i)=head(k);
head (k)=1;
end
Inz=0;
for k=1:n
i=head(k); % remove row i from queue
Inz=Inz+1; % count diagonal entry V(k,k)
nque (k)=nque (k) —1;
pinv(i)=k;
if (nque(k)<=0) % empty below the diagonal
continue ;
end ;
Inz=Inz+nque(k); % nque(k) is the nnz count below the diagonal
pa=parent (k); % transfer all rows to parent
if (pa~=-1)
if (nque(pa)==0)
tail (pa)=head(k);
end
next(tail (k))=head(pa);
head (pa)=next(i);
nque (pa)=nque(pa)+nque(k);
end
end

for i=1:m % rows that did not hold a diagonal entry
if (pinv(i)=0)
k=k+1;
pinv(i)=k;
end
end
end

The algorithm in the beginning finds the leftmost element of each row. Then, in the second
loop, creates a "list” of columns k which contains all the indexes i which are true to leftmost(i)=k.
Then, in the third loop for each column k, the head row is removed and is the row the Householder
does not zero out and so must not be used again, which made sure by pinv (Any row in the list of k
would have been suitable to be the remainder of Householder). The assignment Inz=Inz+nque(k)
adds to the sum the count of elements below the diagonal V(k+1:m,k) and the following lines of

code transfer the remaining nodes of k to its parent.

56 Chapter 6. QR Decomposition

R 1 R

° 00
o
o
Figure 6.3: Node with no children
That last part is the algorithmic expression of the relation V| = Z Vil —1] +

k=parent(i)
[{i|k = minA;.}|. Consider the node k of the left matrix in figure b.3. Node # has no children, is

a leaf, and so no previous Householder Reflections would have acted on it. So all the elements in
the column are the leftmost in their rows. Thus, nque(k)=4 will account for the all those elements
and that is the number of nonzeros in that V.

Now, consider the node k of the right matrix. k has two children k1,k2. The number of nonzeros
of Vg is the summation of the nonzeros of the children plus its own leftmost nonzeros. So if each
child passes their nonzero elements to their father after it has been calculated, the latter has a list
of all the nonzeros, which will pass on to its own father and so forth. Thus, list concatenation will
account for the transfer and in constant time for each one, so in total O(n) because the total children
of the graph are n.

To do the symbolic analysis some functions from previous chapter and the veount introduced
above should be called.

A symb.parent=etree(A) % find the elimination tree

A _symb.post=post(A symb.parent)

c=colcounts (A, A symb.parent ,A symb.post)

A _symb.cp=cumsum(c) % store the column pointers found using
%colcounts (Chol), row counts (QR)

[A symb.Inz, A symb.pinv, A symb.leftmost]=vcount(A,A symb.parent)
% use vcount to find Inz ,pinv and leftmost

A _symb.unz=sum(A symb.cp)

At this moments every symbolic calculation is made, so it is possible to move on to the numerical

factorization of QR.

function [V,R]=qr(A,A symb)
[m n]=size (A);
Ai=A.1; Ap=A.p;

6.5 Sparse QR Decomposition

57

g=A _symb.q; parent=A symb.parent;
pinrv=A_symb. pinv;
leftmost=A symb. leftmost;

rnz=1; Inz=1;

w=zeros (m);

for k=1:n % compute V, R
Rp(k)=rnz; % R(:,k) starts here
Vp(k)=pl=lnz; % V(:, k) starts here
w(k)=k; % V(k,k) pattern of V
Vi(vnz)=k;
vnz=vnz+1;
top=n;
for p=Ap(k):Ap(k+1)—1 % find R(:.,k) pattern
i=leftmost (Ai(p));
len=1;
while (w(i)~=k) % traverse up to k
s(len)=1i;
len=len+1;
w(i)=k;
i=parent(i);
end
while (len>1) % push path on stack
top=top —1;
len=len —1;
s(top)=s(len);
end
i=pinvA(i(p));
X(1)=Ax(p); % x(i)=A(:, col)

if (i>k && w(i) < k) % pattern (V:,k)=x(k+1,m)

Vi(vnz)=1;

vnz=vnz+1;, % add i to pattern of V(:,

w(i)=k;
end
end
for p=top:n % for i in R(:,k)
i=s(p); % R(i,k) is nonzero
for j=Vp(i):Vp(i)—1 % apply the previous
mul=mul+Vx(j)*x(Vi(p));
end

mul=mulxbeta(i);

k)

Householders

58 Chapter 6. QR Decomposition

for j=Vp(i):Vp(i)—1
x(Vi(p))=x(Vi(p))—Vx(p)*mul;
end
Ri[rnz]=1;
Rx[rnz]=x(1);
rnz=rnz+1;
x(1)=0;
end
for p=pl:vnz
Vx(p)=x(Vi(p));
x(Vi(p))=0;
end
Ri(rnz)=k;
[v,beta]=house(Xx); % apply the current Householder
end
Rp(n)=rnz; % finalize the matrices
Vp(n)=vnz;
R.p=Rp; R.i=Ri; R.x=Rx;
V.p=Vp; V.i=Vi; V.x=Vx;
end

This code, although it is the numeric part, does some symbolic work actually. That is because
the colcounts returns the count of rows of R, because R = L’ but the new matrices need to be
stored by column, so the column pointers are computed on the way.

Inside the first for loop, the Reach of each node is computed, but the ascension up the tree, starts
from the leftmost node of each nonzero row in column k, the w(i) is used to mark the visited nodes
at each iteration. Each column inherits the the nonzeros of the children and the if statement checks
for any new nonzeros in matrix A and not in the tree.

In the second loop the previous Householder transformations corresponding to column & are applied.

Finally, the Householder vector of the k" column is computed and stored.

An example of symbolic QR Decomposition is shown below:

* * * % * ok
* % * % * % * * %
* * * * * %
* * * % * % % %
* * * * * %
A= , V= ,R=
I * ok ok *
* *
* * % * ok ok
* % * * % * ok ok
* * % * % * ok ok

6.5 Sparse QR Decomposition

59

Figure 6.4: Column Elimination Tree

parenl:[Z 455 6 0}

Chapter 7

LU Decomposition

7.1 Introduction

LU Decomposition is the matrix form of Gaussian Elimination and it is older than the Decomposition
mentioned before. It is one of the most important and versatile matrix algorithms. It factorizes a

matrix A to an a product of a lower triangular and an upper triangular matrix so A=LU.

7.2 Method Overview

Consider a matrix 4 € R"*", which is analyzed into two factors L, R € R"* " so that LU=A,

where L is lower triangular and U is upper triangular. Then in matrix notation:

a3 Uiy U U3 ... Uy ail ap a3y ... dai
by Iy up U3 ... Uy a1 axp axy ... ay
b Uz U3 uzz ... Uy, | = |az ax ayx ... ay| —
Enl £n2 €n3 . gnn L unn_ _anl ap2 dp3y ... alm_
Lriun = an L = ap bz = ais biur, = ai,
bOyun = axr baug +louy = axy buz +louy =ax ... Lo, + Uoun, = az,

Oupy = azy Giun+3ux = a3 Giui+H0us+033usz = asz . .. L31u1y+030u2,+033u3, = az,

Loaun = an Coaury + lpury = apy Lz + Loz + £y3u33 = a3
€n1u1n3 + £n2u2n + €n3u3n +---+ Ennunn = Qpn-

nn+1)

n n
This is a system with n* equations and Z Z 1 = unknown variables from each

i=1 j=i
matrix, so in total 7(n + 1) = n* + n. The variables surpass the equations, that gives us freedom to
choose arbitrarily the values of the n variables. Thus, the n-diagonal entries of the lower triangular

matrix L are set equal to 1. Substituting to the previous equations:

61

62 Chapter 7. LU Decomposition

1 Uil U2 W3 ... Ul ajy ap aiz ... au
b 1 up Uz ... Uy ay ax» a3 ... ay
Gyl 1 Uz ... Ul | = a3 ax ax o ... ay| =
gnl by b3 ... 1 | unn_ _anl a2 ap3 ... ann_
up = ap up =ap Uiz =ap liiuy, = a,
bruny = a1 bnuoy +up =axp lyuz tuz =axs ... uy, + Uy = axy

Oun = az1 Lyiup +Uuxn = a3y Giuz +03oups+uzzs = azs ... Lajuy, +03u2, +u3, = az,

Caurr = apy Apuin +lpun = ap Loz + Lpuzz + £3u33 = a,3
Cuiny + bty + L3z, + - - + Upy = app.

Writing this in block matrix form leads to the right-looking LU factorization discussed in next

section.

7.3 Right-Looking LU Decomposition

1 Uil U an an
= , Where u;,a;; are scalars, £51,u;, are vectors and
by Uy U ay; Ax
£y, Uy are submatrices.
Ui = ap upp = ap buy = an
buiy +lpUyp =42 = Uy = A — lrurn

The algorithm for the right case is shown below for a dense matrix:

function [L,U] = lu right(A)
n=size (A,1);
L=eye(n);
U=zeros(n);
for k=1:n
U(k,k:n)=A(k,k:n);
L(k+1:n,k)=A(k+1:n,k)/U(k,k);
A(k+1:n,k+1:n)=A(k+1:n,k+1:n)—L(k+1:n,k)*U(k,k+1:n);
end
end

This algorithm is using outer products, the #5111, matrix which is subtracted by the A submatrix.
That makes it hard to implement it in the sparse case because it adds entries in the middle of the

matrix.

7.4 Numerical Issues 63

7.4 Numerical Issues

7.4.1 Numerical Issues

This is the first algorithm shown so far in which, a lot of attention must be paid to the numerical
factorization along with the symbolic one. LU factorization is closely related to Gaussian Elimination
which is unstable in its original form. Notice from @ that to find #5; a division is needed with
ui1, 21 = ap; /up; and that division is needed for every element in the L matrix. To complete the

process, we must ensure that no division with zero is made, so pivoting is used.[60]

Consider the matrix 4 =

1
3] . If the process begins, with the A matrix as it is, it will

fail, but if the lines are pivoted so that 4 =

3

1] , the LU factorization can continue and is in
1

0 b

Another reason that Gaussian Elimination is unstable is due to the small pivots that may occur.
0.000100 1
1 1

fact complete. Thus, LU = PA, where P is a permutation matrix in this example P =

0 2 3

1

L= and U =

1
For instance, consider: 4 = [] ,b= [2] . Solving Ax=b results in:

[1.00010001 .]

1.0
= using decimal approximation of 3 points.
0.998998 . .. [] g PP P

1.00

. C 0.000100 1 1
If Gaussian Elimination is used: X = .
0 1 — 10000 1 — 10000

The number 1-10000 is not represented exactly due to floating point arithmetic but it will be

rounded to the nearest floating point number, which is assumed to be -10000. Thus:

0.000100 1 1 0 . . .
x= = x= . This result is totally inaccurate compared
0 —10000 —10000 1
to the one above. [26]
. . o . 10720 1
Obviously, this is an error that happens to LU factorization too. Consider A = : Nk

. Once again, assuming that due

o 1 10720 1
Its LU factorization is : L = 20 , U= 20
10 1 0 2—-10

1 10720 1
to rounding the term uy; becomes —10%" and so: L = [1020 1], U = [0 1020]. This

10720 1
leads to: LU = . ol Evidently, LU # A, because although LU was computationally

stable, it was not backward stable.[60].
Once again, pivoting before applying the Gaussian Elimination or the LU factorization would

minimize the problem. For instance consider the first example:

1 1 2 1 1 2
X = == X = . Once again due to
0.000100 1 1 1 — 0.000100 1 —2x%0.000100

64 Chapter 7. LU Decomposition

1

2 1
x = == x =
1 1 1
1 T oo |12
10720 1072 177 fo 1
1 2
10720

The problem described above is of high importance because it amplifies the insignificant data

rounding assumed, this results in: , which is the same as the 3

decimal point approximation.

The some happens in the LU case, LU = PA =

LU =A.

which are added to significant data resulting in noise in the solution. The reason it did not happen in
the previous algorithms is because QR 1is just permuting the data while keeping the length constant,
orthogonal operations are safe numerically. In the Cholesky case is because it has an excellent
numerical stability due to the fact that ||4||, = ||LLT||» = [|LT||53 = [|L||3 [#7]. Only a very
ill-conditioned matrix will result in an unstable Cholesky Factorization.[25].

7.4.2 Partial Pivoting

One method of overcoming the instability issues in the above, is called Partial Pivoting. In
fact, it is a generalization of the technique used to overcome the problems tackled previously.

In this method, at each iteration of the Gaussian Elimination or LU Decomposition the largest
element in the column which will be zeroed out. This results in a pivoting value with magnitude
that does not surpass 1. In iteration k, the pivot is the largest of n-(k-1) sub-diagonal entries in
column k. When located it is moved into the pivot position A,Eiil), where A%) denotes the matrix
A after the k™ elimination has been applied, so AN = U Also, in order to move the row of

the largest element a multiplication with a permutation matrix is needed at each step, denoted by

1 2 3
Py. Also ¢, denotes the L component at each step. Consider an example below: 4 = (4 5 6
7 8 0
0 0 1] |1 2 3 7 8 0
PiA=10 1 0| |4 5 6| = |4 5 6],thenusing ¢, to eliminate both entries in the first
1 0 0|7 8 O 1 23
1 7 8 0 7 8 0
column OP\A= |—4/7 1 45 6/ =10 3/7 6| =4V
~1/7 0 1| |1 2 3 0 6/7 3
1 0 0|7 8 O 7 8 0
PAY =10 0 1| |0 3/7 6| =10 6/7 3
0 1 0] |0 6/7 3 0 3/7 6
1 7 8 0 7 8 0
6PAM = [0 1 0 6/7 3| =10 6/7 3 |=4@=U
0 —1/2 1] |0 3/7 6 0 0 9/2
1 0 0 1
L=07""=14/7 1 ,where #{ = Pyt,Py ' and th = 6. P=PiPy= |1 0 0
1/7 1/2 1 010

7.5 Upper fill-in bound 65

LYPyy..P)A=U = (Ppy...P)A = (L, ,...[))'U =
L) 'and P = (P,y...Py).

Therefore, (L

n—1---

PA = LU, where L = (L,

n—1-

Partial pivoting is the most common way to maintain numerical stability, but permuting rows

is affecting the symbolic analysis too. In many cases, they antagonize each other. Consider the
*

k% %

following scenario: 4 = and the entry a4 is the largest entry on the first column.

* *

*x ko ok ok
Then, by permuting the rows 1 and 4 and doing the Elimination results in the following matrix:

* ok *x %
, k k% . } .)
A = , neglecting numerical cancellations. Now, the matrix has been transformed
ok ok
E N S

from having a sparse structure to a dense one due to all those fill-in entries.

In the next section a method to predict a bound on fill-in created by LU factorization is going

to be exploited

7.5 Upper fill-in bound

Recall from @ the relation ¢5, Uz, = Ay — fp1u12 and consider £ u1, having this structure:

* * ok ok
Uiy = | * * ok *} = x * x| which is then subtracted by 455, so this non-
* * k%
* * k%

Z€ero patter;l is added to A structure. £>1 has the non-zero structure of the column a»1 which are
going to be zeroed-out by the Elimination. Thus in order to zero-out all the elements, the fill-in
entries propagated to the rest of the matrix is the multiplication of the column going to be erased
by the pivot row.

If the all the rows having an entry that is going to be deleted are grouped in the upper part of
the matrix and all the non-zero elements are grouped to the left side, while in the bottom line are

the rows not affected at all the following structure arises:

* * |0 * * |0
* * % : * x ok k| -
* * 0 * * x| 0
. /
A= « * : — A = | x * %
* % 0 * % * 0
0 * * 0 * *

The matrix A’ shows that the non-zero structure of the pivot row is going to be propagated only
inside the upper left partition. Recall from .3 the same partition for QR. When QR is used, the

66 Chapter 7. LU Decomposition

upper left partition is all filled up with the set-union of the rows so it all becomes nonzero, which
is the ultimate case for LU. Thus, LU fill-in is bounded by QR.
This bound holds for partial pivoting too. If the largest entry is on the fourth row then:

* x| 0 * *
* oK * x % Do
* * 0 * * 0 .
A4 =1 % * : — PA=| « x| 0 . -
x ok 0 x| % xk 0 .
0 * * 0 * *
* *
* * % :
* * % 0
A= * %[0
R S 0
0 * *

The nonzeros propagated are still in the upper left part of the matrix. When the symbolic factorization
is being done, there is no information about the numerical values so we do not know which row is
going to be the pivot row but no matter which is the one, is going to be bounded by the QR and
this is a bound that can be predicted beforehand.

If the matrix A is strong Hall then R is an upper bound on the nonzero pattern of U. Meaning
that, r; # 0 <= u; # 0[43][40][37]. In Householder Reflections the nonzero pattern of all rows
affected by the transformation becomes the set-union of all these rows. In LU with Partial Pivoting
these rows are candidate for pivoting but only one is selected as a pivot. The remaining candidate
rows are modified by adding a scaled multiple of the pivot row [23]. So QR acts in a way that sets

all candidate rows as pivot rows.

Ifthe matrix A is strong Hall and a,(i_l) # 0,k =1...n,the Householder matrix V is an upper
bound on the nonzero pattern of L acquired with partial pivoting. Meaning, v;; # 0 <= {; # 0
[43][40].

So a worst-case estimate for the fill-in in LU can be computed and the way is already known
from previous chapters. Doing Cholesky Symbolic Analysis of (ATA) gives the exact structure of
QR which is an upper bound for LU, without using numerical values at all. Therefore, there are
orderings which can be used to reduce the fill-in in Cholesky, leading to less fill-in in QR and
then tighten the bound of LU. This is done by using column permutation matrices P., the row
permutations do not affect QR because (PA)'PA = RTR — A"P'PA = RTR — 4”4 =R'R
due to P being orthogonal. In column permutation (4P.)’4P, = R'TR — PI4"4P. = R'R.
Since, a reduced fill-in column ordering has been used then, partial pivoting of LU is free to choose

the more suitable row as a pivot.

7.6 Left-Looking LU Decomposition 67

7.6 Left-Looking LU Decomposition

The Left-Looking method computes one column of L and U at a time. At each step all the

previous columns of L and A are accessed. Each matrix is decomposed into a 3-by-3 block matrix:

L U un Ui A an Az
by 1 up uy| = |an axn axn|,
L3 f3 L3s Us3 A3z1 azn Asz

where 051, u»3, az1, ars are row vectors, ¢35, 112, ai2, a3 are column vectors, £»» = 1, uy are scalars
and the rest are submatrices. The middle row and column of each matrix is considered the k™ row
and column which is computed at each step. Thus, the previous k-1 columns are assumed to be
known. Expanding the system results into 3x3 = 9 equations but only 3 are actually needed:

1. Liju1p = ajp, which is a sparse triangular solve for column-vector u;

2. Duyy 4+ uxp = ayy = upy = ax — fr1u12, which is a scalar minus a dot-product to solve
for the pivot entry uy;

azp — Biuy .) o
3. Lyjupp+¥fsuyp = ayp = f3 = ———=, whichis a sparse matrix-vector multiplication

uz
subtracted by a column vector and then divided by a scalar to solve for column vector ¢3;

The equations above can be altered in a way that the solution to all of them is given by just 1

Ly
triangular solve. If a lower trapezoidal matrix of the following form is constructed: | /5, 1 ,
Ly; 0 1
and then solving a system with the right-hand side being the k™ column of A results in:
L X1 an
b 1 X2| = |ax
Ly 0 I [x3 as

Expanding the following equations arise:
L. Ljx; = ap
2. byx1 +x2 =axn
3. Lyix) +x3 = az
If we substitute x; with u12, x, with up, and x3 with #3155 then:
L. Lyjuz = ap
2. byuy +up = an
3. Lyjuip + lauxn = axn

These are exactly the same equations as before grouped into one triangular solve. After the solution
only a division is needed /3, = x3/u;; and the unknowns are computed.

Once x is found, entries in the rows k through n can be searched for the entry with the largest

magnitude so as to be chosen as the pivotal entry [22]. That is because the 2,3 relations of the upper

68 Chapter 7. LU Decomposition

are just multiplications, so if the permutations are applied beforehand or afterwards the
result is the same. Only the first relation is affected by the order, because it is a triangular solve and
the correct order matters to yield an accurate solution. Therefore, the only consistency needed is
between the nonzero in the L matrix and the target vector in the triangular solve, it does not really
matter if the rows are permuted in the correct position right away as long as the are consistent with
each other.

7.6.1 Left-Looking Dense LU Algorithm

The Matlab algorithm of the Left-Looking method is presented below. The algorithm handles
a dense matrix and uses partial pivoting.[23]

function [L,U,P]=left looking lu(A)

n=size (A,1);

P=eye(n);

L=zeros(n);

U=zeros(n);

for k=1:n
% create LHS matrix :: 1:k—1 columns of L, k:n Identity ,
x_start=[L(:,1:k—1) [zeros(k—1,n—k+1);eye(n—k+1)]];
x=x_start\(PxA(:,k)); % sparse triangular solve to find x
U(l:k—1,k)=x(1:k—1); % result of Xy are the (l:k—1,k) entries

% of U
[a,i]=max(abs(x(k:n))); % find the new pivot
1=1tk—1; % dimensions of submatrix to
% dimensions of the whole matrix

L([1 k],:)=L([k i].,:); % row permutations of L
P([i1 k],:)=P([k 1],:); % row permutations of P
x([1 k])=x([k 1]); % row permutations of x
U(k,k)=x(k); % store the pivot entry
L(k,k)=1; % diagonal entries of L=1I
L(k+1l:n,k)=x(k+1:n)/x(k); % {3 =x3/un

end

end

Note that the algorithm first computes the x solution vector and then chooses the pivot row and
does the swapping because it is needed for the next iteration to be used in the triangular solve to
(k+1)
find x;" " 7.

Implementing the row permutation to a sparse method, is costly and not worth the cost. That
is because the matrices are stored by column, to swap row indices in each column in each iteration
outweighs the cost of the sparse triangular solve. Thus, in total the row swapping can cost asymptotically

a lot more than the whole LU factorization[22].

7.6 Left-Looking LU Decomposition 69

it

1}

Figure 7.1: New and Old Data Space Relation

7.6.2 Left-Looking Sparse LU Algorithm

To exploit sparsity in the Left-Looking Algorithm, a convenient method to do the partial pivoting
must be implemented that does not do any row permutation during the procedure but applies all of
them at the end.

To do so the data structure is left unchanged and thus, the old row indices are used, the ones
corresponding to the rows in A matrix. The one thing that needs to be tracked is actually which
row i becomes the k'™ pivot row at step k. To keep track of the actual place of a row an inverse
permutation vector is used. It is like looking at the L matrix through a lens that transforms the data
from the old space to the new. Therefore, after all the row i needs to become the row k in the final
L matrix, as well as every other row 1’.

Consider Figure [7.1]. At the k™ step the i row of the A matrix is chosen as pivot. So the row
i of A which will become the & row of L is in the old space. On the contrary, the column indices
reflect the new space. Thus, in the matrix L the columns are indexed in the proper way while the
rows still use the old indices.

Then, for the lower triangular solve, which is the only equation that the ordering really matters,
suppose the Reach(j) needs to be computed. J reaches to row i; which is the row of the A matrix,
thus it needs to be remapped to the new index of L and so pinv(i;)=k’ so Reach(j)=k’. All the rows
below row i have not yet been chosen as pivots so they reflect to Identity and thus, they do not have
any outgoing edges and will not add extra work to the depth-first search. The only issue that arises
is that since these lines have no name in the new work space, the only consistent way to refer to all

these nodes is through their old names.

Ly
So, generally the part 1:k-1 in of matrix | /5, 1 are well-defined and have been already
Ly 0 [

chosen as pivots and have an index in the new data space. On the other hand, the k+1:n part is
the implicit identity which is not chosen yet nor has a name in the new data space. The sparse
triangular solve has to cope with this data duality so as the results to be consistent. The algorithm

for the sparse left-looking LU is shown below[23].

function [L,U,pinv]=Ileft looking sparse lu(A)

70 Chapter 7. LU Decomposition

n=A.n;
pinv=zeros(n,1);
Lp=zeros(n,1);

xi=zeros(n,1);

Inz=1;

unz=1;

for k=1:n
[x, X]=Isparse_solve(L,A,k,pinv); % x=L\4(:, col)
ipiv=0;
a=—1;

for p=1:length(X) % find the pivot
i=X(p); % non zero value of x
if (pinv(i)==0) % has not been chosen as pivot yet
t=abs(x(1)); % absolute value of possible pivot
if (t>a)
a=t; % largest pivot candidate until now
ipiv=i; % pivot 's row index
end
else
% U(pinv (i), k)=x(i), creating the vector U] =X]
Ui(unz)=pinv(i);
Ux(unz)=x(1);
unz=unz-+1;
end
end
pivot=x(ipiv); % the chosen pivot
Ui(unz)= k; % U(k,k) index
Ux(unz)=pivot; % U(k,k) assignment

unz=unz+1;

% dividing by pivot to find the column of L
for p=1:length (X)
i=xi(p);
if (pinv(i)==0) % x(i) is an entry in L(:,k)
Li(lnz)=i; % row index of i
Lx(Inz)=x(1)/pivot; % value of L divided by pivot
end
x(1)=0;
end
end

Lp(n+1)=1nz; % terminate column pointers

7.6 Left-Looking LU Decomposition 71

Up(n+1)=unz;

for p=1:1nz % point old row indices to the new
Li(p)=pinv(Li(p));

end

end

Recall Isparse_solve from Section §.4, some adjustments need to be made so as to use the pinv
vector of transformation in its computations. Furthermore the Reach and DFS functions need to be
modified from Section #.3.2. The adjustments are shown below.

function [x, X]=Isparse solve(L,B,k,pinv)
X=cs_reach(L,B,k, pinv)
for p=Bp(0):Bp(1)—1 % b is stored in a CSC format,
x(Bi(p))=Bx(p); % so it is scattered
end
for s=1:length (X)
i=X(s);
if (pinv)
J=pinv(j);
end
if (J==0)
continue ;
end
x(j)=x(j)/Lx(Lp(J));
for p=Gp(J)+1:Gp(J+1)—1
x(Li(p))=x(Li(p))~Lx(p)*x(j);
end
end

end

function X=reach(L,B,pinv)
for each i for which b; #0
if node i is unmarked

dfs (i, pinv)

function dfs(j,pinv)
mark (j)
jnew=pinv(j)
for each i1 for which I #0
if node(i) is unmarked
dfs (i, pinv)
push j onto stack for X

72 Chapter 7. LU Decomposition

X
pinv(il)=kl
dfs(k1) i
_______ il
pinv(i2)=-1 7)) 000 21-@-T-c--~--- i2

Figure 7.2: Sparse Solve Example Between New and Old Data Space

Thus, to find the reach of a node, which depends on the column pattern we look through the lens to
find all the dependencies recursively. But, when it comes to storing the x solution the old indices
are used so the data is consistent with the not yet pivotal entries. The marking has to happen at the

row index while the new recursion at the column index.
The total left-looking algorithm for the sparse LU factorization is O(n + |4| +f), where n is the
dimension of the A, |A| are the nonzeros and f the number of floating-point operations performed.

This is essentially O(f) except for some cases, when A is diagonal for instance[23].

In the Figure [7.9 above, an instance of the sparse triangular solve is shown. The column k
reaches to L(i;,k) which will be L(k;,k) in the new data space, and to a row i,. Since i; maps to
k; in the new data, the dfs(k;) is made to find nodes which depend on the latter while the i; is
marked. Row i, maps to -1 which means that has not been yet selected as pivot. Then it has yet no
dependencies, so dfs is not made to this node, still it has to be in nonzero structure of X'. Thus, in

X the old indices are used.

An example of left-looking LU with numerical values follows.

508 0 50 1
650 0 90 0 1
4o |04 s 0 00 08333 04630 1
08 0 11 3 0 0 08889 0 1
0900 50 0 0 025 0 1
002 0 65 0 0.44 0.6250 0 —0.3484 1
(6 5 0 0 9 0 |
9 0 0 5 0
. 80 01852 0 |
11 —1.444 0
6.0463 5
1.7420

Notice that all the entries in L are less than 1 magnitude thanks to partial pivoting. P matrix shows
the permutations applied to A in order to do the partial pivoting, so L*U=A(P,:). This means that
if this row permutation has known before hand(it is computed on the fly) and the matrix PA was
factorized, P’=I, L’=L and U’=U. No row permutation would have been made because it is already
in the optimal order.

7.7 Multifrontal Method

73

e

O OO e

Figure 7.3: Multifrontal Elimination Tree and Frontal Matrices

7.7 Multifrontal Method

The LU factorization can be used in a multifrontal way. The logic behind Multifrontal LU

is the same as the Multifrontal Cholesky inspected in Section 5.13. If an unsymmetric matrix

with a symmetrical nonzero pattern is factorized with LU that results in square frontal matrices

like Cholesky, only this time the first row/column of each frontal matrix gives the U/L pattern
respectively[23]. The basis of this method has been presented in [B1[][30].

Recall again the matrix from Section.13, 4 =

al

asy

asi

an aps
axn as
ass
44
asy ass

ae3 des Aes

elimination tree and frontal matrices shown in Figure [7.3. Its LU factors are:

1 U
23 1
1
L — s U =
1
ls1 Usy 1
lez lea lgs 1

Tl_le multifrontal method procéeds as foilows:

Us = 0,Uy =0, U; = 0 since they are leaves of the tree and have no children.

[Z3V)

[Z5%)

as; ase
Fs = yUs = — [56,3513,6} = - [6631436}
463
ass a6
Fy = yUg = — [£64a46] =- [6641446}
_a64
ailr app ais
byan Uars
Fi = |ay U= —
Usiax1 Usiars
| as1

uis
uss
u33 Uz
Uay4 Uae
Uss Ugs
U6 |

ase
aae
ase
as6

, and corresponding

74 Chapter 7. LU Decomposition

7 an s\ ax» axs bran Oars ayp — byaiy axs — £as
2 p— 1 p— _— p—
as2 asy Usiax Usiaps asy — lr10s —Us1a1s
U us
= , Uy = {—551015 - fzsuzs}
usy —Lsiais
i 2
7 ass as6| o, ass ase —ts1a15s — bosups 0 ass — Us; — Uspars — lasups ase
5 p— 2 p— _ p—
aes aes 0 0 aes 0
uss use
= , Us = — [%5”65}
Ueps 0

Fg = [aés} OUsDUspU3 = [066} - [565%5] — [&4”46} - [%3%6] = [a66 — lesues — Loattas — 5630!36]

The LU multifrontal method has been extended for matrices with unsymmetric pattern[31]]. If
A is an unsymmetric matrix then M = A + A" denotes a structurally symmetric matrix. The M
matrix can be used for computing the elimination tree. The symmetric pattern can also used to form
the frontal square matrices as well and the method is similar to the one mentioned above[4][[15].
Another method is to assemble rectangular frontal matrices. For a matrix A which is unsymmetric,
the column elimination tree can be computed, this is the elimination tree of AT A which shows the
relations. The QR analysis is proved useful for this multifrontal method as in each step k, the size
of the frontal matrix F is bounded by the size of Vj and Ry, thus Fj is at most Vj-by-Ry.[21][23].

An example follows of an unsymmetric matrix A. Its QR factorization is shown so as to see
the upper bounds, as well as the column elimination tree and the amalgamated column elimination

tree, which results by grouping together parent nodes with same pattern.

* % * * % %k % k]
* % * % * x ok k%
* * % * * ok
A= |x% * ok [OR] = [* =« ¥ ok k%
* ok k% Xk k%
* % * %k
* ok ok * %k

Recall that QR performs the set-union of the rows affected by Householder and it is in a sense
like choosing all candidate pivot rows, as partial pivots thus providing the upper bound. Below LU
factors of A are shown, ®, o denote fill-in with no partial pivoting and possible fill-in from partial

pivoting respectively.

* % o o % o
* % o o % %
* * ok

7.7 Multifrontal Method 75

Figure 7.4: Column Elimination Tree and And Amalgamated Column Elimination Tree

Figure 7.5: Frontal Matrices Relation

In the two Figures above the two elimination trees and the relation of the frontal matrices is

shown. In the frontal matrices, the fill-in with no partial pivots that the elimination will produce
are shown for convenience.

This was the last factorization method, discussed. In the next chapter, some methods to reduce
fill-in entries will be inspected.

Chapter 8

Fill-in Reduction Methods

8.1 Introduction

In the algorithms inspected up until now, it was evident that fill-in entries increase in a slightly
big amount the total work that is needed to be done to compute a matrix factorization. It was
also shown that the way a matrix was ordered made a huge impact on the propagation of fill-in
entries. Thus, it is only natural that some methods have been developed in order to find a more
suitable matrix ordering so as to reduce fill-in. However, actually finding the optimal the order that
minimizes the fill-in is an NP-Complete problem, so heuristics are used to find a proper result[66].

8.2 Minimum Degree Ordering

If the permutation chosen reduces the fill-in entries in Cholesky factorization, then, QR factorization
will also have reduced fill-in due to R” = L and thus, the upper-bound of LU will also be reduced.
Therefore, a permutation that maintains the symmetry and positive-definiteness of the matrix A
must be found. Consider the following system of equations:

Ax=b, A e R"*" AT = 4,x"4x > 0,x € R". Assume P is a permutation matrix then:
(PAPT)(Px) = Pb, where PTP = I.
Thus, factorizing PAPT into LLT will yield a system with less fill-in.

The Minimum Degree algorithm is one of the most used and effective algorithms to find such
a matrix P. In a general sense, the logic of this algorithm mimics the partial pivoting in symmetric
Gaussian Elimination. Viewed in a right-looking Cholesky manner of Section [5.13, at step k the
matrix A% is to be updated with the outer product of the L(:, k) * L(:, k). So at each step, the row
and corresponding column with the less entries is chosen as pivot row. After n steps, the sequence

in which the pivots where chosen corresponds to the suitable ordering.

Assume that 4®*) is matrix A at the k™ step of the elimination and G¥) = (V, E) the corresponding
undirected graph. The vertices and edges of G® are Vew = {kk+1,...,n} and Eguy =
{(, j)|ai(jk) # 0}. Such a graph is called an Elimination Graph. When the update from L(:, k)
to A® happens, which is like adding a dense submatrix to A and removing k row and column, in

77

78 Chapter 8. Fill-in Reduction Methods

the equivalent graph it is like adding a clique in G® and removing vertex k and its corresponding
edges. The clique is formed by all the neighbours of k which actually shows the fill-in entries
that arise. Continuing the elimination, each time picking the vertex with the least degree, until no
vertices remain to eliminate is called the elimination game[49].

The elimination graph at each step is reduced by a vertex and its edges, but a clique is added
instead, which may contain a great amount of edges. This may result in an excessive need of space,
far more than the space allocated for the original graph. Assume m = |E| are the number of edges
in the original graph, and m™ = |E™| are the number of edges in the filled elimination graph. The
original space reserved for the graph is O(n + m) but then O(n~ + m™) is required[46]. This is
a bad practice because dynamic memory needs to be allocated which may not be available at that
time and which also can slow down the work in comparison to static memory. That is why, a data

structure to do this work in bounded O(n + m) space is introduced. 1

A Quotient Graph is a graph which creates edges implicitly instead of the elimination graph
which creates them explicitly. To do this, no vertex is removed but instead it is replaced by element
or enode k. The element k has £; neighbours and a node i adjacent to element k means it is adjacent
to every node in L. Thus, every node i not yet eliminated is adjacent to the nodes from matrix A
where a; # 0 defined as A; and to all those nodes which have now become elements defined as

£B8].

adi()=L; = [AU | Lo\ {3}
€&
The degree of a node i degree(i)=|adj(i)|.

Some more techniques can be implemented to improve the algorithm. The first is called Element
Absorption which removes any detected clique redundancy in the elimination or quotient graph.
This will speed up the whole process since less overhead from manipulating the set of cliques
in involved. Consider the set of cliques of a graph are K = {K;,K>,...,K,} and K;,K; € K.
If K; C Kj then K can be represented as K = {K,K>,...,K,} — K;. It is as if the element j
is absorbing the element i thus element absorption. Consider a graph with 6 nodes forming the
following cliques:

{1,5}{2,5,6}{3,5,6}{4, 5, 6}. Assuming that the elimination order of minimum degree is : 1,2,3
then the resulting cliques {5}, {5, 6}, {5, 6} can be represented by {4, 5,6}. Thus, all cliques are
absorbed into one in the end[34].

Another technique to improve the performance of the algorithm is pruning. If two entries
i,j are in the pivotal element £; then j and i can be removed from A; and A; respectively. That
is because j and i may have been adjacent by an element a;;, a;; due to symmetry, but now they
adjacency is represented by the element k[23[][3].

Assume now, that two nodes have the same adjacency list if in each one itself is included. That
means, adj(i) Ui = adj(j) Uj. These two nodes are indistinguishable and obviously have the same
degree. If one of the two is selected as the next pivot vertex, then the other one can be chosen
without introducing any new fill-in entries. Thus, those two elements can be chosen together as

pivotal elements. The logic behind it is the same manner, as performing supernodes. Eliminating

8.2 Minimum Degree Ordering 79

two or more nodes similar nodes is called mass elimination[[l]. One of these nodes can be chosen
as the representative of the supernode containing all of them. This technique reduces the number
of times the adjacency list of each node needs to be evaluated.

Since mass elimination is used, the size of the resulting clique may be different from when
only one node was used. The size of the clique as calculated until now by the adjacency of a node
may be referred as the true degree of that node. Now, for mass elimination the external degree of
a node is implemented which denotes the number of nodes that are distinguishable from it[53].

In practice two are the main minimum degree algorithms which are improved versions of the

basic minimum degree algorithm.
1. Multiple Minimum Degree
2. Approximate Minimum Degree

The first algorithm tries to reduce the number of degree updates of the nodes. When a search
is made for the minimum degree vertex, some ties may result. That means multiple vertices may
have the minimum degree. This algorithm finds the independent of each other minimum degree
vertices and eliminates them. Since the nodes are independent the elimination of one will not affect
the others. After all the independent nodes have been eliminated, there comes a degree update of
all the nodes[53].

The second algorithm does not try to reduce the number of degree updates of the nodes, unlike
the first, but tries to reduce the computational cost of the degree-update. This is done by computing
an upper bound to the degrees, instead of the actual degree, referred as approximate degree. Let
the approximate degree of node i be[23]:

di = Al + 1L+ Y 1L\ Ll

ee&-\{k}
where £ is the current pivot element and A; is already pruned. In other words, the degree of a vertex

i cannot be larger than the sum of the degrees of the adjacent nodes and elements to it.
The second algorithm produces almost the same fill-in to the first algorithm but is typically
faster|[3[]. The algorithm template of each of these algorithms can be found in this paper[46].

An example of the basic minimum degree algorithm is shown below. Consider the following

matrix: _ -~ _
k k k (o) (o) o
k k k k () * * *
* % * * % *
4= * % % 40— * % %
% ES * k k k
k k * k k O * * * *
* ok % * % %
* * * % * * %

80 Chapter 8. Fill-in Reduction Methods

o © o o o o
O O (0] O O (] O (0]
o | * ® * o o o o
4@ _ * ok % 403 — * ok Kk
* ok * * %k *
o o|® x* * ok O O O % * ok ®
¥ x % * ok %
* * S o *x ® x %
[O O O | [O O O]
o o o o o o o o
o o o o o ©o o o
A(4) _ o O o A(S) _ o o O
ol x & * o O o o
O O O oOofl® x *x & O O O O OoOf*x *x ®
* ok ok I
e} x ® x % o) ol ® x
[o o o | [o o o |
o o o o o o o o
O (0] O O O o O O
46 _ o o o 4 o o o
o o o©o o o o o o
o o o o o o|o o©o o o 0o o o o ofo
e} * * (0] (0] O
o o o |*x o O O O %
In this example the natural order is the ideal for the minimum degree algorithm. Each matrix

shows one step of the elimination and the corresponding elimination and quotient graphs are shown
in the Figure B.I|. In the matrix the circled star denotes a fill-in entry and so a new edge in the
elimination graph, white circles are the deleted entries so far.

Note in the quotient graphs that in G, due to 2,6 being connected via the element 1, their
intervening edge is omitted (pruning). Also, in G> and G° quotient graphs the element 2 is absorbed
by 3 and the elements 3,4 are absorbed by 5 respectively (element absorption). Furthermore, in the
G° quotient graph, the 6,7 edges are indistinguishable so they form a supernode and are eliminated

together (mass elimination).

81

8.2 Minimum Degree Ordering

o

o)

G4

O—®
.0
©

/o

Figure 8.1: Elimination and Quotient Graphs

82 Chapter 8. Fill-in Reduction Methods

8.3 Maximum Matching

It is a very common phenomena that a matrix A of order n if permuted properly, can yield
a zero-free diagonal matrix. Finding such a permutation is the equivalent of finding a maximum

cardinality matching in a bipartite graph[28].

An undirected graph G=(V,E) in which V is split into r classes, so that every edge e € E has
its ends in different classes is called r-partite. Thus, for 2 classes the result is a bipartite graph.
A Dbipartite graph contains no cycle of odd length. In bipartite graph a subset of edges M is called
a matching if any vertex is incident on at most one edge in M[[14]. A maximum matching is a
matching of maximum cardinality, in case of the matrix A the cardinality is n if it is rank efficient.
That means that for any other matching M', M| > |M’|. An alternating path in M is a path
whose edges alternate between those in M and those not in M. A M-augmenting path P is a M-
alternating path whose starting and ending nodes are unmatched[24]. If G has no M-augmenting

path then M is of maximum cardinality[8].

The basic concept of the augmenting paths algorithms is given a matching M, search for an
M-augmenting path. If none is found, then M is of maximum cardinality and the algorithm stops.
Otherwise, if a path is found, then M is increased by the edges of the path not in M.

A sparse matrix A forms a bipartite graph G4 = (Vg U V¢, E) where, Vx and V¢ denote the
rows and columns of A respectively. Therefore, for an entry a; # 0 withi € R and j € C there
is an edge in E. For a;7 = 0 there is no edge in the graph. If A is square n-by-n and M a perfect
matching, then a permutation matrix Q can be found with Q;; = 1 <= (i,j) € M so that 4Q is
the zero-free diagonal matrix, the same holds for a permutation matrix P and PA. If A is rectangular
m-by-n or has a cardinality / < n two permutation matrices P,Q can be found which permute the
matched rows and columns to the first I positions, thus the 1-by-1 submatrix of PAQ can be have a

zero-free diagonal[28§].

There are two basic algorithmic methods to find the augmenting paths. One is based on depth-
first search while the other is based on breadth-first search. Here a DFS algorithm is going to be
shown, which is used in MATLAB, a full presentation of both DFS and BFS algorithms can be
found in this CERFACS report[28].

The algorithm starts with an empty matching. If a match is made between a row i € R and a
column € C then the row i is noted as matched to column j, or else is noted as unmatched. In each
iteration a column k& not yet matched, not in C, is picked and an alternating augmenting path is
found so as to extend the matching. The path starts from k and then traverses to any edge to a row
i1 € A If i} is unmatched the path stops, if not, it traverses to j; = match(i;) and then it traverses
any edge to arow i» € A;, and so forth until an unmatched row i is found. Then the matching is
updated to include the column k and the row .

A heuristic called cheap, is implemented to reduce the average time complexity of the algorithm.
Cheap is actually, a pointer which divides the nonzero set of a column j, .A;, into matched and
unmatched rows. Thus, when considering a column j, only the second part needs to be considered.

Therefore, the DFS without the heuristic needed time O(n|4|) because the whole graph was searched

8.4 Block Triangular Form 83

at every step, but now since each edge is traversed only once, the time complexity reduced O(|4|),
while the average time is greatly reduced in practice[23].

An example follows for better comprehension of the algorithm. Consider a matrix

*
* *
S ok K
*
* *
* *
j=1 A1 ={1,2} = 1—1 match(l)=1
j=2 A, ={3,6} =— 2—3 match(3)=2
j=3 A3 ={3,5} = 3—5 match(5)=3
i=4 Ay =1{3,4) — 44 match(4)=4
j=5 As={2,6} = 5—2 match(2)=5

A¢={5} = 6—5=3—-3=2—-6 = match(6)=2,match(3)=3,
match (5)=6
match=(1,5,3,4,6,2)

From the match matrix the permutation vector p can be formed, where p=(_1,6,3,4,2,5) and the_n

permuting the matrix PA=A(p,:) results in a zero free diagonal matrix P4 =

In the j=6 case the alternating augmenting path can be shown clearly, as the path alternates between
edges where every other edge is matched and then the matching is extended when the unmatched

row 6 is found.

8.4 Block Triangular Form

The Block Triangular Form(BTF) of a sparse matrix leads to reduced computational time,
as well as reduced storage space for many algorithms, such as the LU and QR factorizations. The
Strong Hall property of a matrix produces strict bounds on the nonzero pattern of its factors. A
matrix A may have full rank but may not be Strong Hall, however, it can be permuted into (BTF),

An Ak
PAQ = :
A
where each diagonal block has the strong Hall property[59].

Consider a system Ax=b where matrix A permuted into an upper block triangular form

84 Chapter 8. Fill-in Reduction Methods

An A Az [x by
Ay Ax| |x2| = |by|, expanding the systems leads to the following equations:
0 0 Ass X3 b3

Az3xz = by = L33Uszxz = b3
Axyxy + Ap3xzy = by = LypUnxy = by — Anxy = LoyUnpxy = b}
Anxy +Aixy + Aizxs = by = LyUnxy = by — Aipxy — Aisxs = L Upixg = b}
Only the diagonal blocks need to be factorized to solve for a solution, all the other blocks are

used just for matrix-vector multiplication, which is more convenient than factorizing the whole

matrix.

Factorizing only the diagonal block, can help reduce fill-in too. Consider the following case

* * k *
where A is partitioned as before, where 4;; = and A;p = A3 = o ol If only 4, is
* ok

factorized there will be not fill-in caused due to elimination of the first column. On the contrary, if
A has factorized not in block form all the nonzeros from the first line would be propagated to the

second line, thus causing 4 fill-in entries.

Given an arbitrary sparse matrix, before permuting the matrix into a block triangular form, it
must be permuted to have a zero-free diagonal. So, the maximum matching algorithm mentioned
in the previous section is used for that purpose. Then symmetric permutations are used to obtain
the BTF[27].

To form the BTF of a matrix is the same as finding the strongly connected components(SCC)
of a directed graph. The graph G=(V,E) formed by A, has V={1...n} and E={(i,/)|a; # 0}. A
strongly connected component is a maximal subgraph in which there is a path between any pair
of nodes. A strongly connected component cannot be enlarged by adding extra nodes to it because
a SCC is defined as maximal, thus it’s a contradiction. Each node can belong to one SCC solely,
which may be itself.

If all the strongly connected components {Cy, Ca, ..., C,} are formed so that the first C; has
no path to any of the remaining nodes {C2, ..., C,}, then C, is picked so that it has no path to
the rest of the nodes {Cs,...,C,} and so forth, that results in a lower triangular block matrix,
where the blocks are the strong components. If the nodes are picked so that each component has
no affiliation with its previous components, that results in a upper triangular block matrix.

One simple method to compute the SCC of a matrix, is to perform a topological DFS on the
matrix A, like the one mentioned in Section and get the resulting stack X'. Then perform again
a DFS in the transposed matrix 4”7 but in the reverse order of their finishing time in X', meaning
starting from the last node in X and advance towards the first. All the nodes reachable from each
node in the second DFS form a SCC[[14].

Another implementation by Tarjan widely used is shown here[65][29]. The algorithm mentioned
here needs O(V + E) time for each DFS and for reversing the graph, while Tarjan algorithm needs
just one DFS.

8.4 Block Triangular Form 85

Figure 8.2: Directed graph of A and AT

* * %
* % *
* x ok k%
x ok
An example follows of finding the SCC of a sparse matrix A7 =
* %
* *
* *
*

where its graph and transposed graph are shown in Figure B.2.
Doing a topological DFS in G, results in X = {4,2,1,3,8,7,5, 6}. Then performing a DFS in G”
starting from node the end of X’ leads to:

DFS(4)={4}
DFS(2)={2}
DFS(1)={7,3,5,6,1}
DFS(8)={8}

Thus, this matrix has 4 strongly connected components.

If the nodes inside the components are placed in natural order, as well as the blocks themselves,
then the resulting vector is the permutation vector which permutes A into BTF. In this example,
p=1{2,4,1,3,5,6,7,8}.

Chapter 9

Experiments

9.1 Introduction

In this chapter some experimental cases are going to be demonstrated which make use of all the
theory mentioned so far. The experiments were done in MATLAB, using its built-in functions[56].
SuiteSparse which is a suite for sparse matrix algorithms, has a MATLAB interface, which is used
in the experiments as well[20][23].

The largest amount of matrices used in experiments are from the SuiteSparse Matrix Collection
(formerly the University of Florida Sparse Matrix Collection)[50]. There are some cases, where
the matrices used are random generated matrices.

For the experiments’ execution a Virtual Machine which features 64GB RAM and 16 Computational
Cores is used, which set up in the University of Thessaly.

9.2 Data Structures

In this section, the differences between storing all entries of a spares matrix, as if it was full,
and storing it in CCS format will be demonstrated.

Each entry is a double precision element, using 8-bytes of memory. For n-by-n square matrices,
a dense matrix needs n*>*8 bytes, whereas, CCS needs only (2*nnz+n+1)*8 bytes.

In this experiment some random square matrices were allocated and the results is shown in the
table below. The columns from left to right denote, the matrix’s dimension, the nonzero elements,
memory requirements for sparse storage in megabytes, memory requirements for dense storage in
megabytes, the difference between dense and sparse storage in megabytes.

As it can be seen from the table exploiting sparsity when storing a matrix makes a huge impact

in regards to storage performance. For an 8GB RAM machine, the maximum dimension for a
316222 % 8
Tg* = 7.9996(GB). Thus a 31623-by-31623 identity matrix cannot
be stored in dense format. However, this matrix has only 31623 non zero elements(diagonal),
2%31623 + 31623 + 1
i T2t 0.7590(MB).
So, the latter format allows the computer to store high dimension data, whereas the former would

square matrix is 31622,

therefore, storing it in CCS format only takes

have failed.

87

88 Chapter 9. Experiments
n nnz CCS(MB) TRIPLET(MB) DIFF(MB)

100 3290 0.053448 0.08 0.026552

200 13134 0.21175 0.32 0.10825

400 52708 0.84654 1.28 0.43346

800 2.11E+09 33.875 5.12 17.325

1600 8.44E+09 13.515 20.48 69.654

3200 3.38E+10 54.027 81.92 27.893

6400 1.35E+11 216.08 327.68 111.6

12800 5.40E+11 864.34 1310.7 446.38

9.3 Cholesky Factorization

In this section test cases for Choleksy Factorization are performed. The matrices this time are
downloaded from SuiteSparse Matrix Collection, corresponding to data from real-life systems.

The first comparison is between an optimized dense Cholesky solver with the built-in function
of Matlab chol and the solver from cs_sparse, cs_chol, which exploits sparsity, and its based on the
algorithm described in Chapter . The second algorithm does not make effective use of BLAS[51].

The second comparison is between the dense solve function chol of Matlab as well, and the
CHOLMOD used from SuiteSparse, which is also how Matlab computes Cholesky factorization of
sparse matrices. The CHOLMOD algorithm makes use of the BLAS as it performs dense computations.
The CHOLMOD is based on Supernodal Cholesky Factorization[[19]. The matrices used for this
comparison are the same as above.

The third comparison is between c¢s_chol and CHOLMOD which both exploit sparsity.

chol vs cs-chol

4
0% cha
* cs_chol * #* * 4
*
102 F R oo
+ + 5
O e
+ﬁ-f-+ g:# .
100} #* +a§&&*#§
@ .|-.i-+ + ++_ #
1
g b T
= + *
5 + " + *
10%F + Ll
+ Ak e
L ﬂ%ﬂ
&$¢ 4k
.*_
+3t*|- *
107 + e
ik # + *
+
108 S : : ;
10" 10?2 10° 10* 10° 108 107

Figure 9.1: Dense Cholesky vs Sparse Choleksy

9.3 Cholesky Factorization 89

chol vs cholmod

4 T T T T
Ll e
+ chalmod
10%f 1 i
+
++ ek *1— *_]i‘:’:_'_ * %
+ +j_'-+ ekt
0% ;f*if S
+ *
g -2 ++ 4 mﬁ:i#
= + et Hh,
+ PR #
102 + * T
T et
S X
W
10 + ﬁuﬁ +
FEAE +
106 et
107 102 102 10* 10° 108 107
nnz
Figure 9.2: Dense Choleksy vs Supernodal Cholesky
P cs-chol vs cholmod
10 : T T T
% ¢s_chol
+ cholmod ¥ ¥ * 4
+*
102 LA
+ F Tt
* $ + _,1_* ++
10°F #* N ﬁ**+*# & 3
© S +
£ + %ﬁ#ﬁ}#
- * ++*+ ﬁhﬁ‘*ﬁ:
1072 P J%%* 1
o 4
ﬁ:}ﬁi
*
104 !i’*ﬁ"& 3
e W ¥
10-6 L 1 L | |
107 102 102 10* 10° 108 107

Figure 9.3: Sparse Choleksy vs Supernodal Cholesky

It is apparent that exploiting sparsity has benefits even using the not optimized solver cs_chol,
as it is evident from the Figure P.1]. Of course, the optimized sparse solver CHOLMOD is faster
than using the dense solver as seen in figure P.2. In the final figure a comparison between cs_chol
and CHOLMOD is made. For small matrices the results are almost identical. For large matrices
though, the Supernodal algorithm is quite a lot faster. In practice it has been observed that the
number of flops=|f| divided by the non zeros in L=|L| is a threshold in choosing between the up-

90 Chapter 9. Experiments

looking method and the supernodal one. In particular if]Lm\ = 40 is the crucial value, if smaller

the former method is used and if larger the latter[[13].

9.4 QR Factorization

In this section test cases for QR Factorization are executed. The matrices are downloaded from
SuiteSparse Matrix Collection. The matrices are mainly rectangular deriving from /linear least
squares problems. Two cases are presented below.

The first case is comparing the optimized dense built-in solver in Matlab g with the optimized
sparse solver SPOR which uses a Multifrontal QR method. This method uses uses LAPACK and
multithreaded BLAS to obtain high performance inside each frontal matrix. This method resembles
the Multifrontal LU method described in Section [7.7, more information about this method can be
found in the following paper [[16].

The second case is comparing SPOR with the ¢s_gr, which is based on the algorithm described
in Chapter [§. In this case, only matrices with more rows than columns were used because cs_gr is

unable to handle other matrices.

SPQR vs QR dense

10* . -
+ QR
+ SPOR
107§ ++*+ £ 1
+
" *
R
ol et TP I
o Lt Fi e o+ +
E -‘q.‘*-ﬁ*—** ¥
£ G &
A
102 W -_t—*i X]
i * * ¥
PEELs
104k + ¥ -zﬂhk**ﬁ_]
S— *¢+ o+ +
+ ¥ F
+
+’H‘+
1D-ﬁ+ L L L L L
10! 102 102 10* 108 108 107

Figure 9.4: Multifrontal QR vs Dense QR

It is obvious that as the matrices grow larger, SPOR achieves better results than the dense solver.
It important to mention that it uses less memory than the dense of course, which is important as QR
tends to create a lot of fill-in, especially when no column ordering is used. If proper ordering was
used, the performance from SPOR would be even higher. Dense algorithm would perform almost
the same, with less fill-in due to all entries being checked.

9.5 LU Factorization 91

. CSOR vs SPQR
10 . . :
+ CcsoR
+ SPOR .
s
+++++|‘_‘=#
¥
107 w2 1E 1
@ +
£ ‘ﬁﬁﬁ*ﬁﬁ *
.*.
102 ¢ R T 1
#J*"'*# + *
L0 Tgtt
+¢ -H$+§
104 b % Phe]
4
thr 4 HH
10°8 ' : s
10! 102 10° 10* 10°

nnz

Figure 9.5: Multifrontal QR vs Sparse QR

In the second case, it can be noted that for small matrices a left sparse qr decomposition is
better than using the multifrontal method. However, as the number of non zero elements increases

the multifrontal method achieves better results.

9.5 LU Factorization

For the LU factorization experimental cases, matrices deriving from structural problems, network
problems, 2d/3d problems and reduction models are used. These matrices are from the SuiteSparse
Collection once again. Three comparisons between diffrent algorithms are made below.

The first case is comparing dense LU solver built in Matlab vs the sparse one. The sparse one
is based on the algorithm discussed in Chapter [j.

The second case is a comparison between the multifrontal LU and the dense LU solver from
above. The multifrontal LU solver uses umfpack which makes effective use of the BLAS and
LAPACK subroutines[[17].

The third case is a comparison between the simple sparse solver and the multifrontal one, which
both exploit sparsity but the multifrontal is optimized.

92

Chapter 9. Experiments

) CSLU vs Dense LU
10 -
+ Dense LU
4 CSLU + + *
102_ n 4
* e
#
10l + 4&# St 1
+ + **+ +
t+
+* + +
oL U * 1
) 10 ++ * -#;F*' * ¥ w
£ " i et ﬁ##%# *
107" + # 4+ fzﬁhﬁ b 3
* ey + + + %
i &éﬂ" .#**_'_ #
ot AT R W ¥
1077 ¢ * £ o* ¥ bk 1
* ﬂ*## _*_* * #*
£ N O F T+ +
103} LI ;
* .****#*i% *
+ +
1074 * :
10° 104
nnz

Figure 9.6: Dense LU vs Sparse LU

In the first case, the simple sparse algorithm performs a lot faster as the number of non zeros

is low. As the number of nonzero increases the performance of the sparse and the dense is quite

similar. In some cases, the dense algorithm performs better than the sparse one.

Multifrontal vs Dense LU

10% -
+ Dense LU
* UMF
102} 5
0 1
10% 5
[1§]
E N +F
0 + 1
JfF 4T H
102 5
al ¥ i
10 *
¥
, +
104 :
102 104
nnz

Figure 9.7: Dense LU vs Multifrontal LU

10°

In the second case, the Multifrontal algorithm performs better in almost all scenarios. The time

9.6 Fill-in Reduction 93

difference between the two algorithms is quite sizeable.

CSLU vs Multifrontal LU

+ csL
* UMF
102} 5

10%

time

10°

Figure 9.8: Sparse LU vs Multifrontal LU

Between the two sparse algorithms, as the matrices grow bigger the multifrontal is evidently
better. For smaller matrices, the simple sparse algorithm reaches yields similar or better time

measurements.

9.6 Fill-in Reduction

In this section square positive definite matrices mainly from structural problems are used. These
matrices are analyzed symbolically to find the resulting non zeroes of their Cholesky factor. Then,
the approximate minimum degree algorithm is used on each matrix and the symbolic analysis is

performed once again.

94 Chapter 9. Experiments

i Non zeros of Choleksy factor: plain vs amd
0 e e AL LA B S A B T T
Fl + plain +
* amd +
+ 4 F ¥
+ +
10
WY E + + 3
+ + #* k|
* % i
0 T]
E + +-|-++'|i '*';:' 3
108 F + $*+ e Tk * 3
E + 3

nnz of L
+
e
+
g
ol g
*
_*.

i +1h]
2 * * :

i P
+
104 E +§ o 4
_*.
+ chg W
ot
a[#* *]
10 E
Hp 3
.*.
10{) ool ool o el v vnnl ool T | AR |
10! 102 102 10* 108 108 107 108 10°
nnz of A

Figure 9.9: Minimum Degree Ordering

The difference between the pre-ordered factorization and the plain factorization is immense.
Thus, pre-ordering a matrix will decrease a lot the memory needed to store the factor, as well as it
will yield better execution times since there are less float point operations to be performed.

9.7 LU vs Cholesky

In this section a comparison is made between the supernodal Cholesky and the Multifrontal LU
for factorizing positive-definite square matrices. The matrices are downloaded from SuiteSparse
and are mainly power network and structural problems.

The number of entries in these matrices is considerable larger than those of used previously.
Additionally, each matrix is permuted by using the approximate degree algorithm before being
factorized.

As it is evident from Figure the Cholesky factorization performs significantly better than
LU for square and positive-definite matrices.

9.7 LU vs Cholesky

Multifrontal LU vs Supemodal Cholesky

‘1E|'4 T T
+ UMF
+ Chol
++ +
+
102 F
4
¥* T ot
+¢* 4
++ %*
P
" + %
£ * %ﬁ *ﬁ*
T ¥
102F +++@+$;%*
B * **
i el
I g TR
++ g ¥
-4 T _:'++ ;%*
10 LTt i* ¥
e T
10_5 1 1 1 1 I 1
10" 10 108 104 10° 108 107

Figure 9.10: Supernodal Choleksy vs Multifrontal LU

Chapter 10
Epilogue

10.1 Conclusions

In this thesis, the benefits of exploiting the sparse structure of a matrix was shown and how
certain algorithms are modified to utilize it. The theory behind Cholesky, QR and LU factorizations
was demonstrated as well as the corresponding algorithms and the way they are remodeled to take
advantage of the matrix structure. The resulting algorithms are the basis of the algorithms currently
used by sparse solving softwares and libraries.

In particular, this thesis starts with the demonstration of data structures for sparse matrices and
of common matrix algorithms. Then, how to solve a sparse lower triangular system and its relation
to finding the reach of a graph. Afterwards, the Cholesky Factorization is shown as well as the
symbolic analysis of a matrix, the elimination tree, the column count of the resulting matrix and
how to actually, compute the the factors numerically.

Subsequently, the QR Factorization is introduced and its relation with Cholesky Factorization
is shown, as well as how to compute it efficiently using the Householder Reflections. QR leads the
way to LU factorization, because the former is an upper-bound to the latter. LU factorization, which
is the oldest method of all, is demonstrated and numerical and symbolical trade-offs are shown,
as well as methods to maintain numerical stability. Afterwards, certain methods are examined on
how to construct a zero free diagonal and how to reduce the fill-in entries as well. Fill-in entries
are entries that arise during the factorization of a matrix and they do not belong in the original.

In the final chapter, experimental cases are performed. A sample of matrices that arise from real
life problems are used. The properties of the matrices vary in size, sparsity and shape. The sparse
methods are compared to their corresponding dense ones, showing the benefits in time complexity

as well as in space requirement.

10.2 Further Work

Considering the future extensions to this thesis there are a number of topics to examine. Firstly,
study in depth the Supernodal and Multifrontal Algorithms and how they are implemented in
computer code. Furthermore, study more fill-in reducing algorithms and their code implementation

97

98 Chapter 10. Epilogue

as well. Additionally, the concept of parallelization concerning the algorithms presented can be
studied, which are the cases that it is beneficial to do it and how the parallelization methods are
linked with dependencies already established.

Besides the Direct Methods, the Iterative Methods are another way of solving a linear system.
The latter methods, use an initial guess to find an approximate solution, usually resulting in a faster
solution. On top of that, they can be used to solve non-linear systems as well. This is an major topic
that can be examined and compared with the methods presented in this thesis.

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

George Alan and David R MclIntyre. On the application of the minimum degree algorithm
to finite element systems. In Ilio Galligani and Enrico Magenes, editors, Mathematical
Aspects of Finite Element Methods, pages 122—149, Berlin, Heidelberg, 1977. Springer Berlin
Heidelberg.

Patrick Amestoy, Alfredo Buttari, lain Duff, Abdou Guermouche, Jean-Yves L’Excellent,
and Bora Ugar. Multifrontal Method. In David Padua, editor, Encyclopedia of Parallel
Computing, pages 1209—-1216. Springer US, Boston, MA, 2011.

Patrick R Amestoy, Timothy A Davis, and Iain S Duff. An Approximate Minimum Degree
Ordering Algorithm. Technical Report 4, fComputer and Information Sciences Department
University of Florida, 1996.

Patrick R. Amestoy and Chiara Puglisi. An unsymmetrized multifrontal LU factorization.
Technical report, Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA, 7 2000.

Cleve Ashcraft. A vector implementation of the multifrontal method for large sparse,
symmetric positive definite linear systems. In Report ETA-TR-51. ETA Division, Boeing
Computer Services Seattle, WA, 1987.

Cleve Ashcraft, Stanley C. Eisenstat, and Joseph W. H. Liu. A Fan-In Algorithm for
Distributed Sparse Numerical Factorization. SIAM Journal on Scientific and Statistical
Computing, 11(3):593-599, 5 1990.

Richard Barrett, Michael Berry, Tony F Chan, James Demmel, June Donato, Jack Dongarra,
Victor Eijkhout, Roldan Pozo, Charles Romine, and Henk van der Vorst. Templates for the
Solution of Linear Systems: Building Blocks for Iterative Methods. Society for Industrial and
Applied Mathematics, 1994.

Claude Berge. TWO THEOREMS IN GRAPH THEORY. Technical report, Princeton
University, 1957.

Jayanta Biswas. Extension of Matrix Algebra and Linear spaces of Linear Transformations.
International Journal of Novel Research in Physics Chemistry & Mathematics, 3:29-42, 5
2016.

Ake Bjdrck. Numerical Methods in Matrix Computations, volume 59. Springer, 2015.

99

100 Bibliography

[11] Richard Brualdi and Bryan Shader. Strong Hall Matrices. Siam Journal on Matrix Analysis
and Applications - SIAM J MATRIX ANAL APPLICAT, 15,5 1994.

[12] David Carlson. What are Schur complements, anyway? Linear Algebra and Its Applications,
74(C):257-275, 2 1986.

[13] Yanqing Chen, Timothy A Davis, William W Hager, Sivasankaran Rajamanickam, and
; W W Hager. Algorithm 887: CHOLMOD, Supernodal Sparse Cholesky Factorization and
Update/Downdate. ACM Trans. Math. Softw, 35, 2008.

[14] Thomas H Cormen, Charles E Leiserson, and Ronald L Rivest. Introduction to Algorithms ,
Second Edition. MIT Press, 2001.

[15] T A Davis. Unsymmetric-pattern multifrontal methods for parallel sparse LU factorization.
Technical report, Computer and Information Science and Engineering Department,
University of Florida, 1991.

[16] Tim Davis. Multifrontal multithreaded rank-revealing sparse QR factorization. ACM
Transactions on Mathematical Software - TOMS, 6 2008.

[17] Timothy A Davis. Algorithm 832: UMFPACK V4.3-An Unsymmetric-Pattern Multifrontal
Method. Technical Report 2, University of Florida, 2004.

[18] Timothy A Davis. Algorithm 849: A Concise Sparse Cholesky Factorization Package.
Technical Report 4, ACM, 2005.

[19] Timothy A Davis. User Guide for CHOLMOD: a sparse Cholesky factorization and
modification package. Technical report, University of Florida, 2011.

[20] Timothy A Davis. Algorithm 9xx: SuiteSparse:GraphBLAS: graph algorithms in the
language of sparse linear algebra. Technical report, Texas A&M University, 2018.

[21] Timothy A Davis and lain S Duff. An Unsymmetric-Patttern Multifrontal Method for Sparse
LU Factorization. Technical Report 1, Computer and Information Science and Engineering

Department, University of Florida, 1997.

[22] Timothy A Davis, Sivasankaran Rajamanickam, and Wissam M Sid-Lakhdar. A survey of
direct methods for sparse linear systems. Technical report, Acta Numerica, Department of
Computer Science and Engineering, Texas A&M Univ, 2016.

[23] Timothy A. Davis and Society for Industrial and Applied Mathematics. Direct methods for
sparse linear systems. Society for Industrial and Applied Mathematics (SIAM, 3600 Market
Street, Floor 6, Philadelphia, PA 19104), 2006.

[24] Reinhard Diestel. Graph theory. 5th edition. Springer, 2017.

[25] Felipe Diniz. Condition number and matrices. Technical report, Federal University of Rio
de Janeiro Rio de Janeiro, RJ, Brazil, 5 2017.

Bibliography 101

[26] B Dougalis, D Noutsos, and A Hadjidimos. Lecture Notes Numerical Linear Algebra, 2000.

[27] IS Duffand Aere Harwell. On Algorithms for Obtaining a Maximum Transversal. Technical
report, ACM, 1981.

[28] I S Duff, K Kaya, and B Ugar. Design, Implementation, and Analysis of Maximum
Transversal Algorithms. Technical report, CERFACS, 2010.

[29] I. S. Duff and J. K. Reid. An Implementation of Tarjan’s Algorithm for the Block
Triangularization of a Matrix. ACM Transactions on Mathematical Software (TOMS),
4(2):137-147, 6 1978.

[30] L. S. Duff and J. K. Reid. The Multifrontal Solution of Indefinite Sparse Symmetric Linear.
ACM Transactions on Mathematical Software (TOMS), 9(3):302-325,9 1983.

[31] LS. DuffandJ. K. Reid. The Multifrontal Solution of Unsymmetric Sets of Linear Equations.
SIAM Journal on Scientific and Statistical Computing, 5(3):633—641, 9 1984.

[32] Alan. George, J. R. (John R.) Gilbert, and Joseph W. H. Liu. Graph theory and sparse matrix
computation. Springer-Verlag, 1993.

[33] Alan George and Michael T. Heath. Solution of sparse linear least squares problems using
givens rotations. Linear Algebra and Its Applications, 34(C):69—83, 1980.

[34] Alan George, Joseph Liu, and Esmond Ng. A Data Structure for Sparse QRS and LUS
Factorizations. SIAM Journal on Scientific and Statistical Computing, 9(1):100-121, 1988.

[35] Alan. George and Joseph W. H. Liu. Computer solution of large sparse positive definite
systems. Prentice-Hall, 1981.

[36] Alan George and Joseph W.H. Liu. Evolution of the minimum degree ordering algorithm.
SIAM Review, 31(1):1-19, 3 1989.

[37] Alan George and Esmond Ng. An Implementation of Gaussian Elimination with Partial
Pivoting for Sparse Systems. SIAM Journal on Scientific and Statistical Computing,
6(2):390-409, 4 1985.

[38] J George and J Liu. A quotient graph model for symmetric factorization. Technical report,
Department of Computer Science, University of Waterloo, 5 1979.

[39] J R Gilbert, X S Li, E G Ng, and B W Peyton. COMPUTING ROW AND COLUMN
COUNTS FOR SPARSE QR AND LU FACTORIZATION *. Technical Report 4, DARPA,
2001.

[40] John R. Gilbert. Predicting Structure in Sparse Matrix Computations. SIAM Journal on
Matrix Analysis and Applications, 15(1):62-79, 1 1994,

102 Bibliography

[41] John R. Gilbert, Esmond G. Ng, and Barry W. Peyton. An Efficient Algorithm to Compute
Row and Column Counts for Sparse Cholesky Factorization. SIAM Journal on Matrix
Analysis and Applications, 15(4):1075-1091, 10 1994.

[42] John R. Gilbert and Tim Peierls. Sparse Partial Pivoting in Time Proportional to Arithmetic
Operations. SIAM Journal on Scientific and Statistical Computing, 9(5):862-874, 9 1988.

[43] J.R. Gilbert and E.G. Ng. Predicting structure in nonsymmetric sparse matrix factorizations.
Technical report, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, 10 1992.

[44] G Golub. Numerical Methods for Solving Linear Least Squares Problems*. Numerische
Mathematik, 7:206-208, 1965.

[45] Gene H Golub and Charles F Van Loan. Matrix Computations (3rd Ed.). Johns Hopkins
University Press, USA, 1996.

[46] P Heggernes, S C Eisenstat, G Kumfert, and A Pothen. The Computational Complexity of the
Minimum Degree Algorithm. Technical report, he Computer Science Research Institution,
2000.

[47] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. Society for Industrial
and Applied Mathematics, 1 2002.

[48] Alston Householder. Unitary triangularization of a nonsymmetric matrix. Journal of the
ACM (JACM), page 10, 1958.

[49] Stephen Ingram. Minimum Degree Reordering Algorithms: A Tutorial. Technical report,
University of British Columbia, 2006.

[50] Scott P Kolodziej, Mohsen Aznaveh, Matthew Bullock, Jarrett David, Timothy A Davis,
Matthew Henderson, Yifan Hu, and Read Sandstrom. The SuiteSparse Matrix Collection
Website Interface Software ¢ Review ¢ Repository ¢ Archive. Journal of Open Source
Software, 2019.

[51] C Lawson, F Krogh, S Gold, David Kincaid, J Sullivan, E Williams, Richard Hanson, Karen
Haskell, Jack Dongarra, and Cleve Moler. Linear-Algebra Programs. ACM, 6 1982.

[52] Joseph W. Liu. A Compact Row Storage Scheme for Cholesky Factors Using Elimination
Trees. ACM Transactions on Mathematical Software (TOMS), 12(2):127-148, 6 1986.

[53] Joseph W.H. Liu. Modification of the minimum-degree algorithm by multiple elimination.
ACM Transactions on Mathematical Software (TOMS), 11(2):141-153, 6 1985.

[54] Joseph W.H. Liu. The Role of Elimination Trees in Sparse Factorization. SIAM Journal on
Matrix Analysis and Applications, 11(1):134-172, 1 1990.

[55] Joseph W.H. Liu. Multifrontal method for sparse matrix solution. Theory and practice. SIAM
Review, 34(1):82-109, 7 1992.

Bibliography 103

[56] MATLAB. MATLAB version 9.4.0.813654 (R2018a). The MathWorks Inc., Natick,
Massachusetts, 2018.

[57] Esmond Ng and Barry W. Peyton. A Supernodal Cholesky Factorization Algorithm for
Shared-Memory Multiprocessors. SIAM Journal on Scientific Computing, 14(4):761-769,
7 1993.

[58] S. Parter. The Use of Linear Graphs in Gauss Elimination. SIAM Review, 3(2):119-130, 4
1961.

[59] Alex Pothen and Chin-Ju Fan. Computing the Block Triangular Form of a Sparse Matrix.
Technical report, Pennsylvania State University, 1990.

[60] Matthew W Reid. Pivoting for LU Factorization. Technical report, University of Puget
Sound, 2014.

[61] Robert Schreiber. A New Implementation of Sparse Gaussian Elimination. ACM
Transactions on Mathematical Software (TOMS), 8(3):256-276, 9 1982.

[62] Peter M. A. Sloot, Alfons G. Hoekstra, C. J. Kenneth Tan, and Jack J. Dongarra, editors.
Computational Science — ICCS 2002, volume 2329 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2002.

[63] B Speelpenning. The generalized element method. Report (University of Illinois at Urbana-
Champaign. Dept. of Computer Science)no. 946. Dept. of Computer Science, University of
Illinois at Urbana-Champaign, Urbana, 1978.

[64] Gilbert Strang. Introduction to linear algebra. SIAM, fifth edition, 2016.

[65] Robert Tarjan. DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*.
Technical Report 2, Department of Computer Science,Cornell University, 1972.

[66] Mihalis Yannakakis. Computing the Minimum Fill-In is NP-Complete. SIAM Journal on
Algebraic Discrete Methods, 2(1):77-79, 3 1981.

Appendix I

Computer Algorithms

In this appendix the computer algorithms analyzed and used in this thesis are summarized.

I.1 Data Structures and Basic Algorithms

function C=TripToSparse (A)
row=A.row
value=A.value
col=A.col
for k=1:nz

count(col(k))++
end
Cp=cumsum (count)
for k=1:nz
p=col (k)++
rowldx (p)=row (k)
val (p)=value (k)
end

end

function z=gaxpy(A,x,y)
for k=1:n
for p=Ap(k):Ap(k+1)—1
y(Ai(p)=Ax(p)*x (k)
end
end
end

function C=mat_multiply (A,B)

nz=0

105

106

Appendix 1. Computer Algorithms

end

for j=1:n
Cp[jl=nz
for k=Bp(j):Bp(j+1)—1
b=Bx (k)
for p=A(k):A(k+1)—1
i=Ai(p)
if(i not in nz pattern of col j)
Ci[nz++]=1i
x(1)+=b*xAx(p)
end
for p=Cp(j):nz
Cx(p)=x(Ci(p))
end
end
end
Cp[n]=nz

function C=mat add(A,B)

end

nz=0
for j=1:n
Cp(j)=nz
for Ap(j):Ap(j+1)—1
i=Ai(p)
if (1 not in nz pattern of col j)
Ci[nz++]=i
x(1i)+t=alpha*Ax(p)
end

for Bp(j):Bp(j+1)—1
i=Bi(p)
if(i not in nz pattern of col j)
Ci[nz++]=i
x(1i)+=betaxBx(p)
end
for p=Cp(j):nz
Cx(p)=x(Ci(p))
end
end

1.2 Sparse Lower Triangular Solve 107

function x=lsolve(A,b)
x=b
for j=1:n
x(j) =x(j)/Lx(Lp(j))
for p=Lp(j)+1:Lp(j+1)—1
x(Li(p))=x(Li(p))~Lx(p)*x(j)
end
end
end

function x=usolve(A,b)

x=b
for j=n:1
x(j)=x(j)/Lx(Li(j+1)—1)
for p=Up(j):Up(j)—2
x(Ui(p))=x(Ui(p))—Ux(p)*x(j)
end
end

end

function x=Itsolve (A,b)
x=b
for j=n:1
for p=Lp(j)+1:Lp(j+1)—1
x(j)=x(j)—Lx(p)*x(Li(p))
end
x(J)=x(j)/Lx(Lp(j))
end
end

function x=utsolve(A,b)
x=b
for j=1:n
for p=Lp(j)+1:Lp(j+1)-2
x(j)=x(j)—Ux(p)*x(Ui(p))
end
x(j)=x(j)/Ux(Up(j+1)—1)
end

I.2 Sparse Lower Triangular Solve

108

Appendix 1. Computer Algorithms

function X=reach(L,B)
for each i for which b; #0

if node 1 1s unmarked
dfs (1)

function dfs(j)
mark (j)
for each i for which 1;#0
if node(i) is unmarked
dfs (i)
push j onto stack for X

function x=lsparse solve (L,B,k)
X=cs_reach (L,B,k)

for p=Bp(k):Bp(k)—1 % b is stored

x(Bi(p))=Bx(p) % so it
end
for s=1:length (X)
i=X(s)
x(j)=x(j)/Lx(Lp(J));
for p=Gp(j)+1:Gp(j+1)—1

x(Li(p))=x(Li(p))—Lx(p)*x(j)

end
end
end

I.3 Cholesky Decomposition

function L=up_ cholesky (A)
n=size (A)
L=zeros(n)
for k=1:n

a CSC format

scattered

L(k,1:k—D)=(L(1:k—1,1:k—1)\A(l:k—1,k)) ;
L(k,k)=sqrt (A(k,k)—L(k,1:k—1)*L(k,1:k—1)")

end
end

function Lk=ereach (A, parent ,k)
n=size (A,1)
Lk=zeros(n,l) % output array

w=zeros(n,l) % work space array for

marking values

1.3 Cholesky Decomposition 109

s=zeros(n,l) % stack array
top=n
mark (w,k) % mark node k as visited
for p=Ap(k):Ap(k+1)—1
i=Ai(p)
if i>k
continue
end
len=1
while i=parent(i)
if mark(w,i) % check if node i has already been visited
break
end
s(len)=1
len=len+1
mark (w, 1)
end
while len>0
Lk(top)=s(len)
top=top —1
len=len —1
end
end
Lk=Lk(Lk~=0) % remove if there are any zeros
for p=1:length(Lk)—1
mark (w,Lk(1)) % unmark node Lk(i)
end
mark (w, k)
end

function P=postorder(T)
k=0
for j=1:length(T)
dfstree ()
end
end

function dfstree(j)
for 1=1:n
if i is a child of j

110 Appendix 1. Computer Algorithms

dfstree (1)
end
post (k)=
k=k+1
end

end

function [first ,level]=first descendant(n,post,parent, first ,level)
first=zeros(n,l)
for k=1:n

i=post (k)

len=0

r=i

while ((r!=0) && (first(r)==0)
first(r)=k
r=parent(r)
len=len+1

end

if r==
len=len —1

else
len=len+level (1)

end

s=i

while (s~=r)
level (s)=1len
len=len —1
s=parent(s)

end

end
end

function [q, maxfirst, prevleaf, ancestor, jleaf] =leaf(i, j, first,

maxfirst, prevleaf, ancestor, jleaf)

jleaf=0

if (i<=) || first(j)<=maxfirst(i))
q=0 %not a leaf
return

end

1.3 Cholesky Decomposition

111

end

maxfirst(i)=first(j) % leaf— update maxfirst
jprev=prevleaf(i) % load previeaf and upate the new
prevlieaf(i)=j

if (jprev=—1) % first leaf

q=1 %i is the root of i subtree
jleaf=l1
return

end

jleaf=2 % not first leaf

q=jprev

while (q~=ancestor(q)) % find the root of tree
g=ancestor(q)
end
s=jprev
while (s~=q)
sparent=ancestor(s) % path compression with ancestor
ancestor(s)=q
s=sparent
end

function rcount=rowcount(A, parent, post)

n=A.n
Ap=A.p
Ai=A. 1
[first , level]= first descendant(n, post, parent, first,
for i=1:n
rcount(i)=1 % for the diagonal
prevleaf(i)=0
maxfirst(i)=0
ancestor(i)=1 % every node is its own ancestor
end
for k=1:n

method

level)

j=post(k) % use postordering through permutation vector

for p=Ap(k):Ap(k+1)—1
i=Ai(p)

[q, maxfirst, prevleaf, ancestor, jleaf] =leaf(i, j,

maxfirst, prevleaf, ancestor, jleaf)
if jleaf

rcount (i)=rcount(i)+(level(j)—level(q))
end

first ,

112 Appendix 1. Computer Algorithms

end
if (parent(j)~=—-1)
ancestor(j)=parent(j)
end
end
end

function ccount=colcounts (A, parent,post)

n=A.n
Ai=A. i
Ap=A.p
w=zeros (1,n)
for k=1:n
j=post(k)
if (first(j)==0) % j is a leaf
delta (j)=1
else
delta(j)=0 % j not a leaf
end
while ((j~=0) && (first(j)==0)) % construct the first of each node
first (j)=k
j=parent(j)
end

ancestor(k)=k % every node is each own ancestor at first

end
for k=1:n
j=post (k)
for p=Ap(j):Ap(j+1)—1
i=Ai(p)
[q, maxfirst, prevleaf, ancestor, jleaf]=leaf(i, j, first,
maxfirst, prevleaf, ancestor, jleaf)
if (jleaf>=1) delta(j)=delta(j)+1 %a,-’,-e.%i
if (jleaf==2) delta(q)=delta(q)—1 % j is subsequent leaf
% so delta (lca)— —
end
if (parent(j)~=-0)
ancestor(j)=parent(j) % every set belongs to its father
end
end

ccount=delta

1.3 Cholesky Decomposition 113
for j=1:n
if (parent(j)~=0)
ccount(parent(j))=ccount(parent(j))+ccount(j)
% the colcount of a node j is the sum of its children
end
end
end
function L=up chol(A,A symb)
n=A.n
cp=A_symb.p
Lp=c=cp
Ap=A.p
Ai=A. 1
parent=A symb. parent
for k=1:n
% Find the non zero pattern of Ay
Lk=ereach (A, parent ,k) % find ereach
x(k)=0
for p=Ap(k):Ap(k+1)—1
if Ai(i)<=k
x (Ai(p)=Ax(p)
end
end
d=x(k)
x(k)=0
% Triangular solve for Ly,
for Lk c=1:length (Lk)
i=Lk(Lk ¢) % pattern of Lk
lki=x(1)/Lx(Lp(i1)) % L(k,i)=x(i)/L(i,i)

x(1)=0
for p=Lp(i)+1l:c(i)—1
x(Li(p)=x(Li(p))—Lx(p)*Iki
end
d=d—1lki=xlki
p=c(i)
c(i)=c(i)+1
Li(p)=k
Lx(p)=1Kki
end
% Check if positive definite and find Ly

count

114 Appendix 1. Computer Algorithms

if (d<=0) %not positive definite
L=0
return
end
p=c (k)
c(k)=c(k)+1
Li(p)=k
Lx(p)=sqrt(d)
end
Lp(n)=cp(n)
L.p=Lp
L.i=Li
L.x=Lx
L.n=Ln

end

function L=chol super(A,s)
n=size (A)
L=zeros(n)
ss=cumsum ([1 s])
for j=1:length(s)
kl1=ss(j)
k2=ss(j+1)
k=kl:(k2-1)
L(k,k)=chol(A(k,k)—L(k,1:kl1—-1)*L(k,1:kl1—-1)")"
L(k2:n,k)=(A(k2:n,k)—L(k2:n,1:kl —1)xL(k,kl:k1—-1)")/L(k,k)’
end
end

.4 QR Decomposition

function [V,beta ,R]=qr _right(A)
[m n]=size (A);
V=zeros (m,n);

Beta=zeros(1,n);

for k=1:n
[v,beta,s]=gallery(’ house’ ,A(k:m,k),2);
V(k:m,k)=v;

Beta(k)=beta;
A(k:m,k:n)=A(k:m,k:n)—v*(betax(v’*A(k:m,k:n)));
end

1.4 OR Decomposition

115

function [V,beta ,R]=qr _left(A)

end

function [unz, pinv, leftmost]=vcount(A, parent)

[m n]=size (A);
V=zeros (m,n);
Beta=zeros(1,n);
R=zeros(m,n);

for k=1:n
x=A(:,k);
for i=1:k—1
v=V(i:m,1i);

beta=Beta(i);

x(1:m)=x(1:m)—vk(betax(v’xx(im)));

end
[v,beta,s]=gallery(’ house’ ,x(k:m),2);
V(k:m,k)=v;

Beta(k)=beta;
R(1:(k—1),k)=x(1l:(k—1));
R(k,k)=s

end

[m n]=size (A);

next=array(m,1); % next entry in col k
head=array(n,l); % first entry in col k
tail=array(n,1); % last entry in col k

nque=array(n,l); % number of entries each

for i=1:n
leftmost (i)=min(find (A(i,:)));

end

for i=m:1
pinv(i)=0;
k=lefmost(i);
if (nque(k)==0)
nque (k)=nque (k)+1;
tail (k)=1;
end

116 Appendix 1. Computer Algorithms

next(i)=head(k);
head (k)=1;
end

Inz=0;

for k=1:n
i=head(k); % remove row i from queue
Inz=Inz+1; % count diagonal entry V(k,k)
nque (k)=nque (k)—1;
pinv(i)=k;
if (nque(k)<=0) % empty below the diagonal
continue ;
end ;
Inz=Inz+nque(k); % nque(k) is the nnz count below the diagonal
pa=parent(k); % transfer all rows to parent
if (pa~=—1)
if (nque(pa)==0)
tail (pa)=head(k);
end
next(tail (k))=head(pa);
head (pa)=next(i);
nque (pa)=nque(pa)+nque(k);
end
end
for i=1:m % rows that did not hold a diagonal entry
if (pinv(i)=0)
k=k+1;
pinv(i)=k;
end
end
end

function [V,R]=qr(A,A symb)
[m n]=size (A);
Ai=A.i; Ap=A.p;
g=A symb.q; parent=A _ symb. parent;
pinrv=A_symb. pinv;
leftmost=A symb. leftmost;
rnz=1; Ilnz=1;

w=zeros (m);

1.4 QR Decomposition 117

for k=1:n % compute V, R
Rp(k)=rnz; % R(:,k) starts here
Vp(k)=pl=lnz; % V(:, k) starts here
w(k)=k; % V(k, k) pattern of V
Vi(vnz)=k;
vnz=vnz+1;
top=n;
for p=Ap(k):Ap(k+1)—1 % find R(:,k) pattern
i=leftmost (Ai(p));
len=1,;
while (w(i)~=k) % traverse up to k
s(len)=1;
len=len+1;
w(i)=k;
i=parent(i);
end
while (len>1) % push path on stack
top=top —1;
len=len —1;
s(top)=s(len);
end
i=pinvA(i(p));
Xx(1)=Ax(p); % x(i)=A(:, col)
if (i>k & w(i) < k) % pattern (V:,k)=x(k+1,m)

Vi(vnz)=i;
vnz=vnz+1; % add i to pattern of V(:,k)
w(i)=k;

end
end
for p=top:n % for i in R(:,k)
i=s(p); % R(i,k) is nonzero
for j=Vp(i):Vp(i)—1 % apply the previous Householders
mul=mul+Vx(j)*x(Vi(p));
end
mul=mulxbeta(i);
for j=Vp(i):Vp(i)—1
x(Vi(p))=x(Vi(p))—Vx(p)*mul;
end
Ri[rnz]=1;
Rx[rnz]=x(1i);

rnz=rnz+1;

118

Appendix 1. Computer Algorithms

end

end

x(i)=0;
end
for p=pl:vnz
Vx(p)=x(Vi(p));
x(Vi(p))=0;
end
Ri(rnz)=k;
[v,beta]=house(x); % apply the current Householder

Rp(n)=rnz; % finalize the matrices

Vp(n)=vnz;
R.p=Rp; R.i=Ri; R.x=Rx;
V.p=Vp; V.i=Vi; V.x=Vx;

I.5 LU Decomposition

function [L,U] = lu _right(A)
n=size (A,1);
L=eye(n);

end

function

U=zeros(n);

for

end

k=1:n

U(k,k:n)=A(k,k:n);

L(k+1:n,k)=A(k+1:n,k)/U(k,k);
A(k+1l:n,k+1:n)=A(k+1:n,k+1:n)—L(k+1:n,k)*U(k,k+1:n);

[L,U,P]=1left looking lu(A)

n=size (A,1);
P=eye(n);

L=zeros(n);

U=zeros(n);

for

k=1:n

% create LHS matrix :: 1:k—1 columns of L, k:n Identity ,

x_start=[L(:,1:k—1) [zeros(k—1,n—k+1);eye(n—k+1)]];

x=x_start\(PxA(:,k)); % sparse triangular solve to find x

U(l:k—1,k)=x(1:k—1); % result of X| are the (l:k—1,k) entries
% of U

[a,i]=max(abs(x(k:n))); % find the new pivot

i=itk—1; % dimensions of submatrix to

1.5 LU Decomposition

end

% dimensions of the whole matrix
L([1 k],:)=L([k i].,:); % row permutations of L
P([i1 k],:)=P([k 1],:); % row permutations of P
x([1 k])=x([k 1]); % row permutations of x
U(k,k)=x(k); % store the pivot entry
L(k,k)=1; % diagonal entries of L=I
L(k+1:n,k)=x(k+1:n)/x(k); % {3 =x3/un

end

function [L,U,pinv]=left looking sparse lu(A)

n=A.n;
pinv=zeros(n,1);
Lp=zeros(n,1);
xi=zeros(n,1);
Inz=1;
unz=1;
for k=1:n
[x, X]=1sparse solve(L,A,k,pinv); % x=L\4(:, col)
ipiv=0;
a=—1;
for p=1:length(X) % find the pivot
i=X(p); % non zero value of x
if (pinv(i)==0) % has not been chosen as pivot yet
t=abs(x(1)); % absolute value of possible pivot
if (t>a)
a=t; % largest pivot candidate until now
ipiv=i; % pivot 's row index
end
else
% U(pinv (i), k)=x(i), creating the vector Ujp =X
Ui(unz)=pinv(i);
Ux(unz)=x(i);
unz=unz+1;
end
end
pivot=x(ipiv); % the chosen pivot
Ui(unz)= k; % U(k, k) index
Ux(unz)=pivot; % U(k,k) assignment

unz=unz-+1;

120 Appendix 1. Computer Algorithms

% dividing by pivot to find the column of L
for p=1:length (X)
i=xi(p);
if (pinv(i)==0) % x(i) is an entry in L(:,k)
Li(lnz)=1; % row index of i
Lx(Inz)=x(1)/pivot; % value of L divided by pivot
end
x(i)=0;
end
end
Lp(n+1)=Inz; % terminate column pointers
Up(n+1)=unz;
for p=1:1lnz % point old row indices to the new
Li(p)=pinv(Li(p));
end

end

function [x, X]=Isparse solve(L,B,k,pinv)
X=cs _reach(L,B,k, pinv)
for p=Bp(0):Bp(1)—1 % b is stored in a CSC format,
x(Bi(p))=Bx(p); % so it is scattered
end
for s=1:length (X)
J=X(8);
if (pinv)
J=pinv(j);
end
if (J==0)
continue ;
end
x(j)=x(j)/Lx(Lp(J));
for p=Gp(J)+1:Gp(J+1)—1
x(Li(p))=x(Li(p))~Lx(p)*x(j);
end
end
end

function X=reach(L,B,pinv)
for each i for which b; #0
if node i is unmarked
dfs (i, pinv)

1.5 LU Decomposition

121

function dfs(j,pinv)
mark (j)
jnew=pinv (j)
for each i for which I #0
if node(i) is unmarked
dfs (i, pinv)
push j onto stack for X

	Abstract
	Περίληψη
	Acknowledgements
	Table of contents
	List of figures
	List of tables
	Introduction
	Main Objective
	Thesis Structure

	Theoretical Background
	Introduction
	Linear Algebra
	Graph Theory

	Data Structures and Basic Algorithms
	Introduction
	Data Structures
	Matrix-Vector Multiplication
	Matrix Multiplication
	Matrix Addition
	Solving a Triangular System Lx=b
	Solving a Triangular System Ux=b
	Solving a Triangular System .
	Solving a Triangular System .

	Sparse Lower Triangular Solve
	Introduction
	Sparse Right-Hand Side
	Finding the non-zero set .
	Determining .
	Computing .

	Solving a Sparse System

	Cholesky Decomposition
	Introduction
	Method Overview
	Elimination Tree
	Computing the Elimination Tree
	Solving Sparse Lx=b using the Elimination Tree
	Postordering the Elimination Tree
	Row Counts
	Column Counts
	Symbolic Analysis
	Up-Looking Cholesky
	Left-Looking Cholesky
	Supernodal Cholesky
	Multifrontal Cholesky

	QR Decomposition
	Introduction
	Method Overview
	Householder Reflections
	Left/Right-Looking Dense QR Decomposition
	Sparse QR Decomposition
	Row Set-Union Property
	Computation of .
	Computation of .
	Sparse QR Algorithm

	LU Decomposition
	Introduction
	Method Overview
	Right-Looking LU Decomposition
	Numerical Issues
	Numerical Issues
	Partial Pivoting

	Upper fill-in bound
	Left-Looking LU Decomposition
	Left-Looking Dense LU Algorithm
	Left-Looking Sparse LU Algorithm

	Multifrontal Method

	Fill-in Reduction Methods
	Introduction
	Minimum Degree Ordering
	Maximum Matching
	Block Triangular Form

	Experiments
	Introduction
	Data Structures
	Cholesky Factorization
	QR Factorization
	LU Factorization
	Fill-in Reduction
	LU vs Cholesky

	Epilogue
	Conclusions
	Further Work

	Bibliography
	Computer Algorithms
	Data Structures and Basic Algorithms
	Sparse Lower Triangular Solve
	Cholesky Decomposition
	QR Decomposition
	LU Decomposition

