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Abstract

Computing large linear systems in a reasonable amount of time and space is still an ongoing
challenge for computational scientist. In general, it is very common practice that the systems that
need to be computed are sparse. Exploiting, sparsity to achieve better execution times and less
storage space is one of the key factors in cutting-edge computer algorithms. This thesis, focuses on
the theory behind those algorithms, the data structured and the algorithms itself which are currently
used by sparse system libraries.More specific theDirectMethods Cholesky, QR, LU for factorizing
sparse linear matrices are examined andmethods to reduce fill-in as well. Afterwards, experimental
cases are performed in Matlab to emphasize the benefits of sparsity exploitation.

Keywords

directmethods, sparsematrices, fill-in, graph theory of sparsematrices, Cholesky Factorization,
QR Factorization, LU Factorization, fill-in, multifrontal methods, supernodal methods, Matlab
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Περίληψη

Ο υπολογισμός μεγάλων γραμμικών συστημάτων σε ένα λογικό χωρικό και χρονικό πλαίσιο
είναι μια διαρκής πρόκληση για τους επιστήμονες της υπολογιστικής μηχανικής. Γενικά, είναι
πολύ συχνό φαινόμενο τα συστήματα που χρειάζεται να υπολογιστούν να είναι αραιά. Ένας από
τους βασικούς συντελεστές στους κορυφαίας κατασκεύης υπολογιστικούς αλγορίθμους για επί-
τευξη καλύερων χρόνων εκτέλεσης, καθώς και λιγότερου αποθηκευτικού χώρου, είναι η εκμετάλ-
λευση του αραιής δομής των συστημάτων. Αυτή η διπλωματική εστιάζει στην θεωρία πίσω από
αυτούς τους αλγορίθμους, στις δομές δεδομένων καθώς και στους ίδιους τους αλγορίθμους που
περιλαμβάνονται στις βιβλιοθήκες λογισμικού επίλυσης αραιών συστημάτων. Πιο συγκεκριμένα,
αναλύονται οι άμεσοι μέθοδοι Cholesky, QR, LU όπου επιλύουν ένα σύστημα παραγοντοποιόντας
τον αραιό πίνακα. Επίσης, εξετάζονται μέθοδοι ελαχιστοποίησης fill-in στοιχείων που προκύπτουν
κατά την παραγοντοποίηση. Έπειτα, εκτελούνται μερικές πειραματικές περιπτώσεις σε Matlab οι
οποίες δίνουν έμφαση στα πλεονεκτήματα των παραπάνω αλγορίθμων.

Λέξεις Κλειδιά

άμεσοι μέθοδοι, αραιοί πίνακες, θεωρία γραφημάτων για αραιούς πίνακες, Cholesky Παρα-
γοντοποίηση, QR Παραγοντοποίηση, LU Παραγοντοποίηση
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Chapter 1

Introduction

A Sparse Matrix is defined as a matrix which most of the elements are zero and the non zero
elements of a matrix may be concentrated or distributed less systematically resulting in a regular
or irregular shape.Thus,we shall refer to a matrix as sparse if taking advantage of the percentage
of its non-zero elements and shape results in solving a problem more economically.

Sparse matrices are usually encountered in a wide variety of problems in engineering, machine
learning as well as scientific areas of study. Problems from the real world that are formulated with
the use of partial differential equations are commonly solved with the use of finite element method.
Typical problems solved in such a way are structural analysis,heat transfer, fluid flow to name just
a few. Also, sparse matrices often arise for example due to encoding or in processing data that
contains counts or even in language processing in the field of machine learning.

Thus, the construction of algorithms or the modification of existing ones in a way that sparsity
is exploited to solve these linear systems more efficiently is a thriving field of study. Algorithms
which solve linear systems are divided into two subgroups. The first group consists of Direct
Methods and the second one of Iterative Methods. A Direct Method is one which gives an exact
solution to the system assuming no round-off error occur and an Iterative Method is one which
uses successive approximate solutions obtaining a more accurate solution in each step.

1.1 Main Objective

This thesis focuses on studying in depth the Data Structures as well as the the Algorithms
used for obtaining the Direct Solution of a sparse system. More importantly, ways to reduce the
storage cost, as well as the execution cost of typical factorization methods, in regards to the sparsity
of a matrix, are inspected.

The reduction of storage cost is of high importance because computer systems have physical
memory limitations, due to their hardware, and many linear systems tend to be arbitrarily big,
exceeding the memory capacity of the system. However, if a considerable amount of entries in
the element are zeros, they can be discarded and thus, the remaining entries can be stored without
causing memory overflows.

Lowering the actual time of an algorithm’s execution time is a desired fact for every algorithm.

1



2 Chapter 1. Introduction

Exploiting the sparsity can lead to huge difference in execution time of many common algorithms
operating on sparse systems. The theory behind those modified algorithms is analyzed in depth,
and some pseudo-code examples are given.

The important fact is that the underlying theory discussed is the basis of all the cutting edge
matrix solvers, used currently by numerical analysis and numerical computing software, such as
MATLAB. Thus, after the theory, some test-cases are executed in MATLAB, to show the benefits
mentioned above.

1.2 Thesis Structure

In Chapter 2, some basic linear algebra and graph theory is discussed.
In Chapter 3, the data structures for sparse matrices and basic matrix operations are shown.
In Chapter 4, the solution of a sparse triangular system is implemented, which is very significant

because subsequent algorithms rely a lot on it.
FromChapter 5 themodifiedmatrix factorizations are discussed, howmatrices are decomposed

into a product of more convenient matrices. Starting from the Cholesky factorization, then moving
on to the QR factorization in Chapter 6 and finally the LU factorization in Chapter 7. These three
are the predominant chapters of the thesis.

In Chapter 8 some methods to reduce fill-in entries are shown. Fill-in entries are those who
arise due to the factorization of a matrix and are not in the original matrix.

Finally, in Chapter 9 the experiments in MATLAB are done.



Chapter 2

Theoretical Background

2.1 Introduction

In this section some basic linear algebra and graph theory will be described as well as the
notations used in this thesis. More information can be found in [64][32].

2.2 Linear Algebra

A real m-by-n matrix is denoted as : A ∈ Rm x n. An entry in the A matrix in row i and column
j corresponds to aij. The notation aij,ai or a will be used for row or column vectors or for scalars
depending on the context.

The symbols for lower upper and triangular are L U respectively. In L for every lij with i > j
holds lij = 0. In U for every uij with i < j hold uij = 0. The diagonal of a matrix A ∈ Rm x n is
the set of entries akk|{k = 1, ..., n}.
The identity matrix is denoted as I ∈ Rn x n whose diagonal is 1 and all the other entries are 0.

The transpose of a vector,otherwise a row vector, is aT and the transpose of a matrix is and
AT ≡ aji for every aij. Ai∗ and A(i,:) is the whole i row of a matrix. Likewise, A∗j and A(:,j) is the
whole j column.

Matrix Addition is defined as A = B+C where aij = bij + cij. Matrix-Scalar multiplication is
defined as A = cB where aij = c ∗ bij.Matrix-Matrix multiplication is defined as A = BC where

if B ∈ Rm x p and C ∈ Rp x n then A ∈ Rm x n and aij =
p∑
k=1

bik ∗ ckj. Notice that the number of

columns of B and rows of C must agree.

For two vectors x, y ∈ Rn the inner product is defined as xTy =
n∑
k=1

xk ∗ yk.

The inverse of amatrix is denotedA−1 whereA−1A = AA−1 = I. If a matrixQ holds thatQT∗Q = I
then Q is called orthonormal. If Q is a square orthogonal matrix then also QQT = I holds and
QT = Q−1, this matrix is an orthogonal matrix.

P denotes a permutationmatrixmeaning an identitymatrix Iwith its rows or columns permuted.
The symbol |A| denotes the number of non-zero elements in matrix A. The set containing the

3



4 Chapter 2. Theoretical Background

non-zero pattern of a matrix A is denoted with A.

2.3 Graph Theory

Any entry in a graph is called a node and any line connecting two separate nodes is called an
edge. Denoting V = {1, 2, ..., n} as a set of nodes and E = {(i, j)|i, j ∈ V} as a set of edges. In a
directed graph the edge connecting two nodes has a specific direction from node A to node B for
instance. In an undirected graph any edge is a path from node A to B as well as from B to A.
If a path from i; j exists, it means that there are edges connecting the nodes (i, k, ..., l, j). A cycle
in a graph is a path j; j, starting and ending at the same node.

A graph with no cycles is called acyclic, a directed acyclic graph is called DAG. A forest is an
undirected graph in which any two vertices are connected by at most one path,or equivalently a
DAG. A tree is an undirected graph n which any two vertices are connected by exactly one path,
or equivalently a connected acyclic undirected graph. Thus, a forest is a disjoint union of trees.

Usually the tree data structures used are rooted trees where root refers to the very first node
of the data structure. Parent of a node V is the first node connected to V on the path to the root.
The parent of every node is unique except the root which has no parent. Equivalently, the child of
a node V is a node whose parent is V. A node with no children is called a leaf.

A descendant node of a node is any node in the path from that node to the leaf node, including
the leaf node. An ancestor node of a node is any node in the path from that node to the root node,
including the root node as well. Thus, the first ancestor of a node is its parent.

A clique is a subset of vertices of a graph G where every two vertices of the clique are adjacent
to each other.
The set of all nodes in a graph G reached by a node V is denoted as ReachG(V).



Chapter 3

Data Structures and Basic Algorithms

3.1 Introduction

In this chapter the basics of which data structures are used to store sparse matrices efficiently
and how the basic matrix algorithms are modified according to this specific type of structure.

3.2 Data Structures

Considering a random sparse matrix A =


1 0 0 0
0 5 8 0
3 0 11 0
0 4 3 17


This matrix could be stored in a triplet form data structure which for a matrix A ∈ Rm x n every
non-zero row and column index is stored as well as every value. Triplet form is easily read and
created and many files containing sparse matrices use this method of storage. For this particular
example:
row=

[
1 2 2 3 3 4 4 4

]
, col=

[
1 2 3 1 3 2 3 4

]
,

value=
[
1 5 8 3 11 4 3 17

]
.

The size of each array is equal to the number of non-zero entries.In the example above is equal to 8.
This storage method is highly inefficient for use in most sparse matrix algorithms It preferable to
use another storing method that suits those algorithms more. Thus, let us introduce theCompressed
Sparse Column Format or CSC Format[7].

In the CSC Format three matrices are used, one Cp of size n+1 for storing the column pointers
and in the final position the nz+ 1 value, one i_indices of size nz for storing the row indices of the
non-zero entries and finally one val of size nz storing the values of the non-zero entries.

The logic behind this format is the following: in the Cp matrix an entry Cp[i] translate to the
the place in the rowIdx matrix where the ith column is stored.So, row indices of column i are
placed from rowIdx[Cp[i]] to rowIdx[Cp[i+1]-1]. Equivalently, the numerical values are placed
from val(Cp(i)) to val(Cp(i+1)-1). For the example above, the corresponding matrices are:

5
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Cp=
[
1 3 5 8 9

]
, rowIdx=

[
1 3 2 4 2 3 4 4

]
,.

val=
[
1 3 5 4 8 11 3 17

]
.

The values of the third column of A, A∗3 can be accessed and printed by:

f o r p=Cp ( 3 ) : Cp(4)−1
pr in t ( v a l ( p ) )

end

The output is: p=5 val[5]=8, p=6 val[6]=11, p=7 val[7]=3
We observe that for storing the matrix above two arrays of size nz = 8 are required and one of size
n+ 1 = 5. Already, from the storage method it easy to note that a lot less space is used for Cp=[]
opposed to col=[] for matrices with a large number of non-zeros.
Transforming amatrix from triplet to aCSC format is easily donewith the following algorithm[23].

f unc t i on C=Tr ipToSpa r s e (A)
row=A. row
va l u e =A. v a l u e
c o l =A. c o l
f o r k =1: nz

coun t ( c o l ( k ) )++
end
Cp=cumsum ( coun t )
f o r k =1: nz

p= co l ( k )++
rowIdx ( p )= row ( k )
v a l ( p )= va l u e ( k )

end
end

Where cumsum function computes the cumulative sum of a matrix. For instance for T=[2,4,5], the
cumsum(T) equals [2,6,11].
The above function is simpler model of the function S=sparse(A) inMatlab stated just for observing
the logic behind CSC format and understanding the differences between the former and the triplet
format.
From now on let’s use for a matrix A the notation Ai for rowIdx Ap for column pointers Cp and Cx
for val.

3.3 Matrix-Vector Multiplication

Suppose we want to computer z = Ax + y. We have A stored by column so if we consider A
split into column vectors the above equation is z = [A∗1 A∗2 · · · A∗n] ∗ [x1x2 · · · xn]T + y.
So to compute it the following algorithm is used:
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f unc t i on z=gaxpy (A, x , y )
f o r k =1: n

f o r p=Ap( k ) : Ap( k+1)−1
y ( Ai ( p ) ) =Ax( p )*x ( k )

end
end

end

We see that the two loops are taking time proportional to the non-zero entries in A, so O(n + f),
where f is the number of float point operations[23].

3.4 Matrix Multiplication

Since a matrix is stored by column the multiplication method used is Column at a Time. For
calculating C = AB column-wise, C∗j = AB∗j for j = 1 · · · n is computed. Considering the split
used in the previous section C∗j = AB∗j becomes C∗j = [A∗1 A∗2 · · · A∗n]∗[b1j b2j · · · bnj]T. The
non-zero pattern of C∗j is the set union of A∗j for all i which bij is non-zero. Thus, Cj =

∪
i∈Bj

Ai. For

computing C numerical cancellation is ignored. So the resulting matrix has a new non-zero pattern
which must be computed simultaneously with multiplication.

f unc t i on C=ma t _mu l t i p l y (A,B)
nz=0
f o r j =1 : n

Cp [ j ]= nz
f o r k=Bp ( j ) : Bp ( j +1)−1

b=Bx ( k )
f o r p=A( k ) :A( k+1)−1

i =Ai ( p )
i f ( i no t i n nz p a t t e r n o f c o l _ j )

Ci [ nz ++]= i
x ( i )+=b*Ax( p )

end
for p=Cp ( j ) : nz

Cx ( p )= x ( Ci ( p ) )
end

end
end
Cp [ n ]= nz

end

The time taken is proportional to n, |B| aswell as fwhich notes the count of floating point operations.
Therefore, the algorithm is O(f+ n+ |B|)[23].
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3.5 Matrix Addition

Matrix addition is a similar to Matrix Multiplication if the following transformation from C =

αA+ βB to C = [A B][αI βI]T is noted.

f unc t i on C=mat_add (A,B)
nz=0
f o r j =1 : n

Cp ( j )= nz
f o r Ap( j ) : Ap( j +1)−1

i =Ai ( p )
i f ( i no t i n nz p a t t e r n o f c o l _ j )

Ci [ nz ++]= i
x ( i )+= a l ph a*Ax( p )

end

for Bp ( j ) : Bp ( j +1)−1
i =Bi ( p )
i f ( i no t i n nz p a t t e r n o f c o l _ j )

Ci [ nz ++]= i
x ( i )+= beta*Bx ( p )

end
for p=Cp ( j ) : nz

Cx ( p )= x ( Ci ( p ) )
end

end
end

3.6 Solving a Triangular System Lx=b

Let’s consider a system Lx = b where L is square and lower triangular. Taking into account
the storing format used, the matrix should be accessed by column to solve the system efficiently.
Let us consider the following decomposition:[
ℓ11 0
ℓ21 L22

] [
x1
x2

]
=

[
b1
b2

]
The equations deriving are ℓ11x1 = b1 and ℓ21x1+L22x2 = b2, where ℓ11, x1 and b1 are scalars and
ℓ21, x2 and b2 are vectors of size n− 1. L22 is a (n− 1)x(n− 1) matrix. Unwinding the recursion
leads to an algorithm that accesses the matrix L column-by-column. Hence, solving for x leads to
x1 = b1/ℓ11 and L22x2 = b2 − ℓ21x1 and observing that b is used once so it is more convenient to
replace it with x, the following algorithm is introduced:

f unc t i on x= l s o l v e (A, b )
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x=b
f o r j =1 : n

x ( j ) =x ( j ) / Lx ( Lp ( j ) )
f o r p=Lp ( j ) + 1 : Lp ( j +1)−1

x ( Li ( p ) ) = x ( Li ( p ))−Lx ( p )*x ( j )
end

end
end

Let’s see a more detailed example for a 3x3 matrix.

ℓ11ℓ21 ℓ22

ℓ31 ℓ32 ℓ33


x1x2
x3

 =

b1b2
b3


Considering the previous notation: ℓ11, x1, b1 are the same, ℓ21 = [ℓ21 ℓ31], x2 = [x2 x3], b2 =

[b2 b3] and L22 =

[
ℓ22 0
ℓ32 ℓ33

]
.

Following the algorithm: x1 = b1/ℓ11, b2 − ℓ21x1 =

[
b2
b3

]
−

[
ℓ21

ℓ31

]
x1, that’s the first iteration

followed by recursion unwinding so now: ℓ11 = ℓ22, ℓ21 = [ℓ32], x2 = [x3],b2 = [b2] and
L22 = [ℓ33].
Solving, results in: x2 = b2/ℓ22, b2 − ℓ21x1 = b3 − ℓ32x2 and then the final step is solving
x3 = b3/ℓ33.
It easy to note in the above example that the columns of of L are accessed one time each from left
to right which is the desired way, this is called a forward solve.

3.7 Solving a Triangular System Ux=b

Considering the system Ux = b where U is an upper triangular matrix and x, b are vectors. A

similar decomposition is used as the one for the L matrix.

[
U11 u21
0 u22

] [
x1
x2

]
=

[
b1
b2

]
The equations derived are: u22x2 = b2 and U11x1 + u21x2 = b1, where u22, x2, b2 are scalars and
u21, x1, b1 are vectors of length n − 1, U11 is a (n − 1)x(n − 1) matrix. Solving for x results in
x2 = b2/u22 and U11x1 = b1 − u21x2 and the algorithm deriving is:

f unc t i on x= u so l v e (A, b )
x=b
f o r j =n : 1

x ( j )= x ( j ) / Lx ( Li ( j +1)−1)
f o r p=Up( j ) : Up( j )−2

x ( Ui ( p ) ) = x ( Ui ( p ))−Ux( p )*x ( j )

end
end

end



10 Chapter 3. Data Structures and Basic Algorithms

In the algorithm above, the columns of U are accessed one at a time from right to left, that is called
a backward solve.

3.8 Solving a Triangular System LTx=b

The matrix LT is an upper triangular matrix because L is a lower triangular. It’s easy to observe
that because L is stored by column, now LT is stored by row. So, it’s optimal way to access this
matrix is done by row. Let’s consider once again the decomposition used in section 3.6 but with
matrix L transposed.[
ℓ11 ℓT21
0 LT22

] [
x1
x2

]
=

[
b1
b2

]
The equation the above system produces are:LT22x2 = b2 and ℓ11x1+ℓT21x2 = b1, note that ℓT21x2 is an
inner product that results in a scalar. Solving for x produces: LT22x2 = b2 and x1 = (b1−ℓT21x2)/ℓ11.
Hence, the algorithm is:

f unc t i on x= l t s o l v e (A, b )
x=b
f o r j =n : 1

f o r p=Lp ( j ) + 1 : Lp ( j +1)−1
x ( j )= x ( j )−Lx ( p )*x ( Li ( p ) )

end
x ( j )= x ( j ) / Lx ( Lp ( j ) )

end
end

The algorithm iterates from n to 1 because as it is a backward solve, also accessing a row at at time
resembles the common way of solving a problem of this kind.

3.9 Solving a Triangular System UTx=b

Since U is an upper triangular stored by column, UT is a lower triangular and as above it is
optimal to access it by row. Considering the decomposition used in section and transposing the
matrix results in:[
UT11 0
uT21 u22

] [
x1
x2

]
=

[
b1
b2

]
Solving for x derives the following equations: UT11x1 = b1 and x2 = (b2− uT21x1)/u22 where again
uT21x1 is an inner product. The algorithm for this system is:

f unc t i on x= u t s o l v e (A, b )
x=b
f o r j =1 : n

f o r p=Lp ( j ) + 1 : Lp ( j +1)−2
x ( j )= x ( j )−Ux( p )*x ( Ui ( p ) )
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end
x ( j )= x ( j ) / Ux(Up( j +1)−1)

end

The algorithm iterates from 1 to n as it is a forward solve. Once again this algorithm resembles
the common way of solving this kind of systems, because many readers are familiar with solving
a system by rows and not columns.





Chapter 4

Sparse Lower Triangular Solve

4.1 Introduction

The algorithms used in the previous chapter, only took into consideration the sparsity of the
left-hand side matrix, but it is very common in practice to have a sparse right-hand side as well.
It is of high importance to come up with an algorithm that exploits these features to their fullest
because the lower triangular solve is a basis for plenty factorization algorithms.

4.2 Sparse Right-Hand Side

For a sparse b and assuming that the diagonal of the L matrix is unity, the pseudo-code for
solving the system is:

x=b
f o r j =1 : n

i f xj ̸=0
f o r each i > j f o r which ℓij ̸=0

xi=xi−ℓij * xj

An algorithm based in the above pseudo-code would take O(n + f + |b|). Floating operations
dominate |b| so O(n+ f). But this is not very efficient because if there is a single non zero element
in b, f is O(1) but the whole loop would be executed again so the total work would be O(n) which
is clearly unacceptable.

Suppose all the xj ̸= 0 where known before hand and were sorted in ascending order, then the
j loop could be avoided using the following pseudo-code:

x=b
f o r each j∈ X

f o r each i > j f o r which l ij ̸=0
xi=xi− l ij * xj

The complexity of this algorithm is O(|b| + f), which is basically O(f)[42]. It’s a great time
improvement but a way to find X must be implemented.

13
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xj

xi

1st rule

2nd rule
lij

Figure 4.1: Rules Example

4.3 Finding the non-zero set X

4.3.1 Determining X

The entries of x become non-zero only in two cases, ignoring numerical cancellation:

1. bi ̸= 0 =⇒ xi ̸= 0

2. xj ̸= 0 ∧ ∃(lij ̸= 0) =⇒ xi ̸= 0

The first rule is pretty straight forward, if there is a non-zero entry in bi then the corresponding xi
is also non-zero. The second rule implies that in an line equation for instance:

li1x1 + · · ·+ lijxj + · · ·+ liixi = 0. If at least one xj ̸= 0 then xi = −
lij
lii
xj, so xi ̸= 0.

These rules that define the set X can be expressed as a graph traversal problem. Suppose there
is an acyclic directed graph GL = (V,E) where V = {1 · · · n} and E = {(j, i) | lij ̸= 0}. For
each xj ̸= 0 the corresponding node j is marked. So from the first rule all nodes {i | i ∈ B} are
marked. The second rule means that all nodes which can be reached from a marked node shall also
be marked. Hence,X is the set union of all nodes that can be reached from the nodes in B. In graph
terminology this is symbolized by X = ReachL(B)[32].

4.3.2 Computing X

Considering the graph GL, doing a depth-first search of GL starting at nodes B, can compute
the set X . Depth-First Search (DFS) algorithm starts at the root node and explores as far as
possible along each branch before backtracking. Time used by DFS is analogous to the number
of edges traversed, plus the number of the initial starting nodes, the nodes belonging in B. Each
edge translates into two floating point operations since an edge reflects the second rule hence,
the total time taken is O(|b| + f). Because for each {(i, j)| j < i} in xi = xi − lijxj, xj must be
first computed, the DFS algorithm must be done in a topological order, an order that preserves
precedence. In topological order, for every edge i −→ j, node i comes before node j in the ordering.
So the pseudo-codes for computing X are shown below[23]:

f u n c t i o n X= r e a ch (L ,B )
f o r each i f o r which bi ̸= 0

i f node i i s unmarked
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d f s ( i )

f u n c t i o n d f s ( j )
mark ( j )
f o r each i f o r which l ij ̸= 0

i f node ( i ) i s unmarked
d f s ( i )

push j on to s t a c k f o r X

Note that dfs(i) is a recursive function, but beware because recursive function can create stack
overflow for very large inputs, so an iterative approach that mimics the recursion is suggested
though recursion is used here since for easier comprehension.

4.4 Solving a Sparse System

Now, away has been found for calculatingX so the pseudo-code for solving the lower triangular
system from section 4.2 can be rephrased to the following algorithm:

f unc t i on x= l s p a r s e _ s o l v e (L ,B , k )
X= c s _ r e a c h (L ,B , k )
f o r p=Bp ( k ) : Bp ( k)−1 % b i s s t o r e d i n a CSC f o r m a t

x ( Bi ( p ) ) =Bx ( p ) % s o i t i s s c a t t e r e d

end
for s =1 : l eng th (X)

j =X( s )
x ( j )= x ( j ) / Lx ( Lp ( J ) ) ;
f o r p=Gp( j ) + 1 :Gp( j +1)−1

x ( Li ( p ) ) = x ( Li ( p ))−Lx ( p )*x ( j )
end

end
end

In a similar manner, the algorithm for solving an upper triangular can be implied, just be changing
the forward solve to a backward one. The algorithm takes an optimal O(|b| + f) time to execute.
An example follows showing all the theory discussed above. Consider the following system Lx=b:

ℓ11

ℓ22

ℓ23 ℓ33

ℓ41 ℓ44

ℓ45 ℓ55

ℓ61 ℓ66

ℓ73 ℓ76 ℓ77

ℓ81 ℓ87 ℓ88


x =



0
0
b3
b4
0
b6
0
0


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1 2

34

5

6

7

8

Figure 4.2: Corresponding Graph of GL

.
So, the setB is {3, 4, 6}. Calculating theReach for each node inB results in: Reach(3) = {3, 7, 8}
Reach(4) = {4, 5}, and finally Reach(6) = {6, 7, 8}, but nodes {7, 8} are already marked from
Reach(3). The final output is stored in topological order, thus X = {6, 4, 5, 3, 7, 8}. Note that,
due to topological ordering node 6 comes before node 7,8 although they are derived from the first
Reach. Observing the matrix it is easy to see that x6 and x3 are needed for computing x7, which is
why the node precedence must be maintained.



Chapter 5

Cholesky Decomposition

5.1 Introduction

A matrix decomposition or factorization is a way of reducing a matrix into its constituent
parts. That way, complex matrix operations can be performed on decomposed matrix rather than
the original matrix itself which leads to easier computations. Additionally, if a plenty of systems
include a specific matrix it is convenient to decompose it once, which is the computationally intense
part, and then reuse it for as many times as needed. In this Thesis three decomposition methods
will be examined, starting with Cholesky Decomposition in this chapter. The order in which the
methods are presented is in a way that is favors the gradually development of their theory.

5.2 Method Overview

For a Cholesky Decomposition to be applied to a real matrix A two criteria must hold:

1. The matrix must be symmetric, AT = A.

2. The matrix must be positive definite, (xTAx) > 0 for every non-zero vector x.

Then the decomposition is the product LLT = Awhere L is a lower triangular matrix with positive
diagonal entries. Note that for a n-by-n A matrix only its lower triangular component needs to be
stored after the decomposition which saves a big amount of space. Also, Ax = b =⇒ LLTx = b
which is a lower and followed by an upper triangular solve, which is easier than solving an arbitrary
square system.

If a a 2-by-2 decomposition is used in a similar manner like the chapters above LLT = A results
in: [

L11
ℓT12 ℓ22

] [
L11 ℓ12

ℓ22

]
=

[
A11 a12
aT12 a22

]
,

ℓ12 and a12 are vectors of size n, a22 and ℓ22 are scalars and L11 and A11 are matrices of size
(n − 1)x(n − 1). The deriving equations from the above system are: L11LT11 = A11, L11ℓ12 = a12

17
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and ℓT12ℓ12 + ℓ222 = a22 =⇒ ℓ22 =
√
a22 − ℓT12ℓ12, where a22 > ℓT12ℓ12 due to A being positive-

definite. The algorithm yielding a solution to the system is:

f unc t i on L=up_cho l e sky (A)
n= s i z e (A)
L= zero s ( n )
f o r k =1: n

L( k , 1 : k−1)=(L ( 1 : k−1 ,1: k−1)\A( 1 : k−1,k ) ) ’ ;
L ( k , k )= sqr t (A( k , k)−L( k , 1 : k−1)*L( k , 1 : k−1) ’)

end
end

This algorithm is called up because it is up-looking, meaning it looks at (k − 1) rows before
constructing kth row of L. It can be seen from the above equations and the algorithm that a triangular
solve is used. If A is a sparse matrix that leads to a sparse triangular solve and the theory developed
in Chapter 4 can be used but for this algorithm the theory can be taken a step further.

5.3 Elimination Tree

Consider again the equation L11ℓ12 = a12 of a sparse matrix. After the sparse triangular solve
the vector ℓT12 becomes the 2

nd or generally the kth row of L. So X = ReachL(B) becomes any
given row k, Lk = ReachLk−1(Ak) where Lk is the non-zero pattern of line k, Lk−1 is the already
calculated part, in the above decomposition L11, as well as Ak is the non-zero pattern of the upper
triangular part of the kth column of A. Bearing in mind this pattern the subsequent relation is
established.

Consider any i < j < k where aik ̸= 0 and ℓji ̸= 0 corresponding to the Figure 5.1. Traversing
the graph corresponding to Lk−1 would start from node i since i ∈ Ak, hence i ∈ Lk. Then, the
traversal would visit node j because ℓji ̸= 0 so from the 2nd rule in 4.3.1 xj ̸= 0 thus j ∈ Lk.
Thereafter, the computed vector x will become the kth row of L so ℓki ̸= 0 and ℓkj ̸= 0. So, two
non-zeros in column i imply that there is a non-zero in column j(ℓkj), ℓki ̸= 0∧ℓji ̸= 0 =⇒ ℓkj ̸= 0.

So the following two rules derive for a Cholesky Decomposition LLT = A and neglecting
numerical cancellation :

1. aij ̸= 0 =⇒ ℓij ̸= 0

2. i < j < k ∧ ℓji ̸= 0 ∧ ℓki ̸= 0 =⇒ ℓkj ̸= 0

Note that from the second rule, in the L matrix appear some non-zero entries which are not in the
original A matrix, these are called fill-in entries.

In graph notion the above translates in an edge (i,j) and an edge (i,k) imply and edge (j,k). If
there is a path from j to k the path from i to k is redundant to compute Reach(i) because i would
be reached via j. This of course does not affect the Reach(t) of any other nodes t<i. Thus, only the
least numbered node j with j > i is needed to compute Reach(i). The previous sentence leads to an
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xi

xj

ℓji

ℓii

ℓki ℓkj
xk

Figure 5.1: Elimination Tree Relations

remarkable observation that any node would have have at most one outgoing edge and since two
vertices are connected by exactly one path, this results in a tree.

The tree produced is called an Elimination Tree. Node j is the parent of node i in the tree,
where j is the first off-diagonal entry in the ith column. If a column has no off-diagonal entries it
has no parent thus it is a tree by itself. So, an elimination tree is actually an elimination forest
but the former term is used. For a Cholesky Matrix L its elimination tree is denoted as T as well
as for any sub-matrix L1···k 1···k of L is denoted as Tk. Computing Lk only takes O(Lk) time using
the Elimination Tree which of course is a better time complexity than using the method from the
previous chapter. Having established the Elimination Tree the theorems and methods to compute
it efficiently follow[54].

5.4 Computing the Elimination Tree

Before proceeding to the computational part the subsequent theorems, which will enable us to
compute the tree efficiently, must be established. Also, bear in mind that numerical cancellation is
once again neglected[52][58][61].

1. Considering a Cholesky Decomposition LLT = A, if ℓki ̸= 0 ∧ k > i =⇒ i is a descendant
of k in T and the path i; k exists in T .

2. The non-zero pattern Lk = ReachLk−1(Ak) = ReachTk−1(Ak)

3. Node j is a leaf of T k ⇐⇒ ajk ̸= 0 ∧ aik = 0 for every descendant i of j in T .

4. Considering LLT = A, if aki ̸= 0 and k > i =⇒ i is a descendant of k in T and the path
i; k exists in T .

Let us examine closer the previous rules. The 1st rule is easier understood by looking at Figure
5.2. Let j be the parent of i that is the first off-diagonal entry in column i with ℓji ̸= 0. The parent
must exist because ℓki ̸= 0 holds. If k = j then k = parent(i) and i; k is indeed a direct path in T .
For (k > j > i) ∧ (ℓki ̸= 0) ∧ (ℓji ̸= 0) and recalling rule 2 from previous chapter implies ℓkj ̸= 0
so the path j ; k exists and combined with (i,j) edge results in a path i ; k in T . So removing
removing redundant edges to obtain T has no effect in the Reach of any node.
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Figure 5.2: 1st Rule
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Figure 5.3: Elimination Tree of A and Row Subtrees

From the above statements the 2nd as well as 3rd rules derive easily and show that any sub-tree
T k is characterized by its leaves. They are also leading to the 4th rule which is quite similar to the
first only this time the relation can be established from the original matrix.

Let us view an example in order to comprehend better the concept of the Elimination Tree.
Consider the following matrix and its corresponding Cholesky Decomposition:

A =



a11 a16
a22 a24 a25 a27

a33 a35 a37
a42 a44 a45 a47
a52 a53 a54 a55 a57

a61 a66
a72 a73 a74 a75 a77


L =



ℓ11

ℓ22

ℓ33

ℓ42 ℓ44

ℓ52 ℓ53 ℓ54 ℓ55

ℓ61 ℓ66

ℓ72 ℓ73 ℓ74 ℓ75 ℓ77


The Elimination Tree is in Figure 5.3, where we observe that its actually a forest and that no

fill-in entries exist, thus no element came from rule 2 of previous chapter. Also, each row sub-tree
T k for k = 1 · · · 7 in ascending order.

Another example is given below. Once again consider the matrix A and its Choleksy Factor L.
The vector parent denotes is the Elimination Tree parent-child relations, where parent(i) is the
parent of node i in the tree, for example parent(2) = 3 and parent(10) = 0 because 10 is the root
of T :
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A =



a11 a12 a13 a16 a110
a21 a22 a26 a210
a31 a33

a44 a45 a47 a49 a410
a54 a55 a57

a61 a62 a66 a69 a610
a74 a75 a77 a79

a88 a89 a810
a94 a96 a97 a98 a99

a101 a102 a104 a106 a108 a1010



,

L =



ℓ11

ℓ21 ℓ22

ℓ31 ℓ32 ℓ33

ℓ44

ℓ54 ℓ55

ℓ61 ℓ62 ℓ63 ℓ66

ℓ74 ℓ75 ℓ77

ℓ88

ℓ94 ℓ95 ℓ96 ℓ97 ℓ98 ℓ99

ℓ101 ℓ102 ℓ103 ℓ104 ℓ105 ℓ106 ℓ107 ℓ108 ℓ109 ℓ1010



,

parent =
[
2 3 6 5 7 9 9 9 10 0

]
.

In this example, the entries in Lmatrix written in bold denote the fill-in entries that are produced
from the Cholesky Decomposition. For example notice the entry ℓ32, because entries ℓ21 and ℓ31

exist then by rule 2 ℓ32 is a non-zero entry as well. Same thing goes for instance for entry ℓ95, due
to ℓ54 ̸= 0 ∧ ℓ94 ̸= 0 =⇒ ℓ95 ̸= 0, as well as for all other fill-in entries.

From rules 1 and 4 an algorithm that computes the Elimination Tree in nearly O(|A|) time can
be constructed. Assume that Tk−1 is computed, which is a subset of Tk, then to compute Tk the
children of node k must be found, which are roots in Tk−1. Since there holds aki ̸= 0 for i < k the
path i ; k exist in T and it can be traversed up until reaching a root node in Tk−1, and since the
path leading to node k exist the root node reached is a child of node k.

The traversal to meet the upper time complexity needs a small modification. Let us introduce
the concept of ancestors. The ancestor of i in the partially constructed tree Tk−1 is ideally the root
of the tree that contains i. Then traversing the path from i to the rootwould take constant timeO(1).
Thus, the method used leads to a complexity that is O(|A| log n) but in practice the bound is hardly
reached and the complexity is practically almost O(|A|)[23]. So the algorithm that computes the
Elimination Tree is the one below:

f unc t i on p a r e n t = e t r e e (A)
n= s i z e (A)
p a r e n t = zero s ( n , 1 )
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Figure 5.4: Elimination Tree of A (second example)

a n c e s t o r = zero s ( n , 1 )
f o r k =1: n

f o r p=Ap( k ) : Ap( k+1)−1
i =Ai ( p )
whi le ( i ~=0 && i < k )

i n e x t = a n c e s t o r ( i )
a n c e s t o r ( i )= k
i f i n e x t ==−1

p a r e n t ( i )= k
end
i = i n e x t

end
end

end
end

5.5 Solving Sparse Lx=b using the Elimination Tree

Recall from Chapter 4.3.2 that for solving a Sparse Lx = b system we need to compute the
Reach of the lower triangular matrix in respect to the right hand side vector that isX = ReachL(B).
But in this specific case, the matrix L emerges from a Choleksy Decomposition and so it has a
more particular pattern than the general case.

To compute theLk = Reachk−1(Ak)where k−1 denotes the Graph of Lk−1 andAk denotes the
non-zero pattern of column k of A which is the next candidate column for the next step in Cholesky
Decomposition. The ReachL(i) is computed simply and fast by traversing the Elimination Tree
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from node i to the root, i ; r. This needs less time than the general case Reach due to the graph
being a Tree and not a DAG. Thus, to compute the Reach of Lk the k th row sub-tree needs to be
traversed for the input Ak, that is every non-zero entry in the kth column of A or the the kth row
equivalently. The algorithm computing the Elimination Tree Reach is the following[23]:

f unc t i on Lk= e r e a c h (A, p a r e n t , k )
n= s i z e (A, 1 )
Lk= zero s ( n , 1 ) % o u t p u t a r r a y

w= zero s ( n , 1 ) % wo r k s p a c e a r r a y f o r m a r k i n g v a l u e s

s= zero s ( n , 1 ) % s t a c k a r r a y

t op=n
mark (w, k ) % ma r k n o d e k a s v i s i t e d

f o r p=Ap( k ) : Ap( k+1)−1
i =Ai ( p )
i f i >k

c o n t i n u e
end
l e n =1
whi le i = p a r e n t ( i )

i f mark (w, i ) % c h e c k i f n o d e i h a s a l r e a d y b e e n v i s i t e d

break
end
s ( l e n )= i
l e n = l e n +1
mark (w, i )

end
whi le l en >0

Lk ( t op )= s ( l e n )
t op= top−1
l e n = len−1

end
end
Lk=Lk ( Lk~=0) % r e m o v e i f t h e r e a r e a n y z e r o s

f o r p =1: l eng th ( Lk)−1
mark (w, Lk ( i ) ) % u nm a r k n o d e L k ( i )

end
mark (w, k )

end

The code takes as an input the matrix A, the step k and the parent array which is the result of
the etree function. In the beginning, the variables are set up and the node k is marked as visited.
Then, the path i ; r is traversed and every node in the path is marked as visited. Every node
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encountered is placed in the s array and then is copied to Lk from the end to the front so as to
preserve the topological order. Afterwards, the iteration continues with the next i node.
The function mark is taking as an input a work space array w and a node i and if the node is
unmarked it marks it and vice versa. As an output it returns true if the node is already marked
otherwise false. The implementation code for mark function is omitted.
The total time taken for ereach function, Lk = Reach is O(Lk) which is arguably faster than the
reach function from Chapter 4.3.2.

5.6 Postordering the Elimination Tree

If a matrix A is permuted according to the postordering matrix P so as C = PAPT and LLT =

C, then L has the same non-zero elements as before but it would be in better structure resulting
often to a faster decomposition. Additionally, the postorder of the Elimination Tree is essential for
computing the non-zero entries of each column in L, which is of high importance as will be shown
in the future chapters.

The filled graphs of A and PAPT are isomorphic if P is a postordering of the elimination tree
of A. Likewise, the elimination trees of A and PAPT are isomorphic[54].

An isomorphism is a mapping between two structures of the same type that can be reversed by
an inverse mapping. Twomathematical structures are isomorphic if an isomorphism exists between
them[24].

In a postordering traversal the algorithm processes all nodes of a tree by recursively processing
all sub-trees, then finally processing the root. So for the child-parent relation to be preserved the
elimination tree, every child must have a smaller node number than its parent. For instance if a node
j hasm descendants the latter must be numbered from j−m to j−1. For a postordering permutation
array post, post(k)=j means that original node j is now numbered as k in the postordered tree. The
relative ordering of the children of a node j is also preserved after a postordering. So if c1<c2<...<cn
are the n children of j then post(c1)<post(c2)<...<post(cn) holds.

The recursive logic behind computing recursively the postordering using a depth-first search
is shown below:

f unc t i on P= p o s t o r d e r (T )
k=0
f o r j =1 : l eng th (T )

d f s t r e e ( j )
end

end

func t i on d f s t r e e ( j )
f o r i =1 : n

i f i i s a c h i l d o f j
d f s t r e e ( i )
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end
po s t ( k )= j
k=k+1
end

end

Once again, this recursive algorithm can cause stack overflow for very large inputs asmentioned
in Chapter 4.3.2. So an iterative approach that mimics the recursive functions above is suggested.

An example of postordering is following:

A =



a11 a12 a13 a16 a110
a21 a22 a26 a210
a31 a33

a44 a45 a47 a49 a410
a54 a55 a57

a61 a62 a66 a69 a610
a74 a75 a77 a79

a88 a89 a810
a94 a96 a97 a98 a99

a101 a102 a104 a106 a108 a1010



,

LA =



ℓ11

ℓ21 ℓ22

ℓ31 ℓ32 ℓ33

ℓ44

ℓ54 ℓ55

ℓ61 ℓ62 ℓ63 ℓ66

ℓ74 ℓ75 ℓ77

ℓ88

ℓ94 ℓ95 ℓ96 ℓ97 ℓ98 ℓ99

ℓ101 ℓ102 ℓ103 ℓ104 ℓ105 ℓ106 ℓ107 ℓ108 ℓ109 ℓ1010



,

C =



c11 c12 c13 c14 c110
c21 c22 c24 c210
c31 c33
c41 c42 c44 c49 c410

c55 c56 c57 c59 c510
c65 c66 c67
c75 c76 c77 c79

c88 c89 c810
c94 c95 c97 c98 c99

c101 c102 c104 c105 c108 c1010



,
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Figure 5.5: Post ordered Elimination Tree

LC =



ℓ11

ℓ21 ℓ22

ℓ31 ℓ32 ℓ33

ℓ41 ℓ42 ℓ43 ℓ44

ℓ55

ℓ65 ℓ66

ℓ75 ℓ76 ℓ77

ℓ88

ℓ94 ℓ95 ℓ96 ℓ97 ℓ98 ℓ99

ℓ101 ℓ102 ℓ103 ℓ104 ℓ105 ℓ106 ℓ107 ℓ108 ℓ109 ℓ1010



,

post =
[
1 2 3 6 4 5 7 8 9 10

]
.

The matrix A is the same as in the second example in Chapter 5.4.C is A(post,post) where
post is shown below. So the corresponding elimination tree is shown in 5.4 and the postordered
elimination tree is shown in Figure 5.5. The matrices LC and LA have the same number of non-zero
values so obviously the have the same number of fill-in entries. But, it is easy to note that the
elements in matrix C as well as in matrix LC are distributed in a better pattern.

5.7 Row Counts

The Row Count algorithm computes the number of non-zero entries in each row of the matrix
L. The Row Count algorithm is a precursor to the Column Count. So many of the features of the
latter algorithm are used in this one too. Since row counts is a simpler algorithm it is presented first
although the in practice only the column counts algorithm is used[23].

To calculate the non-zeros of a row i a simple tree traversal method would suffice. For each
aij ̸= 0 start traversing the tree from node j up to node i or until finding a node which has been
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already visited. This is the same as traversing all the nodes in the subtree T i. The construction of
an algorithm in the sense presented above would result in a time complexity of O(|L|). Hopefully,
an algorithm with better time complexity of nearly O(|A|) time can be implemented, if some new
concepts are introduced first. These concepts are the subsequent:

1. First Descendant

2. Skeleton Matrix

3. Least Common Ancestor

4. Path Decomposition

The key notion behind the algorithm is to decompose each row subtree in a set of paths which
are disjoint. Each path will start at a leaf node, where aij ̸= 0 in this subtree T i, and will end in
least common ancestor of the current and the previous leaf nodes. Thus the length of each path is
found by computing the difference between the level of the starting and ending node, where level
denotes the distance of a node to the root of the tree. Now, let us take an better inspection at the
rules mentioned before.

The First Descendant of a node j is the node with the smallest postorder value in the set of all
the descendants of j. Considering the function introduced below the time needed to compute the
first descendant is O(n).

f unc t i on [ f i r s t , l e v e l ]= f i r s t _ d e s c e n d a n t ( n , pos t , p a r e n t , f i r s t , l e v e l )
f i r s t = zero s ( n , 1 )
f o r k =1: n

i = po s t ( k )
l e n =0
r = i
whi le ( ( r !=0 ) && ( f i r s t ( r )==0)

f i r s t ( r )= k
r = p a r e n t ( r )
l e n = l e n +1

end
i f r ==0

l e n = len−1
e l s e

l e n = l e n + l e v e l ( r )
end
s= i
whi le ( s ~= r )

l e v e l ( s )= l e n
l e n = len−1
s= p a r e n t ( s )
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end

end
end

The function starts at node k=1 in the postordered tree and goes all the way up to the root. All
the nodes in the way gain 1 as their first descendant. For a node k>1 the algorithm terminates at a
node r whose first descendant has already been found and so has it’s level. The first in the path is
once again the starting node k. Once the path has been determined, it is traversed again so as to set
the level of the nodes along the way. An example is given in Figure 5.6

The next step is to divide the tree into disjoint paths. To do so, the leaf nodes must be found.
The Skeleton Matrix is a structure created for that cause. The entries that are leaves in each row
subtree form the SkeletonMatrixÂ. Thus, all the entries in the matrix Â are a subset of the entries
in the matrix A. The non-zero pattern of the Cholesky factorization for both Â and A matrices is
the same.

Below a prototype of the skeleton function is presented, although the actual code is implemented
in the row count function. Suppose the matrix is postordered and so the leaves of each row subtree
can be determined by using the first descendant of each node in the following manner:

f unc t i on s k e l e t o n ( f i r s t , n )
m a x f i r s t = zero s ( n , 1 )
f o r j =1 : n

f o r each i > j f o r which aij ̸= 0
i f f i r s t ( j ) > m a x f i r s t ( i )

j i s a l e a f i n T i

max f i r s t ( i )= f i r s t ( j )
end

end
end

The algorithm starts considering a node j and all the row subtrees that contain this node. First(j)
is the first descendant in the eliminatrion tree as seen before and maxfirst(i) is the biggest first(j)
met so far in the T i. If first(j) ≤ maxfirst(i) then node j must have a descendant d < j in T i, for
which first(d)=maxfirst(i)≥first(j). Thus, j is not a leaf of the subtree T i. On the other hand, if
first(j)>maxfirst(i) then node j has no descendants in T i and so j is a leaf. These rules are listed
together below considering a postordered tree:

1. If fj ≤j is the first descendant of j then all the descendants of j are fj, fj + 1, · · · , j− 1.

2. for two nodes t < j then either ft ≤ t < fj ≤ j or fj ≤ ft ≤ t < j. In the first case
t /∈ descendants(j). In the second case t ∈ descendants(j). As an example for the first case
consider t = 2, ft = 1 and j = 6, fj = 5 and for the second case t = 7, ft = 5 and j = 9, fj = 1
in Figure 5.6.
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Figure 5.6: First Descendant Function Example (the number on the left is the fj and on the right
the level of each node)
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Figure 5.7: Row Subtrees of the postordered elimination tree

3. for a node j and a set S for which holds {∀s ∈ S, s < j}. If node t ∈ S has the largest
first descendant ft then j has a descendant in S if and only if ft ≥ fj , {ft ≥ fj ⇐⇒ s ∈
descendants(j)}. Consider as s = 8, fs = 8 and j = 10, fj = 1 in Figure 5.6.

Consider the row subtrees presented in Figure 5.7 as an input to the skeleton function. The
algorithm output is show below. The postordered matrix is shown again for convenience.

A =



a11 a12 a13 a14 a110
a21 a22 a24 a210
a31 a33
a41 a42 a44 a49 a410

a55 a56 a57 a59 a510
a65 a66 a67
a75 a76 a77 a79

a88 a89 a810
a94 a95 a97 a98 a99

a101 a102 a104 a105 a108 a1010


Computation of Â using skeleton function:
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j =1 : f i r s t ( 1 )=1 , i =2 max (2 )=0→ 1 l e a f , i =3 max (3 )=0→ 1 l e a f ,
i =4 max (4 )=0→ 1 l e a f , i =10 max (10 )=0→ 1 l e a f

j =2 : f i r s t ( 2 )=1 , i =4 max (4 )=1 no t l e a f , i =10 max (10 )=1 no t l e a f
j =3 : f i r s t ( 3 )=1
j =4: f i r s t ( 4 )=1 , i =9 max (9 )=0→ 1 l e a f , i =10 max (10 )=1 no t l e a f
j =5 : f i r s t ( 5 )=5 , i =6 max (6 )=0→ 5 l e a f , i =7 max (7 )=0→ 5 l e a f ,

i =9 max (9 )=1→ 5 l e a f , i =10 max (10)=10→5 l e a f

j =6 : f i r s t ( 6 )=5 , i =7 max (7 )=5 no t l e a f ,
j =7 : f i r s t ( 7 )=5 , i =9 max (9 )=5 no t l e a f
j =8 : f i r s t ( 8 )=8 , i =9 max (9 )=5→ 8 l e a f , i =10 max (10 )=5→ 8 l e a f
j =9 : f i r s t ( 9 )=1 , i =10 max (10 )=8 no t l e a f
j =10: f i r s t ( 10 )=1

Â=



â11 â12 â13 â14 â110
â21 â22
â31 â33
â41 â44 â49

â55 â56 â57 â59 â510
â65 â66
â75 â77

â88 â89 â810
â94 â95 â98 â99

â101 â105 â108 â1010


Recall the elements of the list introduced in the beginning of the chapter. The first two concepts

are by now known. The least common ancestor of two nodes i, j is an ancestor of both i and jwhich
has the smallest number and is denoted as q=lca(i,j). For instance, in the subtree T 9 9=lca(4,5) in
Figure 5.7.

Now,PathDecomposition can be presented. PathDecomposition is amethodwhich decomposes
any row subtree into a set of disjoint paths. This can easily be be implemented by using the leaves
and the theorems discussed previously. Consider two consecutive leaves jprev < j. Each path starts
at j and ends at q=lca(jprev, j). An example of the 3 distinct paths produced by this method for row
subtree T 9 which has 3 leaves is shown at Figure 5.8.

At this point computing the Row Counts is quite easy. That is because the non-zero entries of
a particular row i can be computed by summing the length of all the distinct paths in T i. The length
of each path can be found by calculating the level difference between the ending and the starting
node.

The least common ancestor is efficiently computed by taking into account the following observation.
Considering a postordered tree the least common ancestor of node i and jwhere i < j, can be found
by traversing the path i; root. The first node q found along the way for which holds q ≥ j is the
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Figure 5.8: Path Decomposition of T 9

least common ancestor.
The leaf function presented below determines if a node j is a leaf of T i and if so it computes

the least common ancestor between this and the previous leaf in this subtree. Again the ancestor
concept is used as in etree function in Chapter 5.4. In the beginning each element is each own
ancestor and the root of a set is always it’s own ancestor[39].

f unc t i on [ q , max f i r s t , p r e v l e a f , a n c e s t o r , j l e a f ] = l e a f ( i , j , f i r s t ,
max f i r s t , p r e v l e a f , a n c e s t o r , j l e a f )

j l e a f =0
i f ( i <= j | | f i r s t ( j ) <= m a x f i r s t ( i ) )

q=0 %n o t a l e a f

re turn
end

max f i r s t ( i )= f i r s t ( j ) % l e a f → u p d a t e m a x f i r s t

j p r e v = p r e v l e a f ( i ) % l o a d p r e v l e a f a n d u p a t e t h e n ew

p r e v l e a f ( i )= j
i f ( j p r e v ==−1) % f i r s t l e a f

q= i % i i s t h e r o o t o f i s u b t r e e

j l e a f =1
re turn

end
j l e a f =2 % n o t f i r s t l e a f

q= j p r e v
whi le ( q~= a n c e s t o r ( q ) ) % f i n d t h e r o o t o f t r e e

q= a n c e s t o r ( q )
end
s= j p r e v
whi le ( s ~=q )
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s p a r e n t = a n c e s t o r ( s ) % p a t h c o m p r e s s i o n w i t h a n c e s t o r m e t h o d

a n c e s t o r ( s )= q
s= s p a r e n t

end
end

The total Row Count algorithm then is[41]:

f unc t i on r c o u n t = rowcount (A, p a r e n t , p o s t )
n=A. n
Ap=A. p
Ai=A. i
[ f i r s t , l e v e l ]= f i r s t _ d e s c e n d a n t ( n , pos t , p a r e n t , f i r s t , l e v e l )
f o r i =1 : n

r c o u n t ( i )=1 % f o r t h e d i a g o n a l

p r e v l e a f ( i )=0
m a x f i r s t ( i )=0
a n c e s t o r ( i )= i % e v e r y n o d e i s i t s own a n c e s t o r

end
for k =1: n

j = po s t ( k ) % u s e p o s t o r d e r i n g t h r o u g h p e r m u t a t i o n v e c t o r

f o r p=Ap( k ) : Ap( k+1)−1
i =Ai ( p )
[ q , max f i r s t , p r e v l e a f , a n c e s t o r , j l e a f ] = l e a f ( i , j , f i r s t ,
max f i r s t , p r e v l e a f , a n c e s t o r , j l e a f )
i f j l e a f

r c o u n t ( i )= r c o u n t ( i ) + ( l e v e l ( j )− l e v e l ( q ) )
end

end
i f ( p a r e n t ( j )~=−−1)

a n c e s t o r ( j )= p a r e n t ( j )
end

end
end

An example of the row count algorithm is presented below using as an input the postordered
elimination tree which was used at the Skeleton matrix in 5.7. The max and first values are the
same as well as the level.

j =1 : i =2 p r e v l e a f (2 )=0→ 1 q=2 r c o u n t (2)=1+(5−4)=2 ,
i =3 p r e v l e a f (3 )=0→ 1 q=3 r c o u n t (3)=1+(5−3)=3→ ,
i =4 p r e v l e a f (4 )=0→ 1 q=4 r c o u n t (4)=1+(5−2)=4 ,
i =10 p r e v l e a f (10 )=0→1 q=10 r c o u n t (10)=1+(5−0)=6 ,
a n c e s t o r ( 1 )=2
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j =2: i =4 no t l e a f , i =10 no t l e a f , a n c e s t o r ( 1 )=3
j =3: i =3 no t l e a f , a n c e s t o r (3 )=4
j =4: i =9 p r e v l e a f (9 )=0→ 4 q=9 r c o u n t (9)=1+(2−1)=2 ,

i =10 no t l e a f , a n c e s t o r ( 4 )=9
j =5: i =6 p r e v l e a f (6 )=0→ 5 q=6 r c o u n t (6)=1+(4−3)=2 ,

i =7 p r e v l e a f (7 )=0→ 5 r c o u n t (7)=1+(4−2)=3 ,
i =9 p r e v l e a f (9 )=4→ 5 q=9 r c o u n t (9)=2+(4−1)=5 ,
i =10 p r e v l e a f (10 )=1→5 q=9 r c o u n t (10)=6+(4−1)=9 , a n c e s t o r (5 )=6

j =6: i =7 no t l e a f , a n c e s t o r (6 )=7
j =7: i =9 no t l e a f , a n c e s t o r (7 )=9
j =8: i =9 p r e v l e a f (9 )=5→ 8 q=9 r c o u n t (9)=5+(2−1)=6 ,

i =10 p r e v l e a f (10 )=1→8 q=9 r c o u n t (10)=9+(2−1)=10
a n c e s t o r ( 8 )=9

j =9: i =10 no t l e a f a n c e s t o r (9 )=10

r c o u n t s =[1 2 3 4 1 2 3 1 6 10]

Additionally if a node k has ancestor(k)=j and then ancestor(j)=i when this path is traversed
again the ancestor array will be updated and ancestor(k)=i, this is the path compression which is
omitted in the example above.

5.8 Column Counts

Column counts can be computed in the same time as row counts, nearly O(|A|). LetAj be the
non-zero pattern of j column of A matrix, Âj be the non-zero pattern of j column of Â matrix, Lj
be the non-zero pattern of column j of L matrix and finally cj be the count of non-zero elements in
Lj, so cj = |Lj|.

If Lj denotes the non-zero pattern of the jth column of L andAj denotes the nonzero pattern of
the strictly lower triangular part of the jth column of A, then

Lj = Aj ∪ j ∪ (
∪

s=child(j)

Ls \ {s})[35].

In order to comprehend the previous relation consider the Figure 5.9. Suppose d is a descendant
of j then the path d; j exists in the elimination tree T . For a node s that is a child of j the path d; s
exists also in T . Consider a node i > j if ℓid ̸= 0 =⇒ d; s→ j ∈ T i =⇒ ℓis ̸= 0 & ℓij ̸= 0.
Thus the row index i ∈ Ls,Lj. So to construct Lj only Ls, with s being a child of j, is needed of
all the descendants of j. Finally, if i ∈ Lj =⇒ j ∈ T i so j is either a leaf or not. If j is a leaf then
i ∈ Âj ⊆ Aj. If not, then j has a child s ∈ T i and so i ∈ Ls.

So the nonzero pattern of the jth column of L is a subset of the path j; r from j to the root of
the elimination tree T .

Using only the upper relation the time needed for computing the column counts is O(|L|). If
the least common ancestor concept is taken into account then the time drops to O(|A|).

If a node j is a leaf of the elimination tree then j will be a leaf for every entry i in column j that



34 Chapter 5. Cholesky Decomposition
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Figure 5.9: The Lj is the union of its children

aij ̸= 0. So every such entry will be in the skeleton matrix Â. The count of non-zero entries in Lj
will be the number of Âj = Aj plus 1 for the diagonal entry ℓjj. So, cj = |Âj|+ 1, for j leaf of T .
On the other hand, if a node j is not a leaf of T then from 5.8 Lj = Aj∪ j∪ (

∪
s=child(j)

Ls \ {s}). But

if an entry is in Â then it is not in the pattern of the children of j so cj = |Âj|+ |
∪

s=child(j)

Ls \ {s}|.

If the number of children of j is computed in variable ej then cj = |Âj| + |
∪

s=child(j)

Ls| − ej. The

union of the children of j may have so overlapping nodes. If the overlap count was computed an
stored in oj then cj = |Âj| − oj − ej +

∑
s=child(j)

cs.

For instance, to calculate the L9 of the tree in Figure 5.6 the children the relationship takes the
following form:L9 = Â9∪L4\{4}∪L7\{7}∪L8\{8}={0}∪{9, 10}∪{9, 10}∪{9, 10} = {9, 10}.
Also, c9 = Â9−o9−e9+

∑
s=child(9)

cs = 0−4−3+9 = 2. Node 9 has three children so e9 = 3, nodes

{9, 10} appear both in the three children so overlap oj = 4 and finally
∑

s=child(9)

cs = c4+c7+c8 =

3+ 3+ 3 = 9.
The method to find the Skeleton matrix is show in the previous section. Only the method to

Figure out the overlaps is then needed, to be able to compute cj from the relation shown above.
The overlaps are closely related to the row subtrees of the elimination tree. If a node j is in the row
subtree T i that means i ∈ Lj. So, there are three possible cases:

1. If j /∈ T i ⇐⇒ i /∈ Lj, so no contribution to oj

2. If j is a leaf of T i then âij ̸= 0 and since the skeleton matrix and the children set are disjoint,
no contribution to oj here either.

3. If j ∈ T i and not a leaf then j has at least one child and their number is denoted by dij. Since
row i belongs to every non-zero pattern of the children the overlap oj = dij − 1.

The 3rd rule derives from the fact that if j has dij number of children in T i then it will be the
least common ancestor of dij − 1 pairs of leaves. Thereby, each time node j becomes a lca the
overlap count oj can be incremented by 1.
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Suppose ∆j = |Âj| − ej − oj for a non-leaf node. If j is a leaf then∆j = |Âj|+ 1. Then,
cj = |Âj| − oj − ej +

∑
s=child(j)

cs =⇒ cj = ∆j +
∑

s=child(j)

cs.

∆j is initialized as 1 if j is a leaf and as 0 if not. For every âij ̸= 0 ∆j is incremented by 1 and
decremented by 1 for every child of j as well as when j becomes the lca of two pair of leaves. The
algorithm for computing the Column Count is given below[41][39].

f unc t i on ccoun t = c o l c o u n t s (A, p a r en t , p o s t )
n=A. n
Ai=A. i
Ap=A. p
w= zero s ( 1 , n )
f o r k =1: n

j = po s t ( k )
i f ( f i r s t ( j )==0) % j i s a l e a f

d e l t a ( j )=1
e l s e

d e l t a ( j )=0 % j n o t a l e a f

end
whi le ( ( j ~=0) && ( f i r s t ( j ) ==0 ) ) % c o n s t r u c t t h e f i r s t o f e a c h n o d e

f i r s t ( j )= k
j = p a r e n t ( j )

end
a n c e s t o r ( k )= k % e v e r y n o d e i s e a c h own a n c e s t o r a t f i r s t

end

for k =1: n
j = po s t ( k )
f o r p=Ap( j ) : Ap( j +1)−1

i =Ai ( p )
[ q , max f i r s t , p r e v l e a f , a n c e s t o r , j l e a f ]= l e a f ( i , j , f i r s t ,
max f i r s t , p r e v l e a f , a n c e s t o r , j l e a f )
i f ( j l e a f >=1) d e l t a ( j )= d e l t a ( j )+1 % ai,j ∈ Â
i f ( j l e a f ==2) d e l t a ( q )= d e l t a ( q)−1 % j i s s u b s e q u e n t l e a f

% s o d e l t a ( l c a )− −

end
i f ( p a r e n t ( j )~=−0)

a n c e s t o r ( j )= p a r e n t ( j ) % e v e r y s e t b e l o n g s t o i t s f a t h e r

end
end
ccoun t = d e l t a
f o r j =1 : n
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i f ( p a r e n t ( j )~=0)
c coun t ( p a r e n t ( j ) ) = ccoun t ( p a r e n t ( j ) ) + ccoun t ( j )
% t h e c o l c o u n t o f a n o d e j i s t h e s um o f i t s c h i l d r e n c o u n t

end
end

end

5.9 Symbolic Analysis

The Symbolic Analysis of a matrix is the computing the information that do not depend on
each numerical values but mainly on the structure of the matrix, the non-zero pattern that is. This
can be helpful because permutations that result in less fill-in entries can be found also because it
is common practice for matrices of the same study area to have the same non-zero structure.

Everything computed so far in this chapter is part of the symbolic analysis of a sparse matrix.
So, all of this information needs to be stored in a concise data structure for instance A_symb.

A_symb . p a r e n t = e t r e e (A) % f i n d t h e e l i m i n a t i o n t r e e

A_symb . p o s t = p o s t ( A_symb . p a r e n t ) % f i n d t h e p o s t o r d e r p e r m u t a t i o n

A_symb . cp= c o l c o u n t s (A, A_symb . p a r e n t , A_symb . p o s t )
A_symb . cp=cumsum ( c ) % s t o r e t h e c o l u m n p o i n t e r s f o u n d u s i n g c o l c o u n t s

A_symb . l n z =sum ( A_symb . cp ) % t h e n u m b e r o f n z e n t r i e s i n L

The entries in the struct A_symb can be extended by storing the permutation found suitable
for this kind of matrix as well as the permuted matrix. For now, the elimination tree of A, the
postordering of the tree, the column counts of L and the total number of non-zeros in L are computed.

5.10 Up-Looking Cholesky

At this moment, the final step is to compute the numerical values of the factorization using the
up-looking method, it is the 2-by-2 decomposition introduced in chapter 5.2.

f unc t i on L=up_cho l (A, A_symb )
n=A. n
cp=A_symb . p
Lp=c=cp
Ap=A. p
Ai=A. i
p a r e n t =A_symb . p a r e n t
f o r k =1: n

% F i n d t h e n o n z e r o p a t t e r n o f A:k
Lk= e r e a c h (A, p a r e n t , k ) % f i n d e r e a c h

x ( k )=0
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f o r p=Ap( k ) : Ap( k+1)−1
i f Ai ( i )<=k

x ( Ai ( p )=Ax( p )
end

end
d=x ( k )
x ( k )=0
% T r i a n g u l a r s o l v e f o r Lk,:
f o r Lk_c =1: l eng th ( Lk )

i =Lk ( Lk_c ) % p a t t e r n o f L k

l k i =x ( i ) / Lx ( Lp ( i ) ) % L ( k , i ) = x ( i ) / L ( i , i )

x ( i )=0
f o r p=Lp ( i ) + 1 : c ( i )−1

x ( Li ( p )= x ( Li ( p ))−Lx ( p )* l k i
end
d=d− l k i * l k i
p=c ( i )
c ( i )= c ( i )+1
Li ( p )= k
Lx ( p )= l k i

end
% C h e c k i f p o s i t i v e d e f i n i t e a n d f i n d Lkk
i f ( d <=0) %n o t p o s i t i v e d e f i n i t e

L=0
re turn

end
p=c ( k )
c ( k )= c ( k )+1
Li ( p )= k
Lx ( p )= sqr t ( d )

end
Lp ( n )= cp ( n )
L . p=Lp
L . i =Li
L . x=Lx
L . n=Ln

end

The time taken to compute the Cholesky Decomposition using up_chol function is O(f), the
floating point operations performed, where f =

∑
|(L:k)|2Ḟactorization to LDLT, with column

counts complexity O(|L|) is shown here[18].
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5.11 Left-Looking Cholesky

The left-looking Cholesky is used more often than the up-looking one as it forms the basis of
the SupernodalMethod. For the left-looking method consider the following decomposition:L11ℓT12 ℓ22

L31 ℓ32 L33


L11 ℓ12 LT31

ℓ22 ℓT32
LT33

 =

A11 a12 AT31
aT12 a22 aT32
A31 a32 A33

.
For this decomposition the kth row and column are the middle ones. If the k− 1 columns of L are
known then ℓT12ℓ12 + ℓ222 = a22 =⇒ ℓ22 =

√
a22 − ℓT12ℓ12. Also, L31ℓ12 + ℓ32ℓ22 = a32 =⇒

ℓ32 =
a32 − L31ℓ12

ℓ22
.

A function prototype is given below for this decomposition:

f u n c t i o n L= c h o l _ l e f t (A)
n= s i z e (A, 1 )
L= z e r o s ( n )
f o r k =1: n

L( k , k )= s q r t (A( k , k)−L( k , 1 : k−1)*L( k , 1 : k−1) ’)
L ( k +1: n , k ) = (A( k +1: n , k)−L( k +1: n , 1 : k−1)*L( k , 1 : k−1 ) ’ ) /L ( k , k )

end
end

An example of how this algorithm proceeds is shown:
1st iter:L11 = [], ℓt12 = [],L31 = []
ℓ11

ℓ12 ℓ22

ℓ31 ℓ32 ℓ33

ℓ41 ℓ42 ℓ43 ℓ44

 ∗


ℓ11 ℓ12 ℓ31 ℓ41

ℓ22 ℓ32 ℓ42

ℓ33 ℓ43

ℓ44

 =


a11 a12 a31 a41
a12 a22 a32 a42
a31 a32 a33 a43
a41 a42 a43 a44

 =⇒ ℓ11 =
√
a11

ℓ12 = a12/ℓ11, ℓ31 = a31/ℓ11, ℓ41 = a41/ℓ11
2nd iter: L11 = ℓ11, ℓ

T
12 = ℓ12, L31 = [ℓ31ℓ41]

ℓ11

ℓ12 ℓ22

ℓ31 ℓ32 ℓ33

ℓ41 ℓ42 ℓ43 ℓ44

 ∗


ℓ11 ℓ12 ℓ31 ℓ41

ℓ22 ℓ32 ℓ42

ℓ33 ℓ43

ℓ44

 =


a11 a12 a31 a41
a12 a22 a32 a42
a31 a32 a33 a43
a41 a42 a43 a44

 =⇒ ℓ22 =
√
a22 − ℓ12 ∗ ℓ12

ℓ32 =
a32 − ℓ12ℓ31

ℓ22
, ℓ42 =

a42 − ℓ12ℓ41
ℓ22

3rd iter: L11 =

[
ℓ11

ℓ12 ℓ22

]
, ℓT12 = [ℓ31ℓ32], L31 = [ℓ41ℓ42]

ℓ11

ℓ12 ℓ22

ℓ31 ℓ32 ℓ33

ℓ41 ℓ42 ℓ43 ℓ44

 ∗


ℓ11 ℓ12 ℓ31 ℓ41

ℓ22 ℓ32 ℓ42

ℓ33 ℓ43

ℓ44

 =


a11 a12 a31 a41
a12 a22 a32 a42
a31 a32 a33 a43
a41 a42 a43 a44

 =⇒ ℓ33 =
√
a33 − ℓT12ℓ12 =

√
a33 − ℓ231 − ℓ232, ℓ43 =

a43 − L31ℓ12
ℓ33

=
a43 − ℓ41ℓ31 − ℓ42ℓ32

ℓ33
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4th iter: L11 =

ℓ11ℓ12 ℓ22

ℓ31 ℓ32 ℓ33

 , ℓT12 = [ℓ41ℓ42ℓ43],L31 = []


ℓ11

ℓ12 ℓ22

ℓ31 ℓ32 ℓ33

ℓ41 ℓ42 ℓ43 ℓ44

 ∗


ℓ11 ℓ12 ℓ31 ℓ41

ℓ22 ℓ32 ℓ42

ℓ33 ℓ43

ℓ44

 =


a11 a12 a31 a41
a12 a22 a32 a42
a31 a32 a33 a43
a41 a42 a43 a44

 =⇒ ℓ44 =
√
a44 − ℓT12ℓ12 =

√
a44 − a241 − a242 − a243

L =


ℓ11

ℓ12 ℓ22

ℓ31 ℓ32 ℓ33

ℓ41 ℓ42 ℓ43 ℓ44


In each iteration with bold are marked the already known elements. Also, in each iteration

the same variables are used L11, ℓT12,L31, which correspond to the decomposition shown in the
beginning of the chapter, for convenience.

5.12 Supernodal Cholesky

It is easy to recall that because of the properties of Cholesky factorization many columns end
up having the same pattern as in matrix L below if the diagonal entry block.

L =



L11
k1
• L22

LT12 • •
• • • k2

L32
• • •
• • •

L31 L33
• • •


The columns from k1 through k2 can be grouped together. The matrix L22 denotes the diagonal
block and the matrix L32 the supernode consisting of the non-zero elements below the diagonal
block.

For a set of nodes k, k + 1, .., k − 1 to form a supernode S the following must hold: for i =
1, 2, q−1, where q = k2−k1 the node k+ i−1 is the only child of node k+ i in the elimination tree,
children(k+ i) = k+ i−1. These nodes can be grouped together into a single supernode[13][57].

Consider the computation of L∗j for some j ≥ k2. Suppose column A∗j has to be modified by
L∗i, where i ∈ S . It follows from the notion of supernodes that column A∗j will be modified by
every i ∈ S . Thus, a column j ≥ k2 is either modified by no column in S or by every column in
it. So, a supernode can be treated as a single unit in the computations. Since, they have the same
sparsity structure dense vector operations can be used and then applied to the target vector using a
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single sparse vector operation that employs indirect addressing.
Consider in the decomposition mentioned in the previous Section 5.11. It can be modified to

solve for the blocks introduced above and so:L11LT12 L22
L31 L32 L33


L11 L12 LT31

LT22 LT32
LT33

 =

A11 A12 AT31
AT12 A22 AT32
A31 A32 A33

.
For this decomposition the kth row and column are the middle ones. If the k− 1 columns of L are
known then:
LT12L12 + L22LT22 = A22 =⇒ L22LT22 = A22 − LT12L12.
L31L12 + L32LT22 = A32 =⇒ L32LT22 = A32 − L31L12 =⇒ L22LT32 = AT32 − LT12LT31.

The first equation results into a dense Cholesky factorization which needs no exploitation of
sparsity at all. The second equation is a triangular solve. LT32 transpose is a dense matrix, in this
particular example a 3x3 dense matrix. In general it is an orthogonal dense matrix of dimension
(|nz|x(k2 − k1)) where |nz| is the number of non-zeros in the supernode.

The algorithm for computing the supernodal cholesky follows:

f unc t i on L= cho l _ s u p e r (A, s )
n= s i z e (A)
L= zero s ( n )
s s =cumsum ( [ 1 s ] )
f o r j =1 : l eng th ( s )

k1= s s ( j )
k2= s s ( j +1)
k=k1 : ( k2−1)
L ( k , k )= cho l (A( k , k)−L( k , 1 : k1−1)*L( k , 1 : k1−1) ’ ) ’
L ( k2 : n , k ) = (A( k2 : n , k)−L( k2 : n , 1 : k1−1)*L( k , k1 : k1−1 ) ’ ) /L ( k , k ) ’

end
end

In the above code s is an integer vector of where s(j) > 0 ∀ j and sum(s) = n. The jth supernode
consists of s(j) columns of L which can be stored as a dense matrix.

So all the key operations of a supernodal Cholesky are:

1. A(k,k)-L(k,1:k1-1)*L(k,1:k1-1)’). A(k,k) is dense. L(k,1:k1-1) are the rows in a subset of
the descendants of jth supernode. The update from each descendant can be done with a single
dense matrix multiplication.

2. L(k,k)=chol(A(k,k)-L(k,1:k1-1)*L(k,1:k1-1)’)’. A dense Cholesky factorization

3. A sparse matrix product (A(k2:n,k)-L(k2:n,1:k1-1)*L(k,k1:k1-1)’), where the L terms come
from the descendants of the jth supernode.

4. A dense triangular solve L(k2:n,k)=(A(k2:n,k)-L(k2:n,1:k1-1)*L(k,k1:k1-1)’)/L(k,k)’.

Supernodal method is among the ones which can exploit dense matrix kernels. So, it can
achieve a percentage of computers theoretical peak performance on modern computers.[13]
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5.13 Multifrontal Cholesky

The Multifrontal Cholesky is based on the Right-Looking Cholesky Decomposition which is
presented below: [

ℓ11

ℓ21 L22

][
ℓ11 ℓT21

LT22

]
=

[
a11 aT21
a21 A22

]
,

where ℓ11, a11 are scalars ℓ21, a21 are vectors and L22,A22 are submatrices. Expanding the relations:
ℓ211 = a11 =⇒ ℓ11 =

√
a11 ℓ21ℓ11 = a21 =⇒ ℓ21 =

a21
ℓ11

L22LT22 + ℓ21ℓ
T
21 = A22 =⇒ L22LT22 = A22 − ℓ21ℓ

T
21.

TheMultifrontal method organizes the operations that take place during the factorization of
sparsematrices in such away that the entire factorization is performed through partial factorizations
of a sequence of dense and small submatrices [2]. This method was first developed for solving
problems arising from finite-element analysis and then was generalized for solving sparse matrix
systems[30]. This method is based on the Elimination Tree examined before and two new concepts
frontal and update matrices. Consider a matrix A with its Cholesky Factor L and the nonzero
pattern of L∗j = {i0, i1, . . . , ir}, where i0 = j, the jth column has r off-diagonal entries and T [k]
symbolized the sub-elimination tree with root k.

The subtree update matrix is given by U = −
∑

k∈T [j]−{j}


ℓj,k

ℓi1,k
...

ℓir,k


[
ℓj,k ℓi1,k . . . ℓir,k

]
.

These are the outer-products updates of all the descendants of j. Thus, the frontal matrix Fj for A
is defined as:

Fj =


aj,j aj,i1 . . . aj,ir
ai1,j
...
air,j

+ U

The nonzeros of the jth column of L are r+1 and so is the order of the matrices F and U. The
+1 because the diagonal is counted. This relation resembles the last update of the right-looking
algorithm, only in this scenario the node j is updated only by the contribution of its descendants.

The subtree update matrixU can be split into two sums. The first containing all the descendants
k for whom ℓjk ̸= 0, k < j and the other all the descendants of j for whom ℓjk = 0.

Thus, U = −
∑

k∈T [j]−j
ℓjk ̸=0
k<j


ℓj,k

ℓi1,k
...

ℓir,k


[
ℓj,k ℓi1,k . . . ℓir,k

]
−

∑
k∈T [j]−j
ℓjk=0


0

ℓi1,k
...

ℓir,k


[
0 ℓi1,k . . . ℓir,k

]
.

The first component −
∑

k∈T [j]−j
ℓjk ̸=0
k<j

ℓjk


ℓj,k

ℓi1,k
...

ℓir,k

 is named as complete update column to column j and
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contains all the nonzero updates to j[6]. Thus, Fj is obtained by the nonzero pattern Aj and the
complete update column to j. Hence, whenFj is computed the first row/column is already completely
updated.

Performing an elimination of the first column of the frontal matrix results in the nonzero pattern
of L∗j and gives the update matrix from column j as well. That is like the ℓ21ℓT21 term which is
propagated to the rest (n-1)-by-(n-1) matrix but only the part that j contributes to the update of the
rest of the matrix. Consider Fj expressed as follows:

Fj =


ℓj,j

ℓi1,j
...

ℓir,j


[
ℓj,j ℓi1,j . . . ℓir,j

]
+

[
0 0
0 Uj

]
, where the first term is the completed j row and

column, and Uj is the update matrix from j. If from the term U the first row and column which are
removed, the submatrix left is the same as Uj. Therefore, the following relation arises:

−
∑

k∈T [j]−j
ℓjk=0


ℓi1,k
...

ℓir,k

[ℓi1,k . . . ℓir,k

]
=


ℓi1,j
...

ℓir,j

[ℓi1,j . . . ℓir,j

]
+ Uj.[55].

Note that because Fj has as first row and column the pattern L∗j is a full matrix of dimension
|Lj|-by-|Lj|. Then, the submatrix after the elimination Uj must be also full. Thus it can exploit the
dense matrix BLAS and obtain full performance[62]. The Uj block or contribution block to its
ascendants frontal matrices is the Schur compliment of its pivot row and column[12]

Another helpful notion introduce to help with the formation of frontal matrices is the extend-
add operator:⊕. This can help adding two matrices of different size, using extended algebra[9].

Consider, a r-by-r R submatrix and a s-by-s S submatrix with r, n ≤ n. Each row and column
of these matrices correspond to a row and column in the original n-by-n A matrix. Assume that the
subscripts of R in A are denoted by i1 ≤ · · · ≤ ir and of S by j1 ≤ · · · ≤ jn as well. Consider now
the union of the two sets and k1 ≤ · · · ≤ kt be the corresponding subscripts. Then, the two matrices
R,S can be extended by adding zero rows and column in order to match the desired {k1, . . . , kt}
indexing thus making the addition between them possible. Therefore, R⊕ S is the resulting t-by-t
T matrix formed by the extended R and S matrices. This process is referred to as the generalized
matrix superposition[55][63].

An example follows of this operations. Consider R =

[
a b
c d

]
, S =

[
e f
g h

]
, where {3, 4}

and {3, 6} are the subscripts of R and S respectively. R ⊕ S =

a b 0
c d 0
0 0 0

 +

e 0 f
0 0 0
g 0 h

 =

a+ e b f
c d 0
g 0 h

 = T, where T is 3-by-3 matrix with subscripts the union R ∪ S = {3, 4, 6}.

Thus, the previous ecome using the extended addition operator:

5.13:frontal_relation#frontal equation.b
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Figure 5.10: Multifrontal Elimination Tree and Frontal Matrices

Fj =


aj,j aj,i1 . . . aj,ir
ai1,j
...
air,j

⊕ Uc1 ⊕ · · · ⊕ Ucs , where c1, . . . , cn are the children of node j.

An example of themultifrontalmethod is shown below. LetA =



a11 a12 a15
a21 a22 a25

a33 a36
a44 a46

a51 a52 a55 a56
a63 a64 a65 a66



and its Cholesky factor L =



ℓ11

ℓ21 ℓ22

ℓ33

ℓ44

ℓ51 ℓ52 ℓ55

ℓ63 ℓ64 ℓ65 ℓ66


. The corresponding elimination tree

and the frontal matrices relation is shown in 5.10.
U3 = 0,U4 = 0,U1 = 0 since they are leaves of the tree and have no children.

F3 =

[
a33 a36
a63

]
,U3 = −

[
ℓ263

]
F4 =

[
a44 a46
a64

]
,U4 = −

[
ℓ264

]

F1 =

a11 a12 a15
a21
a51

 , U1 = −

[
ℓ221 ℓ21ℓ51

ℓ21ℓ51 ℓ251

]

F2 =

[
a22 a25
a25

]
⊕ U1 =

[
a22 a25
a25

]
−

[
ℓ221 ℓ21ℓ51

ℓ21ℓ51 ℓ251

]
=

[
a22 − ℓ221 a25 − ℓ21ℓ51

a25 − ℓ21ℓ51 −ℓ251

]
,

U2 = −
[
ℓ251 + ℓ252

]
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F5 =

[
a55 a56
a65

]
⊕ U2 =

[
a55 a56
a56

]
−

[
ℓ251 + ℓ252 0

0 0

]
=

[
a55 − ℓ251 − ℓ252 a56

a56 0

]
U5 = −

[
ℓ265

]
F6 =

[
a66
]
⊕ U5 ⊕ U4 ⊕ U3 =

[
a66
]
−
[
ℓ265

]
−
[
ℓ264

]
−
[
ℓ263

]
=
[
a66 − ℓ265 − ℓ264 − l263

]
Finally, it is instructive to observe that except from the extended-add operation, the rest of

the computations are carried out in full matrix form, which has advantages of course over sparse
computations. It is only natural, that this method can yet be improved.

In each frontal matrix there is only one variable fully assembled and may result in small fronts
to exploit memory hierarchy available in new hardware as well as all the BLAS subroutines to their
fullest[2]. Thus, it is common practice to form supernodes of nodes with same nonzero structure
and creating an amalgamated elimination tree[5].



Chapter 6

QR Decomposition

6.1 Introduction

QR Decomposition or QR Factorization is a method of decomposing a matrix A into an
orthogonal Q and a matrix R in upper triangular shape or right triangular, so that A=QR.

In contrast toCholeskyMethodmentioned in Chapter 5,matrixA does not need to be symmetric,
positive-definite, it does not need to be square as well.

6.2 Method Overview

This method results in two components, matrices Q and R. R is in an upper triangular shape

meaning R=

[
U
0

]
, where U is upper triangular, which has the benefits of solving a system with just

back substitution. Q is an orthogonal matrix, meaning its columns are orthonormal or orthogonal
unit vectors. These kind of matrices have an interesting set of properties[10].

1. QTQ=QQT=I

2. QT=Q−1

3. Let a vector x and ∥x∥2 =
√
xTx its second norm. For a Q matrix ∥Qx∥2 =

√
(Qx)TQx =√

xTQTQx =
√
xTIx =

√
xTx = ∥x∥2.

The third property is very useful because it preserves the second norm. That means that the
multiplication with a an orthogonal matrix just rotates a vector in spacewithout affecting its length.

Lets consider an overdetermined system, a systemwithmore equations than unknowns, Ax=b,
A ∈ Rm x n, x ∈ Rn x 1, b ∈ Rm x 1. Very often these systems are inconsistent, meaning they have
no exact solution.

To find an approximate solution to this problem the method of Ordinary Least Squares(LST)
is usually used. Consider the residual vector r=Ax-b, minimizing r will result in an approximate
solution for the inconsistent system. The LSTmethod minimizes the sum of the squares or the root
of the sum of the squares as well, which is the second norm.Thus, ∥r∥2 = ∥Ax− b∥2.

45
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Consider a QR Decomposition of A, QR=A where A ∈ Rm x n, Q ∈ Rm x m, R ∈ Rm x n, m >

n. QR = A ⇐⇒ Q−1QR = Q−1A ⇐⇒ R = Q−1A ⇐⇒ R = QTA
Substituting this in the LST residual results in: ∥r∥2 = ∥QTr∥2 = ∥QTAx − QTb∥2 = ∥Rx −
QTb∥2 = ∥Rx− b′∥2.

If R is split as R=

(
R1
0

)
, R1 ∈ Rn x n, then

(
R1
0

)
x =

(
b′1
b′2

)
=

(
R1x− b′1
−b2

)
and thus

the residual is ∥Rx− b′∥22 = ∥R1x− b′1∥22 + ∥b′2∥22.
In the equation above the only variable which is free is x, the others are fixed. Thus, an to

minimize the expression an x should be chosen which sets ∥R1x− b′1∥2 = 0 ⇐⇒ R1x = b′1. This
is an upper triangular solve which results in the minimum residual possible.

There are various ways to compute the QR Decomposition such as Householder Reflections,
Gram-Schmidt process, Givens rotations, each one has its own advantages and disadvantages.
In this project the Householder Reflections method is going to be used.

6.3 Householder Reflections

Let H be an orthogonal matrix whose first row is x/∥x∥2, so H =

[
xT/∥x∥2
H1

]
.

Then Hx1 =

 ∥x∥22
∥x∥2
0

 =

[
∥x∥2
0

]
.

Let a matrix A =
(
x A2

)
. HA =

(
Hx HA2

)
=

[
ρ11 rT12
0 A22

]
If this process is recursively applied to A22 the result then is an upper triangular matrix R. Thus,

HA = HmHm−1 . . .H1A =

(
R
0

)
. The essential feature of this algorithm is that Hx = ce1.

A Householder Transformation or Reflection is a matrix of the form:
H = I−βuuT, where β∥u∥22 = 2. u, β are chosen so as the multiple ofHx1 is one described above.
In space notion, u is the vector perpendicular to the mirror that transforms the the vector from n
dimensions to one.
It follows that the second Householder reflection should be chosen so as to have the same effect on
the first column of XA22 while not affecting the column alreadymodified by the previous reflection.
A Householder operation takes about O(4n) because Hx = (I− βuuT) = x− u(β(uTx))[48].

The non-zero pattern of the vector v is symbolized by the notion V and X is the non-zero
pattern of the x vector on which the reflection is applied, evidently V = X . The hypothesis that the
matrix A has a zero free diagonal (non-singular matrix) is made for convenience of calculations.

Each Householder Reflection is multiplied by the whole matrix. So lets consider another vector
y with non-zero pattern Y . Hy = (I− βuuT)y = y− β(u(uTy)). The dot product uTy will be non-
zero only if y has at least one non-zero value in the same place as u, which has the same pattern
as x. So, if the two columns x, y have non-zero values in the same row of the matrix. If the two
columns are disjoint then the transformation has zero effect on the column y and Y ′ = Y . On the
other hand, if they intersect Y ′ = Y ∪ (Y ∩ X ) = Y ∪ X [23].
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For instance consider the following matrix: A =


x1 0 0 0
0 y2 0 0
x3 0 z3 0
0 y4 0 w4

. If the H which reflects

x is applied the non-zero pattern of y,w will remain the same because uTy = uTw = 0. On the
contrary, uTz = u3∗z3 = c and so,Hz = z−β ∗c∗u = z+c′∗uwith non-zero patternZ = Z∪X .

So, HA =


x′1 0 z′1 0
0 y2 0 0
0 0 z′3 0
0 y4 0 w4

.
In general, if a matrix is defined as follows:

A =



x share no share
x1 0
... y

...
xk 0
0 z
... yl


, where x is the vector the transformation will annihilate and it

is formatted with its non-zero elements from top until xk and the rest are zero, the share column
contains the columns which share a non-zero pattern with x , the no share column contains the
columns which do not share a non-zero pattern with x. The sets share, no share is assumed that
they exist.
After the Householder is applied the bottom half of the split will remain unchanged as well as the no
share column. On the other hand, the columns contained in the second set because they have at least

onematchwith x, theywill all inherit its pattern,Y ′ = Y∪X . SoHA =



x share no share
x1 y′1 0
...

...
...

xk y′k 0
0 z
... yl


.

So there is a very interesting pattern emerging from the Householder Reflections, which will be
investigated in forward chapters because it is of significant importance for the Symbolic Analysis
of QR Factorization.

6.4 Left/Right-Looking Dense QR Decomposition

Consider a matrix A ∈ Rm x n,m > n, the Decomposition can still be applied if m = n or
m < n. Let A(1) = A and A(k+1) = H(k)A(k), k = 1 . . . n. H(1) is constructed from the first column
of A and has length m and is H(1) = I − β1u1uT1 . H(k) is constructed from the kth column of the
modified A’ matrix and x(k) = A(k−1)k···m,k which has length m-k+1 and is H

(k) = I− βkukuTk .
The QR Factorization of A is R = HnHn−1 . . .H1A = H1 ⇐⇒ H1H2 . . .HnR = A, so

Q = H1H2 . . .Hn andQR = A. That holds because theHouseholdermatrix is obviously symmetric,
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HT = (I − βuuT)T = IT − (βuuT)T = I − βuuT = H. Bear in mind that Q does not need to be
explicitly computed[44].

Recall from the previous section that each next reflection should leave the previous unchanged.
For instance, after the first Householder suppose that the entry a12 exists. Then, an arbitrary chosen
Householder Reflection for the second column will change the first column again, due to the
properties of the reflection described. So, to leave the first column unmodified the secondReflection

should be in the form:

[
I 0
0 H2

]
, which if right-multiplied by =

[
ρ11 rT12
0 A22

]
result in:[

I 0
0 H2

]
∗

[
ρ11 rT12
0 A22

]
=

[
ρ11 rT12
0 H2A22

]
.

The block matrix is orthogonal:

[
I 0
0 H2

]
∗

[
I 0
0 H2

]T
=

[
I 0
0 H2

]
∗

[
I 0
0 HT2

]
=

[
I 0
0 H2HT2

]
=[

I 0
0 I

]
= I.

Of course, it is symmetric as well:

[
I 0
0 H2

]T
=

[
I 0
0 HT2

]
=

[
I 0
0 H2

]
.

The right-looking Algorithm qr_right applies the Householder Reflections to the matrix A as
soon as it is constructed.

f unc t i on [V, beta , R]= q r _ r i g h t (A)
[m n ]= s i z e (A ) ;
V= zero s (m, n ) ;
Be ta= zero s ( 1 , n ) ;
f o r k =1: n

[ v , beta , s ]= g a l l e r y ( ’ house ’ ,A( k :m, k ) , 2 ) ;
V( k :m, k )= v ;
Beta ( k )= beta ;
A( k :m, k : n )=A( k :m, k : n)−v*( beta *(v ’*A( k :m, k : n ) ) ) ;

end
R=A;

end

In the code above, V is a data structure where every column is a Householder Transformation.
Beta is the collection of all scalar β values as well. Gallery function computes the Householder
transformation of the kth column, from diagonal and below, since the elements above the diagonal
should remain intact. The final line is the expansion of HA = (I−βu∗uT)A = A−βu(uTA). Note
that in the latter form the computations are O(n2) while in the former is O(n3). The total work of
the Algorithm is O(n3).

The left-looking algorithm qr_left postpones the application of Householder Reflections to the
whole matrix and only applies them to the current column.
Consider a matrix A =

(
a1 a2 . . . an

)
and H1 the Reflection annihilating the first column.

In order to compute the second Householder Reflection onlyH2a2 is needed, the rest computations
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H1

(
a3 · · · an

)
can be postponed until it is time for their own Reflection to be computed.

Thus, to compute H3, H1H2a3 is needed and so forth.

f unc t i on [V, beta , R]= q r _ l e f t (A)
[m n ]= s i z e (A ) ;
V= zero s (m, n ) ;
Be ta= zero s ( 1 , n ) ;
R= zero s (m, n ) ;
f o r k =1: n

x=A( : , k ) ;
f o r i =1 : k−1

v=V( i :m, i ) ;
beta=Beta ( i ) ;
x ( i :m)= x ( i :m)−v*( beta *(v ’*x ( i :m ) ) ) ;

end
[ v , beta , s ]= g a l l e r y ( ’ house ’ , x ( k :m) , 2 ) ;
V( k :m, k )= v ;
Beta ( k )= beta ;
R ( 1 : ( k−1) , k )= x ( 1 : ( k−1 ) ) ;
R( k , k )= s

end
end

In the code above, V and Beta serve the same purpose as before. For each column k, the
innermost loop extracts all the previous k-1 Reflections(v and beta) and applies them to column k.
Then the kth transformation is computed and stored without making any further computations to
matrix A. Then the kth column of R is computed, note that the output argument s from gallery is
the ∥.∥2 of that particular column.

6.5 Sparse QR Decomposition

Sparse QR Factorization algorithm is based on qr_left algorithm which is analyzed in this
chapter. For the matrix A which will be factorized the following assumptions are made:

1. Every element in the diagonal of A is nonzero.

2. A has the strong Hall Property

3. Numerical cancellation is ignored.

A matrix A ∈ Rm x n,m ≥ n has the strong Hall property if for every subset of k columns,
0 < k < m, the corresponding submatrix has nonzero elements in at least k+1 rows. (Thus, when
m > n, every subset of k ≤ n columns has the required property, and when m = n, every subset
of k < n columns has the property.) For matrix with that property, structural cancellation will not
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occur[11]. For instance, consider the two following matrices, where * denotes nonzero elements:
∗ ∗ ∗ ∗ ∗

∗
∗

∗
∗




∗ ∗ ∗ ∗
∗

∗
∗

∗

 The first matrix does not have the strong Hall property since

for k = 1 the first column has nonzero elements in first row. On the contrary, in the second matrix
for k = 1, each column has two nonzeros, for k = 2, four nonzeros and so forth, so the matrix has
the strong Hall property.

6.5.1 Row Set-Union Property

Let Ri∗ and R∗j denote the nonzero pattern of the row i and column j respectively, Vk is the
nonzero pattern of uk and A(k) the matrix A after the k− 1 Householder Reflection.

Consider HA = A − u(β(uTA)). Then (HA)i∗, is equal to row i of A, if i /∈ V . If, i ∈ V , the
nonzero pattern of (HA)i∗ is

∪
i∈V

Ai∗.

That means the nonzero pattern of any modified row i ∈ V is replaced with the set union of all
rows modified by the Householder Reflection H[34].

The product u(β(uTA))ij is nonzero only if i ∈ V and j ∈
∪
i∈V

Ai∗.

Consider A =


∗ ∗

∗ ∗
∗ ∗

∗ ∗
∗

, then for the Householder Reflection of first column:

V = {1, 3, 5}. uTA =
[
∗ 0 ∗ 0 ∗

]


∗ ∗
∗ ∗

∗ ∗
∗ ∗

∗

 =
[
∗ 0 ∗ 0 ∗

]
.

Then, u ∗ (uTA) =


∗
0
∗
0
∗


[
∗ 0 ∗ 0 ∗

]
=


∗ 0 ∗ 0 ∗
0 0 0 0 0
∗ 0 ∗ 0 ∗
0 0 0 0 0
∗ 0 ∗ 0 ∗

.
For i = {2, 4} /∈ V the whole line is 0. For i = {1, 3, 5} ∈ V and j = {2, 4} /∈ (A1∗ ∪A3∗ ∪A5∗)

the elements are 0. For i = {1, 3, 5} and j = {1, 3, 5} ∈ (A1∗ ∪ A3∗ ∪ A5∗) the elements are
nonzero.

Then the product u(β(uTA))ij is subtracted by A to get HA. Thus,
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HA =


∗ ∗

∗ ∗
∗ ∗

∗ ∗
∗

−


∗ 0 ∗ 0 ∗
0 0 0 0 0
∗ 0 ∗ 0 ∗
0 0 0 0 0
∗ 0 ∗ 0 ∗

 =


∗ ∗ ∗

∗ ∗
◦ ∗ ∗

∗ ∗
◦ ∗ ∗

. The nonzero pattern of

rows i ∈ V = {1, 3, 5} are replaced by
∪
i∈V

Ai∗ = (A1∗ ∪A3∗ ∪A5∗) = ({1, 3}∪ {1, 5}∪ {1}) =

{1, 3, 5}, while the nonzero pattern of the other rows remain intact.
Consider the resulting matrix R of QR=A is of the following form:

R =



∗
∗ 0 ∗ ∗

∗
∗

∗
∗

∗
∗


. A =



∗
∗

∗
∗

∗ 0 ∗
∗

∗ 0 ∗
∗


.

The element R2,4 = 0 means that the Householder for the second column of A did not involve
the fourth column because then the second line would have become the set union of both and the
element (2,4) would have been made nonzero by (4,4). This means that for every nonzero element
in the second column of A the corresponding in the fourth column of A are zero.
On the contrary, the element R2,5 ̸= 0 and R2,7 ̸= 0 as well. This means that the elements A5,2 ̸= 0
and A7,2 ̸= 0 and in the HA matrix these lines will become the set-union of each other.
So the matrix R is shows which Householder transformation should be applied to each column.
Thus, the nonzero pattern of R∗k should be computed before applying the actual transformations,
in a similar manner as in Cholesky Factorization seen in Chapter 5.

6.5.2 Computation ofR∗k

Let QR = A ⇐⇒ (QR)TQR = (QR)TA ⇐⇒ RTQTQR = ATA ⇐⇒ RTR = ATA.
RT is a lower triangular matrix and R is an upper triangular so, if L = RT then LT = R and thus
LLT = ATA, which is the Cholesky Factorization of ATA[45].

The following theorems are useful for exploiting the QR-Cholesky relation[37]:

1. If A(k−1)kk is structurally nonzero for all 1 ≤ k ≤ n, thenRi∗ = A(k)
i∗ .

2. R∗k = ReachTk(Ck), where Ck is the upper triangular part of column k of A
TA.

Let C = ATA =
m∑
i=1

ATi∗Ai∗. For instance C =


∗

∗ ∗ ∗
∗

∗



∗

∗
∗ ∗
∗ ∗

 =
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
∗

[
∗

]
+

∗

[

∗
]
+

∗∗

[

∗ ∗
]
+

∗
∗


[

∗ ∗
]
=


∗

+

 ∗

+

 ∗ ∗
∗ ∗

+

 ∗ ∗

∗ ∗

 =


∗

∗ ∗ ∗
∗ ∗
∗ ∗

.

If aik ̸= 0, every entry ck1,k2 ̸= 0 for any pair of column indices k1, k2 ∈ Ai∗. Consider A3∗ =

{2, 3}, the third submatrix shows that c[3]2,2, c
[3]
2,3, c

[3]
3,2, c

[3]
3,3 ̸= 0 (All the combinations).

Recall from Chapter 5.8 that k1 < k2 means the path k1 ; k2 exists in Tk, thus only k1 is needed
to compute the ReachTk(Ck). So, for every entry aik ̸= 0 and because all the combinations of Ai∗

will exist on the C matrix, only the j ∈ Ai∗ with minimum index value is needed to compute the
ReachTk(Ck), or in other words the leftmost entry of the row i. Thus,

R∗k = ReachTk(Ck)=R∗k = ReachTk({minAi∗|i ∈ A∗k})[33].

6.5.3 Computation of Vk

Consider the figure 6.1. k2 = parent(k1) and k = parent(k2), because R = LT the first off
diagonal entry in the upper triangular is the parent. If the element (i, k1) is nonzero then by the
reflection properties (i, k2) will be as well. Subsequently, (i, k) will become nonzero due to (i, k2).
So to find, the nonzero structure of k column after all the Householders have been applied it is
sufficient to consider only the pattern of the children, all the other descendants are redundant.

Now, consider the figure 6.2 where k = parent(k1, k2). The set of nonzeros of k1, k2 must
be disjoint. Bear in mind the transformation for column k1 and assuming the element (i2, k1) is
nonzero, this will cause the lines i, i2 to become the set-union of each other that is why (i2, k)must
be nonzero. On the other hand, if the element (i2, k2) was nonzero then the element (i, k2) would
have become nonzero, which means that k2 = parent(k1) which is a contradiction with our first
assumption. Thus, the sets of the children of a node are disjoint.

So the computation of Vk is given by: Vk =

 ∪
k=parent(i)

Vi \ {i}

 ∪ {i|k = minAi∗}.

The term {i|k = minAi∗} accounts for all the elements in column k that are the leftmost nonzero in
a line and being so, the previous Reflections did not affect those lines. For instance in this matrix
the second column has two leftmost entries in lines {2,4} accounted by the previous term.

Because all the sets are disjoint the count of nonzeros of Vk is:

|Vk| =

 ∑
k=parent(i)

|Vi| − 1

+ |{i|k = minAi∗}|

All the theoretical background needed has been analyzed, so now its time to have a look at the
algorithmic procedure[23].
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Figure 6.1: Parent-Descendant Relation
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Figure 6.2: Disjoint Children

6.5.4 Sparse QR Algorithm

An overview of the algorithm is the following:

f unc t i on [V, β ,R]= l e f t _ q r _ s p a r s e (A)
T = e t r e e (ATA )
|R | = c o l c o u n t s (ATA )

|Vk| =

 ∑
k=parent(i)

|Vi| − 1

+ |{i|k = minAi∗}| , k = 1 . . . n

f o r k =1: n
R∗k = ReachTk({minAi∗|i ∈ A∗k})
x=A∗k

Vk = A∗k

f o r each i ∈ R∗k

x = x− ui(βi(uTi x))
i f p a r e n t ( i )= k

Vk = Vk ∪ Vi /∈ {i}
end
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end
R1...k−1,k = x1...k−1
[uk, βk, rkk]= hou s e ho l d e r ( xk...m )

end
end

Now, let us take a deeper insight into this algorithm, analyzing the basic its mechanics and

concepts. First of all, a function must be created which computes |Vk| =

 ∑
k=parent(i)

|Vi| − 1

+

|{i|k = minAi∗}|.
Recall from Chapter 5.9 the structure A_symb used for the symbolic analysis and enter three

new fields: leftmost, pinv, unz.

A_symb . pinv % s t o r e t h e i n v e r s e p e r m u t a t i o n ( QR )

A_symb . p a r e n t % s t o r e t h e e t r e e ( C h o l e s k y , QR )

A_symb . p o s t % s t o r e t h e p o s t o r d e r p e r m u t a t i o n

A_symb . cp % s t o r e t h e c o l u m n p o i n t e r s f o u n d u s i n g c o l c o u n t s ( C h o l ) ,

% r ow c o u n t s ( QR )

A_symb . l e f t m o s t % t h e l e f t m o s t e n t r y ( QR )

A_symb . l n z % t h e n u m b e r o f n z e n t r i e s i n L ( C h o l e s k y ) o r i n V ( QR )

A_symb . unz % t h e n u m b e r o f n z e n t r i e s i n R ( QR )

Leftmost is an array in which leftmost(i)=minAi∗ namely the column where the first nonzero entry
in each row lies. Pinv is a row permutation which is needed to make sure the matrix A has nonzero
diagonal. Finally, unz is a variable which contains the number of nonzero elements of each column
of R matrix.

f unc t i on [ unz , pinv , l e f t m o s t ]= vcoun t (A, p a r e n t )
[m n ]= s i z e (A ) ;
n ex t = a r r a y (m, 1 ) ; % n e x t e n t r y i n c o l k

head= a r r a y ( n , 1 ) ; % f i r s t e n t r y i n c o l k

t a i l = a r r a y ( n , 1 ) ; % l a s t e n t r y i n c o l k

nque= a r r a y ( n , 1 ) ; % n um b e r o f e n t r i e s e a c h c o l

f o r i =1 : n
l e f t m o s t ( i )=min ( f i nd (A( i , : ) ) ) ;

end

for i =m:1
pinv ( i ) = 0 ;
k= l e fmo s t ( i ) ;
i f ( nque ( k )==0)

nque ( k )= nque ( k ) +1 ;
t a i l ( k )= i ;
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end
nex t ( i )= head ( k ) ;
head ( k )= i ;

end
l n z =0;

f o r k =1: n
i =head ( k ) ; % r e m o v e r ow i f r o m q u e u e

l n z = l n z +1; % c o u n t d i a g o n a l e n t r y V ( k , k )

nque ( k )= nque ( k )−1;
pinv ( i )= k ;
i f ( nque ( k ) <=0) % e m p t y b e l o w t h e d i a g o n a l

c o n t i n u e ;
end ;
l n z = l n z +nque ( k ) ; % n q u e ( k ) i s t h e n n z c o u n t b e l o w t h e d i a g o n a l

pa= p a r e n t ( k ) ; % t r a n s f e r a l l r o w s t o p a r e n t

i f ( pa~=−1)
i f ( nque ( pa )==0)

t a i l ( pa )= head ( k ) ;
end
nex t ( t a i l ( k ) ) = head ( pa ) ;
head ( pa )= nex t ( i ) ;
nque ( pa )= nque ( pa )+ nque ( k ) ;

end
end
for i =1 :m % r o w s t h a t d i d n o t h o l d a d i a g o n a l e n t r y

i f ( pinv ( i ) =0 )
k=k +1;
pinv ( i )= k ;

end
end

end

The algorithm in the beginning finds the leftmost element of each row. Then, in the second
loop, creates a ”list” of columns k which contains all the indexes i which are true to leftmost(i)=k.
Then, in the third loop for each column k, the head row is removed and is the row the Householder
does not zero out and so must not be used again, which made sure by pinv (Any row in the list of k
would have been suitable to be the remainder of Householder). The assignment lnz=lnz+nque(k)
adds to the sum the count of elements below the diagonal V(k+1:m,k) and the following lines of
code transfer the remaining nodes of k to its parent.
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R
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A 0
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kk

A

k1 k2

k1
k2

Figure 6.3: Node with no children

That last part is the algorithmic expression of the relation |Vk| =

 ∑
k=parent(i)

|Vi| − 1

 +

|{i|k = minAi∗}|. Consider the node k of the left matrix in figure 6.3. Node k has no children, is
a leaf, and so no previous Householder Reflections would have acted on it. So all the elements in
the column are the leftmost in their rows. Thus, nque(k)=4 will account for the all those elements
and that is the number of nonzeros in that Vk.

Now, consider the node k of the right matrix. k has two children k1,k2. The number of nonzeros
of Vk is the summation of the nonzeros of the children plus its own leftmost nonzeros. So if each
child passes their nonzero elements to their father after it has been calculated, the latter has a list
of all the nonzeros, which will pass on to its own father and so forth. Thus, list concatenation will
account for the transfer and in constant time for each one, so in total O(n) because the total children
of the graph are n.

To do the symbolic analysis some functions from previous chapter and the vcount introduced
above should be called.

A_symb . p a r e n t = e t r e e (A) % f i n d t h e e l i m i n a t i o n t r e e

A_symb . p o s t = p o s t ( A_symb . p a r e n t )
c= c o l c o u n t s (A, A_symb . p a r en t , A_symb . p o s t )
A_symb . cp=cumsum ( c ) % s t o r e t h e c o l u m n p o i n t e r s f o u n d u s i n g

% c o l c o u n t s ( C h o l ) , r ow c o u n t s ( QR )

[ A_symb . lnz , A_symb . pinv , A_symb . l e f t m o s t ]= vcoun t (A, A_symb . p a r e n t )
% u s e v c o u n t t o f i n d l n z , p i n v a n d l e f t m o s t

A_symb . unz=sum ( A_symb . cp )

At thismoments every symbolic calculation ismade, so it is possible tomove on to the numerical
factorization of QR.

f unc t i on [V,R]= qr (A, A_symb )
[m n ]= s i z e (A ) ;
Ai=A. i ; Ap=A. p ;
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q=A_symb . q ; p a r e n t =A_symb . p a r e n t ;
p i n r v =A_symb . pinv ;
l e f t m o s t =A_symb . l e f t m o s t ;
r n z =1; l n z =1;
w= zero s (m) ;

f o r k =1: n % c o m p u t e V , R

Rp ( k )= rnz ; % R ( : , k ) s t a r t s h e r e

Vp( k )= p1= l n z ; % V ( : , k ) s t a r t s h e r e

w( k )= k ; % V ( k , k ) p a t t e r n o f V

Vi ( vnz )= k ;
vnz=vnz +1;
t op=n ;
f o r p=Ap( k ) : Ap( k+1)−1 % f i n d R ( : , k ) p a t t e r n

i = l e f t m o s t ( Ai ( p ) ) ;
l e n =1;
whi le (w( i )~=k ) % t r a v e r s e u p t o k

s ( l e n )= i ;
l e n = l e n +1;
w( i )= k ;
i = p a r e n t ( i ) ;

end
whi le ( l en >1) % p u s h p a t h o n s t a c k

t op= top −1;
l e n = len −1;
s ( t op )= s ( l e n ) ;

end
i =pinvΑ( i ( p ) ) ;
x ( i )=Ax( p ) ; % x ( i )= A ( : , c o l )

i f ( i >k && w( i ) < k ) % p a t t e r n ( V : , k )= x ( k +1 ,m )

Vi ( vnz )= i ;
vnz=vnz +1; % ad d i t o p a t t e r n o f V ( : , k )

w( i )= k ;
end

end
for p= top : n % f o r i i n R ( : , k )

i = s ( p ) ; % R ( i , k ) i s n o n z e r o

f o r j =Vp( i ) : Vp( i )−1 % a p p l y t h e p r e v i o u s H o u s e h o l d e r s

mul=mul+Vx( j )*x ( Vi ( p ) ) ;
end
mul=mul*beta ( i ) ;
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f o r j =Vp( i ) : Vp( i )−1
x ( Vi ( p ) ) = x ( Vi ( p ))−Vx( p )*mul ;

end
Ri [ r nz ]= i ;
Rx [ rnz ]= x ( i ) ;
r n z = rnz +1;
x ( i ) = 0 ;

end
for p=p1 : vnz

Vx( p )= x ( Vi ( p ) ) ;
x ( Vi ( p ) ) = 0 ;

end
Ri ( r nz )= k ;
[ v , beta ]= house ( x ) ; % a p p l y t h e c u r r e n t H o u s e h o l d e r

end
Rp ( n )= rnz ; % f i n a l i z e t h e m a t r i c e s

Vp( n )= vnz ;
R . p=Rp ; R . i =Ri ; R . x=Rx ;
V. p=Vp ; V. i =Vi ; V. x=Vx ;

end

This code, although it is the numeric part, does some symbolic work actually. That is because
the colcounts returns the count of rows of R, because R = LT but the new matrices need to be
stored by column, so the column pointers are computed on the way.
Inside the first for loop, the Reach of each node is computed, but the ascension up the tree, starts
from the leftmost node of each nonzero row in column k, the w(i) is used to mark the visited nodes
at each iteration. Each column inherits the the nonzeros of the children and the if statement checks
for any new nonzeros in matrix A and not in the tree.
In the second loop the previousHouseholder transformations corresponding to column k are applied.
Finally, the Householder vector of the kth column is computed and stored.

An example of symbolic QR Decomposition is shown below:

A =



∗
∗ ∗ ∗ ∗

∗ ∗
∗ ∗

∗ ∗
∗ ∗ ∗

∗
∗
∗ ∗ ∗
∗ ∗ ∗



, V =



∗
∗ ∗

∗
∗ ∗ ∗

∗ ∗
∗ ∗ ∗

∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗



, R =



∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗
∗


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Figure 6.4: Column Elimination Tree

parent =
[
2 4 5 5 6 0

]





Chapter 7

LU Decomposition

7.1 Introduction

LUDecomposition is thematrix form ofGaussian Elimination and it is older than theDecomposition
mentioned before. It is one of the most important and versatile matrix algorithms. It factorizes a
matrix A to an a product of a lower triangular and an upper triangular matrix so A=LU.

7.2 Method Overview

Consider a matrix A ∈ Rn x n, which is analyzed into two factors L,R ∈ Rn x n so that LU=A,
where L is lower triangular and U is upper triangular. Then in matrix notation:

ℓ11

ℓ21 ℓ22

ℓ31 ℓ32 ℓ33
...

...
... . . .

ℓn1 ℓn2 ℓn3 . . . ℓnn





u11 u12 u13 . . . u1n
u22 u23 . . . u2n

u33 . . . u3n
. . . ...

unn


=



a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
a31 a32 a33 . . . a3n
...

...
... . . . ...

an1 an2 an3 . . . ann


=⇒

ℓ11u11 = a11 ℓ11u12 = a12 ℓ11u13 = a13 . . . ℓ11u1n = a1n
ℓ21u11 = a21 ℓ21u21 + ℓ22u22 = a22 ℓ21u13 + ℓ22u23 = a23 . . . ℓ21u1n + ℓ22u2n = a2n
ℓ31u11 = a31 ℓ31u12+ℓ32u22 = a32 ℓ31u13+ℓ32u23+ℓ33u33 = a33 . . . ℓ31u1n+ℓ32u2n+ℓ33u3n = a3n
...

...
...

...
ℓn1u11 = an1 ℓn1u12 + ℓn2u22 = an2 ℓn1u13 + ℓn2u23 + ℓn3u33 = an3 . . .

. . . ℓn1u1n3 + ℓn2u2n + ℓn3u3n + · · ·+ ℓnnunn = ann.

This is a system with n2 equations and
n∑
i=1

n∑
j=i

1 =
n(n+ 1)

2
unknown variables from each

matrix, so in total n(n+ 1) = n2+ n. The variables surpass the equations, that gives us freedom to
choose arbitrarily the values of the n variables. Thus, the n-diagonal entries of the lower triangular
matrix L are set equal to 1. Substituting to the previous equations:
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

1
ℓ21 1
ℓ31 ℓ32 1
...

...
... . . .

ℓn1 ℓn2 ℓn3 . . . 1





u11 u12 u13 . . . u1n
u22 u23 . . . u2n

u33 . . . u3n
. . . ...

unn


=



a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
a31 a32 a33 . . . a3n
...

...
... . . . ...

an1 an2 an3 . . . ann


=⇒

u11 = a11 u12 = a12 u13 = a13 . . . ℓ11u1n = a1n
ℓ21u11 = a21 ℓ21u21 + u22 = a22 ℓ21u13 + u23 = a23 . . . ℓ21u1n + u2n = a2n
ℓ31u11 = a31 ℓ31u12+ℓ32u22 = a32 ℓ31u13+ℓ32u23+u33 = a33 . . . ℓ31u1n+ℓ32u2n+u3n = a3n
...

...
...

...
ℓn1u11 = an1 ℓn1u12 + ℓn2u22 = an2 ℓn1u13 + ℓn2u23 + ℓn3u33 = an3 . . .

. . . ℓn1u1n3 + ℓn2u2n + ℓn3u3n + · · ·+ unn = ann.

Writing this in block matrix form leads to the right-looking LU factorization discussed in next
section.

7.3 Right-Looking LU Decomposition

[
1
ℓ21 ℓ22

] [
u11 u12

U22

]
=

[
a11 a12
a21 A22

]
, where u11, a11 are scalars, ℓ21, u12 are vectors and

ℓ22,U22 are submatrices.

u11 = a11 u12 = a12 ℓ21u11 = a21
ℓ21u12 + ℓ22U22 = A22 =⇒ ℓ22U22 = A22 − ℓ21u12

The algorithm for the right case is shown below for a dense matrix:

f unc t i on [L ,U] = l u _ r i g h t (A)
n= s i z e (A , 1 ) ;
L=eye ( n ) ;
U= zero s ( n ) ;
f o r k =1: n

U( k , k : n )=A( k , k : n ) ;
L ( k +1: n , k )=A( k +1: n , k ) /U( k , k ) ;
A( k +1: n , k +1: n )=A( k +1: n , k +1: n)−L( k +1: n , k )*U( k , k +1: n ) ;

end
end

This algorithm is using outer products, the ℓ21u12matrixwhich is subtracted by theA submatrix.
That makes it hard to implement it in the sparse case because it adds entries in the middle of the
matrix.



7.4 Numerical Issues 63

7.4 Numerical Issues

7.4.1 Numerical Issues

This is the first algorithm shown so far in which, a lot of attentionmust be paid to the numerical
factorization alongwith the symbolic one. LU factorization is closely related toGaussian Elimination
which is unstable in its original form. Notice from 7.2 that to find ℓ21 a division is needed with
u11, ℓ21 = a21/u11 and that division is needed for every element in the L matrix. To complete the
process, we must ensure that no division with zero is made, so pivoting is used.[60]

Consider the matrix A =

[
0 1
2 3

]
. If the process begins, with the A matrix as it is, it will

fail, but if the lines are pivoted so that A =

[
2 3
0 1

]
, the LU factorization can continue and is in

fact complete. Thus, LU = PA, where P is a permutation matrix in this example P =

[
0 1
1 0

]
,

L =

[
1 0
0 1

]
and U =

[
2 3
0 1

]

Another reason that Gaussian Elimination is unstable is due to the small pivots that may occur.

For instance, consider: A =

[
0.000100 1

1 1

]
, b =

[
1
2

]
. Solving Ax=b results in:

x =

[
1.00010001 . . .
0.998998 . . .

]
≈

[
1.00
1.00

]
using decimal approximation of 3 points.

If Gaussian Elimination is used:

[
0.000100 1

0 1− 10000

]
x =

[
1

1− 10000

]
.

The number 1-10000 is not represented exactly due to floating point arithmetic but it will be
rounded to the nearest floating point number, which is assumed to be -10000. Thus:[
0.000100 1

0 −10000

]
x =

[
1

−10000

]
=⇒ x =

[
0
1

]
. This result is totally inaccurate compared

to the one above. [26]

Obviously, this is an error that happens to LU factorization too. Consider A =

[
10−20 1
1 2

]
.

Its LU factorization is : L =

[
1

1020 1

]
, U =

[
10−20 1
0 2− 1020

]
. Once again, assuming that due

to rounding the term u22 becomes −1020 and so: L =

[
1

1020 1

]
, U′ =

[
10−20 1
0 −1020

]
. This

leads to: LU′ =

[
10−20 1
1 0

]
. Evidently, LU′ ̸= A, because although LU was computationally

stable, it was not backward stable.[60].
Once again, pivoting before applying the Gaussian Elimination or the LU factorization would

minimize the problem. For instance consider the first example:[
1 1

0.000100 1

]
x =

[
2
1

]
=⇒

[
1 1

1− 0.000100

]
x =

[
2

1− 2 ∗ 0.000100

]
. Once again due to
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rounding assumed, this results in:

[
1 1

1

]
x =

[
2
1

]
=⇒ x =

[
1
1

]
, which is the same as the 3

decimal point approximation.

The some happens in the LU case, LU = PA =

[
1 2

10−20 1

]
=⇒ L =

[
1

10−20 1

]
,U =

[
1 2
0 1

]

LU =

[
1 2

10−20 1

]
= A.

The problem described above is of high importance because it amplifies the insignificant data
which are added to significant data resulting in noise in the solution. The reason it did not happen in
the previous algorithms is because QR is just permuting the data while keeping the length constant,
orthogonal operations are safe numerically. In the Cholesky case is because it has an excellent
numerical stability due to the fact that ||A||2 = ||LLT||2 = ||LT||22 = ||L||22 [47]. Only a very
ill-conditioned matrix will result in an unstable Cholesky Factorization.[25].

7.4.2 Partial Pivoting

One method of overcoming the instability issues in the above, is called Partial Pivoting. In
fact, it is a generalization of the technique used to overcome the problems tackled previously.

In this method, at each iteration of the Gaussian Elimination or LU Decomposition the largest
element in the column which will be zeroed out. This results in a pivoting value with magnitude
that does not surpass 1. In iteration k, the pivot is the largest of n-(k-1) sub-diagonal entries in
column k. When located it is moved into the pivot position A(k−1)kk , where A(k) denotes the matrix
A after the kth elimination has been applied, so A(n−1) = U. Also, in order to move the row of
the largest element a multiplication with a permutation matrix is needed at each step, denoted by

Pk. Also ℓk denotes the L component at each step. Consider an example below: A =

1 2 3
4 5 6
7 8 0


P1A =

0 0 1
0 1 0
1 0 0


1 2 3
4 5 6
7 8 0

 =

7 8 0
4 5 6
1 2 3

, then using ℓ1 to eliminate both entries in the first

column: ℓ1P1A =

 1
−4/7 1
−1/7 0 1


7 8 0
4 5 6
1 2 3

 =

7 8 0
0 3/7 6
0 6/7 3

 = A(1)

P2A(1) =

1 0 0
0 0 1
0 1 0


7 8 0
0 3/7 6
0 6/7 3

 =

7 8 0
0 6/7 3
0 3/7 6


ℓ2P2A(1) =

10 1
0 −1/2 1


7 8 0
0 6/7 3
0 3/7 6

 =

7 8 0
0 6/7 3
0 0 9/2

 = A(2) = U

L = ℓ′−11 ℓ′−12 =

 1
4/7 1
1/7 1/2 1

, where ℓ′1 = P2ℓ1P−12 and ℓ′2 = ℓ2. P = P1P2 =

0 0 1
1 0 0
0 1 0


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Therefore, (L′n−1 . . . L′1)(Pn−1 . . .P1)A = U =⇒ (Pn−1 . . .P1)A = (L′n−1 . . . L′1)−1U =⇒
PA = LU, where L = (L′n−1 . . . L′1)−1 and P = (Pn−1 . . .P1).

Partial pivoting is the most common way to maintain numerical stability, but permuting rows
is affecting the symbolic analysis too. In many cases, they antagonize each other. Consider the

following scenario: A =


∗
∗ ∗
∗ ∗
⋆ ∗ ∗ ∗

 and the entry a41 is the largest entry on the first column.

Then, by permuting the rows 1 and 4 and doing the Elimination results in the following matrix:

A′ =


⋆ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

, neglecting numerical cancellations. Now, the matrix has been transformed
from having a sparse structure to a dense one due to all those fill-in entries.

In the next section a method to predict a bound on fill-in created by LU factorization is going
to be exploited

7.5 Upper fill-in bound

Recall from 7.3 the relation ℓ22U22 = A22 − ℓ21u12 and consider ℓ21u12 having this structure:

ℓ21u12 =


∗

∗
∗
∗


[

∗ ∗ ∗
]
=


∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 which is then subtracted by A22, so this non-

zero pattern is added to A22 structure. ℓ21 has the non-zero structure of the column a21 which are
going to be zeroed-out by the Elimination. Thus in order to zero-out all the elements, the fill-in
entries propagated to the rest of the matrix is the multiplication of the column going to be erased
by the pivot row.

If the all the rows having an entry that is going to be deleted are grouped in the upper part of
the matrix and all the non-zero elements are grouped to the left side, while in the bottom line are
the rows not affected at all the following structure arises:

A =



⋆ ∗ 0 . . .

∗ ∗ ∗
... . . .

∗ ∗ 0 . . .

∗ ∗
... . . .

∗ ∗ ∗ 0 . . .

0 ∗ ∗ . . .
...

...
...


=⇒ A′ =



⋆ ∗ 0 . . .

∗ ∗ ∗ ∗
... . . .

∗ ∗ ∗ 0 . . .

∗ ∗ ∗
... . . .

∗ ∗ ∗ ∗ 0 . . .

0 ∗ ∗ . . .
...

...
...


.

The matrix A’ shows that the non-zero structure of the pivot row is going to be propagated only
inside the upper left partition. Recall from 6.3 the same partition for QR. When QR is used, the



66 Chapter 7. LU Decomposition

upper left partition is all filled up with the set-union of the rows so it all becomes nonzero, which
is the ultimate case for LU. Thus, LU fill-in is bounded by QR.

This bound holds for partial pivoting too. If the largest entry is on the fourth row then:

A =



∗ ∗ 0 . . .

∗ ∗ ∗
... . . .

∗ ∗ 0 . . .

⋆ ∗
... . . .

∗ ∗ ∗ 0 . . .

0 ∗ ∗ . . .
...

...
...


=⇒ PA =



⋆ ∗
... . . .

∗ ∗ ∗
... . . .

∗ ∗ 0 . . .

∗ ∗ 0 . . .

∗ ∗ ∗ 0 . . .

0 ∗ ∗ . . .
...

...
...


=⇒

A′ =



⋆ ∗
... . . .

∗ ∗ ∗
... . . .

∗ ∗ ∗ 0 . . .

∗ ∗ ∗ 0 . . .

∗ ∗ ∗ ∗ 0 . . .

0 ∗ ∗ . . .
...

...
...


.

The nonzeros propagated are still in the upper left part of thematrix.When the symbolic factorization
is being done, there is no information about the numerical values so we do not know which row is
going to be the pivot row but no matter which is the one, is going to be bounded by the QR and
this is a bound that can be predicted beforehand.

If the matrix A is strong Hall then R is an upper bound on the nonzero pattern of U. Meaning
that, rij ̸= 0 ⇐⇒ uij ̸= 0[43][40][37]. In Householder Reflections the nonzero pattern of all rows
affected by the transformation becomes the set-union of all these rows. In LU with Partial Pivoting
these rows are candidate for pivoting but only one is selected as a pivot. The remaining candidate
rows are modified by adding a scaled multiple of the pivot row [23]. So QR acts in a way that sets
all candidate rows as pivot rows.

If the matrix A is strongHall and a(k−1)kk ̸= 0, k = 1 . . . n, the Householder matrix V is an upper
bound on the nonzero pattern of L acquired with partial pivoting. Meaning, vij ̸= 0 ⇐⇒ ℓij ̸= 0
[43][40].

So a worst-case estimate for the fill-in in LU can be computed and the way is already known
from previous chapters. Doing Cholesky Symbolic Analysis of (ATA) gives the exact structure of
QR which is an upper bound for LU, without using numerical values at all. Therefore, there are
orderings which can be used to reduce the fill-in in Cholesky, leading to less fill-in in QR and
then tighten the bound of LU. This is done by using column permutation matrices Pc, the row
permutations do not affect QR because (PA)TPA = RTR =⇒ ATPTPA = RTR =⇒ ATA = RTR
due to P being orthogonal. In column permutation (APc)TAPc = RTR =⇒ PTcATAPc = RTR.
Since, a reduced fill-in column ordering has been used then, partial pivoting of LU is free to choose
the more suitable row as a pivot.
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7.6 Left-Looking LU Decomposition

The Left-Looking method computes one column of L and U at a time. At each step all the
previous columns of L and A are accessed. Each matrix is decomposed into a 3-by-3 block matrix:L11ℓ21 1

L31 ℓ32 L33


U11 u12 U13

u22 u23
U33

 =

A11 a12 A13
a21 a22 a23
A31 a32 A33

,
where ℓ21, u23, a21, a23 are row vectors, ℓ32, u12, a12, a32 are column vectors, ℓ22 = 1, u22 are scalars
and the rest are submatrices. The middle row and column of each matrix is considered the kth row
and column which is computed at each step. Thus, the previous k-1 columns are assumed to be
known. Expanding the system results into 3x3 = 9 equations but only 3 are actually needed:

1. L11u12 = a12, which is a sparse triangular solve for column-vector u12

2. ℓ21u12 + u22 = a22 =⇒ u22 = a22 − ℓ21u12, which is a scalar minus a dot-product to solve
for the pivot entry u22

3. L31u12+ℓ32u22 = a32 =⇒ ℓ32 =
a32 − ℓ31u12

u22
, which is a sparsematrix-vectormultiplication

subtracted by a column vector and then divided by a scalar to solve for column vector ℓ32

The equations above can be altered in a way that the solution to all of them is given by just 1

triangular solve. If a lower trapezoidal matrix of the following form is constructed:

L11ℓ21 1
L31 0 I

,
and then solving a system with the right-hand side being the kth column of A results in:L11ℓ21 1

L31 0 I


x1x2
x3

 =

a12a22
a32


Expanding the following equations arise:

1. L11x1 = a12

2. ℓ21x1 + x2 = a22

3. L31x1 + x3 = a32

If we substitute x1 with u12, x2 with u22 and x3 with ℓ32u22 then:

1. L11u12 = a12

2. ℓ21u12 + u22 = a22

3. L31u12 + ℓ32u22 = a32

These are exactly the same equations as before grouped into one triangular solve. After the solution
only a division is needed ℓ32 = x3/u22 and the unknowns are computed.

Once x is found, entries in the rows k through n can be searched for the entry with the largest
magnitude so as to be chosen as the pivotal entry [22]. That is because the 2,3 relations of the upper
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equations are just multiplications, so if the permutations are applied beforehand or afterwards the
result is the same. Only the first relation is affected by the order, because it is a triangular solve and
the correct order matters to yield an accurate solution. Therefore, the only consistency needed is
between the nonzero in the L matrix and the target vector in the triangular solve, it does not really
matter if the rows are permuted in the correct position right away as long as the are consistent with
each other.

7.6.1 Left-Looking Dense LU Algorithm

The Matlab algorithm of the Left-Looking method is presented below. The algorithm handles
a dense matrix and uses partial pivoting.[23]

f unc t i on [L ,U, P ]= l e f t _ l o o k i n g _ l u (A)
n= s i z e (A , 1 ) ;
P=eye ( n ) ;
L= zero s ( n ) ;
U= zero s ( n ) ;
f o r k =1: n

% c r e a t e LHS m a t r i x : : 1 : k −1 c o l u m n s o f L , k : n I d e n t i t y ,

x _ s t a r t =[L ( : , 1 : k−1) [ zero s ( k−1,n−k +1 ) ; eye ( n−k + 1 ) ] ] ;
x= x _ s t a r t \ ( P*A( : , k ) ) ; % s p a r s e t r i a n g u l a r s o l v e t o f i n d x

U( 1 : k−1,k )= x ( 1 : k−1); % r e s u l t o f x1 a r e t h e ( 1 : k −1 , k ) e n t r i e s

% o f U

[ a , i ]=max ( abs ( x ( k : n ) ) ) ; % f i n d t h e n ew p i v o t

i = i +k−1; % d i m e n s i o n s o f s u b m a t r i x t o

% d i m e n s i o n s o f t h e w h o l e m a t r i x

L ( [ i k ] , : ) = L ( [ k i ] , : ) ; % row p e r m u t a t i o n s o f L

P ( [ i k ] , : ) = P ( [ k i ] , : ) ; % row p e r m u t a t i o n s o f P

x ( [ i k ] ) = x ( [ k i ] ) ; % row p e r m u t a t i o n s o f x

U( k , k )= x ( k ) ; % s t o r e t h e p i v o t e n t r y

L( k , k ) =1 ; % d i a g o n a l e n t r i e s o f L =1

L( k +1: n , k )= x ( k +1: n ) / x ( k ) ; % ℓ32 = x3/u22
end

end

Note that the algorithm first computes the x solution vector and then chooses the pivot row and
does the swapping because it is needed for the next iteration to be used in the triangular solve to
find x(k+1)1 .

Implementing the row permutation to a sparse method, is costly and not worth the cost. That
is because the matrices are stored by column, to swap row indices in each column in each iteration
outweighs the cost of the sparse triangular solve. Thus, in total the row swapping can cost asymptotically
a lot more than the whole LU factorization[22].
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L
U

A’

k

i

j

i1

k’

i2

Figure 7.1: New and Old Data Space Relation

7.6.2 Left-Looking Sparse LU Algorithm

To exploit sparsity in the Left-LookingAlgorithm, a convenientmethod to do the partial pivoting
must be implemented that does not do any row permutation during the procedure but applies all of
them at the end.

To do so the data structure is left unchanged and thus, the old row indices are used, the ones
corresponding to the rows in A matrix. The one thing that needs to be tracked is actually which
row i becomes the kth pivot row at step k. To keep track of the actual place of a row an inverse
permutation vector is used. It is like looking at the L matrix through a lens that transforms the data
from the old space to the new. Therefore, after all the row i needs to become the row k in the final
L matrix, as well as every other row i’.

Consider Figure 7.1. At the kth step the i row of the A matrix is chosen as pivot. So the row
i of A which will become the k row of L is in the old space. On the contrary, the column indices
reflect the new space. Thus, in the matrix L the columns are indexed in the proper way while the
rows still use the old indices.

Then, for the lower triangular solve, which is the only equation that the ordering really matters,
suppose the Reach(j) needs to be computed. J reaches to row i1 which is the row of the A matrix,
thus it needs to be remapped to the new index of L and so pinv(i1)=k’ so Reach(j)=k’. All the rows
below row i have not yet been chosen as pivots so they reflect to Identity and thus, they do not have
any outgoing edges and will not add extra work to the depth-first search. The only issue that arises
is that since these lines have no name in the new work space, the only consistent way to refer to all
these nodes is through their old names.

So, generally the part 1:k-1 in of matrix

L11ℓ21 1
L31 0 I

 are well-defined and have been already

chosen as pivots and have an index in the new data space. On the other hand, the k+1:n part is
the implicit identity which is not chosen yet nor has a name in the new data space. The sparse
triangular solve has to cope with this data duality so as the results to be consistent. The algorithm
for the sparse left-looking LU is shown below[23].

f unc t i on [L ,U, pinv ]= l e f t _ l o o k i n g _ s p a r s e _ l u (A)
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n=A. n ;
pinv= zero s ( n , 1 ) ;
Lp= zero s ( n , 1 ) ;
x i = zero s ( n , 1 ) ;
l n z =1;
unz =1;
f o r k =1: n

[ x , X]= l s p a r s e _ s o l v e (L ,A, k , pinv ) ; % x=L \ A ( : , c o l )

i p i v =0;
a=−1;
f o r p =1: l eng th (X) % f i n d t h e p i v o t

i =X( p ) ; % no n z e r o v a l u e o f x

i f ( pinv ( i )==0) % h a s n o t b e e n c h o s e n a s p i v o t y e t

t =abs ( x ( i ) ) ; % a b s o l u t e v a l u e o f p o s s i b l e p i v o t

i f ( t >a )
a= t ; % l a r g e s t p i v o t c a n d i d a t e u n t i l now

i p i v = i ; % p i v o t ’ s r ow i n d e x

end
e l s e
% U ( p i n v ( i ) , k )= x ( i ) , c r e a t i n g t h e v e c t o r u12 = x1

Ui ( unz )= pinv ( i ) ;
Ux( unz )= x ( i ) ;
unz=unz +1;

end
end
p i v o t =x ( i p i v ) ; % t h e c h o s e n p i v o t

Ui ( unz )= k ; % U ( k , k ) i n d e x

Ux( unz )= p i v o t ; % U ( k , k ) a s s i g n m e n t

unz=unz +1;

% d i v i d i n g b y p i v o t t o f i n d t h e c o l u m n o f L

f o r p =1: l eng th (X)
i = x i ( p ) ;
i f ( pinv ( i )==0) % x ( i ) i s a n e n t r y i n L ( : , k )

Li ( l n z )= i ; % row i n d e x o f i

Lx ( l n z )= x ( i ) / p i v o t ; % v a l u e o f L d i v i d e d b y p i v o t

end
x ( i ) = 0 ;

end
end
Lp ( n+1)= l n z ; % t e r m i n a t e c o l u m n p o i n t e r s
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Up( n+1)= unz ;
f o r p =1: l n z % p o i n t o l d r ow i n d i c e s t o t h e n ew

Li ( p )= pinv ( Li ( p ) ) ;
end

end

Recall lsparse_solve from Section 4.4, some adjustments need to be made so as to use the pinv
vector of transformation in its computations. Furthermore the Reach and DFS functions need to be
modified from Section 4.3.2. The adjustments are shown below.

f unc t i on [ x , X]= l s p a r s e _ s o l v e (L ,B , k , pinv )
X= c s _ r e a c h (L ,B , k , pinv )
f o r p=Bp ( 0 ) : Bp(1)−1 % b i s s t o r e d i n a CSC f o r m a t ,

x ( Bi ( p ) ) =Bx ( p ) ; % s o i t i s s c a t t e r e d

end
for s =1 : l eng th (X)

j =X( s ) ;
i f ( pinv )

J=pinv ( j ) ;
end
i f ( J ==0)

c o n t i n u e ;
end
x ( j )= x ( j ) / Lx ( Lp ( J ) ) ;
f o r p=Gp( J ) +1 :Gp( J +1)−1

x ( Li ( p ) ) = x ( Li ( p ))−Lx ( p )*x ( j ) ;
end

end
end

f u n c t i o n X= r e a ch (L ,B , p i nv )
f o r each i f o r which bi ̸= 0

i f node i i s unmarked
d f s ( i , p inv )

f u n c t i o n d f s ( j , p inv )
mark ( j )
jnew=p inv ( j )
f o r each i f o r which l ijnew ̸= 0

i f node ( i ) i s unmarked
d f s ( i , p inv )

push j on to s t a c k f o r X
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I

k
i1

i2

k k1k1
pinv(i1)=k1

pinv(i2)=-1

dfs(k1)

i2

X

i1

i2

Figure 7.2: Sparse Solve Example Between New and Old Data Space

Thus, to find the reach of a node, which depends on the column pattern we look through the lens to
find all the dependencies recursively. But, when it comes to storing the x solution the old indices
are used so the data is consistent with the not yet pivotal entries. The marking has to happen at the
row index while the new recursion at the column index.

The total left-looking algorithm for the sparse LU factorization isO(n+ |A|+ f), where n is the
dimension of the A, |A| are the nonzeros and f the number of floating-point operations performed.
This is essentially O(f) except for some cases, when A is diagonal for instance[23].

In the Figure 7.2 above, an instance of the sparse triangular solve is shown. The column k
reaches to L(i1,k) which will be L(k1,k) in the new data space, and to a row i2. Since i1 maps to
k1 in the new data, the dfs(k1) is made to find nodes which depend on the latter while the i1 is
marked. Row i2 maps to -1 which means that has not been yet selected as pivot. Then it has yet no
dependencies, so dfs is not made to this node, still it has to be in nonzero structure of X . Thus, in
X the old indices are used.

An example of left-looking LU with numerical values follows.

A =



5 0 8 0 5 0
6 5 0 0 9 0
0 4 5 0 0 0
0 8 0 11 3 0
0 9 0 0 5 0
0 0 2 0 6 5


, L =



1
0 1

0.8333 −0.4630 1
0 0.8889 0 1
0 0 0.25 0 1
0 0.44 0.6250 0 −0.3484 1



U =



6 5 0 0 9 0
9 0 0 5 0

8 0 −0.1852 0
11 −1.444 0

6.0463 5
1.7420


, P =

[
2 5 1 4 6 3

]

Notice that all the entries in L are less than 1 magnitude thanks to partial pivoting. P matrix shows
the permutations applied to A in order to do the partial pivoting, so L*U=A(P,:). This means that
if this row permutation has known before hand(it is computed on the fly) and the matrix PA was
factorized, P’=I, L’=L and U’=U. No row permutation would have been made because it is already
in the optimal order.
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Figure 7.3: Multifrontal Elimination Tree and Frontal Matrices

7.7 Multifrontal Method

The LU factorization can be used in a multifrontal way. The logic behind Multifrontal LU
is the same as the Multifrontal Cholesky inspected in Section 5.13. If an unsymmetric matrix
with a symmetrical nonzero pattern is factorized with LU that results in square frontal matrices
like Cholesky, only this time the first row/column of each frontal matrix gives the U/L pattern
respectively[23]. The basis of this method has been presented in [31][30].

Recall again thematrix fromSection 5.13,A =



a11 a12 a15
a21 a22 a25

a33 a36
a44 a46

a51 a52 a55 a56
a63 a64 a65 a66


, and corresponding

elimination tree and frontal matrices shown in Figure 7.3. Its LU factors are:

L =



1
ℓ21 1

1
1

ℓ51 ℓ52 1
ℓ63 ℓ64 ℓ65 1


, U =



u11 u12 u15
u22 u25

u33 u36
u44 u46

u55 u65
u66


.

The multifrontal method proceeds as follows:
U3 = 0,U4 = 0,U1 = 0 since they are leaves of the tree and have no children.

F3 =

[
a33 a36
a63

]
,U3 = −

[
ℓ6,3a3,6

]
= −

[
ℓ63u36

]
F4 =

[
a44 a46
a64

]
,U4 = −

[
ℓ64a46

]
= −

[
ℓ64u46

]

F1 =

a11 a12 a15
a21
a51

 , U1 = −

[
ℓ21a12 ℓ21a15
ℓ51a21 ℓ51a15

]
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F2 =

[
a22 a25
a52

]
⊕ U1 =

[
a22 a25
a52

]
−

[
ℓ21a12 ℓ21a15
ℓ51a21 ℓ51a15

]
=

[
a22 − ℓ21a12 a25 − ℓ21a51
a52 − ℓ21ℓ51 −ℓ51a15

]

=

[
u22 u25
u52 −ℓ51a15

]
, U2 =

[
−ℓ51a15 − ℓ25u25

]
F5 =

[
a55 a56
a65

]
⊕U2=

[
a55 a56
a65

]
−

[
−ℓ51a15 − ℓ25u25 0

0 0

]
=

[
a55 − ℓ251 − ℓ52a15 − ℓ25u25 a56

a65 0

]

=

[
u55 u56
u65 0

]
, U5 = −

[
ℓ65u65

]
F6 =

[
a66
]
⊕U5⊕U4⊕U3 =

[
a66
]
−
[
ℓ65u65

]
−
[
ℓ64u46

]
−
[
ℓ63u36

]
=
[
a66 − ℓ65u65 − ℓ64u46 − ℓ63u36

]

The LU multifrontal method has been extended for matrices with unsymmetric pattern[31]. If
A is an unsymmetric matrix then M = A + AT denotes a structurally symmetric matrix. The M
matrix can be used for computing the elimination tree. The symmetric pattern can also used to form
the frontal square matrices as well and the method is similar to the one mentioned above[4][15].

Anothermethod is to assemble rectangular frontalmatrices. For amatrixAwhich is unsymmetric,
the column elimination tree can be computed, this is the elimination tree of ATA which shows the
relations. The QR analysis is proved useful for this multifrontal method as in each step k, the size
of the frontal matrix Fk is bounded by the size of Vk and Rk∗, thus Fj is at most Vk-by-Rk∗[21][23].

An example follows of an unsymmetric matrix A. Its QR factorization is shown so as to see
the upper bounds, as well as the column elimination tree and the amalgamated column elimination
tree, which results by grouping together parent nodes with same pattern.

A =



∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗
∗ ∗ ∗


[QR] =



∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗


Recall that QR performs the set-union of the rows affected by Householder and it is in a sense
like choosing all candidate pivot rows, as partial pivots thus providing the upper bound. Below LU
factors of A are shown, ⊛, ◦ denote fill-in with no partial pivoting and possible fill-in from partial
pivoting respectively.

[LU] =



∗ ∗ ◦ ◦ ∗ ◦
∗ ∗ ◦ ◦ ∗ ∗

∗ ∗ ∗
∗ ⊛ ∗ ∗ ⊛ ◦

∗ ∗ ∗ ∗
∗ ∗ ⊛
∗ ∗ ∗


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Figure 7.5: Frontal Matrices Relation

In the two Figures above the two elimination trees and the relation of the frontal matrices is
shown. In the frontal matrices, the fill-in with no partial pivots that the elimination will produce
are shown for convenience.

This was the last factorization method, discussed. In the next chapter, some methods to reduce
fill-in entries will be inspected.





Chapter 8

Fill-in Reduction Methods

8.1 Introduction

In the algorithms inspected up until now, it was evident that fill-in entries increase in a slightly
big amount the total work that is needed to be done to compute a matrix factorization. It was
also shown that the way a matrix was ordered made a huge impact on the propagation of fill-in
entries. Thus, it is only natural that some methods have been developed in order to find a more
suitable matrix ordering so as to reduce fill-in. However, actually finding the optimal the order that
minimizes the fill-in is anNP-Complete problem, so heuristics are used to find a proper result[66].

8.2 Minimum Degree Ordering

If the permutation chosen reduces the fill-in entries in Cholesky factorization, then, QR factorization
will also have reduced fill-in due to RT = L and thus, the upper-bound of LU will also be reduced.
Therefore, a permutation that maintains the symmetry and positive-definiteness of the matrix A
must be found. Consider the following system of equations:

Ax = b, A ∈ ℜn x n, AT = A, xTAx > 0, x ∈ ℜn. Assume P is a permutation matrix then:
(PAPT)(Px) = Pb, where PTP = I.

Thus, factorizing PAPT into LLT will yield a system with less fill-in.

TheMinimum Degree algorithm is one of the most used and effective algorithms to find such
a matrix P. In a general sense, the logic of this algorithm mimics the partial pivoting in symmetric
Gaussian Elimination. Viewed in a right-looking Cholesky manner of Section 5.13, at step k the
matrix A(k) is to be updated with the outer product of the L(:, k) ∗ L(:, k). So at each step, the row
and corresponding column with the less entries is chosen as pivot row. After n steps, the sequence
in which the pivots where chosen corresponds to the suitable ordering.

Assume thatA(k) ismatrixA at the kth step of the elimination andG(k) = (V,E) the corresponding
undirected graph. The vertices and edges of G(k) are VG(k) = {k, k + 1, . . . , n} and EG(k) =

{(i, j)|a(k)ij ̸= 0}. Such a graph is called an Elimination Graph. When the update from L(:, k)
to A(k) happens, which is like adding a dense submatrix to A and removing k row and column, in

77
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the equivalent graph it is like adding a clique in G(k) and removing vertex k and its corresponding
edges. The clique is formed by all the neighbours of k which actually shows the fill-in entries
that arise. Continuing the elimination, each time picking the vertex with the least degree, until no
vertices remain to eliminate is called the elimination game[49].

The elimination graph at each step is reduced by a vertex and its edges, but a clique is added
instead, which may contain a great amount of edges. This may result in an excessive need of space,
far more than the space allocated for the original graph. Assume m = |E| are the number of edges
in the original graph, and m+ = |E+| are the number of edges in the filled elimination graph. The
original space reserved for the graph is O(n + m) but then O(n− + m+) is required[46]. This is
a bad practice because dynamic memory needs to be allocated which may not be available at that
time and which also can slow down the work in comparison to static memory. That is why, a data
structure to do this work in bounded O(n+ m) space is introduced. 1

A Quotient Graph is a graph which creates edges implicitly instead of the elimination graph
which creates them explicitly. To do this, no vertex is removed but instead it is replaced by element
or enode k. The element k hasLk neighbours and a node i adjacent to element k means it is adjacent
to every node in Lk. Thus, every node i not yet eliminated is adjacent to the nodes from matrix A
where aij ̸= 0 defined as Ai and to all those nodes which have now become elements defined as
Ei[38].

adj(i)=Li =

Ai ∪
∪
e∈Ei

Le \ {i}


The degree of a node i degree(i)=|adj(i)|.

Somemore techniques can be implemented to improve the algorithm. The first is calledElement
Absorption which removes any detected clique redundancy in the elimination or quotient graph.
This will speed up the whole process since less overhead from manipulating the set of cliques
in involved. Consider the set of cliques of a graph are K = {K1,K2, . . . ,Kn} and Ki,Kj ∈ K.
If Ki ⊆ Kj then K can be represented as K = {K1,K2, . . . ,Kn} − Ki. It is as if the element j
is absorbing the element i thus element absorption. Consider a graph with 6 nodes forming the
following cliques:
{1, 5}{2, 5, 6}{3, 5, 6}{4, 5, 6}. Assuming that the elimination order of minimum degree is : 1,2,3
then the resulting cliques {5}, {5, 6}, {5, 6} can be represented by {4, 5, 6}. Thus, all cliques are
absorbed into one in the end[36].

Another technique to improve the performance of the algorithm is pruning. If two entries
i, j are in the pivotal element Lk then j and i can be removed from Ai and Aj respectively. That
is because j and i may have been adjacent by an element aji, aij due to symmetry, but now they
adjacency is represented by the element k[23][3].

Assume now, that two nodes have the same adjacency list if in each one itself is included. That
means, adj(i)∪ i = adj(j)∪ j. These two nodes are indistinguishable and obviously have the same
degree. If one of the two is selected as the next pivot vertex, then the other one can be chosen
without introducing any new fill-in entries. Thus, those two elements can be chosen together as
pivotal elements. The logic behind it is the same manner, as performing supernodes. Eliminating
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two or more nodes similar nodes is calledmass elimination[1]. One of these nodes can be chosen
as the representative of the supernode containing all of them. This technique reduces the number
of times the adjacency list of each node needs to be evaluated.

Since mass elimination is used, the size of the resulting clique may be different from when
only one node was used. The size of the clique as calculated until now by the adjacency of a node
may be referred as the true degree of that node. Now, for mass elimination the external degree of
a node is implemented which denotes the number of nodes that are distinguishable from it[53].

In practice two are the main minimum degree algorithms which are improved versions of the
basic minimum degree algorithm.

1. Multiple Minimum Degree

2. Approximate Minimum Degree

The first algorithm tries to reduce the number of degree updates of the nodes. When a search
is made for the minimum degree vertex, some ties may result. That means multiple vertices may
have the minimum degree. This algorithm finds the independent of each other minimum degree
vertices and eliminates them. Since the nodes are independent the elimination of one will not affect
the others. After all the independent nodes have been eliminated, there comes a degree update of
all the nodes[53].

The second algorithm does not try to reduce the number of degree updates of the nodes, unlike
the first, but tries to reduce the computational cost of the degree-update. This is done by computing
an upper bound to the degrees, instead of the actual degree, referred as approximate degree. Let
the approximate degree of node i be[23]:

di = |Ai|+ |Lk{i}|+
∑

e∈Ei\{k}

|Le \ Lk|

where k is the current pivot element andAi is already pruned. In other words, the degree of a vertex
i cannot be larger than the sum of the degrees of the adjacent nodes and elements to it.

The second algorithm produces almost the same fill-in to the first algorithm but is typically
faster[3]. The algorithm template of each of these algorithms can be found in this paper[46].

An example of the basic minimum degree algorithm is shown below. Consider the following
matrix:

A =



∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗


A(1) =



◦ ◦ ◦
◦ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

◦ ∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗


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A(2) =



◦ ◦ ◦
◦ ◦ ◦ ◦

◦ ∗ ⊛ ∗
∗ ∗ ∗
∗ ∗ ∗

◦ ◦ ⊛ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗


A(3) =



◦ ◦ ◦
◦ ◦ ◦ ◦

◦ ◦ ◦ ◦
∗ ∗ ∗
∗ ∗ ∗

◦ ◦ ◦ ∗ ∗ ∗ ⊛
∗ ∗ ∗

◦ ∗ ⊛ ∗ ∗



A(4) =



◦ ◦ ◦
◦ ◦ ◦ ◦

◦ ◦ ◦ ◦
◦ ◦ ◦
◦ ∗ ⊛ ∗

◦ ◦ ◦ ◦ ⊛ ∗ ∗ ⊛
∗ ∗ ∗

◦ ∗ ⊛ ∗ ∗


A(5) =



◦ ◦ ◦
◦ ◦ ◦ ◦

◦ ◦ ◦ ◦
◦ ◦ ◦
◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ∗ ∗ ⊛
∗ ∗ ∗

◦ ◦ ⊛ ∗ ∗



A(6) =



◦ ◦ ◦
◦ ◦ ◦ ◦

◦ ◦ ◦ ◦
◦ ◦ ◦
◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ∗ ∗

◦ ◦ ◦ ∗ ∗


A(7) =



◦ ◦ ◦
◦ ◦ ◦ ◦

◦ ◦ ◦ ◦
◦ ◦ ◦
◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦

◦ ◦ ◦ ◦ ∗


In this example the natural order is the ideal for the minimum degree algorithm. Each matrix

shows one step of the elimination and the corresponding elimination and quotient graphs are shown
in the Figure 8.1. In the matrix the circled star denotes a fill-in entry and so a new edge in the
elimination graph, white circles are the deleted entries so far.

Note in the quotient graphs that in G1, due to 2,6 being connected via the element 1, their
intervening edge is omitted (pruning). Also, inG3 andG5 quotient graphs the element 2 is absorbed
by 3 and the elements 3,4 are absorbed by 5 respectively (element absorption). Furthermore, in the
G5 quotient graph, the 6,7 edges are indistinguishable so they form a supernode and are eliminated
together (mass elimination).
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Figure 8.1: Elimination and Quotient Graphs
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8.3 Maximum Matching

It is a very common phenomena that a matrix A of order n if permuted properly, can yield
a zero-free diagonal matrix. Finding such a permutation is the equivalent of finding a maximum
cardinality matching in a bipartite graph[28].

An undirected graph G=(V,E) in which V is split into r classes, so that every edge e ∈ E has
its ends in different classes is called r-partite. Thus, for 2 classes the result is a bipartite graph.
A bipartite graph contains no cycle of odd length. In bipartite graph a subset of edgesM is called
a matching if any vertex is incident on at most one edge in M[14]. A maximum matching is a
matching of maximum cardinality, in case of the matrix A the cardinality is n if it is rank efficient.
That means that for any other matching M′, |M| ≥ |M′|. An alternating path in M is a path
whose edges alternate between those inM and those not inM. AM-augmenting path P is aM-
alternating path whose starting and ending nodes are unmatched[24]. If G has noM-augmenting
path thenM is of maximum cardinality[8].

The basic concept of the augmenting paths algorithms is given a matchingM, search for an
M-augmenting path. If none is found, thenM is of maximum cardinality and the algorithm stops.
Otherwise, if a path is found, thenM is increased by the edges of the path not inM.

A sparse matrix A forms a bipartite graph GA = (VR ∪ VC ,E) where, VR and VC denote the
rows and columns of A respectively. Therefore, for an entry aij ̸= 0 with i ∈ R and j ∈ C there
is an edge in E. For ai′j′ = 0 there is no edge in the graph. If A is square n-by-n andM a perfect
matching, then a permutation matrix Q can be found with Qji = 1 ⇐⇒ (i, j) ∈ M so that AQ is
the zero-free diagonal matrix, the same holds for a permutation matrix P and PA. If A is rectangular
m-by-n or has a cardinality l < n two permutation matrices P,Q can be found which permute the
matched rows and columns to the first l positions, thus the l-by-l submatrix of PAQ can be have a
zero-free diagonal[28].

There are two basic algorithmic methods to find the augmenting paths. One is based on depth-
first search while the other is based on breadth-first search. Here a DFS algorithm is going to be
shown, which is used in MATLAB, a full presentation of both DFS and BFS algorithms can be
found in this CERFACS report[28].

The algorithm starts with an empty matching. If a match is made between a row i ∈ R and a
column j ∈ C then the row i is noted as matched to column j, or else is noted as unmatched. In each
iteration a column k not yet matched, not in C, is picked and an alternating augmenting path is
found so as to extend the matching. The path starts from k and then traverses to any edge to a row
i1 ∈ Ak. If i1 is unmatched the path stops, if not, it traverses to j1 = match(i1) and then it traverses
any edge to a row i2 ∈ Aj1 and so forth until an unmatched row ik is found. Then the matching is
updated to include the column k and the row ik.

A heuristic called cheap, is implemented to reduce the average time complexity of the algorithm.
Cheap is actually, a pointer which divides the nonzero set of a column j, Aj, into matched and
unmatched rows. Thus, when considering a column j, only the second part needs to be considered.
Therefore, theDFSwithout the heuristic needed timeO(n|A|) because thewhole graphwas searched
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at every step, but now since each edge is traversed only once, the time complexity reduced O(|A|),
while the average time is greatly reduced in practice[23].

An example follows for better comprehension of the algorithm. Consider a matrix

A =



∗
∗ ∗

∗ ∗ ∗
∗

∗ ∗
∗ ∗


j =1 A1 = {1, 2} =⇒ 1→1 match (1 )=1
j =2 A2 = {3, 6} =⇒ 2→3 match (3 )=2
j =3 A3 = {3, 5} =⇒ 3→5 match (5 )=3
j =4 A4 = {3, 4} =⇒ 4→4 match (4 )=4
j =5 A5 = {2, 6} =⇒ 5→2 match (2 )=5
j =6 A6 = {5} =⇒ 6→5⇒3→3⇒2→ 6 =⇒ match ( 6 )=2 , match ( 3 )=3 ,
match (5 )=6
match = ( 1 , 5 , 3 , 4 , 6 , 2 )

From the match matrix the permutation vector p can be formed, where p=(1,6,3,4,2,5) and then

permuting the matrix PA=A(p,:) results in a zero free diagonal matrix PA =



∗
∗ ∗
∗ ∗ ∗

∗
∗ ∗

∗ ∗


In the j=6 case the alternating augmenting path can be shown clearly, as the path alternates between
edges where every other edge is matched and then the matching is extended when the unmatched
row 6 is found.

8.4 Block Triangular Form

The Block Triangular Form(BTF) of a sparse matrix leads to reduced computational time,
as well as reduced storage space for many algorithms, such as the LU and QR factorizations. The
Strong Hall property of a matrix produces strict bounds on the nonzero pattern of its factors. A
matrix A may have full rank but may not be Strong Hall, however, it can be permuted into (BTF),

PAQ =


A11 . . . A1k

. . . ...
Akk


where each diagonal block has the strong Hall property[59].

Consider a system Ax=b where matrix A permuted into an upper block triangular form
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A11 A12 A13
A22 A23

0 0 A33


x1x2
x3

 =

b1b2
b3

, expanding the systems leads to the following equations:
A33x3 = b3 =⇒ L33U33x3 = b3

A22x2 + A23x3 = b2 =⇒ L22U22x2 = b2 − A23x3 =⇒ L22U22x2 = b′2
A11x1 + A12x2 + A13x3 = b1 =⇒ L11U11x1 = b1 − A12x2 − A13x3 =⇒ L11U11x1 = b′1
Only the diagonal blocks need to be factorized to solve for a solution, all the other blocks are

used just for matrix-vector multiplication, which is more convenient than factorizing the whole
matrix.

Factorizing only the diagonal block, can help reduce fill-in too. Consider the following case

where A is partitioned as before, where A11 =

[
∗ ∗
∗ ∗

]
and A12 = A13 =

[
∗ ∗
0 0

]
. If only A11 is

factorized there will be not fill-in caused due to elimination of the first column. On the contrary, if
A has factorized not in block form all the nonzeros from the first line would be propagated to the
second line, thus causing 4 fill-in entries.

Given an arbitrary sparse matrix, before permuting the matrix into a block triangular form, it
must be permuted to have a zero-free diagonal. So, the maximum matching algorithm mentioned
in the previous section is used for that purpose. Then symmetric permutations are used to obtain
the BTF[27].

To form the BTF of a matrix is the same as finding the strongly connected components(SCC)
of a directed graph. The graph G=(V,E) formed by A, has V={1 . . . n} and E={(i, j)|aij ≠ 0}. A
strongly connected component is a maximal subgraph in which there is a path between any pair
of nodes. A strongly connected component cannot be enlarged by adding extra nodes to it because
a SCC is defined as maximal, thus it’s a contradiction. Each node can belong to one SCC solely,
which may be itself.

If all the strongly connected components {C1,C2, . . . ,Cn} are formed so that the first C1 has
no path to any of the remaining nodes {C2, . . . ,Cn}, then C2 is picked so that it has no path to
the rest of the nodes {C3, . . . ,Cn} and so forth, that results in a lower triangular block matrix,
where the blocks are the strong components. If the nodes are picked so that each component has
no affiliation with its previous components, that results in a upper triangular block matrix.

One simple method to compute the SCC of a matrix, is to perform a topological DFS on the
matrix A, like the one mentioned in Section 4.3.2 and get the resulting stackX . Then perform again
a DFS in the transposed matrix AT but in the reverse order of their finishing time in X , meaning
starting from the last node in X and advance towards the first. All the nodes reachable from each
node in the second DFS form a SCC[14].

Another implementation by Tarjanwidely used is shown here[65][29]. The algorithmmentioned
here needs O(V+E) time for each DFS and for reversing the graph, while Tarjan algorithm needs
just one DFS.



8.4 Block Triangular Form 85

1

6

4

8

2

3

7

5 1

6

4

8

2

3

7

5

G GT

Figure 8.2: Directed graph of A and AT

An example follows of finding the SCC of a sparse matrix AT =



∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
∗ ∗

∗ ∗
∗ ∗

∗ ∗
∗


where its graph and transposed graph are shown in Figure 8.2.
Doing a topological DFS in G, results in X = {4, 2, 1, 3, 8, 7, 5, 6}. Then performing a DFS in GT

starting from node the end of X leads to:

DFS(4 )={4}
DFS(2 )={2}
DFS(1 )={7, 3, 5, 6, 1}
DFS(8 )={8}

Thus, this matrix has 4 strongly connected components.
If the nodes inside the components are placed in natural order, as well as the blocks themselves,

then the resulting vector is the permutation vector which permutes A into BTF. In this example,
p = {2, 4, 1, 3, 5, 6, 7, 8}.





Chapter 9

Experiments

9.1 Introduction

In this chapter some experimental cases are going to be demonstrated which make use of all the
theory mentioned so far. The experiments were done inMATLAB, using its built-in functions[56].
SuiteSparse which is a suite for sparse matrix algorithms, has a MATLAB interface, which is used
in the experiments as well[20][23].

The largest amount of matrices used in experiments are from the SuiteSparseMatrix Collection
(formerly the University of Florida Sparse Matrix Collection)[50]. There are some cases, where
the matrices used are random generated matrices.

For the experiments’ execution aVirtualMachinewhich features 64GBRAMand 16Computational
Cores is used, which set up in the University of Thessaly.

9.2 Data Structures

In this section, the differences between storing all entries of a spares matrix, as if it was full,
and storing it in CCS format will be demonstrated.

Each entry is a double precision element, using 8-bytes of memory. For n-by-n square matrices,
a dense matrix needs n2*8 bytes, whereas, CCS needs only (2*nnz+n+1)*8 bytes.

In this experiment some random square matrices were allocated and the results is shown in the
table below. The columns from left to right denote, the matrix’s dimension, the nonzero elements,
memory requirements for sparse storage in megabytes, memory requirements for dense storage in
megabytes, the difference between dense and sparse storage in megabytes.

As it can be seen from the table exploiting sparsity when storing a matrix makes a huge impact
in regards to storage performance. For an 8GB RAM machine, the maximum dimension for a

square matrix is 31622,
316222 ∗ 8

109
= 7.9996(GB). Thus a 31623-by-31623 identity matrix cannot

be stored in dense format. However, this matrix has only 31623 non zero elements(diagonal),

therefore, storing it in CCS format only takes
2 ∗ 31623+ 31623+ 1

106
= 0.7590(MB).

So, the latter format allows the computer to store high dimension data, whereas the former would
have failed.
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n nnz CCS(MB) TRIPLET(MB) DIFF(MB)

100 3290 0.053448 0.08 0.026552
200 13134 0.21175 0.32 0.10825
400 52708 0.84654 1.28 0.43346
800 2.11E+09 33.875 5.12 17.325
1600 8.44E+09 13.515 20.48 69.654
3200 3.38E+10 54.027 81.92 27.893
6400 1.35E+11 216.08 327.68 111.6
12800 5.40E+11 864.34 1310.7 446.38

9.3 Cholesky Factorization

In this section test cases for Choleksy Factorization are performed. The matrices this time are
downloaded from SuiteSparse Matrix Collection, corresponding to data from real-life systems.

The first comparison is between an optimized dense Cholesky solver with the built-in function
of Matlab chol and the solver from cs_sparse, cs_chol, which exploits sparsity, and its based on the
algorithm described in Chapter 5. The second algorithm does not make effective use of BLAS[51].

The second comparison is between the dense solve function chol of Matlab as well, and the
CHOLMOD used from SuiteSparse, which is also howMatlab computes Cholesky factorization of
sparsematrices. TheCHOLMOD algorithmmakes use of the BLAS as it performs dense computations.
The CHOLMOD is based on Supernodal Cholesky Factorization[19]. The matrices used for this
comparison are the same as above.

The third comparison is between cs_chol and CHOLMOD which both exploit sparsity.

Figure 9.1: Dense Cholesky vs Sparse Choleksy
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Figure 9.2: Dense Choleksy vs Supernodal Cholesky

Figure 9.3: Sparse Choleksy vs Supernodal Cholesky

It is apparent that exploiting sparsity has benefits even using the not optimized solver cs_chol,
as it is evident from the Figure 9.1. Of course, the optimized sparse solver CHOLMOD is faster
than using the dense solver as seen in figure 9.2. In the final figure a comparison between cs_chol
and CHOLMOD is made. For small matrices the results are almost identical. For large matrices
though, the Supernodal algorithm is quite a lot faster. In practice it has been observed that the
number of flops=|f| divided by the non zeros in L=|L| is a threshold in choosing between the up-



90 Chapter 9. Experiments

looking method and the supernodal one. In particular if
|f|
|L|

= 40 is the crucial value, if smaller

the former method is used and if larger the latter[13].

9.4 QR Factorization

In this section test cases for QR Factorization are executed. The matrices are downloaded from
SuiteSparse Matrix Collection. The matrices are mainly rectangular deriving from linear least
squares problems. Two cases are presented below.

The first case is comparing the optimized dense built-in solver in Matlab qr with the optimized
sparse solver SPQR which uses aMultifrontal QR method. This method uses uses LAPACK and
multithreaded BLAS to obtain high performance inside each frontal matrix. This method resembles
theMultifrontal LU method described in Section 7.7, more information about this method can be
found in the following paper [16].

The second case is comparing SPQRwith the cs_qr, which is based on the algorithm described
in Chapter 6. In this case, only matrices with more rows than columns were used because cs_qr is
unable to handle other matrices.

Figure 9.4: Multifrontal QR vs Dense QR

It is obvious that as thematrices grow larger, SPQR achieves better results than the dense solver.
It important to mention that it uses less memory than the dense of course, which is important as QR
tends to create a lot of fill-in, especially when no column ordering is used. If proper ordering was
used, the performance from SPQR would be even higher. Dense algorithm would perform almost
the same, with less fill-in due to all entries being checked.
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Figure 9.5: Multifrontal QR vs Sparse QR

In the second case, it can be noted that for small matrices a left sparse qr decomposition is
better than using the multifrontal method. However, as the number of non zero elements increases
the multifrontal method achieves better results.

9.5 LU Factorization

For the LU factorization experimental cases, matrices deriving from structural problems, network
problems, 2d/3d problems and reduction models are used. These matrices are from the SuiteSparse
Collection once again. Three comparisons between diffrent algorithms are made below.

The first case is comparing dense LU solver built in Matlab vs the sparse one. The sparse one
is based on the algorithm discussed in Chapter 7.

The second case is a comparison between the multifrontal LU and the dense LU solver from
above. The multifrontal LU solver uses umfpack which makes effective use of the BLAS and
LAPACK subroutines[17].

The third case is a comparison between the simple sparse solver and the multifrontal one, which
both exploit sparsity but the multifrontal is optimized.
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Figure 9.6: Dense LU vs Sparse LU

In the first case, the simple sparse algorithm performs a lot faster as the number of non zeros
is low. As the number of nonzero increases the performance of the sparse and the dense is quite
similar. In some cases, the dense algorithm performs better than the sparse one.

Figure 9.7: Dense LU vs Multifrontal LU

In the second case, the Multifrontal algorithm performs better in almost all scenarios. The time
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difference between the two algorithms is quite sizeable.

Figure 9.8: Sparse LU vs Multifrontal LU

Between the two sparse algorithms, as the matrices grow bigger the multifrontal is evidently
better. For smaller matrices, the simple sparse algorithm reaches yields similar or better time
measurements.

9.6 Fill-in Reduction

In this section square positive definitematricesmainly from structural problems are used. These
matrices are analyzed symbolically to find the resulting non zeroes of their Cholesky factor. Then,
the approximate minimum degree algorithm is used on each matrix and the symbolic analysis is
performed once again.
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Figure 9.9: Minimum Degree Ordering

The difference between the pre-ordered factorization and the plain factorization is immense.
Thus, pre-ordering a matrix will decrease a lot the memory needed to store the factor, as well as it
will yield better execution times since there are less float point operations to be performed.

9.7 LU vs Cholesky

In this section a comparison is made between the supernodal Cholesky and theMultifrontal LU
for factorizing positive-definite square matrices. The matrices are downloaded from SuiteSparse
and are mainly power network and structural problems.

The number of entries in these matrices is considerable larger than those of used previously.
Additionally, each matrix is permuted by using the approximate degree algorithm before being
factorized.

As it is evident from Figure 9.10 the Cholesky factorization performs significantly better than
LU for square and positive-definite matrices.
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Figure 9.10: Supernodal Choleksy vs Multifrontal LU





Chapter 10

Epilogue

10.1 Conclusions

In this thesis, the benefits of exploiting the sparse structure of a matrix was shown and how
certain algorithms are modified to utilize it. The theory behind Cholesky, QR and LU factorizations
was demonstrated as well as the corresponding algorithms and the way they are remodeled to take
advantage of the matrix structure. The resulting algorithms are the basis of the algorithms currently
used by sparse solving softwares and libraries.

In particular, this thesis starts with the demonstration of data structures for sparse matrices and
of common matrix algorithms. Then, how to solve a sparse lower triangular system and its relation
to finding the reach of a graph. Afterwards, the Cholesky Factorization is shown as well as the
symbolic analysis of a matrix, the elimination tree, the column count of the resulting matrix and
how to actually, compute the the factors numerically.

Subsequently, the QR Factorization is introduced and its relation with Cholesky Factorization
is shown, as well as how to compute it efficiently using the Householder Reflections. QR leads the
way to LU factorization, because the former is an upper-bound to the latter. LU factorization, which
is the oldest method of all, is demonstrated and numerical and symbolical trade-offs are shown,
as well as methods to maintain numerical stability. Afterwards, certain methods are examined on
how to construct a zero free diagonal and how to reduce the fill-in entries as well. Fill-in entries
are entries that arise during the factorization of a matrix and they do not belong in the original.

In the final chapter, experimental cases are performed. A sample of matrices that arise from real
life problems are used. The properties of the matrices vary in size, sparsity and shape. The sparse
methods are compared to their corresponding dense ones, showing the benefits in time complexity
as well as in space requirement.

10.2 Further Work

Considering the future extensions to this thesis there are a number of topics to examine. Firstly,
study in depth the Supernodal and Multifrontal Algorithms and how they are implemented in
computer code. Furthermore, study more fill-in reducing algorithms and their code implementation
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as well. Additionally, the concept of parallelization concerning the algorithms presented can be
studied, which are the cases that it is beneficial to do it and how the parallelization methods are
linked with dependencies already established.

Besides the Direct Methods, the Iterative Methods are another way of solving a linear system.
The latter methods, use an initial guess to find an approximate solution, usually resulting in a faster
solution. On top of that, they can be used to solve non-linear systems as well. This is an major topic
that can be examined and compared with the methods presented in this thesis.
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Appendix I

Computer Algorithms

In this appendix the computer algorithms analyzed and used in this thesis are summarized.

I.1 Data Structures and Basic Algorithms

f unc t i on C=Tr ipToSpa r s e (A)
row=A. row
va l u e =A. v a l u e
c o l =A. c o l
f o r k =1: nz

coun t ( c o l ( k ) )++
end
Cp=cumsum ( coun t )
f o r k =1: nz

p= co l ( k )++
rowIdx ( p )= row ( k )
v a l ( p )= va l u e ( k )

end
end

func t i on z=gaxpy (A, x , y )
f o r k =1: n

f o r p=Ap( k ) : Ap( k+1)−1
y ( Ai ( p ) ) =Ax( p )*x ( k )

end
end

end

func t i on C=ma t _mu l t i p l y (A,B)
nz=0

105
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f o r j =1 : n
Cp [ j ]= nz
f o r k=Bp ( j ) : Bp ( j +1)−1

b=Bx ( k )
f o r p=A( k ) :A( k+1)−1

i =Ai ( p )
i f ( i no t i n nz p a t t e r n o f c o l _ j )

Ci [ nz ++]= i
x ( i )+=b*Ax( p )

end
for p=Cp ( j ) : nz

Cx ( p )= x ( Ci ( p ) )
end

end
end
Cp [ n ]= nz

end

func t i on C=mat_add (A,B)
nz=0
f o r j =1 : n

Cp ( j )= nz
f o r Ap( j ) : Ap( j +1)−1

i =Ai ( p )
i f ( i no t i n nz p a t t e r n o f c o l _ j )

Ci [ nz ++]= i
x ( i )+= a l ph a*Ax( p )

end

for Bp ( j ) : Bp ( j +1)−1
i =Bi ( p )
i f ( i no t i n nz p a t t e r n o f c o l _ j )

Ci [ nz ++]= i
x ( i )+= beta*Bx ( p )

end
for p=Cp ( j ) : nz

Cx ( p )= x ( Ci ( p ) )
end

end
end
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f unc t i on x= l s o l v e (A, b )
x=b
f o r j =1 : n

x ( j ) =x ( j ) / Lx ( Lp ( j ) )
f o r p=Lp ( j ) + 1 : Lp ( j +1)−1

x ( Li ( p ) ) = x ( Li ( p ))−Lx ( p )*x ( j )
end

end
end

func t i on x= u so l v e (A, b )
x=b
f o r j =n : 1

x ( j )= x ( j ) / Lx ( Li ( j +1)−1)
f o r p=Up( j ) : Up( j )−2

x ( Ui ( p ) ) = x ( Ui ( p ))−Ux( p )*x ( j )

end
end

end

func t i on x= l t s o l v e (A, b )
x=b
f o r j =n : 1

f o r p=Lp ( j ) + 1 : Lp ( j +1)−1
x ( j )= x ( j )−Lx ( p )*x ( Li ( p ) )

end
x ( j )= x ( j ) / Lx ( Lp ( j ) )

end
end

func t i on x= u t s o l v e (A, b )
x=b
f o r j =1 : n

f o r p=Lp ( j ) + 1 : Lp ( j +1)−2
x ( j )= x ( j )−Ux( p )*x ( Ui ( p ) )

end
x ( j )= x ( j ) / Ux(Up( j +1)−1)

end

I.2 Sparse Lower Triangular Solve
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f u n c t i o n X= r e a ch (L ,B )
f o r each i f o r which bi ̸= 0

i f node i i s unmarked
d f s ( i )

f u n c t i o n d f s ( j )
mark ( j )
f o r each i f o r which l ij ̸= 0

i f node ( i ) i s unmarked
d f s ( i )

push j on to s t a c k f o r X

f unc t i on x= l s p a r s e _ s o l v e (L ,B , k )
X= c s _ r e a c h (L ,B , k )
f o r p=Bp ( k ) : Bp ( k)−1 % b i s s t o r e d i n a CSC f o r m a t

x ( Bi ( p ) ) =Bx ( p ) % s o i t i s s c a t t e r e d

end
for s =1 : l eng th (X)

j =X( s )
x ( j )= x ( j ) / Lx ( Lp ( J ) ) ;
f o r p=Gp( j ) + 1 :Gp( j +1)−1

x ( Li ( p ) ) = x ( Li ( p ))−Lx ( p )*x ( j )
end

end
end

I.3 Cholesky Decomposition

f unc t i on L=up_cho l e sky (A)
n= s i z e (A)
L= zero s ( n )
f o r k =1: n

L( k , 1 : k−1)=(L ( 1 : k−1 ,1: k−1)\A( 1 : k−1,k ) ) ’ ;
L ( k , k )= sqr t (A( k , k)−L( k , 1 : k−1)*L( k , 1 : k−1) ’)

end
end

func t i on Lk= e r e a c h (A, p a r e n t , k )
n= s i z e (A, 1 )
Lk= zero s ( n , 1 ) % o u t p u t a r r a y

w= zero s ( n , 1 ) % wo r k s p a c e a r r a y f o r m a r k i n g v a l u e s
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s= zero s ( n , 1 ) % s t a c k a r r a y

t op=n
mark (w, k ) % ma r k n o d e k a s v i s i t e d

f o r p=Ap( k ) : Ap( k+1)−1
i =Ai ( p )
i f i >k

c o n t i n u e
end
l e n =1
whi le i = p a r e n t ( i )

i f mark (w, i ) % c h e c k i f n o d e i h a s a l r e a d y b e e n v i s i t e d

break
end
s ( l e n )= i
l e n = l e n +1
mark (w, i )

end
whi le l en >0

Lk ( t op )= s ( l e n )
t op= top−1
l e n = len−1

end
end
Lk=Lk ( Lk~=0) % r e m o v e i f t h e r e a r e a n y z e r o s

f o r p =1: l eng th ( Lk)−1
mark (w, Lk ( i ) ) % u nm a r k n o d e L k ( i )

end
mark (w, k )

end

func t i on P= p o s t o r d e r (T )
k=0
f o r j =1 : l eng th (T )

d f s t r e e ( j )
end

end

func t i on d f s t r e e ( j )
f o r i =1 : n

i f i i s a c h i l d o f j
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d f s t r e e ( i )
end

po s t ( k )= j
k=k+1
end

end

func t i on [ f i r s t , l e v e l ]= f i r s t _ d e s c e n d a n t ( n , pos t , p a r e n t , f i r s t , l e v e l )
f i r s t = zero s ( n , 1 )
f o r k =1: n

i = po s t ( k )
l e n =0
r = i
whi le ( ( r !=0 ) && ( f i r s t ( r )==0)

f i r s t ( r )= k
r = p a r e n t ( r )
l e n = l e n +1

end
i f r ==0

l e n = len−1
e l s e

l e n = l e n + l e v e l ( r )
end
s= i
whi le ( s ~= r )

l e v e l ( s )= l e n
l e n = len−1
s= p a r e n t ( s )

end

end
end

func t i on [ q , max f i r s t , p r e v l e a f , a n c e s t o r , j l e a f ] = l e a f ( i , j , f i r s t ,
max f i r s t , p r e v l e a f , a n c e s t o r , j l e a f )

j l e a f =0
i f ( i <= j | | f i r s t ( j ) <= m a x f i r s t ( i ) )

q=0 %n o t a l e a f

re turn
end
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m a x f i r s t ( i )= f i r s t ( j ) % l e a f → u p d a t e m a x f i r s t

j p r e v = p r e v l e a f ( i ) % l o a d p r e v l e a f a n d u p a t e t h e n ew

p r e v l e a f ( i )= j
i f ( j p r e v ==−1) % f i r s t l e a f

q= i % i i s t h e r o o t o f i s u b t r e e

j l e a f =1
re turn

end
j l e a f =2 % n o t f i r s t l e a f

q= j p r e v
whi le ( q~= a n c e s t o r ( q ) ) % f i n d t h e r o o t o f t r e e

q= a n c e s t o r ( q )
end
s= j p r e v
whi le ( s ~=q )

s p a r e n t = a n c e s t o r ( s ) % p a t h c o m p r e s s i o n w i t h a n c e s t o r m e t h o d

a n c e s t o r ( s )= q
s= s p a r e n t

end
end

func t i on r c o u n t = rowcount (A, p a r e n t , p o s t )
n=A. n
Ap=A. p
Ai=A. i
[ f i r s t , l e v e l ]= f i r s t _ d e s c e n d a n t ( n , pos t , p a r e n t , f i r s t , l e v e l )
f o r i =1 : n

r c o u n t ( i )=1 % f o r t h e d i a g o n a l

p r e v l e a f ( i )=0
m a x f i r s t ( i )=0
a n c e s t o r ( i )= i % e v e r y n o d e i s i t s own a n c e s t o r

end
for k =1: n

j = po s t ( k ) % u s e p o s t o r d e r i n g t h r o u g h p e r m u t a t i o n v e c t o r

f o r p=Ap( k ) : Ap( k+1)−1
i =Ai ( p )
[ q , max f i r s t , p r e v l e a f , a n c e s t o r , j l e a f ] = l e a f ( i , j , f i r s t ,
max f i r s t , p r e v l e a f , a n c e s t o r , j l e a f )
i f j l e a f

r c o u n t ( i )= r c o u n t ( i ) + ( l e v e l ( j )− l e v e l ( q ) )
end
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end
i f ( p a r e n t ( j )~=−−1)

a n c e s t o r ( j )= p a r e n t ( j )
end

end
end

func t i on ccoun t = c o l c o u n t s (A, p a r en t , p o s t )
n=A. n
Ai=A. i
Ap=A. p
w= zero s ( 1 , n )
f o r k =1: n

j = po s t ( k )
i f ( f i r s t ( j )==0) % j i s a l e a f

d e l t a ( j )=1
e l s e

d e l t a ( j )=0 % j n o t a l e a f

end
whi le ( ( j ~=0) && ( f i r s t ( j ) ==0 ) ) % c o n s t r u c t t h e f i r s t o f e a c h n o d e

f i r s t ( j )= k
j = p a r e n t ( j )

end
a n c e s t o r ( k )= k % e v e r y n o d e i s e a c h own a n c e s t o r a t f i r s t

end

for k =1: n
j = po s t ( k )
f o r p=Ap( j ) : Ap( j +1)−1

i =Ai ( p )
[ q , max f i r s t , p r e v l e a f , a n c e s t o r , j l e a f ]= l e a f ( i , j , f i r s t ,
max f i r s t , p r e v l e a f , a n c e s t o r , j l e a f )
i f ( j l e a f >=1) d e l t a ( j )= d e l t a ( j )+1 % ai,j ∈ Â
i f ( j l e a f ==2) d e l t a ( q )= d e l t a ( q)−1 % j i s s u b s e q u e n t l e a f

% s o d e l t a ( l c a )− −

end
i f ( p a r e n t ( j )~=−0)

a n c e s t o r ( j )= p a r e n t ( j ) % e v e r y s e t b e l o n g s t o i t s f a t h e r

end
end
ccoun t = d e l t a
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f o r j =1 : n
i f ( p a r e n t ( j )~=0)

c coun t ( p a r e n t ( j ) ) = ccoun t ( p a r e n t ( j ) ) + ccoun t ( j )
% t h e c o l c o u n t o f a n o d e j i s t h e s um o f i t s c h i l d r e n c o u n t

end
end

end

func t i on L=up_cho l (A, A_symb )
n=A. n
cp=A_symb . p
Lp=c=cp
Ap=A. p
Ai=A. i
p a r e n t =A_symb . p a r e n t
f o r k =1: n

% F i n d t h e n o n z e r o p a t t e r n o f A:k
Lk= e r e a c h (A, p a r e n t , k ) % f i n d e r e a c h

x ( k )=0
f o r p=Ap( k ) : Ap( k+1)−1

i f Ai ( i )<=k
x ( Ai ( p )=Ax( p )

end
end
d=x ( k )
x ( k )=0
% T r i a n g u l a r s o l v e f o r Lk,:
f o r Lk_c =1: l eng th ( Lk )

i =Lk ( Lk_c ) % p a t t e r n o f L k

l k i =x ( i ) / Lx ( Lp ( i ) ) % L ( k , i ) = x ( i ) / L ( i , i )

x ( i )=0
f o r p=Lp ( i ) + 1 : c ( i )−1

x ( Li ( p )= x ( Li ( p ))−Lx ( p )* l k i
end
d=d− l k i * l k i
p=c ( i )
c ( i )= c ( i )+1
Li ( p )= k
Lx ( p )= l k i

end
% C h e c k i f p o s i t i v e d e f i n i t e a n d f i n d Lkk
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i f ( d <=0) %n o t p o s i t i v e d e f i n i t e

L=0
re turn

end
p=c ( k )
c ( k )= c ( k )+1
Li ( p )= k
Lx ( p )= sqr t ( d )

end
Lp ( n )= cp ( n )
L . p=Lp
L . i =Li
L . x=Lx
L . n=Ln

end

func t i on L= cho l _ s u p e r (A, s )
n= s i z e (A)
L= zero s ( n )
s s =cumsum ( [ 1 s ] )
f o r j =1 : l eng th ( s )

k1= s s ( j )
k2= s s ( j +1)
k=k1 : ( k2−1)
L ( k , k )= cho l (A( k , k)−L( k , 1 : k1−1)*L( k , 1 : k1−1) ’ ) ’
L ( k2 : n , k ) = (A( k2 : n , k)−L( k2 : n , 1 : k1−1)*L( k , k1 : k1−1 ) ’ ) /L ( k , k ) ’

end
end

I.4 QR Decomposition

f unc t i on [V, beta , R]= q r _ r i g h t (A)
[m n ]= s i z e (A ) ;
V= zero s (m, n ) ;
Be ta= zero s ( 1 , n ) ;
f o r k =1: n

[ v , beta , s ]= g a l l e r y ( ’ house ’ ,A( k :m, k ) , 2 ) ;
V( k :m, k )= v ;
Beta ( k )= beta ;
A( k :m, k : n )=A( k :m, k : n)−v*( beta *(v ’*A( k :m, k : n ) ) ) ;

end
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R=A;
end

func t i on [V, beta , R]= q r _ l e f t (A)
[m n ]= s i z e (A ) ;
V= zero s (m, n ) ;
Be ta= zero s ( 1 , n ) ;
R= zero s (m, n ) ;
f o r k =1: n

x=A( : , k ) ;
f o r i =1 : k−1

v=V( i :m, i ) ;
beta=Beta ( i ) ;
x ( i :m)= x ( i :m)−v*( beta *(v ’*x ( i :m ) ) ) ;

end
[ v , beta , s ]= g a l l e r y ( ’ house ’ , x ( k :m) , 2 ) ;
V( k :m, k )= v ;
Beta ( k )= beta ;
R ( 1 : ( k−1) , k )= x ( 1 : ( k−1 ) ) ;
R( k , k )= s

end
end

func t i on [ unz , pinv , l e f t m o s t ]= vcoun t (A, p a r e n t )
[m n ]= s i z e (A ) ;
n ex t = a r r a y (m, 1 ) ; % n e x t e n t r y i n c o l k

head= a r r a y ( n , 1 ) ; % f i r s t e n t r y i n c o l k

t a i l = a r r a y ( n , 1 ) ; % l a s t e n t r y i n c o l k

nque= a r r a y ( n , 1 ) ; % n um b e r o f e n t r i e s e a c h c o l

f o r i =1 : n
l e f t m o s t ( i )=min ( f i nd (A( i , : ) ) ) ;

end

for i =m:1
pinv ( i ) = 0 ;
k= l e fmo s t ( i ) ;
i f ( nque ( k )==0)

nque ( k )= nque ( k ) +1 ;
t a i l ( k )= i ;

end
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nex t ( i )= head ( k ) ;
head ( k )= i ;

end
l n z =0;

f o r k =1: n
i =head ( k ) ; % r e m o v e r ow i f r o m q u e u e

l n z = l n z +1; % c o u n t d i a g o n a l e n t r y V ( k , k )

nque ( k )= nque ( k )−1;
pinv ( i )= k ;
i f ( nque ( k ) <=0) % e m p t y b e l o w t h e d i a g o n a l

c o n t i n u e ;
end ;
l n z = l n z +nque ( k ) ; % n q u e ( k ) i s t h e n n z c o u n t b e l o w t h e d i a g o n a l

pa= p a r e n t ( k ) ; % t r a n s f e r a l l r o w s t o p a r e n t

i f ( pa~=−1)
i f ( nque ( pa )==0)

t a i l ( pa )= head ( k ) ;
end
nex t ( t a i l ( k ) ) = head ( pa ) ;
head ( pa )= nex t ( i ) ;
nque ( pa )= nque ( pa )+ nque ( k ) ;

end
end
for i =1 :m % r o w s t h a t d i d n o t h o l d a d i a g o n a l e n t r y

i f ( pinv ( i ) =0 )
k=k +1;
pinv ( i )= k ;

end
end

end

func t i on [V,R]= qr (A, A_symb )
[m n ]= s i z e (A ) ;
Ai=A. i ; Ap=A. p ;
q=A_symb . q ; p a r e n t =A_symb . p a r e n t ;
p i n r v =A_symb . pinv ;
l e f t m o s t =A_symb . l e f t m o s t ;
r n z =1; l n z =1;
w= zero s (m) ;
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f o r k =1: n % c o m p u t e V , R

Rp ( k )= rnz ; % R ( : , k ) s t a r t s h e r e

Vp( k )= p1= l n z ; % V ( : , k ) s t a r t s h e r e

w( k )= k ; % V ( k , k ) p a t t e r n o f V

Vi ( vnz )= k ;
vnz=vnz +1;
t op=n ;
f o r p=Ap( k ) : Ap( k+1)−1 % f i n d R ( : , k ) p a t t e r n

i = l e f t m o s t ( Ai ( p ) ) ;
l e n =1;
whi le (w( i )~=k ) % t r a v e r s e u p t o k

s ( l e n )= i ;
l e n = l e n +1;
w( i )= k ;
i = p a r e n t ( i ) ;

end
whi le ( l en >1) % p u s h p a t h o n s t a c k

t op= top −1;
l e n = len −1;
s ( t op )= s ( l e n ) ;

end
i =pinvΑ( i ( p ) ) ;
x ( i )=Ax( p ) ; % x ( i )= A ( : , c o l )

i f ( i >k && w( i ) < k ) % p a t t e r n ( V : , k )= x ( k +1 ,m )

Vi ( vnz )= i ;
vnz=vnz +1; % ad d i t o p a t t e r n o f V ( : , k )

w( i )= k ;
end

end
for p= top : n % f o r i i n R ( : , k )

i = s ( p ) ; % R ( i , k ) i s n o n z e r o

f o r j =Vp( i ) : Vp( i )−1 % a p p l y t h e p r e v i o u s H o u s e h o l d e r s

mul=mul+Vx( j )*x ( Vi ( p ) ) ;
end
mul=mul*beta ( i ) ;
f o r j =Vp( i ) : Vp( i )−1

x ( Vi ( p ) ) = x ( Vi ( p ))−Vx( p )*mul ;
end
Ri [ r nz ]= i ;
Rx [ rnz ]= x ( i ) ;
r n z = rnz +1;
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x ( i ) = 0 ;
end
for p=p1 : vnz

Vx( p )= x ( Vi ( p ) ) ;
x ( Vi ( p ) ) = 0 ;

end
Ri ( r nz )= k ;
[ v , beta ]= house ( x ) ; % a p p l y t h e c u r r e n t H o u s e h o l d e r

end
Rp ( n )= rnz ; % f i n a l i z e t h e m a t r i c e s

Vp( n )= vnz ;
R . p=Rp ; R . i =Ri ; R . x=Rx ;
V. p=Vp ; V. i =Vi ; V. x=Vx ;

end

I.5 LU Decomposition

f unc t i on [L ,U] = l u _ r i g h t (A)
n= s i z e (A , 1 ) ;
L=eye ( n ) ;
U= zero s ( n ) ;
f o r k =1: n

U( k , k : n )=A( k , k : n ) ;
L ( k +1: n , k )=A( k +1: n , k ) /U( k , k ) ;
A( k +1: n , k +1: n )=A( k +1: n , k +1: n)−L( k +1: n , k )*U( k , k +1: n ) ;

end
end

func t i on [L ,U, P ]= l e f t _ l o o k i n g _ l u (A)
n= s i z e (A , 1 ) ;
P=eye ( n ) ;
L= zero s ( n ) ;
U= zero s ( n ) ;
f o r k =1: n

% c r e a t e LHS m a t r i x : : 1 : k −1 c o l u m n s o f L , k : n I d e n t i t y ,

x _ s t a r t =[L ( : , 1 : k−1) [ zero s ( k−1,n−k +1 ) ; eye ( n−k + 1 ) ] ] ;
x= x _ s t a r t \ ( P*A( : , k ) ) ; % s p a r s e t r i a n g u l a r s o l v e t o f i n d x

U( 1 : k−1,k )= x ( 1 : k−1); % r e s u l t o f x1 a r e t h e ( 1 : k −1 , k ) e n t r i e s

% o f U

[ a , i ]=max ( abs ( x ( k : n ) ) ) ; % f i n d t h e n ew p i v o t

i = i +k−1; % d i m e n s i o n s o f s u b m a t r i x t o
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% d i m e n s i o n s o f t h e w h o l e m a t r i x

L ( [ i k ] , : ) = L ( [ k i ] , : ) ; % row p e r m u t a t i o n s o f L

P ( [ i k ] , : ) = P ( [ k i ] , : ) ; % row p e r m u t a t i o n s o f P

x ( [ i k ] ) = x ( [ k i ] ) ; % row p e r m u t a t i o n s o f x

U( k , k )= x ( k ) ; % s t o r e t h e p i v o t e n t r y

L( k , k ) =1 ; % d i a g o n a l e n t r i e s o f L =1

L( k +1: n , k )= x ( k +1: n ) / x ( k ) ; % ℓ32 = x3/u22
end

end

func t i on [L ,U, pinv ]= l e f t _ l o o k i n g _ s p a r s e _ l u (A)
n=A. n ;
pinv= zero s ( n , 1 ) ;
Lp= zero s ( n , 1 ) ;
x i = zero s ( n , 1 ) ;
l n z =1;
unz =1;
f o r k =1: n

[ x , X]= l s p a r s e _ s o l v e (L ,A, k , pinv ) ; % x=L \ A ( : , c o l )

i p i v =0;
a=−1;
f o r p =1: l eng th (X) % f i n d t h e p i v o t

i =X( p ) ; % no n z e r o v a l u e o f x

i f ( pinv ( i )==0) % h a s n o t b e e n c h o s e n a s p i v o t y e t

t =abs ( x ( i ) ) ; % a b s o l u t e v a l u e o f p o s s i b l e p i v o t

i f ( t >a )
a= t ; % l a r g e s t p i v o t c a n d i d a t e u n t i l now

i p i v = i ; % p i v o t ’ s r ow i n d e x

end
e l s e
% U ( p i n v ( i ) , k )= x ( i ) , c r e a t i n g t h e v e c t o r u12 = x1

Ui ( unz )= pinv ( i ) ;
Ux( unz )= x ( i ) ;
unz=unz +1;

end
end
p i v o t =x ( i p i v ) ; % t h e c h o s e n p i v o t

Ui ( unz )= k ; % U ( k , k ) i n d e x

Ux( unz )= p i v o t ; % U ( k , k ) a s s i g n m e n t

unz=unz +1;
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% d i v i d i n g b y p i v o t t o f i n d t h e c o l u m n o f L

f o r p =1: l eng th (X)
i = x i ( p ) ;
i f ( pinv ( i )==0) % x ( i ) i s a n e n t r y i n L ( : , k )

Li ( l n z )= i ; % row i n d e x o f i

Lx ( l n z )= x ( i ) / p i v o t ; % v a l u e o f L d i v i d e d b y p i v o t

end
x ( i ) = 0 ;

end
end
Lp ( n+1)= l n z ; % t e r m i n a t e c o l u m n p o i n t e r s

Up( n+1)= unz ;
f o r p =1: l n z % p o i n t o l d r ow i n d i c e s t o t h e n ew

Li ( p )= pinv ( Li ( p ) ) ;
end

end

func t i on [ x , X]= l s p a r s e _ s o l v e (L ,B , k , pinv )
X= c s _ r e a c h (L ,B , k , pinv )
f o r p=Bp ( 0 ) : Bp(1)−1 % b i s s t o r e d i n a CSC f o r m a t ,

x ( Bi ( p ) ) =Bx ( p ) ; % s o i t i s s c a t t e r e d

end
for s =1 : l eng th (X)

j =X( s ) ;
i f ( pinv )

J=pinv ( j ) ;
end
i f ( J ==0)

c o n t i n u e ;
end
x ( j )= x ( j ) / Lx ( Lp ( J ) ) ;
f o r p=Gp( J ) +1 :Gp( J +1)−1

x ( Li ( p ) ) = x ( Li ( p ))−Lx ( p )*x ( j ) ;
end

end
end

f u n c t i o n X= r e a ch (L ,B , p i nv )
f o r each i f o r which bi ̸= 0

i f node i i s unmarked
d f s ( i , p inv )
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f u n c t i o n d f s ( j , p inv )
mark ( j )
jnew=p inv ( j )
f o r each i f o r which l ijnew ̸= 0

i f node ( i ) i s unmarked
d f s ( i , p inv )

push j on to s t a c k f o r X
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