
Μετάφραση βίντεο σε νοηματική γλώσσα

Video translation to sign language

Antonios Alexos
Department of Electrical and Computer Engineering

University of Thessaly

Supervisor

Gerasimos Potamianos
Co-Supervisors

Dimitrios Tsaopoulos, George Stamoulis

In partial fulfillment of the requirements for the degree of

Diploma in Engineering and Computer Engineering

August 6, 2020

Acknowledgements

First of all, I would like to thank my thesis supervisor, Dr. Gerasimos

Potamianos for his insight and guidance through my journey; as well

as for motivating me and pushing me to my limits for the completion

of this project.

Secondly, I would like to thank Katerina Papadimitriou for her insight

and help in my thoughts and ideas. Without her I would have lost a

lot of precious time, drifting on some ideas that would not help in the

implementation of the project. I would also like to thank Dr. Panos

Toulis, for his insight and guidance.

Moreover, I would like to thank my parents and my friends for believ-

ing in my and supporting me.

Last but not Least, I would like to thank myself for all this hard work

and for not giving up in the darkest of times. And for always trying

to push myself further into achieving the impossible.

This Thesis is dedicated to me.

Περίληψη

Σε αυτή τη διπλωματική, αντιμετωπίζουμε ένα πρόβλημα που σχετίζεται τόσο

με το ΄Οραση Υπολογιστών όσο και με την επεξεργασία φυσικής γλώσσας. Πιο

συγκεκριμένα προτείνουμε διάφορες μεθόδους για τη μετάφραση της νοηματικής

γλώσσας από βίντεο σε κείμενο, όπως "Encoder"-"Decoder" με μοντέλα προσοχής,

το "Transformer" κ.λπ. Δοκιμάζουμε διαφορετικές παραλλαγές τους, τόσο στο

πλαίσιο όσο και στην προεπεξεργασία των δεδομένων που εισέρχονται στα μοντέλα

ως είσοδος.

iii

Abstract

In this thesis, we consider a problem that has to do both with Com-

puter Vision and Natural Language Processing. More specifically we

propose various methods to translate sign language from video to

text, like Encoder-Decoder with attention models, the Transformer,

etc. We try different variations of them, both in the context and in

the preprocessing of the data that goes into the model as an input.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Related Work . 2

1.3 Organization of the Thesis . 4

2 Introduction to Deep Learning 6

2.1 Deep Learning . 6

2.2 Artificial Neural Networks . 7

2.3 Long Short-Term Memory Networks 10

2.3.1 Tanh . 11

2.3.2 Sigmoid . 12

2.3.3 Forget Gate . 12

2.3.4 Input Gate . 12

2.3.5 Cell State . 13

2.3.6 Output Gate . 13

3 Methodology 14

3.1 Encoder-Decoder with Neural Attention 14

3.1.1 Encoder . 15

3.1.2 Decoder . 16

v

CONTENTS

3.1.3 Embedding Layer . 17

3.1.4 Neural Attention . 18

3.1.5 Transformer . 21

3.1.5.1 Positional Encoding 22

3.1.5.2 Masking . 23

3.1.5.3 Scaled Dot Product Attention 23

3.1.5.4 Multi-head Attention 24

4 Data and Experimental Framework 29

4.1 Data . 29

4.1.1 Choice of the target translation 31

4.2 OpenPose . 32

4.3 Experimental Setup . 35

4.3.1 Setup of the Encoder-Decoder with neural attention 36

4.3.2 Setup of the Transformer 38

4.3.3 Hardware and Software Framework 41

5 Experimental Results and Discussion 42

5.1 BLEU-4 score . 42

5.2 Results . 43

5.3 Discussion . 46

6 Conclusions 50

References 58

vi

List of Figures

2.1 The layers of Artificial Intelligence as depicted in [1] 7

2.2 Overview of the Perceptron as depicted in [2] 8

2.3 LSTM cell and its operations as depicted in [3] 11

3.1 A sequence to sequence model. The Encoder and the Decoder are

composed of RNNs as depicted in [4] 15

3.2 Embedding Matrix . 18

3.3 Attention mechanism – example of an attention-based NMT sys-

tem as depicted in [5]. We highlight in detail the first step of the

attention computation. 19

3.4 The 2 attention mechanisms as depicted in [5] and [6]. 21

3.5 Scaled dot product attention, as depicted in [7] 25

3.6 Multi-head attention, as presented in [7] 26

3.7 The Transformer architecture, as depicted in [7] 28

4.1 Example images and percentage of data performed by signer in

RWTH-PHOENIX-Weather corpus. Top, left to right signers 1 to

5, bottom signers 6 to 9 as shown in [8] 32

4.2 Example images of RWTH-PHOENIX-Weather 2014T with Open-

Pose keypoints . 36

4.3 The LSTM-based Encoder-Decoder with neural attention model . 37

vii

LIST OF FIGURES

4.4 The Transformer model, as depicted in [9] 39

4.5 The Experimental Setup Flow of the Encoder-Decoder with neural

attention model . 40

4.6 The Experimental Setup Flow of the Transformer 41

5.1 The BLEU-4 score results for different batch sizes for the Transformer 45

5.2 The convergence of loss during training of the 1-layer LSTM Encoder-

Decoder with neural attention model. 47

5.3 The convergence of loss during training of the Transformer. 48

viii

List of Tables

4.1 Statistics of the RWTH-PHOENIX-Weather corpus, as depicted in

[8] . 30

4.2 Overview of RWTH-PHOENIX-Weather Sign Language Transla-

tion Corpus as depicted in [8] . 31

5.1 Final Results of our experiments 44

5.2 Results of the Transformer with different number of layers for the

Encoder and the Decoder . 44

5.3 Translation Examples. On the first line of every block we have the

expected output and on the second one we have our output. . . . 49

ix

Chapter 1

Introduction

1.1 Motivation

Sign Language is used by deaf people as the main means of communication in

their daily lives, and at the same time, it is very difficult for non-sign language

speakers to understand. Deaf people encounter many obstacles in conducting a

flawless and natural conversation, because they are not able to hear sounds. It

is not uncommon in some social environments, that the hearing-impaired people

will need help from interpreters, in order to communicate with other people.

These people are also vulnerable in emergency situations which may cause health

hazards. These aforementioned situations are some good examples, that may lead

the hearing-impaired people into isolation and feel unwanted by the society.

Sign Language translation could provide a good solution to the problems

that the hearing-impaired people are encountering in their daily lives. This kind

of solution could be embedded in a lot of technologies, in order to achieve a

harmonious and natural communication between hearing-impaired people and

hearing-abled people. With this technologies we could help the hearing-impaired

people to get integrated into the society, and most importantly to feel a part of

1

1.2 Related Work

it.

Sign Language translation though, is a very difficult problem with a lot of

challenges, because it combines both visuals and linguistics. The possible solu-

tions are also limited by the technologies of our time. Maybe in the future new

Computer Vision and Deep Learning algorithms will emerge, and help us tackle

the problem more accurately and precisely.

In this work we encounter this problem by examining different approaches of

translating video data to text, and providing eventually, a solution to sign lan-

guage translation. Our approach includes Encoder-Decoder models with neural

attention [10] and the Transformer model [7]. We present our approach in detail

in the following sections.

1.2 Related Work

The problem is not new, and therefore there have been some approaches to Sign

Language Translation. In [11] the authors applied the Encoder-Decoder with

attention model in order to translate sign language from German weather fore-

casts. This sequence-to-sequence model translates spatiotemporal representation

of signs into text. Another approach to sign language translation is [12], where

the authors also used the attention based Encoder-Decoder model but they re-

lied on human keypoint estimation. They implemented their model in the first

Korean sign language dataset, KETI.

The other approaches in the bibliography are not directly associated with

translation, but with similar tasks like sign language recognition, which are easier

to solve than translation, because of their algorithms’ complexities. Many of these

approaches recognize individual letters of the alphabet with a single hand. This is

a very simple task. In [13] the authors used a Microsoft Kinect, a gaming camera

2

1.2 Related Work

for XBox, and achieved an accuracy of 92% with Random Forest. In [14], the

authors performed two deep learning based pose estimation methods and transfer

learning, for recognizing the American Sign Language (ASL). In [15], the authors

added some new features based on the hand region, like distance and angle, in

order to recognize Korean Sign Language. In [16] the authors used the Hidden

Markov model (HMM) in order to recognize whole sentences based on ASL. They

approached the problem differently by using gloves for the hands. They managed

to achieve an accuracy of 99.2% with the gloves, and 84.7% without the gloves.

Moreover, there have been some interesting approaches for sign language

recognition from television. In [17], the authors experimented with British Sign

Language (BSL) in TV broadcasts by using simultaneously subtitle information.

In [18], the authors introduced an unsupervised method to recognise signs from

subtitles, with the help of some hand and head tracking on the videos. Also, in

[19] the authors approached the problem with videos with subtitles from BBC

TV broadcasts.

Seeing the new trend, which is recognizing sign language from television data,

the authors in [20] created a large database on sign language in TV Weather

broadcasts. This famous database is called RWTH-PHOENIX-Weather 2012,

and after 2 years, they published a second version of it with much more data and

details in [21], called RWTH-PHOENIX-Weather 2014. We have to note, that

this database is very user-friendly and has a lot of useful details and features

like marked glosses, time boundaries, different signers, hand positions and face

expressions. The approach in [22] uses these data in a new statistical method in

order to achieve continuous sign language recognition.

So far we have only mentioned work based mostly in more traditional Machine

Learning methods. Now we are going to introduce some Deep Learning based

methods. In [23] the authors approached sign language recognition by extracting

3

1.3 Organization of the Thesis

the signer from the video and constructing a feature vector from him and some

active contours. The recognition achieved with the implementation of an Artificial

Neural Network an accuracy of 93%. In [24] the authors focus more on gesture

recognition, activity recognition and continuous sign language recognition. They

proposed a deep recurrent CNN-BLSTM network embedded into an HMM, which

corrects the weak labels of the data and manages to achieve continuous sign

language recognition on the RWTH-PHOENIX-Weather 2014 dataset. In [25] the

authors evaluate different Convolutional Neural Networks (CNN) architectures

to predict 3D joint locations of a hand from a depth map. Another interesting

classification approach to the sign language recognition problem is the one in

[26]. The authors in this work proposed a classification approach with the use of

bidirectional GRUs.

More recent works leverage the Transformer model in order to tackle the

sign language translation problem. The authors in [27] applied the Transformer

model on the RWTH-PHOENIX-Weather 2014 dataset. On the other hand, the

author in [9] applied different ensembles of Transformers, on both the RWTH-

PHOENIX-Weather 2014 dataset and the American Sign Language Dataset,

where he achieved state-of-the-art results.

1.3 Organization of the Thesis

In this section we present the structure of the remainder of this thesis:

1. Chapter 2 provides a short introduction in Deep Learning and in the main

architectures that we use. We give details about the main components of

our architectures.

2. Chapter 3 gives an overview of our approach, and explains our model ar-

chitecture.

4

1.3 Organization of the Thesis

3. Chapter 4 presents the Data and the Experimental Framework that we

implement.

4. Chapter 5 shows the results that were drawn from our experiments, and a

brief discussion on them.

5. Chapter 6 provides the conclusions of this thesis and a summary.

5

Chapter 2

Introduction to Deep Learning

Summary

In this Chapter we give a brief introduction to Deep Learning, and some basic

models of it. The models that we present are the Artificial Neural Network, the

Recurrent Neural Network, and the Neural Attention.

2.1 Deep Learning

Deep Learning is a subset of Machine Learning that is based on Artificial Neural

Networks, an architecture that was inspired by the human brain, and learns from

large amounts of data. The Deep Learning algorithms learn, by repeating a task a

lot of times. In every repetition, the algorithms tweak a little in order to improve

their result. This happens in the same way that humans learn from experience.

More specifically, the characterization "deep" in deep learning, comes from the

depth of the layers, which enables learning.

Moreover, that amount of data that is generated nowadays is enormous, and

it is the reason that deep learning works. Deep Learning algorithms need a lot

6

2.2 Artificial Neural Networks

of data in order to work properly, and the increase of data through the years is

making this possible. Another factor that contributed to the era of Deep Learning

is of course the computational power that is available today.

Figure 2.1: The layers of Artificial Intelligence as depicted in [1]

2.2 Artificial Neural Networks

Artificial Neural Networks (ANN) [28] are computing systems inspired by the

biological neural networks inside our brains. They are based on a collection of

connected units or nodes, the famous artificial neurons, which mimic the neurons

of our brain. Every connection in the network transmits a signal to other neurons,

where it is being processed and transferred to the connected neurons. The output

of each neuron is computed by a non-linear function of the sum of its inputs. Each

neuron has a weight that changes in the training process, as the neuron learns

through it. The function of each weight, is that it increases or decreases the

transfer of the signal at the connected neurons.

A single layer neural network is called a Perceptron, and it produces a single

output.

7

2.2 Artificial Neural Networks

Figure 2.2: Overview of the Perceptron as depicted in [2]

In Figure 2.2, the x0, x1, x2 . . . xn represent the various inputs to the Percep-

tron. The symbols that we see inside the small circles, the w0, w1, w2 . . . wn are

the weights, which show the strength of the node. b is called bias, and its use is to

shift the activation function up or down. The products of the node are summed

and go straight into the transfer function, or activation function. This function

generates the result, which is the output of the Perceptron.

If we put it together mathematically, we have x1w1 + x2w2 +xnwn =∑
xiwi. Then this passes through the activation function and we have φ (

∑
xiwi).

The activation function is important because it helps the Network to learn

complicated tasks. Its purpose is to convert the neuron’s signal to an output

signal, which is then used as an input to the next node. The need of the activation

function is to introduce non-linearity into the output of the neuron.

Without an activation function the output will always be linear. A function

like that is very limited to its complexity and power, and the Network cannot learn

complicated data, like videos in our case. On the other hand, non-linear functions

have a curvature and a degree more than one. This is important, because we need

an artificial neural network to learn and represent almost anything, like complex

functions.

8

2.2 Artificial Neural Networks

Here we list the most used activation functions:

1. Binary Step Function

f(x) =

 0 if x < 0

1 if x ≥ 0
(2.1)

It is mostly used as a threshold function for each neuron.

2. Sigmoid Activation Function (Logistic Function)

φ(z) =
1

1 + e−z
(2.2)

The sigmoid curve in this function ranges between 0 and 1, and therefore,

sigmoid function is used for models where we need to predict the probability

as an output.

3. Hyperbolic Tangent Function (tanh)

f(x) = tanh x (2.3)

This function maps the strong negative inputs to negative outputs and zero

inputs to near-zero outputs. In this way the algorithm is less likely to get

stuck during training.

4. Rectified Linear Units (ReLU)

f(x) =

 0 for x < 0

x otherwise
(2.4)

ReLU function is non-linear, and every combination of it is also non-linear.

It is a very good approximator because every function can be approximated

9

2.3 Long Short-Term Memory Networks

with a combination of ReLU. It should only be applied to hidden layers of

a neural network. A problem with ReLU is that some gradients are fragile

during training and can die. It can cause a weight to never activate on any

data point again. Basically ReLU could result in dead neurons.

2.3 Long Short-Term Memory Networks

Long Short-Term Memory Networks (LSTM) [29] are a type of Recurrent Neural

Networks (RNN) [30][31][32], that can learn and remember long sequences of

data, due to its gates. These gates regulate the input data of the network, and

thus the information flow that goes inside the network.

The RNNs have some limitations which are solved by LSTMs. These limita-

tions are:

1. Short-term memory. The RNNs forget the older information in order to

remember the new data, which results in the loss of important information.

2. Vanishing Gradient. The weight is updated from the gradient. If the

value of the gradient is very small, then it does not contribute to learning.

In the vanishing gradient, the gradient value shrinks and becomes very close

to zero.

3. Exploding Gradient. This is the opposite from the vanishing gradient

problem. Here the network assigns very high values to the gradients, which

means that it assigns them very high importance.

The significant difference between RNN and LSTM is that the latter uses

gates in order to decide whether it should keep or forget information. As we can

see in Figure 2.3, an LSTM cell has a cell state, input, forget and output gates

and activation functions.

10

2.3 Long Short-Term Memory Networks

Figure 2.3: LSTM cell and its operations as depicted in [3]

An LSTM, like an RNN, processes a sequence of vectors, and it passes the

previous hidden state to the next step of the sequence. The hidden state is in

fact the memory of the model. It holds information on previous data that it has

"seen" before. The important thing here is the calculation of the hidden state.

First of all, the input and the previous hidden state form a vector. This vector

goes through the tahn activation function with information from the current and

the previous inputs. The result of this function is the new hidden state. Next we

present briefly the components of an LSTM.

2.3.1 Tanh

The tanh activation in the LSTM regulates the input that flows in the network.

As we have seen previously in Equation 2.3, it squishes the values to be between

-1 and 1. This helps the network to regulate some values that may become very

11

2.3 Long Short-Term Memory Networks

high, which causes other values to vanish. It ensures that a value will stay within

the boundaries.

2.3.2 Sigmoid

A sigmoid activation, as we saw in Equation 2.2 is similar to the tanh activation.

It squishes the input values between 0 and 1. In that way the network either

updates or forgets data. On the one hand, every value that is multiplied by 0

becomes 0, so the network forgets it. On the other hand, if it is multiplied by 1,

the value stays the same, thus the network chooses to keep it.

2.3.3 Forget Gate

The Forget Gate decides what information should be thrown away or kept. Data

from previous states and from the current input is passed to a sigmoid function.

Because of the sigmoid function the values are between 0 and 1. Closer to 0

means that the network will forget the value, while closer to 1 means that the

network will keep the value.

2.3.4 Input Gate

In order to update the cell state, we pass the previous hidden state and current

input into a sigmoid function, which transforms values between 0 and 1. As we

have previously mentioned, 0 is unimportant and 1 is important. The LSTM

also passes the hidden state and the current input into the tanh function in order

to regulate the network. Then the tanh output is multiplied with the sigmoid

output. Obviously, the sigmoid output decides which information to keep from

the tanh output.

12

2.3 Long Short-Term Memory Networks

2.3.5 Cell State

The cell state is pointwise multiplied by the forget vector. This has a possibility

of dropping values in the cell state if it gets multiplied by values near 0. The

output of the input gate is pointwise added, which updates the cell state to the

new values that our network finds relevant and important. In that way the new

cell state is produced.

2.3.6 Output Gate

The output gate decides what the next hidden state should be. The hidden state,

which contains information on previous inputs, is also used for predictions. First

of all, the previous hidden state and the current input are passed into a sigmoid

function. Then the resulted cell state is passed to the tanh function. The output

of the tanh function is multiplied with the sigmoid output, in order to decide

which information the hidden state should carry. The output of this is in fact the

hidden state. The new cell state and the new hidden state are then carried over

to the next time step.

13

Chapter 3

Methodology

Summary

This Chapter presents the proposed methodology of our approach in order to

tackle the sign language translation problem. We present the models that we

have implemented, which are the Encoder-Decoder with neural attention model

and the Transformer.

3.1 Encoder-Decoder with Neural Attention

The Encoder-Decoder model falls into the category of sequence to sequence mod-

els. Sequence to sequence models have achieved significant results on complicated

tasks like machine translation [33], speech recognition [34] and video captioning

[35]. This architecture can be used to tackle any sequence-based problem, and

especially the ones where the inputs and outputs have different sizes and cate-

gories.

A sequence to sequence model maps a fixed-length input, to a fixed-length out-

put where the length of the input and output may differ. For instance, translating

14

3.1 Encoder-Decoder with Neural Attention

a sentence from English to French, which have different lengths; or translating

an image to a sentence. These tasks cannot be implemented with an LSTM or a

CNN, so that is why we need a sequence to sequence model for these complicated

problems. These models have the ability to map sequences of different lengths

to each other. In the majority of Deep Learning problems for sequence to se-

quence models, the inputs and the outputs are not correlated and their lengths

are different.

Figure 3.1: A sequence to sequence model. The Encoder and the Decoder are
composed of RNNs as depicted in [4]

Figure 3.1 depicts a sequence to sequence model, consisting of 2 parts, the

Encoder and the Decoder. We provide a brief overview of them.

3.1.1 Encoder

Figure 3.1 depicts an Encoder, consisting of several recurrent units, which can be

either LSTMs or Gated Recurrent Units(GRUs). Each of them accepts a single

element of the input sequence, it processes it and then it propagates it forward. In

natural language processing problems, the input sequence is a sequence of words,

15

3.1 Encoder-Decoder with Neural Attention

and every word is represented as xi, where i is the order of that word. The hidden

states hi of the RNNs are computed using the following equation:

ht = f
(
W (hh)ht−1 +W (hx)xt

)
(3.1)

Equation 3.1 represents the output of a Recurrent Neural Network inside the

Encoder. It is clear from this equation that we apply the appropriate weights to

the previous hidden state ht−1 and the input xt.

The Encoder produces as an output an encoder vector, which is the final

hidden state produced from the encoder and it is calculated from Equation 3.1.

This output has as a goal to include the information for all the inputs of the

Encoder, so that the Decoder can make accurate predictions. It is noteworthy

that this vector acts as the initial hidden state of the decoder of the model.

3.1.2 Decoder

Similarly to the Encoder, the Decoder is a stack of Recurrent Neural Networks,

as presented in Figure 3.1; and every network predicts an output yt at a time

step t. Every RNN accepts the hidden state from the previous unit and produces

an output and its own hidden state. In Natural Language Processing problems,

the output sequence is a sequence of words, and every word is represented as yi,

where i is the order of that word. The hidden state hi of the each RNN in the

Decoder is calculated from the following equation:

ht = f
(
W (hh)ht−1

)
(3.2)

Equation 3.2 shows that every hidden state is computed from the previous

hidden state. The output yt of every RNN in the Decoder at time step t is

16

3.1 Encoder-Decoder with Neural Attention

computed using the following equation:

yt = softmax
(
W (S)ht

)
(3.3)

As we see in Equation 3.3, the outputs are calculated using the hidden state

at the current time step together with the respective weight W (S). A Softmax

activation is used in the output layer in order to create a probability vector that

will determine the final output.

3.1.3 Embedding Layer

It may not be depicted in Figure 3.1 becuase of its simplicity, but it is common

to use an Embedding Layer [36] inside a sequence to sequence model. The Em-

bedding layer in general "turns positive integers (indexes) into dense vectors of

fixed size". There are 2 main reasons to use the Embedding Layer in Natural

Language Processing Problems:

• One-hot encoded vectors are high dimensional and sparse. Having a dictio-

nary of 5000 words (for instance in an email problem) and using one-hot

encoding, means that every word will be a vector containing 5000 integers

(0s and 1s). 4999 of those integers would be 0, and only one of them would

be 1. This is computationally expensive and becomes worse when we deal

with image data.

• The vectors of each embedding get updated while training the neural net-

work. The Embedding Layer creates a multi-dimensional space which helps

to identify similarities and relationships between words, and everything that

can be turned into a vector through this Layer.

In order to explain the Embedding Layer we provide a simple example. The

Embedding Layer encodes a sentence by indices, which means that it assigns an

17

3.1 Encoder-Decoder with Neural Attention

index to each unique word. Therefore, sentence “deep learning is very deep” would

become "1 2 3 4 1". Then the embedding matrix is created, and we decide the

number of ’latent factors’ that are assigned to each index. A possible embedding

matrix of the aforementioned sentence example would be the following:

Figure 3.2: Embedding Matrix

As we observe in Figure 3.2 instead of having a one-hot encoded vector, we use

an embedding matrix, and we keep the size of each vector much smaller. Every

row in Figure 3.2 represents a word, so "deep" is the first row of the matrix(.32,

.02, .48, .21, .56, .15). More specifically, the words are not replaced by vectors

in the matrix; they get replaced by the indices of the matrix. This is more

computationally efficient in big datasets. These word vectors get updated during

the training process of the deep neural network, and they help us explore which

words are similar to each other in a multi-dimensional space. Although here we

have presented a simple example of the Embedding Layer in words, we note that

it is implemented in the same way for other types of data, like images.

3.1.4 Neural Attention

In this subsection we provide a brief overview of Neural Attention, a mechanism

that has been used in several state-of-the-art systems and open-source toolkits.

As illustrated in Figure 3.3, the attention computation happens at every de-

coder time step. The attention mechanism that we present was first proposed by

[6]. In the Encoder-Decoder model every decoder output is calculated based on

the previous outputs and some x, where x consists of the current hidden state

18

3.1 Encoder-Decoder with Neural Attention

Figure 3.3: Attention mechanism – example of an attention-based NMT system as
depicted in [5]. We highlight in detail the first step of the attention computation.

and the attention "context". So the decoder defines a probability over the results

y by decomposing the joint probability into the ordered conditionals:

p(y) =
T∏
t=1

p (yt| {y1, · · · , yt−1} , c) (3.4)

where yt is the next prediction and {y1, · · · , yt−1} are all the previous predictions

that the model has made so far; c is the context vector, and y = (y1, · · · , yt) .

With an RNN, each conditional probability is modeled as:

p (yi|y1, . . . , yi−1,x) = g (yi−1, si, ci) (3.5)

19

3.1 Encoder-Decoder with Neural Attention

where g is a nonlinear function that outputs the probability of yt, and si is the

current hidden state calculated by an RNN f with the last hidden state si−1,

computed by:

si = f (si−1, yi−1, ci) (3.6)

The context vector ci depends on a sequence of annotations (h1, · · · , hTx) to which

an encoder maps the input sentence. Each annotation hi contains information

about the whole input sequence with a strong focus on the parts surrounding the

i -th part of the input sequence.

The context vector ci is a weighted sum of all encoder outputs, where each

weight aij is the amount of "attention" paid to the corresponding encoder output

hj.

ci =
Tx∑
j=1

αijhj (3.7)

The weight αij of each annotation hj is normalized and computed by:

αij =
exp (eij)∑Tx

k=1 exp (eik)
(3.8)

where

eij = a (si−1, hj) (3.9)

is an alignment model which scores how well the inputs around position j and the

output at position i match. The score is based on the RNN hidden state Si−1 and

the j -th annotation hj of the input sentence. Here in our proposed approaches

we used the attention mechanism from [6]. Another famous attention mechanism

was proposed by [5]. The main difference between [5] and [6], is in the output of

the decoder model, as we observe in Figure 3.4:

20

3.1 Encoder-Decoder with Neural Attention

Figure 3.4: The 2 attention mechanisms as depicted in [5] and [6].

3.1.5 Transformer

The Transformer model has self-attention, which is the ability to attend to differ-

ent positions of the input sequence to compute a representation of that sequence

[7]. The Transformer creates stacks of self-attention layers inside the model, and

it handles variable-sized input using these stacks of self-attention layers instead

of RNNs or CNNs. It has several advantages:

1. It does not make assumptions about the temporal/spatial relationships

across the data. In that way we can effectively process a set of objects

[37].

2. Layer outputs can be calculated in parallel, instead of a series like an RNN.

In this way it can run faster than a normal Encoder-Decoder model.

21

3.1 Encoder-Decoder with Neural Attention

3. Distant input data can affect each other’s output without passing through

many RNN-steps, or convolution layers [38].

4. It can learn long-range dependencies because of the attention layers, which

is a challenge in many sequence tasks.

The Transformer architecture, apart from the advantages has also disadvan-

tages:

1. In time-series problems, the output for each time-step is calculated from

the entire history, instead of only the inputs and current hidden state. This

may be less efficient when our goal is to predict only one value at a specific

time.

2. If the input data has a temporal relationship like text, some positional

encoding must be added or the model will effectively see a bag of words.

As a result the neural attention mechanism will lose its properties.

3.1.5.1 Positional Encoding

The Transformer does not contain any recurrence or convolution, so positional en-

coding is added as a vector, in order to give the model some information about the

relative position of the words in the sentence. The positional encoding vector is

added to the embedding vector. Embeddings represent a token in a d-dimensional

space where tokens with similar meaning will be closer to each other, as we have

mentioned earlier in Subsection 3.1.3. The Embeddings do not encode the rel-

ative position of words in a sentence. So after adding the positional encoding,

words will be closer to each other based on the similarity of their meaning and

their position in the sentence, in the d-dimensional space. The encoding vector is

a vector of sines and cosines at each position, wehre each sine-cosine pair rotates

22

3.1 Encoder-Decoder with Neural Attention

at a different frequency. The formula for calculating the positional encoding is

the following:

PE(pos,2i) = sin
(
pos/100002i/dmodel

)
PE(pos,2i+1) = cos

(
pos/100002i/dmodel

) (3.10)

3.1.5.2 Masking

Masking is an important process of the Transformer architecture. We mask all

the pad tokens in the batch of sequence. This process ensures that the model

does not treat padding as the input. The mask indicates where pad value 0 is

present: it outputs a 1 at those locations, and a 0 otherwise.

The look-ahead mask is used to mask the future tokens in a sequence. This

means that the mask indicates which entries should not be used. For instance, in

order to predict the third word in a sentence, only the first and the second words

will be used. On the same scope, in order to predict the fourth word, only the

first, the second and the third words will be used. It is noteworthy to mention

that masking is a unique process in the Transformer architecture, and does not

occur in the classical Encoder-Decoder models.

3.1.5.3 Scaled Dot Product Attention

The attention function used by the Transformer takes three inputs: Q (query),

K (key), V (value). The equation used to calculate the attention weights is the

following:

Attention(Q,K, V) = softmaxk

(
QKT

√
dk

)
V (3.11)

As depicted in Equation 3.11 the dot-product attention is scaled by a factor

of square root of the depth. This happens because, for large values of depth, the

23

3.1 Encoder-Decoder with Neural Attention

dot product grows large in magnitude and pushes the softmax function where

it has small gradients resulting in a very hard softmax. So attention would not

work properly otherwise.

For instance, we assume that Q and K have a mean of 0 and variance of 1.

Their matrix multiplication in this case, would have a mean of 0 and a variance

of dk. Therefore, the square root of dk is used for scaling because the matrix

product of Q and K should have a mean of 0 and variance of 1. In this way we

get a gentler sofrmax.

We should note that the mask is multiplied with -1e9 (a very small number,

close to negative infinity). This is done because the mask is summed with the

scaled matrix multiplication of Q and K and is applied immediately before a

softmax. The goal is to zero out these cells, and large negative inputs to softmax

are near zero in the output.

As the softmax normalization is done on K, its values decide the amount of

importance given to Q. The output represents the multiplication of the attention

weights and the V (value) vector. The method guarantees that the words you

want to focus on are kept as-is and the irrelevant words are flushed out in the

end. Figure 3.5 presents the Scaled dot product attention, as depicted in [7].

3.1.5.4 Multi-head Attention

Multi-head attention consists of four parts as we observe in Figrue 3.6:

1. Linear layers and split into heads.

2. Scaled dot-product attention.

3. Concatenation of heads.

4. Final linear layer.

24

3.1 Encoder-Decoder with Neural Attention

Figure 3.5: Scaled dot product attention, as depicted in [7]

Each multi-head attention block gets three inputs; Q (query), K (key), V

(value). These are put through linear (Dense) layers and split up into multiple

heads. The Scaled Dot Product Attention described in Subsection 3.1.5.3 is ap-

plied to each head, and it is broadcasted for efficiency. An appropriate mask is

used in the attention step. The attention output for each head is then concate-

nated as we see in Figure 3.6 and put through a final Dense layer.

Instead of one single attention head, Q, K, and V are split into multiple

"heads", since it allows the Transformer to jointly attend to information at dif-

ferent positions from different representational spaces. After the split on the

previous step, each head has a reduced dimensionality, so the total computation

25

3.1 Encoder-Decoder with Neural Attention

cost is the same as a single head attention with full dimensionality.

Figure 3.6: Multi-head attention, as presented in [7]

The transformer model follows the same general pattern as a standard se-

quence to sequence with attention model (Encoder-Decoder model), that we de-

scribed in this Section. This means that in an NLP problem, the input sentence

is passed through N encoder layers, and every one of them generates an output

for every word in the sentence. Then the decoder attends the encoder’s output

and its own input (self-attention) to predict the next word. Each layer in the

Encoder consists of the sublayers Multi-head attention (with padding mask) and

point-wise feed forward networks. Each of these sublayers has a residual connec-

tion around it followed by a layer normalization. Residual connections help in

26

3.1 Encoder-Decoder with Neural Attention

avoiding the vanishing gradient problem in deep networks.

The Decoder on the other hand consists of 3 different sublayers. The first one

is the Masked multi-head attention (with look-ahead mask and padding mask).

The second one is the Multi-head attention (with padding mask). V (value) and

K (key) receive the encoder output as inputs. Q (query) receives the output

from the masked multi-head attention sublayer. The last one is the point-wise

feed forward networks. Each of these sublayers has a residual connection around

it followed by a layer normalization. As Q receives the output of the decoder’s

first attention block, and K receives the encoder output, the attention weights

represent the importance given to the decoder’s input based on the encoder’s

output. This means that the decoder predicts the next word by looking at the

encoder output and self-attending to its own output. This is how the attention in-

side the Transfromer works. Figure 3.7 shows the architecture of the Transformer

model, as originally depicted in [7].

27

3.1 Encoder-Decoder with Neural Attention

Figure 3.7: The Transformer architecture, as depicted in [7]

28

Chapter 4

Data and Experimental Framework

Summary

This Chapter presents the datasets that we have used in our approach and the

experimental setup of the proposed models.

4.1 Data

For our experiments we have used the well-known RWTH-PHOENIX-Weather

2014T dataset. This dataset provides German sign language videos, regard-

ing weather forecasts. Regarding more details about the data, the signing was

recorded by a stationary color camera placed in front of the sign language in-

terpreters. The interpreters wear dark clothes in front of an artificial grey back-

ground with color transition. All recorded videos are at 25 frames per second and

the size of the frames is 210 by 260 pixels. Each frame shows the interpreter box

only [8]. Table 4.1 presents some statistics about the dataset we used. Figure

4.1 shows example images of different signers and the percentage of images that

correspond to them.

29

4.1 Data

RWTH-PHOENIX-
Weather 2014T

#signers 9
#editions 645
duration[h] 10.73
#frames 965,940
#sentences 8,767
#run. glosses 123,532
vocab. size 2,589
#singletons 531

Table 4.1: Statistics of the RWTH-PHOENIX-Weather corpus, as depicted in [8]

The RWTH-PHOENIX-Weather corpus is suitable for the implementation

and evaluation of various automatic recognition systems for continuous and iso-

lated sign language. The spatial annotations allow for the evaluation of hand

tracking and face tracking systems as well as for face detection systems. It is also

very useful for the creation of sign language translation systems and algorithms

between the signs and the German language. In our case we use this dataset for

the latter purpose.

In order to address the problem of sign language translation, the authors [8]

have defined two setups, corresponding to the single signer and multi signer setup

of the sign language recognition corpus. So in that way, the output of the sign

language recognition system can be passed to the translation system, creating

a video-to-text translation pipeline. The statistics of the corpus for the sign

language translation task are shown in Table 4.2

The identity of the signer hardly affects the sign language translation sys-

tem, so all of the signers have been included in the train set. For the test set,

there is one signer featured in the single signer setup, and several signers in the

multi signer setup. Both single signer and multi-signer setups are a challenge to

computer vision algorithms because of the low resolution and the motion blur of

30

4.1 Data

Glosses German
Train: sentences 8495

running words 99207 134927
vocabulary 1580 3047

singletons/voc 35.8% 37.9%
Dev: sentences 250

running words 2573 3293
OOVs (running) 1.3% 1.8%

Test: sentences 2× 73
(single signer) running words 487 921

OOVs (running) 1.6% (5.4%)
Test: sentences 2× 135
(multi signer) running words 946 1753

OOVs (running) 0.7% (2.4%)

Table 4.2: Overview of RWTH-PHOENIX-Weather Sign Language Translation
Corpus as depicted in [8]

the images. In building both setups from single-view video data, approaches to

sign language recognition can be evaluated in real-life scenarios where additional

information due to RGB-D cameras or stereo-depth information is not available.

4.1.1 Choice of the target translation

In this subsection we explain the target that we chose for the final translation.

As we have mentioned the RWTH-PHOENIX-Weather corpus provides the sign

videos, the glosses and the text translation. The ultimate goal of Sign Language

Translation is to translate directly from continuous sign videos to spoken language

text, without going through an intermediary representation step, like glosses for

instance.

Glosses are textual representations of multi-channel temporal signals, so they

represent an information bottleneck for any translation system. Moreover glossing

is not when we are trying to interpret a language, but when we are trying to

transcribe it or represent it in general. Glossing has to do with the fact that the

31

4.2 OpenPose

Figure 4.1: Example images and percentage of data performed by signer in
RWTH-PHOENIX-Weather corpus. Top, left to right signers 1 to 5, bottom
signers 6 to 9 as shown in [8]

target language, which in our case is text language may not have equivalent words

to represent the sign language. Hence glosses are imprecise for sign language

translation.

Direct Sign Language to Text Translation is more difficult than Gloss Sign

Language to Text Translation and Sign Language to Gloss Translation. But we

believe that with the use of an advanced model mechanism we can achieve good

performance on direct Sign Language to Text Translation.

4.2 OpenPose

For some experiments we have used the images from RWTH-PHOENIX-Weather

2014T in their raw form, while in others we have used the keypoints derived

from OpenPose [39][40][41][42]. OpenPose, was developed by researchers at the

32

4.2 OpenPose

Carnegie Mellon University and can be considered as the state of the art approach

for real-time human pose estimation.

A common approach is to follow a two-step framework which uses a human

detector and solve the pose estimation for each human. This approach running

time tends to grow with the number of people in the image and make the real-

time performance a challenge. In OpenPose, the authors provide a bottom-up

approach where the body parts are detected by the model and a final parsing

is used to extract the pose estimation results. This approach can decouple the

running time complexity from the number of people in the image.

The steps of the overall OpenPose pipeline are the following:

• First the image is passed through a baseline network to extract feature maps

[43]. For this step the OpenPose authors use the first 10 layers of VGG-19

model [44][45].

• The feature maps that were extracted from the aforementioned network, are

processed with multiple stages CNN to generate: (i) a set of Part Confidence

Maps, (ii) a set of Part Affinity Fields (PAFs).

• Finally, the Confidence Maps and Part Affinity Fields are processed by a

greedy algorithm to obtain the poses for each person in the image.

In order to explain OpenPose better we analyze the last step of it, the greedy

algorithm. To provide a better explanation, the Part Confidence Maps are a set

of 2D confidence maps for body part locations. Each joint location has a map.

The Part Affinity Fields (PAFs) are a set of 2D vector fields L which encodes the

degree of association between parts. This step is used to parse poses of multiple

people from confidence maps and part affinity fields. We note that this is a

difficult step from a mathematical approach.

33

4.2 OpenPose

• Step 1: Find all joints locations using the confidence maps.

• Step 2: Find which joints go together to form limbs (body parts) using the

part affinity fields and joints in step 1.

• Step 3: Associate limbs that belong to the same person and get the final

list of human poses.

Regarding the first step from above, finding all joints locations using the

confidence maps, the algorithm tries to find 18 joints in total. For each joint we

get the corresponding 2D heat-map for the joint in confidence maps, and then

we find the peaks by thresholding the 2D heat-map. For each heat-map we take

a patch around the peak in the heap, and we scale up the patch using the up-

sampling scale. After that we get the maximum peak location in the scaled up

patch, and we add the peak information to the list peaks of the joint.

The process for step 2, that is finding which joints go together to form limbs

(body parts) using the part affinity fields and joints from the first step, is more

complicated than the process in the first step. Firstly we scale up the RAFs to

the input size using the difference in width/height of input image and the PAFs

maps. Then for each limb type we do the following procedure:

• We get all source joint peaks and destination joint peaks.

• If there are no source or destination peaks we skip this limb.

• For each source peak and destination peak:

1. We get the direction vector by subtracting the destination and the

source locations.

2. We normalize the direction vector to a unit vector.

34

4.3 Experimental Setup

3. We get the PAFs’ values at each intermediate points between the source

and destination peaks.

4. We calculate the score of the current limb connection by averaging the

PAF’s values.

5. We add a score to penalize the long distance limb.

6. Finally, we add the current limb connections to the limb connection

candidates.

• We sort the limb connection candidates.

• Finally for each limb connection candidates, we add the connection to the

final list if the source and destination is not selected for any connection.

For the third and last step, we associate limbs that belong to the same person

and get the final list of human poses. For this step, we first find the persons that

associated with either joint of the current connection, for each limb types and for

each connection in connected limbs list of that type. Then, if there is no person

we create a new person with the current connection. If there is already 1 person,

we add the current connection to that person. If there are 2 persons, we merge

them into 1 person. If a person has very few joints, we just remove it.

Although OpenPose jointly detects human body, hand, facial, and foot key-

points (in total 135 keypoints) on single images, for our purpose we detect only

the keypoints in the upper body and hands. Figure 4.2 depicts some examples

OpenPose applied on data from RWTH-PHOENIX-Weather 2014T.

4.3 Experimental Setup

In this section we explain in detail the implementation setup for our experiments

for training and inference. We have conducted 2 different series of experiments;

35

4.3 Experimental Setup

Figure 4.2: Example images of RWTH-PHOENIX-Weather 2014T with OpenPose
keypoints

one with the classical Encoder-Decoder with neural attention model and one with

the Transformer.

4.3.1 Setup of the Encoder-Decoder with neural attention

For the Encoder-Decoder with attention model we have implemented the classical

RNN-based model. More specifically, the Encoder consists of 2 LSTM layers

and 2 Dense layers. The Decoder consists of 1 attention layer, 1 embedding

layer, 1 GRU layer and 2 dense layers. A more concise image of this model is

depicted in Figure 4.3. Getting into more details we decided to use the attention

model as described in [6]. For another Encoder-Decoder with neural attention,

we implemented the same model setup, but instead of LSTMs we used GRUs.

While this is the main setup for the Encoder-Decoder model we have implemented

different experiments by changing some parameters of the main model, in order

to see which combination of them produces the best performance.

Regarding the data input, we extract from OpenPose the keypoints from the

36

4.3 Experimental Setup

Figure 4.3: The LSTM-based Encoder-Decoder with neural attention model

upper body and hand for every frame of each video. We store them in an table,

in a way that every table corresponds to a video. Every table has dimensions of

120x475. 120 are the keypoints from OpenPose, and 475 are the number of rows,

37

4.3 Experimental Setup

which represents the number of frames in every video. Most of the videos have a

smaller number of frames, but we need to feed the model with a standard input

shape. So we chose 475 as the biggest number of frames in a video in the RWTH-

PHOENIX-Weather 2014T dataset. We set the batch size to 32, the buffer size

to 1000, the embedding dimension to 1000 and the units of the Neural Networks

to 512. We found out that by choosing a small number of the last 3 variables,

the network produces worse results. These are the details for this model setup.

For the training setup we used the Adam optimizer [46] in order to optimize

the model during training time with a learning rate of 0.001. As a loss function

we chose the Sparse Categorical Crossentropy [47][48]. The LSTM-based model

was trained for approximately 800 epochs, and the GRU-based model for 1100.

Both of the models did not seem to converge.

4.3.2 Setup of the Transformer

As we have previously mentioned in Section 3.1.5, the Transformer is a sequence-

to-sequence encoder-decoder network. The recurrent networks are replaced here

with self-attention layers. The architecture that we used is presented in Figure

4.4 and it is the same as the model in [9]. Our model has 2 same Encoder layers

and 2 same Decoder layers, which are the same as in the original Transformer

model. Our Transformer model was implemented with a word embedding size of

512 hidden units, and 2048 feed-forward layers. We optimize the training of it

with Adam, with 0.9 β1 and 0.998 β2, as well as Noam learning rate schedule,

0.1 dropout, gradient clipping with 0 threshold, and 0.1 label smoothing. In our

series of experiments we have tried different values for some hyperparameters of

the Transformer, in order to see which combination produces the best results.

During training time, the Transformer model is evaluated on the DEV set

at each half-epoch, with early stopping with patience equal to 5, in order to

38

4.3 Experimental Setup

stop the training and save the model. For Decoding we used beam search with

a beam width of 5, and during the decoding, the generated "< unk >" tokens

for unknown words are also replaced by the source token having the highest

attention weight. The latter is very important when these tokens correspond to

proper nouns that can be directly transposed between languages. Although the

recommended batch size for the Transformer is 4096, we used a batch size of 2048

in order to fit into our GPU memory.

Figure 4.4: The Transformer model, as depicted in [9]

39

4.3 Experimental Setup

Figures 4.5 and 4.6 show the whole process flow that we follow with the

Encoder-Decoder with neural attention model and the Transformer. As we have

aforementioned, for the Encoder-Decoder with attention model the data go through

OpenPose in order to extract the keypoints of the hands and the upper body of

each signer. On the other hand for the Transformer we focus on simplicity and

the images go inside the Transformer in their original form.

Figure 4.5: The Experimental Setup Flow of the Encoder-Decoder with neural
attention model

40

4.3 Experimental Setup

Figure 4.6: The Experimental Setup Flow of the Transformer

4.3.3 Hardware and Software Framework

The experiments ran on 4 workstations in total. A workstation with a i7-7820X

CPU (3.60GHz), 64 GB RAM and an NVidia Quadro P5000 (16gb RAM), a work-

station with an NVidia Tesla K40c (12gb RAM) and an Xeon E5-2609 CPU (2.5

GHz), and a workstation with an i9-7940X (3.10GHz) CPU with an NVidia RTX

2080Ti (12 gb RAM). Last but not least, due to time constrains I rented a server

with 4 NVidia RTX 2080Ti (12 gb RAM) GPUs from Vast.ai a startup which

is basically the Airbnb for servers. The Encoder-Decoder with neural attention

models were implemented in Tensorflow [49]. The OpenPose was implemented

in Caffe [50] and PyTorch [51]. The Transformer model was implemented in

OpenNMT [52] and PyTorch.

41

Chapter 5

Experimental Results and

Discussion

Summary

This Section presents the results of our experiments. Firstly we present the

results of both the simple Encoder-Decoder with neural attention models and

the Transformer. We decided to emphasize more on the Transformer and do

more experiments with that because it produces better results than the simple

Encoder-Decoder with neural attention models. You can see in the figures of this

chapter, experiments of the effect of the different parameters of the Transformer

on the BLEU-4 score. Finally, we provide a short discussion and observations of

these results, and we try to give more insight on the explanations of them.

5.1 BLEU-4 score

For the evaluation metric we used the BLEU-4 score, a famous metric for NLP

tasks [53]. BLEU (bilingual evaluation understudy) is an algorithm for evaluating

42

5.2 Results

the quality of text which has been machine-translated from one natural language

to another. BLEU’s output is always a number between 0 and 1, and the closer the

score is to 1, the better for our translation. It is very simple in the implementation,

and it is computed using the couple of ngram modified precision as in the following

equation:

BLEU = BP · exp

(
N∑

n=1

wn log pn

)
(5.1)

where pn is the modified precision for n gram, the base of log is the natural base

e, wn is weight between 0 and 1 for log pn and
∑N

n=1wn = 1, and BP is the brevity

penalty to penalize short machine translations.

BP =

 1 if c > r

exp
(
1− r

c

)
if c ≤ r

(5.2)

where c is the number of unigrams (length) in all the candidate sentences, and r

is the best match lengths for each candidate sentence in the corpus. Here the best

match length is the closest reference sentence length to the candidate sentences.

5.2 Results

Table 5.1 depicts the final results of our experiments. We observe that the Trans-

former model produced the best results among the other models. This is no

surprise, since neural attention is superior to the Recurrent Neural Network ar-

chitectures. LSTMs were a clever bypass technique and the attention mechanism

showed that normal networks could be replaced by averaging networks influenced

by a context vector. Regarding the simple Encoder-Decoder with attention mod-

els we tried 2 combinations of 1 or 2 layers for the Encoder, and the use of either

LSTM or GRU for the Encoder. We don’t observe major differences on their

43

5.2 Results

performance. Next we try to explain better the superiority of the Transformer

for the sign language translation task.

Architecture BLEU-4 score
2-layer LSTM Encoder-Decoder with atten-
tion

11.4%

1-layer LSTM Encoder-Decoder with atten-
tion

10.1%

1-layer GRU Encoder-Decoder with atten-
tion

9%

2-layer GRU Encoder-Decoder with atten-
tion

9.7%

2-layer Transformer 20.8%

Table 5.1: Final Results of our experiments

Table 5.2 depicts the performance of the Transformer with different number

of layers for the Encoder and the Decoder of the model. We note that the En-

coder and the Decoder have the same number of layers as we have mentioned

before. From Table 5.2 we observe that the Transformer with 2 layers achieves

the highest performance, which uses less memory and needs less time for training

and inference than the bigger model with 6 layers for instance. It is logical to

produce better results with a smaller model, since the dataset is relatively small,

in comparison to other Deep Learning datasets that are used in Neural Machine

Translation.

Number of Layers BLEU-4 score
1 19.1%
2 20.8%
4 20.1%
6 20.4%

Table 5.2: Results of the Transformer with different number of layers for the
Encoder and the Decoder

Figure 5.1 depicts the BLEU-4 score results for various batch sizes. We have

44

5.2 Results

started from batch size 1 and moved to a batch size of 2048. We already know

that the optimal batch size for the Transformer is 2048 [54]. We observe in Figure

that a small batch size does not produce good results and only when the batch

size is equal or bigger than 64 we start seeing higher BLEU-4 scores, which is

anticipated [54]. Furthermore, the best performance is achieved when batch size

is 2048, which is anticipated as aforementioned.

1 2 4 8 16 32 64 128 256 1024 2048
Batch Size

10

12

14

16

18

20

BL
EU

-4
 S
co

re

Figure 5.1: The BLEU-4 score results for different batch sizes for the Transformer

Table 5.3 presents some sample translations of the Transformer. We chose

some of the best translations that the model produced. We have observed that

the model predicts the small sentences with high accuracy and often mistakes

small irrelevant words which are pronouns or prepositions. The model also has

encounters problems into translating big sentences or sentences that have rare

words in them.

45

5.3 Discussion

5.3 Discussion

RNNs and LSTMs based architectures use mainly sequential processing over time.

This means that long-term information has to sequentially travel through all cells

before getting to the present processing cell. In this process it can be easily

corrupted by being multiplied many time by small numbers smaller than 0. This

is the cause of vanishing gradients, and consequently losing valuable information

of the data.

On the other hand, neural attention units “look-back”, since most of the time

we deal with real-time causal data where we know the past and want to affect

future decisions. A better way to look into the past is to use attention modules

to summarize all past encoded vectors into a context vector Ct. Neural atten-

tion has the ability to map long-term relations between the data. The form of

dynamics of dependencies in the data is adaptive due to the attention mecha-

nism. The attention mechanism allows the model to see long-term dependencies.

This relaxes the strict sequential assumption and allows the model to form any

kind of dependencies in the vector. And in a dynamic fashion, because different

observations lead to different kinds of dependencies.

Moreover, we note that the difference of the score between the classic Encoder-

Decoder model with attention and the Transformer is caused also from the input

form of the data. OpenPose may be very robust, but because some images are

blurred in the dataset, it does not perform very well with all of the photos. In

many images we observed that it does not detect the keypoints with success.

This is a major drawback of these particular experiments. Furthermore for the

Encoder-Decoder model we passed the images in the model as a table dataframe

and not as images, like we did with the Transformer. This seems that it does not

work properly and the model does not respond well. Some long-term dependencies

vanish because of the input form of the data. For the Transformer we input the

46

5.3 Discussion

images as they are, without any important preprocessing. In this way, the images

maintain their characteristics and properties.

Figure 5.2 presents the convergence of loss during training of the 1-layer LSTM

Encoder-Decoder with neural attention model. We observe from this plot that

the simple Encoder-Decoder with neural attention model failed to optimize its

loss so it did not train well.

0 200 400 600 800 1000
Epochs

0.5

1.0

1.5

2.0

2.5

Lo
ss

Figure 5.2: The convergence of loss during training of the 1-layer LSTM Encoder-
Decoder with neural attention model.

Figure 5.3 presents the convergence of loss during training of the Transformer.

We observe from this plot that the Transformer optimized its loss so there is

success on its training. The same phenomena were observed in almost all of the

Transformer experiments. Moreover in comparison to the Encoder-Decoder with

attention’s plot, we observe that the Transformer trained better and recognized

the patterns in the sign language videos, as we have seen from the final results in

47

5.3 Discussion

Table 5.1. So Figures 5.3 and 5.2 prove the superiority of the Transformer model.

0 200 400 600 800
Epochs

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ss

Figure 5.3: The convergence of loss during training of the Transformer.

48

5.3 Discussion

Test und nun die wettervorhersage für morgen samstag den zweiten april
Ours und nun den wettervorhersage vor morgen samstag den zweiten april
Test es kann noch leicht schneien in den nächsten stunden in sachsen oder

auch am alpenrand und in bayern
Ours es kann noch leicht schneien in den nächsten stunden in sachsen auch

am alpenrand und in munchen
Test am tag elf grad im vogtland und einundzwanzig grad am oberrhein
Ours am tag elf grad im vogtland und zwanzig grad am vogtland
Test richtung osten ist es meist sonnig
Ours im osten bleibt es meist sonnig
Test am sonntag im norden und an den alpen mal sonne mal wolken und

ab und an schauer sonst ist es recht freundlich
Ours am sonntag im norden und an den alpen mal sonne mal wolken und

an schauer sonst sind es freundlich
Test am donnerstag regen in der nordhälfte in der südhälfte mal sonne mal

wolken ähnliches wetter dann auch am freitag
Ours am donnerstag regen in der nordhälfte in der südhälfte mal sonne mal

wolken ähnliches wetter denn am freitag
Test liegt morgen unter hochdruckeinfluss der die wolken weitgehend

vertreibt
Ours liegt morgen unter drucken der wolken weitgehend vertreibt
Test ortlich schauer oder gewitter die heftig sein konnen
Ours ortlich schauer oder gewitter die heftig sein konnen
Test in den nächsten tagen geht es auf jeden fall winterlich weiter immer

wieder mal mit etwas schnee
Ours in die nächsten tagen geht es auf jeden fall winterlich immer wieder

mal mit etwas sonne
Test spater breiten sich aber nebel oder hochnebelfelder aus
Ours spater breiten sich oder nebel aber hochnebelfelder
Test temperaturen nur so um die null grad am kältesten im norden bis

minus fünf grad
Ours temperaturen nur so die null grad am kältesten im norden zum minus

kunft grad
Test im westen ist es freundlich
Ours im westen ist es freundlich
Test in der nacht sinken die temperaturen auf vierzehn bis sieben grad
Ours heute die nacht sinken die temperaturen auf funfzehn bis sieben grad
Test hnliches wetter dann auch am donnerstag
Ours hnliches wetter denn auch am der donnerstag

Table 5.3: Translation Examples. On the first line of every block we have the
expected output and on the second one we have our output.

49

Chapter 6

Conclusions

In this thesis we tackled the problem of sign language translation by proposing

a state-of-the-art solution for it. We presented an approach of extracting the

keypoints of sign language frames with OpenPose, and then channeling them in

an Encoder-Decoder with neural attention model. This did not seem to produce

good results since OpenPose failed in many frames by either falsely detecting or

not detecting the keypoints on the hands at all.

In order to overcome this limitation we implemented a 2 layer Transformer

model and the input of the model were the images in their original form. The

Transformer consists only of self-attention mechanisms, which are known to be

superior in comparison to RNNs. This is also observed in this Thesis, where

the proposed Transformer model produced higher results by approximately 9%

BLEU-4 score points. Moreover we conducted various experiments with different

hyperparameter values for the Transformer, in order to observe the behavior of

the Transformer with different hyperparameter combinations.

Of course, there are still a lot of directions to explore, for tackling the Sign

Language Translation problem. Furthermore, there are also other datasets of

sign language, which are easier for detection and translation. We note that the

RWTH-PHOENIX-Weather 2014T is considered one of the most difficult datasets

50

for sign language translation.

For future directions there are new approaches that we did not implement in

this thesis. An idea is to use an Ensemble of Transformers, which is considered

state-of-the-art and a new idea in the Deep Learning field. Except for that,

another direction would be to try a more modern system for detection of human

body and hand keypoints. But even with these cases we still have the limitation

of the small amout of data. The RWTH-PHOENIX-Weather 2014T dataset, is

much smaller than those used in standard machine translation tasks.

51

References

[1] Mattab, “Artificial intelligence, enough of the hype! what is it?,” Hewlett

Packard Enterprise Blog, 2019. vii, 7

[2] N. S. Chauhan, “Introduction to artificial neural networks(ann),” Medium,

2019. vii, 8

[3] M. Phi, “Illustrated guide to lstms and grus: A step by step explanation,”

Medium, 2018. vii, 11

[4] S. Kostadinov, “Understanding encoder-decoder sequence to sequence

model,” Medium, 2019. vii, 15

[5] M.-T. Luong, H. Pham, and C. D. Manning, “Effective approaches

to attention-based neural machine translation,” arXiv preprint

arXiv:1508.04025, 2015. vii, vii, 19, 20, 21

[6] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly

learning to align and translate,” arXiv preprint arXiv:1409.0473, 2014. vii,

18, 20, 21, 36

[7] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in

neural information processing systems, pp. 5998–6008, 2017. vii, vii, vii, 2,

21, 24, 25, 26, 27, 28

52

REFERENCES

[8] J. Forster, C. Schmidt, O. Koller, M. Bellgardt, and H. Ney, “Exten-

sions of the sign language recognition and translation corpus rwth-phoenix-

weather.,” in LREC, pp. 1911–1916, 2014. vii, ix, ix, 29, 30, 31, 32

[9] K. Yin, “Sign language translation with transformers,” arXiv preprint

arXiv:2004.00588, 2020. viii, 4, 38, 39

[10] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly

learning to align and translate,” arXiv preprint arXiv:1409.0473, 2014. 2

[11] N. Cihan Camgoz, S. Hadfield, O. Koller, H. Ney, and R. Bowden, “Neu-

ral sign language translation,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 7784–7793, 2018. 2

[12] S.-K. Ko, C. J. Kim, H. Jung, and C. Cho, “Neural sign language transla-

tion based on human keypoint estimation,” Applied Sciences, vol. 9, no. 13,

p. 2683, 2019. 2

[13] C. Dong, M. C. Leu, and Z. Yin, “American sign language alphabet recog-

nition using microsoft kinect,” in Proceedings of the IEEE conference on

computer vision and pattern recognition workshops, pp. 44–52, 2015. 2

[14] S. Gattupalli, A. Ghaderi, and V. Athitsos, “Evaluation of deep learning

based pose estimation for sign language recognition,” in Proceedings of the

9th ACM International Conference on PErvasive Technologies Related to

Assistive Environments, p. 12, ACM, 2016. 3

[15] T. Kim and S. Kim, “Sign language translation system using latent feature

values of sign language images,” in 2016 13th International Conference on

Ubiquitous Robots and Ambient Intelligence (URAI), pp. 228–233, IEEE,

2016. 3

53

REFERENCES

[16] T. Starner and A. Pentland, “Real-time american sign language recogni-

tion from video using hidden markov models,” in Motion-Based Recognition,

pp. 227–243, Springer, 1997. 3

[17] P. Buehler, A. Zisserman, and M. Everingham, “Learning sign language by

watching tv (using weakly aligned subtitles),” in 2009 IEEE Conference on

Computer Vision and Pattern Recognition, pp. 2961–2968, IEEE, 2009. 3

[18] H. Cooper and R. Bowden, “Learning signs from subtitles: A weakly super-

vised approach to sign language recognition,” in 2009 IEEE Conference on

Computer Vision and Pattern Recognition, pp. 2568–2574, IEEE, 2009. 3

[19] T. Pfister, J. Charles, and A. Zisserman, “Large-scale learning of sign lan-

guage by watching tv (using co-occurrences).,” in BMVC, 2013. 3

[20] J. Forster, C. Schmidt, T. Hoyoux, O. Koller, U. Zelle, J. H. Piater, and

H. Ney, “Rwth-phoenix-weather: A large vocabulary sign language recogni-

tion and translation corpus.,” in LREC, pp. 3785–3789, 2012. 3

[21] J. Forster, C. Schmidt, O. Koller, M. Bellgardt, and H. Ney, “Exten-

sions of the sign language recognition and translation corpus rwth-phoenix-

weather.,” in LREC, pp. 1911–1916, 2014. 3

[22] O. Koller, J. Forster, and H. Ney, “Continuous sign language recognition:

Towards large vocabulary statistical recognition systems handling multiple

signers,” Computer Vision and Image Understanding, vol. 141, pp. 108–125,

2015. 3

[23] P. Kishore, A. Sastry, and A. Kartheek, “Visual-verbal machine inter-

preter for sign language recognition under versatile video backgrounds,” in

2014 First International Conference on Networks & Soft Computing (IC-

NSC2014), pp. 135–140, IEEE, 2014. 3

54

REFERENCES

[24] O. Koller, S. Zargaran, and H. Ney, “Re-sign: Re-aligned end-to-end sequence

modelling with deep recurrent cnn-hmms,” in Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pp. 4297–4305, 2017.

4

[25] M. Oberweger, P. Wohlhart, and V. Lepetit, “Hands deep in deep learning

for hand pose estimation,” arXiv preprint arXiv:1502.06807, 2015. 4

[26] S.-K. Ko, J. G. Son, and H. Jung, “Sign language recognition with recurrent

neural network using human keypoint detection,” in Proceedings of the 2018

Conference on Research in Adaptive and Convergent Systems, pp. 326–328,

ACM, 2018. 4

[27] N. C. Camgoz, O. Koller, S. Hadfield, and R. Bowden, “Sign language trans-

formers: Joint end-to-end sign language recognition and translation,” in Pro-

ceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pp. 10023–10033, 2020. 4

[28] F. Rosenblatt, “The perceptron: a probabilistic model for information stor-

age and organization in the brain.,” Psychological review, vol. 65, no. 6,

p. 386, 1958. 7

[29] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural com-

putation, vol. 9, no. 8, pp. 1735–1780, 1997. 10

[30] M. Jordan, “Attractor dynamics and parallelism in a connectionist sequential

machine,” in Proc. of the Eighth Annual Conference of the Cognitive Science

Society (Erlbaum, Hillsdale, NJ), 1986, 1986. 10

[31] B. A. Pearlmutter, “Learning state space trajectories in recurrent neural

networks,” Neural Computation, vol. 1, no. 2, pp. 263–269, 1989. 10

55

REFERENCES

[32] A. Cleeremans, D. Servan-Schreiber, and J. L. McClelland, “Finite state

automata and simple recurrent networks,” Neural computation, vol. 1, no. 3,

pp. 372–381, 1989. 10

[33] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning

with neural networks,” in Advances in neural information processing sys-

tems, pp. 3104–3112, 2014. 14

[34] R. Prabhavalkar, K. Rao, T. N. Sainath, B. Li, L. Johnson, and N. Jaitly,

“A comparison of sequence-to-sequence models for speech recognition.,” in

Interspeech, pp. 939–943, 2017. 14

[35] S. Venugopalan, M. Rohrbach, J. Donahue, R. Mooney, T. Darrell, and

K. Saenko, “Sequence to sequence-video to text,” in Proceedings of the IEEE

international conference on computer vision, pp. 4534–4542, 2015. 14

[36] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word

representations in vector space,” arXiv preprint arXiv:1301.3781, 2013. 17

[37] O. Vinyals, I. Babuschkin, J. Chung, M. Mathieu, M. Jaderberg, W. M.

Czarnecki, A. Dudzik, A. Huang, P. Georgiev, R. Powell, et al., “Alphastar:

Mastering the real-time strategy game starcraft ii,” DeepMind blog, p. 2,

2019. 21

[38] K. Fang, A. Toshev, L. Fei-Fei, and S. Savarese, “Scene memory transformer

for embodied agents in long-horizon tasks,” in Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pp. 538–547, 2019.

22

[39] Z. Cao, G. Hidalgo, T. Simon, S.-E. Wei, and Y. Sheikh, “Openpose: realtime

multi-person 2d pose estimation using part affinity fields,” arXiv preprint

arXiv:1812.08008, 2018. 32

56

REFERENCES

[40] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, “Realtime multi-person 2d pose

estimation using part affinity fields,” in Proceedings of the IEEE conference

on computer vision and pattern recognition, pp. 7291–7299, 2017. 32

[41] S.-E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh, “Convolutional pose

machines,” in Proceedings of the IEEE conference on Computer Vision and

Pattern Recognition, pp. 4724–4732, 2016. 32

[42] T. Simon, H. Joo, I. Matthews, and Y. Sheikh, “Hand keypoint detection in

single images using multiview bootstrapping,” in CVPR, 2017. 32

[43] M. Nixon and A. Aguado, Feature extraction and image processing for com-

puter vision. Academic press, 2019. 33

[44] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-

scale image recognition,” arXiv preprint arXiv:1409.1556, 2014. 33

[45] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,

A. Karpathy, A. Khosla, M. Bernstein, et al., “Imagenet large scale visual

recognition challenge,” International journal of computer vision, vol. 115,

no. 3, pp. 211–252, 2015. 33

[46] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

arXiv preprint arXiv:1412.6980, 2014. 38

[47] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.

38

[48] K. P. Murphy, Machine learning: a probabilistic perspective. MIT press,

2012. 38

57

REFERENCES

[49] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,

S. Ghemawat, G. Irving, M. Isard, et al., “Tensorflow: A system for large-

scale machine learning,” in 12th {USENIX} Symposium on Operating Sys-

tems Design and Implementation ({OSDI} 16), pp. 265–283, 2016. 41

[50] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,

S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for fast

feature embedding,” in Proceedings of the 22nd ACM international confer-

ence on Multimedia, pp. 675–678, 2014. 41

[51] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,

Z. Lin, N. Gimelshein, L. Antiga, et al., “Pytorch: An imperative style,

high-performance deep learning library,” in Advances in neural information

processing systems, pp. 8026–8037, 2019. 41

[52] G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. M. Rush, “Open-

nmt: Open-source toolkit for neural machine translation,” arXiv preprint

arXiv:1701.02810, 2017. 41

[53] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for auto-

matic evaluation of machine translation,” in Proceedings of the 40th annual

meeting of the Association for Computational Linguistics, pp. 311–318, 2002.

42

[54] M. Popel and O. Bojar, “Training tips for the transformer model,” The

Prague Bulletin of Mathematical Linguistics, vol. 110, no. 1, pp. 43–70, 2018.

45

[55] Y. LeCun, Y. Bengio, et al., “Convolutional networks for images, speech, and

time series,” The handbook of brain theory and neural networks, vol. 3361,

no. 10, p. 1995, 1995.

58

	1 Introduction
	1.1 Motivation
	1.2 Related Work
	1.3 Organization of the Thesis

	2 Introduction to Deep Learning
	2.1 Deep Learning
	2.2 Artificial Neural Networks
	2.3 Long Short-Term Memory Networks
	2.3.1 Tanh
	2.3.2 Sigmoid
	2.3.3 Forget Gate
	2.3.4 Input Gate
	2.3.5 Cell State
	2.3.6 Output Gate

	3 Methodology
	3.1 Encoder-Decoder with Neural Attention
	3.1.1 Encoder
	3.1.2 Decoder
	3.1.3 Embedding Layer
	3.1.4 Neural Attention
	3.1.5 Transformer
	3.1.5.1 Positional Encoding
	3.1.5.2 Masking
	3.1.5.3 Scaled Dot Product Attention
	3.1.5.4 Multi-head Attention

	4 Data and Experimental Framework
	4.1 Data
	4.1.1 Choice of the target translation

	4.2 OpenPose
	4.3 Experimental Setup
	4.3.1 Setup of the Encoder-Decoder with neural attention
	4.3.2 Setup of the Transformer
	4.3.3 Hardware and Software Framework

	5 Experimental Results and Discussion
	5.1 BLEU-4 score
	5.2 Results
	5.3 Discussion

	6 Conclusions
	References

