
 

 
 

UNIVERSITY OF THESSALY 

 
 

DIPLOMA THESIS 
 
 

 

Tissue Micro-Array Dearraying using Deep 
Learning & Image Registration 

 
 

 
 
 

Author: 
Christos NTONTIS 

Supervisor: 
                              Spyros LALIS 

    
               Examiners: 
              Nikolaos BELLAS  
             Gerasimos POTAMIANOS  
  
 
 
 

 

 

 

 

 

A thesis submitted in fulfillment of the requirements for the degree of Diploma of 
Electrical and Computer Engineering 

 
Volos, Greece 

http://www.uth.gr/en/index.php
http://www.uth.gr/en/index.php
https://www.linkedin.com/in/christos-ntontis-843b5b194/
https://www.linkedin.com/in/christos-ntontis-843b5b194/
https://faculty.e-ce.uth.gr/lalis/
https://faculty.e-ce.uth.gr/lalis/
https://faculty.e-ce.uth.gr/nbellas/
https://faculty.e-ce.uth.gr/nbellas/
https://faculty.e-ce.uth.gr/gpotamianos/
https://faculty.e-ce.uth.gr/gpotamianos/


ii 
 

 
 
 

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ 
 

Περίληψη 

Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών 
 

Διπλωματική Εργασία 

 
Αναγνώριση στοιχείων ιστολογικών μικροπινάκων με τεχνικές βαθιάς 

μάθησης και εγγραφή εικόνας 

Χρήστος Ντόντης 
 
Οι Ιστολογικοί Μικροπίνακες (ΙΜ), οι οποίοι χρησιμοποιούνται στο πεδίο της 
ιστολογίας, συνδυάζουν τις έννοιες μικροστοιχείων πολλαπλών ιστών και 
DNA. Εμπεριέχουν μια συλλογή από αρκετά δείγματα ιστών τα οποία 
συγκεντρώνονται σε μία γυάλινη αντικειμενοφόρο πλάκα, σε συγκεκριμένες 
προκαθορισμένες θέσεις πάνω της, προκειμένου να επιτραπεί η πολυπλεκτική 
ανάλυση, μέσω επεξεργασίας πολλών δειγμάτων κάτω από τις ίδιες 
τυποποιημένες συνθήκες. Ωστόσο, κατά την διάρκεια της κατασκευής ενός ΙΜ, 
μιας και αυτή αποτελεί μια χειρωνακτική διαδικασία, τα δείγματα μπορούν να 
μετακινηθούν από τις θέσεις τους στη διάταξη του πλέγματος. Επιπρόσθετα, 
κατά την διαδικασία αυτή τα κεριά ενσωμάτωσης μπορούν να 
παραμορφωθούν. Κατά συνέπεια, αυτές οι στρεβλώσεις μπορούν να οδηγήσουν 
σε σοβαρά σφάλματα των αποτελεσμάτων της ανάλυσης όταν οι ταυτότητες των 
δειγμάτων δεν συμφωνούν μεταξύ των προκαθορισμένων και των 
παραγόμενων θέσεων. Στη παρούσα εργασία  προσπαθούμε να αναπτύξουμε 
μια μέθοδο αποπινακοποίησης ΙΜ, η οποία εντοπίζει και ταιριάζει τα δείγματα 
ενός ΙΜ με το πλέγμα σχεδιασμού τους, παρουσιάζοντας στον παθολόγο κάθε 
δείγμα με την ταυτότητα του ώστε οι παθολόγοι να μπορούν να συσχετίζουν 
αβίαστα τα μεταδεδομένα τους στο αντίστοιχο δείγμα. Αρχικά, 
χρησιμοποιούμε τα συνελικτικά νευρωνικά δίκτυα για να ανιχνεύσουμε τους 
πυρήνες σε οποιαδήποτε αντικειμενοφόρο πλάκα. Επίσης, περιγράφουμε πως 
δημιουργήσαμε το σύνολο των δεδομένων για να τα εκπαιδεύσουμε. Στη 
συνέχεια, συνδυάζουμε την έξοδο του προηγούμενου βήματος και είσοδο από 
τον χρήστη (αριθμό αναμενόμενων πυρήνων σε μία γραμμή και μία στήλη) για 
να καθορίσουμε τη διάταξη του πλέγματος. Τέλος, χρησιμοποιούμε την 
εγγραφή εικόνας για να αντιστοιχήσουμε την παραγόμενη διάταξη πλέγματος 
στην αρχική εικόνα του ΙΜ,  προκειμένου να καθορίσουμε την θέση του κάθε 
πυρήνα. 

http://www.uth.gr/
https://www.e-ce.uth.gr/


iii 
 

 
 

UNIVERSITY OF THESSALY 
 

Abstract 

Department of Electrical and Computer Engineering 

Diploma Thesis 

Tissue Micro-Array Dearraying using Deep Learning & Image 
Registration 

 
by Christos NTONTIS 

 
Tissue Microarray (TMA), which is used in the field of histology combines multi-
tissue and DNA microarray concepts. It consists of a collection of several tissue 
samples that are assembled onto a single glass slide, according to a design grid 
layout, in order to allow multiplex analysis by treating numerous samples under 
identical standardized conditions. However, during the TMA manufacturing 
process the samples positions can be distorted, since this is a manual process, from 
the grid layout to imprecisions when assembling tissue samples and the 
deformation of the embedding waxes. Consequently, these distortions may lead to 
severe errors of assay results when the sample identities mismatched between the 
design and its manufactured output. In this Thesis, we try to develop a robust 
method for de-arraying TMA, which localizes and matches TMA samples with their 
design grid to present to the pathologist each core labeled, so they can associate 
effortlessly their metadata to the corresponding core. At first, we leverage 
convolutional neural networks to detect the cores on any TMA slide and how we 
created the dataset to train on. Then we combine the output of the previous step 
and input from the user (number of expected cores in a row and a column) to define 
the grid layout. Finally, we use Image Registration to register the produced grid 
layout to the original TMA slide in order to determine the position of each core. 
 
 
 
 
 
 
 

http://www.uth.gr/EN/INDEX.PHP
https://www.e-ce.uth.gr/?lang=en
http://kkanellis.com/
http://kkanellis.com/


iv 
 

Acknowledgements 

 
First and foremost, I would like to thank my supervisor Prof. Spyros Lalis and 
Christos D. Antonopoulos for giving me the chance to work on this project. Their 
guidance and availability were invaluable. 

Additionally, part of this work was conducted at Philips Digital and Computational 
Pathology in Belfast. I am therefore grateful for sharing all their resources and tools. 
In particular, I would like to thank my mentor Ian Thompson for all the things that 
he taught me, Ahmed Serag for his immersive help and insight in Image 
Registration and Thomas Marshall for dealing with all the paperwork and allowing 
me to share this work. 

Finally, I would like to thank my friends and family for always being there for me, 
their unconditional love and understanding. From the bottom of my hurt, thank 
you. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



v 
 

Contents 
 
 

Περίληψη ............................................................................................................................................. 2 

Abstract ................................................................................................................................................. 3 

Acknowledgements ............................................................................................................................ 4 

Introduction ......................................................................................................................................... 2 
1.1   Contributions ......................................................................................................................... 4 
1.2   Thesis Structure ..................................................................................................................... 4 

Background .......................................................................................................................................... 5 
2.1   Deep Learning ....................................................................................................................... 5 

 2.1.1   Artificial Neural Networks (ANN) ................................................................. 6 
 2.1.2    How an ANN Works During Training ......................................................... 7 
 2.1.3    Convolutional Neural Networks (CNNs) ..................................................... 7 

2.2   Image Registration .............................................................................................................. 10 

Data Pre-processing and CNN Architecture ......................................................................... 12 
3.1   Data Pre-processing ............................................................................................................ 12 

3.1.1   Annotations ....................................................................................................... 12 
3.1.2   Augmentations.................................................................................................. 14 
3.1.3   Normalization ................................................................................................... 14 

3.2   SegNet ................................................................................................................................... 15 
3.2.1   Optimization Method ...................................................................................... 16 
3.2.2   Loss Function .................................................................................................... 17 
3.2.3   Proposed Model Architecture ......................................................................... 17 

Grid Manufacturing .......................................................................................................................... 20 
4.2   Grid Layout Manufacturing .............................................................................................. 20 

Probability Map and Grid Layout Matching ................................................................................ 22 
5.1   Rigid Transformation ......................................................................................................... 22 
5.2   Non-Rigid Transformation ................................................................................................ 25 

Results ................................................................................................................................................. 28 
6.1   TMA Core Centroid Prediction Results ............................................................................. 28 

6.1.1   Training Dataset Results .................................................................................. 32 
6.1.2   Validation Dataset Results .............................................................................. 34 
6.1.3   Probability Map Extraction ............................................................................. 37 

6.2    Registration Performance and Results ............................................................................ 38 

Related Work ..................................................................................................................................... 41 

Conclusions ........................................................................................................................................ 41 



vi 

 

 

Bibliography ...................................................................................................................................... 42 



vii 
 

 

List of Figures 

 
1.1  Typical TMA image. We can see that cores are not perfectly shaped, some of 
them  
        are fragmented or even missing. ......................................................................................... 3 

2.1   A Simple Neural Network [6] ............................................................................................. 6 

2.2   A Simple Convolutional Neural Network [10] ................................................................. 8 

2.3   Matrix Convolution .............................................................................................................. 8 

2.4   Max Pooling and Average Pooling with a 2x2 kernel [11] .............................................. 9 

2.5   Examples of Rigid transformation [14]. ........................................................................... 11 

2.6   Example of non-rigid transformation of a donkey shape trying to be mapped to 
a 
        cat shape [15]. ....................................................................................................................... 11 

3.1   Example of Annotation Box in a slide. ............................................................................. 13 

3.2   Annotation box including TMA Cores with red, Artifacts with green and 
everything 
        else is classified as Background. ........................................................................................ 14 

3.3   Examples of input patches (left) and their corresponding ground truth (right). ....... 15 

3.4   SegNet Architecture [22]. ................................................................................................... 16 

4.1   Grid Layout for the TMA slide in Figure 6.5.a. ............................................................... 21 

6.1   Example of fractions and distorted cores. ....................................................................... 32 

6.2   Slide with red and green stain. .......................................................................................... 35 

6.3   Example of TMA slide were all the cores were detected. .............................................. 35 

6.4   Example of TMA slide were an artifact was classified as a TMA core. ....................... 36 

6.5   TMA slide (a) and its corresponding core detection output (b). .................................. 37 

6.6   Examples of image registration output, when a centroid is of color khaki it 
means 
        that the fixed and moving images overlap. ..................................................................... 38 

https://uthnoc-my.sharepoint.com/personal/cntontis_o365_uth_gr/Documents/Ntontis_Christos%20(Repaired).docx#_Toc39428204
https://uthnoc-my.sharepoint.com/personal/cntontis_o365_uth_gr/Documents/Ntontis_Christos%20(Repaired).docx#_Toc39428209


viii 
 

 

List of Tables 

 
3.1   Hardware specification used in training ........................................................................................ 17 
3.2   SegNet Architecture Summary. ....................................................................................................... 19 
6.1   TMA Core Detection Results for the Training set. ........................................................................ 32 
6.2   Performance metrics for the training dataset ................................................................................ 33 
6.3   TMA Core Detection Results for the Validation set. ..................................................................... 34 
6.4   Performance metrics for the validation dataset ............................................................................. 36 



ix 
 

 
 
 
 

Listings 
 

4.1   Grid Layout Core location python script. ........................................................................ 20 

5.1   Python code to compute the core diameter in a slide. ................................................... 24 

5.2   Python function that applies the FFD transformation to a set of images. ................... 27 

6.1   Nearest Neighbor algorithm. ............................................................................................. 39 

6.2   Json example of our algorithm output. ............................................................................ 39 



 
 
Chapter 1 

 
Introduction 

 
Paraffin blocks containing several tissues have become a major tool in surgical 
pathology as well as in research settings for many years. Multi-tissue blocks can be 
constructed by embedding several single tissue specimens in the same paraffin 
block. 

The development of multi-tissue techniques was started at the mid-1980s in order 
to address the scarcity issue of diagnostic reagents and tissue samples. The pioneer 
work was contributed by Dr. Battifora who introduced in 1986, the multi-tumor 
“sausage” tissue block [1]. In this method several rods of tissue which were 
extracted from paraffin-embedded tissue blocks, deparaffinized and rehydrated, 
were put together and reparaffinized after being tightly wrapped in small intestine 
of small mammals like a sausage. 

 

In 1987, Wan et al. conceived the punching technique [2] which used 16-gauge 
needle for retrieving cylinders of tissue from paraffin blocks and arraying them in 
a recognizable pattern. Although Wan’s punching technique was a big step and is 
used in nearly all of today TMA techniques, its tissue pattern was not a grid one. 
The first multi-tissue grid pattern is described by Battifora and Mehta in their 1990’s 
paper [3] in which tissue rods were manually aligned in a Cartesian coordinate 
system. 

By combining the punching technique of Wan and the “checkerboard” concept of 
Battifora and Mehta, Kononen et al. invented in 1998 a machine for assembling 
efficiently and accurately  tissue samples in grid pattern [4]. The proposed technique 
called “tissue microarray” (TMA) became therefore popular and widely used in 
most pathological laboratories. Since, in most TMA techniques, extracted tissue 
samples have cylindrical form, in the following we us the terms “tissue cores” or 
“TMA cores” to refer TMA samples. 

In a TMA, assembled tissue cores are collected from different donor blocks. It is thus 
highly important to match them with their meta-data for further clinical or 
pathological analysis. To this end, a grid pattern is used to ease the localization of 
each TMA core. TMA manufacturing is subjected to the deformation of the designed 
tissue grid due to bad positioning of the cores with respect to the design. Another 
main source of deformation is the heat deformation of the paraffin waxes when 
embedding tissue cores into the recipient block. Sectioning paraffin-embedded 
tissue blocks with a microtome to produce multiple slides may also produce 



Chapter 1. Introduction 3 
 

additional deformation. As a result, the design grid may suffer geometrical 
transformations such as translation, rotation and shearing (linear deformations) 
combined with dilation, distortion and random perturbations (nonlinear 
deformations). In addition, some cores may be lost or split into several fragmented 
parts. Figure 1 illustrates a typical TMA image. 

 
 

 

FIGURE01.1: Typical TMA image. We can see that cores are not perfectly shaped, 
some of them are fragmented or even missing.



Chapter 1. Introduction 4 
 

1.1 Contributions 
 
This thesis focuses on introducing a robust de-arraying method. Our proposed 
method is based on CNNs and Image Registration. In particular, we employ 
convolutional neural networks (CNNs) to first address the task of detecting the 
TMA cores and then we use Image Registration techniques, both rigid and non-
rigid, to match the grid layout to the CNN’s output. 

The contributions from this exploration and exploitation are the following: 

• We create a dataset from scratch and train a CNN, while we measure its 
performance. 

• After having some confidence in our CNN’s performance, we combine 
information that we extract from the image and the user to create the grid 
layout. 

• Finally, we use Image Registration to match the extracted grid layout and the 
output from our CNN in order to label each TMA core. 

 

1.2 Thesis Structure 
 
The rest of this Thesis is organized as follows: 

Chapter 2 provides background on Deep Learning, specifically on convolutional 
neural networks that we are going to use and Image Registration, where we will 
describe the rigid and non-rigid registration. 

Chapter 3 presents the data pre-processing and the neural network architecture 
used. 

Chapter 4 describes the creation of the grid layout. 

Chapter 5 introduces the use of Image Registration, and in particular rigid and non-
rigid transformations, in order to match the output of the CNN and the grid layout. 

Chapter 6 focuses on presenting the results of our implementation. 

Chapter 7  concludes this thesis by discussing our key findings and by presenting 
some directions for future work.



 
 
 
 
Chapter 2 

 
Background 

 
2.1 Deep Learning 

 
Deep learning is a subset of the field of machine learning, which is a subfield of 
Artificial Intelligence. In computer science, artificial intelligence, sometimes called 
machine intelligence, is intelligence demonstrated by machines, in contrast to the 
natural intelligence displayed by humans and animals. Colloquially, the term 
“artificial intelligence” is used to describe machines that mimic “cognitive” 
functions that humans associate with other human minds, such as “learning” and 
“problem solving” [5] 

Deep Learning, which belongs to the field of Machine Learning or Statistical 
Learning, uses statistical methods in order to “learn” from data and generalize to 
new, unseen examples. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 2. Background 6 
 

2.1.1 Artificial Neural Networks (ANN) 
 
ANN are inspired by the brain, which contains roughly 85 billion neurons, each 
connected to many other. As in the brain, neurons are stimulated by inputs and pass 
on some, but not all, information they receive to other neurons, often after some 
transformation. Neurons can be trained to pass forward only signals that are useful 
in achieving the higher-level goals of the brain; we can train neural networks to do 
the same thing.  

An ANN is composed of neurons organized in layers. They consist of input and 
output layers, as well as a number of hidden layers consisting of units (neurons) 
that transform the input into something that the output layer can use (Figure 2.1)  

 
FIGURE02.1:  A Simple Neural Network [6] 

The elements of each unit are: 

• Inputs (x) 

• Weights (w) 

• Activation function (α). For example:   
  Sigmoid:              𝑦𝑦 = 1

1+𝑒𝑒𝑥𝑥
 

  ReLU:                  𝑦𝑦 =  �0, 𝑥𝑥 < 0
 𝑥𝑥, 𝑥𝑥 ≥ 0 

 

Usually sigmoid is used in output units, while ReLU in all the hidden units 
due to the Vanishing Gradient Problem [7]. 

• Output (y) which is calculated as:    𝑦𝑦 = 𝛼𝛼(𝑤𝑤𝑇𝑇𝑥𝑥) 
 
 
 
 
 
 
 



Chapter 2. Background 7 
 

2.1.2  How an ANN Works During Training 
 
During training, edge coefficients are optimized to minimize the prediction error. 
That said, ANNs use an optimization function, which aims at finding the optimal 
edge coefficient values with as few iterations as possible, a very common choice 
being stochastic gradient descent. For the optimization function to properly adjust 
the coefficients, it is crucial to know how good the predictions of the network are. 
For that purpose, a loss function is used, which quantifies the extent of a mis-
prediction. The larger the loss function value, the larger the error between the 
correct value and the predicted one. 

Specifically, the following iterative steps are followed: 

• At first, a forward pass of the network is made, using a single sample to make 
the prediction. This means that an input vector is fed to the neural network 
and propagates through the neurons, layer by layer, until eventually reaching 
the output layer. There, the final prediction value of the network is computed. 
Finally, the error between the network prediction and the correct value is 
calculated, using the loss function.  

• Once the prediction error is known, a backward pass of the network is 
performed, starting from the output layer. Then the error of each neuron is 
computed, which reflects its contributions to the final prediction value. These 
values are then used by the backpropagation algorithm to derive the gradient 
of the loss function. Finally, the gradient values are fed into the optimization 
algorithm, which adjusts the weight coefficients with the goal of a better 
prediction. 

 
2.1.3  Convolutional Neural Networks (CNNs) 

 
CNNs [8] combine three architectural ideas to ensure some degree of shift, scale and 
distortion invariance: local receptive fields, shared weights, and spatial or temporal 
subsampling. A typical convolution network is shown in Figure 3. The architecture 
of CNNs is analogous to that of the connectivity pattern of neurons in the human 
brain and was inspired by the organization of the Visual Cortex [9].  They are 
considered state-of-the-art solution in problems regarding images and videos. 

In a CNN, each layer can be a Convolution or a Pooling one, except for the last few 
ones which are fully connected. (see the classification part in Figure 2.2). 

 
 



Chapter 2. Background 8 
 

 
 

FIGURE02.2:  A Simple Convolutional Neural Network [10] 

Convolution 
 
The most important building block of a CNN is the convolutional layer. It is the 
element-wise product of the layer’s kernel (or filter) with the input elements. The 
objective of the first convolutional layers is to extract the high-level features, such 
as edges, which are combined by the later layers creating the wholesome 
understanding of the input image. In Figure 2.3 we can observe an example of 
convolution. 

 
FIGURE02.3: Matrix Convolution 

Pooling 
 
The Pooling layer is responsible for reducing the spatial size of the convolved 
Feature. This serves the purpose of reducing the computational power required to 
process the data through dimensionality reduction. Moreover, it is useful for 
extracting dominant features, which help to effectively train the model. There are 
two types of Pooling:  

• Max Pooling returns the maximum value from the portion of the image 
covered by the kernel. It discards the noisy activations altogether and 



Chapter 2. Background 9 
 

performs de-noising along with dimensionality reduction. 

• Average Pooling returns the average value from the portion of the image 
covered by the kernel. Performs only dimensionality reduction. 

 
Figure 2.4 shows an example of both types of Pooling. 

 
FIGURE02.4: Max Pooling and Average Pooling with a 2x2 kernel [11] 

 

Upsampling 
 
The role of Upsampling is to bring back the resolution of an input to a previous 
resolution. There are several ways to perform such a task but for the purpose of this 
Thesis we will use the simplest one, which is copying an existing value to the 
neighboring ones. One can think of it as the reverse process of the max pooling 
operation. More sophisticated algorithms exist, but they introduce trainable weights 
which will make the model harder to train because of the added computations. For 
example: 

input = 1 2
3 4 

 
After performing Upsampling the resulting array will be: 

                                                             output =  

1 1 2 2
1 1 2 2
3 3 4 4
3 3 4 4

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 2. Background 10 
 

2.2 Image Registration 
 
Image Registration is the process of overlaying two or more images of the same 
scene taken at different times, from different viewpoints, and/or by different 
sensors. [12]  Image Registration is widely used in remote sensing, medical imaging 
and computer vision. In general, its applications can be divided into four main 
groups: 

• Different Viewpoints, images of the same scene are acquired from different 
viewpoints. 

• Different times, images of the same scene were not acquired at the same time. 

• Different sensors, images of the same scene are acquired by different sensors. 

• Scene to model registration, images of a scene and a model of the scene are 
registered. 

The last one is the one we will be examining and using in this thesis. 

Due to different types of distortions in images it is impossible to design a universal 
approach to fit all registration problems. Nevertheless, most of the methods consist 
of the following four steps: 

• Feature detection: salient and distinctive objects are manually or 
automatically detected. For further processing, these features can be 
represented by their center of gravity which are called control points (CP). 

• Feature matching: the correspondence between the features detected in the 
sensed image and those detected in the reference image is established. A 
number of different feature descriptors and similarity measures along with 
spatial relationships among the features are used. 

• Transform model estimation: the type and parameters of the mapping 
function, aligning the sensed image and the reference image are estimated. 
The parameters of the mapping function are computed by the means of the 
established feature correspondence.  

• Image resampling and transformation: the sensed image is transformed by 
means of the mapping functions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 2. Background 11 
 

Transformation models 
 
Image registration methods can be classified into two major categories.  

• Rigid (or linear): including rotation, scaling and translation. They are global 
transformations, that means that they cannot tackle local differences between 
images. Figure 2.5 demonstrates some examples. 

• Non-rigid (or elastic): transformations allow of locally wrapping the target 
image to align with the reference. They include radial basis functions (thin-
plate or b splines, multiquadrics and compacity-supported transformations 
[13]), physical continuum models and large deformation models. Figure 2.6 
illustrates an example. 

 
FIGURE02.6: Example of non-rigid transformation of a donkey shape trying to be 

mapped to a cat shape [15].

FIGURE02.5: Examples of Rigid transformation [14]. 



 
 
 
 
Chapter 3 

 
Data Pre-processing and CNN 
Architecture 
 
3.1 Data Pre-processing 

 
The size of a typical TMA slide is 1GB so a specialized software must be used in 
order to view and annotate them. In our case QuPath [19] was used. QuPath, is a 
complete solution for Pathology and is open source. A collection of 116 TMA slides 
was used, 106 as training set and 10 as test set. The training set slides were scanned 
with an Aperio [16] (svs files) and a Hamamatsu [17] (ndpi files) scanner. On the 
other hand, the test set was composed of slides scanned with a Philips [18] scanner 
(isyntax files).  

The training set is composed of 13011 cores with different stains from several 
different laboratories, while the test set encompasses 1344 cores from the same 
laboratory. The size of the typical TMA core varies from 0.6 mm to 1.6 mm. 

 
3.1.1 Annotations 

 
Because of time constraints, not all the slides were annotated. Annotation boxes 
were used, with approximately, 10 TMA cores from each slide (Figure 3.1). In 
addition, artifacts, like stains and air bubbles were also annotated, after it was 
observed that the CNN was misclassifying a lot of them as cores due to their 
“roundish” shape (Figure 3.2), resulting in 165 annotation boxes of different size 
and context.  

To reduce processing time, we down-sampled the resolution of the boxes by a factor 
of 16. To put things into perspective, the average original size of a slide is 
118,000x84,520 pixels the down-sampled image will be 7,375x5,282 pixels and the 
extracted annotation boxes varied from 500x500 up to 2,000x2,000 pixels.  

In conclusion, 3 different classes were used:   

• TMA Cores 

• Artifacts 

• Background 
 



Chapter 3. Data Pre-processing 13 
 

 
FIGURE03.1: Example of Annotation Box in a slide. 

 
Something to be noticed is that we did not segment the whole object (artifact or 
TMA core) but just the centroid. This was done because of the different sizes of the 
objects and, due to the fact that we wanted to provide to the CNN the bare minimum 
information, in order for it to be able to generalize. 

Finally, the CNN architecture that we use, requires 128x128 input images, so we 
divide each annotation box in as many non-overlapping patches of 128x128 pixels 
as possible. 

 

 
 



Chapter 3. Data Pre-processing 14 
 

 
 
FIGURE03.2: Annotation box including TMA Cores with red, Artifacts with green 

and everything else is classified as Background. 

 

3.1.2 Augmentations 
 
Several augmentations were used to increase the diversity of the data and help the 
CNN generalize better. More specifically we used: 

• Rotation is a circular movement around the center point of the image. 

• Flipping is mirroring an image vertically or horizontally. 

• Image Manipulation, which includes manipulation of brightness, contrast, 
sharpness, saturation and gamma correction [21]. 

  The library that we use to apply these transformations can be found here [20]. 

We use a function to randomly choose values for the above augmentations as well 
as to select how many times each augmentation will be applied (with a different 
value) to an image (can be from one up to six times).  

 
 

3.1.3 Normalization 
 
Data normalization is a very common and necessary data pre-processing step. 
Many machine learning algorithms behave significantly better if all input features 
are scaled to the same range, as the absolute amplitude of feature values does not 
affect the feature effect on the model. Two methods are well known for scaling data: 

• Normalization, which scales all feature values to range [0, 1]. 

• Standardization, which transforms all feature values to have zero mean and 
unit variance. 

 



Chapter 3. Data Pre-processing 15 
 

In our experiments, normalization proved to give better results. Given a pixel value 
x, then the normalized 𝑥𝑥𝑛𝑛𝑒𝑒𝑛𝑛 value is: 
 

𝑥𝑥𝑛𝑛𝑒𝑒𝑛𝑛 =
𝑥𝑥

255
 

 

Where 255 is the maximum pixel value in the RGB color space. 

In conclusion, the final training dataset consists of 13,000 images of 128x128 pixels, 
which was split into 80% for training and 20% for testing.   

 

 

         

               a.            b. 

         

          c.             d. 
FIGURE03.3: Examples of input patches (left) and their corresponding ground truth 

(right). 

Figure 3.3 contains some examples of the final input that we will feed to the CNN 
during the process discussed in the next paragraphs. We have the input patches on 
the left (all of them are from the same slide) where we can also observe all the 
augmentations applied. On the right we can see the ground truth of each patch. This 
is what our CNN will try to predict, and it will use theses patches converge during 
training.  

 

3.2 SegNet 
 
SegNet is a deep encoder-decoder architecture for multi-class pixelwise 
segmentation. The architecture consists of a sequence of non-linear processing 
layers (encoders) and a corresponding set of decoders followed by a pixelwise 
classifier [22].  



Chapter 3. Data Pre-processing 16 
 

Typically, each encoder consists of a convolution layer with batch normalization 
[23] and a ReLU non-linearity, followed by a max pooling. The decoder has a similar 
architecture as the encoder with the only difference that an extra layer of 
upsampling exists before each convolution. For example, the SegNet, Figure 3.4, 
contains 5 encoders and 5 decoders and we can say that is a depth 5 SegNet. 

 
 

The novelty of this architecture is in the Subsampling stage. Max pooling is used to 
achieve translation invariance over small spatial shifts in the image. Subsampling 
results in a large input image context (spatial window) for each pixel in the feature 
map. . These methods achieve better classification accuracy but reduce the feature 
map size. This leads to lossy image representation with blurred boundaries which 
is not ideal for segmentation purposes. It is desired that output image resolution is 
same as input image. That is where the decoders and especially Upsampling comes 
into picture. It is necessary to capture and preserve boundary information in the 
encoder feature maps before sub-sampling. In order to achieve this, SegNet stores 
only the max pooling indices for each encoder map. The advantages of this 
approach are that we have less parameters and the boundary delineation is 
improved. 

 
 

3.2.1 Optimization Method 
 
We choose the RMSprop optimization algorithm [24], which is similar to the 
gradient descent algorithm with momentum [25]. The RMSprop optimizer restricts 
the oscillations in the vertical direction. Therefore, we can increase the learning rate 
and the algorithm could take larger steps in the horizontal direction converging 
faster. The difference between RMSprop and gradient descent is on how the 
gradients are calculated. Specifically, the equations for RMSprop are: 
 

𝑢𝑢(𝑤𝑤, 𝑡𝑡) = 𝛾𝛾 ∗ 𝑢𝑢(𝑤𝑤, 𝑡𝑡 − 1) + (1 + 𝛾𝛾)�∇Qi(𝑤𝑤)�2 

𝑤𝑤 = 𝑤𝑤 −
𝜂𝜂

 �𝑢𝑢(𝑤𝑤, 𝑡𝑡)
∗ ∇𝑄𝑄𝑖𝑖(𝑤𝑤) 

 
Where γ is the forgetting factor. 
 
And for gradient descent with momentum:  
 

𝛥𝛥𝑤𝑤 = 𝑎𝑎 ∗ 𝛥𝛥𝑤𝑤 − 𝜂𝜂∇𝑄𝑄𝑖𝑖(𝑤𝑤) 
𝑤𝑤 = 𝑤𝑤 + 𝛥𝛥𝑤𝑤 

 

FIGURE03.4: SegNet Architecture [22]. 



Chapter 3. Data Pre-processing 17 
 

Where 𝜂𝜂 is the step size (or equivalently learning rate). 𝑄𝑄(𝑤𝑤) for both methods is 
defined as:   

 𝑄𝑄(𝑤𝑤) = �(𝑤𝑤1 + 𝑤𝑤2 ∗ 𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2
𝑛𝑛

𝑖𝑖=0

  

and corresponds to a minimization function for a straight line 𝑦𝑦 = 𝑤𝑤1 +𝑤𝑤2 ∗ 𝑥𝑥𝑖𝑖,  
where 𝑥𝑥𝑖𝑖 are the training observations and 𝑦𝑦𝑖𝑖 the corresponding responses. In our 
experiments we set 𝜂𝜂 = 0.01 𝑎𝑎𝑎𝑎𝑎𝑎 𝛾𝛾 = 0.9. Grid search was used to find the best 
values. 
 
 

3.2.2 Loss Function 
 
Because our dataset is unbalanced, 99% of the pixels are Background, 0.8% are Cores 
and the rest 0.2% are Artifacts, we use pixel-weighted cross entropy [26], where 
uncommon classes get a higher weight, and can be defined as follows: 
 

𝐿𝐿 =  −
1
𝑁𝑁
��

1

�𝑓𝑓𝑗𝑗
𝑝𝑝𝑖𝑖𝑗𝑗𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝𝑖𝑖𝑗𝑗′

𝑗𝑗
𝑖𝑖

 

 
Where i is the pixel index, j is the class index, fj is the frequency for class j, pij is the 
true probability for class j for pixel i, p’ij is the predicted probability for class j for 
pixel i and N is the total number of pixels. In other words, we tell the model that the 
Core and Artifact pixels are more important, and that more emphasis should be 
placed on them when updating the weights. 
  
 

3.2.3 Proposed Model Architecture 
 
The SegNet that we used is a depth 4 one, with 128x128 input size. Several depths 
were tried but the one that performed best was this one. Table 3.2 provides a 
detailed description of the architecture, including the encoder – decoder pattern. 
Specifically, we can see that from the 128x128 input size we reach to a feature map 
of 8x8 which the decoders scale back to the input resolution. The total number of 
parameters is 21,992,707. Table 3.1 outlines the hardware used to train this model. 

Component Specification 
OS Version Windows 10 
Processor Threads 6 Cores, 2-way hyperthreading, 12 threads 
Processor Clock 3.6 GHz+ 
Memory 32 GB 
GPU NVIDIA GFORCE GTX 1080 TI, 11 GB GDDR5 

TABLE03.1: Hardware specification used in training 

 
 

Layer type Output Shape Number of Parameters  
Input 128, 128, 3 0 



Chapter 3. Data Pre-processing 18 
 

 Convolution 128, 128, 64 1792 

Batch 
Normalization 

128, 128, 64 256 

Max Pooling 64, 64, 64 0 
Dropout 64, 64, 64 0 

 Convolution 64, 64, 128 73856 
Batch 

Normalization 
64, 64, 128 512 

Max Pooling 32, 32, 128 0 
Dropout 32, 32, 128 0 

 Convolution 32, 32, 256 295168 
Batch 

Normalization 
32, 32, 256 1024 

Max Pooling 16, 16, 256 0 
Dropout 16, 16, 256 0 

 Convolution 16, 16, 512 1180160 
Batch 

Normalization 
16, 16, 512 2048 

Max Pooling 8, 8, 512 0 
Dropout 8, 8, 512 0 

Convolution 8, 8, 1024 4719616 
Batch 

Normalization 
8, 8, 1024 4096 

Dropout 8, 8, 1024 0 
Convolution 8, 8, 1024 9438208 

Batch 
Normalization 

8, 8, 1024 4096 

Dropout 8, 8, 1024 0 
Upsampling 16, 16, 1024 0 
Convolution 16, 16, 512 4719104 

Batch 
Normalization 

16, 16, 512 2048 

Dropout 16, 16, 512 0 
Upsampling 32, 32, 512 0 
Convolution 32, 32, 256 1179904 

Batch 
Normalization 

32, 32, 256 1024 

Dropout 32, 32, 256 0 
Upsampling 64, 64, 256 0 
Convolution 64, 64, 128 295040 

Batch 
Normalization 

64, 64, 128 512 

Dropout 64, 64, 128 0 
Upsampling 128, 128, 128 0 
Convolution 128, 128, 64 73792 

Batch 128, 128, 64 256 



Chapter 3. Data Pre-processing 19 
 

Normalization 
Convolution 128, 128, 3 195 
Activation 128, 128, 3 0 

TABLE03.2: SegNet Architecture Summary. 



 
 
 
 
Chapter 4 

 
Grid Creation 
 

4.2 Grid Layout Creation 
 
As we discussed in the previous paragraph, the probability map extraction process 
uses a list, that the findContours() function returns, to extract information about the 
core placement. We extract the minimum and maximum x and y from that list, with 
which we can construct a bounding box including all core centroids. Also, the user 
must provide the number of cores that lie on each row and column. Combining all 
this information we can find the distance between each core on x and y, using the 
code shown in Listing 4.1. 

 
 

1. import numpy as np   
2. def find_grid__layout(min_x,min_y,max_x,max_y,slide_height,slide_width,num_rows,n

um_columns):   
3.   where_x = np.linspace(min_x, max_x, num=num_cols)   
4.   where_y = np.linspace(min_y, max_y, num=num_rows)   
5.   grid_core_locations = np.meshgrid(where_x, where_y)   

 
LISTING04.0.1: Grid Layout Core location python script. 

Since we know where the cores should have been, we create another image, similar 
to the one we have in Figure 4.5.b, only this time it contains the ideal location of the 



Chapter 4. TMA Core Detection Results and Grid Manufacturing 
 

21 
 

core centroids. Figure 4.1 demonstrates a result. 

 
FIGURE04.1: Grid Layout for the TMA slide in Figure 6.5.a. 

We can also see that, for example, in the first row except the 2 cores that are present 
on the slide, the grid layout, also, contains the missing ones. This happens because 
the grid layouts are created blindly. Most of the times TMA slides come with an 
excel spreadsheet where they specify where cores exist and where they are 
intentionally absent. Unfortunately, we did not have in our possession this kind of 
information, but it is something that can easily be adopted and could improve the 
Image Registration algorithm.   



 
 
 
 
Chapter 5 

 
Probability Map and Grid Layout 
Matching 
   
In the previous chapters we have achieved the detection of the TMA core centroids 
using a CNN and the grid layout creation by combining information from a user 
and core detection. In this chapter we will present the last step, which is the actual 
labeling of the cores. To achieve this, we are proposing the use of Image Registration 
which will help us match the grid layout to the actual image (probability map). We 
will use two types of transformations. In the beginning, we are applying a rigid 
transformation and more specifically rotation, followed by a free-form deformation 
(FFD) based on B-splines which is a non-rigid transformation. The goal of image 
registration in our problem is to relate any point in the grid layout to the probability 
map, i.e., to find the optimal transformation T: (𝑥𝑥,𝑦𝑦) → (𝑥𝑥′,𝑦𝑦′) which maps any 
point in the moving image 𝐼𝐼(𝑥𝑥,𝑦𝑦, 𝑡𝑡) at time 𝑡𝑡 into the corresponding point in the 
probability map. In general, the probability maps are non-rigid so that rigid 
transformations alone are not sufficient for the deformation correction of the grid 
layout. Therefore, we develop a combined transformation T which consists of both 
global (rigid) and a local (non-rigid) transformations.  

 
5.1 Rigid Transformation 

 
The global transformation describes the overall motion of the fixed image, and is 
parameterized by 6 degrees of freedom, describing the rotation and translation of 
the image. 

𝑇𝑇𝑟𝑟𝑖𝑖𝑟𝑟𝑖𝑖𝑟𝑟(𝑥𝑥,𝑦𝑦) =  𝑅𝑅 ∗ �
𝑥𝑥
𝑦𝑦� + �

𝑡𝑡𝑡𝑡11
𝑡𝑡𝑡𝑡21

�  

Where the coefficients 𝜃𝜃 parameterize the 6 degrees of freedom of the 
transformation, 
tr11 and tr21 correspond to the translation and 𝑅𝑅 is the rotation matrix and is equal 
to: 

𝑅𝑅 =  �cos(𝜃𝜃) −sin(𝜃𝜃)
sin(𝜃𝜃) cos(𝜃𝜃) � 

In order to apply the rotation to the grid layout (moving image) we need to compute 
it on the fixed image. 
 
 



23 Chapter 5. Probability Map and Grid Matching 23 
  

 
Slide Rotation 

 
Let core1 have (x1, y1) coordinates and core2 (x2, y2). For  core2 to be the right hand-
side neighbor of core1, all following statements must apply: 

𝑥𝑥2 > 𝑥𝑥1 
𝑥𝑥2 − 𝑥𝑥1 < 2 ∗ 𝑎𝑎 

              ‖𝑦𝑦2 − 𝑦𝑦1‖ < 𝑎𝑎 

where 𝑎𝑎 is the core diameter. If all the statements apply, then we compute the angle 
between the two cores: 

𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝑎𝑎 = tan−1(𝑦𝑦2 − 𝑦𝑦1,𝑥𝑥2 − 𝑥𝑥1)   

We go through this process for all the detected cores and we finally select the 
median value of the computed angles because of the skewed distribution of the data 
(cores might be missing or misplaced). 

 
Core size 

 
In order to compute the slide rotation, we also need the size of the core. To compute 
it, we are going to use OpenCV and mainstream computer vision techniques to 
achieve it. Listing 5.1, contains the code used. Given a slide, we convert it to 
grayscale and then smooth it using a Gaussian filter. We then perform edge 
detection along with a dilation and erosion to close any gaps in between edges in 
the edge map. Then we call find contours (i.e., the outlines) that correspond to the 
objects in our edge map. These contours are then sorted from left-to-right. We start 
looping over each of the individual contours. If the contour is not sufficiently large, 
we discard the region, presuming it to be noise left over from the edge detection 
process.  Provided that the contour region is large enough, we compute the rotated 
bounding boxes of the objects. Then we unpack our ordered bounding box, then 
compute the midpoint between the top-left and top-right points, followed by the 
midpoint between the bottom-right points. 
We will also compute the midpoints between the top-left + bottom-left and top-
right + bottom-right, respectively. Finally, we compute the Euclidean distance 
between the sets of midpoints and choose the maximum between them. We return 
the median distance between all of the points to avoid outliers. 
 



24 Chapter 5. Probability Map and Grid Matching 24 
  

1. def  find_core_diameter(image): 
2.     core_diameter = []     
3.     gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)   
4.     gray = cv2.GaussianBlur(gray, (7, 7), 0)   
5.     # perform edge detection, then perform a dilation + erosion to   
6.     # close gaps in between object edges   
7.     edged = cv2.Canny(gray, 30, 80)   
8.     edged = cv2.dilate(edged, None, iterations=1)   
9.     edged = cv2.erode(edged, None, iterations=1)   
10.     cnts = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIM

PLE)   
11.     cnts = imutils.grab_contours(cnts)   
12.     (cnts, _) = contours.sort_contours(cnts)   
13.     for c in cnts:   
14.         if cv2.contourArea(c) < 300:   
15.             continue   
16.         # compute the rotated bounding box of the contour   
17.         orig = image.copy()   
18.         box = cv2.minAreaRect(c)   
19.         box = cv2.cv.BoxPoints(box) if imutils.is_cv2() else cv2.boxPoints(box)   
20.         box = np.array(box, dtype="int")   
21.         box = perspective.order_points(box)   
22.         # unpack the ordered bounding box, then compute the midpoint   
23.         # between the top-left and top-right coordinates, followed by   
24.         # the midpoint between bottom-left and bottom-right coordinates   
25.         (tl, tr, br, bl) = box   
26.         (tltrX, tltrY) = midpoint(tl, tr)   
27.         (blbrX, blbrY) = midpoint(bl, br)   
28.         (tlblX, tlblY) = midpoint(tl, bl)   
29.         (trbrX, trbrY) = midpoint(tr, br)   
30.         dA = dist.euclidean((tltrX, tltrY), (blbrX, blbrY))   
31.         dB = dist.euclidean((tlblX, tlblY), (trbrX, trbrY))   
32.         core_diameter.append(max(dA, dB))   
33.     return math.ceil(np.median(core_diameter))   

 
LISTING05.0.1: Python code to compute the core diameter in a slide. 

 
 
 
 
 
 



25 Chapter 5. Probability Map and Grid Matching 25 
  

5.2 Non-Rigid Transformation 
 
The rigid transformation captures only the global motion of the image. An 
additional transformation is required to capture the local deformation of the slide. 
The local deformation of each slide may vary significantly. Therefore, it is difficult 
to describe the local deformation via parameterized transformations. Instead, we 
use a Free-form deformation (FFD) model based on B-splines [28]. The basic idea of 
FFDs is to deform an object by manipulating an underlying mesh of control points. 
The resulting deformation controls the shape of the object and produces a smooth 
and continuous transformation.  

To define a B-spline FFD, we denote the domain of the image as 𝛺𝛺 =
{(𝑥𝑥,𝑦𝑦)|0 ≤ 𝑋𝑋, 0 ≤ 𝑦𝑦 < 𝑌𝑌}, where X,Y are the width and height of the slide. Let Φ 
denote a 𝑎𝑎𝑥𝑥 × 𝑎𝑎𝑦𝑦 mesh of control points φ𝑖𝑖,𝑗𝑗 with uniform spacing δ. Then, the FFD 
can be written as the 2-D tensor product of the familiar 1-D cubic B-spline: 

1-D Cubic B-spline basis matrix: 𝑓𝑓(𝑡𝑡) = [𝑡𝑡3 𝑡𝑡2 𝑡𝑡 1] ∗ �

−1 3 −3 1
3 −6 3 0
−3 0 3 0
1 4 1 0

 � ∗ 1
6
 

If we perform the matrix multiplication the result will be: 

𝑓𝑓(𝑡𝑡) =
1
6
∗ �

1 − 𝑡𝑡3
3𝑡𝑡3 − 6𝑡𝑡2 + 4

−3𝑡𝑡3 + 3𝑡𝑡2 + 3𝑡𝑡 + 1
𝑡𝑡3

�        (1) 

Then the 2-D Cubic will be: 

𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛_𝑟𝑟𝑖𝑖𝑟𝑟𝑖𝑖𝑟𝑟 =  � � 𝑓𝑓𝑙𝑙(𝑢𝑢)𝑓𝑓𝑚𝑚(𝑤𝑤)𝜑𝜑𝑖𝑖+𝑙𝑙,𝑗𝑗+𝑚𝑚
3

𝑚𝑚=0

3

𝑙𝑙=0

, where 

𝑢𝑢 =
𝑥𝑥
𝑎𝑎𝑥𝑥

− �
𝑥𝑥
𝑎𝑎𝑥𝑥
�, 

     𝑤𝑤 = 𝑦𝑦
𝑛𝑛𝑦𝑦
−  ⌊ y

ny
⌋   

𝑖𝑖 =  �
x

nx
� − 1 

𝑗𝑗 =  �
y

ny
� − 1 

As 𝑓𝑓𝑙𝑙 we refer to the 𝑙𝑙th element of the vector in (1).  

In contrast to thin-plate splines or elastic-body splines, B-splines are locally 
controlled, which makes them computationally efficient even for a large number of 
control points. In particular, the basis matrix of cubic B-splines has a limited 
support, meaning that changing a control point 𝜑𝜑𝑖𝑖,𝑗𝑗 affects the transformation only 
in the local neighborhood of that control point.  

The control points act as parameters of the B-spline FFD and the degree of non-rigid 
deformation which can be modeled depends essentially on the resolution of the 
mesh of control points. A large spacing of control points allows modeling of global 
non-rigid deformation, while a small spacing, allows local non-rigid deformations. 
At the same time, the resolution of the control point mesh defines the number of 



26 Chapter 5. Probability Map and Grid Matching 26 
  

degrees of freedom and, consequently, the computational complexity. For example, 
a 5 𝑥𝑥 5 mesh of control points corresponds to a transformation with 20 degrees of 
freedom. There is a tradeoff between model flexibility and computational 
complexity and should be taken into account. It depends on the accuracy of the 
deformation we want to achieve versus the associated execution time overhead. In 
our case the mesh of control points that gave the best results was 6 𝑥𝑥 6. 

 

Correlation 
 
To compute the similarity of the images we use correlation between pixels in the 
fixed image and pixels in the moving image. The correlation is normalized by the 
autocorrelations of both the fixed and moving images. 

A more negative metric value indicates a greater degree of correlation between the 
fixed and moving image. This makes the metric simpler to use with optimizers that 
try to minimize their cost function by default.  
 

Optimization 
 
To find the optimal transformation we minimize a cost function associated with the 
parameters 𝛷𝛷. There are several methods that could be used but the one that worked 
best for our case is Limited-memory BFGS [29]. It belongs to the family of quasi-
Newton methods. It is an algorithm for finding local extrema of functions, based on 



27 Chapter 5. Probability Map and Grid Matching 27 
  

Newton’s method of finding stationary points of functions. 

 

1. import SimpleITK as sitk 

2. def ffd(fixed_image, moving_image):   
3.     control_pts = 3   
4.     transformDomainMeshSize = [control_pts] * moving_image.GetDimension()        
5.     initial_transform = sitk.CenteredTransformInitializer(fixed_image,  
6.                                                       moving_image,  
7.                                                       sitk.Euler3DTransform(),  
8.                                                       sitk.CenteredTransformInitializerFilter.GEOMETRY) 
9.     registration_method = sitk.ImageRegistrationMethod()   
10.     registration_method.SetMetricSamplingStrategy(registration_method.REGULAR)   
11.     registration_method.SetMetricSamplingPercentage(0.1)   
12.     registration_method.SetMetricAsCorrelation()   
13.     registration_method.SetOptimizerAsLBFGSB(gradientConvergenceTolerance=1e-5,   
14.                                              numberOfIterations=100,   
15.                                              maximumNumberOfCorrections=5,   
16.                                              maximumNumberOfFunctionEvaluations=1000,   
17.                                              costFunctionConvergenceFactor=1e+7)   
18.     registration_method.SetInitialTransform(initial_transform, inPlace=False)   
19.     registration_method.SetInterpolator(sitk.sitkLinear)   
20.     registration_method.SetOptimizerScalesFromPhysicalShift()   
21.     final_transform = registration_method.Execute(fixed_image, moving_image)   
22.     return final_transform   

 
 

LISTING05.0.2: Python function that applies the FFD transformation to a set of 
images. 

Listing 5.2 demonstrates the implemented FFD transformation using the SimpleITK 
framework [30]. Given two images (fixed and moving) a mesh will be created. Next, 
we use the CenteredTransformInitializer to align the centers of the two images and 
set the center of rotation to the center of the fixed image. Sampling strategy defines 
how many points will be used to evaluate our method. The higher the percentage 
the slower the algorithm will be. We set it to 0.1 which gave the best results. We 
define correlation as the similarity metric and we set the Limited Memory LBFGSB 
as the optimizer and a linear interpolator, which we described in the previous 
paragraphs. It is worth mentioning that all values were chosen using grid search. 

 
 
 
 
 
 
 
 
 



 
Chapter 6 

 
Results 

 
In Chapter 3, we implemented a method to detect the cores using a CNN, while in 
Chapter 5, we discussed image registration and how we used to localize and label 
the centroids. Now having a complete method to detect and label our cores, we 
evaluate its performance and discuss our observations.  
 

6.1 TMA Core Centroid Prediction Results 
 
Because most of the pixels in the dataset are Background and only the centroid of 
each core is classified as TMA core, the loss during the training is low (less than 
0.1%). In order to validate that our algorithm is, indeed, working we had to go 
through a manual process of counting the cores on each slide and then counting the 
detected cores. This was a long procedure which resulted in going back and forth, 
tuning the algorithm and extracting more annotations to enrich and add variety to 
the dataset. 

True 
Number 
of Cores 

Predicted 
Number 
of Cores 

Artifacts 
Predicted 
as Cores 

Missed 
Cores 

394 391 0 3 

389 388 0 1 

111 111 0 0 

111 111 0 0 

182 180 0 2 

179 179 0 0 

118 116 0 2 

94 94 0 0 

102 101 2 3 

110 109 0 1 

110 107 0 3 

91 87 0 4 

 

 



29 Chapter 6. Results 
 

True 
Number 
of Cores 

Predicted 
Number 
of Cores 

Artifacts 
Predicted 
as Cores 

Missed 
Cores 

89 84 0 5 

87 78 0 9 

66 61 0 5 

96 92 0 4 

92 94 2 0 

92 92 1 1 

92 95 3 0 

75 74 1 2 

56 57 5 4 

77 78 1 0 

119 121 2 0 

67 61 0 6 

98 88 1 11 

394 387 0 7 

55 54 0 1 

121 115 0 6 

123 122 0 1 

126 123 2 5 

124 123 0 1 

125 125 1 1 

124 122 0 2 

125 124 0 1 

124 124 0 0 

125 125 0 0 

125 125 0 0 

125 125 0 0 

122 122 0 0 

122 122 0 0 

122 122 0 0 



30 Chapter 6. Results 
 

True 
Number 
of Cores 

Predicted 
Number 
of Cores 

Artifacts 
Predicted 
as Cores 

Missed 
Cores 

122 123 1 0 

120 117 0 3 

121 121 0 0 

123 123 0 0 

124 124 0 0 

124 124 0 0 

124 123 0 1 

125 124 0 1 

123 122 0 1 

125 123 0 2 

124 124 0 0 

123 123 0 0 

126 126 0 0 

126 126 1 1 

126 126 0 0 

126 126 0 0 

126 126 0 0 

126 125 0 1 

124 124 0 0 

125 123 0 2 

126 126 0 0 

126 126 0 0 

126 127 1 0 

125 125 0 1 

126 126 1 1 

126 125 0 1 

126 124 0 2 

126 124 0 2 

125 124 0 1 



31 Chapter 6. Results 
 

True 
Number 
of Cores 

Predicted 
Number 
of Cores 

Artifacts 
Predicted 
as Cores 

Missed 
Cores 

117 114 0 3 

118 116 0 2 

111 103 0 8 

112 114 2 0 

130 122 0 8 

137 135 0 2 

149 150 1 0 

150 150 1 1 

105 105 0 0 

121 110 0 11 

157 154 0 3 

185 183 0 2 

131 127 1 5 

22 21 1 3 

15 15 0 0 

24 26 2 0 

21 18 0 3 

229 227 0 2 

113 113 0 0 

141 140 0 1 

130 129 0 1 

129 129 0 0 

136 136 0 0 

126 126 0 0 

130 126 0 4 

125 119 0 6 

142 141 0 1 

132 130 0 2 

117 115 0 2 



32 Chapter 6. Results 
 

True 
Number 
of Cores 

Predicted 
Number 
of Cores 

Artifacts 
Predicted 
as Cores 

Missed 
Cores 

117 117 0 0 

139 139 0 0 

129 129 4 4 

138 134 0 4 

117 115 0 2 

11 10 0 1 

11 11 0 0 

Summary 13011 12858 37 192 

TABLE06.1: TMA Core Detection Results for the Training set. 

 

6.1.1 Training Dataset Results 
 
Table 6.1 summarizes the final results of the TMA detection algorithm. Each row 
corresponds to a TMA slide.  From the results, 98.53% of the cores where classified 
correctly 0.014% were missed and we had 37 artifacts that were misclassified as 
cores, corresponding to 0.002% Most of the missed ones where fractions of cores 
which even a human would be skeptical about classifying them as cores. For 
example, in Figure 6.1 someone would argue that these cores are highly distorted 
and shouldn’t be included or that only one core exists in the middle or even 
someone would be stricter and say that there are three cores. In our annotations we 
consider every bit of tissue as a core and we try to detect it, sometimes successfully 
and sometimes not. On this particular example our algorithm detects two cores. 

 

 
FIGURE06.1: Example of fractions and distorted cores. 

  



33 Chapter 6. Results 
 

Someone would argue that the data in Table 6.1 don not add any value and we 
should not take them under consideration when evaluating the algorithm, since 
they were used in training the algorithm. We should keep in mind that only subsets 
of each of these slides was used in our training dataset and that the cores, even on 
the same slide, vary.  

Accuracy 98.53% 

Precision 99.71% 

Recall 98.52% 

F1 score 99.1% 
Table06.2: Performance metrics for the training dataset 

In Table 6.2 We can see some Performance metrics for the training set. 
The equations for the metrics are the following: 

𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 =
𝑡𝑡𝑡𝑡𝑢𝑢𝑎𝑎 𝑝𝑝𝑙𝑙𝑝𝑝𝑖𝑖𝑡𝑡𝑖𝑖𝑝𝑝𝑎𝑎𝑝𝑝

𝑡𝑡𝑙𝑙𝑡𝑡𝑎𝑎𝑙𝑙 𝑎𝑎𝑢𝑢𝑛𝑛𝑛𝑛𝑎𝑎𝑡𝑡 𝑙𝑙𝑓𝑓 𝑎𝑎𝑙𝑙𝑎𝑎𝑛𝑛𝑎𝑎𝑎𝑎𝑡𝑡𝑝𝑝
  

 

𝑷𝑷𝑨𝑨𝑷𝑷𝑨𝑨𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 =
𝑡𝑡𝑡𝑡𝑢𝑢𝑎𝑎 𝑝𝑝𝑙𝑙𝑝𝑝𝑖𝑖𝑡𝑡𝑖𝑖𝑝𝑝𝑎𝑎𝑝𝑝

𝑡𝑡𝑡𝑡𝑢𝑢𝑎𝑎 𝑝𝑝𝑙𝑙𝑝𝑝𝑖𝑖𝑡𝑡𝑖𝑖𝑝𝑝𝑎𝑎𝑝𝑝 + 𝑓𝑓𝑎𝑎𝑙𝑙𝑝𝑝𝑎𝑎 𝑝𝑝𝑙𝑙𝑝𝑝𝑖𝑖𝑡𝑡𝑖𝑖𝑝𝑝𝑎𝑎𝑝𝑝
 

 

𝑹𝑹𝑷𝑷𝑨𝑨𝑨𝑨𝑹𝑹𝑹𝑹 =
𝑡𝑡𝑡𝑡𝑢𝑢𝑎𝑎 𝑝𝑝𝑙𝑙𝑝𝑝𝑖𝑖𝑡𝑡𝑖𝑖𝑝𝑝𝑎𝑎𝑝𝑝

𝑡𝑡𝑡𝑡𝑢𝑢𝑎𝑎 𝑝𝑝𝑙𝑙𝑝𝑝𝑖𝑖𝑡𝑡𝑖𝑖𝑝𝑝𝑎𝑎𝑝𝑝 + 𝑓𝑓𝑎𝑎𝑙𝑙𝑝𝑝𝑎𝑎 𝑎𝑎𝑎𝑎𝑙𝑙𝑎𝑎𝑡𝑡𝑖𝑖𝑝𝑝𝑎𝑎𝑝𝑝  
 

 

𝑭𝑭𝑭𝑭 𝑷𝑷𝑨𝑨𝑷𝑷𝑨𝑨𝑷𝑷 = 2 ∗
𝑝𝑝𝑡𝑡𝑎𝑎𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖𝑙𝑙𝑎𝑎 ∗ 𝑡𝑡𝑎𝑎𝑝𝑝𝑎𝑎𝑙𝑙𝑙𝑙
𝑝𝑝𝑡𝑡𝑎𝑎𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖𝑙𝑙𝑎𝑎 + 𝑡𝑡𝑎𝑎𝑝𝑝𝑎𝑎𝑙𝑙𝑙𝑙

 

 
While recall expresses the ability to find all relevant instances in a dataset, precision 
expresses the proportion of the data points our model says was relevant actually 
were relevant. In our case we prefer a precision close to 1 over recall since false 
positive detections will affect our work in the next chapters. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



34 Chapter 6. Results 
 

 
 
 

6.1.2 Validation Dataset Results 
 
Table 6.3 presents the classification results for the Validation dataset. 99.1% of the 
cores were classified correctly by the algorithm, 0.8% of the cores were missed and 
4 artifacts were classified as cores, corresponding to 0.003%. We would like to focus 
more on the results in the first row, where 3 artifacts were classified as cores. The 
artifacts were red marker stains of round shape, which are very similar to some 
actual cores that we have in our dataset and that is why our algorithm 
misinterpreted them. Figure 6.2 contains an example slide. This could be fixed by 
retraining our model with examples of marker stains. Table 6.4 summarizes the 
accuracy, precision, recall and F1 score achieved on the validation dataset. The 
results are close to the training set ones, which means that our algorithm can 
generalize. 

 

True 
Number 
of Cores 

Predicted 
Number 
of Cores 

Artifacts 
Predicted 
as Cores 

Missed 
Cores 

97 100 3 0 

96 95 0 1 

101 99 0 2 

101 101 0 2 

132 132 0 0 

112 112 0 0 

118 116 0 2 

112 111 0 1 

102 101 0 1 

110 109 0 1 

Summary 1081 1076 4 9 

TABLE06.3 TMA Core Detection Results for the Validation set. 

The results look very promising but further testing with unseen data is needed. 
Unfortunately, at the time of this writing we did not have more data for further 
testing. Figures 6.3 and 6.4 show some TMA core detection results. 



35 Chapter 6. Results 
 

 
FIGURE06.2: Slide with red and green stain. 

 
FIGURE06.3: Example of TMA slide were all the cores were detected. 



36 Chapter 6. Results 
 

 
FIGURE06.4: Example of TMA slide were an artifact was classified as a TMA core. 

Accuracy 99.1% 

Precision 99.62% 

Recall 99.16% 

F1 score 99.38% 

Table06.4: Performance metrics for the validation dataset 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



37 Chapter 6. Results 
 

6.1.3 Probability Map Extraction 
 
Before we discuss how we manufactured the grids, we should mention what we are 
going to use for the rest of the thesis from the TMA detection algorithm. Because 
the next major step is the actual labeling of the cores, as the grid layout expects, the 
idea is that the actual slide contains a lot of information, thus making it difficult to 
map the cores to the layout. What we propose instead, is to extract the probability 
maps which contain only the centroids of the cores and proceed with them. This 
does not come without a cost, since misclassifications of artifacts as cores, that are 
outside the “box” containing all the cores, can have a huge impact to the result. The 
grid layout that will be created will not align with the actual map and the Image 
Registration algorithms will not be able to converge. Figure 6.5 contains a slide and 
its corresponding output. 

 

 

a.                                                                                              b.   

FIGURE06.5: TMA slide (a) and its corresponding core detection output (b). 

 
Specifically, we apply the following steps: 

• Pass each slide in the TMA core prediction algorithm, which returns a 
probability map. 

• Apply thresholding to the result, which discards the probabilities that are less 
than 0.6 (after manually testing on the training set, and validating on the test 
set), helping discard cases that the algorithm is not confident about. 

• Use the findContours() function, provided by the OpenCV library [27], which 
detects the centroid of each contour and returns the x, y coordinates of each 
one in a list. 

• Extract the height and width of the TMA slide to create a new image 
containing only the centroids of each core and save it on disk. 

 
 
 
 
 



38 Chapter 6. Results 
 

6.2  Registration Performance and Results 
 
Since this process is in a loop involving the pathologist, it is necessary to not only 
be accurate but also minimize its latency. First, we need to understand, as discussed 
in the previous chapter, that the images we try to register represent the core 
centroids. This has a great impact on how we measure the accuracy of our model 
and what we can accept as correct. In an ideal solution we would like the cores in 
the moving image to be overlapping 100% with the cores in the fixed image. If the 
registration brings the centroids in a close distance, then the matching becomes a 
trivial task. Timewise, our solution has a mean time of 14.34 seconds per slide which 
is acceptable. We should mention that there are cases for which the registration will 
not work. FFD transformations assume that the images are relatively well aligned 
in a global sense. Image registration in general is mainly used in matching CT scans 
and images of the exact same object but from different angles. In Figure 6.6.a we can 
see an unsuccessful registration example. A lot of centroids in the fixed image 
(green dots) are missing or are misplaced making it impossible for our algorithm to 
converge. In the rest of examples in Figure 6.6 we can observe both of the 
registration methods that we have applied and were discussed in Chapter 5.  

 
(a)                                                               (b)   

 
(c)                                                                       (d)       

FIGURE06.6:6Examples of image registration output, when a centroid is of color 
khaki it means that the fixed and moving images overlap.   

 



39 Chapter 6. Results 
 

1.     for 1 to total number of grid cores   
2.         Calculate the distance between predicted core and each grid core. using Euclid-

ean distance   
3.     Sort the calculated distances in ascending order based on distance values   
4.     Get top 1 row from the sorted array   
5.     Return that core   

 
 

LISTING06.1 Nearest Neighbor algorithm. 

Finally, to label the cores, we use a nearest neighbor algorithm (Listing 6.1) to 
correlate each detected core to a grid core and we return a json file with the 
coordinates of each core with a label. Listing 6.2 demonstrates an example. 

1. {   

2.     "cores": [   

3.         {   

4.             "X": 12,   

5.             "Y": 14,   

6.             "label": "A1"   

7.         },   

8.         {   

9.             "X": 20,   

10.             "Y": 15,   

11.             "label": "A2"   

12.         },   

13.         {   

14.             "X": 26,   

15.             "Y": 16,   

16.             "label": "A3"   

17.         },   

18.         {   

19.             "X": 10,   

20.             "Y": 21,   

21.             "label": "B1"   

22.         },   

23.         {   

24.             "X": 21,   

25.             "Y": 18,   

26.             "label": "B2"   

27.         },   

28.         {   

29.             "X": 30,   

30.             "Y": 17,   

31.             "label": "B3"   

32.         }   

33.     ]   

34. }   
 

LISTING06.2: Json example of our algorithm output.  



Chapter 7 

 
Related Work 

 
Closely similar to TMAs, DNA microarrays (also known as bio-chips) are constructed by 
spotting DNA probes by robots, with high precision, according to a grid pattern. 
Numerous gridding methods for microarrays were used to localize each DNA probes and 
find its row and column coordinates with respect to the designed grid. This procedure is 
called “de-arraying”. Despite the similarity to these microarray concepts, existing “de-
arraying” methods for microarrays have not been adapted for TMAs because the grids 
are more highly deformed. Along with the commercialization of digital imaging devices 
for TMA analysis over the last decade, several methods for TMA “de-arraying” have been 
developed [32–37]. In general terms, a “de-arraying” approach consists of two steps: (i) 
segmentation and localization of assembled tissue cores; (ii) array coordinate (row and 
column coordinates) estimation of each core. 

Firstly, for segmenting tissues, existing de-arraying methods usually assume that the 
histogram of a TMA image is bimodal. Under this assumption, these methods perform in 
general a thresholding by taking the local minimum between two highest peaks 
corresponding to the background and the foreground, of the image intensity histogram 
as global threshold. Various thresholding techniques were proposed from a simple 
thresholding as in [32] to more sophisticated methods such as the moment-preserving 
thresholding in [34], the automatic thresholding based on Savitsky-Golay filtered 
histogram in [35] or Otsu’s method used in [36, 37]. To improve the segmentation result, 
pre-processing like contrast enhancement transform [37] or template matching [34] was 
applied. Morphological operators were also used as post-processing for removing outliers 
in the thresholded map as in [32, 37]. However, this underlying assumption is not satisfied 
in case of images acquired from novel fluorescence devices because of their complex 
background. Due to the nature of fluorescence imaging, pixels corresponding to irrelevant 
objects – such as dust, glue and washing stains – in the background have often high 
intensities, resulting in a high peak in the intensity histogram; in contrast, the intensities 
of pixels corresponding to tissue cores could be relatively lower. Hence, most of cores fail 
to be detected with a high threshold and there is a number of outliers corresponding to a 
low threshold value. During the writing of this Thesis there were no other approaches 
that use Deep learning to detect the cores. 

Secondly, for estimating row and column coordinates of each TMA core, the methods 
mentioned above were generally based on distance and angle criteria to define the 
average spacing between the cores and the orientation of the observed grid. These criteria 
were derived simply from the distance between neighbor tissue cores [34], or from 
sophisticated measures such as the histogram of distance and angle [32] or from 
coefficients of the Hough transform [33], or even from Delaunay triangulation [37]. To 
deal with the case of missing tissue cores or the design of TMA grid in which some 
positions are left empty [38], linear or local bilinear interpolation were used as in [32, 37] 
for completing the grid. Whereas these methods yield satisfactory results for further 
pathological analysis, they cannot produce quantitative information about the 
deformation of the TMA grid, which is an indicator for evaluating the quality of the 
manufactured input TMA. The above, in our case, are enabled by the usage of Image 
Registration. 

 



 

Chapter 8 

 
Conclusions 

 
In this Thesis, we used a deep convolutional neural network to detect core centroids 
on a Hamamatsu, Aperio or Philips scanned slide. This is possible even when we 
introduce slides from vendors that the network was not trained on. However 
further testing from more vendors is needed to increase the confidence in our 
approach. Furthermore, the different artifacts that may be introduced in a slide 
could affect the algorithm’s accuracy. Different labs have different practices. As we 
saw, some may use markers on the slide and the colour of them can be close to the 
colour of the cores, affecting the networks judgement. With the introduction of 
respective examples from different labs in the training set this can be addressed. 

We explored Image Registration, and how we could apply it to our problem. We 
found some encouraging results but as we discussed it requires images that are 
relatively well aligned. Non-rigid transformations are mainly used for brain CT 
scans and images of the exact same object but from different angles. In our problem 
this is not the case. The images may significantly vary from each other (a lot of cores 
might be missing, which the current layout ignores). Maybe this can be fixed by 
using a more sophisticated way to produce the grid, but a mathematical approach 
could be a better idea for a production environment. Since we already have methods 
to compute core size, rotation of the slide (5.1)  and we also take as input the number 
of expected cores in each row and column, we can combine all this information and 
try to localize the cores. We are currently in the process of developing such an 
algorithm, which will hopefully allow us to eliminate the Image Registration step 
altogether, resulting in lower computation time and higher quality results.  

 

 

 

 

 



 
 

Bibliography 

 
[1] Battifora H. “The multitumor (sausage) tissue block: novel method for 

immunohistochemical antibody testing.” Lab Invest. 1986;55:244-8.  
[2] Wan WH, Fortuna MB, Furmanski P. “A rapid and efficient method for 

testing immunohistochemical reactivity of monoclonal antibodies against 
multiple tissue samples simultaneously.” J Immunol Methods. 1987;103:121-
9. 

[3] Battifora H, Mehta P. “The checkerboard tissue block. An improved multi-
tissue control block.” Lab Invest. 1990;63:722-4. 

[4] Kononen J, Bubendolf L, Kallionimeni A, Barlund M, Schraml P, Leighton S, 
Torhorst J, MIhatsch MJ, Sauter G, Kallionimeni OP, “Tissue microarrays for  
high-throughput molecular profiling of tumor specimens”,  
Nat Med. 1998;4:844-7. 

[5] Russell S. and Norvig P. “Artificial Intelligence: A Modern Approach”, 3rd ed.  
Upper Saddle River, NJ, USA: Prentice Hall Press, 2009.  

[6] https://www.digitaltrends.com/cool-tech/what-is-an-artificial-neural- 
network/, accessed on 20 January 2020. 

[7] Hochreiter S., Bengio Y., Frasconi P., and Schmidhuber J., “Gradient flow in 
recurrent nets: the difficulty of learning long-term dependencies in A Field 
Guide to Dynamical Recurrent Neural Networks”, Kolen J. F.  and S. C. 
Kremer, Eds. IEEE, 2003;237-43  

[8] LeCun Y. and Bengio Y. “Convolutional networks for images, speech, and  
time series in The Handbook of Brain Theory and Neural Networks”, M. A. 
Arbib, Ed. MIT Press, 1998;255-58. 

[9] https://towardsdatascience.com/a-comprehensive-guide-to-convolutional 
-neural-networks-the-eli5-way-3bd2b1164a53, accessed on 16 November 
2019. 

[10] Hubel D. H. and Wiesel T. N., “Receptive fields, binocular interaction and  
functional architecture in the cat’s visual cortex” Journal of Physiology (Lon- 
don), 1960;160:121-36.  

[11] https://indoml.com/2018/03/07/student-notes-convolutional-neural- 
networks-cnn-introduction/, accessed on 7 November 2019. 

[12] Zitova Barbara, Flusser Jan “Image Registration methods: a survey”,  
Institute of Information Theory and Automation  Image and Vision 
Computing 2003;21;977-1000 

[13] Goshtasby A. Ardeshir “2-D and 3-D Image Registration for Medical, Remote 
Sensing, and Industrial Applications”, J.Willey & Sons,Wiley Press, 2005. 

[14] http://www.geometrycommoncore.com/content/unit1/gco2/teachernotes 
1.html, accessed on 16 February 2020. 

[15]  https://www.mathworks.com/matlabcentral/fileexchange/58987-non-
rigid-registration-between-2d-shapes), accessed on February 4, 2020. 

[16] https://www.leicabiosystems.com/digital-pathology/scan/, accessed on 16 
March 2020. 

[17] https://www.hamamatsu.com/jp/en/product/life-science-and-medical-
systems/digital-slide-scanner/index.html, accessed on 16 March 2020. 

[18] https://thepathologist.com/fileadmin/issues/App_Notes/0016-024-app-
note-Philips__iSyntax_for_Digital_Pathology.pdf, accessed on 16 March 

https://www.digitaltrends.com/cool-tech/what-is-an-artificial-neural-network/
https://www.digitaltrends.com/cool-tech/what-is-an-artificial-neural-network/
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471649546.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471649546.html
http://www.geometrycommoncore.com/content/unit1/gco2/teachernotes1.html
http://www.geometrycommoncore.com/content/unit1/gco2/teachernotes1.html
https://www.leicabiosystems.com/digital-pathology/scan/
https://www.hamamatsu.com/jp/en/product/life-science-and-medical-systems
https://www.hamamatsu.com/jp/en/product/life-science-and-medical-systems
https://thepathologist.com/fileadmin/issues/App_Notes/0016-024-app-note-Philips__iSyntax_for_Digital_Pathology.pdf
https://thepathologist.com/fileadmin/issues/App_Notes/0016-024-app-note-Philips__iSyntax_for_Digital_Pathology.pdf


Bibliography 43 
 

2020. 
[19] Bankhead, P. “QuPath: Open source software for digital pathology image 

analysis.”, Scientific Reports, 2017;1.  
[20] https://pillow.readthedocs.io/en/3.1.x/reference/, accessed on 20 

November 2019. 
[21] https://www.cambridgeincolour.com/tutorials/gamma-correction.htm,  

accessed on 16 December 2019. 
[22] Badrinarayanan Vijay, Kendall Alex, Cipolla Roberto, “SegNet: A  

Deep Convolutional Encoder-Decoder Architecture for Image Segmen-
tation”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 
2017;39:2481-495. 

[23] Ioffe Sergey, Szegedy Christian, “Batch normalization: Accelerating Deep 
Network Training by Reducing Internal Covariate Shift”, 2015, arXiv: 
1502.03167. 

[24] Tieleman, Tijmen and Hinton, Geoffrey, Lecture 6.5-rmsprop: “Divide  
the gradient by a running average of its recent magnitude”, COURSERA:  
“Neural Networks for Machine Learning”, 2012, accessed on February 2020. 

[25] Runelhart, Hinton David E., Williams Goeffrey E., Ronald J., “Learning  
representations by back-propagating errors”, Nature. 1986;323: 533-536. 

[26] Cui Yin, Menglin Jia Menglin, Tsung-Yi, Song Yang, Belongie Serge, “Class-
Balanced Loss Based on Effective Number of Samples”, 2019, arXiv: 
1901.05555. 

[27] Bradski, G., “The OpenCV Library”, Dr.Dobb’s Journal of Software Tools, 
2000;2236121. 

[28] Lee S., Wolberg G., and Shin S. Y. “Scattered data interpolation with 
multilevel B-splines”,  IEEE Transactions on Visualization and Computer 
Graphics ., 1997;3:228-44. 

[29] Liu, D.C., Nocedal, J. “On the limited memory BFGS method for large scale 
optimization.” Mathematical Programming 1989;45:503–28.  

[30] Yaniv Z., Lowekamp B. C., Johnson H. J., Beare R., "SimpleITK Image-
Analysis Notebooks: a Collaborative Environment for Education and 
Reproducible Research", Journal of Digital Imaging, 2017;31:290-303. 

[31] Rosebrock Adrian, “Measuring size of objects in an image with OpenCV”, 
PyImageSearch, ttps://www.pyimagesearch.com/2016/03/28/measuring-
size-of-objects-in-an-image-with-opencv/, accessed on 16 April 2019. 

[32] Vrolijk H, Sloos W, Mesker W, Franken P, Fodde R, Morreau H, Tanke H. 
“Automated acquisition of stained tissue microarrays for high-throughput 
evaluation of molecular targets.” The Journal of Molecular Diagnostics, 2003; 
5:160–7. 

[33] Chen W, Reiss M, Foran DJ. “A prototype for unsupervised analysis of tissue 
microarrays for cancer research and diagnostics.” IEEE Trans Inform Technol 
Biomed. 2004;8:89–96. 

[34] Dell’Anna R, Demichelis F, Barbareschi M, Sboner A. “An automated 
procedure to properly handle digital images in large scale tissue microarray 
experiments.” Comput Methods Programs Biomed. 2005;79:197–208. 

[35] Rabinovich A, Krajewski S, Krajewska M, Shabaik A, Hewitt SM, Belongie S, 
Reed JC, Price JH. “Framework for parsing, visualizing and scoring tissue 
microarray images.” IEEE Transactions on Information Technology in 
Biomedicine . 2006;10:209–19. 

[36] Lahrmann B, Halama N, Westphal K, Ernst C, Elsawaf Z, Sinn P, Bosch FX, 
Dickhaus H, Jäger D, Schirmacher P, Grabe N. “Robust gridding of TMAs 
after whole-slide imaging using template matching.” Cytometry A. 2010; 
77:1169–76. 

[37] Wang Y, Savage K, Grills C, McCavigan A, James JA, Fennell DA, Hamilton 
PW. “A TMA de-arraying method for high throughput biomarker discovery 

https://pillow.readthedocs.io/en/3.1.x/reference/
https://www.cambridgeincolour.com/tutorials/gamma-correction.htm


Bibliography 44 
 

in tissue research.” PLoS ONE. 2011;6:26007. 
[38] Pilla D, Bosisio FM, Marotta R, Faggi S, Forlani P, Falavigna M, Biunno I, 

Martella E, De Blasio P, Borghesi S, Cattoretti G. “Tissue microarray design 
and construction for scientific, industrial and diagnostic use." J Pathol Inform. 
2012;3:42. 


	UNIVERSITY OF THESSALY
	Περίληψη
	Abstract
	Acknowledgements
	Contents
	List of Tables
	Listings
	Introduction
	1.1 Contributions
	1.2 Thesis Structure

	Background
	2.1 Deep Learning
	2.1.1 Artificial Neural Networks (ANN)
	2.1.2  How an ANN Works During Training
	2.1.3  Convolutional Neural Networks (CNNs)
	Convolution
	Pooling
	Upsampling


	2.2 Image Registration
	Transformation models


	Data Pre-processing and CNN Architecture
	3.1 Data Pre-processing
	3.1.1 Annotations
	3.1.2 Augmentations
	3.1.3 Normalization

	3.2 SegNet
	3.2.1 Optimization Method
	3.2.2 Loss Function
	3.2.3 Proposed Model Architecture


	Grid Creation
	4.2 Grid Layout Creation

	Probability Map and Grid Layout Matching
	5.1 Rigid Transformation
	Slide Rotation
	Core size

	5.2 Non-Rigid Transformation
	Correlation
	Optimization


	Results
	6.1 TMA Core Centroid Prediction Results
	6.1.1 Training Dataset Results
	6.1.2 Validation Dataset Results
	6.1.3 Probability Map Extraction

	6.2  Registration Performance and Results

	Related Work
	Conclusions
	Bibliography

