
University of Thessaly
Faculty of Engineering

Department of Electrical & Computer Engineering

Auditing and extending security features of IoT platforms

Diploma Thesis

SOTIRIOS EVANGELOU

Supervisor
Michael Vasilakopoulos
Associate Professor

Volos, July 2020

University of Thessaly
Faculty of Engineering
Department of Electrical & Computer Engineering

Auditing and extending security features of IoT platforms

Diploma Thesis

SOTIRIOS EVANGELOU

Supervising committee

Supervisor
Michael Vasilakopoulos
Associate Professor

Co-supervisor
Christos Sotiriou
Associate Professor

Co-supervisor
George Thanos

Laboratory Teaching Staff
member

Volos, July 2020

University of Thessaly
Faculty of Engineering
Department of Electrical & Computer Engineering

The present thesis is an intellectual property of the student who authored it. It is forbidden to
copy, store and distribute it, in whole or in part, for commercial purposes. Reproduction, storage
and distribution are permitted for non-profit, educational or research purposes, provided that the
source is referenced and this message is retained.

The content of this thesis does not necessarily reflect the views of the Department, the Supervisor,
or the committee that approved it.

The author of this thesis assures that any help he/she has had for its preparation is fully
acknowledged and mentioned in this thesis. He/she also assures that he/she has referenced any
sources from which he/she used data, ideas or words, whether these are included in the text
verbatim, or paraphrased.

Πανεπιστήμιο Θεσσαλίας
Πολυτεχνική Σχολή
Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών

Έλεγχος και Επέκταση Χαρακτηριστικών Ασφάλειας
Πλατφορμών Διαδικτύου των Πραγμάτων (IoT)

Διπλωματική Εργασία

ΣΩΤΗΡΙΟΥ ΕΥΑΓΓΕΛΟΥ

Επιβλέπων
Μιχαήλ Βασιλακόπουλος
Αναπληρωτής Καθηγητής

Βόλος, Ιούλιος 2020

Abstract

The Internet of Things and “Smart Everything” trend is a reality that is progressively becoming
a part of our daily lives. Consequently, there is a gradual increase in the development of IoT
applications and platforms that attempt tomake use of the virtually infinite possibilities and benefits
the Internet of Things can offer. However, the connection of billions of - usually inherently insecure
- devices in a network, paired with the lack of a clear security framework for the development of
Internet of Things devices and platforms has widened the attack surface of these systems leading
to them being targeted by malicious actors. In this thesis, we first introduce the reader to the
various aspects of the problem, explore related research and give real examples of impactful IoT
cyberattacks that have taken place in the past. Then, we compile a security auditing methodology
for building and maintaining a secure Internet of Things Platform, including asset taxonomy and
definition of the security requirements and countermeasures for every asset. Lastly, we focus on
SYNAISTHISI, a research IoT and application enabler platform, developed byNCSR ‘Demokritos’.
We apply the proposed framework in this case, explore vulnerabilities, gaps and potential insecure
factors, perform proof of concept attacks, propose mitigations and good practices and in some of
the cases incorporate them in the platform.

Keywords

Internet of Things, IoT, Platform, Security, Vulnerabilities

i

Περίληψη

Το διαδίκτυο των πραγμάτων (Internet of Things - IoT) και η εμφάνιση των έξυπνων συ-
σκευών είναι μια τάση που ολοένα γίνεται μέρος της καθημερινής μας ζωής. Συνεπώς, υπάρχει
μια σταδιακή αύξηση στην ανάπτυξη IoT συσκευών και εφαρμογών που επιχειρούν να επωφελη-
θούν από τις θεωρητικά άπειρες ευκαιριες και πλεονεκτήματα που μπορεί να προσφέρει το Διαδί-
κτυο των Πραγμάτων. Ωστόσο, η σύνδεση δισεκατομμυρίων - συχνά από κατασκευής ανασφαλών
- συσκευών στο διαδίκτυο, παράλληλα με την έλλειψη κάποιας διακριτής μεθοδολογίας για την
ασφαλή ανάπτυξη εφαρμογών και πλατφορμών για IoT έχει οδηγήσει στη διεύρυνση της επιφά-
νειας επιθέσεων αυτών των συστημάτων, κάνοντας τα στόχους κακόβουλων πρακτόρων. Σε αυτή
την εργασία, αρχικά εισάγουμε τον αναγνώστη στις διάφορες πλευρές του προβλήματος, διερευ-
νούμε σχετική υπάρχουσα βιβλιογραφία και παρουσιάζουμε σημάντικες IoT κυβερνοεπιθέσεις που
είχαν μεγάλο αντίκτυπο στο παρελθόν. Στη συνέχεια, ορίζουμε μια διακριτή μεθοδολογία για τον
έλεγχο ασφαλείας πλατφορμών διαδικτύου των πραγμάτων, περιλαμβάνοντας μια ταξινομία των
μελών ενός τυπικού IoT οικοσυστήματος και ορίζουμε τις προϋποθέσεις ασφαλείας που θα πρέπει
να τηρούνται όπως και μεθόδους για την επίτευξη τους. Τέλος, επικεντρώνουμε το ενδιαφέρον μας
στην ερευνητική πλατφόρμα “ΣΥΝΑΙΣΘΗΣΗ”, την οποία αναπτύσσει το ΕΚΕΦΕ ‘Δημόκριτος’.
Εφαρμόζουμε την προτεινόμενη μεθοδολογία, ερευνούμε αδυναμίες, κενά ασφαλείας και πιθα-
νούς ανασφαλείς παράγοντες, πραγματοποιούμε πειραματικές επιθέσεις και προτείνουμε λύσεις
και καλές πρακτικές, ενσωματώνοντας κάποιες από αυτές προγραμματιστικά στην πλατφόρμα.

Λέξεις Κλειδιά

Διαδικτυο των πραγμάτων, Κυβερνοασφάλεια, Πλατφόρμα, Αδυναμίες

iii

Στους γονείς μου, Κωνσταντίνο και Σοφία.

Acknowledgements

First and foremost, I would like to thank Prof. Michael Vasilakopoulos for the supervision of
this diploma thesis and collaboration throughout the whole procedure, as well as the co-supervisors
Prof. Christos Sotiriou and Prof. George Thanos. I would also like to deeply thank Dr. Charilaos
Akasiadis and Dr. Constantine D. Spyropoulos for trusting me to collaborate and contribute in the
SYNAISTHISI project of IIT, NCSR ‘Demokritos’, and continuously providing aid whenever it
was needed. I would like to express my deep gratitude to my parents, Konstantinos and Sofia,
who have always been providing me with unconditional help, love, support and motivation to be
the best I can be. Finally, I would like to thank all of my professors, staff and fellow students of
University of Thessaly for the skills, knowledge and great memories that I will carry forever with
me after graduating.

vii

Preface

The primary purpose of this thesis is to introduce a security auditing methodology-framework
for Internet of Things platforms. The motivation for this was initially the exploration of security
solutions for the SYNAISTHISI IoT platform, but for the purposes of a diploma thesis a higher
level approach was adopted in order to generalise IoT ecosystems and enhance their security aspect
with a focus on IoT platforms. The SYNAISTHISI platform belongs to the Institute of Informatics
and Telecommunications, part of the National Centre for Scientific Research ”Demokritos”. The
supervisors for the project of SYNAISTHISI are Drs. Charilaos Akasiadis, Constantine D. Spy-
ropoulos. The research was conducted in the University of Thessaly in Volos, and the building of
IIT, NCSR ’Demokritos’ in Agia Paraskevi, Athens, during the months between January and July,
2020.

ix

Table of contents

Abstract i

Περίληψη iii

Acknowledgements vii

Preface ix

Table of contents xi

List of figures xiii

List of tables xv

1 Introduction 1
1.1 Introduction to the Internet of Things . 1
1.2 Numbers regarding the Internet of Things . 1
1.3 Security Challenges in the Internet of Things Ecosystem 2
1.4 Content organization . 2

2 Related Research 5
2.1 Security Guidelines in Internet of Things . 5
2.2 Surveys on Vulnerabilities and IoT Attack Surface 6
2.3 Security Evaluation on Existing IoT Solutions 7
2.4 Artificial Intelligence-based Approaches . 8
2.5 Blockchain-oriented approaches . 9

3 IoT Cyberattacks and Real World Impact 13
3.1 Stuxnet . 13

3.1.1 Outline of the Attack Methodology . 13
3.1.2 The Impact of Stuxnet . 14

3.2 Mirai Botnet . 14
3.2.1 Outline of the Attack Methodology . 14
3.2.2 The Impact of Mirai . 14

xi

xii Table of contents

3.3 CloudPets and other smart Toys . 15
3.4 Security Awareness Study . 15

4 Defining an auditing methodology for Internet of Things 23
4.1 Asset taxonomy on a typical IoT Ecosystem . 23
4.2 Asset security Requirements and Countermeasures 25

4.2.1 Users . 26
4.2.2 Devices . 27
4.2.3 Communication Channels . 29
4.2.4 Message Brokers . 33
4.2.5 Web Application Interfaces . 34
4.2.6 Database Systems . 36
4.2.7 Internet of Things Services . 38
4.2.8 Backend Servers . 40
4.2.9 Cloud/Edge Infrastructure . 41

5 Case of the SYNAISTHISI platform 45
5.1 Methodology application on SYNAISTHISI Platform 45

5.1.1 Identifying the Assets . 45
5.2 Security Feature Assessment and Extensions . 47

5.2.1 Security posture of the Communication Channels 48
5.2.2 Security posture of the Message Brokers 51
5.2.3 Security posture of the Web Application Interfaces 54
5.2.4 Security posture of the Back-end . 59
5.2.5 Security posture of the Database Systems 63
5.2.6 Security posture of the IoT Processing Services 65
5.2.7 Applying the Methodology to SYNAISTHISI 68

6 Conclusion 71
6.1 Future Work . 71

Bibliography 73

Abbreviations 81

List of figures

3.1 Internet Connected Devices per country (Millions) 16
3.2 Vulnerability weighted sum per country (Millions) 17
3.3 LSAR metric per country . 18
3.4 Scatter plot matrix - Correlation . 19
3.5 Correlation coefficient matrices . 20

4.1 Asset Taxonomy of a typical IoT ecosystem . 24
4.2 Plot of the y2 = x3 − 4x+ 5 ellliptic curve . 31
4.3 Point addition operations . 32
4.4 Difference between Containers andVirtualMachines, picture from ’Understanding

and Hardening Linux Containers’ [30] . 39

5.1 Asset Taxonomy of SYNAISTHISI based on the diagram in [3] 47
5.2 API not protected with TLS : Wireshark sniffing 48
5.3 API protected with TLS : Wireshark sniffing . 51
5.4 Face Recognition SPA example . 52
5.5 Face Recognition SPA example with tokens . 54
5.6 THC-Hydra achieves to bruteforce a user’s password 55
5.7 Headers of the GET Request on the Web Portal 58
5.8 Application Error Disclosure . 59
5.9 SQLmap fails to discover an SQL injection in the login form 60
5.10 Executing arbitrary commands through Python’s eval 63
5.11 Nmap scan at SYNAISTHISI server . 64
5.12 Hashed passwords in db . 64
5.13 Reverse Shell as a Malicious Service (output topic PUBs) 66

xiii

List of tables

2.1 Summary of Related Work Contributions . 11

3.1 Top 40 countries with most Internet Connected Devices 17
3.2 Top 40 countries by weighted sum of vulnerabilities 17
3.3 Top 40 countries by LSAR . 19

4.1 Users Asset Security Measure Checklist . 28
4.2 Devices Asset Security Measure Checklist . 30
4.3 Communication Channels Asset Security Measure Checklist 33
4.4 Message Brokers Asset Security Measure Checklist 34
4.5 Web Application Asset Security Measure Checklist 37
4.6 Database Systems Asset Security Measure Checklist 38
4.7 IoT Cloud Services Asset Security Measure Checklist 40
4.8 Backend Asset Security Measure Checklist . 41
4.9 Cloud/Edge Infrastructure Asset Security Measure Checklist 43

5.1 Owasp ZAP Unauthenticated Scan Report . 57
5.2 Owasp ZAP Manual Scan Report . 58
5.3 Bandit Static Analysis Results . 62
5.4 Chapter 5 Findings Summary . 69

xv

Chapter 1

Introduction

In the first chapter of this thesis, the reader is introduced to the Internet of Things world. We
discuss what the Internet of Things is, we explore the IoT impact through interesting statistics
and numbers and we take a first step into the Cybersecurity aspect. Finally, we provide a brief
description of the content organization of this thesis before moving to the main body chapters.

1.1 Introduction to the Internet of Things

The “birth” of the Internet of Things can be assumed to be the years 2008-2009. In that period,
as Cisco IBSG [22] estimates, the number of Internet connected devices worldwide surpassed the
world human population for the first time, initiating the so-called Fourth Industrial Revolution.
Rephrasing IEEE’s definition [17] in simpler terms, the Internet of Things is a complex network
leveraging communication protocols to interconnect “things” , uniquely identifiable programmable
deviceswith physical sensing and/or actuation capabilities that offer services anywhere and anytime
using intelligent interfaces. They combine the physical worldwith the cyberworld, usually receiving
data or taking actions in the physical world, processing these data with programs running in cloud
infrastructures, and exchanging data globally leveraging network protocols.

The benefits that such solutions can offer are virtually infinite, as they are being used in a wide
range of use-cases including including healthcare [23, 36], fitness [56], manufacturing [76, 75], and
agriculture industry [65, 44] among others, and ideas that would be previously deemed far-fetched
and futuristic, such as autonomous self driving cars [19] and smart cities [46], are now realized.

1.2 Numbers regarding the Internet of Things

The numbers and statistics surrounding the Internet of Things are impressive, and can serve as
a metric to howmuch of an impact they have in the modern life. According to IoTAnalytics [42], in
the end of 2019 the number of active IoT devices was estimated to be 9.5 billion without counting
mobile devices like smartphones and laptops or IoT devices bought in the past, a number already
bigger than the world population and continuously rising. During the period from 2017 to 2025
the Compound Annual Growth Rate (CAGR) for the IoT connections is is estimated to be at 17%

1

2 Chapter 1. Introduction

reaching the 25 billion point in 2025 and a 1.1 Trillion USD global market revenue according to
FICCI/EY [62] (1.6 trillion USD according to Statista). The total data volume by 2025 is projected
to be 79.4 ZettaBytes (ZB) [52].
PwC [61] also reports in a 2019 survey that 93% of the executives asked, believe that the Internet
of Things is much more beneficial than risky, with 70% of them reporting that their company has
IoT projects live or in development. Thus, the number of IoT products is also gradually rising, with
publicly known Internet of Things platforms in particular counting 620 in 2019 [41].
These are just some of the vast amount of statistics and numbers about the Internet of Things,
that can give us a view of their significance to the modern world. The adoption and usage rates
are continuously rising and these devices and platforms are more and more used by companies to
reinforce important aspects of the production including automation, monitoring, data analytics and
many more, towards more sustainable and cost-effective processes.

1.3 Security Challenges in the Internet of Things Ecosystem

As with every disruptive technology, there are some challenges regarding the global adoption
of the Internet of Things. Being low-cost with limited resources might remove the cost factor, that
is most of the times the deal breaker for companies and individuals, but it comes with a security
compromise cost in most of the situations. The PwC research mentioned earlier [61] reports a 48%
cybersecurity concern and a 46% privacy concern among the 1000 executives asked, while 61% of
the executives reporting active IoT projects are working to solve security-related issues with their
platforms.
Throughout the years, multiple vulnerabilities and security incidents have affected the Internet of
Things ecosystem, and it is evident that the companies, developers and researchers are now trying
to remediate these weaknesses and improve the security posture of these products. Research on
IoT Cybersecurity covers a wide range of aspects, including the incorporation of security in the
development life cycle, auditing methodologies, surveys on attacks and common vulnerabilities,
studies on good practices, as well as physical, hardware, software, and network security [24, 49].

In this work, we examine past research in the domain of security for IoT, and present a high-
level taxonomy of the assets that compose a typical IoT ecosystem. Then, we describe methods
for evaluating the security posture by focusing in each of the identified assets, exploring insecure
factors to assess desired requirements and highlight the aspects that could be reinforced. We cover
a variety of ecosystem entities, since each of the assets performs differently in the ecosystem, and
provides diverse security propositions due to the different nature of the various technology stacks
incorporated. We establish a security baseline for each asset and collectively for the ecosystem
itself, with a focus on the security features of the IoT platform components.

1.4 Content organization

The thesis is organised into four main chapters excluding the introduction (Chapter 1) and
conclusion (Chapter 6).

1.4 Content organization 3

The second chapter explores previous research that has contributed in this area of study. The papers
and articles that will be referenced are ones that contain ideas, techniques and facts that will be
used throughout the thesis, or are worth mentioning so that the reader develops context awareness.
The chapter is split into sub-chapters indicating the particular subarea that each paper in question
focuses into.
The third chapter stresses the reality of the IoT security problem and the real world impact it has
in the economic, social and physical factor. Significant attacks on IoT systems that have happened
in the past are described, including the techniques with which they were performed and their
significant aftermath.
The fourth chapter considers a typical Internet of Things ecosystem and is organised into two
sub-chapters. The first presents an asset taxonomy of Internet of Things ecosystems that helps
generalise the IoT ecosystems and approach solutions that can potentially be applied to a variety
of different platforms thus providing an auditing methodology. The second sub-chapter focuses
on each of the assets, and attempts to define the security requirements that need to be in place,
proposing some controls, countermeasures and good practices that the appropriate stakeholders
can apply to make their product more secure.
The fifth chapter uses the defined methodology of the previous chapter in order to explore a real
world case, that of the research IoT platform SYNAISTHISI [3, 55]. By applying the framework,
gaps, vulnerabilities and insecure factors are located, solutions and good practices are proposed,
and some of them are programmatically incorporated in the project. In that way, the defined frame-
work is validated presenting a real use-case and benefiting a fully functional IoT platform.
Lastly, in the sixth chapter we conclude our ideas, the benefits and impact that a defined security
auditing methodology has at the development of secure products, and potential future work steps.

Chapter 2

Related Research

The Cybersecurity aspect of the Internet of Things is a well-researched subject. In this chapter,
we collect and discuss interesting research in the scope of the IoT security domain in order to gain
useful insights, knowledge as well as identify less researched sub-areas where this thesis could
contribute knowledge. Finally, we explore research addressing the use of disruptive technologies
such as Blockchain and Machine Learning in the IoT security domain.

2.1 Security Guidelines in Internet of Things

A good starting point for researching the security of an IoT ecosystem is establishing a baseline
set of requirements and good practices. A product should not be deemed ready to enter the market
unless it has incorporated this baseline. In particular, there are a lot of articles, guides and whitepa-
pers describing such sets of requirements and recommendations, and we proceed to describe some
of the most important among them.
Starting off, ENISA, the European Union Agency for Cybersecurity offers two significant reports
providing baseline recommendations and good practices, attempting, in that way, to provide guide-
lines for IoT product development, maintenance and EOL (end of life) management. In both of the
reports, a detailed asset and threat taxonomy is presented, with a special emphasis in the most
critical of the assets and threats, along with the impact and the stakeholders that they affect. The
first report[24] also performs a gap analysis, and offers good practices and recommendations. The
recommendations aremostly non-technical and serve a development, maintenance andmanagement
strategy purpose. The good practices report[25] of 2019 emphasises on the incorporation of security
in the Software Development Life Cycle of Internet of Things products, firstly analysing each cycle
phase. Then, it presents good practices that a company can incorporate in the development lifecycle,
categorising them into three types:

• the People which affect all stakeholders and phases.

• the Processes that affect the mechanisms surrounding the software project’s environment.

• theTechnologies that consist of technical countermeasures and development good practices.

5

6 Chapter 2. Related Research

Another whitepaper summarizing security guidelines that affect the Internet of things product
development, is InfocommMediaDevelopmentAuthority’s (IMDA) IoTCybersecurityGuide[13].
The guide offers suggestions for the implementation and operational phase of the product and two
checklists, a threat modelling checklist and a vendor disclosure checklist. Using these checklists
potential vendors and developers can perform a self-assessment of the security posture of the
product in development, thus providing a baseline of applied controls which suggest that the
product is secure and market-ready.

Kamalrudin et al.[35] present a library for eliciting security requirements. Themethodology is a
way for requirements engineers to break an IoT application into components from the domain of the
application (Industrial, Smart City etc.) to business applications (monitoring, access control etc.)
and lastly IoT attributes and technologies that will be used in order to derive security requirements
for its development. The paper proves the concept of the library by applying it to a smart parking
application scenario.

These works offer to vendors a defined set of requirements and guidelines that should be
applied to a newly developed IoT product, so that it operates securely, adhering to privacy and
safety needs. This thesis combines the identification of assets, the security requirement assessment,
and insecurity exploration, as well as a proposition of measures to address such insecurities. We
approach the IoT ecosystem from a higher-level cyberphysical system’s viewpoint and address
all the types of co-existing stakeholders, including developers, system administrators, deployment
infrastructure and end-users. We also focus on standard and AI-related tools and programming
techniques that can be applied by the responsible teams to improve the ‘marginal’ security of each
asset.

2.2 Surveys on Vulnerabilities and IoT Attack Surface

In the cybersecurity domain, the “attack surface” is, in simple terms, the sum of insecure entry
points or vectors that a malicious actor could use in order to enter or attack an environment. There
is existing research exploring the attack surface on the Internet of Things ecosystem, surveying
vulnerabilities and common exploitations that lead to cyberattacks.

Rizvi et al. [63], identified the attack surface of IoT networks. Initially, they present a de-
composition of the network into trust zones, and a categorization of existing devices into IoT
domains (Finance, Home,Wellness etc.). Then, 14 common vulnerabilities are mapped to common
attacks such as Denial of Service (DOS), Ransomware and SCADA Trojan horses. Finally, the
paper proposes security controls to mitigate these weak spots and concludes with a detailed map of
IoT domains with the vulnerabilities, attacks and security controls associated with these domains.

Dabbagh et al.[18] firstly analyse the Internet of Things security challenges and present abstract
security requirements such as the CIA triad - Confidentiality, Integrity, Availability. Then, they
proceed to decompose the IoT architecture into three basic domains, the cloud domain containing
the IoT applications and services, the sensing domain containing the devices and their communica-
tion means, and the fog domain including everything that stands between the sensing and cloud
domains. The chapter delves into security vulnerabilities and common attacks regarding these three

2.3 Security Evaluation on Existing IoT Solutions 7

domains, and proposes countermeasures for each of the cases explored. The particular research is
not generalised and does not cover all possible attacks, but takes a detailed approach in virtual
machine related attacks in the cloud domain, and interference-tampering of the communication of
sensors in the sensing domain, both rarely documented in similar IoT security research.

Serpanos and Wolf[67] examine security in layers. First, they are assessing the security of
IoT Systems, exploring software and hardware security controls applied to them as well as anti-
tampering physical security techniques. Then, as far as network security is concerned, the chapter
emphasizes on network encryption, authentication and secure routing, as well as key management
for the encryption mechanisms. Denial of service (DoS) and distributed denial of service (DDoS)
techniques are also referenced as they have been a popular malicious scenario for IoT devices.
Lastly, the chapter stresses the application layer security and proposes security-by-design and
runtime monitoring (model-based and profile-based) of the new Internet of Things products. The
next chapter of the same book[68] focuses on the security testing aspect, where fuzzing tools and
techniques are explored in different situations (White-box, Black-box). The authors present a proof
of concept, fuzzing the Modbus application protocol, used in Industrial IOT communications.

Finally, Neshenko et al.[49], perform an exhaustive - as the title presumes - survey on IoT
vulnerability research. The paper successfully sums up a variety of research focused into the attack
surface of IoT architectures, and presents a taxonomy of the collected results depending on different
aspects - Layers, Impact, Attacks, Countermeasures, Situational Awareness Capabilities - andmaps
the corresponding research to these classifications. An empirical overview of the vulnerabilities
is, then, presented and the survey concludes with a presentation of the most important security
challenges, paired with possible future initiatives to fight against each security challenge.

These threat analyses cover a wide range of the possible threats concerning IoT infrastructures
and products. Taking them into consideration, in Section 3 we create a picture of the baseline
security requirements, and consequently the security measures that need to be in place in order to
protect IoT deployments from such threats.

2.3 Security Evaluation on Existing IoT Solutions

The Internet of Things is always progressing but until now there has been a huge variety of
products and solutions already in market. Therefore, it is useful to approach the security evaluation
of existing IoT platforms, frameworks, devices, products and protocols. By reviewing the security
controls in products currently used or sold across the world, we can both see the common trends
in security and their impact, as well as state more loudly the need for better and more organised
security in this technology domain.
Ammar et al.[7] present a survey on the architecture, hardware and software specifications and
security features regarding authentication, authorization and secure communications in multiple
IoT frameworks developed by popular vendors. These products are AWS IoT (Amazon), ARMbed
(ARM), AzureIoT (Microsoft), Brillo/Weave (Google), Calvin (Ericsson), Homekit (Apple), Kura
(Eclipse) and Smart Things (Samsung). Looking at the conclusions, the authors compare the chosen
security controls and discover trends such as the universal use of TLS/SSL and the popularity of

8 Chapter 2. Related Research

AES cryptography and X.509 certificates.
Alrawi et al.[5] examine the security of IoT products created for the Home domain, including

smart televisions, smart bulbs and smart doorbels. After decomposing the home IoT deployment
into 4 parts, namely the device, the mobile application, the cloud endpoint and the communications,
they proceed to explore existing research to identify the attack vectors of each part, and lastly cross-
reference them to a wide variety of home IoT products. Using the CVSS (Common Vulnerability
Scoring System) standard [45] scoring system and associating every product with known CVEs
(Common Vulnerabilities and Exposures), which are basically publicly stated vulnerabilities, they
evaluate each product’s security posture.

As with the home domain, there is also research regarding other domains such as the Healthcare
domain[57], and the Industrial IoT domain [26][1].

2.4 Artificial Intelligence-based Approaches

Artificial Intelligence and and Learning techniques are employed in a variety of use cases and
security is one of them. Although the manual labour and configuration is not yet fully replaceable
in the aspect of Cybersecurity, there is a number of security aspects where AI techniques shine and
provide great results contributing to the security of an IoT system.

Ahanger [2] evaluates the use of artificial neural networks (ANNs) as an intrusion detection
system to combat distributed denial of service (DDoS) attacks. A multilayer perceptron neural
network is used (MLP) to create an anomaly based network Intrusion detection system. The expe-
rimentation in a custom IoT deployment shows a great detection rate of 99% while also providing
a low false positive rate (malicious traffic falsely identified as normal) which is one of the most
significant goals of an IDS. Other than neural networks, techniques that perform well into network
intrusion detection are kNN, Random Forest and Support Vector Machines [79][47].

Local malware scanning is also an aspect where artificial intelligence techniques can be a
great supplement to existing signature based techniques. While signature based approaches can
protect against known malware, the behavioral approach of A.I. techniqes can often protect against
new or unknown malware. Xiao et al. [74] initially propose the use of kNN and Random Forest
classification algorithms on collected traffic data to identify malware with a high accuracy on
standard datasets. The lack of resources in some devices is also addressed where the solution is to
collect application traces locally and appoint the model training and predicting to a capable and
trusted external server.

Xiao et al. [74] also report two unique use-caseswhere learning techniques can play a significant
role in IoT devices. The first is for secure IoT offloading as amethod to combat jamming andMITM
attacks. Using reinforcement learning, and specifically the Q-learning technique, the model takes
into consideration the task priority, channel bandwidth, gain and jamming power in order to decide
on offloading policies according to a Q-value that indicates the long term reward from choosing
this policy. Using this approach, the device can choose optimal offloading channels and subbands
in order to avoid interferences and jamming as well as spoofing attacks. Convolutional neural
networks can also be used for the same purpose but they require more computational resources than

2.5 Blockchain-oriented approaches 9

Q-learning. The second use case addresses authentication using learning methods in order to avoid
spoofing attacks. Using physical layer indicators such as the received signal strength (RSS) or the
channel state information (CSI), learning techniques are able to exploit the indicators’ connection
to spatial characteristics in order to lure out connections that are initiated from outside a threshold
proximity reducing spoofing rates. Other thanQ-learning, both supervised (distributed FrankWolfe
- dFW and incremental aggregated gradient - IAG) and unsupervised algorithms (Infinite Gaussian
MixtureModel) are used. Formore resourceful devices, deep neural networks can also be applied to
further improve the accuracy rates. IGMM is also reported as a useful algorithm for authentication
by fingerprinting in Hammed et al’s work [33], where IGMM is used to create fingerprints in IoT
devices and validate the credibility of the device by comparing the IGMM result with a value
expected depending on the device’s nature and shape. On environment changes the model is able
to distinguish a normal change from a malicious change.

Machine Learning and essentially supervised learning methods require significant quantities of
information, hence the term ”Big Data”. The information, apart from being the input that will affect
a model’s decision, also play significant roles into training the model, improving its prediction
accuracy and validating its efficiency. In order to leverage the advantages A.I. has to offer we need
to establish a way to collect, clean and format these data to use them. Roukounaki et al. [64] present
an infrastructure for collecting, storing and analysing big data in IoT systems. They introduce a data
collection and actuation layer in the IoT system, with the collection aspect comprised of system
and application level probes, and IoT probe registry listing all the used probes, a data routing
middleware to route the data to their respective recipients. The actuation aspect includes a Security
Policy Enforcement Point where the data collected drive security decisions (e.g. disabling a service
or closing a port) and visualization where collected data and analyses are being displayed. The
infrastructure also has management agents and management and configuration tools in order to
control and manage successfully the infrastructure. The authors finally discuss the security use
case of this infrastructure including risk assessments and asset security monitoring.

2.5 Blockchain-oriented approaches

In the final subsection of the chapter we will see some proposed solutions for architecture and
security in the Internet of Things that leverage a relatively new technology, Blockchain. We will
not use such techniques throughout the thesis, but it is worth to present these solution aspects.
The blockchain is a decentralised peer to peer architecture where each node possesses a shared
ledger (chain of blocks) that contains all the transactions that take place in the network. The ledger
is essentially a chain of smaller groups of transactions called blocks. This chain is immutable as
a single change in a block invalidates the whole chain. The decisions of the system are reached
through the consensus validation of a block and the addition of the block to everyone’s chain, and
that block is proposed by a node that solves a “difficult” computational cryptographic problem
called proof. The blockchain by default is trustless as no third parties need to be trusted (e.g. banks
in fiat money transactions) and anonymous since each node is associated to only a signature. These
astounding benefits come at the expense of memory storage to save the whole ledger, and power

10 Chapter 2. Related Research

in order to solve the problem (Proof of Work algorithm). These expenses drove a lot of researchers
to the argument that the blockchain could not be suitable for Internet of Things deployments
as the devices themselves tend to be low on resources, although the decentralised architecture
paired with the privacy mindset of Blockchain are indubitable reasons to pursue the unity of the
two technologies, especially with the incorporation of smart contracts, software programmable
contracts between two or more nodes.
Khan and Salah[37] summarize blockchain features that could be useful in IoT like the huge address
space (bigger than IPV6), the Identity of Things and Authentication, Authorization, Privacy and
Secure communication factors to emphasize on the blockchain feasibility for this usecase. Also
various different blockchain implementation propositions exist in published research. Angin et
al. [8] propose a blockchain based architecture for the Internet of Things to raise data security.
In this proposition, IoT devices are nodes of a device-level blockchain, and have a hierarchical
relationship to “data collectors”, capable cloud servers, where the heavy work of the mining and
storage expenses of the ledger are offloaded. Wang et al.[73] propose Chainsplitter, a decentralised
overlay network between the local networks were devices reside and the cloud servers that holds
services and applications. The devices connect to “Blockchain connectors” and the Cloud entry
points to “Cloud connectors”, and the connectors engage as nodes in a permissioned blockchain
network using Byzantine Fault tolerance[15] as a consensus algorithm. The blockchain connectors
are the ones creating blocks for the blockchain based on transactions received from the devices. The
paper concludes with a test case and an emphasis on the benefits of Chainsplitter for the security
of the deployment, along with specifications for the connector implementation.
Both of those propositions are well-thought approaches to the incorporation of blockchain in IoT
deployments, but nevertheless are outside the scope of this thesis, which is to develop a security
feature auditing and extending methodology that can be applied to typical IoT platforms. As a final
note, blockchain approaches, although theoretically alluring, demand to be applied to the platform
from the design phase and cannot be added later as a security feature.

Table
2.1:Sum

m
ary

ofR
elated

W
ork

C
ontributions

R
esearch

H
igh

Level
IoT

M
odel

A
sset

Taxon.
Threat
Taxon.

M
anagem

ent
Strategy

Physical
Security

H
ardw

are
Security

Softw
are

Security
A
uthN

A
uthZ

N
etw

ork
Security

A
dm

in
Security

A
.I.

M
.L.

B
lockchain

[25]
✓

✓
✓

✓
✓

✓
✓

✓
✓

[24]
✓

✓
✓

✓
✓

✓
✓

✓
[13]

✓
✓

✓
✓

✓
[35]

✓
✓

✓
[63]

✓
✓

✓
✓

✓
✓

✓
[18]

✓
✓

✓
✓

✓
✓

✓
[67,68]

✓
✓

✓
✓

[49]
✓

✓
✓

✓
✓

✓
✓

[7]
✓

✓
✓

✓
✓

[5]
✓

✓
✓

✓
✓

✓
✓

[57]
✓

✓
✓

✓
✓

[26]
✓

✓
[1]

✓
✓

✓
[2,79,47]

✓
✓

[74]
✓

✓
✓

✓
[64]

✓
✓

✓
✓

✓
[37]

✓
✓

✓
✓

✓
✓

✓
✓

✓
[8,73]

✓
✓

✓
✓

Chapter 3

IoT Cyberattacks and Real World
Impact

As the number of IoT deployments is rising, so do the vulnerabilities and security incidents
worldwide. In this chapter, we will analyse some of the most significant attacks and public vulnera-
bilities regarding the Internet of Things domain. These attacks affected multiple domains including
the economy and privacy, motivated researchers to analyse them and raised the public awareness
about the insecurity of the IoT systems.

3.1 Stuxnet

Stuxnet has been labeled as one of the most complex threats created in history, and that is not an
overstatement in any way [39]. The worm malware 1 targeted air gapped (physically isolated from
the internet) systems and particularly industrial SCADA deployments in Iran’s nuclear facilities in
Natanz, and it was an active and serious threat in the years between 2009 and 2011.

3.1.1 Outline of the Attack Methodology

Stuxnet was approximately 500 kB in size and targetedMicrosoft Windows Operating Systems
connected to programmable PLCs specifically running Siemens Step-7 software. The malware had
capabilities of propagating to other computer systems in a local area network (LAN) until it found
one of the targeted computers controlling uranium centrifuges where it downloaded malicious
software that performed two distinct attack routines based on the software used. The first stuxnet
version (on S7-417 controllers) performed an overpressure attack in the centrifuges by closing
outflow valves, and the second and more advanced one (on S7-315 controllers) changed spinning
frequencies in order to progressively cause mechanical errors. Since the Iranian nuclear facilities
were air gapped, the virus is suspected to have infected the first victim via an infected USB drive,
by a victim engineer or a double agent that had physical access to the facilities. It spread to other
computers using more than six methods, mainly shared filesystems, in some cases leveraging

1self-replicating computer malware that spreads to other computers

13

14 Chapter 3. IoT Cyberattacks and Real World Impact

zero day vulnerabilities. The propagated malware versions engaged into peer-to-peer updates in
case one of the infected computers had access to the internet, and consequently could contact the
C&C (command and control) server. The malware was designed with an emphasis on detection
avoidance using stolen trusted certificates like Realtek’s in order to be trusted from antivirus
software. Lastly, Stuxnet infected the telemetry server to present false normal results to the en-
gineers, and incapacitated some of the emergency controls that were in place.

3.1.2 The Impact of Stuxnet

The knowledge level of the attack, the target and the fact that the malware had little chance to
work well without a testing facility (indicating that the attack part had access to a similar testing
facility) are all indicative of the malicious actor’s large-scale capabilities. The Stuxnet attack is
assumed to have destroyed about 1000 uranium enrichment centrifuges in Iran’s nuclear facilities,
and delayed the nuclear program of Iran enough to force a diplomatic agreement on nuclear usage.
This is the first known case of a military cyberweapon and widely changed the way that cyberspace
is weaponized. Stuxnet also emphasized the magnitude of impact a malware can have and was one
of the first and most important cyber-physical attacks in industrial systems in history.

3.2 Mirai Botnet

The Mirai botnet[9] was a botnet of compromised Internet of Things embedded devices that
performed significat Distributed Denial Of Service attacks on multiple high-profile targets in 2016.
Some of these targets were Dyn, a major DNS provider with clients such as Amazon and Twitter,
Krebs on Security, one of the most esteemed cybersecurity blogs, and Deutsche Telecom.

3.2.1 Outline of the Attack Methodology

Interestingly, the source code of the Mirai worm was leaked by its author in an early attempt
to disguise himself behind the variants that would be developed, thus we know exactly how Mirai
operated. When the malware was installed into a device, it would go into a rapid scanning phase
using pseudo-random IPv4 addresses targeting the Telnet service ports on ports 23 and 2323. If it
detected a device with an open telnet port it would bruteforce default vendor passwords to attempt
to log in and, interestingly, succeeded in a lot of cases. When a new device was infiltrated, the
malware would contact a hardcoded Command And Control (C&C) server, making it a bot on the
Mirai botnet. A separate loader program would identify the architecture executing architecture-
specific malware due to the heterogeinity of internet of things devices that were infected. The
malware was not persistent because the binary was deleted after the process initiated, but it would
terminate other SSH and Telnet services, as well as other botnet malware such as Qbot.

3.2.2 The Impact of Mirai

TheMirai Botnet was one of the biggest botnets ever with a peak of about 600 thousand infected
devices at November 2016. It was also the perpetrator of some of the biggest DDOS attacks in

3.3 CloudPets and other smart Toys 15

history, including the attack against Krebs on security blog, which peaked at 620 Gbit/s, and 1.2
Tbit/s against OVHcloud web hosting. What is more serious was the simplicity of the attack which
gained access to millions of devices simply by using default credentials, a vulnerability introduced
mainly by careless users and administrators. The Mirai botnet attack had also significant economic
impact on its victims. For example, Dyn lost about 8% of its customer base following the event of
the attack, which was around 14 thousand domains. Finally, it was also the reason for the research
for DDOS resistance techniques and real time mitigation, leading to only 5 minutes downtime in
a 1.35Tbit/s related DDOS attack (not botnet-based but amplification attack) against Github two
years later, that was completely mitigated by Akamai Content Deliver provider.

3.3 CloudPets and other smart Toys

Mirai and Stuxnet were both turned against high-profile targets, but the insecurity of the Internet
of Things can severely affect ordinary households as well. An example could be smart toys, toys
for children that provide fun features such as voice interaction and communication with parents. A
lot of these products have been found to be vulnerable, compromising the privacy of the families
that own them and, in some occasions, leaking private sensitive information to the outer world.
Cloud Pets were adorable plush toys that were Internet connected and allowed voice message
exchange between parents and children via cloud. The cloud voice recordings were found to be
accessible without authentication if someone knew the URL address to them, and strong password
policies were non-existent, allowing users (parents) to use even 1 digit passwords, making them
vulnerable to bruteforcing in a few seconds. This led to a leak of half a million accounts online, and
consequently more than two million private voice messages of children and parents. The company
was forced to shut down in face of these leaks, but cloudpets are surprisingly still being sold in
online stores such as Amazon.
Another significant research[51] was performed by the security firmMnemonic and the Norwegian
Consumer Council (NCC) on the security of four children smart watches. These watches had
mobile phone - like capabilities, including GPS locators, SIM cards to enable making or receiving
calls, SMS messages and voicemailing. Three of the four assessed smart watches did not disclose
user rights and terms to the users and without consent collected personal data. Also, none of them
notified the users in a potential change of Privacy Policy. Lastly none of them provided methods
for users to delete their accounts and personal data, and did not specify how they would use the
personal data collected, nor made clear how and where data are stored. All of them had serious
privacy issues, in some cases breaching laws regarding privacy, consumer rights and the General
Data Protection Regulation (GDPR) of Europe.

3.4 Security Awareness Study

Mirai, as well as other botnets that have amassed millions of slave machines in the last years
leveraging malware (worms) that is automatically spreading to vulnerable targets using simple
approaches such as default passwords or attacking publicly known vulnerabilities with known

16 Chapter 3. IoT Cyberattacks and Real World Impact

exploits, that have been possibly patched. Simply having an awareness for cybersecurity and keep-
ing systems updated with the latest security patches goes a long way into being safe from cyber-
threats.

In this subsection we aim to use real data in order to address the importance of simple actions
towards the avoidance of becoming a target andmaintaining secure systems. The data that is used to
compute our metric can be collected using Shodan, a global crawler for Internet-connected devices.
It scans global IPs, collects information for each IP such as the organization name, location, domain
name, open ports, running services, and also attempts to grab the banner 2 of the audited services
to learn more specific information, e.g. version, and then map it with specific CVE vulnerabilities.

In this Thesis, by using the Shodan API we were able to collect information about the number
of internet connected devices all around the world categorised by country, for the top 200 country
results. For keeping the results relevant, countries with population of less than 300,000 people were
excluded. The results are presented in figure 3.1 and table 3.1.

Figure 3.1: Internet Connected Devices per country (Millions)

Since the point of the study is evaluating the security awareness, the vulnerability scanning
that Shodan performs was leveraged in order to get the number of devices found vulnerable with
specific vulnerabilities with CVE (CommonVulnerabilities and Exposures) identification numbers.
After finding the number of vulnerabilities per country, the weighted sum of them was computed
for each country using as weights their CVSS score [45], and their exploitability score. From the
calculations vulnerabilities with less than 6.0 CVSS score or Local/Physical attack vector were
excluded in order to keep only severe and relatively easily remotely exploitable vulnerabilities.
In that regard, it was assumed that devices with vulnerabilities in that category would most likely
become a cyberattack target because of the ease of exploit and impact that a malicious actor can
deliver. The results are presented in figure 3.2 and table 3.2.

Dividing the weighted sum of vulnerabilities per country with the number of internet connected
2Technique used to gain information about a computer system on a network and the services running on its open

ports.

3.4 Security Awareness Study 17

Table 3.1: Top 40 countries with most Internet Connected Devices

0 USA 163965019 10 HKG 7382864 20 SGP 3944996 30 UKR 1806292
1 CHN 35068171 11 ARG 7187785 21 ESP 3819222 31 COL 1701085
2 DEU 27939736 12 ITA 7114985 22 VNM 2917478 32 SAU 1681472
3 GBR 18440278 13 NLD 6527878 23 ZAF 2907405 33 CHE 1599801
4 KOR 11994966 14 AUS 5960419 24 THA 2840353 34 CZE 1351948
5 JPN 11126474 15 IND 5752842 25 IRL 2443539 35 BGR 1219356
6 RUS 11035911 16 POL 5419278 26 ROU 2362859 36 MYS 1141602
7 FRA 9537196 17 TWN 5058123 27 IRN 2041691 37 PRT 1125341
8 BRA 9277937 18 MEX 4734761 28 IDN 1942863 38 AUT 1043767
9 CAN 9200318 19 TUR 4108397 29 SWE 1826714 39 DOM 1036609

Figure 3.2: Vulnerability weighted sum per country (Millions)

Table 3.2: Top 40 countries by weighted sum of vulnerabilities

0 USA 38228573 10 SGP 999907 20 ESP 506129 30 CHL 186548
1 CHN 11620249 11 GBR 952048 21 MYS 461568 31 IRL 164000
2 HKG 5329115 12 IND 933418 22 NLD 456413 32 SWE 154903
3 JPN 2318747 13 FRA 751357 23 TUR 451199 33 BGR 141578
4 TWN 2015268 14 AUS 697862 24 VNM 407178 34 CZE 141369
5 RUS 1883171 15 ITA 686286 25 ARG 344803 35 EGY 140957
6 KOR 1746187 16 MEX 638291 26 IDN 316612 36 BEL 135994
7 BRA 1277227 17 IRN 613248 27 UKR 281631 37 AUT 124366
8 DEU 1229492 18 THA 537529 28 POL 262077 38 BGD 118454
9 ZAF 1104430 19 CAN 517218 29 COL 190741 39 PER 116814

18 Chapter 3. IoT Cyberattacks and Real World Impact

devices in each of these countries provides us with a metric that can statistically show how updated
and secure against harmful remote cyberattacks a country’s systems are, and collectively give us
and indication of each country’s security awareness. For this reason and for the sake of having an
intuitive metric name we call the metric LSAR, for Lack of Security Awareness Ratio. High values
of LSAR indicate greater density of vulnerable and exploitable devices in a group of devices,
deeming that group as a more possible target of malicious actors than one with a smaller LSAR.

LSAR =

∑
i(#Occurencesi × CVSSscorei × Exploitabilityscorei)

#Devices
where

i ∈ {CVE-X|CVSSscorei > 6.0 ∩ Vectori /∈ Local,Physical}

The results for the LSAR metric in the countries above are presented in figure 3.3 and table 3.3,
where, surprisingly a lot of countries appear that were not included in the previous findings.

Figure 3.3: LSAR metric per country

Our findigs are including the countries with the biggest LSARmetrics as we defined it, meaning
the countries with the least security preparedness against known exploits and remote cyberattacks,
hence least security awareness. The point of these findings, though, was to indicate the importance
of keeping systems updated and secure against publicly known vulnerabilities, so we need real data
of cyberattacks in countries to correlate with and validate the above findings. To validate LSAR,
we compare it with results from a survey [14] for the best and worst security in countries. The
survey includes data up to March 2020, which is adequately close to data collection from Shodan
for the LSAR computation (late April, 2020). In this survey countries are ranked for:

• The percentage mobile devices infected with malware

• The percentage of computers infected with malware

• The number of financial malware attacks

3.4 Security Awareness Study 19

Table 3.3: Top 40 countries by LSAR

0 HTI 1.422832 10 MYS 0.404316 20 MDG 0.310316 30 MKD 0.272767
1 UZB 1.164537 11 TWN 0.398422 21 MNG 0.304405 31 PRY 0.258938
2 ZWE 0.782047 12 PER 0.397818 22 CPV 0.302953 32 BGD 0.258386
3 HKG 0.721822 13 TJK 0.392794 23 IRN 0.300363 33 PAK 0.255805
4 ETH 0.636363 14 ZAF 0.379868 24 BLR 0.298036 34 RWA 0.253722
5 JOR 0.522041 15 SEN 0.372707 25 AGO 0.295866 35 SGP 0.253462
6 PNG 0.455162 16 GTM 0.348438 26 LAO 0.295831 36 BDI 0.253116
7 LBN 0.451086 17 CHN 0.331362 27 KWT 0.283800 37 CHL 0.252933
8 MRT 0.441238 18 SLE 0.323695 28 BOL 0.282629 38 DZA 0.250114
9 KGZ 0.405626 19 BTN 0.321850 29 MWI 0.278312 39 CMR 0.245949

• The percentage of all telnet attacks by originating country

• The percentage of users attacked by cryptominers

• The best-prepared countries for cyber attacks

Combining this survey’s results with the shodan findings, 65 countries belong in both of the
datasets and thus can be compared. For that reason, we explore the correlation between the LSAR
feature and the features introduced by the comparitech survey. The results are the following:

Figure 3.4: Scatter plot matrix - Correlation

20 Chapter 3. IoT Cyberattacks and Real World Impact

(αʹ) Pearson correlation coefficient (βʹ) Spearman correlation coefficient

Figure 3.5: Correlation coefficient matrices

The graphs can give us information on the correlation of the LSAR metric with the rest of the
data from the comparitech survey, that we need in order to validate our findings:

• LSAR has a moderate uphill relationship with cryptomining attacks (+0.52,+0.54 correlation
coefficients). This means that a high LSAR is correlated with a high percentage of crypto-
mining attacks. Cryptomining attacks tend to target remotely exploitable devices, even low
power IoT devices, in order to amass computing power for mining operations in blockchain
cryptocurrencies. Cryptomining is one of the most popular use-cases of Botnets, and this
correlation validates our argument.

• LSAR has a moderate uphill relationship with financial malware attacks, malware targeting
bank accounts to steal money from victims (+0.58,+0.46 correlation coefficients). While
this correlation validates the relationship of high LSAR with high percentage of malware
targeting the victim, we miss information to explore whether the use-case is relevant.

• LSAR and the best-prepared metric of the comparitech survey have a moderate downhill
relationship (-0..28,-0.30 correlation coefficients), which is expected. This further validates
our findings rendering LSAR as a metric to check the security posture of a sum of devices,
in this case a country. The coefficients are not very high, which could be explained from the
specificity of the usecase of the shodan findings (external attacks) compared to the best-
prepared feature which is derived from the Global Cybersecurity Index scores[34]. The
GCI score attempts to perform a general security evaluation on a country’s cybersecurity
including factors such as cyber crime legislation and information extracted from question-
naires, hence the index is not fully consistent with our use-case.

• LSAR has a weak uphill relationship with mobiles infected with malware. Additionally,
there is a non-significant relationship of LSAR with computer malware which could be
explained from the fact that most of it deviates from attacks like phishing, downloaded

3.4 Security Awareness Study 21

malware disguised as a useful program or infected drives. The Shodan findings address the
vulnerability to external cyberattacks so a huge proportion of the variability that could be
explained is missed, thus the insignificant correlation with mobile and computer malware.
Telnet attacks and LSAR also have insignificant correlation which is explained from the fact
that they are bruteforcing attacks, not CVE-specific exploits.

Summarizing, we can see that even the omission of a simple activity such as consistent updating
of software to secure versions can compromise the security of a device, and collectively widen the
attack surface of the device’s environment. The LSAR is a metric that can be used to assess the
security posture of a large group of internet connected devices, owned and handled by different
individuals or organizations by checking the exposure to potential common vulnerabilities (CVEs).
Apart from countries, large groups of machines/devices could also be considered to be Wide Area
Networks (WAN), geographical regions such as cities, or even large data centers were theVMcould
take the place of devices, and in those cases LSAR can provide a general view of the awareness of
security as well as the density of vulnerable points inside the group.

Chapter 4

Defining an auditing methodology for
Internet of Things

As we explained earlier, the Internet of Things is a complex ecosystem that consists of multiple
significant components that one should be aware of. And, as far as cyber security is concerned, each
of these components presents its own security concerns and widens the attack surface. This chapter
presents a coordinated methodology for decomposing complex Internet of Things ecosystems into
simple components, and identifying essential security controls and practices that should be applied
in these components in order to collectively improve the security of the ecosystem.

4.1 Asset taxonomy on a typical IoT Ecosystem

Various Internet of Things ecosystems already exist in theworld, backed by different companies
and organizations, using different network protocols, handling data differently in the cloud. How-
ever, there are some components that are essentially the same in whichever ecosystem one decides
to research, and by identifying these components we should be able to create an image of a typical
IoT ecosystem, and generalise its various assets and functionality.

Figure 4.2 presents a typical IoT ecosystem and enumerates its basic assets, providing a useful
asset taxonomy. We can identify nine different basic assets, each with a separate role in the eco-
system, associated with different stakeholders and presenting its own security risks. The asset
taxonomy consists of the following assets:

1. Users: The entities that use the ecosystem, and benefit from its outcomes. The users can
be individuals, organizations, companies or even countries. Apart from entities that use the
IoT products for profit, the users can also refer to the people behind the development or
marketing of IoT products.

2. Devices: The devices entities refer to the original IoT devices. Smart watches and smart home
equipment, sensors, surveillance cameras and generally low-resource internet connected
devices all fall under this asset. The devices can have both sensing and actuating capabilities

23

24 Chapter 4. Defining an auditing methodology for Internet of Things

Figure 4.1: Asset Taxonomy of a typical IoT ecosystem

which means that they can be used both as sensing mechanisms, monitoring data from the
real world and as actuation mechanisms transferring the results into real world actions.

3. Communication Channels: Communication channels are intangible entities and present the
mechanisms that allow the interconnection and communication of users and devices to re-
mote storage and computation spaces called the cloud.

4. Message Brokers: The message brokers are entities that reside in the cloud part of the eco-
system and specifically in platforms and are the main entrypoints for data coming from
IoT devices. The message brokers support many application protocols in order to provide
interoperability and allow communication with different internet of things devices.

5. Web Applications (UIs): The web applications are the cloud platform’s entry points for
Users. They are typical web interfaces that allow users to log in with their accounts and
perform the various actions that each platforms provides to its users. Some typical actions
are adding and removing devices, handling data and applying logic to them or exporting the
data from the platform.

6. Database Systems: The database systems are responsible for handling data. They can be
relational or non-relational databases, depending on the platform, and they participate into
various mechanisms such as authentication and authorization, data management and provi-
sion of data to IoT applications.

4.2 Asset security Requirements and Countermeasures 25

7. Internet of Things services/applications: This asset refers to applications that perform logical
operations on data provided by IoT devices or databases and output results that benefit the
Users that use them. Most platforms provide a set of predefined services to their users, and
some of them also allow users to create their own applications which are usually executed
into sandbox environments such as virtual machines or containers.

8. Back-end Servers: The back end is the application that orchestrates the functionality of IoT
platforms. It handles the interconnection and logical operation of the different assets of the
IoT platforms, specifically the databases, the message brokers, the web applications and the
various back end IoT services.

9. Cloud/Edge Infrastructure: The cloud/edge infrastructure is the invisible layer surrounding
the IoT platforms. It refers to the physical servers where the IoT platforms run and the
network deployment (routing, DNS etc.) that allows the communication between local users
and devices and the remote platform services. It also provides availability to the platforms
and bandwidth management.

4.2 Asset security Requirements and Countermeasures

The assets of this taxonomy are present in the majority of Internet of Things ecosystems
and we can decompose a specific ecosystem into them regardless of the actual implementation
and technical specifications. This divide-and-conquer approach makes the problem of security
assessment simpler, as it reduces the surface a researcher has to audit, and makes it more specific
and focused. Now, each asset should be assessed and the methodology should inform the researcher
of requirements than need to be satisfied, and provide recommendations and practices that will
make each asset, and collectively the whole ecosystem, more secure. Of course, the requirements
and propositions can not, in any way, cover the whole spectrum of vulnerabilities and threats, but
they should provide a secure and trusted baseline that the stakeholders of each asset can build upon.
At the end of the chapter, a table will summarize the various security controls discussed for each
asset for the readers convenience. Also, since the thesis focuses on Internet of Things platforms,
the assets 4 - 8 will be analysed in more depth than the rest of the assets.
There are some security measures and practices that are applicable to almost any asset and for that
reason we will discuss them here so that they are not continuously mentioned throughout the next
sub chapters.

1. Keep everything up to date. Commercial software systems and programs are associated
with versions and patches. Often, a specific version of a software is found to be vulnerable
and is publicly declared as vulnerable to one or more Common Vulnerabilities (CVEs).
Usually a patch or new version is released to fix these security holes and keep the product
viable for production and secure. Thus, it is important to update the software versions regular-
ly, because an internet search is enough for a malicious actor to find out whether the version
of a system is vulnerable to a known exposure, and more often than not how to exploit it as
well.

26 Chapter 4. Defining an auditing methodology for Internet of Things

2. Backups. Frequent backups are one of the essential good practices that need to be followed.
Source code, Database information, and other data that might be deleted bymistake or malice
should be kept in separate storage as backup frequently. This allows for quick recovery
of production and even identification of an attack in the event of a security incident by
comparing old backups with present status.

3. Monitoring and Logging. Keeping information about the change of the state in various
assets is important. Logging is the action of keeping records of events happening that could
be useful for debugging, or in our case inspecting security incidents. Events that could
be logged can belong in a huge variety of information including log ins, log in failures,
service creations, errors, database queries, backup timestamps etc.. Monitoring is close to
logging, except that the values monitored are usually imaged in graphs, and raise alerts
when their behaviour deviates. Monitored information can include machine temperatures,
network traffic, network packets, database storage and more. Sometimes Machine Learning
techniques are applied to these monitored values to predict and avoid unwanted situations
such as Denial of Service attacks.

4.2.1 Users

In the information technology domain, the human factor, and the user asset in our model, is
widely assumed to be the most weak and exploitable factor. The occasions in which the human
factor becomes the reason for a security breach, mainly fall under three categories, insider threats,
careless and unaware personnel or users and lack of business security culture and strategy. The
insider threat refers to company workers abusing their internal access deliberately in order to harm
the company, most of the times for personal profit. The second category consists of staff that does
not have security awareness and employs insecure practices that could compromise a company’s
security, or an account’s and individual’s privacy in the case of a regular product user instead of
personnel, should they become the target of a malicious individual. The last category includes
managerial and technical strategies that a company can apply in order to boost the security posture
by minimizing the threat of the human factor compromise.
Undoubtedly, out of the three categories, the insider threat the most difficult to protect against. The
malicious actor is always undercover and it is not an issue of knowledge, rather a matter of ethical
and psychological factors of the individual. However, there are some strategies that a company
could employ in order to minimize the threat of insiders, and basically the aim is to discourage
such actors by making it difficult to harm the company severely, even as internal personnel. One
measure that companies apply at scale are the so-called NDAs (Non Disclosure Agreements).
These are legal contracts, signed by the employees, that forbid them from disclosing information
regarding the company to thirds, therefore protecting the intellectual property of the company or
organization. Another significant measure, more on the technical side, is strict control over the
company’s assets and the trust that employees have over accessing them. This can be achieved by
monitoring the access on these assets, logging and producing analytics. The monitoring of access

4.2 Asset security Requirements and Countermeasures 27

and data processing activities could discourage an actor from misusing this trust for malicious
purposes. One more measure in the same fashion are company-wide policies for least priviledge
and segregation of duties, so that access is given to only the assets that are absolutely needed for the
completion of each employee’s function.In this regard, AI technology can also contribute through
User and Entity Behavioral Analytics (UEBA), that monitor user behaviour to identify anomalies
and potentially prevent malicious actions. Tools like IBMQRadar UBA are able to monitor human
factor behaviour, assign roles and identify role behaviour deviations to alert on occasions like tool
misconfigurations, sharing of credentials, or admins changing user attributes [53].

Security awareness training is applied from companies worldwide in order to cultivate the
personnel’s security culture, awareness of good practices and sense of responsibility. Occasional
briefing on security and simulation of attacks such as phishing from the security teams of companies
to the rest of the teams, can help create good practice habits on the employees that can collectively
improve the security posture of the company. Good practices could include strong passwords,
scepticism against the trust of emails, locked screens when away from a computer, avoidance of
using third party devices such as USBs and personal laptops at work, destruction of documents
that are no longer useful and many more.The power of machine learning can also be leveraged
here, as algorithms such as kNN, SVM, Random Forest, Neural Networks as well as unsupervised
and similarity learning techniques perform well into detecting social engineering attacks such as
phishing [4][58] and malicious URL links[69][66].

Lastly, there are management strategies that are not purely technical and could improve the
security of the company significantly. Responsible vulnerability disclosure programs, are methods
in which external researchers or regular users that manage to find a bug in a product can disclose
it to the engineering teams of the product so that it is quickly patched before malicious activities
exploit this vulnerability/bug. Usually, the individual is rewarded by the company financially, or
with exposure, depending on the severity of the found bug. This gives an incentive for researchers
to disclose the bugs responsibly and not personally profit from them with malicious activities. Bug
bounty programs are the next step in this mindset where scopes and potential rewards are defined by
the company for security researchers. Another significant measure is periodic company-wide risk
and threat assessment, by either the company’s internal security team or employment of external
red teams and penetration testers. These teams perform simulations of real attack scenarios in order
assess the effectiveness of applied security controls and countermeasures. Finally, security incident
scenario strategies should be in place in order to define the actions that will take place in the worst
case of a security breach so that the company can identify a potential security hole, patch it and
recover from the breach as soon as possible.

4.2.2 Devices

The Devices asset consists of every Internet of Things device that can be used inside the
IoT ecosystem. From a security perspective, the asset is concerned with the aspects of hardware,
software architecture and physical security of the device, since the network security aspect ismostly
discussed in the Communication Channels chapter.

28 Chapter 4. Defining an auditing methodology for Internet of Things

Table 4.1: Users Asset Security Measure Checklist

Users asset Security Measure Checklist

Insider threat

Non Disclosure Agreement Signing
Strict Asset Access Control/Monitoring (UEBA,logging)
Least Priviledge policies
Segregation of duties

Lack of security awareness
Security Awareness Training, Briefing
Social Engineering Attack Simulations
AI On Social Engineering (Phishing, Malicious URL)

Management Strategy
Vulnerability Disclosure Programs
Company-Wide Risk Asessments
Security Incident Scenario Strategies In Place

Physical security is defined by the controls that exist in place to protect against malicious activities
from actors with physical access to the device. There are a lot of techniques that users and device
vendors can apply in order to improve the physical security of their product. As far as users are
concerned, it is important that the device is not accessible, at least easily, by thirds. In the case that
this is not avoidable (e.g. in the case of street cameras, or IoT devices in crops) the devices should
not have physical ports such as USB ports exposed. AI biometric access control to the IoT devices is
encouragedwhen combinedwith rule-based access such as passwords, as AI substantially improves
the accuracy of fingerprint, facial or iris scans [77].

In the case of vendors, the physical security aspect is a more technical issue, and much more
difficult to apply. Starting off, there must be tampering prevention mechanisms [21] in place that
should make it difficult for someone to tamper physically with the device. A common technique
is security bits hidden under rubber feet or labels with complex screw heads that need specific
screwdrivers to open. Also, strong adhesives and in some cases ultrasonic welding can make
opening the shell of the device difficult to do without damaging the device. Integrated circuits and
boards can be encapsulated or coated with specific materials such as epoxy or silicone, that secure
the devices from physical factors such as heat or dust, but can also protect frommalicious acts such
as cloning or reverse engineering. Security fuses are also widely used, and they are mechanisms
of access control to the on-chip memory. These mechanisms are usually built in a way that they
destroy stored data in the case that someone attempts to erase or reprogram them (usually using UV
lights). Scrambling of memory, data buses and even topology layout is a method that is commonly
used in order to prevent reverse engineering of the device and forensics. Memory scrambling [48],
for example, turns data into pseudo random patterns that make it difficult for someone to reverse
engineer and read them.

In many cases, tampering detectors are also installed into the device. Detectors include tem-
perature sensors, voltage and radiation sensors. Therefore, physical attacks like cold boot[32],
X-rays (used for reverse engineering-looking under coatings) and fault injection attacks that use
sharp electrical signals to cause circuit errors can be detected and be handled accordingly. Side

4.2 Asset security Requirements and Countermeasures 29

channel attacks [6] are also a major threat for embedded devices. Passive Side channel attacks
resort to analysing times, power consumption and temperature during cryptographic operations in
order to identify properties, algorithms used or even keys. Countermeasures insert randomness in
order to render the analysis useless, by time skewing, random heating, cache flushing, disabling or
bypassing and many more methods.

Internet of Things devices can also be severely susceptible toDenial of Service attacks. Vampire
attacks[72] are attacks that attempt to drain the battery of ad-hoc wireless devices in order to
lead to a DoS situation where the nodes shut down and do not communicate with the rest of the
deployment. This can be achieved through various methods and two of them are the adversary
introducing routing with loops (Carousel attack) or introducing very long routes (Stretch attack)
in the node. In the first case, the node is forced to sleep deprivation as it has to process incoming
packets each time, and in the second case multiple nodes are affected if the route is constructed
to contain them. Mitigation controls include the ability to reroute at each node if a shorter route
is known or introducing a no-backtracking metric that ensures the gradual progress of the packet
and avoids loops. Denial of Service can also be achieved through Jamming attacks, but they can
easily be avoided through frequency hopping, the existence of directional antennas, or by spectrum
spreading [18].

Trusted computing [71] is another important aspect of the embedded IoT devices’ security
posture. Trusted Execution Environments (TEEs) are processing units that ensure the protection of
code and data inside them. Usually this is achieved with dedicated coprocessors with secure mode
where security tasks are being offloaded from the main processor, and secure memory (dedicated
on-chip RAM). Also, since outside the TEE the data are not secure there should be integrity checks
in order to detect modifications while outside the TEE. Secure booting is a significant feature of
a TEE, as it verifies an image before it is executed, and in order to be successful secure storage
of signatures and secure code for verification must be ensured. Therefore, the keys and signatures
are written into protected read-only memory called hardware root of trust, that usually is on-SoC
(System on chip) OTP (one-time-programmable) hardware that acts as anchor for the chain of trust.

Firmware updates is another issue that should be addressed. It is suggested that firmware
updates should be encrypted and authenticated as well as be installed over the air (OTA) via secure
protocol channels.

Finally, application whitelisting is a popular method for avoiding malware installed inside the
device. Gopal et al. [28] use a store of binary checksums collected at a clean device state to block
untrusted software execution and prevent its spreading, specifically of the Mirai malware in that
work. Malware detection in IoT devices can also be performed by static analysis of high level
features using multiple classifiers like RIPPER, SVM, neural networks and more [50].

4.2.3 Communication Channels

Inside an Internet of Things ecosystem devices communicate with the cloud and the same is true
about the individual users. The data exchanged within the communication channels can be sensitive
and private, thus eavesdropping and tampering must be avoided. Cryptography is the method that

30 Chapter 4. Defining an auditing methodology for Internet of Things

Table 4.2: Devices Asset Security Measure Checklist

Devices asset Security Measure Checklist

Physical Security

Inaccessibility To Devices, No Exposed Ports
Biometrics Access Control
Board Encapsulation/Coating
Secure Casing (Hidden/Complex Security Bits, Strong adhesives
or ultrasonic welding on assembly)
Layout Scrambling

Hardware Security Security Fuse Usage
Tampering Detectors, Randomness Against Side Channel Attacks
Jamming and DoS Avoidance through Secure Routing,
Frequency Hopping, Spectrum Spreading
TEE - Trusted Execution Environment
Secure Booting, HRoT (Hardware Root of Trust)

Software Security
Application Whitelisting
Static Analysis Malware Detection (AI Classifiers)
OTA Authenticated/Encrypted Firmware Updates

is widely used in order to avoid Man In The Middle attacks (MITM), where a malicious actor uses
network packet sniffers to inspect the data exchanged through the network between a victim node
and its communication target, in order to read sensitive data.

Transport Layer Security (TLS) is the standardized and globally accepted solution for secure
encrypted communication, descendant of the now deprecated Secure Sockets Layer (SSL). Speci-
fically, TLSv1.2 and TLSv1.3 are the standardized (defined in RFC5246 [59] and RFC8446 [60]
respectively) non-deprecated protocol versions used at the moment. The protocol consists of the
TLS Handshake Protocol which initiates the communication and the TLS Record Protocol. During
the TLS Handshake, the client initiates the communication and communicates the symmetric keys
and algorithms that will be used throughout the communication with the server. This handshake
part is encrypted asymmetrically, using public and private keys before communicating sensitive
information such as the symmetric key. After the symmetric cryptography parameters have been
deciced, the TLS Record Protocol takes over, and the secure client-server communication is now
achieved over symmetric cryptographic algorithms. Using TLS provides the client and the server
with privacy (confidentiality), authentication and integrity. TLSv1.3 provides faster and more
secure communication that 1.2, with more features such as Forward Secrecy, which ensures that
even if the symmetric key is found by a malicious actor, no past messages can be decrypted.

The use of cryptography, however, presents the engineers with a significant tradeoff in the
case of Internet of Things devices. Overheads in time and processing power happen during the
calculations for encrypting, decrypting and key generating and exchanging. Since IoT devices tend
to use fewer resources than the rest of Internet connected devices such as personal computers, a
lot of research has been conducted towards the finding of a TLS cipher suite that minimises that

4.2 Asset security Requirements and Countermeasures 31

overhead and makes the encryption of IoT communication feasible and fast. A TLS cipher suite
is comprised of an asymmetric algorithm used for key exchange, a symmetric bulk encryption
algorithm, a hashing algorithm and aMAC algorithm. Algorithms of the Authenticated Encryption
with Associated Data (AEAD) category combine the Bulk encryption with the MAC part in order
to provide a more robust and fast security solution, and are proposed heavily by the 1.3 version of
TLS.

Starting off with assymetric cryptographic algorithms, the main options have been the Diffie-
Hellman (DH) and RSA, with DH being used more and more nowadays as its ephemeral version,
the Ephemeral Diffie-Hellman (DHE)which provides Forward Secrecy. Elliptic curve cryptography
(ECC) is also preferred as it provides analogous security with smaller key sizes [27] (meaning less
resource usage) to non-ECC public key cryptography, and an indicative analogy is that an ECC
system with a 160-bit key is equivalent to a 1024-bit RSA key system. Therefore, ECDHE and
ECDSA should be the proposed key exchange and digital signature algorithms respectively. ECC
security and usefulness stems from pure algebra and elliptic curves such as:

y2 = x3 − 4x+ 5

Plotting this curve gives us the following plot:

Figure 4.2: Plot of the y2 = x3 − 4x+ 5 ellliptic curve

The reason that such curves are used for cryptographic reasons is the property, that if a line
connects two points of the curve, the line will pass through a third point. If we suggest that two
of these three points are the same point P, infinite lines can pass through, but the tangent line is
chosen and the third point is where the tangent line intercepts the curve. We are using a second
property of the elliptic curves which is the symmetry about the x-axis, in order to reflect that third
point and get its symmetrical across the x-axis. This is the result of the addition of the two first
points which happen to be both P, so the third point is 2P. Finding the line that passes through P
and 2P will give us another point, which if we reflect gives us 3P and so on. Using this approach
for N repetitions gives us a point Q = N*P which is used as a public key, and N is a 256-bit integer
which is used as a private key. The base point P and some other constraints are dependent on the
ECC algorithm used. Even if an adversary knows the curve used and the starting point additionally
to the public key, calculating the private key would take continuous additions which would be any
number between 0 and 2256, making it not practical in any way to bruteforce.

32 Chapter 4. Defining an auditing methodology for Internet of Things

(αʹ) 2 times addition of P (βʹ) 3 times addition of P

Figure 4.3: Point addition operations

Regarding block ciphers, algorithms of the AES (Advanced Encryption Standard) family are
proposed and specifically AEAD algorithms are beneficial to use as they are highly secure because
they encrypt and authenticate in one internal pass and difficult to implement wrongly, as opposed
to combining two algorithms (e.g. AES-CBC and HMAC). The two options that are generally
preferred are firstly AES-GCM and secondly a stream-based cipher combination of ChaCha20 and
Poly1305-AES. AES-CBC used to be a widely used cipher but its lack of speed (cannot be written
in parallel) and a vulnerability to padding oracle attacks [78] makes it a less favorable option.
128-bit keys are generally used in Internet of Things for their better performance comparing to
256-bit keys. Arunkumar et al. [10] propose ChaCha20-Poly1305 as the favorable option for smart
devices in TLSv1.3, but in TLSv1.2 AES-GCM is proposed, especially with the performance spike
in devices with specific instructions for hardware acceleration in AES rounds.
As far as hashing algorithms are concerned, the performance evaluation generally seems to have
minimal significance compared to the latencies and energy consumptions of asymmetric algorithms
for example. Nevertheless, Pereira et al. [54] on their performance evaluation of hashing algorithms
in IoT platforms and embedded devices, find Blake2 [12] to be more lightweight, energy efficient
and fast. Other lightweight hashing families of algorithms are Photon [31] and Quark [11].
Lastly, TLS provides the capability for two-way authentication. Servers carry certificates, most
of the time signed by a trusted third party organization called certificate authority (CA), in order
to be identifiable and trusted by the clients. The reverse can also happen, where a server can be
configured to accept only clients that are authenticated with their own certificates, signed also
by a trusted CA. This can be sometimes useful in the ecosystem of Internet of Things in order
to authenticate devices that send data to the IoT platform, and the standard format being used is
X.509. When TLS client certificates are not preferred and an Edge deployment is used instead of a
cloud one, the devices can be authenticated through the use of AI algorithms for proximity-based
or fingerprint-based authentication, where IGMM, Q-learning and neural networks are found to
produce highly accurate results [74, 33].

So far, we have assumed that the devices have the capabilities of establishing a TLS connection
with a remote server. In some low-resourced devices though this is not the case, and the minimum
threshold for TLS-based solutions is 10KBs of RAM and 100KBs of ROM. In these situations a

4.2 Asset security Requirements and Countermeasures 33

middleware is needed to provide the TLS-based communication for the constrained IoT devices [38].

Table 4.3: Communication Channels Asset Security Measure Checklist

Communication Channels asset Security Measure Checklist
TLS Cryptography Usecase Independent TCP over TLS, or Offloading to TLS gateway

TLS Characteristics

TLSv1.3 for Forward Secrecy, Efficient Cryptography, Else v.1.2
Assymetric: Elliptic-Curve Diffie Hellman Ephemeral (ECDHE)
Symmetric: AES-GCM, ChaCha20-Poly1305
Hashing: Blake2, Photon, Quark

Authentication
2-Way TLS Authentication with X.509 Certificates
AI-based Authentication (Proximity/Fingerprint Based)

4.2.4 Message Brokers

The message brokers are the entry points of IoT device data to the IoT platform, and they
usually work with multiple application layer protocols such as HTTP (REST), MQTT and CoAP.
TLS and X.509 certificates are the way to secure communication between devices and message
brokers, as discussed in the previous chapter, and that is the way to avoid Man In The middle
attacks. If mutual authentication is configured, this is the asset where devices are authenticated
and it is decided whether they can send information to the platform. If client authentication with
TLS certificates is not used, authentication with passwords or tokens can also be implemented in
this asset, where the broker might consult the backend for authentication purposes.
Another security measure that can be typically implemented in the asset of message brokers is
authorization and access control. Let’s take for example theMessage Queuing Telemetry Transport
(MQTT) protocol. MQTT works in a publish-subscribe fashion where topics are the main entity,
and data sent (published) to a certain topic are received by clients subscribed to that topic. By
defining policies, we can authorize certain IoT devices to publish in a certain topic, so that their
data are used by the intended subscribers, and vice versa so that subscribers ensure that the data they
use deviate from specific trusted publishers. Each Message Queue/Broker server usually provides
a certain way of defining access control and authorization policies, but the two most common
approaches are:

• Access Control Lists (ACL): In this case, every entity sending or receiving information has
an ACL entry associated with them, where permissions to services are defined, as well as
actions that can be performed within these services.

• Role-Based Access Control (RBAC): Role-based control works with roles. Every entity is
associatedwith one ormore roles, and each role has defined permissions and allowed actions.
Genetic Algorithms can be used for role-mining in order to automatically create roles and
define RBAC policies [20].

Lee et al. [40] also present some other authorization trends such as UCON (Usage control)

34 Chapter 4. Defining an auditing methodology for Internet of Things

which is used for continuously mutating authorization factors such as pay-per-view or metered
payment situations and CapBAC which uses tokens to associate users with specific capabilities.

Table 4.4: Message Brokers Asset Security Measure Checklist

Message Brokers asset Security Measure Checklist

Authentication
Client TLS Certificates
Authentication Tokens

Authorization

Access Control Lists (ACL)
Role-Based Access (RBAC)
Usage Control (UCON)
Capability Based Access Control (CapBAC)

4.2.5 Web Application Interfaces

Web applications usually are the asset that provides the biggest attack surface to potential
malicious actors. This is because they provide a wide range of functionalities triggered by user
actions, and they are fully visible to the outer world. There are numerous ways in which a hacker
can approach harming a web application, and there are also various well-functioning tools that help
them to do so.
The first obvious step, as discussed previously, is encrypting the communication of users and
frontend. Users perform actions with sensitive data including logging in using their credentials,
thus the web application should not be vulnerable to eavesdropping. This is achieved through
TLS certificates (of version 1.2 or 1.3) and enforcement of the HTTPS protocol to protect the
communication. The certificate’s validity should also be ensured, and it should be renewed before
its expiration dates, when someone else could buy the domain name and perform a domain takeover.
In order to build a general security mindset about developing web applications, a developer should
be aware of at least themost popular web application risks, and know how to protect systems against
them. OWASP Top 10 is a widely known report listing the top vulnerabilities in web applications in
order to provide guidance for developers, and it is important to inspect these risks, most of whom
have been persistent threats for a lot of years, and recommend ways of tackling them and making
the web application more secure.
Injection attacks can take many forms and they essentially refer to commands being passed to
an interpreter or another program, where part of the commands is derived from user input. SQL,
NoSQL, LDAP and OS injections all belong to this category. In order to create an image for it,
let’s assume a simple login form containing a username and a password field, with these data being
stored in a MySQL database. Assuming that the input value for the username was used as input
into a back end query to the database, for example:

1 ”SELECT * FROM user_table WHERE username = ” + username + ”;”

a malicious user could enter the following input as username:

1 user; DROP TABLE user_table

4.2 Asset security Requirements and Countermeasures 35

Using the input username in the query would make MySQL perform a select operation and then
drop the whole users table. The same problem can appear in back end functions that perform local
operating system commands (in a local shell). User input validation (making sure it conforms to
the available options and is consistent with the expectations) and sanitation (modifying the input in
order to be valid) is needed to constrain the choices the user has in the data he enters. White-listing
of characters/length/format is needed to be enforced in the input. For example, a username should
not contain symbols such as ’;’ or spaces. Anothermeasure, specific in the case of SQL injections, is
the use of parameters instead of pasting the input inside the query. Parameters are handled internally
as literal values instead of executable code. Also, stored procedures are preferred to dynamic SQL
whenever there is the choice between the two, so that business logic is not mixed with the database
logic. Lastly, the database user used for the queries should be created with a least privilege logic,
to avoid causing damage to other assets in the case of a successful SQL injection. A popular tool
to check for SQL injection in a particular form is SQLMap.

Broken authentication is another common issue that deserves amore focused approach. Starting
from login and register procedures, a strong password policy should be enforced by the software,
and error messages on login failure should not provide information to adversaries that would
allow user enumeration. Brute-forcing username-password combinations in these forms should
also be taken into consideration. Somemeasures to avoid brute-force automation include temporary
account lockouts after consecutive login failures (usually 5), captchas (simple puzzles for humans
that cannot be automated from a machine) or 2-factor authentication methods. Also, robust pass-
word change or reset procedures should be in place, so that a malicious actor cannot change a
victim’s password and take over. Another major factor in authentication is robust session and
authentication token management. Tokens and session ids are ’secret’ strings with random charac-
ters that identify a user and a session and enable authenticated access to resources and functionali-
ties. Such strings should be created with true random number generators, not pseudo random ones,
as with pseudo random generators one could be able to predict future values, and therefore access
information using another user’s authentication token. They should also have adequate length, an
expiration date, and should be invalidated after the end of a session so that they are not reusable by
someone else. Browser caching of these fields should also be avoided using Cache-Control headers
in the HTTP replies and associated fields such as no-cache, no-store, max-age or private.

In the same fashion, access control should be implemented correctly and carefully so that users
only have access to authorized content. The authorization is mostly implemented with middleware
software between function calls that acknowledges whether the user is authorised to access the
functionality after the middleware. This decision is based on whitelisting of users or user roles for
specific content.

Cross-site Scripting (XSS) is one of the most common exploitations happening in web appli-
cations, and it occurs when malicious actors enter scripts in user input which are not correctly
validated and then take part into the generation of an output. When another user renders the page
containing that output, the user’s browser will execute these scripts and cause malicious behaviour.
Two kinds of XSS exist depending on the persistence of the data where the malicious script is
inserted, reflected XSS for non persistent data like links and stored XSS (or persistent) for data

36 Chapter 4. Defining an auditing methodology for Internet of Things

that are stored in databases or source code. The identification of such vulnerabilities is based into
identifying these entrypoints of user input and applying validation and escaping when this input
is going to be used into HTML, CSS, Javascript and generally any interpretable content. URL
queries can also be used as an entry point to enter malicious scripts so they should be escaped
as well. Content-type headers should also be setup appropriately for the expected input type so
that the browser does not misunderstand the content and execute malicious input. For example a
JSON input should have set application/json as the Content-type Header and not text/html. Content
Security Policy (CSP) is also a good but relatively complex measure to avoid XSS vulerabilities,
which is a special Header instructing the browser to execute or render resources from whitelisted
sources. Lastly, It is suggested to use the HttpOnly flag on cookies, which instructs the browser to
not let client-side scripts read the value of cookies.

Moving on to XXEs, eXternal XML Entities is a vulnerability found mainly to old or misconfi-
gured XML processors, where they evaluate XML entities from external sources which can be used
maliciously to perfrom internal actions such as file reading, internal port scanning or remote code
execution.

Errors are also a major factor that should be handled appropriately by developers. A malicious
actor trying to break the application should not be able to see error messages that could potentially
reveal information about the implementation of the app. Thus, it is important that debugging and
error information are not logged in production web applications, and generic error messages like
”404 Not Found” are shown to the users in the case of a failed state.

Common updates and inspection of the potential existence of known vulnerabilities in these
components are a way to evaluate the secure state of the product. Frequent scanning for vulner-
abilities is also a good measure. Web applications are usually massive, making it hard to track
security issues in its entirety. Thankfully security tools for web application security testing are
in abundance, a lot of them being Open Source and having the support of the developer and
research community. Arachni, Iron Wasp, OWASP ZAP, W3af, Wapiti and Wfuzz are well known
vulnerability scanners and fuzzers that can be used to assess the security of a web application,
testing for a huge variety of potential vulnerabilities includingXSSes, XXEs, Privilege Escalations,
SQL injections, Information disclosure, error disclosure and several more insecure factors. Finally,
web application firewalls can help mitigate lots of attacks through a mixture of the traditional
signature-based approach and supervised or unsupervised Machine Learning techniques to handle
unknown injection attacks [29, 43].

4.2.6 Database Systems

Databases are the asset that holds the majority of the information of the IoT platform as well
as the functionality to access them. The information stored inside should have their confidentiality
and integrity protected. Starting with the SQL injection vulnerability that was mentioned in the web
application asset chapter, stored procedures was proposed as a way to limit outer effect to internal
queries to the database. Access control is another way to limit the capabilities of queries that could
potentially be malicious. The user that makes the queries should not be a root user, but should only

4.2 Asset security Requirements and Countermeasures 37

Table 4.5: Web Application Asset Security Measure Checklist

Web Application asset Security Measure Checklist

Injection Attacks
(SQLi, OSi, XSS etc,)

Input Validation, Sanitization, Character Escaping
Trusted third-party Libraries or frameworks
Adequate Content-Type Headers

Authentication

Strong Password Policies, Robust password
change procedures
Bruteforcing protection
Truly random auth tokens, adequately lengthy
with expiration dates
No caching of sensitive information e.g. tokens

Access Control Authorized access to content

Information-Disclosure
Non-Information Exposing Error Messages
Non-Exposure of Sensitive assets

Vulnerability Assessment Web-Application Vulnerability testing tools
Intrusion Detection/Prevention Hybrid Web Application Firewalls (WAFs)

have authorization for specific information and procedures. Furthermore, the databases should not
be directly accessible from the Internet. In that case, remote malicious actors would be able to
gain information such as the database’s version or port, as well as send payloads to test penetrating
them.
To avoid losing data from accidental or malicious behaviour, often backups of the database should
be taken, and be stored in separate storage space. In addition, data, and essentially sensitive data
should be protected even in the incident of an information leakage. For that reason, credential
information such as passwords should be hashed, and the authentication should be performed by
comparing the hash of the password given by the login form with the password hash located in
the database, so that even if the case that this hash is leaked, the malicious actor cannot discover
the original password and access the victim’s account without first having to bruteforce for the
original password. Additionally, the whole database could be encrypted though that does comewith
a trade-off in the latency (and potential insecurity) that the middleware application that encrypts
and decrypts the data introduces, especially when the data are not encrypted uniformly with the
same key, but with a different key for each row for example.

Cryptographic key management is also an issue that should be tackled in the database asset
level. Private, Symmetric and Hash keys that are used to encrypt, decrypt or digitally sign data
need to be kept on a secure storage where they are accessed only by authenticated users, mostly
developers. A leak of these keys could be catastrophic as the adversary would potentially be able
to read sensitive information in plain text. First and foremost, these keys should not be kept in
the database with the data they protect, and if possible not even in the same server. In the case
they belong in the same server, they should be given appropriate read-write-execute permissions.
A solution heavily proposed, although expensive, are Hardware Security Modules (HSMs) which

38 Chapter 4. Defining an auditing methodology for Internet of Things

are hardware solutions for keeping keys and performing cryptographic functionalities for the server
and sending back to it encrypted or decrypted data.

Table 4.6: Database Systems Asset Security Measure Checklist

Databases asset Security Measure Checklist

SQL Injection Protection
Stored Procedures
Parameterized Queries
Non-Root Database User for Queries

Database System Protection Non-Exposure to the Internet

Data Protection
Hashed Sensitive Data Fields
Encrypted Database (Optional - Tradeoff)
Regular Backups

Key Management
No Key Storage where Data are stored
Access Control where Keys are stored
Hardware Security Modules (Optional - Tradeoff)

4.2.7 Internet of Things Services

Every Internet of Things platforms provides applications and services that process the data
incoming from the IoT devices and forward the results to users, IoT devices or other applications
in the case of a pipeline. A range of preset applications is usually provided by the platform to
the users, but most of the commercial platforms also provide a capability for users to create their
own applications, deploy them in the cloud platform, use them or share them with the platform’s
community. As with any user input and especially executable content in this case, this poses a
security risk for the platform and should be carefully handled and implemented as a service.

Whenever the execution of a process needs to be controlled, there is a need for isolated environ-
ments, and the solution is usually through virtualized environments. These types of environments
are capable of running untrusted programs or opening untrusted files that could potentially be
malicious inside a controlled environment without directly affecting the server in which they reside.
The main forms of virtualization are virtual machines and containers, and their differences lie in
the implementation level.

Virtual Machines implement full virtualization to create different machine instances using a
special handler software called Hypervisor. The hypervisor stands above the OS privilege level
and has the ability to provide safe virtual hardware resources for the different operating systems
that it controls, isolating them from the main host. Virtual Machines are great for creating isolated
production level servers on the same host but they can be costly in storage and time for temporary
spawning of untrusted user-created programs.

Containers stem fromOperating System level virtualizationwheremultiple isolated user-spaces
are allowed towork by theOS. Containers produce significantly less overhead than virtualmachines

4.2 Asset security Requirements and Countermeasures 39

Figure 4.4: Difference between Containers and Virtual Machines, picture from ’Understanding and
Hardening Linux Containers’ [30]

in time and storage, they are fast to deploy and kill, and they provide a customizable isolated
environment and that is the main reason why they are popular for application deployment, with
the main container platforms being Docker, LinuxContainer (LXC).Containers usually make use
of Linux kernel’s features to become more secure. Namespaces allow the container to have a
limited view on the resources providing isolation in different aspects such as Filesystem (MNT
Namespace), networking (NET Namespace) and processes (PID Namespace). Furthermore, the
cgroups utility is used to hide system limits from containers in order to provide limited CPU,
memory and other resources to the containers. Seccomp (Secure computing) is another feature
of the Linux kernel being used in order to limit the system calls that the container can perform,
and the user can define seccomp profile configurations in order to restrict these capabilities of the
container.

The most popular of these environments are developed with security in mind in order to protect
the host system, but the code that runs inside the containers can attempt a plethora of malicious
activities like internal network scanning or privilege escalation inside the container. That is why
it is important to go a couple steps further in order to secure the untrusted code execution. The
first and always relevant countermeasure is keeping the host and the containers up-to-date with
relevant security features and options enabled. Also, since containers have direct access to the
kernel compared to VMs that have a virtual kernel between, Upadhya et al. [70] propose to run
containers inside a VM in order to add the virtual kernel layer of security in the case of a container
escape. Other measures applied to make this process more secure are running the programs created
by the user as non-root andwith least privileges, and in secureminimal container images containing
just the binaries that the program needs in order to function. Common unix tools like shells,
package managers, compilers or network tools like curl, netcat and nmap should not be included
inside the container that will run the untrusted code. Also, restricted versions of programming
languages are usually employed in these situations in order to avoid language-specific capabilities
such as execution of shell commands, and on compilation of the untrusted code relevant security

40 Chapter 4. Defining an auditing methodology for Internet of Things

features should be enabled. The network is also a major security issue. If the program does not
use internet resources, or programs cannot use the internet as a design choice of the platform, then
the networking capabilities can easily be removed when initiating the container. Otherwise, some
measures should be taken so that the container cannot communicate with other containers in the
network unless explicitly stated. Lastly, in some cases the spawned services might attempt to starve
the host of resources by either looping or starving for prolonged timeframes. Thus there should be
a time and resource (CPU, Memory, Storage) quota on the spawned containers in order to avoid
this kind of Denial Of Service situation.

Table 4.7: IoT Cloud Services Asset Security Measure Checklist

IoT Cloud Services asset Security Measure Checklist

Container Configuration

Containers spawned in VM for Virtual Kernel
Seccomp profiling if applicable
Strict Resource Quotas
Only essential internal networking (No networking if not needed)

Untrusted Code Execution

Non-Root, Least Priviledge Container User
Minimal Container Images
Installed only needed Libraries/Binaries/Tools
Restricted Programming Language Support

4.2.8 Backend Servers

Backend is the asset where the functionality of the different parts of the IoT platform is or-
chestrated. The backend is the asset that receives the data from the brokers and stores them into
databases, provides and receives data to the IoT services and communicates with the Frontend
Web Applications to serve the users’ needs. The backend might also provide functionality directly
to the Internet, mostly through Application Programming Interfaces (APIs). Web application and
Database Security have already been discussed in their respective sub chapters, so here the focus
is to the APIs used either by other assets or external users.
First, the public APIs that are exposed to the Internet should be protected with encryption (HTTPS
if we are talking for the popular REST API paradigm) in order to avoid eavesdropping. Also,
authentication should be enforced in order to use the API. For the authentication the most common
choice is API keys or tokens that are created by the user inside the web application. Sometimes
the user-password pair of the webapp are sent inside the request but this should be avoided as a
leak of them would compromise the whole account and not only the API functionality, while in
the case of a leak of the API key, the victim could just invalidate the old key and create a new
one. Authorization should also be kept in mind in this level. As with functionalities that users use
from a Web frontend application, the APIs must also ensure that the user only accesses and uses
the content he is authorized for.
The rate of the requests is also a factor that needs to be accounted for in order to avoid DOS

4.2 Asset security Requirements and Countermeasures 41

situations and make the API scalable. Rate limiting can be implemented in many ways, with the
most popular being putting the request in message queues and process each one in a specific rate,
or throttling of the user’s connection (bandwidth limiting or drop) upon detection of surpassing the
request rate.
Input parameter validation should be performed in the API requests as with any entry point, using
validation rules to enforce that the input is consistent with the API expectations. In the event of
an invalid request, the request should be denied and a reply explaining the invalidity should be
returned, without involving technical characteristics of the validation mechanism. The validation
could be implemented as a middleware receiving the requests at an API gateway which could be
used for other reasons as well, such as monitoring API traffic and applying machine learning and
AI to find deviations from normal behaviour and flag possible attack attempts.

Finally, the backend code is typically the platform’smost lengthy and important part of software.
Consequently, the quality of the code and the use of secure practices should be enforced. Static
Analysis tools are essentially tools that parse code and search for insecure functions or practices
in order to find vulnerabilities and security holes in the software. It is proposed that such tools are
run, often in conjuction to each other, in order to ensure code quality, and even better they should
be added into the SDLC as an extra step in testing before the deployment of a new version.

Table 4.8: Backend Asset Security Measure Checklist

Backend Server asset Security Measure Checklist

API security

Encryption on API requests (HTTPS)
Authentication with API tokens
Authorization
Rate Limiting in API requests
API request Validation and Sanitization
Intrusion Detection on API requests (Heuristic and AI based)
Regular Static Analysis of Code

4.2.9 Cloud/Edge Infrastructure

The last asset that is worthy of concern security-wise is the cloud/edge Infrastructure. The
Internet of Things platforms are deployed to cloud infrastructure in order to become available
globally to IoT devices and users and enjoy the extra layer of security surrounding them. The
stake holders for this asset are the cloud (or edge) space providers (CSPs) which are typically
different than the platform creators. This asset is mostly concerned with measures that raise the
IoT platform’s safety, availability and resiliency against cyber attacks.
Starting from physical security, the cloud/edge infrastructure is expected to have strict access
control with multi factor authentication to the machines and other assets, and a great resiliency to
physical disasters like fire, lightning or blackouts. Camera surveillance is also a significant factor to
physical security in order to protect the assets and control the access to them. Device and network

42 Chapter 4. Defining an auditing methodology for Internet of Things

monitoring is a must for cloud providers. Everything, from machine temperature, CPU, storage
and memory usage to network traffic should be monitored and alerts should be implemented in
the case that the values reported exceed expected behaviour. In case of a problem in the provider’s
side, the problem should be resolved as quickly as possible since availability should be kept to a
high standard. However, if the problem is from the client’s side, the support should communicate
and collaborate with the platform’s support to resolve the issue. Strict control should also happen
in the application level. Since the deployments of cloud platforms as well as services like e-mails
and DNS tend to be controlled from management applications used by the cloud provider stuff, the
access control to the IoT platform’s source code and settings is only as secure as the cloud provider’s
access control. Additionally, the CSP should be integral and confidential with the customer’s data,
credentials and communication.
On the technical side, in the case of production level platforms, deployment to dedicated machines
should be chosen above virtual machines. That measure is significant in order to avoid co-existence
with other VMs in the same machine, that could potentially attempt to harm the platform’s VM or
extract information through side-channel attacks. In the case of VMs on the same host, the CSP
should avoid interconnection between the VMs and provide isolation of the processes, as well as
well-defined resource limits so that one VM cannot starve some of the host’s other VMs.
Cyberthreat detection is also a responsibility of the CSP in order to provide appropriate security of
the customers but also its own assets. Multi-technology systems are deployed in strategic network
locations for this purpose, such as Network Intrusion Detection systems (NIDS) and Network
Intrusion Prevention Systems (NIPS) that essentially combine the NIDS real-time threat detection
with linkage to firewall rules in order to block those threats. These systems are based on anomaly
detection techniques to detect anomalies and deviations from normal behaviour and block the
untrusted data packets before they reach the hosts. This approach allows not only protection against
known attacks, which could very well be avoided by the firewall rules, but also against unknown
attacks in some cases. A lot of machine learning techniques have been proved to perform well in
intrusion detection including Neural Networks (CNNs or MLPs), SVMs, Naive Bayes, Decision
Trees and Logistic Regression [16].

Finally, inside the machine itself, where the customer is responsible for the system’s security
there are some more measures that could be taken into consideration. Using only the services
needed, keeping them up to date and having a strict control over the services that are exposed to
network ports is essential in order to reduce the attack surface. Often security scanning for viruses,
malware or rootkits inside the system is also encouraged through Antivirus systems. However, the
customer should be careful and monitor the overhead added from these host or application based
protection mechanisms, so that the platform’s availability is not compromised.

4.2 Asset security Requirements and Countermeasures 43

Table 4.9: Cloud/Edge Infrastructure Asset Security Measure Checklist

Cloud Infrastructure Asset Security Measure Checklist

Physical Security

Multi Factor Authentication Access Control (Biometrics)
Camera Surveillance
Well equiped server rooms
Natural Disaster Resilience

Client Relationships
Integrity, Confidentiality with client data
Secure client management platforms
Client asset monitoring and communicated problem resolution

Hosting Management
Vm isolation and resource limits
Suggestion for dedicated machines in production

Cyberattack resilience
Intrusion prevention systems (IDS, Firewalls)
Web Application Firewalls (WAFs)
Antivirus systems inside the machine

Chapter 5

Case of the SYNAISTHISI platform

The fourth chapter was dedicated to defining a structured methodology of decomposing an
Internet of Things ecosystem, identifying the assets that assemble it and define baseline security
requirements andmesaures for each of these assets. An emphasis is given on the assets that compose
the IoT platform of the ecosystem, and in this chapter the methodology is put on the test in order
to secure a real internet of things platform called SYNAISTHISI [3, 55].

5.1 Methodology application on SYNAISTHISI Platform

Firstly, it is important to describe SYNAISTHISI from a higher level perspective before at-
tempting to assess its security posture. SYNAISTHISI is a research IoT platform developed by
NCSR ‘Demokritos’, and is a project in an alpha release stage at the time of writing this thesis.
The platform’s strong points are two key features, its support of multiple application layer com-
munication protocols that make it suitable for a plethora of different internet of things devices, and
its capability of the users creating their own standalone or pipelined services to handle and apply
logic to the IoT devices’ data. The platform is docker-based making it easy and fast to deploy
and it combines various technologies in order to achieve its purposes. In this chapter, we will
initially identify the assets of SYNAISTHISI that correspond to the asset taxonomy of our defined
methodology. Then, we will focus on each of the chapter assess security gaps and security solutions
that are already implemented in the platform. Lastly, we will propose countermeasures to solve any
identified insecure factor of the platform, and wherever possible implement the solution program-
matically.

5.1.1 Identifying the Assets

Starting off with our methodology, we have to decompose SYNAISTHISI into assets that
correspond to our asset taxonomy. Since SYNAISTHISI is an IoT platform we will not address
the assets regarding Users (and human factor in general), Devices and Deployment Infrastructure
(Cloud/Edge). Thus, we have to decompose the platform into the message brokers, the web inter-
faces, the backend, the databases, the IoT services/applications and the communication channels.
Before we delve into it, however, we have to present some technical characteristics first. The

45

46 Chapter 5. Case of the SYNAISTHISI platform

evaluated version of the platform is not a finished product, and is currently on Alpha version. In the
version we evaluate, the platform has its different components organized into docker containers,
and deployed using the docker-compose command.

Firstly, we must identify the web user interfaces asset, meaning the web applications that are
exposed to the internet, viewed by and offer multiple functionalities to the users of the platform.
The platform’s main web portal and graphical user interface is an Angular frontend application
connected to a backend Python Flask application, exposed at port 80 of the server where the
platform is deployed. Through this portal, the user can login and register for an account, as well as
perform a variety of actions. These actions include service creation and management of any type,
including S-type (Sensing) services, P-type (Processing) services and A-type (Actuating) services,
depending on the service’s functionality. An Nginx web server is the forefront of this app, acting as
a reverse proxy, receiving the HTTP requests for the GUI or authentication/authorization requests
and forwarding them to internal routes. The second web interface exposed to users is a Node-RED
interface, a flow editor that allows users to pipeline flows (services) in order to create complex
processing logic for their device’s data.

Moving on to the Message Brokers asset, which is the main entry point for device data, there
are a variety of solutions used by the platform for this purpose. One of the platform’s main goals is
interoperability, meaning retaining the ability to connect and use data from a variety of different IoT
devices or other third party platforms using different application layer communication protocols
(ALPs). Consequently, three different open source applications are used, specifically the popular
RabbitMQ message broker, Eclipse Ponte and Eclipse OM2M. RabbitMQ exposes port 5672 for
the AMQP protocol, OM2M exposes port 8080 for the OneM2M protocol and Ponte exposes three
ports for protocols, 3000 for HTTP REST andWebsockets, 5683 for CoAP and 1883 for theMQTT
protocol. The Ponte external MQTT endpoint is internally bridged with the MQTT endpoint of
RabbitMQ, as well as with OM2M in order to translate the messages to other protocols.

Regarding databases, the platform uses two different systems. The first and most useful one
is a PostgreSQL instance, where most information reside, organized into three major components
referring to User data, Topic data and Service data. This means that this instance holds all the
information about the users, the data coming from or being delivered to devices or other forms of
output (topics), and logic that the users either implement by themselves or are authorized to use
from other users. The second data storage system incorporated by the platform is RDF4J, a Java-
based framework (runs using an Apache Tomcat web-server in the SYNAISTHISI case) used for
storing and querying semantics data using SPARQL endpoints. The ontologies stored in the RDF
repository enable the back end to perform a variety of tasks including semantically annotating
internet of things resources.

The back-end asset that orchestrates the functionality and provides the API functionality of the
platform is a Python Flask application. Apart from the interconnection with the two data-stores
(PostgreSQL, RDF4J), the back end is interconnected with the rest of the assets and the Internet
through the Nginx gateway mentioned before. Since the back end has a publicly exposed API, the
Nginx web server acts as an API gateway which can be useful in regard to security configurations
in order to differentiate the business logic (back end) with the security logic (Nginx) as better as

5.2 Security Feature Assessment and Extensions 47

possible.
The IoT services/applications asset that SYNAISTHISI offers to the platform users is topic-

based. Each service is associated with at least one topic either input topic or output topic, which
typically means that a service must at least produce functionality on some input, or provide output
that another topic or an actuation subscriber will use, depending on the authorization fields in the
Database. The platform provides the opportunity for using any type of language for the source code
of the service, as the user uploads along with the source code, a Dockerfile containing information
regarding the environment that the application will run on. Using this Dockerfile, a container is
spawned and put in the topic pipeline depending on the configurations made.

Finally, in the communication channels asset in our methodology (asset number 3), we em-
phasized heavily into cryptography and TLS for secure communication. The platform, still in
development, has no cryptographic techniques implemented for the security of communications
at the time of writing this work. This includes the two GUI endpoints as well as the Back-end API
and the message broker endpoints.

Figure 5.1: Asset Taxonomy of SYNAISTHISI based on the diagram in [3]

5.2 Security Feature Assessment and Extensions

After having decomposed the SYNAISTHISI platform into the parts from our methodology we
are ready to assess their security posture, find security gaps and applied security controls. Using
the asset security requirements defined in the fourth chapter, we focus on each asset and evaluate
the security features that the chosen software solutions and custom software implementations offer,

48 Chapter 5. Case of the SYNAISTHISI platform

as well as the requirements that are not satisfied yet. For the identified insecure factors, this thesis
provides propositions and code/configuration contributions.

5.2.1 Security posture of the Communication Channels

Starting off with the communication channels (outlined with blue in the figure 5.2), we must
address the communication between users or devices and the endpoints of the platforms that are
exposed to the internet. These endpoints include the Nginx endpoint in port 80 which is the gateway
for the main web GUI and API, the Node-RED instance at port 1880 and the message brokers at
ports 1883 (MQTT), 3000 (HTTP REST, Websockets), 5672 (AMQP), 5683 (CoAP) and 8080
(OneM2M). As mentioned in the respective subsection in our methodology in chapter 4, these
channels of communication should be resilient against eavesdropping and injection through crypto-
graphy and specifically TLS. At the current version of the platform none of these endpoints is
secured using TLS or another type of cryptography, consequently a malicious actor can sniff
sensitive information like usernames and passwords from these particular channels. In order to
prove the vulnerability more clearly, we will try authenticate ourselves by sending a POST request
to /mqtt/auth to use the API provided by the platform.

Figure 5.2: API not protected with TLS : Wireshark sniffing

In this situation, using the open source network protocol analysis and sniffing tool Wireshark
(www.wireshark.org), we are able to read sensitive credentials in plain text by sniffing on the
communication between the victim and theweb portal. The communications exposed to the internet
are in dire need of encryption using TLS.

For this work we configured the use of TLS in Nginx, to protect the web portal and the API
provided by the Back end, to the Node-RED GUI as credentials are also used there, and one of
the brokers - Ponte (MQTT). Needless to say, all of the endpoints need appropriate encryption
measures to be considered resilient to eavesdroppers. Also, for experimentation purposes, the
TLS certificates are self signed which means that we are the certificate authorities that verify the
certificates. Computer systems have hardcoded trusted CAs like Sectigo or DigiCert which means
that self-signed certificates are deemed insecure from browsers or command line tools like curl.

https://www.wireshark.org/

5.2 Security Feature Assessment and Extensions 49

For the purposes of this work, self-signed certificates are a quick and easy way to implement and
test TLS security but in a production environment trusted certificates must be used.

For Nginx configurations, firstly port 443 needs to be exposed for HTTPS communications.
Thus in docker-compose.yml, the line− ‘ ‘ 443 :443 ’ ’ was added in order to expose port 443
of the Nginx container and bind it to the 443 port of the host server. In the Dockerfile specifying
information about the deployment of the Nginx container, we add the following lines that use
openSSL to create a private key and a certificate which are put in a specific directory where Nginx
can locate them and then OpenSSL utility is removed from the container. We use a 4096 bit RSA
key to create a certificate with the information of NCSR ‘Demokritos’ and an expiration date of
ten years from the issuing of the certificate.

1 RUN mkdir /etc/ssl
2 RUN apt-get update
3 RUN apt-get -y install openssl
4 RUN openssl req -subj ’/C=GR/ST=Athens/L=AgiaParaskevi/O=

NCSR Demokritos/OU=IIT/CN=localhost’ -x509 -nodes -days
3650 -newkey rsa:4096 -keyout /etc/ssl/key.key -out /etc/
ssl/cert.crt

5 RUN yes | apt-get remove openssl

Finally, configurations were added for the use of TLS into the configuration file of the Nginx server.
Port 80 and HTTP redirects with status 301 to HTTPS in port 443. For HTTPS the certificate and
key we created before are used and the accepted TLS versions are the non-deprecated versions 1.2
and 1.3.

1 server {
2 listen 80;
3 return 301 https://$host$request_uri;
4 }
5

6 server {
7 listen 443 ssl;
8 ssl_certificate /etc/ssl/cert.crt;
9 ssl_certificate_key /etc/ssl/key.key;
10 ssl_protocols TLSv1.2 TLSv1.3;
11 server_name localhost;
12 ...

For theNode-RED endpoint in port 1880, the same procedurewas followed regarding theDockerfile
where the key and certificate are being created and put into a certain directory where Node-Red
can access and use them. The configurations for the Node-Red server in order to use TLS were put
inside the settings.js file.

1 ...

50 Chapter 5. Case of the SYNAISTHISI platform

2 https: {
3 key: fs.readFileSync(’/etc/ssl/key.key’),
4 cert: fs.readFileSync(’/etc/ssl/cert.crt’)
5 },
6

7 // The following property can be used to cause insecure HTTP
connections to

8 // be redirected to HTTPS.
9 requireHttps: true,
10 ...

Last but not least, brokers must also be secured since every message carries user credentials as
well as potentially sensitivemessages. The Ponte platform has the endpoints forMQTT,WebSockets
and CoAP, and internally MQTT is relayed to the RabbitMQ broker via the port 1885 of the broker
which is not exposed to the public. For this work we secure MQTT and enable the use of MQTTS,
which is the version of MQTT that makes use of TLS encryption. We first create a certificate and
a private key, which are copied inside the container during the container build, and we add the
following configurations so that Ponte is listening to MQTTS connections at its default port, 8883.

1 ...
2 http: {...},
3 coap: {...},
4 mqtt: {
5 secure : {
6 keyPath:”/key.key”,
7 certPath:”/cert.crt”
8 },
9 ...
10 }
11 ...

This enables the connection with the endpoint through TLS, as well as the authentication
and authorization of the client sending data, thus sensitive information are secured during the
communication. It is important to also note that since components are interconnected, changing
an endpoint to use encryption, means that each code requesting content from these endpoints is
also changed to use the HTTPS - MQTTS protocol for this communication. For a proof of concept
that validates the security applied by TLS in the communication channels, we can use Wireshark
like before. An API POST request is sent to the route /mqtt/auth in order to authenticate ourselves.
This time, however, the request is encrypted since the Nginx web server that acts as a Back end
API gateway uses TLS, thus we cannot read the sensitive credentials as seen in figure 5.3.

5.2 Security Feature Assessment and Extensions 51

Figure 5.3: API protected with TLS : Wireshark sniffing

5.2.2 Security posture of the Message Brokers

The communication channels asset’s proposition and implementation of TLS solves the major
issue of confidentiality and protection from tampering. The communication between devices and
brokers is now encrypted and secret from third parties eavesdropping.

Authentication, however, is a factor not implemented with a security mindset in this version of
the platform. The PUB/SUB mechanism that the platform uses authenticates the devices by using
the username-password credential pair inside the request that they send. A simple example of a
PUB message to an existing topic is the following, using mosquitto client targeting the MQTT
endpoint.

1 mosquitto_pub -h <hostIP> -p 1883 -t <topic> -u <username> -P <
password> -i <id> -m ”sample message”

It is easily noticeable that the user account credentials are included in every pub/sub request to the
brokers for every device sending to or receiving data from the platform. For a high level user such
as an organization using a plethora of IoT devices, this is a great vulnerability, as the compromise
of a single device compromises the whole user account of the organization. As we proposed in the
respective subchapter of our methodology, the solution to that can vary, but the two solutions we
provide are either tokens, different for every device that will be included into every request and
will identify the device, or two-way identification within TLS where every device should possess
a TLS client certificate either issued by the platform or trusted by the platform. The latter is the
most robust solution if implemented correctly, but it is also associated with a number of caveats
like the mechanism through which the user registers a new device, and CA management if the
design choice renders the platform as the issuer of special certificates for device authentication.
The first solution is more easily implementable and usable in the case of e.g. weak IoT devices
such as sensors where the configuration and use of a client TLS certificate introduces yet another
level of complexity to achieve.

Firstly, we should perform a simple example to see how a device’s pub/sub request works with
the platform. For this reason we execute an example provided by the platform developers, which
includes two topics and one processing service. The input topic is called camera_stream, and is

52 Chapter 5. Case of the SYNAISTHISI platform

an image coming from a webcam, and the output topic called faces_count is an integer describing
the number of people that the processing service recognises in the picture using computer vision.
Both of the python scripts that interact with the topics use user credentials:

1 python3 sType.py --username sevangelou --p 123456 --
output_topics /camera_stream --delay 5 --camera_index 0

2 python3 aType.py --username sevangelou --p 123456 --input_topics
/faces_count

This example runs well, and produces the following logs and results:

(αʹ) Ponte and Nginx Logs

(βʹ) aType script logs, results from faces_count topic

Figure 5.4: Face Recognition SPA example

1. Client does the PUB/SUB request containing credentials.

2. Ponte receives the request.

3. Ponte asks Flask API for authentication of the user.

4. On successful authentication, Ponte asks Flask API for authorization of the user against the
topic.

5. On successful authorization, Ponte forwards the request to RabbitMQ, and moves on.

5.2 Security Feature Assessment and Extensions 53

We need to (a) provide a way for the user to create new device tokens and (b) authorize
his devices using them. So, first, an HTTP REST endpoint was implemented , where a user can
POST with his credentials in order to create a new device token to authenticate his devices. These
tokens are created when the endpoint receives the request for the token generation and after firstly
authenticating the user, by using the SHA1 hashing algorithm into the combined string of a time-
stamp using time() from the time module and a truly random float number using SystemRandom()
from the random module. Then, the script appends the token inside the database’s users table, so
that the user can authenticate his devices using these tokens. Specifically, the code that generates
and appends the token in the database is the following:

1 class MosquittoDevToken(Resource):
2 ’’’path : /mqtt/devtoken’’’
3 def post(self):
4 ’’’
5 @param1: ’username’ (user to authenticate)
6 @param2: ’password’ (user password or token)
7 ’’’
8 auth_parser = reqparse.RequestParser()
9 auth_parser.add_argument(’username’, type=str)
10 auth_parser.add_argument(’password’, type=str)
11 auth_data = auth_parser.parse_args()
12 mqtt_user = UserModel.find_by_username(auth_data.

username)
13 if mqtt_user:
14 if mqtt_user.authenticate(auth_data.password):
15 time_now = str(time.time())
16 truly_random = str(random.SystemRandom().random

())
17 hash_object = hashlib.sha1((time_now+

truly_random).encode())
18 unique_dev_code = hash_object.hexdigest()
19 mqtt_user.append_token(unique_dev_code)
20 return unique_dev_code, 200
21 return None, 403

Internally, the API endpoint /mqtt/devtoken is used to create the code, append it in the token list
inside the database and return it to the user, and the API endpoint /mqtt/devtoken/auth is used to
authenticate the device using this token, which is only usable from Ponte, and cannot be used for
logging into the portal or the Node-RED utility. The latter endpoint makes use of the following
authentication function that checks both if the password given is the user password and if it is a
token included to the user’s list of tokens:

1 def authenticate_dev(self, token):

54 Chapter 5. Case of the SYNAISTHISI platform

2 token_arr = self.device_tokens.split(’,’)
3 return (token in token_arr) or bcrypt.

check_password_hash(self.password, token)

After testing the same example with the use of the new device tokens, we make sure that it
works:

(αʹ) Token generation example

(βʹ) face recognition example using tokens

Figure 5.5: Face Recognition SPA example with tokens

Another aspect that demands close attention at the asset of message brokers, according to our
methodology, is authorization. The platform has a robust custom solution for authorization, based
on the PostgreSQLdatabase. There are three tables, namely services_topics_map, users_topics_map
and users_services_map where each row associates two different entities showing that the first
entity has access and is permitted to use the second entity. Consequently, whenever a message
broker gets a PUB message towards a topic, or a SUB message to get updates on a topic, the server
requests the back-end for an authorization check on the user (from the credentials included in the
message or the token) and the associated topic. This way the platform enforces access control
successfully and securely.

5.2.3 Security posture of the Web Application Interfaces

The main web portal of the platform is a mixture of an Angular v. 7.0.1 front-end web applica-
tion and a Python Flask v. 1.0.2 back-end application exposed through an Nginx web server to the
internet. Having covered the encryption of the communication between user and application in the
communication channels subsection, we will focus on the rest of the web application’s potential
insecurities.

Starting from the register screen, the user has to submit a username, an email, a password and an
acceptance of the user terms in order to create an account. User enumeration cannot be performed

5.2 Security Feature Assessment and Extensions 55

since the user needs to finalize the submission before knowing whether the username or email used
already belongs to another user. The errors do not disclose information to a potential attacker, and
are only giving information on whether the username or email is already taken (after submission)
or the password is weak according to the application’s standards. While these standards of at least
6 characters that are enforced by the application ensure that the password is adequately lengthy, the
password policy allows the use of number-only passwords such as ’123456’. In order to make the
passwords of the platform more robust, more password policies must be enforced, like not having
part of the username or email inside the password, and having at least 3 of the 4 categories in capital
letters, lowercase letters, numbers and symbols.

Moving on to the login screen, there are a number of aspects that need to be assessed. The
simplest is information disclosing errormessages. Awrong input of username-password pair returns
an error message of invalid credentials, not indicating whether the username-email or password
is wrong, thus preventing user enumeration. The second aspect that needs to be tested is SQL
injection. The login screen is the most straightforward POST request that results to an SQL query
in the back-end, and is the most important place that needs to be resilient against SQL injections.
Since the back-end is also an asset described in our taxonomy, it is better to leave the conversation
for the back-end subsection (5.2.4) of this chapter.

Brute-forcing credentials is also an issue that needs to be tackled in the interface asset. Knowing
a user’s username or email, someone could be able to try different passwords sequentially in order
to gain access to a user account that uses a weak password with dictionary attacks where a list
of common passwords is utilized to find potentially used passwords. In order to assess whether
the application is vulnerable to bruteforcing we are going to use THC-Hydra a parallelized login
cracker - that apart from HTTP can also bruteforce FTP,SSH and many other protocols. The
command run with hydra is:

1 hydra -I localhost -s 443 https-post-form ”/login:username=^USER
^&password=^PASS^:Invalid” -l testuser -P /usr/share/
wordlists/rockyou.txt

In this command, we brute-force the account of the user with username testuser. We are inserting
into Hydra the request’s format with USER and PASS keywords where the changes have to be
made, and we input the rockyou.txt wordlist, a well-known wordlist containing over 14 million
of commonly used passwords. The command spawns 12 threads (default) and sequentially tries
logging in with the passwords of the wordlist.

Figure 5.6: THC-Hydra achieves to bruteforce a user’s password

As we can see, hydra has found the password after around 8000 attempts, and the malicious

56 Chapter 5. Case of the SYNAISTHISI platform

actor can now overtake testuser’s account. Mitigation for this includes various methods, with the
top options being recaptcha puzzles (which we cannot implement since we have no access to
frontend code), account locking for a certain amount of time, and rate limiting/throttling. In this
work we will use the third solution in order to limit the amount of login requests through rate
limiting. This solution is explored in the next subchapter as an API rate limiting mitigation towards
reinforcing the platform’s availability.

Moving on after logging in, the user receives a JWT token. JWT or JavascriptWeb Tokens are a
popular authentication mechanism where a json object containing information about the user used
for authentication and authorization is encrypted using a secret key from the backend. Because
this token is digitally signed by the server (with an HMAC algorithm), whenever the user requests
content, this token authenticates him and is used as a means to check if he is authorized to receive
the requested content. These tokens have expiration dates so that they are invalidated after a user
logs out or some time has passed. Upon decoding the token and converting the exp field (expiration
date) to human-readable we can see that the token expires 15 minutes after its creation, which is
a very small timelapse. To avoid enforcing a log out on the user, the platform also makes use of
Refresh Tokens, jwt tokens that enable the client to create new jwt tokens without going through
the process of re-logging in. This is more secure than issuing a a long expiration date or even worse
a never-expiring jwt token, and makes the interface friendlier and more scalable.

The web portal of SYNAISTHISI uses the Angular Framework. This modern Javascript frame-
work is entrusted to protect the web application against XSS, since it offers built-in protection
against some commonweb application attacks (angular.io/guide/security) includingXSS.As discus-
sed in the official documentation, Angular promotes the use of templates where, through interpol-
ation, the content is automatically sanitized and escaped by the framework. This way, malicious
scripts or commands that a potential malicious user had inserted do not execute as they would with
DOM XSS. Angular’s HttpClient, used to perform HTTP requests to the backend also provides
a client-side security against Cross-Site Request Forgery (CSRF or XSRF) attacks. In CSRF, a
malicious actor uses another user’s cookies (how they are obtained is out of scope in this discussion)
in order to perform actions as if he were the victim user. Unfortunately, in order for Angular’s CSRF
protection to work, the backend needs to provide the client-side implementation of the mechanism,
and by code auditing there are no created XSRF-TOKENS in the JWT cookie generation.

Of course, just from code auditing and looking at specific points it is not possible to holistically
discover security issues inside a web application. Dynamic Analysis tools can be a significant
supplement into discovering gaps and consequently fixing them. For this purpose, we employ
Owasp ZAP (owasp.org/www-project-zap), a popular open source dynamic analysis scanner and
crawler, and scan the web portal once without authentication, and once using the jwt token we
receive after logging in.

The first (unauthenticated) scan, does not seem to report any severe vulnerabilties of the platform
as summarized in table 5.1.

1. The first informational issue is a false positive, since the timestamps reported are just numbers
that have the same length as a timestamp value. To validate that, three of the found values

https://angular.io/guide/security
https://owasp.org/www-project-zap/

5.2 Security Feature Assessment and Extensions 57

Table 5.1: Owasp ZAP Unauthenticated Scan Report

id severity issue_text
1 Inform. A timestamp was disclosed by the application/web server - Unix
2 Inform. The response appears to contain suspicious comments.
3 Low The Anti-MIME-Sniffing header X-Content-Type-Options not set to ’nosniff’.
4 Low A private IP has been found in the HTTP response body.

5 Low
The cache-control and pragma HTTP header have not been set properly or
are missing allowing the browser and proxies to cache content.

6 Medium
X-Frame-Options header is not included in the HTTP response to protect
against ’ClickJacking’ attacks.

classified as “timestamps” were checked and they correspond to years with no association
e.g. 1974, 2038 etc.

2. The comments found are of no security significance.

3. The nosniff value on the X-Content-Type-Options mitigates MIME-based attacks where
older browsers could sniff a response and override the Content-type set by the server in
order to render content as a different type. While in SYNAISTHISI this is not a severe issue
since no intricate content is served, we still add the Header in the Nginx configuration for
that extra protection.

4. The private IP found inside the code does not correspond to the internal network deployment
of the production platform so it is not a security issue.

5. The fifth issue of Low severity addresses the cache control of resources. Sometimes it is
preferable to cache resources in order make the web application faster and provide a better
user experience. However, the information cached might be sensitive ones, which could
be compromised if a malicious actor had access to the browser of the victim before the
expiration of the cache. To mitigate the following code was added in the Nginx configuration
file, to create the $expires variable which handles the cache directives:

1 map $sent_http_content_type $expires {
2 default -5d;
3 text/css max;
4 ~image/ max;
5 }

The configuration forces browsers to not cache resources as a default policy (because of the
negative sign), whereas in the case of CSS styling files and images, the cache stores them
for as long as possible as they usually pose no security risk and it is inefficient to request
them every time.

58 Chapter 5. Case of the SYNAISTHISI platform

6. Same as the third issue, this is not a severe security issue because of the content that the
platform serves, since no iframe elements and relevant content are shown to the users. Never-
theless, we also add this header with the value ”DENY” in the Nginx configuration to apply
the protection needed.

After applying the configurations that mitigate the non-severe issues that ZAP reported, these
are the headers of a request for the web-page of the SYNAISTHISI portal.

Figure 5.7: Headers of the GET Request on the Web Portal

Moving on, we are using Owasp Zap with Manual scanning, a mode where ZAP acts as a
proxy for the browser, receiving and analyzing the requests and responses in order to root out
vulnerabilities. This also allows for authenticated penetration testing by logging in manually and
performing actions as a regular user, letting ZAP perform the dynamic analysis of the web applica-
tion by intercepting and modifying requests in order to evaluate security robustness. After moving
through each possible user interaction with the application, ZAP has reported the following three
more issues:

Table 5.2: Owasp ZAP Manual Scan Report

id severity issue_text

1 Low
A XSS attack was reflected in JSON response, this might leave content
consumers vulnerable to attack if they don’t appropriately handle the data.

2 Medium
A Format String Error occurs when the submitted data of an input string is
evaluated as a command by the application.

3 High
SQL Injection might be possible. Page results were successfully manipulated
using the boolean conditions [name AND 1=1 –] and
[name AND 1=2 –]

5.2 Security Feature Assessment and Extensions 59

1. The XSS reported is a false positive. ZAP’s active attack created a topic with a name where
embedded javascript was put. On getting the topics, the <script>alert(1);</script> still
exists, which made ZAP regard it as a successful reflected XSS attack. However, the JSON
is not rendered inside HTMLwhere the script could be executed, thus it is not an issue. Upon
searching we can find the topic with that name, where the name is rendered as a literal string
value.

2. The format string error found actually leads to an error disclosure bad practice. Looking at
the error we can identify the use of PostgreSQL as well as the exact query used. The error
is easily reproducible by using a large name value when creating a new topic. A solution

Figure 5.8: Application Error Disclosure

needed is adequate input validation that will return customised error messages in case of
similar behaviour, rather than a 500 Internal Server Error message along with the Exception
description.

3. The reported SQLi issue is a false positive as well. While there is no evident explanation for
the false positive, every attempt of using ZAP indications to reproduce the attack failed, and a
standard expected error appeared for already existing topic names, as the boolean conditions
were used to create services or topics with SQL inside the name value.

5.2.4 Security posture of the Back-end

The backend is associated with the APIs, the interconnection to the platform’s components and
databases. A lot of the frontend’s actions, as well as the API requests exposed by the documentation
for the users, result to actions taking part in the back-end, querying the databases or performing
functionalities.

For the first part, it is important that these API requests are resilient against SQL injection
attacks, as discussed also in the subsection for the web interfaces. Let’s take for example the
/login HTTP POST request that is used to login as a user by providing credentials. To assess SQLi
resiliency, the tool SQLmap was used, that takes the url and input format of the data and performs
automated SQLi payloads in order to get information about the inner structure of the database,
and if possible perform custom queries directly. After intercepting a simple login attempt from the

60 Chapter 5. Case of the SYNAISTHISI platform

front-end, we can see that the button submit sends a POST request with json data at the route /login,
which is also available as an API call by the platform. The command run with the SQLmap tool in
order to check for potential SQL injections, where login_request.txt was the request we intercepted
at our login attempt with wildcards in the injectable parameters, is:

1 sqlmap -r ../login_request.txt --level 5 -a

Thankfully, none of the attempts performed from SQLmap resulted into information or even
worse query results.

Figure 5.9: SQLmap fails to discover an SQL injection in the login form

The SYNAISTHISI back-end queries the PostgreSQL database through a middleware called
SQLAlchemy. SQLAlchemy is essentially an Object Relational Mapper and by using the orm
methods provided and avoiding raw SQL queries throughout the application, the web portal is
deemed secure against SQL injection attacks, since parameters are automatically escaped by the
SQLAlchemy middleware.

The back-end is mainly used for the APIs it exposes. The API in SYNAISTHISI is publicly
exposed and described in the documentation inside the web application interface. Thus, the Same-
Origin (SO) policy that browsers enforce is extended with a Cross-Origin Resource Policy (CORS)
from the back-end server which is globally permissive, allowing requests from any Origin by
defining the wildcard * symbol. Generally requests to the Back-end are allowed only to trusted
domains, but in this case it is a design choice to allow these requests to everyone. Speaking of
APIs, the platform does not apply rate limiting to the API requests that it receives, which could be
a major drawback to its scalability and resiliency against DoS and DDoS attacks. To test whether
such measure exists a python script was created, that spawns 5 threads that perform POST requests
to the /login endpoint for about 30 seconds.

1 import requests as r
2 import threading, time, sys
3

4 threadLock = threading.Lock()
5 counter = 0
6

7 def thread_function(name):
8 parameters = {”username”: ”sevangelou”,”password”: ”123456”}
9 while True:
10 res = r.post(’https://localhost/login’, params =

parameters, headers={”accept”: ”application/json”},
verify=False)

11 if res.status_code != 200:
12 continue

5.2 Security Feature Assessment and Extensions 61

13 global counter
14 with threadLock:
15 counter += 1
16 threads = []
17 for i in range(5):
18 x = threading.Thread(target=thread_function, args=(i,))
19 x.setDaemon(True);
20 threads.append(x)
21 start_time = time.time()
22 for x in threads:
23 x.start()
24 time.sleep(30)
25 print(”{} requests in time: {:.2f} seconds.”.format(counter,

time.time() - start_time))

The end result of this script is:

1 211 requests in time: 30.04 seconds.

This is calculated to be about 1 POST request each 142ms, or about 7 requests per second.
It is easily noticeable that for many hosts, some of them much more powerful than the Virtual
Machine used for the experiment, this could endanger the availability of the server and collectively
the platform so it is wise to apply limits to the requests coming through, and NGINX as an API
gateway provides an easy solution for this problem that can also reinforce protection to bruteforce
attacks that were explored in the web application sub chapter.

Inside the syndelesis.conf file that is copied and used as the configuration file for NGINX, we
add the following lines in order to apply rules for rate limiting of 1 request per second per unique
IP address, for a total size of 10mB in the size of saved IPs - around 160,000 addresses according
to the documentation. The rest of the requests that excess the 1 per second rule fail with 503 error.
These rules are applied to the /login path in our example, but can also be applied to other locations.
Options for burst queued requests are also offered by NGINX but in order to give effective rules,
the average traffic and population of the users must be computed, so that the values given neither
compromise the platform’s availability nor deteriorate user experience.

1 limit_req_zone $binary_remote_addr zone=loginlim:10m rate=1r/s;
2 server {
3 ...
4 location /login {
5 limit_req zone=loginlim;
6 try_files $uri @app;
7 }
8 }

Running the same script as before, we can see that the rule is successfully enforced:

62 Chapter 5. Case of the SYNAISTHISI platform

1 30 requests in time: 30.04 seconds.

Languages can also hide different security issues and bad practices inside them, so it is always
useful to apply static analysis to the source code in order to identify such issues. The back-end is
a Python application and for this reason we use a Python static analysis tool called Bandit. The
results of this tool are summarized in table 5.3, where we omit fields such as the respective faulty
filenames and code sections as well as duplicate occurrences of issues:

Table 5.3: Bandit Static Analysis Results

id severity issue_text
1 LOW Consider possible security implications associated with subprocess module.
2 LOW Possible hardcoded password: ”
3 LOW Try, Except, Pass detected.

4 LOW
Use of assert detected. The enclosed code will be removed when
compiling to optimised byte code.

5 MEDIUM Use of possibly insecure function - consider using safer ast.literal_eval.

6 HIGH
A FTP-related module is being imported. FTP is considered insecure.
Use SSH/SFTP/SCP or some other encrypted protocol.

1. The first issue addresses the use of the subprocess module which is used to spawn and control
processes in Python. The use of this module presents many security caveats, although in the
case of SYNAISTHISI it belongs to commented code of a previous version where services
were run in the server as processes and not within spawned Docker containers, which was a
much riskier approach.

2. The second issue is a false positive of the tool, addressing a default empty value in a string
variable that later holds the created token of a user.

3. The third issue reveals a bad practice where a caught Exception is not handled, and the
keyword pass allows the exception to be ignored. Instead of a pass, a logging command was
added to reveal the error in the logs in case that these Exceptions occur.

1 ...
2 except Exception as e:
3 self.app_logger.error(e)
4 # pass

4. The last LOWseverity issue addresses the use of assert, whichwhen compiled into optimised
python byte code (.pyo) is removed, thus its code is not executed. Inside the platform, assert
is used to enforce username and email policies and avoid symbols like ”__”. After simply
creating a username where the assert statement should be enforced, we receive a 400 Bad
Request status code, which means that the assert statement’s code was executed and the issue
was a false positive.

5.2 Security Feature Assessment and Extensions 63

5. The MEDIUM severity issue is regarding the use of the function eval that is used to parse
the expressions it is given and execute them as Python code. This allows for the developer
to turn strings into objects, for a example the string ”{’value’:’value’}” into a dict with these
values. However, this capability of executing python code makes it susceptible to malicious
input, as in figure 5.10.

Figure 5.10: Executing arbitrary commands through Python’s eval

For this purpose we substitute its use with the more secure literal_eval function of the ast
module as suggested from Bandit. In the case of malformed string inputs, a 400 Bad Request
is returned to the user after catching the ValueError exception raised from the function.

6. Finally the HIGH severity issue addresses the use of FTP included from the ftplib module.
Inside the platform this is used to upload created services into an FTP server that will be
used as a Service Marketplace in the future of the platform. The issue is correct to suggest
an encrypted protocol in order to upload these files, as FTP is vulnerable to eavesdropping
because it communicated with unencrypted packets. Thus, when the marketplace is imple-
mented it should use a more secure protocol such as the proposed SFTP and SCP.

5.2.5 Security posture of the Database Systems

Databases are the data stores of the platform, and SYNAISTHISI employs two kinds of data-
bases, a relational SQL one, PostgreSQL, and a semantic store using SPARQL in RDF4j as we
can also see in the diagram at 5.1. RDF4j is used as a storage for ontologies that the platform
uses in order to create, edit, categorize and use topics and services. These ontologies, as a design
choice, do not require authentication to be requested for because they do not contain sensitive data.
Thus, apart from keeping the store from being exposed to the internet, there are no other security
measures targeted at RDF4j, as the potential impact of a breach or leak is minimal.

PostgreSQL is the database that needs to be protected most in the platform. The database
contains information about users, passwords, tokens, services, topics and many more. The first
and foremost step is not exposing the database to the Internet, and a simple Nmap command to the
server reveals that the Database at port 5432 is indeed exposed in Figure 5.11. Consequently, we
can use the psql command to remotely connect to the database, and generally interact with it in a
lot of ways.

The easy and most correct solution to this issue would be to avoid mapping the postgreSQL
container to a host port from the docker-compose.yml file, so that the database is not listening to
outside connections on port 5432 of the host. The other containers would have to query the database
using the container’s IP, given to them as an environment variable during the docker-compose.

Thus,the following lines are removed from the docker-compose YAML file:

64 Chapter 5. Case of the SYNAISTHISI platform

1 ports:
2 - ”5432:5432”

Figure 5.11: Nmap scan at SYNAISTHISI server

Now, outsiders cannot inspect the use of postgreSQL using Nmap. If the deployment of the
platform is distributed and postgreSQL needs to be accessible from the Back-end which belongs
to another server, we can make use of the iptables firewall utility, and apply the following firewall
rules in order to make postrgeSQL inaccessible for anyone else except the domain where back-end
exists (e.g. apisynaisthisi.com):

1 iptables -A INPUT -s apisynaisthisi.com -p tcp --dport 5432 -j
ACCEPT

2 iptables -A INPUT -p tcp --dport 5432 -j DROP

Reviewing the docker-compose.yml file which contains information for the deployment of the
containers, we can notice that the user created to handle the database is not a root user. This reduces
the potential capabilities that an intruder would gain in the case of a succssful exploit, for example
an SQL injection through the web application.

Moving on, it is valuable to make sure that sensitive information such as passwords are hashed,
so that in the case of a leak no accounts are compromised straight away. After logging in and
querying some user accounts inside postgreSQL we can see the following:

Figure 5.12: Hashed passwords in db

We can see that the password fields are encrypted using a hash. Just by looking into the hash’s
form we can identify a common first part between the hashes, that being the $2b$13$ substring.
This indicates that the algorithm used for hashing is the BCrypt algorithm, with 213 key expansion
rounds. While bcrypt is a robust algorithm with no core vulnerabilities, choosing the number of
key expansion rounds is a matter that needs attention. The developers should employ a number
that is the highest possible for which the server performs adequately and as expected. A very high

5.2 Security Feature Assessment and Extensions 65

number would make actions like verifying a password take a lot of time, and possibly endanger
the server with loss of availability, but a low number could make bruteforcing faster and possibly
more successful.

Looking at global encryption of the database information, in this case it would be an inefficient
choice. The brokers request data from the PostgreSQL container at every device message for
authentication and authorization purposes, and it is possible that availability of the platform would
be compromised if cryptographic functions were run at each request, as especially the requests
to the brokers can scale both in amount of requests as well as minimal time distance between
consecutive requests.

5.2.6 Security posture of the IoT Processing Services

The last asset and possibly the one most difficult to protect against, is the asset that addresses
the services that users can create and upload to the platform. In this asset the developers of the
platform are met with a major tradeoff in security and usability. A more flexible service creation
procedure enables the user to create complex application and use a plethora of different languages
and frameworks, but this freedom can lead to a massive security breach in the case of malicious
activity.

So far, the platform works with Docker containers. Whenever users attempt to create a new
service, they are required to provide the code of the service, any other required file, and aDockerfile
with information about the creation of the Docker container. In order to validate our security
concerns, we will create a custom service as a regular user and try to execute code that should
not be allowed to execute. For this experiment we create a processing service using the Dockerfile
from the SPA example we explored above and a Python script receiving a string from its input
topic /command which resembles a shell command, using the subprocess module to execute the
command on the shell, and publish the command output to an output topic called /command_output.
In the local computer we run to scripts, the first receives the command from the standard input and
publishes to the /command topic, and the second subscribes to the /command_output topic and
on message prints the command’s output. The main functionality of the processing script is the
following code:

1 ...
2 def run_malicious_commands(command):
3 process = subprocess.Popen(command.split(’ ’),stdout=

subprocess.PIPE,stderr=subprocess.PIPE)
4 output,err = process.communicate()
5 client.publish(out_topic, output)
6

7 # Callback to handle subscription topics incoming messages
8 def on_message(client, userdata, message):
9 msg = message.payload.decode(”utf-8”)
10 run_malicious_commands(msg)

66 Chapter 5. Case of the SYNAISTHISI platform

11 ...

After deploying it, we send 3 publish messages with the first python script with the commands
ls, pip install nmap and ifconfig. As we can see in figure 5.13, all of those three commands execute
successfully, receiving their output at the output topic.

Figure 5.13: Reverse Shell as a Malicious Service (output topic PUBs)

Apart from these commands, we can also download files using curl, and execute potentially
malicious python or bash scripts. The user is also a root user inside the container which gives him a
full range of capabilities inside the container, which before the user namespace security feature of
Docker could lead to container escape and privilege escalation in the host. Lastly, all of the other
production containers including the database, back-end and brokers are visible internally from the
spawned service.

Since it is a design choice, the following measures will only affect the Dockerfile and the
deployment of the container that will run the untrusted code, since constraining the services in terms
of accessibility to the Internet or accessibility to language modules and libraries would severely
limit the capabilities of the users’ services, and possibly discourage them from using the platform.

Starting from the Dockerfile, the user should only control the files copied inside the container,
the language of the service and the language modules/libraries needed for the service to function
successfully. By letting the user submit Dockerfiles, there is the freedom to declare whichever
available docker image (e.g. image containing penetration testing tools) paired with access to
root privileges inside the container. The way to tackle this is to prepare and offer specific images
according to the user’s choice of language, selected from a dropdown inside the web application,
as well as running the CMD command with a non-root user account. An example of a Dockerfile

5.2 Security Feature Assessment and Extensions 67

as described could be:

1 FROM python:3.6 # User chose Python v.3.6.
2

3 RUN useradd -ms /bin/sh useraccount # create non-root user
4 WORKDIR /home/useraccount
5

6 ######### USER CONTROLLED FILES
7 ADD pType.py ./
8 ADD requirements.txt ./
9 ####
10

11 RUN pip install -r requirements.txt # install modules
12

13 USER useraccount # from here on non-root privs
14 RUN mkdir /home/useraccount/log # creation of log dir
15 CMD [”python”, ”./pType.py”] # User controls the run file

The use of such Dockerfiles solves some problems such as the lack of Root privileges and the
use of trusted container images handpicked from the developers, but it does not solve issues such
as the ability to reach other containers, the ability to use host sources without limit. For this reason
we need to add some options in the python commands that performs the container build. This is
the code that performs the run command on the container:

1 obj = self.client.containers.run(image=self.IMAGE_TAG, name=self
.CONTAINER_NAME, detach=True, environment=env_dict, network=
app.config.get(’CONTAINER_NETWORK’), volumes={str(self.
service.path_to_service_folder()): {’bind’: ’/log/’,’mode’: ’
rw’}})

We can apply the following parameters into the run call to further apply security controls
regarding the resource usage:

1. mem_limit : Controls the limit of memory the container can use. For example if we want to
constrain the memory use at 1 GB of Ram we can apply mem_limit=1g.

2. cpu_quota : Indicates the CPU microseconds per cycle threshold the container can use. The
default value of the cycle is 100 microseconds so using at most 50% of the CPU per second
would mean a value of cpu_quota=50

The correct values for these parameters should be chosen upon testing and carefully assessing the
platform’s capabilities and the services’ needs.

Moving to the networking issue, the Python SDK for Docker does not provide a straight-
forward solution like the –icc=false parameter in docker run CLI command. As we can see from
the code, the command uses network = app.config.get(’CONTAINER_NETWORK’)which means

68 Chapter 5. Case of the SYNAISTHISI platform

that all containers of the deployment can be reached from the untrusted container. Themost suitable
solution would be to create a separate network inside the docker-compose.yml file to connect only
the essential containers like the brokers to the untrusted container and leave out all the other. Having
the ability to reach containers such as the databases which are not exposed to the Internet might
compromise their security posture. Finally, it is heavily recommended that services created by users
undergo a thorough review from experienced security professionals before finally getting accepted
to the platform. Setting controls, and even applying automated tools can be a great supplementary
protection but the human factor and individual review is not replaceable in this situation.

5.2.7 Applying the Methodology to SYNAISTHISI

Using the methodology described at the fourth chapter, we were able to assess the security
controls and gaps in a real Internet of Things platform with the results summarized at Figure
5.4. The requirements that were defined were used as an anchor in order to identify potential
insecurities, and the propositions led to actual solutions that will reinforce the security posture
of the platform and the protection of its users. Establishing a security baseline for a real product
by using this methodology, validates its usability through a real world use-case and the positive
impact it can provide to similar products.

5.2 Security Feature Assessment and Extensions 69

Table 5.4: Chapter 5 Findings Summary

Summary

Existing Robust Security
Controls

Robust authorization scheme
User Enumeration avoidance
JWT authentication scheme
XSS Protection (Angular)
SQL Injection Protection (SQLAlchemy)
Hashed Sensitive Passwords inside Database

Identified Security Gaps
with Feature Implementation

TLS in Web Portal, NodeRED
MQTTS for encrypted MQTT
Device Authentication Token creation/Authn
Bruteforce rate limiting
Mime-Sniffing and Clickjacking headers
Cache control for sensitive information
API Rate Limiting
Back-end code review and insecure
function fix
Database Internet Exposure
Secure Client Processing Service creation
(Propositions)

Identified Security Gaps
without Feature Implementation

Bad Password Policy
Lack of CSRF controls
Application Error Disclosure

Chapter 6

Conclusion

This work delved into the security domain of IoT ecosystems, and specifically IoT platforms.
We initially set the background of the discussion, explored similar research and real incidents in
order motivate the work’s impact.

By devising an asset taxonomy, we were able to generalize IoT ecosystems and decompose
them into assets that appear in the majority of ecosystem implementations. This allowed us to
further focus and assess each asset for its security posture, requirements and mitigation controls,
composing a methodology that can be used by related professions in the IoT domain.

Finally, a real IoT platform named SYNAISTHISI was put into scope in order to apply the
methodology and validate its applicability in real world situations. Themethodology helped identify
insecurities of the platform and apply controls to these gaps in order to provide a better security
baseline for the product and its users.

This work holistically addressed a variety of sub domains of Cybersecurity, including crypto-
graphy, web application security, network security and even social engineering among others. The
final aim of this work is to provide a framework for establishing that secure baseline for IoT
platforms, supplementing in its ownway thework and security awareness of SystemAdministrators,
Software Engineers, Database Administrators or even End Users, and contributing towards a more
resilient and secure future for the Internet of Things.

6.1 Future Work

The Cybersecurity domain is a fast-paced one. Malicious actors continuously search for new
insecure factors to exploit, while security professionals continuously strive to protect computer
systems and technology products. With new attacks, exploits, as well as mitigations and security
controls, an obvious future step could be the extension of this work for new security issues that are
not yet addressed in this version. In the same fashion, more non-standard methods towards securing
the IoT could be added, which leverage technologies such as Βlockchain orMachine Learning. The
two technologies can potentially provide great supplementary tools in the Cybersecurity domain,
while their compatibility with the Internet of Things security is yet to be fully realized.

71

Bibliography

[1] Carolina Adaros Boye, Paul Kearney, andMark Josephs. Cyber-risks in the industrial internet
of things (iiot): Towards a method for continuous assessment. In Liqun Chen, Mark Manulis,
and Steve Schneider, editors, Information Security, pages 502–519, Cham, 2018. Springer
International Publishing.

[2] T. Ahanger. Defense scheme to protect iot from cyber attacks using ai principles. Int. Journal
of Computers Communications & Control, 13:915–926, 11 2018.

[3] Charilaos Akasiadis, Vassilis Pitsilis, and Constantine D. Spyropoulos. A multi-protocol IoT
platform based on open-source frameworks. Sensors, 19(19):4217, September 2019.

[4] A. A. Akinyelu and A. O. Adewumi. Classification of phishing email using random forest
machine learning technique. Journal of Applied Mathematics, 2014:425731, Apr 2014.

[5] O. Alrawi, C. Lever, M. Antonakakis, and F. Monrose. Sok: Security evaluation of home-
based iot deployments. In 2019 2019 IEEE Symposium on Security and Privacy (SP), Los
Alamitos, CA, USA, may 2019. IEEE Computer Society.

[6] Jude Ambrose, Roshan Ragel, Darshana Jayasinghe, Tuo Li, and Sri Parameswaran. Side
channel attacks in embedded systems: A tale of hostilities and deterrence. 2015:452–459, 04
2015.

[7] M. Ammar, G. Russello, and B. Crispo. Internet of things: A survey on the security of iot
frameworks. Journal of Information Security and Applications, 38:8–27, 2018. cited By 144.

[8] Pelin Angin, Melih Burak Mert, Okan Mete, Azer Ramazanli, Kaan Sarica, and Bora Gun-
goren. A blockchain-based decentralized security architecture for iot. In Dimitrios Geor-
gakopoulos and Liang-Jie Zhang, editors, Internet of Things – ICIOT 2018, pages 3–18,
Cham, 2018. Springer International Publishing.

[9] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein, Jaime
Cochran, Zakir Durumeric, J. Alex Halderman, Luca Invernizzi, Michalis Kallitsis, Deepak
Kumar, Chaz Lever, Zane Ma, Joshua Mason, Damian Menscher, Chad Seaman, Nick Sul-
livan, Kurt Thomas, and Yi Zhou. Understanding the mirai botnet. In USENIX Security
Symposium, 2017.

73

74 Bibliography

[10] B. Arunkumar and Kousalya Govardhanan. Analysis of aes-gcm cipher suites in tls. pages
102–111, 01 2018.

[11] Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and María Naya-Plasencia. Quark: A
lightweight hash. volume 26, pages 1–15, 08 2010.

[12] Jean-Philippe Aumasson, Samuel Neves, ZookoWilcox-O’Hearn, and Christian Winnerlein.
Blake2: Simpler, smaller, fast as md5. In Michael Jacobson, Michael Locasto, Payman Mo-
hassel, and Reihaneh Safavi-Naini, editors, Applied Cryptography and Network Security,
pages 119–135, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[13] Infocomm Media Development Authority. Guidelines: Internet of things (iot) cybersecurity
guide. https://www.imda.gov.sg/-/media/imda/files/regulation-
licensing-and-consultations/consultations/open-for-public-
comments/consultation-for-iot-cyber-security-guide/imda-iot-
cyber-security-guide.pdf, January 2019.

[14] Paul Bischoff. Which countries have the worst (and best) cybersecurity? https://www.
comparitech.com/blog/vpn-privacy/cybersecurity-by-country/,
March 2020.

[15] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. OSDI, 03 1999.

[16] N. Chaabouni, M. Mosbah, A. Zemmari, C. Sauvignac, and P. Faruki. Network intrusion
detection for iot security based on learning techniques. IEEE Communications Surveys Tu-
torials, 21(3):2671–2701, 2019.

[17] Abiy Biru Chebudie, Roberto Minerva, and Domenico Rotondi. Towards a definition of the
Internet of Things (IoT). PhD thesis, 05 2015.

[18] Mehiar Dabbagh and Ammar Rayes. Internet of Things Security and Privacy, pages 195–223.
10 2017.

[19] M. Dikmen and C. Burns. Trust in autonomous vehicles: The case of tesla autopilot and
summon. In 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC),
pages 1093–1098, 2017.

[20] X. Du and X. Chang. Performance of ai algorithms for mining meaningful roles. pages
2070–2076, 07 2014.

[21] Elena Dubrova. Anti-tamper techniques. https://people.kth.se/~msmith/
is2500_pdf/Anti-Tamper%20Techniques_elena.pdf, 2018.

[22] Dave Evans. How the next evolution of the internet is changing everything.
https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_
IBSG_0411FINAL.pdf, 2011.

https://www.imda.gov.sg/-/media/imda/files/regulation-licensing-and-consultations/consultations/open-for-public-comments/consultation-for-iot-cyber-security-guide/imda-iot-cyber-security-guide.pdf
https://www.imda.gov.sg/-/media/imda/files/regulation-licensing-and-consultations/consultations/open-for-public-comments/consultation-for-iot-cyber-security-guide/imda-iot-cyber-security-guide.pdf
https://www.imda.gov.sg/-/media/imda/files/regulation-licensing-and-consultations/consultations/open-for-public-comments/consultation-for-iot-cyber-security-guide/imda-iot-cyber-security-guide.pdf
https://www.imda.gov.sg/-/media/imda/files/regulation-licensing-and-consultations/consultations/open-for-public-comments/consultation-for-iot-cyber-security-guide/imda-iot-cyber-security-guide.pdf
https://www.comparitech.com/blog/vpn-privacy/cybersecurity-by-country/
https://www.comparitech.com/blog/vpn-privacy/cybersecurity-by-country/
https://people.kth.se/~msmith/is2500_pdf/Anti-Tamper%20Techniques_elena.pdf
https://people.kth.se/~msmith/is2500_pdf/Anti-Tamper%20Techniques_elena.pdf
https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf

Bibliography 75

[23] B. Farahani, F. Firouzi, and K. Chakrabarty. Healthcare IoT, pages 515–545. 01 2020.

[24] ENISA: European Union Agency for Cybersecurity. Baseline security recommendations
for iot: in the context of critical infrastructures. https://www.enisa.europa.eu/
publications/baseline-security-recommendations-for-iot, Novem-
ber 2017.

[25] ENISA: European Union Agency for Cybersecurity. Good practices for security of
iot: Secure software development lifecycle. https://www.enisa.europa.eu/
publications/good-practices-for-security-of-iot-1, November 2019.

[26] M. Frey, C. Gündoğan, P. Kietzmann, M. Lenders, H. Petersen, T. C. Schmidt, F. Juraschek,
andM.Wählisch. Security for the industrial iot: The case for information-centric networking.
In 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), pages 424–429, 2019.

[27] C.H. Gebotys. Security in Embedded Devices. Embedded Systems. Springer US, 2009.

[28] T. Gopal, M. Meerolla, G. Jyostna, L. Eswari, and E. Magesh. Mitigating mirai malware
spreading in iot environment. pages 2226–2230, 09 2018.

[29] S. Goswami, N. Hoque, Dhruba K Bhattacharyya, and Jugal Kalita. An unsupervised method
for detection of xss attack. International Journal of Network Security, 19:761–775, 09 2017.

[30] Aaron Grattafiori. Understanding and hardening linux containers. https:
//www.nccgroup.trust/us/our-research/understanding-and-
hardening-linux-containers/, June 2016.

[31] Jian Guo, Thomas Peyrin, and Axel Poschmann. The photon family of lightweight hash
functions. In Phillip Rogaway, editor, Advances in Cryptology – CRYPTO 2011, pages 222–
239, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[32] J. Halderman, Seth Schoen, Nadia Heninger, William Clarkson, William Paul, Joseph Calan-
drino, Ariel Feldman, Jacob Appelbaum, and Edward Felten. Lest we remember: Cold boot
attacks on encryption keys. pages 45–60, 01 2008.

[33] A. Hameed and A. Alomary. Security issues in iot: A survey. pages 1–5, 09 2019.

[34] International. Global cybersecurity index. https://www.comparitech.com/blog/
vpn-privacy/cybersecurity-by-country/, March 2020.

[35] Massila Kamalrudin, Asma Asdayana Ibrahim, and Safiah Sidek. A security requirements
library for the development of internet of things (iot) applications. In Massila Kamalrudin,
Sabrina Ahmad, andNaveed Ikram, editors,Requirements Engineering for Internet of Things,
pages 87–96, Singapore, 2018. Springer Singapore.

[36] G. Kaur and M. Sohal. Iot survey: The phase changer in healthcare industry. Int. Journal of
Scientific Research in Network Security and Communication, 6:34–39, 04 2018.

https://www.enisa.europa.eu/publications/baseline-security-recommendations-for-iot
https://www.enisa.europa.eu/publications/baseline-security-recommendations-for-iot
https://www.enisa.europa.eu/publications/good-practices-for-security-of-iot-1
https://www.enisa.europa.eu/publications/good-practices-for-security-of-iot-1
https://www.nccgroup.trust/us/our-research/understanding-and-hardening-linux-containers/
https://www.nccgroup.trust/us/our-research/understanding-and-hardening-linux-containers/
https://www.nccgroup.trust/us/our-research/understanding-and-hardening-linux-containers/
https://www.comparitech.com/blog/vpn-privacy/cybersecurity-by-country/
https://www.comparitech.com/blog/vpn-privacy/cybersecurity-by-country/

76 Bibliography

[37] Minhaj Ahmad Khan and Khaled Salah. Iot security: Review, blockchain solutions, and open
challenges. Future Generation Computer Systems, 82:395 – 411, 2018.

[38] J. King and A. I. Awad. A distributed security mechanism for resource-constrained iot de-
vices. 40:133–143, 01 2016.

[39] Ralph Langner. To kill a centrifuge a technical analysis of what stuxnet ’ s creators tried to
achieve. 2013.

[40] Y. Lee, J. Lim, Y. Jeon, and J. Kim. Technology trends of access control in iot and require-
ments analysis. pages 1031–1033, 10 2015.

[41] Shanhong Liu. Internet of things - statistics facts. https://www.statista.com/
topics/2637/internet-of-things/, March 2020.

[42] Knud Lasse Lueth. Iot 2019 in review: The 10 most relevant iot developments of the year.
https://iot-analytics.com/iot-2019-in-review/, January 2020.

[43] A. Makiou, Y. Begriche, and A. Serhrouchni. Improving web application firewalls to detect
advanced sql injection attacks. 2014 10th Int. Conf. on Inf. Assurance and Security, 11 2014.

[44] M. S. Mekala and V. Perumal. A survey: Smart agriculture iot with cloud computing. pages
1–7, 08 2017.

[45] Romanosky S. Mell P, Scarfone K. Cvss: a complete guide to the common vulnerability
scoring system version 2.0. Technical report, FIRST: forum of incident response and security
teams, June 2007.

[46] Saraju Mohanty. Everything you wanted to know about smart cities. IEEE Consumer Elec-
tronics Magazine, 5:60–70, 07 2016.

[47] S. Mukkamala, G. Janoski, and A. Sung. Intrusion detection using neural networks and sup-
port vector machines. volume 2, pages 1702 – 1707, 02 2002.

[48] Madalin Neagu and Liviu Miclea. Data scrambling in memories: A security measure. pages
1–6, 05 2014.

[49] N. Neshenko, E. Bou-Harb, J. Crichigno, G. Kaddoum, and N. Ghani. Demystifying iot
security: An exhaustive survey on iot vulnerabilities and a first empirical look on internet-
scale iot exploitations. IEEE Communications Surveys Tutorials, 21(3):2702–2733, 2019.

[50] Q.-D. Ngo, H.-T. Nguyen, V.-H. Le, andD.-H. Nguyen. A survey of iot malware and detection
methods based on static features. ICT Express, 2020.

[51] Mnemonic Norwegian Consumer Council. # watchout: Analysis of smartwatches for chil-
dren. https://fil.forbrukerradet.no/wp-content/uploads/2017/10/
watchout-rapport-october-2017.pdf, October 2017.

https://www.statista.com/topics/2637/internet-of-things/
https://www.statista.com/topics/2637/internet-of-things/
https://iot-analytics.com/iot-2019-in-review/
https://fil.forbrukerradet.no/wp-content/uploads/2017/10/watchout-rapport-october-2017.pdf
https://fil.forbrukerradet.no/wp-content/uploads/2017/10/watchout-rapport-october-2017.pdf

Bibliography 77

[52] S. O’Dea. Data volume of iot connected devices worldwide 2018 and 2025.
https://www.statista.com/statistics/1017863/worldwide-iot-
connected-devices-data-size/, February 2020.

[53] M. Patel. Qradar uba app adds machine learning and peer group analyses to detect anomalies
in users’ activities. https://securityintelligence.com/qradar-uba-
app-adds-machine-learning-and-peer-group-analyses-to-detect-
anomalies-in-users-activities/, March 2017.

[54] Geovandro C. C. F. Pereira, Renan C. A. Alves, Felipe L. da Silva, Roberto M. Azevedo,
Bruno C. Albertini, and Cíntia B.Margi. Performance evaluation of cryptographic algorithms
over IoT platforms and operating systems. Security and Communication Networks, 2017:1–
16, 2017.

[55] Georgios Pierris, Dimosthenis Kothris, Evaggelos Spyrou, and Costas Spyropoulos.
Synaisthisi: an enabling platform for the current internet of things ecosystem. In PCI ’15,
2015.

[56] H. Qiu, X. Wang, and F. Xie. A survey on smart wearables in the application of fitness. pages
303–307, 11 2017.

[57] Somasundaram Ragupathy and Mythili Thirugnanam. Review on Communication Security
Issues in IoT Medical Devices, page 189. 10 2017.

[58] S. Rawal, B. Rawal, A. Shaheen, and S. Malik. Phishing detection in e-mails using machine
learning. Int. Journal of Applied Information Systems, 12:21–24, 10 2017.

[59] E. Rescorla. The transport layer security (tls) protocol version 1.2. https://www.rfc-
editor.org/rfc/rfc5246.txt, August 2008.

[60] E. Rescorla. The transport layer security (tls) protocol version 1.3. https://www.rfc-
editor.org/rfc/rfc8446.txt, August 2018.

[61] PwC Research. 2019 internet of things survey. https://www.pwc.com/us/
en/services/consulting/technology/emerging-technology/iot-
pov.html, July 2019.

[62] Rahul Rishi and Rajeev Saluja. Future of iot. http://ficci.in/spdocument/
23092/Future-of-IoT.pdf.

[63] Syed Rizvi, RJ Orr, Austin Cox, Prithvee Ashokkumar, andMohammad R. Rizvi. Identifying
the attack surface for iot network. Internet of Things, 9:100162, 2020.

[64] A. Roukounaki, S. Efremidis, J. Soldatos, J. Neises, T.Walloschke, andN.Kefalakis. Scalable
and configurable end-to-end collection and analysis of iot security data : Towards end-to-end
security in iot systems. pages 1–6, 06 2019.

https://www.statista.com/statistics/1017863/worldwide-iot-connected-devices-data-size/
https://www.statista.com/statistics/1017863/worldwide-iot-connected-devices-data-size/
https://securityintelligence.com/qradar-uba-app-adds-machine-learning-and-peer-group-analyses-to-detect-anomalies-in-users-activities/
https://securityintelligence.com/qradar-uba-app-adds-machine-learning-and-peer-group-analyses-to-detect-anomalies-in-users-activities/
https://securityintelligence.com/qradar-uba-app-adds-machine-learning-and-peer-group-analyses-to-detect-anomalies-in-users-activities/
https://www.rfc-editor.org/rfc/rfc5246.txt
https://www.rfc-editor.org/rfc/rfc5246.txt
https://www.rfc-editor.org/rfc/rfc8446.txt
https://www.rfc-editor.org/rfc/rfc8446.txt
https://www.pwc.com/us/en/services/consulting/technology/emerging-technology/iot-pov.html
https://www.pwc.com/us/en/services/consulting/technology/emerging-technology/iot-pov.html
https://www.pwc.com/us/en/services/consulting/technology/emerging-technology/iot-pov.html
http://ficci.in/spdocument/23092/Future-of-IoT.pdf
http://ficci.in/spdocument/23092/Future-of-IoT.pdf

78 Bibliography

[65] J. Ruan, H. Jiang, C. Zhu, X.Hu,Y. Shi, T. Liu,W.Rao, and FChan. Agriculture iot: Emerging
trends, cooperation networks, and outlook. IEEE Wireless Communications, 26:56–63, 12
2019.

[66] Doyen Sahoo, Chenghao Liu, and Steven C. H. Hoi. Malicious url detection using machine
learning: A survey. ArXiv, abs/1701.07179, 2017.

[67] Dimitrios Serpanos and Marilyn Wolf. Security and safety. In Internet-of-Things (IoT) Sys-
tems, pages 55–76. Springer International Publishing, November 2017.

[68] Dimitrios Serpanos and Marilyn Wolf. Security testing IoT systems. In Internet-of-Things
(IoT) Systems, pages 77–89. Springer International Publishing, November 2017.

[69] A. Sharma and A. Thakral. Malicious url classification using machine learning algorithms
and comparative analysis. In K. S. Raju, A. Govardhan, B. P. Rani, R. Sridevi, and M. R.
Murty, editors, Proc. of the 3rd Int. Conf. on Computational Intelligence and Informatics,
pages 791–799, Singapore, 2020. Springer Singapore.

[70] Jyoti Shetty. A state-of-art review of docker container security issues and solutions. American
International Journal of Research in Science, Technology, Engineering Mathematics, 01
2017.

[71] Arijit Ukil, Jaydip Sen, and Sripad Koilakonda. Embedded security for internet of things.
pages 1 – 6, 04 2011.

[72] Eugene Vasserman and Nicholas Hopper. Vampire attacks: Draining life from wireless ad
hoc sensor networks. Mobile Computing, IEEE Transactions on, 12:318–332, 02 2013.

[73] Gang Wang, Zhijie Shi, Mark Nixon, and Song Han. ChainSplitter: Towards blockchain-
based industrial IoT architecture for supporting hierarchical storage. In 2019 IEEE Interna-
tional Conference on Blockchain (Blockchain). IEEE, July 2019.

[74] L. Xiao, X. Wan, X. Lu, Y. Zhang, and D. Wu. Iot security techniques based on machine
learning. 01 2018.

[75] H. Xu, W. Yu, D. Griffith, and N. Golmie. A survey on industrial internet of things: A cyber-
physical systems perspective. IEEE Access, 6:78238–78259, 2018.

[76] L. Xu, W. He, and S. Li. Internet of things in industries: A survey. IEEE Trans. on Industrial
Informatics, 10:2233–2243, 11 2014.

[77] W. Yang, S. Wang, J. Hu, Z. Guanglou, and C. Valli. Security and accuracy of fingerprint-
based biometrics: A review. Symmetry, 11:141, 01 2019.

[78] Arnold Yau, K.G. Paterson, and Chris Mitchell. Padding oracle attacks on cbc-mode encryp-
tion with secret and random ivs. volume 3557, pages 11–43, 07 2005.

Bibliography 79

[79] M. Zamani and M. Movahedi. Machine learning techniques for intrusion detection. arXiv
preprint arXiv:1312.2177, 2013.

Abbreviations

ΠΘ Πανεπιστήμιο Θεσσαλίας
Dr. Doctor
e.g. exempli gratia, meaning ”for example”
Prof. Professor
AES Advanced Encryption Standard
AES-GCM Galois-Counter mode
AEAD Authenticated Encryption with Associated Data
AMQP Advanced Message Queuing Protocol
API Application Programming Interface
CIA Confidentiality, Integrity, Availability
CLI Command Line Interface
CPU Central Processing Unit
CSRF/XSRF Cross-Site Request Forgery
CVE Common Vulnerability and Exposure
CVSS Common Vulnerability Scoring System
C&C Command and Control
DOS Denial of Service
DDOS Distributed Denial of Service
DNS Domain Name System
ECC Elliptic Curve Cryptography
EOL End of Life
FTP File Transfer Protocol
GPS Global Positioning System
GDPR General Data Protection Regulation
HTTP(S) HyperText Transfer Protocol (Secure)
IDS Intrusion Detection System
IoT Internet of Things
IIT Institute of Informatics and Telecommunications
IPv4/6 Internet Protocol version 4/6
IPS Intrusion Prevention System
JWT JSON Web Token
MQTT(S) Message Queuing Telemetry Transport (Secure)

81

82 Bibliography

NDA Non Disclosure Agreement
OS Operating System
OTP One Time Programmable
PLC Programmable Logic Controller
RAM Random Access Memory
REST Representational State Transfer
RFC Request for Comments
SDK Software Development Kit
SSL Secure Sockets Layer
SCADA Supervisory Control and Data Acquisition
SCP Secure Copy Protocol
SDLC Software Development Life Cycle
SMS Short Message System
SQL Structured Query Language
SSH Secure Shell
SoC System on Chip
TEE Trusted Execution Environment
TLS Transport Layer Security
UI User Interface
UTH University of Thessaly
USB Universal Serial Bus
VM Virtual Machine
WAF Web Application Firewall
XML eXtensible Markup Language
XSS Cross-Site Scripting

	Abstract
	Περίληψη
	Acknowledgements
	Preface
	Table of contents
	List of figures
	List of tables
	Introduction
	Introduction to the Internet of Things
	Numbers regarding the Internet of Things
	Security Challenges in the Internet of Things Ecosystem
	Content organization

	Related Research
	Security Guidelines in Internet of Things
	Surveys on Vulnerabilities and IoT Attack Surface
	Security Evaluation on Existing IoT Solutions
	Artificial Intelligence-based Approaches
	Blockchain-oriented approaches

	IoT Cyberattacks and Real World Impact
	Stuxnet
	Outline of the Attack Methodology
	The Impact of Stuxnet

	Mirai Botnet
	Outline of the Attack Methodology
	The Impact of Mirai

	CloudPets and other smart Toys
	Security Awareness Study

	Defining an auditing methodology for Internet of Things
	Asset taxonomy on a typical IoT Ecosystem
	Asset security Requirements and Countermeasures
	Users
	Devices
	Communication Channels
	Message Brokers
	Web Application Interfaces
	Database Systems
	Internet of Things Services
	Backend Servers
	Cloud/Edge Infrastructure

	Case of the SYNAISTHISI platform
	Methodology application on SYNAISTHISI Platform
	Identifying the Assets

	Security Feature Assessment and Extensions
	Security posture of the Communication Channels
	Security posture of the Message Brokers
	Security posture of the Web Application Interfaces
	Security posture of the Back-end
	Security posture of the Database Systems
	Security posture of the IoT Processing Services
	Applying the Methodology to SYNAISTHISI

	Conclusion
	Future Work

	Bibliography
	Abbreviations

