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ABSTRACT 

Nowadays, when people are more reliant on technology than ever, the capability to search 

information with the use of smart phones is becoming essential. For this reason, we believe 

that reverse image search and, especially, their text detection and recognition function is a 

search engine tool that needs to be further advanced. In the current Thesis we assess two 

existent NNs, one on text detection and another on text recognition, on multilingual scene 

text images. The first NN is the EAST text detector, which performs considerably well on 

locating text in scene text images. For text recognition, we decided to train an end-to-end 

trainable NN, the CRNN, first on a Greek and English alphabet and, then, on an alphabet 

containing letters from four Latin languages, digits and symbols. Specifically, we 

emphasized on all of the training parameters and hyperparameters to achieve the best 

possible accuracy of correct character prediction, which is 84.6%. Finally, we integrated the 

two NNs into one system that detects scene text on images and recognizes the words 

depicted. This system has, additionally, been optimized in order to execute in real time, 

explicitly at 0.32 seconds per image.  
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ΠΕΡΙΛΗΨΗ 

Στις μέρες μας, οπότε οι άνθρωποι βασίζονται στην τεχνολογία περισσότερο από ποτέ, η 

δυνατότητα αναζήτησης πληροφοριών με τη χρήση έξυπνων τηλεφώνων γίνεται 

απαραίτητη. Για αυτό το λόγο, πιστεύουμε ότι η αντίστροφη αναζήτηση εικόνων και, 

ιδιαίτερα, η λειτουργία τους για εντοπισμό και αναγνώριση κειμένου είναι ένα εργαλείο των 

μηχανών αναζήτησης που χρειάζεται να αναπτυχθεί περαιτέρω. Στην παρούσα Διπλωματική 

εργασία αξιολογούμε δυο υπάρχοντα Νευρωνικά Δίκτυα (ΝΔ), ένα για τον εντοπισμό 

κειμένου και ένα για την αναγνώριση κειμένου, πάνω σε εικόνες πολύγλωσσου σκηνικού 

κειμένου. Το πρώτο ΝΔ είναι o ανιχνευτής κειμένου EAST, ο οποίος αποδίδει αρκετά καλά 

στον εντοπισμό κειμένου σε εικόνες. Για την αναγνώριση του κειμένου, αποφασίσαμε να 

εκπαιδεύσουμε ένα από άκρη σε άκρη εκπαιδεύσιμο ΝΔ, το CRNN, πρώτα σε ένα ελληνικό 

και αγγλικό αλφάβητο και, στη συνέχεια, σε ένα αλφάβητο που περιλαμβάνει γράμματα από 

τέσσερις λατινικές γλώσσες, ψηφία και σύμβολα. Συγκεκριμένα, δώσαμε έμφαση σε όλες 

τις παραμέτρους και υπερπαραμέτρους της εκπαίδευσης για να πετύχουμε την καλύτερη 

δυνατή ακρίβεια σωστής πρόβλεψης χαρακτήρα, η οποία είναι 84,6%. Τελικά, 

ενσωματώσαμε τα δυο ΝΔ σε ένα σύστημα που εντοπίζει σκηνικό κείμενο σε εικόνες και 

αναγνωρίζει τις λέξεις που απεικονίζονται. Αυτό το σύστημα έχει, επιπλέον, 

βελτιστοποιηθεί έτσι ώστε να εκτελείται σε πραγματικό χρόνο, αναλυτικά σε 0,32 

δευτερόλεπτα ανά εικόνα. 
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1. INTRODUCTION 

In recent years, people become more and more dependent on technology, especially on smart 

phones. New applications are being released every day, making the use of smartphones a 

necessity; people search for information about anything on their mobile phones. According 

to [1] and [2], 46% of all Google searches are looking for local information and 88% of this 

kind of searches on a smartphone result in a visit or a call to the business. This fact 

emphasizes the need to make not only search engines but also informative mobile 

applications such as Yelp and Foursquare more functional for the users. An efficient way to 

do this is by introducing reverse image search. 

Reverse image search is a query method in which the user is giving the search engine an 

image file and expects to find results relevant to the image [3]. Many search engines like 

Google, Yandex and Bing have already incorporated it in their platforms, however we think 

it is a market demand to introduce reverse image search in all types of mobile applications, 

but especially in business review platforms such as Yelp, Trip Advisor and Better Business 

Bureau. That is because, as Watson explains [4], people nowadays tend to prefer using their 

phone cameras as a note taking tool rather than typing, let alone writing memos and 

annotations. The same tendency is, also, evident in the way people perform their web 

searches, especially when they use mobile devices. 

Apart from finding information about the image itself, reverse image search can, also, be 

very enlightening about the content of the image; it can be used to provide information about 

what is depicted in the image. This is why reverse image search can be quite beneficial for 

blind and visually impaired people who could use reverse image-enabled applications as 

assistive technology to identify things around them. A more specific scenario to which 

reverse image search can be applied is when users are outdoors, in an urban environment 

and want to find information about the stores around them, such as operating hours, reviews 

and ratings. 

In order to create a system which effectively identifies stores depicted in images it is 

necessary to have access to an abundance of images with shop signs, namely scene text 

images. Scene text is a term that describes “the text that appears in an image captured by a 

camera in an outdoor environment” [5] and scene text images are the images that depict scene 

text. Nowadays, a plethora of scene text images is available due to the widespread use of 

smartphones with good quality cameras. In fact, as Ritcher demonstrates in [6] approximately 
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1.2 trillion photos were taken in 2017, 85% of which were captured by smartphones, and 

this number keeps increasing every year, as seen in Figure 1. Hence, it is evident that we now 

have the data needed to produce systems that can recognize stores seen in images.  

Shop sign recognition is a task related to computer vision and it includes detecting and 

recognizing text from the images. In particular, a typical usage scenario has the user 

capturing an image or a video using a camera and giving it as input to the system. The system, 

after processing the data, outputs the text of the shop signboards found in the image or each 

frame of the video. The fact that processing the data is a procedure which encompasses first 

locating the text present in the image and then recognizing the word or words found in the 

text, is the reason why the implementation of such systems can be divided into two parts, 

text detection and text recognition.  

When it comes to text detection, the methods used can be either image based or frequency 

based. More specifically, according to the first method the image is partitioned into segments 

within which the text is detected  [5], and takes advantage of machine learning techniques 

such as support vector machines (SVMs)  [7] and convolutional neural networks (CNNs)  [8]. 

On the other hand, in the case of frequency-based methods, given that the text of the image 

Figure 1. Number of digital photos taken worldwide every year [6]. It is evident that every year this 

number keeps increasing. 
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has high frequency components, the approach involves performing discrete Fourier 

transform (DFT) [9] or discrete wavelet transform (DWT) [10] to separate the text regions 

from the non-text ones.  

Regarding text recognition, the approaches can be either top-down or bottom-up. In the latter 

case the image is segmented with a binarization algorithm and each segment is going through 

a recognition network [5]. On the contrary, the top-down approach is segmentation-free and 

uses a dictionary in order to identify the words.  

Bartz et al. [15] mention that one of the most recent solutions to text recognition researchers 

have studied is using deep learning and, specifically, deep neural networks (DNNs). In 

particular, since the data discussed are images, it is preferred to use CNNs. As seen in Figure 

2, CNNs are organized as 3-dimensional structures, which cluster the neurons into groups, 

each of which examines the image for a certain feature [16]. In other words, a CNN processes 

the elements of the image in order to logically interpret what they depict [16], in this case 

words or letters.  

Besides the solution mechanism, in text recognition applications it is, also, important to work 

in real time, to enable users to have the results at the moment they ask for them. In order to 

achieve that, many optimization methods exist, some of which are algorithmic, that can 

either be deterministic or stochastic, while others include using special hardware platforms 

purposed for high performance computing (HPC). More specifically, attaining high 

performance for the system is a task which necessitates the use of accelerators like GPUs 

functioning as coprocessors for the extensive data workload  [17]. For instance, when using 

Figure 2. The 3-dimensional structure of a CNN [33]. In this example the CNN is used to classify 

types of vehicles. 
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a GPU, the computations that are performed on different variables of the code are being 

parallelized to kernels. This technique boosts the performance of the code and minimizes the 

computational time, thus usually producing real time results for the users. 

In this Thesis, we approached the issue of text detection and recognition for shop signs with 

character sets from more than one language. Initially, our target use case was videos and 

images captured in Greek cities, but, unfortunately, after an extensive search we could not 

find any background work implemented on scene text recognition that includes the Greek 

language. Thus, the goal of this Thesis is to assess text detection and recognition algorithms 

on videos and images captured in Greek cities. However, it was not possible to accomplish 

this objective due to the lack of labeled scene text image data with Greek characters which 

would be used for training any text recognition system. Therefore, instead of Greek images, 

we decided to use a character set that contains symbols and letters from four different 

languages, English, French, German and Italian. 

Another goal of this Thesis is to design a system capable of operating on real life 

circumstances. This means robustness to bad lighting conditions or motion blurring, which 

can disturb the clarity of the signboard to be detected. For that purpose, we have used the 

ICDAR2019 dataset [18] for the robust challenge on multi-lingual scene text detection and 

recognition. In particular, we used only the images containing text in Latin languages and 

augmented these data by adding random rotation to the images. 

As a result, we have evaluated the potentiality of a system consisted of two neural networks 

(NNs), one for text detection and another one for recognition, both of which were primarily 

developed to operate with just the English language. This system attained an inference 

performance of 3 frames per second on a Tesla K80 GPU and produces results for a character 

set of 151 letters, numbers and symbols. In particular, we use Zhou’s et al. EAST text 

detector [19] in order to detect the parts of the image containing text; that is, the shop signs. 

Then, we train Shi’s et al. convolutional recurrent neural network (CRNN) [20] so as to 

recognize numbers and letters. In order to achieve the latter, we use several different 

alterations of the ICDAR 2019 dataset, so we can, additionally, propose an optimal way for 

it to be successfully trained. An example this system’s input and output is given in Figure 3, 

Figure 4. 
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During our study, we created a dataset with annotated text images and apprehended the 

importance of the use of augmentation techniques in the dataset. Undoubtedly, data 

augmentation is a valuable tool when the available data for training a NN are not enough. 

Another important factor in the process of training a NN is the hyperparameters tuning, 

which can make the training quite more efficient. In regard to the results of training a NN, 

we not only comprehended how to discern the differences between having an underfit and 

an overfit of the data in the model, but also, we understood how the training data have a 

critical effect on the final output of the NN. 

The rest of the Thesis is organized as follows. In Section 2 we describe the specific hardware 

and software features used during the experiment stage of the Thesis. Then, in Section 3 

Figure 3. Example of input images given to the system. The images are taken from the ICDAR2019 

test dataset [18]. 
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details about the NNs used are being elucidated and we thoroughly the dataset’ s features 

needed for proper training of the CRNN. Moreover, we elaborate on the way the two NNs 

used are being combined for the creation of the final system. After that, in Section 4 we show 

the results of both each NN separately system and assess their accuracy. An additional 

evaluation is being made on the performance of the system and its parts independently. 

Finally, we discuss the work of other researchers creating systems for text detection and 

recognition in Section 5 and in 6 we summarize the whole work done for this Thesis and 

propose future improvements and upgrades for the system.  

Figure 4. After input images have been processed, the system gives as output images with annotation 

seen here. 
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2. BACKGROUND 

2.1. Software environment 

We run our experiments on Ubuntu 18.04 and all the code is written in Python 2.7.  

The text detection part makes use of the OpenCV 4.1 library which is an open source 

infrastructure for computer vision and machine learning applications. It was launched in 

1999 by Intel as part of a project aiming to contribute to not only both vision research and 

knowledge, but also, vision-based commercial applications. As stated in the OpenCV 

webpage  [21], it contains algorithms that can be useable as tools for detection, recognition, 

classification, even tracking of objects. Some of its image processing features include 

decision tree learning, gradient boosting trees, artificial NNs, SVMs and DNNs. In our work 

we have made use of a serialized version of a NN created with OpenCV as well as of 

functions for drawing and writing on an image. Along with these functions, we, also, adopted 

OpenCV variable types in our code, for processing the input images and saving the output. 

The text recognition component utilizes another machine learning library, PyTorch 1.4. 

PyTorch is a deep learning framework that features not only tensor computing, but also deep 

neural networks (DNNs)  [22].There are three main machine learning libraries, Tensorflow, 

Keras and Pytorch [23]. We chose to work with Pytorch, because it is easy to learn and has 

a simple, yet powerful interface. Another reason for selecting Pytorch over the other 

frameworks is the fact that it supports better data parallelism, as reported by Rohilla [20], 

which is very important for this Thesis, since we want to focus on the performance of our 

code.  

In particular, Pytorch provides a low-level API, which is based on the Torch framework and 

is usually used when processing large datasets with high-performance models. It was 

primarily developed by Facebook’s AI Research lab and it was released in October 2016. 

Pytorch’s advantages include providing flexibility on its uses, great debugging capabilities 

and short training duration.  

For performance optimization, we have made use of functions from OpenCL 1.2 to the text 

detector and from CUDA 10.2 to the recognition component. OpenCL is a framework which 

supports functional portability of code, that is the execution of programs on different 

heterogeneous processors and hardware accelerators  [24]. It was initially developed by 

Apple and it was released by Khronos Group in 2009. It is used to improve both the speed 
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and the responsiveness of many types of applications by passing the most computationally 

intensive code on to accelerator devices so that it runs in parallel. 

More specifically, OpenCL models the computing system as an assembly of computing 

devices, as shown in Figure 5.a, and, thus, it executes each of the code’s functions in parallel 

on all or many of the devices’ processing elements. This parallelism of the code is modelled, 

as demonstrated in Figure 5.b, as kernels that are executed in a multi-dimensional index 

space. OpenCL, also, allows the separate management of device and host memory for the 

programs it is running. Apropos the OpenCL language, it is a just-in-time compilation 

programming language, so that the applications using OpenCL are entirely transferable 

between different host devices. 

Figure 5. a. OpenCL's hardware view [34]. b. OpenCL's software view. [35] 
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On the other hand, CUDA is both an execution platform and an API for parallel computing 

on NVIDIA CUDA-enabled GPUs [25]. It includes not only parallel computing extensions 

to many programming languages but also drop-in accelerated libraries, like cuDNN and 

cudaTensor, to help accelerate the execution of specific classes of applications. One of its 

most remarkable characteristics is the shared memory region that can be shared between 

threads. 

There are applications from many different scientific fields, such as astronomy, biology, 

physics, data mining and finance, that have been GPU-accelerated with the CUDA 

ecosystem. Software developers can use either of the two APIs that CUDA provides, the 

CUDA Driver API, which is low level, and the CUDA Runtime API, which is higher level. 

There is a specific extension for C/C++ programmers, the CUDA C/C++ language, while 

Fortran programmers can use the CUDA Fortran extension. Aside these extensions, there 

are, also, third party wrappers for CUDA support on other programming languages, like 

Python, Java, Ruby and Perl. 

In comparison to OpenCL, CUDA is not supported in as many applications, however CUDA 

is significantly more optimized than OpenCL for Nvidia GPUs [23]. Although OpenCL is 

more portable than CUDA, OpenCL programs can be significantly longer, exposing the 

programmer to more details. Besides that, the two frameworks operate having the same basic 

hardware and software models, with the difference that OpenCL’s support offers lower 

performance boosts than CUDA. 

2.2. Hardware platform 

Concerning the hardware platform, we used a server for both training and inference. This 

server has two Intel Xeon CPUs at 2.30 GHz, that include 28 hyperthreaded CPU cores, with 

two threads per core, as indicated in Table 1. The RAM in the server is 128 GB and it uses 

little-endian byte order. Moreover, the server has a NVIDIA Tesla K80 GPU, which we use 

for optimizing performance. This accelerator is server-optimized with peak single-precision 

performance of 8.73 Tflops and peak double-precision one at 2.91 Tflops. 
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CPU Intel Xeon @ 2.30 GHz 

CPU cores 28 (2x14) 

Threads per core 2 

RAM 128 GB 

GPU NVIDIA Tesla K80 

GPU chips 2 

GPU memory 24 GB 

GPU memory bandwidth 480 GB/s 

CUDA cores 4992 

Table 1. Hardware specifications of the server used for development and experimental evaluation. 
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3. TEXT DETECTION AND RECOGNITION IN REAL-LIFE SCENES 

The problem is divided into two parts, text detection and text recognition. Accordingly, we 

decided to use two different NNs, one for each part of the problem, and then combine them 

in order to create a system that detects scene text from images or videos and recognizes the 

characters in the text. Figure 6 outlines all the steps discussed in the rest of this Section. 

  

Figure 6. Diagram of all the steps discussed in Section 3. 
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3.1. Text detection 

We decided to assess Zhou’s et al. EAST NN-based text detector [19]. In particular, Zhou 

et al. have approached the scene text detection problem with a two-stage pipeline. The first 

stage includes a multi-channel fully convolutional NN (FCN), depicted in Figure 7. It consists 

of 3 components: the feature extractor stem, the feature-merging branch and the output layer. 

The FCN produces the test score map and the text geometries which are, in the second stage, 

given as input to a non-maximum suppression (NMS) algorithm. This NMS algorithm 

merges the geometries from nearby pixels, by averaging the quadrangles to merge 

coordinates, and outputs the final text regions of the image. 

The reason why we chose to utilize the EAST text detector is the superior accuracy on 

detecting the existence of text on images and speed it achieves compared to other existing 

text detectors. In terms of accuracy, the authors emphasize that their detector attains an F-

score of 0.7820 in ICDAR 2015 Challenge 4 [27] and an F-score of 0.8072 when tested at 

multi scales (image is given as input in different sizes, in order for text of different sizes to 

be detected) in the same challenge. Concerning performance, the EAST text detector 

performs at an average of 16.8 FPS on a NVIDIA Titan X GPU with images of 1280x720 

resolution. 

Figure 7. Structure of EAST text detector's FCN. 
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We reused the serialized EAST model by Rosebrock [28], which is the EAST model with 

trained final weights in a binary format, and applied it to his OpenCV scripts for image and 

video inputs. In the case, where the text is in a horizontal or orthogonal orientation we used 

the script as is and found that it gives the most accurate results with the best speed at 

minimum confidence of 0.02 and when the image is resized to width and height of 704 pixels. 

Samples of the output can be viewed in Figure 8. 

3.1.1. Diagonal text 

In some cases of our test images the orientation of the text is not horizontal, but diagonal, 

thus a rectangle bounding box cannot cover the whole text. Such cases are depicted in Figure 

9. For this reason, we had to alter the shape of the predicted region from rectangle to 

trapezoid. The serialized EAST model outputs the upper left and the lower right points of 

the text, so with these two points we created a trapezoid that can contain any type of angled 

text. This is achieved by keeping the text’s height in the right side of the trapezoid and 

making both the right angles obtuse. In this way, the trapezoid can cover the whole text 

whether it extends upwards or downwards from right to left. The final results of this script 

can be observed in Figure 10. Concerning the tuning of the parameters in this case, we 

experimentally identified that a minimum confidence of 0.02 and the image being resized to 

Figure 8. Examples of text detector's output when it is given ICDAR 2019 test images as input. 



14 
 

704x704 dimensions, just like in the case of the rectangles, also makes the script perform 

best in terms of both accuracy and speed. 

3.2. Text recognition 

For the text recognition part, we chose Shi’s et al CRNN [20], a sequence recognition NN. 

In our case, we want to recognize specific sequences, namely words comprising a multi-

lingual character set. The CRNN is a combination of a deep CNN and a recurrent NN (RNN), 

the architecture of which is depicted in Figure 11. Specifically, it takes as input an image that 

is first processed by the convolutional layers of the NN, which extract a sequence of feature 

vectors generated from the feature maps that are produced by the convolutional layers. Then, 

the feature sequence goes through the network’s recurrent layers, which comprise a deep 

Figure 9. In some cases the text in the images is neither horizontal nor vertical, so rectangular is not 

always  the apropriate shape for the bounding box. 
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bidirectional long short-term memory (LSTM) network, and they output the label 

distribution for each frame of the image. In other words, the recurrent layers assign a label 

from the alphabet to each feature vector from the feature sequence, creating the label 

distribution. The last layer is a transcription one that translates the LSTM’s predictions to 

the final predicted label sequence. 

The fact that the CRNN is created to predict any label sequence coming from a given 

alphabet is the reason why we found it the most pertinent solution for multi-lingual text 

recognition from shop signs. Quite often shop names consist of fictional words or surnames 

that cannot be found in a lexicon. Apart from that, after reviewing the literature [29], [30], 

[31] we observed that the CRNN achieves accuracies very close to or sometimes even better 

Figure 10. In the cases of diagonal text, shown in Figure 9, we propose this trapezoid bounding box. 
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than the reported accuracies of other existing text recognition methods without the use of 

lexicon. 

In order to accomplish the multilingual scene text recognition, we first had to train the 

network on the particular alphabet we wanted it to recognize. We decided to use Mei’s 

Pytorch code [29] which is fully modifiable. It uses the connectionist temporal classification 

(CTC) loss as the algorithm’s cost function and gives three options of optimizer to use, which 

we will discuss below. In addition, it normalizes pixel values of the images in the range [0, 

1] before having them pass through the CRNN model. This dataset normalization is 

important because it improves the numerical stability and can, also, reduce the training time. 

Besides, Mei’s code calculates the accuracy of correct word prediction, which is the accuracy 

we take into consideration for all the training optimizations we perform below. 

Figure 11. CRNN's structure. 
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Since our initial thought was to make a text recognition system usable in Greece, we decided 

to train the CRNN in order to recognize text from Greek signboards, that is, scene text with 

Greek and English letters, as well as numbers. Therefore, we set the alphabet to 

“0123456789abcdefghijklmnopqrstuvwxyzαβγδεζηθικλμνξοπρστυφχψω”. Apart from this 

alphabet, we, also, tried training the CRNN with a different multilingual dataset alphabet 

that contains characters from four different Latin languages, namely English, French, 

German and Italian, in addition with numbers and symbols. This alphabet is as follows: 

“0123456789aáàâäɑbßcdeéèêзœfghiìîjklmnoóòôöpqrstuúùûüvwxyzƹAÁÀÂÄÃ۸BCÇDEÉ

ÈÊËŒFGHIÌÎJKLMNOÒÔÖPQRSŠṠTUÙÜVWXYŸZΦ.,!?:;~_▁●▪·•§|@#&+-

*/^=%$€£²°<>《》“”()[]‘`'"”. 

3.2.1. Training with synthetic data 

Before creating our datasets to train the CRNN for the desired alphabets, we had to ensure 

that Mei’s code was, actually, achieving Shi’s et al. described results. For this reason, we 

recreated Shi’s et al. training with the synthetic dataset by Jaderberg et al. [30], which is the 

one used in the training of CRNN by Shi et al. to achieve their reported high accuracy. Some 

sample images from this dataset are shown in Figure 12. Figure 13 shows the accuracy we got 

during the training, which is 84.3%. We get this accuracy after the third epoch of training, 

Figure 12. Sample images from the synthetic dataset. 
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Figure 13. Accuracy achieved when recreating Shi's et al. training [20] with the synthetic dataset. 

The exact accuracy numbers are reported in Appendix A. 
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while the model seems to be overfitting in the next training epochs. This accuracy is very 

close to Shi’s et al. results [20], which is 86.7%, hence we concluded that Mei’s solution can 

be applied to the problem we focus on in this Thesis. 

As a next step, we wanted to assess the size of the dataset we have to create, in order to train 

the NN and achieve an acceptable accuracy. We believe that an acceptable accuracy should 

be at least 0.5, so that the majority of the depicted words are recognized. Thereupon, we 

experimented on training the CRNN with images from Jaderberg’s et al. synthetic dataset 

[30]  on an alphabet containing lowercase English letters and digits. Specifically, we started 

with 500 samples in the training dataset and successively doubled the dataset size. The 

samples in the training and validation sets were distributed on the basis of 80/20 percent rule. 

From these experiments, the results of which can be found in Table 8 in Appendix B, we 

concluded that more than 8000 distinct images are needed in the training set to attain an 

accuracy of 0.5, as shown in Figure 14 As a consequence, when gathering the images for our 

trainings of the CRNN we aimed for at least 8000 samples in the dataset, if possible.  

3.2.2. Character encoding 

The encoding used in the code for reading the characters is utf-8. This fact indicates that, 

when Python is instructed to read a character from a string, it will read one byte from the 

string. However, in our alphabets we come across some letters and symbols, such as the 

Greek characters, that are encoded in more than one bytes with the utf-8 encoding. 
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Figure 14. Graph of valid accuracy per number of samples used in training. To achieve an acceptable 

accuracy of 0.5 we need at least 8000 images in the training dataset. The data used for this graph 

are taken from Table 8. 
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Concretely, as mentioned in the beginning of Section 3.2, both the alphabets we use contain 

English letters and numbers, which occupy one place (one byte) in the alphabet table, while 

the rest of the characters occupied two or even three places.  To solve this encoding problem, 

we firstly searched for a different encoding, where all the characters we are interested in 

occupy the same number of bytes in the table. Some of the encodings we studied were utf-

16, utf-32 and ascii. However, we found out that, unfortunately, there is no encoding in 

which all the letters, numbers and symbols we use occupy the same number of places in the 

alphabet table.  

For this reason, we had to create our own encoding so that all the characters in our alphabet 

occupied one place in the table. We chose to have all characters occupy one byte, because, 

as mentioned above, our Python code is encoded in utf-8, which means that Python is reading 

one byte for each character. In particular, we had to create a different code for each 

character’s encoded byte. First, we observed the encodings of each character and kept intact 

those that already occupied one byte. Then, for the remaining characters that occupied more 

than one byte, we removed their first one or two bytes of the encoding – we only kept the 

least significant byte. If the remaining byte was unique among the other existing encodings, 

we used that as the encoded byte of the character. Otherwise, we would create a unique 

encoding of one-byte size for that character. With this one-off process we managed to have 

a translation map which assigns a single, one byte encoding for each character of the alphabet 

used. 

After that, we wrote functions to automatically perform the specific encoding change for 

each character of the alphabet. Of course, since this is a made-up encoding, Python cannot 

properly display the characters when encoded like this, hence we, also, had to write functions 

to reverse this encoding alteration back to the original utf-8 encoding. This task was 

significantly easier, considering that every character now occupies only one byte, so we only 

had to replace each character’s encoding with its original utf-8 encoding. 

3.2.3. Dataset creation for CRNN 

Concerning the case of scene text with Greek and English alphabets, we initially focused on 

finding a reusable dataset with scene text images from Greek cities. However, after a 

thorough search online we could not find any Greek scene text dataset, so we decided to 

create one. First, we had to take pictures that depicted Greek shop signs, with both Greek 

and English characters. In order to accomplish that, we captured 5 different videos, out of 
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which we would crop signs to include in our dataset. The videos have been captured with a 

smartphone camera attached on a car’s front window, while moving around a city center. 

The video has been taken at a 1920x1080 resolution and a 30 frames per second framerate. 

After acquiring the videos, we extracted their frames to get the required images. While 

examining the quality of the frames, we noticed that their content would significantly change 

every approximately 15 frames, thus we utilized only one frame per 15 (or, equivalently, 2 

frames per second). Next, for each frame we have detected the areas containing text and 

cropped them to produce the dataset images. Last, we had to manually annotate the text 

depicted in each image. This way, we have generated a dataset with 517 samples, which we, 

then, split on the basis of 85/15 percent rule to generate the training and validation sets 

needed. Some sample images of this dataset are depicted in Figure 15. 

In contrast, the creation of the dataset for the Latin languages training was less effortful. 

There are plenty of scene text datasets with our preferred languages online, so we just had 

to gather the samples for our dataset. We decided to use images from the ICDAR 2019 

dataset [18]. Specifically, we used the images that captured text from the four different 

languages we included in our multilingual alphabet, as shown in Figure 16. The total number 

of images in our dataset is 46622 and we split them on the basis of the 80/20 percent rule to 

generate the training and validation sets. 

3.2.4. Training with scene text images 

With the generated datasets we started training the CRNN model for each alphabet case 

separately, once for the Greek and English and once for the Latin alphabet. In particular, in 

Figure 15. Sample images from the Greek-English scene text dataset. 
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the occasion of the Greek and English alphabet we trained the NN for more than 28 hours, 

however the results were very disappointing. The accuracy on the validation set never got 

higher than 0.05 and the test loss was over 100. On the other hand, in the case of the Latin 

alphabet we trained the CRNN for about seven and a half hours and the validation accuracy 

we got was 0.483. Although this result was much better than the one on the other alphabet, 

we, still, wanted to enhance it, too. 

In order to achieve that, we decided to perform some augmentation on the data in order to 

create a better dataset for training, which we will elaborate on in the next Section. After that, 

we observed the two alphabets so that we could examine the possibility of reducing their 

sizes and eliminating the characters that did not occur frequently. In the Greek and English 

alphabet we did not perform any changes, since, as we will discuss in the next Section, the 

size of the dataset used was not enough for a proper training of the CRNN. 

Regarding the Latin alphabet, after finding a better dataset for training, we gradually reduced 

the size of the dataset removing 55 characters from the alphabet and retrained the CRNN to 

check if the accuracy was increasing. Those characters are the ones with the lowest 

frequency of occurrence in the dataset, that is mostly some rare symbols. The new alphabet 

is now: “0123456789aáàâäbcdeéèêfghiìîjklmnoóòôöpqrstuúùûüvwxyzABCDEFGHIJKLM 

NOPQRSTUWXYZ.,!?:_@#&+-/%€()'”. Indeed, with this alphabet shrinking, the 

validation accuracy we achieved was higher than the one in the full alphabet by 0.052, as 

seen in Figure 17, hence we kept the smaller alphabet in our afterward training attempts.  

  

Figure 16. Sample images from the Latin scene text dataset. 
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3.2.5. Dataset augmentation 

As reported earlier, for both training alphabet cases, we augmented the datasets so as to 

expand their size , in order to improve the model’s ability to generalize. In the case of the 

Greek and English alphabet our goal was to increase the number of samples in the dataset, 

since having 517 images was not enough for a descent training. On that account, we rotated 

the images twice – once at 15 degrees and another time at minus 15 degrees - and we, also, 

added HSV noise with dulling 6, hue 11, saturation 11,9% and a luminosity value of 21,6% 

to the images. These augmentations can be seen in Figure 18.  
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Figure 17. Accuracy achieved by CRNN on the validation dataset per training epoch, when trained 

with different alphabets. 
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It is evident that the images after the augmentation process (Figure 18) have degraded. 

Specifically, the rotations pixelize them and the noise corrupts them in a great degree, so 

there can only be limited improvement in the training. This corruption happens because the 

original images do not have a very good quality, since they are taken from video frames, 

hence we could not fix their quality. In addition, we had these augmentations on the Greek 

scene text dataset in order to expand it into having at least 8000 samples, as we detected in 

Section 3.2.1 that are needed for an acceptable accuracy. However, after a couple of 

augmentations we did not observe any improvement on the achieved validation accuracy, so 

we stopped the augmentations at the point we only had 2068 images in the dataset. This 

amount of images in  the dataset, still, seemed very few in comparison with the 8000 ones 

needed, hence we had to get more annotated images on the dataset. Nonetheless, since we 

wanted to spend the working time of this Thesis on understanding the training procedure of 

the NN, it would not be a good investment of time to proceed in manually producing a large 

enough Greek scene text dataset to achieve our goal. 

For the Latin training, we, also, tried both applying rotations and HSV noise to the images. 

In particular, seeing that in this case we were aiming in rising the validation accuracy, we 

conducted experimental trainings of the CRNN with different augmentations on the dataset. 

Apart from having the original images from ICDAR 2019 [18] in our dataset, we have added 

up to three random rotations in the range [-15, 15] degrees and HSV noise (with dulling 5, 

hue 59, saturation 68.3% and luminosity value 43%) in different combinations to generate 

an effective dataset to train the CRNN with. The selection of the augmentations to be applied 

is made by checking the result they give on the quality of the images and the outcome can 

be seen in Figure 19. In this Figure we can see that the images are not as corrupted as in the 

case of the Greek scene text ones, which occurs due to the fact that these original images are 

Figure 18. Samples from the augmentations on the Greek-English scene text dataset. 

a. Original image. b. 15 degrees rotation. c. -15 degrees rotation. d. HSV noise. 



24 
 

better in quality. The combinations of the augmentations we applied are shown in Figure 20. 

Also, in this Figure, it is evident that the dataset that contained the original images, two 

copies of them randomly rotated, and another copy with HSV noise achieves the best 

accuracy on the validation dataset. Thus, we selected this dataset as the most effective dataset 

for training the CRNN.  

  

Figure 20. Accuracy achieved by CRNN on the validation dataset per training epoch, when trained 

with different datasets. 

Figure 19. Samples from the augmentations on the Latin scene text dataset. a. Original image. b-d. 

Random rotation in [-15, 15] degrees. e. HSV noise. 
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3.2.6. Hyperparameter tuning 

The last step after finalizing all the training parameters, was to analyze the effect of the 

values of hyperparameters. The hyperparameters of the CRNN are the optimizer type, the 

batch size and the size of the LSTM hidden size. The default values for these 

hyperparameters are the RMSprop optimizer, 500 samples per batch and 256 layers in the 

LSTM hidden state. We did not try to experimentally optimize these values for the Greek 

and English training, since the problem with that training lies in the fact that we had very 

few training samples in comparison to the ones that were actually needed.  

Consequently. we experimented with the hyperparameter tuning on the Latin alphabet 

training. In particular, we, first, focused on the optimizer. The default optimizer is the Root 

Mean Square Propagation (RMSprop), which is an optimizer very similar to the gradient 

descent algorithm with momentum and the user has to define the learning rate to apply. 

Another option for which the learning rate has to be manually defined is the Adam optimizer, 

which is a combination of two extensions of the stochastic gradient descent, the adaptive 

gradient algorithm (Adagrad) and the RMSProp. However, the optimizer we selected for our 

task is the Adadelta, which is an extension of the Adagrad optimizer that reduces the 

monotonically decreasing learning rate. When training the CRNN with different optimizers, 

we found out that the training converges faster whit Adadelta. Hence, for all the trainings 

following, we use the Adadelta optimizer. 

Afterwards, we continued with training the CRNN with different batch sizes. Starting from 

500 batches we binary searched to identify the optimal number of batches. As shown in 

Figure 21, the training performance is not very sensitive on the batch size.  Still, we 

experimentally concluded that 1000 is the best size for the batches.  Finally, we experimented 

with different sizes for the LSTM hidden state. Similarly to batch sizes, we binary searched 

for the optimal number of layers for the CRNN’s LSTM hidden state. That number can be 

deduced from Figure 22 and is 256. Appendix E summarizes the exact validation accuracies 

achieved by each different training. 
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3.3. Integration of text detection and recognition 

In order to make a complete evaluation of text detection and recognition on a multilingual 

character set, we had to integrate the above assessed NNs into one system. In particular, the 

image first goes through the EAST text detector, which will determine the text’s bounding 

boxes and, then, each of the bounding boxes is cropped out of the original image to be fed 

to the CRNN. Since the CRNN takes as input a rectangular image, text part needs to be 

cropped out as rectangular. For this reason, we use the rectangular bounding box on every 

case of text orientation and we crop 10 pixels outside the bounding box to increase the 

probability of including the whole word in the cropped image. 

Figure 21. Accuracy achieved by CRNN on the validation dataset per training epoch, when trained 

with different batch sizes. 
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The cropped image is converted to grayscale, and then it is resized to 32 x 100 pixels so that 

it fits the dimensions of the CRNN input. In addition, before the image is given to CRNN, it 

is normalized to [0, 1], as demonstrated in Figure 23. When the results of the CRNN are 

ready, they are written on the original image along with the predicted bounding boxes by the 

Figure 23. The cropped image goes through three stages before it is given as input to the CRNN. a. 

Grayscale. b. Resize to 32 x 100 pixels. c. Normalization to [0, 1]. 
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Figure 22. Accuracy achieved by CRNN on the validation dataset per training epoch, when trained 

with different sizes of the LSTM hidden state. 



28 
 

EAST text detector. The final results we get are shown briefly in Figure 4 and in detail later, 

in Section 4. 

3.3.1 Performance optimization 

Our final goal was to optimize the performance of the inference code. Initially, we used the 

2 NNs sequentially. However, in order to achieve better performance for our system, we 

decided to use them in parallel, specifically with pipelining. The main thread performs the 

text detection on a frame, and a second thread is created to perform the text recognition for 

the text parts of each image. Next, we decided to have each text part being recognized in 

parallel, so for each bounding box found in a frame, a separate thread is created to have it 

run through the CRNN. This multithreading on the CRNN did not result in a better 

performance of our system, due to the fact that we had too many CRNN threads spawned 

for the same input image, thus we removed it. 

In order to annotate each frame with the results we have created one last thread (per frame) 

which waits until  the text recognition thread is finished and, then, it saves the final result in 

an image file. After performing the text detection on one frame, the main thread moves on 

to the next frame without waiting for the CRNN threads to finish their work, therefore the 

text detection and text recognition stages overlap. It is also important to mention that  the 

text recognition stage takes 1.15 times more time to finish its work on the image than the 

text detection stage. This pipeline is illustrated in Figure 24 for a frame where three bounding 

boxes were detected. 

As a last step, we enabled GPU execution. First, we sent our CRNN model to the server’s 

CUDA-enabled GPU device. We do this by calling the Pytorch’s .cuda() method on the 

model and turning the input images into cudaTensors.  Next, we tried moving the text 

detection part to the GPU. Specifically, we made use of OpenCL-enabled OpenCV to 

automatically transfer the heavy matrix operations to the accelerator device. Along these 

lines, OpenCL detects the accelerator device on the server and transforms the executable 

code in order for it to run on the detected GPU. However, enabling OpenCL did not affect 

the system’s speed, since the text detection part executed at the same speed as in CPU. 

Therefore, we ended up not using OpenCL. In the next Section we evaluate the performance 

of the inference.  
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Figure 24. Diagram of NNs used combined in parallel. 
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4. EVALUATION 

4.1. Accuracy 

In this Section we will evaluate the scene text detection and recognition system for scene 

text in English, French, German and Italian. We did not proceed on producing results for 

the Greek and English alphabet, because, as explained in Section 3.2, the limited size of 

the dataset we had thwarted the proper training of the CRNN for this case. For the 

evaluation we used images from the ICDAR 2019 dataset [18], different from the ones we 

used for training and validation. Figure 25 shows the results for some indicative scenes. We 

discuss the results in detail below. 

Figure 25. Final output images of the system. 
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4.1.1. Text detection 

As far as text detection is concerned, it is apparent in the images of Figure 25 that the 

bounding boxes cover the text parts of the image in a quite satisfactory degree. In particular, 

we observe that in most of the images almost all the text is identified. More specifically, the 

text detector identifies the text parts of the image with 0.814 recall. As expected, in many 

cases the text detector falsely identifies parts of the image as text. Such cases are depicted in 

Figure 26, however we do not consider this as a disadvantage, since our goal, which is the 

detection of the actual text, is achieved. This precision of the text detector is 0.853. 

Table 2 summarizes the precision, recall and F-score we accomplish with the text detector. 

In these measurements we can observe that we achieve an F-score of 0.8315 with the EAST 

text detector on the ICDAR 2019 multilingual scene text images, which is even better than 

the reported one by Zhou et al. That F-score is 0.8072 and it is measured on the images from 

Figure 26. Cases where the text detector falsely identifies parts of the image as text. 



32 
 

the ICDAR 2015 incidental scene text challenge [27], which are different than the ones from 

the ICDAR 2019 dataset that we use. Hence, we get an improvement of the F-score. 

Another metric we evaluated, which is, also, included in Table 2, is how often the true 

positive bounding boxes cover the whole word depicted. As described in Section 3.1.1, 

although the diagonal orientation of the text makes the full coverage of the text a challenging 

process, we are able to have whole words covered by the bounding box at a percentage of 

0.619. Particularly in Figure 27 it becomes clear how, in many cases, the bounding box cannot 

fully cover the detected text. Undoubtedly, this fact affects the next stage of our Thesis, the 

word recognition, since words that are not fully covered by the bounding box may have some 

letters cropped in half, which can make it challenging for the CRNN to recognize them.  

4.1.2. Text recognition 

Concerning the text recognition stage, the final accuracy of correct word prediction we 

achieved after all the training optimizations elaborated in Section 3.2 is 0.6582. At this point, 

it is important to clarify that we measure the accuracy as in the number of whole words 

recognized to the number of all the words to be recognized and not as in the number of letters 

identified correctly to the number of all the letters to be identified, as mentioned in Section 

3.2. Also, we do not take into consideration the falsely identified bounding boxes, since they 

Table 2. Recall, precision and F-score measurements of the EAST text detector on the ICDAR 2019 

images. We included both the detection of text and the whole coverage of the text depicted. 

  Recall Precision F-score 

Text detection 0.814 0.853 0.8315 

Total text coverage 0.619 0.528 0.5699 

Figure 27. Cases where the text detector fails to cover the whole word with the bounding box. 
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do not contain any text and the CRNN is not designed to recognize this kind of errant input. 

However, at the granularity of individual characters, the accuracy the final trained model 

achieves is high, at 0.846. 

 presents the expected accuracy of random letter recognition, the final accuracy we achieve 

and the percentage of accuracy improvement over random, for both cases of the Latin 

alphabet we discuss, full and condensed. In the case of the condensed alphabet, for which 

we got the final results shown in Figure 25, we were able get an improvement in accuracy of 

81.22x This raise is even higher for the full alphabet, 122.24x, since the possibility of 

randomly predicting a word correctly is significantly lower. This is a strong indication of the 

effectiveness of the CRNN. 

In particular, it is evident in Table 4 that in most cases of wrong word identification the error 

is in the identification of only one or two letters of the whole word.. As a consequence, the 

conclusion of our evaluation of the CRNN is that it is a quite reliable NN for multilingual 

scene text recognition. 

In comparison with Shi’s et al. [20] achieved accuracy on the lower case English letters and 

numbers, that is reported in the beginning of Section 3, we get quite similar accuracy on our 

Latin alphabet, although a bit inferior. That is because of various reasons. Firstly, we train 

the model with about 233 thousand dataset samples, which are significantly fewer than the 

nine million samples Shi et al. use for their training. Secondly, the alphabet which we want 

the CRNN to make predictions for is almost 1.5 times bigger than the lower-case English 

alphabet used by Shi et al., increasing the number of parameters in the CRNN by a large 

margin. Additionally, the type of images used in the training dataset affects the final results 

substantially. In scene text images it is more difficult to identify words than in synthetically 

created ones, because of all the obstructions due to lighting differences, the image 

stabilization and resolution, that can be present in the scene text images. 

  

Table 3. Text recognition random accuracy, achieved accuracy and its raise for both full and 

condensed alphabet. 

Alpahabet Random Accuracy Achieved Accuracy Accuracy Improvement 

Full 0.0066225 0.8095238 122.2383994x 

Condensed 0.0104166 0.8459958 81.21611658x 
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4.2. Performance 

As explained in Section 3.3.1, after integrating the two NNs into one system, we 

concentrated on optimizing the code’s performance. To do that, we went through three 

different optimization stages, that are described in Table 6. The first one is when the NNs are 

combined sequentially and the second when they are combined in a pipeline as shown in 

Figure 24. Both of these stages include executing the code on the CPU and the optimization 

is achieved by the pipeline parallelism. The last stage makes use of the server’s GPU 

Prediction Ground Truth 
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Table 4. CRNN results on images from the ICDAR 2019 dataset. The left column shows CRNN's 

prediction and the right one shows the ground truth text depicted on the image 
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accelerator, detailed in Table 1,  for the execution of the most time consuming of the two 

NNs, the CRNN. 

Table 5 shows the time (in seconds) that takes the system to infer 100 images, but also the 

average inference time per image. In particular, in stage one, in which there are no 

optimizations, the system takes 88.356 seconds to process 100 images, that is 0.884 

seconds per image on average. When we added the first optimization, which is the 2-stage 

pipeline parallelism, the total time dropped to 42.024 seconds which means that the code 

became about 2 times faster with the use of two threads, aswe would expect it to be. 

Transferring the CRNN model to the GPU made execution 1.31 times faster than the 

previous stage; processing a hundred images takes 32.048 seconds at this point. In this final 

stage, where we have made use of the system’s GPU, the processing takes  0.32 seconds 

per image on average. 

It is clear from these timing data that implementing all these optimizations on the inference 

code significantly reduced the image processing time. Specifically, the code is executing 

2.76 times faster after all the optimizations. In addition, this system could be used as part 

of an application that has its heaviest calculations transferred to a server, since it can 

produce very fast results, at slightly more than 3 frames per second. 

  

Optimization stage Description 

1 Sequential integration of the NNs 

2 Pipeline parallelism 

3 Pipeline parallelism and execution of CRNN in GPU 

Table 5. Time per optimization stage, that the system takes to process images. Optimization stages 

are described in Table 1. 

Optimization stage Time per 100 images Time per image 

1 88.356 sec 0.884 sec 

2 42.024 sec 0.42 sec 

3 32.048 sec 0.32 sec 

Table 6. Description of the optimization stages on the inference code. 
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5. RELATED WORK 

Many researchers have approached the text detection and recognition problem, either each 

of its parts separately, or the problem as a whole. In this Section we discuss closely related 

work on text detection and text recognition. We also discuss an end-to-end approach for 

detecting text from images and recognizing the words in it. 

5.1. Text detection 

There are two primary techniques used to perform text detection on images. The first one is 

image based and it entails the image being partitioned into multiple segments with similar 

features. These image segments are then classified as text or non-text with the use of methods 

coming from the field of machine learning. One of these methods are SVM engines. Shin et 

al. [7] have discerned the text detection problem as textured based, hence they elucidate it 

as a pattern classification problem. Since the SVMs are a pattern classification mechanism, 

the authors propose a system that scans the image with a small window, and for each position 

of the window it classifies the central pixel as text or non-text. This analysis is enabled by 

using predefined features of the input’s grayscale pixels, which are, then, dot multiplied with 

the support vectors to produce the final result. 

The weakness of this approach to text detection is the fact that the initial features have to be 

manually selected. To avoid this hindrance, Delakis and Garcia have introduced CNNs in 

their study [8], where not only the features used, but also the localization of the text is 

determined in a one-step process. Their CNN consists of one layer where the image is 

decomposed to its RGB components, followed by four layers of filters applied to these 

components, where they, also, have their features fused together to assemble the attributes 

evaluated during classification. The last two layers of the CNN perform a sigmoid 

classification to generate the final result. Both image-based techniques reviewed above have 

in common the fact that in order to detect text of different sizes, the image needs to be fed 

to the system multiple times in different scales and the results of each pass are combined to 

get the final detected bounding boxes of the text. 

The second text detection method that is commonly used in literature is frequency based. It 

is based on the principle that document images can be perceived as two-dimensional signals, 

to which we can apply signal processing methods. Yeotikar et al. [9] apply a DFT in order 

to extract text from images. There are many applications of the Fourier transform (FT) that 
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can be used in image processing, such as low pass or median filters to remove noise, 

correlation to locate different image features and convolution, since the reverse product of 

the FTs of two matrices gives the result of the matrices’ convolution. In their research [9], 

Yeotikar et al. have demonstrated five different implementations of these methods applied 

with the purpose of locating text in document images. The first two methods are a two-

dimensional FT and a two-dimensional DFT. Then they tested the spatial domain filters, 

which act like convolutions of the image matrix with a small window. Lastly, they 

experimented on how the FT can be used for image enhancement and edge reinforcement. 

Apart from the FT, another method from signal theory that is used for text detection is the 

Discrete Wavelet Transform (DWT). Liang and Chen [10] have worked with the Haar DWT 

to perform text extraction from images. More specifically, they, firstly, perform a two-

dimensional DWT, which is able to detect edges existing in the image in three different 

directions, horizontal, vertical and diagonal. After that, they apply the Haar DWT, which 

enhances the edges in the image and, then, they combine all the types of edges with a logical 

AND operation so as the text regions to be revealed. Distinguishing of the text from the 

background, in this case, is performed with dynamic thresholding. As a result, the frequency-

based approaches have the text become more distinct from its background, thus it can be 

easily located in the image. 

5.2. Text recognition 

Concerning the word recognition on images, we first need to clarify that the words to be 

recognized are already detected in the image and the text’s bounding box is defined. One of 

the dominant approaches available in literature is bottom-up. This kind of method includes 

the image going through an OCR engine. According to Kumar et al. [11], segmentation is 

the practice when an image is binarized and then it is given as input to an OCR engine. The 

binarization process is especially important when the image is a scene text image, since such 

images often lack quality or they might be distorted. For this reason Kumar et al. have 

proposed two different binarization algorithms [11] [12] for scene text image segmentation. 

Their first binarization algorithm is called midline analysis and propagation of segmentation 

(MAPS) [11] and it consists of five steps. In their research they find that the middle row of 

the image is  affected less by the low quality problem, so, in MAPS, this part of the image 

is segmented with the use of two different methods, the niblack and the min-max methods. 

For the rest parts of the image the algorithm propagates the labels found in the middle row. 



38 
 

Kumar’s et al. second proposed binarization algorithm is the nonlinear enhancement and 

selection of plane (NESP) [12], which is quite similar to MAPS. The only difference between 

these two binarization algorithms is the separation of the image in horizontal zones. In 

contrast with MAPS, in NESP a nonlinear enhancement of the image’s RGB components is 

performed and the RGB component in which the text which is most separable from its 

background is selected to complete the binarization process of the algorithm. 

After the segmentation process, we get the binarized image, which we can, now, give as 

input to any OCR engine in order to recognize the words in it. An example OCR engine is 

the Tesseract [31]. Patel et al. have studied the way Tesseract achieves text recognition and 

describeit in [13]. When Tesseract is given a binarized image, it performs a connected 

components analysis from which character outlines are determined. These character outlines 

are turned into blobs, which makes it easy to individuate the different text lines and words. 

A two-phase word recognition follows that gives the final output of the OCR. 

Another approach for text recognition is top-down. In this type of approaches, compared to 

bottom-up, the image does not need to be segmented. Instead, these methods use a set of 

words coming from a dictionary and identify the word that the text in the image matches 

best. One way of defining this match of images with the words they depict is through a prior 

computed high order statistical language model, as explained by Mishra et al. in [14]. They 

have created a higher order conditional random field (CRF) of all the possible combinations 

of characters and digits that can be found in a lexicon. When it comes to the word 

recognition, they use this CRF to determine the frequency of the possible words, that are 

depicted in the image, inside the dictionary. As a consequence, the word with the highest 

frequency is selected as output of the text recognition system.  

5.3. End-to-end approach 

Most approaches to text detection and recognition use a two-phase structure, one phase for 

the text detection and another for the word recognition, however there are some researches 

[15] [32] that make use of DNNs to generate end-to-end text detection and recognition 

engines. For instance, Bartz et al. [15] have proposed a single DNN that divides the work 

into subtasks with the use of a localization network. Their network consists of two parts, the 

localization network and a text recognition stage. The localization network is the one that 

identifies the text regions in the image and with the application of a grid generator the 

bounding boxes are calculated and the text regions are extracted to continue on to the 
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recognition stage. The recognition stage is comprised by a CNN with ResNet architecture 

and outputs the labels of the detected text in the image. This kind of systems are end-to-end 

trainable and, usually, they make use of one single multitask DNN. 
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6. CONCLUSION 

In this Thesis we evaluated the performance of two different NNs, the EAST text detector 

[19] and the CRNN [20], on multilingual scene text detection and recognition respectively. 

We used a serialized model of the EAST text detector, which performs fairly accurately on 

detecting text in scene text images, whereas it falls short in locating the edges of the detected 

text. As a result, although the EAST text detector can identify the text, when it comes to 

cropping the text parts out of the initial image, only about half of the produced cropped areas 

will include whole words. 

For the text recognition stage, we, first, tried using a Greek and English alphabet, however, 

due to the lack of dataset, we shifted to a Latin alphabet that contains letters from English, 

French, Italian and German, along with digits and symbols. We trained the CRNN on images 

containing scene text of these languages and we, additionally, optimized this training by 

augmenting our dataset and finding the best values for the NN’s hyperparameters. Finally, 

we achieved a 0.658 accuracy of correct word identification and an even higher accuracy for 

correct letter recognition, at 0.846. 

After preparing each NN to perform at their best on multilingual scene text images, we 

integrated them into one system. This system takes as input an image and outputs the 

bounding boxes of the text depicted, as well as the identified words of the text. We had the 

two NNs run in a pipeline to reduce the execution time and, furthermore, we exploited a 

GPU to achieve better optimization performance. In this way we accomplished 2.38 times 

faster code execution and, most importantly, our system can produce results in 0.378 seconds 

per image. 

Following the final evaluation of the NNs, we concluded that the most important factor for 

the success of a NN is the training it has gone through. In particular, the training dataset 

plays the most critical role on the quality of the NN’s produced results, since the whole 

learning of the NN depends on it. On the current Thesis we dedicated most of the working 

time on training the CRNN, hence we understood many aspects of the training process, like 

the training dataset, the hyperparameters, and the expected output. 

As a continuation of this Thesis, the CRNN can, also, be trained on the Greek and English 

alphabet. We have found that at least eight thousand samples are needed in the dataset, 

therefore we need to extend and properly augment the Greek scene text dataset of 517 

annotated images we generated. In addition, there can be an improvement in text coverage 
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of the text detector, by finding a better shape for the bounding box. In the performance side, 

as reported the system executes fast in the server, however there should be a performance 

testing on a portable device and, possibly, a further optimization in order for it to be part of 

a locally executed application. 
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APPENDIX A 

Results of training the CRNN with the synthetic dataset [30] 

Epoch Valid Accuracy 

0 0.82376 

2 0.84318 

4 0.84136 

6 0.83514 

8 0.81192 

10 0.8116 

12 0.80534 

14 0.7943 

16 0.7068 

18 0.01376 

Table 7. Accuracy achieved per epoch of training when training the CRNN with the whole synthetic 

dataset. 
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APPENDIX B 

Results of training the CRNN with a small part of the synthetic dataset 

[30] 

Training Samples: 501 1002 2004 4008 8016 

Epoch Valid Accuracy 

0 0 0 0 0 0 

20 0 0 0 0 0.07072 

40 0 0 0 0.00347 0.42654 

60 0 0 0 0.06482 0.47807 

80 0 0 0 0.09375 0.47807 

100 0 0 0 0.09375 0.47478 

120 0 0 0 0.10764 0.47752 

140 0 0 0 0.09144 0.48849 

160 0 0 0 0.10648 0.49123 

180 0 0 0 0.10417 0.49342 

200 0 0 0 0.12616 0.50384 

220 0 0 0 0.11458 0.49561 

240 0 0 0 0.11111 0.50055 

260 0 0 0 0.10301 0.49781 

280 0 0 0 0.11921 0.49397 

300 0 0 0 0.11343 0.49397 

320 0 0 0 0.13079 0.48958 

340 0 0 0 0.12037 0.50439 

360 0 0 0 0.11111 0.48958 

380 0 0 0 0.11111 0.49232 

400 0 0 0 0.11806 0.49616 

420 0 0 0 0.12037 0.49342 

440 0 0.00391 0 0.13079 0.4841 

460 0 0 0 0.1331 0.49671 

480 0 0 0.00195 0.11921 0.48849 

500 0 0 0 0.11574 0.50768 

Max Accuracy: 0 0.00391 0.00195 0.1331 0.50768 

Table 8. Accuracy achieved per epoch of training when training the CRNN with different number of 

samples from the synthetic dataset [30]. The alphabet used in this case is 

“0123456789abcdefghijklmopqrstuvwxyz”. 
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APPENDIX C 

Results of experimental training on reducing the size of the Latin alphabet 

alphabet:  

0123456789aáàâäɑbßcdeéèêзœfghiìîjklmn

oóòôöpqrstuúùûüvwxyzƹAÁÀÂÄÃ۸BCÇ

DEÉÈÊËŒFGHIÌÎJKLMNOÒÔÖPQRSŠ

ṠTUÙÜVWXYŸZΦ.,!?:;~_▁●▪·•§|@#&+

-*/^=%$€£²°<>《》“”()[]‘`'" 

0123456789aáàâäbcdeéèêfgh

iìîjklmnoóòôöpqrstuúùûüvw

xyzABCDEFGHIJKLMNOP

QRSTUWXYZ.,!?:_@#&+-

/%€()' 

data: original + 1 random rotation 

batch size: 500 

size of 

lstm 

hidden 

state:  

256 

epoch valid accuracy 

0 0.000791209 0.085066667 

20 0.578813187 0.633688889 

40 0.585318681 0.636755556 

60 0.591450549 0.640822222 

80 0.588813187 0.639955556 

100 0.591406593 0.645511111 

120 0.592461538 0.644777778 

140 0.593010989 0.646955556 

160 0.598659341 0.646466667 

180 0.597912088 0.644288889 

200 0.591736264 0.648955556 

220 0.60032967 0.646422222 

240 0.59989011 0.644444444 

260 0.595406593 0.6468 

280 0.601120879 0.653133333 

300 0.597054945 0.6506 

320 0.598945055 0.6464 

340 0.600989011 0.650755556 

360 0.599912088 0.649822222 

380 0.595978022 0.647133333 

400 0.599758242 0.650177778 

420 0.601120879 0.648533333 

440 0.60043956 0.652666667 

460 0.595384615 0.648155556 

480 0.599692308 0644377778 

500 0.597912088 0.645755556 

Table 9. Accuracy achieved per epoch of training when training the CRNN with different alphabets. 
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APPENDIX D 

Results of data augmentation experimental training on the Latin alphabet 

alphabet:  

0123456789aáàâäɑbßcdeéèêзœfghiìîjklmnoóòôöpqrstuúùûüvwxyzƹAÁÀÂ

ÄÃ۸BCÇDEÉÈÊËŒFGHIÌÎJKLMNOÒÔÖPQRSŠṠTUÙÜVWXYŸZΦ.,!

?:;~_▁●▪·•§|@#&+-*/^=%$€£²°<>《》“”()[]‘`'" 

data: original 

original + 1 

random 

rotation 

original + 2 

random 

rotations 

original + 

3 random 

rotations 

original + 3 

random 

rotations + 

hsv noise 

batch 

size: 
500 

size of 

lstm 

hidden 

state:  

256 

epoch valid accuracy 

0 0.00043243 0.00043243 0.00043636 0.00043836 0.00079121 

20 0.43859459 0.55189189 0.55916364 0.5608761 0.57881319 

40 0.45275676 0.56810811 0.56589091 0.57041096 0.58531868 

60 0.45545946 0.56767568 0.56810909 0.57112329 0.59145055 

80 0.46767568 0.56848649 0.56923636 0.57704110 0.58881319 

100 0.46637838 0.57432432 0.57170909 0.58298630 0.59140659 

120 0.46243243 0.57735135 0.57334545 0.58164384 0.59246154 

140 0.47854054 0.57913514 0.56269091 0.58024658 0.59301099 

160 0.47508108 0.58054054 0.57418182 0.58443836 0.59865934 

180 0.47048649 0.57929730 0.57694545 0.58550685 0.59791209 

200 0.47621622 0.58016216 0.57734545 0.58964384 0.59173626 

220 0.48113514 0.57810811 0.57589091 0.58682192 0.60032967 

240 0.47859459 0.58308108 0.57338182 0.59178082 0.59989011 

260 0.47794595 0.58600000 0.57650909 0.59098630 0.59540659 

280 0.47578378 0.58308108 0.58000000 0.58849315 0.60112088 

300 0.48308108 0.58151351 0.57850909 0.59372603 0.59705495 

320 0.48194595 0.58394595 0.58018182 0.59183562 0.59894505 

340 0.47945946 0.58356757 0.57956364 0.59386301 0.60098901 

360 0.47400000 0.58518919 0.57829091 0.58884932 0.59991209 

380 0.48200000 0.58459459 0.57810909 0.59235616 0.59597802 

400 0.48091892 0.58118919 0.57632727 0.59350685 0.59975824 

420 0.47567568 0.58762162 0.57861818 0.59249315 0.60112088 

440 0.48502703 0.58232432 0.58167273 0.58895890 0.60043956 

460 0.47524324 0.58470270 0.58181818 0.59528767 0.59538462 

480 0.48437838 0.58837838 0.57887273 0.59339726 0.59969231 

500 0.47821622 0.58400000 0.58265455 0.59309589 0.59791209 

Table 10. Accuracy achieved per epoch of trainng when training the CRNN with different 

augmentations on the dataset. 
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APPENDIX E 

Results of hyperparameter tuning experimental training on the Latin 

alphabet 

alphabet:  
0123456789aáàâäbcdeéèêfghiìîjklmnoóòôöpqrstuúùûüvwxyzABCDEF

GHIJKLMNOPQRSTUWXYZ.,!?:_@#&+-/%€()' 

data: original + 1 random rotation 

batch size 500 250 1000 2000 750 375 440 625 

size of lstm 

hidden state:  
256 

epoch valid accuracy 

0 0.0851 0.1115 0.0858 0.0839 0.0858 0.0886 0.0854 0.0858 

20 0.6337 0.6333 0.6419 0.5823 0.6259 0.6471 0.6259 0.6390 

40 0.6368 0.6378 0.6470 0.6011 0.6444 0.6475 0.6328 0.6448 

60 0.6408 0.6378 0.6482 0.6012 0.6448 0.6519 0.6342 0.6473 

80 0.6400 0.6406 0.6514 0.6130 0.6454 0.6546 0.6394 0.6519 

100 0.6455 0.6380 0.6521 0.6068 0.6434 0.6496 0.6413 0.6474 

120 0.6448 0.6424 0.6571 0.6136 0.6508 0.6548 0.6420 0.6555 

140 0.6470 0.6350 0.6537 0.6148 0.6436 0.6548 0.6390 0.6534 

160 0.6465 0.6469 0.6526 0.6139 0.6474 0.6530 0.6385 0.6547 

180 0.6443 0.6418 0.6539 0.6166 0.6486 0.6538 0.6408 0.6556 

200 0.6490 0.6377 0.6559 0.6173 0.6503 0.6520 0.6392 0.6518 

220 0.6464 0.6334 0.6580 0.6193 0.6530 0.6550 0.6411 0.6556 

240 0.6444 0.6402 0.6579 0.6230 0.6513 0.6549 0.6417 0.6582 

260 0.6468 0.6359 0.6581 0.6221 0.6486 0.6576 0.6398 0.6569 

280 0.6531 0.6409 0.6568 0.6213 0.6503 0.6521 0.6374 0.6508 

300 0.6506 0.6388 0.6574 0.6203 0.6494 0.6573 0.6409 0.6571 

320 0.6464 0.6423 0.6552 0.6231 0.6536 0.6569 0.6411 0.6500 

340 0.6508 0.6330 0.6582 0.6231 0.6510 0.6537 0.6442 0.6530 

360 0.6498 0.6424 0.6558 0.6218 0.6496 0.6519 0.6385 0.6535 

380 0.6471 0.6405 0.6546 0.6216 0.6543 0.6528 0.6381 0.6563 

400 0.6502 0.6398 0.6589 0.6231 0.6529 0.6512 0.6415 0.6564 

420 0.6485 0.6418 0.6591 0.6265 0.6540 0.6556 0.6382 0.6552 

440 0.6527 0.6471 0.6577 0.6280 0.6533 0.6579 0.6391 0.6583 

460 0.6482 0.6457 0.6555 0.6255 0.6488 0.6507 0.6431 0.6594 

480 0.6444 0.6370 0.6581 0.6251 0.6511 0.6559 0.6403 0.6584 

500 0.6458 0.6402 0.6568 0.6172 0.6490 0.6545 0.6412 0.6595 

Table 11. Accuracy achieved per epoch of training when training the CRNN with different batch 

sizes. 
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alphabet:  
0123456789aáàâäbcdeéèêfghiìîjklmnoóòôöpqrstuúùûüvwxyzABCDEFGHI

JKLMNOPQRSTUWXYZ.,!?:_@#&+-/%€()' 

data: original + 3 random rotations + hsv noise 

batch 

size 
1000 

size of 

lstm 

hidden 

state:  

256 512 128 64 192 320 

epoch valid accuracy 

0 0.0857778 0.0857778 0.0857778 0.0857778 0.0857778 0.0857778 

20 0.6419111 0.5746889 0.6308222 0.6205111 0.6112444 0.6208000 

40 0.6470000 0.5852667 0.6376889 0.6223333 0.6177333 0.6294889 

60 0.6481556 0.5920889 0.6413111 0.6320000 0.6232444 0.6329111 

80 0.6513778 0.5958667 0.6468667 0.6320444 0.6238222 0.6269778 

100 0.6521111 0.6002222 0.6426222 0.6340222 0.6282444 0.6352889 

120 0.6570667 0.6023556 0.6427778 0.6373111 0.6277333 0.6394444 

140 0.6536889 0.6029556 0.6482889 0.6399778 0.6312889 0.6412889 

160 0.6525556 0.6040889 0.6525333 0.6392889 0.6338444 0.6408444 

180 0.6539111 0.6057556 0.6526222 0.6387111 0.6331111 0.6450000 

200 0.6558889 0.6070889 0.6524889 0.6450000 0.6387111 0.6488000 

220 0.6580222 0.6068000 0.6536889 0.6426222 0.6364667 0.6437778 

240 0.6579111 0.6057111 0.6528889 0.6446222 0.6356889 0.6496222 

260 0.6580889 0.6088667 0.6500222 0.6423556 0.6379556 0.6496444 

280 0.6567778 0.6096889 0.6536222 0.6436889 0.6385333 0.6480000 

300 0.6574000 0.6036444 0.6518667 0.6427333 0.6380000 0.6503111 

320 0.6552222 0.6069778 0.6581111 0.6448889 0.6353778 0.6488444 

340 0.6582222 0.6079111 0.6545111 0.6455778 0.6365556 0.6507333 

360 0.6557778 0.6024444 0.6488000 0.6441778 0.6358222 0.6510222 

380 0.6546444 0.6041556 0.6548444 0.6430444 0.6410444 0.6480889 

400 0.6589111 0.6048889 0.6552667 0.6448444 0.6389556 0.6527111 

420 0.6591111 0.6056222 0.6558667 0.6429333 0.6404222 0.6503333 

440 0.6576889 0.6044444 0.6547111 0.6402222 0.6384889 0.6472444 

460 0.6554667 0.6062000 0.6531333 0.6418444 0.6392000 0.6511556 

480 0.6580667 0.6093333 0.6567111 0.6426667 0.6392000 0.6525111 

500 0.6568000 0.6103111 0.6530667 0.6432222 0.6439111 0.6487333 

Table 12. Accuracy achieved per epoch of training when training the CRNN with different sizes for 

the LSTM hidden state. 

 


