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Extended Abstract (in Greek) 

Εκτενής Περίληψη 

Εξελιγμένα εργαλεία για την προσομοίωση και την πρόβλεψη ζήτησης αστικού 

νερού σε πολλαπλές χωρο-χρονικές κλίμακες 

Αντικείμενο της διατριβής είναι η διερεύνηση των δυνατοτήτων μαθηματικής 

προσομοίωσης διάφορων τμημάτων του υδρευτικού κύκλου, η εφαρμογή και η 

ανάπτυξη νέων εργαλείων, συγκεκριμένα της ζήτησης νερού στο επίπεδο των 

υδάτινων πόρων, του συστήματος διανομής και της οικιακής κατανάλωσης σε 

επίπεδο βρύσης. 

Για την υλοποίηση των παραπάνω μαθηματικών προσομοιώσεων 

χρησιμοποιήθηκαν παραδοσιακές στατιστικές μέθοδοι, μέθοδοι που προέρχονται 

από το χώρο της τεχνητής νοημοσύνης και υβριδικές μέθοδοι, καθώς και 

διαδεδομένοι προσομοιωτές, ενώ αναπτύχθηκαν νέοι αλγόριθμοι για να καλύψουν 

περαιτέρω ανάγκες. 

Οι μέθοδοι εξετάστηκαν και βαθμονομήθηκαν στην περίπτωση μελέτης της πόλης 

της Σκιάθου, όπου αποτελεί ένα παράδειγμα έντονα δυναμικού χαρακτήρα με 

περιοδικότητα στη ζήτηση που σχετίζεται με την τουριστική δραστηριότητα του 

νησιού και με την περιοδικότητα των μετεωρολογικών μεταβλητών. Τέλος, 

αναπτύχθηκαν δείκτες απόδοσης και χρησιμοποιήθηκαν τεχνικές οπτικοποίησης, 

ώστε να διευκολυνθεί η κατανόηση του συστήματος και να αναδειχθούν οι σχέσεις 

αιτίου- αιτιατού. 

Η διατριβή διαρθρώνεται σε έξι κεφάλαια. Το πρώτο κεφάλαιο αφορά στα κίνητρα 

και στους αντικειμενικούς στόχους. Το δεύτερο κεφάλαιο αφορά στη συνεισφορά 

της διατριβής και στα πρωτότυπα σημεία. Το τρίτο κεφάλαιο αφορά στις μεθόδους 

πρόβλεψης της ζήτησης νερού, το τέταρτο στην ανάπτυξη ενός χωρο-χρονικού 

μοντέλου προσομοίωσης του υδρευτικού συστήματος, το πέμπτο στην ανάπτυξη 

ενός μοντέλου προσομοίωσης της οικιακής ζήτησης νερού σε επίπεδο βρύσης και 

το έκτο αφορά στα συμπεράσματα της διατριβής. 

Πιο συγκεκριμένα, στο πρώτο κεφάλαιο γίνεται μια ανάλυση της σημερινής 

κατάστασης, ως προς τη διαχείριση του αστικού νερού, σε διάφορες κλίμακες, των 

προτεραιοτήτων που έχουν τεθεί σε επίπεδο στρατηγικού σχεδιασμού, καθώς και η 

τοποθέτηση της συγκεκριμένης διατριβής σε αυτό το πλαίσιο. 

Στο δεύτερο κεφάλαιο απαριθμούνται τα βασικά βήματα της εργασίας και τονίζονται 

τα σημαντικά πρωτότυπα σημεία. 

Στο τρίτο κεφάλαιο γίνεται μία ιστορική αναδρομή των μεθόδων προσομοίωσης και 

πρόβλεψης της ζήτησης νερού, οι οποίες κατηγοριοποιούνται ανάλογα με διάφορα 

κριτήρια, όπως η κλίμακα χρόνου, η θεώρηση ως προς την αβεβαιότητα 

(στοχαστικές ή αιτιοκρατικές προσεγγίσεις), ο αριθμός των εκτιμητριών 

(μονοπαραγοντικές ή πολυπαραγοντικές προσεγγίσεις) και ο ορίζοντας 
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(κοντοπρόθεσμος, μεσοπρόθεσμος, μακροπρόθεσμος). Στη συνέχεια 

χρησιμοποιούνται διάφορες μέθοδοι από την παραδοσιακή στατιστική, τις 

μεθόδους μηχανής εκμάθησης αλλά και υβριδικές για την μοντελοποίηση της 

ζήτησης του αστικού νερού της Πόλης της Σκιάθου. Η προσομοίωση γίνεται με 

διάφορα χρονικά βήματα (τριμήνου, μήνα, ημέρας), ενώ κάποιες από την μεθόδους 

που χρησιμοποιούνται είναι το Αυτοπαλίνδρομο Ολοκληρωμένο Υπόδειγμα Κινητού 

Μέσου (ΑRIMA), τα Τεχνητά Νευρωνικά Δίκτυα (ΑΝΝ), το Προσαρμοστικό Σύστημα 

Νευροασαφούς Επαγωγής (ANFIS) και συνδυασμοί αυτών. Η ανάλυση γίνεται 

μονοπαραγοντικά και πολυπαραγοντικά, ενώ διερευνώνται διάφορες ενδεχόμενες 

εκτιμήτριες, με τη μέθοδο δοκιμής-λάθους, όπως μετεωρολογικές, η τουριστική 

δραστηριότητα και η τεχνική κατάσταση του δικτύου ύδρευσης. Στο κεφάλαιο αυτό 

αναδείχθηκε η μέθοδος ANFIS, ως ένα ισχυρό εργαλείο για την προσομοίωση της 

ζήτησης σε ημερήσιο βήμα, ακόμη ισχυρότερο από τα ΑΝΝ, ενώ οι παραδοσιακές 

στατιστικές μέθοδοι αναδεικνύονται ιδανικές στην αντιμετώπιση της περιοδικότητας, 

της τάσης και του επιπέδου, αλλά όχι τόσο των μη γραμμικών σχέσεων. Η 

πολυπαραγοντική προσέγγιση υπερτερεί της μονοπαραγοντικής στην ευελιξία 

καθώς μπορεί να λειτουργήσει ως ένα εργαλείο διερεύνησης σεναρίων, αλλά 

προϋποθέτει μία καλή διερεύνηση των εκτιμητριών.  

Στο τέταρτο κεφάλαιο αναπτύσσεται ένα χωρο-χρονικό μοντέλο προσομοίωσης 

του υδρευτικού συστήματος νερού. Η προσομοίωση αφορά σε μια σειρά 

μεταβλητών που σχετίζονται με το σύστημα όπως το ανταποδοτικό και μη 

ανταποδοτικό νερό, η κατανάλωση, οι απώλειες, τα σφάλματα μέτρησης, η κλοπή, 

η πίεση και οι αντιστοιχίες σε  κόστος και ενέργεια. Η προσομοίωση υλοποιείται μέσω 

ενός συστήματος δύο επαναληπτικών διαδικασιών, μίας εσωτερικής και μίας 

εξωτερικής, που συγκλίνουν στο μέγεθος των διαρροών και στην πίεση του δικτύου 

αντίστοιχα. Η εκτίμηση των διαρροών βασίζεται στη μέθοδο της νυχτερινής 

παροχής, ενώ η σύγκλιση των πιέσεων γίνεται για τρία σημεία καταγραφής του 

δικτύου. Η όλη επαναληπτική διαδικασία βασίζεται στον σταδιακό διαχωρισμό του 

μη ανταποδοτικού νερού σε διαρροές και φαινόμενες απώλειες, οι οποίες 

προσομοιώνονται με διαφορετικές προσεγγίσεις ανάλογα με τη φύση των 

κατανομών τους, οι μεν πρώτες ως εξαρτώμενες από την πίεση, οι δε δεύτερες 

ακολουθώντας τις καμπύλες κατανάλωσης. Τέλος αναπτύσσεται ένα χωροχρονικό 

σύστημα δεικτών απόδοσης, ενώ αυτό εφαρμόζεται και ελέγχεται για ένα θεωρητικό 

σχήμα διαχείρισης μέσω ελέγχου πίεσης. Στο κεφάλαιο αυτό αναδεικνύεται η 

χρησιμότητα της χωροχρονικής διακριτοποίησης του υδατικού ισοζυγίου ενός 

δικτύου ύδρευσης, ειδικά σε περιπτώσεις έντονα δυναμικές, όπως οι τουριστικές 

περιοχές. Η χρησιμότητα αυτή έγκειται στην ανάδειξη περιοχών και περιόδων (ακόμη 

και ζωνών εντός του εικοσιτετραώρου) έντονης καταπόνησης του συστήματος, 

δηλαδή με υψηλές συγκριτικά και απόλυτα τιμές διάφορων κριτηρίων απόδοσης, 

όπως μη ανταποδοτικού νερού, διαρροών, φαινόμενων απωλειών και 

κατανάλωσης, ενεργειακής κατανάλωσης. Τέλος αναδεικνύεται η έμμεση 

χρήσιμότητα μιας τέτοιας προσέγγισης στην ταυτοποίηση των αστικών χρήσεων 

γης (όπως η τουριστική και μη τουριστική). Τα παραπάνω αποτελούν χρήσιμα 
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εργαλεία προς την πιο στοχευμένη και αποδοτικότερη διαχείριση του συστήματος 

ύδρευσης και αναδεικνύουν τη σύνδεση του υδρευτικού συστήματος με άλλα 

επίπεδα αστικών δραστηριοτήτων, όπως η κατανάλωση της ενέργειας και χρήση 

των χώρων. 

Στο πέμπτο κεφάλαιο γίνεται αρχικά μία επισκόπηση της χρησιμότητας των 

μοντέλων προσομοίωσης οικιακού νερού σε επίπεδο βρύσης και μία σύντομη 

ιστορική αναδρομή των προσεγγίσεων. Στη συνέχεια, αναπτύσσεται ένα 

πρωτότυπο μοντέλο παλμού για την προσομοίωση της οικιακής κατανάλωσης 

νερού. Η ιδιαιτερότητα του μοντέλου αφορά στην εισαγωγή ενός μηχανισμού 

σχηματισμού των συμβάντων κατανάλωσης, μέσω της ένωσης μοναχικών 

συμβάντων με τη χρήση του νόμου του αντίστροφου τετραγώνου απόστασης. Το 

υπόδειγμα υλοποιείται για την περίπτωση μελέτης της πόλης της Σκιάθου και της 

πόλη του Σοσνόβιετς της Πολωνίας για έναν αριθμό πιλότων. Οι δύο περιπτώσεις 

μελέτης παρουσιάζουν διαφορετικά χαρακτηριστικά περιοδικότητας. Το υπόδειγμα 

αποδεικνύεται αποδοτικότερο για περισσότερα δεδομένα εκπαίδευσής του και για 

πυκνότερα συμβάντα κατανάλωσης. Στη συνέχεια, χρησιμοποιείται το μοντέλο σε 

συνδυασμό με το χωροχρονικό μοντέλο προσομοίωσης της ύδρευσης για τη 

μοντελοποίηση της μείωσης της κατανάλωσης μέσω ελέγχου πίεσης. Στο κεφάλαιο 

αυτό προτείνεται ένα αποδοτικό πρωτότυπο υπόδειγμα παλμού για την 

προσομοίωση της οικιακής χρήσης νερού, ενώ με τη χρήση του και τη σύνδεσή του 

με τη χωροχρονική προσομοίωση του δικτύου αναδεικνύεται η προοπτική χρήσης 

του για ακριβέστερη εκτίμηση της δυνατότητας εξοικονόμησης νερού όταν 

εφαρμόζεται διαχείριση του δικτύου με έλεγχο πίεσης. 

Στο έκτο και τελευταίο κεφάλαιο γίνεται μία ανασκόπηση της εργασίας και τονίζονται 

τα σημαντικά σημεία. 

Τα πρωτότυπα σημεία της διατριβής συνοψίζονται στα ακόλουθα: 

 Η χρήση του Συστήματος Νευροασαφούς Επαγωγής (ANFIS) και υβριδικών 

μεθόδων που βασίζονται σε αυτό, στα Τεχνητά Νευρωνικά Δίκτυα και σε 

παραδοσιακες στατιστικές μεθόδους για την προσομοίωση της ζήτησης 

αστικού νερού. 

 Η χρήση της τουριστικής εισροής και του ποσοστού Μη Ανταποδοτικού 

νερού, ως μεταβλητές πρόβλεψης της ζήτησης του νερού. 

 Η εκτίμηση των πινάκων συνιστωσών του εισερχόμενου νερού, όπως 

προτείνεται από τον Παγκόσμιο Οργανισμό Νερού, σε κλίμακα ημέρας (ή 

και μικρότερης) και σε επίπεδο γειτονιάς. 

 Η εισαγωγή του μεθοδολογικού πλαισίου για το σύστημα των δύο κύκλων 

επαναλήψεων για την προσομοίωση της ύδρευσης με κριτήριο την 

σύγκλιση εσωτερικά των διαρροών και εξωτερικά των πιέσεων. 

 Η χωροχρονική εκτίμηση, εφαρμογή και οπτικοποίηση δεικτών απόδοσης 

(καθιερωμένων και καινοτόμων) του υδρευτικού συστήματος. 

 Η ανάπτυξη ενός αλγόριθμου προσομοίωσης της οικιακής χρήσης νερού 

σε επίπεδο βρύσης 
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 Η χρήση του προσομοιωτή οικιακής χρήσης νερού για την εκτίμηση της 

δυνατότητας μείωσης της κατανάλωσης με διαχείριση ελέγχου πίεσης 

 Η χρήση των χωροχρονικών διαφοροποιήσεων των συνιστωσών του 

πίνακα του Παγκόσμιου Οργανισμού Νερού για την διεξαγωγή 

συμπερασμάτων ως προς τις αστικές χρήσεις γης (τουριστική και μη). 

Οι προοπτικές και τα θέματα προς περαιτέρω διερεύνηση συνοψίζονται στα 

παρακάτω σημεία: 

 Η διερεύνηση της εφαρμογής διαφορετικών καμπυλών ζήτησης ανάλογα με 

τον χαρακτηρισμό της αστικής χρήσης της κάθε περιοχής. 

 Η διερεύνηση της δυνατότητας εφαρμογής μεθόδων μηχανής εκμάθησης 

για την προσομοίωση των συνιστωσών του εισερχόμενου νερού, με 

εκπαίδευση των αλγορίθμων μηχανής εκμάθησης πάνω στις 

προσομοιωμένες τιμές. Αυτό θα μπορούσε να αποκαλύψει τη δυνατότητα 

διευκόλυνσης της προσομοίωσης ενός νέου υδρευτικού συστήματος μέσω 

τις αποθήκευσης προτύπων σε βιβλιοθήκες. 

 Η χρήση του μοντέλου προσομοίωσης του υδρευτικού συστήματος για την 

αξιολόγηση μέσω των δεικτών απόδοσης διάφορων διαχειριστικών 

σχημάτων, όπως αυτό της διαμερισματοποίησης του δικτύου ύδρευσης. 

 Η εμβάθυνση στην ανάλυση της σχέσης νερού ενέργειας καθ’ όλο το 

σύστημα ύδρευσης. 

 Η εξέλιξη του αλγόριθμου παλμού ως μοντέλο προσομοίωσης πολλών 

μεταβλητών. 
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The United Nations (UN) 2030 Agenda, which culminates in the Sustainable 

Development Goals (SDGs), sets the preservation of freshwater at the core of 

sustainable development. Discussions on SDG 6 that refers to clean water and 

sanitation focus on the threat of climate change to the availability of water, as 

well as on the need to integratedly manage water and energy and their 

interlinkages to climate change. The European Environmental Agency (EEA, 2018) 

states that water scarcity is a major threat for Europe, especially for the Southern 

regions. Among the reasons that cause this stress and have triggered drought 

incidents are the spatial and temporal variability in demand and availability, the 

overall increasing demand due to the rise in urbanization and changing lifestyles, 

the unevenly increased touristic water demand and the climate change effects. 

The Water Exploitation Index (WEI) indicates that quite a few European countries 

have surpassed the warning threshold of 20% (Raskin et al., 1997) for the overall 

exploitation of freshwater, or for solely ground or surface freshwater (Figure 1). 

Among the stressed countries, Kosovo has the overall highest WEI of 86.4%, 

followed by Cyprus with 67.4 % (reported values for 2017), while a few countries 

are below the 20% threshold when considering freshwater as a whole, but seem to 

perform poorly when groundwater or surface water are taken individually. For 

example Greece had an overall WEI of 13.8% but a groundwater WEI of 158.1% for 

2015. These values both increased to 15.6% and 193.1%, respectively, for 2016 

(Eurostat, 2019). Regarding the WEI at Adriatic area, for which Eurostat does not 

have any available data, Kanakoudis et al. (2016 and 2017) report that many 

areas, especially in eastern Italy, are also characterized with very high and high 

risk. These statistics highlight the stress on fresh water availability, which sometimes 

cannot be seen in the overall picture, but one needs to zoom in time- and space-

wise, or to distinguish between surface and groundwater resources. The issue 

becomes more complicated, when water quality is considered, since water 

security is threatened by both water quantity and quality issues.  

Aligned with the aforementioned concerns, the UN Agenda 21 (Sitarz, 1993) which 

later on evolved into the Agenda 2030 (Colglazier, 2015) encourages, among 

others, the development of interactive databases, the construction of forecasting 

models and the involvement of Information and Communication Technologies 

(ICT) to enhance water management. At the same time, Liemberger and Wyatt, 

(2019)estimated annual global non-revenue water (NRW) levels in urban Water 

Distribution Networks (WDNs) as high as 126 billion m3 or 39 billion USD, with 9.8 billion 

m3 or 3.4 billion USD corresponding to Europe. The International Water Association 

(IWA) Water Loss Task Force recommends four primary measures for optimized Real 

Losses Management, namely: (i) management of pipelines and assets, (ii) pressure 

management, (iii) speed and quality of repairs, and (iv) active leakage control. To 

enhance these measures, it sets at the core of such a multi-targeted task a 

detailed component analysis of the WDN inflow into revenue and NRW, real and 

apparent losses, etc, (Lambert, 2002). 
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Figure 1. Europe Water Exploitation Index for overall fresh groundwater and surface 

water, fresh ground and fresh surface water for 2016 (Source: 

ec.europa.eu/eurostat) 

In 2012, the Smart Water Networks Forum—SWAN Forum—conducted a Global 

Utility Survey (Sensus and SWAN, 2012), in order to identify the challenges and 

opportunities that utilities face around the world. Water supply network leakage 

tops the list of utility challenges for over half of the utilities surveyed; at the same 

time, leakage reduction is seen as the key opportunity for improving network 

efficiency. It is estimated that, on average, water distribution networks lose 20% of 

the transported water in Europe. The problem of water loss through network 

leakage becomes really serious, especially when coupled with increased 

urbanization, climate change and extreme weather phenomena such as 

extensive drought and water scarcity. Information and Communication 

Technology (ICT) tools offer a great potential for early leakage detection, while 

smart metering may lead to substantial reductions in water resource losses 

(Laspidou, 2015). 

There are many challenges to the efficient and effective operation of the water 

supply network, especially when leakage levels are high. In particular, excessive 

energy consumption used for pumping water and chemicals used for treating it 

are related to leakages. With an ageing infrastructure, burst rates are rising, while 

replacing affected network sections requires large capital investments. Pressure 

management and optimization is really a central issue in addressing the 

challenges of leakage, bursts and high operational costs. Since pressure in the 

network is essential in the context of operation and maintenance for achieving 

high customer satisfaction and meeting water demand, even before simulating 

and optimizing flow and pressure in the network, a good grasp on forecasting 

demand is of critical importance (Alvisi et al, 2007; Jentgen et al, 2007). 

Contemporary approaches on Water Distribution System (WDS) management 

need to deal with the temporal and spatial pressure variation within the networks. 

Meeting water demand needs includes the development of network pressure 

profiles that vary in time and space. Such pressure management schemes are at 

the core of smart water networks, making possible energy savings due to controlled 
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pumping, leakage minimization and overall reduction of Non-Revenue Water. 

Smart water networks are most commonly implemented by dividing the network in 

District Metered Areas (DMAs) and employing a Decision Support System (DSS) that 

is intended to match water supply with water demand, usually exploiting 

Information and Communication Technologies—ICT. Real-time monitoring and 

water demand forecasting methodologies have emerged as important 

components of numerous multi-objective schemes, such as the reduction of 

leakage, pumping costs, pipe bursts, green-house gas emission, chemical use, etc. 

Successful smart water network deployment can contribute to better management 

of water resources, to better informed consumers and to cities with a smaller water 

and carbon footprint overall, an area that is becoming increasingly important for 

water-scarce regions under climate change pressures. 

A smart water network and generally optimised and informed urban water 

management would constitute one of the main achievements of what has been 

characterised in the literature as a “smart city”(Nam and Pardo, 2011; Hollands, 

2008). Though the definition of a smart city is rather diverse and vague, often 

relevant to the ideological label of its context, the idea has always implied the 

involvement of new technologies or innovation in general to facilitate or improve 

economy, people, governance, mobility, environment and living within a city 

(Giffinger et al., 2007). Key to a smart city concept is the idea of measurement, of 

instrumenting the urban landscape and associated activity and monitoring their 

state and behavior in a way that leads to technological, governmental and 

societal advances. Peter Ferdinand Drucker (1909-2005), a thinker considered to 

be the founder of modern management, has said that “you can’t manage what 

you can’t measure”, which greatly applies to a city of the future, in which near 

real-time measurements enable stakeholder awareness, engagement and quick 

response to new conditions, thus leading to a new model of civic behavior and 

involvement. This new paradigm is based on almost individualized planning on one 

hand, and near real-time information on another (Lim et al., 2010). A recent study 

(Cominola et al., 2015) reviews water smart metering projects taking place in the 

last decades worldwide. According to this work, these projects, which focus on 

real-time water use monitoring at high spatial and temporal granularity, stimulate 

modeling approaches and behavior adaptive urban water management 

strategies, investigating the potential of building aware consumers who will be 

more considerate of their water use. In parallel, consumer awareness campaigns—

supported by smart meters that provide feedback—have been documented in 

the literature in the last decade (Novak et al., 2016; Perren and Yang, 2015; Shan 

et al., 2015; Russell and Fielding, 2010), while latest advances include the 

development of gaming platforms (Wang and Capiluppi, 2015) for water 

management and the involvement of social media for citizen engagement in 

water saving practices. The European Commission has funded a series of research 

projects that developed a series of diverse case studies that all showed how 
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building consumer awareness could limit water consumption (all these projects are 

grouped under the ICT4WATER cluster—http://ict4water.eu). A number of water 

utilities increasingly attempt to influence the behavior of consumers towards 

improving water consumption, by using communication tools to give information 

back to users and display their consumption or customized feedbacks or water-

saving tips. At the same time, various companies have been established lately that 

specialize solely on transforming the way customers think about their household 

water consumption, as well as the way utilities engage with their customers. Such 

companies combine Machine Learning (ML) and other data science tools with 

cloud computing and behavioral science to develop Software-as-a-Service 

solution to customer engagement and efficiency issues faced by utilities.  

Subsequently, the need for the collection and management of large quantities of 

temporal and spatial high-resolution data emerges as a useful tool for urban 

planning, while at the same time, the radical evolution in the technological sector 

of sensors, Information and Communication Technologies (ICTs) used in the whole 

water supply chain, social network data analysis and Data Mining (DM) techniques 

reveals new potentials for more efficient planning (Kanakoudis and Tsitsifli, 2019; 

Yang et al., 2017; Laspidou et al., 2015b; Laspidou, 2014). In the urban water 

domain, due to fast urbanization, increasing demands, climate change and high 

pressure on water resources, research activity increasingly focuses on monitoring, 

understanding and better managing urban water activities. Detailed monitoring 

of household water consumption can reveal useful information about citizen 

behavioral patterns, not only related to their water use per se, but also concerning 

a range of socio-economic factors, directly or indirectly related to water, such as 

circadian rhythms, working hours, daily habits, house amenities, familial structure 

and profile, etc. (Koiv and Toode, 2006). Furthermore, the spatiotemporal analysis 

of household water use can help make water consumption a key indicator of 

human behavior, thus helping authorities and relevant stakeholders identify 

changes in city-living conditions, such as local development, migration (Sadat, 

2012), epidemics (Kleczkowski and Maharaj, 2010), or it can disclose population 

shifts due to events, such as terrorist attacks (Khan et al., 2001), natural disasters 

(Liu et al., 2015), large-scale organized meetings or tournaments (Mol, 2010), etc. 

Besides the wealth of information potentially extracted by monitoring water 

consumption, channeling this data back to the consumers will contribute to an 

increased awareness that will lead to a smaller household water footprint (Al-

Hoqani and Yang, 2015; Perren and Yang, 2015; Lanzarone and Zanzi, 2010). The 

effectiveness of similar schemes regarding energy consumption through energy 

metering, billing and direct display methodologies has already been documented 

(Darby, 2006), concluding that feedback to consumers is an important element of 

an energy savings scheme for consumers. Numerous relative examples are 

reported in Ehrhardt-martinez and Donnelly (2010) and (Fischer, 2008) works. 

Indicatively, in the (Staats et al., 2004) study energy savings increase of 
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approximately 3 % in 16 months in Netherland is reported and in Wilhite and Ling 

(1995) study an increase of 2.4 % in energy saving in one year for a Norway case 

study is presented. 

Optimization of the operation of Water Distribution Systems (WDSs) is inextricably 

linked to Urban Water Management (UWM). Quite often, urban water supply 

infrastructure is ageing and deteriorating with increasing bursts and extended 

leakage. Pressure in Water Distribution Networks (WDNs) is often kept constant and 

is not adjusted temporally and spatially according to water demand; District 

Metered Areas (DMAs) are not always in place, thus reinforcing even more bursts 

due to excessive stress and leading to energy overconsumption.  

In their review on urban hydroinformatics, Makropoulos and Savic (2019) present a 

scheme according to which the modeling is facilitated by the increasingly fluent 

flows of data and information in the context of the developments in Information 

and Communication Technologies, cloud based information platforms, and 

remote monitoring. Such a technological landscape in combination to well-

advanced methodological frameworks could lead to the next step in water 

distribution networks modeling, what has been referred as Water Distribution 

Network Digital Twins (Sun et al., 2020). 

This dissertation is an attempt to develop a series of simulation and management 

tools incorporated in a methodological framework to facilitate detailed 

supervision of a WDS via a number of key parameters across the WDN from source 

(groundwater) to tap, such as urban water demand, real losses, apparent losses, 

pressure, and water consumption at the tap, while also developing and assessing 

a number of key performance indicators, such as the energy-water nexus, leakage 

reduction potential, pressure driven demand reduction potential and economic 

savings. 

The aim of this dissertation is to create tools for the mathematical modelling, 

analysis, forecast and performance indexing of various components of a water 

distribution system which is intensely seasonal regarding demands and stresses. 

Specifically the presented work answers the following objectives: 

1. The investigation among traditional statistical, ML and hybrid approaches, 

for appropriate modelling and forecasting  of the water demand in 

multiple periodicities (trimester, months and days) and the analysis of the 

drivers that force intense seasonality, such as the weather, the tourism and 

the technical status of the Water Distribution Network. 

2. The construction of a spatio-temporal simulation model of a Water 

Distribution Network, which will facilitate the assessment of the iconic 

International Water Association Water Balance tables in small time and 
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spatial resolution (hourly and neighborhood) and the localization of stresses 

such as leakage, theft, and billed water consumption. 

3. The proposition of appropriate key performance indicators that can 

indicate the performance of the Water Distribution Network regarding real 

losses, revenue, energy consumption, as well as the relation of the water 

balance profiles to the urban land uses (touristic or residential). 

4. The proposition of key performance indicators for the spatiotemporal 

assessment of the performance of alternative management schemes, such 

as Pressure Control Management, regarding the potential reduction of 

leakage, energy consumption and non-revenue. 

5. The construction of a simulation tool for the tap water consumption 

mimicking the consumption incidents (time slot, duration, and flowrate) 

based on the pulse models paradigm. 

6. The investigation of the potential of reducing pressure driven demand 

based on the Water Distribution Network Simulation and the tap water 

simulation and the proposition of relevant indicators for this potential. 
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Parts of the content of chapter 1 is included in the following published articles in journals: 

Kofinas, D. T., Spyropoulou, A., Laspidou, C. S. (2018). A methodology for synthetic household 

water consumption data generation. Environmental modelling & software, 100, 48-66. 

 The contribution of Mr. Kofinas, D. involves the conceptualization, the methodology, 

the validation, the formal analysis, the investigation, the writing, and the 

visualization. 

 The contribution of Dr Spyropoulou, A. involves the programming of the involved 

code. 

 The contribution of Professor Laspidou, C. involves the scientific supervision  

This work was supported by the project ISS EWATUS—Integrated Support System for Efficient 

Water Usage and Resources Managementdwhich is implemented in the framework of the 

EU 7th Framework Programme, Specific programme Cooperation In- formation and 

Communication Technologies; Grant Agreement Number 619228. 

Kofinas, D., Ulanczyk, R., & Laspidou, C. S. (2020). Simulation of a Water Distribution Network 

with Key Performance Indicators for Spatio-Temporal Analysis and Operation of Highly 

Stressed Water Infrastructure. Water, 12(4), 1149. 

 The contribution of Mr. Kofinas, D. involves the conceptualization, the methodology, 

the review of the software, part of the data curation, the validation, the formal 

analysis, the investigation, the writing, and the visualization. 

 The contribution of Mr. Ulancyk, R. involves the software, the data curation, part of 

the investigation (relevant to the programming), and the review. 

 The contribution of Professor Laspidou, C. involves the scientific supervision and 

review. 

The work described in this paper has been conducted within the project Water4Cities. This 

project has received funding from the European Union’s Horizon 2020 Research and 
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1 The current work explores the drivers for water demand. It investigates 

forecasting approaches, including univariate and multivariate 

algorithms, traditional statistics, Machine Learning (ML) and hybrid 

approaches in different periodicities, from daily to trimester. The 

investigation concludes that the properties of ML algorithms tested, 

such as Artificial Neural Networks (ANN) and Adaptive Neuro-Fuzzy 

Inference System (ANFIS), can be exploited to overcome the collinearity 

and non-linearity issues in water demand forecasting. Hybrid 

approaches of ML and statistical algorithms can exploit the beneficial 

properties of each. 

original contribution: the use of ANFIS and hybrid (ANFIS-traditional 

statistics) approaches for water demand forecasting 

2 Throughout the testing of different multivariate forecasting approaches, 

the investigation identifies two variables as predictors, except for the 

well-established meteorological variables: The first is touristic activity, as 

described by the total incoming arrivals into the case study island and 

the second is a composite index of Revenue and Non-Revenue Water. 

original contribution: the use of total incoming arrivals and percentage 

of Non Revenue water as water demand drivers 

3 The research work creates a simulation model of the Water Distribution 

Network. The simulation is spatio-temporal, in neighborhood (or even 

household) granularity and hourly time step. 

4 For the construction of the simulation model, the well-known Water 

Balance table, which is recommended by the International Water 

Association as a prerequisite to any urban water supply management 

strategy is assessed in neighborhood granularity and hourly time step. 

The Water Balance components assessed include System Input Volume, 

Billed Consumption, Non-Revenue Water, Unauthorized Consumption, 

Real Losses, and Metering Inaccuracies. All the components are 

identified locally and instantly offering a useful tool to a water utility for 

creating dynamic hotspot maps that can contribute to the optimization 

of the Water Distribution Network management through: 

 the localization of leakage in neighborhood resolution and the 

identification of drivers of leakage throughout the network; 

 the localization of theft in neighborhood resolution; 

 the assessment of metering inaccuracies; 

 the quantification of tourism impact on water demand; 

 the application of a Pressure Control Management scheme and 

the quantification of its beneficial effect. 
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original contribution: the increase of temporal and spatial granulariy in 

the simulation of the water balance components in a water distribution 

network 

5 The assessment of the Water Balance table is implemented by 

distinguishing the simulation of the components into pressure-driven and 

demand driven and an application of a nested system of two loops, an 

inner and an outer, which through iterative runs, close when the 

simulated pressure best fits the actual network pressure. The 

aforementioned process suggest a methodological approach for a 

spatiotemporal assessment of the IWA WB tables, facilitating well 

informed and detailed supervision and management of a WDN.  

original contribution: the introduction of the two-loops methodological 

framework for the simulation of the water balance components 

according to their nature, pressure driven or demand driven 

6 A theoretical Pressure Control Management scheme is applied to 

simulate and quantify all the benefits spatio-temporally. All differences 

in the Water Balance Components are assessed in neighborhood 

granularity and hourly time step. 

7 Spatio-temporal critical Key Performance Indicators (KPIs) are 

introduced to facilitate a detailed supervision of the Water Distribution 

Network. The Key Performance Indicators include the energy 

consumption in the water components (water-energy nexus), a 

pressure-driven demand indicator, and various expressions of water 

components such as “per-connection”, “per-customer,” and “per-

network-length” indicators 

original contribution: the spatio-temporal assessement of KPIs that have 

been used in an aggregate manner for the whole Water Distribution 

Network in the past and for bimonthly time scale  

8 The aforementioned KPIs are also used for the assessment of the 

Pressure Control Management scheme performance. 

9 The localization of the water components is used to conduct rough 

conclusions regarding the urban land uses, specifically the residential 

and the touristic ones. 

10 A synthetic household consumption data generator algorithm has been 

built and used to simulate household tap water consumption. The 

algorithm has been adjusted and tested for different types of 

seasonality according to the specifications of two case studies. A 

monthly seasonality for a Greek touristic case study and a 

week/weekend seasonality for a Polish industrial case study. 
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11 The suggested algorithm belongs to the group of pulse models but 

introduces a structural modification based on the well-known Newton 

gravity law. Through this modification, the model prioritizes the 

household consumption profile throughout the day rather than other 

attributes that are typically prioritized by the other pulse models. 

original contribution: the development of a prototype household 

consumption algorithm and the use of the Newton gravity law for the 

creation of water consumption incident clusters 

12 The household consumption model is used to better assess the pressure 

driven demand reduction. The two approaches for pressure driven 

demand assessment are compared. 

original contribution: the use of the household consumption model 

prototype to simulate pressure driven consumption decreace thanks to 

the application of a theoretical pr;essure management scheme 

13 The current thesis also explores, throughout the different 

aforementioned modelling components, the implications of intensely 

dynamic demand drivers due to tourism and weather, such as the ones 

that occur in a Mediterranean touristic resort. 

original contribution: the use of water balance components spatio-

temporal differences to extract implications for urban land uses 

dynamics related to tourism 
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3.1 The need to develop forecasting methodologies 

for water demand 

3.1.1. The different planning tasks that need the forecasting 

of water demand 

Urban water demand is a key parameter for the operation of urban water supply 

and distribution systems. Water demand forecasting plays a significant role in 

managing and planning water supply operations and water conservation strategies. 

A series of operational, tactical and strategic planning decisions set water demand 

as a core designing aspect. The variable appears in different forms, depending on 

the context, such as integrated water demand, including or excluding losses, per 

capita water demand, peak demand, etc. Among the various planning tasks that 

require water demand estimation, literature refers to the optimization of pumping 

scheduling, the operation of wells, the operation of treatment plants, the potential 

need to develop new water sources, the risk of water shortages assessment, the 

revenue risk assessment, the optimization of operational and investment decisions, 

and pricing purposes (Donkor et al., 2014; Billings and Jones, 2008; Hazen and Sawyer 

and PMCL, 2004). Reuse management and public awareness are also two systems 

that emerge to correlate with water demand forecasting, both in multiple scales 

(Hajeeh, 2010). In the context of operational control, the water demand, from the 

perspective of water resources, comprises, not only that required for customers, but 

also the losses of the water supply system—from drilling to household tap—since it is 

the combined amount which is put into supply (Alvisi et al., 2007)). 

3.1.2 Horizon and periodicity 

Many of the involved system objectives, such as the minimization of cost, the 

minimization of water losses, the optimization of water quality and increase of 

consumer satisfaction, require a dynamic approach towards water demand 

assessment, so as to facilitate frequent adjustments in response to variations. These 

dynamic schemes vary in terms of horizon and periodicity. Decision Support Systems 

(DSSs) often require forecasting approaches of short-term horizon and fine 

periodicity. Contemporary DSSs tend to include real-time monitoring schemes in 

order to increase their ability for short-term and or even near real-time decision that 

can adjust dynamically (daily, hourly) to the dynamic nature of the critical system 

input variables (Figure 2). Dynamic properties of a DSS may also apply to bigger 

periodicities and horizons such as weekly, monthly, seasonally and annually. 

Perception of seasonal variation of designing parameters, may often be adequate 

enough taking into account that uncertainty of forecasts forces planners to reduce 

planning accuracy and preferably work within ranges. 
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Figure 2. Frequency of scaling applied in the reviewed papers in a recent review 

chapter of over 100 papers that suggest or compare ML urban water demand 

forecasting approaches. The figure is taken by Singleton and Liu (2017) 

Future projections of the demand are often required for future planning of the 

aforementioned systems. The nature of the target sets the projection aspects, namely 

the forecast variable form, the periodicity or time step, and the horizon. Short-term, 

mid-term and long-term forecasts may apply to different exercises such as pumping 

scheduling, pricing purposes and investment decisions, respectively. The three time 

horizons, however, are not sharply defined, since short-term may imply a horizon of 

one to six months, mid-term a horizon of two to ten years and long-term a horizon of 

longer than two to ten years (Billings and Jones, 2008; Gardiner and Herrington, 1990; 

Ghiassi et al., 2008), as presented in Figure 3. For the efficient operation of water 

supply and distribution networks, the type of short-term demand forecasting is the 

most appropriate in order to program the pumping arrangements and thus to supply 

water with a more efficient way (Alvisi et al., 2007).  

 

Figure 3. Different definitions on forecast horizons 
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3.1.3 Categorization of modeling approaches 

Indirectly, the approach of forecast is indicated through the efficiency achieved in 

the different contexts. For example, the definition of different target variables, such 

as peak day, daily total system demand, monthly total system demand, annual 

demand per capita, annual demand by customer class and revenue, shall imply a 

different forecast architecture.  

Forecasting methods have been developed mainly to control water distribution 

operation system nearly in real time, based on time series data that are collected 

sequentially overtime period. In the literature there are several time series forecasting 

models that forecast future water demand on the basis of past observations and 

associated error terms (Billings and Jones, 2008). In general, the time series 

forecasting models of water demand can be divided into deterministic and 

stochastic models. Deterministic models are used to model time series by a series of 

seasonal, weekly and daily patterns considering physical nature. Stochastic models 

usually adopt a numerical approach since they are usually formulated by using 

statistical and probabilistic models that are built on historical data (Box and Jenkins, 

1976; Shahin et al., 1993).  

Demand forecasting approaches vary from the simplest historical extrapolation to 

sophisticated analytical models; therefore the choice of an appropriate modeling 

ought to address the purpose of the forecasting needed by water utility companies, 

and the quality and quantity of data (Mamo et al. 2013). Univariate and multi-variate 

approaches have been used to address the different target variables. Specifically 

for multivariate approaches, a series of socio-economic, demographic, weather  

related and technological predictors have been used (Donkor et al., 2014). Income, 

Gross National Product, price of water, Consumer Price Index, population, 

temperature, precipitation, wind, availability, attitude towards water, lifestyle are 

some of the predictors that are met in different multi-variate approaches (Rockaway 

et al., 2011; Arbués et al., 2003; Brekke et al., 2002; Burney et al., 2001). All of the 

aforementioned variables are proven to affect water demand, however, not 

necessarily in the same context, horizon or periodicity. For example Burney et al. 

(2001) have used the demographic and economic variables to implement a long-

term and annual periodicity forecasting scheme, having excluded the weather 

variables that mostly affect water demand in smaller periodicity. On the contrary for 

short-term approaches the mild socio-economic trends might not prove to have a 

significant impact.  

Other approach selections include unit consumption models, smoothing exponential 

and moving average, stochastic processes, time series regression, scenario based 

models, Artificial Neural Networks (ANN) (Bennett et al., 2013; Adamowski and Chan, 

2011; Adamowski, 2008; Chau, 2006; Bougadis et al., 2005; Baxter et al., 2001) and 

composite or hybrid approaches (Lima et al., 2017; Kang et al., 2015; Mohammed 

and Ibrahim, 2012; Li and Huicheng, 2010), with respect to the criterion of the utility 
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(or user) requirements. A recent very extensive review work among ML approaches 

on urban water demand forecasting by Singleton and Liu (2017), showcases the 

increasing interest in ML techniques, which is fairly justified taking into account that 

such techniques overcome and simplify issues such as the non-linear relations and 

the collinearity between the system variables. The review work discerns the ML 

techniques into eleven groups including Wavelet ANN, ANFIS, ARIMA-ML hybrid 

schemes, and Multiple Linear Regression-ML hybrid schemes. 

3.1.4. Methodological framework for water demand 

forecasting 

Figure 4 depicts the sequence of steps for developing a water demand model and 

forecasting methodology. Prerequisite to any forecasting approach is the definition 

of objectives. The definition of objectives are usually set after stakeholders’ 

involvement process and analysis of their requirements. Water utilities are the typical 

primary stakeholders, while secondary stakeholders may include municipalities, 

policy makers, non-governmental organizations and scientists (Edelenbos et al., 2011; 

Tillman et al., 2001). The definition of the objectives will imply the system boundaries. 

For example, if the objective is the optimization of water sources selection, this would 

imply the involvement of a broader system compared to the one that needs to be 

analyzed for Non-Revenue Water minimization. The context and the objectives, in 

turn, implies the selection of the water demand form, for example including or 

excluding water losses, the periodicity and the horizon. A good understanding of the 

system in a specific study case and the involved specifications can lead to a 

preselection of the variables that need to be introduced as drivers of water demand. 

The following phase involves data collection from various sources and data 

preparation. The periodicity and horizon define the datasets length and time step 

that preferably need to be common for all attributes. Data preparation, also includes 

tasks, such as removing outliers, imputation of missing values and normalizations. 

Next, the forecasting approach needs to be selected. The approach also needs to 

agree to the requirements and the involved variables. For example, future scenarios 

testing or parameter analysis implies a multivariate approach rather than a 

univariate, while detection of complex interrelations, non-linearities and co-linearities 

suggest ML algorithms, such as Agent Based Models (Koutiva and Makropoulos, 

2019), rather than traditional statistical approaches. The analysis of the involved data 

may approve or disprove the variables preselected. When the data are analyzed 

according to the requirements of each methodology, the construction of the model 

is implemented by calibrating the functions at the data on a selected calibration 

sample of the data and later on validating on the validation period. The validation 

is implemented with use of selected accuracy metrics. Root Mean Square Error 

(RMSE), Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), 

Coefficient of Determination (CoD), and Coefficient of Correlation (CoC) are the 

most popular metrics of accuracy and evaluation criteria according to Singleton 
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and Liu (2017). After the evaluation of the overall process and the potential iterations 

to improve the accuracy of the model, the conclusions, results, implications, 

parameter analysis or scenario runs are implemented with use of the constructed 

model. 

 

Figure 4. Schema of the sequence of steps for water demand forecasting 

The increasing demand for near real-time forecasts of water demand, and for finest 

time scale set the requirements for increasing the accuracy of water demand 

forecasting, even if the simulation of a taget variable at a single temporal scale does 

not necessarily mean similarly consistent performance at higher time  scales (Kossieris 

et al., 2019; Tsoukalas et al., 2019). New algorithms need to be tested and 

methodologies and approaches that are already tested in other fields such as 

econometrics and energy consumption need to be brought to the water demand 

field. Special focus needs to be given to the proper selection and further involvement 

of precise predictor attributes that at the same time are easy for utilities to collect.  
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3.2 Implications of tourism in the seasonality of 

water demand 

3.2.1. The Mediterranean touristic resorts 

Mediterranean touristic resorts often share a common profile of stresses that is shaped 

up by the subtropical climate, the intense touristic activity and the inadequate 

infrastructure that cannot efficiently serve such a wide range of population which 

grows at summer and decreases in winter. These three main stresses lead to a series 

of aftereffects, such as the spatial and temporal intense variability in resources 

demand and availability, the overexploitation of resources, the deterioration of the 

natural environment, etc. (Spilanis et al., 2009; Spilianis and Vayanni, 2004). These 

implications are related through a series of interlinkages, and often lead to a vicious 

cycle of trade-offs. Water resources are typically at the core of any implications and 

usually suffer both quantity and quality issues. The Mediterranean area has been 

noted to be a highly vulnerable region regarding water resources, taking into 

account the expected 2050 scenario of a 30-505 decrease in available freshwater, 

due to climate change (Figure 5), while at the same time the current efficiencies in 

irrigation and urban water supply networks are reported inadequate in average, 

ranging from 35% (Libanon) to 85 % (Cyprus) for irrigation and from 34 % (Albania) to 

88 % (Israel) for urban water supply (Milano et al., 2013).  

 

Figure 5. Mean precipitation variation rate over the Mediterranean basin by the 2050 

horizon as compared to the1971–1990 period; projections based on: (a) the CSIRO-

MK3.0 model; (b) the HadCM3 model; (c) the CNRM-CM3 model; (d) the ECHAM5 

model; and (e) an average of the four GCMs. The figure is taken from Milano et al. 

(2013) 
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Greek islands are often supplied with water through old and poorly designed Water 

Distribution Networks (WDNs). Aging infrastructure naturally leads to massive leakage, 

while the bold relief combined with the absence of DMAs, forces utilities to maintain 

high pressure to the whole network in order to satisfy water supply at remote and 

elevated households. Indicative of the aging infrastructure of many Greek islands is 

the recent, 2018, ministry announcement for renovation of the WDNs of nine islands 

that reached exceptionally high leakage rates (Minister of Maritime Affairs Islands and 

Fisheries- Greek Republic, 2018).  

The arid and hot summers that coincide with large touristic influxes, multiplying water 

demand are followed by wet winters and low water consumption by the limited 

number of locals; these conditions shape an apparently seasonal regime of water 

demand. Taking into account the shortage of water resources—usually groundwater 

in diminishing quantity and quality—one can understand why water demand 

forecasting emerges as a basic step in dealing with water supply issues in such special 

conditions.  

3.2.2. The Skiathos paradigm 

Most Greek islands are inhabited by small communities with old and inadequate 

water distribution networks. Their economic development is usually based on tourism 

(Table 1 and Figure 6), which results in high seasonal water demand variance, with 

summer water demand surpassing by far winter demand. Moreover, the networks 

typically serve local households and some large hotel units as well, while a lot of the 

large hotels have their own drillings and water supply systems. 

The island of Skiathos has a small water distribution network with highly variable and 

seasonal water demand and Non-Revenue Water as high as 50% and even almost 

70 % at times. Any significant improvement in network water loss prevention would 

require an analysis of historical water demand data in order to capture the 

stochastic nature of the data. In the context of operation and maintenance 

management, short-term forecasting of water demand or consumption plays a 

critical role for water utility companies that do not only try to identify optimal ways 

to supply water and minimize pumping energy costs, but are also interested in 

controlling water losses due to leakage from the distribution network and minimizing 

non-revenue water. 
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Table 1. Touristic enterprises as a percentage of total number of enterprises at 

indicative Greek islandic prefectures (Spilianis and Kizos, 2015) 

 touristic enterprises as a % of total 

Iraklion 47.2 

Chios 48.8 

Evia 50.8 

Chania 51.3 

Rethimno 51.4 

Lesvos 55.3 

Lasithi 57.5 

Kefallinia 59.0 

Samos 59.2 

Dodekanisa 60.4 

Cyclades 64.0 

Lefkada 64.2 

Corfu 64.8 

Zante 66.5 
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Figure 6. Tourist beds per citizen for 2013 (Spilianis and Kizos, 2015) 

Skiathos (Figure 7) is an interesting case study and unique in many ways, when 

compared with other European water companies. Other than the high water 

distribution network leakage rate, it has the peculiarities of an island with limited fresh 

water resources. The economy in Skiathos is mainly driven by tourism, especially in 

the summer months, while in the winter there are agricultural and urban activities. 

The weather in Skiathos is typical Mediterranean, with long, hot and dry summers and 

cool and wet winters. The water distribution network serves the small town of Skiathos 

and some major hotels that reach 100% occupancy throughout the summer months. 

Water is abstracted by the Skiathos water utility company from a single drilling and 

includes a single tank and approximately 3,500 water meters. In addition, most of the 

big hotels of the island are not connected to the network but are supplied by private 

drillings. Groundwater over-exploitation causes the water level in the aquifer to drop 

quickly and unsustainably, resulting in seawater intrusion and aquifer salinization 

effects. This, in turn, has been suspected to be the reason for mercury release in the 

aquifer, which is later on transferred to the water supply (Spyropoulou et al., 2018). 

Skiathos Water Company has declared the supply water as non-potable for this 

reason. The monthly water demand profile follows an ascending slope reaching a 

high peak and then follows a descending slope, from July to October, down to the 

low winter demand level. The average annual water demand trend is slightly positive 

(Figure 8).  
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Skiathos inhabited by a small community throughout winter and flooded by a large 

number of tourists during the summer period, which lasts for approximately 5 to 6 

months and shows a high peak in August. It has an ageing water distribution network 

that is small, with a total of about 3,500 water meters; it was built without prior 

planning and was expanding throughout the years as needed. The island’s water 

demand presents high variability and seasonality, while its network has reportedly 

some of the highest Non-Revenue Water in Greece—as high as 50% or more (even 

70 % in some cases, Figure 8). Skiathos faces serious water shortage issues, with 

aquifer salinization and deteriorating groundwater quality; since all urban water 

needs are covered by groundwater, it is important that network leakage is reduced 

to a minimum. In the summer of 2014, August, the town of Skiathos faced a 

phenomenal water scarcity incident—reportedly there was no water flow in the 

distribution system for more than three days—causing a series of problems to all 

related aspects including healthcare and tourism. Any significant improvement in 

leakage prevention would involve a series of strategic decisions and actions on 

behalf of the local water utility. At the bottom of these actions lies a reliable water 

demand forecasting routine that will be based on historical data and will be able to 

capture its stochastic nature.  

The network is not divided into DMAs and no pressure regulation to meet demand 

profiles has ever been implemented until today.  

Non-Revenue Water—leakage being its main component— seems to increase with 

time, when comparing winters or summers of subsequent years, with the highest NRW 

percentages being recorded in winter months, when network pressure is high due to 

reduced demand. This can lead to a primary assumption that NRW increases due to 

leakage increase, since the latter one is related to the network pressure 

(Germanopoulos, 1985). Among typical water uses in the town of Skiathos, except for 

household use, there are a variety of touristic-related businesses such as small hotels, 

taverns, restaurants, pubs and cafes. Thus, water demand follows strongly the touristic 

inflow regime. The touristic season lasts from April to September with a sharp peak in 

August (Figure 9), which drives to a water demand increase, up to more than 170% 

of the winter demand.  

The climate of the island is typical Mediterranean (Figure 10). Observing the profiles 

of the meteorological variables it can be qualitatively conducted that they are 

related to Skiathos water demand. Specifically mean and high temperature are two 

variables with a significant positive correlation, while precipitation has a negative 

one (Mellios et al., 2015). Past research has shown though that weather variables 

drive water demand in a rather non-linear way. The linear effect of precipitation has 

been questioned; on the contrary, it has been suggested that the response of 

consumers to water consumption is psychological and concerns the incident of rain 

more than the amount of precipitation (Martinez-Espiñeira, 2002; Miaou, 1990; 

Maidment and Miaou, 1986).  
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Figure 7. Skiathos Island 

 

Figure 8. Trimester Non Revenue Water as a percentage of water demand for 2011-

2015 
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Figure 9. Fluctuation of touristic activity 2011-2015 in Skiathos Island. The variable of 

the diagram adds up the total arrivals in the island of Skiathos by all means: air and 

sea. Total arrivals is perceived as an indicator for touristic activity. 

 

Figure 10. Weather observations for 2011-2015 in Skiathos Island  
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3.3 Univariate approach in trimester and monthly 

time scale: ARIMA, Winters’ additive, ANN, hybrid 

approach 

Foreword: In this subchapter, an analysis of historical water demand data from the 

water utility of Skiathos is presented and demand-forecasting tools using the 

stochastic nature of short term (or mid term) historical water demand and supply 

data is demonstrated. The approaches tested are univariate and are using as 

predictors the components of the target variable itself. The goal here is to identify 

the method and model useful for specific water-utility decision making problems, to 

apply this method to the analysis of water demand forecasting data and use it for 

short-term forecasting. The forecasting approaches tested in this chapter are the 

ARIMA, the Winter’s additive, the ANN and an ARIMA-ANN hybrid approach. 

3.3.1. Introduction in water demand univariate forecasting 

In water demand time series modeling, common stochastic models are: pure 

random (or white noise) model, autoregressive (AR) model, moving average (MA) 

model, autoregressive moving average (ARMA) model, autoregressive integrated 

moving average (ARIMA) model and seasonal autoregressive integrated moving 

average (SARIMA) models (Box et al., 2015; Machiwal and Jha, 2012). These 

models—known as traditional statistical models—are linear, which means that 

predictions of the future values are constrained to be linear functions of past 

observations. Because of their relative simplicity in understanding and 

implementation, linear models have been the main research focus providing 

applied tools during the past few decades. 

Although ARIMA models are quite flexible, having the ability to represent several 

different types of time series, i.e., pure autoregressive (AR), pure moving average 

(MA) and combined AR and MA (ARMA) series, their major limitation is the pre-

assumed linear form of the model. That is, a linear correlation structure is assumed 

among the time series values and therefore, no nonlinear patterns can be captured 

by the ARIMA model. 

To overcome the restriction of ARIMA model and to account for certain nonlinear 

patterns observed in real problems, ANNs have been proposed in the literature. 

ANNs have been suggested as an alternative to time series forecasting to deal with 

linear and nonlinear relationships. The major advantage of neural networks is their 

flexible nonlinear modeling capability. With ANNs, there is no need to specify a 

particular model form. Instead, the model is adaptively formed based on the 

features presented from the data. This data-driven approach is suitable for many 

empirical data sets where no theoretical guidance is available to suggest an 

appropriate data generating process. 
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Donkor et al. (2014) recent study reviews the literature on urban water demand 

forecasting published from 2000 to 2010 in order to identify methods and models 

useful for specific water utility decision making problems. This study presents an 

annotated reference list of the methods and models for water demand forecasting 

identifying the forecast variable and periodicity, the determinants used and the 

forecast horizon. Results show that although a wide variety of methods and models 

have attracted attention, applications of these models differ, depending on the 

forecast variable, its periodicity and the forecast horizon. The popular models used 

for short-term forecasting are ARIMA and ANNs. They gained popularity due to the 

advantageous characteristics of each one. 

Alvisi et al. (2007) proposed a short-term pattern-based forecasting approach using 

an ARIMA model based on statistical analysis of historical water demand data. 

Mamo et al. (2013) in their recent study demonstrated the usefulness of the 

stochastic nature of short term historical water demand and supply pattern models 

to study and forecast short term water demand for water utility companies. 

Maier and Dandy (2000) reviewed recent papers dealing with the use of neural 

network models for the prediction and forecasting of water resources variables. 

Rojas (1996), Hassoun (1995), and Kartam (1994) have used feedforward networks 

with sigmoidal-type transfer functions for the prediction and forecasting of water 

resources variables. Chau (2006) has reviewed the development and current 

progress of the integration of artificial intelligence into water quality modeling. 

Hatzikos et al. (2005) utilized neural networks with active neurons as a modeling tool 

for the prediction of seawater quality indicators like water temperature, pH, dissolved 

oxygen (DO) and turbidity. Palani et al. (2008) demonstrated the application of ANNs 

to model the values of selected seawater quality variables, having the dynamic and 

complex processes hidden in the monitored data itself. Most of the studies reported 

above were simple applications of using traditional time series approaches and 

univariate ANNs.  

Also, hybrid models have been suggested, combining the ARIMA model and neural 

networks, in order to overcome the deficiencies of single models. Su et al. (1997)used 

a hybrid model to predict a time series of reliability data with growth trend. Their 

results showed that the hybrid model produced better predictions than either the 

ARIMA model or the neural network by itself. Zhang (2003) proposed a hybrid ARIMA 

and ANN model to take advantage of the two techniques and applied the 

proposed hybrid model to some real data sets. He concluded that the combined 

model can be an effective way to improving predictions achieved by either of the 

models used separately. Ömer Faruk (2010) proposed a hybrid neural network and 

ARIMA model, developed for the Buyuk Menderes river, for water quality time series 

prediction. He indicated that the approach of combining the strengths of the 

conventional and ANN techniques provides a robust modeling framework capable 

of capturing the nonlinear nature of the complex water quality time series, thus 

producing more accurate forecasts. 
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In general, research activities in water demand forecasting with ANNs suggest that 

ANNs can be a promising alternative to the traditional linear methods. Jentgen et al. 

(2007) exploited the performance of ARIMA models and ANNs for forecasting, which 

are often compared with mixed conclusions in terms of the superiority in forecasting 

performance. The ARIMA model cannot deal with nonlinear relationships while the 

neural network model alone is not able to handle both linear and nonlinear patterns 

equally well. Thus, hybrid models were investigated that are capable of exploiting 

the strengths of traditional time series approaches and ANNs (Ömer Faruk, 2010). Due 

to the present complexity in real-life time series efficient approaches are needed. 

The forecasting of short-term water demand is the one playing a critical role for water 

utility companies which are trying to find more efficient ways to supply water (Alvisi 

et al., 2007). In this subchapter, the use of the two most popular time series 

forecasting methods for water demand, ARIMA and ANN are investigated. The aim 

is to forecast the water demand in urban water supply network of Skiathos using the 

methods of ARIMA, ANN, Winters’ Additive Exponential Smoothing and a hybrid 

ARIMA-ANN approach to obtain more reliable and accurate short- term forecasting. 

3.3.2. Materials and Methods for the univariate approach 

 Available data 

The period on which the four models are calibrated and validated is approximately 

three years, from January 2011 to November 2013. The daily time series is normalized, 

after the outliers are removed. Monthly and annual-quarterly averaged time series 

are produced, so as to investigate the trends and seasonality of water demand in 

micro and macro scale. The forecasting models applied are linear and nonlinear 

and specifically the seasonal ARIMA, the Winters’ Additive Exponential Smoothing 

and ANN among others.  

 Methodology 

ARIMA 

Autoregressive integrated moving average (ARIMA) is one of the most important 

and widely used linear models in time series forecasting during the past three 

decades (Zhang et al., 1998). The popularity of the ARIMA model is due to its 

statistical properties as well as the well-known Box–Jenkins methodology (Box et al., 

2015) in the model building process. In addition, various exponential smoothing 

models can be implemented by ARIMA models (McKenzie, 1984). In an ARIMA 

model, the future value of a variable is assumed to be a linear function of several 

past observations and random errors. The linear function is based upon three 

parametric linear components: autoregression (AR), integration (I), and moving 

average (MA) method (Box et al., 2015; DeLurgio, 1998).  
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An ARIMA model can be explained as ARIMA (p, d, q) (P, D, Q)s, where (p, d, q) is 

the non-seasonal part of the model and (P, D, Q)s is the seasonal part of the model 

(Box et al., 2015). The p is the order of non-seasonal autoregression, d is the number 

of regular differencing, q is the order of non-seasonal MA. The ARIMA model order is 

identified by the trial and error method, with the criteria of the optimal combination 

of four statistical amounts, the R square, the Root Mean Square Error (RMSE), the 

Mean Absolute Percentage Error (MAPE) and the Mean Absolute Error (MAE). 

Winters’ Additive Exponential Smoothing 

The Winters’ Additive Exponential Smoothing technique forecasts a time series that 

has a linear trend and additive seasonal variation. The initial estimates of the 

parameters that are updated are usually obtained from the additive decomposition 

model. However, the initial estimates can be calculated using a multiple regression 

analysis on the data and employing dummy variables as a measure of the seasonal 

components (Winters, 1960). 

Artificial Neural Networks 

An ANN model is a massively parallel-distributed processor that has a natural 

propensity for storing experiential knowledge and making it available for later use 

(Allende et al., 2002). It resembles the brain in two respects: The ANN models can 

recognize trends, patterns, and learn from their interactions with the environment. 

The firstly most extensively studied and used ANN models are the multilayer feed 

forward networks (Rumelhart et al., 1986), which allow information transfer only from 

an earlier layer to the next consecutive layers. Hence, the ANN model, in fact, 

performs a nonlinear functional mapping from the past observations to the future 

value yt. Thus, the neural network is equivalent to a nonlinear autoregressive model. 

A neural network must be trained to determine the values of the weights that will 

produce the correct outputs. In a training step, a set of input data is used for training 

and presented to the network many times. The performance of the network is tested 

after the training step is stopped. The backpropagation algorithm adjusts the weights 

in the steepest descent direction (negative of the gradient) (Govindaraju and Rao, 

2000). 

Hybrid approach 

The combination of the ARIMA and ANN models was performed to use each model 

capability to capture different patterns in the data. An ARIMA model is not sufficient 

if there are still linear correlation structures left in the residuals. Therefore, the residuals 

can be modeled by using ANNs to discover nonlinear relationships. The methodology 

consisted of two steps: In the first step, the ARIMA model is developed to forecast 

water demand; and in the second step, the ANN model presented above is used to 

describe the residuals from the ARIMA model. The hybrid model steps are 
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implemented using the IBM SPSS Statistics 20 and Zaitun Time Series softwares, 

respectively. 

3.3.3. Results and Discussion 

Through the quarterly averaged data processing, it emerges that there is a peak in 

summer, while spring and autumn periods are ascending and descending, 

respectively. The dramatic summer increase can be explained by the temperature 

increase and the intense summer touristic activity, yet this needs to be justified 

through a multivariate approach. The distribution is seasonal and faintly follows an 

ascending trend through the years (Figure 11). The ascending trend could be more 

justified if longer time series data were available; however, it corresponds to the 

observed annual population and/or tourism increase. The investigation through the 

adequacy of different models is performed by comparing four statistical amounts, 

the R square, the Root Mean Square Error (RMSE), the Mean Absolute Percentage 

Error (MAPE) and the Mean Absolute Error (MAE). Winters’ Additive Exponential 

Smoothing is a well performing model for the annual-quarterly demand forecast 

(Table 2). 

Observing the monthly averaged water demand, it can be obtained that the spring 

ascending slopes are smoother than the autumn descending, which could be 

related to the tourism distribution (Figure 12). The water demand distribution in winter 

is more rippled, possibly due to the more intense weather disturbances, causing the 

models’ relative difficulty to fit. Although the ANN model is the most fitting one, it 

does not obtain the generally ascending trend as the linear models ARIMA 

(2.0.2)(1.1.0) and Winters Additive Exponential Smoothing do. The Hybrid model 

seems to fit almost as well as the ANN, additionally it can catch the general trend 

due to the linear models’ properties. The hybrid model seems to be a very adequate 

forecasting tool (Table 3). 
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Figure 11. Fit and forecast of the normalized quarterly water demand 

Table 2. Statistical amounts for the adequacy of the Winters' Additive Smoothing 

Exponential model for the quarterly water demand 

R squared RMSE MAPE MAE 

0.997 0.014 5.009 0.010 

Table 3. Statistical amounts for the adequacy of four models for the monthly water 

demand 

Model R squared RMSE MAPE MAE 

Neural 0.999 0.053 0.649 0.003 

ARIMA 0.987 0.158 10.493 0.025 

Winters’Additive 0.940 0.149 10.797 0.022 

Hybrid 0.990 0.125 6.323 0.016 
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Figure 12. Scatter plots of actual and simulated monthly water demand for the 

ARIMA, Winters' Additive, Neural and Hybrid models 

Afterword: Summarizing, in this subchapter, the strengths of three different popular 

approaches for urban water demand forecasting via univariate time series analysis 

are exploited. The first approach is devoted to statistical time series modeling using 

ARIMA, the second one to Winters’ Additive Exponential Smoothing, and the third 

one to artificial intelligent modeling using neural networks. Each one of the 

investigated approaches presents the advantageous characteristics of linear and 

nonlinear modeling respectively. Four common measures of accuracy are applied 

to assess model performance. Performance of individual time series models is 

compared to decide the best model so as to ensure appropriate simulation of the 

water demand time series. Experimental results with monthly water demand data 

sets indicate that all models can be effective tools to improve the forecasting 

accuracy obtained by each one of the models. 
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3.4 Multivariate forecasting of water demand in 

monthly time scale: ARIMAX, multiple regression, 

ANN, hybrid approaches 

Foreword: In this subchapter a multivariate analysis of Skiathos historical water 

demand data and five different water demand forecasting methodologies are 

demonstrated and compared. Linear and nonlinear forecasting methods to a three-

year time series water demand are applied. The analysis is held for five variables, 

mean and high temperature, precipitation, wind speed, describing the meteorology 

of the island, and arrivals to the island by air and sea, a variable which is used as an 

indicator for the touristic activity. Time series related to the considered variables are 

subjected to stationarity test, as the latter plays a key role in the selection of a proper 

modeling procedure. Five multivariate models are applied, the multiple regression 

model, multivariate Autoregressive Integrated Moving Average (ARIMAX), Artificial 

Neural Networks (ANNs) and two hybrid approaches multiple regression-ANNs and 

ARIMAX-ANNs. The best fit for the monthly averaged data is observed for the multiple 

regression method –simple and hybrid- and the ANNs. 

3.4.1. Introduction on multivariate water demand forecasting  

This subchapter deals with the issue of multivariate forecasting water demand. Water 

demand forecasting can be conducted through a univariate analysis of the water 

demand fluctuation and a multivariate analysis. The univariate analysis, held out in 

the previous subchapter for quarterly and monthly data indicates as well fitting 

forecasting tools the ANNs, the seasonal Autoregressive Integrated Moving Average 

model (sARIMA), the Winters’ Additive method and a hybrid method combining the 

capability of sARIMA to catch the linear part of the water demand curve and the 

capability of ANN’s to catch any non-linear parts. A multivariate analysis would 

benefit in terms of depicting the importance of the touristic activity related and 

meteorological variables to water demand. Such a tool would be quite useful in the 

case of a dramatic change in tourism or climate. Under such circumstances a 

univariate  model would be inadequate to predict the effect of these changes on 

water demand levels (Alvisi et al., 2007). 

In this subchapter, the analysis focuses on a multivariate approach that uses several 

characteristic linear and nonlinear forecasting methods; namely, the multiple 

regression model, the multivariate Auto-Regressive Integrated Moving Average 

model (ARIMAX), the ANNs and two hybrid approaches, a multiple regression- ANNs 

and an ARIMAX- ANNs one. The methodologies are tested and applied for the 

specifics and peculiarities of the Greek island of Skiathos. Skiathos presents a special 

interest, since it has one of the highest water distribution network Non-Revenue 

Water levels in Greece—as high as 50% or more, even 70% at times—it is highly 

touristic, and faces serious water scarcity issues especially during the summer 
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months. The models are validated and compared through widely used statistical 

metrics for a single-year forecast. 

3.4.2. Materials and Methods for multivariate forecasting 

 Available data 

The analysis explores whether meteorological variables and tourist influx are strong 

predictors for water demand, while evidence of this correlation can be found in the 

literature (Donkor et al., 2014; Mamo et al., 2013; Billings and Jones, 2008; Arbués et 

al., 2003; Stevens et al., 1993; Griffin and Chang, 1990; Rumelhart et al., 1986; Agthe 

and Billings, 1989; Foster and Beattie, 1979; 1981). Although tourist influx may not be 

explicitly mentioned as a predictor for water demand, population is definitely a 

strong predictor.  Meteorological variables include daily mean and high 

temperature (variables x1 and x2, respectively), precipitation (variable x3) and daily 

average wind speed (x4), while touristic activity is expressed as numbers of tourists 

arriving at the island by all possible transportation means (ferry and airplane) 

(variable x5). Relevant meteorological data are obtained from the private weather 

station in Skiathos Island, Metar, which operates in collaboration with the National 

Observatory of Athens (http://penteli.meteo.gr/stations/skiathos/). Touristic activity 

data are provided by the Touristic Department of the Municipality of Skiathos Island 

and the Research Institute for Tourism of the Hellenic Chamber of Hoteliers. Water 

demand (dependent variable y) is a time series of daily groundwater pumping to 

cover the island’s water supply needs. It should be noted that y variable includes 

water distribution network leakage and other Non-Revenue Water components, but 

expresses the demand exerted on local water resources. The analysis was based on 

three-year time series (2011 to 2013) for all variables. Graphs of all variables time-

series are shown in Figure 13. 

All daily data is averaged to monthly values. The forecast concerns the monthly 

water demand, y as function of the five independent variables. Corresponding units 

for all variables are shown in Table 4. A preliminary qualitative analysis shows that the 

pattern of variability exhibited by independent variables x1, x2 and x5 follows the 

pattern of the dependent variable y, while x3 and x4 are not that consistent with the 

fluctuation of y. Having said that, we keep in mind that the more noisy variables x3 

and x4 could play a key role on the nonlinear and/or non-predictable character of 

winter fluctuations of water demand. The pattern of water demand variability is quite 

typical for a touristic resort, with summer consumption surpassing by far winter levels. 

The y variable follows a rapidly ascending and a rapidly descending slope, in spring 

and autumn respectively, creating a sharp, high summer peak. Winter consumption 

is generally noisier, indicating that the consumption is possibly more closely 

correlated to the less seasonal variables, such as x3 and x4. 
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Table 4. Independent and dependent variables 

 description of 

variable 

variable 

symbol 

measurement unit 

independent 

variables 

mean daily 

temperature 

x1 °C 

high daily 

temperature 

x2 °C 

precipitation x3 mm/d 

wind speed x4 km/h 

total touristic arrivals x5 - 

dependent 

variable 

normalized water 

demand 

y - 
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Figure 13. Diagrams of the monthly fluctuation of the five independent and one 

dependent variables for the three-year period 2011-2013. 

 Methodology 

Multivariate analysis is carried out using linear and non-linear models. Two linear 

models are used: multiple regression and ARIMAX, as well as the multivariate ANNs 

model (non-linear). Additionally, two hybrid approaches are conducted, a multiple 

regression-ANN and an ARIMAX-ANN that are both non-linear. Hybrid approaches 

have been used in different research works in the past, in an effort to combine 

advantages of two forecasting methods (Zhou et al., 2014; Machiwal and Jha, 2012). 

Linear regression is used to examine the variables’ correlations; while at the same 

time, stationarity tests are conducted, in order to select appropriate methods for 

forecasting.  

The monthly data of years 2011, 2012 are considered for training the multiple-

regression model. To check the quality of fitting of the produced model to historical 

time series the Akaike Information Criterion -AIC (Akaike, 1974) is used. A stepwise 

selection of predictor variables is performed that enables to select the best fitted 

model. For the training of the model the R software package is used (http://www.r-

project.org). The initial pool of factors involves all predictor variables: x1, x2, x3, x4, and 

x5. Also, in order to check for possible trends and examine the polynomial regression, 

first and higher orders of the time index are included: t, t2 and t3. In addition, in order 

to better capture the seasonality, the following harmonic factors are added to the 

pool: a1 sin (2πt/b1), a2 cos (2πt/b2), where, constants a1, a2, b1, b2 are tested and 

determined on a trial and error basis. After running the stepwise selection algorithm, 

the finally obtained model is shown in equation 1: 

y = 1.127∙*10-2 x1 + 5.615∙*10-6 x5 + 4.691∙*10-3 t 

+ 3.622∙∙*10-2∙ sint - 9.955∙*10-2 
(equation 1) 
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with AIC equal to -85.992. From equation 1 it is shown that the stepwise selection 

algorithm identifies only the variables mean daily temperature (x1), touristic influx (x5), 

time (t), and the harmonic function sin(t) as relevant. 

The ARIMAX model is defined, in terms of the p, d, q values - parts of the 

Autoregressive (p), Integrated (d) Moving Average (q) model- by trial and error, with 

the criterion of an optimal R squared value, as close to 1 as possible (Box et al., 2015; 

Zhou et al., 2014; Contreras et al., 2003; DeLurgio, 1998). Trials are conducted with 

the statistical software package SPSS. The model is finally defined as shown in Table 

5. 

Table 5. Definition, after trial and error procedure, of the p, d and q values of the 

ARIMAX model 

 y x1 x2 x3 x4 x5 

p 1 0 0 0 0 1 

d 0 0 0 0 0 0 

q 1 0 0 0 0 1 

ANNs is a widely-used modeling methodology applied with beneficial results in 

describing non-linear parts of a variable’s dynamic function (Bennett et al., 2013; 

Adamowski and Karapataki, 2010; Adamowski, 2008; Chang and Liu, 2009; Bougadis 

et al., 2005). The ANN in this sub-chapter is formed in a two-hidden-layer architecture, 

which was found as most appropriate for the number of independent variables 

involved in the analysis. 

For the two hybrid approaches, firstly, a multiple regression or an ARIMAX model is 

applied for water demand forecasting and secondly, ANNs are applied for fitting 

the residuals of forecasted values. This way, it is possible to examine whether the two 

linear models are missing some important non-linearity, while full advantage of their 

capability is taken to perform adequately for the linear parts of the variables, such 

as level, trend or seasonality (Ömer Faruk, 2010; Zhang, 2003). To check the 

predictive capabilities of the models for the out-of-sample data, year 2013 is 

considered as a testing period. To quantify the prediction errors, several standard 

accuracy measures are used such as ME, RMSE, MAE, MPE and MAPE. To evaluate 

and compare the goodness of fit and suitability of models, the R square criterion is 

also used. 

  

Institutional Repository - Library & Information Centre - University of Thessaly
24/05/2024 19:04:56 EEST - 18.217.70.77



 

53 

3.4.3. Results and Discussion  

 Pre-processing: stationarity test and linear correlations 

Stationarity is a key distinctive feature of time series determining the selection of 

methods for forecasting. An augmented Dickey Fuller (ADF) test (Dickey and Fuller, 

1979) is usually used for that purpose. The p-value close to 1 confirms the null 

hypothesis of non-stationarity. The lag order indicates the order of the autoregressive 

processes fitted to data with the highest p-value achieved. 

The results in Table 6 show that, since p-values are low, there is no evidence for non-

stationarity of all univariate components of the considered multivariate time series. 

Even the largest p-value of 0.341 that is observed for variable x4 (average wind 

speed) is quite low, so we conclude that the ADF does not confirm the hypothesis of 

non-stationarity. 

The linear correlation coefficients are shown in table 7 and Figure 14. The strongest 

positive linear correlation is detected between the total arrivals of tourists (x5) and 

water demand (y). Besides the positive influence of temperature (x1 and x2), also 

quite strong negative correlation between precipitation (x3) and water demand is 

recognized. The strong correlation between touristic activity and water demand is 

verified by the ANNs, as well: for almost every run, x5 turns out to be the main 

predictor.  

Table 6. ADF test of non-stationarity 

variable lag order p-value 

water demand (y) 3 0.023 

mean daily temperature (x1) 3 0.010 

high daily temperature (x2) 3 0.010 

daily precipitation (x3) 3 0.072 

average wind speed (x4) 3 0.341 

total touristic arrivals (x4) 3 0.023 
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Table 7. Linear correlation coefficients 

cor (x1, y) cor (x2, y) cor (x3, y) cor (x4, y) cor (x5, y) 

0.918 0.858 -0.606 -0.377 0.965 

 

Figure 14. Scatterplot matrix for the dependency between water demand and 

predictor variables 

 Model Performance  

The fitting of all five models is shown quantitatively in table 5, with five statistical 

quantities that act as metrics and is visualized in Figure 15, through a comparative 

diagram of the actual normalized water demand and the models’ output fitting time 

series. The two linear models show adequate fitting capability, which is improved 

distinctively in their hybrid forms with use of ANNs for modeling the respective 

residuals. The ANN model also fits quite adequately the actual time series. 

Improvement, in the case of the hybrid approaches, although not great, is due to 

the ANNs’ advantageous ability to capture non-linear parts of water demand.  

However, the ANNs cannot capture linearity quickly on their own; thus, they cannot 

capture the overall slightly annual increasing demand that is observed in the data 

set for the Skiathos island. In Figure 15, it can be seen that each consecutive peak is 

higher than the previous one, depicting a definite rise in water demand over the 

years. All five methods seem to adjust much better in the second training year, which 

probably means that they have a good training skill. It is also noticeable, that it is 

harder for the models to fit the actual demand in the winter months than in the 

ascending and descending summer slopes. This is due to the water demand’s high 

correlation to touristic activity: during the winter months that touristic activity is low, 

the other independent variables take over and guide the predictions giving a fit that 

is less accurate. During the summer months, the increase in touristic activity is so 

dramatic and its correlation with water demand so strong that excellent fits are 

obtained with most models. 
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The forecasting strength of all models, which is tested for 2013, is presented 

quantitatively in table 8, through the same five statistical metrics previously 

presented and is also visualized in the blue-shaded part of the comparative diagram 

in Figure 15. Indicative are also the R square values that are presented in Figure 16. 

All five models have exceptionally high R square values, ranging from 0.984 for the 

hybrid ARIMAX-ANNs to 0.990 for the multiple regression model. The latter also gives 

the optimal mean prediction errors, while the ANNs give relatively small errors. The 

ARIMAX model and the hybrid ARIMAX-ANNs approach give slightly worse results, 

numerically; however, once the forecast is visualized. 

  

Figure 15. Comparison of actual normalized water demand with the models’ fitting 

and forecasting values, for the training period 2011-2012 and testing - blue shaded- 

period 2012, respectively 

In Figure 15, it is obvious that the two ARIMAX models—simple and hybrid—are 

incapable of capturing the 2013 summer peak. The seasonal ARIMAX would be 

expected to be more efficient than the non-seasonal ARIMAX, but needs longer time 

series than a two-year, to be trained. The ANNs capture better the summer peak, 

than the ARIMAX, but still not at as well as the multiple regression model. Both hybrid 

approaches do not contribute anything to the whole forecasting procedure, 

compared to the simple linear models, probably due to the shortness of the time 

series, combining with the complexity of the non-linear relationships in the data. A 

longer training period could give them the benefit of capturing the yet undescribed 

non-linearity. The multiple regression model seems to generally give the best fit in the 

output. 
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Table 8. Accuracy metrics for the five models 

Model ME RMSE MAE MPE MAPE 

ARIMAX 0.006 0.047 0.032 -0.031 0.173 

Multiple 

regression 

models 
0.001 0.031 0.024 -0.020 0.143 

ANNs -0.006 0.040 0.029 -0.063 0.154 

Hybrid 

ARIMAX- 

ANNs 
0.002 0.047 0.032 -0.062 0.171 

Hybrid 

Multiple 

regression- 

ANNs 

0.001 0.028 0.022 -0.002 0.121 
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Figure 16. Scatter plots of actual and simulated monthly water demand for the five 

models 

Afterword: In this subchapter, a multivariate analysis of the monthly water demand 

of the island of Skiathos is presented. The analysis, which is held for a three-year time 

period, explores the involvement of five variables, meteorological and touristic, in 

the prediction of the water demand function. An ADF test proves the involved 

variables to be stationary. Among variables, touristic influx to the island is identified 

as the most important predictor of water demand and is found highly positively 

correlated. The temperature is also positively correlated to the demand, unlike 

precipitation, which is found negatively correlated. The five forecasting methods 

applied, namely, the multiple regression model, ARIMAX, ANNs, the hybrid ARIMAX-

ANNs and multiple regression-ANNs approaches, prove to have adequate fitting 

and forecasting capacity, especially the multiple regression and the ANNs models. 

ANNs seem to overcome the difficulty of the winter time more unpredictable 

fluctuations in water demand, while the multiple regression model captures better 

the summer peak and the general ascending trend. Longer time series could possibly 

give the hybrid approaches or the seasonal ARIMAX a chance to fit better.   

R² = 0.9888

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0 0.5 1.0

p
re

d
ic

te
d
 n

o
rm

a
liz

e
d
 w

a
te

r 
d
e
m

a
n
d
 

[-
]

actual normalized water demand [-]

ANNs

R² = 0.9843

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.5 1.0

p
re

d
ic

te
d
 n

o
rm

a
liz

e
d
 w

a
te

r 
d
e
m

a
n
d
 

[-
]

actual normalized water demand [-]

Hybrid ARIMA- ANNs

R² = 0.9845

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.5 1.0

p
re

d
ic

te
d
 n

o
rm

a
liz

e
d
 w

a
te

r 
d
e
m

a
n
d
 

[-
]

actual normalized water demand [-]

Hybrid Multiple Regression - ANNs

Institutional Repository - Library & Information Centre - University of Thessaly
24/05/2024 19:04:56 EEST - 18.217.70.77



 

58 

3.5 Multivariate forecasting of water demand in 

daily time scale: ANFIS 

Foreword: Considering the increasing demand for optimizing water distribution 

networks in terms of leakage detection and pressure management, as well as the 

need to reduce urban water consumption, a lot of effort has been invested in the 

past decade in order to define accurate, long-term and short-term water demand 

forecasting methods in decreasing time scale. Linear regression models, such as 

ARIMA, and ANN have been used, as well as different hybrid approaches. In this 

subchapter, a multivariate analysis of daily water demand of Skiathos Island, Greece 

and an investigation on the benefits of the ANFIS forecasting method are presented. 

The applied methodology considers how touristic activity and meteorological and 

hydraulic variables influence water demand. The applied method benefits when 

water demand includes non-linear parts and performs adequately; it also provides 

a Fuzzy Rule Base, giving researchers and water managers a handy tool for 

interpreting the physical aspects of the inter-relationships.  

3.5.1. Introduction 

Short-term demand forecasting is needed in order to increase the stability of urban 

freshwater supply by adjusting water supply to actual demand and consumption, 

thus resulting in the optimal and timely use of water resources. Demand forecasting 

is also critical for optimal pump scheduling and thus, for supplying water in a more 

energetically efficient manner (Skworcow and Ulanicki, 2011). The development of 

ML algorithms facilitates approaches with finest periodicities such as daily, or even 

hourly or less allowing for management schemes that would operate towards a near 

real-time horizon. ANFIS is a promising approach, already used successfully in other 

fields, such as the energy domain. The adoption of this approach in the urban water 

management field for demand forecasting is a natural next step. 

3.5.2. Materials and Methods 

 Available data  

A multivariate analysis of Skiathos monthly water demand has been presented 

elsewhere in the previous subchapter. It has been shown that the dominating 

predictors for water demand are found among meteorological and touristic 

variables (Donkor et al., 2014; Mamo et al., 2013; Billings and Jones, 2008; Arbués et 

al., 2003; Rumelhart et al., 1986). Meteorological variables include high daily and 

mean temperature, rain and wind, while in order to describe arithmetically the 

touristic activity in the island, the arrivals into the island by any popular transportation 

means were used as a representative indicator.  
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The data on which the current analysis is based includes time series of daily water 

pumping, daily mean and high temperature, daily precipitation, daily wind speed 

and monthly arrivals by air and sea for a three-year period. Meteorological data are 

obtained from the private weather station in Skiathos Island, Metar, which operates 

in collaboration with the National Observatory of Athensa. The touristic activity data 

is taken from the Touristic Department of the Municipality of Skiathos Island and the 

Research Institute for Tourismb. For touristic arrival data, an assumption is made that 

the monthly arrivals are normally distributed in each month. 

The forecast concerns the daily water demand, y as a function of the five 

independent variables, xi (Table 9). The variability of the six variables in time is 

presented in Figure 17. Initially, we note that the independent variables x1, x2 and x5 

follow the dependent variable y, while x3 and x4 are not consistent to the fluctuation 

of y. The more noisy variables x3 and x4 are expected to play a key role on the 

nonlinear relations that seem to form the less seasonal-related fluctuations of water 

demand. The shape of the water demand curve is quite typical for a touristic resort, 

with summer consumption surpassing by far—almost six times—the winter level. The y 

variable follows a rapidly ascending and a rapidly descending slope, in spring and 

autumn respectively, creating a sharp, high summer peak. Winter consumption is 

generally noisier, showing that the consumption is then mostly correlated to less 

seasonal variables, such as x3 and x4. 

Table 9. Independent and dependent variables 

 

                                                           
a http://penteli.meteo.gr/stations/skiathos/ 
b
 http://www.grhotels.gr/ 

 description of variable 
variable 

symbol 

measurement 

unit 

independent 

variables 

daily mean temperature x1 °C 

daily high temperature x2 °C 

daily precipitation x3 mm/d 

daily wind speed x4 km/h 

monthly total arrivals 

(assumed to follow a 

uniform distribution 

through the days of the 

month) 

x5 arrivals/month 

dependent 

variable 
water demand y m3 
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Figure 17. The daily fluctuation of the dependent and independent variables for a 

three-year period (1096 days) 
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 Methodology 

The Adaptive Neuro-Fuzzy Inference System (ANFIS) 

ANFIS (Jang, 1993) is considered to be an adaptive network, which is very similar to 

neural networks (NN) (Jang et al., 2005). Adaptive network has no synaptic weights, 

but it has so-called adaptive and non-adaptive nodes. It should be noted that 

adaptive networks can be easily transformed to neural networks with classical feed-

forward topology. ANFIS integrates the best features of fuzzy systems and neural 

networks. From fuzzy systems, it inherits the representation of prior knowledge into a 

set of constraints to reduce the optimization search space and from NN it inherits the 

adaptation of back-propagation to a structured network in order to automate fuzzy 

control parametric unit (Jang et al., 2005) 

Rule 1: If x is A1 and y is B1, then f1 = p1x +q1y + r1. 

Rule 2: If x is A2 and y is B2, then f2 = p2x +q2y + r2. 

The node in the i-th position of the k-th layer is denoted as Ok,i, and the node 

functions in the same layer are of the same function family as described below: 

 

Figure 18. ANFIS structure (Khoshnevisan et al. 2014) 

The typical ANFIS structure as shown in Figure 18, includes 5 layers. These five network 

layers are used to perform the following fuzzy inference steps:  

Layer 1: Input fuzzification.  

Layer 2: Fuzzy set database construction 

Layer 3: Fuzzy rule base construction  

Layer 4: Decision making 

Layer 5: Output defuzzification 

In Layer 1, every node i is an adaptive node with a node function, given in equation 

2: 
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𝑂1,i = 𝜇𝐴𝑖(𝑥) (equation 2) 

where x is the input to node i, Ai represents the linguistic label associated with this 

node function, and O1,i is the membership function of Ai that specifies the degree to 

which the given x satisfies Ai. To the input y, the node functions in the same layer are 

of the same function family as x. The most common MFs encompass triangular, 

trapezoidal and bell-shaped. Bell-shaped MF with a maximum equal to 1 and a 

minimum equal to 0 are calculated as follows: 

𝜇𝐴(𝑥) =
1

1 + [
(𝑥 − 𝑐)

𝑎
]

2𝑏 
(equation 3) 

In Layer 2, every node is a fixed node, and acts as a simple multiplier. The outputs of 

these nodes are given by eq. (3) 

𝑂2,i = ωi = 𝜇𝐴𝑖(𝑥) × 𝜇𝐵𝑖(𝑦), 𝑖 = 1,2, … (equation 4) 

which are the so-called firing strengths of the rules. 

In Layer 3, each node is an adaptive one labeled as N. The i-th node calculates the 

ratio of the i-th rule’s firing strength to the sum of all rules’ firing strengths, 

𝑂3,i = 𝜔𝑖̅̅ ̅ =
ωi

ω1+ω2
, 𝑓𝑜𝑟 𝑖 = 1,2 (equation 5) 

In Layer 4, every node is an adaptive one with a function, equation (5) 

𝑂4,i = 𝜔i̅ 𝑓i = 𝜔i̅ (𝑝i𝑥 + 𝑞i𝑦 + 𝑟i), 𝑓𝑜𝑟 𝑖 = 1,2, … (equation 6) 

where ϖ is the output of layer 3, and pi, qi, ri are referred to as consequent 

parameters. 

In the final Layer 5, the single node is a fixed node labeled as ∑ that computes the 

overall output as the summation of all incoming signals, i.e. equation 7. 

𝑂5,i = ∑ 𝜔i̅ 𝑓i

2

𝑖=1

=  
∑ 𝜔i𝑓i

2
𝑖=1

∑ 𝜔i
2
𝑖=1

=  𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 (equation 7) 
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The functions of the various layers are explained in Jang et al. (2005). The number of 

rules defined in the Sugeno-Type model is a product of the number of membership 

functions in each input. The output signals from nodes in the previous layers will be 

accepted as the input signals in the present layer. After manipulation by the node 

function in the present layer, the output will be served as input signals for the next 

layer (Cheng and Wei, 2010).  

This network is trained in a supervised learning fashion. So some data are used as 

training data and our goal is to train the adaptive network to enable it to 

approximate unknown functions given by training data. Training data on water 

demand were gathered from the water utility company of Skiathos. Our goal is to 

adapt and determine the right value of the above parameters for function 

approximation of the mean square error. 

ANFIS development for water demand prediction 

The ANFIS method is selected, due to its efficiency in decision making, classification 

and prediction. To find the most effective architecture of ANFIS model, five 

necessary modifications can be made to increase the accuracy of the network and 

decrease the errors. These settings include the number of membership functions 

(MFs), types of MFs (triangular, trapezoidal, bell-shaped, Gaussian and sigmoid), 

types of output MFs (constant or linear), optimization methods (hybrid or back 

propagation) and the number of epochs (Bonissone et al., 1995) To develop ANFIS 

models, MATLAB M-file environment version 7.14.0.739 (R2012a) was used to program 

ANFIS networks. 

The main objective of this study is to develop an ANFIS model based on historical 

data for predicting the water demand in Skiathos Island. The dataset collected from 

the previous subsequent years (2011-2013) was used to structure and formulate the 

ANFIS (Jang, 1993). From this dataset, the first two years were used for learning and 

the last year for testing (2013). 

The efficiency of the model for the different runs-structures is validated through the 

Root Mean Square Error (RMSE) that corresponds to the testing period and a 

qualitative look on the produced diagrams of forecasted water demand for the 

same period. This way, the five most adequate runs are selected and the respective 

models are validated with the use of Mean Error (ME), Mean Absolute Error (MAE) 

Mean Absolute Percentage Error (MAPE) and R2. 

3.5.3. Results and Discussion 

In Table 10 the RMSE of several different structures of ANFIS and types of MFs are 

presented for the training and testing periods. Types of MFs are explicitely defined 

under Table 10. All of the ANFISs are finally realised for the number of epochs that 

give the smallest average testing error, after it converge. The noteworthy variance 
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in testing errors proves the importance of selecting the most fitting structure, 

especially concerning the number and type of input MFs. The testing error varries 

from 193.0 to 736.6, while the training error varries from 148.1 to 216.8. The five ANFISs 

that give the best fit based on the training and the average testing errors (shown in 

bold in Table 10 and having a number in the “Run” column) are further examined. In 

Figure 19 their scatter plots and a table of more statistical measurements are 

presented. In Figure 19, comparative diagrams for the testing periods are presented 

for the 5 ANFISs. The five ANFISs give five well-fitting models, with R2 up to 0.916 and 

no lower than 0.910, shown in each diagram. The same conclusion is also conducted 

from a qualitative observation of the comparative diagrams, as shown in Figure 20, 

in which the actual and forecasted water demand for a period of about one year 

are plotted. 

The best fitting ANFIS (ANFIS1) has trapezoidal type of MFs and has a 3-2-3-2-3 

structure respectively for variables x1, x2, x3, x4, and x5.  In other words, the best fitting 

ANFIS divides variables x2 (high temperature) and x4 (wind speed) into two MFs each 

and variables x1 (mean temperature), x3 (precipitation) and x5 (tourist arrivals) into 

three MFs each. This seems to be an indirect way to understand how extensively 

each variable needs to be fuzzyfied. To understand what the division in two or three 

MFs means, the following example is given: Wind speed is classified into two 

categories—windy and not-windy, for example—while mean temperature is 

classified in three categories—hot, normal and cold for example. This type of 

classification in MFs is something that is ultimately defined by an iteration process, in 

which the number and type of MFs is specified a priori and the simulation error that 

corresponds to each combination is implemented. The optimum combination of MFs 

is concluded for the one that minimizes the error. 

The type of ANFIS architecture that emerges from this analysis is logical, since it can 

be seen that it requires a more extensive classification in more classes for variables 

that are highly relevant to the independent variable, water demand (y).  In other 

words, water demand in an island with hot summers is highly correlated with mean 

temperature; thus, the ANFIS divides this variable (x1) into three MFs to allow it to 

better describe its variability; the same is true for precipitation—although here the 

relationship is reverse. For other variables that are less correlated with water use, such 

as wind speed, the classification requires only two MFs.  

Table 10. Training and testing errors for some of the different tested structures of ANFIS 

MFs-Input Type of MFs Epochs Training error Average testing error Run 

3-2-3-2-3 trimf 100 170.5 315.6  

3-2-3-2-3 trapmf 60 172.4 193.0 1 

3-2-3-2-3 gbellmf 100 164.4 430.4  

3-2-3-2-3 gaussmf 80 165.2 203.2 2 
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3-2-3-2-3 gauss2mf 100 168.8 736.6  

3-2-3-2-3 pimf 100 174.1 295.5  

3-2-3-2-3 dsigmf 37 171.0 516.8  

3-2-3-2-3 psigmf 37 170.9 556.7  

3-2-2-2-3 trimf 20 171.2 245.4  

3-2-2-2-3 trapmf 60 172.8 194.0 3 

3-2-2-2-3 gbellmf 120 164.5 248.6  

3-2-2-2-3 gaussmf 80 166.2 356.1  

3-2-2-2-3 gauss2mf 40 171.2 200.7 4 

3-2-2-2-3 pimf 100 174.8 227.1  

3-2-2-2-3 dsigmf 120 167.5 634.2  

3-2-2-2-3 psigmf 120 173.2 487.0  

2-2-2-2-2 trimf 150 181.1 218.0  

2-2-2-2-2 trapmf 100 216.8 252.9  

2-2-2-2-2 gbellmf 200 175.5 274.5  

2-2-2-2-2 gaussmf 100 177.1 227.0  

2-3-2-2-2 trimf 100 176.3 223.2  

2-3-2-2-2 trapmf 100 195.7 238.6  

2-3-2-2-2 gbellmf 100 176.6 315.2  

2-3-2-2-2 gaussmf 100 174.8 247.5  

2-3-2-2-3 trimf 100 173.7 207.1  

2-3-2-2-3 trapmf 100 194.8 237.2  

2-3-2-2-3 gbellmf 250 167.6 217.5  

2-3-2-2-3 gaussmf 150 168.6 214.4 5 

3-3-3-3-3 trimf 50 162.9 234.1  

3-3-3-3-3 trapmf 100 184.3 217.5  

3-3-3-3-3 gbellmf 100 155.4 325.5  

3-3-3-3-3 gaussmf 100 148.1 265.8  

The types of MFs shown in the table are the following: 

 trimf: triangular MF 

 trapmf: trapezoidal MF 

 gauss2mf: Gaussian2 MF 

 pimf: pi MF 
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 gbellmf: generalized bell MF 

 gaussmf: Gaussian MF 

 dsig: difference of two sigmoidal MFs 

 psig: product of two sigmoidal MFs 

  

  

 

 

ANFIS ME RMSE MAE MAPE 

1 82.86 192.99 151.23 0.081 

2 100.28 203.16 159.91 0.085 

3 82.91 194.04 151.26 0.082 

4 99.75 200.66 156.37 0.083 

5 114.6 214.4 170.7 0.090 

Figure 19. Comparative diagrams of forecasted water demand versus actual water 

demand for the five ANFIS structures for the testing period 
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Figure 20. Comparative diagrams of forecasted and actual daily water demand 

(m3) for the days of the testing period, for the 5 best ANFISs 

In Figure 21, the stucture of the best fitting ANFIS, ANFIS 1, as described in Table 10, is 

depicted through its nodes and rules. The figure shows the complexity added to the 

system for just a single membership function or even more for an extra variable. In 

the figure, the black dots under the “input” heading represent the variables, while 

the white dots under the “inputmf” heading represent the MFs. The number of rules 

define the number of black lines leaving the white dots, while the number of rules 

depends on the number of variables and MFs. It is obvious that the addtion of an 

extra black or white dot (variable or MF, respectively) will add in a multiplicative 

fashion to the complexity of this structure and to the calculation load.  

 

Figure 21. ANFIS 3-2-3-2-3 structure 

Afterword: A daily multivariate forecasting approach for urban water demand is 

tested. The ANFIS methodology is implemented. The predictors tested are 
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meteorological variables and a total arrivals into the island by air and sea that 

performs as an indicator of the touristic influx. The algorithm is trained on two 

years time series and evaluated on approximately one year daily time series. 

Several architectures have been tested and the methodology performs 

sufficiently with R2 up to 0.916.  
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3.6 Multivariate Forecasting of water demand in 

daily time scale, introducing the NRW predictor: ANN 

and ANFIS 

Foreword: Advanced techniques have the ability to overcome the non-linearity 

issues commonly met when investigating the complex relationship of water demand 

and weather, socioeconomic and other variables. In this subchapter two 

approaches, an ANN and an ANFIS are presented, for forecasting a Mediterranean 

touristic resort daily water demand based on weather variables, tourism and 

infrastructure efficiency. For the two later indicative metrics are used, namely the 

total arrivals into the island by sea and air and the Non-Revenue Water percentage, 

respectively. Both models seem to have an adequate response, though ANFIS can 

more smoothly catch winter non-touristic water demand profile.  

3.6.1. Introduction 

The ANFIS approach is increasingly adopted by various fields as a target variable 

forecasting algorithm. Among other fields, the water domain has used ANFIS to 

predict damn levels, groundwater levels, water quality parameters etc. Urban water 

demand forecasting can for sure make use of a promising forecasting tool that can 

operate in multivariate analysis. While ML algorithms such ANN have been used in 

water demand forecasting, a comparison of the performances of ANN and ANFIS 

needs to be done to showcase the best choice for planners. 

3.6.2. Materials and methods 

 Available data 

In this subchapter, five predictors are used to forecast daily water demand of the 

town, including leakages, namely daily mean temperature (x1), daily high 

temperature (x2), daily precipitation (x3), monthly touristic inflows through all possible 

transportation means (x4) and trimester leakage level (x5) as a percentage of water 

demand (Table 11). The forecasted daily water demand (y), represents customer 

consumption and leakage and is estimated through the daily water amount pumped 

from groundwater. The meteorological data sets are obtained from the weather 

station in Skiathos, Metar, which operates in collaboration with the National 

Observatory of Athens (penteli.meteo.gr). The touristic data, for which the assumption 

of uniform monthly distribution has been made, were provided by the Touristic 

Department of the Municipality of Skiathos Island and the Research Institute for 

Tourism of the Hellenic Chamber of Hoteliers. The NRW level has been estimated as 

the relative difference of trimester water bills and total pumped water. Network and 

billing data are provided by the Skiathos water company, DEYAS 
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(www.deyaskiathos.gr). The rough assumption of uniformity is made to surpass the 

problem of a constant NRW rate for each trimester (Figure 8 and Figure 10). 

Two forecast methodologies are applied, ANN and ANFIS. Both methods are applied 

for numerous possible architectures, in order to find the most fitting ANN and ANFIS 

structure. All data sets refer to the time period from January of 2011 to July 2015 and 

are divided to 70% training sets and 30% testing sets. 

Table 11. The variables used in the two models 

Variables Description Units 

x1 daily mean temperature °C 

x2 daily high temperature °C 

x3 daily precipitation mm 

x4 

daily arrivals  

(monthly arrivals are uniformly 

distributed) 

arrivals/d 

x5 

trimester NRW as a percentage 

of water demand (uniformly 

distributed) 

% water demand 

y water demand  including NRW m3/d 

 Methodology 

Artificial Neural Network  

ANN is a system of interconnected units known as neurons interacting across 

weighted connections. Inspired by the architecture of the human brain, these 

neurons can compute output values from inputs by learning complex patterns of 

information and generalizing the learned information. ANNs can be classified into 

several categories based on supervised and unsupervised learning methods and 

feedforward and feedback recall architectures. Multilayered feedforward networks 

use a supervised learning method and feedforward architecture. A 

backpropagation neural network is one of the most frequently utilized neural network 

techniques for classification and prediction (Deyfus, 2005).  

The proper selection of ANN modeling parameters contributes to the success of ANN 

in prediction and classification tasks. The number of nodes (neurons) and layers, the 

nonlinear function used in the nodes, the learning algorithm, the initial weights of the 

inputs and layers, and the number of epochs for which the model is iterated, are the 

most important parameters that need to be defined for ANN performance. In 

general, the ANN model has a structure of an input layer, a hidden layer, and an 

output layer. In ANN approach, the input data are divided into 2 main subsamples, 

which are called learning and testing sets (Haykin, 2005). The neural network uses 

initially the learning sets to learn the relationship between the output and input 

criteria, while the test set is used to assess the performance of the model during the 
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testing process. ANNs have been suggested as an alternative to time series 

forecasting to deal with linear and nonlinear relationships. The major advantage of 

NNs is their flexible nonlinear modeling capability where the data are fitted for 

prediction purposes. With ANNs, there is no need to specify a particular model form. 

Rather, the model is adaptively formed based on the features presented from the 

data. This data-driven approach is suitable for many empirical data sets where no 

theoretical guidance is available to suggest an appropriate data generating 

process.  

The multilayered feedforward ANN models were implemented in Matlab R2012a, 

using the functions provided by ANN toolbox. The two most used training functions, 

the Levenberg-Marquardt (LM) and gradient decent (GD) were used. The 

Levenberg-Marquardt backpropagation algorithm worked more efficiently to train 

the ANN model for prediction tasks, providing less mean square errors and correlation 

coefficients. The optimization algorithm was selected as a conjugate gradient 

algorithm 

Adaptive Neuro-Fuzzy Inference Systems 

A fuzzy inference system (FIS) is an inference mapping that provides an intuition for 

the relationship between a series of input and output sets. This mapping from a given 

input to an output using fuzzy logic is called Fuzzy Inference (Adriaenssens et al., 2004). 

These systems have proved to work better when the input and output sets are time 

series data of the same time step. The FIS uses fuzzy logic principles to establish the 

input-output relationship through a rule based inference engine that consists of: (a) a 

rule-base, containing fuzzy if–then rules, (b) a data-base, defining the membership 

functions (MF) and (c) an inference system, combining the fuzzy rules and producing 

the system results. There are two types of popular FIS, the Takagi–Sugeno FIS, (Takagi 

and Sugeno, 1985) and the Mamdani FIS (Jang et al., 2005). The difference between 

the two approaches is the definition of the consequent parameters in the network. 

The FIS used in this study is a Takagi and Sugeno type FIS in which the rule base is 

constructed from the input–output pairs and it consists of five layers as seen in Figure 

22: (L1) Input fuzzification, (L2) Fuzzy set database construction, (L3) Fuzzy rule base 

construction, (L4) Decision making and (L5) Output defuzzification.  

In Layer 1, every node is an adaptive node with a node function, given in equation 

8:  

𝑂1,𝑖 = 𝜇𝛢𝑖
(𝑥)    𝑓𝑜𝑟 𝑖 = 1,2 (equation 8) 

Where x indicates the input to node I, Ai represents the linguistic label associated with 

this node function, and O1,i is the membership function of Ai that specifies the degree 

to which the given x satisfies Ai. Regarding all other input y, the node functions have 

exactly the same behavior with the function family as x, with the condition that they 

belong to the same layer. In Layer 2, every node is a fixed node and acts as a simple 
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multiplier. The outputs of these nodes, which are the so-called firing strengths of the 

rules, are given by equation 9. 

𝑂2,𝑖 = 𝑤𝑖 = 𝜇𝐴𝑖
(𝑥)𝜇𝐵𝑖

(𝑦)   𝑓𝑜𝑟 𝑖 = 1,2 (equation 9)  

Each node, in Layer 4, is an adaptive node with a function given by equation 11,  

𝑂3,𝑖 = 𝑤𝑖̅̅ ̅ =
𝑤𝑖

𝑤1 + 𝑤2

 (equation 10) 

𝑂4,𝑖 = 𝑤𝑖̅̅ ̅𝑓𝑖 = 𝑤𝑖(𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖) (equation 11) 

Where 𝑤𝑖̅̅ ̅ is the output of layer 3, and pi, qi, ri are referred to as consequent 

parameters. Finally, the single node, in Layer 5, is a fixed node indicated as ∑ (sum) 

that computes the overall output as the sum of all incoming inputs:  

𝑂5,𝑖 = ∑ 𝑤𝑖̅̅ ̅𝑓𝑖 =
∑ 𝑤𝑖𝑓𝑖𝑖

∑ 𝑤𝑖𝑖𝑖

 (equation 12) 

To construct an ANFIS from a given input/output data set, we first construct the FIS 

whose membership function parameters are tuned (adjusted) using either a back 

propagation algorithm alone or in combination with a least squares type of method 

(Singh et al., 2012). Learning using the neuro-adaptive method works similarly to that 

of neural networks as for the procedure to learn information about a data set. In other 

words, ANFIS, which is a combination of ANN and FIS, has the benefits of the two 

models (Azadeh et al., 2011). Propagation and hybrid are two learning methods, 

which are generally applied in ANFIS to clearly describe the relationship between 

input and output (Khoshnevisan et al., 2014).  Hybrid learning, which is a combination 

of gradient decent method and least squares approach, can decrease the 

complexity of the algorithm and simultaneously increase the learning efficiency. The 

parameters associated with membership functions will change through the learning 

process using a gradient vector that facilitates in this recalculation. So every time the 

gradient vector is obtained, an optimization procedure can be performed to adjust 

parameters in order to reduce errors.  
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Figure 22. Adaptive neuro-fuzzy inference system structure (Khoshnevisan et al., 2014) 

3.6.3 Results and Discussion 

Daily forecast of water demand seems to be achievable at satisfactory accuracy as 

tested for numerous ANN and ANFIS structures. Several popular metrics are assessed 

to evaluate the effectiveness of the two methods and select the best fitting 

architecture of each approach. The metrics of accuracy used are the root-mean-

square error (RMSE), the mean absolute error (MAE), the mean percentage error 

(MPE), the mean absolute percentage error (MAPE), the Nash–Sutcliffe model 

efficiency coefficient (E), used to assess the predictive power of water demand 

models (equations 13-17) and the R2 values produced by scatter plots of actual versus 

forecasted values (Figure 25). 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − 𝑓𝑖)

2𝑛
𝑖=1

𝑛
 (equation 13) 

𝑀𝐴𝐸 =
∑ |𝑦𝑖 − 𝑓𝑖|

𝑛
𝑖=1

𝑛
 (equation 14) 

𝑀𝑃𝐸 =
100%

𝑛
∗ ∑

𝑦𝑖 − 𝑓𝑖

𝑦𝑖

𝑛

𝑖=1

 (equation 15) 

𝑀𝐴𝑃𝐸 =
1

𝑛
∗ ∑ |

𝑦𝑖 − 𝑓𝑖

𝑦𝑖

|

𝑛

𝑖=1

 (equation 16) 
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𝐸 = 1 −
∑ (𝑦𝑖 − 𝑓𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦𝑖̅)
2𝑛

𝑖=1

 (equation 17) 

where, yi is the actual value and fi is the forecasted value. 

Regarding ANFIS, the Matlab 2014(b)-ANFIS tool named ANFIS-Editor is used. The tool 

is designed to utilize different variables including a normalization method, trial step 

quantity and various data classification methods to achieve the minimum error 

between predicted values and real data. The number and type of membership 

functions, (MF), the type of output MF, the optimization method (hybrid or back 

propagation) and the number of epochs are five important adjustments in ANFIS to 

reach the most effective model with minimum errors. Figure 23 summarizes most of 

the types of membership functions used in our simulation. The primary goal is to find 

the effect of these adjustments and their subdivisions in different combinations in 

order to develop these ANFIS models and compare the results. For this purpose, all 

possible combinations of numbers of membership functions for each predictor, from 

2 to 4 and types of membership functions [triangular (trimf), generalized bell-shaped 

(gbelmf), Gaussian (gaussmf), Gaussian combination (gauss2mf), trapezoidal 

(trapmf), Π-shaped (pimf) and sigmoidal (dsigmf)] are implemented. 

The structure that gives the best fitting would fuzzificate variables x1-x5 into 3,2,2,2 and 

3 membership functions respectively and the fuzzification would be implemented 

with the use of a triangular shaped function. The partitioning is implemented through 

the grid partitioning method. 

The success of ANN models depends on properly selected parameters such as the 

number of nodes (neurons) and layers, the nonlinear function used in the nodes, the 

learning algorithm, the parameters of learning, the initial weights of the inputs and 

layers, and the number of epochs for which the model is iterated (Maier and Dandy, 

2000; Bishop, 1995). A large number of experiments with ANN multilayered feed-

forward architecture is accomplished, considering different number of hidden layers, 

different learning rate and momentum parameters, two different (the most efficient) 

learning algorithms of backpropagation ANN technique (LM and GD) and number 

of epochs. Through the experiments, the best results of back propagation ANNs have 

been received for the architecture of one hidden layer, with 10 neurons, learning rate 

= 0.3 and momentum = 0.1, random values of initial weights, and the Levenberg-

Marquardt back-propagation algorithm as the learning algorithm. The optimization 

algorithm is selected as a conjugate gradient algorithm. The hyperbolic tangent 

transfer function was used in the hidden layer, and a linear transfer function is used in 

the output layer. The number of epochs for best configuration is 100. 
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Figure 23. Indicative Membership functions used in the ANFIS: (a) trimf, (b) trapmf, (c) 

gbelmf, (d) gaussmf and (e) gauss2mf 

Table 12 and Figure 24 and Figure 25 show that both methods are adequate and can 

produce quite accurate water demand predictions. Comparing the two methods, 

ANFIS gives better results in all estimated metrics of accuracy. In Figure 24, it is 

showcased that the weakest—yet acceptable—fitting is observed during the period 

from October to December 2014. This is a result of using a single NRW rate throughout 

the trimester (October through December), which is realistic overall, but performs sub-

optimally, when compared with water demand that is reported on a daily basis. 

 

(a) 

 

(b) 

 

 (c)  

 

(d) 

 

(e) 
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Naturally, the metrics and overall predictions will significantly improve if NRW 

percentage data of greater time-scale are included. For investigating if the two 

methods perform differently in warm and cold periods, the evaluation period is split 

into April to October and January to March plus November to December. The 

estimated performance metrics prove that ANFIS performs better than ANN in both 

sub periods, as shown in table 12. 

 

Figure 24. Comparative plots of actual water demand, ANFIS and ANN forecast 

versus time for the testing period (April 2014-July 2015) 

Table 12. Metrics of accuracy for the ANFIS and ANN models for the whole evaluation 

period and for split warm and cold periods 

 Method RMSE MAE MPE MAPE E 

the whole of 

the year 

ANFIS 220 177 5.34 0.09 0.84 

ANN 249 200 7.36 0.10 0.79 

Jan-Mar & 

Nov-Dec 

ANFIS 218 193 11.74 0.13 -2.60 

ANN 254 231 14.39 0.15 -3.85 

Apr-Oct  
ANFIS 212 176 5.09 0.09 0.66 

ANN 270 232 9.89 0.116 0.45 
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Figure 25. Scatterplots and R2 for the two approaches ANFIS (left) and ANN (right) for 

the whole evaluation period 

Afterword: In this subchapter, an approach for multivariate daily prediction of water 

demand in a highly touristic Mediterranean resort is introduced. The predictive 

adequacy of two forecasting methods, ANN and ANFIS is tested through various 

adequacy metrics. The drivers of water demand: mean and high temperature, 

precipitation, arrivals by any transportation means and NRW level, are proven to be 

capable of building up two quite satisfying models. The two methods seem to 

overcome any non-linearity or collinearity of the predictors issues that have been 

noticed in relative literature. The ANFIS method gives better results in all tested 

metrics. The methodology can be a useful forecasting tool that can be used either 

on prediction or water management by testing possible scenarios of expected shifts 

of the driving variables.  
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4.1 Spatio-temporal disaggregation of system 

input volume and non-revenue water of a water 

distribution network 

Foreword: Pressure control management of a water distribution network is 

considered as an effective approach for the reduction of leakage in the network 

and for optimized savings in pumping energy. A successful pressure management 

scheme usually requires single- or multi-feed regulation through Pressure Reduction 

Valves, the network division in District Metered Areas and dense monitoring of 

pressure and flow throughout the network. A structural component of this 

approach would be a hydraulic model which would relate pressure and flow in the 

network, in accordance to the monitored values. In the ISS-EWATUS project (“ISS-

EWATUS Integrated Support System for Efficient Water Usage and Resources 

Management”, 2016) and specifically for the Skiathos, Greece case study, the 

water distribution network is simulated using EPANET software, so as to estimate the 

pressure-map of the island and later link pressure to leakage. The need to zoom-in 

spatially and temporarily makes the spatial and temporal disaggregation of 

aggregated System Input Volume (SIV), as provided by the water utility, a necessity. 

The daily aggregated water supply time series and consumer quarterly billing data 

for each water meter are used, in order to produce approximate, daily water 

consumption datasets of each household and daily Non-Revenue Water per 

household. The initial disaggregation is implemented roughly assuming that the 

leakage components as well as the metering inaccuracies and Unauthorized 

Consumption are proportionate to the billings (Billed Authorized Consumption, 

BAC). The more accurate formulas that link the leakage to pressure are not taken 

into account in this step. However, the produced data sets are used in the next 

chapter as initial values that are corrected after a nested double iterative process 

to meet the levels that can produce pressure values respective to the actual 

recorded ones. In this subchapter, the disaggregation methodology for the 

production of these data sets of initial values is presented. 

4.1.1. Introduction: what does a spatio-temporal analysis of 

a Water Distribution Network offer? 

The urban touristic phenomenon has long been investigated as a structural 

component of urban planning (Getz, 1993;Inskeep, 1987), while recently it has 

been linked to the idea of the smart city paradigm. La Rocca (2014) highlights the 

link of the dynamic and spatial variable touristic patterns to the planning of a smart 

city, through the interlinked touristic and infrastructure big data sets. Such 

infrastructure data sets would involve energy consumption, mobility and water 

consumption attributes, among others. In this context there is great potential in 

linking touristic and other land use dynamics to the management of a WDN. 
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The need to reduce leakage in WDNs on one hand and optimize all relevant 

objectives, such as energy, excessive pressure, etc., on the other hand, has turned 

the pressure control management method into the state-of-the-art solution for 

water companies. The idea is keeping pressure in the network to minimum heights 

demanded spatio-temporarily (Ulanicki et al., 2000). This facilitates leakage 

reduction, since the latter is directly related to pressure (Germanopoulos and 

Jowitt, 1989). Energy consumption reduction is also facilitated, since the higher 

pressure maintained the more energy is demanded. The specifications of the case 

study, in addition to the constraints in terms of budget, lead to a specialized 

pressure control scheme (Jowitt and Xu, 1990) 

The Pressure Management (PM) is implemented with use of Pressure Reduction 

Valves (PRVs), which adjust their diameters to the water demand anytime. The 

number of PRVs, the location and the diameter adjustments are the three variables 

that need to be optimized, within the optimization process (Araujo et al., 2006). The 

PM scheme might be single-feed or multi-feed depending on the deviation of the 

network in DMAs. Large networks with intense spatial variation in altitude and water 

demand are generally expected to be divided into more DMAs. Each DMA is 

supposed to retain approximately common characteristics in terms of pressure 

demand profiles. Single-feed PRV schemes are preferable to more uniform and/or 

small networks, due to their ease of control and monitoring, while even the risk of a 

failure event is ` to such less flexible schemes (Abdelmeguid and Ulanicki, 2010). 

The aforementioned prove that a thorough spatio-temporal analysis of a WDN is a 

relevant, if not prerequisite, exercise. 

The diameter of the PRV is usually an output of a multi-objective optimization 

process, which minimizes the leakage and energy consumption variables. The 

problem could be simplified to a single objective optimization, which minimizes the 

pressure in the network. Leakage—as well as energy—is expressed as a function of 

the pressure through variable empirical models (Giustolisi et al., 2008). A basic 

constraint of the optimization process would be the minimum pressure demand of 

a critical point of the network. This would be the lowest pressure point, either 

because it is the farthest away from the source, or because it has the highest 

latitude. It could even be a combination of the two conditions. The critical point, 

also, might change from time to time, depending on the dynamic consumption 

profiles variability. Nonetheless, this implies the need to map the pressure demand 

spatially and temporarily through the network at the highest possible space and 

time resolution. This can be achieved by mapping the water demand and then 

using a hydraulic model to calculate the pressure map.  

Except for facilitating the application of an optimum PM scheme, spatio-temporal 

analysis of a WDN would be relevant to the overall process of the performance of 

a WDN. Active leakage control, Pipe and asset management, Speed and quality 

of repairs constitute, additional to Pressure Management, the four main tasks of the 

basic leakage management towards the elimination of the recoverable real losses 
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(Lambert, 2002). All four tasks are supported or even determined by a well-informed 

and updated spatio-temporal analysis. Other supplementary tasks that are also 

crucial for the operation of a network and can be facilitated by the knowledge of 

the spatial and temporal variability of the hydraulic parameters is the detection of 

theft across the network and the quantification of metering inaccuracies, both 

components burdening the Non-Revenue Water proportioning. 

The purpose of the following task is to investigate the potential of using daily 

groundwater pumping data and quarterly consumer billing data in order to 

produce daily time series of System Input Volume that corresponds to each 

individual consumer. Additionally, a fraction of the network Non-Revenue Water is 

assigned to each water meter. This way, a disaggregation of water demand data 

sets spatially and temporally is performed in order to produce a rough estimation 

of the distribution of consumption and Non-Revenue Water across the network. The 

produced spatial and temporal values of the two main components may 

constitute the initial values of a more thorough analysis that takes into account the 

hydraulic properties of each component and its subcomponents, for example the 

fact that leakage is not proportionate to the demand flow, but follows a profile 

function of pressure. This analysis is implemented in the next subchapter 4.2. The 

final target would be to create a simulation model of the network at the level of 

the node of the hydraulic model, if not the individual consumer, and at the 

temporal resolution of an hour of less. Such a simulation model can constitute the 

basis for estimating and tracking a number of WDN performance indicators spatio-

temporally and facilitate the detailed supervision of the network and its 

performance by the water utility or any other stakeholder. 

4.1.2. Materials and Methods 

Skiathos WDN is the study case for the suggested approach. The water distribution 

network of Skiathos is an aged network with significant levels of Non-Revenue 

Water, reaching up to 70% levels of the whole SIV during the winter months. The 

network is currently under reconstruction, works that are quite time-consuming, due 

to the importance of the maintenance of the traditional street infrastructure, the 

high touristic activity and other policy related matters. Skiathos has an intense 

temporal variability in SIV flowrates covering a range of hourly average maximums 

from 90 m3/sec in winter months to 180 m3/sec in summer months, approximately. 

The water uses throughout the town of Skiathos are not intensely variable, since 

there do not exist any exclusively residential, industrial or working areas and except 

for households they consist of small hotels and rooms to let, offices, shops and 

restaurants. However there is some variability of land uses that is linked to the 

touristic activity and all the relevant uses such as the touristic accommodation, 

food services, leisure, etc. The town is hilly and the water distribution system is 

significantly net-shaped and quite thick in terms of consumers (Laspidou et al., 

2015). 
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The small extent of the network and the relative uniformity of uses have been the 

reasons why the water utility performs a single-DMA scheme. The whole town 

comprises approximately 3,500 water meters. Pressure control management is not 

applied yet, but is planned for a single-feed scheme. A PRV installed downstream 

the tank that supplies the town with water from a single groundwater drilling. In the 

future, a booster pump might be added to the pressure control management 

scheme, cutting off the hilly area of the town into a second DMA, for further 

localization of the pressure demand constraint. 

The available data, for the specific exercise, consist of a data set of daily pumped 

groundwater from a single drilling filling a single tank; this data set is equal to the 

total daily SIV. Another data set includes quarterly billed water consumption for 

each household. The data sets are updated continuously and are currently 

approximately 5-years long.  

For each water meter k and for day t of the trimester tri, the theoretical “local” Input 

Volume dk,t,tri is calculated, which contains the Billed Consumption (Revenue) and 

the Non-Revenue Water that theoretically corresponds to each household, taken 

the rough assumption of linearity: 

𝑑𝑘,𝑡,𝑡𝑟𝑖 =   𝑤𝑘,𝑡𝑟𝑖 ∗ 𝐷𝑡,𝑡𝑟𝑖 (equation 18) 

where 𝐷𝑡,𝑡𝑟𝑖 is the input volume of the whole town for day d of the trimester, or the 

daily pumped water and 𝑤𝑘,𝑡𝑟𝑖 is the specific weight of each water meter for 

trimester tri. This weight is calculated by equation 19. 

𝑤𝑘,𝑡𝑟𝑖 =
𝑑𝑘,𝑡𝑟𝑖

∑ 𝐷𝑡,𝑡𝑟𝑖𝑡

 (equation 19) 

where 𝑑𝑘,𝑡𝑟𝑖 is the local input volume of water meter k for the whole trimester tri 

including the Non-Revenue water that corresponds to that water meter. That is the 

trimester billing for water meter k with the theoretical Non-Revenue Water 

percentage added to it. 

𝑑𝑘,𝑡𝑟𝑖 = 𝑑𝑘𝑏𝑖𝑙𝑙𝑒𝑑,𝑡𝑟𝑖 ∗ (1 + 𝑎𝑡𝑟𝑖) (equation 20)  
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where 𝑑𝑘𝑏𝑖𝑙𝑙𝑒𝑑,𝑡𝑟𝑖 is the trimester tri water meter billing, and 

𝑎𝑡𝑟𝑖 =
∑ 𝐷𝑡,𝑡𝑟𝑖𝑡 − ∑ 𝑑𝑘𝑏𝑖𝑙𝑙𝑒𝑑,𝑡𝑟𝑖𝑘

∑ 𝑑𝑘𝑏𝑖𝑙𝑙𝑒𝑑,𝑡𝑟𝑖𝑘

 (equation 21) 

Daily Non-Revenue Water is calculated with equation 22. 

𝐷𝑎𝑖𝑙𝑦 𝑁𝑜𝑛 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 𝑊𝑎𝑡𝑒𝑟 = 𝐷𝑡,𝑡𝑟𝑖

∑ 𝐷𝑡,𝑡𝑟𝑖𝑡 − ∑ 𝑑𝑘𝑏𝑖𝑙𝑙𝑒𝑑,𝑡𝑟𝑖𝑘

∑ 𝐷𝑡,𝑡𝑟𝑖𝑡

 (equation 22) 

The described methodology is also schematically depicted in Figure 26 and Figure 

27. 

 

(a) 

 

(b) 

Figure 26. (a) Water distribution network of Skiathos Island supplied daily by a single 

drilling. (b) The network is divided into node areas 
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(a) (b) 

Figure 27. (a) Each node will be a node of the hydraulic model that will be used to 

estimate the pressure map out of the water demand map. (b) Each node serves a 

billed consumption that comes out by adding the household billed consumptions 

that are supplied by the specific node of the network. 

4.1.3. Results and Discussion 

Implementing the above-described process, the whole SIV can be distributed to 

theoretical household demands including (or not) the Non-Revenue Water that 

“corresponds” to the specific households with use of trimester household 

consumption weights. Of course, it is not expected that this estimation is accurate, 

since throughout a trimester the consumption profile of a household might change 

dramatically from one day to the next. However, once the individual consumer 

daily demands are added at a node level (the required granularity for the creation 

of time series to be input in EPANET software for the hydraulic solution of the 

network), the error becomes less significant, since a node will include multiple 

consumers, even as many as a hundred. The expected divergences of the 

estimated and the actual node water demands will be revealed by comparing 

estimated data to monitoring data obtained by sensors; these are located, at a 

minimum, at critical points in the network, or at several points throughout the 

network. These divergences will be eliminated through an improved assessment of 

the SIV components taking into account their specific profiles and later on through 

the calibration process.  

Using the approach described above the temporal resolution of the Billed 

Consumption have roughly zoomed in from a trimester level into a daily level. Once 

these Billed consumptions and respective Non-Revenue water are added at a 

node level, the initial water demand values needed as inputs to the hydraulic 

simulation will be available allowing for the pressure mapping of the network. 

Moreover the daily SIV is spatially disaggregated into node level. Respectfully, the 

Non-Revenue Water is also disaggregated the same rough and proportionate way. 

It should be noted at this point that the final spatio-temporal assessment of the Non-
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Revenue Water, especially the Real Losses Component is expected to follow a 

rather divert profile than the estimations of the initial values, since the pressure 

dependent nature of leakage contradicts the proportionate formula used for the 

production of initial values. 

Afterword: Limited data availability is a major obstacle in the management of 

distribution networks, since it demands a spatio-temporal knowledge of the 

network. In “low-tech” situations where smart meters are not available at the 

consumer level and customer billing is done manually with bills being issued once 

every three months or longer, data scarcity becomes a serious limitation. In this 

subchapter, a methodology is presented that can be useful in disaggregating bulk 

town water supply data to the level of individual consumer. The described process 

can offer a rough map of demands and their shifts throughout the seasons and 

facilitate some conclusions on the land use dynamics, such as the touristic activity. 

The methodology, although not accurate, provides a way to deal with the lack of 

data and produces initial value time series that can be refined later, as a more 

thorough analysis based on these initial values is implemented.  
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4.2 A Water Distribution Network Simulation Model 

with Key Performance Indicators for spatio-

temporal analysis and operation of highly-stressed 

water infrastructure 

Foreword: An annual and lumped water balance assessment of a water distribution 

network is recommended by the International Water Association as a first step and 

prerequisite for improving the performance of the network by minimizing 

real/physical water losses, bursts’ incidents, water theft, non-revenue water, and 

energy consumption, among others. The current chapter suggests a modeling 

approach for developing the water balance of a network spatio-temporarily, in 

hour time-scale and neighborhood granularity. It exploits already established key 

performance indicators and introduces some new ones to highlight the potential 

in improving the management of a water distribution network when having a 

detailed spatio-temporal supervision, especially when the spatial and temporal 

conditions are variable. The methodology is applied in a seasonally touristic and 

hilly case study. Additionally, a pressure management scheme is applied to further 

exploit the potential of such a toolkit. For the investigated case study, Skiathos 

town, the annual real losses are estimated equal to 50.9-52.2 % of the System Input 

Volume, while Apparent losses are estimated to be about 5.6-6.6%. Losses depict 

intense seasonal variability. Real losses range from 38.8-39.6% in summer months to 

63.3-64.7% in winter months, while Apparent losses range from 8.4-9.3% in summer 

to 1.3-2.5% in winter. Annual water theft is estimated to be at least 3.6% of System 

Input Volume. Spatial variability, which is linked to the elevation and the different 

urban land uses is proven to play a significant role in the neighborhoods’ water 

balances and the various Key Performance Indicators that are suggested and 

applied for the pressure control scheme. The annual potential savings due to the 

applied scheme rise up to 51,300 m3 for leakage and 53,730 m3 for Pressure Driven 

Demand.Introduction 

4.2.1. Introduction 

A detailed component analysis of the annual System Input Volume (SIV) has 

increasingly been implemented for Water Supply Systems (WSSs) around the world 

with variable precision, depending on the available data, measurements, 

knowledge of the WDN and available expertise. The analysis typically focusses on 

completing the iconic IWA Water Balance (WB) table of SIV components, which 

are defined by a taxonomy that distinguishes between Revenue and Non-Revenue 

Water, Authorized and Unauthorized Consumption, Real and Apparent Losses, 

Metering Inaccuracies, Billed and Unbilled consumption, Metered and Unmetered 

Consumption, and Leakage in the transmission/distribution mains, service 

connections and tank overflows. The task has usually been implemented in an 

aggregated way for the whole WDN and for annual time step, although there have 
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also been few approaches that focus on the estimation of leakage, rather than on 

the construction of the whole, or part of the IWA table in a spatio-temporal manner. 

The difficulty in constructing a precise and trustworthy WB table lies in the difficulty 

of assessing the real, apparent losses, and unmetered water use. 

Significant effort has been made towards suggesting a reliable methodological 

approach for estimating, and/or modelling leakage (physical losses in mains and 

service connections), metering inaccuracies and unauthorized consumption 

(water theft). Almadoz et al. (2005) proceeded to a real losses assessment by 

perceiving the apparent losses as a water-consumption-pattern-dependent 

component and used four different demand profiles: domestic, industrial, 

commercial and official. Cabrera & Pellejero (2003) and Ismail & Puad (2006) 

conducted bottom-up assessments of physical losses and highlighted that 

estimating leakage through night flow can minimize the error, while night 

consumption is minimum and easier to determine. Giustolisi et al. (2008) proposed 

an algorithm for the simultaneous simulation of Pressure-Driven Demand (PDD) and 

leakage by fully integrating the two demands in pipe level. Tabesh et al. introduced 

a methodology for distinguishing the pressure-dependent components from the 

independent ones.  

Puust et al. (2010) distinguished the literature approaches of leakage assessment 

into top-down approaches where leakage is estimated through WB assessment, 

and the bottom-up approaches, where the leakage is estimated through the 

summing of its components. Kanakoudis and Tsitsifli, (2010) shared a thorough 

aggregate and annual component analysis for a series of case studies in WDNs in 

Greece following the established IWA methodology. They concluded that such an 

analysis is a useful tool for the local water utility, while a simple definition of SIV and 

billed water can be misleading for the performance of the network. Regarding the 

assessment of metering inaccuracies, they suggested laboratory investigation, 

while they distinguished under-registering and over-registering water-meters 

according to their age. Additionally, the practice of Pressure Management (PM) 

and division of the network in District Metered Areas (DMAs) occurred as a 

necessary approach for reducing real losses. Kanakoudis and Tsitsifli (2010b) 

implemented the IWA WB assessment in semiannual time scale, suggesting that a 

finer scale than the annual can be revealing for cases that depict seasonal 

demand peaks, while a few years later they proceeded to an even more detailed, 

bimonthly WB analysis (Kanakoudis and Tsitsifli, 2014). Cobacho et al. (2015) 

introduced a methodology for spatio-temporal simulation of leakage, using the 

EPANET software and the concept of simulating leakage through weighted 

leakage emitters. Sophocleous et al. (2019) introduced a leakage localization 

methodology based on head pressure and flow measurements tested in two case 

studies in the U.K. thus reducing the repair time for leakage; according to the 

article, this could lead to water savings as high as 70% of total loss.  
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More macroscopic investigation has also been implemented in an attempt to 

address the need of integrated water management linking the urban water supply 

to other urban water systems, such as wastewater and stormwater. Makropoulos et 

al. (2008) and Rozos and Makropoulos (2013) extended the boundaries of the 

typical investigation focus on the urban water cycle, involving wastewater, urban 

stormwater, potable water, grey water, and green water. They also incorporated 

indicators from all sustainability pillars: environmental, economic, social and 

technical, such as operational costs and energy. In their review on urban 

hydroinformatics, Makropoulos and Savíc, (2019) presented a scheme according 

to which the modeling is facilitated by the increasingly fluent flows of data and 

information in the context the developments in Information and Communication 

Technologies, cloud based information platforms, and remote monitoring. Such a 

technological landscape in combination to well-advanced methodological 

frameworks could lead to the next step in water distribution networks modeling, 

what has been referred as Water Distribution Network Digital Twins (Sun et al., 2020). 

The importance of assessing the IWA standard WB table in combination with 

employing a PM scheme and the need to enhance leakage localization and 

detection of unauthorized consumption raise the need for a methodology that 

would facilitate the spatio-temporal supervision and would provide the WDN 

operator with insight on the various components of SIV. The temporal analysis is 

essential, especially in cases of intense seasonality in the water demand, such as in 

the highly touristic regions. Seasonality also becomes relevant in the spatial 

distribution of land uses within the urban landscape, which in turn causes an intense 

seasonal shift in the demand map. 

 In this chapter, a toolkit for the spatiotemporal analysis and simulation of SIV, SIV 

components and critical Key Performance Indicators (KPIs) throughout the WDN is 

presented that can serve as supervision support for the network and its properties, 

stresses and potential of improvement, or the basis for a Digital Twin. The well-

established IWA WB table is assessed in neighborhood granularity and hourly time 

step. The WB components assessed include System Input Volume, Billed 

Consumption, Non-Revenue Water, Unauthorized Consumption, Real Losses, and 

Metering Inaccuracies. All the components are identified locally and instantly 

offering a useful tool to a water utility for creating dynamic hotspot maps that can 

contribute to the optimization of the WDN management through: i) the localization 

of leakage and water theft in neighborhood resolution and the identification of 

drivers of leakage; ii) the assessment of metering inaccuracies; iii) the quantification 

of tourism impact on water demand; and iv) the application of a PM scheme and 

the quantification of its beneficial effect. The assessment of the WB table is 

implemented by distinguishing the components in pressure-dependent and time-

pattern-dependent and an application of a nested system of two loops, an inner 

and an outer, which through iterative runs, close when the simulated pressure best 

fits the actual network pressure. Spatio-temporal critical KPIs are introduced to 

facilitate a detailed supervision of the WDN. The KPIs include the energy 
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consumption in the water components (water-energy nexus), a pressure-driven 

demand indicator, and various expressions of water components such as “per-

connection”, “per-customer,” and “per-network-length” indicators. The 

aforementioned KPIs are also used for the assessment of the PM scheme 

performance. The localization of the water components is used to conduct rough 

conclusions regarding the urban land uses, specifically the residential and the 

touristic ones.. 

4.2.2. Materials and Methods 

 Case study specifications 

Skiathos is a small island municipality in Thessaly, Greece. The island has 

approximately 6,000 registered inhabitants according to the 2011 census (Hellenic 

Statistical Authority, 2011), while the water utility counts approximately 3,500 

consumers (Kofinas et al., 2016). The island population shows intense seasonal 

variability due to high touristic influx. The touristic season, from April to September, 

depicts a high peak in August, which often exceeds 90,000 tourists for the whole 

month with an annual average ascending trend (Kofinas et al., 2016). As expected, 

this is reflected in the water demand, which depicts seasonal oscillations in SIV, 

billings, non-revenue and non-revenue proportioning. Indicatively, the August peak 

summer water withdrawals often exceed a 130% increase compared to the winter 

minimum withdrawals, which shows a link between the touristic activity and the 

water demand profiles. The Water Distribution System (WDS) includes a single drilling 

a tank and the WDN, which is currently under renovation. 

This research applies on the WDN of Skiathos before its renovation works had 

started, from 2011 to 2016. During these years the WDN is characterized by an 

extreme high rate of NRW gradually climbing up from 40%, during last trimester of 

2011, to 70 % of SIV, during the last trimesters of 2015 and 2016 (Figure 28). The SIV 

values in Figure 28 from January 2011 to December 2016 are trimester sums of daily 

SIV readings. The SIV has an accuracy range of ±1% and the NRW has an accuracy 

range from ±1.5 to ±3.2% (95% confidence limits) depending on the billing period 

(Table 13). The WDN operates through a single-DMA scheme. The town is 

characterized by bold relief, with two hills. No PM scheme is applied at the WDN 

except for a switch of pressure every 6 months from touristic to non-touristic period. 
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Figure 28. Skiathos WSS per 3-months SIV, revenue, NRW supply and fraction of SIV 

corresponding to NRW from January 2011 to December 2016 

Table 13. Application of 95% Confidence limits to the WB and estimation of the 
accuracy ranges of NRW 

trimester 
SIV 

(m3/hr) 

SIV 

standard 

deviation 

for ± 1% 

accuracy 

range 

SIV 

variance 

BAC 

variance 

NRW = 

BAC 

variance 

+ SIV 

variance 

NRW 

standard 

deviation 

NRW 

accuracy 

range 

2011 1st 45.2 0.23 0.05 0 0.05 0.23 ± 2.8 

2011 2nd 67.1 0.34 0.12 0 0.12 0.34 ± 2.9 

2011 3rd 104.3 0.53 0.28 0 0.28 0.53 ± 3.2 

2011 4th 53.2 0.27 0.07 0 0.07 0.27 ± 2.4 

2012 1st 52.4 0.27 0.07 0 0.07 0.27 ± 2.0 

2012 2nd 73.2 0.37 0.14 0 0.14 0.37 ± 2.4 

2012 3rd 109.0 0.56 0.31 0 0.31 0.56 ± 2.7 

2012 4th 55.4 0.28 0.08 0 0.08 0.28 ± 1.8 

2013 1st 54.0 0.28 0.08 0 0.08 0.28 ± 1.9 

2013 2nd 75.3 0.38 0.15 0 0.15 0.38 ± 2.2 

2013 3rd 109.5 0.56 0.31 0 0.31 0.56 ± 2.5 

2013 4th 60.7 0.31 0.10 0 0.10 0.31 ± 1.7 

2014 1st 60.7 0.31 0.10 0 0.10 0.31 ± 1.6 

2014 2nd 83.0 0.42 0.18 0 0.18 0.42 ± 2.3 

2014 3rd 111.6 0.57 0.32 0 0.32 0.57 ± 2.4 

2014 4th 64.6 0.33 0.11 0 0.11 0.33 ± 1.9 

2015 1st 63.7 0.33 0.11 0 0.11 0.33 ± 1.4 

2015 2nd 86.5 0.44 0.19 0 0.19 0.44 ± 2.1 

2015 3rd 119.7 0.61 0.37 0 0.37 0.61 ± 2.3 

2015 4th 72.9 0.37 0.14 0 0.14 0.37 ± 1.5 

2016 1st 67.0 0.34 0.12 0 0.12 0.34 ± 1.5 

2016 2nd 92.9 0.47 0.22 0 0.22 0.47 ± 1.8 

2016 3rd 125.7 0.64 0.41 0 0.41 0.64 ± 2.1 

2016 4th 74.5 0.38 0.14 0 0.14 0.38 ± 1.5 
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The deployment of a more efficient WDN in Skiathos has become an urgent need 

due to several reasons. The Island has been facing seasonal water scarcity, due to 

the increased water demand driven by tourism. At least two drying-out incidents 

occurred over the last five years, in August, due to the extreme drop of the water 

table of the aquifer level at the drilling location. Due to these incidents, the water 

supply was interrupted in the island, until the aquifer recovered. Naturally, such 

incidents have multiple social, financial, and environmental impacts, as well as 

sanitation, since water lies in the core of most everyday activities, especially in a 

touristic destination. On top of that, the overall aquifer level drop results in seawater 

intrusion and groundwater salinization, with detrimental consequences, such as the 

natural mineral mercury release into groundwater. Mercury concentration has 

repeatedly been recorded to exceed WHO limits, regarding toxicity, even by six 

times (Spyropoulou et al., 2018). The water utility of Skiathos (DEYASK) has declared 

the water in the island as non-potable. Overall, reducing water losses, optimizing 

water source withdrawals, investigating the potential of alternative water sources 

and applying innovative treatment methods are some of the tasks that are of 

utmost importance in Skiathos. 

 Infrastructure and data 

The following infrastructure installed in Skiathos is used for retrieving data needed 

for the simulation of the dynamic characteristics of the WDS: Flowrates are being 

monitored at the inflow point of the WDN, while pressure is being monitored at three 

points of the WDN. The daily SIV values from January 2011 to December 2016 are 

readings of a mechanical meter with accuracy of ±1% for each value. The values 

of SIV are also checked often by the water utility volumetrically by cross-checking 

with the tank’s volume. The values of 2016 in particular are additionally compared 

to the readings of an electromagnetic flow meter with accuracy of ±0.25%. For 

year 2016, there is a Pressure Reducing Valve (PRV), a CSA XLC 410, DN150 PN16 in 

particular, that records pressure and flowrate (electromagnetic flowmeter) in the 

inflow of the WDN, after the tank, with 15 min time step—currently not regulating 

pressure automatically—and three cello sensors that record pressure at three points 

around the network with 15 min time step. The pressure data are used for the 

calibration of the model, as the fitting of the simulated pressure values to the 

recorded ones is used as the criterion for the reliability of the simulation. Billing data 

were provided by DEYASK. There are 3,500 water meters in the city used for billing 

purposes, with a billing period of three months, from January to March, April to 

June, July to September, and October to December, or 1st, 2nd, 3rd and 4th 

period, respectively. The procedure of manually recording the water meters lasts 

for approximately ten days, while this procedure starts before and finishes after the 

end of the billing period, which means that there is no systematic hysteresis 

between the records and the consumption. No fixed minimum consumption is 

imposed to the billings, so the billings represent what is metered and billed. All 

water-meters are geo-located with a hand-held GPS device of 4.9-m accuracy, 

during multiple field trips with the guidance of the utility’s staff and matched to 
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corresponding billing data. In order to keep the privacy of water consumers, when 

these data are presented in public access, the scale is zoomed out to 

“neighborhood” level and the billed consumptions are summed. 

 Simulation of the WDN with EPANET 

The first step of the methodology includes the simulation of the static and dynamic 

characteristics of the WDN, through EPANET software (Rossman, 2000). For this 

purpose, historical maps of the WDN are used to incorporate network geometry 

and pipe diameter, length and material. The overview map in Figure 29 presents 

main elements of the WDS. The single water supply drilling is found in the north-

western part of the city. Groundwater is pumped from the drilling and pumped up 

to the water tank located on the hill (Figure 29). From the tank water is distributed 

by gravity to the city area. The main pipeline of the WDN goes back down the hill 

to the SE direction and then to the E-NE around the city centre (Figure 29). The pipe 

diameters are presented in Figure 29 in three clusters and the pipe materials, 

amiant, metal (cast-iron) and PVC, are presented in Figure 30.  

In order to fill gaps in the pipe diameter (and material) data, unknown pipe 

properties are imputed basing on properties of connected pipes. Specifically, if the 

pipe with unknown diameter (material) is between two pipes with known diameters 

(materials), the missing value is assumed to be the same as the bigger known 

diameter, or as the most recently-used material, while if it is connected to one pipe 

with known diameter (material) it is assumed that both diameters (materials) are 

the same, except for the situation it is downstream to the main pipe and all other 

pipes downstream have smaller diameter (other material) than the main pipe. This 

algorithm is empirical and it is set after discussion with the water utility director and 

employees that have relevant experience in the specific network. The head loss is 

estimated based on the empirical parameters described in and Table 16. 

Roughness coefficients assigned to the three materials of Skiathos WDN 

 

Figure 29. Skiathos WDN 
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Figure 30. WDN map of pipe materials 

Table 14. Popular formulas for the estimation of head loss throughout a pipeline. 

Formula Resistance Coefficient  Flow Exponent 

Hazen-Williams  4.727 C-1.852 d-4.871 L  1.852 

Darcy-Weisbach  0.0252 f(e,d,q)d-5L  2 

Chezy-Manning  4.66 n2 d-5.33 L  2 

 Where: C = Hazen-Williams roughness 

coefficient 

e = Darcy-Weisbach roughness 

coefficient (ft) 

f = friction factor (dependent on e, 

d, and q) 

n = Manning roughness 

coefficient 

d = pipe diameter (ft) 

L = pipe length (ft) 

q = flow rate (cfs) 
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Table 15. Head loss formulas parameter values for different materials 

Material  Hazen-

Williams C 

Darcy-Weisbach e  Manning's n 

Unit (-) (feet x 10-3) (mm) (-) 

Cast Iron  130 – 140 0.85 0.2591 0.012 - 0.015 

Concrete 

or 

Concrete 

Lined 

120 – 140 1.0 - 10 0.3048-3.048 0.012 - 0.017 

Galvanized 

Iron  
120 0.5 0.1524 0.015 - 0.017 

Plastic  140 – 150 0.005 0.0015 0.011 - 0.015 

Steel  140 – 150 0.15 0.0457 0.015 - 0.017 

Vitrified 

Clay  
110   0.013 - 0.015 

PVC 

(Bishop, 

1978) 

150 0.007 0,0021 0.009 

Table 16. Roughness coefficients assigned to the three materials of Skiathos WDN 

 Hazen-Williams C Manning's n 

PVC 140 (optionally 150) 0.011 (optionally 0.009) 

Metal 130-140 if new (60 

corrugated) 

0.012 (0.022 corrugated) 

Amiant  140 0.011 
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(Asbestos cement) 

 Water consumption, leakage and other SIV components spatio-temporal 

distribution simulation 

The SIV components (Figure 31), as defined and established by IWA Blue Pages and 

Manuals of Best Practice (Hirner and Lambert, 2000; Alegre et al., 2000, 

respectively), are simulated in EPANET either as a time-pattern dependent demand 

or as a pressure-dependent demand, according to the distinction made by 

Cobacho et al. (2015). They decoupled the leakage from the base demand by 

introducing nodal emitters—open valves to the atmosphere—to better mimic the 

pressure-dependent behavior of leakage, as it is described by Germanopoulos 

(1985) and Germanopoulos & Jowitt (1989) 

The components that are simulated as demand driven are the Billed Authorized 

Consumption (BAC) and the Apparent Losses, while Real Losses are simulated as 

pressure driven (Figure 31). This does not mean that the components which are 

simulated as demand driven are not also partially pressure dependent. For the 

Skiathos case study(Figure 32), BAC consists only of metered BACs. Unbilled 

Authorized Consumption (UAC) is considered as negligible. The main demand for 

UAC would be that of the fire department for fire-fighting; however during the 

simulation period, no significant fire occurred in the island. Apparent Losses, which 

consist of Unauthorized Consumption and Customer Metering Inaccuracies, along 

with reading and handling errors, cannot be perceived as negligible, since water 

theft in Skiathos has been repeatedly noticed and the recording of water-meters—

that are older than 20 years—is implemented manually. These last two components 

are uniformly distributed to the WDN model following the time-pattern of the 

demand simulated as demand driven. Regarding Real Losses, “Leakage on 

Transmission and/or Distribution Mains” and “Leakage on Service Connections up 

to the point of Customer metering” are expected to constitute the largest part of 

NRW, since the WDN during the simulation period is characterized as a rather aging 

network in an overall bad condition—the construction of the WDN was initiated at 

the mid-60s and evolved in the following decades—. These two components are 

simulated as pressure driven flows. Leakage and overflows at utility’s storage tanks 

and operational losses are considered negligible and occurs before the SIV 

metering in the specific case study. There is no adequate information on leakage 

after the point of customer metering, which are not considered to be negligible on 

the one hand and are pressure-driven on the other. Due to this lack of information, 

this hidden component in BAC is not decoupled by the demand driven 

components. However, the private property and infrastructure in Skiathos is 

constantly renovated to meet touristic demands; thus, leakage after the water 

meter is expected to be much less than the corresponding one before the water 

meter. 
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Another specification in Skiathos case study is the fact that a lot of houses and small 

enterprises owe small tanks that are set at the roofs. These tanks are not used in a 

regular basis, but only if there is a crisis i.e. when the utility is disrupting the supply. 

There are only few houses (less than twenty) at the top of the two hills that use the 

tanks in a more regular basis, when due to very high demand, during the summer 

peak, the pressure is very low. The aforementioned, regarding the tanks, are not 

considered to significantly influence the overall consumption pattern, neither the 

water metering in a three-months period of any customer. 

 

Figure 31. The IWA standard SIV component analysis 

 

Figure 32. SIV components as specified for Skiathos Case Study and the respective 

simulation approaches. 
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Time-pattern spatio-temporal demands 

The spatial distribution of BAC is implemented by linking the billing time-series of 

each water customer with the location of the respective water meter in the 

Skiathos WDN. Firstly, each customer code that appears in the billings is assigned to 

the corresponding water meter code, after the anonymization of the billings. Each 

water meter code is spatio-located with use of a GPS device. All locations are later 

on imprinted in AutoCad with the water meter and customer codes assigned to 

them as attributes. Billed water that is not assigned to a water meter (due to 

customers moving, or changing services) is introduced to the algorithm as “bulk” 

demand, which means demand that is not spatio-located but is distributed around 

the spatio-located water-meters in a weighted proportioning, according to the 

water-meters’ assigned consumptions. According to this distribution of the “bulk” 

demand, the water meters that showed higher consumptions will be assigned 

bigger parts of the “bulk” demand and water meters with lower consumptions will 

be assigned smaller parts of the “bulk” demand in an analogous manner. 

On the next step, the 3,500 water-meters are grouped into 121 neighborhoods, with 

an average of 26.6 water-meters/neighborhood. The rest of the billed water-meters 

are treated as “bulk” demand. The neighborhoods are designed, in a way that 

clusters service connections that are close to each other. These WDN 

neighborhoods are referred to as landzones in this article. Each landzone is 

assigned to a specific demand geonode, a node on the WDN that is considered 

to supply all the water-meters of the landzone. The geonodes are also simulated in 

EPANET as demand nodes. The output of these steps is the spatial distribution of 

three-month-step BAC time-series.  

In order to temporarily disaggregate BAC maps from a three-month time-step to its 

daily values, the SIV daily time-series patterns are followed with the assumption that 

each landzone follows the same SIV pattern. In Figure 33, the intense seasonal 

variability can be seen as well as an ascending annually average SIV trend, also 

apparent in Figure 28. This procedure is described in detail in Kofinas et al. (2015), 

where the three-month BAC values were simply disaggregated to daily, following 

the SIV pattern and the aggregate SIV values were disaggregated to the 

landzones. 

The daily BAC is not perceived to follow a uniform distribution within the day, but it 

is expected to follow hourly patterns that are formed by averages of PRV SIV 

recordings, after they are modified, by subtracting the leakage, which is estimated 

using the bottom up approach of minimum night flows combined to an iterative 

EPANET based process for the production of average WDN profiles. The description 

of leakage estimation is described in more detail in Section 2.5. PRV recordings are 

taken every 15 minutes, however it is decided that hourly time patterns are 

sufficiently detailed. The seasonality of the island touristic activity alters the daily SIV 

profiles, since rush hour times and the ratio of day- over night-consumption are 
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driven and co-shaped by touristic water demand.  In Figure 34, , the twelve hourly 

SIV profiles are shown, as estimated by averaging PRV recordings, one for each 

month of 2016. It is apparent that for April to June and July to September billing 

periods, the relative night to day consumption is lower that the respective January 

to March and October to December. This does not imply that absolute summer 

night consumptions are lower than winter; on the contrary, they are much higher 

as shown in Figure 34.  

 

Figure 33. Daily SIV following an intense seasonal pattern with summer peaks and 

winter lows 

 

Figure 34. Normalized hourly demand profiles for every month after the leakage is 

estimated and subtracted by the SIV  
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Pressure-dependent spatio-temporal demands 

Leakage is spatially distributed as pressure-dependent demand, through the 

introduction of emitters in every node. This means that every node is assigned with 

two demands, a time-pattern demand as described in the paragraph: Time-

pattern spatio-temporal demands and a pressure driven demand (Figure 35). The 

procedure followed by Cobacho et al. (2015) is adopted. The emitters are 

described by a leakage coefficient or emitter coefficient Kj. The flowrate of the 

leakage demand is given by equation 23. 

 

Figure 35. Scheme of the two types of node demands, where QBDj stands for the 

base demand in the node j and Qj stands for the leakage that is function of the 

emitter coefficient Kj and is dependent to the node pressure pattern (Cobacho et 

al., 2015) 

𝑄𝑗 = 𝐾𝑗 ∗ 𝑃𝐽
𝑁 (equation 23) 

where Kj is the emitter coefficient at node j, as defined by equation 24, Pj is the 

pressure at node j, and N is the pressure exponent, as defined in Table 17. 

Table 17. Estimation of pressure exponent (N) based on partitioning of different 

materials' N according to their lengths 

material length [m] 
length 

proportion 

pressure exponent 

from to average N partitioning 

PVC 12,266 0.64 0.40 1.85 1.13 0.72 

metal 1,054 0.06 0.52 2.30 1.41 0.08 

amiant 5,834 0.3 0.78 1.04 0.91 0.28 

total 19,154   

   

N = 1.08 
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𝐾𝑗 = 𝐾𝑊𝐷𝑁 ∗ 𝛤𝑗 (equation 24) 

where KWDN is the WDN leakage coefficient, as defined by equation 25 

and Γj is the normalized leak variable for node j, as defined by equation 26 

𝐾𝑊𝐷𝑁 =
𝑄𝑊𝐷𝑁,   𝑟𝑒𝑎𝑙

𝑃𝑊𝐷𝑁
̅̅ ̅̅ ̅̅ ̅𝑁  (equation 25) 

where QWDN, real is the leakage of the whole WDN, which is estimated as described 

in the paragraph: Pressure Control Management Scheme and key indicators for 

the performance of the WDN and 𝑃𝑊𝐷𝑁
̅̅ ̅̅ ̅̅ ̅ is the average WDN pressure, which is 

defined as described in the same paragraph. 

𝛤𝑗 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 ( 𝛤𝑗,   𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 , 𝛤𝑗,   𝑝𝑖𝑝𝑒𝑠 𝑙𝑒𝑛𝑔𝑡ℎ) (equation 26) 

where Γj, service connections is the normalized leak variable of node j due to the variability 

of the number of service connections assigned to each node, through the 

respective landzone (equation 27) and Γj, pipes length is the normalized leak variable 

of node j due to the variability of the total pipes’ length assigned to its node 

(equation 28). 

𝛤𝑗,𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 =
𝛮𝑗,   𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠

𝑁𝑊𝐷𝑁,   𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠

 (equation 27) 

where Nj, service connections is the number of service connections assigned to node j and 

NWDN, service connections is the total number of service connections of the WDN 

𝛤𝑗,𝑝𝑖𝑝𝑒𝑠 𝑙𝑒𝑛𝑔𝑡ℎ =
𝐿𝑗

𝐿𝑊𝐷𝑁

 
(equation 28) 

where Lj is the length of the pipes that are connected to node j, taken that if a pipe 

is connected to two nodes, its length is equally distributed to the two nodes and 

LWDN is the total length of the WDN pipelines. 
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 Leakage estimation and SIV component analysis 

Through the sequence of equations 23 through 28, the leakage is distributed to 

nodes according to the nodes’ relative importance regarding leakage, as it is 

expressed by service connections, pipe length partitioning and node pressure. The 

QWDN, real initial value is assumed to be equal to the NRW, which includes Real Losses 

and Apparent Losses. This is an initial value hypothesis for a first estimation of the 

WDN average pressure through EPANET. Once Real and Apparent Losses are better 

approximated, following the night flow methodology (described in more detail in 

the following section: Estimation of leakage using the night-flow approach), the 

Apparent Losses component is transferred to the time-pattern demands and 

added to the distributed BAC (Figure 36). This is achieved through two nested loops: 

an “inner” loop that iterates until convergence, at which time it triggers the “outer” 

loop that iterates and converges. Figure 37 presents the inner loop. 

  

Figure 36. Schematic depiction of the purpose of the iterative process, the transfer 

of the apparent losses component from the pressure-driven simulated components 

to the demand driven simulated components. The dashed lines between apparent 

and real losses indicate that the two amounts are not defined in the first iteration 

separately, but only as a whole 

EPANET initially produces the QWDN,real amount, which is initially equal to the 

whole nonrevenue component and, as it converges, eventually to the real losses 

component, following the inner loop shown in Figure 37. This loop ends, when 

simulated and input leakage converge with an acceptable error (ε) of 0.001. The 

input leakage is estimated through the bottom up approach of the minimum night 
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flow for each iteration. The average WDN pressure for the initial step can be a 

random value (preferably a value that is lower than the PRV inlet set pressure). 

For decoupling real losses from apparent losses, the night flow leakage estimation 

approach is implemented, through the outer loop. This estimation assumes that 

night flow consists of leakage and night consumption. For this purpose, 2019 

average SIV quarterly flowrate profiles are constructed for every month of the year, 

while the minimum value of flowrate recorded for every 15 minutes of the day 

throughout each month is also recorded. The minimum average flowrate of all 

months’ night flowrates gives the leakage flowrate for the specific WDN pressure, 

after the estimated night consumption, 5.04 m3/hr (see equation 30) is subtracted. 

Leakage profiles for every month are constructed based on WDN pressure profiles 

(an output of the inner loop). The new, decoupled from apparent losses, leakage 

is then input to the inner loop, while apparent losses are added to the time-pattern 

dependent demands, to give new WDN pressure profiles. The process iterates until 

the average actual recorded pressure values at the three points (variable in 

location and altitude) converge to the simulated ones. This closes both nested 

loops. Figure 38 presents the whole outer loop and its interactions with the inner 

loop. It is evident that increasing the number of pressure meters at variable points 

of the WDN improves the accuracy of the method. 

Figure 37. Scheme for the inner loop of the methodology as adapted from the 

corresponding Cobacho, et al. (2015) loop) 

Daily pressure patterns 
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The leakage function is inextricably linked to the pressure dynamics. Estimating 

leakage through the night flow method implies that we know the pressure level at 

the time when the minimum night flow (MNF) occurs, while creating the daily 

leakage profile based on the MNF implies that we know the corresponding pressure 

pattern. With this in mind, twelve daily pressure profiles are created, one for each 

month. Skiathos intense touristic activity results in a rather intense shift of the 

residents’ consumption patterns, since the composition of the consumer body 

changes seasonally from winter (permanent) residents to summer tourists. Except 

for the inflow of tourists, the change in weather causes changes in water 

consumption routines. The above cause in turn a seasonal change in the average 

daily water consumption profiles and the average daily pressure profiles. For the 

construction of the daily pressure profiles, the following steps are implemented 

(Figure 38): 

 

 

Figure 38. Outer loop for decoupling the Real Losses from Apparent Losses based 

on the night-flows leakage estimation methodology 

a) The recorded pressure time series by the three cellos were processed; 

outliers are removed and replaced with averaged values of the adjacent time slot 

records, and the quarterly time step is transformed to hourly time step by averaging 

the four records of every hour. The recorded data use refers to a time period from 

February 2015 to March 2017. 

b) From the above profiles, average daily pressure profiles are constructed for 

each one of the three locations, by averaging horizontally the records that 

correspond to the same hour of the day for the whole month. Days of the same 
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month but different year (e.g., all July days, independent of the year) are used for 

the construction of the respective month profile. 

c) The average WDN pressure value of the monthly period is estimated 

through an EPANET initial run. This initial run holds the assumption of zero leakage, 

so the WDN pressure is expected to be overestimated. This is corrected through an 

iterative process, after the first estimation of leakage. 

d) The cello pressure profiles are moved laterally in order to meet the average 

WDN pressure as estimated in the previous step. 

e) The three produced WDN pressure profiles are averaged, so that a single 

WDN daily pressure profile is created for every month. 

Estimation of leakage using the night-flow approach 

For the estimation of leakage, the night-flow approach is implemented; this would 

imply the use of the MNF of SIV recorded to estimate night leakage through the 

subtraction of an estimate of the night consumption. 

MNF = Real losses + Minimum Night Use (Liemberger and Farley, 2004),  

where MNU= household use + commercial use + special use + after water meter 

burst (Fantozzi and Lambert, 2012) 

For this estimation, the following steps are implemented: 

a) The quarterly flowrate PRV time series are processed, outliers removed and 

missing values are imputed. The available time series refer to a period from January 

to December 2016. 

b) Average flowrates for each 15 minutes are estimated separately for each 

month. 

c) Minimum recorded flowrates for each quarter of the day are identified 

separately for each month. 

d) At the average flowrates diagrams, the lowest estimated value is identified, 

as well as the timeslot it occurred. This value is defined as the MNF. 

e) The pressure at that timeslot for the WDN is estimated with an EPANET run. 

The assumption of zero leakage is made for this first EPANET run, but it is corrected 

through an iterative process after the first estimated leakage values are input in the 

EPANET runs. 

f) The night consumption is estimated according to the following empirical 

model (equations 29 and 30). 

𝑀𝑁𝑈 = ℎ𝑜𝑢𝑠𝑒𝑙𝑜𝑙𝑑 𝑢𝑠𝑒 + 𝑐𝑜𝑚𝑚𝑒𝑟𝑐𝑖𝑎𝑙 𝑢𝑠𝑒

+ 𝑎𝑓𝑡𝑒𝑟 𝑤𝑎𝑡𝑒𝑟 𝑚𝑒𝑡𝑒𝑟 𝑏𝑢𝑟𝑠𝑡 + 𝑠𝑝𝑒𝑐𝑖𝑎𝑙 𝑢𝑠𝑒 

(equation 29) 
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ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑛𝑖𝑔ℎ𝑡 𝑐𝑜𝑛𝑠.

= 𝑡𝑦𝑝𝑖𝑐𝑎𝑙 𝑛𝑖𝑔ℎ𝑡 𝑢𝑠𝑒 ∗ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑜𝑢𝑑𝑒ℎ𝑜𝑙𝑑𝑠

=
0.0018

𝑚3

ℎ𝑟
ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑

∗  2800 ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑𝑠 = 5.04 𝑚3/ℎ𝑟 

(equation 30) 

Taken that during winter time, commercial night consumption is negligible in 

Skiathos and there is no particular special use as claimed by DEYASk, equations 29 

and 30 transform to equation 31. 

𝑛𝑖𝑔ℎ𝑡 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 + 𝑎𝑓𝑡𝑒𝑟 𝑤𝑎𝑡𝑒𝑟 𝑚𝑒𝑡𝑒𝑟 𝑏𝑢𝑟𝑠𝑡𝑠 = 5.04 𝑚3/ℎ𝑟 (equation 31) 

g) The leakage is estimated as the subtraction of MNF-night consumption. 

𝑅𝑒𝑎𝑙 𝐿𝑜𝑠𝑠𝑒𝑠 = 𝑀𝑁𝐹 − 𝑀𝑁𝑈 = 49.6
𝑚3

ℎ𝑟
− 5.04 

𝑚3

ℎ𝑟
= 44.52 

𝑚3

ℎ𝑟
  

(equation 32) 

where 49.6 m3/hr is the minimum of averaged recorded flowrates and it occurs in 

January 4.15 am time slot 

h) Equation 33 is used to construct the leakage daily profiles (as suggested in 

(Liemberger and Farley, 2004)) according to the pressure profiles produced as 

described in 2.5.2, the night leakage and the respective night leakage pressure 

value. N1 is estimated equal to 1.08 

𝐿1

𝐿2

= (
𝑃1

𝑃2

)
𝑁1

 (equation 33) 

i) For the twelve produced leakage profiles (Figure 39), the leakage 

estimated is compared to the minimum recorded night flow. The estimated amount 

should be less or at most equal, assuming that there might be a quarter of night 

hours, especially in winter time that for such a small village the consumption is 

negligible, if not zero. 

j) The leakage is integrated for every one of the 12 months and a percentage 

of leakage over SIV is estimated. 

k) The difference of NRW percentage and leakage percentage is considered 

as the decoupled apparent losses percentage at this iteration and is added to the 

billed consumption of each EPANET node for the next EPANET run iteration. 
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Figure 39. Flow daily patterns as estimated by average PRV records (maximum 

recorded in green dotted line, average in blue solid line, minimum recorded in blue 

dotted line) and leakage as estimated through the EPANET WDN average pressure 

patterns at the last iteration, after apparent losses are completely decoupled from 

leakage 
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The produced monthly diagrams of PRV recordings and leakage of Figure 39 

(which are the final ones, after the end of the iterative process) show the intense 

seasonality of the case study. The winter months show relatively low SIV (≈90m3/sec) 

during the day and an extended minimum night SIV zone (from 60 m3/sec to 70 

m3/sec) which lasts from 00:00 to 06:00. The level of the leakage during the winter 

months is depicting small variability (≈45 m3/sec). During the summer months the 

overall SIV is getting higher. The summer profile has two peaks, a morning one 

around 09:00 and an evening one around 19:00. The evening one is the highest 

(≈180 m3/sec). The summer months do not depict an extended night minimum SIV 

zone, but a nadir which occurs around 04:00. Summer leakage level is higher in 

absolute values (≈50 m3/sec), while it gets more variable during the day in August 

(from 30 m3/sec to 50 m3/sec). The ratio max SIV/min SIV is higher in summer (≈2) 

than the winter months (≈1.5), which is indicative of the more intense variability of 

water demand linked to the touristic activities.  

Pressure Control Management Scheme and key indicators for the performance of 

the WDN 

The utility and value of such a tool among many other aspects that will be analyzed 

in the Results and Discussion chapter, can also lie within the assessment of 

alternative PM schemes or even scenario on dividing the network into DMAs. To this 

purpose, a number of established KPIs such as the water losses per connection, the 

water losses per network length, the absolute leakage, and the electrical energy 

costs have been used (Kanakoudis et al., 2011a; 2011b; 2012 and 2013) and some 

original KPIs such as the absolute leakage difference between two scenarios, the 

PDD reduction (BAC or BAC + Apparent losses) and the sum of leakage and energy 

cost are introduced and estimated spatio-temporally or in an aggregate value 

depending on the nature of the KPI.  

The absolute leakage and the absolute leakage difference between two scenarios 

in m3 would be the most common and useful KPI that the water utility manager 

would be interested to know. The amount of real losses saved due to an application 

of a different managerial scenario corresponds to water that is saved for the water 

resources. It is a variable that can easily be translated into groundwater level 

difference and help assess the issues of seawater intrusion, due to aquifer level 

drop. 

Leakage per network mains length and the respective difference between two 

scenarios, a KPI suggested by the IWA best practice as indicative for assessing the 

performance of a management scheme (Farley and Trow, 2003) is also estimated. 

An aspect that becomes increasingly interesting regarding the management of 

resources in general and specifically the management of water in an urban WSS is 

the resource nexus, which means the interlinkage of resources though a complex 

system of interrelations that may lead to synergies or trade-offs (Laspidou et al., 
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2018). The water-energy nexus within the WSS can be found in the impact of 

leakage on head loss throughout the network (Colombo and Karney, 2002) and 

the coupling of energy consumption and water withdrawals, since every cubic 

meter of SIV has used energy to be pumped, transferred and/or treated. The 

second energy component is taken into account and estimated for this analysis, 

according to the user requirements. This way, the two commodities can be 

managed synergistically in such a system, since saving water almost proportionally 

would save energy. The KPI that is used to express the water-energy relation is 

defined as the energy saved due to leakage reduction comparing various 

managerial schemes. The actual value of energy that is spent for a cubic meter of 

water in kWhr/m3 is estimated by the actual energy consumption data of DEYASK 

and is perceived as flat rate equal to 0.423 kWh/m3. This assumption needs to be 

reconsidered if the variability in short term pumping depths were more significantly 

influencing the pumping energy. 

An insightful KPI for the performance of a PM scheme is the reduction of PDD. This 

can be estimated for a geonode based on the actual pressure of the node, the 

PM scheme pressure of the node, the actual consumption and the pressure 

exponent (Morley and Tricarico, 2008). Two kinds of PDD volumes can be 

estimated: the reduction of the BAC and the reduction of the BAC plus the 

apparent losses, since they are expected to reduce as well even if this is not 

depicted to revenue. For the purpose of this work, the overall reduction of both 

components is estimated following equation 34. 

PDD reduction = (BAC + Apparent Losses)* 

*[1-(
𝑃𝑃𝐶𝑀 𝑠𝑐ℎ𝑒𝑚𝑒

𝑃𝑎𝑐𝑡
)

1.08

] 

(equation 34) 

In a similar manner, a KPI regarding the economic impact of leakage reduction is 

introduced. This KPI is expressed in euros and represents the cost of the leakage 

difference between two scenarios as this is priced by the utility, also including the 

respective price of energy consumed. For Skiathos, this cost is estimated as 0.112 

euros/m3 as the sum of the price of water per m3 and the cost of energy consumed 

for the pumping, transfer and treatment of water per m3. The aforementioned 

prices are based on the Skiathos water utility relevant invoices for the reference 

year. 

Other KPIs, that are used to assess the performance of a PM scheme, are relevant 

to the pressure fluctuations, since they are considered to relate to the networks 

stress and eventually bursts. Indicatively, Kanakoudis and Tolikas (2001)argue that 

velocity variability in small delivery pipes has a range of -50% to +50% of the 
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average value, while the relation of this variability to break rates is established. 

These KPIs are the decrease in pressure fluctuation, the decrease in pressure at 

nights and the decrease in the number of nodes where a pre-set maximum 

pressure value is exceeded. 

All these metrics are applied for a tested scenario of PM (compared to the actual 

operation), in which a virtual CP, a different one for every time step, is set to never 

fall under the value of 5 m. This pressure level is not respectful to the legislative 

framework in Greece, which requires a pressure value at the ground of at least 

4m*(number of building’s floors + 1), but is quite realistic according to the utility. 

Nevertheless, the purpose of this task is not to suggest a valid PM, but to make a 

proof of concept regarding the usability of the suggested tool to assess scenario 

performance.  

4.2.3. Results and Discussion 

Figure 40 and Table 18 present the fitting of the simulated pressure at three points 

of the WDN to the actual recorded pressure as measured by pressure sensors for 

hourly values of the year 2016. The fitting is adequate, with R2 values equal to 0.6729 

(moderate fitting) for the central point, 0.7104 (strong fitting) for the eastern point, 

and 0.8852 (strong fitting) for the western point (Moore et al., 2013). 

In Figure 41, SIV, BAC, Apparent losses, Real Losses, Revenue, and NRW are 

calculated for each trimester of 2016, using the developed model. One of the 

results that emerge is that in the warm trimesters (April to September), the SIV 

increases by approximately 50% compared to the winter and fall periods. The BAC 

and Revenue Water percentages are higher during these trimesters (44-52% of SIV), 

while the respective percentages for the winter and fall decrease to the levels of 

32-34%. Real losses fluctuate from the summer level of 38.8-39.6 % of SIV to the high 

winter level of 63.3-64.7 % of SIV. Apparent losses fluctuate from 1.3-2.5% (first 

trimester) to 8.4-9.3% (third trimester) with the highest values noticed from July to 

December. NRW is inversely proportional to SIV, thus the former is at lowest levels 

during the summer trimester when SIV is the highest. Regarding the overall annual 

analysis (Figure 42 and 43), BAC is estimated equal to 42.1-42.3% of SIV, Real Losses 

equal to 50.9-52.2%, theft higher than 3.6% and metering accuracies lower than 

2.4% (Apparent losses equal to 6%).  

Regarding the uncertainties of the measured and estimated values of the WB 

components, the error of SIV is taken equal to ±0.25% according to the flowmeter 

specifications, the error of BAC and Revenue Water is taken equal to 0, since they 

represent the exact amount of water that is billed, and the Real Losses error is 

estimated following the rules of error propagation for the equation that produced 

their values, as follows: 

𝐿1 = (
𝑃1

𝑃2
)

𝑁1
∗ 𝐿2 , Error(L1)=2*Error(P) * N1 + Error (L2) 
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where  

Error (L1) is the error of Real Losses,  

Error (P) = Error (P1) = Error (P2) is the error of the simulated pressure values as 

estimated for each trimester and for the whole year of simulation, 

Error (L2) = ±0.25% is the error of the minimum night flow measurement (the night use 

is a relatively small amount that does not change the error of the measurement 

even with a ±5% error), 

and N1 = 1.08. 

The highest error estimated for the real losses equals to 1.55% and corresponds to 

the 4th trimester. The error of NRW is estimated, with 95% confidence limits, from 

±0.37% to ±0.52% for the trimester values and equal to ± 0.43% for the annual value. 

The error of the Apparent Losses is the most significant one with highest value equal 

to ±30.3% for the first trimester, while it is lower, equal to ±9.46% for the annual WB. 

From the above it can be conducted that higher accuracy of the WB assessment 

can be achieved by increasing the accuracy of the model. The methodology 

followed for developing the simulation of the WDN uses average values in some 

specific steps, such as the monthly averaged consumption profiles and the monthly 

averaged pressure profiles. These average values are used as initial values at the 

beginning of its iteration, for disaggregation purposes and for the estimation of 

leakage variation during the day. The error in this specific application is low and 

leads to acceptable fitting, however if the N1 value was higher and not close to 1, 

it would introduce a more significant error to the simulation. For this reason, it is 

suggested that the methodology developed can perform better with real time 

data and a denser grid of monitoring devices. This way the tool can evolve to a 

real Digital Twin. 

Assuming a linear relation between metering inaccuracies and the BAC (the water-

meters in Skiathos are older than 10 years, thus expected to be under-registering 

flow with a rather linear relation (Kanakoudis and Tsitsifli, 2010a; Stakiadis and 

Papanikolaou, 2007; Arregui et al., 2015), theft can be estimated to take its higher 

values during the third and fourth trimester, higher than 6% and 5.2% of SIV 

respectively (Figure 43). This implies that theft cannot be linked wholly to the touristic 

activity but may be influenced by other social and/or economic factors such as 

the demand patterns of the local gardening and orcharding. The metering 

inaccuracies are smaller than 3% (or even smaller) in all trimesters, and smaller than 

2.4% annually. For this analysis it should not be forgotten that Apparent losses as a 

whole have a relatively high level of uncertainty.  
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Except for the percentage of SIV that makes up Real Losses, the Infrastructure 

Leakage Index (ILI) is calculated and is found equal to 8.66, larger than 8 which is 

the limit between technical performance categories C and D. This would set the 

Skiathos WDN technical performance to the Category D, which implies inefficient 

use of resources, indicative of poor maintenance and system condition in general 

(Seago et al., 2005). Table 19 presents the parameters used for the estimation of ILI. 

A validation of the minimum night-flow analysis leakage assessment can be also 

made through the component analysis of Real Losses, as suggested by A. Lambert 

(A. Lambert, 2002) who claimed that leakage assessment should preferably be 

implemented with more than one methodologies to avoid errors. The component 

analysis of Real Losses is based on the assessment of the Unavoidable Annual Real 

Losses (UARL) due to leakage in mains and service connections. The component-

analysis approach, based on the details of Table 19, gives a leakage of 45.57 m3/hr 

(=0.5 m3/d/connection *2,187 connections /24 hr), taken into account the 

suggested rough value of 0.5 m3/d/connection for technical performance 

category D (ILI very close to the benchmark of 8 as estimated in Table 19), 

developed countries, and average WDN pressure of 50 m (Seago et al., 2005). This 

value is quite close to the minimum night-flow approach estimation that equals 

44.99 m3/hr.  

 

 

Figure 40. Scatterplots of actual and simulated hourly pressure values in m for three 

cello points: the central at the left and the eastern at the middle, and the western 

at the right 

Table 18. Simulated and actual trimester-average pressure values in m for the three 

cello points  

  
simulated actual % error 

central point January-March 29.711 29.708 0.01 
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April-June 34.810 34.865 -0.16 

 
July-September 33.371 33.236 0.41 

 
October-December 29.497 29.355 0,00 

eastern point January-March 62.384 61.913 0.76 

 
April-June 67.442 67.486 -0.07 

 
July-September 65.984 65.938 0.07 

 
October-December 62.173 61.752 0.68 

western point January-March 9.155 9.147 0.09 

 April-June 14.349 14.417 -0.47 

 July-September 13.056 12.991 0.50 

 October-December 8.965 8.852 1.28 

Institutional Repository - Library & Information Centre - University of Thessaly
24/05/2024 19:04:56 EEST - 18.217.70.77



 

116 

 

Figure 41. Seasonal high-level component analysis of SIV into BAC, Apparent Losses, 

Real Losses, Revenue Water and Non-Revenue Water (All components are also 

presented as percentages of SIV) 

 

Figure 42. Annual component analysis of SIV into BAC, Apparent Losses, Real Losses, 

Revenue Water and Non-Revenue Water (All components are also presented as 

percentages of SIV) 
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Figure 43. Split of apparent losses (mean values) with the assumption that metering 

inaccuracies are proportional to BAC, where the limits are true if theft during 

January to March is negligible 

Table 19. Characteristics of Skiathos WDN used for the estimation of Background 

Losses and ILI 

UARL (IWA) (m3/hr)  

=(18*total pipe length+0.8*number of connections+25*length of 

connections)* 

*average WDN pressure/24/1,000 

5.19 

total pipe length (km) 2,187 

(<5,000,>3,000) 

number of connections  42 (>25) 

length of connections (km) 10.94 

average WDN pressure (m) 53.5 

length per connection (m/con) 5 

CARL (m3/hr) as estimated by the bottom up methodology 44.99 

ILI= CARL/UARL 8.66 

reported leaks and bursts (m3/hr) 20.27 

connection density (con./km) 129 

population 6,100 

average night pressure (m) 17 

number of bursts in mains/year (min,max) 5-10 

number of bursts in mains/year 7.5 

number of bursts in distribution pipes/year 180 

flow Rate for Reported main bursts (m3/hour/m pressure) 0.24 
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flow Rate for Reported distribution bursts (m3/hour/m 

pressure) 

0.032 

repair duration (hr) 48 

unreported leaks and bursts (m3/hr)  

= CARL-reported leaks and bursts 

24.72 

 

A major function of the produced tool is the spatio-temporal supervision of the 

WDN regarding its SIV distribution throughout different landzones and different time 

intervals of selected lengths. The analysis scales down to hourly steps, while the 

longer the selected period is, the safer the results can be. The same also applies to 

the spatial scale, meaning that, even though the tool can zoom down to 

household level, the larger the area of focus is the more accurate the estimations 

are. This is because for greater amounts of water in WBs of wider areas or longer 

periods the different uncertainties, such as the uncertainty of the water meter 

locations and readings, play a less significant role. Additional features that can be 

supervised are the BAC, which for the case study of Skiathos equals to the sum of 

Revenue water, Real Losses, and Apparent Losses.  

Discerning Apparent losses into Unauthorized Consumption and Metering 

Inaccuracies in smaller time intervals (daily) would require additional information 

regarding the performance of meters and transparent past reporting of 

unauthorized consumption incidents (Kanakoudis and Tsitsifli, 2010a). Such a spatio-

temporal analysis can enhance the operator’s understanding of the WSS and 

reveal the drivers of NRW and its components. The comparative diagrams of daily 

profiles, January 1st and August 1st, for two landzones of different elevation, 0.5 m 

and 39.5 m (Figure 18) can shed light on the intense seasonal and spatial variability 

of the investigated features: Comparing the daily Landzone Input Volumes (LIV) for 

the two landzones, one can notice that the land-zone of higher elevation requires 

less LIV for both dates. The reason for this might be three-fold. Firstly, the two 

landzones include different number of water-meters and different land-uses, 

secondly the elevation may have an impact both in leakage and pressure driven 

demand, and thirdly the infrastructure condition may also vary. Further inspection 

of the rest of the components can shed more light to the situation. Regarding the 

LIV increase for the two landzones, it can be estimated that the hilly one has an 

increase of 70%, while the coastal has an increase of 78%. This difference in the 

seasonal LIV increases of the two landzones can imply that the coastal landzone 

attracts much more touristic activity than the hilly one. This is actually true, since the 

coastal landzone in Skiathos is a part of the highly visited Skiathos promenade that 

hosts a large number of tourist-related small businesses, such as restaurants, cafes, 

pubs, and taverns. This is reinforced when revealing that the elevated landzone 

includes 25 water-meters, while the coastal includes eight. More evidence 

regarding the land uses of Skiathos town would require a spatial cluster analysis 

that would be implemented with the criterion of water-meter labeling into 
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“households”, “hotels”, “café-restaurants”, etc. An urban land-use clustering 

analysis would also improve the spatio-temporal assessment of the WB, since it 

would facilitate the linking of different consumption patterns with different land-

zones. Such a work is already conducted with the use of the Self-Organized Maps 

(SOM) methodology (Laspidou et al., 2015). The impacts of the intensity of touristic 

consumption and pressure driven consumption due to elevation difference are 

furtherly reinforced, when comparing the respective BAC seasonal increases, 

which are 111% for the hilly landzone and 203% for the coastal one. The comparison 

of Real Losses throughout time and space may prove a very useful tool for the 

prioritization of the network maintenance with quantifiable evidence. For example, 

the analysis for the two landzones of Figure 44 offers all the evidence needed to 

prioritize maintenance works for the coastal landzone. Specifically, the coastal 

landzone depicts real losses as high as 70 % of SIV in 1st of January that fall down to 

44% in 1st of August. Respectively the hilly landzone depicts 56% in 1st of January 

that falls decreases to 40%.  

Absolute quantities of water can also be converted in expressions relative to service 

connections, or main length (Table 20), which—depending on the purpose—are 

more useful than their expressions as total amounts. For instance, for evaluating the 

management of the WDN, IWA recommends the annual expression of the Real 

Losses in m3/connection(Winarni, 2009). However, such an expression would be 

more helpful for comparing the overall network performance to that of another 

 

Figure 44. Hourly profiles of Landzone Input Volumes, Real and Apparent Losses, 

and BAC of 1st of January and 1st of August, for two indicative neighborhoods of 

the network with the elevation of 39.5 m and 0.5 m respectively 
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network, rather than the internal comparison of two landzones, especially in the 

absence of DMAs. Anyway, these metrics can be indicative of what causes 

leakage in different landzones (e.g. altitude vs. infrastructure condition). On top of 

that, they can be indicative of the cause of leakage, since on one hand, leaks and 

bursts are more frequent on the service connection links, but on the other hand 

bursts in mains result in much higher flowrates (Lambert, 2002). Taking this into 

account, comparing the two landzones, one can suspect that the coastal zone 

might be more stressed due to bursts in mains, while the hilly landzone due to leaks 

in the service connections, since the coastal zone has much higher values of Real 

Losses/ service connection than the hilly, while they have almost the same Real 

Losses/ network length. The much higher value in Real Losses/ service connection 

could be justified either by more incidents of bursts or by the elevation difference. 

Additionally, the per-service-connection expression is more useful for conclusions 

regarding the level of touristic consumption and pressure-driven consumption, 

since the need to specify the number of households within a landzone is eliminated. 

In particular, comparing 0.072 m3/service connection to 0.450 m3/service 

connection for the hilly and coastal landzones respectively is more safe for 

conducting the conclusion that the coastal zone has more consumption in the non-

touristic winter due to pressure driven demand, while comparing the corresponding 

amounts in the summer, 0.152 and 1.362 m3/service, can shed light on the more 

intense touristic activity of the coastal landzone.  

Table 20. The daily amounts of LIV, BAC, Real Losses, and Apparent Losses for two 

indicative landzones expressed in per-network-length and per-service-connection 

metrics. 

landzone hilly (39.5 m) coastal (0.5 m) 

network length 60.34 m 201.44 

service connections 25 8 

 Jan, 1  Aug, 1 Jan,1 Aug,1 

LIV/network length 

(m3/d/m) 

0.073 0.124 0.064 0.113 

BAC/network length 

(m3/d/m) 

0.030 0.063 0.018 0.054 

Real Losses/network 

length (m3/d/m) 

0.041 0.050 0.045 0.050 

Apparent losses/network 

length (m3/d/m) 

0.002 0.012 0.001 0.009 
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Figure 45, figure 46 and Table 21 present various KPIs indicative for the performance 

of the simulated PM scheme. The PM scheme does not involve any DMA division, 

but only a temporal adjusment of the pressure to satisfy the pressure needs of the 

node that for each timestep is estimated to have the lowest pressure of the WDN. 

The pressure at the starting point of the network, at the PRV, is set to keep the 

pressure at this virtual critical point higher than 5 meters. This may not be respective 

to the relevant legislation, that requires pressure higher than 16 meters (=4m*(3 

floors+1), but according to the water utility, it is rather realistic and applies to the 

current practical requirements of the WDN operation. At this point, it should be 

noticed that the PM scheme is not suggested, but rather applied to make a proof 

of concept. 

Figure 45 shows the effect of the PM sheme in a high temporal scale of four 

trimesters. The annual potential leakage reduction is estimated to reach 51,300 m3, 

which corresponds to 21,763 kWhs of energy for pumping, transfering, treating and 

other operational costs, and to 5,671 euros of revenue (Table 21). By the trimester 

analysis, it can be deduced that the highest potential for leakage reduction exists 

in April to June and July to September, 17.5 % and 16 %, respectively (Figure 45, 

right). The absolute amounts in cubic meters are presented in the left of Figure 45, 

where the deep blue shaded area shows the quartely variation of the leakage 

reduction potential. 

Table 21 presents the trimester values of energy savings and revenue for each 

trimester as well as two KPIs that often are interesting to water utilities, the night 

pressure decrease and the pressure variation decrease. The two KPIs that involve 

pressure are more relevant to the protection of the WDN against bursts. 

Figure 46 proves that a spatial analysis of the critical designing parameters can be 

an important tool that quantifies needs and prioritizes improvements for the water 

utility to help in asset management. The constructed tool can quantify the benefits 

of a PM scheme in time and in space, at the scale of a landzone. By comparing 

the two indicative landzones (or any other neihboring landzone), the operator can 

realize that the touristic zone in the promenande of Skiathos has significantly more 

LIV/ service connections 

(m3) 

0.176 0.300 1.600 2.85 

BAC/ service 

connections (m3) 

0.072 0.152 0.450 1.362 

Real Losses/ service 

connection (m3) 

0.100 0.12 1.125 1.263 

Apparent Losses / per 

service connection (m3) 

0.004 0.028 0.025 0.238 
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room for improvement in terms of leakage reduction, than the elevated zone. At 

the same time, comparing the temporal differences it can be deduced that the 

amounts of leakage that can be saved through a PM scheme can double in 

August 1st compared to January 1st for both landzones. 

The reduction of PDD is also presented in Table 22, in macro scale and in Figure 46 

proves that a spatial analysis of the critical designing parameters can be an 

important tool that quantifies needs and prioritizes improvements for the water 

utility to help in asset management. The constructed tool can quantify the benefits 

of a PM scheme in time and in space, at the scale of a landzone. By comparing 

the two indicative landzones (or any other neihboring landzone), the operator can 

realize that the touristic zone in the promenande of Skiathos has significantly more 

room for improvement in terms of leakage reduction, than the elevated zone. At 

the same time, comparing the temporal differences it can be deduced that the 

amounts of leakage that can be saved through a PM scheme can double in 

August 1st compared to January 1st for both landzones. In Table 22, two alternative 

expressions of PDD reduction are intorduced. Expressing PDD in m3 per m3 of BAC 

+ Apparent losses is more helpful when it comes to drawing conclusions on the 

impact of altitude in PDD reduction. In these two landzones, it seems that the 

specific scheme has more impact in higher altitudes than in lower. This is reasonable 

because the chosen PM scheme, which is lumped regarding DMA division, causes 

much greater percentage pressure reduction in high attitudes than in lower ones. 

This fact indicates that a multi-DMA scheme would be beneficial, since with a single 

DMA relative savings are lower where the potential for savings is higher. The second 

expression introduced for PDD reduction is in m3 per service connection. This is a 

more helpful expression for assessing the impact of urban land uses in PDD 

reduction. In particular, we can see that the touristic zone, with all the restaurants, 

bars and cafes, has much higher PDD reduction both in winter and summer than 

that of the residential zone. 

 

Figure 45. Comparative diagram of estimated leakage per billing period before 

and after the modelling application of the theoretical PM scheme for 2016 (left) 

and bar graph of the corresponding percentage decrease for each billing period 

(right) 
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Table 21. Indicative Trimester KPIs for the performance of a theoretical PM scheme 

for 2016. 

trimester night 

pressure 

decrease 

(%) 

decrease in 

pressure 

fluctuation 

(%) 

energy 

savings 

(kWh) 

economic 

savings 

(euro) 

PDD 

reduction 

(m3) 

Jan-Mar 9.5 43.2 3,389 897 4,786 

Apr-Jun 19.2 41.2 7,809 2,067 17,462 

Jul-Sep 17.6 38.7 7,131 1,888 25,968 

Oct-Dec 9.28 47.8 3,435 909 5,514 

annual 13.9 42.7 21,763 5,761 53,730 

Figure 46. Beneficial effect of a theoretical PM scheme in two land-zones of 

different elevation presented through different KPIs: hourly comparative curves of 

leakage for actual pressure scenario and PM scenario, the curve of the respective 

leakage reduction, daily values of leakage reduction, and daily values of savings 

in energy and euros, for January 1st and August 1st 
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Table 22. PDD reduction for two indicative landzones expressed in m3 per m3 of BAC 

+ Apparent Losses and in m3 per service connection 

landzone hilly (39.5 m) coastal (0.5 m) 

service connections 25 8 

 1st of Jan 1st of Aug 1st of Jan 1st of Aug 

PDD reduction in m3/m3 of 

BAC + Apparent losses 
0.199 0.293 0.074 0.119 

PDD reduction in 

m3/service connection 
0.015 0.053 0.035 0.190 

Through the results that have been presented, it becomes apparent that a spatio-

temporal analysis of the key SIV components and a series of relevant KPIs can make a 

conclusively insightful tool for the improvement of the WDN operation. The quantification 

of real losses, apparent losses, authorized consumption, the respective quantities in 

energy consumption and revenue mapped spatially and temporally can give a full picture 

regarding the weaknesses of the WDN and help the operator prioritize asset replacement 

or renovation needs. Through such an analysis, the localization of leakage, metering 

inaccuracies and theft can be realized at least at the scale of a landzone. Additionally, 

through such a tool the benefits of a PM scheme can be quantified in spatial and temporal 

detail. 

The potential of this tool can extend to the investigation for an optimum DMA division 

scheme where that can be achieved by a multi-objective optimization algorithm that 

would involve leakage minimization, energy consumption minimization, revenue 

maximization and other KPIs that are presented (Creaco and Haidar, 2019; Creaco et al., 

2019; Di Nardo et al., 2017). Such an attempt would firstly require the decoupling of 

energy consumption and revenue from leakage. The two quantities shall alternatively be 

estimated also as a function of elevation, taking into consideration the dynamic energy 

needed to transfer water to higher levels, rather than calculate them with use of a per-

cubic-meter flat rate throughout the whole WDN. This can suggest potential future work.  

Afterword: A spatio-temporal simulation of a WDN is implemented, with the use of 

EPANET. In order to decouple the demand driven and pressure driven components of SIV, 

leakage “valves” are used in every EPANET node. The leakage is estimated through the 

IWA suggested night-flow approach that is based on the night-flow consumption. The 

component analysis approach is also used to validate the first estimation. A scheme of 

iterative processes has been constructed with two nested loops. The inner iterates until 

leakage converges to a given value. The outer iterates until the simulated pressure at 

specific points matches the actual known pressure values. The results of such an analysis 
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can offer conclusive insight to the operator of the WDN regarding a series of designing 

parameters and KPIs of the network. The produced toolkit can serve as supervision 

support for the WDN or the basis for construction of a Digital Twin. Leakage, consumption, 

and theft can be localized at a relatively small scale, while the intense seasonal impact of 

tourism on the WDN can be quantified, as well as a series of useful conclusions can be 

conducted. Some of these conclusions regard the impact of elevation, the change and 

impact of land uses, and the respective amounts of energy consumption and revenue. 

Annual and trimester The estimated WB tables depict the intense seasonal variability of 

the components and highlight the need to increase the time scale in the relevant 

assessments at case studies with seasonally variable demographics or weather, such as 

the Greek touristic islands. For Skiathos case study the analysis has shown that the annual 

Real Losses are from 50.9% to 52.2% and the NRW from 57.2% to 58.00 %. The first 

trimester shows the highest percentage of real losses, from 63.3% to 64.7%, while the 

third trimester shows the highest percentage of BAC, from 51.8% to 52.1%. The theft is 

estimated higher than 3.6%, while it increases significantly from July to December, both 

in absolute values and percentages. A theoretical PM scheme is applied to prove the value 

of such a tool, for quantifying the relevant benefits spatio-temporarily. Leakage reduction, 

PDD reduction, energy and economic savings are four KPIs examined for the PM. An 

annual potential of 51,300 m3 in leakage reduction is estimated with the application of 

the PM scheme. The highest leakage reduction in absolute values can happen from April 

to September. Annual energy savings, economic savings, and PDD reduction potentials 

are estimated equal to 21,763 kWh, 5,761 euro and 53,730 m3, respectively The form of 

the most appropriate expression for each KPI is also investigated, concluding that 

different expressions help reach conclusions in different aspects.  
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The content of chapter 4.1 is included in the following published work: 

Kofinas, D.; Mellios, N.; Laspidou, C. Spatial and temporal disaggregation of water demand 

and leakage of the water distribution network in Skiathos, Greece. In Proceedings of the 

MDPI AG in 2nd International Electronic Conference on Sensors and Applications Session 

Sensing Technologies for Water Resource Management, 5–30 November 2015; p. S7001. 

 The contribution of Mr. Kofinas, D. involves the conceptualization, the methodology, 

the review of the software, part of the data curation, the validation, the formal 

analysis, the investigation, the writing, and the visualization. 

 The contribution of Mr. Mellios, N. involves the data provision. 

 The contribution of Professor Laspidou, C. involves the scientific supervision. 

This work was supported by the project ISS EWATUS—Integrated Support System for Efficient 
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Communication Technologies; Grant Agreement Number 619228. 

 

The content of chapter 4.2 is included in the following published article: 

Kofinas, D., Ulanczyk, R., & Laspidou, C. S. (2020). Simulation of a Water Distribution Network 

with Key Performance Indicators for Spatio-Temporal Analysis and Operation of Highly 

Stressed Water Infrastructure. Water, 12(4), 1149. 

 The contribution of Mr. Kofinas, D. involves the conceptualization, the methodology, 

the review of the software, part of the data curation, the validation, the formal 

analysis, the investigation, the writing, and the visualization. 

 The contribution of Mr. Ulancyk, R. involves the software, the data curation, part of 

the investigation (relevant to the programming), and the review. 

 The contribution of Professor Laspidou, C. involves the scientific supervision and 

review. 

The work described in this paper has been conducted within the project Water4Cities. This 

project has received funding from the European Union’s Horizon 2020 Research and 

Innovation Staff Exchange programme under grant agreement number 734409. This paper 

and the content included in it do not represent the opinion of the European Union, and the 

European Union is not responsible for any use that might be made of its content.  
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5.1 A methodology for household water 

consumption modeling 

Foreword: In the smart cities context, real-time knowledge of residential water 

consumption has become increasingly important, especially given the fast 

evolution of sensors, ICT and the production of big, high-resolution data coming 

from the urban environment. A variety of reasons often leads to the creation of 

continuity gaps in these data series, thus making the need for a methodology that 

produces reliable and realistic synthetic data urgent. In this article, we present a 

methodology that generates synthetic household water consumption data; we 

showcase it in two case studies, Skiathos, Greece and Sosnowiec, Poland, which 

exhibit significant differences in water consumption patterns. The methodology 

captures the stochasticity of daily residential water use. Algorithm validation is 

implemented through the comparison of various metrics for actual and generated 

data; this way, we show that the suggested approach is capable of adequately 

simulating water consumption in both micro- and macro- time scale.  

5.1.1. Introduction 

In fields such as DM, ML and Knowledge Discovery from Databases (KDD), a 

commonly emerging issue, which is the main focus of this chapter, is that of missing 

values or missing data. Numerous reasons can lead to such a problem: Equipment 

malfunctions, refusal of respondents to fill in questionnaires and gathering of 

erroneous data, etc. (Schafer and Graham, 2002; Batista and Monard, 2002). 

Demand management initiatives rely on good comprehension of water usage 

practices, as well as of factors influencing water demand (White et al., 2003). The 

emerging Data-Driven Demand Management has been supported by cloud-

based data platforms and represents a new, critical element to improve decision-

making in today’s water industry. Utility managers can achieve the sustainability 

and affordability objectives they desire through the practical application of data 

analytics (Fielding et al., 2012). In this context, the implication of data gaps is really 

important, since the decision-making process relies on continuous data sets. Such 

continuous data sets improve the resilience of new decision-making schemes. 

Based on the reason why a gap is created, missing data is categorized into three 

classes, depending on the level of randomness of the incident: Missing Completely 

At Random (MCAR), Missing At Random (MAR) and Not Missing At Random (NMAR) 

are commonly used classes that imply that the incident either does not depend on 

the missing value, or depends on a related to the value attribute, or directly 

depends on the value, respectively (Little and Rubin, 2002). An example for a 

MCAR would be the interruption of functioning of a sensor. That would create a 

gap no matter what the measurements would be. An example for MAR would be 

the absence of answer in a questionnaire about an attribute that is indirectly 

related to the gender of the respondent. An example for NMAR would be the case 
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of a sensor not recording a value, because it lies outside its measuring capacity 

range. Thus, a missing or erroneous value would imply that it is out of this range. The 

level of randomness is conclusive of the method that the missing data are treated. 

Depending on the class that the data gap belongs to, a different methodology for 

treating the missing data is selected. 

Another criterion for choosing the method to treat an incident of missing value is 

the nature of the attribute. Specifically, if the attribute were a time-series, the 

treatment would involve analysis of components, such as trend and seasonality. 

Moreover, if the missing attribute value were correlated to another known attribute, 

then the method of treatment would be selected based on this correlation, which 

would imply the implementation of multivariate analysis, as opposed to univariate. 

Lastly, a criterion is the “length” of the missing part—this can vary from a single 

missing value to a larger gap of data. The aforementioned criteria are decisive of 

the treatment of an incident: variable methods are applied for this purpose. Some 

commonly applied tactics include ignoring and discarding the incident, case 

substitution mean or mode imputation, hot deck and cold deck method, applying 

a predictive model and others (Batista and Monard, 2003; Grzymala-Busse and Hu, 

2001;Lakshminarayan et al., 1999). The imputation of a missing value is generally 

classified into deterministic or stochastic (Rao, 1996). 

Other than filling missing data gaps, the production of data that mimic the 

properties of a data set (synthetic data) can be essential in situations in which 

available real data are limited and longer data sets are required for evaluation, 

validation and/or testing of models, platforms, algorithms, or Decision Support 

Systems (DSSs). Barse et al. (2003) define synthetic data as generated data by 

simulated users in a simulated system, performing simulated actions. A typical 

example of need for synthetic data is the case when privacy constraints block the 

direct use of original sets. In other words, water utilities may not agree to provide 

actual water consumption data, being concerned about violating the privacy of 

their customers, even if data is anonymized. Synthetically generated data 

overcome problems related to data privacy (Cominola et al., 2016). In such cases, 

the use of a tool that provides synthetic water consumption data will serve well the 

needs of water utilities, including decision-making platforms used in data-driven 

demand management schemes. However, privacy is not the main issue. That 

would be the unavailability of long enough series to do uncertainty based analysis. 

Another example is the training and adapting of a Fraud Detection System (FDS) 

on a synthetic data set, testing its properties by injecting synthetic frauds or 

comparing the performance of different FDSs (Barse et al., 2003).  

Past research works have focused on investigating whether urban water 

consumption time series can be simulated in multiple temporal and spatial scales. 

Pulse models, developed for creating such artificial time series, generally consider 

two variables, the duration and intensity of a consumption event. These models 

can be divided into two categories: the ones that simulate pulses of specific end 
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use fixtures and the ones that are parameterized to simulate overall household 

water demand (Creaco et al., 2017). Buchberger and Wu (1995) used the Poisson 

Rectangular Pulse (PRP) methodology to simulate the behavior of the water 

consumer, considering actual monitored household consumption. Alvisi et al., 

(2003) introduced a cluster Neyman-Scott stochastic process to simulate residential 

water demand, respectfully to the cyclical behavior observed during a typical 

working day. Blokker et al. (2009) developed a methodology for simulating water 

consumption at residence level using 8 end uses (bathtub, dishwasher, etc.) 

patterns, based on survey data and technical characteristics of the appliances. 

Cominola et al. (2016) used data from 300 households in 9 U.S. cities and developed 

a stochastic simulation model for the generation of residential water end-uses 

based on the assumption that each end-use is characterized by a unique 

signature. Creaco et al. (2015) proved that taking into account dependence 

between duration and intensity variables can improve the pulse approach 

performance. Creaco et al. (2016) focused on parameterizing the values of the 

aforementioned model which were associated with the model variables 

respectfully to the water balance characteristics in multiple time scales. They 

concluded that high accuracy in smart metering relates to better performance of 

the model. Kossieris et al. (2016) applied the Bartlett-Lewis clustering mechanism for 

the simulation of residential water demand. The model variants were assessed to 

preserve the main properties of the actual time-series at a range of sub-hourly fine 

time scales, from 1-min to 15-min. The difference between Bartlett-Lewis and 

Neyman-Scott approaches lies in the way pulse incidents are distributed to clusters 

(Rodriguez-Iturbe, 1987). In the 2017 study of Di Palma et al, the “Overall Pulse 

model” was introduced to describe aggregated water consumption. This model 

does not generate single end use pulses but the water consumption of a whole 

household as recorded at a water meter. Kossieris and Makropoulos (2018) 

investigated the statistical properties of 15-minute and hourly water demand data 

of eleven Greek households. Among their findings they identified Gamma and 

Weibull distributions as superior to describe the non-zero demand values. Cominola 

et al. (2019) used smart water data from 327 households in Australia to identify 

water end-use signatures and concluded to three distinctive profile clusters, these 

of shower, washing machine and irrigation.  

A methodology on filling a gap of water consumption data with meaningful values 

is presented in this chapter. The suggested methodology is in accordance to the 

established residential water demand pulse models, since it is based on simulating 

the user behavior, while considering characteristic variables such as intensity of 

flow and duration. The methodology differs from other established approaches in 

the fact that it firstly captures consumption patterns throughout the day and then 

introduces a novel algorithm that simulates the duration of the incident. The 

suggested innovative algorithm for simulating the duration attribute gives a 

valuable degree of freedom that allows dealing with the consumption pattern 

beforehand. Thus the methodology overall facilitates capturing precisely the 
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pattern. The water consumption data concern household water consumption and 

are collected for the purpose of investigating the effect of real time monitoring and 

informing consumers about their own water consumption on their water use 

behavior, through an ICT-supported consumer-awareness process. The 

methodology is developed, validated and applied to the created gap in order to 

retrieve required data sets to be used for the development of a DSS platform, 

developed in the context of the EC funded project ISS-EWATUS (“ISS-EWATUS 

Integrated Support System for Efficient Water Usage and Resources Management”, 

2016). 

In this article, the two study areas and the data characteristics are firstly described. 

Next, the methodology is presented in a step-by-step format for the base case 

study of Skiathos households, as well as its modification for Sosnowiec households. 

The method validation process and results are presented and discussed. The article 

finishes with a series of conclusions and implications of the new data generation 

tool for the urban water sector. 

5.1.2. Materials and Methods  

 Case study specifications 

In the context of the ISS-EWATUS project, sensors were installed in faucets, showers 

and appliances in multiple households in Skiathos Island, Greece and Sosnowiec, 

Poland. For the purpose of this article, data sets from 16 households were used, 10 

and 6, with 10 and 9 sampling points, respectively (faucets at Skiathos and faucets 

and appliances at Sosnowiec). The monitoring period was initiated on February 1st, 

2015, while data collection is still ongoing, as of November 2016. Technical issues 

during the installation in Skiathos Island delayed the initiation of data recording, 

which officially began on April 14, and created a data gap of 72 days (from 

February 1st to April 14, 2015) for the Greek case study. The initial motivation for the 

Synthetic Data-Generating (SDG) methodology presented in this article was to fill 

the data gap that was created in the Greek case study. Once this goal was 

reached, we extended the methodology to a generic SDG tool capable of 

producing synthetic data based on historical water consumptions. To ensure that 

the applicability of the developed SDG tool is not limited to the water consumption 

profiles of Skiathos for which it was developed, we further tested its robustness by 

generating data for the Polish case study that exhibited different water 

consumption profiles. 

The two case studies are very different in terms of socio-economics, demographics, 

climate and geography, factors that are all expected to influence water 

consumption patterns. Skiathos is an island with high seasonal touristic activity and 

seasonal weather variability (Kofinas et al., 2014; 2016; Mellios et al., 2015). 

However, for the Skiathos case study, water sensors are installed at typical non-

touristic households, where the impact of tourism and weather variables is not that 
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significant. It should be noted that in Skiathos, the sensors are installed at kitchen 

faucets, a factor that diminishes the seasonal weather impact on water 

consumption, in contrast to water consumption in the bathroom, which is related 

to showers and baths (influenced by weather). A third factor to conclusively define 

the pattern of water consumption is that water in Skiathos is announced to have 

high concentrations of mercury, thus not potable—water is used mostly for washing 

and cleaning. Furthermore, Skiathos is a small village of about 6,000 people with 

small family-owned businesses, without large companies and corporations; this 

corresponds to a traditional lifestyle with extended families living together and stay-

at-home parents or grandparents. As a result, the water use pattern differs from 

one of a large city with urban lifestyle and exhibits no detectable 

weekday/weekend water consumption variability. Water use in the Skiathos case 

study shows no seasonality or trend for the aforementioned reasons. Finally, pilot 

households in Skiathos are located in the old town where houses are often over 100 

years old and amenities are limited; usually, houses are equipped with a total of 3 

or 4 faucets (mostly kitchen and bathroom), with dishwashers not being a typical 

appliance. The significance of this is that the total household water consumption is 

split among these few faucets and the water consumption in the kitchen, where 

the sensors were installed, is a significant part of the total household consumption.  

Sosnowiec is a city in the Katowice urban area with 2.7 million people with strong 

urban dynamics; it is a typical industrial city with heavy industries, companies and 

other associated economic activity. As far as the water consumption case study is 

concerned, Sosnowiec reveals an urban lifestyle and the corresponding water use 

mode is characterized by variability in water consumption between weekdays and 

weekends. The sensors installed at Sosnowiec are in showers, bathtubs, kitchens, 

appliances, balconies, etc. thus the patterns of use are expected to be more 

variable, offering a challenging case study for testing the developed SDG 

methodology. Moreover, the fact that the Sosnowiec pilots have multiple water 

supply points in the household, especially when compared to those in the Skiathos 

pilots, the total average daily consumption in each Sosnowiec water supply point 

is overall lower than those in Skiathos. 

 Data availability 

The data used in this article are water consumption data collected by a total of 16 

households for a period of 13 months—starting from February 1st, 2015—in two 

locations: Skiathos, Greece (10 sampling points—faucets—each one 

corresponding to a different household) and Sosnowiec, Poland (9 sampling 

points—faucets and appliances—in 6 households). The water consumption 

monitoring system was installed in a diverse group of households that were 

specifically chosen in order to provide needed data to help comprehend human 

behavior and water consumption patterns by different users in a household in 

various socio-economic settings. The criterion for the selection of the households 

was the availability and promptness of the housekeepers. Additionally, the 
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households were chosen so that they were diverse, regarding their location in the 

network and number of occupants. Wireless sensors were installed in various 

sampling points in the households, i.e. faucets, washers and showers. 30-second 

step records were transmitted to a remote central server in real time. Technical 

details on the water consumption monitoring system are provided in Chen et al. 

(2015). The data used are available online, at validation.issewatus.eu/data-re-use/.  

 Data description 

The data sets refer to water flowrate values that are recorded every 30 sec of water 

consumption. Once there is flow in the monitored faucet/appliance, the sensor 

generates a record with the corresponding timestamp; at the end of the 30-sec 

period, it records the water consumption (in liters/min) during the 30-sec period. If 

the faucet/appliance is still on, the next timestamp is recorded and then the 

corresponding consumption, and so on. Every 30 sec, the sensor checks for flow 

and when the faucet/appliance is off, no record is produced, thus finalizing the 

creation of a water consumption incident record. When the next water 

consumption incident starts, the procedure repeats itself. For the period in-between 

the two incidents, no record is produced. All incidents themselves have a 30-sec 

time step, but the starting time of an incident might be for example 45 seconds 

after the previous one. This means that sensor-produced data are not in the form 

of a single time series with a 30-sec time step, but are recorded in the form of 

numerous clusters each one representing a small time series of the equivalent 

incident. In reality, in order to distinguish between incidents, one detects when the 

time distance between two consecutive records is greater than 30 seconds, as 

shown in Figure 47a. The number of records per incident is used to calculate its 

duration.  

 Method description 

An algorithm that would generate flowrate records for a household water supply 

point should simulate all meaningful qualitative and quantitative characteristics of 

the actual records: the number of incidents per day, the duration of each incident, 

and the time of the day most likely for an incident to occur and the flowrate of the 

event, at a time scale which fits the objective of the model. An additional criterion 

to such a simulation is that when summing all simulated consumptions, the total 

water consumed should follow closely the actual total water consumption, both 

during the day and during the year as a whole. Components of the overall time-

series, such as trend and seasonality, if any, should be traced as well. 

The methodology developed for building the flowrate time series table follows a 

stochastic approach, agnostic to behavioral or exogenous factors that satisfies 

each one of the aforementioned characteristics. It is extensively described 

throughout the following steps of phase 1 and phase 2: 
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Steps 1 to 4 correspond to the calibration and distribution fitting (phase 1) 

Step 1- preprocessing: The procedure starts with the transformation of raw data into 

a time series. For the time-series mode, a 30 sec time step is kept constantly. Time 

continuity is not interrupted when there is no record; on the contrary, time periods 

when the faucet is off are denoted with the phrase «no record». In order to keep 

the same time frame for all incidents the starting point of each incident is moved 

to the next 30-sec time step, thus transforming all time stamps to time steps in the 

produced time series (Figure 47).  

Step 2- creating incident tables: Tables are created for each day of the recorded 

data, in which time steps with a recorded flow-rate value are denoted with «1» and 

time steps with no records are denoted with «0». This means that 1s stand for water 

taps being on and 0s for water taps being off (Figure 48).  

Step 3- estimating binomial distribution: The binomial distribution of 1/0 is estimated 

for each time step across all 400 recorded days. This way, the probability of 

occurrence of an incident at each 30 sec time step is defined (Figure 49). At this 

point, it is noted that the probability of occurrence throughout the day is indicative 

of the consumption pattern for each household faucet, which means that rush-

hours in terms of water use are expected to behold higher probabilities of a water 

incident, consistent to the combined day routines of the householders. In Figure 

50a and Figure 50b, two consumption profiles in two households are presented. The 

specific consumption profiles are chosen to be presented, among all, because 

they indicate distinctive differences. The first profile shows 1 peak in the afternoon 

around 2 pm, while the second shows two peaks, one in the afternoon and one in 

the evening. Moreover, the second profile shows throughout the whole day higher 

level of probability of an incident (faucet use). This does not necessarily mean that 

the water consumption is higher in the second profile, since the flowrates for the 

given incidents might be significantly higher in the first case; it only means that the 

faucet in the second householder is used more often than the first householder. 

 Step 4-investigating the flowrate values’ distribution: The distribution of the flowrate 

variable is investigated by using the steps described in the Kolmogorov-Smirnov (K-

S) methodology (Hollander and Wolfe, 1973). Popular distributions, namely gauss, 

gamma, exponential, and beta are tested in order to conclude on the most 

suitable distribution that simulates the values of flowrate that occur in each water 

supply point. In order to define the distribution of recorded flowrate values, all 

recorded values available of every incident are set from lower to higher value and 

are divided into 20 classes (highest suggested number of classes), following to the 

typical procedure for building a Pearson histogram (Dean and Illowsky, 2009). The 

frequency of occurrence for each class is estimated (Figure 51). Equivalent 

frequencies of a hypothetical sample, which keeps the same mean and standard 

deviation with the real flowrate values are estimated for the 4 tested popular 

distributions (gauss, gamma, exponential, and beta). The maximum vertical 
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distances (D) between the cumulative frequencies at the center of each class of 

actual data distribution and the ones tested are estimated. The minimum of these 

distances is considered to give the distribution to better mimic the actual 

distribution (Figure 52). 

 

 

Figure 47. Transforming raw data into a time series 

 

Figure 48. Time series tables of 1s and 0s for denoting consumption and no 

consumption  

The following steps concern the generation of synthetic data for a 24-hr period 

(phase 2): 

Step 5-generating table of incidents: A table of 1s and 0s is produced through a 

random generator following the binomial distribution estimated for each time step 

(Step 3). This way, a number of 30-sec records is produced consistent to the 

probability of incident occurrence for a household water supply point. Naturally, 
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more 1s are expected to be generated during the “rush hour” and more 0s when 

faucet use is low. 

 

Figure 49. Estimating the binomial distribution of water use incident for each 30 

seconds period 

a) 

b) 

Figure 50. Distinguishing different water use patterns through the probability of 

faucet use diagrams in two examples: a) water use probability for Skiathos pilot 1 

shows one peak around 02:00 pm and maximum probability of a water use incident 

to occur up to 8.15 %, b) water use probability for Skiathos pilot 2 shows two peaks 

around 02:00 pm and 10:00 pm and maximum probability of a water use incident 

to occur up to 14 %. 
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Figure 51. Distribution of frequency of water flow rate of Skiathos faucet 1 

 

Figure 52. Identifying the most suitable distribution that would best simulate actual 

distribution of water flowrate. The following distributions are considered: gauss, 

gamma, exponential and beta for faucet 1. 

Step 6-filling incidents with flowrate values: The time steps with 1s (Step 5) are now 

filled in with values (records) generated by a random generator following the flow-

rate distribution as it was derived in Step 4. This way, main selected statistical 

characteristics, such as average level, standard deviation and distribution of 

simulated flowrates, are kept consistent with actual flowrates, since they are based 

on all flowrates in the sample. The same is true for the number of 30-sec records 

that the faucet was on. Step 5 and 6 could actually be merged into a single step 

by using a joint probability distribution of the two variables (incident occurrence 

and flowrate level). However, this is not applied in the present work. Keeping the 

steps separate helps having a more detailed overlook of the procedure and 

specify its weaknesses and strengths in parts. At this point, the simulated total 

average daily consumption is also kept consistent with actual data. The problem 

that remains is that generated 30-sec records are mostly isolated and widely 
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spread throughout the day and are not properly clustered to simulate the observed 

“water consumption incidents”. This is addressed in the next step of the algorithm. 

Step 7- clustering incident values (independent pulses): The way the algorithm is set 

up (Steps 1 through 6), it randomly produces 30-sec records throughout the day; 

these records are mostly isolated and not clustered in continuous events—water 

consumption incidents—that last a few minutes, for example. It is possible, although 

unlikely, that the algorithm will randomly produce two or more 30-sec records in a 

row, creating a simulated incident. Our intention is to reproduce not only the 

cumulative water consumed in a day, but also to reproduce the number of water 

consumption incidents (in a sense, the number of times the faucet is used during 

the day). To achieve this, we created a “clustering step” (Step 7) that clusters 

generated isolated records into realistic multiple time-step incidents. We use the 

law of inverse square distance (Newton, 1999) in order to produce these clusters. 

Specifically, each incident (either an isolated record, or multiple continuous 

records) generated is treated as a “particle” with attribute level equal to its 

flowrate. Particle will be considered an incident that is generated and is followed 

by a “no record”, while its attribute will be the sum of all flowrates (if it comprises 

more than one record). The number of time steps between incidents is considered 

to be the distance between the particles. For every pair of consequent incidents, 

of m1 = flowrate1 and m2 = flowrate2, which have a distance of d= number of time 

steps, the “attractive forces” are calculated for all neighboring particles 

throughout a 24-hr period, according to the inverse distance square law (equation 

35). The highest “force” drives the first “particle movement”, stacking together the 

two neighboring particles on which the highest force is exerted and creates a new 

particle (cluster) keeping the number of original time steps the same. The newly 

created particle is placed in the timeline at a location that lies in between their 

initial positions. This location is defined by the fraction of their flowrates so that the 

resulting cluster is placed closer to the larger particle, according to equation 36. 

The clustering procedure, shown schematically in Figure 53, iterates for the 

generation of a day’s data until the number of clusters reaches a desired value. 

That value comes out by a random generator consistent to the Gaussian 

distribution of cluster numbers per day for the whole sample of each household 

water supply point so that the mean value and standard deviation of the number 

of clusters of a day are preserved. 

𝐹 =
𝑚1 ∗ 𝑚2

𝑑2
=

𝑓𝑙𝑜𝑤𝑟𝑎𝑡𝑒1 ∗ 𝑓𝑙𝑜𝑤𝑟𝑎𝑡𝑒2

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠2
 (equation 35) 

𝑚1

𝑚2

= (
𝑟2

𝑟1

)
2

 (equation 36) 
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where r1 and r2 are the distances (number of time steps) from m1 and m2 

equivalently of the point the two particles will meet. 

A schematical flowchart of the developed methodology, its phases and steps, is 

presented in Figure 54. 

 Method modification for Sosnowiec data 

We initially suspected that water consumption in Sosnowiec exhibits weekly 

seasonality, since the area is strictly urban-residential and the working and lifestyle 

routines result into different water consumption patterns from weekdays to 

weekends—a statement also supported in the literature (Arampatzis et al., 2014). 

In Figure 55, we show a sample of water consumption patterns for a household in 

Sosnowiec, where we see that the two probability-of-having-a-record functions are 

different. Further investigation into this is presented in the Results and Discussion 

section, where we show that indeed water consumption shows weekly seasonality. 

Accordingly, the algorithm was modified to reproduce results consistent with this 

variable pattern: Initially, data were separated into weekday and weekend 

observations. Steps 1 and 2 were kept the same, while Steps 3 and 5 were modified 

to implement separately weekday and weekend binomial distributions. As a result, 

separate data series for weekdays and weekends are generated by different 

incident binomial distributions. Step 4 does not change, since we assume that the 

user will not modify faucet use (he/she will not turn the faucet on to a higher setting, 

for example) depending on the day of the week; therefore we used the same 

flowrate level distributions for all days of the week, just like the Greek case study. 

The approach with a separate dataset for each day of the week can be adopted, 

once longer time series of data will be available. The weekday/weekend-pattern 

approach is supported against the basic (no pattern) approach by a trial and error 

process. This means that data were generated with both approaches and the 

weekday/weekend approach gave better fitting according to the validation 

procedures as described next. Distinguishing seasonality by observing the week 

and weekend profiles of the households consumption is not always conclusive, 

since in most of the cases the mean and its high and low intervals are the same, 

but the diffence may lie within the distribution of the same consumption timely. The 

inspection of possible seasonality within the week, is prerequisite for the model to 

perform optimally and it enhances the generality of the model for its application in 

seasonal and non-seasonal consumption patterns. 
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Figure 53. Routine for clustering the produced water use incidents according to the 

source data clustering patterns 

 

Figure 54. Flowchart of methodology’s phases and steps. 

 

Figure 55. Indicative comparative diagram of weekend and weekday pattern of 

water use for Sosnowiec water supply point 1 

0

2

4

6

8

10

12

14

1
2

:0
0

 A
M

1
:0

0
 A

M

2
:0

0
 A

M

3
:0

0
 A

M

4
:0

0
 A

M

5
:0

0
 A

M

6
:0

0
 A

M

7
:0

0
 A

M

8
:0

0
 A

M

9
:0

0
 A

M

1
0

:0
0

 A
M

1
1

:0
0

 A
M

1
2

:0
0

 P
M

1
:0

0
 P

M

2
:0

0
 P

M

3
:0

0
 P

M

4
:0

0
 P

M

5
:0

0
 P

M

6
:0

0
 P

M

7
:0

0
 P

M

8
:0

0
 P

M

9
:0

0
 P

M

1
0

:0
0

 P
M

1
1

:0
0

 P
M

1
2

:0
0

 A
M

early morning morning afternoon evening

p
ro

b
ab

ili
ty

 o
f 

h
av

in
g 

a 
re

co
rd

 (
%

)

weekends

weekdays

Institutional Repository - Library & Information Centre - University of Thessaly
24/05/2024 19:04:56 EEST - 18.217.70.77



 

141 

 Validation methodology 

For validating the methodology, data sets for one year of water consumption are 

generated for each water supply point, for both case studies. For these data sets, 

we produced curves of the probability of occurrence of an incident for both 

simulated and actual consumptions; this way we validated the “incident 

occurrence” variable. Next, the generated flowrate values are validated by 

checking the fitting in simulating actual average flowrates. An important criterion 

for validating the methodology is based on the difference between total water 

consumptions generated by the SDG algorithm and actual water consumptions 

recorded for each pilot; the generated data should neither overestimate nor 

underestimate significantly the total water consumption. This difference in 

cumulative consumptions is calculated for different time scales, so it is not only 

calculated for the whole simulating period; additionally, we divide the day into 4 

quarters—early morning (24:00-06:00), morning (06:00-12:00), afternoon (12:00-

18:00) and evening (18:00-24:00)—and calculated cumulative consumptions for 

these quarters. This way, we group consumptions and check the algorithm ability 

to capture consumption patterns throughout the day. The fraction of average 

quarterly consumption relative to the average daily consumption is also 

considered as a critical indicator for capturing the water consumption distribution 

throughout the pilots' 24 hour periods. Methodology validation steps and metrics 

used are presented in Table 23. 

Table 23. Methodology validation steps and metrics 

validation metric 

description 

metric formulation 

qualitative 

presentation of 

the ability of SDG 

to mimic the 

water 

consumption 

patterns (Figure 56 

and Figure 57) 

comparative diagrams of actual and generated 400 

days average flowrate for Skiathos and Sosnowiec 

pilots 

qualitative 

presentation of 

the ability of SDG 

to simulate the 

flowrate values of 

each 30-sec 

(Figure 58) 

scatterplots of average generated and actual flowrate 

values of each 30-sec step for Skiathos and Sosnowiec 

pilots 

ability of SDG to 

simulate the 

R2 values of generated and actual values of the 

probability of having a record of each 30-sec 
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probability of 

having a record of 

each 30-sec 

(Table 25) 

ability of SDG to 

simulate the 

flowrate values of 

each 30-sec of 

the pilots (Table 

25) 

R2 values of generated and actual values of the 

flowrate values of each 30-sec 

water balance 

preserved 

through 

percentage 

differences 

between 400 days 

generated and 

actual water 

consumption 

(Table 26) 

𝑇𝑜𝑡𝑎𝑙 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑣𝑜𝑙𝑢𝑚𝑒 − 𝑇𝑜𝑡𝑎𝑙 𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 

𝑇𝑜𝑡𝑎𝑙 𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒
∗ 100% 

difference 

between 6 hour 

percentage 

quota actual 

consumption and 

6 hour 

percentage 

quota generated 

consumption 

(Table 27) 

1

400
∗ ∑ (

𝑎𝑐𝑡𝑢𝑎𝑙 𝑚𝑖𝑑𝑛𝑖𝑔ℎ𝑡 𝑡𝑜 06: 00 𝑐𝑜𝑛𝑠.

𝑎𝑐𝑡𝑢𝑎𝑙 𝑑𝑎𝑖𝑙𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 

400

1

−  
𝑔𝑒𝑛.  𝑚𝑖𝑑𝑛𝑖𝑔ℎ𝑡 𝑡𝑜 06: 00 𝑐𝑜𝑛𝑠.

𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑑𝑎𝑖𝑙𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 
)

∗ 100% 

1

400
∗ ∑ (

𝑎𝑐𝑡𝑢𝑎𝑙 06: 00 𝑡𝑜 𝑛𝑜𝑜𝑛 𝑐𝑜𝑛𝑠.

𝑎𝑐𝑡𝑢𝑎𝑙 𝑑𝑎𝑖𝑙𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 

400

1

−  
𝑔𝑒𝑛. 06: 00 𝑡𝑜 𝑛𝑜𝑜𝑛 𝑐𝑜𝑛𝑠.

𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑑𝑎𝑖𝑙𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 
)

∗ 100% 

1

400
∗ ∑ (

𝑎𝑐𝑡𝑢𝑎𝑙 𝑛𝑜𝑜𝑛 𝑡𝑜 18: 00 𝑐𝑜𝑛𝑠.

𝑎𝑐𝑡𝑢𝑎𝑙 𝑑𝑎𝑖𝑙𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 

400

1

−  
𝑔𝑒𝑛.  𝑛𝑜𝑜𝑛 𝑡𝑜 18: 00 𝑐𝑜𝑛𝑠.

𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑑𝑎𝑖𝑙𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 
)

∗ 100% 

1

400
∗ ∑ (

𝑎𝑐𝑡𝑢𝑎𝑙 18: 00 𝑡𝑜 𝑚𝑖𝑑𝑛𝑖𝑔ℎ𝑡 𝑐𝑜𝑛𝑠.

𝑎𝑐𝑡𝑢𝑎𝑙 𝑑𝑎𝑖𝑙𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 

400

1

−  
𝑔𝑒𝑛.  18: 00 𝑡𝑜 𝑚𝑖𝑑𝑛𝑖𝑔ℎ𝑡 𝑐𝑜𝑛𝑠.

𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑑𝑎𝑖𝑙𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 
)

∗ 100% 
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5.1.3. Results and Discussion 

Before the actual generation of consumption data, and in order to perform Step 

4 of the algorithm, the distribution of the flowrate variable is investigated. Gaussian, 

exponential, gamma and beta distributions are examined in order to identify the 

one that describes best the probability distribution of water consumption values. 

For each data set, one of the four distributions emerges as closest to the actual 

one. In Table 24, it is shown that almost for all pilots and for both cities, the 

exponential distribution is the closest one. Only or few water supply points, namely 

Skiathos 1, 6 and 10, gamma distribution was proved to be the most suitable; 

however, improvement over the exponential distribution was only marginal. 

Therefore, in order to keep the algorithm uniform, we selected the exponential 

distribution for generating actual flowrate values for both cities. However, we do 

not suggest generalizing that the probability distribution of any faucet flowrate 

would be exponential, since different kinds of fixtures, such as the ones operated 

by foot, or users with different habits, mentality or physiology, might produce values 

of another distribution. The flowrate value depends on the way the faucet is 

operated: some users turn it on all the way to the highest setting, some let it drip 

slowly, while different fixtures could affect this value as well: sink or bath sets with 

separate levers for hot and cold water will probably have different flowrate profiles 

than mixer faucets. This kind of distribution investigation is suggested as a pre-

processing step for dealing with a new household faucet tap, before 

implementing the data generation algorithm.  

Table 24. Best and 2nd best fitting distributions for each pilot  flow rate and the 

maximum vertical distances (D) between the cumulative frequencies at the 

center of each class of actual data distribution and the ones tested, respectively 

pilot 
best fitting 

distribution 
minimum D 

2nd best fitting 

distribution 
2nd minimum D 

S
k

ia
th

o
s 

c
a

se
 -

st
u

d
y

 

1 gamma 0.101 exponential 0.111 

2 exponential 0.041 gamma 0.099 

3 exponential 0.051 gamma 0.116 

4 exponential 0.095 gamma 0.013 

5 exponential 0.089 gauss 0.122 

6 gamma 0.099 exponential 0.102 

7 exponential 0.041 gamma 0.132 

Institutional Repository - Library & Information Centre - University of Thessaly
24/05/2024 19:04:56 EEST - 18.217.70.77



 
144 

8 exponential 0.078 gamma 0.087 

9 exponential 0.068 gamma 0.150 

10 gamma 0.101 exponential 0.113 

S
o

sn
o

w
ie

c
 c

a
se

 -
st

u
d

y
 

1 exponential 0.038 gamma 0.102 

2 exponential 0.084 gamma 0.116 

3 exponential 0.072 gamma 0.101 

4 exponential 0.047 gamma 0.098 

5 exponential 0.065 gamma 0.117 

6 exponential 0.040 gamma 0.095 

7 exponential 0.047 gamma 0.103 

8 exponential 0.045 gamma 0.099 

9 exponential 0.059 gamma 0.151 

The SDG algorithm is used to generate water consumption data for about one 

year for each of the 10 Skiathos and 9 Sosnowiec pilots. In Figure 56 and Figure 57 

comparative curves of average flowrate for actual (denoted with red) and 

generated (denoted with grey) data are presented. It is apparent that household 

consumption patterns are quite variable, with some of them exhibiting one or two 

distinct peaks throughout the day and some showing no distinct peak at all. It is 

also apparent that the suggested methodology can simulate quite successfully 

the water consumption pattern of each household. Not only does the method 

capture the peaks of the household pattern and the usual early morning very low 

or even zero consumption, but it also captures slight variations in microscale 

granularity.  

For a quantitative comparison of actual and generated data, calculations are 

made for both actual and simulated values for the whole data set (i) the 

probability of having a record at each 30-sec time step and (ii) the average 

flowrate for each 30-sec time step, including the zero values that correspond to a 

“no-record”. Scatter plots of generated and simulated data are then produced 

for (i) and (ii) and the R2 values are calculated. All scatter plots of flowrate values 

are shown in Figure 58 while a summary table, including the R2 of the probability-

of-having-a-record variable, is also provided (Table 25). 
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Figure 56. Comparative diagrams of actual and generated 400 days average 

flowrate for Skiathos pilots 1-10 
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Figure 57. Comparative diagrams of actual and generated 400 days average 

flowrate for Sosnowiec pilots 1-9 

It should be noted that the R2 values are indicative of a very detailed resemblance, 

a 30-sec granularity resemblance; thus, it is a quite strict metric for the validation 

of the method. Skiathos R2 probability-of-having-a-record values are very high; 

most of them over 0.80 and two of them even reaching 1.00. Two values are 

relatively low, 0.37 for pilot 2 and 0.30 for pilot 8, even if the corresponding 

comparative diagrams do not show any particular inconsistency pattern between 

actual and simulated. This is due to the fact that consumption values for those 

houses are lower than those of the other households in the Greek case study. For 

Sosnowiec, the performance of the model in capturing the record probability—or 

faucet/appliance use during the day—is high with R2 values higher than 0.70 

except for pilot 7 which has a lower R2 equal to 0.43.  
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Figure 58. Scatterplots of average generated and actual flowrate values of each 

30-sec step for Skiathos and Sosnowiec pilots 

Generally, however, the method for Sosnowiec performs slightly worse than for 

Skiathos. This is because the method performance seems to be related to the 

frequency of incident occurrence. As described in the case study section, 

Sosnowiec households have more water taps and as a result, total household 

consumption is divided among more water supply points than in Skiathos. As a 

result, each water tap is used less frequently when compared to Skiathos, resulting 

in less data overall. In Table 25 this relevance can be denoted by comparing the 

incident frequency in incidents/month for Skiathos and Sosnowiec. It is also quite 

reasonable that in Skiathos pilots, the ones performing relatively poorly are the 

ones with very low use frequency, namely pilot 2 with 129 incidents per month and 

pilot 8 with 153 incidents per month.  

Lower but still high performance results are derived from the flowrate R2 values 

(Table 25). Most of the R2 values (13 out of 19) are higher than 0.5 and go as high 

as 0.99 or 1.00 for the case of Skiathos pilots 1 and 7. Lower performance for this 

variable is reasonable, since its performance is contingent on the performance of 

the probability of having a record: in order to capture the exact average flowrate 

value, one needs to first capture the probability of having a record and then 

produce a realistic flowrate value. If the algorithm predicts a low probability of 

having a record at a time step, then we expect it to produce multiple 0 values (no 
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records), which will bring the average flowrate value down to lower values, thus 

reducing the performance of the flowrate variable. As expected, the pilots that 

performed more weakly for the probability-of-having-a-record variable are the 

ones that also performed relatively weak for the flowrate variable. 

Table 25. Actual incident frequency and R2 values for actual and generated 

incident probability and average flowrate for Skiathos pilots 

pilot 
incidents/ 

month 

probability of 

having a 

record 

flow rate 

R2 

S
k

ia
th

o
s 

c
a

se
 s

tu
d

y
 

1 1784 1.00 1.00 

2 129 0.37 0.21 

3 997 0.80 0.59 

4 2086 0.89 0.78 

5 998 0.72 0.55 

6 1015 0.73 0.44 

7 2381 1.00 1.00 

8 153 0.30 0.13 

9 1682 0.83 0.65 

10 4416 0.67 0.40 

S
o

sn
o

w
ie

c
 c

a
se

 s
tu

d
y

 

 

1 650 0.80 0.66 

2 845 0.70 0.47 

3 679 0.74 0.75 

4 414 0.77 0.25 

5 1237 0.89 0.54 

6 1249 0.57 0.50 

7 988 0.43 0.64 

8 187 0.78 0.33 
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9 1682 0.77 0.62 

The SDG algorithm generally performs slightly worse for Sosnowiec than for Skiathos 

pilots, regarding the R2 values. An important reason for this difference is the 

weekday/weekend routine, which, although necessary, it creates the issue of less 

data being available for the algorithm, since it splits the sample in two. Statistical 

measures that describe the incident binomial and flowrate exponential 

distributions come out of a lower number of samples overall. Additionally, and for 

the same reason, it is observed that rarely used water taps make nosier flowrate 

curves. We expect that higher use frequency of a faucet will lead to more data 

being collected for that pilot, thus leading to smoother average flowrate curves. 

Finally, Skiathos consumption profiles depict more characteristic signatures easier 

for the algorithm to capture. 

In Table 26 the percentage differences of generated minus actual water volumes 

for all simulated days are presented; this comparison is done for validating the 

ability of the model to simulate cumulative water consumptions for each pilot. For 

most of the pilots, the difference is kept really low, lower than 3%. We can see that 

this percentage shows sometimes slight overestimation and sometimes slight 

underestimation of total water consumption, which means that the method in total 

is not showing some biased tendency to go in either direction. The higher 

differences are shown for Skiathos water pilot 3 (17.76%) and 6 (23.39%) and for 

Sosnowiec water pilot 9 (12.6%), while very low differences, less than 1 % are 

achieved for 5 out of 19 pilots. The overall better performance of Sosnowiec pilots, 

regarding percentage differences, is more deceptive than indicative of the actual 

comparative performance. This is because the flowrate average levels in 

Sosnowiec pilots are generally significantly lower than those of Skiathos pilots, thus 

resulting to higher apparent percentage differences that, however, correspond to 

lower actual volumes of water.  

Table 26. Percentage differences between 400 days generated and actual water 

consumption (%) 

pilot  1 2 3 4 5 6 7 8 9 10 

Skiathos 0.01 6.43 17.76 
-

0.11 
2.6 23.39 1.69 7.88 -7.12 1.40 

Sosnowiec 0.00 
-

2.62 
-1.14 0.01 

-

3.42 
-0.86 

-

1.01 

-

1.41 
12.06  

In Table 27 the quarter percentages of actual and generated data are compared. 

Here, we can see, which fraction of daily water consumption is realized in each 

quarter of the 24-hr period. So, for Skiathos pilot 1, 0.41% of the daily water 
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consumption happens from midnight to 6 am, while 39.52% of it happens from 6 

am to noon. In the following row, the same percentages are calculated for the 

generated data, while in the row below, the differences between actual and 

generated fractions are calculated. As it is expected, the pilots that performed 

highly in the R2 values of incident probability and flowrate variables perform even 

better in this less strict performance indicator. We also see that pilots that 

performed the poorest in terms of R2 for both incident probability and flowrate 

(Skiathos pilots 2 and 8 and Sosnowiec pilot 7) actually perform quite well at the 

quarter scale. This might be a less detailed view on the method validation; 

however, it is more meaningful, since it is more indicative of the method’s ability to 

capture the usage pattern rather than each single per 30-sec flowrate value. 

Table 27. Mean actual and generated fractions of daily water consumption 

realized in each quarter of the 24-hr period for the two case studies 

pilot 
 midnight-

06:00 

06:00-

noon 

noon-

18:00 

18:00-

midnight 

S
k

ia
th

o
s 

c
a

se
 s

tu
d

y
 

1 

actual 0.41 39.52 41.59 18.54 

generated 0.40 39.52 41.60 18.54 

difference -0.01 0.00 0.01 0.00 

2 

actual 0.74 28.01 56.21 15.07 

generated 0.89 27.90 58.43 12.85 

difference 0.15 -0.11 2.22 -2.22 

3 

actual 1.23 21.62 37.13 40.03 

generated 0.97 18.78 38.30 41.92 

difference -0.26 -2.84 1.17 1.89 

4 

actual 0.38 39.49 41.60 18.58 

generated 0.38 39.50 41.63 18.55 

difference 0.00 0.01 0.03 -0.03 

5 

actual 0.43 19.20 41.68 38.77 

generated 0.41 16.26 43.96 39.44 
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pilot 
 midnight-

06:00 

06:00-

noon 

noon-

18:00 

18:00-

midnight 

difference -0.02 -2.94 2.28 0.67 

6 

actual 1.30 24.20 51.16 23.34 

generated 0.33 27.84 50.57 21.31 

difference -0.97 3.64 -0.59 -2.03 

7 

actual 0.69 24.87 60.66 13.79 

generated 1.28 24.99 59.06 14.70 

difference 0.59 0.12 -1.6 0.91 

8 

actual 1.42 29.68 39.74 29.21 

generated 0.60 38.44 44.47 16.50 

difference -0.82 8.76 4.73 -12.71 

9 

actual 1.48 22.50 24.50 51.86 

generated 1.77 24.39 33.37 40.48 

difference 0.29 1.89 8.87 -11.38 

10 

actual 3.55 23.73 41.55 31.20 

generated 3.33 22.28 44.44 29.96 

difference -0.22 -1.45 2.89 -1.24 

S
o

sn
o

w
ie

c
 c

a
se

 s
tu

d
y

 

1 

actual 0.49 38.63 41.65 19.28 

generated 0.42 40.00 41.04 18.63 

difference -0.07 1.37 -0.61 -0.65 

2 

actual 0.40 28.02 46.87 24.73 

generated 0.35 27.51 48.49 23.69 

difference -0.05 -0.51 1.62 -1.04 
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pilot 
 midnight-

06:00 

06:00-

noon 

noon-

18:00 

18:00-

midnight 

3 

actual 3.56 58.29 13.77 24.33 

generated 2.88 58.23 11.56 27.29 

difference -0.68 -0.06 -2.21 2.96 

4 

actual 0.17 11.42 38.50 49.91 

generated 1.76 17.74 37.56 42.95 

difference 1.59 6.32 -0.94 -6.96 

5 

actual 0.88 24.80 40.87 33.47 

generated 0.70 25.06 42.57 31.70 

difference -0.18 0.26 1.70 -1.77 

6 

actual 0.41 16.55 43.52 39.56 

generated 0.66 25.75 43.02 30.65 

difference 0.25 9.20 -0.50 -8.91 

7 

actual 7.05 46.59 18.60 27.78 

generated 3.77 44.90 20.17 31.17 

difference -3.28 -1.69 1.57 3.39 

8 

actual 0.05 30.22 43.31 26.48 

generated 0.00 42.80 40.11 17.08 

difference -0.05 12.58 -3.20 -9.40 

9 

actual 0.24 28.07 39.52 32.28 

generated 0.57 27.12 38.35 34.03 

difference 0.33 -0.95 -1.17 1.75 

In an overall evaluation of the method, it is deduced that the proposed SDG 

algorithm has the ability to perform adequately, simulating with satisfying precision 
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the water use consumption patterns in the household. The stochastic structure of 

the model allows to agnostically simulate consumption regardless of behavioral or 

exogenous factors. Two factors, apparently linked to the performance of the 

methodology, are the density of recorded incidents (number of records) and the 

time length of the recorded data. The method can also accommodate previously 

identified, regular variations such as seasonal weekday/weekend features. Annual 

seasonality, if any, could also be treated either by producing days from equivalent 

days recorded data or by estimating the seasonality curve, producing the residual 

data from residual recorded data (recorded data minus estimated seasonality) 

and then adding the seasonality to the generated residuals. The former approach 

is expected to be more accurate but would need much more data to be 

implemented than the latter approach. A possible detection of a trend 

component could also be dealt with the latter approach, specifically by 

abstracting trend by the raw data, generating de-trended residuals and then 

adding trend to locate the generated consumption data to time wanted.  

With further investigation of the applicability of the algorithm to the de-

seasonalizing and de-trending techniques, the potential of using the proposed 

SDG method as a forecasting tool is enhanced. Especially when combined with 

advanced water consumer clustering techniques such as Self-Organizing Maps 

(SOM) (Laspidou et al., 2015), a user might be able to generate tap water-data by 

feeding the data generator with known or easy to find parameters, even nominal, 

such as the size or age of the household, or the working status and ages of the 

residents of the household, etc.  

Another possible use of the algorithm could be that of implementing a Monte 

Carlo type simulation of daily water consumption of all individual households in an 

agglomeration, or District Metered Area (DMA). This way, we can identify extreme 

values (lowest and highest possible) for water consumption of all households. This 

might be a useful planning tool that can help the water provider identify maximum 

possible consumptions and corresponding times of the day that they can occur, 

thus quantifying the risk of failing to meet water demand. Such information might 

be useful in identifying “weak links” in a water supply network, which could be 

related to reservoir or groundwater levels, network capacity, meeting required 

pressure levels in the network, etc. Such a direction could give a useful tool to the 

water security domain. This, however, needs further investigation to make any safe 

conclusions. 

One might wonder: Could this tool be used to model water consumption in a 

whole city? And in that case, how many households would we need to have data 

from, in order to be able to reliably draw conclusions about the whole city? The 

answer is that the parameters of population (N) and tolerated error (e) of simulated 

households in a city should be used to define the size of the sample that is 
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representative of the population (Särndal et al., 2003), i.e. the number of 

households with data needed. Obviously, such a tool allows the user to use only a 

limited number of households in order to draw conclusions for a much larger 

sample. Further to that, stratified sampling (Botev and Ridder, 1997) can be used; 

this technique suggests that a sample can be more representative when the 

population is divided into strata of common defined characteristics. Clustering 

algorithms can be considered pre-cursors of stratified sampling. Laspidou et al. 

(2015a) applied the SOM algorithm to cluster water meter data of a small town 

into different categories, such as households, hotels and small enterprises using 3-

month water consumption data. The aforementioned imply that the scalability of 

the model can be enhanced by the use of clustering algorithms which would 

define the number of representative pilots needed respectively to the number of 

taxa suggested. There is clearly potential in the use of such an algorithm, especially 

when combined with clustering techniques; given enough representative 

households with water consumption data of fine granularity, the possibility of 

expanding its use to the whole city is to be considered.  

Afterword: A method for generating meaningful water consumption data is 

introduced. The SDG algorithm differs from past algorithms within the pulse model 

group because it introduces early-on the probability of having a water 

consumption incident at each time step as a critical variable to the simulation. 

That variable is modeled with the use of the binomial distribution; this way, it ensures 

that the consumption pattern is captured. The flowrate values are modeled with 

the use of the estimated frequency distributions. A reverse-square-distance-based 

subroutine is introduced for the reproduction of the duration variable of each 

event, by clustering the reproduced incidents. The challenges of such a task are 

to mimic the characteristic patterns of each end-use, to simulate the water 

flowrate levels and durations of water consumption events and to preserve the 

water volume consumed at a large time scale, such as that of 400 days.  

The methodology is implemented and tested for two case studies with different 

characteristics, namely Skiathos, Greece and Sosnowiec, Poland. Pilots in Skiathos 

(a small Greek island with rural life style) exhibit higher consumptions that show no 

seasonality, while pilots in Sosnowiec (an industrial urban center) are characterized 

by lower consumptions and a weekday / weekend seasonality pattern. A number 

of qualitative and quantitative tests are implemented to check whether the 

objectives of the study are satisfied. The suggested methodology can successfully 

reproduce data that mimic the source consumption patterns following the actual 

peaks and lags recorded and consumption characteristics, such as the number 

and length of water use incidents per day. The method successfully captures the 

cumulative yearly water balance for each pilot. The algorithm becomes more 

robust when more recorded data is available and when more frequent water use 

incidents are recorded. The method seems to adjust well when the weekday/ 
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weekend pattern is evident. The tool developed can provide meaningful water 

consumption data for reproducing gaps of data and missing values. The 

suggested approach can constitute a potential basis for building up a tool, which 

will support tasks demanding long water consumption data series, such as 

implementing and testing DSSs, supporting the development of models of user 

behavior, risk assessment of critical water consumption design parameters, or 

developing water use fraud detection systems. Finally, the algorithm can be used 

to reproduce water consumption data when privacy constraints hinder the use of 

actual time series.
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5.2 Assessment of pressure driven demand 

savings with a theoretical pressure control 

management scheme 

Foreword: In this subchapter, an assessment of the potential of pressure driven 

demand reduction for the ten Skiathos pilot water taps due to the application of 

the theoretical pressure control management scheme of chapter 4 is 

implemented. The assessment is based on the rational of the relevant pressure 

driven demand reduction KPI of Chapter 4. The possible relation of the altitude of 

the corresponding households to the potential savings is discussed. 

5.2.1. Introduction 

Attempts to incorporate PDD simulation into WDN models has been around the 

last three decades (Giustolisi et al., 2008; Wu et al., 2007; Kalungi and Tanyimboh, 

2003; Ackley et al., 2001; Gupta and Bhave, 1996; Chandapillai, 1991). The 

common perception is that even though PDD is following the time pattern profile 

of the BAC, however it is pressure dependent and works as a function of pressure 

similar to the nature of leakage as described by (Germanopoulos and Jowitt, 1989; 

Germanopoulos, 1985). The distinction of SIV components into pressure dependent 

and time pattern dependent is not that absolute as perceived for the needs of 

simulating a WDN and described in subchapter 4.1. In reality all components that 

constitute a flow out of the WDN, including consumptions, include a part that is 

caused by excessive pressure, the overhead of the established minimum pressure 

needed to satisfy customers (Figure 59). A PM scheme would facilitate the 

reduction of the PDD other than the leakage reduction. In this subchapter, the 

profiling of such PDD savings is implemented for the Skiathos WT pilots.  

 

Figure 59. The Pressure Driven Demand shares a pressure driven and demand 

driven nature 
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5.2.2. Materials and Methods  

For a more in depth understanding of the PDD reduction potential, an assessment 

of the actual theoretical reduction due to the simulated PM scheme of Chapter 4 

is implemented for the actual Skiathos water tap pilot cases (Figure 60) described 

in sub-chapter 5.1. The pilot water taps are located diversely across the WDN and 

have different altitudes from 0.5 m to 22.35 m (Table 28). This variability in altitude 

and location imply variable local WDN pressure profiles and diverse urban land 

uses. The diverse conditions are also depicted in the average daily flowrate profiles 

of Figure 56, which are discussed in the previous sub-chapter. 

The production of PDD reduction amounts is based on the SDG algorithm 

introduced in chapter 5.1, modified to reduce the water flow following the 

reduction of the pressure as the latter is simulated in chapter 4. The rational is the 

same as explained in chapter 4 regarding the PDD KPI. The following equation 

describes the modification of the SDG algorithm. 

𝑆𝑎𝑣𝑖𝑛𝑔𝑠𝑃𝑀,𝑊𝑇 𝑖𝑛  𝐿 = 𝐹𝑙𝑜𝑤𝑟𝑎𝑡𝑒𝑆𝐷𝐺,   𝑊𝑇𝑖 𝑖𝑛 𝐿 ∗ [1 − (
𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑃𝑀,𝐿 

𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝐿

)
1.08

] (equation 37) 

where SavingsPM,WT in L is the theoretical amount of PDD that can be saved due to 

the theoretical PM scheme at Water Tap WT, which is located in Landzone L, 

FlowrateSDG,   WTi in L is the simulated flowrate of Water Tap WT which is located in 

Landzone L, with use of the SDG algorithm. Pressure PM,L is the pressure at Landzone 

L, as simulated for the PM scheme described in subchapter 4.2 by the Skiathos 

simulation model, and 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝐿 is the pressure at Landzone L as simulated by the 

Skiathos model. 

 

Figure 60. The locations of the Skiathos water tap pilots across the water distribution 

system 
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 The assessment does not take into account the potential extra reduction of the 

pressure due to the reduction of demand—specifically the reduction of part of the 

PDD—, because it is assumed that the pressure is reregulated to its minimum level 

of customer satisfaction. The same assumption is also made for the leakage 

estimation in subchapter 4.2.  

Table 28. The elevations of the Skiathos pilot water taps 

water tap elevation 

1 1.50 m 

2 19.50 m 

3 6.80 m 

4 1.95 m 

5 5.40 m 

6 4.30 m 

7 0.50 m 

8 22.35 m 

9 4.30 m 

10 5.80 m 

5.2.3. Results and Discussion 

The PDD reduction, or else the savings due to the theoretical PM scheme are 

presented in Figure 61 and tables Table 29 and Table 30. In Figure 61, the annual 

average daily profiles of the PDD savings for each WT are presented. Compared 

to the respective diagrams of the initial flowrates, where no PM scheme is applied, 

(Figure 56, Subchapter 5.1), it can be concluded that the savings follow the profiles 

of the demands. Additionally, regarding absolute amount, higher savings are 

achieved where there are higher demand levels. This does not also apply for 

relative values of PDD savings over initial demands, which can be explained, 

because higher demands occur to low levels, where percentage pressure 

reduction is lower, since the theoretical PM scheme is lumped. In fact, the relation 

seems to be reverse (Figure 62). This agrees the findings of chapter 4.2, where in 

the hilly landzones the relative PDD savings is lower than the savings in coastal low 

levels.  
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Table 30 presents the comparison of the relative PDD savings for the Skiathos WT 

pilots and the respective relative savings for the whole landzones where the WTs 

are located. Both savings amounts are expressed as a ratio over their initial 

demands. The WT savings are divided by the WT flowrates, while Landzone savings 

are divided by the landzones’ BAC + Apparent Losses amounts. The comparison 

of the two agrees sufficiently indicating that the PDD savings KPI of chapter 4.2 is 

reliable. A more careful observation reveals that the WTs with higher demands 

agree better to the respective landzones than the WTs with lower demands whose 

savings seem to be slightly overestimated by the landzone KPIs. This can possibly 

be explained by the fact that low demand WTs are used less on one hand and are 

located in high elevations which force low flowrates. 

Table 29 presents the absolute potential savings amounts for the ten WTs for a 

whole year and the split of these amounts into four time-zones: early morning (24:00 

to 06:00), morning (06:00 to 12:00), afternoon (12:00 to 18:00), and evening (18:00 

to 24:00). The total annual amounts depict a very wide range from 82 lt/year to 

1,500 lt/year. The higher savings correspond to the higher demands. The time zones 

that present the massive amounts of savings are the morning zone and afternoon 

zone. The evening zone depicts a relevantly significant level of savings, while the 

early morning zone depicts a rather insignificant amount of savings.  
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Figure 61. Potential annual average daily profile of potential saving of pressure 

driven demand due to the application of a pressure control scheme 
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Table 29. Annual potential PDD savings (lt) due to the theoretical PM scheme 

simulated, total and divided into day quarter time zones 

water tap annual 

totalo 

annual  

early morning 

annual 

morning 

annual 

afternoon 

annual 

evening 

1 1,514 5 605 629 275 

2 92 0 26 46 19 

3 810 4 234 471 102 

4 1,187 17 299 700 171 

5 936 9 181 358 387 

6 447 3 176 197 71 

7 1,480 4 591 616 269 

8 82 2 21 27 32 

9 650 2 109 287 253 

10 724 26 166 318 214 

Table 30. Comparative table of the PDD reduction of the pilot water taps and the 

respective whole landzones, both expressed in m3/m3 of their respective initial 

demands. 

water 

tap 

PDD savings in m3/m3 of 

initial water tap demand 

PDD savings in m3/m3 of initial BAC + 

Apparent Losses at the respective 

landzone 

1 0.100 0.104 

2 0.141 0.174 

3 0.110 0.111 

4 0.101 0.107 

5 0.107 0.110 

6 0.106 0.172 

7 0.099 0.101 
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8 0.148 0.163 

9 0.104 0.132 

10 0.109 0.117 

 

 

Figure 62. Scatter plot of the relative PDD savings of the 10 Skiathos WT pilots vs their 

respective elevations 

Afterword: This subchapter is about the assessment of theoretical PDD reduction 

due to the PM scheme introduced in chapter 4. For the assessment the SDG 

algorithm, presented in chapter 5.1 is used as well as the rational of the PDD KPI 

also introduced in chapter 4. The pressure values used for the assessment are taken 

from the simulation model and are the values that have been estimated for the 

landzones each one for the respective WT that includes it. The analysis agrees with 

the findings of chapter 4 and proves the introduced PDD KPI to be reliable. The 

PDD savings potential for a WT showcases a wide range, approximately, from 80 

lt/year to 1,500 lt/year depending on the demand level and the elevation. Higher 

elevations correspond to higher relative PDD savings, however this is reasonable 

because the PM scheme is lumped. The day time zones showcase higher amounts 

of PDD savings that the night zones in absolute amounts, since during the day there 

is much higher consumption than during the night. 
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The content of chapter 5.1 is included in the following published article: 

Kofinas, D. T., Spyropoulou, A., Laspidou, C. S. (2018). A methodology for synthetic household 

water consumption data generation. Environmental modelling & software, 100, 48-66. 

 The contribution of Mr. Kofinas, D. involves the conceptualization, the methodology, 

the validation, the formal analysis, the investigation, the writing, and the 

visualization. 

 The contribution of Dr Spyropoulou, A. involves the programming of the involved 

code. 

 The contribution of Professor Laspidou, C. involves the scientific supervision  

This work was supported by the project ISS EWATUS—Integrated Support System for Efficient 

Water Usage and Resources Managementdwhich is implemented in the framework of the 

EU 7th Framework Programme, Specific programme Cooperation In- formation and 

Communication Technologies; Grant Agreement Number 619228.  
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The current thesis constitutes an investigation on the modeling potential of variable 

components of the WDNs from the drilling to the tap. Among the multiple 

objectives, on high level, the overall objective is to develop an innovative 

methodological framework on improving urban water management based on 

simulation tools that provide detailed overview of the system on multiple scales 

(Figure 63). 

The investigation is implemented on an actual case study, the WDS of Skiathos 

Island. This offers some specifications that led to interesting results. Skiathos is a 

touristic resort with intense touristic influx and intense weather seasonality 

according to the Mediterranean profile. The infrastructure of the WSS is aged, while 

the town of Skiathos has a bold relief. The pumped groundwater is loaded with 

mercury, which is released in the aquifer by the bedrock, due to the salinity 

increase and sea intrusion which in turn is happening due to the over pumping. 

The analysis begins with the development of forecasting algorithms of water 

demand from the perspective of water sources, meaning that water demand 

includes all the water that is pumped out regardless if it is consumed or lost across 

the network. The forecasting is implemented in three periodicities: trimester, 

monthly and daily. Various forecasting approaches are tested such as statistical 

and ML, univariate and multivariate. Namely, MR, ARIMA, SARIMA, ARIMAX, ANFISS, 

and ANN, Hybrid approaches. The predictors used in the multivariate analysis are 

weather variables—which have generally been used quite often in past 

multivariate analysis attempts—, a touristic activity indicator and an indicator of 

the WDN performance. The sum of arrivals into the island by all means is used as a 

touristic activity indicator. The Non-Revenue Water Percentage is used as an 

indicator of the performance of the WDN. The aforementioned predictors proved 

to be very reliable for the forecasting. The methodology is tested on a blind data 

set, different from the one used for the calibration. All methodologies provided 

adequate results, however a multivariate analysis based on ML algorithms has the 

benefit of providing a managerial tool that can be used for scenario assessment. 

The analysis continues with an attempt to create a simulation model of the Skiathos 

WDN. Firstly initial values of daily water demands in numerous nodes are created 

by disaggregating the trimester customer billings through the daily SIV profile, 

assuming a linear distribution and that the NRW all equals the leakage. With the 

same rational, reversely, the daily SIV values are spatially disaggregated through 

the billings distribution. The initial values are used to feed an EPANET model. A 

system of two nested loops is iterating to produce the final values of BAC, real 

losses, and apparent losses based on the principles that real losses are pressure 

dependent and the apparent losses are rather time pattern dependent following 

the BAC profile. The pressure dependent components are simulated with use of 

open valves in each demand node, based on the minimum night flow approach 
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for leakage estimation. The loop system closes when the apparent losses and real 

losses are decoupled, summing up to the NRW amount, as the simulated pressure 

fits the actual pressure recorded in three points of the WDN. The simulation is used 

to conduct a series of conclusions regarding the seasonality of the WSS, the urban 

land uses, the spatio-temporal profile of the IWA WB components, the high level 

localization of theft and the estimation of the water meter inaccuracy level. On 

top of the assessment of the WB, a series of KPIs are introduced to facilitate the 

informed management of the WDN, as well as the performance evaluation of a 

theoretical PM scheme, which is also simulated. Such KPIs are the energy nexus, 

the PDD reduction, the leakage expressed per service connection and per 

network length, among others. The spatiotemporal analysis proved that such a 

simulation tool can be crucial for the improvement of WDN management 

especially in an intensely variable in time and/or in space case where the 

adjustments need to follow all the dynamic parameters. 

The last part of the analysis focuses on tap water consumption. A Synthetic Data 

Generator algorithm is developed to simulate water tap data consumption. The 

SDG constitutes a modified pulse model that firstly focuses on mimicking the 

consumption time pattern. The level of flowrates and the instants when they occur 

are assessed based on the respective distributions. A Newton law of gravity based 

formula is later on used to attract instants of flowrates together to shape up 

incidents of realistic length. The algorithm is tested both on ten Skiathos WT pilots 

and on 9 Sosnowiec WT pilots. The two case studies depict significant variabilities 

since the first is rural and touristic, while the other is industrial. For the better fitting 

of the second case study a week/weekend seasonality routine is incorporated. 

The SDG is finally used to simulate the PDD reduction at the ten Skiathos WTs due 

to the PM scheme described earlier. The assessment is based on the same rational 

of the development of the PDD reduction KPI. The two approaches are compared 

and present adequate consistency.  

Potential future work that emerges from the current thesis would involve  

 the investigation regarding the variability of demand patterns in relation to 

the different urban land uses, using SOM clustering techniques; 

 the investigation of the possibility of simulated based ML techniques 

application, which would imply the training of AI algorithms on the 

simulated data sets of the IWA WB components instead of training them on 

recorded actual data. This may reveale a potential in facilitating a WDN’s 

simulation with the prerequisite of having available libraries of numerous 

hydraulic simulations of variable WDNs. 

 the application with use of the simulation model and its KPIs of a multi-DMA 

PM scheme; 

 a more detailed water-energy analysis which would explore the potential 

energy savings due to the division of the WDN into DMAs; 
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 the connection of the WDN simulation model and KPIs to sensors to 

continuously perform calibration and forecasts in real time, thus operating 

as a Digital Twin; 

 the comparison of the performance of the SDG model to other pulse 

model approaches; 

 the potential improvement of the SDG model by incorporating multivariate 

analysis; 

 the identification and the quantification of the benefits of smoothening 

water demand peaks in WDN, landzone and water tap level. 

 

 

Figure 63. Schematic overview of the current thesis 
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