
University of Thessaly

Master Thesis

Investigating the Dynamic
Multi-Vehicle Routing Problem under

Energy Constraints
Διερεύνηση του δυναμικού προβλήματος δρομολόγησης

πολλών οχημάτων υπό περιορισμούς ενέργειας

Author:
Georgios Polychronis

Supervisors:
Spyros Lalis
Nikos Bellas

Christos Antonopoulos

A thesis submitted in fulfilment of the requirements for the degree of
Master in the

Department of Electrical and Computer Engineering
University of Thessaly

Volos, July 7, 2020

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 04:24:11 EEST - 3.142.251.91

A B S T R A C T

The multiple vehicle routing problem (mVRP) concerns the scheduling
of multiple vehicles so as to visit some locations of interest. Typical
optimization objectives are the minimization of the total travel cost and
the minimization of the time it takes to perform the required visits.

We study a dynamic version of mVRP where the travel costs are not a
priori known and may vary at runtime. Moreover, we introduce certain
energy-related constraints which make the problem more complex. On
the one hand, vehicles have only finite energy reserves, which gradually
diminish as the vehicles move between different locations. On the other
hand, vehicles can gain some energy at specific depot locations. The
objective is to visit all locations of interest as fast as possible without
any vehicle exhausting its energy.

We propose a metaheuristic solution to build an initial schedule offline,
and an online heuristic to dynamically update this schedule according to
the real travel costs that are observed during the algorithm’s execution.
Both offline and online algorithms are based on the Large Neighbourhood
Search (LNS) algorithm.

Our evaluation is twofold. On the one hand, we compare our meta-
heuristic for the initial schedule with a state of the art algorithm,
showing that the proposed approach achieves better or in some cases
equivalent results, but with significantly lower time complexity. On
the other hand, we evaluate the online heuristic for different network
topologies and degrees of vehicle autonomy. The results show that the
online algorithm achieves significantly better results than the offline
algorithm that produces a static schedule based on worst-case cost
estimates.

2

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 04:24:11 EEST - 3.142.251.91

ΠΕΡ ΙΛΗΨΗ

Το πρόβλημα δρομολόγησης πολλών οχημάτων αφορά την εύρεση διαδρο-

μών έτσι ώστε ένας στόλος οχημάτων να επισκεφτεί ένα σύνολο συγκε-

κριμένων περιοχών / θέσεων ενδιαφέροντος. Τυπικοί στόχοι για τον σχε-

διασμό τέτοιων διαδρομών είναι η ελαχιστοποίηση του συνολικού κόστους

μετακίνησης και η ελαχιστοποίηση του χρόνου επίσκεψης των περιοχών.

Στην παρούσα εργασία, μελετάμε μία δυναμική εκδοχή αυτού του προ-

βλήματος, όπου τα κόστη μετακίνησης δεν είναι γνωστά εκ των προτέρων.

Επιπλέον, τα οχήματα έχουν πεπερασμένη ενέργεια, η οποία μειώνεται

όσο αυτά κινούνται, ενώ μπορούν να επανακτήσουν ενέργεια σε συγκε-

κριμένους σταθμούς-κόμβους. Σε αυτή την περίπτωση, ο στόχος είναι

να επισκεφτούν ένα σύνολο περιοχών όσο το δυνατόν πιο γρήγορα χωρίς

κανένα όχημα να εξαντλήσει πλήρως την ενέργεια του .

Προτείνουμε ένα μετά-ευρετικό (metaheuristic) αλγόριθμο για να

σχεδιάσουμε τις αρχικές διαδρομές των οχημάτων, και έναν ευρετικό

(heuristic) αλγόριθμο που λειτουργεί σε πραγματικό χρόνο έτσι ώστε να
ανανεώνει τις διαδρομές λαμβάνοντας υπόψη το πραγματικό κόστος της

μετακίνησης που διαπιστώνεται την ώρα της εκτέλεσης . Οι αλγόριθμοι

μας, βασίζονται στον αλγόριθμο Large Neighbourhood Search (LNS).
Η αξιολόγησή μας αποτελείται από δύο μέρη. Πρώτα συγκρίνουμε τον

μετά-ευρετικό αλγόριθμό μας με ένα διεθνώς αναγνωρισμένο αλγόριθμο

αιχμής, και παρατηρούμε ότι έχουμε καλύτερα ή και ίδια αποτελέσματα με

μικρότερη χρονική πολυπλοκότητα. Στην συνέχεια αξιολογούμε τον αλ-

γόριθμο πραγματικού χρόνου για διάφορες τοπολογίες και διαφορετικούς

βαθμούς αυτονομίας των οχημάτων. Τα αποτελέσματα δείχνουν ότι ο

αλγόριθμός μας πετυχαίνει σημαντικά καλύτερα αποτελέσματα από έναν

στατικό αλγόριθμο που δημιουργεί μία φορά τις διαδρομές με βάση τις

χειρότερες δυνατές τιμές των κοστών μετακίνησης.

3

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 04:24:11 EEST - 3.142.251.91

A C K N O W L E D G E M E N T S

I would like to thank my supervisor Spyros Lalis, for all his valuable
help, advices and support. I would also want to thank my family and
friends for being supportive in this important journey.

This research has been co-financed by the European Union and Greek
national funds through the Operational Program Competitiveness, En-
trepreneurship and Innovation, under the call RESEARCH - CREATE
- INNOVATE, project PV-Auto-Scout, code T1EDK-02435.

4

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 04:24:11 EEST - 3.142.251.91

C O N T E N T S

Abstract 2
Περίληψη 3

Acknowledgments 4
Contents 5
List of Figures 6
List of Tables 7
1 introduction 8
2 related work 10

2.1 Min-max multiple TSP 10
2.2 Dynamic capacitated multiple VRP 12

3 problem formulation 14
3.1 Terrain . 14
3.2 Energy capacity, costs and gains 14
3.3 Path feasibility . 15
3.4 Path completion time and schedule makespan 15
3.5 Problem statement . 15

4 offline algorithm 17
4.1 TS-LNS algorithm . 17
4.2 Large neighbourhood search 17
4.3 Node insertion . 18
4.4 Node removal (path destruction) 20
4.5 Complexity . 23
4.6 Evaluation of offline algorithm 24

4.6.1 Setup/configuration 24
4.6.2 TS-LNS-g vs. IWO for Euclidean problems . . . 25
4.6.3 TS-LNS-g vs.TS-LNS-e for Euclidean problems . 26
4.6.4 TS-LNS-g/e vs. IWO for general problems . . . 27

4.7 Adaptations for capacitaty constraints 29
5 online algorithm 30

5.1 Representation of schedules and state information . . . 30
5.2 Cost estimation . 30
5.3 Main loop . 31
5.4 Reschedule heuristic . 31
5.5 Evaluation of online algorithm 32

5.5.1 Experimental setup 32
5.5.2 Configurations of the online algorithm and reference 33
5.5.3 Results . 34

6 conclusions 38
Bibliography 39

5

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 04:24:11 EEST - 3.142.251.91

L I S T O F F I G U R E S

Figure 4-1 Node insertion sequence. Starting with the or-
ange and blue paths, all possible insertion points
are checked (only the best option for each path
is shown). The node is finally inserted in the
blue path, because the best node insertion in the
orange path would increase its total cost to 14,
whereas the cost of the blue path increases to
12 thus the cost of the worst / most expensive
path remains 12. 21

Figure 4-2 Sequence of random destruction with a following
repair for a solution with two paths. Destruction
is performed by removing a total of six nodes.
The nodes are all chosen randomly, and then
they are reinserted in the solution using the node
insertion method (insertion details not shown). 21

Figure 4-3 Sequence of proximity-based destruction with a
following repair for a solution with two paths.
Destruction is performed based on two randomly
selected seed nodes, which happen to belong to
different paths. For each seed, another two nodes
are removed, chosen based on their proximity to
the respective seed node. Note that the nodes are
chosen based on their physical proximity to the
seed, and may be part of a different path. In to-
tal, six nodes are removed, and are reinserted in
the the solution using the node insertion method
(insertion details not shown). 21

Figure 4-4 Speed-up of TS-LNS-g vs. IWO. 26
Figure 4-5 Speed-up of TS-LNS-e vs. TS-LNS-g. 28
Figure 5-1 Makespan of the online algorithm vs. the offline

algorithm. 35
Figure 5-2 Rescheduling and schedule update frequency of

the online algorithm (average over all search
intensity configurations). 36

6

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 04:24:11 EEST - 3.142.251.91

L I S T O F TA B L E S

Table 4-1 Results of IWO. 25
Table 4-2 Results of TS-LNS-g. 25
Table 4-3 Results of TS-LNS-e. 27
Table 4-4 Solution cost of the algorithms for general graphs. 28

7

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 04:24:11 EEST - 3.142.251.91

1
I N T R O D U C T I O N

Unmanned vehicles (UVs) are becoming more popular and have the
potential to revolutionize several civilian application domains, such as
agriculture, transport, surveillance. A common mission pattern is to use
one or more UVs to visit certain points of interest in order to perform
certain sensing/actuation tasks. When planning such missions, one
must take into account the distances that need to be covered by the
UVs in order to reach the different points of interest as well as the time
and energy that is spent in travel.

This problem corresponds to the multiple vehicle routing problem
(mVRP), which has been studied in many variants and for different
optimization objectives. A particular challenging variant is the dynamic
mVRP, where the system exhibits certain dynamics. For instance, new
locations of interest may appear while the planned trip is still in progress,
or the cost of travel for the locations to be visited may differ from what
was initially assumed during planning.

In this work, we focus on a different variant of the dynamic mVRP.
As in other problem versions that have been proposed in the literature,
we assume that the travel cost can vary at runtime. Also, we let the
travel cost correspond to the energy that is spent by a vehicle in order
to move between two locations, and introduce special depot nodes that
can be used to restore the energy reserves of the vehicles. However, we
introduce a hard constraint regarding the energy reserves of the vehicles.
As a result, when the vehicle exhausts its reserves it stops operating
and can no longer contribute to the task of visiting nodes of interest.

This formulation closely models the problem of managing a fleet
of UVs that use batteries or fuel to power their motors, and need to
recharge/change batteries or refuel when running out of energy to be
able to continue their mission. When a UV runs our of energy, it
stops its mission and typically enters a safe mode, which may involve
performing an emergency landing/parking action. When the UV enters
the safe mode, it becomes unavalable and cannot participate in the
mission at hand. To the best of our knowledge, this problem has not
yet been investigated in the literature.

The problem can be decomposed into two distinct parts: the offline
and the online part. In the offline part, the initial routes to be followed
by the UVs have to be constructed. Then, in the online part, the system
dynamics must be monitored in real time in order to adjust the routes

8

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 04:24:11 EEST - 3.142.251.91

introduction 9

accordingly. More precisely, the routes are adjusted according to the
real travel costs that are observed online. This thesis addresses both
parts of the problem.

The main contributions of this thesis are: (i) We describe the above
VRP problem in a formal way. (ii) We propose a metaheuristic approach
to build the initial schedule based on worst-case cost estimates for the
travel costs. (iii) We compare our offline approach with a state of the
art algorithm, showing that it achieves equally or better results but is
much faster in terms of computation time. (iv) We propose an online
heuristic that adjusts the initial conservative schedule according to the
dynamic outcomes of the system. (v) We evaluate the online algorithm
for different topologies, degrees of uncertainty and vehicle autonomy.

The rest of the thesis is structured as follows. Chapter 2 discusses
related work. Chapter 3 gives the problem formulation. Chapter 4
describes the proposed offline algorithm along with the comparison with
the state of the art algorithm. Chapter 5 describes the proposed online
algorithm with the respective evaluation. Finally, Chapter 6 concludes
the thesis and points to some directions for further research.

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 04:24:11 EEST - 3.142.251.91

2
R E L AT E D W O R K

2.1 min-max multiple tsp

The multiple travelling salesman problem (mTSP) has been studied
extensively and there is a wide literature on different solutions for it.
Indicative surveys can be found in [1], [2], [3]. In this thesis, we focus
on the single depot min-max variant of the problem, where all salesmen
start from and have to return back to the same city, and where the
objective is to minimize the longest / most costly path. Next, we give
an overview of the various algorithms that have been proposed for this
problem.

A popular method for tackling the mTSP are genetic algorithms.
A genetic algorithm is basically a metaheuristic that is inspired by
the principle of natural selection. Genetic algorithms start with an
initial population, where each individual (chromosomes) represent a
different solution to the problem. New solutions can be created either
as the result of crossover operations between two different solutions or
by performing mutation operations on an individual solution. Given
that the population is not allowed to exceed a maximum number of
solutions, only the fittest ones are typically selected to remain in the
population while the rest are dropped. In [4], the two-part chromosome
representation is proposed for the mTSP, where a solution is encoded
using a n-length part that is the order of cities together with a m-length
part that corresponds to the assignment of cities to the different salesmen.
This encoding reduces the search space of the problem compared to
other representations. This representation is also used by [5] to devise a
new operator that generates a new solution by removing and reinserting
genes (cities) at each salesman separately while modifying the second
part of the representation in a random way. This approach improves the
search component of the algorithm. The group-based genetic algorithmic
principle was first introduced in [6] in combination with a two-part
chromosome, where the first part encodes a solution of the problem and
the second part includes the groups of the main part. The mutation
and crossover operators are applied in the second part. Based on this
approach, [7] proposed a grouping generic algorithm for the mTSP with
a suitably adapted solution structure. Finally, [8] propose a grouping
genetic algorithm with a different solution representation, where the
solutions are represented as m different routes without any ordering or

10

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 04:24:11 EEST - 3.142.251.91

2.1 min-max multiple tsp 11

mapping to a specific salesman. This makes it possible to reduce the
redundant individuals in a population.

Several researchers have proposed nature-inspired methods. In [9],
the authors propose two metaheuristic solutions for the min-max mTSP,
an artificial bee colony algorithm and an invasive weed optimization
algorithm (IWO). The former is an optimization technique that simu-
lates the foraging behaviour of honey bees. On the other hand, IWO is
a technique inspired by the weed colonization and distribution in the
ecosystem. The IWO algorithm starts from an initial population of
weeds, each representing a solution. Based on the fitness of the weeds
they produce a number of seeds, which in their turn join the previous
population. However, the number of weeds in the population must
remain lower than an upper bound, so there is strong similarity to the
genetic algorithms where the fittest individuals stay in the population.
[10] and [11] approach the problem using an ant colony optimization
algorithm. This is a probabilistic technique, simulating an ant colony
and the pheromone used by ants to communicate with each other in
order to find good paths toward a food source. Simulated ants move to
a customer/city/node randomly, but with a higher chance to pick nodes
with high pheromone trails. An approach based on neural networks
is proposed in [12]. In [13], the authors hybridize the neural network
approach with different metaheuristic techniques such as evolutionary
algorithms and ant colony systems.

In [14] a memetic algorithm is proposed, based on variable neigh-
bourhood descend. A memetic algorithm is a hybridization of a genetic
algorithm with a local search procedure. Variable neighbourhood de-
scend is a local search where multiple neighbourhoods of a solution
are checked until a local minimum is reached. Each neighbourhood
corresponds to a different mutation operator. [15] propose a general
variable neighbourhood search. The general variable neighbourhood
search is a metaheuristic that starts from an initial feasible solution
(which at first is also the current solution), improves the current solution
with a local search procedure (it usually uses multiple operators) and
escapes local minimums with a shaking function.

[16] and [17] propose a tabu search, which is a metaheuristic technique
to escape local minimums. The solution moves to the best neighbour
solution and avoids cycling by keeping a list of forbidden moves, the so
called tabu list. The authors in [16], also propose two exact algorithms
to tackle the min-max problem. [18] propose a task allocation strategy
to solve the mTSP. They present an algorithm that first partitions the
graph to m subgraphs, and then solve the 1-TSP for each subgraph.

In [19], a comparison is made between the min-sum and min-max
mTSP. It is shown that the length of the longest tour in the min-sum
problem is at most m times longer than the length of the longest tour
in the min-max problem with m vehicles, whereas the total cost is at
most m times higher in the min-max than in the min-sum problem.

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 04:24:11 EEST - 3.142.251.91

2.2 dynamic capacitated multiple vrp 12

The fact that min-sum mTSP solutions can be highly suboptimal for
the min-max mTSP justifies the design of heuristic and metaheuristic
algorithms specifically for the latter. But one should also keep in mind
that a min-max solution may result to higher aggregated cost compared
to a min-sum solution.

Finally, there are approaches for finding exact solutions to the mTSP,
such as [16]. However, given the complexity of the problem, these are
not practically applicable when the number of cities is large and there
are many alternative paths that can be followed by the salesmen to visit
them.

2.2 dynamic capacitated multiple vrp

The vehicle routing problem (VRP) and its multiple-vehicle variant
(mVRP) have been studied for different dynamic aspects. Indicative
surveys can be found in [20–22]. Most studies focus on the dynamic
arrival of new targets, also commonly referred to as customers or
customer requests. Some works consider dynamic travel times while
others address the problem of known customers with uncertain service
needs, which are revealed to the vehicles and the planning system when a
customer is actually visited. Below, we provide an overview of indicative
approaches that include the aspect of dynamic travel costs/times and
are thus closer to the problem we tackle in this thesis.

In [23], the authors address the problem where new customer requests
arrive online and there is uncertainty regarding the travel times. Their
online approach re-constructs the routes of the vehicles by using the
insertion heuristic, every time a new demand arrives or when the travel
times change. They further improve the solution with the Or-opt
algorithm [24], where a segment of a route (a number of consecutive
customers) is moved to a different position.

A genetic algorithm is proposed for the same problem in [25], where
the routes of the vehicles are periodically adjusted taking into account
the new information that becomes available regarding changes in the
travel times and new customer requests. Another genetic algorithm
is presented in [26], which is used to produce the initial schedule as
well as to perform any adaptations at a later point in time. In this
case, rescheduling occurs when the estimated travel times for an edge is
updated (once a vehicle reaches a customer) with the latest information
from a dynamic traffic simulator.

In the approach described in [27], every vehicle is allowed to visit
the next customer with some tolerance for delays beyond the expected
arrival times. If this tolerance is exceeded, the customer is removed
from the current route and is reinserted in the best position in the route
of another vehicle. In a continuation of this work, the customer can
also be added back to the route from where it was removed [28]. In
both cases, the paths after the insertions are further improved with the

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 04:24:11 EEST - 3.142.251.91

2.2 dynamic capacitated multiple vrp 13

CROSS exchange algorithm, which is proposed in [29] for exchanging
entire segments (consecutive customers) between routes. As a further
extension, [30] considers a continuous tracking of the vehicle, where
unexpected delays are detected earlier, before the tolerance is actually
exhausted.

The authors of [31] also deal with the problem of newly arriving
requests, in combination with varying travel speeds. In this case, the
speed of the vehicle is known as soon as it starts its trip towards the
next customer. The routes are adapted using four metaheuristics. The
first two approaches are based on a dynamic Variable Neighbourhood
Search (VNS) algorithm, based on static and stochastic information,
respectively. Two additional metaheuristics are presented, using a Mul-
tiple Scenario and a Multiple Plan approach, where multiple solutions
are pursued/maintained in parallel, based on static and stochastic costs,
respectively. Both approaches use as a search procedure the VNS
algorithm.

A wider range of dynamic events is considered in [32], each one possibly
necessitating an adaptation of the scheduled routes. More specifically,
these events are: late arrival of a vehicle at a customer late; timely
arrival of the vehicle at a customer that is no longer valid; cancellation of
a customer request; generation of a new customer request; break-down
of a vehicle; vehicles being stuck in a traffic jam. Two operators are
used to optimize the schedule. In the first case, individual customers
are removed from a route and it is attempted to insert them in another
route. In the second case, customers are exchanged in a pairwise fashion
between routes. The customer insertions are done greedily. The authors
also use a secondary objective function to drive the local search so that
it focuses on more promising neighbourhoods.

The main difference of our work is that we place a hard constraint
on the energy capacity of the vehicles. As a consequence, any dynamic
changes in the travel costs have a direct impact not only on the opti-
mality but also on the feasibility of the schedule. Also, any adaptations
that are made to optimize the routes of the vehicles, must take this
constraint into account in order to produce schedules that are actually
feasible.

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 04:24:11 EEST - 3.142.251.91

3

P R O B L E M F O R M U L AT I O N

3.1 terrain

We model the terrain where the mission takes place as a directed graph
G = (N , E), where N is a set of nodes and E is a set of edges. Each
node ni ∈ N represents a target location that has to be visited by a
vehicle. An edge ei,j ∈ E represents the ability to move directly from
node ni to node nj .

3.2 energy capacity, costs and gains

The vehicles used to visit the nodes have a finite energy storage capacity
B. This can be thought of as the capacity of a fuel tank or the capacity
of a battery, depending on whether the vehicles are equipped with
internal combustion engines or electrical motors. Let b ≤ B denote the
current energy budget (reserves) of the vehicle during travel.

When the vehicle moves between two nodes, its motors consume some
of the available energy budget. Let ci,j denote the cost for moving
from ni to nj over ei,j , also referred to as edge cost. Notably, the
edge costs can be defined based on the Euclidean distance between the
locations of the nodes (Euclidean problem), or they may not be directly
related to the node’s location (general problem). The latter makes it
possible to flexibly model additional factors, like the quality, wideness,
curviness, steepness of a road, which can have significant impact in
travel time/cost. Edge costs can be symmetrical ci,j = cj,i,∀ni,nj ∈ N ,
or asymmetrical ∃ni,nj ∈ N : ci,j 6= cj,i.

If the vehicle has an energy budget b and moves from ni to nj over
ei,j , the remaining energy budget will be brem = b− ci,j . If brem ≤ 0,
the vehicle exhausts its energy and becomes non-operational before
reaching nj .

The vehicle may increase its energy budget by gaining some energy
at so-called depot nodes. One can think of a depot as a refuelling or
recharging station. Let gi be the energy that can be gained at ni. If ni

is not a depot, gi = 0.

14

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 04:24:11 EEST - 3.142.251.91

3.3 path feasibility 15

3.3 path feasibility

A path p is encoded as a sequence of nodes, where p[k], 1 ≤ k ≤ |p| is the
kth node in p and |p| is the number of nodes in the path. Equivalently,
let ei,j ∈ p if p[k] = ni and p[k+ 1] = nj for 1 ≤ k ≤ |p| − 1. Note that
if p is non-empty then |p| ≥ 2. Also, let p[k1 : k2] denote the part of
the p that starts from node p[k1] and ends at node p[k2].

Let remb(b, p) denote the remaining budget of the vehicle if it starts
with an initial budget b and travels along path p. This can be expressed
as follows:

remb(b, p) =

min(B, b+ gp[1])− cp[1],p[2], |p| = 2
remb(remb(b, p[1 : 2]), p[2 : |p|]), |p| > 2

(1)

Namely, if p consists of a single hop, the remaining budget is equal
to the initial budget plus the energy gain (if any) at the start node p[1]
less the edge cost for moving from p[1] to p[2]. Note that the gain at the
destination node p[2] (if any) is not taken into account as this cannot
be used to perform the hop in question. If p includes more than one
hops, the remaining budget at the end of p is equal to the remaining
budget for the path without the first hop, starting with a budget that
is equal to the remaining budget after taking the first hop. In this case
too, the remaining budget at the end of the path does not include the
gain at the destination node.

Based on the above, we say that a path p is feasible for an initial
budget b, if rem(b, p[1 : k]) > 0, 1 < k ≤ |p|. In other words, p is
feasible if the vehicle will not exhaust its energy budget at any point
along p. Also, let nodes(p) denote the set of nodes that are part of p.

3.4 path completion time and schedule makespan

The edge cost ci,j represents the energy spent by a vehicle in order to
move from ni to nj . In addition, the edge cost is a proxy for the time
that is required to perform this movement. Let time() be a function
that transforms edge costs to time. Then, the amount of time that is
needed to complete path p is d(p) =

∑
ei,j∈p time(ci,j).

Let a schedule s[] consist of M paths s[m], 1 ≤ m ≤ M . Assuming
that each of these paths can be pursued in parallel, the makespan of s
is maxM

m=1d(s[m]). In other words, it is equal to the completion time
of the most costly path.

3.5 problem statement

Let there be M vehicles that can travel independently. The objective is
to find a feasible schedule such that the vehicles will visit all the nodes
of interest with the smallest possible cost/delay. More formally, s[]

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 04:24:11 EEST - 3.142.251.91

3.5 problem statement 16

should be chosen so that ∪M
m=1nodes(s[m]) = N and maxM

m=1d(s[m])

is minimized.
In this work, we focus on a dynamic version of the problem. Namely,

the edge/travel costs are unknown to the fleet scheduler and may vary
in time. More specifically, we model the edge cost ci,j as a random
variable over the range [cmin

i,j ..cmax
i,j] with an expected/mean value of

cmean
i,j .

We assume that depot nodes are known in advance and have infinite
energy supply so that they can always refuel/recharge any vehicle to
the maximum capacity B. In addition, we let all vehicles start from
a depot node, and require that they also return back to a depot node.
The makespan applies to the fully successful completion of the mission:
all nodes have been visited and all vehicles have safely returned to a
depot. Last but not least, we assume that there are no dead-ends, that
is, the maximum edge costs cmax

i,j and maximum capacity B are so that
each node can be visited by a vehicle that starts from a depot and then
has enough energy to return back to a depot.

The offline algorithm solves the classic mVRP for static/fixed costs.
For the online problem, we modify the offline algorithm to take into
account the vehicle’s capacity constrains and the need to return to the
depot node in order to refuel. In this case, the static/fixed edge costs
used in the algorithm are equal to the worst case costs cmax

i,j . This
guarantees that the produced schedule will be feasible irrespectively
of the system dynamics. The online algorithm starts with the offline
schedule and adjusts it during mission time as a function of dynamic
changes in travel costs. The online algorithm also conservatively assumes
worst case edge costs cmax

i,j . As a result, the schedule is optimized in
terms of cost/time without violating feasibility.

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 04:24:11 EEST - 3.142.251.91

4

O F F L I N E A L G O R I T H M

The proposed algorithm is a metaheuristic based on the principle of a
tournament selection (TS) heuristic combined with a large neighbour-
hood search (LNS) method, originally proposed by [33]. Each solution
is a schedule s[] that includes a separate path s[m] for each salesman
1 ≤ m ≤M . The representation of the individual paths is similar to [8],
[9] and [14]. As a fitness function for a given solution, we use the inverse
of the cost of the most expensive path. When comparing between two
solutions, we prefer the one for which the fitness function returns the
larger value.

In the sequel, we present the algorithm in a top-down fashion. We
start with the main logic and then proceed to discuss the different
functional components of the algorithm in more detail.

4.1 ts-lns algorithm

The starting point of the algorithm is the TS-LNS() function, de-
scribed in Algorithm 1. It builds an initial population consisting of
MaxPopSize random solutions, and subsequently evolves this popula-
tion in an iterative fashion.

In each iteration, the fittest solutions from the previous population
are kept, decreasing the size of the population by a factor f . For each
solution in the remaining population, a large neighbourhood search
(LNS) is performed.

The iterations are repeated until the size of the population drops
to/below a pre-specified threshold MinPopSize. The fittest of the
remaining solutions is returned as the end result.

4.2 large neighbourhood search

The large neighbourhood search procedure is described as a separate
function LNS() in Algorithm 2. It takes a solution as input and returns
as a result another solution, which is produced by trying out a number
of so-called mutations. The number of mutations to be performed is a
parameter, provided by the top-level TS-LNS() function.

Each mutation generates a new solution based on the best solution
found up to that point, first by destroying it and then by repairing it.

17

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 04:24:11 EEST - 3.142.251.91

4.3 node insertion 18

Algorithm 1 TS-LNS algorithm for M salesmen (option rmvopt sets
the node removal method)

function TS-LNS(N ,M , rmvopt)
nullsol← ∅
pop← {}
repeat M times

nullsol = nullsol+ {[n0,n0]}
end repeat
repeat MaxPopSize times

pop← pop+ Insert(nullsol,N)

end repeat
sort(pop)

mut← initLNSMutations()
repeat

pop← getFittest(pop,size(pop)/f)
for each sol ∈ pop do

sol← LNS(sol,mut, rmvopt)
end for
sort(pop)

mut← adjustLNSMutations(mut)
until size(pop) ≤MinPopSize

return getFittest(pop, 1)
end function

The destruction operation involves the removal of some nodes from their
assigned paths, and the repair operation reinserts those nodes to some
(other) paths. If the new solution is fitter than the one that was used
as a basis for the mutation, it is adopted as the best solution, which, in
turn, will be used as a basis for the remaining mutations.

The node insertion and removal methods used to implement the
mutations are discussed separately. Note that LNS() is designed to
work using two different node removal methods. The selection is done
via the rvmopt parameter, which is set by the user when invoking the
top-level TS-LNS() function. In any case, the number of nodes to be
removed and then reinserted in every mutation is decided randomly.
However, the interval for this random pick is defined as a function of
either |N | or

√
|N |, depending on the node removal method used.

4.3 node insertion

The node insertion logic is given as a separate function Insert() in
Algorithm 3. This seems to be similar to the approach used in [9],
however the authors only give a very informal (verbal) description for
it.

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 04:24:11 EEST - 3.142.251.91

4.3 node insertion 19

Algorithm 2 LNS method (option rmvopt sets the node removal
method)

function LNS(sol,nofmutations, rmvopt)
if rmvopt = RAND then

lower,upper ← α ∗ |N |,β ∗ |N |
else if rmvopt = PROXIMITY then

lower,upper ← α ∗
√
|N |,β ∗

√
|N |

end if
best← sol

repeat nofmutations times
rmv ← random(lower,upper)
if rmvopt = RAND then

tmp, free← RmvR(best, rmv)
else if rmvopt = PROXIMITY then

seeds← random(1,upper/10)
tmp, free← RmvP(best, rmv, seeds)

end if
new ← Insert(tmp, free)
if fitness(new) > fitness(best) then

best← new

end if
end repeat
return best

end function

Briefly, a node is picked randomly from the set of nodes to be in-
corporated in the solution, and an exhaustive search is performed to
find the best path and the best position within that path for the node
in question. The objective is for the insertion to minimize the cost of
the worst (most costly) path in the solution. The current solution is
updated accordingly. The process is repeated until all nodes have been
added, and the resulting solution is returned.

The paths are considered in such an order so that the worst path
with the largest cost will be checked last. This way, the worst path will
be checked only if the node’s insertion at any other path makes that
path even more costly than the currently worst path. Also, if several
insertion options result to the same worst-case cost, as a tie-break we
pick the one that minimizes the cost increase for the path where the
node is added. These optimizations are not shown in Algorithm 3, for
brevity.

Figure 4-1 gives an indicative example for the insertion of a node in
a solution that includes two paths (for two salesmen). In this case, the
node is added to the blue path (on the right) because this does not
increase the cost of the worst (most costly) orange path (on the left).

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 04:24:11 EEST - 3.142.251.91

4.4 node removal (path destruction) 20

Also, the node is added in the blue path in a position that minimizes
the cost increase.

The Insert() function is invoked in two places. On the one hand, it is
used in the top-level TS-LNS() function (Algorithm 1) to construct the
initial population. In this case, different random solutions are generated
by inserting each time the full set of nodes to an empty solution, thereby
building a solution from scratch. On the other hand, Insert() function
is used in the LNS() function (Algorithm 2) in order to repair a solution,
by adding-back the nodes that have been previously removed from it in
the destruction process.

Algorithm 3 Node insertion method
function Insert(sol,nodes)

cur ← sol

while nodes 6= ∅ do
minwcost←∞ . min cost of worst path
nj ←rmvNodeRandom(nodes)

for each p ∈ cur (increasing cost order) do
for each ni ∈ p do

p′ ← addNode(p,ni,nj)

wc← worstCost(cur− p+ p′)

if wc < minwcost then
bestp, bestp′ ← p, p′

minwcost← wc

end if
end for

end for
cur ← cur− bestp+ bestp′

end while
return cur

end function

4.4 node removal (path destruction)

For the destruction of a given solution, we support two different node
removal methods, which are described in Algorithm 4.

The first method, shown in function RmvR(), removes a number of
nodes from the given solution in a random way. Figure 4-2 gives an
example of such random node removal, followed by the node insertion.
This method is suitable for the general form of the problem, where
edge costs do not necessarily reflect the Euclidean distance between the
nodes.

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 04:24:11 EEST - 3.142.251.91

4.4 node removal (path destruction) 21

Figure 4-1: Node insertion sequence. Starting with the orange and blue paths,
all possible insertion points are checked (only the best option for
each path is shown). The node is finally inserted in the blue path,
because the best node insertion in the orange path would increase
its total cost to 14, whereas the cost of the blue path increases to
12 thus the cost of the worst / most expensive path remains 12.

Figure 4-2: Sequence of random destruction with a following repair for a
solution with two paths. Destruction is performed by removing a
total of six nodes. The nodes are all chosen randomly, and then
they are reinserted in the solution using the node insertion method
(insertion details not shown).

Figure 4-3: Sequence of proximity-based destruction with a following repair
for a solution with two paths. Destruction is performed based
on two randomly selected seed nodes, which happen to belong to
different paths. For each seed, another two nodes are removed,
chosen based on their proximity to the respective seed node. Note
that the nodes are chosen based on their physical proximity to
the seed, and may be part of a different path. In total, six nodes
are removed, and are reinserted in the the solution using the node
insertion method (insertion details not shown).

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 04:24:11 EEST - 3.142.251.91

4.4 node removal (path destruction) 22

Algorithm 4 Node removal methods
function RmvR(sol,nofnodes)

cur ← sol

nodes← pickRandom(N ,nofnodes)
free← ∅
for each n ∈ nodes do

p← pathOf(cur,n)
p← rmvNode(p,n)
free← free+ n

end for
return cur, free

end function

function RmvP(sol,nofnodes,nofseeds)
cur ← sol

nofnodes′ ← nofnodes/nofseeds
seeds← pickRandom(N ,nofseeds)
free← ∅
for each s ∈ seeds do

repeat nofnodes′ times
n← nearestNode(s) . incl. s itself
p← pathOf(cur,n)
p← rmvNode(p,n)
free← free+ n

end repeat
end for
return cur, free

end function

The second method, in function RmvP(), removes nodes in a more
targeted way, assuming that the edge costs reflect the Euclidean distance
between nodes. The rationale is to remove nodes that are in the
proximity of so-called seed nodes (the number of seeds is an additional
parameter of this method). The seed nodes are picked randomly, but
the rest of the nodes to be removed are picked with reference to the
seed nodes. More specifically, for each seed the method removes the
nodes that are closer to it, based on the costs of the edges that connect
the seed to other nodes. As a form of balancing, the total number of
nodes to be removed is evenly distributed among the seed nodes. We
refer to this method as the proximity-based method, as opposed to the
fully random node removal method. Figure 4-3 gives an example of the
proximity-based node removal, followed by node insertion.

The node removal functions are invoked from the LNS() function,
for a randomly chosen number of nodes (Algorithm 2). When using
the proximity-based node removal method, the number of seed nodes is
also chosen in random but from a smaller interval so that the number if

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 04:24:11 EEST - 3.142.251.91

4.5 complexity 23

seeds is guaranteed to be smaller than the total number of nodes to be
removed. Note that RmvR() is always invoked for a number of nodes
that is in the order of |N |, whereas RmvP() is invoked for a number
of nodes in the order of

√
|N |. The rationale for removing (and then

reinserting) fewer nodes when using the proximity-based method is that
since in this case removal is more targeted, around relatively few seed
nodes, removing a large number of nodes in the same neighbourhood
would lead to an overly aggressive destruction of the current solution,
which, in turn, may actually reduce the chances of finding a better
assignment of those nodes to different paths.

4.5 complexity

We discuss the complexity of the algorithm in a bottom-up fashion,
starting from the node insertion and removal functions, then for the
large neighbourhood search and finally for the entire algorithm. For
convenience, we let N = |N |.

The Insert() function checks for every node to be added every
possible insertion point in the paths of the current solution. Given that
an exhaustive search is performed for each node, this procedure has
complexity of O(k×N), where k is the number of nodes that need to
be added.

The random node removal function RmvR() has O(k) complexity,
where k is the number of nodes to remove. The same holds for the
proximity-based removal function RmvP(), where k is the total number
of nodes to be removed (the seeds plus the nodes in proximity).

In each mutation that is performed within LNS(), the number k
of nodes to be removed from and then reinserted into the solution is
chosen randomly. However, recall that when using RmvR() then k

is in the order of N , but when using RmvP() then k is in the order
of
√
N (see Algorithm 2). As a consequence, in the first case, the

combined complexity of every mutation is O(N) +O(N ×N) which
translates to O(N2), whereas in the second case the complexity is
O(
√
N) +O(N ×

√
N) or equivalently O(N ×

√
N).

Finally, we focus on the top-level TS-LNS() function (Algorithm 1).
Note that the number of LNS() invocations decreases in each itera-
tion as the size of the population becomes smaller, but the number
of mutations that are performed in each invocation of LNS() is also
adjusted. Assuming an average of K total LNS mutations in each
top-level iteration, and a total number of I iterations, the overall com-
plexity of the algorithm is O(I ×K ×N2) when using the random node
removal method and O(I ×K ×

√
N ×N) when using the proximity-

based method. Note that, in turn, I depends on the size of the initial
population MaxPopSize, the lower threshold for the population size
MinPopSize and the rate f at which the size of population is decreased
in each iteration.

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 04:24:11 EEST - 3.142.251.91

4.6 evaluation of offline algorithm 24

4.6 evaluation of offline algorithm

We compare the proposed TS-LNS algorithm with a state of the art
algorithm, the IWO algorithm proposed in [9]. A recent comparison that
is presented in [14] shows that IWO is dominant in various benchmark
problems. Next, we describe the experimental setup and configurations
of the two algorithms, and then we discuss the results obtained through
experiments on both Euclidean and general problems/graphs.

4.6.1 Setup/configuration

We implement the IWO algorithm and the TS-LNS algorithm in Python
3.5.2, and run them on a Ubuntu 16.04 distribution in a VM using
Vmware on top of Windows 10. The machine we use to run the experi-
ments has an Intel i7-8550u CPU at 1.8GHz-4.0GHz and 8GB of RAM.
The CPU has 4 physical cores with hyperthreading support for a total
of 8 threads. The VM is configured to have 6 virtual cores (mapped to
6 threads) and 4GB of RAM.

We configure the IWO algorithm to perform 100 top-level iterations.
Each such iteration leads to 300 node removal/insertion operations,
yielding a total of 30000 operations.

The TS-LNS algorithm is configured to run for MaxPopSize = 100
and MinPopSize = 6. The rate of population reduction is set to f = 2,
so in every iteration we keep only half of the population, the fittest 50%
of the solutions. In this configuration, TS-LNS performs four top-level
iterations.

Regarding the number of LNS mutations that are performed on
each solution of the current population, we initially start with 200
LNS mutations, increasing this number by 200 in each iteration. The
rationale is for the search effort to be smaller when the number of
solutions is large, and increase as the number of solutions gets smaller.
More specifically, 200 mutations are performed for each of the fittest 50
random solutions in the first iteration, 400 LNS mutations are performed
for each of the fittest 25 solutions in the second iteration, and 600 LNS
mutations are performed for each of the fittest 12 solutions in the third
iteration. For the remaining 6 solutions, as an exception, only 467
LNS mutations are performed in order to have a total of 30002 node
removal/insertion operations, on par with the IWO algorithm.

We refer to TS-LNS with the random node removal method as TS-
LNS-g given that this configuration is more suitable for the general
form of mTSP. In this case, we set α = 0.2 and β = 0.4, so that
the interval that is used to randomly pick the number of nodes to be
removed is [0.2 ∗N ..0.4 ∗N]. TS-LNS with the proximity-based node
removal method is referred to as TS-LNS-e as this is more suitable for
the Euclidean form of mTSP. When using this configuration, we set
α = 1.0 and β = 4.0, so the respective interval is [

√
N ..4 ∗

√
N].

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 04:24:11 EEST - 3.142.251.91

4.6 evaluation of offline algorithm 25

Table 4-1: Results of IWO.
Benchmark M Cost Avg Cost StD Exec (s)

eil51
3 159.56 0 16.58
5 118.13 0 18.71
10 112.08 0 22.86

kroB100
3 8503.41 22.73 56.69
5 7008.01 15.06 63.61
10 6700.04 0 75.57

ch150
3 2455.21 20.66 124.20
5 1768.66 8.86 135.26
10 1554.64 0 162.98

lin318
3 17138.27 161.83 593.22
5 12379.09 68.36 651.16
10 9816.99 20.62 751.88

Table 4-2: Results of TS-LNS-g.
Benchmark M Cost Avg Cost StD Exec (s)

eil51
3 159.56 0 13.39
5 118.13 0 15.03
10 112.08 0 18.13

kroB100
3 8497.79 19.69 43.98
5 6982.58 17.05 48.02
10 6700.04 0 59.40

ch150
3 2446.41 15.03 97.41
5 1764.80 8.68 107.05
10 1554.64 0 128.31

lin318
3 16556.07 109.40 451.50
5 11701.93 53.67 486.72
10 9731.16 0 581.72

4.6.2 TS-LNS-g vs. IWO for Euclidean problems

In a first set of experiments, we compare TS-LNS-g against IWO. As
input graphs, we use the eil51, kroB100, ch150 and lin318 benchmarks
from the TSPLIB suite [34]. These correspond to Euclidean problems
for graphs with 51, 100, 150 and 318 nodes, respectively. For each
benchmark, we run the algorithms for a team of 3, 5 and 10 salesmen.
The results for IWO are given in Table 4-1 and for TS-LNS-g in Table 4-2.
We report the averages over 20 runs.

As fas as the quality of the solutions is concerned, TS-LNS-g produces
the same solutions as IWO for the small problem with 51 nodes, and
equal or better solutions for the larger problems. More specifically, the
solutions of TS-LNS-g are on average marginally better, by 0.1% and
0.2%, than those of IWO for 100 and 150 nodes, respectively. For the
problem with 318 nodes, the solution of TS-LNS-g is on average 3.2%
better than IWO. The standard deviation is small in all cases, with
TS-LNS-g having an even smaller deviation than IWO.

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 04:24:11 EEST - 3.142.251.91

4.6 evaluation of offline algorithm 26

Figure 4-4: Speed-up of TS-LNS-g vs. IWO.

We note that both algorithms manage to find the optimal solution
in the problems with 51, 100 and 150 nodes with 10 salesmen. In all
these cases, the cost of the solution is indeed equal to twice the cost
of the edge that connects the depot node and the node that is farthest
away from it (it is impossible for the worst route to have a lower cost).
Moreover, TS-LNS-g also finds optimal solution for the problem with
318 nodes and 10 salesmen.

At the same time, TS-LNS-g is considerably faster than IWO, as
shown in Figure 4-4. The average speed-up is equal to 1.25x, 1.30x,
1.27x and 1.31x for the benchmarks with 51, 100, 150 and 318 nodes,
respectively, at an overall average of 1.28x. Note that both algorithms
perform the same number of mutations, with each mutation (node
removal and reinsertion operation) having O(N2) complexity. However,
the mutations of TS-LNS-g involve fewer nodes, on average 0.3×N vs.
0.5×N in IWO, leading to a smaller total number of node removal/rein-
sertions. This reduction in the search space does not seem to have any
impact on the solution quality of TS-LNS-g.

4.6.3 TS-LNS-g vs.TS-LNS-e for Euclidean problems

In a second series of experiments, we run TS-LNS-e for the same same
set of benchmarks as above. Recall that TS-LNS-e is designed to work
well specifically for Euclidean problems. Table 4-3 shows the results.
Again, the averages over 20 runs are reported.

We observe that TS-LNS-e produces the same results as TS-LNS-g
and IWO for the problems with 51 nodes, and finds better solutions
for all larger problems. Namely, for the problems with 100, 150 and
318 nodes, the solutions of TS-LNS-e are on average 0.1%, 0.7% and
1.5% better than TS-LNS-g, and roughly 0.3%, 0.9% and 4.6% than
the solutions found by IWO.

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 04:24:11 EEST - 3.142.251.91

4.6 evaluation of offline algorithm 27

Table 4-3: Results of TS-LNS-e.
Benchmark M Cost Avg Cost StD Exec (s)

eil51
3 159.56 0 13.98
5 118.13 0 15.87
10 112.08 0 19.41

kroB100
3 8482.50 5.88 34.43
5 6965.85 17.56 38.81
10 6700.04 0 46.98

ch150
3 2416.55 13.47 65.09
5 1747.36 5.66 72.32
10 1554.64 0 86.62

lin318
3 16113.78 46.12 215.62
5 11500.98 43.78 236.42
10 9731.16 0 281.31

The standard deviation of TS-LNS-e is less or equal to that of TS-
LNS-g in most of the problems. As an exception, for 100 nodes and 5
salesmen the deviation of TS-LNS-e is slightly larger than TS-LNS-g for
the same problem, but it is also higher than that of TS-LNS-e itself for
the problem with 100 nodes and 3 salesmen. This could be an indication
that it might be beneficial to take into account the number of salesmen
when deciding the number of nodes to be removed/reinserted in each
mutation.

Importantly, TS-LNS-e is also much faster than TS-LNS-g for bigger
problem sizes, as shown in Figure 4-5. The average speed-up is 1.26x,
1.49x and 2.07x, for the benchmarks with 100, 150 and 318 nodes,
respectively. This performance is even more impressive if compared
with IWO, yielding a speed-up of 1.64x, 1.89x and 2.71x, for these
benchmarks. This significant improvement is due to the lower O(N ×√
N) complexity of TS-LNS-e compared to O(N2) for TS-LNS-g and

IWO.
Note, however, that TS-LNS-e is somewhat slower than TS-LNS-g for

the smallest problem with 51 nodes. The reason is that, in this particular
case, the interval [

√
N ..4 ∗

√
N] used in TS-LNS-e to decide the number

of nodes to be removed/reinserted in each mutation, becomes [7..29]
and has a much larger upper bound than the interval [0.2 ∗N ..0.4 ∗N]

used in TS-LNS-g, which is [10..20]. As a result, in each mutation,
TS-LNS-e removes/reinserts on average a larger number of nodes than
TS-LNS-g.

4.6.4 TS-LNS-g/e vs. IWO for general problems

In a last series of experiments, we evaluate the algorithms using as
input more general graphs. For this purpose we use three different
benchmarks of the TSPLIB suite [34], kro124p, gr120 and ftv170 with
100, 120 and 171 nodes, respectively. In all cases, the edge costs are

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 04:24:11 EEST - 3.142.251.91

4.6 evaluation of offline algorithm 28

Figure 4-5: Speed-up of TS-LNS-e vs. TS-LNS-g.

Table 4-4: Solution cost of the algorithms for general graphs.
Benchmark M IWO TS-LNS-g TS-LNS-e

kro124p
3 13470.05 13539.90 13313.2
5 9137.3 9157.15 8990.55
10 6419.4 6343.45 6322.45

gr120
3 2614.15 2604.95 2580.50
5 1834.25 1823.0 1812.30
10 1558.0 1554.40 1555.35

ftv170
3 1026.75 1026.1 986.65
5 688.85 673.63 654.15
10 447.70 432.37 427.53

non-Euclidean. In gr120 the edge/travel costs are symmetrical, whereas
in kro124p and ftv170 they are asymmetrical. In order for TS-LNS-e
to work on graphs with asymmetrical costs, the nodes to be removed
around a seed are chosen based on the two-way trip cost between them.

Table 4-4 reports the cost of the solutions that are generated by each
algorithm, averaged over 20 runs. As in the previous experiments, the
standard deviation is small. Also, the previous observations regarding
the execution speed of the algorithm still hold. This information is not
reported here, for brevity.

It can be seen that both TS-LNS variants once again produce solutions
that are close and most of the times even better than those of IWO,
yielding an improvement of up to 3.4% for TS-LNS-g or even 5.0% for
TS-LNS-e. In fact, TS-LNS-e always generates better solutions than
IWO. We attribute this (somewhat surprisingly) good performance
to the fact that these general benchmark graphs are non-random and
specifically in the case of gr120 and ftv170 they are based on real-world
routes and travel costs. So, even though the costs are not a direct
function of the straight-line Euclidean distances, the most significant
costs can still have a strong affinity to them.

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 04:24:11 EEST - 3.142.251.91

4.7 adaptations for capacitaty constraints 29

4.7 adaptations for capacitaty constraints

The TN-LS algorithm can be adapted in a straightforward way for
vehicles that have capacity/energy constraints and need to reload/refuel
at a depot node. More specifically, the feasibility of a node insertion
must be checked before adding the node to a path. The insertion
is considered as a candidate only if it does not violate the capacity
constraint of the corresponding vehicle. If a node cannot be inserted in
any of the M paths, a new path is created for visiting that node, and
this is assigned to the vehicle with the smaller makespan. As a result,
each vehicle m may have more than one paths assigned to it, and each
entry s[m] in the schedule contains a list of paths(as opposedto just one
path). A new path is always added at the end of the vehicle’s path list.

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 04:24:11 EEST - 3.142.251.91

5

O N L I N E A L G O R I T H M

5.1 representation of schedules and state informa-
tion

We represent the schedule and state of a given vehicle as a tuple
(paths[], rembest[], rembupd), where paths[] is the list of paths that have
been assigned to it. Each path starts from a depot node and end at a
depot node, thus the vehicles always start a new path with the maximum
energy budget B. Note that the end depot node of paths[i] is the start
depot node of paths[i + 1]. The estimated remaining budget after
having completed paths[i] is stored in rembest[i] = remb(B, paths[i]).

The path that is currently followed by a vehicle is always the first
path in the list paths[1]. When this path is completed, it is removed
from the list, and the vehicle begins to follow the next (first) path in
the list. Each time the vehicle performs the next hop along the current
path, it experiences the actual cost for this movement. This can be
different than what was estimated when that path was planned. To
keep track of this deviation, the updated estimate for the remaining
budget at the end of the current path is stored in rembupd.

The complete schedule and state information s[] is as a list of M
tuples, where s[m], 1 ≤ m ≤M corresponds to the mth vehicle that is
used to visit the nodes of interest.

5.2 cost estimation

There are different ways to estimate the remaining budget when a path
is planned or it is updated. One policy could be to use the average
/ expected edge costs. Another policy would be to use the maximum
possible (worst-case) costs.

Optimistic approaches may lead to better schedules with a smaller
makespan, but they also introduce the risk of vehicles exhausting their
energy budget and becoming non-operational. This, in turn, can have
a very negative impact to the mission, and lead to far worse results.
Conservative approaches may generate less optimal schedules but reduce
the probability of some vehicle becoming non-operational.

In this work, we explore the most conservative approach. Namely, we
estimate the remaining budgets based on the maximum possible (worst-

30

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 04:24:11 EEST - 3.142.251.91

5.3 main loop 31

case) edge costs. This way it is guaranteed that the generated schedules
are always feasible (s[m].rembest[i] > 0,∀m, i). In turn, this guarantees
that all nodes will be visited and all vehicles will manage to return
to a depot. Moreover, this means that any cost deviations concerning
the current path of a vehicle will result in greater energy reserves
than the ones estimated when that path was planned (s[m].rembupd >

s[m].rembest[1]).

5.3 main loop

The algorithm starts from an initial (feasible) schedule s[]. Then, the
vehicles are instructed to commence the mission, and start following
the paths that have been assigned to them in the order in which they
appear in their path lists.

The high-level logic of the algorithm is shown in the form of pseu-
docode in Algorithm 5. Each iteration corresponds to the attempt of
one or more vehicles to perform the next hop in their current path. If
the actual cost for this movement is different than what was estimated
when the path was planned, the state of the vehicle is updated, adjusting
s[m].rembupd accordingly.

If this wasn’t the last hop along the current path, it is checked
whether there is a large relative deviation between the updated remain-
ing budget for that path s[m].remupd and the corresponding estimate
s[m].remest[1] that was made when the path was planned. If such
a deviation exceeds a threshold, a flag is set. The threshold for this
rescheduling is configurable.

The flag is checked after the state of all vehicles has been updated.
If it is set, this triggers a rescheduling attempt. The heuristic for this
is abstracted via function LNS() and is discussed in more detail in
the sequel. The rescheduling may change parts of or even the entire
schedule s[], adjusting the paths and state of the vehicles accordingly.

The algorithm ends when all vehicles have completed the paths that
were assigned to them. Recall that paths are planned in a conservative
way, thus the schedules generated are always feasible and no vehicle
will run out of energy during travel.

5.4 reschedule heuristic

The reschedule optimization technique follows the principle of Large
Neighbourhood Search (LNS), which was originally proposed in [33].
Its main advantage is that it can explore larger neighbourhoods than
local search algorithms. Additionally, with the right removal/reinsertion
functions, the search can check promising neighbourhoods in a fast way.

In our case, we use LNS to find a new schedule by performing a number
of mutations to the current schedule. The heuristic works along the lines
of the LNS() function discussed in the previous chapter (Algorithm 2).

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 04:24:11 EEST - 3.142.251.91

5.5 evaluation of online algorithm 32

Algorithm 5 Online scheduling algorithm.
function Scheduler(s, threshold,nofmutations)

while ∃m : s[m].paths[1] 6= ∅ do
reschedule← false

for each m performed kth hop along its path do
i, j ← s[m].paths[1][k], s[m].paths[1][k+ 1]
s[m].remupd ← s[m].remupd + (cmax

i,j − ci,j)

if k 6= |s[m].paths[1]| − 1 then
dev ← s[m].rembupd − s[m].remest[1]
if dev/s[m].remest[1] > threshold then

reschedule← true

end if
else

s[m].paths[].pop() . remove first path
end if

end for
if reschedule then

s← LNS(s,nofmutations)
end if

end while
end function

As a node removal function, we use RmvP() (Algorithm 4). Node
insertion is done as usual, via function Insert() (Algorithm 3, with the
adaptations described in Section 4.7 in order to deal with the capacity
constaints. After each node removal/insertion, the internal schedule
information is updated accordingly.

5.5 evaluation of online algorithm

5.5.1 Experimental setup

We evaluate the proposed algorithm using simulations. We conduct our
experiments for a 11× 11 grid of 121 nodes. The nodes represent the
geographical locations of an area that has to be scanned by a team of
vehicles exhaustively, by visiting all nodes. We assume that the vehicles
can freely move from any node ni to any other node nj in a straight
line. This is typically the case for aerial unmanned vehicles (UAVs) that
scan a large area from a relatively high altitude that keeps them safely
above trees and power lines. Thus, there is an edge between every two
nodes.

The cost of each edge ei,j represents the cost for moving from ni to
nj . This cost is not known with certainty, but randomly varies following
a uniform distribution [cmin

i,j ..cmax
i,j]. The actual cost is discovered only

at runtime, when a vehicle attempts to perform that movement. The

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 04:24:11 EEST - 3.142.251.91

5.5 evaluation of online algorithm 33

upper and lower bounds of the cost distribution are a function of the
Euclidean distance between the nodes’ positions. More specifically,
cmin

i,j = α × dist(ni,nj) and cmax
i,j = β × dist(ni,nj). We perform

experiments for small uncertainty where α = 0.5 and β = 1, and large
uncertainty where α = 0.25 and β = 1. Without loss of generality, we
let the amount of time that is needed for a vehicle to cover a distance
be a linear function of the respective edge cost.

To capture the uncertainty of the travel cost, we create 50 different
scenarios. In each scenario, the cost of every edge is randomly chosen
based on the respective random distribution. The actual costs are
discovered only when the vehicles cross the respective edges. Given that
each node has to be visited once and that the graph is fully connected,
every edge is traversed at most once, thus it suffices to have only one
randomly chosen cost value for each edge.

In our experiments we have a single depot node, and investigate
two different scenarios regarding its location. In the peripheral depot
scenario, the depot node is located at one of the corners of the grid. In
the center depot scenario, the depot node is located at the center of the
grid.

We use a fleet of M = 3 vehicles, which all have the same energy
capacity. The capacity of the vehicles is set to the worst-case round-trip
cost, between the depot node and the node that is farthest away from
it. This ensures that it is indeed possible to visit all nodes, even if the
edge costs turn out to be the maximum possible.

5.5.2 Configurations of the online algorithm and reference

We test the online algorithm for various configurations. On the one
hand, we experiment with four rescheduling thresholds 0.2, 0.1, 0.05
and 0.0, referred to as conservative, moderate, aggressive and always
configurations, respectively. Recall that lower thresholds lead to more
frequent/earlier rescheduling. Note that in the always configuration the
algorithm reschedules whenever a deviation is experienced, irrespectively
of how significant this is relative to the path cost estimates. On the
other hand, we vary the number of iterations performed in the LNS
component of the algorithm, from 25, 50 to 100 iterations. We refer to
this as low, medium and high search intensity, respectively.

As a reference, we use static schedules that are produced by the offline
algorithm that was presented in Chapter 4, which provides good results
for the min-max mTSP, with the adaptations described in Section 4.7
to tackle the vehicle capacity and path feasibility constraints. The
offline schedule is generated based on the worst-case cost of each edge,
and thus is guaranteed to be feasible (no vehicle will ever run out of
energy) independently of the actual costs that will be experienced by
the vehicles during the mission. The offline schedules are also used as
the initial schedules for the online algorithm.

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 04:24:11 EEST - 3.142.251.91

5.5 evaluation of online algorithm 34

5.5.3 Results

We run each configuration of the online algorithm 5 times for each of
the 50 edge cost scenarios (for each depot and uncertainty scenario).
Figure 5-1 shows the average makespan of the different configurations
as a percentage of the makespan of the offline algorithm. At the top,
Figure 5-1a and Figure 5-1b show the results for peripheral depot
scenario, while Figure 5-1c and Figure 5-1d at the bottom show the
central node scenario. The figures on the left show the results for the
small uncertainty scenario, and the ones on the right for the large
uncertainty scenario. For the two “extremes” of our experimental study,
the improvement varies from 2% for the most conservative rescheduling
and low search intensity configuration in the peripheral depot node
scenario with small uncertainty, up to nearly 20% for the most aggressive
rescheduling and highest search intensity configuration in the central
depot node scenario with large uncertainty.

Increasingly better results are achieved when the online algorithm
reschedules more aggressively (more often). This is because the paths
are planned based on worst-case cost estimates, so any deviations lead
to higher reserves in the vehicles. The sooner one replans during the
mission, the better are the chances of a significant optimization in
the paths of the vehicles, as there is still a larger number of unvisited
nodes. More conservative (less frequent) rescheduling misses such
opportunities. Even though the accumulated reserves are larger in this
case, the rescheduling takes place after having visited several nodes, so
there is actually less room for major optimizations. Also, as expected,
better results are achieved for the more intensive search configurations.

The improvements are more significant when the uncertainty about
the edge costs is larger. Given that path planning is based on worst-case
estimates, any scheduling decisions become increasingly sub-optimal
under larger uncertainty, and this can only be repaired by rescheduling
more often.

Another observation is that the improvements are more significant in
the central depot scenario for the conservative, moderate and aggres-
sive reschedule policies. The reason is that the paths are shorter so
the respective worst-case estimates are smaller than in the peripheral
scenario. As a consequence, the same absolute cost deviations meet the
respective thresholds more often, leading to more frequent reschedul-
ing attempts. Notably, an equally good improvement is achieved in
both depot scenarios with the always reschedule policy. In this case,
a rescheduling attempt is done at the slightest cost deviation (even
if minor compared to the estimated path costs), thus rescheduling is
performed equally frequently in both scenarios.

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 04:24:11 EEST - 3.142.251.91

5.5 evaluation of online algorithm 35

(a) Peripheral depot, small uncertainty

(b) Peripheral depot, large uncertainty

(c) Central depot, small uncertainty

(d) Central depot, large uncertainty

Figure 5-1: Makespan of the online algorithm vs. the offline algorithm.

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 04:24:11 EEST - 3.142.251.91

5.5 evaluation of online algorithm 36

Figure 5-2 shows the frequency of rescheduling and actual sched-
ule updates, averaged over all search intensity configurations. The
rescheduling frequency is calculated as the total number of rescheduling
attempts that are performed during the entire mission divided by the
makespan of the mission, whereas the schedule update frequency is
calculated as the number of successful rescheduling attempts divided
by the makespan. In practical terms, this corresponds to the average
number of rescheduling attempts / schedule updates performed while a
vehicle is travelling between two nodes; values can be larger than 1 as
there are many vehicles that travel concurrently over different distances.

(a) Small uncertainty

(b) Large uncertainty

Figure 5-2: Rescheduling and schedule update frequency of the online algorithm
(average over all search intensity configurations).

Naturally, the rescheduling frequency (bars) increases with more
aggressive rescheduling and for larger uncertainty. As discussed above,
the conservative, moderate and aggressive policies (non-zero thresholds)
indeed lead to more frequent rescheduling in the central than in the
peripheral depot scenarios, while the always reschedule policy (zero
threshold) leads to practically the same rescheduling frequency.

The more rescheduling attempts are made, the more likely it is that
at least some of them will succeed, thereby leading to a higher sched-

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 04:24:11 EEST - 3.142.251.91

5.5 evaluation of online algorithm 37

ule update frequency (lines). Note that conservative and moderate
rescheduling leads to a higher update frequency in the central depot
than in the peripheral depot scenarios, whereas the situation is reversed
in the aggressive and always rescheduling policies. Rescheduling at-
tempts are in general more likely to succeed in the peripheral depot
scenarios because paths are longer hence the worst-case estimates are
also more likely to be overly pessimistic. Therefore, as the gap of the
rescheduling frequency between the two scenarios shrinks, the sched-
ule update frequency becomes higher in the peripheral depot scenario.
Nevertheless, the impact of each individual update is less significant in
the peripheral depot scenario, which is the reason why practically the
same improvement is achieved in both cases with the always reschedule
policy.

While the proposed heuristic clearly outperforms the static scheduling,
it is far from optimal. An oracle with a priori knowledge of the costs
that will be experienced during the mission, can further reduce the
makespan by 25% up to 45% depending on the scenario. So, there
seems to be plenty of room for optimizations, provided one is willing to
risk that some vehicles may not be able to safely return to a depot.

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 04:24:11 EEST - 3.142.251.91

6
C O N C L U S I O N S

We have presented an online algorithm for tackling the mVRP for
uncertain travel costs and vehicles with capacity constraints, based on
an LNS component for schedule updates. Starting from a conservative
offline schedule, cost deviations that occur at runtime are exploited to
let vehicles visit a larger number of nodes before returning to a depot for
refuelling/recharging. Our experiments show that the online approach
can reduce the makespan significantly vs. an offline schedule, especially
when there is large uncertainty regarding the travel costs. Additionally,
we have proposed our own metaheuristic solution in order to build
the offline schedule, which is faster than a well-known state-of-the-art
method while producing solutions of equal or even better quality.

It would be interesting to perform an evaluation of the proposed
algorithms using graph topologies and cost estimates taken from real
missions that employ UVs (drones). One could also explore more
sophisticated heuristics for the node removal/insertion functions. Last
but not least, it would be interesting to consider more optimistic variants
of the proposed algorithms, possibly in conjunction with methods for
learning based on past travel experience.

38

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 04:24:11 EEST - 3.142.251.91

B I B L I O G R A P H Y

[1] S. Anbuudayasankar, K Ganesh, and S. Mohapatra. “Survey of
methodologies for tsp and vrp”. In: Models for Practical Routing
Problems in Logistics. Springer, 2014, pp. 11–42.

[2] G. Gutin and A. P. Punnen. The traveling salesman problem and
its variations. Vol. 12. Springer Science & Business Media, 2006.

[3] D. Davendra. Traveling Salesman Problem: Theory and Applica-
tions. BoD–Books on Demand, 2010.

[4] A. E. Carter and C. T. Ragsdale. “A new approach to solving the
multiple traveling salesperson problem using genetic algorithms”.
In: European journal of operational research 175.1 (2006), pp. 246–
257.

[5] S. Yuan, B. Skinner, S. Huang, and D. Liu. “A new crossover
approach for solving the multiple travelling salesmen problem
using genetic algorithms”. In: European Journal of Operational
Research 228.1 (2013), pp. 72–82.

[6] E. Falkenauer. “The grouping genetic algorithms-widening the
scope of the GAs”. In: Belgian Journal of Operations Research,
Statistics and Computer Science 33.1 (1992), p. 2.

[7] E. C. Brown, C. T. Ragsdale, and A. E. Carter. “A grouping
genetic algorithm for the multiple traveling salesperson problem”.
In: International Journal of Information Technology & Decision
Making 6.02 (2007), pp. 333–347.

[8] A. Singh and A. S. Baghel. “A new grouping genetic algorithm
approach to the multiple traveling salesperson problem”. In: Soft
Computing 13.1 (2009), pp. 95–101.

[9] P. Venkatesh and A. Singh. “Two metaheuristic approaches for
the multiple traveling salesperson problem”. In: Applied Soft Com-
puting 26 (2015), pp. 74–89.

[10] W. Liu, S. Li, F. Zhao, and A. Zheng. “An ant colony optimization
algorithm for the multiple traveling salesmen problem”. In: 2009
4th IEEE conference on industrial electronics and applications.
IEEE. 2009, pp. 1533–1537.

[11] I. Vallivaara. “A team ant colony optimization algorithm for the
multiple travelling salesmen problem with minmax objective”.
In: Proceedings of the 27th IASTED International Conference on
Modelling, Identification and Control. ACTA Press. 2008, pp. 387–
392.

39

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 04:24:11 EEST - 3.142.251.91

bibliography 40

[12] S. Somhom, A. Modares, and T. Enkawa. “Competition-based
neural network for the multiple travelling salesmen problem with
minmax objective”. In: Computers & Operations Research 26.4
(1999), pp. 395–407.

[13] V.-I. Lupoaie, I.-A. Chili, M. E. Breaban, and M. Raschip. “SOM-
Guided Evolutionary Search for Solving MinMax Multiple-TSP”.
In: 2019 IEEE Congress on Evolutionary Computation (CEC).
IEEE. 2019, pp. 73–80.

[14] Y. Wang, Y. Chen, and Y. Lin. “Memetic algorithm based on
sequential variable neighborhood descent for the minmax mul-
tiple traveling salesman problem”. In: Computers & Industrial
Engineering 106 (2017), pp. 105–122.

[15] B. Soylu. “A general variable neighborhood search heuristic for
multiple traveling salesmen problem”. In: Computers & Industrial
Engineering 90 (2015), pp. 390–401.

[16] P. M. França, M. Gendreau, G. Laporte, and F. M. Müller. “The
m-traveling salesman problem with minmax objective”. In: Trans-
portation Science 29.3 (1995), pp. 267–275.

[17] B. L. Golden, G. Laporte, and É. D. Taillard. “An adaptive
memory heuristic for a class of vehicle routing problems with
minmax objective”. In: Computers & Operations Research 24.5
(1997), pp. 445–452.

[18] I. Vandermeulen, R. Groß, and A. Kolling. “Balanced task allo-
cation by partitioning the multiple traveling salesperson prob-
lem”. In: Proceedings of the 18th International Conference on
Autonomous Agents and MultiAgent Systems. International Foun-
dation for Autonomous Agents and Multiagent Systems. 2019,
pp. 1479–1487.

[19] L. Bertazzi, B. Golden, and X. Wang. “Min–max vs. min–sum
vehicle routing: A worst-case analysis”. In: European Journal of
Operational Research 240.2 (2015), pp. 372–381.

[20] U. Ritzinger, J. Puchinger, and R. F. Hartl. “A survey on dynamic
and stochastic vehicle routing problems”. In: International Journal
of Production Research 54.1 (2016), pp. 215–231.

[21] H. N. Psaraftis, M. Wen, and C. A. Kontovas. “Dynamic vehicle
routing problems: Three decades and counting”. In: Networks 67.1
(2016), pp. 3–31.

[22] V. Pillac, M. Gendreau, C. Guéret, and A. L. Medaglia. “A review
of dynamic vehicle routing problems”. In: European Journal of
Operational Research 225.1 (2013), pp. 1–11.

[23] H.-K. Chen, C.-F. Hsueh, and M.-S. Chang. “The real-time time-
dependent vehicle routing problem”. In: Transportation Research
Part E: Logistics and Transportation Review 42.5 (2006), pp. 383–
408.

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 04:24:11 EEST - 3.142.251.91

bibliography 41

[24] I Or. “Traveling salesman-type combinatorial problems and their
relation to the logistics of blood banking”. In: PhD thesis (De-
partment of Industrial Engineering and Management Science,
Northwestern University) (1976).

[25] A. Haghani and S. Jung. “A dynamic vehicle routing problem
with time-dependent travel times”. In: Computers & operations
research 32.11 (2005), pp. 2959–2986.

[26] E. Taniguchi and H. Shimamoto. “Intelligent transportation sys-
tem based dynamic vehicle routing and scheduling with variable
travel times”. In: Transportation Research Part C: Emerging Tech-
nologies 12.3-4 (2004), pp. 235–250.

[27] J.-Y. Potvin, Y. Xu, and I. Benyahia. “Vehicle routing and schedul-
ing with dynamic travel times”. In: Computers & Operations
Research 33.4 (2006), pp. 1129–1137.

[28] S. Lorini, J.-Y. Potvin, and N. Zufferey. “Online vehicle routing
and scheduling with dynamic travel times”. In: Computers &
Operations Research 38.7 (2011), pp. 1086–1090.

[29] É. Taillard, P. Badeau, M. Gendreau, F. Guertin, and J.-Y. Potvin.
“A tabu search heuristic for the vehicle routing problem with soft
time windows”. In: Transportation science 31.2 (1997), pp. 170–
186.

[30] J. Respen, N. Zufferey, and J.-Y. Potvin. “Online vehicle routing
and scheduling with continuous vehicle tracking”. In: 2014.

[31] M. Schilde, K. F. Doerner, and R. F. Hartl. “Integrating stochastic
time-dependent travel speed in solution methods for the dynamic
dial-a-ride problem”. In: European journal of operational research
238.1 (2014), pp. 18–30.

[32] Z. Xiang, C. Chu, and H. Chen. “The study of a dynamic dial-
a-ride problem under time-dependent and stochastic environ-
ments”. In: European Journal of Operational Research 185.2
(2008), pp. 534–551.

[33] P. Shaw. “Using constraint programming and local search methods
to solve vehicle routing problems”. In: International conference
on principles and practice of constraint programming. Springer.
1998, pp. 417–431.

[34] G. Reinelt. “TSPLIB—A traveling salesman problem library”. In:
ORSA journal on computing 3.4 (1991), pp. 376–384.

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 04:24:11 EEST - 3.142.251.91

	Abstract
	Abstract
	Per'ilhyh
	Acknowledgements

	Acknowledgments
	Contents

	Contents
	List of Figures

	List of Figures
	List of Tables

	List of Tables
	Introduction
	Related work
	Min-max multiple TSP
	Dynamic capacitated multiple VRP

	Problem formulation
	Terrain
	Energy capacity, costs and gains
	Path feasibility
	Path completion time and schedule makespan
	Problem statement

	Offline algorithm
	TS-LNS algorithm
	Large neighbourhood search
	Node insertion
	Node removal (path destruction)
	Complexity
	Evaluation of offline algorithm
	Setup/configuration
	TS-LNS-g vs. IWO for Euclidean problems
	TS-LNS-g vs.TS-LNS-e for Euclidean problems
	TS-LNS-g/e vs. IWO for general problems

	Adaptations for capacitaty constraints

	Online algorithm
	Representation of schedules and state information
	Cost estimation
	Main loop
	Reschedule heuristic
	Evaluation of online algorithm
	Experimental setup
	Configurations of the online algorithm and reference
	Results

	Conclusions
	Bibliography

