

Dissertation

Optimizing the seed oppnet infrastructure.

Tsamados Panagiotis
ptsamados@gmail.com

Supervisor: Dr. Konstantinos Kokkinos

May 2010

 School of Computing
Master in

Computer Science

Common Nodes

Internet Link

Controller (distributed)

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 2

Table of Contents

Chapter I
1. Introduction …………………………………………………………………….4
1.1 Introducing Wirelless Sensor Networks…..…..………………………….………7
1.2 The Dissertation problem …………………. .. 8
1.3 Dissertation Organization………………………………………….... 10
Chapter II
2. Terminology and Literature Review ... 11
2.1 Topology Control Technology in Mobile Ad hoc networks 11
2.1.1 Mobile Ad Hoc Networks modelling... 13
2.1.2 Energy consumption Modelling ... 15
2.1.2.1 Energy consumption in MANETs .. 15
2.1.2.2 Energy consumption in WSNs… .. 17
2.1.3 Mobility Models……………………………………………………………….18
2.2 Topology Control Terminology .. 21
2.2.1 The Taxonomy of Topology Control .. 22
2.3 Location Based Topology control .. 26
2.3.1 The Range Assignment Problem .. 26
2.3.2 Energy-efficient Communication Topologies ... 27
2.3.3 Location Based distributed topology control protocols .. 29
2.4 State of Art in Seed Oppnets.. 34
Chapter III
3. Theretical Proofs and Heuristic Algorithm Proposals for connectivity 37
3.1 Problem statment ... 37
3.2 Solution of Problem 1 sub-problem 1 ... 39
3.3 Solution of Problem 1 sub-problem 2 ... 40
3.3.1 The ENVELOPE Algorithm……………………………………………………44
3.4 Solution of Problem 2…………………………………………………………...47
Chapter IV
4. Developed Simulation and Experimental results………………………………...50
4.1 The Steiner Software.........………………………………………………………50
4.2 Expirimental Results……………………………………………………………51
4.3 Conclusions and Future work……………………..…………………………….59
Chapter V
5. Bibliography…………………………………………………………………….60
APENDIX I Source code ...………………………………………………………….63

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 3

Abstract

We propose a new point-to-point approach for topology control that refers to

opportunistic networks or oppnets [2]. This approach enables an integration of the

diverse communication, computation, sensing, storage and other resources that they

utilize the network infrastructure. The term “opportunistic” is used for the pervasive

computing abilities that can formulate the networking of ad-hoc micro-sensors. The goal

for oppnets is to exploit the large scale of resources and capabilities that can be

aggregated from the individual capabilities of each sensor. This is often a set of resources

that most times remains idle due to the fact that, the routing of communication is usually

not distributed. Different devices and systems are either unable to speak/transmit to

each other, or do not even try to communicate can be formulated into a combined

system of communication once the necessary inter-communication infrastructure is

implemented. Oppnets differ from traditional networks, in which the nodes of a single

network are all deployed together, with the size of the network and locations of its nodes

pre-designed. In oppnets, the initial seed oppnet grows into an expanded oppnet by

taking in foreign nodes. In other words, diverse devices join the original set of seed

nodes to help the oppnet realize its goals and are so called helpers. In fact, it might

happen that the resources available in the seed oppnet are not sufficient to accomplish

the task; in such situation, the network can try to scan the radio environment, detect the

presence of other networks deployed for different tasks (e.g. WiFi hot spots, or

computer networks in an office environment, or GSM/UMTS public networks) and

address such helper networks trying to exploit their available resources. We will deal only

with the formulation of a topology control that must be initiated prior to any

transmission of real data. We propose a distributed algorithm for node identification in

order to create the necessary topology.[20]

Keywords: Mobile Ad hoc Networks, Wireless Sensor Networks, Opportunistic

networks , Oppnets , pervasive computing ,P2P mobile computing.

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 4

Chapter I

1. Introduction

Communication barriers exist among the numerous communications devices that

surround us and it remains a great challenge for all researchers and developers working

on ever more pervasive computing systems to break those barriers and make all these

devices to “talk” to each other.

We propose a new paradigm based on the new technology of opportunistic networks

or oppnets to enable integration of the diverse communication, computation, sensing,

storage and other devices and resources that surround us more and more. This paradigm

initiates an ad-hoc network based on nodes/sensors thrown randomly on a field of

interest. Thus, it is our goal to discover the nodes which will finally participate on the

network formation. We will consider which criteria and restrictions hold for this

formation based on the node capabilities.

Lilien and Gupta, have been the first to propose and to investigate the oppnet

paradigm and technology [1,2]. In Oppnets a set of nodes are deployed with the purpose

of integrating systems in a diverse communication media under one umbrella. This

integrated medium will be the fundamental layer, upon which numerous applications can

be built such as rescue and relief, emergency preparedness and response, to mention a

few.

Oppnets are a superset of Mobile Ad hoc Networks (MANETS) [8], which contain

sensor networks. Traditional networks are deployed together with fixed, pre-defined

network parameters, such as size, location, etc. We propose the deploying of sink based

oppnets on the fly, where they will be self-configured into an ad hoc network. However,

after this “set-up” the sink nodes are dedicated to detect the presence of new nodes or

systems of different in general communication media, such as Bluetooth, Wired Internet,

WiFi, Radio, RFID, Satellites, etc. These detected systems are then identified, classified

and evaluated for their usefulness and reliability as candidates for joining the oppnet.

Afterwards, potential candidates are invited to the oppnet. Candidates can accept or

reject the invitation. On accepting the invitation, a candidate joining system is admitted

into the oppnet under the conditions of following the rules. The resources of this helper

system are then integrated with the oppnet and tasks can be offloaded to or distributed

amongst these helpers. This makes the new system expandable as well as more powerful

relatively to the additional services that it can support. A human interactive command

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 5

centre must also be present in order to provide the administration tool for the overall

sequence of setting the services throughout the life of the oppnet. When the goals of the

oppnet have been realized, it is imperative to release helpers and restore them to the state

that is closest to the state that we found them in, minimizing the spending of their

resources. Figure 1, depicts theses processes of the oppnet.

Fig. 1. Delineates and depicts the workings of an oppnet.

Similar architecture schema is depicted in [35].

Need to
grow?

Distributed
Command

Center

Collaborative
processing

Work
done?

Restore and release all
helpers

Deploy
seed oppnet

NO

NO YES

Detect candidate
helpers (system)

Enough
good

candidates

Admit candidates
into oppnet

Detect candidate
helpers (system)

YES

YES
GROWTH

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 6

With this approach, oppnets can be used as a bridge between disjoint communication

media, in order to provide access to sensory data from diverse sensing systems that are

already present in our environment.

 Our goal is to optimize the seed oppnet infrastructure. We call seeds the sink nodes

which gather sensory data from other participating nodes. We assume that all

participating nodes have a location identification system installed (similar to a GPS).

They are also equipped with a local resource controller to prevent battery outage.

Communication between seeds is similar to P2P communication. Growth in oppnets

looks like growth in Peer to Peer (P2P) systems, unstructured, decentralized P2P systems

like Gnutella [3]. The expansion of oppnets is analogous to the spread of malicious

instances of worms and viruses. Techniques for integration and management of

heterogeneous nodes and devices in oppnets could trail after the techniques employed in

grid-systems.

 We believe that applications can benefit from using specialized ad hoc networks

that can provide a natural basis for them, the basis more efficient and effective than what

general-purpose ad hoc networks can offer. The practice of building specialized ad hoc

networks is well established. (Mobile ad hoc networks, ad hoc wireless sensor networks,

and ad hoc P2P systems are perhaps the best-known categories of specialized ad hoc

networks. Yet, many proposed technical solutions are not generally applicable to all ad

hoc networks and to systems based on them, being too inefficient for specific application

classes or individual applications. This relative lack of application support (including the

lack of sufficient quality of service or QoS guarantees) is perhaps the most neglected of

today’s crucial challenges facing ad hoc networks. Others—including variable topology,

component heterogeneity, limited power supply and the need for effective energy-

efficient designs—are investigated much more actively.

 Specialized ad hoc networks [22,23] provide application-oriented divide-and-

conquer approach to ad hoc networking and system research and development—rather

than one-size-fits-all general approach, maybe unattainable. Oppnets are specialized ad

hoc networks and enable building specialized ad hoc systems.

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 7

1.1 Introducing Wirelless Sensor Networks

Wireless sensor networks (WSNs for short) are a particular type of ad hoc network,

in which the nodes are ‘smart sensors’, that is, small devices (approximately the size of a

coin) equipped with advanced sensing functionalities (thermal, pressure, acoustic, and so

on, are examples of such sensing abilities), a small processor, and a short-range wireless

transceiver. In this type of network, the sensors exchange information on the

environment in order to build a global view of the monitored region, which is made

accessible to the external user through one or more gateway node(s).

Sensor networks are expected to bring a breakthrough in the way natural phenomena

are observed: the accuracy of the observation will be considerably improved, leading to a

better understanding and forecasting of such phenomena. The benefits to the

community are considerable even in these early ages of this new network’s generation .

In addition to one or more sensors, each node in a WSN network is typically

equipped with a radio transceiver or other wireless communications device, a small

microcontroller, and an energy source, usually a battery. The size of a single sensor node

can vary from shoebox-sized nodes down to devices with the size of grain of dust,

although functioning 'motes' of genuine microscopic dimensions have yet to be created.

The cost of sensor nodes is similarly variable, ranging from hundreds of dollars to a few

cents, depending on the size of the sensor network and the complexity required for the

individual sensors. Size and cost constraints on sensor nodes result in corresponding

constraints on their available resources such as energy, memory, computational speed

and bandwidth.[9]

A sensor network normally constitutes a wireless ad-hoc network, meaning that each

sensor supports a multi-hop routing algorithm (several nodes may forward data packets

to the base station).

The features of a typical Wireless Sensor Network are :

• Homogeneous network: A WSN is typically composed of nodes with the

same features, especially for what concerns the communication apparatus. A

partial exception to this rule is when different types of smart sensor nodes are

used in the same network: for instance, a few ‘super nodes’ (with more memory

and/or with a longer transmitting range) could be used in combination with

standard sensor nodes to increase the network monitoring ability. However, also

in this case the number of different device classes used in the network is very

limited (2–3 at most).

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 8

• Stationary or quasistationary network: Nodes composing a WSN are

typically stationary or at most slowly moving. Given the very wide range of WSN

applications, exceptions to this rule are possible. This is the case, for instance, of

a sensor network used to track animal movements.

• Relatively dispersed network: A wireless sensor network is typically

formed by nodes that are dispersed in a relatively large geographical region, so

that 1-hop communication between nodes is, in general, not possible.

• Large network size: Typically, the number of nodes composing a WSN is

quite large, ranging from few tens to thousands of nodes.[21]

1.2 The Dissertation Problem

Oppnets due to their early nature birth create many great challenges for the

researchers. One of them is the optimisation of the seed oppnet infrastructure. Measures

and criteria for the optimization of the seed oppnets in their deployment environment

need to be set. These criteria have to allow specifications for the amount of

communication and also for their computational, sensing and energy resources. Optimal

designing of the seed oppnets has to be defined. The minimal seed oppnet configuration

that can assure a reliable execution of the oppnet tasks, that have to be carried out, has to

be characterized. The localization problem has been shown to be NP-hard, even when

distances between nodes are known exactly. So heuristic techniques for the optimization

of the oppnets in order to achieve their goals need to be provided. These techniques

might rely on probabilities especially when the seeds are not deployed with precise

positioning.

These problems emerge the need for designing a new topology controller model.

The new model has to define the optimal paths of the nodes of the oppnet taking into

account the less energy consumption of the node and the reliability of the execution.

Until now the previous approaches to that challenge used Minimum Spanning Tree

approach or Minimum Spanning Tree Heuristics. We attempt to approach a solution for

this problem by defining a distributed based algorithm for node inclusion in the network.

More specifically, following is a more rigorous definition of the core problems

relatively to our dissertation:

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 9

Problem 1
Let G = (V , E) be a graph representing the potential oppnet by the seeds that can

be formulated . More specifically, let V be the set of those nodes and E the set of

possible links that can be possible candidates for any pair of nodes (vi , vj) ∈ V. Since

we assume that every node Vi is equipped by a local system that identifies its position on

a field and also a battery power measurement system, let (xi , yi , zi , di) be a 4-tuple

indicating the x,y,z coordinates of the node and the node transmission distance

respectively. After the nodes are thrown randomly on a field, in a general case scenario,

few of those nodes can be positioned in an (x,y,z) location making them unable to

participate in the oppnet due to their transmission range restriction. We are looking for

solving the following 2 sub-problems:

Sub-problem 1: Find a subset V’ of V that can participate in the oppnet .

Sub-problem 2: Identify the set of minimum one-to-one paths for every pair (vi

, vj) ∈ V’. Note that there is a linear relation between the distance of the path and the

battery draining for the transmission of any communication. For this scenario we will

also consider two possible variations :

a. Any path pij for the pair (vi , vj) must pass through a seed node.

b. The path pij does not necessarily pass through a seed node.

Problem 2
Given an oppnet G =(V,E) where V is the set of nodes/seeds that participate from

sub-problem 1.1 and E the set of identified links from sub-problem 1.2, we are looking

for the necessary and sufficient set of messages needed to be formulated in a

communication protocol for other networks to participate in the oppnet. We identify few

of those procedures/messages that need to be implemented and included in such a

protocol:

 1. Triggering a “call for help” extension of the network mechanism.

 2. A procedure for authentication of “outsiders” that answer the previous call.

 3. An acceptance to the oppnet-extension mechanism.

 4. A procedure for advertising new nodes that joined the oppnet.

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 10

1.3 Dissertation organization

This dissertation describes the oppnets, the basic core seed of an oppnet and an early

implementation framework for oppnet-based applications. In the first chapter of the

dissertation we try to introduce the reader to the meaning and the philosophy of the

oppnets by describing their basic working model. Also we introduce the reader to the

Wireless Sensor Networks. Given that Wireless Sensor Networks are the means to

implement an extended oppnet it is understandable that oppnet topology control

algorithms and basic primitives will use a large amount of the know-how of the WSNs

that already exist in order to bridge many different communication devices that cannot

communicate among that due to “linguistic” barriers. In the last section of the first

chapter we state the two problems that this dissertation will try to solve in order to

contribute to the world research academic society. In the second we describe the

modelling techniques of the Mobile Ad Hoc Networks and their energy autonomy

capabilities. The topology control system with a location based approach of the

MANETS and WSNs is also analysed in this chapter. More over a more thorough

analysis of the oppnets characteristics and growth procedures of an oppnet are also

stated at the last part of chapter two. The third chapter of the thesis approaches the two

problems that we previously stated in chapter one. We prove that problem one is an NP-

Complete problem and we propose a Heuristic algorithm and its source code.

Approaching problem two we provide a set of call-commands for help to possible

oppnet candidates and we will thoroughly describe the authentication procedure of an

oppnet candidate.

CHAPTER CONTENTS OF EACH CHAPTER

1.Introduction

The reader in this chapter is introduced into the understanding of the
basic working model of oppnets and WSN networks. He also has the
chance to read the 2 basic problems that we will solve in this
dissertation.

2.Terminology and
 Literature review

Chapter II enters the reader to the Mobile Ad Hoc Networks
modeling techniques and energy sufficiency. Topology control systems
and network growth of the MANETs ,WSNs and Oppnet networks
are also stated in this chapter.

3.Theoretical Proofs and
Heuristic Algorithm
Proposals for Connectivity

In this chapter we prove that problem 1 is NP-Complete and we
propose a Heuristic algorithm. Approaching problem 2 we provide a
set of call-commands for the authentication of possible oppnet
candidates

4.Developed Simulation
and Experimental Results

In Chapter IV we present the experimental results of the Steiner
software that we developed and we do a comparison of our test results
with the Geosteiner 3.1[52] software results.

 5.Bibliography References
Table 1. Table of the basic structure of the dissertation

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 11

Chapter II

2. Terminology and Literature review
Oppnets could be characterised as networks that lie within the intersection of ad

hoc, P2P, and sensor networks. After necessary adjustments, they can use node

localization and self organization techniques from ad hoc networks, growth-by joining

approaches from P2P systems, and data aggregation algorithms from sensor nets. In this

dissertation section we look at these more categories of related work on technologies

potentially useful for oppnets. We also consider the following network scientific areas :

1. Interoperability research on highly heterogeneous wired and wireless types of

communication media, networks, devices, and protocols. 2. Grid computing for resource

integration and management. 3. Benevolent Trojans for helper search. There is a

tremendous amount of knowledge and experience in all 3 areas that we can learn from

but cannot employ ‘as-is’ in oppnets, due to their unique characteristics.

2.1 Topology Control Technology in Mobile Ad hoc networks

A Mobile Ad Hoc Network (MANET) [4] is a network architecture that can be

rapidly deployed without relying on pre-existing fixed network infrastructure. The nodes

in a MANET can dynamically join and leave the network, frequently, often without

warning, and possibly without disruption to other nodes’ communication. Finally, the

nodes in the network can be highly mobile, thus rapidly changing the node constellation

and the presence or absence of links. Examples of the use of the MANETs are:

• Tactical operation : for fast establishment of military communication

during the deployment of forces in unknown and hostile terrain [4].

• Rescue missions : for communication in areas without adequate wireless

coverage [4].

• National security : for communication in times of national crisis, where the

existing communication infrastructure is non-operational due to a natural

disaster or a global war [4].

• Law enforcement : for fast establishment of communication infrastructure

during law enforcement operations [4].

• Commercial use : for setting up communication in exhibitions, conferences,

or sales presentations [4].

• Education : for operation of wall-free (virtual) classrooms [4].

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 12

• Sensor networks : for communication between intelligent sensors (e.g.,

MEMS2)mounted on mobile platforms [4].

Nodes in the MANET exhibit nomadic behaviour by freely migrating within some

area, dynamically creating and tearing down associations with other nodes. “Groups of

nodes that have a common goal can create formations (clusters) and migrate together,

similarly to military units on missions or to guided tours on excursions”[19]. Nodes can

communicate with each other at any time and without restrictions, except for

connectivity limitations and subject to security provisions. Examples of network nodes

are pedestrians, soldiers, or unmanned robots. Examples of mobile platforms on which

the network nodes might reside are cars, trucks, buses, tanks, trains, planes, helicopters

or ships.

MANETs are intended to provide a data network that is immediately deployable in

arbitrary communication environments and is responsive to changes in the underlying

network topology. Because ad-hoc networks are intended to be deployable anywhere,

existing infrastructure may not be present. The mobile nodes are thus likely to be the sole

elements of the network. Differing mobility patterns and radio propagation conditions

that vary with time and position can result in intermittent and sporadic connectivity

between adjacent nodes. The result is a time-varying network topology [19]. MANETs

are distinguished from other ad-hoc networks by rapidly changing network topologies,

influenced by the network size and node mobility. Such networks typically have a large

span and contain hundreds to thousands of nodes. The MANET nodes exist on top of

diverse platforms that exhibit quite different mobility patterns. Within a MANET, there

can be significant variations in nodal speed (from stationary nodes to high-speed

aircraft), direction of movement, acceleration/deceleration or restrictions on paths (e.g., a

car must drive on a road, but a tank does not). A pedestrian is restricted by built objects

while airborne platforms can exist anywhere in some range of altitudes. In spite of such

volatility, the MANET is expected to deliver diverse traffic types, ranging from pure

voice to integrated voice and image, and even possibly some limited video.[4]

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 13

2.1.1 Mobile Ad Hoc Networks modelling

Nodes in ad hoc and sensor networks communicate through wireless transceivers.

This is the reason why the most important building block of any model for ad hoc

networks is the wireless channel model. The wireless channel model we will present

below was presented by Rappaport in [24].

A radio channel between a transmitter unit u and a receiver unit v is established if

and only if the power of the radio signal received by node v is above a certain threshold,

called the sensitivity threshold. Formally, there exists a direct wireless link between u and

v if Pr ≥ β, where Pr is the power of the signal received by v, and β denotes the sensitivity

threshold. The exact value of β depends on the features of the wireless transceiver and

on the communication data rate: for a given radio, the higher the data rate, the higher the

value of β, implying a stronger requirement on the received power. [24]

The received power Pr depends on the power Pt used by u to transmit the radio

signal, and on the path loss, which models the radio signal degradation with distance.

Denoting with PL(u, v) the path loss between units u and v, we have the equation :

Pr = ��
PL��,
� [21]

The occurrence of a radio channel between any two network nodes can be

predicted if the path loss model is known.

Modeling path loss has always been one of the most difficult tasks of every wireless

system designer. The mechanisms that regulate radio signal propagation in the

environment can be grouped into three categories: reflection, diffraction and scattering.

Reflection occurs when the electromagnetic wave hits the surface of an object that has

very large dimensions when compared to the wavelength of the propagating signal. For

instance, almost any radio signal is reflected by the surface of the earth and by large

constructions such as skyscrapers and dams. Diffraction is caused by objects with very

sharp edges that lie on the radio path between the transmitter and the receiver. Scattering

occurs when several small objects are in between the transmitter and the receiver of the

radio signal. Typical sources of scattering are the leaves of trees, traffic lights and so on.

Given these mechanisms, it is clear that radio wave propagation is an extremely complex

phenomenon, which is heavily influenced by environmental factors. Bellow we shortly

describe the most common path loss models.

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 14

The most common path models that have been presented until today are:

1. The free space propagation model: This model is used to predict radio signal

propagation when the path between the transmitter and the receiver is clear and

unobstructed (line-of-sight, or LOS, path).

2. The two-ray ground model: It is very rare that the single direct path between the

transmitter and the receiver is the only physical means of propagation of the

radio signal and that’s why the free space propagation model is often inaccurate.

In order to improve accuracy, the two-ray ground model considers two

propagation paths: the directed path and a ground reflected propagation between

the transmitter and the receiver.

3. The long distance path model: The log-distance model has been derived

combining analytical and empirical methods. Empirical methods are based on

field measurements and reverse curve fitting on the experimental data. This

model, which can be seen as a generalization of both the free space and the two-

ray ground model, indicates that the average long-distance path loss is

proportional to the separation distance d raised to a certain exponent α, which is

called the path loss exponent, or distance-power gradient.

4. Large scale and small scale variations: The log-distance propagation model

predicts the average received power at a certain distance. However, the intensity

of the received signal can vary a lot from the average value. For this reason,

probabilistic models have been used to account for the variability of the wireless

channel. In a probabilistic propagation model, the radio coverage region is no

longer a disk, since the occurrence of a wireless channel between two nodes is a

random event. Probabilistic propagation models can be divided into two classes:

Large-scale models: These models predict variations of the signal intensity over

large distances.

Small-scale models: These models predict variations of the signal intensity over

very short distance. They are also called multipath fading (or simply fading)

models.

The most important large-scale model is the log-normal shadowing model, in

which the path loss at distance d is modeled as a random variable with log-

normal distribution centered about the mean value. The most important fading

model is the Rayleigh model, which models small-scale variations of the radio

signal intensity according to a random variable with Rayleigh distribution.[21]

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 15

2.1.2 Energy consumption Modelling

The primary concern of a designer while designing a MANET or a WSN is of

course the issue of energy consumption. It is understandable that the energy features of

nodes participating in a Mobile Ad hoc network differ from the nodes that participate in

a Wireless Sensor network therefore we will discuss each network category separately.

2.1.2.1 Energy consumption in MANETs

In MANETs several case scenarios can be implemented and a MANET can be

composed of nodes of the most diverse type such as: laptops, cellular phones, PDAs,

smart appliances, and so on. Moreover, for many application scenarios (e.g. the

‘ubiquitous network’), the network can be composed of heterogeneous devices. Given

this node diversity, a typical approach in the literature is to focus attention on the energy

consumption of the wireless transceiver only. This is also our choice, which is further

motivated by the fact that topology control is primarily concerned with reducing the

energy consumed to communicate.

Accordingly to the type of device, the amount of energy consumed by the

transceiver varies from about 15% to about 35% of the total energy dissipated by the

node. The former value refers to a laptop equipped with a IEEE 802.11 wireless card,

while the latter is typical of a PDA device. Since the energy consumed by the wireless

card is a significant portion of the total power dissipation in the node, optimizing the

energy used to communicate is an important issue.

Several authors have measured the energy consumption of commercial 802.11

wireless cards. Typically, an IEEE 802.11 wireless card has four operational modes:

– Idle: The radio is turned on, but it is not used.

– Transmit: The radio is transmitting a data packet.

– Receive: The radio is receiving a data packet.

– Sleep: The radio is powered down.

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 16

 Power Idle (mA) Power Tx (mA) Power Rx (mA)

802.11 a 203 554 318
802.11 b 203 539 327
802.11 g 203 530 282

TxRange Indoor (m) Tx Range Outdoor (m)
802.11 a 13-50 30-300
802.11 b/g 27-91 76-396

Table 2. Nominal power consumption and transmit range of the CISCO IEEE
802.11 a/b/g wireless card [25]

In Table 2 we can clearly see that power consumption in sleep mode is not

reported in the data sheets. The table also reports the nominal transmitting ranges when

the card transmits at full power. As seen from the table, the nominal range depends on

environmental factors (indoor or outdoor conditions) and on the data rate used to send

the message.

We take into consideration that the data reported in Table 2 are nominal values,

and may differ from the actual power consumption of the wireless card. For instance, if

we consider the specifics of the CISCO Aironet 350 card as reported in the data sheets,

the sleep : idle : rx : tx power ratios are 0.07:1:1.33:2.22 .[25] These values must be

compared with the ratios computed with the measured power consumption, which are

0.04:1:1.20:1.73. All the measurements reported in the literature have outlined an

important point, that is, that any radio state transition comes at a significant energy cost

(and time latency). This is especially true when the radio transits from the sleep (power

down) to the idle (power up) state.[21]

The total power consumption is measured by the drain current, expressed in mA.

In the table, the minimum value of the nominal range refers to the maximum data rate

(54 Mbps), and the maximum value to the 6 Mbps data rate message, power 1.y when the

radio is transmitting a message at full power, and power 0.z when the radio is in sleep

mode. On the other hand, topology control protocols are based on the ability of each

wireless node to dynamically adjust its transmitting range. This feature is actually

available on some commercial IEEE 802.11 cards,

such as those produced by CISCO. For instance, the CISCO Aironet IEEE 802.11

a/b/g card can use transmit powers ranging from 1 mW to 100 mW. However, this value

refers to the power consumption of the RF amplifier, which is only a part of the total

power consumed by the wireless card. In fact, the card consumes significant energy also

to power up the other analog and digital circuitry. A standard method to model power

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 17

consumption when the radio is not transmitting at maximum power does not exist. Most

of the approaches presented in the literature are concerned with the transmit power only.

2.1.2.2 Energy consumption in WSNs

For the Wireless Sensor Networks, the task of providing a simple but realistic

energy model is relatively simpler, while compared to the case of ad hoc networks. In

fact, sensor networks are typically composed of usually very simple and homogeneous

devices. Since many sensor nodes have been designed in the research community, their

features are very well known. As a result, several sets of energy consumption

measurements of wireless sensor nodes have been reported in the literature. [27]

MCU Mode Sensor Mode Radio Mode Total Power (mW)

On On Tx (power 36.3 mW) 1080.5
On On Tx (power 0.12 mW) 771.1
On On Rx 751.6
On On Idle 727.5
On On Sleep 416.3
On On Removed 383.3
Sleep On Removed 64.0

Table 3. Measured power consumption of a Rockwell’s WINS sensor node [26]

In Table 3 we can see the power debauchery of a Rockwell’s WINS sensor node

[26]. The node is composed of three main components: the microcontroller unit (MCU),

the sensing apparatus (sensor), and the wireless radio. If we consider the power

consumption of the wireless radio only, we have the following sleep : idle : rx : tx ratios:

0.09:1:1.07:2.02. Note that these ratios are quite similar to the case of 802.11 wireless

cards, except for a higher power consumption when the radio is transmitting at

maximum power. When the transmit power is minimum (0.12 mW), the idle : tx ratio in

the WINS sensor is 1.12. So, there is an almost twofold power consumption increase

when varying the transmit power from the minimum to the maximum value. That makes

clear to us that varying the transmit power level has a considerable effect on the node’s

energy consumption.

2.1.3 Mobility Models

The mobility of every node is an illustrious feature of ad hoc networks and, in

some cases, also of WSNs. As a consequence, studying the performance of ad

hoc/sensor networking protocols in the presence of mobility is a very crucial and

fundamental stage of the design process. Since real implementations of ad hoc/sensor

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 18

networks are scarce, real-life movement patterns are very difficult to obtain, and the

common approach is to use synthetic mobility models and simulation. Mobility models

for ad hoc/sensor networks should:

– resemble real-life movements: Considering that the applications range of ad hoc

and wireless sensor networks is quite wide, the movement patterns to consider are

numerous: they range from university facilities movement of students to vehicle

traffic control in highways, from movement of groups of tourists in a urban

scenario to rescue squads motion in disaster areas, and from sensors carried around

by strong hurricanes used in meteorological WSN applications. Providing a unique

mobility model that resembles all these types of mobility is virtually impossible.

However, a mobility model should be representative of at least one application

scenario.[21]

– be simple enough for simulation/analysis: Since mobility models are used in the

simulation of ad hoc networks, the model should be simple enough to be

integrated in the simulator and to keep the simulation running time reasonable. The

simpler mobility models we use the easiest the task of deriving meaningful

analytical results concerning fundamental network parameters in presence of

mobility is done. In turn, these results can be used to optimize the performance of

ad hoc/sensor networking protocols.[21]

Clearly, the two goals above are conflicting: the more realistic the model is, the

more the details that must be included in it, and the model complexity increases. Thus, a

synthetic mobility model should be a good compromise between representativeness and

simplicity, that is, it should consider the salient features of a certain movement pattern,

while disregarding secondary details.

Below we will briefly describe the most important mobility models used in the

simulation of ad hoc/sensor networks as described in [28].

Random waypoint model. This is by far the most commonly used mobility

model for ad hoc networks. One of the reasons for its popularity is the fact that it is

implemented in network simulations tools such as Ns2 [37] and GloMoSim [36] . The

Random Waypoint (RWP) model has been introduced in [30] to study the performance

of the DSR routing protocol. In RWP model, every single node chooses uniformly at

random a destination point (the ‘waypoint’) within the deployment region R, and moves

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 19

toward it along a straight line. Node velocity is chosen uniformly at random in the

interval [v min, v max], where v min and v max are the minimum and maximum node

velocities. When the node arrives at destination, it remains stationary for a predefined

pause time, and then starts moving again according to the same pattern.[28]

Random waypoint model is representative of an individual node movement,

obstacle-free scenario: each node moves independent of each other (individual

movement), and it can potentially move in any sub region of R (obstacle-free). Such a

type of movement is usually done when various users move in a big empty warehouse, or

in an outdoor environment.

Taking into account its popularity, RWP mobility has been deeply studied in the

literature. In particular, it has been discovered that the long-term node spatial distribution

of RWP mobile networks is concentrated in the center of the deployment region (border

effect)[29], and that the average nodal speed, defined as the average of the node

velocities at a given instant of time, decreases over time . These observations have

brought to the attention of the community the fact that RWP mobile networks must be

carefully simulated. In particular, network performance should be evaluated only after a

certain ‘warm-up’ period, which must be long enough for the network to reach the node

spatial and average velocity ‘steady-state’ distribution.

The RWP model has also been generalized to slightly more realistic, though still

simple, models. In [29] the RWP model is extended by allowing nodes to choose pause

times from an arbitrary probability distribution. Furthermore, a random fraction of the

network nodes remains stationary for the entire simulation time.

Random direction model. This model is similar to the RWP model, the random

direction model resembles individual, resembling obstacle-free movement. Random

direction model was created to maintain a uniform node spatial distribution during the

simulation time, thus avoiding the border effect typical of RWP mobility. In this model

[31], any node chooses a direction uniformly at random in the interval [0, 2/], and a

random velocity in the interval [v min, v max]. Then, it starts moving in the selected

direction with the chosen velocity. In the time point that the node reaches the boundary

of R, it chooses a new direction and velocity, and so on. Variants of this model have also

been presented. In a first variant a node is ‘bounced back’ when it reaches the boundary

of the deployment region. In another [29], the node moves for a random (exponentially

distributed) time, and then it changes direction and velocity of movement.

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 20

Brownian-like motion. Opposite to the case of RWP and random direction

mobility, which resemble intentional movement, the class of Brownian-like mobility

models resembles non intentional motion. That’s why these models are sometimes called

drunkardlike models.

In Brownian-like motion, the position of a node at a given time step depends (in a

certain, probabilistic, way) on the node position at the previous step. In particular, no

explicit modeling of movement direction and velocity is used in this model.

A very realistic example of Brownian-like motion is the model used in [32].

Mobility is modeled using three parameters: pstat, pmove and m. The first parameter

represents the probability that a node remains stationary for the entire simulation time.

Parameter pmove is the probability that a node moves at a given time step. Parameter m

models, to some extent, velocity: if a node is moving at step i, its position at step i + 1 is

chosen uniformly at random in the square or side 2m centered at the current node

position.[32]

Map-based mobility. At the aggregation of all the models mentioned above,

nodes are free to move within any sub-region of the deployment region R. However, in

many realistic scenarios, nodes are constrained to move within specified paths. This is

the case, for instance, of vehicles moving on a country road, or humans moving from

sidewalk to sidewalk, and so on. Map-based models have been used to model these

situations.

The basic primitive in the definition of map-based models is the map setup, that is,

the definition of the paths within which nodes are allowed to move. Then, a certain

number of nodes are randomly located on the paths, and they start moving according to

scenario-specific rules.

A typical use case scenario of map-based mobility is the Freeway mobility model

[33], used to mimic the movement of vehicles on freeways. In this model[33], several

freeways are located in the deployment region. Each freeway is composed of a varying

number of lanes in both directions. Nodes are randomly located on a freeway, and they

move with a random velocity, which is temporally dependent on its previous velocity. If

two nodes on the same lane are within a certain minimum distance (safety distance), the

velocity of the following node cannot exceed the velocity of the preceding one.

Another instance of map-based mobility is the Manhattan mobility model [33],

which is used to emulate urban and suburban movement scenarios. First, a Manhattan-

like map, composed of horizontal and vertical streets, is generated. Nodes can move

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 21

along the streets in both directions. When a node arrives at an intersection, it randomly

chooses whether to continue moving along the same direction, or to take a left or a right

turn. Similar to the Freeway model, the velocity of a node at a certain instant of time

depends on the node velocity at the previous time step.

Group-based mobility. All the models introduced so far resemble individual

mobility. However, in many situations, nodes are expected to move in groups (for

instance, groups of tourists moving in a city). Group-based mobility has been introduced

to model these situations.

In group-based models, a small subset of the network nodes is defined as the set of

group leaders. The remaining nodes are randomly assigned to one of the leaders, thus

forming groups. Initially, the leaders are randomly distributed in the deployment region

R, and the members of each group are randomly located in the neighborhood of the

leader. Then, the group leader moves according to one of the previous mobility models,

such as RWP or random direction. The other group members ‘follow’ the leader, having

a speed and direction that are a random perturbation of those of the leader. When two

groups cross, any group member can leave its group and join the other with a certain

probability. Group-based mobility models have been used in [34].

2.2 Topology Control Terminology

Topology control is a term that is depended from many variables and arguments

such as network capacity, energy conservation etc. Although that the term topology

control is quite wide known in the research scientists community a clear definition of the

term has not been introduced clearly. A general description of the term has been

introduced in [21] by Paolo Santi and is formulated as “Topology control is the art of

coordinating nodes’ decision regarding their transmitting ranges, in order to generate a

network with the desired properties (e.g. connectivity) while reducing node energy

consumption and/or increasing network capacity”[21]. Despite the generality that is

impressed through that term description we believe that that approach comes really close

to the real definition of the term Topology control.

The description of the term mentioned above does not impose any constraint on

the nature of the mechanism used to curb the network topology. So, both centralized

and distributed techniques can be classified as topology control. Many scientists consider

as topology control techniques also mechanisms used to super impose a network

structure on an otherwise flat network organization. This is the case, for instance, of

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 22

clustering algorithms, which organize the network into a set of clusters, which are used

to ease the task of routing messages between nodes and/or to better balance the energy

consumption in the network. Clustering techniques are more often used in the context of

wireless sensor networks since these networks are composed of a very large number of

nodes and a hierarchical organization of the network units might prove extremely useful.

In a typically clustering protocol, a distributed leader election algorithm is executed

in each cluster, and cluster nodes elect one of them as the clusterhead [21]. The election

is based on criteria such as energy availability, communication quality etc. The routing of

the messages is then performed on the basis of a two-level hierarchy: the message

originating at a cluster node is destined to the clusterhead, which decides whether to

forward the message to another clusterhead or to deliver the message directly to the

destination.

Despite the fact that clustering protocols can be seen as a means of controlling the

topology of the network by organizing its nodes into a multilevel hierarchy, a clustering

algorithm cannot express in full the definition of the term expressed above because

typically the transmit power of the nodes is not modified. A clustering algorithm is

concerned with hierarchically organizing the network units assuming the nodes’

transmitting range is fixed, while a topology control protocol is concerned with how to

modify the nodes’ transmitting ranges in such a way that a communication graph with

certain properties is generated.

2.2.1 The Taxonomy of Topology Control

In the section above we show that within the spectrum of the general description

of the term topology control, presented in [21] by Paolo Santi, many different techniques

have the characteristics to be classified as topology control mechanisms. A very

successful, in our opinion, attempt to categorise the topology control techniques was also

presented in [21] by Paolo Santi and the categorization is the one presented in Figure 2

below.

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 23

Figure 2. A taxonomy of topology control techniques (similar to the one presented by
Paolo Santi in [21]).

Topology control can be firstly distinguished in two general categories,

homogeneous CTR and Nonhomogeneous topology control. In homogeneous CRT

topology control all the network nodes must use the same transmitting range r, and the

topology control problem reduces to the simpler problem of determining the minimum

value of r such that a certain networkwide property is satisfied. This value of r is known

as the critical transmitting range (CTR), since using a range smaller than r would

compromise the desired networkwide goal. On the other hand in Nonhomogeneous

topology control nodes are allowed to choose different transmitting ranges (subject to

the condition that the chosen range does not exceed the maximum range).

Below we will try to give a brief description of each category and subcategory

shown in Figure 2.

 Homogeneous Critical Transmitting Range topology. It is the more simple

form of topology control. In CTR topology control, all the network nodes are assumed

to have the same transmitting range r, and the problem is to identify the minimum value

of r (the critical range) such that certain networkwide properties are fulfilled. The finding

of the minimum value of r that guarantees certain properties is motivated by energy

consumption and network capacity concerns. The commonly known version of the

CTR problem in ad hoc and sensor networks is the characterization of the CTR for

Topology control

Homogeneous

(CTR)
Nonhomogeneous

Location

Based

Direction

Based

Neighbor

Based

RA and

variants

Energy-efficient

communication

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 24

connectivity, which is, identifying the minimum value of r such that the resulting

communication graph is connected. The interest in characterizing the minimal conditions

for connectivity lies in the fact that this is the most important network topological

property [21].

The CTR for connectivity can be extended in a straightforward manner to

deployment regions with arbitrary shape and size. The assumption that all the nodes use

the same transmitting range reflects all those situations in which transceivers use the

same technology and no transmit power control. That scenario takes flesh and bones for

most of the 802.11 wireless cards on the market. Moreover, using the same transmitting

range for all the nodes is a reasonable choice and the only way to reduce energy

consumption and increase capacity is to reduce r as much as possible [38].

Nonhomogeneous topology control. Nonhomogeneous topology control

according to the approach presented in Figure 2 is classified into three subcategories,

depending on the type of information that is used in order to compute the topology.

Neighbour-based techniques rely on the nodes’ ability to determine the number

and identity of neighbors within the maximum transmitting range and to build an order

on this neighbor set (based, for instance, on distance or on link quality). This is the

minimum amount of information needed by the nodes to build the network topology: if

a node is not able to identify its neighbors, it has no clue on how to set its transmit

power level. The only possible way of setting the transmit power level in this no-

deterministic-knowledge scenario would be to set it at random. In this case, the amount

of knowledge available to the node is represented by the probability distribution used to

set the transmit power level. One of the most widely known neighbor-based protocol is

the KNeigh protocol introduced by Blough in [39] and is a distributed implementation

of the computation of Gk based on distance estimation. In other words, it is assumed

that when a node u receives a message from node v, u is able to estimate (possibly with a

certain error) the distance to node v. This can be accomplished by using one of the many

distance estimation techniques.

 In direction-based techniques it is assumed that the nodes do not know their

position but they can estimate the relative direction of their neighbors. This is relatively

less accurate information than knowing exact node locations, as the former type of

information can be determined if the latter is known, but not vice versa. This problem is

known as the Angle-of-Arrival (AoA) problem, and it is typically solved by equipping

nodes with more than one directional antenna [40]. So, in the case of directional

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 25

information also, some extra hardware on the nodes (with respect to the standard

assumption of nodes equipped with a single, omnidirectional antenna) is needed in order

to provide the requested information. An advantage of using AoA-based techniques

instead of location-based techniques is that the AoA can be accurately estimated in

indoor environments also. Despite the relatively less accurate information used,

direction-based topology control protocols can produce almost as good topologies as in

the case of location-based topology control. In particular, fully distributed, localized

protocols that preserve worst-case connectivity can be designed in this setting also. The

two most widely known direction based protocols are the CBTC (Cone-based Topology

Control) protocol introduced in [41] and the DistRNG protocol presented in [42]. The

Cone-Based Topology Control protocol [41] is based on the idea that a node must retain

connections to at least one neighbor in ‘every direction’, where parameter ρ determines

the granularity of what is meant by ‘every direction’. On the other hand, the DistRNG

protocol presented in [42] is a distributed implementation of the computation of the

Relative Neighborhood Graph (RNG).

Location-based techniques are divided into two sub categories, the Range

Assignment techniques and the Energy-efficient communication techniques. In location-

based approaches, it is assumed that the most accurate information about node positions

(the exact node location) is known. This information is either used by a centralized

authority to compute a set of transmitting range assignments that optimizes a certain

measure (this is the case of the Range Assignment problem and its variants), or it is

exchanged between nodes and used to compute an ‘almost optimal’ topology in a fully

distributed manner (this is the case of protocols for building energy-efficient topologies

for unicast or broadcast communication). Typically, location-based approaches assume

that network nodes, or at least a significant fraction of them, are equipped with GPS

receivers. Location-based topology control techniques are thoroughly described in the

following chapter.

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 26

2.3 Location Based Topology control

As mentioned in the previous section location-based approaches assume that

network nodes, or at least a significant fraction of them, are equipped with GPS

receivers. That assumption makes these techniques being approached as a more stable

techniques. The location based topologies can be sub-divided into 2 categories the Range

assignment problem topologies and the energy-efficient communication topologies.

2.3.1 The Range Assignment Problem

Given a set N of network nodes, a range assignment for N is a function RA that

assigns to every u ∈ N a transmitting range RA(u), with 0 < RA(u) ≤ rmax, where rmax is

the maximum transmitting range. Under the assumption that the path loss model is the

same for all the network nodes, and that shadowing/fading effects are not considered,

transmitting range, and transmit power level are equivalent concepts. Traditionally the

function RA is defined in terms of range, instead of power.[21]

The Range assignment problem which was defined first in [43] is defined as:

Let N be a set of nodes in the d-dimensional space, with d = 1, 2, 3. Determine a

range assignment function RA such that the corresponding communication graph is

strongly connected, and c(RA) = ∑ �������∈�
 α

 [21] is minimum over all connecting

range assignment functions, where α is the distance-power gradient. [21]

 The cost measure c(RA) used in the definition of the RA problem is the sum of

the transmit power levels used by all the nodes in the network. RA can be informally

stated as the problem of finding a ‘minimal’ nodes’ range assignment that generates a

connected communication graph, where ‘minimal’ is intended as ‘least energy cost’.

Besides reducing energy consumption, a connecting range assignment with minimum

energy cost is likely to increase network capacity also. In a certain sense, the RA problem

can be seen as a generalization of the problem of determining the CTR for connectivity,

where the constraint that all the nodes have the same transmitting range is dropped.

The optimal solution to the RA problem can be found in polynomial time in case

of one dimensional networks. In [43] Kirousis presented the OPTIMAL1DRA algorithm

which is demonstrated in Figure 3. The algorithm first identifies a set of optimal range

assignments for connecting node u1 to any other single node (step 1.2). Then, we have

the recursive step, in which a set of optimal range assignments for connecting nodes in

{u1, . . . , uk} with a receiver node ul , with k ≤ l ≤ n, is calculated. After n recursive steps,

any range assignment in Opt(({u1, . . . , un}, ∅), un) is optimal for N. In general the

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 27

algorithm computes a set of transmitting range assignments of minimum energy cost that

generates a strongly connected communication graph.

Algorithm OPTIMAL1DRA:
 Initialization

 Let RAi be the range assignment such that RAi(u1) = δ(u1, ui),
 and RAi (uj) = 0 otherwise

 for i = 2, . . . , n do Opt(({u1}, ∅), u i) = RAi
 Step k:
 Assume we know Opt(({u1, . . . , uk},Ei, k), ul), for any 1 ≤ i ≤ k and

 k ≤ l ≤ n

 for any j, m such that 1 ≤ j ≤ k + 1 ≤ m ≤ n
 consider all possible values of RA(uk+1) (there are k + 2 such

 values)
 for each such value r, find an assignment RA in

 Opt(({u1, . . ., uk},Ej,k+1), uk+1, (uk+1, r))
 if RA has cost lower than that of the current range assignment for

 j, m,
 store RA (new current minimum)
 at the end of step k, we know a range assignment in

 Opt(({u1, . . ., uk+1},Ei,k+1), ul), for any 1 ≤ i ≤ k + 1 ≤ l ≤ n

 after step n, an optimal assignment is one in Opt(({u1, . . . , un}, ∅), un)

Figure 3. The OPTIMAL1DRA algorithm for finding the optimal range
assignment (as presented in [21] [43])

2.3.2 Energy-efficient Communication Topologies

Another main problem that has concerned the topology designers diachronically is

the problem of identifying good topologies for energy-efficient communication among

the network nodes. In other words, given the communication graph G obtained when all

the nodes transmit at maximum power, and the goal is to identify a sparse subgraph G’

of G such that only energy-efficient links are retained in G’. The criterion used to

determine whether a certain link in G is energy efficient depends on the communication

pattern considered. Typically, the focus is on either end-to-end communication between

arbitrary nodes (unicast) or on one-to-all communications (broadcast).

The most important factor in order to define an energy routing graph is the Power

stretch factor which is a generalization of the concept of distance stretch factor, which is

well known in computational geometry and is defined in [21] as:

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 28

Let G’ be an arbitrary sub-graph of the max power graph G = (N,E). The power

stretch factor of G’ with respect to G, denoted as ρ G ’ , is the maximum over all

possible node pairs of the ratio between the power cost of the minimum power path in

G’ and in G. Formally ,

ρG’ = max
�,�∈�

 �����
!"#,$% &

�����
!"#,$&

 [21]

By convention, we define ρG’ =∞ if there exist nodes u, v that are connected in G,

but are disconnected in G’.

The graphs that have been used to build rooting graphs, considering the power

stretch factor, are called proximity graphs. They are called proximity graphs since the set

of links incident in any node u of the computed graph can be calculated on the basis of

the position of the neighbor nodes in the maxpower graph. Thus, proximity graphs can

be constructed in a fully distributed and localized way.

One of the most famous proximity graphs is the Gabriel Graph . The Gabriel

Graph has optimal power stretch factor and as we can see in Figure 4 an edge (u, v) ∈ G

is included in the Gabriel Graph if and only if the disk with the same edge as diameter

contains no node of G. The algorithm shown in Figure 5 was presented in [44] and is

used to construct and compute the Gabriel Graph in a fully distributed and localized

way. The algorithm relies on the assumption that every node in the network knows its

position on the plane. This can be accomplished by equipping nodes with low-power

GPS receivers, or by using other location estimation techniques. Considering that the

maximum node degree in the maxpower graph can be as high as n − 1, it can be easily

seen that the algorithm has O(n2) time complexity. The message complexity is O(n), since

every node in the graph transmits a single message.

Figure 4. Edge (u, v) ∈ G is included in the Gabriel Graph if and only if the disk with the
same edge as diameter contains no node of G. (taken from [21] [44])

u v

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 29

Algorithm GabrielGraph:
(Algorithm for node u)

IDu is the identifier of node u, and (xu, yu) is its location
EG(u) and EGG(u) are the set of links of the power graph and of the GG node u

is aware of
disk(u, v) is the disk with edge (u, v) as diameter

1. Initialization

Locally broadcast message (IDu,(xu, yu)) at maximum power

EG(u) = EGG(u) = ∅
2. Processing of incoming messages

upon receiving message (IDv,(xv, yv)) from node v
add (u, v) to EG(u)

check whether exists edge (u,w) ∈ EG(u) such that w ∈ disk(u, v)
if no, then add (u, v) to EGG(u)

for each (u,w) ∈ EGG(u)

check whether v ∈ disk(u,w)
if yes, then remove (u,w) from EGG(u)

3. Termination
after processing all incoming messages, EGG(u) contains all the edges of GG
incident in u

Figure 5. The Gabriel Graph construction algorithm. (as presented in [21])

2.3.3 Location Based distributed topology control protocols

After describing the two sub-categories of the location based topologies we will

briefly present two protocols of that architecture, the R&M protocol and the LMST

protocol. This two protocols rely on very accurate information, which is assumed to be

somehow available to the nodes. The easiest way to satisfy this assumption is to equip

every node in the network with low-power GPS receivers, which enable very accurate

position estimation and loose synchronization with no message exchange between

network nodes. This solution has a high cost in terms of hardware required on the nodes,

but it entails no message overhead. These protocols are mainly used in outdoor

applications, while their applicability in indoor environments is limited by the poor

accuracy provided by location estimation techniques in this setting.

The R&M protocol was presented by Rodoplu and Meng in [45] and it builds a

topology that is optimized for the all-to-one communication pattern, where one of the

network nodes is designated as the master node, and all the other nodes send messages

to the master. This traffic pattern is typical of Wireless Sensor Networks, where the

deployed sensors must send the collected data to one (or more) base station(s).

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 30

Considering the fact that WSNs are typically deployed outdoor, the R&M protocol is well

suited to build and maintain the topology in sensor networks. In order the R&M

protocol to find the optimal solution to the MinEnergyAllToOne problem firstly every

node in the network computes its enclosure and neighbor set, that is, its local view of the

enclosure graph Gε and then, a global cost distribution is initiated to determine the

minimum-energy reverse spanning tree rooted at the master node, which is a sub-graph

of Gε. The protocol uses the EnclosureGraph algorithm shown in Figure 6 in order to

construct the graph. Every node u broadcasts a beacon message containing its ID and

position at maximum transmit power. As beacon messages of other nodes are received, u

calculates the corresponding relay region, and keeps track of whether the newly found

node is in the relay region of some previously found node. To accomplish this task,

potential neighbors are marked dead or alive: a node is said to be dead if it lays in the

relay region of some other neighbor of u, and it is said to be alive otherwise. After all the

beacon messages from surrounding nodes are received, the set of alive nodes defines the

neighbor set of node u, that is, u’s local view of the enclosure graph. The

FlipAllStatesDownChain is an auxiliary function shown in Figure 7 that is called to

update the alive/dead state of the currently discovered nodes. After the construction of

the enclosure graph the Bellman–Ford shortest path algorithm , presented by Lynch in

[46], is used on the enclosure graph to compute the minimum-energy reverse spanning

tree rooted at the master node.[21]

Algorithm EnclosureGraph:
(algorithm for node u)
AliveNodes is the current set of alive nodes
DeadNodes is the current set of dead nodes
N(u) is the neighbor set of node u
εu is the enclosure of node u
 Initialization

 AliveNodes = ∅

 DeadNodes = ∅

 N(u) = ∅
 send beacon message (u, (xu, yu))
 Upon receiving beacon message (v, (xv, yv))
 compute relay region RRu→v
 MarkDead(v)
 FlipAllStatesDownChain(v)
 Termination (after receiving all beacon messages)
 N(u) = AliveNodes

 εu = ∩vAliveNodes (RRc
u→v ∩ R)

Figure 6. The EnclosureGraph algorithm (as presented in [21]).

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 31

Function FlipAllStatesDownChain(v):
(algorithm for node u)

1. If v ∈ AliveNodes then
 MarkDead(v)

 for each w ∈ RRu→v do FlipAllStatesDownChain(w)

else

if (v ∉ RRu→w) ∀w ∈ AliveNodes then
MarkAlive(v)

for each w ∈ RRu→v do FlipAllStatesDownChain(w)

Figure 7. The auxiliary function FlipAllStatesDownChain used in EnclosureGraph algorithm
(as presented in [21].

The R&M protocol builds a topology that optimizes a certain energy-efficient

topology problem, namely, MinEnergyAllToOne. In the MinEnergyAllToOne problem,

the goal is to find the most efficient way of communicating with the master node, that is,

the ‘wireless advantage’ is not useful in this case. Then, to solve the problem, it is

sufficient to find the most energy-efficient path from any node to the master node,

which can be done in polynomial time. The reverse version of MinEnergyAllToOne, that

is, the energy-efficient broadcast problem, is NP-hard. In the energy-efficient broadcast

problem the nodes use the so-called wireless advantage, that is, the fact that the message

sent by a node can be received by all the nodes within its range, and computing the best

way of using the ‘wireless advantage’ is NP-hard. Generally speaking the R&M protocol

can be successfully used in many wireless sensor network application scenarios, where

mostly stationary network nodes must send their data to a gateway node. In this case, the

network topology is typically built at the beginning of the network lifetime, and

constructing an energy-efficient topology is a primary design concern.

The LMST protocol was presented by Li in [47] and is composed of three phases:

information exchange, topology construction, and determination of transmit power, and

an optional optimization phase: construction of topology with bidirectional links. In the

first phase of the protocol, each node sends its ID and location to all nodes in the visible

neighborhood. This can be accomplished by sending a beacon message at maximum

transmit power. Once all the beacon messages of the visible neighbors have been

received, each node constructs its local MST by applying the classical Prim’s algorithm

[48]. After Prim’s algorithm execution, every node u in the network knows the (unique)

MST Tu = (VNu,Eu) connecting u to all its visible neighbors. The next step is to define

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 32

the set of neighbors of u in the final topology, that is, u’s local view of the LMST

topology. This is defined as:

Node v is a neighbor of node u, denoted as u →v, if and only if v is a one-hop

neighbor of u in its minimum spanning tree Tu = (VNu,Eu).

Formally, u → v ⇔ (u, v) ∈ Eu.

The neighbor set of node u, is defined as N(u) = {v ∈ VNu|u → v}.

The final step of the protocol is the determination of the transmit power needed to

send a message to any neighbor node. This can be accomplished by measuring the

received power of the beacon messages: when node u receives the beacon from a certain

visible neighbor v, it can estimate the minimum power level needed to reach v by

comparing the received power of the beacon with the maximum transmit power. The

algorithm of the LMST protocol, which is presented in Figure 8, is proven in [47] that

produces a topology that preserves connectivity in the worst case, has maximum logical

node degree equal and can be computed in a fully distributed and localized fashion. Also

Li in [47] proved that LMST protocol produces topologies with a smaller average logical

node degree and average transmission radius with respect to those generated by R&M.

Algorithm LMST:
(algorithm for node u)
VNu is the visible neighborhood of node u
N(u) is the neighbor set of node u
bpu is the broadcast power of node u
(xu, yu) are the coordinates of node u

1. Information exchange

send beacon (u, (xu, yu)) at maximum power
upon receiving beacon (v, (xv, yv)), store the received power of this
message in rpv

2. Topology construction (after all beacons have been received)

 build the local MST on nodes in VNu using Prim’s algorithm
 let Tu = (VNu,Eu) be this local MST

 N(u) = {v ∈ VNu|(u, v) ∈ Eu}

3. Determination of transmit power

for each v ∈ N(u)
compute the minimum power mpv needed to reach v based on rpv

bpu = maxv∈N(u)mpv

4. (Optional) Topology with bidirectional links

for each v ∈ N(u)
send probe message (u, mpv) to v using power mpv
upon receiving reply message (v, state) from v
 if state = uni then

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 33

 notify v sending message (u, add) (technique 1)) using power mpv
or
 delete v from N(u) (technique (2))

 upon receiving probe message (v, mpu)

if v ∈ N(u) then
 send reply message (u, bi) using power mpu
otherwise
 send reply message (u, uni) using power mpu

upon receiving notify message (v, add)
add node v to N(u), with associated power mpv
if necessary, update the broadcast power bpu

Figure 8. The LMST protocol algorithm (as presented in [47]).

2.4 State of Art in Seed Oppnets

 Oppnets constitute the subcategory of ad hoc networks where diverse systems, not

employed originally as nodes of an oppnet, join it dynamically in order to perform certain

tasks they have been called to participate in. Oppnets have a significant potential to

improve a variety of applications, and to create new application niches. Opportunistic

networks are categorized as class 1 opportunistic networks that use opportunistically only

communication resources, and class 2 opportunistic networks that use opportunistically

all kinds of resources, including not only communication but also computation, sensing,

actuation, storage, etc. Every opportunistic network grows from a seed oppnet, or simply

a seed, which is a set of nodes employed together at the time of the initial oppnet

deployment as shown in Figure 9.

The seed is pre-designed. It can have just a few nodes, in the worst occasion even a

single node. A seed can be wireless with nodes communicating via radio channels, and

ad hoc with nodes not carefully pre-positioned but, for instance, thrown out of a plane

or a moving car in the general disaster area. Seed nodes for emergency operation could

be quite powerful, such as powerful mobile communication/computing/sensing hosts

Fig. 9 Seed oppnet—an example

Common Nodes

Internet Link

Controller (distributed)

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 34

mounted on heavy all-terrain trucks or amphibious vehicles, or in parachute-dropped

containers. Once the seed becomes operational, its first task is to detect a set of

“foreign” entities devices, node clusters, networks, and other systems which it recognizes

as useful. The detected entities are candidates for becoming “helpers” for the oppnet.

Each such candidate helper has a potential to provide the oppnet with some

communication, computing, sensing, or other capabilities or resources. Candidate

detection can be done by any means possible, both traditional and novel [6]. Oppnets

can use satellite-based detection or radio-based detection (including detection of cell

phone-equipped systems). It can search for systems in the disaster area using the range of

Internet addresses, known as IP addresses, assigned to its own geographical area. It can

even use artificial intelligence techniques for visual detection of systems and appliances

with embedded chips. For example, it can visually detect a car within the surveillance

area of a helper that already joined the oppnet, read its license plate, check if the car is

equipped with the OnStar system [7], and attempt to contact its embedded network if it

is. Candidates are evaluated by the oppnet, and the best ones are ordered or invited to

join the oppnet. Invited candidates can either accept or refuse the invitation. However, in

emergency life-or-death situations, candidates can be forced to join, and must agree to be

conscripted in the spirit of citizens called to arms (or suffer the consequences of going

AWOL absent without leave)[10]. A candidate ordered to join still needs to ask for

permission to join, since the need of the oppnet for helpers is, in general, very dynamic.

The oppnet admits the candidates that it still needs at the moment of its admission

decision.

It is important to note that by admitting helpers an oppnet can leverage all kinds of

resources it needs that are available in its environment. Oppnet growth is a mechanism

to obtain a lot of help at a very low cost.

Foreign entities admitted into the oppnet become its full-fledged members, or

helpers. By admitting candidates, the seed grows into an expanded oppnet. For example,

the expanded oppnet in Figure 10 admitted the following candidates that became helpers:

(a) a computer network, contacted via a wired Internet link; (b) a cell phone

infrastructure (represented in Figure 10 by the Cell phone Tower), contacted via

Bluetooth-enabled oppnet’s cell phone peripheral, (c) a satellite, contacted via a direct

link, (d) a home area network (HAN), contacted via an intelligent appliance (e.g., a

refrigerator) with a wireless link, (e) a microwave network, contacted via a microwave

relay. [10]

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 35

All helpers collaborate on realization of its oppnet’s goals. They can be deployed to

execute all kinds of tasks even though, in general, they were not designed to become

elements of an oppnet that invites them. A helper may be allowed by an oppnet manager

to invite other systems. The more helpers are allowed to invite foreign nodes the faster

oppnet grows.

Conclusively, oppnets differ from traditional networks, in which the nodes of a

single network are all deployed together, with the network size and locations of its nodes

pre-designed. In oppnets, the initial seed oppnet grows into an expanded oppnet by

taking in foreign nodes. Thus, oppnets constitute the category of networks where diverse

devices, not employed initially as its nodes, join the original set of seed nodes to become

helpers assisting the oppnet in realization of its goals. When deployed, oppnets attempt

to detect candidate helper systems existing in their relative vicinity ranging from sensing

and monitoring, to computing and communication systems and integrate them under

their own control. When such a candidate is detected by an oppnet, the oppnet evaluates

the benefits that it could realize if the candidate joins it. If the evaluation is positive the

oppnet invites the candidate to become its helper. In this manner, an oppnet can grow

from a small seed into a large network with huge sensing, communication, and

computation capabilities.[20]

Oppnets can facilitate many applications scenarios. As an example, they can help

building an integrated network called for in various critical or emergency situations.

Oppnets can be used to enable connectivity in an area where any existing communication

or information infrastructure has been fractured or partially destroyed. Oppnets will

Fig. 10 Expanded oppnet—an example

Common Nodes

Controller (distributed)

Appliance
(refrigerator)

Satellite

Computer Network

Microwave Relay

Internet Link

Cellphone

Tower

Overturned

Car with
OnStar

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 36

integrate various systems that were not designed to work together. The integration will

enhance the flow of information that, for example, can assist in rescue and recovery

efforts for destroyed areas, or can provide more data on phenomena that are just

developing, such as wildfires or twister storms.

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 37

Chapter III

3. Theoretical Proofs and Heuristic Algorithm Proposals
for Connectivity

We believe that every scientist has the duty to face unsolved problems and try to

give solutions in order to advance the research made by other fellow scientists before

him. That is the only way that science can advance forward and provide solutions for all

mankind that will arm the humanity in order to face in a better way challenges that exist

or will emerge in the future. Scientists have to try to provide these solutions not for their

personal projection but for a contribution to all humanity.

 In Chapter III we state once again, more thoroughly this time, the two main

problems that we face in our dissertation and we provide the theoretic proofs and

solutions for these problems.

3.1 Problem Statement

Oppnets due to their early nature birth create many great challenges for the

researchers. One of them is the optimisation of the seed oppnet infrastructure. Measures

and criteria for the optimization of the seed oppnets in their deployment environment

need to be set. These criteria have to allow specifications for the amount of

communication and also for their computational, sensing and energy resources. Optimal

designing of the seed oppnets has to be defined. The minimal seed oppnet configuration

that can assure a reliable execution of the oppnet tasks, that have to be carried out, has to

be characterized. The localization problem has been shown to be NP-hard, even when

distances between nodes are known exactly. So heuristic techniques for the optimization

of the oppnets in order to achieve their goals need to be provided. These techniques

might rely on probabilities especially when the seeds are not deployed with precise

positioning.

These problems emerge the need for designing a new topology controller model.

The new model has to define the optimal paths of the nodes of the oppnet taking into

account the less energy consumption of the node and the reliability of

the execution. Until now the previous approaches to that challenge used Minimum

Spanning Tree approach or Minimum Spanning Tree Heuristics. We approach a solution

for this problem by defining a distributed based algorithm for node inclusion in the

network.

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 38

More specifically, following is a more rigorous definition of the core problems that

we face in our dissertation:

Problem 1

Let G = (V , E) be a graph representing the potential oppnet by the seeds that can

be formulated . More specifically, let V be the set of those nodes and E the set of

possible links that can be possible candidates for any pair of nodes (vi , vj) ∈ V. Since

we assume that every node Vi is equipped by a local system that identifies its position on

a field and also a battery power measurement system, let (xi , yi , zi , di) be a 4-tuple

indicating the x,y,z coordinates of the node and the node transmission distance

respectively. After the nodes are thrown randomly on a field, in a general case scenario,

few of those nodes can be positioned in an (x,y,z) location making them unable to

participate in the oppnet due to their transmission range restriction. We are looking for

solving the following 2 sub-problems:

Sub-problem 1: Find a subset V’ of V that can participate in the oppnet .

Sub-problem 2: Identify the set of minimum one-to-one paths for every pair (vi

, vj) ∈ V’. Note that there is a linear relation between the distance of the path and the

battery draining for the transmission of any communication. For this scenario we will

also consider two possible variations :

a. Any path pij for the pair (vi , vj) must pass through a seed node.

b. The path pij does not necessarily pass through a seed node.

Problem 2
Given an oppnet G =(V,E) where V is the set of nodes/seeds that participate from

sub-problem 1.1 and E the set of identified links from sub-problem 1.2, we are looking

for the necessary and sufficient set of messages needed to be formulated in a

communication protocol for other networks to participate in the oppnet. We identify few

of those procedures/messages that need to be implemented and included in such a

protocol:

 1. Triggering a “call for help” extension of the network mechanism.

 2. A procedure for authentication of “outsiders” that answer the previous call.

 3. An acceptance to the oppnet-extension mechanism.

 4. A procedure for advertising new nodes that joined the oppnet.

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 39

3.2 Solution of Problem 1 sub-problem 1

In order to provide a realistic solution scenario to the sub-problem 1 of problem

1 we have to set some standards.

Restriction 1: The seeds of the oppnet are capable to move to different locations

according to the commands they take from the Control Center in order to establish

communication. That restriction is necessary given the fact that oppnets are designed to

be deployed to emergency situations such as warzones that the standard communication

infrastructure has been destroyed or natural disasters such as hurricane Katrina that

destroyed almost every communication infrastructure that existed in New Orleans. The

seeds can be remote controlled robotic all-terrain vehicles or remote controlled robotic

bugs or remote controlled mini helicopters all equipped with a GPS receiver and a

wireless communication 916/433 MHz sensor or a usb Bluetooth 2.4GHz dongle or a

wireless Internet 802.11 b/g 2.4GHz adapter or all of them capable to send and receive

messages Mi in a range ri.

Restriction 2: All the seeds, along with the sensor nodes, are dropped in a

scattered way by air from an airplane or helicopter in the disaster area or the warzone.

We also have the capability to drop extra seeds if we have to in order to achieve the

communication goal we target.

Our goal, is to find a subset V’ of V that can participate in the oppnet, such

that to make it optimal in length. Therefore, we are looking for a minimum

communication tree made by the virtual connections (links) in V’. Note that the set of

seeds S can also participate in the process having the role of Steiner points since the

minimum known communication tree is the Steiner tree. We set that V does not include

set S of the seeds. In Figure 11 we provide a graphical representation of the graph G=

(V,E) of the oppnet network.

Figure 11. The graph G= (V,E) representing the oppnet network consisted by sensor
nodes and seed nodes.

Seed node

Sensor node

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 40

 We now provide an algorithm we named UNION in order to create the set of

nodes which will participate in the oppnet among the nodes in V. First of all the

algorithm UNION creates and sends a broadcast message Mi for each node. At this

point we have to assume that according to the specifications that we set in Restriction 1

each node can send and receive a message Mi in a range ri . Then the algorithm creates a

For loop in which each node vi ∈ V is in a state to receive messages of the form

(broadcast, vi, xi, yi, zi). Within this loop each node forwards all messages to a seed

assuming that ∃ has at least one seed. Then if vs ∈ S gather all messages forwarded by the

nodes. The algorithm then creates an array A[1….n] assuming that |V| equals n. A

nested if that sets that if ∃ Mi (broadcast, Vi) then A[i] is set as true. Finally a For loop

is created for (i← 1 to n) to check if A[i] is set as true then V’ equals V’ ∪ vi .

The result of the algorithm is that V’ contains all the nodes participating in the

communication process.

Algorithm UNION

Create a broadcast message Mi for each node and send it

For each node vi ∈ V receive messages (Mi, vi, xi, yi, zi)

 Forward all Mi to a seed

If vs ∈ S then

 Gather all Mi forwarded by the nodes

 Create an array A[1….n] (assuming that |V| = n)

 If ∃ Mi (broadcast, Vi)

then A[i] = true

 For (i← 1 to n)

 If A[i] = true

 V’= V’ ∪ vi

Figure 12. The proposed pseudo-code algorithm UNION

3.3 Solution for Problem 1 sub-problem 2

Approaching the solution of Problem 1 sub-problem 2 we can clearly state that

our goal in order to achieve a solution is to make the communication tree. The most

obvious solution could be to calculate the Minimum Spanning Tree. A Minimum

Spanning Tree is a spanning tree of a graph with weight less than or equal to the weight

of every other spanning tree. Generally speaking, any undirected graph has a minimum

spanning forest, which is a union of minimum spanning trees for its connected

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 41

components.[49] Although the Minimum Spanning Tree calculation seems to be the

solution, it has been proven that Minimum Spanning Tree is not the optimal solution.

On the other hand the Minimum Steiner Tree solution has been proven to be the

optimal one. Minimum Steiner Tree problem, which was presented by Jakob Steiner, is

superficially similar to the minimum spanning tree problem: “given a set V of points

(vertices), interconnect them by a network (graph) of shortest length, where the length is

the sum of the lengths of all edges. The difference between the Steiner tree problem and

the minimum spanning tree problem is that, in the Steiner tree problem, extra

intermediate vertices and edges may be added to the graph in order to reduce the length

of the spanning tree. These new vertices introduced to decrease the total length of

connection are known as Steiner points or Steiner vertices. It has been proved that the

resulting connection is a tree, known as the Steiner tree”. [50]

The problem of establishing the Minimum Steiner tree belongs to the NP-

Complete class of exponential exact solution computational problems. Therefore are the

referred above citations to the Steiner tree formulation are all heuristics. We created our

own heuristic algorithm for which we prove its computational complexity and we

performed experimental results by our simulator to show the merit of our approach.

 In order to provide a solution of the Minimum Steiner Tree problem in a more

formal way we are obliged to set some propositions. The deployment field of the oppnet

although it is formulated in a three dimensional space follows the primitives of a two

dimensional space. As shown in Figure 13 the underlying grid

Figure 13. The underlying grid

of a point set P on the oriented plane is formed by horizontal and vertical lines passing

through every point in P. The points in P are represented with their coordinates, i.e. pi ∈

P is represented with (xi, yi) The rectilinear distance between two points pi, pj ∈ P is |xi-

xj|+|yi-yj|. Let P be a set of n points on the grid and X = {x1, x2,…..,xn}, Y = {y1, y2,….,

yn} the sets of x and y coordinates of all points in P. Let xmin, xmax, ymin, ymax represent the

The grid formed by
vertical and
horizontal lines

Aligned points (y-axis)

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 42

minimum and maximum elements of the corresponding sets X and Y. An envelope for P

is the periphery of the rectangle defined by the four points (xmin, ymin), (xmin, ymax), (xmax,

ymin), and (xmax, ymax) . The whole rectangle is called a mesh for the set P.

 Proposition 1: Let P be a set of n = 2k+1 points on the grid. Then, there exists a

unique point (x,y) on the grid such that ∑ ��
./0 |xi – x| + |yi – y|) is minimum.

 Proof : Let X = {xi|xi is the x-coordinate of pi ∈ P} and let Y = {yi|yi is the y-

coordinates of pi ∈ P}. We assume, without loss of generality, that xi ≤ xi+1 and yi≤ yi+1 ;

1 ≤ i ≤ 2k. As shown in Figure 14 the point (x,y) = (xk+1,yk+1) minimizes the distance : D

= ∑ ��
./0 |xi – xk+1| + |yi – yk+1|).

Figure 14. The (xk+1, yk+1) point minimizes the distance D

For every point (x’, y’) = (xk+1+d1, yk+1+d2) on the grid, where d1, d2 ∈ R and

not both equal to zero, we will show that D’ > D with D’= ∑ ��
./0 |xi – x’| + |yi –

y’|). Let d1≥ 0, d2≥ 0 and d1+d2 ≠ 0. Then,

D’ =∑ �5670
./0 |xi – xk+1 – d1| + |yi – yk+1 –d2|)

= ∑ �6
./0 |xi – xk+1 – d1| + |xk+1 – xk+1 –d1|+ ∑ �5670

./675 |xi – xk+1 – d1|)

+ ∑ �6
./0 |yi – yk+1 –d2|) +|yk+1 – yk+1 –d2|+ ∑ �5670

./675 |yi – yk+1 – d2|)

Since, xi ≤ xk+1 + d1, yi ≤ yk+1 + d2 for 1 ≤ i ≤ k we have

 |xi – xk+1 – d1| = |xi – xk+1 | + d1,

|yi – yk+1 –d2| = |yi – yk+1| + d2

Also since, xi ≥ xk+1 + d1, yi ≥ yk+1 + d2 for k+2 ≤ i ≤ 2k+1 we have

|xi – xk+1 – d1| ≥ |xi – xk+1 | - |d1|,

|yi – yk+1 –d2| ≥ |yi – yk+1| - |d2|

The unique point for a 9-point configuration (X k+1, Y k+1)

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 43

Thus,

D’ ≥ ∑ �6
./0 |xi – xk+1 |) +kd1 + d1 + ∑ �5670

./675 |xi – xk+1 | - |kd1|

+ ∑ �6
./0 |yi – yk+1| + kd2 + d2 +∑ �5670

./675 |yi – yk+1 | - |kd2|

Since, d1 ≥ 0 and d2 ≥ 0 then D’ ≥ D +d1 + d2.

Since, d1 and d2 are not both zero it follows that D’ > D.

Similar proofs for the other three cases:

d1 ≥ 0, d2 ≤ 0 and |d1|+|d2| ≠ 0,

d1 ≤ 0, d2 ≥ 0 and |d1|+|d2| ≠ 0,

d1 ≤ 0, d2 ≤ 0 and |d1|+|d2| ≠ 0,

result in D’ > D.

 Therefore, the unique point that minimizes the summation of the distances from

all points of P is the point (xk+1, yk+1).

 Proposition 2: Let P be a set of n=2k points in the grid. Then, there exists a

submesh of points on the grid such that ∑ |�
./0 xi – x|+|yi – y| is minimum for every

point (x,y) in the submesh.

 Proof: Let X, Y be the x and y coordinates of all points in P respectively. Select

the elements xk, xk+1 to be the k
th and (k+1)st largest elements of X. Select similarly the yk

and the yk+1 elements of Y. Consider the submesh defined by the four corner points, (xk,

yk), (xk, yk+1), (xk+1, yk) and (xk+1, yk+1) as shown in Figure 15. For any point (x,y) of the

submesh the

D = ∑ |�
./0 xi – x|+|yi – y|

is minimum.

 There are two possible moves of the point (x,y) by a distance d; one move inside

the submesh (perimeter included) and the other move outside the submesh. In the first

case, from the definition of the submesh, when (x,y) moves to the right by a distance

d>0 we have:

D’ = ∑ |6
./0 xi – (x + d)|+ ∑ |56

./670 xi – (x - d)|+ ∑ |56
./0 yi – y|

Since, |xi – (x + d)|=(x + d)-xi for 1≤ i ≤ k and |xi – (x - d)|= xi - (x + d) for k+1≤ i

≤ 2k, we have D’ = D.

 When (x,y) moves to the right and outside the submesh by a distance d>0 we

have:

D’ = ∑ |670
./0 xi – (x + d)|+ ∑ |56

./67970 xi – (x - d)|+ ∑ |56
./0 yi – y|,

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 44

where l>k. Because k+1>2k-k-l-1 = k-l-1, there are more x-coordinates that increase by

d than the ones that decrease by d. Therefore, D < D’.

Figure 15. Creation of the submesh for an even number of points.

 Arguing similarly for the remaining outside moves of (x, y) we conclude that it is

always D < D’. The above two propositions appear in a different context in [51].

3.3.1 The ENVELOPE Algorithm

 The propositions proved above are used to develop a polynomial algorithm that

approximates the Minimum Steiner Tree of a finite number of points. The EVELOPE

algorithm was first presented by Kountanis in [51] for the calculation of the Rectilinear

Steiner Tree and we present a different version of the ENVELOPE algorithm which

calculates the Euclidean Minimum Steiner Tree which is the Minimum Steiner Tree of an

oppnet. Intuitively the algorithm works as follows:

 Successive envelopes for P are obtained starting with the outmost envelope and

moving inwards until an envelope is reached that contains only one point. If an envelope

contains an odd number of points, then the unique defined by Proposition 1 is added to

the points to be considered in successive envelopes. If an envelope n = 2k > 2 points

then a submesh is defined by Proposition 2. When n=2, one of these points is selected,

according to the following criteria: If only one of the two points belongs to the original

set P then, this point has higher preference over the other. If both belong to the original

set P then, the one with the maximum degree is selected. If the degree is the same for

both points then, the one which is closer to the point with the maximum degree of the

immediately next envelope is selected.

 Note that the number of Potential Steiner points, which are added for further

processing, is always less than the number of points in the corresponding envelope.

Therefore, convergence of the algorithm is guaranteed.

The unique submesh formed by a 10-point configuration

(Xk+1,Yk+1)
(Xk,Yk+1)

(Xk+1,Yk)
(Xk,Yk)

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 45

 At the beginning, every point in P has a Degree of 0 which means that all of

them have the same preference to be chosen as starting points of local Minimum Steiner

Tree’s. The degree of added points increases by 1 over the max degree among all points

in its corresponding envelope. A point with higher degree is preferable for starting point

of local MST’s over other points with lower degrees.

 The construction of the MST starts with the point, possibly not in P, that has the

maximum degree. We connect the points from each envelope to the existed MST,

moving from inside out. In each envelope, only the points that belong to the original set

P are connected to the MST. The points on the envelope are connected to the MST in

order, according to their distances from the MST with shortest distance first. Points

which are Potential Steiner points on each envelope, are used to break ties of equidistant

point occurrences. The connection of the points on the envelope uses the following

criteria listed in terms of priority:

1. Always connect first, the point with the shortest distance to the existed MST. If more

than one points are equidistant from the MST then,

2. Choose the one that can be connected to the tree forming a path that has the

maximum overlap with its corresponding envelope boundary. If there are more than

such points then,

3. Select the point that is closer to the point with the maximum degree on the current

envelope.

 Note that Potential Steiner points may fall on a connection path of other points.

This does not always mean that such points are going to be final Steiner points. These

points simply direct the formation of each edge in the tree. The final Steiner points are

the ones with degree of 3 or more.

 The algorithm ends when all points in P are connected. Below in Figure 16 we

can see the implemented algorithm.

Algorithm: ENVELOPE

Input: The set P={(xi, yi) where 1≤ i ≤n are the given points}
 The set X of the x-coordinates of the points in P
 The set Y of the y-coordinates of the points in P
Output: A Minimum Steiner Tree

STEP 1
 Let C be a stack of sets /* the stack holds the points of the envelopes */
 C=NULL;
 D=0; /*The degree of the preference of points*/
 Let A={(xi, yi, Di) where (xi, yi) belongs in P and Di is its degree}

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 46

 WHILE |A| ≥ 2 DO

 Find the xmin, xmax of xi’s where (xi, yi, Di) ∈ A

 Find the ymin, ymax of yi’s where (xi, yi, Di) ∈ A

 Let B={(xi, yi, Di) ∈ A where xi=xmax OR xi=xmin
 OR yi=ymin OR yi=ymax}/* push the envelope B in the stack*/
 A=A-B
 IF |B|=2k+1 /* for some integer k*/ THEN

 Select the Medians xmed and ymed of xi’s and yi’s from (xi,yi,Di) ∈ B

 Find Dmax=maximum Di where (xi, yi, Di) ∈ B
 Dmax = Dmax+1
 Let (xs,ys,Ds)=(xmed,ymed,Dmax) the unique point of Proposition 1

 A=A∪{(xs,ys,Ds)} /* add the unique point */
 ELSE /* the cardinality of B is even (Proposition 2) */

 Select the kth and the (k+1)st xi’s and yi’s from (xi,yi,Di) ∈ B
 Let R be the unique submesh defined by the corners
 (xk, yk), (xk, yk+1), (xk+1, yk), (xk+1, yk+1)
 Select two corner points

 Find Dmax=maximum Di where (xi,yi,Di) ∈ B
 Dmax = Dmax+1
 Let (xs,ys,Dmax) and (xs’,ys’,Dmax) be the selected points

 A = A∪{(xs,ys,Dmax)), (xs’,ys’,Dmax))}
 ENDIF
 ENDWHILE

STEP 2
 Let (xss, yss, Dss) be the remaining point in A
 /* This is the starting point of the MST */

 WHILE C ≠ NULL DO
 POP(C,B) /* obtain the current envelope points from stack */

 B = P∩{;1(B), ;2(B)} /*(;1, ;2) give the (x, y) from (x, y, D) */
 WHILE there still points in B DO
 Find a point in B which is the closest to the existed MST
 IF there are more than one closest points from the point to MST THEN

Choose the one that overlaps the most with the current envelope
boundary
 IF There are still more than one such points consider THEN

Choose the closest to the maximum degree point of the current
envelope

 IF there are still more than one such points consider THEN
 Choose one randomly
 ENDIF
 ENDIF
 ENDIF
 ENDWHILE
 ENDWHILE

Figure 16. The Euclidean Steiner Tree ENVELOPE Algorithm

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 47

The ENVELOPE algorithm that is presented above consists of two steps: Step 1

consists of a WHILE loop. The maximum number of times that this loop will be

executed equals to the number of envelopes generated. In the worst case this number

will be (n – 1), where n is the number of points in P. The worst case will be when each

one of the envelopes contains only two points among the points P and the added points.

This implies that the number of envelopes in the worst case is O(n). Each of the two

FIND operations inside the WHILE loop has complexity O(n). The MAX and MIN

operations can be carried out in time O(n). The same is true for the A=A-B operation.

The calculation of the Median of a set is O(n) which is also true for the UNION.

Therefore, the order of complexity of step 1 is O(n2). Step 2 consists of two nested

WHILE loops. The outside WHILE loop iterates r times, where r is the total number of

envelopes constructed in step 1. On the other hand, the maximum number of envelopes

that can be formed in step 1 is (n-1). Therefore, the maximum number of iterations due

to the outside WHILE loop is O(n). Because, in the worst case, the number of points in

each envelope is 2, the inside WHILE loop will iterate O(1) times. The POP operation as

well as the INTERSECTION operation of the inside WHILE loop are O(n) operations.

The operation of finding the closest distance of a point to the MST can be carried out

also in time O(n). Each one of the IF statements in the inner WHILE loop has time

complexity O(1). Therefore, the time complexity of step 2 is O(n2). Thus, the overall

complexity of the algorithm is O(n2).

3.4 Solution of Problem 2

In order to provide the solution for problem 2 we have to set some standards for our

oppnet deployment scenario. As shown in Figure 1 in order to create an oppnet we have

to have at least one seed that has all the communication capabilities, mentioned in

solution of Problem 1 sub-problem 1, such as a GPS receiver, a wireless communication

916/433MHz sensor, a usb Bluetooth 2.4GHz dongle and a wireless Internet 802.11 b/g

2.4GHz adapter . That, at least one, seed will play the role of the Distributed Command

Center. The Distributed Command Center using all its communications capabilities will

establish a remote VPN link to the Oppnet Command Control Center which may be

very far away and will be used by the administrator of the Oppnet. The DCC is the one

that has to try to scan for the rest of the seeds that were scattered in the drop zone and

start to communicate with them in order to create the network tree of the oppnet. Also it

is DCC’s role to recognize which of the nodes are seeds or wireless sensors. The seeds

due to their moving capabilities have a more energetic role in the oppnet on the contrary

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 48

with the wireless sensors that are not capable of moving and in general most of the times

play the role of re-transmitters of the commands or messages. Seconds before dropped

the seeds and the wireless sensors of the oppnet are enabled in order to start the

procedure of scanning in all their communications mediums for near neighbors. After

they scan for neighbors, they start an “advertising” procedure sending their exact

geographical location to all their neighbors in order each node to “know” the location of

its neighbors. The administrator of the oppnet from the OCCC sends the command to

the DCC in order to initiate the oppnet. Then the DCC scans for its near neighbor nodes

and orders all the nodes to report their geographical location back to it. After all the

nodes have reported their geographical location back to the DCC the DCC runs the

ENVELOPE algorithm in order to create the Minimum Steiner Tree which is the

Minimum Communication Tree of the oppnet. An authentication procedure is started in

order the nodes to be authorized to join the oppnet. After a node is authorized it enters

the “listen”, “check” and “forward” states in order to listen the commands from the

DCC, check if the command is for it and forward the command or a message to the

node it is destined if not for it. The DCC can drop a node from the oppnet if it decides

that is not useful or the oppnet does not need to grow anymore and order a seed to

move to a different geographical location in order to be able to achieve the

communication goals of the oppnet.

Conclusively, we can state that the oppnet deployment scenario that we just

presented reflects a multi-functional network that is dynamically growing or minimizing

according to its communication goals. The human factor, which in our case is the

administrator of the OCCC, still remains the decision maker of the communication goals

of the network and takes full advantage of the mobility features of the oppnet.

Below in Tables 4 and 5 we can see the sets of the proposed message-commands that

could be used in the oppnet to achieve its communication goals.

Table 4. The set of commands send from the OCCC to the DCC.

Command Function of the command

DCC_go Initiate the oppnet

DCC_stop Shutdown the oppnet

DCC_order Send command to the nodes

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 49

Command Function of the command

Node_detect Scan communication spectrum to detect active nodes.
Node_recon Discover nodes with specific capabilities.
Node_listen Receive and save commands or messages in a buffer.
Node_check Verify if the received command or message is for it or not.
Node_forward Process a message or command from the buffer.
Node_authendicate Evaluate a node and admit it into the oppnet if needed.
Node_disengage Drop a node from the oppnet if not authorized or not needed.
Node_report Report information to the DCC.
Node_move Order a seed to move to different geographical location.

Table 5. The set of commands send from DCC to the nodes of the oppnet.

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 50

Chapter IV

4. Developed Simulation and Experimental Results

In this Chapter we will present the software we developed for the construction of

the Euclidean Minimum Steiner Tree of an oppnet and a comparison of our

experimental results of our Steiner software with the Geosteiner 3.1 software developed

by David Warme, Pawel Winter and Martin Zachariasen [52]. The seeds of our oppnet

are simulated as Steiner points from a topology point of view. In order to develop the

Steiner software we used strictly open source development tools that run in Open source

Operating Systems. More specifically, we used GCC 4.4 (GNU Compiler Collection)

which is a compiler system produced by the GNU Project [54] supporting various

programming languages. GCC is a key component of the GNU tool chain. As well as

being the official compiler of the unfinished GNU operating system, GCC has been

adopted as the standard compiler by most other modern Unix-like computer operating

systems, including Linux Ubuntu 8.10. [53] The software and the experimental results

were developed on a Laptop with Pentium 1,6 GHz processor, 1GB of RAM memory

and Linux Ubuntu 8.10 Operating System.

4.1 The Steiner software

As mentioned before in Chapter III the Minimum Steiner Tree for our oppnet

topology is the Euclidian Steiner Tree of seeds. That is the reason that motivated us to

develop an application that constructs Euclidian Steiner Trees and represents them in

graph form in postscript files. In order to develop the Steiner application we used C

programming language which is the basic language of the GCC 4.4 compiler [54]. In

general our application consists of a polynomial random point generator (archive

rand_points.c) that generates random points of a given size, two archives (e_steiner.c and

envelope.c) that compute and construct the Minimum Steiner Trees using the points

generated by the random point generator, an archive fst2graph.c that transforms the

structure of the trees to graphs and an archive plotfst.c that creates the postscripts files

from the graphs. The source code of the files fst2graph.c and plotfst.c was not developed

by us and is taken from the open source software Geosteiner 3.1 [52].

The random point generator takes as input an integer number of points, for

example 30 points, and creates a random set of them with the above source code.

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 51

if (oflag NE 0) {

 if (use_new_generator) {

 seed_to_string (sbuf, 16, "0x");

 }

 else {

 seed_to_string (sbuf, 10, "");

 }

 fprintf ((oflag EQ 1) ? stdout : stderr,

 "%% rand_points: seed = %s\n", sbuf);

 }

 for (i = 0; i < npoints; i++) {

 x = random_coordinate ();

 if (NOT use_new_generator) {

 (void) __rand ();

 }

 y = random_coordinate ();

 (void) printf ("%5lu %5lu\n", x, y);

 }

 if (fflag NE 0) {

 if (use_new_generator) {

 seed_to_string (sbuf, 16, "0x");

 }

 else {

 seed_to_string (sbuf, 10, "");

 }

 fprintf ((oflag EQ 1) ? stdout : stderr,

 "%% rand_points: final state = %s\n", sbuf);

 }

 exit (0);

After the random generator has produced the random points the file e_steiner.c

which is the Euclidean generator reads that point set from the random point generator,

generates the structure of the tree, and outputs them to standard output. Then the

envelope.c file computes the Euclidean Minimum Steiner Tree.

4.2 Experimental results

We used the envelope version of our algorithm to develop the e_steiner tree for

various topologies. The topologies were generated by the random generator functionality

shown above. The data sets for our experiments include 30,40,50,60,70,80,90 and 100

points. For each data set category we generated 10 data collections. More specifically our

random point generator for 30 points generated 10 sets of 30 points each. The same

happened for all the other data set categories. For each category we found all the

generated Minimum Steiner Trees. The time for the Steiner Tree generation was

calculated based on the machine used for the implementation. We used the necessary

clock () functions in UNIX for the time calculations.

Using the above methodology we found for each data set category the average time

spent for the tree calculation. The following subsections show various screenshots for

the Steiner trees visualization. As a visualization tool we used the ps-visualizer which is

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 52

included in the Geosteiner 3.1 [52] software version in order to have better compatibility

between that software and our software. More thoroughly we created:

Ten ps files of 30 points Minimal Steiner trees like the one shown in Figure 17.

Figure 17. A Steiner Minimum Tree of 30 points

Ten ps files of 40 points Minimal Steiner trees like the one shown in Figure 18.

Figure 18. A Steiner Minimum Tree of 40 points

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 53

 Ten ps files of 50 points Minimal Steiner trees like the one shown in Figure 19.

Figure 19. A Steiner Minimum Tree of 50 points

Ten ps files of 60 points Minimal Steiner trees like the one shown in Figure 20.

Figure 20. A Steiner Minimum Tree of 60 points

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 54

Ten ps files of 70 points Minimal Steiner trees like the one shown in Figure 21.

Figure 21. A Steiner Minimum Tree of 70 points

Ten ps files of 80 points Minimal Steiner trees like the one shown in Figure 22.

Figure 22. A Steiner Minimum Tree of 80 points

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 55

Ten ps files of 90 points Minimal Steiner trees like the one shown in Figure 23.

Figure 23. A Steiner Minimum Tree of 90 points

Ten ps files of 100 points Minimal Steiner trees like the one shown in Figure 24.

Figure 24. A Steiner Minimum Tree of 100 points

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 56

One ps file of 200 points Minimal Steiner trees like the one shown in Figure 25.

Figure 25. A Steiner Minimum Tree of 200 points

One ps file of 300 points Minimal Steiner trees like the one shown in Figure 26.

Figure 26. A Steiner Minimum Tree of 300 points

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 57

One ps file of 400 points Minimal Steiner trees like the one shown in Figure 27.

Figure 27. A Steiner Minimum Tree of 400 points

One ps file of 500 points Minimal Steiner trees like the one shown in Figure 28.

Figure 28. A Steiner Minimum Tree of 500 points

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

In Table 6 we can clearly see the experimental results relatively to the time

needed for the Steiner tree calculation.

Table 6. The time calculation results of the Steiner application.

We plotted the above table values as it is illustrated in Diagram 1. It is clear to see

that the experimental results verify the pre-calculated time complexity of O(n2) of the

ENVELOPE algorithm.

Diagram 1. The experimental results of the Steiner application plotted.

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

30 40 50 60 70 80 90 100

T(n)

T(n)

n-points

Number of points Time calculation for Steiner software in seconds

30 0.22

40 0.52

50 0.83

60 1.24

70 1.97

80 2.67

90 3.16

100 3.87

O (n
2
)

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 59

 We also compared our generated data sets of points relatively to the length of the

created Steiner Trees as opposed to the ones generated by the Geosteiner 3.1 [52]

software. This computation is depicted below in Table 7.

Number of points Envelope MST length Geosteiner 3.1 MST length

30 37095,88 37092,44
40 45788,13 45789,54
50 48600,81 48599,86
60 54931,31 54929,12
70 59591,22 59593,28
80 62058,82 62056,46
90 65558,07 65557,03
100 69474,94 69473,88

Table 7. The Steiner trees length computation comparison of the two algorithms.

 We can clearly observe that our algorithm is fully compatible with the Geosteiner

3.1 [52] algorithm since the lengths of the calculated Steiner trees are of the same order.

4.3 Conclusions and Future work

 Conclusively, in this dissertation we tried our best to approach the two basic

problems that concerned us as thoroughly as we could. For the Problem one sub-

problem one we proposed the UNION algorithm which we believe that is an algorithm

that can be implemented within a more general application software for the oppnets.

Approaching Problem one sub-problem two we can say that the Euclidean Steiner Tree

ENVELOPE algorithm we proposed is more than certain that can be a solution in the

communication tree problem that oppnets face in field deployment conditions. In the

future the ENVELOPE algorithm can be approached also from a more energy efficient

communication point of view in order to be more realistic within the live oppnets

applications scenarios. Since the oppnet’s basic applications and infrastructure are not yet

clearly standardized within the research community the proposed by us, in Problem two,

set of messages-commands can be a starting point for future research and field

experiments for the future oppnet applications. The experimental results of the Steiner

software we presented prove in simulation conditions the functionality of the

ENVELOPE algorithm and they generate to us many hopes that Steiner application can

be an oppnet application by itself or a part of an oppnet Operational System of course

after being tested in the field and live oppnet deployment conditions.

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 60

Chapter V

5. Bibliography

1. B.Bhargava, L.Lilien, A. Rosenthal, and M. Winslett, ‘Pervasive Trust’, IEEE

Intelligent Systems vol.19(5), Sep/Oct.2004, pp.74-77.
2. L. Lilien, Z. H. Kamal, V. Bhuse, and A. Gupta, “Opportunistic Networks: The

Concept and Research Challenges in Privacy and Security,” Proc. of the Intl.
Workshop on Research Challenges in Security and Privacy for Mobile and Wireless Networks
(WSPWN 06), Miami, March 2006, pp. 134-147.

3. R. Subramanian, and B. Goodman, “Peer-to-Peer Computing: The Evolution of
a Disruptive Technology,” Hershey, PA, USA: Idea Group Publishing, 2005.

4. Wireless Ad Hoc Networks Zygmunt J. Haas, Jing Deng, Ben Liang, Panagiotis
Papadimitratos, and S. Sajama Cornell University School of Electrical and
Computer Engineering.

5. Mapping the Gnutella Network: Properties of Large-Scale Peer-to-Peer Systems
and Implications for System Design Matei Ripeanu , Ian Foster ,Adriana
Iamnitchi Computer Science Department, The University of Chicago.

6. A. Gupta, D. Agrawal, and A.E. Abbadi, “Distributed Resource Discovery in
Large Scale Computing,” SAINT 2005.

7. “On Star Explained,” last accessed on November 26, 2005. Available at:
http://www.onstar.com/us_english/jsp/explore/index.jsp.

8. Opportunistic Sensor Networks (Oppnets) Leszek Lilien, Zille H. Kamal, Ajay
Gupta, Vijay Bhuse, and Zijiang Yang, Members, IEEE.

9. http://en.wikipedia.org/wiki/Wireless_sensor_network
10. Standard Implementation Framework for Opportunistic Networks in Emergency
 Preparedness and Response Applications Leszek Lilien, Ajay Gupta, , Zijiang

Yang, Wireless Sensornet Laboratory (WiSe Lab), Department of Computer
Science Western Michigan University, Kalamazoo.

11. Pervasive Trust Bharat Bhargava and Leszek Lilien, Purdue University Arnon
Rosenthal, The MITRE Corp. Marianne Winslett, University of Illinois at
Urbana- Champaign.

12. Wireless Ecosystems: Building the Next Generation of Pervasive Computing
Systems Prof. Narayan Mandayam WINLAB, Rutgers University NJ.

13. From wireless to sensor networks and convergence: Capacity, architecture, and
protocols P. R. Kumar G Baliga, V. Borkar, A. Giridhar, S. Graham, P. Gupta,
V. Kawadia, S. Narayanaswamy, R. Rozovsky, V. Raghunathan, L-L. Xie) Dept.
of Electrical and Computer Engineering, and Coordinated Science Lab
University of Illinois, Urbana-Champaign.

14. Geographic Routing with Limited Information in Sensor Networks Sundar
Subramanian and Sanjay Shakkottai.

15. Erasure-Coding Based Routing for Opportunistic Networks Yong Wang, Sushant
Jain, Margaret Martonosi, Kevin Fall Princeton University, University of
Washington, Intel Research Berkeley.

16. Analyzing Object Detection Quality Under Probabilistic Coverage in Sensor
Networks Shansi Ren, Qun Li, Haining Wang, Xin Chen, and Xiaodong Zhang
College of William and Mary Williamsburg.

17. S. Iyenger and R. Brooks, Distributed Sensor Networks, CRC Press, Inc. 2003.
18. J. Hightower, G. Borriello, “Location Systems for Ubiquitous Computing,” IEEE

Computer, August 2001.

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 61

19. Mobile ad hoc networking: imperatives and challenges Imrich Chlamtac , Marco
Conti , Jennifer J.-N. Liu

20. Dissertation Proposal Optimizing the seed oppnet infrastructure Panagiotis
Tsamados Msc Computer Science Staffordshire University 2008.

21. Topology Control in Wireless Ad Hoc and Sensor networks. Paolo Santi 2005
Willey publications.

22. Lilien L. A taxonomy of specialised ad hoc networks and systems for emergency
applications. In: Procceedings of the 1st International workshop on mobile and
ubiquitous context aware systems and applications (MUBICA 2007), Philadelfia,
Pennsylvania,2007

23. The first international workshop on specialized ad hoc networks and systems
(SAHNS 2007), Toronto 2007.

24. Rappaport T 2002 Wireless Communications: Principles and Practice, Second
Edition. Prentice Hall, Upper Saddle River, NJ.

25. http://www.cisco.com/en/US/products/hw/wireless
26. The Rockwell wins project available at http://wins.rsc.rockwell.com
27. Raghunathan V, Schurgers C, Park S and Srivastava M 2002 Energy-aware

wireless microsensor networks. IEEE Signal Processing Magazine 19(2), 40–50.
28. Bettstetter C 2001a Mobility modeling in wireless networks: categorization,

smooth movement, and border effects. ACM Mobile Computing and Communications
Review 5(3), 55–67.

29. Bettstetter C and Krause O 2001 On border effects in modeling and simulation
of wireless ad hoc networks. Proc. IEEE International Conference on Mobile and
Wireless Communication Network (MWCN), Recife.

30. Johnson D and Maltz D 1996 Dynamic source routing in ad hoc wireless
networks. Mobile Computing. Kluwer Academic Publishers, pp. 153–181.

31. Royer E, Melliar-Smith P and Moser L 2001 An analysis of the optimum node
density for ad hoc mobile networks. Proc. IEEE International Conference on
Communications, Helsinki, pp. 857–861.

32. Santi P and Blough D 2003 The critical transmitting range for connectivity in
sparse wireless ad hoc networks. IEEE Transactions on Mobile Computing 2(1), 25–
39.

33. Bai F, Sadagopan N and Helmy A 2003 Important: a framework to systematically
analyze the impact of mobility on performance of routing protocols for ad hoc
networks. Proc. IEEE Infocom, San Francisco, CA, pp. 825–835.

34. Hong X, Gerla M, Pei G and Chiang C 1999 A group mobility model for ad hoc
wireless networks. Proc. ACM MSWiM, Seattle, WA, pp. 53–60.

35. Kamal Z, Gupta A, Lilien L, The MicroOppnet Tool for Collaborative
Computing Experiments with Class 2 Opportunistic Networks, Western
Michigan University 2007.

36. Zeng X, Bagrodia R and Gerla M 1998 Glomosim: a library for parallel
simulation of large-scale wireless networks. Workshop on Parallel and Distributed
Simulations (PADS), Banff, Alberta

37. Ns2 2002 The network simulator - ns-2 http://www.isi.edu/nsnam/ns/.
38. Narayanaswamy S, Kawadia V, Sreenivas R and Kumar P 2002 Power control in

ad hoc networks: theory, architecture, algorithm and implementation of the
compow protocol. Proc. European Wireless 2002, Florence, pp. 156–162

39. Blough D, Leoncini M, Resta G and Santi P 2003b The k-neighbors protocol for
symmetric topology control in ad hoc networks. Proc. ACM MobiHoc 03,
Annapolis, MD, pp. 141–152.

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 62

40. Krizman K, Biedka T and Rappaport T 1997 Wireless position location:
fundamentals, implementation strategies, and source of error. Proc. IEEE
Vehicular Technology Conference (VTC), Phoenix, AZ, pp. 919–923.

41. Li L, Halpern J, Bahl P, Wang Y and Wattenhofer R 2001 Analysis of a cone-
based distributed topology control algorithm for wireless multi-hop networks.
Proc. ACM PODC 01, Newport, RI, pp. 264–273.

42. Borbash S and Jennings E 2002 Distributed topology control algorithm for
multihop wireless networks. Proc. IEEE International Joint Conference on Neural
Networks, Honolulu, HI, pp. 355–360.

43. Kirousis L, Kranakis E, Krizanc D and Pelc A 2000 Power consumption in
packet radio networks. Theoretical Computer Science 243, 289–305

44. Song W, Wang Y, Li X and Frieder O 2004 Localized algorithms for energy
efficient topology in wireless ad hoc networks. Proc. ACM MobiHoc, Tokyo, pp.
98–108.

45. Rodoplu V and Meng T 1999 Minimum energy mobile wireless networks. IEEE
Journal Selected Areas in Communication 17(8), 1333–1344.

46. Lynch N 1996 Distributed Algorithms. Morgan Kaufmann, San Mateo, CA.
47. Li N, Hou J and Sha L 2003 Design and analysis of an mst-based topology

control algorithm. Proc. IEEE Infocom 03, San Francisco, CA, pp. 1702–1712.
48. Prim R 1957 Shortest connection networks and some generalizations. The Bell

System Technical Journal 36, 1389–1401.
49. http://en.wikipedia.org/wiki/Minimum_spanning_tree
50. http://en.wikipedia.org/wiki/Steiner_minimum_tree
51. D. Kountanis and K. Kokkinos “A Balanced approach to the rectilinear Steiner

Tree Problem” Congressus Numeratioum 108 pp.205-221 Winipeg Canada 1995
52. Geosteiner 3.1. David Warme, Emergent Information Technologies, Inc.,

Virginia, USA Pawel Winter, University of Copenhagen, Denmark Martin
Zachariasen, University of Copenhagen, Denmark 2001.

53. http://en.wikipedia.org/wiki/GNU_Compiler_Collection
54. http://www.gnu.org/gnu/thegnuproject.html

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 63

APENDIX I Source code

 In APENDIX I we present typical screenshots of the source code of Steiner

application and Geosteiner application 3.1.[52]

rand_points.c

/**

 This program generates random point sets.

*/

#include "steiner.h"

#include <time.h>

int main (int, char **);

#define MAX_COORD 10000

static int16u __rand (void);

static void convert_seed (char *);

static int32u cv_number (char *);

static void decode_params (int, char **);

static void generate_remainder_table (void);

static int32u rand64 (int32u);

static int32u random_coordinate (void);

static void seed_to_string (char *, int32u, char *);

static void usage (void);

static int fflag;

static int32u hi_seed;

static int32u lo_seed;

static char * me;

static int npoints;

static int oflag;

static bool use_new_generator;

/*

 * This routine generates random point sets.

 */

 int main (int argc, char ** argv)

{

int i;

int32u x;

int32u y;

char sbuf [32];

 setbuf (stdout, NULL);

 decode_params (argc, argv);

 if (oflag NE 0) {

 if (use_new_generator) {

 seed_to_string (sbuf, 16, "0x");

 }

 else {

 seed_to_string (sbuf, 10, "");

 }

 fprintf ((oflag EQ 1) ? stdout : stderr,

 "%% rand_points: seed = %s\n",

 sbuf);

 }

 for (i = 0; i < npoints; i++) {

 x = random_coordinate ();

 if (NOT use_new_generator) {

 (void) __rand ();

 }

 y = random_coordinate ();

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 64

 (void) printf ("%5lu %5lu\n", x, y);

 }

 if (fflag NE 0) {

 if (use_new_generator) {

 seed_to_string (sbuf, 16, "0x");

 }

 else {

 seed_to_string (sbuf, 10, "");

 }

 fprintf ((oflag EQ 1) ? stdout : stderr,

 "%% rand_points: final state = %s\n",

 sbuf);

 }

 exit (0);

}

/*

 * Decoding of line arguments.

 */

static void decode_params (int argc,char ** argv)

{

char * ap;

char c;

 --argc;

 me = *argv++;

 fflag = 0;

 oflag = 0;

 hi_seed = 1;

 lo_seed = 0;

 npoints = 10;

 while (argc > 0) {

 ap = *argv++;

 if (*ap NE '-') {

 npoints = cv_number (ap);

 break;

 }

 ++ap;

 while ((c = *ap++) NE '\0') {

 switch (c) {

 case 'e':

 oflag = 2;

 break;

 case 'f':

 fflag = 1;

 break;

 case 'o':

 oflag = 1;

 break;

 case 'n':

 use_new_generator = TRUE;

 break;

 case 's':

 if (*ap EQ '\0') {

 if (argc <= 0) {

 usage ();

 }

 ap = *argv++;

 --argc;

 }

 convert_seed (ap);

 ap = "";

 break;

 case 'r':

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 65

 hi_seed = time (NULL);

 lo_seed = 0;

 break;

 default:

 usage ();

 break;

 }

 }

 --argc;

 }

}

/*

 * This routine prints out the proper usage and exits.

 */

static char * arg_doc [] = {

 "",

 "\tGenerate N random points. Default N is 10.",

 "",

 "\t-e\tWrite initial seed to stderr.",

 "\t-f\tWrite final seed to stderr (or stdout if -o given).",

 "\t-o\tWrite initial seed (and final seed if -f given) to

stdout.",

 "\t-n\tUse newer (better) random generator.",

 "\t-s K\tSet random seed to K.",

 "\t-r\tRandomize: use current time as seed.",

 NULL

};

 static void usage (void)

{

char ** pp;

char * p;

 (void) fprintf (stderr,

 "\nUsage: %s [-efonr] [-s seed] [N]\n",

 me);

 pp = &arg_doc [0];

 while ((p = *pp++) NE NULL) {

 (void) fprintf (stderr, "%s\n", p);

 }

 exit (1);

}

/*

 * Convertion the given string into a number.

 */

static int32u cv_number (char * num_string)

{

char * s;

int c;

int32u val;

 s = num_string;

 val = 0;

 while ((c = *s++) NE '\0') {

 if (NOT isdigit (c)) {

 (void) fprintf (stderr,

 "%s: `%s' is not a decimal number.\n",

 me, s);

 exit (1);

 }

 val = (val * 10) + (c - '0');

 }

 return (val);

}

/*

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 66

 * Convertion of the given ASCII string into a seed.

 */

static void convert_seed (char * string) /* ASCII string to get

seed from. */

{

char * p;

int i;

int c;

int32u carry;

int32u base;

int16u digs [4];

 p = string;

 base = 10;

 if ((p [0] EQ '0') AND (tolower (p [1]) EQ 'x')) {

 base = 16;

 p += 2;

 }

 for (i = 0; i < 4; i++) {

 digs [i] = 0;

 }

 for (;;) {

 c = *p++;

 if (c EQ '\0') {

 hi_seed = (((int32u) digs [2]) << 16) + digs [3];

 lo_seed = (((int32u) digs [0]) << 16) + digs [1];

 return;

 }

 if (c < '0') c = -1;

 else if (c <= '9') c -= '0';

 else if (c < 'A') c = -1;

 else if (c <= 'F') c -= ('A' - 10);

 else if (c < 'a') c = -1;

 else if (c <= 'f') c -= ('a' - 10);

 else c = -1;

 if ((c < 0) OR (c >= base)) {

 fprintf (stderr,

 "Warning: invalid seed: %s\n",

 string);

 hi_seed = 1;

 lo_seed = 0;

 return;

 }

 carry = c;

 for (i = 3; i >= 0; i--) {

 carry += digs [i] * base;

 digs [i] = carry;

 carry >>= 16;

 }

 }

}

/*

 * Convertion of the current seed into a printable string

 */

static void seed_to_string (char * buf,int32u base,char *

prefix)

{

int i;

int32u rem;

char * dstp;

int16u digs [4];

char tmp [32];

 while (*prefix NE '\0') {

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 67

 *buf++ = *prefix++;

 }

 if ((lo_seed EQ 0) AND (hi_seed EQ 0)) {

 *buf++ = '0';

 *buf++ = '\0';

 return;

 }

 digs [3] = (lo_seed >> 16);

 digs [2] = lo_seed;

 digs [1] = (hi_seed >> 16);

 digs [0] = hi_seed;

 dstp = &tmp [sizeof (tmp) / sizeof (tmp [0])];

 *--dstp = '\0';

 while ((digs [0] NE 0) OR (digs [1] NE 0) OR

 (digs [2] NE 0) OR (digs [3] NE 0)) {

 rem = 0;

 for (i = 3; i >= 0; i--) {

 rem = (rem << 16) + digs [i];

 digs [i] = rem / base;

 rem %= base;

 }

 *--dstp = "0123456789ABCDEF" [rem];

 }

 (void) strcpy (buf, dstp);

}

/*

 * Computation of a new random coordinate.

 */

static int32u random_coordinate (void)

{

int32u n;

 if (use_new_generator) {

 return (rand64 (MAX_COORD));

 }

 n = (((int32u) __rand ()) >> 2) ^ (((int32u) __rand ()) << 3);

 return (n % MAX_COORD);

}

static int16u__rand (void)

{

long x;

 x = 1103515245L * ((long) hi_seed) + 12345L;

 hi_seed = x;

 return ((x >> 16) & 0x7FFF);

}

#define GEN_POLY_HI 0x19B8AB86

#define GEN_POLY_LO 0x8766D1B9

static int32u remainders [512] = {

 0x00000000, 0x00000000, 0x9ac99dbb, 0x11ea8045,

 0x3b5e9804, 0x10a45787, 0xa19705bf, 0x014ed7c2,

 0x76bd3008, 0x2148af0e, 0xec74adb3, 0x30a22f4b,

 0x4de3a80c, 0x31ecf889, 0xd72a35b7, 0x200678cc,

 0xed7a6010, 0x42915e1c, 0x77b3fdab, 0x537bde59,

 0xd624f814, 0x5235099b, 0x4ced65af, 0x43df89de,

 0x9bc75018, 0x63d9f112, 0x010ecda3, 0x72337157,

 0xa099c81c, 0x737da695, 0x3a5055a7, 0x629726d0,

 0xd4396352, 0xb653eb35, 0x4ef0fee9, 0xa7b96b70,

 0xef67fb56, 0xa6f7bcb2, 0x75ae66ed, 0xb71d3cf7,

 0xa284535a, 0x971b443b, 0x384dcee1, 0x86f1c47e,

 0x99dacb5e, 0x87bf13bc, 0x031356e5, 0x965593f9,

 0x39430342, 0xf4c2b529, 0xa38a9ef9, 0xe528356c,

 0x021d9b46, 0xe466e2ae, 0x98d406fd, 0xf58c62eb,

 0x4ffe334a, 0xd58a1a27, 0xd537aef1, 0xc4609a62,

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 68

 0x74a0ab4e, 0xc52e4da0, 0xee6936f5, 0xd4c4cde5,

 0xa6bf65d7, 0x5fd68167, 0x3c76f86c, 0x4e3c0122,

 0x9de1fdd3, 0x4f72d6e0, 0x07286068, 0x5e9856a5,

 0xd00255df, 0x7e9e2e69, 0x4acbc864, 0x6f74ae2c,

 0xeb5ccddb, 0x6e3a79ee, 0x71955060, 0x7fd0f9ab,

 0x4bc505c7, 0x1d47df7b, 0xd10c987c, 0x0cad5f3e,

 0x709b9dc3, 0x0de388fc, 0xea520078, 0x1c0908b9,

 0x3d7835cf, 0x3c0f7075, 0xa7b1a874, 0x2de5f030,

 0x0626adcb, 0x2cab27f2, 0x9cef3070, 0x3d41a7b7,

 0x72860685, 0xe9856a52, 0xe84f9b3e, 0xf86fea17,

 0x49d89e81, 0xf9213dd5, 0xd311033a, 0xe8cbbd90,

 0x043b368d, 0xc8cdc55c, 0x9ef2ab36, 0xd9274519,

 0x3f65ae89, 0xd86992db, 0xa5ac3332, 0xc983129e,

 0x9ffc6695, 0xab14344e, 0x0535fb2e, 0xbafeb40b,

 0xa4a2fe91, 0xbbb063c9, 0x3e6b632a, 0xaa5ae38c,

 0xe941569d, 0x8a5c9b40, 0x7388cb26, 0x9bb61b05,

 0xd21fce99, 0x9af8ccc7, 0x48d65322, 0x8b124c82,

 0x43b368dc, 0x8cdc55c3, 0xd97af567, 0x9d36d586,

 0x78edf0d8, 0x9c780244, 0xe2246d63, 0x8d928201,

 0x350e58d4, 0xad94facd, 0xafc7c56f, 0xbc7e7a88,

 0x0e50c0d0, 0xbd30ad4a, 0x94995d6b, 0xacda2d0f,

 0xaec908cc, 0xce4d0bdf, 0x34009577, 0xdfa78b9a,

 0x959790c8, 0xdee95c58, 0x0f5e0d73, 0xcf03dc1d,

 0xd87438c4, 0xef05a4d1, 0x42bda57f, 0xfeef2494,

 0xe32aa0c0, 0xffa1f356, 0x79e33d7b, 0xee4b7313,

 0x978a0b8e, 0x3a8fbef6, 0x0d439635, 0x2b653eb3,

 0xacd4938a, 0x2a2be971, 0x361d0e31, 0x3bc16934,

 0xe1373b86, 0x1bc711f8, 0x7bfea63d, 0x0a2d91bd,

 0xda69a382, 0x0b63467f, 0x40a03e39, 0x1a89c63a,

 0x7af06b9e, 0x781ee0ea, 0xe039f625, 0x69f460af,

 0x41aef39a, 0x68bab76d, 0xdb676e21, 0x79503728,

 0x0c4d5b96, 0x59564fe4, 0x9684c62d, 0x48bccfa1,

 0x3713c392, 0x49f21863, 0xadda5e29, 0x58189826,

 0xe50c0d0b, 0xd30ad4a4, 0x7fc590b0, 0xc2e054e1,

 0xde52950f, 0xc3ae8323, 0x449b08b4, 0xd2440366,

 0x93b13d03, 0xf2427baa, 0x0978a0b8, 0xe3a8fbef,

 0xa8efa507, 0xe2e62c2d, 0x322638bc, 0xf30cac68,

 0x08766d1b, 0x919b8ab8, 0x92bff0a0, 0x80710afd,

 0x3328f51f, 0x813fdd3f, 0xa9e168a4, 0x90d55d7a,

 0x7ecb5d13, 0xb0d325b6, 0xe402c0a8, 0xa139a5f3,

 0x4595c517, 0xa0777231, 0xdf5c58ac, 0xb19df274,

 0x31356e59, 0x65593f91, 0xabfcf3e2, 0x74b3bfd4,

 0x0a6bf65d, 0x75fd6816, 0x90a26be6, 0x6417e853,

 0x47885e51, 0x4411909f, 0xdd41c3ea, 0x55fb10da,

 0x7cd6c655, 0x54b5c718, 0xe61f5bee, 0x455f475d,

 0xdc4f0e49, 0x27c8618d, 0x468693f2, 0x3622e1c8,

 0xe711964d, 0x376c360a, 0x7dd80bf6, 0x2686b64f,

 0xaaf23e41, 0x0680ce83, 0x303ba3fa, 0x176a4ec6,

 0x91aca645, 0x16249904, 0x0b653bfe, 0x07ce1941,

 0x8766d1b9, 0x19b8ab86, 0x1daf4c02, 0x08522bc3,

 0xbc3849bd, 0x091cfc01, 0x26f1d406, 0x18f67c44,

 0xf1dbe1b1, 0x38f00488, 0x6b127c0a, 0x291a84cd,

 0xca8579b5, 0x2854530f, 0x504ce40e, 0x39bed34a,

 0x6a1cb1a9, 0x5b29f59a, 0xf0d52c12, 0x4ac375df,

 0x514229ad, 0x4b8da21d, 0xcb8bb416, 0x5a672258,

 0x1ca181a1, 0x7a615a94, 0x86681c1a, 0x6b8bdad1,

 0x27ff19a5, 0x6ac50d13, 0xbd36841e, 0x7b2f8d56,

 0x535fb2eb, 0xafeb40b3, 0xc9962f50, 0xbe01c0f6,

 0x68012aef, 0xbf4f1734, 0xf2c8b754, 0xaea59771,

 0x25e282e3, 0x8ea3efbd, 0xbf2b1f58, 0x9f496ff8,

 0x1ebc1ae7, 0x9e07b83a, 0x8475875c, 0x8fed387f,

 0xbe25d2fb, 0xed7a1eaf, 0x24ec4f40, 0xfc909eea,

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 69

 0x857b4aff, 0xfdde4928, 0x1fb2d744, 0xec34c96d,

 0xc898e2f3, 0xcc32b1a1, 0x52517f48, 0xddd831e4,

 0xf3c67af7, 0xdc96e626, 0x690fe74c, 0xcd7c6663,

 0x21d9b46e, 0x466e2ae1, 0xbb1029d5, 0x5784aaa4,

 0x1a872c6a, 0x56ca7d66, 0x804eb1d1, 0x4720fd23,

 0x57648466, 0x672685ef, 0xcdad19dd, 0x76cc05aa,

 0x6c3a1c62, 0x7782d268, 0xf6f381d9, 0x6668522d,

 0xcca3d47e, 0x04ff74fd, 0x566a49c5, 0x1515f4b8,

 0xf7fd4c7a, 0x145b237a, 0x6d34d1c1, 0x05b1a33f,

 0xba1ee476, 0x25b7dbf3, 0x20d779cd, 0x345d5bb6,

 0x81407c72, 0x35138c74, 0x1b89e1c9, 0x24f90c31,

 0xf5e0d73c, 0xf03dc1d4, 0x6f294a87, 0xe1d74191,

 0xcebe4f38, 0xe0999653, 0x5477d283, 0xf1731616,

 0x835de734, 0xd1756eda, 0x19947a8f, 0xc09fee9f,

 0xb8037f30, 0xc1d1395d, 0x22cae28b, 0xd03bb918,

 0x189ab72c, 0xb2ac9fc8, 0x82532a97, 0xa3461f8d,

 0x23c42f28, 0xa208c84f, 0xb90db293, 0xb3e2480a,

 0x6e278724, 0x93e430c6, 0xf4ee1a9f, 0x820eb083,

 0x55791f20, 0x83406741, 0xcfb0829b, 0x92aae704,

 0xc4d5b965, 0x9564fe45, 0x5e1c24de, 0x848e7e00,

 0xff8b2161, 0x85c0a9c2, 0x6542bcda, 0x942a2987,

 0xb268896d, 0xb42c514b, 0x28a114d6, 0xa5c6d10e,

 0x89361169, 0xa48806cc, 0x13ff8cd2, 0xb5628689,

 0x29afd975, 0xd7f5a059, 0xb36644ce, 0xc61f201c,

 0x12f14171, 0xc751f7de, 0x8838dcca, 0xd6bb779b,

 0x5f12e97d, 0xf6bd0f57, 0xc5db74c6, 0xe7578f12,

 0x644c7179, 0xe61958d0, 0xfe85ecc2, 0xf7f3d895,

 0x10ecda37, 0x23371570, 0x8a25478c, 0x32dd9535,

 0x2bb24233, 0x339342f7, 0xb17bdf88, 0x2279c2b2,

 0x6651ea3f, 0x027fba7e, 0xfc987784, 0x13953a3b,

 0x5d0f723b, 0x12dbedf9, 0xc7c6ef80, 0x03316dbc,

 0xfd96ba27, 0x61a64b6c, 0x675f279c, 0x704ccb29,

 0xc6c82223, 0x71021ceb, 0x5c01bf98, 0x60e89cae,

 0x8b2b8a2f, 0x40eee462, 0x11e21794, 0x51046427,

 0xb075122b, 0x504ab3e5, 0x2abc8f90, 0x41a033a0,

 0x626adcb2, 0xcab27f22, 0xf8a34109, 0xdb58ff67,

 0x593444b6, 0xda1628a5, 0xc3fdd90d, 0xcbfca8e0,

 0x14d7ecba, 0xebfad02c, 0x8e1e7101, 0xfa105069,

 0x2f8974be, 0xfb5e87ab, 0xb540e905, 0xeab407ee,

 0x8f10bca2, 0x8823213e, 0x15d92119, 0x99c9a17b,

 0xb44e24a6, 0x988776b9, 0x2e87b91d, 0x896df6fc,

 0xf9ad8caa, 0xa96b8e30, 0x63641111, 0xb8810e75,

 0xc2f314ae, 0xb9cfd9b7, 0x583a8915, 0xa82559f2,

 0xb653bfe0, 0x7ce19417, 0x2c9a225b, 0x6d0b1452,

 0x8d0d27e4, 0x6c45c390, 0x17c4ba5f, 0x7daf43d5,

 0xc0ee8fe8, 0x5da93b19, 0x5a271253, 0x4c43bb5c,

 0xfbb017ec, 0x4d0d6c9e, 0x61798a57, 0x5ce7ecdb,

 0x5b29dff0, 0x3e70ca0b, 0xc1e0424b, 0x2f9a4a4e,

 0x607747f4, 0x2ed49d8c, 0xfabeda4f, 0x3f3e1dc9,

 0x2d94eff8, 0x1f386505, 0xb75d7243, 0x0ed2e540,

 0x16ca77fc, 0x0f9c3282, 0x8c03ea47, 0x1e76b2c7,

};

#if 0

static void generate_remainder_table (void)

{

int i;

int j;

int32u lo;

int32u hi;

 for (i = 0; i < 256; i++) {

 lo = 0;

 hi = i;

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 70

 for (j = 0; j < 8; j++) {

 if ((hi & 0x00000001) != 0) {

 hi = (lo << 31) | (hi >> 1);

 lo >>= 1;

 hi ^= GEN_POLY_HI;

 lo ^= GEN_POLY_LO;

 }

 else {

 hi = (lo << 31) | (hi >> 1);

 lo >>= 1;

 }

 }

 printf ("\t0x%08lx,\t0x%08lx,", lo, hi);

 if ((i & 0x01) == 1) {

 printf ("\n");

 }

 }

}

#endif

static int32u rand64 (int32u modulus)

{

int32u hi;

int32u lo;

int32u * p;

int i;

int32u rem;

#define SHIFT8 \

 p = &remainders [2 * (hi & 0xFF)]; \

 hi = ((lo << 24) | (hi >> 8)) ^ p [1]; \

 lo = (lo >> 8) ^ p [0]

 hi = hi_seed;

 lo = lo_seed;

 SHIFT8;

 SHIFT8;

 SHIFT8;

 SHIFT8;

 hi_seed = hi;

 lo_seed = lo;

 if (modulus < 0x10000) {

 rem = lo % modulus;

 rem = (rem << 16) + (hi >> 16);

 rem %= modulus;

 rem = (rem << 16) + (hi & 0xFFFF);

 return (rem % modulus);

 }

 rem = lo % modulus;

 for (i = 0; i < 32; i++) {

 rem <<= 1;

 if ((hi & 0x80000000) NE 0) {

 ++rem;

 }

 rem %= modulus;

 hi <<= 1;

 }

 return (rem);

}

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 71

e_steiner.c

/**

 The Euclidean tree generator. It

 reads a point set from standard input, generates the tree,

 and outputs them to standard output.

*/

#include "bsd.h"

#include "e_steiner.h"

#include "efuncs.h"

#include "egmp.h"

#include "p1io.h"

#include "steiner.h"

int main (int, char **);

int Multiple_Precision = 0;

static void add_zero_length_fsts (struct einfo *, int, int **);

static void build_fst_list (struct einfo *);

static void build_efst_graph (struct einfo *, struct point *,

struct eqp_t *,

 struct point **, struct edge **, int *,

struct point *, int *);

static void compute_efsts_for_unique_terminals (struct einfo

*);

static void convert_delta_cpu_time (char *);

static void decode_params (int, char **);

static int generate_duplicate_terminal_groups (struct pset *,

int *, int ***);

static cpu_time_t get_delta_cpu_time (void);

static int * heapsort_x (struct pset *);

static struct full_set ** put_trees_in_array (struct full_set *, int

*);

static struct pset * remove_duplicates (struct pset * pts,int ndg,

int ** list,int ** fwd_map,

 int ** rev_map);

static void renumber_terminals (struct einfo *, struct pset *,

int *);

static dist_t test_and_save_fst (struct einfo *, struct

eqp_t *, struct eqp_t *);

static void usage (void);

static char * description;

static int InitialEqPointsTerminal = 100;

static int EpsilonFactor = 32;

static char * me;

static int MaxFSTSize = 0;

static int output_version = CURRENT_P1IO_VERSION;

static bool Use_Greedy_Heuristic = FALSE;

static bool Print_Detailed_Timings = FALSE;

static cpu_time_t T0;

static cpu_time_t Tn;

#define UPDATE_PTR(p,old,new) ((new) + ((p) - (old)))

#define UPDATE_RECTANGLE_BOUNDS(p) \

 { *minx = MIN(*minx, p.x); *maxx = MAX(*maxx, p.x); \

 *miny = MIN(*miny, p.y); *maxy = MAX(*maxy, p.y); }

/*

 * The main "e_steiner" . It reads a point set from standard input,

 generates all of the trees,and outputs them to standard output in

our special "phase 1 I/O"

 * format.

 */

 int main (int argc, char ** argv)

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 72

{

int i;

int j;

int k;

int ndg;

int ntrees;

int count;

int fpsave;

int ** dup_grps;

int * fwd_map;

int * rev_map;

int * ip1;

struct full_set * fsp;

struct pset * terms;

struct einfo einfo;

struct cinfo cinfo;

struct pset * pts;

struct pset * pts2;

cpu_time_t Trenum;

struct scale_info scale;

char buf1 [32];

 fpsave = set_floating_point_double_precision ();

 setbuf (stdout, NULL);

 decode_params (argc, argv);

 pts = get_points (stdin, &scale);

 init_output_conversion (pts, EUCLIDEAN, &scale);

 T0 = get_cpu_time ();

 Tn = T0;

 einfo.x_order = heapsort_x (pts);

 if (Print_Detailed_Timings) {

 convert_delta_cpu_time (buf1);

 fprintf (stderr, "Sort X: %s\n", buf1);

 }

 /* Find all duplicate terminals in the input. */

 ndg = generate_duplicate_terminal_groups (pts, einfo.x_order,

&dup_grps);

 einfo.num_term_masks = BMAP_ELTS (pts -> n);

 /* Remove all but the first of each duplicate terminal. */

 pts2 = remove_duplicates (pts, ndg, dup_grps, &fwd_map,

&rev_map);

 j = 0;

 for (i = 0; i < pts -> n; i++) {

 k = einfo.x_order [i];

 if ((k < 0) OR (pts -> n < k)) {

 fatal ("main: Bug 1.");

 }

 k = fwd_map [k];

 if (k < 0) continue;

 einfo.x_order [j++] = k;

 }

 if (Print_Detailed_Timings) {

 convert_delta_cpu_time (buf1);

 fprintf (stderr, "Remove Duplicates: %s\n", buf1);

 }

 einfo.pts = pts2;

 compute_efsts_for_unique_terminals (&einfo);

 renumber_terminals (&einfo, pts, rev_map);

 build_fst_list (&einfo);

 if (ndg > 0) {

 add_zero_length_fsts (&einfo, ndg, dup_grps);

 }

 Trenum = get_delta_cpu_time ();

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 73

 if (Print_Detailed_Timings) {

 convert_cpu_time (Trenum, buf1);

 fprintf (stderr, "Renumber Terminals: %s\n", buf1);

 convert_cpu_time (Tn - T0, buf1);

 fprintf (stderr, "Total: %s\n", buf1);

 }

 memset (&cinfo, 0, sizeof (cinfo));

 cinfo.num_edges = einfo.ntrees;

 cinfo.num_verts = einfo.pts -> n;

 cinfo.num_vert_masks = BMAP_ELTS (cinfo.num_verts);

 cinfo.num_edge_masks = BMAP_ELTS (cinfo.num_edges);

 cinfo.edge = NEWA (einfo.ntrees + 1, int *);

 cinfo.edge_size = NEWA (einfo.ntrees, int);

 cinfo.cost = NEWA (einfo.ntrees, dist_t);

 cinfo.tflag = NEWA (cinfo.num_verts, bool);

 cinfo.metric = EUCLIDEAN;

 cinfo.scale = scale;

 cinfo.integrality_delta = 0;

 cinfo.pts = einfo.pts;

 cinfo.full_trees = put_trees_in_array

(einfo.full_sets,&ntrees);

 cinfo.mst_length = einfo.mst_length;

 cinfo.description = gst_strdup (description);

 cinfo.p1time = Tn - T0;

 for (i = 0; i < cinfo.num_verts; i++) {

 cinfo.tflag [i] = TRUE;

 }

 count = 0;

 for (i = 0; i < einfo.ntrees; i++) {

 fsp = cinfo.full_trees [i];

 k = fsp -> terminals -> n;

 cinfo.edge_size [i] = k;

 cinfo.cost [i] = fsp -> tree_len;

 count += k;

 }

 ip1 = NEWA (count, int);

 for (i = 0; i < einfo.ntrees; i++) {

 cinfo.edge [i] = ip1;

 terms = cinfo.full_trees [i] -> terminals;

 k = terms -> n;

 for (j = 0; j < k; j++) {

 *ip1++ = terms -> a [j].pnum;

 }

 }

 cinfo.edge [i] = ip1;

 /* Prints all of the data */

 print_phase_1_data (&cinfo, output_version);

 free ((char *) pts2);

#if 0

 free ((char *) pts);

#endif

 free_phase_1_data (&cinfo);

 free ((char *) rev_map);

 free ((char *) fwd_map);

 if (dup_grps NE NULL) {

 if (dup_grps [0] NE NULL) {

 free ((char *) (dup_grps [0]));

 }

 free ((char *) dup_grps);

 }

 free ((char *) (einfo.x_order));

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 74

 restore_floating_point_precision (fpsave);

 exit (0);

}

static void decode_params (int argc,char ** argv)

{

char * ap;

char c;

int v;

 --argc;

 me = *argv++;

 while (argc > 0) {

 ap = *argv++;

 if (*ap NE '-') {

 usage ();

 }

 ++ap;

 while ((c = *ap++) NE '\0') {

 switch (c) {

 case 'd':

 if (*ap EQ '\0') {

 if (argc <= 0) {

 usage ();

 }

 ap = *argv++;

 --argc;

 }

 if (strlen (ap) >= 80) {

 fprintf (stderr,

 "Description must be less"

 " than 80 characters.\n");

 usage ();

 }

 description = ap;

 for (;;) {

 ap = strchr (ap, '\n');

 if (ap EQ NULL) break;

 *ap++ = ' ';

 }

 ap = "";

 break;

 case 'e':

 /* Number of eq-points per terminal */

 if (*ap EQ '\0') {

 if (argc <= 0) {

 usage ();

 }

 ap = *argv++;

 --argc;

 }

 InitialEqPointsTerminal = atoi (ap);

 ap = "";

 break;

 case 'f':

 if (*ap EQ '\0') {

 if (argc <= 0) {

 usage ();

 }

 ap = *argv++;

 --argc;

 }

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 75

 EpsilonFactor = atoi (ap);

 ap = "";

 break;

 case 'k':

 if (*ap EQ '\0') {

 if (argc <= 0) {

 usage ();

 }

 ap = *argv++;

 --argc;

 }

 MaxFSTSize = atoi (ap);

 ap = "";

 break;

#ifdef HAVE_GMP

 case 'm':

 if (*ap EQ '\0') {

 if (argc <= 0) {

 usage ();

 }

 ap = *argv++;

 --argc;

 }

 if ((*ap < '0') OR (*ap > '9')) {

 usage ();

 }

 Multiple_Precision = atoi (ap);

 ap = "";

 break;

#endif

 case 't':

 Print_Detailed_Timings = TRUE;

 break;

 case 'v':

 if (*ap EQ '\0') {

 if (argc <= 0) {

 usage ();

 }

 ap = *argv++;

 --argc;

 }

 if ((*ap < '0') OR (*ap > '9')) {

 usage ();

 }

 v = atoi (ap);

 if ((v < 0) OR (v > CURRENT_P1IO_VERSION)) {

 fprintf (stderr,

 "%s: Bad version `%s'."

 " Valid versions range"

 " from 0 to %d.\n", me, ap,

CURRENT_P1IO_VERSION);

 usage ();

 }

 output_version = v;

 ap = "";

 break;

 default:

 usage ();

 break;

 }

 }

 --argc;

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 76

 }

}

static char * arg_doc [] = {

 "",

 "\t-d txt\tDescription of problem instance.",

 "\t-e K\tInitially allocate K eq-points per terminal",

 "\t\t(default: 100).",

 "\t-f E\tEpsilon multiplication factor for floating point

number",

 "\t\tcomparisons (default: 32).",

 "\t-k K\tOnly generate points spanning up to K terminals.",

#ifdef HAVE_GMP

 "\t-m N\tUse multiple precision. Larger N use it more.",

 "\t\t Default is N=0 which disables multiple precision.",

#endif

 "\t-t\tPrint detailed timings on stderr.",

 "\t-v N\tGenerates version N output data format.",

 "",

 NULL

};

 static void usage (void){

char ** pp;

char * p;

 (void) fprintf (stderr,

 "\nUsage: %s [-gt]"

 " [-d description]"

 " [-e K] [-f E] [-k K]"

#ifdef HAVE_GMP

 " [-m N]"

#endif

 " [-v N]"

 " <points-file\n",

 me);

 pp = &arg_doc [0];

 while ((p = *pp++) NE NULL) {

 (void) fprintf (stderr, "%s\n", p);

 }

 exit (1);

}

/*

 * Sorting of the given terminals in increasing order

 */

static int * heapsort_x (struct pset * pts) /* the terminals

to sort */

{

int i, i1, i2, j, k, n;

struct point * p1;

struct point * p2;

int * index;

 n = pts -> n;

 index = NEWA (n, int);

 for (i = 0; i < n; i++) {

 index [i] = i;

 }

 /* Construct the heap via sift-downs, in O(n^2) time. */

 for (k = n >> 1; k >= 0; k--) {

 j = k;

 for (;;) {

 i = (j << 1) + 1;

 if (i + 1 < n) {

 i1 = index [i];

 i2 = index [i + 1];

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 77

 p1 = &(pts -> a [i1]);

 p2 = &(pts -> a [i2]);

 if ((p2 -> x > p1 -> x) OR

 ((p2 -> x EQ p1 -> x) AND

 ((p2 -> y > p1 -> y) OR

 ((p2 -> y EQ p1 -> y) AND

 (i2 > i1))))) {

 ++i;

 }

 }

 if (i >= n) {

 break;

 }

 i1 = index [j];

 i2 = index [i];

 p1 = &(pts -> a [i1]);

 p2 = &(pts -> a [i2]);

 if ((p1 -> x > p2 -> x) OR

 ((p1 -> x EQ p2 -> x) AND

 ((p1 -> y > p2 -> y) OR

 ((p1 -> y EQ p2 -> y) AND

 (i1 > i2))))) {

 /* if greatest child is smaller. Sift- */

 /* down is done. */

 break;

 }

 /* Sift down and continue. */

 index [j] = i2;

 index [i] = i1;

 j = i;

 }

 }

 /* Exchange first/last and sift down. */

 while (n > 1) {

 --n;

 i = index [0];

 index [0] = index [n];

 index [n] = i;

 j = 0;

 for (;;) {

 i = (j << 1) + 1;

 if (i + 1 < n) {

 i1 = index [i];

 i2 = index [i + 1];

 p1 = &(pts -> a [i1]);

 p2 = &(pts -> a [i2]);

 if ((p2 -> x > p1 -> x) OR

 ((p2 -> x EQ p1 -> x) AND

 ((p2 -> y > p1 -> y) OR

 ((p2 -> y EQ p1 -> y) AND

 (i2 > i1))))) {

 ++i;

 }

 }

 if (i >= n) {

 break;

 }

 i1 = index [j];

 i2 = index [i];

 p1 = &(pts -> a [i1]);

 p2 = &(pts -> a [i2]);

 if ((p1 -> x > p2 -> x) OR

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 78

 ((p1 -> x EQ p2 -> x) AND

 ((p1 -> y > p2 -> y) OR

 ((p1 -> y EQ p2 -> y) AND

 (i1 > i2))))) {

 break;

 }

 index [j] = i2;

 index [i] = i1;

 j = i;

 }

 }

 return (index);

}

/*

 * This routine finds all pairs of points whose coordinates are

exactly

 * identical.

 */

static int generate_duplicate_terminal_groups (struct pset *

pts,int * xorder,int *** grps)

{

int i;

int j;

int n;

int n_grps;

struct point * p0;

struct point * p1;

struct point * p2;

int * ip;

int ** real_ptrs;

int * real_terms;

int ** ptrs;

int * terms;

 n = pts -> n;

 n_grps = 0;

 ptrs = NEWA (n + 1, int *);

 terms = NEWA (n, int);

 ip = &terms [0];

 for (i = 1; i < n;) {

 p0 = &(pts -> a [xorder [i - 1]]);

 p1 = &(pts -> a [xorder [i]]);

 if ((p0 -> y NE p1 -> y) OR (p0 -> x NE p1 -> x)) {

 /* Not identical. */

 ++i;

 continue;

 }

 /* Terminals xorder[i-1] and xorder[i] are identical. */

 for (j = i + 1; j < n; j++) {

 p2 = &(pts -> a [xorder [j]]);

 if (p0 -> y NE p2 -> y) break;

 if (p0 -> x NE p2 -> x) break;

 }

 ptrs [n_grps++] = ip;

 *ip++ = xorder [i - 1];

 while (i < j) {

 *ip++ = xorder [i++];

 }

 }

 ptrs [n_grps] = ip;

 if (n_grps <= 0) {

 *grps = NULL;

 }

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 79

 else {

 real_ptrs = NEWA (n_grps + 1, int *);

 real_terms = NEWA (ip - terms, int);

 (void) memcpy ((char *) real_terms,(char *) terms, (ip -

terms) * sizeof (int));

 for (i = 0; i <= n_grps; i++) {

 real_ptrs [i] = &real_terms [ptrs [i] - ptrs [0]];

 }

 *grps = real_ptrs;

 }

 free ((char *) terms);

 free ((char *) ptrs);

 return (n_grps);

}

static struct pset * remove_duplicates (

struct pset * pts,

int ndg,

int ** list,

int ** fwd_map_ptr,

int ** rev_map_ptr

)

{

int i;

int j;

int n;

int kmasks;

int numdel;

int new_n;

int * ip1;

int * ip2;

int * fwd;

int * rev;

bitmap_t * deleted;

struct pset * newpts;

 n = pts -> n;

 kmasks = BMAP_ELTS (n);

 deleted = NEWA (kmasks, bitmap_t);

 for (i = 0; i < kmasks; i++) {

 deleted [i] = 0;

 }

 numdel = 0;

 for (i = 0; i < ndg; i++) {

 ip1 = list [i];

 ip2 = list [i + 1];

 while (++ip1 < ip2) {

 if (BITON (deleted, *ip1)) {

 fatal ("remove_duplicates: Bug 1.");

 }

 ++numdel;

 SETBIT (deleted, *ip1);

 }

 }

 new_n = n - numdel;

 fwd = NEWA (n, int);

 rev = NEWA (new_n, int);

 newpts = NEW_PSET (new_n);

 ZERO_PSET (newpts, new_n);

 newpts -> n = new_n;

 j = 0;

 for (i = 0; i < n; i++) {

 if (BITON (deleted, i)) {

 fwd [i] = -1;

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 80

 }

 else {

 newpts -> a [j].x = pts -> a [i].x;

 newpts -> a [j].y = pts -> a [i].y;

 newpts -> a [j].pnum = j;

 rev [j] = i;

 fwd [i] = j;

 ++j;

 }

 }

 free ((char *) deleted);

 *fwd_map_ptr = fwd;

 *rev_map_ptr = rev;

 return (newpts);

}

static bool solve_quadratic (double A,double B,double C,double *

root1,double * root2)

{

 double Q, D;

 if (A EQ 0.0) return FALSE;

 D = B*B - A*C;

 if (D < 0.0) return FALSE;

 D = sqrt(D);

 if (B >= 0.0)

 Q = - B - D;

 else

 Q = - B + D;

 if (Q NE 0.0) {

 *root1 = Q / A;

 *root2 = C / Q;

 }

 else {

 *root1 = 0.0;

 *root2 = -2.0 * B / A;

 }

 return TRUE;

}

static bool test_and_save_LP (struct einfo * eip,struct eqp_t *

eqpi,struct eqp_t * eqpj,

struct eqp_t * eqpk,struct point * CLP)

{

struct point NLP;

struct point PLP;

 if ((CLP -> x EQ eqpi -> E.x) AND (CLP -> y EQ eqpi -> E.y))

return TRUE;

 if (right_turn(&(eqpk -> E), &(eqpi -> E), CLP))

return TRUE;

 if (left_turn (&(eqpk -> E), &(eqpk -> LP), CLP))

return TRUE;

 memset (&PLP, 0, sizeof (PLP));

 memset (&NLP, 0, sizeof (NLP));

 PLP.x = CLP -> x + (eqpj -> E.x - CLP -> x) * eip -> eps *

((double) eqpk -> S);

 PLP.y = CLP -> y + (eqpj -> E.y - CLP -> y) * eip -> eps *

((double) eqpk -> S);

 project_point(&(eqpk -> E), &(eqpk -> DC), &PLP, &NLP);

 if (left_turn (&(eqpk -> E), &(eqpk -> LP), &NLP))

return TRUE;

 if (right_turn(&(eqpk -> E), &(eqpk -> RP), &NLP))

return FALSE;

 eqpk -> LP = NLP;

 return TRUE;

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 81

}

static bool test_and_save_RP (struct einfo * eip,struct eqp_t *

eqpi,struct eqp_t * eqpj,

struct eqp_t * eqpk,struct point * CRP)

{

struct point NRP;

struct point PRP;

 if ((CRP -> x EQ eqpj -> E.x) AND (CRP -> y EQ eqpj -> E.y))

return TRUE;

 if (left_turn (&(eqpk -> E), &(eqpj -> E), CRP))

return TRUE;

 if (right_turn(&(eqpk -> E), &(eqpk -> RP), CRP))

return TRUE;

 memset (&PRP, 0, sizeof (PRP));

 memset (&NRP, 0, sizeof (NRP));

 PRP.x = CRP -> x + (eqpi -> E.x - CRP -> x) * eip -> eps *

((double) eqpk -> S);

 PRP.y = CRP -> y + (eqpi -> E.y - CRP -> y) * eip -> eps *

((double) eqpk -> S);

 project_point(&(eqpk -> E), &(eqpk -> DC), &PRP, &NRP);

 if (right_turn (&(eqpk -> E), &(eqpk -> RP), &NRP))

return TRUE;

 /* testing */

 if (left_turn(&(eqpk -> E), &(eqpk -> LP), &NRP))

return FALSE;

 eqpk -> RP = NRP;

 return TRUE;

}

static void set_member_arr (struct einfo * eip,struct eqp_t *

eqp,bool flag)

{

 eterm_t *p = eqp -> Z;

 eterm_t *endp = p + eqp -> S;

 while (p < endp) {

 int t = *p++;

 eip -> MEMB [t] = flag;

 }

}

static eterm_t * merge_terminal_lists (struct einfo * eip,struct

eqp_t * eqpi,

struct eqp_t * eqpj,struct eqp_t * eqpk)

{

 eterm_t *p1, *endp1, *p2, *endp2, *Zp, *eqpZ_old;

 int t1, t2;

 struct eqp_t *eqpt;

 eqpk -> Z = eip -> eqpZ_curr;

 if (eip -> eqpZ_curr + eqpi -> S + eqpj -> S

 > eip -> eqpZ + eip -> eqpZ_size) {

 if (Print_Detailed_Timings)

 fprintf(stderr, "- doubling terminal list

array\n");

 eqpZ_old = eip -> eqpZ;

 eip -> eqpZ = NEWA (eip -> eqpZ_size * 2, eterm_t);

 memcpy (eip -> eqpZ, eqpZ_old, eip -> eqpZ_size *

sizeof(eterm_t));

 eip -> eqpZ_size = 2 * eip -> eqpZ_size;

 eip -> eqpZ_curr = UPDATE_PTR(eip -> eqpZ_curr,

eqpZ_old, eip -> eqpZ);

 for (eqpt = eip -> eqp; eqpt <= eqpk; eqpt++)

 eqpt -> Z = UPDATE_PTR(eqpt -> Z, eqpZ_old, eip ->

eqpZ);

 free(eqpZ_old);

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 82

 }

 p1 = eqpi -> Z;

 p2 = eqpj -> Z;

 endp1 = p1 + eqpi -> S;

 endp2 = p2 + eqpj -> S;

 t1 = *p1++;

 t2 = *p2++;

 Zp = eip -> eqpZ_curr;

 for (;;) {

 if (t1 < t2) {

 *Zp++ = t1;

 if (p1 >= endp1) goto finish2;

 t1 = *p1++;

 }

 else {

 *Zp++ = t2;

 if (p2 >= endp2) goto finish1;

 t2 = *p2++;

 }

 }

finish1:

 for (;;) {

 *Zp++ = t1;

 if (p1 >= endp1) break;

 t1 = *p1++;

 }

 return (Zp);

finish2:

 for (;;) {

 *Zp++ = t2;

 if (p2 >= endp2) break;

 t2 = *p2++;

 }

 return (Zp);

}

static bool disjoint (struct einfo * eip,struct eqp_t * eqp)

{

 eterm_t *p = eqp -> Z;

 eterm_t *endp = p + eqp -> S;

 while (p < endp) {

 int t = *p++;

 if (eip -> MEMB [t]) return FALSE;

 }

 return TRUE;

}

 static int highest_terminal (struct eqp_t * eqp)

{

 return ((eqp -> Z) [eqp -> S - 1]);

}

static dist_t closest_terminal (struct einfo * eip,struct point

* Q,struct eqp_t * eqpk)

{

 eterm_t *p, *endp;

 int t;

 dist_t min_dist2, dist2;

 int min_t;

 p = eqpk -> Z;

 endp = p + eqpk -> S;

 min_t = *p++;

 min_dist2 = sqr_dist(Q, &(eip -> eqp[min_t].E));

 while (p < endp) {

 t = *p++;

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 83

 dist2 = sqr_dist(Q, &(eip -> eqp[t].E));

 if (dist2 < min_dist2) {

 min_dist2 = dist2;

 min_t = t;

 }

 }

 return (sqrt (min_dist2));

}

/*

 * Get bottleneck Steiner distance between equilateral points i and j

 */

static double getBSD (struct einfo * eip,struct eqp_t *

eqpi,struct eqp_t * eqpj)

{

 dist_t rbsd, lbsd;

 if (eqpi -> R EQ NULL) {

 if (eqpj -> R EQ NULL) return bsd(eip -> bsd, eqpi ->

E.pnum, eqpj -> E.pnum);

 rbsd = getBSD(eip, eqpi, eqpj -> R);

 lbsd = getBSD(eip, eqpi, eqpj -> L);

 }

 else {

 rbsd = getBSD(eip, eqpi -> R, eqpj);

 lbsd = getBSD(eip, eqpi -> L, eqpj);

 }

 if (rbsd < lbsd) return rbsd;

 return lbsd;

}

static void eq_point_disp_vector (struct einfo * eip,struct

eqp_t * eqpi,struct eqp_t * eqpj,

struct eqp_t * eqpk)

{

pnum_t ti, tj;

double dx, dy, rdx, rdy;

 ti = eqpi -> DV.pnum;

 tj = eqpj -> DV.pnum;

 dx = eip -> eqp [tj].E.x - eip -> eqp [ti].E.x;

 dy = eip -> eqp [tj].E.y - eip -> eqp [ti].E.y;

 dx -= eqpi -> DV.x;

 dy -= eqpi -> DV.y;

 dx += eqpj -> DV.x;

 dy += eqpj -> DV.y;

 rotate60(dx, dy, &rdx, &rdy);

 eqpk -> DV.x = rdx + eqpi -> DV.x;

 eqpk -> DV.y = rdy + eqpi -> DV.y;

 eqpk -> DV.pnum = eqpi -> DV.pnum;

}

/*

 * Computation of distance between eq-points.

 */

static dist_t eq_point_dist (struct einfo * eip,struct eqp_t *

eqpi,struct eqp_t * eqpj)

{

pnum_t ti, tj;

double dx, dy, rdx, rdy;

 ti = eqpi -> DV.pnum;

 tj = eqpj -> DV.pnum;

 dx = eip -> eqp [tj].E.x - eip -> eqp [ti].E.x;

 dy = eip -> eqp [tj].E.y - eip -> eqp [ti].E.y;

 dx -= eqpi -> DV.x;

 dy -= eqpi -> DV.y;

 dx += eqpj -> DV.x;

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 84

 dy += eqpj -> DV.y;

 return hypot (dx, dy);

}

static void eqpoint_terminals (struct einfo * eip,struct eqp_t *

eqpk,struct pset * pts,bool append)

{

 eterm_t *p = eqpk -> Z;

 eterm_t *endp = p + eqpk -> S;

 struct point *pt;

 if (NOT append) pts -> n = 0;

 pt = pts -> a + pts -> n;

 while (p < endp)

 *(pt++) = eip -> eqp[*p++].E;

 pts -> n += eqpk -> S;

}

/*

 * Initialize data structure for eq-point rectangles.

 */

static void initialize_eqp_rectangles (struct einfo * eip)

{

 int i;

 struct point * p;

 /* Allocating square data structure */

 eip -> eqp_squares = NEWA(eip -> pts -> n, struct eqp_square_t

*);

 /* Finding range of terminal coordinates */

 eip -> minx = INF_DISTANCE;

 eip -> maxx = -INF_DISTANCE;

 eip -> miny = INF_DISTANCE;

 eip -> maxy = -INF_DISTANCE;

 for (i = 0; i < eip -> pts -> n; i++) {

 p = &(eip -> pts -> a[i]);

 eip -> minx = MIN(eip -> minx, p -> x - eip -> mean.x);

 eip -> maxx = MAX(eip -> maxx, p -> x - eip -> mean.x);

 eip -> miny = MIN(eip -> miny, p -> y - eip -> mean.y);

 eip -> maxy = MAX(eip -> maxy, p -> y - eip -> mean.y);

 eip -> eqp_squares[i] = NULL;

 }

 /* Basic paramaters */

 eip -> eqp_square_size = eip -> max_mst_edge;

 eip -> srangex = floor((eip -> maxx - eip -> minx) / eip ->

eqp_square_size) + 1;

 eip -> srangey = floor((eip -> maxy - eip -> miny) / eip ->

eqp_square_size) + 1;

}

static void destroy_eqp_rectangles (struct einfo * eip)

{

 int i;

 for (i = 0; i < eip -> pts -> n; i++)

 if (eip -> eqp_squares[i] NE NULL) {

 free(eip -> eqp_squares[i][0].eqp);

 free(eip -> eqp_squares[i]);

 }

 free(eip -> eqp_squares);

}

/*

 * Compute boundary of rectangle in which the Steiner point joining

 * the current eq-point to another eq-point can be placed

 */

static void compute_eqp_rectangle (

struct einfo * eip, /* global info */

struct eqp_t * eqpk, /* eq-point */

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 85

dist_t * minx, /* minimum x-coordinate of boundary */

dist_t * maxx, /* maximum x-coordinate of boundary */

dist_t * miny, /* minimum y-coordinate of boundary */

dist_t * maxy) /* maximum x-coordinate of boundary */

{

 struct point p;

 dist_t alpha;

 if (eqpk -> S EQ 1) {

 /* terminal */

 *minx = eqpk -> E.x - eip -> max_mst_edge;

 *maxx = eqpk -> E.x + eip -> max_mst_edge;

 *miny = eqpk -> E.y - eip -> max_mst_edge;

 *maxy = eqpk -> E.y + eip -> max_mst_edge;

 }

 else {

 /* eq-point */

 *minx = eqpk -> LP.x; *maxx = eqpk -> LP.x;

 *miny = eqpk -> LP.y; *maxy = eqpk -> LP.y;

 UPDATE_RECTANGLE_BOUNDS(eqpk -> RP);

 alpha = 1.0 + eip -> max_mst_edge / EDIST(&(eqpk -> E),

&(eqpk -> LP));

 p.x = eqpk -> E.x + alpha * (eqpk -> LP.x - eqpk ->

E.x);

 p.y = eqpk -> E.y + alpha * (eqpk -> LP.y - eqpk ->

E.y);

 UPDATE_RECTANGLE_BOUNDS(p);

 alpha = 1.0 + eip -> max_mst_edge / EDIST(&(eqpk -> E),

&(eqpk -> RP));

 p.x = eqpk -> E.x + alpha * (eqpk -> RP.x - eqpk ->

E.x);

 p.y = eqpk -> E.y + alpha * (eqpk -> RP.y - eqpk ->

E.y);

 UPDATE_RECTANGLE_BOUNDS(p);

 p.x = eqpk -> DC.x + eqpk -> DR + eip -> max_mst_edge;

 p.y = eqpk -> DC.y;

 if (right_turn(&(eqpk -> E), &(eqpk -> LP), &p) AND

 left_turn(&(eqpk -> E), &(eqpk -> RP), &p))

 UPDATE_RECTANGLE_BOUNDS(p);

 p.x = eqpk -> DC.x - eqpk -> DR - eip -> max_mst_edge;

 p.y = eqpk -> DC.y;

 if (right_turn(&(eqpk -> E), &(eqpk -> LP), &p) AND

 left_turn(&(eqpk -> E), &(eqpk -> RP), &p))

 UPDATE_RECTANGLE_BOUNDS(p);

 p.x = eqpk -> DC.x;

 p.y = eqpk -> DC.y + eqpk -> DR + eip -> max_mst_edge;

 if (right_turn(&(eqpk -> E), &(eqpk -> LP), &p) AND

 left_turn(&(eqpk -> E), &(eqpk -> RP),

&p))UPDATE_RECTANGLE_BOUNDS(p);

 p.x = eqpk -> DC.x;

 p.y = eqpk -> DC.y - eqpk -> DR - eip -> max_mst_edge;

 if (right_turn(&(eqpk -> E), &(eqpk -> LP), &p) AND

 left_turn(&(eqpk -> E), &(eqpk -> RP), &p))

 UPDATE_RECTANGLE_BOUNDS(p);

 }

 *minx -= (fabs(*minx) * eip -> eps * ((double) eqpk -> S));

 *miny -= (fabs(*miny) * eip -> eps * ((double) eqpk -> S));

 *maxx += (fabs(*maxx) * eip -> eps * ((double) eqpk -> S));

 *maxy += (fabs(*maxy) * eip -> eps * ((double) eqpk -> S));

}

static void save_eqp_rectangles (struct einfo * eip,int

first_eqp,int last_eqp)

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 86

{

 int i, j, k, si, size;

 struct eqp_t * eqpk;

 dist_t minx, maxx, miny, maxy;

 int total_squares;

 int * curr_count;

 struct eqp_square_t* sqr;

 struct eqp_t ** eqp_alloc;

 if (first_eqp > last_eqp) return;

 /*Finds min/max square indices in each dimension and count the

total

 * number of squares that are overlapped by these eq-points.*/

 size = eip -> eqp[first_eqp].S;

 total_squares = 0;

 for (k = first_eqp; k <= last_eqp; k++) {

 eqpk = &(eip -> eqp[k]);

 /* Compute geometric range of rectangle for this eq-point

*/

 compute_eqp_rectangle(eip, eqpk, &minx, &maxx, &miny,

&maxy);

 /* Compute square index range for this eq-point */

 eqpk -> SMINX = MAX(0,floor((minx - eip -> minx) / eip -

> eqp_square_size));

 eqpk -> SMAXX = MIN(eip -> srangex-1, floor((maxx - eip

-> minx) /eip -> eqp_square_size));

 eqpk -> SMINY = MAX(0, floor((miny - eip -> miny) / eip

-> eqp_square_size));

 eqpk -> SMAXY = MIN(eip -> srangey-1, floor((maxy - eip

-> miny) / eip -> eqp_square_size));

 total_squares += (eqpk -> SMAXX - eqpk -> SMINX + 1) *

(eqpk -> SMAXY - eqpk -> SMINY + 1);

 }

 /* Allocate space for these rectangles */

 eip -> eqp_squares[size] = NEWA(eip -> srangex * eip ->

srangey, struct eqp_square_t);

 sqr = eip -> eqp_squares[size];

 /* Initialize eq-point counts */

 curr_count = NEWA(eip -> srangex * eip -> srangey, int);

 for (i = 0; i < eip -> srangex; i++)

 for (j = 0; j < eip -> srangey; j++) {

 si = i * eip -> srangey + j;

 sqr[si].n = 0; curr_count[si] = 0;

 }

 /* Find counts for each square */

 for (k = first_eqp; k <= last_eqp; k++) {

 eqpk = &(eip -> eqp[k]);

 for (i = eqpk -> SMINX; i <= eqpk -> SMAXX; i++)

 for (j = eqpk -> SMINY; j <= eqpk -> SMAXY; j++)

 sqr[i * eip -> srangey + j].n++;

 }

 eqp_alloc = NEWA(total_squares, struct eqp_t *);

 for (i = 0; i < eip -> srangex; i++)

 for (j = 0; j < eip -> srangey; j++) {

 si = i * eip -> srangey + j;

 sqr[si].eqp = eqp_alloc; eqp_alloc += sqr[si].n;

 }

 for (k = first_eqp; k <= last_eqp; k++) {

 eqpk = &(eip -> eqp[k]);

 for (i = eqpk -> SMINX; i <= eqpk -> SMAXX; i++)

 for (j = eqpk -> SMINY; j <= eqpk -> SMAXY; j++) {

 si = i * eip -> srangey + j;

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 87

 sqr[si].eqp[curr_count[si]++] = eqpk;

 }

 }

 free(curr_count);

}

/*

 * Generate compatible eq-points

 */

static void generate_compatible_eqp (struct einfo * eip,int

size,struct eqp_t * eqpi,struct eqp_t ** eqp_list)

{

 struct eqp_square_t * sqr;

 int i, j, l, si;

 struct eqp_t ** eqpp;

 struct eqp_t * eqpj;

 sqr = eip -> eqp_squares[size];

 eqpp = eqp_list;

 if (sqr) {

 for (i = eqpi -> SMINX; i <= eqpi -> SMAXX; i++)

 for (j = eqpi -> SMINY; j <= eqpi -> SMAXY; j++) {

 si = i * eip -> srangey + j;

 for (l = 0; l < sqr[si].n; l++) {

 eqpj = sqr[si].eqp[l];

 if (NOT (eqpj -> CHOSEN)) {

 *(eqpp++) = eqpj;

 eqpj -> CHOSEN = TRUE;

 }

 }

 }

 }

 *eqpp = NULL;

}

static bool projection_test_case_I (struct einfo * eip,struct

eqp_t * eqpi,struct eqp_t * eqpj)

{

 if (eqpi -> R) {

 get_angle_vector(&(eqpi -> RP), &(eqpi -> E), &(eqpj ->

E),

 &(eip -> dxi), &(eip -> dyi));

 if (angle_geq_120(eip -> dxi, eip -> dyi))

 return FALSE;

 }

 if (eqpj -> R) {

 get_angle_vector(&(eqpi -> E), &(eqpj -> E), &(eqpj ->

LP),

 &(eip -> dxj), &(eip -> dyj));

 if (angle_geq_120(eip -> dxj, eip -> dyj))

 return FALSE;

 }

 return TRUE;

}

static bool projection_test_cases_II_VI (struct einfo *

eip,struct eqp_t * eqpi,struct eqp_t * eqpj,

struct eqp_t * eqpk)

{

 struct point CLP, CRP;

 if (eqpi -> R) {

 if (angle_geq_60(eip -> dxi, eip -> dyi)) {

 if (sqr_dist(&(eqpk -> DC), &(eqpi -> LP)) >= eqpk

-> DR2)

 return FALSE;

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 88

 project_point(&(eqpi -> E), &(eqpk -> DC),&(eqpi -

> LP), &(eqpk -> LP));

 project_point_perp(&(eqpi -> E), &(eqpk ->

DC),&(eqpi -> DC), &(eqpk -> RP));

 }

 else {

 if (sqr_dist(&(eqpi -> DC), &(eqpk -> LP)) <= eqpi

-> DR2)

 return FALSE;

 if (sqr_dist(&(eqpk -> DC), &(eqpi -> RP)) >= eqpk

-> DR2) {

 if (sqr_dist(&(eqpk -> DC), &(eqpi -> LP)) >=

eqpk -> DR2)

 return FALSE;

 project_point_perp(&(eqpi -> E), &(eqpk ->

DC),&(eqpi -> DC), &(eqpk -> RP));

 }

 else

 project_point(&(eqpi -> E), &(eqpk -> DC),

&(eqpi -> RP), &(eqpk -> RP));

 if (right_turn(&(eqpi -> E), &(eqpk -> LP), &(eqpi

-> LP)))

 project_point(&(eqpi -> E), &(eqpk ->

DC),&(eqpi -> LP), &(eqpk -> LP));

 }

 }

 if (eqpj -> R) {

 memset (&CLP, 0, sizeof (CLP));

 memset (&CRP, 0, sizeof (CRP));

 if (angle_geq_60(eip -> dxj, eip -> dyj)) {

 if (sqr_dist(&(eqpk -> DC), &(eqpj -> RP)) >= eqpk

-> DR2)

 return FALSE;

 project_point(&(eqpj -> E), &(eqpk -> DC),&(eqpj ->

RP), &CRP);

 if (right_turn(&(eqpk -> E), &CRP, &(eqpk -> LP)))

 return FALSE;

 if (right_turn(&(eqpk -> E), &CRP, &(eqpk -> RP)))

 eqpk -> RP = CRP;

 project_point_perp(&(eqpj -> E), &(eqpk ->

DC),&(eqpj -> DC), &CLP);

 if (right_turn(&(eqpk -> E), &(eqpk -> RP), &CLP))

 return FALSE;

 if (right_turn(&(eqpk -> E), &(eqpk -> LP), &CLP))

 eqpk -> LP = CLP;

 }

 else {

 if (sqr_dist(&(eqpj -> DC), &(eqpk -> RP)) <= eqpj

-> DR2)

 return FALSE;

 if (sqr_dist(&(eqpk -> DC), &(eqpj -> LP)) >= eqpk

-> DR2) {

 if (sqr_dist(&(eqpk -> DC), &(eqpj -> RP)) >=

eqpk -> DR2)

 return FALSE;

 project_point_perp(&(eqpj -> E), &(eqpk ->

DC), &(eqpj -> DC), &CLP);

 }

 else

 project_point(&(eqpj -> E), &(eqpk ->

DC),&(eqpj -> LP), &CLP);

 if (right_turn(&(eqpk -> E), &(eqpk -> RP), &CLP))

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 89

 return FALSE;

 if (right_turn(&(eqpk -> E), &(eqpk -> LP), &CLP))

 eqpk -> LP = CLP;

 if (right_turn(&(eqpj -> E), &(eqpj -> RP), &(eqpk

-> RP))) {

 project_point(&(eqpj ->E), &(eqpk -> DC),

 &(eqpj -> RP), &CRP);

 if (right_turn(&(eqpk -> E), &CRP, &(eqpk ->

LP)))

 return FALSE;

 if (right_turn(&(eqpk -> E), &CRP, &(eqpk ->

RP)))

 eqpk -> RP = CRP;

 }

 }

 }

 return TRUE;

}

static bool bsd_test (struct einfo * eip,struct eqp_t *

eqpi,struct eqp_t * eqpj,struct eqp_t * eqpk)

{

 double bsbs, a, b, aa, sin1, sin2;

 struct point CLP, CRP, CLP1, CRP1, CLP2, CRP2, ai;

 eqpk -> BS = getBSD(eip, eqpi, eqpj);

 eqpk -> UB = eqpi -> UB + eqpj -> UB + eqpk -> BS;

 memset (&CLP, 0, sizeof (CLP));

 if (eqpi -> R EQ NULL) {

 rotate2(&(eqpi -> E), &(eqpk -> DC),

 eqpk -> BS/(2.0*eqpk -> DR), 2.0, &CLP);

 if (NOT test_and_save_LP(eip, eqpi, eqpj, eqpk, &CLP))

return FALSE;

 }

 else {

 bsbs = eqpk -> BS * eqpk -> BS;

 project_point(&(eqpi -> E), &(eqpi -> DC),&(eqpk -> LP),

&ai);

 aa = sqr_dist(&ai, &(eqpk -> LP));

 if (bsbs < 0.999 * aa) {

 a = sqrt(aa);

 b = (a + 2.0 * (EDIST(&(eqpj -> E), &(eqpk ->

LP))

 + EDIST(&(eqpi -> R -> E), &ai))) / SQRT3;

 if (solve_quadratic(aa + b*b, eqpk -> BS * b, bsbs

- aa, &sin1, &sin2)) {

 memset (&CLP1, 0, sizeof (CLP1));

 memset (&CLP2, 0, sizeof (CLP2));

 rotate2(&(eqpk -> LP), &(eqpk -> DC),-sin1,

(b * sin1 + eqpk -> BS)/a, &CLP1);

 rotate2(&(eqpk -> LP), &(eqpk -> DC),-sin2,

(b * sin2 + eqpk -> BS)/a, &CLP2);

 if (right_turn(&(eqpk -> E), &CLP2, &CLP1))

 CLP1 = CLP2;

 if (NOT test_and_save_LP(eip, eqpi, eqpj,

eqpk, &CLP1)) return FALSE;

 }

 }

 }

 memset (&CRP, 0, sizeof (CRP));

 if (eqpj -> R EQ NULL) {

 rotate2(&(eqpj -> E), &(eqpk -> DC),

 -eqpk -> BS/(2.0*eqpk -> DR), 2.0, &CRP);

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 90

 if (NOT test_and_save_RP(eip, eqpi, eqpj, eqpk, &CRP))

return FALSE;

 }

 else {

 bsbs = eqpk -> BS * eqpk -> BS;

 project_point(&(eqpj -> E), &(eqpj -> DC),&(eqpk -> RP),

&ai);

 aa = sqr_dist(&ai, &(eqpk -> RP));

 if (bsbs < 0.999 * aa) {

 a = sqrt(aa);

 b = (a + 2.0 * (EDIST(&(eqpi -> E), &(eqpk ->

RP))

 + EDIST(&(eqpj -> L -> E), &ai))) / SQRT3;

 if (solve_quadratic(aa + b*b, eqpk -> BS * b, bsbs

- aa, &sin1, &sin2)) {

 memset (&CRP1, 0, sizeof (CRP1));

 memset (&CRP2, 0, sizeof (CRP2));

 rotate2(&(eqpk -> RP), &(eqpk -> DC),

 sin1, (b * sin1 + eqpk -> BS)/a,

&CRP1);

 rotate2(&(eqpk -> RP), &(eqpk -> DC),

 sin2, (b * sin2 + eqpk -> BS)/a,

&CRP2);

 if (right_turn(&(eqpk -> E), &CRP1, &CRP2))

 CRP1 = CRP2;

 if (NOT test_and_save_RP(eip, eqpi, eqpj,

eqpk, &CRP1)) return FALSE;

 }

 }

 }

 return TRUE;

}

static bool lune_test (struct einfo * eip,struct eqp_t *

eqpi,struct eqp_t * eqpj,struct eqp_t * eqpk)

{

 int r;

 struct point CJ, AI, CLP, CLPP, CRP, CRPP;

 dist_t a, aa, b, bb, c, d, e, f, ff, g, gg, h, hh;

 dist_t dist_qicj, dist_oacr, dist_opqr, dist_pqi, dist_piai,

dist_qpi;

 dist_t sin1, sin2;

 memset (&CLPP, 0, sizeof (CLPP));

 memset (&CRPP, 0, sizeof (CRPP));

 if (eqpi -> R) {

 project_point(&(eqpi -> E), &(eqpi -> DC), &(eqpk ->

LP), &CJ);

 aa = sqr_dist(&CJ, &(eqpk -> LP));

 dist_qicj = 0.999 * aa;

 for (r = 0; r < eip -> pts -> n; r++) {

 if (sqr_dist(&(eip -> eqp[r].E), &CJ) >=

dist_qicj) continue;

 if (sqr_dist(&(eip -> eqp[r].E), &(eqpk -> LP)) >=

dist_qicj) continue;

 CLP = eqpi -> E;

 a = sqrt(aa);

 b = (a + 2.0 * (EDIST(&(eqpj -> E), &(eqpk ->

LP))

 + EDIST(&(eqpi -> R -> E), &CJ))) / SQRT3;

 bb = b*b;

 dist_oacr = EDIST(&(eip -> eqp[r].E), &(eqpi ->

DC));

 c = dist_oacr*dist_oacr + eqpi -> DR2;

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 91

 d = 2.0*((CJ.x - eqpi -> DC.x) * (eqpi -> DC.x -

eip -> eqp[r].E.x) +

 (CJ.y - eqpi -> DC.y) * (eqpi -> DC.y - eip

-> eqp[r].E.y));

 e = 2.0*((CJ.y - eqpi -> DC.y) * (eqpi -> DC.x -

eip -> eqp[r].E.x) -

 (CJ.x - eqpi -> DC.x) * (eqpi -> DC.y - eip

-> eqp[r].E.y));

 f = (aa+bb)/2.0-c; ff = f*f;

 g = -e-a*b; gg = g*g;

 h = d-(aa-bb)/2.0; hh = h*h;

 if (solve_quadratic(gg + hh, f*g, ff - hh, &sin1,

&sin2)) {

 if ((fabs(sin1) < eip -> eps) OR (fabs(sin2)

< eip -> eps)) continue;

 rotate(&(eqpk -> LP), &(eqpk -> DC), -sin1,

(f+g*sin1)/h, &CLPP);

 if (right_turn(&(eqpk -> E), &(eqpk -> LP),

&CLPP) AND

 left_turn (&(eqpk -> E), &CLP, &CLPP))

 CLP = CLPP;

 rotate(&(eqpk -> LP), &(eqpk -> DC), -sin2,

(f+g*sin2)/h, &CLPP);

 if (right_turn(&(eqpk -> E), &(eqpk -> LP),

&CLPP) AND

 left_turn (&(eqpk -> E), &CLP, &CLPP))

 CLP = CLPP;

 }

 dist_opqr = EDIST(&(eip -> eqp[r].E), &(eqpk ->

DC));

 c = dist_opqr*dist_opqr + eqpk -> DR2;

 d = 2.0*((eqpk -> LP.x - eqpk -> DC.x) * (eqpk ->

DC.x - eip -> eqp[r].E.x) +

 (eqpk -> LP.y - eqpk -> DC.y) * (eqpk ->

DC.y - eip -> eqp[r].E.y));

 e = 2.0*((eqpk -> LP.y - eqpk -> DC.y) * (eqpk ->

DC.x - eip -> eqp[r].E.x) -

 (eqpk -> LP.x - eqpk -> DC.x) * (eqpk ->

DC.y - eip -> eqp[r].E.y));

 f = (aa+bb)/2.0-c; ff = f*f;

 g = -e-a*b; gg = g*g;

 h = d-(aa-bb)/2.0; hh = h*h;

 if (solve_quadratic(gg + hh, f*g, ff - hh, &sin1,

&sin2)) {

 if ((fabs(sin1) < eip -> eps) OR (fabs(sin2)

< eip -> eps)) continue;

 rotate(&(eqpk -> LP), &(eqpk -> DC), -sin1,

(f+g*sin1)/h, &CLPP);

 if (right_turn(&(eqpk -> E), &(eqpk -> LP),

&CLPP) AND

 left_turn (&(eqpk -> E), &CLP, &CLPP))

 CLP = CLPP;

 rotate(&(eqpk -> LP), &(eqpk -> DC), -sin2,

(f+g*sin2)/h, &CLPP);

 if (right_turn(&(eqpk -> E), &(eqpk -> LP),

&CLPP) AND

 left_turn (&(eqpk -> E), &CLP, &CLPP))

 CLP = CLPP;

 }

 if (NOT test_and_save_LP(eip, eqpi, eqpj, eqpk,

&CLP)) return FALSE;

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 92

 project_point(&(eqpi -> E), &(eqpi -> DC),&(eqpk -

> LP), &CJ);

 aa = sqr_dist(&CJ, &(eqpk -> LP));

 dist_qicj = 0.999 * aa;

 }

 }

 else {

 aa = sqr_dist(&(eqpi -> E), &(eqpk -> LP));

 dist_pqi = 0.999 * aa;

 for (r = 0; r < eip -> pts -> n; r++) {

 if (r EQ eqpi -> E.pnum) continue;

 if (sqr_dist(&(eip -> eqp[r].E), &(eqpi -> E)) >=

dist_pqi) continue;

 if (sqr_dist(&(eip -> eqp[r].E), &(eqpk -> LP)) >=

dist_pqi) continue;

 rotate2(&(eqpi -> E), &(eqpk -> DC),

 EDIST(&(eip -> eqp[r].E), &(eqpi ->

E))/(2.0*eqpk -> DR), 2.0, &CLP);

 a = sqrt(aa);

 b = (a + 2.0 * EDIST(&(eqpj -> E), &(eqpk -> LP)))

/ SQRT3;

 bb = b*b;

 dist_opqr = EDIST(&(eip -> eqp[r].E), &(eqpk ->

DC));

 c = dist_opqr*dist_opqr + eqpk -> DR2;

 d = 2.0*((eqpk -> LP.x - eqpk -> DC.x) * (eqpk ->

DC.x - eip -> eqp[r].E.x) +

 (eqpk -> LP.y - eqpk -> DC.y) * (eqpk ->

DC.y - eip -> eqp[r].E.y));

 e = 2.0*((eqpk -> LP.y - eqpk -> DC.y) * (eqpk ->

DC.x - eip -> eqp[r].E.x) -

 (eqpk -> LP.x - eqpk -> DC.x) * (eqpk ->

DC.y - eip -> eqp[r].E.y));

 f = (aa+bb)/2.0-c; ff = f*f;

 g = -e-a*b; gg = g*g;

 h = d-(aa-bb)/2.0; hh = h*h;

 if (solve_quadratic(gg + hh, f*g, ff - hh, &sin1,

&sin2)) {

 if ((fabs(sin1) < eip -> eps) OR (fabs(sin2)

< eip -> eps)) continue;

 rotate(&(eqpk -> LP), &(eqpk -> DC), -sin1,

(f+g*sin1)/h, &CLPP);

 if (right_turn(&(eqpk -> E), &(eqpk -> LP),

&CLPP) AND

 left_turn (&(eqpk -> E), &CLP, &CLPP))

 CLP = CLPP;

 rotate(&(eqpk -> LP), &(eqpk -> DC), -sin2,

(f+g*sin2)/h, &CLPP);

 if (right_turn(&(eqpk -> E), &(eqpk -> LP),

&CLPP) AND

 left_turn (&(eqpk -> E), &CLP, &CLPP))

 CLP = CLPP;

 }

 if (NOT test_and_save_LP(eip, eqpi, eqpj, eqpk,

&CLP)) return FALSE;

 aa = sqr_dist(&(eqpi -> E), &(eqpk -> LP));

 dist_pqi = 0.999 * aa;

 }

 }

 if (eqpj -> R) {

 project_point(&(eqpj -> E), &(eqpj -> DC),&(eqpk -> RP),

&AI);

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 93

 aa = sqr_dist(&AI, &(eqpk -> RP));

 dist_piai = 0.999 * aa;

 for (r = 0; r < eip -> pts -> n; r++) {

 if (sqr_dist(&(eip -> eqp[r].E), &AI) >=

dist_piai) continue;

 if (sqr_dist(&(eip -> eqp[r].E), &(eqpk -> RP)) >=

dist_piai) continue;

 CRP = eqpj -> E;

 a = sqrt(aa);

 b = (a + 2.0 * (EDIST(&(eqpi -> E), &(eqpk ->

RP))

 + EDIST(&(eqpj -> L -> E), &AI))) / SQRT3;

 bb = b*b;

 dist_oacr = EDIST(&(eip -> eqp[r].E), &(eqpj ->

DC));

 c = dist_oacr*dist_oacr + eqpj -> DR2;

 d = 2.0*((AI.x - eqpj -> DC.x) * (eqpj -> DC.x -

eip -> eqp[r].E.x) +

 (AI.y - eqpj -> DC.y) * (eqpj -> DC.y - eip

-> eqp[r].E.y));

 e = 2.0*((AI.y - eqpj -> DC.y) * (eqpj -> DC.x -

eip -> eqp[r].E.x) -

 (AI.x - eqpj -> DC.x) * (eqpj -> DC.y - eip

-> eqp[r].E.y));

 f = (aa+bb)/2.0-c; ff = f*f;

 g = e-a*b; gg = g*g;

 h = d-(aa-bb)/2.0; hh = h*h;

 if (solve_quadratic(gg + hh, f*g, ff - hh, &sin1,

&sin2)) {

 if ((fabs(sin1) < eip -> eps) OR (fabs(sin2)

< eip -> eps)) continue;

 rotate(&(eqpk -> RP), &(eqpk -> DC), sin1,

(f+g*sin1)/h, &CRPP);

 if (left_turn(&(eqpk -> E), &(eqpk -> RP),

&CRPP) AND

 right_turn(&(eqpk -> E), &CRP, &CRPP))

 CRP = CRPP;

 rotate(&(eqpk -> RP), &(eqpk -> DC), sin2,

(f+g*sin2)/h, &CRPP);

 if (left_turn(&(eqpk -> E), &(eqpk -> RP),

&CRPP) AND

 right_turn(&(eqpk -> E), &CRP, &CRPP))

 CRP = CRPP;

 }

 dist_opqr = EDIST(&(eip -> eqp[r].E), &(eqpk ->

DC));

 c = dist_opqr*dist_opqr + eqpk -> DR2;

 d = 2.0*((eqpk -> RP.x - eqpk -> DC.x) * (eqpk ->

DC.x - eip -> eqp[r].E.x) +

 (eqpk -> RP.y - eqpk -> DC.y) * (eqpk ->

DC.y - eip -> eqp[r].E.y));

 e = 2.0*((eqpk -> RP.y - eqpk -> DC.y) * (eqpk ->

DC.x - eip -> eqp[r].E.x) -

 (eqpk -> RP.x - eqpk -> DC.x) * (eqpk ->

DC.y - eip -> eqp[r].E.y));

 f = (aa+bb)/2.0-c; ff = f*f;

 g = e-a*b; gg = g*g;

 h = d-(aa-bb)/2.0; hh = h*h;

 if (solve_quadratic(gg + hh, f*g, ff - hh, &sin1,

&sin2)) {

 if ((fabs(sin1) < eip -> eps) OR (fabs(sin2)

< eip -> eps)) continue;

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 94

 rotate(&(eqpk -> RP), &(eqpk -> DC), sin1,

(f+g*sin1)/h, &CRPP);

 if (left_turn(&(eqpk -> E), &(eqpk -> RP),

&CRPP) AND

 right_turn(&(eqpk -> E), &CRP, &CRPP))

 CRP = CRPP;

 rotate(&(eqpk -> RP), &(eqpk -> DC), sin2,

(f+g*sin2)/h, &CRPP);

 if (left_turn(&(eqpk -> E), &(eqpk -> RP),

&CRPP) AND

 right_turn(&(eqpk -> E), &CRP, &CRPP))

 CRP = CRPP;

 }

 if (NOT test_and_save_RP(eip, eqpi, eqpj, eqpk,

&CRP)) return FALSE;

 project_point(&(eqpj -> E), &(eqpj -> DC), &(eqpk

-> RP), &AI);

 aa = sqr_dist(&AI, &(eqpk -> RP));

 dist_piai = 0.999 * aa;

 }

 }

 else {

 aa = sqr_dist(&(eqpj -> E), &(eqpk -> RP));

 dist_qpi = 0.999 * aa;

 for (r = 0; r < eip -> pts -> n; r++) {

 if (r EQ eqpj -> E.pnum) continue;

 if (sqr_dist(&(eip -> eqp[r].E), &(eqpj -> E)) >=

dist_qpi) continue;

 if (sqr_dist(&(eip -> eqp[r].E), &(eqpk -> RP)) >=

dist_qpi) continue;

 rotate2(&(eqpj -> E), &(eqpk -> DC),

 -EDIST(&(eip -> eqp[r].E), &(eqpj ->

E))/(2.0*eqpk -> DR), 2.0, &CRP);

 a = sqrt(aa);

 b = (a + 2.0 * EDIST(&(eqpi -> E), &(eqpk -> RP)))

/ SQRT3;

 bb = b*b;

 dist_opqr = EDIST(&(eip -> eqp[r].E), &(eqpk ->

DC));

 c = dist_opqr*dist_opqr + eqpk -> DR2;

 d = 2.0*((eqpk -> RP.x - eqpk -> DC.x) * (eqpk ->

DC.x - eip -> eqp[r].E.x) +

 (eqpk -> RP.y - eqpk -> DC.y) * (eqpk ->

DC.y - eip -> eqp[r].E.y));

 e = 2.0*((eqpk -> RP.y - eqpk -> DC.y) * (eqpk ->

DC.x - eip -> eqp[r].E.x) -

 (eqpk -> RP.x - eqpk -> DC.x) * (eqpk ->

DC.y - eip -> eqp[r].E.y));

 f = (aa+bb)/2.0-c; ff = f*f;

 g = e-a*b; gg = g*g;

 h = d-(aa-bb)/2.0; hh = h*h;

 if (solve_quadratic(gg + hh, f*g, ff - hh, &sin1,

&sin2)) {

 if ((fabs(sin1) < eip -> eps) OR (fabs(sin2)

< eip -> eps)) continue;

 rotate(&(eqpk -> RP), &(eqpk -> DC), sin1,

(f+g*sin1)/h, &CRPP);

 if (left_turn(&(eqpk -> E), &(eqpk -> RP),

&CRPP) AND

 right_turn(&(eqpk -> E), &CRP, &CRPP))

 CRP = CRPP;

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 95

 rotate(&(eqpk -> RP), &(eqpk -> DC), sin2,

(f+g*sin2)/h, &CRPP);

 if (left_turn(&(eqpk -> E), &(eqpk -> RP),

&CRPP) AND

 right_turn(&(eqpk -> E), &CRP, &CRPP))

 CRP = CRPP;

 }

 if (NOT test_and_save_RP(eip, eqpi, eqpj, eqpk,

&CRP)) return FALSE;

 aa = sqr_dist(&(eqpj -> E), &(eqpk -> RP));

 dist_qpi = 0.999 * aa;

 }

 }

 return TRUE;

}

static bool upper_bound_test (struct einfo * eip,struct eqp_t *

eqpi,struct eqp_t * eqpj,struct eqp_t * eqpk)

{

 dist_t low_arc_length, rlb, llb, lower_bound, upper_bound,

dist, distr, distl, rsmt, lsmt, dx, dy, l,

 ub_ri = INF_DISTANCE, ub_lj = INF_DISTANCE, ub_rk =

INF_DISTANCE, ub_lk = INF_DISTANCE,

 distrj, distli, cosp, sinp, a, aa, b, bb, sin1, sin2;

 struct point P, CRP, CRPP, CLP, CLPP, M;

 if (EDIST(&(eqpk -> RP), &(eqpk -> LP)) < eip -> eps) return

FALSE;

 rlb = EDIST(&(eqpk -> RP), &(eqpk -> E)) * (1.0 - eip -> eps *

((double) eqpk -> S));

 llb = EDIST(&(eqpk -> LP), &(eqpk -> E)) * (1.0 - eip -> eps *

((double) eqpk -> S));

 lower_bound = MIN(rlb, llb);

 M.x = (eqpk -> RP.x + eqpk -> LP.x) / 2.0;

 M.y = (eqpk -> RP.y + eqpk -> LP.y) / 2.0;

 P.x = eqpk -> DC.x + (eqpk -> DR / EDIST(&(eqpk -> DC), &M))*

(M.x - eqpk -> DC.x);

 P.y = eqpk -> DC.y + (eqpk -> DR / EDIST(&(eqpk -> DC), &M))*

(M.y - eqpk -> DC.y);

 low_arc_length = 2.0*EDIST(&P, &(eqpk -> RP));

 distr = closest_terminal(eip, &(eqpk -> RP), eqpi);

 distl = closest_terminal(eip, &(eqpk -> LP), eqpj);

 upper_bound = (eqpi -> UB + distr) + (eqpj -> UB + distl) +

low_arc_length;

 if (upper_bound < lower_bound) return FALSE;

 rsmt = upper_bound;

 lsmt = upper_bound;

 dist = distl;

 if (distr < dist) dist = distr;

 upper_bound = eqpi -> UB + eqpj -> UB + dist + EDIST(&(eqpk ->

RP), &(eqpk -> LP)) + eqpk -> BS;

 if (upper_bound < lower_bound) return FALSE;

 if (rsmt > upper_bound) rsmt = upper_bound;

 if (lsmt > upper_bound) lsmt = upper_bound;

 if (eqpi -> R EQ NULL)

 ub_ri = EDIST(&(eqpk -> RP), &(eqpi -> E));

 else {

 eip -> termlist -> a[0] = eqpk -> RP;

 eip -> termlist -> n = 1;

 eqpoint_terminals(eip, eqpi, eip -> termlist, TRUE);

 ub_ri = upper_bound_heuristic(eip -> termlist, eip ->

bsd);

 }

 upper_bound = ub_ri + (eqpj -> UB + distl) + low_arc_length;

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 96

 if (upper_bound < lower_bound) return FALSE;

 if (rsmt > upper_bound) rsmt = upper_bound;

 if (lsmt > upper_bound) lsmt = upper_bound;

 if (eqpj -> R EQ NULL)

 ub_lj = EDIST(&(eqpk -> LP), &(eqpj -> E));

 else {

 eip -> termlist -> a[0] = eqpk -> LP;

 eip -> termlist -> n = 1;

 eqpoint_terminals(eip, eqpj, eip -> termlist, TRUE);

 ub_lj = upper_bound_heuristic(eip -> termlist, eip ->

bsd);

 }

 upper_bound = eqpi -> UB + distr;

 if (ub_ri < upper_bound) upper_bound = ub_ri;

 upper_bound += ub_lj + low_arc_length;

 if (upper_bound < lower_bound) return FALSE;

 if (rsmt > upper_bound) rsmt = upper_bound;

 if (lsmt > upper_bound) lsmt = upper_bound;

 upper_bound = 0.0;

 eip -> termlist -> a[0] = eqpk -> RP;

 eip -> termlist -> a[1] = eqpk -> LP;

 eip -> termlist -> n = 2;

 if (eqpi -> R EQ NULL)

 upper_bound += distr;

 else

 eqpoint_terminals(eip, eqpi, eip -> termlist, TRUE);

 if (eqpj -> R EQ NULL)

 upper_bound += distl;

 else

 eqpoint_terminals(eip, eqpj, eip -> termlist, TRUE);

 if (eip -> termlist -> n EQ 2)

 upper_bound += eqpk -> BS + low_arc_length/2.0;

 else

 upper_bound += upper_bound_heuristic(eip -> termlist, eip

-> bsd) + low_arc_length/2.0;

 if (upper_bound < lower_bound) return FALSE;

 if (rsmt > upper_bound) rsmt = upper_bound;

 if (lsmt > upper_bound) lsmt = upper_bound;

 if (eqpi -> R) {

 eip -> termlist -> a[0] = eqpk -> RP;

 eip -> termlist -> n = 1;

 eqpoint_terminals(eip, eqpk, eip -> termlist, TRUE);

 ub_rk = upper_bound_heuristic(eip -> termlist, eip ->

bsd);

 upper_bound = ub_rk + low_arc_length;

 if (upper_bound < lower_bound) return FALSE;

 if (rsmt > upper_bound) rsmt = upper_bound;

 }

 if (eqpj -> R) {

 eip -> termlist -> a[0] = eqpk -> LP;

 eip -> termlist -> n = 1;

 eqpoint_terminals(eip, eqpk, eip -> termlist, TRUE);

 ub_lk = upper_bound_heuristic(eip -> termlist, eip ->

bsd);

 upper_bound = ub_lk + low_arc_length;

 if (upper_bound < lower_bound) return FALSE;

 if (lsmt > upper_bound) lsmt = upper_bound;

 }

 upper_bound = eqpj -> UB + low_arc_length + eqpk -> BS;

 if (eqpi -> R EQ NULL)

 upper_bound += EDIST(&(eqpk -> RP), &(eqpi -> E));

 else

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 97

 upper_bound += ub_ri;

 if (upper_bound < lower_bound) return FALSE;

 if (rsmt > upper_bound) rsmt = upper_bound;

 upper_bound = eqpi -> UB + low_arc_length + eqpk -> BS;

 if (eqpj -> R EQ NULL)

 upper_bound += EDIST(&(eqpk -> LP), &(eqpj -> E));

 else

 upper_bound += ub_lj;

 if (upper_bound < lower_bound) return FALSE;

 if (lsmt > upper_bound) lsmt = upper_bound;

 distrj = closest_terminal(eip, &(eqpk -> RP), eqpj);

 upper_bound = eqpi -> UB + eqpj -> UB + distr + distrj;

 if (rsmt > upper_bound) rsmt = upper_bound;

 distli = closest_terminal(eip, &(eqpk -> LP), eqpi);

 upper_bound = eqpi -> UB + eqpj -> UB + distl + distli;

 if (lsmt > upper_bound) lsmt = upper_bound;

 if (eqpi -> R NE NULL)

 upper_bound = ub_rk;

 else {

 if (eqpj -> R EQ NULL)

 upper_bound = EDIST(&(eqpj -> E), &(eqpk -> RP)) +

EDIST(&(eqpi -> E), &(eqpk -> RP));

 else {

 eip -> termlist -> a[0] = eqpk -> RP;

 eip -> termlist -> n = 1;

 eqpoint_terminals(eip, eqpj, eip -> termlist,

TRUE);

 upper_bound = upper_bound_heuristic(eip ->

termlist, eip -> bsd) +

 EDIST(&(eqpi -> E), &(eqpk -> RP));

 }

 }

 if (upper_bound < rsmt) rsmt = upper_bound;

 if (rsmt < 0.999 * rlb) {

 CRP = eqpj -> E;

 memset (&CRPP, 0, sizeof (CRPP));

 get_angle_vector(&(eqpi -> E), &(eqpk -> E), &(eqpk ->

RP), &dx, &dy);

 l = sqrt(dx*dx + dy*dy);

 cosp = dx/l; sinp = dy/l;

 a = eqpk -> DR*(SQRT3*cosp+sinp); aa = a*a;

 b = eqpk -> DR*(SQRT3*sinp-cosp+2.0); bb = b*b;

 if (solve_quadratic(aa + bb, rsmt*b, rsmt*rsmt - aa,

&sin1, &sin2)) {

 if ((fabs(sin1) < eip -> eps) OR (fabs(sin2) < eip

-> eps)) return TRUE;

 rotate(&(eqpk -> RP), &(eqpk -> DC), sin1,

(b*sin1+rsmt)/a, &CRPP);

 if (left_turn(&(eqpk -> E), &(eqpk -> RP), &CRPP)

AND

 right_turn(&(eqpk -> E), &CRP, &CRPP))

 CRP = CRPP;

 rotate(&(eqpk -> RP), &(eqpk -> DC), sin2,

(b*sin2+rsmt)/a, &CRPP);

 if (left_turn(&(eqpk -> E), &(eqpk -> RP), &CRPP)

AND

 right_turn(&(eqpk -> E), &CRP, &CRPP))

 CRP = CRPP;

 if (NOT test_and_save_RP(eip, eqpi, eqpj, eqpk,

&CRP)) return FALSE;

 }

 }

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 98

 if (eqpj -> R)

 upper_bound = ub_lk;

 else {

 if (eqpi -> R EQ NULL)

 upper_bound = EDIST(&(eqpi -> E), &(eqpk -> LP)) +

 EDIST(&(eqpj -> E), &(eqpk -> LP));

 else {

 eip -> termlist -> a[0] = eqpk -> LP;

 eip -> termlist -> n = 1;

 eqpoint_terminals(eip, eqpi, eip -> termlist,

TRUE);

 upper_bound = upper_bound_heuristic(eip ->

termlist, eip -> bsd) +

 EDIST(&(eqpj -> E), &(eqpk -> LP));

 }

 }

 if (upper_bound < lsmt) lsmt = upper_bound;

 if (lsmt < 0.999 * llb) {

 CLP = eqpi -> E;

 memset (&CLPP, 0, sizeof (CLPP));

 get_angle_vector(&(eqpk -> LP), &(eqpk -> E), &(eqpj ->

E), &dx, &dy);

 l = sqrt(dx*dx + dy*dy);

 cosp = dx/l; sinp = dy/l;

 a = eqpk -> DR*(SQRT3*cosp+sinp); aa=a*a;

 b = eqpk -> DR*(SQRT3*sinp-cosp+2.0); bb=b*b;

 if (solve_quadratic(aa + bb, lsmt*b, lsmt*lsmt - aa,

&sin1, &sin2)) {

 if ((fabs(sin1) < eip -> eps) OR (fabs(sin2) < eip

-> eps)) return TRUE;

 rotate(&(eqpk -> LP), &(eqpk -> DC), -sin1,

(b*sin1+lsmt)/a, &CLPP);

 if (right_turn(&(eqpk -> E), &(eqpk -> LP), &CLPP)

AND

 left_turn(&(eqpk -> E), &CLP, &CLPP))

 CLP = CLPP;

 rotate(&(eqpk -> LP), &(eqpk -> DC), -sin2,

(b*sin2+lsmt)/a, &CLPP);

 if (right_turn(&(eqpk -> E), &(eqpk -> LP), &CLPP)

AND

 left_turn(&(eqpk -> E), &CLP, &CLPP))

 CLP = CLPP;

 if (NOT test_and_save_LP(eip, eqpi, eqpj, eqpk,

&CLP)) return FALSE;

 }

 }

 return TRUE;

}

static bool wedge_test (struct einfo * eip,struct eqp_t *

eqpi,struct eqp_t * eqpj,struct eqp_t * eqpk)

{

 int r, t;

 int right_counter = 0;

 int middle_counter = 0;

 int left_counter = 0;

 int top = highest_terminal(eqpk);

 bool flag;

 dist_t dist, dist1, dist2, bsdi, bsdj;

 struct point SP;

 struct eqp_t * eqpt;

 struct eqp_t * other_eqp;

 other_eqp = eqpj;

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 99

 if (NOT disjoint(eip, other_eqp)) other_eqp = eqpi;

 set_member_arr(eip, other_eqp, TRUE);

#ifdef HAVE_GMP

 if (Multiple_Precision > 0) {

 update_eqpoint_and_displacement (eip, eqpk);

 }

#endif

 for (t = 0; t < eip -> pts -> n; t++) {

 if (eip -> MEMB[t]) continue;

 eqpt = &(eip -> eqp[t]);

 if ((left_turn(&(eqpi -> E), &(eqpk -> LP), &(eqpt ->

E))) OR

 (right_turn(&(eqpj -> E), &(eqpk -> RP), &(eqpt -

>E)))) continue;

 if (left_turn(&(eqpk -> E), &(eqpk -> LP), &(eqpt -> E)))

{

 left_counter++; continue;

 }

 if (right_turn(&(eqpk -> E), &(eqpk -> RP), &(eqpt ->

E))) {

 right_counter++; continue;

 }

 if (sqr_dist(&(eqpk -> DC), &(eqpt -> E)) > eqpk -> DR2)

{

 middle_counter++;

 if (t <= top) continue;

 project_point(&(eqpk -> E), &(eqpk -> DC),&(eqpt ->

E), &SP);

 dist = EDIST(&(eqpt -> E), &SP) * (1.0 - eip -> eps

* ((double) eqpk -> S));

 if (dist >= getBSD(eip, eqpt, eqpk)) continue;

 flag = TRUE;

 for (r = 0; r < eip -> pts -> n; r++) {

 if (r EQ t) continue;

 if ((EDIST(&SP, &(eip -> eqp[r].E)) <

dist) AND

 (EDIST(&(eqpt -> E), &(eip -> eqp[r].E))

< dist)) {

 flag = FALSE; break;

 }

 }

 if (NOT flag) continue;

 eip -> termlist -> a[0] = eqpt -> E;

 eip -> termlist -> n = 1;

 eqpoint_terminals(eip, eqpk, eip -> termlist,

TRUE);

 if (eqpk -> S > 2) {

 dist1 = upper_bound_heuristic(eip ->

termlist, eip -> bsd);

 dist2 = eq_point_dist(eip, eqpt, eqpk) *

 (1.0 - eip -> eps * ((double) eqpk ->

S));

 if (dist1 < dist2) {

 flag = FALSE;

 }

 else {

 bsdi = getBSD(eip, eqpi, eqpt);

 bsdj = getBSD(eip, eqpj, eqpt);

 if ((bsdi + eqpk -> UB < dist2) OR

 (bsdj + eqpk -> UB < dist2) OR

 (bsdi + bsdj + eqpi -> UB + eqpj ->

UB < dist2))

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 100

 flag = FALSE;

 }

 }

 if (NOT flag) continue;

 test_and_save_fst(eip, eqpt, eqpk);

 }

 }

 set_member_arr(eip, other_eqp, FALSE);

 flag = FALSE;

 if (middle_counter >= 1) {

 flag = TRUE;

 if ((middle_counter EQ 1) AND (left_counter +

right_counter EQ 0)) return FALSE;

 }

 else {

 if ((left_counter >= 1) AND (right_counter >= 1)) flag =

TRUE;

 }

 return(flag);

}

static void compute_efsts_for_unique_terminals (struct einfo *

 eip)

{

int n;

int nedges;

struct pset * pts;

struct edge * ep;

struct edge * mst_edges;

dist_t mst_len;

char buf1 [32];

eterm_t *new_Zp;

int i, j, k, si, l, size, iter, sz, starti, endi;

dist_t upper_bound;

struct eqp_t *eqpi, *eqpj, *eqpk, *eqpt, *eqp_old;

struct eqp_t **eqp_list, **eqpp, **eqppp;

struct elist *rp;

 pts = eip -> pts;

 n = pts -> n;

 mst_edges = NEWA (n - 1, struct edge);

 nedges = euclidean_mst (pts, mst_edges);

 if (nedges NE n - 1) {

 fatal ("compute_points_for_unique_terminals: Bug 1.");

 }

 mst_len = 0.0;

 eip -> max_mst_edge = 0.0;

 ep = mst_edges;

 for (i = 0; i < nedges; ep++, i++) {

 mst_len += ep -> len;

 if (eip -> max_mst_edge < ep -> len) eip -> max_mst_edge

= ep -> len;

 }

 eip -> mst_length = mst_len;

 if (Print_Detailed_Timings) {

 convert_delta_cpu_time (buf1);

 fprintf (stderr, "Compute MST: %s\n", buf1);

 }

 eip -> eps = ((double) EpsilonFactor) * DBL_EPSILON;

 /* Compute bottleneck Steiner distances */

 eip -> bsd = compute_bsd (nedges, mst_edges, 0);

 free ((char *) mst_edges);

 if (Print_Detailed_Timings) {

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 101

 convert_delta_cpu_time (buf1);

 fprintf (stderr, "Compute BSD: %s\n", buf1);

 }

 eip -> term_check = NEWA (n, bool);

 eip -> hash = NEWA (n, struct elist *);

 for (i = 0; i < n; i++) {

 eip -> term_check [i] = FALSE;

 eip -> hash [i] = NULL;

 }

 eip -> list.forw = &(eip -> list);

 eip -> list.back = &(eip -> list);

 eip -> mean.x = 0.0;

 eip -> mean.y = 0.0;

 for (k = 0; k < n; k++) {

 eip -> mean.x += pts -> a[k].x;

 eip -> mean.y += pts -> a[k].y;

 }

 eip -> mean.x = floor(eip -> mean.x / (double) n);

 eip -> mean.y = floor(eip -> mean.y / (double) n);

 eip -> eqp_size = InitialEqPointsTerminal * n;

 eip -> eqp = NEWA (eip -> eqp_size, struct eqp_t);

 eip -> size_start = NEWA (n, int);

 eip -> eqpZ_size = 10 * eip -> eqp_size;

 eip -> eqpZ = NEWA (eip -> eqpZ_size, eterm_t);

 eip -> eqpZ_curr = eip -> eqpZ;

 eip -> MEMB = NEWA (n, bool);

 initialize_eqp_rectangles(eip);

 eip -> fsts_checked = 0;

#ifdef HAVE_GMP

 if (Multiple_Precision > 0) {

 qr3_init (&(eip -> cur_eqp.x));

 qr3_init (&(eip -> cur_eqp.y));

 }

#endif

 for (k = 0; k < n; k++) {

 eqpk = &(eip -> eqp[k]);

 memset (&(eqpk -> E), 0, sizeof (eqpk -> E));

 memset (&(eqpk -> DV), 0, sizeof (eqpk -> DV));

 eqpk -> E.x = pts -> a[k].x - eip -> mean.x;

 eqpk -> E.y = pts -> a[k].y - eip -> mean.y;

 eqpk -> E.pnum = pts -> a[k].pnum;

 eqpk -> DV.x = 0.0;

 eqpk -> DV.y = 0.0;

 eqpk -> DV.pnum = k;

 eqpk -> R = NULL;

 eqpk -> L = NULL;

 eqpk -> S = 1;

 eqpk -> UB = 0.0;

 eqpk -> CHOSEN = FALSE;

 eqpk -> Z = eip -> eqpZ_curr++;

 *(eqpk -> Z) = k;

 eip -> MEMB[k] = FALSE;

 }

 save_eqp_rectangles(eip, 0, n-2);

 eip -> size_start[1] = 0;

 k = n;

 eqpk = &(eip -> eqp[k]);

 eip -> termlist = NEW_PSET(n+2);

 eqp_list = NEWA(eip -> eqp_size, struct eqp_t *);

 if (MaxFSTSize EQ 0) MaxFSTSize = n;

 for (size = 2; size <= MaxFSTSize-1; size++) {

 starti = eip -> size_start[(size-1)/2 + 1];

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 102

 endi = k;

 if (size EQ 2) endi = n-1;

 eip -> size_start[size] = k;

 if (Print_Detailed_Timings) {

 fprintf (stderr,

 "- starting eq-point size %d"

 " (total number eq-points is %d)\n",

 size, k);

 }

 for (i = starti; i < endi; i++) {

 eqpi = &(eip -> eqp[i]);

 set_member_arr(eip, eqpi, TRUE);

 generate_compatible_eqp(eip, size - eqpi -> S,

eqpi, eqp_list);

 eqpp = eqp_list;

 while (*eqpp) {

 eqpj = *(eqpp++);

 eqpj -> CHOSEN = FALSE;

 j = eqpj -> E.pnum;

 if (j > i) continue;

 if (NOT disjoint(eip,eqpj)) continue;

 for (iter = 1; iter <= 3; iter++) {

 if (iter >= 2) {

 struct eqp_t * eqptmp = eqpi;

 eqpi = eqpj; eqpj = eqptmp;

 if (iter >= 3) break;

 }

 if (NOT projection_test_case_I(eip,

eqpi, eqpj)) continue;

 eq_point_disp_vector(eip, eqpi, eqpj,

eqpk);

 eqpk -> E = eip -> eqp [eqpk ->

DV.pnum].E;

 eqpk -> E.x += eqpk -> DV.x;

 eqpk -> E.y += eqpk -> DV.y;

 eqpk -> E.pnum = k;

 eqpk -> R = eqpi;

 eqpk -> L = eqpj;

 eqpk -> S = eqpi -> S + eqpj -> S;

 eqpk -> RP = eqpi -> E; eqpk -> RP.pnum

= -1;

 eqpk -> LP = eqpj -> E; eqpk -> LP.pnum

= -1;

 eqpk -> CHOSEN = FALSE;

 eq_circle_center(&(eqpi -> E), &(eqpj

-> E), &(eqpk -> E), &(eqpk -> DC));

 eqpk -> DR2 = sqr_dist(&(eqpk -> DC),

&(eqpi -> E));

 if (NOT

projection_test_cases_II_VI(eip, eqpi, eqpj, eqpk)) continue;

 eqpk -> DR = sqrt(eqpk -> DR2);

 if (NOT bsd_test(eip, eqpi, eqpj,

eqpk)) continue;

 if (NOT lune_test(eip, eqpi, eqpj,

eqpk)) continue;

 new_Zp = merge_terminal_lists(eip,

eqpi, eqpj, eqpk);

 if (NOT upper_bound_test(eip, eqpi,

eqpj, eqpk)) continue;

 if (NOT wedge_test(eip, eqpi, eqpj,

eqpk)) continue;

 eip -> eqpZ_curr = new_Zp;

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 103

 if (eqpk -> S > 2) {

 eqpoint_terminals(eip, eqpk, eip

-> termlist, FALSE);

 upper_bound =

upper_bound_heuristic(eip -> termlist, eip -> bsd);

 if (eqpk -> UB > upper_bound)

eqpk -> UB = upper_bound;

 }

 k++;

 if (k >= eip -> eqp_size) {

 if (Print_Detailed_Timings)

 fprintf(stderr, "- doubling

eq-point array\n");

 eqp_old = eip -> eqp;

 eip -> eqp = NEWA (eip ->

eqp_size * 2, struct eqp_t);

 memcpy (eip -> eqp, eqp_old, eip

-> eqp_size * sizeof(struct eqp_t));

 eqpi = UPDATE_PTR(eqpi, eqp_old,

eip -> eqp);

 eqpj = UPDATE_PTR(eqpj, eqp_old,

eip -> eqp);

 eqpk = UPDATE_PTR(eqpk, eqp_old,

eip -> eqp);

 eqppp = eqp_list;

 while (*eqppp) {

 *eqppp = UPDATE_PTR(

*eqppp, eqp_old, eip -> eqp); eqppp++;

 }

 eqppp = eqp_list;

 eqp_list = NEWA(eip -> eqp_size

* 2, struct eqp_t *);

 memcpy (eqp_list, eqppp, eip ->

eqp_size * sizeof(struct eqp_t *));

 eqpp = UPDATE_PTR(eqpp, eqppp,

eqp_list);

 free(eqppp);

 for (eqpt = &(eip -> eqp[n]);

eqpt <= eqpk; eqpt++) {

 eqpt -> L = UPDATE_PTR(

eqpt -> L, eqp_old, eip -> eqp);

 eqpt -> R = UPDATE_PTR(

eqpt -> R, eqp_old, eip -> eqp);

 }

 for (sz = 1; sz < size; sz++)

 if (eip -> eqp_squares[sz] NE

NULL)

 for (si = 0; si < eip ->

srangex * eip -> srangey; si++)

 for (l = 0; l < eip ->

eqp_squares[sz][si].n; l++)

 eip ->

eqp_squares[sz][si].eqp[l] =

 UPDATE_PTR(eip ->

eqp_squares[sz][si].eqp[l], eqp_old, eip -> eqp);

 free(eqp_old);

 eip -> eqp_size = 2 * eip ->

eqp_size;

 }

 eqpk++;

 }

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 104

 }

 set_member_arr(eip, eqpi, FALSE);

 }

 save_eqp_rectangles(eip, eip -> size_start[size], k-1);

 }

 if (Print_Detailed_Timings)

 fprintf(stderr, "%d eq-points generated.\n", k);

 ep = &(eip -> bsd -> mst_edges [1]);

 for (i = 1; i < n; i++) {

#ifdef HAVE_GMP

 if (Multiple_Precision > 0) {

 update_eqpoint_and_displacement (eip,&(eip -> eqp

[ep -> p2]));

 }

#endif

 eip -> termlist -> a[0] = pts -> a[ep -> p1];

 eip -> termlist -> a[1] = pts -> a[ep -> p2];

 eip -> termlist -> n = 2;

 test_and_save_fst (eip,&(eip -> eqp[ep -> p1]),&(eip ->

eqp[ep -> p2]));

 ++ep;

 }

 if (Print_Detailed_Timings) {

 convert_delta_cpu_time (buf1);

 fprintf (stderr, "Generating eq-points: %s\n", buf1);

 }

#ifdef HAVE_GMP

 if (Multiple_Precision > 0) {

 qr3_clear (&(eip -> cur_eqp.y));

 qr3_clear (&(eip -> cur_eqp.x));

 }

#endif

 free(eqp_list);

 free(eip -> termlist);

 destroy_eqp_rectangles(eip);

 free(eip -> MEMB);

 free(eip -> eqpZ);

 free(eip -> size_start);

 free(eip -> eqp);

 for (rp = eip -> list.forw;

 rp NE &(eip -> list);

 rp = rp -> forw) {

 rp -> next = NULL;

 }

 free (eip -> hash);

 free (eip -> term_check);

 shutdown_bsd (eip -> bsd);

}

static dist_t test_and_save_fst (struct einfo * eip,struct eqp_t

* eqpt,struct eqp_t * eqpk)

{

int i, j, k;

int nedges;

int size, spidx, termidx;

dist_t length;

struct edge * ep;

struct point * sp;

struct point nsp;

struct point * tp;

struct pset * pts;

struct point * p1;

struct elist * rp;

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 105

struct elist ** hookp;

struct elist * rp1;

struct elist * rp2;

struct pset * new_terms;

struct pset * new_steiners;

struct full_set * fsp;

struct edge * edges;

 ++(eip -> fsts_checked);

 pts = eip -> pts;

 size = eip -> termlist -> n;

#ifdef HAVE_GMP

 if (Multiple_Precision > 0) {

 length = compute_EFST_length (eip, eqpt);

 }

 else {

 length = eq_point_dist (eip, eqpt, eqpk);

 }

#else

 length = eq_point_dist (eip, eqpt, eqpk);

#endif

 k = 0;

 for (i = 0; i < size; i++) {

 j = eip -> termlist -> a[i].pnum;

 eip -> term_check [j] = TRUE;

 k += j;

 }

 k %= pts -> n;

 hookp = &(eip -> hash [k]);

 for (;;) {

 rp = *hookp;

 if (rp EQ NULL) break;

 if (rp -> size < size) { rp = NULL; break; }

 if (rp -> size EQ size) {

 p1 = &(rp -> fst -> terminals -> a [0]);

 for (i = 0; ; i++, p1++) {

 if (i >= size) goto found_efst;

 if (NOT eip -> term_check [p1 -> pnum])

break;

 }

 }

 hookp = &(rp -> next);

 }

found_efst:

 for (i = 0; i < size; i++) {

 eip -> term_check [eip -> termlist ->a[i].pnum] = FALSE;

 }

 if (rp NE NULL) {

 fsp = rp -> fst;

 if (fsp -> tree_len <= length) {

 return (fsp -> tree_len);

 }

 *hookp = rp -> next;

 rp2 = rp -> forw;

 rp1 = rp -> back;

 rp2 -> back = rp1;

 rp1 -> forw = rp2;

 free ((char *) (fsp -> terminals));

 free ((char *) (fsp -> steiners));

 free ((char *) (fsp -> edges));

 free ((char *) fsp);

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 106

 free ((char *) rp);

 }

 new_terms = NEW_PSET (size);

 tp = &(new_terms -> a [0]);

 new_terms -> n = size;

 if (size <= 2) {

 new_steiners = NULL;

 nedges = 1;

 edges = NEWA (1, struct edge);

 tp [0] = eip -> termlist -> a [0];

 tp [1] = eip -> termlist -> a [1];

 edges -> p1 = 0;

 edges -> p2 = 1;

 edges -> len = length;

 }

 else {

 new_steiners = NEW_PSET (size - 2);

 new_steiners -> n = size - 2;

 nedges = 2 * size - 3;

 edges = NEWA (nedges, struct edge);

 tp [0].x = eip -> termlist -> a [0].x + eip -> mean.x;

 tp [0].y = eip -> termlist -> a [0].y + eip -> mean.y;

 tp [0].pnum = eip -> termlist -> a [0].pnum;

 sp = new_steiners -> a;

 ep = edges;

 spidx = size;

 termidx = 0;

 project_point(&(eqpk -> E), &(eqpk -> DC), &(eqpt -> E),

&nsp);

 nsp.pnum = spidx++;

 sp -> x = nsp.x + eip -> mean.x;

 sp -> y = nsp.y + eip -> mean.y;

 sp -> pnum = nsp.pnum;

 ep -> p1 = termidx++;

 ep -> p2 = nsp.pnum;

 ep -> len = EDIST(&(eqpt -> E), &nsp);

 sp++;

 ep++;

 build_efst_graph (eip, &nsp, eqpk -> R, &sp, &ep, &spidx,

tp, &termidx);

 build_efst_graph (eip, &nsp, eqpk -> L, &sp, &ep, &spidx,

tp, &termidx);

 }

 fsp = NEW (struct full_set);

 fsp -> next = NULL;

 fsp -> tree_num = 0;

 fsp -> tree_len = length;

 fsp -> terminals = new_terms;

 fsp -> steiners = new_steiners;

 fsp -> nedges = nedges;

 fsp -> edges = edges;

 rp = NEW (struct elist);

 rp2 = &(eip -> list);

 rp1 = rp2 -> back;

 rp -> back = rp1;

 rp -> forw = rp2;

 rp -> next = eip -> hash [k];

 rp -> size = size;

 rp -> fst = fsp;

 rp1 -> forw = rp;

 rp2 -> back = rp;

 eip -> hash [k] = rp;

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 107

 return (length);

}

/*

 * Construction of the graph of the e_steiner and filling in the

Steiner points.

 */

static void build_efst_graph (

struct einfo * eip,

struct point * nsp,

struct eqp_t * eqpk,

struct point ** sp,

struct edge ** ep,

int * spidx,

struct point * tp,

int * termidx

)

{

int idx;

int pnum;

struct point nnsp;

 if (eqpk -> R EQ NULL) {

 pnum = eqpk - eip -> eqp;

 idx = (*termidx)++;

 tp [idx] = eip -> pts -> a [pnum];

 (*ep) -> p1 = nsp -> pnum;

 (*ep) -> p2 = idx;

 (*ep) -> len = EDIST (nsp, &(eqpk -> E));

 (*ep)++;

 }

 else {

 project_point (&(eqpk -> E), &(eqpk -> DC), nsp, &nnsp);

 idx = (*spidx)++;

 nnsp.pnum = idx;

 (*sp) -> x = nnsp.x + eip -> mean.x;

 (*sp) -> y = nnsp.y + eip -> mean.y;

 (*sp) -> pnum = idx;

 (*ep) -> p1 = nsp -> pnum;

 (*ep) -> p2 = idx;

 (*ep) -> len = EDIST (nsp, &nnsp);

 (*sp)++;

 (*ep)++;

 build_efst_graph (eip, &nnsp, eqpk -> R, sp, ep, spidx,

tp, termidx);

 build_efst_graph (eip, &nnsp, eqpk -> L, sp, ep, spidx,

tp, termidx);

 }

}

static void renumber_terminals (struct einfo * eip, struct

pset * to_pts,int * rev_map)

{

int i;

int j;

int from_n;

int to_n;

int kmasks;

struct pset * from_pts;

struct elist * rp1;

struct elist * rp2;

struct full_set * fsp;

struct pset * terms;

struct point * p1;

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 108

 from_pts = eip -> pts;

 from_n = from_pts -> n;

 to_n = to_pts -> n;

 kmasks = eip -> num_term_masks;

 eip -> pts = to_pts;

 rp2 = &(eip -> list);

 for (rp1 = rp2 -> forw; rp1 NE rp2; rp1 = rp1 -> forw) {

 fsp = rp1 -> fst;

 terms = fsp -> terminals;

 p1 = &(terms -> a [0]);

 for (i = 0; i < terms -> n; i++, p1++) {

 j = p1 -> pnum;

 if ((j < 0) OR (j >= from_n)) {

 fatal ("renumber_terminals: Bug 1.");

 }

 j = rev_map [j];

 if ((j < 0) OR (j >= to_n)) {

 fatal ("renumber_terminals: Bug 2.");

 }

 p1 -> pnum = j;

 }

 }

}

static void build_fst_list (struct einfo * eip)

{

int i;

struct elist * rp1;

struct elist * rp2;

struct elist * rp3;

struct full_set * fsp;

struct full_set ** hookp;

 hookp = &(eip -> full_sets);

 rp2 = &(eip -> list);

 i = 0;

 for (rp1 = rp2 -> forw; rp1 NE rp2;) {

 fsp = rp1 -> fst;

 fsp -> tree_num = i++;

 *hookp = fsp;

 hookp = &(fsp -> next);

 rp3 = rp1;

 rp1 = rp1 -> forw;

 free ((char *) rp3);

 }

 *hookp = NULL;

 eip -> list.forw = rp2;

 eip -> list.back = rp2;

 eip -> ntrees = i;

 eip -> hookp = hookp;

}

static void add_zero_length_fsts (struct einfo * eip,int ndg,int

** list)

{

int i;

int t;

int u;

int kmasks;

int * ip1;

int * ip2;

struct pset * pts;

struct pset * terms;

struct edge * edges;

struct full_set * fsp;

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 109

 pts = eip -> pts;

 kmasks = eip -> num_term_masks;

 for (i = 0; i < ndg; i++) {

 ip1 = list [i];

 ip2 = list [i + 1];

 if (ip1 + 2 > ip2) {

 fatal ("add_zero_length_fsts: Bug 1.");

 }

 t = *ip1++;

 while (ip1 < ip2) {

 u = *ip1++;

 terms = NEW_PSET (2);

 terms -> n = 2;

 terms -> a [0] = pts -> a [t];

 terms -> a [1] = pts -> a [u];

 edges = NEW (struct edge);

 edges -> p1 = 0;

 edges -> p2 = 1;

 edges -> len = 0.0;

 fsp = NEW (struct full_set);

 fsp -> next = NULL;

 fsp -> tree_num = (eip -> ntrees)++;

 fsp -> tree_len = 0.0;

 fsp -> terminals = terms;

 fsp -> steiners = NULL;

 fsp -> nedges = 1;

 fsp -> edges = edges;

 *(eip -> hookp) = fsp;

 eip -> hookp = &(fsp -> next);

 }

 }

}

static struct full_set ** put_trees_in_array (struct full_set *

fsp,int * acount)

{

struct full_set ** ap;

struct full_set * p;

int count;

int num;

struct full_set ** array;

 count = 0;

 for (p = fsp; p NE NULL; p = p -> next) {

 ++count;

 }

 array = NEWA (count, struct full_set *);

 num = 0;

 ap = array;

 for (p = fsp; p NE NULL; p = p -> next) {

 *ap++ = p;

 }

 *acount = count;

 return (array);

}

static cpu_time_t get_delta_cpu_time (void)

{

cpu_time_t now;

cpu_time_t delta;

 now = get_cpu_time ();

 delta = now - Tn;

 Tn = now;

 return (delta);

}

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 110

static void convert_delta_cpu_time (char * buf)

{

cpu_time_t delta;

 delta = get_delta_cpu_time ();

 convert_cpu_time (delta, buf);

}

envelope.c

/**

 Routines to compute Euclidean Minimum Steiner Trees using the

ENVELOPE.

*/

#include "steiner.h"

#define ANSI_DECLARATORS

#define REAL coord_t

int euclidean_mst (struct pset *, struct edge *);

dist_t euclidean_mst_length (struct pset *);

static int build_euclidean_edges (struct pset *,struct edge

**);

static int * heapsort_x (struct pset *);

dist_t euclidean_mst_length (struct pset * pts)

{

int i;

int nedges;

dist_t total;

struct edge * ep;

struct edge * edges;

 edges = NEWA (pts -> n - 1, struct edge);

 nedges = euclidean_mst (pts, &edges [0]);

 if (nedges NE pts -> n - 1) {

 fatal ("euclidean_mst_length: Bug 1.");

 }

 total = 0;

 ep = &edges [0];

 for (i = 0; i < nedges; i++) {

 total += ep -> len;

 ++ep;

 }

 free ((char *) edges);

 return (total);

}

int euclidean_mst (struct pset * pts,struct edge * edges)

{

int nedges;

int mst_edge_count;

struct edge * edge_array;

 nedges = build_euclidean_edges (pts, &edge_array);

 mst_edge_count = mst_edge_list (pts -> n,nedges,&edge_array

[0],edges);

 free ((char *) edge_array);

 return (mst_edge_count);

}

static int build_euclidean_edges (struct pset * pts,struct edge

** edges_out)

{

int i, i1;

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 111

int j, j1;

int k;

int n;

int nedges;

int ndup;

struct edge * edges;

struct point * p1;

struct point * p2;

int * order;

int * orig_vnum;

bool * dflags;

struct edge * zedges;

struct triangulateio in, out, vorout;

 n = pts -> n;

 if (n < 10) {

 /* Build of the graph*/

 nedges = n * (n - 1) / 2;

 edges = NEWA (nedges, struct edge);

 *edges_out = edges;

 p1 = &(pts -> a [0]);

 for (i = 0; i < n; i++, p1++) {

 p2 = p1 + 1;

 for (j = i + 1; j < n; j++, p2++) {

 edges -> len = EDIST (p1, p2);

 edges -> p1 = ((pnum_t) i);

 edges -> p2 = ((pnum_t) j);

 ++edges;

 }

 }

 return (nedges);

 }

 order = heapsort_x (pts);

 dflags = NEWA (n, bool);

 memset (dflags, FALSE, n * sizeof (dflags [0]));

 zedges = NEWA (n, struct edge);

 memset (zedges, 0, n * sizeof (zedges));

 ndup = 0;

 for (i = 0; i < n - 1;) {

 i1 = order [i];

 p1 = &(pts -> a [i1]);

 for (j = i; ;) {

 ++j;

 if (j >= n) break;

 j1 = order [j];

 p2 = &(pts -> a [j1]);

 if (p1 -> x NE p2 -> x) break;

 if (p1 -> y NE p2 -> y) break;

 dflags [j1] = TRUE;

 zedges [ndup].len = 0.0;

 zedges [ndup].p1 = i1;

 zedges [ndup].p2 = j1;

 ++ndup;

 }

 i = j;

 }

 free (order);

 orig_vnum = NEWA (n, int);

 in.pointlist = NEWA (2 * n, coord_t);

 j = 0;

 for (i = 0; i < n; i++) {

 if (dflags [i]) continue;

 in.pointlist [2*j] = pts -> a [i].x;

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 112

 in.pointlist [2*j + 1] = pts -> a [i].y;

 orig_vnum [j] = i;

 ++j;

 }

 in.numberofpoints = j;

 free (dflags);

 in.numberofpointattributes = 0;

 in.pointattributelist = 0;

 in.pointmarkerlist = 0;

 in.numberofsegments = 0;

 in.numberofholes = 0;

 in.numberofregions = 0;

 in.regionlist = 0;

 out.pointlist = 0;

 out.edgelist = 0;

 out.trianglelist = 0;

 out.neighborlist = 0;

 triangulate ("zeNBQ", &in, &out, &vorout);

 free (in.pointlist);

 free (out.pointlist);

 free (out.trianglelist);

 free (out.neighborlist);

 nedges = out.numberofedges;

 edges = NEWA (nedges + ndup, struct edge);

 *edges_out = edges;

 for (k = 0; k < ndup; k++) {

 *edges++ = zedges [k];

 }

 free (zedges);

 for (k = 0; k < nedges; k++) {

 i = orig_vnum [out.edgelist [2*k]];

 j = orig_vnum [out.edgelist [2*k + 1]];

 p1 = &(pts -> a [i]);

 p2 = &(pts -> a [j]);

 edges -> len = EDIST (p1, p2);

 edges -> p1 = ((pnum_t) i);

 edges -> p2 = ((pnum_t) j);

 ++edges;

 }

 free (out.edgelist);

 free (orig_vnum);

 return (nedges + ndup);

}

static int * heapsort_x (struct pset * pts)

{

int i, i1, i2, j, k, n;

struct point * p1;

struct point * p2;

int * index;

 n = pts -> n;

 index = NEWA (n, int);

 for (i = 0; i < n; i++) {

 index [i] = i;

 }

 for (k = n >> 1; k >= 0; k--) {

 j = k;

 for (;;) {

 i = (j << 1) + 1;

 if (i + 1 < n) {

 i1 = index [i];

 i2 = index [i + 1];

 p1 = &(pts -> a [i1]);

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 113

 p2 = &(pts -> a [i2]);

 if ((p2 -> x > p1 -> x) OR

 ((p2 -> x EQ p1 -> x) AND

 ((p2 -> y > p1 -> y) OR

 ((p2 -> y EQ p1 -> y) AND

 (i2 > i1))))) {

 ++i;

 }

 }

 if (i >= n) {

 break;

 }

 i1 = index [j];

 i2 = index [i];

 p1 = &(pts -> a [i1]);

 p2 = &(pts -> a [i2]);

 if ((p1 -> x > p2 -> x) OR

 ((p1 -> x EQ p2 -> x) AND

 ((p1 -> y > p2 -> y) OR

 ((p1 -> y EQ p2 -> y) AND

 (i1 > i2))))) {

 break;

 }

 index [j] = i2;

 index [i] = i1;

 j = i;

 }

 }

 while (n > 1) {

 --n;

 i = index [0];

 index [0] = index [n];

 index [n] = i;

 j = 0;

 for (;;) {

 i = (j << 1) + 1;

 if (i + 1 < n) {

 i1 = index [i];

 i2 = index [i + 1];

 p1 = &(pts -> a [i1]);

 p2 = &(pts -> a [i2]);

 if ((p2 -> x > p1 -> x) OR

 ((p2 -> x EQ p1 -> x) AND

 ((p2 -> y > p1 -> y) OR

 ((p2 -> y EQ p1 -> y) AND

 (i2 > i1))))) {

 ++i;

 }

 }

 if (i >= n) {

 break;

 }

 i1 = index [j];

 i2 = index [i];

 p1 = &(pts -> a [i1]);

 p2 = &(pts -> a [i2]);

 if ((p1 -> x > p2 -> x) OR

 ((p1 -> x EQ p2 -> x) AND

 ((p1 -> y > p2 -> y) OR

 ((p1 -> y EQ p2 -> y) AND

 (i1 > i2))))) {

 break;

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 114

 }

 index [j] = i2;

 index [i] = i1;

 j = i;

 }

 }

 return (index);

}

plotfst.c

/**

 Main routine for a utility to plot the trees in

 various ways.

*/

#include "genps.h"

#include "steiner.h"

int main (int, char **);

bool Print_Grouped_Full_Sets = FALSE;

bool Print_Overlaid_Full_Sets = FALSE;

static void decode_params (int, char **);

static void usage (void);

static char * me;

static bool Print_Full_Sets = FALSE;

static bool Print_Points = FALSE;

int main (int argc,char ** argv)

{

int i;

int nedges;

int nmasks;

int fpsave;

bitmap_t * edge_mask;

bitmap_t * all_fsets_mask;

bitmap_t * no_fsets_mask;

int count;

char tbuf [20];

char title [128];

struct cinfo cinfo;

 fpsave = set_floating_point_double_precision ();

 setbuf (stdout, NULL);

 decode_params (argc, argv);

 init_tables ();

 read_phase_1_data (&cinfo);

 edge_mask = cinfo.initial_edge_mask;

 convert_cpu_time (cinfo.p1time, tbuf);

 printf (" %% Phase 1: %s seconds\n", tbuf);

 /* Prepare for plotting all terminals. */

 define_Plot_Terminals (cinfo.pts, &cinfo.scale);

 nedges = cinfo.num_edges;

 nmasks = cinfo.num_edge_masks;

 all_fsets_mask = NEWA (nmasks, bitmap_t);

 no_fsets_mask = NEWA (nmasks, bitmap_t);

 for (i = 0; i < nmasks; i++) {

 all_fsets_mask [i] = 0;

 no_fsets_mask [i] = 0;

 }

 for (i = 0; i < nedges; i++) {

 SETBIT (all_fsets_mask, i);

 }

 if (Print_Points) {

 if ((cinfo.description NE NULL) AND

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 115

 (cinfo.description [0] NE '\0')) {

 strcpy (title, cinfo.description);

 }

 else {

 sprintf (title, "%lu points", (int32u)

cinfo.num_verts);

 }

 overlay_plot_subset (title, no_fsets_mask, &cinfo,

BIG_PLOT);

 }

 if (Print_Full_Sets) {

 plot_full_sets (all_fsets_mask, &cinfo, SMALL_PLOT);

 }

 if (Print_Grouped_Full_Sets) {

 plot_full_sets_grouped (all_fsets_mask, &cinfo,

SMALL_PLOT);

 }

 if (Print_Overlaid_Full_Sets) {

 sprintf (title,

 "All FSTs: %lu points, %s seconds",

 (int32u) cinfo.num_verts, tbuf);

 overlay_plot_subset (title, edge_mask, &cinfo, BIG_PLOT);

 }

 restore_floating_point_precision (fpsave);

 exit (0);

}

/*

 * This routine decodes the various command-line arguments.

 */

static void decode_params (int argc,char ** argv)

{

char * ap;

char c;

 --argc;

 me = *argv++;

 while (argc > 0) {

 ap = *argv++;

 if (*ap NE '-') {

 usage ();

 }

 ++ap;

 while ((c = *ap++) NE '\0') {

 switch (c) {

 case 'f':

 Print_Full_Sets = TRUE;

 break;

 case 'g':

 Print_Grouped_Full_Sets = TRUE;

 break;

 case 'o':

 Print_Overlaid_Full_Sets = TRUE;

 break;

 case 'p':

 Print_Points = TRUE;

 break;

 default:

 usage ();

 break;

 }

 }

 --argc;

 }

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

 116

}

/*

 * This routine prints out the proper usage and exits.

 */

static char * arg_doc [] = {

 "",

 "\t-f\tPrints all full-sets in \"fly specks\" fashion.",

 "\t-g\tPrints full sets in \"grouped fly specks\" fashion.",

 "\t-o\tPrints all full-sets in overlaid fashion.",

 "\t-p\tPrints the point set.",

 "",

 NULL

};

static void usage (void)

{

char ** pp;

char * p;

 (void) fprintf (stderr,

 "\nUsage: %s [-fgop]\n",

 me);

 pp = &arg_doc [0];

 while ((p = *pp++) NE NULL) {

 (void) fprintf (stderr, "%s\n", p);

 }

 exit (1);

}

Institutional Repository - Library & Information Centre - University of Thessaly
22/09/2024 17:22:46 EEST - 3.144.90.50

