

MSc in Computer Science

Term Project: IPv6 in Wireless Sensor

Network /6LowPAN routing

Supervisor: Dr. Nikos Samaras

Student: Maria Palaska

September 2011

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 2

Contents

 Page

PART A

1. Introduction….………………...……………………………………………..5

2. Background…………………………………………………………………..6

2.1 Wireless Sensor Networks………………………………………..……….6

2.1.1 Individual Wireless Sensor Node Architecture………….....……8

2.1.2 Physical Layer and Wireless Sensor Network…………….….....9

2.1.3 Metrics……………………………………………………….…...12

2.1.4 Software for Wireless Sensor Networks…………………….….14

2.2 IPv6…………………………………………………………………….…15

2.2.1 Routers……………………………………………………….......17

2.2.2 Routing Table……………………………………………………18

2.2.3 IPv6 Extensions………………………………………………….19

2.2.4 IPv6 Addressing…………………………………………………20

2.2.5 Header Format…………………………………………………..23

2.2.6 Neighbor Discovery Protocol…………………………………...24

2.2.7 IPv6 Security…………………………………………………….24

2.2.8 Encapsulation of IPv6 on LANs………………………………..25

2.2.9 IPv6 on Upper Layers…………………………………………..25

2.2.10 Sensor Nodes and Internet…………………………………….26

3. State of the art……………………………………………………….…….27

3.1 6LowPAN………………………………………………………………..27

 3.1.1 Specifications…………………………………………………….30

 3.1.2 Adaptation Layer and Header………………………………….31

 3.1.3 Header Compression……………………………………………32

 3.1.4 Fragmentation Header………………………………………….34

 3.1.5 Mesh Addressing Header……………………………………….35

 3.1.6 Broadcast Header……………………………………………….36

3.1.7 Forwarding and Routing……………………………………….36

3.1.8 Addressing……………………………………………………….39

3.1.9 Stateless Address Autoconfiguration…………………………..39

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 3

3.1.10 6LowPAN Neighbor Discovery……………………………….40

3.1.11 Security…………………………………………………………42

3.1.11a Requirements…………………………………………45

3.1.11b Attacks……….………………………………………..45

 3.1.12 6LoWPAN Implementation…………………………………....47

 3.1.13 6LoWPAN Routing Protocols………………………………….47

 3.1.14 AODV (Ad-hoc On-demand Distance Vector routing)………49

 3.1.14a AODV and LoWPANs………………………………..49

 3.1.15 LOAD…………………………………………………………...50

3.1.16 DYMO – Dynamic MANET On-demand for 6LoWPAN Routing

(DYMO - low)………………………………………………………….51

3.1.17 HiLow (Hierarchical routing)…………………………………52

3.1.18 Vulnerable Points………………………………………………54

4. Ethics………………………………………………………………….……55

5. Resources……………………………………………………………….….56

6. Literature……………………………………………………………….… 57

PART B

7. Simulation…………………………………………………………….……60

8. Results……………………………………………...……………….……...94

9. Conclusion and Future Work………………………………….…………95

 10. References……………………………………………………….….............96

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 4

PART A

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 5

Abstract

In the digital world there is a requirement, each thing is connected to the Internet.

Wireless Sensor Networks (WSN) is the most appropriate way to achieve this

assumption. This type of networks is very important and useful in order to achieve a

digital appearance of the real world. The sensors nodes hold a radio module with

which they have the ability to transfer messages to a base station or other nodes. In

recent years, the majority of sensors networks use proprietary protocols. This process

raises limitations in the construction of a sensor network consisting of a great number

of different sensors nodes. Moreover, from the side of the Internet of Things these

sensor networks need auto configuration and a huge address space. Furthermore, the

sensor nodes have many differences among the usual hosts of web, according to their

highly limitations in power consumption and great constraints in computation power.

Recent surveys and researches have proved that the combination of IPv6 and wireless

sensor networks is feasible despite all the limitations that exist. The aim of this thesis

is to present the current work that has been done through the combination of IPv6

and wireless sensor networks. The thesis also focuses on the implementation of IPv6

in WPAN (Wireless Personal Area Networks) which imports an adaptation layer that

enables efficient IPv6 communication over IEEE 802.15.4 enabled sensor networks.

The main point of this work is the 6LowPAN routing. The useful tool used in this

thesis in order to extract our results over 6LowPAN routing protocols was the

OMNET++. This dissertation extends the implementation of already existing

protocols like AODV, LOAD and DYMO. Finally, it focuses on the determination of

the constraints of afore mentioned combination between IPv6 and WSNs. The arising

results are quite interesting and become a starting point for further research through

this issue.

Keywords

IPv6, Wireless Sensor Networks, Wireless Personal Area Networks, low-power,

6LowPAN, 6LowPAN routing protocols

1. Introduction

 In general, Wireless Sensor Networks are necessary and very important in

many applications to the Internet. Since the wireless sensor networks connect to the

Internet via IPv6, they inherit the advantages of the IPv6 like the great address space

(132 bit). The preparation of sensor networks in order to achieve an IP

communication and the use of them in the Internet has as a consequence the necessity

of specific features. A characteristic example of this assumption is the adaptation of

the respective link technology, specification of ad hoc networking, handling the

security issues, and auto configuration to support ad hoc deployment. Moreover, the

mobility is also necessary while the sensor networks acts according to the IP side. As

we said before, the IPv6 needs a great address space in order to address the huge

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 6

sensor networks in global condition by presenting support for mobility and auto

configuration by IPv6 neighbouring discovery [1, 2].

 From wireless sensor networks point of view it is urgent the design, the

creation and the implementation of an IPv6 enabled sensor network. The

implementation of this new type of network and its incorporation in an IPv6 WAN

configuration raises a variety of assumptions on the architecture and its functional

processes.

2. Background

2.1 Wireless Sensor Networks

The new evolutionary step in home, industrial, building, utilities and

transportation systems automation comes from smart environments. The smart

environments mainly based on sensory data which comes from the real world.

Especially, sensory data accrues from multiple sensors of different modalities in

distributed locations. Thus, the smart environment needs information about its

surroundings as well as about its internal workings.

The sensors which integrated into structures, machinery and environment and

combined with the integral delivery of sensed information could offer great benefits to

the society. The main benefits which this kind of sensors could afford are the

followings, fewer catastrophic failures, maintenance and protection of the natural

resources, amelioration of emergency response and manufacturing productivity and

reinforce the homeland security. The main field of wireless sensor networks conflates

sensing, computation, and communication into a device which may be tiny (Figure 1).

Thus, in wireless sensor network via mesh networking protocols, these certain devices

may shape a sea of connectivity that extends the reach of cyberspace out into the

physical world. The water flows to fill every room of a submerged ship and the mesh

networking connectivity will seek out and exploit any possible communication path

by transferring data from node to node in order to find its destination. While the

capabilities of any single device are minimal, the composition of hundreds of devices

offers radical new technological possibilities. Nevertheless, there are many constraints

in the use of sensors in structures and machines. Remarkable are the lead wires and

the fiber optic tails which may be reason for breakage time consuming installation and

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 7

connector failures. However, the wireless sensor networks can provide the reduction

of these costs, easing installation and eliminating connectors [3, 4, 5, 6].

Figure 1: Wireless sensor network device in a tiny size

The unique wireless sensor should be networked and scalable, expends very

little power, should be fast in data capture, easy to installation, costs a little, requires

no real maintenance, should be reliable, software programmable and in generally it

should be smart.

The ability to select the ideal sensors and wireless communications link

demands knowledge of the application and problem definition. Some characteristic

measurements which should be taken into consideration are size, battery life, and

sensor update rates. Moreover, a lot of examples about low data rate sensors include

humidity, temperature and peak strain capture passively and examples of high data

rate comprises strain, vibration and acceleration.

The ability of wireless sensor networks to deploy large numbers of tiny nodes

that assemble and configure themselves affects the power of the networks. The

scenarios that have been used for this kind of devices range from real – time tracking,

to monitoring the conditions of environment, ubiquitous computing environments, to

monitoring the health of structures and equipments. While often referred to as

wireless sensor networks, they can also control actuators that extend control from

cyberspace into the physical world [7].

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 8

The most distinct application for the wireless sensor network technology is the

monitoring of remote environments for low frequency data trends. For example, a

chemical plant which could be checked for leaks by many sensors simultaneously

make a wireless interconnection network and at the same time announce the detection

of any chemical leak. In the same condition with a tradition wired system the

deployment cost would be minimal.

The actual situation in the wireless systems only scratches the surface of

possibilities emerging from the integration of sensing, energy storage, low-power

communication and computation. Generally, the current thought over the wireless

devices is items like laptops with 802.11, cell phones, personal digital assistants.

These types of devices are expensive; they cost a lot, refer to certain applications and

rely on the pre-deployment of extensive infrastructure support. In contrary, wireless

sensor networks utilize small devices which are low- embedded for a variety of

applications and do not based on a specific pre – existing infrastructure [4, 8, 9]

The base of wireless sensor networks relies on a simple equation: Sensing +

CPU + Radio = Thousands of potential applications. The combination of sensors,

CPUs and radios into an appropriate wireless sensor network needs a detailed

understanding of the both capabilities and limitations of each of the underlying

hardware components, and also a detailed understanding of modern networking

technologies and distributed systems theory. Every separate node should be designed

in order to provide the necessary and initial components in order to compose the

interconnected web that will present as they are deployed, while finding definite

limitations of size, cost and power consumption. A main challenge is to correlate the

overall system requirements to device capabilities, requirements and actions. For

being the wireless sensor network vision a reality, architecture must be developed that

synthesizes the envisioned applications out of the underlying hardware capabilities

[4].

2.1.1 Individual Wireless Sensor Node Architecture.

 A modular design approach (over a wireless sensor node) presents a flexible

and versatile platform in order to address the requirements of a great selection of

applications (Figure 2). Specifically, the main function of every wireless sensing node

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 9

is to eliminate the power consumed by the system. Generally, the subsystem of radio

demands the largest amount of power. Consequently, it is positive to transfer data

over the radio network only when needed. This sensor event-driven data collection

model requires an algorithm to be loaded into the node to define when to transfer data

based on the event. Moreover, it is meaningful to eliminate the power consumed by

the sensor itself. Thus, the hardware which is used should allow the microprocessor to

control power to the radio, sensor, and sensor signal conditioner [10].

Figure 2: Wireless sensor node functional block diagram

2.1.2 Physical Layer and Wireless Sensor Network

 The physical layer determines the modulation scheme, the hardware interface

of the radio to the system and the operating frequency. There are a lot of low power

radio integrated circuits that are right selections for the radio layer in wireless sensor

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 10

networks, including those from companies such as MicroChip, Atmel, ChipCon,

Melexis, and Micrel. Radio standards that exist today and may or may not implement

to wireless sensor network are presented below [10, 11, 12]

IEEE802.11x: is a standard that is appropriate for local area networking and for data

transmission between computers or other devices with high bandwidth. In this

standard the data rate fluctuates from 1 Mbps to over 50 Mbps. Moreover, the

transmission range is 300 feet with a standard antenna. If a directional high gain

antenna is used then the range can be improved. Also, both direct sequence spread

spectrum modulation and frequency hoping schemes are available. Finally, in this

standard, when the data rates are too high for wireless sensor applications then the

power requirements block its use in this certain kind of applications.

IEE802.15.1 & .2 (Bluetooth): is a standard which is low power than 802.11 and it

was initiated by the by the IEEE as Wireless Personal Area Network (WPAN) in

1998. It is appropriate for applications which are responsible for data transfer from

personal computers to peripheral devices like mobile phones, PDAs, or personal

digital assistants. This standard relies on star network topology and supports one base

station node and up to seven remote nodes for communication. Many companies have

created wireless sensors which rely on Bluetooth, but they have not been accepted by

the public. This happens because of Bluetooth protocol limitation, some of them are

presented in the following, The limitations are the low number of nodes per network

(up to seven), the long time for synchronization nodes to network, from sleep to active

mode, the Medium Access Control (MAC) layer is totally composite when compared

to that required for wireless sensor applications and the quite high power for a short

transmission range.

IEEE802.15.4: is a standard that it was created in order to cover the requirements of

wireless sensing applications. The IEEE802.15.4 standard is very flexible; it

prescribes multiple transmission frequencies and multiple data rates. Although the

power is quite low, the hardware which is used eliminates the power to minimal level.

Generally, the characteristics which support this certain standard are presented below:

 Uses star and mesh network topologies.

 Data rates could be 20 Kbps, 40 Kbps and 250 Kbps.

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 11

 Link quality indication, which refers to multi-hop mesh networking

algorithms.

 Transmission frequencies fluctuate at 868 MHz/902–928 MHz/2.48–2.5 GHz.

 Supports direct sequence spread spectrum (DSSS) for robust data

communications

 Uses AES-128 security for encryption of transmitted data.

ZigBee: standard consists an association of companies which working together in

order to enable reliable, low power, cost effective, wirelessly networked monitoring

and control products based on an open global standard. This type of standard

prescribes the IEEE 802.15.4 as the physical and MAC layer and is appropriate for

higher level applications like HVAC monitoring and lighting control (Figure 6).

Moreover, ZigBee supports star and hybrid star – mesh network topology. Finally,

this standard includes the IEEE802.15.4 specification and elaborates on the network

and the application interface.

Figure 6: ZigBee

IEEE1451.5: the working group of this standard wants to cover the vulnerable points

of previous standards in order to standardize the interface of sensors to a wireless

network. Today, this standard has been chosen as the wireless networking

communications interface and the working group is trying to reach a sensor interface.

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 12

2.1.3 Metrics

 The metrics are very important as they will be used in order to evaluate a

wireless sensor network. The main evaluation metrics for wireless sensor networks

are cost and ease of deployment, response time, lifetime, coverage, security, effective

sample rate and temporal accuracy. A lot of time some metrics are concerned. For

example, sometimes it may be necessary to eliminate one metric like the sample rate

in order to increase another like the lifetime. The metrics are described more

specifically below [5].

Cost and ease of deployment. A great advantage of wireless sensor network is its ease

of deployment. It should be necessary and possible for a person without experience to

put the nodes throughout the environment. Furthermore, the system would shape itself

automatically when a node is replaced. Nevertheless, the real systems should put

limitations on nodes placement. For example is not possible for a node not to have a

certain range. Moreover, the wireless sensor network should have the capability to

estimate the quality of the network deployment and remark any problem which will

exist. Besides that the system should be able to alter the environment conditions.

Specifically, during the lifetime of a deployment, nodes may change their position or

large physical objects may be placed something which may affects the

communication between two nodes.

 The initial deployment is the first part of network lifecycle. The total cost of

ownership for a system mainly affects the maintenance cost than the initial

deployment cost. Generally, in real application, a piece of the total energy sum should

be dedicated to system maintenance and verification. The procedure of finding and

reconfiguration of traffic eliminates the network lifetime and the effective sample

rate.

Response time. The response time is a very important metric for the performance of

an application and when environmental monitoring is used in order to check factory

machines and equipments. These systems are practical only when the response time

guarantees could be met.

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 13

 The necessity to have low response time clashes the techniques which are used

in order to increase network lifetime. The lifetime of the network can be increased

only with nodes which operate their radios for certain and small periods of time.

When a node turns on its radio every minute in order to forward and receives data

messages, it is very difficult to meet the application requirements for response time of

a security system.

 Response time can be upgrade when the system contains nodes that are

powered all the time. This type of nodes listens and understands the alarm messages

and can transmit them when it is necessary. Nevertheless, this function may eliminate

the ease of deployment of the system.

Lifetime. Lifetime is a very critical metric for any wireless sensor network

deployment. The aim of environmental monitoring and security application scenarios

is to have nodes which are not checked for months or years. A great limitation of

lifetime is the energy supply. Every node should control its local energy supply in

order to maximize the total lifetime of the network. In the most cases the average

lifetime of a node is not very critical but the minimum lifetime of the node is. For the

wireless sensor networks the nodes should be endure for many years, because a failure

of s node would make the system vulnerable.

Coverage. With the lifetime, coverage is the most important metric of wireless sensor

networks. It is very positive for a network to deploy over a larger physical area. This

ability can augment a system’s value to the end user. It is remarkable the fact that the

coverage of the network is not equal to the range of the wireless communication links

which are used. A variety of multi - hop communications have the ability to extend

for a no certain time period the network well beyond the range of the radio technology

alone. Nevertheless, for a certain transmission range the multi – hop protocols can

increase the power consumptions of the nodes which eliminate the lifetime and with a

certain node density can increase the deployment cost.

Security. The procedure of maintaining the important information of a network in a

safe and secure mode is very necessary. Some certain information can be easily

extracted from a trace and when this information go to wrong people may cause many

problems like an attack.

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 14

 In a network not only should the system provide privacy but also may be able

to provide authentication on data communication. It should not be possible to

introduce a false alarm message or to replay an old alarm message as a current one.

The usage of encryption and authentication code costs power and also network

bandwidth.

Effective sample rate. In data collection network the effective sample rate is very

important metric for the performance of the application. Specifically, the effective

sample rate is the sample rate that sensor data can be taken at every individual sensor

and communicated to a collection point. Usually, environmental applications demand

one or two sample rates in a minute.

Temporal accuracy. In tracking and environmental applications the sample of the

nodes should correlated with the time in order to define the origin of the phenomenon

which is measured.

 In order to achieve a temporal accuracy the network should be able to

construct and keep a global time base which can use the sample rates and the events in

a chronological order [5].

2.1.4 Software for Wireless Sensor Networks

 A very important and critical point for the completion of a wireless sensor

network is the design of a software architecture that can eliminate the gap between the

raw hardware capabilities and the complete system. The characteristics for an

appropriate hardware are a lot. Specifically, a right hardware should be efficient in

memory, processor and power in order to be compatible in the strict requirements of a

variety of applications. Moreover, it should be too tolerant in order to support

simultaneously many applications and many resources like memory, communication

and computation. A very appropriate example of hardware for wireless sensor

networks is the TinyOS [4, 5, 10].

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 15

2.2 IPv6

In general, IPv6 is the heir of the Internet Protocol IPv4. An IPv6 network

contains a number of nodes and routers which communicate with each other with a

certain way (Figure 7, 8). The choice of a certain topology is justified for reasons of

reliability. Moreover, in case of fault, the topology has alternative paths.

Figure 7: Ipv6 Internet topology

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 16

Figure 8: IP enabled sensor network in the Internet

A very important point of an IPv6 topology is the unique identification of

every node in order to reach all the nodes in the network. The IPv6 provides a 128-bit

numerical address to each network interface. However, in many cases, users in order

to find a node use a more convenient name than a numerical address. The name and

the address have the same capability, to define the unique identification of an

interface in a network. The difference between the name and the address is that the

address is responsible to interact with routing mechanisms and is numerical, while the

name is more accessible to the users and it is alphanumerical and easier to remember

it. Moreover, in the last years the growth of network sizes creates the necessity of

adopting a distributed database which called Domain Name Service – DNS [13].

 As we said the address should be unique. This requirement was already

existed in IPv4, but the IPv6 extends the addresses due to the growth of Internet and

Intranets. This happens via the organizations that assign sets of addresses to end users.

In IPv4 the sets are known as networks and can be divided in smaller nets, the

subnetworks through a netmask. Thus, two nodes are connected only when their

addresses are belonged to the same subnetwork.

 In IPv6 the situation through the network and subnetworks are the same with

two important differences. First of all the addresses are longer. IPv6 contains 128 bits

while the IPv4 contains 32 bits. Thus, IPv6 supports more levels of addressing

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 17

hierarchy, more addressable nodes and simpler autoconfiguration of addresses. Also,

in IPv4 there is the concept of netmask while in IPv6 there is the concept of prefix.

The prefix shows how many bits are used to identify the subnetwork.

In general, the IPv6 is the next generation of IPv4 with some differences [14]:

 Header format simplification. Header fields have the ability to keep the

bandwidth cost as low as it can, in spite of the big size of the addresses.

 Quality – of – Service (QoS) capabilities. IPv6 capacitates the labelling of

packets which are belonged to a certain traffic for which the sender requests

special handling, such as non-default quality of service or “real-time” service.

 Authentication and privacy capabilities. IPv6 contains the definition of

extensions that gives support for data integrity, confidentiality and

authentication.

 Improved support for options. The changes that exist in IPv6 headers support

more efficient forwarding, better flexibility in the entrance of new options and

less strict limits.

2.2.1 Routers

 When a user wants to use an application on a certain computer, should require

it by reporting the specific name of the computer. Then, the network consults the

Domain Name Service and extracts the IPv6 address of the remote computer. The

address of the computer which comprises the destination is the main point which

specifies the most suitable routing in order to reach the remote node. Moreover, when

the destination and the sender are connected on the same physical network, the

transmission can be directly. In contrary, the function of internetworking is necessary.

In this case, the sender transmits the data and the router waits its delivery [13].

 The main operation of the router is to transmit messages over the network. The

appropriate routing technique can very depending on network architecture. Protocols

like IPv4, IPv6, IPX, OSICLNP, DECnet, and so on use the routing by network

address technique. A node contains its address in the layer 3 packet which should be

unique over the network. Every router utilizes this certain address as an index in its

routing table specifies the path on which the packet should be forwarded.

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 18

 The instant when the packet reaches a router via a geographical or local

network interface, the router transmits the packet to its forwarding process, which

exports the source address, utilizes this certain address to check the routing tables and

resolves on which interface should forward the data (Figure 9) [14].

Figure 9: Router internal architecture

2.2.2 Routing Table

 In a routing table of an IPv6 router includes an entry for every subnetwork

which reaches the router itself. The routing tables can be written manually or

automatically by certain protocols like OSPF and RIP [13].

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 19

Table 1: A general scheme for a routing table organization

 In this certain case, the address of the subnetwork which has the form of

FEDC: BB87:0:0:0:0:0:0/80 and a 80-bits prefix can be colligated with the name of

Delta. Furthermore, for the Next Hop field, the Router-4 could have an address with a

form of FEDC: BB87:0:0:0:0800:2B3C:4D73. Moreover, the Type field provides a

type of approach which correlates with the subnetwork. Also, Direct type, provides a

router which has an interface which is connected directly to the subnetwork. RIP and

OSPF are protocols which show the reachability of the subnetwork. Furthermore, the

Age field determines the seconds which are left and is appropriate only for entries

which correlated with networks whose reachability is learned via protocols of the

routing tables. Finally, the Status field shows the status of the each entry (Table 1–

UP, DOWN).

 The transmission function of the router consulted the routing table for every

data by searching in the column of subnetwork for which subnetwork the destination

address belongs and then by routing the packet to the associated Next Hop.

2.2.3 IPv6 Extensions

 IPv6 options are contained in separate extension headers that are placed

between the IPv6 header and the transport layer header in a data packet (Table 2).

Usually, the IPv6 extensions headers are not checked through the process of

transmission. They are checked only when they reach their final destination. This

capability accommodates the router performance for packets containing options. Also,

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 20

this capability improves IPv6 extension headers which can be of an uncertain length

and the total amount of options carried in a packet is not limited to 40 bytes [15, 16].

 IPv6 options are an integer multiple of 8 octets long, to retain this alignment

for subsequent headers.

Table 2: IPv6 extension headers

2.2.4 IPv6 Addressing

 IPv6 addresses contain 128-bits and are identifiers for individual interfaces

and sets of interfaces. The form of an IPv6 like x:x:x:x:x:x:x:x where x is one to four

hexadecimal digits and is known as group. An example of an IPv6 address is the

following, ABCD:EF98:7654:3210:ABCD:EF98:7654:3210. Moreover, there are

some rules in IPv6 addresses. The first rule is correlated with the first zeros of each

group. Any zero which leads a group can be skipped. Thus, the following address

AB05:0:0:0:0:0:0:505 can be written like AB05:505. It is very important to know that

this option can be done only once in an address [14].

 All types of IPv6 addresses are correlated with interfaces and not with nodes.

While every interface corresponds to a single node any of that node’s

interfaces’ unicast addresses act like an identifier of the node. A single

interface has the capability to define more than one IPv6 addresses of any

type. There are three types of addresses, unicast, anycast and multicast [17,

18, 19, 20]. The unicast is an identifier for a single interface. In this case, the

data packet which sent to a unicast address is transmitted to the interface

which identified by that address. One differs between Global Unicast, Site-

Local Unicast and Link Local Unicast (Figures 10, 11, 12).

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 21

Figure 10: A scheme for unicast addresses

Figure 11: Site-Local Unicast address format

Figure 12: Link-Local Unicast address format

Moreover, anycast acts an identifier for a set of interfaces which contain different

nodes. The data packet which sent to an anycast address is transmitted to the

appropriate and nearest interface which is identified by that addresses. Finally,

multicast similarly with the previous case, an identifier acts for a set of interfaces

which contain different nodes. A data packet which sent to a multicast address is

forwarded to all interfaces identified by that address. In IPv6 there are no broadcast

addresses, their operation being superseded by multicast addresses.

The IPv6 supports addresses that contain four times the number of bits which can

support the IPv4. It is the extraordinary number of

340,282,366,920,938,463,463,374,607,431,768,211,456 addresses. This is a very

large address space. Practically, in the routing of addresses is necessary the

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 22

development of hierarchies which eliminate the efficiency of the use of the space of

addresses.

 The certain type of IPv6 address is distinguished by the first bits of the

address. The field which contains these leading bits has a variable length and is called

Format Prefix – FP (Table 3).

Table 3: Format Prefix

This allocation provides the direct allocation of provider addresses, local use

addresses, and multicast addresses.

IPv6 nodes can have a feeling about the internal structure, depending on the role

which a node may have. For example, a node may think that unicast addresses have

no internal structure. Thus, a slightly sophisticated host may additionally be aware of

subnet prefix(es) for the link(s) it is attached to, where different addresses may have

different values.

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 23

2.2.5 Header Format

IPv6 has a design goal which is the simplification of the header format. The

new edition of header format is correlated with the new addressing format and should

have a certain size (Figure 13).

Figure 13: The new header format

The first field includes the IP Version number and it is set to the value six. The

two following fields, the Traffic Class field and the Flow Label field are responsible

to offer quality of services. Specifically, the Traffic class field correlated with the

packet priority and the flow Label Field is responsible for the Quality of Service

(QoS) management but now is unused. Furthermore, the Payload Length Field assigns

the length of the IPv6 payload. The Next Header field identifies the type of header.

Moreover, every node that transmits the packet eliminates the hop limit field by one.

Finally, the Source and the Destination Address include the according 128-bit IPv6

address [15, 17, 21, 22, 23].

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 24

2.2.6 Neighbor Discovery Protocol

 The aim of the Neighbor Discovery Protocol (NDP) is to find solutions in

problems which related to the link layer. This contains the prefix and router

discovery, the address resolution and autoconfiguration, the duplicate address

detection and the neighbor unreachability.

Explicitly, the Router Solicitation message is used from a host that becomes

enabled. It transmits these messages in order to request routers in order to create

router advertisement messages. Thereafter, the Router Advertisement message is

transmitted by a router in order to show their presence with various links and Internet

parameters and network prefix. The identification of the link-layer is happened by the

Neighbor Solicitation message and the response to this is the Neighbor Advertisement

message [13, 18].

2.2.7 IPv6 Security

Internet has a lot of security vulnerable points and absence of effective privacy

and authentication mechanisms under the application layer. For theses cases, IPv6 has

two functions which provide security services. These certain functions can be used

separated but also can be used together depending on the security needs of each

security. The usage of these functions supports different levels of security and

different kind of users.

The first security function of IPv6 is known as IPv6 Authentication Header.

This certain header is an extension which is algorithm independent and supplies

authentication and integrity to IPv6 datagrams. The usage of IPv6 Authentication

Header is necessary when source routing is used with IPv6 because of the known risks

in IP source routing. Its function at Internet layer can assist provide host origin

authentication to the upper layer protocols and services which have lack of protection.

The second security function of IPv6 is known as Encapsulating Security

Header. This certain header is also an extension header which supplies integrity and

confidentiality to IPv6 datagrams. The Encapsulating Security Header is simpler than

some other similar security protocols like ISO, SP3D and so on but it is also flexible

and algorithm independent. In order to succeed interoperability through the Internet,

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 25

the usage of DES CBC is being used as the standard algorithm for use with the IPv6

Encapsulating Security Header [15].

2.2.8 Encapsulation of IPv6 on LANs

The IPv6 and many other protocols and also IPv4 should coexist on LAN. For

a great time period the designers of IPv6 wondered how to implement this coexistence

and focused on two main options [13].

1. They consider that the IPv6 is the next generation of IPv4 and thus, to

maintain, at the local network level, the Protocol Type equal to that of

IPv4. Therefore, IPv6 packets being distinguished by the Version field

which means for the four bits of the IP packet.

2. The IPv6 designers consider that the protocol is different at all from IPv4

and therefore to assign a Protocol Type different from that of IPv4.

The last solution is preferable because it is stronger and more reliable during

the transition from IPv4 to IPv6, the moment when both protocols are active.

2.2.9 IPv6 on Upper Layers

The TCP/IP network architecture is not well layered, so the transition from

IPv4 to IPv6 protocol has an impact on upper layers by including applications like

Telnet SMTP and so on.

Initially, should be considered that applications let us to find the destination

node by learning its name or its IP address. The addresses go through TCP and UDP

transport protocols. TCP utilizes source and destination IP addresses like connection

identifiers.

Generally, TCP and UDP should work either if the network is IPv6 or if it is

IPv4. Thus, from the IPv4 period till the IPv6 period, many users are able to support

both the IPv4 and the IPv6 simultaneously [13].

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 26

2.2.10 Sensor Nodes and Internet

 The last approach of the Wireless Sensor Network (WSN) Community is the

connection of their nodes straight to the Internet. The aim is allow the ideas of the

Internet of Things community and to specify the different network protocols which

used in WSNs.

At the beginning of 21
st
 century, the researchers believed that WSNs do not

have the same requirements like the one of the Internet. The reason was that there was

the presumption that the layered architecture could not be used anymore due to the

resource limitations. Furthermore, the researchers thought that the scalability and the

robustness could only be succeeded by utilizing localized algorithms. Finally, they

consider that a WSN device might not need an identity.

The thought was brought by the fact that the sensor nodes are connected with a

serial interface to the outside. For this reason, an application level gateway should be

installed at the root and the connection could be compared with USB. Adam et al.

argues that “protocol gateways are inherently complex to design, manage, and

deploy.”

In recent years the protocol of IEEE 802.15.4 is totally accepted as physical

and MAC layer protocol for WSNs. A conditional network layer protocol has to count

the limitations which correlated with the MAC layer protocol.

As we mentioned before, the IPv6 is not accords with the properties of the

IEEE 802.15.4 protocol. However, the Internet Protocol for Smart Objects (IPSO)

Alliance suggests using IP also for smart objects. The main reasons are the

compatibility with a wide range of applications, the stability and the high scalability.

The above allusion explains the reason why IP is suitable on the sensor nodes

but does not justify why one should use IPv6 on such devices. The explanation comes

from Jonathan W. Hui and David E. Culler “IPv6 is better suited to the needs of

WSNs than IPv4 in every dimension” [21]. IPv6 implements more efficient network

architectures than the current solutions and this theory is based on the mechanism of

IPv6 which correlating with sample listening, collection routing and hop-by-hop

feedback.

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 27

3. State of the art

3.1 6LowPAN

This section presents the result of the attempt of the implementation of IPv6 in

wireless sensor networks and more specifically in low power wireless personal area

networks, the limitation that are raised, the most extensive implementation of IPv6

and low power wireless personal area networks and the 6LowPAN routing protocols

which exist [1, 23].

 Extending IP to LoWPAN was once considered impractical. This happens,

because these networks are strictly constrained and should acts without observation

for a huge time space on modest batteries. Many experts, through some proprietary

protocols, considered that IP was too resource intensive to be scaled down to operate

on low power links used in LoWPAN settings. However, 6LowPAN (IPv6 to

LoWPAN) changes the computation by inserting an adaptation layer that forwards the

IPv6 communication over LoWPAN links [25, 26, 27, 28].

 6LoWPAN is a low cost communication network which gives the opportunity

of wireless connectivity in applications with limited power and soft throughput

requirements. The LoWPAN contains devices that work together in order to combine

the physical environment to real world applications (wireless sensors) (Figure 14).

6LoWPAN is the name of the working group in the internet area of IETF. It is

a model which its goal is to let the IPv6 packets be sent to personal area networks

(PANs) and received from this type of networks, more specifically over

IEEE802.15.4-standard based networks. IPv6 is referred to data delivery for wired

networks. Moreover, devices of IEEE802.15.4 offer the opportunity of sensing

communication in the wireless domain. Some characteristic applications are: wireless

internet connectivity at lower data rates for devices with very limited form factor (e.g.

automation and entertainment applications in home, office and factory environments)

 The inequable properties of IPv6 and IEEE 802.15.4 cause many assumptions

to the 6LowPAN protocol, which have to be considered in order that this kind of

network effectuates the needs of a modern wireless sensor network [27].

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 28

 The main specifications of IEEE 802.15.4 are the low power, the low

bandwidth and the maximum link layer packet size of 127 bytes [23]. Applying IPv6

over IEEE 802.15.4, without changes would result in extremely small packets

payloads for higher level protocols. Moreover, the header of the IPv6 has 40 bytes,

which in TCP or UDP results in 41 bytes, the TCP header is 20 bytes, so only 28

bytes are available for each packet for application layer protocols [21, 24, 25].

 The main assumption of 6LowPAN is related with the compression standard

for the IPv6 header like for the upper layer headers. A fragmentation and reassembly

layer should be inserted while the minimum MTU of 1280 bytes of IPv6. Moreover

the routing protocol should not appose an overhead on data packets but should

preserve the use of memory and the computation power.

 Furthermore, some other requirements are related with the topology of the

network. It is necessary a stateless address auto configuration in order to reduce

configuration overhead. Also, many security requirements are raised by the

6LowPAN protocol like countermeasures towards man-in-the middle attacks and

denial of services attacks.

Moreover, the 6LoWPAN standard is a special version of the IPv6 protocol to

the limited resources of IEEE 8.15.4 devices. The main point of the 6LoWPAN layer

is called dispatch header. This certain header characterizes the frame as 6LoWPAN

packet and specifies the type of address is to be expected. The dispatch header is the

first header in a queue of headers.

Mesh routing is used for IEEE 8.15.4 devices in order to augment their range

by searching for normal nodes in order to perform like routers and forward the data

packets (Figure 15). Furthermore, the mesh header assigns the source node and the

final destination node, whereas the normal header is utilized for the current link [28].

6LowPANs comprise devices which are suitable with the IEEE 802.15.4

protocol. The nodes which are taking part in a 6LowPAN may confine its action only

in the role of the host while other nodes take part in the process of routing.

Specifically, these separate roles of host – router are related with the processing and

storage capabilities of the device.

Although the above protocol of IEEE uses star and mesh topologies, the

6LowPAN format and the IEEE 802.15.4 protocol do not explain how mesh

topologies could be function in this environment. So the multi-hop routing and the

6LowPAN can be supported by the IP layer or above the IP layer. Furthermore, the

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 29

numbers of the protocols which are developed by many experts do not ground the

demands of the multi-hop routing in 6LowPAN.

Figure 14: An example of 6LoWPAN architecture

Figure 15: An example of mesh routing network

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 30

As we mentioned before one problem of the 802.15.4 devices apart from

limited range is the frame size. A normal frame of IEEE 802.14.5 has 127 while the

minimum maximum forwarding unit of an IPv6 packet should be 1280 octets. In order

to solve this difference in the frame size the 6LoWPAN protocol assigns a certain

process of fragmentation and reassembling IPv6 data packets to several frames.

One more process which is suitable for remaining the size of IPv6 packets in a

normal level is the compression of headers. Specifically, the 6LoWPAN standard

assigns a stateless compression for the link local address of the IPv6 header. This

compression procedure is known as Header Compression one (HC1). For the higher

level protocol another compression scheme is defined for UDP, the Header

Compression two (HC2) [29].

Moreover a more important part is the multicast system. Multicast is

responsible for the neighbour discovery. Thus, the 6LoWPAN protocol specifies a

certain header for multicast over meshed routing for finding motes that are more than

one hop far.

3.1.1 Specifications

The different properties of IPv6 and IEEE 802.15.4 provoke many

requirements to the 6LoWPAN protocol, which should be consider in order the

network still supplies the demands of a modern Wireless Sensor Network (WSN).

The most remarkable characteristics of the protocol of IEEE 802.15.4 are the

low power, its low bandwidth and the maximum link layer packet size of 127 bytes. If

IPv6 applied unaltered over IEEE 802.15.4 standard would have as a result extremely

small packet payloads for higher- level protocols. According to the year 2006 the

IEEE 802.15.4 standard’s maximum size of a frame would be in the worst case 88

bytes. On the other hand the IPv6 header contains 40 bytes which reach the 41 bytes

for upper layer protocols as the TCP and UDP. Moreover, the length size of the TCP

header is more 20 bytes. Consequently, this means that 28 bytes for each packet are

available for application layer protocols (Figure 16).

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 31

Figure 16: 802.15.4 and IPv6 header sizes

The previous IPv6 has a minimum MTU of1280 bytes, should be introduced a

fragmentation and a reassembly layer. Moreover, the routing protocol has not to

demand an overhead over data packets. Because the WSN devices have a restricted

performance, a possible appropriate protocol has to preserve the memory utilization

and the computation power.

Except of the above requirement more requirements come from the network

topology. In order to eliminate the configuration overhead, a preferable action is a

stateless address autoconfiguration. Furthermore, some more requirements that

correlated to the 6LoWPAN standard are the security requirements like denial of

services attacks and countermeasures against man-in-the-middle attacks [30, 31].

3.1.2 Adaptation Layer and Header

In general, by utilizing compression and fragmentation of the header then the

6LoWPAN packet demands a much smaller header than an IPv6 packet would use.

The adaptation layer lies between the layer 2 and layer 3. This layer contains

datagrams which should be forwarded by a header stack. The adaptation layer of

6LoWPAN standard contains mainly three parts, the header compression, the

fragmentation and the layer-two forwarding. The compression is stateless and shared-

context in order to eliminate the length size of the IPv6 header to fewer bytes.

The 6LoWPAN standard like the IPv6 protocol, utilizes also an encapsulated

header format which contains the IPv6 header compression subheader, the fragment

header and finally the mesh addressing header (Figures 17, 18, 19). At the start point

of every header, a header type field assigns the header format [30, 31, 32].

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 32

Figure 17: Header stack 6LowPAN utilizes only the IPv6 header compression subheader

Figure 18: Header stack 6LowPAN utilizes only the IPv6 header compression subheader and the

fragmentation header

Figure 19: Header stack 6LowPAN utilizes only the IPv6 header compression subheader and the

fragmentation header and the mesh addressing header

3.1.3 Header Compression

The 6LowPAN header compression is characterized by a stateless

compression. The stateless compression scheme is divided in two parts, the first part

is the header compression one (HC1) and the second part is the header compression

two (HC2). The first compression is responsible for the compression of the IPv6

header with an original size of 40 bytes into three bytes in the best case. Furthermore,

the second compression, the HC2, presents a compression format in order to eliminate

the length the transport protocol header. Finally, both the header compression one and

also the header compression two contain one encoding byte and non-compressed

fields.

The header compression one (HC1) eliminates the length of the IPv6 header.

The compression expects many values for the IPv6 header fields. If the assumptions

will demonstrate as wrong, the non-compressed values of the fields should follow the

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 33

encoding field. The main assumption is that the version is IPv6. The destination and

the source address are assumed to be link local. Also, the Flow Label and the Traffic

Class fields have the value zero. Finally, the Next Header is considered to be TCP,

UDP or ICMP. While there are no ways to compress the Hop Limit field, it should be

carried in full (Figure 20) [30, 32].

Figure 20: HC1. IPv6 header compression

The figure above presents the standard of the compression (Figure 20). The

first octet acts as the dispatch byte which specifies the header format as an HC1

header. The following byte is known as HC1 encoding octet. The bits of the source

and the destination address assign whenever the interface identifier and the prefix are

carried in-line. The TF bit when the Traffic Class and the Flow Label are

uncompressed is zero. Thereafter, the Next Header bits are zero when the fields

cannot be compressed. Next, the HC2 encoding bit specifies whether a HC2 header

immediately follows the HC1 encoding. The next octet, the Hop Limit field

immediately follows the HC2 encoding octet or in the case where the HC2 is not

presented, it is appended the HC1 octet. Finally, uncompressed fields hold the last

octets.

Furthermore, the 6LowPAN protocol supports the compression of the

transport protocol header, which is characterized as HC2. It is defined a compression

format for UDP which eliminates the length of the UDP header to four octets from

eight octets [31].

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 34

Table 4: Comparison of IPv6 header and compressed 6LoWPAN header fields

3.1.4 Fragmentation Header

Fragmentation header is introduced by the 6LoWPAN standard in order to

support the minimum MTU of IPv6. When the payload is large enough and it does not

fit into a single IEEE 802.15.4 frame, it will be fragmented into many packets.

Figure 21: Fragmentation header of 6LoWPAN, First Fragment

Figure 22: Fragmentation header of 6LoWPAN, Subsequent Fragment

The figures 21 and 22 present the fragmentation header of the 6LoWPAN

standard. According to the figures, the first field is the Datagram Size, which is the

size of the Entire IP packet before the procedure of the fragmentation. This field there

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 35

is in every packet in order to simplify the packet handling in the case of arrivals which

are out-of-order. The Datagram Tag field assigns the fragmented payload and the

Datagram Offset field specifies the offset of the fragment within the original payload

[30, 32].

3.1.5 Mesh Addressing Header

In the header of the IEEE802.15.4 standard is included the source and the

destination address of the next hop. When a packet have to be forwarded to a node

which is not a neighbour of the source, a higher-level protocol is necessary in order to

implement this functionality. In IPv6 protocol the source and the destination address

are included in the IPv6 header. However, with the compression header this

information will be lost. A possible and appropriate solution to this problem is the

introduction of another header which is called Mesh Addressing Header. This header

is responsible for layer-two transmission. Moreover, the Mesh addressing header has

the ability to support multi-hop forwarding of 6LowPAN payloads.

Figure 23: Mesh addressing header of 6LoWPAN

The V bit specifies if the Source Address is a short 16-bit address or an IEEE

extended 64-bit address. Similarly happens with the F bit and the destination address.

Moreover, the Hop Limit field is like to the Compression Header. Finally, in the

Source Address field is included the source address of the 6LoWPAN packet and in

the Destination Address field the final destination address (Figure 23) [30, 32].

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 36

3.1.6 Broadcast Header

 The broadcast header is used in the case where a packet is multicast or

broadcast. The structure of broadcast header is presented above in the figure 24:

Figure 24: Broadcast header structure

The sequence number of this case is used in order to differentiate between

duplicate packets. When the originator transmits a new mesh broadcast or multicast

packet this certain 8-bit field is increased [32].

3.1.7 Forwarding and Routing

The environment of the 6LoWPAN which we present, acts totally different

from a typical IPv6 network. In LoWPAN should be consider multi-hop, power issues

and other specific features. With the previous features are correlated the functions of

forwarding, routing and addressing.

Thus, in a multi-hop environment the packet forwarding can be happened in

the link layer or in the network layer, as 6LoWPAN can support both approaches. On

the network layer the forwarding is known as route over, and its most important

advantage is that can be utilized all the existing capabilities of the IP. However, with

the route over forwarding the full features of the header compression cannot be used,

as the IPv6 addresses may have to be forwarded with every multi-hop packet. One

more existing problem is that forwarding on the network layer may not react directly

to possible changes in the link state.

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 37

 In order to face these problems, the 6LoWPAN protocol, as we mentioned

above, supports forwarding also on the link layer which is known as mesh under. As

far as the source is concerned, if the destination node is reachable by the source node

directly then the data packet is transmitted to the destination. However, when the

destination node is not accessible by the source node, then the source node should to

contain the Mesh Addressing header. The destination and the source link-layer

address are included in the Mesh Addressing header, while the header of IEEE

802.15.4 protocol will include the forwarder’s link-layer address. A node which

accepts a frame with a Mesh Addressing header controls the final destination. In the

case where the node itself is not the final destination, it places the address of the next

hop in the destination field of the IEEE 802.15.4 header and forwards the packet.

More explicitly, as far as the routing is concerned, is the ability to transmit a

packet of information from one node to another by specifying a certain path via the

network while meeting some specific efficiency criteria. With a certain 6LoWPAN

header format, routing protocols can be presented at two layers which are described

below:

 Mesh-under Routing: The mesh-under routing is responsible for routing under

the IP link and is directly based on link-layer standard 802.15.4 standard. It

uses 64-bit IEEE extended address or 16-bit short address. This routing is

referred only to a 6LoWPAN network (Figure 25).

 Route-over Routing: This certain type of routing, the route over routing, is

implemented at the network layer of 6LoWPAN stack. It uses IP address for

addressing and locating nodes. The route-over routing has the ability to access

nodes outside the 6LoWPAN as well as inside. This type of routing is almost

same as used in regular IP networks (Figure 25).

In the case of fragmentation or overhead of reassembly, the routing data should

match into a single physical frame of the 802.15.4 protocol and the application data

should not match in frame that they do not fit anymore. . The link-state protocol and

also the distance vector routing protocol are not fitted well to the 6LoWPAN

networks. Lately, the IEFT with the working group of Routing over Low Power and

Lossy Links (ROLL) are deal with the problem and are trying to find an appropriate

routing protocol [30, 33].

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 38

Figure 25: the 6LowPAN routing in the whole network stack

 In the case where a route over mechanism is in use through a multi-hop

communication, all routers act IP routing in the stub network. Specifically, the link-

local scope canopies the number of nodes via the symmetric radio range of a node.

Moreover in the case of a mesh under configuration, the only IPv6 router in the

LowPAN is the 6LBR. Thus, the IPv6 link-local scope contains all nodes in the

LowPAN. After all, the mesh under mechanism should be appropriate for the support

of a multihop transmission (Figure 26).

Figure 26: route over and mesh under LowPAN

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 39

It is useful to notice that in route over and mesh under network there is no a

case of topologically based address assignment in the 6LowPAN. Specifically, the

addresses usually based on EUI-64 addresses and other times based on 16 MAC

addresses [34].

3.1.8 Addressing

The process of addressing in 6LoWPAN protocol mainly based on the

stateless address configuration of IPv6. The RFC 4944 describes with details the way

which the Interface Identifier is derived. Broadly, it is based on the IEEE EUI-64

address of the IEEE802.15.4 device. Furthermore, in mesh-link network the link-local

address is utilized in collaboration with the LoWPAN and routable address are used in

order to communicate outside.

The Neighbor Discovery Protocol in 6LoWPAN like in IPv6 contains prefix

discovery and default route configuration. However, the protocol is not suited well to

the 6LoWPAN requirements and maybe will generate an overhead in the amount of

messages [30].

3.1.9 Stateless Address Autoconfiguration

The 6LoWPAN standard has the capability to support stateless address

autoconfigurartion. This is very important because a user can create its own address

by using a combination of locally information which is available and information

which advertised by routers, without making a certain binding with routers. While

each device of 802.15.4 standard has a unique EUI-64 identifier, on the other hand an

IPv6 interface identifier can be obtained from this EUI-64 identifier using stateless

autoconfiguration.

Though each device has a EUI-64 address, every device may have another 16-

bit short address after the communication with a PAN coordinator. These certain

addresses have to be unique within a PAN. Moreover, there is the possibility of using

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 40

the 16-bit addresses for autoconfiguration (Figure 27). In this case, is formed a pseudo

48-bit address by binding this address with the 16-bit PAN ID and 16 zero-bits in

sequence. More explicitly: 16_bit_PAN:16_zero_bits: 16_bit_short_address.

Furthermore, an interface identifier can be created with the 48 bits above by utilizing

IP over Ethernet and also the IPv6 link-local address are shaped by adding the

interface identifier to the prefix FE80: : /64 (Figure 28).

Figure 27: 16-bit short address

Figure 28: The formation of IPv6 link- local address

3.1.10 6LoWPAN Neighbor Discovery

 The Neighbor Discovery protocol is refereed to an Internet Protocol Suite

which is used with IPv6. This certain protocol is used by the nodes in order to find

other nodes on the link, to specify the link-layer address of other on-link nodes, to

discover the routers that are available and final to maintain information on their

reachability. In the case where a router or a path to a router fails, the node tries to

discover for a functioning alternatives [35]. The Neighbor Discovery protocol for

IPv6 assigns mechanisms which are related with:

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 41

 Router Discovery: nodes are able to locate routers that are on an attached

link.

 Prefix Discovery: nodes are able to find the set of address prefixes that are

used in order to specify their totally unique address.

 Address Resolution: this mechanism related with the mapping to link layer

address. This is not appropriate in 6LoWPAN since there is direct mapping

between their unique address and the link-layer address.

 Next-hop Determination: in this mechanism the nodes try to find next hop

routers for a destination.

 Neighbor Unreachability Detection (NUD): in this mechanism the nodes

are able to specify that a neighbour is no longer available on the link.

 Duplicate Address Detection (DAD): in this mechanism the nodes have the

ability to control if an address is already in use.

 Address Autoconfiguration: in this mechanism the nodes have the ability to

configure their address automatically without the use of a stateful

configuration protocol like DHCPv6 (Dynamic Host Configuration

Protocol for IPv6).

In LoWPAN the address resolution for neighboring is not radically possible.

According to the physical mobility of nodes or the radio strength, a node may go from

one node to another. Furthermore, the characteristics of the 6LoWPAN standard are

different from the classic networks, thus the Neighbor Discovery protocol is not

suitable and appropriate for the 6LoWPAN. Consequently, for this case a 6LoWPAN-

specific ND is proposed. In this proposal are introduced new entities which are related

with the mechanism of neighbor discovery. These entities are described above:

 Edge Router: this mechanism is related with an IPv6 router which connects a

6LoWPAN mesh to another IP network.

 Whiteboard: is about a data structure which is supported by Edge Routers. The

Whiteboard is used as NUD and DAD through the entire 6LoWPAN mesh.

This entity contains information about a node regarding its Owner Interface

Identifier, IPv6 address, Transaction ID, Owner Nonce and remaining time of

binding.

 Node Registration: this entity refers a method in which nodes in LoWPAN

register with Edge Routers, thus forming Whiteboard bindings of their all IPv6

addresses in LoWPAN.

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 42

The Neighbor Discovery for 6LoWPAN specifies some message formats along

with altering standard ND messages for IPv6. Above are described some types of

messages which are used with modification from:

 Router Solicitation: in this case, the nodes send this message in order to

request a Router Advertisement immediately.

 Router Advertisement: in this case, the routers send this message periodically

or in response to Router Solicitation. In Routers Advertisements are included a

lot of link and Internet parameters as well as prefixes information.

 Neighbor Solicitation: in this case, the nodes transmit this message in order to

determine the link layer address of their neighbors or confirm their

reachability. Moreover, the Neighbor Solicitation is suitable for Duplicate

Address Detection. Only used is extended LoWPAN

 Neighbor Advertisement: in this certain case, the nodes transmit this message

in response to Neighbor Solicitation. Furthermore, they transmit in order to

announce link layer address alteration. Only used in extended 6LoWPAN. The

extended 6LoWPAN is an aggregation of many 6LoWPAN which are

interconnected by a backbone link through Edge Routers and farming a single

subnet.

 Node Registration: in this type of messages, a node transmits this message

along with its IID and requested lifetime in order to register at an Edge Router.

This specific message can contain possible options as the address option

which contains the address of the node which wants to register.

 Node Confirmation: in this case an Edge Router transmits this message to the

node in response to its Node Registration. This is used in order to certify the

binding of the node at the Edge Router.

The last two types of messages are assigned in Neighbor Discovery for 6LoWPAN.

3.1.11 Security

In 802.15.4 networks the nodes have the ability to perform either in secure

mode or non-secure mode. In order to achieve different security objectives two

security modes are specified in the specification. The two security modes are the

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 43

following, the Access Control List (ACL) which supports limited security services and

requires every in order to keep its own ACL. This certain mode accepts receiving

frames which are characterized as trusted nodes, only from nodes which are present in

the device’s ACL. The frames from nods which are not registered should be filtered.

Nevertheless, this mode does not support cryptographic protection. The other security

mode is the Secure mode. This mode supports all the security service according to the

appropriate security suite. This certain mode offers message integrity, confidentiality

of the frame, sequential freshness and access control.

The issue of security acts like a bit tradeoff in the 6LoWPAN, as security is

always a costly function. This point is mainly certified in the LoWPANs. In the case

where a IPv6 putting on the top of the 6LoWPAN it is probably appropriate to use IP

security protocol and turn off the security mechanism assigned by IEEE 802.15.4. On

the other hand the IP security protocol is mature for the services at IP or upper layers.

Thus, according to their innate properties and limitations the 6LoWPAN presents

totally unique characteristics which traditional security techniques cannot be

supported directly.

 The attacks against the 6LoWPANs are separated in two groups in external

and internal attacks. In the first group, the enemy is not authorized of the 6LoWPAN.

Furthermore, external attacks can also be separated in two subcategories, the passive

attacks and the active attacks. On the one hand the passive attacks try to discover

important information by involving eavesdropping on network’s radio frequency

range. On the other hand during an active attack, a denial-of-service attack at the

physical layer has the possibility to present important consequences [36].

Moreover an enemy has the ability to make a node of a 6LoWPAN inefficient

or capture it and in the following of this action the enemy extracts the key and uses it

for eavesdropping or cue at some instances.

The applications that are related with the 6LoWPAN usually demand

confidentiality and integrity protection. This certain requirement can be provided at

the application, network, transport or/and link layer. In each case, there will be some

constraints that will influence the right choice of the appropriate protocol. Some of the

restrictions which affect the selection of the protocol are the low power operation, the

small bandwidth requirements, the small code size and the low complexity.

Due to the previous limitations a certain model for 6LoWPAN devices should

be created in order to face any risks while developing meaningful assumptions and

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 44

simplifications. Some cases which are related with the treats that should be considered

are denial of service attacks and man-in-the-middle attacks.

According to the initial key establishment and protocols for subsequent key

management as well as to secure the data traffic do fall under the control and the

jurisdiction of 6LoWPAN. The alternative choices like TLS, IPsec, etc, should be

considered due to the 6LoWPAN limitations.

The most devices of 802.15.4 have already support for AES link-layer

security, thus is very reasonable the using of link layer security. AES is block cipher

which operates on groups of standard length like 128 bits. In order to encrypt

messages with longer size, many different modes of operation may be used. The

versions of modes which are presented as CBC, CFB, ECB, OFB assign only

confidentiality and no message integrity. Other modes like CCM mode have the

ability to provide both confidentiality and message integrity. Any 6LoWPAN network

has the ability to operate in any of the previous modes. However, the most suitable

solution is the use of the most secure mode which is available for link layer security

and build on it.

For the network layer security the models that are most operable are two and

are the end-to-end security by using for example IPsec transport mode and the

security that is limited to the wireless portion of the network by using a security

gateway and IPsec tunnel mode. The second model has a disadvantage which is the

larger header size which is significant at the 6LoWPAN frame MTUs. Generally, in

order to simplify the implementations of the 6LoWPAN model, it is necessary to

identify the appropriate security model and determine the appropriate set of cipher

suites according to the given limitations.

Generally, some possible attacks against 6LoWPANs are intrusion replay and

sink-hole attacks. Specifically, in 6LoWPANs the enemy has the ability to “hit” the

routing mechanisms mainly by informing the WPAN networks with false data. This

has as a result the instability of the routing mechanism. Moreover an unauthorized

node has the ability to “spy” the packets and then aggress with replay attacks against

the nodes of 6LoWPAN. These threats may cause many harmful problems and mainly

when the attacker is a high-power device like a laptop. Finally, has the capability to

drain the batteries of the 6LoWPAN devices by redirecting routes and transmitting

broadcast messages.

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 45

A hopeful and possible solution for facing security vulnerable spots is the

implementation of application level security. Thus, by this way the application level

security protects from another spy and the link layer security protects from intrusion.

3.1.11a Requirements

 The necessary requirements of security in 6LoWPANs would be the above.

Data Integrity this attribute certifies that the data which received is not altered by

an enemy

Data Confidentiality creates information that is not accessible by users that are

unauthorized

Data Authentication this attribute certifies the user that the data are originated

from authorized and trusted sources

Assurance this attribute transmit different information at different assurance levels

Robustness certifies the operation of the network without pause despite failure of

nodes or attacks

Resistance this attribute has the capability to avert the enemy from having total

control of the network

Availability this attribute certifies the survival of the network services only to

authorized users and devices in spite of DoS attacks

Energy Efficiency a security scheme should be energy efficient in order to

augment network lifetime

Resiliency this attribute has the capability to specify and maintain an acceptable

level of security in case some nodes are compromised

3.1.11b Attacks

The main percentage of the attacks and the threats against the data security

and the user cause much destruction. Furthermore the 6LoWPAN is very sensitive to

physical attacks. This means threats due to relocation, masking and node destruction.

After the offensive of a physical attack a lot of 6LoWPAN nodes can be knocked out

permanently and this will cause definitive losses. Moreover, the physical attack has

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 46

the ability to extract cryptographic secrets, permit the enemy, the malicious node to

take the total control and change programming in the nodes.

Furthermore, 6LoWPAN areas can accept many DoS attacks in different

layers. There are attacks against the physical layer as we mentioned before and also

there are attacks against MAC layers. The MAC layer pertains to exhaustion and

collision. The devices try to be in a sleep mode in order to conserve energy, because

usually they low rates of energy. Thus, this condition has as a consequence the

appearance of many attacks against the battery of the devices.

Moreover, there is one more type of attack which is against network

availability. In this type of offensive the enemy has the ability to eliminate the

network performance and degrade the throughput.

The attacks in the network layer can be divided in the following categories:

Selective forwarding in this certain attack the enemy which will be a malicious

device do not transmit some messages or transmit certain messages.

Wormhole attack in this type of attack the enemy records bits at one location and

then tunnel them to another location. The wormhole attack can be performed in the

phase where the nodes of 6LoWPAN try to find their neighbors.

Sinkhole attack in this type of attack, the enemy which is a malicious device has

the ability to get all traffic from a certain area and this will result in a DoS attack.

Spoofed, altered, or replayed routing information in this certain type of attack

the enemy which will be a malicious node utilizes spoofing, altering or replaying in

order to aim routing information which transmit between nodes in an attempt to create

routing loops, extend or shorten source routes, attract or push network traffic, create

false messages and so on.

Neighbor discovery attack this attack is referred to a modified version of IPv6

Neighbor Discovery protocol. This attack comprises unsecured router advertisement

and neighbor discovery DoS attacks.

Sybil attack in the Sybil attack, a single node presents many identities to other

nodes in WPAN. This certain type of attack hit with a definite threat a geographic

routing protocol and attack against the routing mechanism, distributed storage,

misbehavior detection, data aggregation and so on. It is very important to mention

that the Sybil attack cannot be detected easily in progress.

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 47

 At the transport layer, the enemy which is a malicious device has the ability to

create false messages carrying sequence numbers or control flags which will

ultimately cause the endpoints to request retransmission of missed frames.

3.1.12 6LoWPAN Implementation

 There are many versions of OS for WSNs. TinyOS is one of the most widely

used and has many types of functionalities for sensor nodes. Specifically, the most

known implementation of IPv6 and LowPAN for TinyOS is known as blip. This

6LowPAN implementation of TinyOS is being developed by the University of

California in Berkley, as it is mentioned in the paper “IPv6 for Wireless Sensor

Networks”. Although, it implements a variety of functionalities, it only supports

platforms with RF transceiver. Thus, the blip it has been decided to be port to the RF

transceiver family. This process separated into two sub processes, the extension of

current radio driver of RF transceiver and the adjusting of blip to a new driver. The

blip is inserted by presenting its functionalities and its limitations. In the same paper,

Lars Schor, extend TinyOS implementation by inserting the blip to the new platforms

[37, 38, 39, 40].

3.1.13 6LoWPAN Routing Protocols

 There are some routing protocols for 6LowPAN but not a great number

because the 6LowPAN is a very recent issue. The 6LowPAN routing protocols which

are appeared in relevant papers most often and the protocols which raise the highest

interest are two and they are the LOAD and the DYMO-low routing protocol.

 As we mentioned before the issue is quite recent so there are not many sources

over this issue. Nevertheless according Ki-Hyung Kim (Ajou University), S. Daniel

Park (SAMSUNG Electronics), G. Montenegro (Microsoft Corporation), S. Yoo (Ajou

University), Karl Mayer, Wolfgang Fritche and Vassil Stefanov, 6LoWPAN Ad hoc

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 48

Routing On-Demand Distance Vector Routing Protocol (LOAD) is a simplified on

demand routing protocol based on AODV for 6LoWPAN. Its basic characteristics are

that it uses16 bit addresses and broadcast in the route discovery and on the other hand

it does not use destination sequence number and the local repair. Moreover it reports

back to the originator by RERR (Route Error) upon a link break (Figure 29).

Specifically, does not maintain the precursor list and sends RERR only to the

originator of the data which caused the link break. Also, it uses the route cost by

utilizing the LQI of the 6LoWPAN physical layer and it uses the Acknowledged

transmission option for keeping the connectivity of a route. Finally it consists two

tables the Routing table and the Route Request table [38].

Figure 29: Route Error Message

 According to Ki-Hyung Kim (Ajou University), S. Daniel Park (SAMSUNG

Electronics), G. Montenegro (Microsoft Corporation), I. Chakeres (Boeing Phantom

Works), S. Yoo (Ajou University) and Vassil Stefanov, DYMO-low (Dynamic

MANET On-demand for 6LoWPAN) routing protocol obviates UERR (Unsupported

Element Error). DYMOcast is mapped as broadcast. There is no path accumulation

and only the final destination responds. Moreover, DYMO low allows Multiple

Routing Elements (RE) and by this way there is the possibility of eliminating the

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 49

number of control messages by aggregation. Finally, DYMO low protocol set a limit

on the number of control message, inserts the Error Code field into RERR, uses LQI

for route cost calculation and does not use HELLO message and Sequence Number.

3.1.14 AODV (Ad-hoc On-demand Distance Vector routing)

 AODV is one of the most studied routing protocols for MANETs.

Furthermore, it is a reactive routing protocol. In the case where a node needs a route;

it starts a process about the discovery of a route by broadcasting Route Request

(RREQ) messages. The time when the node receives the RREQ message, it creates

and transmits a Route Reply (RREP) message back to the source node. Each node has

route entries which contain the forward and backward next hop information. This

information will expire when the path becomes inactive. For every node there is an

pre-existing list which includes the nodes which utilizes this one as the next hop in the

path to a certain destination. The AODV routing protocol uses the metric of hop count

[37].

 In the case where a link breaks through an active path, then the upstream node

which is responsible for the detection of this break may locally rectifies the route if

the destination is close in number of hops to the node. In the where this attempt is not

successful the upstream node creates and send a Route Error (RERR) message which

contains the destinations that are not approachable. Thus the source node of the active

path tries to search a new route.

 A node of an active route periodically transmits local HELLO messages in

order to communicate with other nodes. Then, if the neighbour node does not send

back a reply, this means that the link is broken [40, 41, 42].

3.1.14a AODV and LoWPANs

AODVjr AODVjr is on of the earliest routing protocols and according to the

scientists its action and reaction are like AODV’s. However, this routing protocol has

not as a metric the hop count. The route related to the first RREP message which

received by the chosen source, instead. Moreover, in this case the pre existing lists

and the HELLO messages are not exist. In AODVjr, if the communications are

unidirectional, the destination node forward CONNECT messages the originator. In

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 50

the case where the communications are bidirectional then no messages are used.

Generally, when the source does not receive messages from the destination, then

confirm a link break.

AODVbis This routing protocol is an iteration of the AODV which wants to define

some aspects related to the functionality. The use of the RREP messages is not

compulsory as well as the hop count is not the compulsory metric. Moreover, the

AODVbis do not include the local repair. In this certain case there is the capability of

path accumulation which gives the ability to the node to learn routing information

from RREQ and RREP messages.

LoWPAN – AODV As mentioned by its name the LoWPAN – AODV is the most

appropriate routing protocol for the LowPANs. This certain type is a combination of

the two previous routing protocols.

TinyAODV This routing protocol is appropriate for devices which running

TinyOS. In the certain protocol only one node, known as sink node, could be the final

destination of any data transmission. Furthermore, the TinyAODV has the ability to

develop a communication between any pair of nodes of the network. Thus, in the case

where there is not exist any route entry for the aim and a data packet must be sent,

route discovery is performed, but the packet requiring the route is discarded.

3.1.15 LOAD

 The 6LoWPAN Ad Hoc On-Demand Distance Vector Routing (LOAD) [3] is

another routing protocol which is referred to the 6LoWPANs. This certain routing

protocol should be implemented only on Full Function Devices (FFDs). In this case,

only the final destination node can transmit RREP messages and the local repair is

utilized. If the last action is not successful the node which defines the link break has

the ability to create and unicast a RERP message to the source (Figure 30). In the

LOAD the accumulated link cost from the source to the destination is the count

metric. This metric uses the Link Quality Indicator (LQI) of IEEE 802.15.4 physical

layer as an input for its calculation [38, 40, 41, 43].

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 51

Figure 30: Message exchange in LOAD routing protocol

3.1.16 DYMO - Dynamic MANET On-demand for 6LoWPAN

Routing (DYMO-low)

 The DYMO is one more routing protocol which is based on AODV with some

specificity. In the same way like AODV, the DYMO implements route discovery and

maintenance through RREQ, RREP and RERR messages. During the process of route

discovery the RREQ and RREP messages aggregate routing information from every

intermediate node. On the other hand, although the DYMO transmits HELLO

messages in order to keep the path of link connectivity, it does not use the local repair.

Moreover, DYMO is placed on top of IP using User Datagram Protocol (UDP).

Nevertheless, it can not be fitted to the 6LoWPAN directly because of its great power

consumption and memory size. So, the DYMO routing protocol should be modified in

order to be appropriate for 6LoWpan environment (DYMO-low). Thus, the DYMO-

low operates on the link layer directly in order to develop a mesh network topology of

6LoWPAN devices secret to IP, such that IP sees the WPAN as a single link. In this

case all the devices of 6LoWPAN operate on the same IPv6 link and share the same

IPv6 prefix. Moreover, the DYMO-low routing protocol utilizes 16-bit link layer

short address or IEEE 64-bit extended address (EUI-64). Finally, the DYMO-low has

almost the same function with the LOAD with the difference that the DYMO-low

does not use the local repair and the route cost accumulation [38, 41, 44].

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 52

3.1.17 HiLow (Hierarchical routing)

 HiLow is another routing protocol for 6LoWPAN which is used in order to

increase the network scalability. This routing protocol uses 16-bit unique short

address as interface identifier in order to increase the memory saving and the

scalability. In this case, when a device wants to join a 6LoWPAN, as first step it tries

to find an existing 6LoWPAN. Then, if there is not an existing network the device

becomes the initiator of a new 6LoWPAN and assigns its short address by 0. In the

case where there is an existing 6LoWPAN, the new device (child) tries to

communicate with the existing device (parent) at the MAC layer in order to receive a

16-bit short address (Figure 31) [45, 46]. In this case there is an appropriate equation

which presented above:

C = MC * AP + N, (0 < N < MC).

According the previous equation the C is the child-device, the MC is the maximum

number of devices a parent-device can have, the AP is the address of the parent-

device and the N is the nth child-device.

In the HiLow protocol each node knows its depth. Moreover the node which

accepts a packet is known as current node. The current node initially specifies if it is

either the ascendant or descendant nodes of the destination and then specifies the next

hop node to forward the packet. Finally, in the HiLow routing protocol if exists a link

break there is not a repair path mechanism like in LOAD and in AODV (Tables 5, 6,

7).

Figure 31:Routing structure of HiLow

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 53

Table 5: Comparison of Routing Protocols for 6lowpan (1)

Table 6: Comparison of Routing Protocols for 6lowpan (2)

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 54

Table 7: Comparison of Routing Protocols for 6lowpan (3)

3.1.18 Vulnerable Points

 As I mentioned before few routing protocols have been developed for the

6LoWPANs, however these protocols have some vulnerable points and they are not

able to satisfy the requirements of the 6LoWPANs. The reasons for this situation are

presented below.

 The 6LoWPAN nodes have specific roles and types. For example there are

power-affluent nodes, nodes which draw their power from primary batteries,

data aggregators and so on. The 6LoWPAN routing protocols should support

multiple device types and roles.

 The process of routing in LoWPAN might mean a harder problem than

routing in higher-performance networks. For this certain procedure are

necessary stable operation in lossy environments, power optimization, data-

aware routing and so on. Unfortunately, there is not a specific routing

protocol which can satisfy all the previous demands.

 The process of routing in 6LoWPAN may mean a simpler problem than

routing in higher-performance networks. The LoWPANs can be transit

networks or stub networks. In the case where the LoWPANs can be transit

networks, routing protocols may be drastically simplified.

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 55

 The nodes which are known as handling sleeping are very important in

LoWPANs more than in traditional ad-hoc networks. These nodes have the

ability to be in a sleep mode for a lot of time. Taking advantage of

appropriate time for transmissions is important in forwarding the efficient

number of data packet.

 The strictest demands come from LoWPANs and they related to higher

performance or non-battery-operated networks. The nodes of 6LoWPAN

have low processing power, small memory sizes and are running on very

limited power which comes from primary non-rechargeable batteries.

Generally, the lifetime of a node is defined by the lifetime of its battery.

Thus, the main requirements for the routing protocols are the low routing

overhead, the support for sleeping nodes considering battery saving, the low

overhead on data packets and the minimal memory and computation requirements.

4. Ethics

 In this area of the thesis the ethics has to deal with the security and privacy.

Both security and privacy are two areas that should be studied in order people trust

this type of network and certain routing protocol. It is very important for all the data

packets that are transmitted over this type of network to reach their destination.

Moreover, very important are the integrity, the authentication and the encryption of

the data.

A remarkable example will be the files of an enterprise. These files are

important as they have confidential data for the employers and for the actions of the

enterprise. Thus, the enterprise will be harmed if it looses its files. Another example is

the data of a hospital. A hospital would want to transmit the therapy of some patients.

In this case, the problem of the loss or of the alteration of the data over the certain

network will cause health problems.

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 56

Another statement which related with the topic of the ethics is the right use of

the “IPv6-Wireless Sensor Networks”. For example, the deployment of such an

advanced network in a country which is not so developed will raise many challenges.

However, it will also raise many social problems and disparities.

Thus, for the above reasons, it is absolutely necessary to have authentication,

integrity and in general security and privacy in IPv6 wireless sensor networks which

also raise the acceptance of the networks from the public.

5. Resources

 This dissertation includes two parts: the theoretical part and the

implementation part. We do not have the opportunity to develop a hardware

application.

 As far as the theoretical part is concerned, it required a deep research of

published literature which is related to our subject of thesis, IPv6 in wireless sensor

networks and 6LowPAN routing protocols. Some other relative field that could be

searched are the IPv6 protocol, low power wireless sensor area and so on. The finding

of all these necessary information would be by the library of the TEI, books and the

Internet.

 As far as the implementation part is concerned, we will try to extend the

existing routing protocols. Also, we will try to evaluate our proposal for the extension

and try to have some observations by a simulation. Some candidates programming

platforms are the ns-2 which is a discrete event simulator, Java which is an object

oriented language, C++ simulation library and framework which offers a graphical

runtime environment.

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 57

6. Literature

 For the study, the composition and the completion of this thesis there was the

necessity of the access in a variety of literature resources of relative fields such as

IPv6, wireless sensor networks, LowPAN, interconnection between IPv6 and wireless

sensor networks, 6LowPAN routing protocols, open problems, applications and so on.

Thus, we had the opportunity to search for technical reports, journal papers, e-books,

presentations of various conferences, proceedings and so on through the library of the

TEI of Larisa. Moreover, we also had the opportunity to search for useful on line

articles via the search engines in the web (e.g. Google, pdfdatabase and so on). This

all inquiry has a consequence, the chance to discover and study all the past work that

other researchers have done in the previous years or they continuous doing it till

today. This procedure leads to enrich our knowledge and make it deeper than before

and to sharpen our interest for our subject of research. Finally, with no doubts, this

process helped the writing of our proposal.

 In the paragraphs that are followed, are presented more specifically some of

the resources (papers, web sites and so on) that were used in order to complete the

composition of the dissertation.

 Many of the papers that are used for this thesis are presented in conferences

such as “A Quantitative Evaluation of the Simulation Accuracy of Wireless Sensor

Networks”, “Simulation von plattformunabhδngigen TinyOS-Applikationen mit ns-2”

and “A 6lowpan Implementation for TinyOS 2.0”. These papers have been published

in a conference organized by the Department of Computer Science of RWTH Aachen

the university, in 2007. Also, “IPv6 Embedded Systems and Sensor Networks” is

presented in conference in America, in 2009 and the “WIRELESS SENSOR

NETWORKS: STATE OF THE ART AND FUTURE TRENDS” which has been

published in 2
nd

 national conference (Funchal - Madeira), in 2007.

 Moreover, many of the papers that are used in order to complete this work are

from journal. In this category belong the “IPv6” which is most like a technical guide

and is published by the school of Electronics and Computer Science in the University

of Southampton. Also, the “Extending IP to Low-Power, Wireless Personal Area

Networks” which is published by the IEEE Computer Society, the “Interconnection

between 802.15.4 Devices and IPv6: Implications and Existing Approaches” which

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 58

published in IJCSI - International Journal of Computer Science Issues, on January

2010 and the “A survey on IP-based wireless sensor network solutions” which has

been presented in International Journal of Communication Systems.

 Another category of papers is the proceedings of conferences. Many, papers

belong to this category such as the “IP Next Generation Overview” which has been

presented in the meeting of IETF in 1994. Also, the paper which has the title

“Securing IPv6 Neighbour and Router Discovery” has been presented in proceedings

of the 1
st
 ACM workshop on Wireless security. Moreover, the paper “Adapting AODV

for IEEE 802.15.4 Mesh Sensor Networks: Theoretical Discussion and Performance

Evaluation in a Real Environment” has been presented in proceedings of the 2006

International Symposium on a World of Wireless, Mobile and Multimedia Networks

(WoWMoM'06). Finally, the “IP-enabled Wireless Sensor Networks and their

integration into the Internet” which is the Proceedings of the First International

Conference on Integrated Internet Ad hoc and Sensor Networks, May 30-May 31

2006, Nice, France

 Last but not least, many resources are coming from the internet. However, the

most useful link of a web site is the www.ipv6.com

As mentioned above, this paper focuses on the 6LoWPAn routing. This area is

quite new and gains the interest from many experts. Thus, the variety of the pertinent

papers is smaller but with very interest articles. Particularly, Gee Keng Ee*, Chee

Kyun Ng, Nor Kamariah Noordin and Borhanuddin Mohd. Ali, via their article “A

Review of 6LoWPAN Routing Protocols”, presents the main routing protocols that

exist still today (AODV, LOAD, DYMO-low, HiLow) and compare them. This

papers has presented In a similar way the “Mesh Routing for Low-Power Mobile Ad-

HocWireless Sensor Networks Using LOAD” focuses in the AODV and LOAD

routing protocol and moreover the author Vladimir Iliev develops an implementation

of LOAD in nesC under TinyOS over RREP and RRER. Finally, a group of experts,

E. Kim, D. Kaspar, C. Gomez and C. Bormann have written the latest draft over this

subject (expires August 2011) with title “Problem Statement and Requirements for

6LoWPAN Routing”. This draft arrives to some security considerations. According to

the certain draft in the case of ad-hoc 6LoWPANs where are dynamic in node

membership and also in topology, the static security configuration is not adequate.

Furthermore, the authors consider that secure localization shelf-organization and time

synchronization should be critical to support.

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

http://www.ipv6.com/

 59

PART B

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 60

7. Simulation

In this part of dissertation studied the previous work over the 6LowPAN

routing and finally eventuated in the paper of Gee Keng Ee, Chee KYun Ng, Nor

Kamariah Noordin and Borhanuddin Mohd. Ali, the “Path Recovery Mechanism in

6LowPAN Routing”. In this certain paper proposed a step parent node algorithm in a

tree topology, to the conventional HiLow. Specifically, according to this step parent

node (spn) algorithm, each node knows its MC (MC the maximum number of

children a parent can have) value. In the case where there is a link break after a failure

node, each child node of the failure parent node will send a spn request message to the

neighbor nodes, as shown in the Figure 32.

Figure 32: spn request message

The neighbour node which accepts the request will define directly if its

existing number of child nodes has the appropriate number of nodes (MC) or not. The

neighbour node which has the appropriate number of nodes and it is less than the MC

number will send a step parent node reply message to the sender of spn request

sender. In the following procedure the spn request sender who accepts the spn reply

from different neighbors in its personal operating space (POS) will examine the

address and the path quality indication (PQI) of each spn reply sender. The node

which is interested in finding a step parent node, the spn request sender, exclusively

makes a ‘bond’ with the node which is not the descending node of the spn sender and

it has a high PQI. After this connection between the spn request sender node and the

neighbour node, the last node will become the step parent node of the child node

which has sent the spn request.

Thus in this simulation is tried to develop a different SPN algorithm. In

specific, is tried to observe and interpret how the nodes react in different values of

MC. After a thorough search I finally eventuate in the platform of OMNeT++ and

specifically the edition 4.1, in order to achieve my aim. OMNeT++ is a very popular

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 61

and useful platform with an open architecture simulation framework (Figures 33, 34,

35). More specifically, OMNeT++ is a discrete time simulator appropriate for wired,

fixed, and distributed systems. It is compatible with many operating systems like

Windows, Linux and DOS and support parallel execution. Moreover in OMNet++ the

simulated objects are presented by simple or composed modules which communicate

with each other by messages [47]. The modules consist of .ned file (interface

description) and C++ class (behaviour description). Finally, in this program, in the

case where there is a project about mobile nodes which collaborate in a wireless way,

the user should only develop the appropriate algorithm without focusing on how these

points are handled. Thus, there is the opportunity of the change of all the parameters

and no new piece of code must be rewrite.

Figure 33: the starting point of OMNeT++

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 62

Figure 34: the edition of OMNeT++ which is used in this simulation

Figure 35: the interface of OMNeT++

In the specific simulation is created an OMNeT++ project folder with the

name of “ergasia1” and in the project folder are created some files (Figure 36).

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 63

Initially, in the file package.ned which is already exist is designed the tree topology

and then the package.ned file renamed as WSN_tree.ned (Figure 37). Generally, in the

.ned file are created the modules, the gates and links in a statically way.

Figure 36: the files of the folder “ergasia1”

Figure 37: the design of tree topology of WSN_tree.ned file

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 64

Above presented the source code of the WSN_tree.ned file:

simple WSN_node

{

 parameters:

 double xpos;

 double ypos;

 @display("i=block/routing");

 // property in order to provide a custom layout topology

 // by providing the x,y dimensions for each node in the tree

 @display("p=$xpos,$ypos");

 gates:

 // communication gates for immediate parent-child node'

connections.

 inout gate[];

 // communication gates for step parent-child nodes'

connections.

 inout PAN_gate[];

}

network wsn_tree_net

{

 parameters:

 int height;

 int mc;

// @display("bgb=970,600;ls=da");

 @display("bgb=1280,800;ls=da");

 types:

 // Two channel types.

 // [Α] normal parent - child channels

 channel immediate_channel extends ned.DelayChannel

 {

 delay = 100ms;

 @display("ls=yellow,2");

 }

 // [Β] - step parent - child channels.

 channel step_parent_channel extends ned.DelayChannel

 {

 delay = 100ms;

 @display("ls=blue,2");

 }

 submodules:

 nodes[(mc^(height+1)-1) / (mc-1)]: WSN_node {

 }

 connections allowunconnected:

 // Channels' initialization

 // [Α] normal parent - child channels

 for i=0..sizeof(nodes)-(mc^height)-1, for j=1..mc {

 nodes[i].gate++ <--> immediate_channel <--> nodes[i * mc

+ j].gate++

 if i * mc + j < 17;

 }

 // [Β] - step parent - child channels.

 for i=1..sizeof(nodes)-(mc^height)-1, for

j=5..sizeof(nodes)-1 {

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 65

 nodes[i].PAN_gate++ <--> step_parent_channel <--> nodes[

j].PAN_gate++

 if (j < i * mc + 1 || j > i * mc + 4) && j < 17;

 }

}

Moreover, in this certain file two variables define the height and the max

number of children nodes (MC) that can have any node which is no-leaf. These

parameters are very important because are hard coded in the piece of code where the

node is described.

types:

 // Δύο τύποι καναλιών.

 // [Α] τα άμεσα κανάλια

 channel immediate_channel extends ned.DelayChannel

 {

 delay = 100ms;

 @display("ls=yellow,2");

 }

 // [Β] -τα έμμεσα κανάλια των step parents

 channel step_parent_channel extends ned.DelayChannel

 {

 delay = 100ms;

 @display("ls=blue,2");

 }

In specific these lines are referred to two types of channels, the direct and indirect

channels.

submodules:

 nodes[(mc^(height+1)-1) / (mc-1)]: WSN_node;

The simulation based on the submodules. The submodules are a table of object

of WSN_node class. The number correlates with a full general tree where all the no-

leaf nodes have as many children as it has been defined before. Some of these nodes

will be not used in order not to be the tree full.

connections allowunconnected:

for i=0..sizeof(nodes)-(mc^height)-1, for j=1..mc {

 nodes[i].gate++ <--> Channel <--> nodes[i*mc+j].gate++

 if i * mc + j <= 17;

 }

In these above lines are created the connections of the nodes and in the end of

the procedure will created the network tree. The channel of communication – Channel

is at 100msec as in all tutorials of OMNeT++.

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 66

For running the simulation the .ned file collaborates with the omnetpp.ini by

taking elements from it. In the omnetpp.ini file defined the two variables, the MC and

network’s height and also defined the position of the nodes. In order to change the

values should “clean” the project and rebuild it. The commands that should be used

are the followings:

 make clean; opp_msgc wsn_msg.msg; opp_makemake –f ; make ;

Below is presented the code of omnetpp.ini file. In this case, given as example

the height = 2 and the mc = 4.

General]

network = wsn_tree_net

**.height = 2

**.mc = 4

**.nodes[0].xpos = 480

**.nodes[0].ypos = 40

**.nodes[1].xpos = 110

**.nodes[1].ypos = 200

**.nodes[2].xpos = 350

**.nodes[2].ypos = 200

**.nodes[3].xpos = 590

**.nodes[3].ypos = 200

**.nodes[4].xpos = 830

**.nodes[4].ypos = 200

node 1 childs

**.nodes[5].xpos = 30

**.nodes[5].ypos = 400

**.nodes[6].xpos = 90

**.nodes[6].ypos = 400

**.nodes[7].xpos = 150

**.nodes[7].ypos = 400

**.nodes[8].xpos = 210

**.nodes[8].ypos = 400

node 2 childs

**.nodes[9].xpos = 270

**.nodes[9].ypos = 400

**.nodes[10].xpos = 330

**.nodes[10].ypos = 400

**.nodes[11].xpos = 390

**.nodes[11].ypos = 400

**.nodes[12].xpos = 450

**.nodes[12].ypos = 400

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 67

node 3 childs

**.nodes[13].xpos = 510

**.nodes[13].ypos = 400

**.nodes[14].xpos = 570

**.nodes[14].ypos = 400

**.nodes[15].xpos = 630

**.nodes[15].ypos = 400

**.nodes[16].xpos = 690

**.nodes[16].ypos = 400

node 4 childs

**.nodes[17].xpos = 750

**.nodes[17].ypos = 400

**.nodes[18].xpos = 810

**.nodes[18].ypos = 400

**.nodes[19].xpos = 870

**.nodes[19].ypos = 400

**.nodes[20].xpos = 930

**.nodes[20].ypos = 400

The source code of wsn_node.cc file:

#include"defines.hpp"

#include<omnetpp.h>

#include"wsn_msg_m.h"

class WSN_node : public cSimpleModule

{

public:

 WSN_node();

 ~WSN_node();

 static string INIT_MESSAGE;

 static string INFO_MESSAGE;

 static string ACK_MSG;

 static string SPN_REQUEST;

 static string SPN_REPLY;

 static int MAX_CHILD_NODES;

 static int TREE_DEPTH;

 static int MAX_WAIT_ACK_RETRIES;

 static int NODE_INDEX_TO_FAIL;

 static int ACK_MESSAGE_TO_FAIL;

protected:

 virtual Wsn_msg* generateMessage(string, int, int);

 virtual void initialize();

 virtual void handleMessage(cMessage* msg);

 virtual void handleNormalMessage(cMessage* msg);

 virtual void handleTimeoutMessage(cMessage* msg);

 virtual void initiate_network();

private:

 int parent_id; // the main parent of the

node

 int depth_id; // the depth of the node

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 68

 bool network_initiaded; // flag to indicate the network has

been initialized

 bool is_leaf_node; // flag whether is a leaf or

another node

 double pqi; // path quality indicator

 int msg_num;

 bool node_failed; // variable that indicates taht a

node has failed.

 simtime_t timeout; // timeout time

 cMessage *timeoutEvent; // holds pointer to the timeout self-

message

 int timeout_retries; // timeout retries

 int timeout_factor; // timeout increasing time factor

 vector<int> step_parents; // vector to hold the indices

 // of the step parent

nodes of a node

 map<int,int> mp_step_childs;

 Wsn_msg* info_msg; // information message

 Wsn_msg* ack_msg; // Acknowledgment message

 Wsn_msg* spn_request_msg; // Step parent request message;

 Wsn_msg* spn_reply_msg; // Step parent request message;

};

Define_Module(WSN_node);

// VARIOUS SIMULATION RELATED DEFINITIONS

int WSN_node::MAX_CHILD_NODES = 4;

int WSN_node::TREE_DEPTH = 2;

string WSN_node::INIT_MESSAGE = "INIT_MSG";

string WSN_node::INFO_MESSAGE = "INFO_MSG";

string WSN_node::ACK_MSG = "ACK_MSG";

string WSN_node::SPN_REQUEST = "SPN_REQUEST";

string WSN_node::SPN_REPLY = "SPN_REPLY";

int WSN_node::MAX_WAIT_ACK_RETRIES = 3;

int WSN_node::NODE_INDEX_TO_FAIL = 3;

int WSN_node::ACK_MESSAGE_TO_FAIL = 1;

WSN_node::WSN_node()

{

 this->network_initiaded = false;

 this->msg_num = 0;

 this->node_failed = false;

 timeout = 0.1; // this time is simulation time and not

real time - e.g. seconds etc.

 timeout_retries = 0;

 timeout_factor = 1;

 timeoutEvent = NULL;

 info_msg = NULL;

 ack_msg = NULL;

 spn_request_msg = NULL;

 spn_reply_msg = NULL;

}

WSN_node::~WSN_node()

{

 cancelAndDelete(timeoutEvent);

}

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 69

//===

==========

/*

 * Function that initializes the properties of each node of the

network,

 * always following a tree topology. All members of the node object

are

 * initialized. The function is called within the constructor.

 */

void WSN_node::initialize()

{

 int node_index = getIndex();

 if(node_index == 0)

 {

 parent_id = -1;

 depth_id = 0;

 // Boot the process scheduling the initial message as a

self-message.

 Wsn_msg* msg = generateMessage(INIT_MESSAGE,0,0);

 scheduleAt(0.0, msg);

 }

 else

 {

 parent_id = node_index / MAX_CHILD_NODES;

 if(node_index % MAX_CHILD_NODES == 0)

 parent_id-=1;

 int min_node_id = 0;

 int max_node_id = 0;

 int height = 0;

 while(1)

 {

 height++;

 min_node_id = min_node_id * MAX_CHILD_NODES + 1;

 max_node_id = max_node_id * MAX_CHILD_NODES +

MAX_CHILD_NODES;

 if(node_index >= min_node_id && node_index <=

max_node_id)

 {

 depth_id = height;

 break;

 }

 }

 }

 is_leaf_node = (depth_id == TREE_DEPTH);

 if(is_leaf_node == false)

 this->pqi = dblrand();

 if(is_leaf_node == true)

 timeoutEvent = new cMessage("timeoutEvent");

 //

 // [I] Filling the step parents information. The root node

(index 0)

 // has no step parent, so the vector will contain no nodes.

 //

 if(parent_id != -1)

 {

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 70

 // Below the root node and in the first level of the

tree,

 // the only step parent node is the root.

 if(depth_id == 1)

 step_parents.push_back(0);

 // For the rest of the nodes and depending on the tree

depth the vector

 // should contain all of the node indices but not those

of the directly connected

 // ones.

 else

 {

 int sum = 0;

 int prod = 1;

 for(int j=-1; j < depth_id - 2; j++)

 {

 sum += prod;

 prod *= MAX_CHILD_NODES;

 }

 for(int k = sum; k < prod+sum; k++)

 {

 if(k != parent_id)

 step_parents.push_back(k);

 }

 EV << "Node: " << getIndex() << endl;

 EV << "Step parents: ";

 vector<int>::iterator it = step_parents.begin();

 EV << *it;

 it++;

 for(; it != step_parents.end(); it++)

 {

 EV << ", " << *it;

 }

 EV << endl;

 }

 }

 //

 // [II] Filling the child node information for parent nodes.

 //

 if(parent_id != -1 && is_leaf_node == false)

 {

 int sum = 0;

 int prod = 1;

 for(int k = 0; k <= depth_id; k++)

 {

 sum += prod;

 prod *= MAX_CHILD_NODES;

 }

 int gate_count = -1;

 for(int j = sum; j < sum + prod; j++)

 {

 if(j < node_index * MAX_CHILD_NODES + 1 ||

 j > (node_index+1) * MAX_CHILD_NODES)

 {

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 71

 gate_count++;

 mp_step_childs.insert(pair<int,int>(j,gate_count));

 }

 }

// map<int,int>::iterator it;

// EV << "Node: " << getIndex() << endl;

// EV << "Step" << "Child gate" << endl;

//

// for(it = mp_step_childs.begin(); it !=

mp_step_childs.end(); it++){

// EV << it->first << " - " << it->second << endl;

// }

 }

}

//===

==========

Wsn_msg* WSN_node::generateMessage(string content, int destination,

int origin_id)

{

 Wsn_msg* a_msg = new Wsn_msg(content.c_str());

 a_msg->setSource(getIndex());

 a_msg->setDestination(destination);

 if(content == WSN_node::INFO_MESSAGE)

 {

 if(origin_id == getIndex())

 msg_num++;

 a_msg->setSeq_num(msg_num);

 }

 if(origin_id == getIndex() || (

 content == WSN_node::ACK_MSG || content ==

WSN_node::INFO_MESSAGE))

 {

 a_msg->setOrigin(origin_id);

 }

 return a_msg;

}

//===

==========

void WSN_node::initiate_network()

{

 int gates_connected = this->gateSize("gate");

 if(parent_id == -1)

 {

 for(int j=0; j<gates_connected; j++)

 {

 Wsn_msg* a_msg = generateMessage(INIT_MESSAGE,

 getIndex() *

MAX_CHILD_NODES + j+1, -1);

 send(a_msg,"gate$o",j);

 }

 }

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 72

 else

 {

 for(int j=1; j<gates_connected; j++)

 {

 Wsn_msg* a_msg = generateMessage(INIT_MESSAGE,

 getIndex() *

MAX_CHILD_NODES + j, -1);

 send(a_msg,"gate$o",j);

 }

 }

}

//===

==========

//

// [X]

//

// Function that handles the two types of events a node can receive.

// Normal node-to-node events and self timeout events.

//

void WSN_node::handleMessage(cMessage* msg)

{

 // [Y] Timeout event handling

 if(msg == timeoutEvent)

 {

 handleTimeoutMessage(msg);

 }

 // [Z] Node-to-node event handling

 else

 {

 handleNormalMessage(msg);

 }

}

//===

==========

//

// [Y]

//

// Function that handles all other types of messages but the timeout

ones.

//

void WSN_node::handleNormalMessage(cMessage* msg)

{

 Wsn_msg* the_msg = check_and_cast<Wsn_msg*>(msg);

 string content = the_msg->getName();

 //

 // [A] INITIALIZATION MESSAGE

 //

 if(content == INIT_MESSAGE && network_initiaded == false)

 {

 network_initiaded = true;

 if(parent_id != -1)

 bubble("INIT_NET_MSG");

 delete msg;

 if(is_leaf_node == false)

 initiate_network();

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 73

 // a leaf node will send a INFORMATION MESSAGE and also

schedule the timeout timer.

 else

 {

 info_msg =

generateMessage(INFO_MESSAGE,parent_id,getIndex());

 send(info_msg,"gate$o",0);

 // this event is independent from the event queue

that are send between the nodes

 scheduleAt(simTime()+timeout, timeoutEvent);

 }

 }

 //

 // [B] INFORMATION MESSAGE

 //

 else if(content == INFO_MESSAGE)

 {

 if(the_msg->getDestination() == getIndex())

 {

 if(parent_id != -1 && is_leaf_node == false)

 {

 // FORWARDING THE INFORMATION MESSAGE -

MIDDLE NODE - TO ROOT

 info_msg =

generateMessage(INFO_MESSAGE,parent_id,the_msg->getOrigin());

 info_msg->setSeq_num(the_msg->getSeq_num());

 delete msg;

 send(info_msg,"gate$o",0);

 }

 else if(parent_id == -1)

 {

 ack_msg = generateMessage(ACK_MSG,the_msg-

>getSource(),

 the_msg->getOrigin());

 ack_msg->setSeq_num(the_msg->getSeq_num());

 delete msg;

 send(ack_msg,"gate$o",ack_msg-

>getDestination()-1);

 }

 }

 }

 //

 // [C] ACKNOWLEDGEMENT MESSAGE

 //

 else if(content == ACK_MSG)

 {

 // Leaf node received its ACK message.

 if(the_msg->getOrigin() == getIndex())

 {

 EV << "Node: " << the_msg->getOrigin()

 << " - Sequence num: " << the_msg-

>getSeq_num() << endl;

 delete msg;

 bubble("ACK_MSG - RECEIVED - NEW INFO MESSAGE");

 // RESTART INFO MESSAGE TRANSMISSION

 info_msg =

generateMessage(INFO_MESSAGE,parent_id,getIndex());

 cancelEvent(timeoutEvent);

 // reset timeout retries and wait time

 timeout = 0.1;

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 74

 timeout_retries = 0;

 timeout_factor = 1;

 send(info_msg,"gate$o",0);

 scheduleAt(simTime()+timeout, timeoutEvent);

 }

 else

 {

 // middle node ACK message handling

 if(parent_id != -1)

 {

 if(the_msg->getOrigin() != getIndex())

 {

 // simulate link failure

 // In first ACK message sent by the

root, and if the node index is 3

 // and the ACK message sequence is 1

the failure flag is raised to true

 // and the node does not forward any

message. For any subsequent messages

 // that will arrive to the node, the

failure flag will be true already...

 if(node_failed == false)

 {

 if(NODE_INDEX_TO_FAIL ==

getIndex() &&

 ACK_MESSAGE_TO_FAIL

== the_msg->getSeq_num())

 {

 bubble("NODE FAILURE!!!");

 node_failed = true;

 delete msg;

 return;

 }

 }

 else

 {

 // ...and so no further message

action is taken.

 delete msg;

 return;

 }

 // If node has not failed forwards the

ACK message to the proper child

 // leaf node.

 int msg_origin = the_msg->getOrigin();

 int tmp = 0;

 int port = 0;

 for(int i=1; i<=MAX_CHILD_NODES; i++)

 {

 tmp = MAX_CHILD_NODES *

getIndex() + i;

 if(tmp == msg_origin)

 {

 port = i;

 break;

 }

 }

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 75

 ack_msg =

generateMessage(ACK_MSG,the_msg->getDestination(),

 the_msg->getOrigin());

 ack_msg->setSeq_num(the_msg-

>getSeq_num());

 delete msg;

 send(ack_msg,"gate$o",port);

 }

 }

 }

 }

 //

 // [D] STEP PARENT REQUEST MESSAGE

 //

 else if(content == SPN_REQUEST)

 {

 bubble("STEP PARENT REQUEST MESSAGE");

 // 1. Check if the maximum number of child nodes are

connected

 int child_nodes_connected = this->gateSize("gate");

 // subtract one because of the parent node connection

 child_nodes_connected--;

 EV << "Child nodes connected: " << child_nodes_connected

<< endl;

 // If the node is connected already to the maximum number

of child nodes

 // take no action than display an information message.

 if(child_nodes_connected == MAX_CHILD_NODES)

 {

 bubble("NO CONNECTIONS AVAILABLE");

 delete msg;

 return;

 }

 else

 {

 // in any other case a unicast message must be sent

to each SPN reply message

 // received.

 bubble("CONNECTIONS AVAILABLE");

 spn_reply_msg = generateMessage(SPN_REPLY,the_msg-

>getSource(),-1);

 // set PQI (= Path Quality Indicator)

 spn_reply_msg->setPqi(this->pqi);

 spn_reply_msg->setDisplayString("i=msg/resp_s");

 map<int,int>::iterator it;

 int port_to_reply = -1;

 for(it = mp_step_childs.begin(); it !=

mp_step_childs.end(); it++){

 if((*it).first == the_msg->getSource())

 {

 port_to_reply = (*it).second;

 break;

 }

 }

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 76

 EV << "Child to reply: " << the_msg->getSource() <<

endl;

 EV << "Gate to reply: " << port_to_reply << endl;

 // delete message avoid memory leaks

 delete msg;

 send(spn_reply_msg, "PAN_gate$o",port_to_reply);

 }

 }

 //

 // [E] STEP PARENT REPLY MESSAGE - In this simple case only

leaf nodes will receive

 // such messages.

 //

 else if(content == SPN_REPLY)

 {

 bubble("PARENT NODE AVAILABLE");

 EV << "Step parent: "<< the_msg->getSource() << " - PQI:

" << the_msg->getPqi() << endl;

 //TODO: In order to select one of multiple parent nodes

to connect to with respect

 // to PQI another timer must be used that actually

will wait for more parent

 // nodes to reply. In case mor than two reply the

best PQI is the one that

 // the child node must be connected to.

 cModule* spn_sender_module = the_msg->getSenderModule();

 cGate* spn_sender_gate = the_msg->getSenderGate();

 spn_sender_gate->disconnect();

 cModule* child_arrival_module = the_msg-

>getArrivalModule();

 cGate* child_arrival_gate = the_msg->getArrivalGate();

 child_arrival_gate->disconnect();

 // Simple case connect to the parent that replied

 int gate_type_connected = spn_sender_module-

>gateSize("gate");

 EV << gate_type_connected << endl;

 spn_sender_module-

>setGateSize("gate",gate_type_connected+1);

 cChannelType *channelType =

cChannelType::get("wsn_tree_net.immediate_channel");

 cChannel *channel_from_parent = channelType-

>create("channel");

 cChannel *channel_to_parent = channelType-

>create("channel");

 child_arrival_module->gate("gate$o",0)->disconnect();

 child_arrival_module->gate("gate$i",0)->disconnect();

 //===

========

 child_arrival_module->gate("gate$i",0)->connectTo(

 spn_sender_module-

>gate("gate$o",gate_type_connected), channel_from_parent);

 child_arrival_module->gate("gate$o",0)->connectTo(

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 77

 spn_sender_module-

>gate("gate$i",gate_type_connected), channel_to_parent);

 this->parent_id = spn_sender_module->getIndex();

 this->setIndex(spn_sender_module->getIndex() *

MAX_CHILD_NODES + gate_type_connected, 0);

 info_msg =

generateMessage(INFO_MESSAGE,parent_id,getIndex());

 delete msg;

 timeout_retries = 0;

 send(info_msg,"gate$o",0);

 // this event is independent from the event queue that

are send between the nodes

 scheduleAt(simTime()+timeout, timeoutEvent);

 }

}

//===

==========

//

// [Y] Function that handles the timeout events of self messages.

//

void WSN_node::handleTimeoutMessage(cMessage* msg)

{

 EV << "Timeout expired\n";

 // If the timeout retries are equal to the max then the Step-

Parent-Request

 // message must be broadcasted.

 if(timeout_retries == MAX_WAIT_ACK_RETRIES)

 {

 EV << "Parent node not functional - Broadcast step parent

message\n";

 // decrease the message sequence number since the node

has never received an ACK

 // message that the root has received the information. So

the message must be resent.

 // But before it is resent the node must be reconnected

with another parent node.

 this->msg_num--;

 // 1. Find out how many personal area parent nodes are

connected.

 int PAN_parents_connected = this->gateSize("PAN_gate");

 EV << "Step parents connected: " << PAN_parents_connected

<< endl;

 // For each step parent node sent a SPN_REQUEST message.

 for(int k = 0; k < PAN_parents_connected; k++)

 {

 Wsn_msg* a_msg =

generateMessage(SPN_REQUEST,step_parents[k],-1);

 a_msg->setDisplayString("i=msg/bcast_s");

 send(a_msg,"PAN_gate$o",k);

 }

 }

 else

 {

 // re-schedule a timeout event again

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 78

 EV << "Wait for acknowledgment, re-schedule timeout event

timer\n";

 timeout_retries++;

 //timeout_factor++;

 timeout = timeout_factor * timeout;

 scheduleAt(simTime()+timeout, timeoutEvent);

 }

}

This file describes the node and is the “heart” of the simulation. The five

variables that are presented below are static and are used for the types of messages

which transferred between the nodes.

static string INIT_MESSAGE;

static string INFO_MESSAGE;

static string ACK_MSG;

static string SPN_REQUEST;

static string SPN_REPLY;

The two following variables correlated with max number of child node and the

depth of the tree, as mentioned before.

static int MAX_CHILD_NODES;

static int TREE_DEPTH;

The following lines of the code present the attitude of the node. Specifically,

the protected section has the functions of the node’s attitude and the private section

has members which define how a node should react in any type of message.

Moreover, in the function virtual void initialize (); initialized all the members of the

object which are necessary for the routing of the messages. Also in this function a self

message is developed for the root node in order to start the procedure of sending and

accepting the messages. Furthermore in the function virtual void initiate_network(); a

message is sent to the nodes in order to inform that the network is ready to begin.

class WSN_node : public cSimpleModule

{

public:

 WSN_node();

 static string INIT_MESSAGE;

 static string INFO_MESSAGE;

 static string ACK_MSG;

 static string SPN_REQUEST;

 static string SPN_REPLY;

 static int MAX_CHILD_NODES;

 static int TREE_DEPTH;

protected:

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 79

 virtual Wsn_msg* generateMessage(string, int, int);

 virtual void initialize();

 virtual void handleMessage(cMessage* msg);

 virtual void handleNormalMessage(cMessage* msg);

 virtual void handleTimeoutMessage(cMessage* msg);

 virtual void initiate_network();

private:

 int parent_id; // the main parent of the node

 int depth_id; // the depth of the node

 bool network_initiaded; // flag to indicate the network has

been initialized

 bool is_leaf_node; // flag whether is a leaf or

another node

 int pqi; // path quality indicator

 int msg_num;

 bool node_failed; // variable that indicates taht a node

has failed.

 simtime_t timeout; // timeout time

 cMessage *timeoutEvent; // holds pointer to the timeout self-

message

 int timeout_retries; // timeout retries

 int timeout_factor; // timeout increasing time factor

 vector<int> step_parents; // vector to hold the indices

 // of the step parent nodes

of a node

 map<int,int> mp_step_childs;

 Wsn_msg* info_msg; // information message

 Wsn_msg* ack_msg; // Acknowledgment message

 Wsn_msg* spn_request_msg; // Step parent request message;

 Wsn_msg* spn_reply_msg; // Step parent request message;

};

The source code of wsn_msg_m.cc file:
//

// Generated file, do not edit! Created by opp_msgc 4.1 from

wsn_msg.msg.

//

// Disable warnings about unused variables, empty switch stmts, etc:

#ifdef _MSC_VER

pragma warning(disable:4101)

pragma warning(disable:4065)

#endif

#include <iostream>

#include <sstream>

#include "wsn_msg_m.h"

// Template rule which fires if a struct or class doesn't have

operator<<

template<typename T>

std::ostream& operator<<(std::ostream& out,const T&) {return out;}

// Another default rule (prevents compiler from choosing base class'

doPacking())

template<typename T>

void doPacking(cCommBuffer *, T& t) {

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 80

 throw cRuntimeError("Parsim error: no doPacking() function for

type %s or its base class (check .msg and _m.cc/h

files!)",opp_typename(typeid(t)));

}

template<typename T>

void doUnpacking(cCommBuffer *, T& t) {

 throw cRuntimeError("Parsim error: no doUnpacking() function for

type %s or its base class (check .msg and _m.cc/h

files!)",opp_typename(typeid(t)));

}

Register_Class(Wsn_msg);

Wsn_msg::Wsn_msg(const char *name, int kind) : cMessage(name,kind)

{

 this->source_var = 0;

 this->destination_var = 0;

 this->seq_num_var = 0;

 this->origin_var = 0;

 this->pqi_var = 0;

 this->displayString_var = "i=msg/floppy_s,kind";

}

Wsn_msg::Wsn_msg(const Wsn_msg& other) : cMessage()

{

 setName(other.getName());

 operator=(other);

}

Wsn_msg::~Wsn_msg()

{

}

Wsn_msg& Wsn_msg::operator=(const Wsn_msg& other)

{

 if (this==&other) return *this;

 cMessage::operator=(other);

 this->source_var = other.source_var;

 this->destination_var = other.destination_var;

 this->seq_num_var = other.seq_num_var;

 this->origin_var = other.origin_var;

 this->pqi_var = other.pqi_var;

 this->displayString_var = other.displayString_var;

 return *this;

}

void Wsn_msg::parsimPack(cCommBuffer *b)

{

 cMessage::parsimPack(b);

 doPacking(b,this->source_var);

 doPacking(b,this->destination_var);

 doPacking(b,this->seq_num_var);

 doPacking(b,this->origin_var);

 doPacking(b,this->pqi_var);

 doPacking(b,this->displayString_var);

}

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 81

void Wsn_msg::parsimUnpack(cCommBuffer *b)

{

 cMessage::parsimUnpack(b);

 doUnpacking(b,this->source_var);

 doUnpacking(b,this->destination_var);

 doUnpacking(b,this->seq_num_var);

 doUnpacking(b,this->origin_var);

 doUnpacking(b,this->pqi_var);

 doUnpacking(b,this->displayString_var);

}

int Wsn_msg::getSource() const

{

 return source_var;

}

void Wsn_msg::setSource(int source_var)

{

 this->source_var = source_var;

}

int Wsn_msg::getDestination() const

{

 return destination_var;

}

void Wsn_msg::setDestination(int destination_var)

{

 this->destination_var = destination_var;

}

int Wsn_msg::getSeq_num() const

{

 return seq_num_var;

}

void Wsn_msg::setSeq_num(int seq_num_var)

{

 this->seq_num_var = seq_num_var;

}

int Wsn_msg::getOrigin() const

{

 return origin_var;

}

void Wsn_msg::setOrigin(int origin_var)

{

 this->origin_var = origin_var;

}

double Wsn_msg::getPqi() const

{

 return pqi_var;

}

void Wsn_msg::setPqi(double pqi_var)

{

 this->pqi_var = pqi_var;

}

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 82

const char * Wsn_msg::getDisplayString() const

{

 return displayString_var.c_str();

}

void Wsn_msg::setDisplayString(const char * displayString_var)

{

 this->displayString_var = displayString_var;

}

class Wsn_msgDescriptor : public cClassDescriptor

{

 public:

 Wsn_msgDescriptor();

 virtual ~Wsn_msgDescriptor();

 virtual bool doesSupport(cObject *obj) const;

 virtual const char *getProperty(const char *propertyname) const;

 virtual int getFieldCount(void *object) const;

 virtual const char *getFieldName(void *object, int field) const;

 virtual int findField(void *object, const char *fieldName) const;

 virtual unsigned int getFieldTypeFlags(void *object, int field)

const;

 virtual const char *getFieldTypeString(void *object, int field)

const;

 virtual const char *getFieldProperty(void *object, int field,

const char *propertyname) const;

 virtual int getArraySize(void *object, int field) const;

 virtual std::string getFieldAsString(void *object, int field, int

i) const;

 virtual bool setFieldAsString(void *object, int field, int i,

const char *value) const;

 virtual const char *getFieldStructName(void *object, int field)

const;

 virtual void *getFieldStructPointer(void *object, int field, int

i) const;

};

Register_ClassDescriptor(Wsn_msgDescriptor);

Wsn_msgDescriptor::Wsn_msgDescriptor() : cClassDescriptor("Wsn_msg",

"cMessage")

{

}

Wsn_msgDescriptor::~Wsn_msgDescriptor()

{

}

bool Wsn_msgDescriptor::doesSupport(cObject *obj) const

{

 return dynamic_cast<Wsn_msg *>(obj)!=NULL;

}

const char *Wsn_msgDescriptor::getProperty(const char *propertyname)

const

{

 cClassDescriptor *basedesc = getBaseClassDescriptor();

 return basedesc ? basedesc->getProperty(propertyname) : NULL;

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 83

}

int Wsn_msgDescriptor::getFieldCount(void *object) const

{

 cClassDescriptor *basedesc = getBaseClassDescriptor();

 return basedesc ? 6+basedesc->getFieldCount(object) : 6;

}

unsigned int Wsn_msgDescriptor::getFieldTypeFlags(void *object, int

field) const

{

 cClassDescriptor *basedesc = getBaseClassDescriptor();

 if (basedesc) {

 if (field < basedesc->getFieldCount(object))

 return basedesc->getFieldTypeFlags(object, field);

 field -= basedesc->getFieldCount(object);

 }

 static unsigned int fieldTypeFlags[] = {

 FD_ISEDITABLE,

 FD_ISEDITABLE,

 FD_ISEDITABLE,

 FD_ISEDITABLE,

 FD_ISEDITABLE,

 FD_ISEDITABLE,

 };

 return (field>=0 && field<6) ? fieldTypeFlags[field] : 0;

}

const char *Wsn_msgDescriptor::getFieldName(void *object, int field)

const

{

 cClassDescriptor *basedesc = getBaseClassDescriptor();

 if (basedesc) {

 if (field < basedesc->getFieldCount(object))

 return basedesc->getFieldName(object, field);

 field -= basedesc->getFieldCount(object);

 }

 static const char *fieldNames[] = {

 "source",

 "destination",

 "seq_num",

 "origin",

 "pqi",

 "displayString",

 };

 return (field>=0 && field<6) ? fieldNames[field] : NULL;

}

int Wsn_msgDescriptor::findField(void *object, const char *fieldName)

const

{

 cClassDescriptor *basedesc = getBaseClassDescriptor();

 int base = basedesc ? basedesc->getFieldCount(object) : 0;

 if (fieldName[0]=='s' && strcmp(fieldName, "source")==0) return

base+0;

 if (fieldName[0]=='d' && strcmp(fieldName, "destination")==0)

return base+1;

 if (fieldName[0]=='s' && strcmp(fieldName, "seq_num")==0) return

base+2;

 if (fieldName[0]=='o' && strcmp(fieldName, "origin")==0) return

base+3;

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 84

 if (fieldName[0]=='p' && strcmp(fieldName, "pqi")==0) return

base+4;

 if (fieldName[0]=='d' && strcmp(fieldName, "displayString")==0)

return base+5;

 return basedesc ? basedesc->findField(object, fieldName) : -1;

}

const char *Wsn_msgDescriptor::getFieldTypeString(void *object, int

field) const

{

 cClassDescriptor *basedesc = getBaseClassDescriptor();

 if (basedesc) {

 if (field < basedesc->getFieldCount(object))

 return basedesc->getFieldTypeString(object, field);

 field -= basedesc->getFieldCount(object);

 }

 static const char *fieldTypeStrings[] = {

 "int",

 "int",

 "int",

 "int",

 "double",

 "string",

 };

 return (field>=0 && field<6) ? fieldTypeStrings[field] : NULL;

}

const char *Wsn_msgDescriptor::getFieldProperty(void *object, int

field, const char *propertyname) const

{

 cClassDescriptor *basedesc = getBaseClassDescriptor();

 if (basedesc) {

 if (field < basedesc->getFieldCount(object))

 return basedesc->getFieldProperty(object, field,

propertyname);

 field -= basedesc->getFieldCount(object);

 }

 switch (field) {

 default: return NULL;

 }

}

int Wsn_msgDescriptor::getArraySize(void *object, int field) const

{

 cClassDescriptor *basedesc = getBaseClassDescriptor();

 if (basedesc) {

 if (field < basedesc->getFieldCount(object))

 return basedesc->getArraySize(object, field);

 field -= basedesc->getFieldCount(object);

 }

 Wsn_msg *pp = (Wsn_msg *)object; (void)pp;

 switch (field) {

 default: return 0;

 }

}

std::string Wsn_msgDescriptor::getFieldAsString(void *object, int

field, int i) const

{

 cClassDescriptor *basedesc = getBaseClassDescriptor();

 if (basedesc) {

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 85

 if (field < basedesc->getFieldCount(object))

 return basedesc->getFieldAsString(object,field,i);

 field -= basedesc->getFieldCount(object);

 }

 Wsn_msg *pp = (Wsn_msg *)object; (void)pp;

 switch (field) {

 case 0: return long2string(pp->getSource());

 case 1: return long2string(pp->getDestination());

 case 2: return long2string(pp->getSeq_num());

 case 3: return long2string(pp->getOrigin());

 case 4: return double2string(pp->getPqi());

 case 5: return oppstring2string(pp->getDisplayString());

 default: return "";

 }

}

bool Wsn_msgDescriptor::setFieldAsString(void *object, int field, int

i, const char *value) const

{

 cClassDescriptor *basedesc = getBaseClassDescriptor();

 if (basedesc) {

 if (field < basedesc->getFieldCount(object))

 return basedesc->setFieldAsString(object,field,i,value);

 field -= basedesc->getFieldCount(object);

 }

 Wsn_msg *pp = (Wsn_msg *)object; (void)pp;

 switch (field) {

 case 0: pp->setSource(string2long(value)); return true;

 case 1: pp->setDestination(string2long(value)); return true;

 case 2: pp->setSeq_num(string2long(value)); return true;

 case 3: pp->setOrigin(string2long(value)); return true;

 case 4: pp->setPqi(string2double(value)); return true;

 case 5: pp->setDisplayString((value)); return true;

 default: return false;

 }

}

const char *Wsn_msgDescriptor::getFieldStructName(void *object, int

field) const

{

 cClassDescriptor *basedesc = getBaseClassDescriptor();

 if (basedesc) {

 if (field < basedesc->getFieldCount(object))

 return basedesc->getFieldStructName(object, field);

 field -= basedesc->getFieldCount(object);

 }

 static const char *fieldStructNames[] = {

 NULL,

 NULL,

 NULL,

 NULL,

 NULL,

 NULL,

 };

 return (field>=0 && field<6) ? fieldStructNames[field] : NULL;

}

void *Wsn_msgDescriptor::getFieldStructPointer(void *object, int

field, int i) const

{

 cClassDescriptor *basedesc = getBaseClassDescriptor();

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 86

 if (basedesc) {

 if (field < basedesc->getFieldCount(object))

 return basedesc->getFieldStructPointer(object, field, i);

 field -= basedesc->getFieldCount(object);

 }

 Wsn_msg *pp = (Wsn_msg *)object; (void)pp;

 switch (field) {

 default: return NULL;

 }

}

The source code of wsn_msg_m.h file:

//

// Generated file, do not edit! Created by opp_msgc 4.1 from

wsn_msg.msg.

//

#ifndef _WSN_MSG_M_H_

#define _WSN_MSG_M_H_

#include <omnetpp.h>

// opp_msgc version check

#define MSGC_VERSION 0x0401

#if (MSGC_VERSION!=OMNETPP_VERSION)

error Version mismatch! Probably this file was generated by an

earlier version of opp_msgc: 'make clean' should help.

#endif

/**

 * Class generated from <tt>wsn_msg.msg</tt> by opp_msgc.

 * <pre>

 * message Wsn_msg {

 * int source;

 * int destination;

 * int seq_num = 0;

 * int origin;

 * double pqi;

 * string displayString = "i=msg/floppy_s,kind";

 * }

 * </pre>

 */

class Wsn_msg : public ::cMessage

{

 protected:

 int source_var;

 int destination_var;

 int seq_num_var;

 int origin_var;

 double pqi_var;

 opp_string displayString_var;

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 87

 // protected and unimplemented operator==(), to prevent

accidental usage

 bool operator==(const Wsn_msg&);

 public:

 Wsn_msg(const char *name=NULL, int kind=0);

 Wsn_msg(const Wsn_msg& other);

 virtual ~Wsn_msg();

 Wsn_msg& operator=(const Wsn_msg& other);

 virtual Wsn_msg *dup() const {return new Wsn_msg(*this);}

 virtual void parsimPack(cCommBuffer *b);

 virtual void parsimUnpack(cCommBuffer *b);

 // field getter/setter methods

 virtual int getSource() const;

 virtual void setSource(int source_var);

 virtual int getDestination() const;

 virtual void setDestination(int destination_var);

 virtual int getSeq_num() const;

 virtual void setSeq_num(int seq_num_var);

 virtual int getOrigin() const;

 virtual void setOrigin(int origin_var);

 virtual double getPqi() const;

 virtual void setPqi(double pqi_var);

 virtual const char * getDisplayString() const;

 virtual void setDisplayString(const char * displayString_var);

};

inline void doPacking(cCommBuffer *b, Wsn_msg& obj)

{obj.parsimPack(b);}

inline void doUnpacking(cCommBuffer *b, Wsn_msg& obj)

{obj.parsimUnpack(b);}

#endif // _WSN_MSG_M_H_

The source code of Makefile file:

OMNeT++/OMNEST Makefile for ergasia1

This file was generated with the command:

opp_makemake -f --deep -O out

Name of target to be created (-o option)

TARGET = ergasia1$(EXE_SUFFIX)

User interface (uncomment one) (-u option)

USERIF_LIBS = $(ALL_ENV_LIBS) # that is, $(TKENV_LIBS) $(CMDENV_LIBS)

#USERIF_LIBS = $(CMDENV_LIBS)

#USERIF_LIBS = $(TKENV_LIBS)

C++ include paths (with -I)

INCLUDE_PATH = -I.

Additional object and library files to link with

EXTRA_OBJS =

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 88

Additional libraries (-L, -l options)

LIBS =

Output directory

PROJECT_OUTPUT_DIR = out

PROJECTRELATIVE_PATH =

O = $(PROJECT_OUTPUT_DIR)/$(CONFIGNAME)/$(PROJECTRELATIVE_PATH)

Object files for local .cc and .msg files

OBJS = $O/wsn_node.o $O/wsn_msg_m.o

Message files

MSGFILES = \

 wsn_msg.msg

#--

Pull in OMNeT++ configuration (Makefile.inc or configuser.vc)

ifneq ("$(OMNETPP_CONFIGFILE)","")

CONFIGFILE = $(OMNETPP_CONFIGFILE)

else

ifneq ("$(OMNETPP_ROOT)","")

CONFIGFILE = $(OMNETPP_ROOT)/Makefile.inc

else

CONFIGFILE = $(shell opp_configfilepath)

endif

endif

ifeq ("$(wildcard $(CONFIGFILE))","")

$(error Config file '$(CONFIGFILE)' does not exist -- add the OMNeT++

bin directory to the path so that opp_configfilepath can be found, or

set the OMNETPP_CONFIGFILE variable to point to Makefile.inc)

endif

include $(CONFIGFILE)

Simulation kernel and user interface libraries

OMNETPP_LIB_SUBDIR = $(OMNETPP_LIB_DIR)/$(TOOLCHAIN_NAME)

OMNETPP_LIBS = -L"$(OMNETPP_LIB_SUBDIR)" -L"$(OMNETPP_LIB_DIR)"

$(USERIF_LIBS) $(KERNEL_LIBS) $(SYS_LIBS)

COPTS = $(CFLAGS) $(INCLUDE_PATH) -I$(OMNETPP_INCL_DIR)

MSGCOPTS = $(INCLUDE_PATH)

#--

User-supplied makefile fragment(s)

>>>

<<<

#--

Main target

all: $(TARGET)

$(TARGET) : $O/$(TARGET)

 $(LN) $O/$(TARGET) .

$O/$(TARGET): $(OBJS) $(wildcard $(EXTRA_OBJS)) Makefile

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 89

 @$(MKPATH) $O

 $(CXX) $(LDFLAGS) -o $O/$(TARGET) $(OBJS) $(EXTRA_OBJS)

$(WHOLE_ARCHIVE_ON) $(LIBS) $(WHOLE_ARCHIVE_OFF) $(OMNETPP_LIBS)

.PHONY:

.SUFFIXES: .cc

$O/%.o: %.cc

 @$(MKPATH) $(dir $@)

 $(CXX) -c $(COPTS) -o $@ $<

%_m.cc %_m.h: %.msg

 $(MSGC) -s _m.cc $(MSGCOPTS) $?

msgheaders: $(MSGFILES:.msg=_m.h)

clean:

 -rm -rf $O

 -rm -f ergasia1 ergasia1.exe libergasia1.so libergasia1.a

libergasia1.dll libergasia1.dylib

 -rm -f ./*_m.cc ./*_m.h

cleanall: clean

 -rm -rf $(PROJECT_OUTPUT_DIR)

depend:

 $(MAKEDEPEND) $(INCLUDE_PATH) -f Makefile -P\$$O/ --

$(MSG_CC_FILES) ./*.cc

DO NOT DELETE THIS LINE -- make depend depends on it.

$O/wsn_node.o: wsn_node.cc

$O/wsn_msg_m.o: wsn_msg_m.cc \

 wsn_msg_m.h

The source code of wsn_msg.msg file:

// 1. Source node id

// 2. Destination node id

// 3. Sequence number of message sent by the same node

// 4. The origin node of the message. This information is used for

the acknowledgement

// type of messages so as to be forwarded to the correct origin

node.

// 5. PQI (=Path Quality Indicator).

// 6. Message’s attribute which has the ability to check the kind of

// the bitmap will appeared in the simulation in order differentiate

// the types of the messages

message Wsn_msg {

 int source;

 int destination;

 int seq_num = 0;

 int origin;

 int pqi;

 string displayString = "i=msg/floppy_s,kind";

}

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 90

This file describes the messages that are sent between the nodes. It contains

important information like source and destination address, the origin of the message

and the number of the messages. In order to be created this class should be given the

command of >opp_msgc wsn_msg.msg.

In general the simulation process is described below as shown in the Figures

38, 39, 40, 41, 42 and 43. In this case where appeared below are used as value of

height = 2, MC = 4. In this certain example the difference from the paper is that the

node 4 has only one child node. As mentioned before if anyone wants to change the

values and xpos, ypos should re-assign them in omnetpp.ini file.

Figure 38: an example of simulation’s topology

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 91

Figure 39: a shot of simulation where the node sends a message

Figure 40: a shot of simulation, in this instant the node 3 is failed

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 92

Figure 41: a shot of simulation, in this instant all the child nodes have accepted an ACK

message except for the child nodes of node 3

Figure 42: a shot of simulation, in this instant spn_requests are send from the child nodes of

the failure node to the other

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 93

Figure 43: a shot of simulation, in this instant spn_replies are send from the node4 to the

child nodes of the failure node, the other possible step parents inform that are not available

Then the node 4 becomes the step parent of the child nodes of the failure node 3.

Figure 44: this window runs simultaneously with tree network and shows what happens in the

network every instant of the simulation

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 94

8. Results

In this simulation is tried to create a spn algorithm similar to this of the paper

but with some important differences. The scenarios that have been used are more

complex. (e.g. some nodes may have only one child node or some may not have any

child node).This has as an aim the evaluation of the different reactions may have the

network. In general has as an aim the evaluation of the spn algorithm which proposed

Gee Keng Ee, Chee KYun Ng, Nor Kamariah Noordin and Borhanuddin Mohd Ali in

their paper. After the writing of a great piece of code are tried many examples. A lot

of effort has been given in order to thoroughly evaluate this simulation. In specific, a

range of values have been used in the ‘wsn_tree_net.height’ and in the

‘wsn_tree_net.mc’, in the omnetpp.ini file which as mentioned in the previous

chapter. As mentioned in the previous chapter if anyone want to change the values of

variables should change the values from the omnetpp.ini file and then rebuild it. Thus,

initially is clearly observed that there are not great differences in the reaction of the

system. The network reacts with the same way in any value of height and in any value

of MC. It follows the same procedure.

In specific, the different values of the MC affects on the time. This means that

when the value of MC is high the procedure of communication via the nodes lasts

more than in the case where the value of MC is low. The same happens when the

value of net’s height is high. On the other hand, when these two variables have high

value, the node which search for a step parent node has much more possibilities to

find the right node easier and faster.

Furthermore, the value of the MC and network’s height affects the possibility

of errors. When a node which search for a step parent, has to send request messages to

many neighbors, the great number of neighbors may increase the possibility of an

error. In specific, the request sender may send to a wrong node a request or the node

which send the reply may send wrong information about its condition (if has the

ability to be a step parent) or may send the reply to a wrong destination.

Finally when the value of MC is high then the data rate is high, while more

data packets should be send in the parent nodes in the same time.

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 95

9. Conclusion and Future Work

By trying to follow the initial program the dissertation over the 6LoPAN has

finished. The 6LoWPAN routing is a very new area which aggregates the interest of

many experts. For this reason, in order to reach the 6LoWPAN routing, have to make

a mention of 6LoWPAN and the two parts which compose this type of network, the

WSN and the IPv6. In general the combination of WSNs and IPv6 is also a quite new

and very interesting subject. Thus, initially in this paper, a brief and explicative

commentary with the basic points, of the general concepts, WSNs, IPv6 and

6LoWPAN, are presented. Thereafter, the paper and the simulation focus on the main

subject of the project, as mentioned before, on the 6LoWPAN routing.

The simulation has as a starting point the SPN algorithm. In this paper, the

simulation tries to give different values to the variables of tree network topology, in

order to evaluate the reaction of the network in any different case. As far as the

network’s reaction is concerned there are not remarkable changes, in the different

values. The differences have to do with the time period, the error rate and overhead.

Further work, will address the optimization of the SPN algorithm by reducing

the percentage of the breaking links and of the error messages. Moreover, a further

study could be the development of a new algorithm and why not of a new protocol

over 6LWPAN because there are not many.

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

 96

10. References

[1] Joel J. P. C. Rodrigues, Paulo A. C. S. Neves, “A survey on IP-based wireless

sensor network solutions”, published online in Wiley InterScience

www.interscience.wiley.com, 2010

[2] www.ipv6.com

[3] C. S. Raghavendra, Krishna M. Sivalingam, Taieb Znati, “Wireless Sensor

Networks”, 2004

[4] F. L. Lewis, “Wireless Sensor Networks”, appeared in Smart Environments:

Technologies, Protocols and Applications, New York, 2004

[5] Jason Lester Hill, “System Architecture for Wireless Sensor Networks”, Spring

2003

[6] Gregory J. Potie, “Wireless Sensor Networks”, Ireland, June 1998

[7] Pedro Silva Girão, George Alexandru Enache, “WIRELESS SENSOR

NETWORKS: STATE OF THE ART AND FUTURE TRENDS” 2
nd

 National

Conference, October 2007

[8] John A. Stankovic, “Wireless Sensor Networks”, University of Virginia, October

2008

[9] Karl Mayer, Wolfgang Fritche, “IP-Enabled Wireless Sensor Networks and their

Integration into the Internet”, proceeding of the First International Conference on

Integrated Ad Hoc and Sensor Networks, May 30 – 31 2006, Nice, France

[10] Chris Townsend, Steven Arms, “Wireless Sensor Networks: Principles and

Applications”, Chapter 22, 2004

[11] Ian F. Akyildiz, Mehmet Can Vuran, “Wireless Sensor Networks”, WILEY 2010

[12] Ian F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirichi, “Wireless Sensor

Networks: a survey”, January 2002

[13] “An Overview of IPv6”, Chapter 2, 1997

[14] Jari Arkko, Tuomas Aura, James Kempf, Vesa-Matti Mäntylä, Pekka Nikander,

Michael Roe, “Securing IPv6 Neighbor and Router Discovery”, Atlanta 2002

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

http://www.interscience.wiley.com/
http://www.ipv6.com/

 97

[15] Robert M. Hinden, “IP Next Generation Overview”, Communications of ACM,

June 1996, Vol. 39, No. 6

[16] J. Hui, P. Thubert, “Compression Format for IPv6 Datagrams in Low Power and

Lossy Network (6LoWPAN)”, 2011

[17] Naveed A. Abbasi, “6LoWPAN: IPv6 for Battery-less Building Networks”,

August 2009

[18] Florent Parent, Regis Desmueles, “IPv6 Tutorial”, 13 March 2000

[19] Jordi Palet, “IPv6 Tutorial”, December 2006

[20] Geoff Mulligan, Carsten Borman, “IPv6 over Low power WPAN WG

(6lowpan)”, http://6lowpan.tzi.org, 2009

[21] Jonathan W. Hui, David E. Culler, “IP is Dead, Long Live IP for Wireless Sensor

Networks”, November 2008

[22] Charles “Chuck” Sellers, “IPv6 Embedded Systems and Sensor Networks”,

December 2009

[23] Mark Blanchet, “IPv6 Primer for Sensor Networks”, 2006

[24] Jonathan W. Hui, David E. Culler, “Extending IP to Low-Power, Wireless

Personal Area Networks”, July – August 2008

[25] J. Hui, P. Thubert, “Compression Format for IPv6 Datagrams on 6LowPAN

Networks”, April 2010

[26] K. Kim, H. Kim, S. Daniel Park, J. Lee, “Interoperability of 6LowPAN”

[27] Md. Sakhawat Hossen, A. F. M. Sultanul Kabir, Razib Hayat Khan, Abdullah

Azfar, “Interconnection between 802.15.4 Devices and IPv6: Implications and

Existing Approaches”, International Journal of Computer Science Issues, Vol. 7, Issue

1, No. 1, January 2010

[28] S. Chakrabarti, E. Nordmark, “LowPAN Neighbor Discovery Extensions”

[29] Kevin Dominik Korte, “Evaluation of 6LowPAN Implementations”, May 2009

[30] Lars Schor, “IPv6 for Wireless Sensor Networks”, Zurich, June 2009

[31] Gee Keng Ee, Chee Kyun Ng, Nor Kamariah Noordin, and Borhanuddin Mohd.

Ali, “A Review of 6LoWPAN Routing Protocols”, Department of Computer and

Communication Systems, Faculty of Engineering, Universiti Putra Malaysia

[32] M. Harvan, J. Sch¨οnw¨alder, “A 6lowpan Implementation for TinyOS 2.0”, 2007

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

http://6lowpan.tzi.org/

 98

[33] Alessandro Ludovici, Anna Calveras and Jordi Casademont, “Forwarding

Techniques for IP Fragmented Packets in a Real 6LoWPAN Network”, Barcelona

January 2011

[34] E. Kim, D. Kaspar, C. Gomez, C. Bormann, “Problem Statement and

Requirements for 6LoWPAN Routing”, draft – expires August 2011

[35] S. Chakrabarti, E. Nordmark, “LowPAN Neighbor Discovery Extensions”

[36] N. Kushalnagar, G. Montenegro, C. Schumacher, “IPv6 over Low Power

Wireless Personal Area Network (6LowPAN): Overview, Assumptions, Problem

Statement, and Goals”

[37] M. Harvan, J. Sch¨οnw¨alder, “A 6lowpan Implementation for TinyOS 2.0”, 2007

[38] Vassil Stefanov, “Mesh routing for IPv6 over 802.15.4 on TinyOS”, Computer

Science Jacobs University Bremen Germany, May 2008

[39] Ricardo Silva, Jorge Sá Silva and Fernando Boavida, “Evaluating 6lowPAN

implementations in WSNs”, Department of Informatics Engineering University of

Coimbra, Portugal

[40] Vladimir Iliev, “Mesh Routing for Low-Power Mobile Ad-HocWireless Sensor

Networks Using LOAD”, Computer Science Jacobs University Bremen, 2007

[41] Ki-Hyung Kim, S. Daniel Park, “Routing Protocol Comparison for 6LoWPAN”,

6LoWPAN WG, IETF64, Vancouver, 2005

[42] Iliyan Zarov, “Mesh Routing for Low-Power Mobile Ad-HocWireless Sensor

Networks Using DYMO-low”, Computer Science Jacobs University Bremen,

Germany 2007

[43] C. Gomez, P. Salvatella, O. Alonso, J. Paradells, “Adapting AODV for IEEE

802.15.4 Mesh Sensor Networks: Theoretical Discussion and Performance Evaluation

in a Real Environment”, Proceedings of the 2006 International Symposium on a

World of Wireless, Mobile and Multimedia Networks (WoWMoM'06

[44] Ki-Hyung Kim, S. Daniel Park, G. Montenegro, S. Yoo, “6LoWPAN Ad Hoc On-

Demand Distance Vector Routing (LOAD)”, 2005

[45] Ki-Hyung Kim, S. Daniel Park, G. Montenegro, I. Chakeres, S. Yoo, “Dynamic

MANET On-demand for 6LoWPAN (DYMO-low) Routing”, 2005

[46] Lingeswari V Chandra, Kok-Soon Chai and Sureswaran Ramadass, Gopinath

Rao Sinniah, “Mechanism to Prevent Disadvantageous Child Node Attachment in

HiLOW”, International Journal of Computer Science and Information Security

(IJCSIS), Vol. 008 No. 003, 2010

[47] Stefan Dulman, “WSN Simulation Template for OMNeT++”, University of

Twente, department of computer science

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 02:46:33 EEST - 18.117.183.67

