

Master of Science in Computer Science

Staffordshire University UK, TEI of Larissa GR

January 2009

Designing and Implementing the CROP

Reference Architecture for Learning Objects:
The CROP Editor

Master Thesis

Dimoklis Despotakis

Advisor: Prof. C. Hartonas

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 2

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 3

Contents

CHAPTER 1 – INTRODUCTION .. 7

CHAPTER 2 – LEARNING OBJECTS AND LEARNING OBJECT METADATA 10

2.1 Learning Objects .. 10

2.2 Learning Object Metadata (LOM) .. 11

2.2.1 LOM Standard Definition .. 11

2.2.2 The LOM Document Structure and Data Schema .. 12

2.3 Learning Object Development Standards ... 14

2.3.1 The IMS Implementation Guide ... 14

2.3.2 Content Packaging: The SCORM Specification ... 15

CHAPTER 3 – THE CROP REFERENCE ARCHITECTURE .. 17

CHAPTER 4 – DESIGNING CROP LEARNING OBJECTS .. 24

4.1 The Domain Ontology (KConcept) Development Stage .. 24

4.2 The KResource Development Stage .. 25

4.3 The KProduct Development Stage ... 25

4.4 The KOrder Development Stage .. 26

CHAPTER 5 – DESIGN AND REQUIREMENT ANALYSIS FOR THE CROP EDITOR 27

5.1 Runtime Requirements Analysis .. 28

5.1.1 Users Definition ... 28

5.1.2 CROP Editor – Functional Runtime Requirements .. 30

5.1.3 CROP Editor – Non Functional Runtime Requirements ... 32

5.2 Technical Requirements Analysis .. 34

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 4

5.3 Mapping Requirements Analysis to CROP Editor Software... 37

CHAPTER 6 – CROP EDITOR IMPLEMENTATION .. 45

6.1 Development Tools.. 45

6.2 Software Architecture ... 46

6.3 Class Diagrams ... 49

6.3.1 cropedit Class Diagram ... 49

6.3.2 core Class Diagram ... 49

6.3.3 KOrder sub- package Class Diagram ... 53

6.3.4 CROP Class Diagram .. 60

6.3.5 Customization package Class Diagram ... 62

6.3.6 Help package Class Diagram ... 63

6.3.7 ReferenceOntology package Class diagram .. 64

6.3.8 Resources package Class Diagram .. 65

6.3.9 UI package Class Diagram ... 65

6.3.10 KPlayer package Class Diagram .. 72

6.3.11 Tools package Class Diagram .. 74

6.4 CROP Editor Application Features ... 76

6.5 Additional Tools and Technologies Integration ... 77

6.6 Application Prerequisites and Setup ... 78

CHAPTER 7 – CROP EDITOR DEVELOPMENT EXAMPLE AT RUNTIME ... 80

CHAPTER 8 – CONCLUSION ... 94

ACKNOWLEDGEMENTS ... 96

REFERENCES .. 97

APPENDIX - JAVA SOURCE CODE FOR THE CROP EDITOR CORE .. 100

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 5

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 6

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 7

CHAPTER 1 – INTRODUCTION

The evolution of technology and growth of knowledge over various

scientific and non scientific fields of interest leads to the need of

knowledge transfer and distribution using more effective solutions that

can overcome the disadvantages of media in printed form. Actual

factors that affect the quality of this procedure, the knowledge

capture, formatting, distribution, presentation and testing, introduce

the scope that Learning Content Management Systems (LCMS) intend

to address.

Moreover, these systems have to manage information not in a raw

data format, but in a structured way. At this point, we slightly

introduce the notion of Learning Object, which consists in general a

specific format of knowledge data. More on this are presented in

Chapter 2.

This dissertation is a part of a more wide project, that involves the

development of a Modeling Framework (MF) for the design,

implementation and deployment of Learning Objects, based on the

notions of Concept, Resource, Order, Product and Service. Currently,

the CROPS MF is under development and its basic aims are to:

 Provide a reference architecture for Learning Objects introducing

a compositional design pattern for learning objectives. This work

has been done and is presented in [1].

 Provide a tool for CROP Learning Objects development. This part

of the project consists the objective of this dissertation. The

scope of this work is to design and implement an editor for the

CROP Learning Objects, the CROP Editor. The main aspect of the

Editor is to support all the features that derive from the CROP

Reference Architecture at [1] and facilitate the production and

editing of Learning Objects.

 Provide a tool for Learning Object Metadata creation, including

the possibility to be compatible and support existing tools (IEEE

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 8

LOM v.1.0, CanCore, UKLOMCore). This is a work in progress

that is elaborated by Professor C. Hartonas.

 Develop a new proposal for managing learning content, based on

a particular species of Semantic Web Services, which are called

Learning Services in the CROPS MF. This part of the project is

subdivided into two main aspects:

 Provide an account of adaptivity of learning objects as an

emerging property of learning object and learning service

interaction. A preliminary work has been done by Tom

Katsaros in his dissertation at [7].

 Provide a specification of Learning Services, by extending

some currently predominant framework (such as OWL-S

or WSMO). There is work in progress relating to this issue

as part of the PhD dissertation work by Maria Tsiakmaki

[8].

This report can be divided into two main Sections: the Background and

State of the Art and the Requirement Analysis and Implementation.

The first section includes a brief review on the Learning Objects and

the Learning Object Metadata Standard (LOM Standard), the IMS

Implementation Guide to Learning Design and the SCORM

Specification in Chapter 2, while it focuses on the CROP Reference

Architecture analysis in Chapter 3 and the CROP Learning Object

development stages in Chapter 4.

 The second section cites the Requirements Analysis and the design

decisions in Chapter 5, the CROP Editor implementation in Chapter 6

and a development example at runtime in Chapter 7.

Chapter 8 concludes this thesis citing the evaluation of the

implemented features and their advantages over the Learning Object

editing process, while addresses open issues to discuss and future

work and improvements that could be done.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 9

The actual product of this thesis is a software application written in

Java code, whereof a code segment of the application∙ the CROP Core

package∙ is attached as an Appendix to this report.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 10

CHAPTER 2 – LEARNING OBJECTS AND LEARNING OBJECT

METADATA

This Chapter introduces the Background and State of The Art section

of this report and covers in brief the Learning Object and Learning

Object Metadata theoretical background, while it presents the

Instructional Management Systems (IMS) Implementation Guide and

the SCRORM specification.

2.1 Learning Objects

Many definitions have been given to describe the notion of Learning

Object (LO). A general approach to depict this concept can be that a

Learning Object is a component that encapsulates data sources in a

structural way to support knowledge extraction and distribution.

Moreover, there is no unison between the attempts to define a

Learning Object and the concept by itself tends to be vaguely

described.

The Institute of Electrical and Electronics Engineers (IEEE) defines a

Learning Object as "any entity, digital or non-digital, that may be used

for learning, education or training" at [9]. David A. Wiley at [10] cites

the LO definition as “any digital resource that can be reused to support

learning”.

Changing the scope that the above two definitions are focused, R.
McGreal at [3], argues that a definition that contains words as “any”,

“everything” etc. is not a definition because there is nothing that can
distinguish the object under description from other similar. He defines

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 11

LO's as “a digital file (image, movie, etc.) intended to be used for

pedagogical purposes, which includes, either internally or via
association, suggestions on the appropriate context in which to use the

object”.

The CROP Reference Architecture [1, 2] generally encapsulates this
definition and slightly introduces a more tight and specific role to LOs

that derives from the architecture itself while enriches the definition,
becoming more accurate and expositive. In Chapter 3 the CROP

Learning Object is fully described and the standard of the actual
internal structure that CROP aims to put forward is analyzed.

2.2 Learning Object Metadata (LOM)

2.2.1 LOM Standard Definition

As it is documented in [9] the IEEE Learning Object Meta-data (LOM)
Standard specifies and documents the appropriate format and

attributes that learning resources must adopt in order to be fully

descriptive and well presented. To achieve this purpose the IEEE LOM
Standard defines a set of metadata elements that can be used to

describe learning resources. Such elements are:

1. Names

2. Definitions

3. Data types

4. Field lengths

IEEE LOM Standard defines a conceptual model for the metadata and
an XML binding also, so it comprises a multi-part standard. It includes

guidelines of how documents must be formatted and how applications

can exchange information and manipulate them.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 12

2.2.2 The LOM Document Structure and Data Schema

The LOM documents follow a tree structure that is hierarchically

organized. So, the “root” is the first element of hierarchy. Additional
elements the so called sub-elements below the root are called

“branches” if they also have sub-elements or “leaves if they are
terminal nodes. An example document hierarchy taken by [11] is

shown at Figure 2.1 below.

Figure 2.1 Root to leaf "tree view" of metadata [11].

The LOM Data Schema lists all the metadata elements in tabular
format. General, Life Cycle, Meta-Metadata, Technical, Educational,

Rights, Relation, Annotation, and Classification are the nine main
categories of element types that LOM defines using again a tree

representation with branches and leaves guide to several different
types (Figure 2.2). Each leaf element in the LOM conceptual data

schema has a data type and a value space that defines the encoding of
the data for that element. Those spaces and data types are listed

below:

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 13

1. Repertoire of ISO/IEC 10646-1:2000 Value Space (Unicode 3.0.1
characters, glyphs etc.)

2. LanguageID Value Space (Language definition like En- UK)
3. MIME Types Value Space (encoding of digital format of a

resource)
4. vCard Value Space (encodes information similar to that found on

a business card)
5. CharacterString Data type

6. LangString Data type
7. Vocabulary Data type (limited choice of words or phrases)

8. DateTime Data type
9. Duration Data type (Duration and a Description like P3M for

three months period)

Figure 2.2: The elements and structure of the LOM conceptual data
schema [9].

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 14

2.3 Learning Object Development Standards

2.3.1 The IMS Implementation Guide

An Instructional Management Systems (IMS) Implementation Guide is

defined at [14] that addresses issues for developing a framework to

create and support pedagogical material. The main objectives are to
define specifications for managing learning units focusing on:

1. Resources

2. Instructions for learning activities
3. Templates for structured interactions

4. Conceptual models (e.g., problem-based learning)
5. Learning goals, objectives and outcomes

6. Assessment tools and strategies

Main goals that these specifications must cover as they presented at
[14] are listed below:

1. Different learning methods must be defined

2. Enable repeatable, effective, and efficient units of learning

3. Interchange of learning resources
4. Different types of knowledge delivery

5. Usability
6. Support the reuse or repurposing of the framework and

components of a unit of learning
7. Amplification of specifications and standards

8. Accessibility (internationalization)
9. Support multiple learners and multiple roles in a learning

activity, reflecting learning experiences that are collaborative or
group-based

10. Support reporting and performance analysis

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 15

2.3.2 Content Packaging: The SCORM Specification

The Shareable Content Object Reference Model available at [15]
illustrates a specification and a model description derived from the

work at the Advanced Distributed Learning (ADL) Initiative. SCORM
introduces guidelines to develop learning content, implementing its

labeling, storage mechanism and presentation over distributed
learning.

The basic principles that SCORM adopts for constructing LO's in e

learning environments, or else the “ilities” as they cited at ADL,
contain the following:

1. Accessibility: Locate and gain access to instructional components
(say

2. LO's) from distance and share them to many other locations.
3. Adaptability: Adjustment of learning material according to

individual needs.
4. Affordability: The ability to increase efficiency and productivity

by reducing the time and costs involved in delivering instruction.
5. Durability: The ability to acquaint instructional components

following technology evolution and new specifications with minor
cost of redesign and recoding process.

6. Interoperability: Strong compatibility between different
platforms and environments (say UNIX or MS Windows

environments can use and manage the same learning
component).

7. Reusability: High level utilization between different applications.

ADL adopts another concept for SCORM, the “Web based assumption”
which concerns the collaboration of Web standards to efficiently

increase instructional material management, access and reusability.
This came out from the fact that Web and internetworking are rapidly

expanding, Web based learning technology specifications are not
stabilized yet and its content can be delivered using any medium (say

optical medium disks). Combining the above requirements with this
assumption, ADL produced the following principles for SCORM

operation:

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 16

1. A Web based Learning Management System (LMS) must be able

to manage learning content that is authored using different tools
on different platforms and use that content to exchange data.

2. Different Web based LMS's must have the ability to use the same
content and be able to exchange data with it.

3. Multiple Web based LMS's can share the same content source.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 17

CHAPTER 3 – THE CROP REFERENCE ARCHITECTURE

In this Chapter I describe the CROP Reference Architecture for

Learning Objects [1, 2]. I cite the internal structure that the CROP

tends to standardize for constructing LOs and I explain in details each

structural component, its theoretical background and its technical

presence inside an LO. Moreover, I give an example of implementing

an LO using the CROP Architecture to depict the features and

facilitations that CROP introduces when is applied.

This architecture is based on the notions of Concept, Resource, Order

and Product and its aim is “to put forward a standard of internal

structure that a learning object is to abide by, without making any

commitment to particular educational/teaching theories, styles or

preferences…” as pointed out in [1].

The basic structural component of a CROP LO is its ontology, whereof

the notion of Concept is derived, meaning a structured class of

concepts that shapes the learning material that an LO introduces.

CROP introduces a novel hierarchy model between this concept

instances and separates this from the subsumption hierarchy that

ontology has, using the Subclass-of axiom defined in the Ontology

Web Language (OWL) [12]. The hierarchy that CROP introduces is a

learning hierarchy between concepts for a specific learning subject,

which is constructed using the hasPrerequisite relation. Thus, a

concept has another concept as a learning prerequisite. This relation

can be visualized as a directed edge, where the source anchor is

bounded to the prerequisite concept and the target anchor is bounded

to the objective concept. Hence, this ontology, i.e the content ontology

of an LO acquires a cohesive, rooted and directed graph structure as

Figure 3.1 shows.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 18

Figure 3.1 Learning Object Content Ontology. A directed edge defines

a prerequisite relation.

Considering the above graph as the content ontology representation

for an LO, Concept A consists the Target Concept of the learning

object, i.e. its learning objective, the top concept that the LO intends

to teach to the user - learner.

Moreover, using the same graph as an example, one or more sub-

graphs can be extracted including those concepts that are more tightly

interrelated. This sub-graph consist the graph for the content ontology

of another LO with Target Concept the D concept in our graph (red

colored area in Figure 3.1). Here is introduced the compositional

model that CROP adopts meaning that an LO may contain another LO

according to the designer’s needs (Figure 3.2).

Concept A

Concept D Concept F

Concept C Concept B

Concept H Concept G

Concept E

Concept I

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 19

Figure 3.2 Compositional model

Next, I present the internal structure of a CROP Learning Object,

explaining each structural component and their associations. Figure

3.3 shows the Model Diagram designed with UML [4].

LO

LO LO

LO

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 20

Figure 3.3 The CROP Reference Architecture Model Diagram.

This diagram presents the Model Diagram in UML for the CROP

Reference Architecture. Starting from the bases of the architecture,

the KConcept (KnowledgeConcept) class in the diagram comprises

all the concept instances in the content ontology of the Learning

Object, hence, all the nodes in the KConceptGraph class. Every

KConcept instance is learning objective. The KHasPrerequisite class

comprises all the applications of the hasPrerequisite relation (property)

discussed previously, between the KConcept instances. A

KHasPrerequisite instance is depicted with a single-directed edge in

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 21

the KConceptGraph of content ontology meaning that the KConcept

instance being in the target anchor of the edge has as learning

prerequisite the KConcept instance being at the source anchor of the

edge. This dependence relation between concepts can be depicted

from the context analysis of learning objective at it is cited in [1]. A

KConcept instance in the content ontology graph of the learning object

can be either a GroundConcept meaning that it has no prerequisite

concepts, a leaf node in the tree structure, or an internal node

concept.

A KConcept instance may be the TargetKConcept for KObject

instance. As it is shown in Figure 3.3, using the abstraction of the

KObject class, its instances can be either a KProduct or a

KResource. The existence of a KConcept instance does not

necessarily means that has to be bounded at KObject instance. Here

is introduced the hasTargetConcept property in the CROP ontology

between KConcept and KObject instances.

The KProduct class in Figure 3.3 is the actual Learning Object. These

terms have the same meaning. A KResource instance (Knowledge

Resource) can be of two kinds: either to support learning (KSupport

resource), or to assess learning (KAssess resource). A KSupport

instance is associated with digital resource file (image, document,

video, web page etc.) via an appropriate URI and a KAssess resource

instance can be of two kinds in our implementation: either a KQuiz (a

question multiple choice styled answer) or a KTest (sequence of KQuiz

objects). Adopting the derived from the KObject inheritance of classes-

objects each KSupport o KAssess instance is associated with a

TargetKConcept.

Moreover, a KProduct is fully described by its content ontology that

defines its KRC graph. The KRC graph has a “1-1” correlation with the

KConceptGraph or a sub-graph of it. A KRCNode emerges from a

KConcept instance having this as its TargetKConcept. Similarly, a

KRCEdge emerges from a KHasPrerequisite edge instance in the

KConceptGraph.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 22

A KRCNode instance, maintains a KObjectList that comprises its node

type. Each KObject instance in the KObjectList has the same KConcept

as its TargetKConcept, similar to the KRCNode. Thus, a KProduct

(Learning Object) can encapsulate another Learning Object, which

results the compositionality of the CROP architecture.

A KRCNode in the KRC graph is actually a teaching act. It is a learning

objective that has to be taught, where a KRCEdge consist a teaching

step. The sequence and the conditions under which a KRCNode will be

taught, arises from the KOrder of the KProduct under discussion. The

KOrder class contains instances of execution models, XModel

instances associated with StudentModels running under an

Instructional Environment. An XModel instance is also a graph

structure that contains the KRC graph of the KProduct plus other type

of nodes and edges that will be discussed later in Chapter 6 where the

implementation of the CROP Editor takes place. A StudentModel is a

class that actually describes the profile of a learner according to the

succeeded assessment he took or his learning preferred style.

Every KObject instance in the CROP Architecture is associated with a

LOM document. The LOM structure as it is briefly described in Chapter

2 and can be found at [9] is engineered to describe, present and

maintain information about a Learning Object. The CROP Reference

Architecture [1, 2], adopts this structure and cites a LOM

implementation reengineered as ontology. This is the LOM Ontology

available at [13]. The association between KObject instances and LOM

elements takes place using the URI where the LOM document is

stored.

Figure 3.4 below shows an example KProduct (a Learning Object) that

contains two additional LO’s in its content KRC graph. This KProduct

has as learning objective (target concept) the “Computer” concept and

it is concisely expanded to cover the example’s purpose.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 23

Figure 3.4 A CROP example for the “Computer” learning concept

Computer

Computer Types Computer

Device

PC Calculator Notebook Palmtop

Computer Parts

Computer

Features

Memory Keyboard Monitor

KObject list

1) KSupport resource (Image)

2) KSupport resource (Definition)

3) KAssess resource (Quiz about

capacity)

4) …

5) …

KObject list

1) KSupport….

2) KAssess (Test)

3) KProduct (Computer

Types)

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 24

CHAPTER 4 – DESIGNING CROP LEARNING OBJECTS

4.1 The Domain Ontology (KConcept) Development Stage

This stage of development CROP Learning Objects contains the

procedure where the learning objectives (i.e. the concepts) are to be

extracted and defined. In CROP a concept is a KConcept instance in

the CROP ontology. These instances are concerned to be the learning

objectives for a specific learning subject and inductively they conclude

the knowledge space for the learning subject/objective. As it is cited in

[1, 2] each KConcept instance can be handled as an atomic value and

can be segmented into several other instances. This is actually a

recursive process until the designer of the Learning Object closes to

the GroundConcept instances of the Learning Object content ontology.

Definition of KConcept instances presupposes a knowledge base

existence where the learning subject is fully described or attached as a

sub – component. The notion of knowledge base is very important at

this stage of development it is considered to be fully descriptive for a

learning subject. This actually is a basic quality factor for the

consistency and completeness the Learning Object under development

tends to cover according to its learning objective.

CROP architecture adopts the Ontology knowledge base tool and takes

advantage of the Web Ontology Language (OWL/RDF) format where

information data are structured and documented via the appropriate

axioms, rules and properties [10]. Using the subsumption hierarchy of

OWL Classes which is defined with the SubClassOf axiom extracts the

desired concept instances from the actual class names. This subgroup

of classes that are defined in the ontology is the Domain Ontology of

the Learning Object under construction.

Moreover, the KConcept instances conclude the set of nodes in the

KConcept Graph, i.e. the content ontology, discussed in Chapter 3. The

set of edges in the graph is formed with the application of the

KHasPrerequisite between KConcept instances.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 25

4.2 The KResource Development Stage

As it is described in Chapter 3, a KResource instance concerns the

development of an object that can either support (KSupport) or assess

learning (KAssess) for a specific objective (a KConcept instance). So,

this stage contains the decision of the Learning Object designer

between KSupport or KAssess implementation and associates this

object with a KConcept instance that is to be the TargetKConcept.

In KSupport case, this KObject instance is to be associated with a

digital resource file via its Uniform Resource Identifier (URI) or Locator

(URL). This file can be off different types: an image file, web page, a

video or sound file etc…

In KAssess case the designer can implement either a KQuiz or KTest

KObject instance.

In both cases a LOM document association is also needed. CROP

architecture handles KResource objects as “..atomic Knowledge

Products in the sense that they lack any internal structure” [1].

More on these types of KObject instance are discussed in Chapters 5

and 6.

4.3 The KProduct Development Stage

This stage concerns the development of the KProduct object that is the

single main component type of the Learning Object. Developing a

KProduct includes the following steps:

1. Select a KConcept instance as the TargetKConcept from the

KConceptGraph.

2. Update TargetKConcept dependencies recursively using the

KHasPrerequisite property defined in the content ontology

(KConceptGraph).

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 26

3. Steps 1, 2 conclude the KRC graph construction.

4. Populate each KRC node with its KObject list by selecting

appropriate KResource or KProduct instances.

4.4 The KOrder Development Stage

After the designer of the LO has decided the structure of KRC Graph

and has populated KRC nodes with KObject instances (KResource and

KProduct), he is able to implement several execution models, XModel

instances, for the KProduct. As CROP defines in [1], a KRC node is

considered as a teaching act and a KRC edge is considered as a

teaching step. An XModel can either implemented as a default

traversing of the KRC graph or a custom created execution graph.

More on XModel construction are discussed in Chapters 5 and 6.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 27

CHAPTER 5 – DESIGN AND REQUIREMENT ANALYSIS FOR THE

CROP EDITOR

The objective of this dissertation is to design and develop an editor

that facilitates the design and construction of Learning Objects,

following the CROP Reference Architecture [1, 2]. The design face of

the editor consists a milestone, so to detect, analyze and specify the

requirement that has to cover.

A large amount of existing knowledge over the CROP Reference

Architecture and the perspectives that the Editor must support were

provided to me from my advisor in this thesis, Professor C. Hartonas.

The analysis over the software product specification and the design

decisions that are presented further in this report consist the outcome

of discussions and suggestions that took place during the elaboration.

Software requirements keep track of user needs and the actual

functionality that a software project has to provide. In our case, the

CROP Editor under construction has to be analyzed first by defining the

users. Then we will adapt the functional and non – functional

requirements for each user group. Despite we separate users and

their requirements may be different is several cases, we have to

optimize the analysis so that each software requirement has the best

collaboration factor with other even in different user groups.

This Chapter introduces the second section of this report∙ the

Requirement Analysis and Implementation of the CROP Editor∙ First, I

define the runtime requirements (functional and non - functional), i.e.

what the user expects to see and how he interacts with the system.

Then, I define in details technical requirements and design decisions

that have to be taken introducing the Use Cases for the CROP Editor.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 28

5.1 Runtime Requirements Analysis

5.1.1 Users Definition

The CROP Learning Object Architecture comprises a theoretical and a

technical approach for designing and implementing educational

material. CROP supports knowledge representation and definition in

such way that a user can interact as a teacher (Learning Object

constructor) or as a student (learner – knowledge receiver – Learning

Object executor). This is defined in [1], in such way that a knowledge

resource (a KResource object) can either assess or support knowledge

representation. So to proceed we have to consider the following

admissions for Learning Object (LO) usability:

I. An LO must be able to be constructed.

II. An LO must be able to be executed.

Note that, these admissions do not yet take in consideration the actual

actors of our system. The complete set of actors is presented in the

technical part of requirement analysis. Users are a subset of actors in

our implementation. More details will be presented in the UML

Modeling parts of this Chapter. I separate the UML Use Case diagrams

for the requirement analysis from the decided implementation features

that the system actually performs.

Figure 5.1 shows a draft representation of the above.

Figure 5.1

Learning Object

Learner Educator

Constructs Runs

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 29

The physical presence users are defined to be two: i) the Educator that

behaves and interacts as the Learning Object constructor and ii) the

Learner as the Learning Object Executor.

Next, in Section 5.1.2 I present the functional requirements for each

defined user and in Section 5.1.3 the non – functional. These Sections

cite the requirements that the system has to support at runtime, not

the actual features that have to be implemented or the decisions that

we will take to do so. Section 5.2 cites the technical requirements that

meet the runtime user needs. Section 5.3 maps requirements analysis

to the CROP Editor introducing the Domain Model and a draft

architectural approach introducing CROP Editor Components and their

implementation purpose.

It is very important to conclude about the separation and actually the

distinction between runtime i.e. executing requirements and the

technical requirements of the CROP Editor. First, this is done to clarify

the difference between “what I want the system to support” and “how

the system supports my needs – otherwise what tools I am able to use

due to my needs”. Second, separating the technical requirements

allows the reader to slightly proceed to the actual implementation facts

and the decisions about the tools and technologies used and presented

in Chapter 6.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 30

5.1.2 CROP Editor – Functional Runtime Requirements

5.1.2.1 User: Educator – Constructor

1. Define, construct and refine (reedit) the knowledge repository

using personal experience (custom construction) or existing

knowledge bases. Hence, he must be able to define his own

concepts of knowledge that have to be taught (learning

objectives) or use a knowledge base already defined by someone

else. The knowledge surface actually consists the domain

ontology that describes what has to be taught in the Learning

Object under construction implementing its content ontology

(the KConcept Graph). The domain ontology can be extracted in

two ways: using a reference Ontology (preexisting or newly

created) or defining individual knowledge concepts (for the

KConcept repository discussed in Chapter 3).

2. Select, produce and edit knowledge resources, i.e. KResource

instances. These knowledge resources are digital files of various

types. The system must support images, rich text documents,

video etc. stored locally or attached to a website.

3. Introduce teaching – learning strategies to define execution

models for the Learning Object to present knowledge derived

from its resources (KOrder instances).

4. Assess or support knowledge material.

5. Design and implement an object (i.e. a Learning Object) to wrap

the above.

6. Describe this object in order to be accessible and searchable with

a universal standard (the LOM standard).

7. Group similar objects to construct a domain project.

8. Reedit the final product and update each constructive fragment.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 31

5.1.2.2 User: Learner

1. Acquire a Learning Object.

2. Run available implementations of its execution model.

3. Test level of knowledge derived from the Learning Object by

launching any assessment resources (KQuiz, KTest) associated

and gain result/score feedback.

Figure 5.2 shows the UML Use Case diagram for the functional

requirements.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

Images/UseCase.png

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 32

Figure 5.2 Use Case Diagram for runtime requirements of the CROP

Editor

5.1.3 CROP Editor – Non Functional Runtime Requirements

We have to face the desired system as a solution of several parts,

each responsible for a specific purpose. Before proceeding to technical
requirements specification that will actually serve our purposes for

designing and implementing CROP Learning Object Architecture Editor,
we have to closely review and define the non – functional

requirements and system qualities. There is a variety of literature that

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

Images/UseCase.png

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 33

can be examined [4, 5, 6]. In general, they attend to optimize

software quality factors that emerge from requirements analysis and
user objectives. In [6], the system quality is defined to be “the degree

of match between the product requirements (stated or otherwise) and
the actual product. It is defined from the point of view of the user’s

perception, expectation and goals or need”. So, the non – functional
requirements that a system must support and we map to the CROP

Editor Application while executed, include the above:

 Usability: The ease of use and interaction with the CROP Editor
in our case. More especially the Graphical User Interface (GUI)

interaction efficiency capturing how productive the use can be
using metrics such eye focus and graphical component action

factor, memorability and learnability.

 Supportability: For example, the types of resource files

supported. I mention “Supportability” in technical requirements
also with different meaning.

 Reliability: Actions warranty. The proof of choice otherwise. An

educator has to be sure that the teaching model he constructs
will be taught as it should be.

 Availability and interoperability: Embeddable in different OS

architectures and accessible without special requirements.
These two are both general aims for every project

implementation, considering the technological variety. The user
has to be sure that he will manage his work everywhere. This is

also a technical issue and will be mentioned later too.

 Performance and response time to user actions: Say, loading a

web resource or running a lecture.

 Configurability: Set the system as desired by configuring the
workspace directory or the “Look and Feel” appearance.

 In addition to usability mentioned first, the simplicity has to be
in a high level, too. The actual user in many cases will not be a

computer expert.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 34

5.2 Technical Requirements Analysis

From the technical view, I present the features of the CROP Editor by

specifying in details how the runtime requirements are to be
implemented so the user has the desired functionality available. In

this face, I merge functional and non – functional requirements in
order to give a total preview of the editor’s aspects.

Below I present those requirements, characterizing them with the

properties of: type (functional or non - functional), the runtime aspect
that have to cover and the user that is enrolled.

Abbreviations: F (Functional), NF (Non - Functional), E (Educator), L (Learner).

1. Runtime aspect: Define the Domain Ontology
Technical aspects:

The user must be able to:
I. Instantiate KConcepts extracted from Ontology files (reference

Ontology, existing or custom created) using an appropriate
handler or defined by self choice.

II. Relate KConcepts implementing the “has Prerequisite” property.
Type: F

User(s) enrolled: E

2. Runtime aspect: Manage resources, support learning
Technical aspect:

I. Choose between different types of digital resource files (image,
text, video, audio etc.)

II. Choose local or web stored resources
III. Provide an editor to construct text documents with rich format

including images, tables etc...
IV. Associate resource files with KResources.

V. Attach support KResources to KRC Nodes.
Type: F

User(s) enrolled: E

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 35

3. Runtime aspect: Assess learning
Technical aspect:

I. Provide editors for assessment resources i.e. a KQuiz editor and
a KTest Editor and associate derived products with KResources of

assessment type.
II. Attach assessment resources to KRC nodes.

III. Provide a mechanism for user interaction, an appropriate player.
IV. Provide feedback for user results.

Type: F
User(s) enrolled: E, L

4. Runtime aspect: Produce different types of execution models

Technical aspect:
Define different traversal paths for the KRC to implement several types

of KOrder.

Type: F
User(s) enrolled: E, L

5. Runtime aspect: Describe a Learning Object to support

distribution and search ability with a universal standard for
digital resources. Associate the LOM document with the KObject.

Technical aspect: Provide a LOM Editor
Type: F

User(s) enrolled: E

6. Runtime aspect: Produce a Learning Object
Technical aspect:

I. Associate a Learning Object with a LOM entity
II. Associate a Learning Object with a KRC entity

III. Associate a Learning Object with execution models (KOrders)

Type: F
User(s) enrolled: E

7. Runtime aspect: Group Learning Objects to introduce a
knowledge domain

Technical aspect: Define a project structure with available Learning
Objects, Resources and LOM entities.

Type: F
User(s) enrolled: E

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 36

8. Runtime aspect: Save, load, update (reedit) Learning Objects
Technical aspect: Provide load/save mechanisms

Type: F
User(s) enrolled: E

9. Runtime aspect: Supportability

Technical aspect: Dual meaning:
I. Support different kind of resources and internetworking as

mentioned before and
II. Support guidance via a help file (updateable due to the designer

needs).
Type: F, NF

User(s) enrolled: E, L

10. Runtime aspect: High level usability

Technical aspect: Ergonomic and productive user interface.
Type: F, NF

User(s) enrolled: E, L

11. Runtime aspect: Reliability
Technical aspect: Construct a Learning Object that is stable and

execution valid.
Type: F, NF

User(s) enrolled: E, L

12. Runtime aspect: Availability and interoperability
Technical aspect: Running in most frequent used Operating Systems

(Microsoft Windows, Linux)
Type: NF

User(s) enrolled: E, L

13. Runtime aspect: Configurability and Performance

Technical aspect: Set preferences such:
I. Workspace directory to store resources and Learning Objects

II. Graphical appearance
III. Incorporate external tolls for resource editing.

IV. Perform actions with quick system responses.
Type: NF

User(s) enrolled: E, L

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 37

5.3 Mapping Requirements Analysis to CROP Editor Software

In this Section I map the previous defined requirements to the CROP

Editor Software under construction. The concepts of KConcept, KRC,
KNode, KEdge, KObject, KResource, KProduct and KOrder are already

discussed in Chapter 3.

Two different diagrams are presented here, the CROP Editor Domain
Model and an Architecture diagram that shows the basic structural

components. The detailed implementation of the CROP Editor is
presented in Chapter 6 with all the necessary diagrams describing the

actual CROP Editor features.

First, I introduce the Domain Model of the system that will help us
proceed to a more detailed definition. The CROP Editor Domain Model

(Figure 5.3) shows the noteworthy domain concepts of the system as

they derived from the requirements analysis made previously.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

Images/CROPDomainModel.png

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 38

Figure 5.3 CROP Editor Domain Model

A constructor of Learning Objects, using the CROP Editor must be able
to:

 Create a new Project, with save and load capability using an

appropriate solution file for the project.

 Select and define a workspace to store project files. The project

directory file system structure is defined in Chapter 6.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

Images/CROPDomainModel.png

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 39

 Select digital resource files that support knowledge and

implement KResource objects to associate to KRC nodes.
 Select different types of files:

 Image, video, textual documents (presentations, rich
text formatted, spreadsheets etc.), sound, xml etc.

 Select locally stored or web attached resource files.

 Create resource files using the implemented resource Editor:
 Text documents with rich text format, image, tables and

graphics support.

 Handle ontology files:
 View and navigate through an existing ontology.

 Create new ontology with basic edit functionality.
 Extract concept instances for the KConcept repository.

 Create CROP Learning Objects (KProducts) with save, load and
edit capabilities:

 Use an ontology handler to extract concepts from
reference ontology and define KConcept instances.

 Produce domain ontology for the project by defining
KConcepts and relations between them through the “has

Prerequisite” property to construct the concept graph.
 Construct the KRC for the Learning Object using the

domain ontology.
 Associate resource files and/or other Learning Objects with

a KRCNode to support or assess learning for the current
underlying concept.

 Create, save, load and edit LOM and associate it with a
KObject (KResource or KProduct).

 Support assessment of learning material contained in the

Learning Object by constructing KQuizes as assessment
resource.

 Produce different KOrder execution models that derive
from different KRC traversal paths.

 Run execution models.

 Running a Learning Object:
 Support knowledge: Preview learning resources using a

universal resource type player.
 Assess knowledge: run interactive quizzes and tests.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 40

Considering the CROP Editor as a basic system we can segment its
architecture to several subsystems that have to be implemented and

map runtime and technical requirements to software components.
These subsystems include:

1. A Project Editor/Manager:

 Using this structural component the user can create a new
project, load an existing one and save a newly updated

project.
 He can define a name and secure its uniqueness for the

name property.
 He can select where the projects are to be stored by

configuring the workspace entry and actually a dedicated
file system path for CROP Editor’s projects.

 Navigate through the project entities (resource files,

Learning Objects, reference and domain ontology etc.)
handling a stably structured project directory.

2. A Resource file Handler/Editor

 This component supports several features for the CROP
Editor providing many user options for handling knowledge

material.
 Allows the user to navigate through different types of files

including: images, text documents, web pages, media files
etc.

 Supports web attached files to be previewed when an
internet connection exists.

 Can import locally stored files to the project solution
directory in dedicated folder for resource files.

 Edit text documents with rich formatted text including

images, tables and graphs.
 Interact with external available editors.

3. A KResource Editor
 The KResource Editor component allows the user to

develop, save, load and update KResources.
 Provides an input field for the “Name” property

 Associates resource files with KResource objects using the
physical path URI.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 41

 Defines the target concept (KConcept) of the domain

ontology.
 Associates the object with a LOM instance

 Provides an input field for a description text.

4. A KQuiz Editor

 The KQuiz Editor component allows the user to create,
save, load and update KQuiz instances.

 Provides an input field for the “Name” property.
 Provides an input method for the “Question” string.

 Provides an input method for “Possible Answers”. The
answer sheet can be of two types:

 True or False
 Multiple choices: single or multiple correct choices.

 Provides an input method for the “Right Answer”.

 Defines the target concept (KConcept) of the domain
ontology.

 Associates the object with a LOM instance
 Provides an input field for a description text.

5. A KTest Editor

 The KTest Editor allows the user to define sequences of
KQuiz objects.

 Supports save, load and update functionality.
 Defines the target concept (KConcept) of the domain

ontology.
 Associates the object with a LOM instance

 Provides an input field for a description text.

6. An Ontology Handler/Editor

 The Ontology Handler component provides basic navigation
functionality for existing ontology files locally stored or

web attached.
 Allows the user to produce custom reference ontology file,

define class names and assert “subclass of” axioms, save it
locally to a dedicated ontology folder inside the project

root directory, reload it and update it.
 The navigation functionality involves the class hierarchy

retrieval and actually the expansion of the “subclass of”
axiom.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 42

7. A KConcept Editor

 This component allows the user to define KConcept
instances and relations.

 A KConcept instance can be derived from a class name
presented in the Ontology navigation tree or can be

defined by the user providing a custom name of his choice.
 Allows the user do define relations between KConcept

instances implementing the “has Prerequisite” property for
CROP Learning Objects.

 Every KConcept instance includes the concept name, the
reference ontology URI (null if it is user defined) and a

vector of user defined relations with other instances.

8. A KRC Editor/Handler
 The KRC Editor component involves the development of a

KRC instance for a specific Learning Object (KProduct).

 Uses the KConcept repository to define KRC node instances
and the KConcept tree hierarchy for the “has Prerequisite”

relation to define KRC edges.
 It also has a constructive role for the KConcept tree

hierarchy: when adding a new KRC edge (meaning that the
underlying “Prerequisite” relation does no exist from the

fact it does not yet appears in the KRC) it implements a
property constructor that relates two KConcepts with the

“has Prerequisite” property.
 It is responsible to populate KRC nodes with KObject

instances, i.e. KResources, KQuiz, KTest and KProduct
instances.

9. A LOM Editor

 The LOM Editor component is responsible for creation,

save, load and update functionality of LOM entities.
 This tool can be external, while only the file URI

association is needed.

10. A KOrder Editor
 The KOrder Editor component allows the educator to

implement different traversal paths of the KRC instance
inside the KProduct (Learning Object) under construction.

 It provides save, load and editing functionality.
 More on KOrder construction and the actual algorithms are

discussed in Chapter 6.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 43

11. A Player for the Learning Object
 This component essentially reduces to four aspects:

I. A resource file viewer
 Appropriate for different resource file types (2)

II. A KOrder player and
 Interactive traversal of KRC nodes playing each

of attached instances in the KObject list using
the resource player/viewer.

III. A KQuiz player
 Encapsulates a KQuiz object.

 Provides a mechanism to return feedback for
the results.

IV. A KTest player
 Encapsulates a KTest object.

 Provides a mechanism to return feedback for

the results.
 Supports user interaction.

A milestone decision designing the CROP Editor is to select an
embedded structural components architecture (built -in) or external

subsystem collaborators. The best tactic when designing and
implementing software is to embed any subsystem in order to increase

portability, interoperability and availability. The “all in one” choice lets
the user to interact independently from the configuration that a

system that hosts the software application has. The LOM Editor and a
basic functionality Resource Editor can be embedded in the CROP

Editor. This does not eliminate the user to interact with external
editors for LOM or textual document files. More on this are presented

in Chapter 7 where the implementation tools review exists.

Figure 5.4 shows an architectural approach for the CROP Editor

modeling the system and its subsystems.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

Images/Architecture.png

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 44

Figure 5.4 CROP Editor Architecture

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

Images/Architecture.png

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 45

CHAPTER 6 – CROP EDITOR IMPLEMENTATION

This Chapter contains the implementation report for the CROP Editor.

I cite all the technologies used for development and I map the design

decisions over the actual program functionality. An extended section of

this Chapter concerns the Class Diagrams that are properly presented

following the construction sequence. Additional components used are

also discussed in details and I present their functionality and their

collaboration with other software structures in the Editor. Most of the

classes I have implemented are examined here briefly, while more

details can be found at the programming notes that exist in the source

code. All CROP Editor features are presented here, while the last

Section contains the application runtime prerequisites and the setup

process.

6.1 Development Tools

CROP Editor is developed using the Java programming language

available at [14] and Java Development Kit (JDK) version 5 available

at [15] for the Java framework kernel. The application is build using a

Java Integrated Development Environment (IDE), the NetBeans IDE

version 6.1 available at [16]. Java is a very flexible Object Oriented

programming language that supports our needs due to the

extensibility and modifiability that provides. Both tools are free to use

and modify.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 46

6.2 Software Architecture

Figure 6.1 shows the architecture of the CROP Editor application. This

architecture presentation focuses on the software packages that are

implemented and categorized in such way to achieve code

independence and avoid duplication. Each package presented here is a

actually concerned as a subsystem that collaborates in the CROP

Editor. More details for each subsystem are given in the Class

Diagram section of this Chapter.

 cropedit package is the main structural component system that

consists the CROP Editor implementation and encapsulates all

the subsystems.

 core package contains the implementation of the CROP

Reference Architecture.

 Customization package contains classes that support CROP

Editor configuration.

 Help package contains classes for the help file of the application.

 KPlayer package is the implementation of the KProduct player.

This subsystem is in a preliminary development stage and is

discussed later where this report concludes for the CROP Editor

application.

 ReferenceOntology package supports handling methods for

the ontology that is used as an input of the KConcept (content

ontology) graph of an LO.

 Resources package contains classes and methods for resource

files handling that are used for KSupport object instances.

 Tools package contains classes necessary for file handling,

String and Images management and Save/Load mechanism for

the CROP.

 UI (User Interface) contains the implementation for the GUI of

the CROP Editor. This System is tightly connected with all the

other subsystems.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

Images/Architecture.jpg

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 47

 CROP package is the implementation component for the CROP

project.

 javax, org, edu and chrriis packages are also discussed later

in the Section where I present various technologies integration.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 48

ArchitecureCD.jpeg (6.1)

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

Images/Architecture.jpg

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 49

6.3 Class Diagrams

In this Section I present the Class Diagrams for each subsystem

giving details of the implementation and the purpose of each

individual class.

6.3.1 cropedit Class Diagram

Figure 6.2 cropedit class Diagram

Figure 6.2 shows the Class Diagram of the cropedit package. It

contains a single class, the Main class, which is responsible for

starting the application.

6.3.2 core Class Diagram

Figure 6.3 shows the Class Diagram of the core package. It

contains classes that implement the CROP Reference Architecture,

and is actually the kernel framework for the CROP Editor.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

Images/coreCD.jpg

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 50

coreCD.jpeg (6.3)

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

Images/coreCD.jpg

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 51

 KConcept class: is the implementation of the KConcept

notion in CROP. It contains a single attribute, the Name

attribute, which depicts the name of the KConcept instance.

 KHasPrerequisite class: is the KHasPrerequisite

implementation that appears in CROP. It has two (2)

attributes: TargetKConcept and PrerequisiteKConcept that are

the target and source anchors of the edge which depicts the

dependence relation between two KConcept instances.

 KConceptGraph, KConceptGraphManager classes: the

KConceptGraph class describes the KConceptGraph (i.e. the

content ontology) of an LO. Three (3) attributes are defined

here: CROPOwner which is the CROP project that the graph

belongs to, KConcepts which is a vector of KConcept

instances (nodes in the graph) and KHasPrerequisites which is

a vector of KHasPrerequisite instances (edges in the graph).

The KConceptGraphManager class contains methods to

manage the graph structure.

 KObject class: this class is an abstract implementation of the

KObject in CROP.

 KResource, KSupport and KAssess classes: the KResource

class also depicts the KResource notion in CROP. Moreover, it

extends the KObject class and defines five (5) attributes:

Name is the name for the KResource instance,

TargetKConcept is the learning objective of this instance

which appears in the KConcept graph structure,

ReferenceOntologyURI is the URI that points to the ontology

whereof the KConcept instance was extracted, LOMURI is the

string that points the URI where the LOM document for this

instance is stored and Description is a simple text to describe

this instances which actually lacks any format. Extending the

KResource class, two classes are derived: the KSupport class

and KAsses class. KSupport class implements the KSupport

notion in CROP and additionally contains one (1) more

attribute, the ResourceFileURI attribute, which points to the

location where the digital resource file is stored. KAssess class

is extended by two classes: the KQuiz class which is the

implementation of the KQuiz notion in CROP and contains a

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 52

Question attribute for the question citation, a vector of

Answer instances (implement a choice in the quiz) and the

SuccessResponse and FailureResponse strings∙ and the KTest

class that defines a vector of KQuiz instances and

SuccessResponse, FailureResponse correspondingly.

 KProduct class: KProduct calls is the implementation of the

KProduct notion CROP. Extends the KObject class and defines

eight (8) attributes: Name is the name for the KProduct (i.e.

the Learning Object) instance, TargetKConcept is the learning

objective of this instance which appears in the KConcept

graph structure, CROPOwner which is the CROP project that

the graph belongs to, ReferenceOntologyURI is the URI that

points to the ontology whereof the TargetKConcept instance

was extracted, LOMURI is the string that points the URI

where the LOM document for this instance is stored,

Description is a simple text to describe the instance which

actually lacks any format, KRC corresponds to the KRC class

in CROP (next paragraph) and KOrder for the execution

models of this KProduct instance (next Subsection).

 KRCNode, KRCEdge, KRC and KRCManager classes:

KRCNode class corresponds to the teaching act which is

defined in CROP. It is the base for the execution of a KProduct

instance and moreover for its KOrder described in the next

Section. KRCNode defines six (6) attributes: Name attribute

for the KRCNode which is constructed by the TargetKConcept

attribute name plus the “_node” application, ProductOwner

which is the KProduct instance where it belongs to and three

(3) vectors of KSupport (KSupportObjects), KAssess

(KAssessObjects) and KProduct (SubProducts) instances that

correspond to the KObjectList for this KRCNode instance. The

KRCEdge class corresponds to the teaching step that is

defined in CROP and visualizes the dependence relation

between two (2) KRCNode instances (i.e. KConcept and

KHasPrerequisite respectively). The KRC class is the actual

graph that is constructed by a vector of KRCNode instances

(graph nodes) and a vector of KRCEdge instances (graph

edges). In addition to the structural vectors of nodes and

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 53

edges two (2) more attributes are defines here: the

ProductOwner (i.e. the KProduct instance where it belongs to)

and TargetKConcept which is the root node in the graph, say

the learning target for this KProduct. Correspondingly to the

KConceptGraphManager, KRCManager contains methods to

handle the graph structure (parsing and editing features).

6.3.3 KOrder sub- package Class Diagram

In this Subsection I present the KOrder package and I separate

it from the core package because of its complexity. Figure 6.4

shows the Class Diagram for the KOrder class which corresponds

to the KOrder notion in CROP. In fact, the KOrder class can be

certified as a repository of XModel (execution models) instances

for the KProduct under discussion, attached with a StudentModel

and an Instructional Environment.

 KOrder and KOrderManager classes: KOrder class has

two (2) attributes: a vector of XModel instances (XModels)

and the ProductOwner which is the owner for this KOrder

instance. The KOrderManager class contains methods to

handle the vector (repository) of XModel instances in the

KOrder.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

Images/korderCD.jpg

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 54

korderCD.jpg (6.4)

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

Images/korderCD.jpg

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 55

 XModel, XModelManager classes and XModelType

enumerator: the XModel class is the implementation of the

execution model motion as it is defined at CROP. This class

contains five (5) attributes: OrderOwner is the KOrder

where this XModel instance belongs to∙ Name is the name

for the instance∙ Description is a simple unformatted text

variable to describe the purpose of this execution model∙

Type is a variable which takes value (element) from the

value space that is defined in the XModelType enumerator

and it can one of the: Custom (for custom made execution

models), DefaultHorizontal or DefaultVertical (for a default

construction)∙ and the XGraph attribute which is the

execution graph (next paragraph). The XModelManager

class contains methods for parsing and structure handling

of the XModel.

 XGraph and XGraphManager classes: the XGraph class

is the implementation of the execution graph for a specific

XModel instance. An XGraph can be of two (2): a custom

made or default correspondingly to the XModelType. In

both cases the XGraph contains a sub-graph which is

actually the KRC Graph of the KProduct under discussion.

In case of custom XModelType, the execution graph

contains not only the sub-Graph that is derived from the

KRC bit also a variety of other node types (XNode

instances∙ presented in next paragraph) and a variety of

edge types (XEdge instances∙ presented also in a next

paragraph). In the case of a default construction, the

XGraph contains only the mapping of the KRC graph to

appropriate XNode and XEdge instances that are presented

next. So, the XGraph class defines three (3) attributes: a

vector of XNode instances (XNodes), a vector of XEdge

instances (XEdges) and the ModelOwner attribute that is

the XModel owner of this execution graph. Talking about

the default construction of an XGraph, this stands from the

fact that the graph contains only the mapping of the KRC

Graph. The two (2) types of default construction

(Horizontal or Vertical) concern the traversing path of the

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 56

graph at runtime, i.e. when the KProduct is executed using

the specific XModel. Figure 6.5 shows the two types of

traversing. The XGraphManager class contains methods

for parsing and structure handling of the input Graph.

Figure 6.5 Default horizontal and vertical traversing of an XGraph.

 XNode class: the XNode class is the implementation of a node in

the execution graph. Two (2) attributes are defined here: Name

of the instance and GraphOwner the XGraph that this node

belongs to. This is an abstract class and is inherited by various

types of XNode instances. These types are:

 XDialogues class: is a class implementation to present a

dialogues node and extends the XControlNode class. This

class contains two (2) attributes: IntroText which is a

simple unformatted text and IntroURI which is a string URI

that points to a digital file. Both attributes are to inform

the user (learner) for what is to be expected next at

runtime or to introduce some teaching act. An XDialogues

instance stands a node where some teaching steps are

about to take place.

 XStartNode, XEndNode classes: present the start and

the end of the graph. These classes extend the XDialogues

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 57

class and they appear with different image/shape in the

execution graph. An XStartNode instance has a single step

while lacks any.

 XDialogueNode class: this class has the exact meaning

as any XDialogues instance but differs in such way that

many dialogue steps (via the XStepEdge implementation

which is discussed later) can be associated with it.

 XGroupNode, XSeqGroupNode, XParGroupNode and

XEndGroupNode classes: an XGroupNode instance

depicts the grouping of node instances. This is an abstract

implementation and is inherited by: the XSeqGroupNode

that stands for a sequential group of nodes, the

XParGroupNode that is a parallel grouping of nodes and

the XEndGroupNode that present the end of grouping in

both sequence and parallel cases. Figure 6.6 shows an

example grouping segment.

Parallel

Sequence

Figure 6.6 Sequence and Parallel group node

implementation

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 58

 XConceptNode class: this type of Node stands for

representing a KRCNode as an executable component. In

the XGraph of the given XModel one node exists for each

KRCNode in the KRC Graph. An XConceptNode instance is

unique in an XGraph and has three (3) more attributes:

the ComponentKRCNode which is the input KRCNode, the

ComponentGraph attribute which is recursively an XGraph

that is structured with the KObjectList elements (the node

type) of the KRCNode. These graph apparently from the

XNode types mentioned here, contains XResourceNode and

XsubProductNode instances. The set of XConceptNode

instances with the set of XDependenceEdge instances

(discussed in next subsection) illustrate the

XDependenceGraph for the given XModel. The third (3rd)

attribute is an instance of the

XConceptNodeRuntimePerformance class, which contains a

set of Properties defined in the PerformanceProperty

enumerator and stores/checks the runtime performance of

the student – learner during the KProduct execution.

 XIFNode class: extends the XControlNode class and

implements an automated decision mechanism. This class

contains three (3) more attributes: a vector of conditions∙

XIFNodeCondition instances that are constructed using a

property element from the value space that is defined in

PerformanceProperty enumerator, a PerformanceOperator

value from the value space defined in this enumerator and

a value (double variable)∙and two (2) nodes (XNode

instances in the XGraph), one for the True evaluation of

the condition sequence and one for the False. Table 6.7

lists the available performance properties and performance

operators.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 59

PerformanceProperty PerformanceOperator
QuizSum Grater

TestSum Equal

QuizTaken Less

TestTaken Not

QuizSuccess LessEqual

TestSuccess GreaterEqual

OverAllPerformance
CurrentNodePerformance
PreviousNodePerformance

 Table 6.7 Performance properties and operators

 XResourceNode and XsubProductNode classes: These

classes represent the executable XNode instances for a

KResource or a KProduct respectively. These XNode types

appear inside the XGraph of an XConceptNode and are

produced using the KObjectList of the KRCNode that is

input to the XConceptNode instance. Due to designer’s

selection not all the KResources or SubProducts of the

KRCNode must be implemented in XConceptNode graph

structure.

 XEdge class: this class is the implementation of an edge in the

XGraph (XModel graph or XConceptNode graph). Two (2)

attributes are defined: the SourceXNode and the TargetXNode

which are represent the source anchor and the target anchor of

the edge respectively. XEdge class is extended by four (4) more

types:

 XDependenceEdge class: maps a KRCEdge in the

XGraph. As already said, the set of XDependenceEdge

instances with XConceptNode instances consist the

XDependenceGraph (sub-Graph) of an XModel graph.

 XStepEdge class: this class depicts a user (learner) choice

when the current node type is an XStartNode or

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 60

XDialogueNode instance. This edge defines one (1) more

attribute∙ the StepText attribute which is a short string to

describe the choice.

 XFalseEdge and XTrueEdge classes: These classes

implement the False and True condition evaluation when in

an XIFNode instance correspondingly.

 StudentModel class: this class is not yet implemented. The aim

of this implementation is to collaborate with the KOrder object in

an instructional environment. More on this are discussed at

Chapter 8 where this report concludes.

6.3.4 CROP Class Diagram

Figure 6.8 show the class diagram for the CROP package. Three (3)

classes are defined here:

 CROP class: This class represents a CROP Editor Project. There

is variety of attributes defined here including the project Name,

DiskPath, Creation and Modification Dates ,

ReferenceOntologyURI string, names of the folders to store data

and vectors of objects (KResources and KProducts) implemented

for this project.

 CROPManager class: this class includes management methods

for a given CROP project. It supports project creation, load and

save mechanism and parsing of KObject instances implemented

in this project.

 SaveOWLFactory class: this calls is to implement a save

mechanism for the CROP project as an OWL onology. This

feature is discussed in the conclusion Chapter 8 and maps the

requirements for the CROP Ontology.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

Images/cropCD.jpg

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 61

Figure 6.8 the CROP package Class Diagram

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

Images/cropCD.jpg

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 62

6.3.5 Customization package Class Diagram

Figure 6.9 shows the class diagram for the Customization package. A

single class is defined here∙ the Customization class∙ which is

responsible for two (2) types of customization via its methods:

Look and Feel: sets the Look and Feel (graphics style) for the

application.

Work Directory: sets the workspace where CROP projects are stored.

Figure 6.9 Customization package Class Diagram

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 63

6.3.6 Help package Class Diagram

This package also contains a single class∙ the HelpSetTreeModel

class∙ which is responsible to load the help set for the CROP Editor

application. It implements the TreeModel Java interface and it is a File

System extractor for a given folder. Figure 6.10 shows the class

diagram for Help package.

Figure 6.10 Help package Class Diagram

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 64

6.3.7 ReferenceOntology package Class diagram

ReferenceOntology package class diagram is shown in Figure 6.11. It

contains a single class∙ the ReferenceOntologyHandler class that

contains methods to create, load and save OWL ontology files for a

given CROP project. A ReferenceOntology performs as an input for the

content ontology (KConceptGraph) of a CROP Learning Object.

Figure 6.11 ReferenceOntology package Class Diagram

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 65

6.3.8 Resources package Class Diagram

The Resources package class diagram (Figure 6.12) contains also a

single class named ResourceManager. This class supports digital file

management in association with a CROP project instance. This

methods include add/remove URI from resources and importing a file

(copy to local folder).

Figure 6.12 Resources package Class Diagram

6.3.9 UI package Class Diagram

This package (Figure 6.13 (a, b, c, d)) contains all Graphical User

Interface Components for the CROP Editor. Chapter 7 demonstrates

the application at runtime showing screenshots that illustrate all the

components that are implemented to serve CROP Editor features. This

is an extended package implementation and the main characteristics

are listed below giving an overview of the implementation and the

actual design methods used:

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

Images/UICDa.jpg
Images/UICDb.jpg
Images/UICDc.jpg
Images/UICDd.jpg

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 66

UICDa.jpg(6.13a)

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

Images/UICDa.jpg

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 67

UICDb.jpg(6.13b)

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

Images/UICDb.jpg

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 68

UICDc.jpg(6.13c)

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

Images/UICDc.jpg

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 69

UICDd.jpg(6.13d)

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

Images/UICDd.jpg

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 70

 Application main window: for the main CROP Editor window I

used the Java JFrame class. In this window a CROP project is

hosted and provides the appropriate views for each structural

component of the project. Figure 6.14 shows the UML

Component Diagram for the CROP Editor Views.

Figure 6.14 CROP Editor Views Component Diagram

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 71

 Panels: all the component view of the editor are hosted in Java

JPanel forms. Each panel may have a toolbar to edit the object

that is currently in process.

 Lists: there is a variety of vectors and grouped objects as it is

cited at this section. These groups are modeled using the

ListModel Java interface and are shown inside JList components.

The ListModel interface is highly modifiable and can be extended

to host any type of sequential objects (vectors, lists, arrays

etc.).

 Scenes: Graph scenes (visual components) are used to

demonstrate the three (3) graph types that appear in CROP

framework: KConceptGraph, KRC Graph and XGraph. This

component is fully editable and implements many handlers such

as the ObjectSceneLister interface to manage object selection. It

provides menus over the various object data types and is

customizable and extensible according to the developer’s needs.

It also supports Scene view methods to zoom, layout and change

the graph representation inside the panel host.

 Drag & Drop: this feature is implemented to increase user –

application interaction efficiency (usability). An example usage is

to drag class name from the ontology panel and drop it to the

KConceptGraph Scene or populate a KRCNode object list with

KObject instances by dragging an object (KResource or

KProduct) and drop it on the KRCNode image in the KRC Grpah

Scene.

 Docking: all the application is developed using a Multiple

Document Interface (MDI) style. That means that the main

window can perform as a host (parent component) for various

other windows (panels – child components). It used as virtual

desktop screen where additional panels are placed and supports

docking capability (move, dock, undock, replacement, resize

etc.). The internal components are called dockables.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 72

 Update: Most of the UI components are automatically

updateable according to the user actions.

6.3.10 KPlayer package Class Diagram

This package is a case study for the Learning Object Player of CROP

LOs. KPlayer consists of the algorithms and the application of them in

order to run an execution model (XModel) for a given KProduct (i.e. a

Learning Object). The Class Diagram of the KPlayer as it is until now is

shown in Figure 6.15. The aim of the KPlayer is to perform

simultaneously with other necessary components that will arise from

the requirement analysis in a universal Instructional Environment,

integrating an XModel, a StudentModel and a report mechanism to

support and assess learning.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

Images/kplayerCD.jpg

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 73

kplayercD.jpg (6.15)

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

Images/kplayerCD.jpg

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 74

6.3.11 Tools package Class Diagram

This package (Figure 6.16) contains classes that are responsible for

many operations in CROP Editor. Five (5) Java classes are defined

here:

 FileHandling class: contains methods for copying a file, convert

a byte stream to file, write a file into a Java String object etc..

 HTMLFormatConverter class: supports transformation from

HTML format to RTF format via a middleware application

involving XML file handling.

 Images class: contains methods to transform image files into

reusable Java objects (Image or ImageIcon).

 Serialization class: this class is the key for load and save

mechanism in CROP Editor. Two methods are defined here:

 SerializeToJavaXML: takes input an object of any kind

and maps its internal structure into a reusable XML file

format.

 DeSerializeFromJavaXML: takes input an XML File and

maps the XML schema and values into the desired object

implementation.

 Strings class: this class contains to validate Java Strings, say

check if a String object is of null value, empty or contains

spaces.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

Images/toolsCD.jpg

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 75

toolsCD.jpg (6.16)

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

Images/toolsCD.jpg

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 76

6.4 CROP Editor Application Features

In this Subsection I cite the CROP Editor features and the actual

Learning Object designer’s (educator) available functionality. To

avoid complication more details for the Editor functionality are

given in the next Chapter using the runtime screenshots.

A CROP Learning Object designer is able to:

 Create, Load and Save a CROP Project.

 Create, Edit and Save reference ontology in OWL format or

View an existed external ontology via the URI where the

ontology file is stored.

 Select a class name from the reference ontology and add it

into the KConceptGraph (content ontology) Scene Panel.

 Define dependence relations (KHasPrerequisite instances)

between KConcept instances visually in the graph.

 Edit the KConceptGraph by adding or removing edges or

nodes.

 Create digital resource files in RTF format using an internal

RTF Editor.

 View and Edit the Resources List.

 Navigate on the Web and import URI addresses to use them

as resources.

 Create and Edit KResources (KSupport, KQuiz and KTest

objects): this involves a selection mechanism for

TargetKConcept and LOM file association.

 Preview the implemented KResource instances and edit their

properties.

 Create, Load and Save KProducts. Edit the KRC Graph

structure and populate KRCNode objects with KObject

instances. Update KRCEdges according to the KConceptGraph

implemented dependencies.

 Implement execution models for a given KProduct selecting

default or custom creation mode for the XGraph. In custom

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 77

creation case, the designer can implement new XNode objects

using the Drag n Drop functionality from a component palette

and edit their properties using a very simple menu and define

appropriate XEdges.

 Customize via a wizard the application Look and Feel or the

workspace to store the implemented CROP projects.

 Take help tips using the Help support mechanism that exists

with update features.

6.5 Additional Tools and Technologies Integration

For the CROP Editor development I used some additional tools and

technologies to collaborate with the existing Java functionally. These

tools include:

A docking framework: For that purpose I used MyDoggy Java

Docking Framework available at [17].

A Reference Otology Handler: to load, view, edit and save

reference ontology for the CROP project I used the Protégé OWL API

v.3.3.1 which is available at [18].

A Look and Feel applicator: to set application Look and feel I used

the Substance Java Look and Feel package available at [19].

A Collapsible Panel implementer: in order to save screen space I

used collapsible panels apart from the docking framework. The

package I used is the Japura v.1.2.1 package available at [20].

An HTML/RTF file Editor: for that purpose I used the FCKEditor

available at [21] that is integrated in a single Java component

implemented in the DJNative Swing Component Library available at

[22].

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 78

An HTML to RTF converter: using the FCKEditor the result is in

HTML format. In order to transform it to RTF I used two technologies:

the JTidy library that performs HTML structure checking and correction

available at [23] and the Apache Formatting Objects Processor (FOP)

available at [24] which supports HTML to RTF conversion via an XML

transformation (with XSL application as middleware).

A visual graph scene editor: graph scenes in CROP Editor are used

to provide editing functionality for the KConceptGraph, KRC Graph and

XModel Graph. For this purpose I used the Java Visual Library v.2.0

available at [25] which is an integrated to NetBeans IDE tool and can

be retrieved as plug-in module and used separately in Java

applications.

6.6 Application Prerequisites and Setup

In order the application to be executable the host system must meet

the following prerequisites:

1. Installed Java Runtime Environment (JRE) version 5 or later that

can be found at [14].

2. Operating System Microsoft Windows XP or later. The application

has been tested also in Ubuntu Linux.

3. Web Browser: Microsoft Internet Explorer or Mozilla Firefox.

To setup the application in the system you have to:

1. Copy the “Runt” folder from the attached CD into a system folder

in the hard disk drive.

2. In the dist folder create a folder and name it CROP Editor Help.

Any file (Web page, PDF file etc.) you put there will be shown in

the Help set list of the Editor.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 79

3. Run the CROPEdit.jar file from the dist directory and customize

the application selecting a workspace directory and the desired

Look n’ Feel.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 80

CHAPTER 7 – CROP EDITOR DEVELOPMENT EXAMPLE AT RUNTIME

In this Chapter I present the CROP Editor at runtime showing

screenshots and explaining more the application functionality. In this

demonstration I use an example to proceed that involves a Learning

Object that teaches the user (learner) how the CROP Editor works.

Figure 7.1(a) shows the CROP Editor main window when the

application starts plus the Project Menu where the user can choose

either to open an existing project or create a new one. For this

example I will create a new project (Figure 7.1 (b)) called CROP Editor

Usage and in the Panel that appears I give the name and select to use

a custom Reference Ontology (leave unchecked the Checkbox named

as Uses external reference ontology).If I choose to use an external

reference ontology the panel below the name input text field becomes

enabled and I can navigate through web ontology resources providing

the OWL file URI and testing its existence or usability by pressing the

Test named button. After creating the project all Menus are available.

In this design phase a CROP folder is created inside the workspace

defined in the customization and all the necessary subfolders. In case

that I select to use a custom reference ontology an owl file also is

constructed and saved in the reference Ontology sub – Folder of my

project. The file system hierarchy of a crop project is shown below:

Project Directory

Metadata

Products

Reference Ontology

Resources

Project_Name.xml

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 81

Figure 7.1 (a) CROP Editor Main Window

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 82

Figure 7.1(b) the panel to create a New CROP Project

Next, in Figure 7.2a I expand the Dock Menu and I choose to dock the

ReferenceOntology View Panel and the KConceptGraph View Panel.

These two panels have a very tight interaction relation because of the

implementation mechanism that guides to select classes from

Reference Ontology Panel and add them as KConcept instances in

KConceptGraph Panel. Using this feature I construct the

KConceptGraph. This action presupposes that the designer has

implemented tha appropriate classes in the Reference Ontology panel

which is an extension of the SelectClassPanel implemented in the

Protégé OWL API [18]. Moreover, I design the dependence relations

between KConcept nodes by pressing Ctrl + left click on the source

node and dragging the edge over the target node. The designer can

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 83

any time remove a KConcept node or a KHasPrerequisite edge, unless

this node is not used as a TargetKConcept of KObject. Removing a

node causes the associated edges to be removed too. In the

KConceptGraph Scene panel I can zoom in various ways or perform a

Layout algorithm. Figure 7.2(b) shows the implanted constructions.

Figure 7.2(a) Reference Ontology and KConceptGraph panels.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 84

Figure 7.2 (b) an ontology – KConceptGraph construction example

Following, Figure 7.3 shows the Resources Menu panels: The

HRML/RTF New Resource Panel, the Resource List View Panel and the

Web Resource Navigator Panel. The FCKEditor [21] integrated in the

DJNative Swing Project [22] offers full HTML rendering and edit

capabilities. Pressing the Save button this HTML page is saved in RTF

format as explained in the previous Chapter. The Web Navigator panel

launches a built in Java Web Browser that is also integrated in [22].

The Resources List View Panel lists the available resource files and URI

that are stores in the Resource project sub-folder.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 85

Figure 7.3 Resources Menu dock able panel views

Figure 7.4 (a) shows the CROP Editor with KObjectList View and

KObject Properties View Panels docked. The KObjectList View Panel

offers navigation between the KSupport, KAssess and KProduct

instances, while it provides add/remove and launching functionality

using the toolbars. Selecting a KObject Instance the KObjectProperties

View Panel is automatically populated with the KObject properties

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 86

respectively. For this example I created one instance per object type

and I have selected the KQuiz listed object to show in the Screenshot

its properties. When the user clicks the add button for each KObject

panel, a dialogue appears that prompts the user to provide a name for

KObject instance and select a KConcept from the list. This will be

TargetKConcept. This panel is presented in Figure 7.4 (b).

The Properties View Panel provides for every KObject type a General

Tab pane where various information are shown: the name, the target

concept, the reference ontology URI and also supports LOM document

association and description text input. In case of a KSupport instance

there is a selection mechanism to associate this object with a resource

file URI. In case of KQuiz, KTest and KProduct instances one additional

tab pane is added to the properties panel∙ the Functional named pane∙

In KQuiz mode this pane supports Question text input, Answers

definition and success/failure text input. In KTest mode the designer

can select a sequence of implemented KQuiz instances. In KProduct

mode this Tab pane is named KOrder and the designer can create

XModel instances and launch their XGraph Editor that is discussed and

presented further. Figure 7.4 (c) shows screenshots of the above.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 87

Figure 7.4 (a) KObject List and Properties View Panels

Figure 7.4 (b) Create a new KObject instance

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 88

Figure 7.4 (c) KQuiz, KTest and KProduct Functional Tab panes.

Continuing this presentation in Figure 7.5 I present the KRC Graph

editor. This Editor is also implemented using a Visual Graph Scene as

in KConceptGraph. Creating a KProduct instance by default a single

KRCNode is created∙ the node that corresponds to the selected

TargetKConcept. Selecting a KRCNode the designer can update its

dependencies using the KRCNode properties panel from the

Dependencies collapsible panel area. This panel shows the node type

for the selected KRCNode. Furthermore, the designer can implement

KResource instances using the menu of each KRCNode by right –

clicking on it. In addition, a Drag n Drop functionality is supported

here, so to pick KObject instances from the KObjectList View Panel and

drop them on a KRCNode updating in that way its node type. For this

demonstration I have implemented two (2) KProducts. One has as

TargetKConcept the CROPEditorUsage concept and the other the

concept A. To show the functionality of the KRC Graph Editor I have

updated the node type of the KRCNode instance name as A_node and

have added to its node type the second KProduct instance that has as

TargetKConcept the A concept. It is important here to note that a the

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 89

assignment of a KObject instance to the KObjectList (i.e. the node

type) of a given KRCNode, presupposes that this node and the

selected KObject have the same TargetKConcept.

Figure 7.5 the KRC Graph Editor

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 90

As already told previously the Properties View panel for a KProduct

supports the implementation of XModel instances. Figure 7.6 shows

the XGraph Editor. When the designer decides to add an execution

model a panel appears and prompts for Name input and XModelType

(Custom, DefaultHorizontal or DefaultVertical) selection. When the

XModel is of custom type the XGraph editor is available. Except from

the main XModel XGraph Editor, when an XConceptNode is selected

the XGraph for this node appears for editing. The only difference

between the XModel XGraph and the XConceptNode XGraph is that the

XConceptNode graph accepts XResourceNode and XsubProductNode

instances that can be added from the list that appears in the panel and

contains the KObjectList of the selected XConceptNode.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 91

Figure 7.6 the KOrder - XModel Editor

Selecting the Customization Wizard from the Customize Menu the user

can change the workspace directory and the Look and Feel of the

application. Figure 7.7 shows the previous figure (7.6) using the Motif

Look and Feel.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 92

Figure 7.7 the Motif Look and Feel

Figure 7.8 shows the Help Frame of the CROP Editor. The Help set list

is updateable by editing the content of the CROP Editor Help folder.

The preview panel can render Web pages, Images, text and xml files,

pdf files, while in case we want to load documents of different the

appropriate applications launches automatically.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 93

Figure 7.7 Help support in CROP Editor.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 94

CHAPTER 8 – CONCLUSION

The CROP Editor application follows the CROP Reference Architecture

Specification and implements the core framework for CROP Learning

Objects and a wrapper to facilitate the editing process. It achieves a

high – level usability and the editing process is clear according to the

software – user interaction. A very important factor is the Graphical

User Interface implementation which in the Editor appears to be very

handy from the designer’s perspective. In addition all the software

components (sub-systems applied with visual UIs) are fully updateable

so duplication of work inside the editor is avoided. Resources design

and implementation procedure is also well defined letting the designer

to select from a variety of resource types taking the advantage to

select the storage URI of the actual digital resource in support learning

case∙ or build a well structured Quiz (and Test) to assess learning.

In the context of this thesis, I provided the Editor for the CROP

Learning Object Architecture. There is a lot of research and

development activity left as future work. From the Editor’s perspective,

there are several enhancements that can facilitate even more the

editing process. Some of them are listed below:

o Design and development or use of existing built – in resources

editor components. This will make the framework more

independent. A solution to this issue could be the OpenOffice.org

SDK and API [26]. At the moment there is an implementation of

a Java Bean to integrate this application (Writer, Impress etc.)

into a Java application with the constraint that the

OpenOffice.org Suite is installed in the host system.

o Refinement of the KResource objects developing process and

enhancement off learning assessment with additional object

types (exercises and interactive live tests).

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 95

o Implementation of the CROP Ontology saving mechanism. It will

be very useful the designer to be able to save a CROP project

(and a Learning Object consequently) in OWL format. Using this

feature the consistency and completeness of a Learning Object

can be evaluated with Ontology Reasoning application. This will

also meet the LOM Ontology specification at [11].

o An embedded LOM Editor will also supplement the system

independence and portability of the CROP Editor.

As it is presented in Chapter 6, the KPlayer sub-system of the CROP

Editor has been designed in a preliminary stage. The component has

to be designed and implemented to meet all the features that CROP

Architecture cites and must be integrated to Editor. It is highly

recommended that KPlayer has to provide a CROP Editor independent

run mode also, in order to be available for learners (students) as a

separate application.

As SCORM Specification [13] guides the design and implementation of

learning material, a Learning Object must meet the following

requirements: Accessibility, Adaptability and Reusability. Thus, inside

the CROP Editor application must be integrated a sub-system that will

provide the designer the ability to import existing resources and

products in a project. This feature concerns a very close case study of

SCORM. Furthermore, a Learning Object should be available in the

meaning of searchable, accessible and retrievable. This is the actual

aim of a Learning Service. SCORM also cites these needs that a

learning environment must meet. Applying the SCORM guidelines in

the CROP Editor along with a complete KProduct player

implementation and a Student model prototype, CROP Learning

Objects can be available over a Web Learning Service. These features

complete the instructional environment that CROP cites.

Following the above acknowledgements, this development stage of the

CROPS Modeling Framework (i.e. the CROP Editor) can be concluded

and integrated accordingly with the other structural components that

briefly presented in Chapter 1.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 96

ACKNOWLEDGEMENTS

This work would not have been possible without the support and

encouragement of my advisor, Professor C. Hartonas. He smoothly

assisted me during the whole period of my elaboration over this thesis.

With his inspiration, great effort and valuable time dedication for our

meetings, he advised me and provided guidelines, so things to become

clear. His teaching was determinative for my mind growth and

inspiration to continue research in Computer Science.

I would like to thank many people that helped me overcome technical

issues of this work with their experience over several difficulties I

encountered and advised me without a hitch, through forum discussion

boards over the internet.

Finally, I wish to thank my family for their emotional support. Their

contribution was invaluable. To them I dedicate this thesis.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 97

REFERENCES

[1] C. Hartonas, E. Gana, “Learning Objects and Learning Services in

the Semantic Web”, Proc ICALT 2008.

[2] C. Hartonas, E. Gana, “Adaptivity for Knowledge Content in the
Semantic Web”, Proc KGCM 2008.

[3] R. McGreal, “Online Education Using Learning Objects”, 2005

[4] C. Larman, “Applying UML and Patterns :
An Introduction to Object-Oriented Analysis

and Design”, 1999

[5] C. Larman, “Applying UML and Patterns”, 1997

[6] R. Malan, D. Bredemeyer, “Defining Non-Functional Requirements”,
Architecture Resources For Enterprize Advantage, Bredmeyer

Consulting, 2001

[7] T. Katsaros, Dissertation in “Adaptive Learning Objects”, MSc in
Computer Science, Staffordshire University UK, TEI of Larisssa GR,

September 2008.

[8] M. Tsiakmaki, PhD dissertation in progress (advisor Prof C.

Hartonas), private communication.

[9] IEEE Learning Technology Standards Committee (2002) (PDF),
Draft Standard for Learning Object Metadata. IEEE Standard

1484.12.1, New York, Institute of Electrical and Electronics Engineers,
http://ltsc.ieee.org/wg12/files/LOM_1484_12_1_v1_Final_Draft.pdf

[10] The Instructional Use of Learning Objects. Wiley, D. (ed) Section

1.1: Connecting learning objects to instructional design theory: A
definition, a metaphor, and a taxonomy. Online version at

http://www.reusability.org/read/

[11] IMS Global Learning Consortium http://www.imsglobal.org/

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

http://ltsc.ieee.org/wg12/files/LOM_1484_12_1_v1_Final_Draft.pdf
http://ltsc.ieee.org/wg12/files/LOM_1484_12_1_v1_Final_Draft.pdf
http://ltsc.ieee.org/wg12/files/LOM_1484_12_1_v1_Final_Draft.pdf
http://www.reusability.org/read/
http://www.imsglobal.org/

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 98

[12] Web Ontology Language W3C, Semantic Web,

http://www.w3.org/2004/OWL/

[13] LOM Ontology, http://www.teilar.gr/~hartonas/lom.owl

[14] IMS Learning Design Best Practice and Implementation Guide

,Version 1.0 Final Specification at
http://www.imsglobal.org/learningdesign/ldv1p0/imsld_bestv1p0.html

[15] SCORM 2004, 3rd Edition at http://www.adlnet.gov/Scorm/

[16] Sun Java, http://java.sun.com/

[17] Java Development Kit (JDK) at

http://java.sun.com/javase/downloads/index.jsp

[18] NetBeans IDE at http://www.netbeans.org/

[19] MyDoggy Docking Framework at http://mydoggy.sourceforge.net/

[20] The Protégé OWL API v.3.3.1 at

http://protege.stanford.edu/plugins/owl/api/

[21] The Substance Java Look and Feel Package at
https://substance.dev.java.net/

[22] The Japura v.1.2.1 Java Library at
http://sourceforge.net/projects/japura/

[23] The FCKEditor at http://www.fckeditor.net/

[24] DJNative Swing Component Library, The DJ Project at
http://djproject.sourceforge.net/ns/

[25] The JTidy Library at http://jtidy.sourceforge.net/

[26] The Apache Formatting Objects Processor (FOP) at

http://xmlgraphics.apache.org/fop/

[27] The Java Visual Library v.2.0 at

http://platform.netbeans.org/tutorials/nbm-visual_library.html

[28] OpenOffice.org Productivity Suite at www.openoffice.org/

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

http://www.w3.org/2004/OWL/
http://www.teilar.gr/~hartonas/lom.owl
http://www.imsglobal.org/learningdesign/ldv1p0/imsld_bestv1p0.html
http://www.adlnet.gov/Scorm/
http://java.sun.com/
http://java.sun.com/javase/downloads/index.jsp
http://www.netbeans.org/
http://mydoggy.sourceforge.net/
http://protege.stanford.edu/plugins/owl/api/
https://substance.dev.java.net/
http://sourceforge.net/projects/japura/
http://djproject.sourceforge.net/ns/
http://jtidy.sourceforge.net/
http://xmlgraphics.apache.org/fop/
http://platform.netbeans.org/tutorials/nbm-visual_library.html
http://www.openoffice.org/

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 99

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 100

APPENDIX - JAVA SOURCE CODE FOR THE CROP EDITOR CORE

The listing below shows all the packages implemented in Java for the

CROP Editor Application, as they produced in the JavaDoc pages

included in the attached CD.

Packages :

cropedit
cropedit.core.KConcept
cropedit.core.KConceptGraph

cropedit.core.KHasPrerequisite

cropedit.core.KObject
cropedit.core.KOrder
cropedit.core.KOrder.Performance

cropedit.core.KOrder.StudentModel
cropedit.core.KOrder.XGraph

cropedit.core.KOrder.XGraph.XEdge

cropedit.core.KOrder.XGraph.XNode

cropedit.core.KOrder.XModel
cropedit.core.KProduct
cropedit.core.KRC

cropedit.core.KResource

cropedit.core.KResource.KAssess

cropedit.core.KResource.KSupport
cropedit.CROP

cropedit.Customization

cropedit.Help

cropedit.KPlayer
cropedit.KPlayer.Path

cropedit.KPlayer.Visual
cropedit.KPlayer.XModelCollector
cropedit.ReferenceOntology

cropedit.Resources

cropedit.Tools

cropedit.UI.CROP

cropedit.UI.Customization

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

file:///C:\Documents%20and%20Settings\Dim\My%20Documents\NetBeansProjects\CROPEdit\dist\javadoc\cropedit\package-frame.html
file:///C:\Documents%20and%20Settings\Dim\My%20Documents\NetBeansProjects\CROPEdit\dist\javadoc\cropedit\core\KConcept\package-frame.html
file:///C:\Documents%20and%20Settings\Dim\My%20Documents\NetBeansProjects\CROPEdit\dist\javadoc\cropedit\core\KConceptGraph\package-frame.html
file:///C:\Documents%20and%20Settings\Dim\My%20Documents\NetBeansProjects\CROPEdit\dist\javadoc\cropedit\core\KHasPrerequisite\package-frame.html
file:///C:\Documents%20and%20Settings\Dim\My%20Documents\NetBeansProjects\CROPEdit\dist\javadoc\cropedit\core\KObject\package-frame.html
file:///C:\Documents%20and%20Settings\Dim\My%20Documents\NetBeansProjects\CROPEdit\dist\javadoc\cropedit\core\KOrder\package-frame.html
file:///C:\Documents%20and%20Settings\Dim\My%20Documents\NetBeansProjects\CROPEdit\dist\javadoc\cropedit\core\KOrder\Performance\package-frame.html
file:///C:\Documents%20and%20Settings\Dim\My%20Documents\NetBeansProjects\CROPEdit\dist\javadoc\cropedit\core\KOrder\StudentModel\package-frame.html
file:///C:\Documents%20and%20Settings\Dim\My%20Documents\NetBeansProjects\CROPEdit\dist\javadoc\cropedit\core\KOrder\XGraph\package-frame.html
file:///C:\Documents%20and%20Settings\Dim\My%20Documents\NetBeansProjects\CROPEdit\dist\javadoc\cropedit\core\KOrder\XGraph\XEdge\package-frame.html
file:///C:\Documents%20and%20Settings\Dim\My%20Documents\NetBeansProjects\CROPEdit\dist\javadoc\cropedit\core\KOrder\XGraph\XNode\package-frame.html
file:///C:\Documents%20and%20Settings\Dim\My%20Documents\NetBeansProjects\CROPEdit\dist\javadoc\cropedit\core\KOrder\XModel\package-frame.html
file:///C:\Documents%20and%20Settings\Dim\My%20Documents\NetBeansProjects\CROPEdit\dist\javadoc\cropedit\core\KProduct\package-frame.html
file:///C:\Documents%20and%20Settings\Dim\My%20Documents\NetBeansProjects\CROPEdit\dist\javadoc\cropedit\core\KRC\package-frame.html
file:///C:\Documents%20and%20Settings\Dim\My%20Documents\NetBeansProjects\CROPEdit\dist\javadoc\cropedit\core\KResource\package-frame.html
file:///C:\Documents%20and%20Settings\Dim\My%20Documents\NetBeansProjects\CROPEdit\dist\javadoc\cropedit\core\KResource\KAssess\package-frame.html
file:///C:\Documents%20and%20Settings\Dim\My%20Documents\NetBeansProjects\CROPEdit\dist\javadoc\cropedit\core\KResource\KSupport\package-frame.html
file:///C:\Documents%20and%20Settings\Dim\My%20Documents\NetBeansProjects\CROPEdit\dist\javadoc\cropedit\CROP\package-frame.html
file:///C:\Documents%20and%20Settings\Dim\My%20Documents\NetBeansProjects\CROPEdit\dist\javadoc\cropedit\Customization\package-frame.html
file:///C:\Documents%20and%20Settings\Dim\My%20Documents\NetBeansProjects\CROPEdit\dist\javadoc\cropedit\Help\package-frame.html
file:///C:\Documents%20and%20Settings\Dim\My%20Documents\NetBeansProjects\CROPEdit\dist\javadoc\cropedit\KPlayer\package-frame.html
file:///C:\Documents%20and%20Settings\Dim\My%20Documents\NetBeansProjects\CROPEdit\dist\javadoc\cropedit\KPlayer\Path\package-frame.html
file:///C:\Documents%20and%20Settings\Dim\My%20Documents\NetBeansProjects\CROPEdit\dist\javadoc\cropedit\KPlayer\Visual\package-frame.html
file:///C:\Documents%20and%20Settings\Dim\My%20Documents\NetBeansProjects\CROPEdit\dist\javadoc\cropedit\KPlayer\XModelCollector\package-frame.html
file:///C:\Documents%20and%20Settings\Dim\My%20Documents\NetBeansProjects\CROPEdit\dist\javadoc\cropedit\ReferenceOntology\package-frame.html
file:///C:\Documents%20and%20Settings\Dim\My%20Documents\NetBeansProjects\CROPEdit\dist\javadoc\cropedit\Resources\package-frame.html
file:///C:\Documents%20and%20Settings\Dim\My%20Documents\NetBeansProjects\CROPEdit\dist\javadoc\cropedit\Tools\package-frame.html
file:///C:\Documents%20and%20Settings\Dim\My%20Documents\NetBeansProjects\CROPEdit\dist\javadoc\cropedit\UI\CROP\package-frame.html
file:///C:\Documents%20and%20Settings\Dim\My%20Documents\NetBeansProjects\CROPEdit\dist\javadoc\cropedit\UI\Customization\package-frame.html

D e s i g n i n g a n d I m p l e m e n t i n g t h e C R O P R e f e r e n c e A r c h i t e c t u r e f o r

L e a r n i n g O b j e c t s : T h e C R O P E d i t o r

P a g e | 101

cropedit.UI.Help

cropedit.UI.KConceptGraph

cropedit.UI.KObject
cropedit.UI.KOrder
cropedit.UI.KOrder.XConceptNode

cropedit.UI.KOrder.XDialogueNode

cropedit.UI.KOrder.XEdge

cropedit.UI.KOrder.XEndGroupNode

cropedit.UI.KOrder.XEndNode

cropedit.UI.KOrder.XIFNode

cropedit.UI.KOrder.XModel
cropedit.UI.KOrder.XParGroupNode

cropedit.UI.KOrder.XResourceNode

cropedit.UI.KOrder.XSeqGroupNode

cropedit.UI.KOrder.XStartNode

cropedit.UI.KOrder.XSubProductNode

cropedit.UI.KProduct
cropedit.UI.KQuiz

cropedit.UI.KSupport
cropedit.UI.KTest
cropedit.UI.MainWindow

cropedit.UI.ReferenceOntology

cropedit.UI.Resources

The following pages contain the source code for the cropedit.core

Java package that implements the kernel software component∙ the

CROP Reference Architecture implementation.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 18:00:48 EEST - 3.135.183.171

file:///C:\Documents%20and%20Settings\Dim\My%20Documents\NetBeansProjects\CROPEdit\dist\javadoc\cropedit\UI\Help\package-frame.html
file:///C:\Documents%20and%20Settings\Dim\My%20Documents\NetBeansProjects\CROPEdit\dist\javadoc\cropedit\UI\KConceptGraph\package-frame.html
file:///C:\Documents%20and%20Settings\Dim\My%20Documents\NetBeansProjects\CROPEdit\dist\javadoc\cropedit\UI\KObject\package-frame.html
file:///C:\Documents%20and%20Settings\Dim\My%20Documents\NetBeansProjects\CROPEdit\dist\javadoc\cropedit\UI\KOrder\package-frame.html
file:///C:\Documents%20and%20Settings\Dim\My%20Documents\NetBeansProjects\CROPEdit\dist\javadoc\cropedit\UI\KOrder\XConceptNode\package-frame.html
file:///C:\Documents%20and%20Settings\Dim\My%20Documents\NetBeansProjects\CROPEdit\dist\javadoc\cropedit\UI\KOrder\XDialogueNode\package-frame.html
file:///C:\Documents%20and%20Settings\Dim\My%20Documents\NetBeansProjects\CROPEdit\dist\javadoc\cropedit\UI\KOrder\XEdge\package-frame.html
file:///C:\Documents%20and%20Settings\Dim\My%20Documents\NetBeansProjects\CROPEdit\dist\javadoc\cropedit\UI\KOrder\XEndGroupNode\package-frame.html
file:///C:\Documents%20and%20Settings\Dim\My%20Documents\NetBeansProjects\CROPEdit\dist\javadoc\cropedit\UI\KOrder\XEndNode\package-frame.html
file:///C:\Documents%20and%20Settings\Dim\My%20Documents\NetBeansProjects\CROPEdit\dist\javadoc\cropedit\UI\KOrder\XIFNode\package-frame.html
file:///C:\Documents%20and%20Settings\Dim\My%20Documents\NetBeansProjects\CROPEdit\dist\javadoc\cropedit\UI\KOrder\XModel\package-frame.html
file:///C:\Documents%20and%20Settings\Dim\My%20Documents\NetBeansProjects\CROPEdit\dist\javadoc\cropedit\UI\KOrder\XParGroupNode\package-frame.html
file:///C:\Documents%20and%20Settings\Dim\My%20Documents\NetBeansProjects\CROPEdit\dist\javadoc\cropedit\UI\KOrder\XResourceNode\package-frame.html
file:///C:\Documents%20and%20Settings\Dim\My%20Documents\NetBeansProjects\CROPEdit\dist\javadoc\cropedit\UI\KOrder\XSeqGroupNode\package-frame.html
file:///C:\Documents%20and%20Settings\Dim\My%20Documents\NetBeansProjects\CROPEdit\dist\javadoc\cropedit\UI\KOrder\XStartNode\package-frame.html
file:///C:\Documents%20and%20Settings\Dim\My%20Documents\NetBeansProjects\CROPEdit\dist\javadoc\cropedit\UI\KOrder\XSubProductNode\package-frame.html
file:///C:\Documents%20and%20Settings\Dim\My%20Documents\NetBeansProjects\CROPEdit\dist\javadoc\cropedit\UI\KProduct\package-frame.html
file:///C:\Documents%20and%20Settings\Dim\My%20Documents\NetBeansProjects\CROPEdit\dist\javadoc\cropedit\UI\KQuiz\package-frame.html
file:///C:\Documents%20and%20Settings\Dim\My%20Documents\NetBeansProjects\CROPEdit\dist\javadoc\cropedit\UI\KSupport\package-frame.html
file:///C:\Documents%20and%20Settings\Dim\My%20Documents\NetBeansProjects\CROPEdit\dist\javadoc\cropedit\UI\KTest\package-frame.html
file:///C:\Documents%20and%20Settings\Dim\My%20Documents\NetBeansProjects\CROPEdit\dist\javadoc\cropedit\UI\MainWindow\package-frame.html
file:///C:\Documents%20and%20Settings\Dim\My%20Documents\NetBeansProjects\CROPEdit\dist\javadoc\cropedit\UI\ReferenceOntology\package-frame.html
file:///C:\Documents%20and%20Settings\Dim\My%20Documents\NetBeansProjects\CROPEdit\dist\javadoc\cropedit\UI\Resources\package-frame.html

