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Abstract

In this thesis, we study information management problems that arise in the Semantic
Web, focusing on the Resource Description Framework (RDF) model and its associated
SPARQL query language. To this end, we focus in three directions, namely (i) RDF data
evolution, (ii) storage, indexing and query optimization in RDF/SPARQL engines, and
(iii) efficient and scalable information retrieval from multidimensional RDF datasets. We
present efficient and scalable methods focused on specific problems in the aforementioned
directions, with the ultimate aim to propose advancements in the relevant state of the
art.

In the first direction (chapters 2 and 3), we study the problem of representing, storing
and querying evolving RDF data. To this end, a novel data model and query language are
proposed, that address representation of versioning in heterogeneous domains,. Further-
more, in order to assist evaluation of RDF versioning and evolution management engines
and frameworks, a novel synthetic dataset generator is introduced.

In the second direction (chapters 4, 5 and 6), we tackle the problem of indexing and
query optimization, specifically focusing on heavy query workloads in loosely-structured
RDF datasets. To this end, we propose a novel indexing and storage scheme for RDF
data that relies on the underlying graph schema of the data, as well as query optimization
algorithms that take advantage of the underlying schema in order to accelerate processing
of complex SPARQL queries that traditional systems fail to address. Furthermore, we
provide a method for logical query optimization by triple pattern reordering, in order
to further optimize the query processing tasks commonly adopted by database systems.
Finally, we introduce a series of algorithms that aim to efficiently transform and compact
the underlying RDF schema in order to optimize both storage and query processing.

Finally, in the third direction (chapter 7), we define several types of relationships for
multidimensional RDF data cubes, and we propose a series of computational algorithms
that target efficient retrieval of these relationships. Extensive experimental evaluations
of our methods indicate significant performance improvements with respect to the state
of the art.
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Περίληψη

Η παρούσα διδακτορική διατριβή πραγματεύεται θέματα και προβλήματα διαχείρησης δεδομένων

που προκύπτουν εντός του Σημασιολογικού Ιστού και εστιάζει στο μοντέλο Resource De-
scription Framework (RDF) και τη γλώσσα επερωτήσεων SPARQL. Σε αυτο το πλαίσιο
ακολουθούνται τρεις ερευνητικές κατευθύνσεις, συγκεκριμένα (i) η διαχείρηση εξελισσόμενων
RDF δεδομένων, (ii) η αποθήκευση, ευρετηρίαση και βελτιστοποίηση περίπλοκων επερωτήσεων
σε συστήματα βάσεων RDF/SPARQL, και (iii) η αποδοτική και κλιμακώσιμη ανάκτηση
πληροφορίας από σύνολα πολυδιάστατων RDF δεδομένων. Παρουσιάζονται αποδοτικές και
κλιμακώσιμες μέθοδοι, εστιαζόμενες σε συγκεκριμένα προβλήματα των προαναφερθείσων

κατευθύνσεων, με τελικό σκοπό να προταθούν προοδευτικές εξελίξεις στην αιχμή της

έρευνας.

Στην πρώτη κατεύθυνση, και συγκεκριμε΄να στα κεφάλαια 2 και 3, μελετάται το πρόβλημα

της αναπαράστασης, αποθήκευσης και επερώτησης εξελισσόμενων RDF δεδομένων. Υπό
αυτό το πρίσμα, προτείνεται ένα νέο μοντέλο δεδομένων και μια νέα γλώσσα επερωτήσεων,

στοχεύοντας στην αναπαράσταση της εξέλιξης σε περιστάσεις ετερογενών πεδίων πληροφορίας.

Ακολούθως, προτείνεται μία νέα μέθοδος παραγωγής συνθετικών εξελισσόμενων RDF δεδομένων,
η οποία στοχεύει στην καλύτερη αξιολόγηση συστημάτων διαχείρησης εκδόσεων (version-
ing).

Στη δεύτερη κατεύθυνση, και συγκεκριμένα στα κεφάλαια 4, 5 και 6, αντιμετωπίζεται το

πρόβλημα της ευρετηρίασης και της αποτίμησης ερωτημάτων, εστιάζοντας συγκεκριμένα σε

ερωτήματα βαρέως φόρτου εργασίας σε ημι-δομημένα σύνολα δεδομένων RDF. Υπό αυτό
το πρίσμα, προτείνεται μία νέα μέθοδος ευρετηρίασης και αποθήκευσης δεδομένων RDF, η
οποία βασίζεται στην ανάκτηση του υποκείμενου σχήματος των δεδομένων, καθώς και νέοι

αλγόριθμοι αποτίμησης ερωτημάτων SPARQL που εκμεταλλεύονται το υποκείμενο σχήμα
ώστε να βοηθήσουν την αποδοτική και ταχεία αποτίμηση περίπλοκων ερωτημάτων, όπου

τα υπάρχοντα συστήματα παρουσιάζουν προβλήματα. Επιπροσθέτως, προτείνεται μια νέα

μέθοδος λογικής βελτιστοποίησης βασιζόμενη στην αναπροσαρμογή της σειράς αποτίμησης

των τριπλετών (triple pattern reordering). Τέλος, παρουσιάζεται μια σειρά από τεχνικές που
στοχεύουν στην σύμπτυξη του υποκείμενου σχήματος με σκοπό την περαιτέρω βελτιστοποίηση

της διαδικασίας αποτίμησης.
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Τέλος, στην τρίτη κατεύθυνση, και συγκεκριμένα στο κεφάλαιο 7, ορίζεται μια σειρά από

τύπους συσχετίσεων μεταξύ δεδομένων σε πολυδιάστατα σύνολα κύβων RDF, και προτείνεται
μια σειρά από υπολογιστικές μεθόδους και αλγορίθμους που στοχεύουν στην ταχεία και

αποδοτική ανάκτηση αυτών των συσχετίσεων. Η αξιολόγηση των μεθόδων, μέσα από μία

εκτεταμένη πειραματική διαδικασία, υποδεικνύει ότι οι προτεινόμενες μέθοδοι προσφέρουν

σημαντικά πλεονεκτήματα απόδοσης σε σχέση με την τρέχουσα ερευνητική αιχμή.

6
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Chapter 1

Introduction

Over the recent years, the World Wide Web has been established as a vast source of data
from diverse domains, such as biology, statistics, finance, and health, collectively called
the Web of Data. It consists of an increasing quantity of scientific, corporate, government
and crowd-sourced data that are being published and interlinked across disparate sites
and sources. A large amount of these data are published in the form of Linked Open
Data (LOD). The standard way of modelling LOD is the Resource Description Frame-
work (RDF)[Con14], a recommendation of the World Wide Web Consortium (W3C). In
essence, RDF is a graph data model that supports modelling facts about entities in a
simple triple format consisting of a subject, a predicate and an object, leading to rich
and descriptive directed graphs with semantically labelled edges. In this context, graph
nodes represent tangible and intangible entities that are identified uniquely by Uniform
Resource Identifiers (URIs), this way defining a common grounds amongst remote agents
to publish inherently interlinked datasets. The standard recommendation for querying
RDF data is SPARQL[PS+06], a graph query language tailored around the specificities
of the RDF model.

Recent advances in data-aware practices, such as data interlinking between heterogeneous
sources and data visualization, have a huge potential to create insights and additional
value across several sectors. As these data become larger and wider in range, coverage
and structural versatility, complex challenges and problems start to emerge. In this
thesis, we study the issues and challenges that stem from this eruption in web-scale data,
centering on the case of RDF data, and focusing on three main directions, namely (i)
managing, (ii) querying, and (iii) analysing large amounts of RDF data. Our main aim
is to provide efficient algorithms, methods and techniques that advance the state of the
art in a representative set of problems that stems from each of these directions.
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The first direction is addressed in chapters 2 and 3 and is concerned with evolving RDF
datasets, i.e., datasets that are temporally dynamic and change over time. The Semantic
Web relies on the reuse of common resources, vocabularies and ontologies as a shared
means of communication between different data sources and software agents. However,
little attention has been given to the long-term accessibility and usability of these types of
resources in the Data Web. Specifically, linked open datasets are subject to frequent fac-
tual or structural changes, which are often performed under no centralized administration.
This can eventually lead to inconsistencies, broken links and outdated definitions across
interlinked sources. Preservation and sustainable accessibility need to be addressed into
a unified framework that by definition takes into account diverse issues such as change
representation, provenance tracking and temporal querying. Furthermore, recent pur-
suits of this direction call for the introduction of appropriate benchmarking models and
frameworks, in order to allow interested parties to assess and evaluate the performance
of the proposed approaches.

The second direction, addressed in chapters 4, 5 and 6, is concerned with the challenges
that arise from the schema-generic nature of RDF, which allows users to define custom,
loose relationships between data and does not impose structural (i.e., schema) restrictions.
Specifically, efficient SPARQL query answering over semi-structured RDF data becomes
an issue when traditional and even state of the art query processing systems are called
to process long and complex queries on datasets with loosely defined schemas. This is in
part due to the generic nature of the underlying indexing and storage techniques, that do
not take into account inherent data characteristics such as the implicit structure. State
of the art systems perform efficiently on small and simple query patterns, but lose their
competitive edge on more complex queries. Focusing on these limitations and studying
novel indexing and querying paradigms can be beneficial in RDF database management
systems. Furthermore, query optimization techniques in the SPARQL domain are largely
adopted from the relational database setting and fail to account for nuances and specifici-
ties found in the graph data model. Thus, the need arises for novel algorithms, methods
and techniques for storing, indexing and querying RDF data.

The third and last direction, addressed in chapter 7, is concerned with the efficient
and scalable analysis of large amounts of Linked Open Data in order to derive useful
information. The increasing adoption of RDF as the de facto standard for publishing
open data has led the industrial, government, and academic sectors to publish, re-use
and extend proprietary data, a large subset of which is in the form of multidimensional
data about policies, demographics, socio-economics and health data among others. In
this context, remote datasets exhibit implicit and explicit overlaps, this way creating
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relationships between data points that lie in remote sources. The large volume of these
datasets imposes a significant overhead in data processing tasks for identification and
retrieval of such relationships. Thus, efficient methods are needed in order to tackle these
issues.

1.1 Contributions

In this thesis, we study the aforementioned directions and present efficient and scalable
methods for managing, querying and analyzing RDF data, with the aim to provide tar-
geted research advancements in the state of the art of the series of problems that are
discussed herein. Specifically, in the first direction, we propose a novel data model and
query language for managing evolving RDF data, as well as a benchmarking framework
for Linked Data evolution management systems. In the second direction, we propose a
novel indexing and storage scheme for RDF data that relies on the implicit schema of the
data, as well as query optimization algorithms and methods over the defined scheme, with
the aim to accelerate processing of complex SPARQL queries that traditional systems fail
to address. Furthermore, we provide a method for logical query optimization by triple
pattern re-ordering, in order to further optimize the query processing tasks commonly
adopted by database systems. Finally, in the third direction, we define several types
of instance-level relationships for multidimensional RDF data cubes, and we propose a
series of computational algorithms that target efficient retrieval of these relationships.
Our contributions include the following:

1. The growing availability of open linked datasets has brought forth significant new
challenges regarding their proper preservation and the management of evolving in-
formation within them. We study the evolution and preservation challenges related
to publishing and preserving evolving linked data across time. We discuss the main
problems regarding the modelling and querying of dynamically changing datasets,
and provide a conceptual model and a query language for modelling and retrieving
evolving data along with changes affecting them. We present in details the syn-
tax of the query language and demonstrate its functionality over a real-world use
case of evolving linked dataset from the biological domain. This work addresses the
problems of the first of the three aforementioned directions. The methods discussed
and the results obtained have been published in [Mei+14; MPP15; Mei+16a].

2. Artificial and synthetic data are widely used for benchmarking and evaluating
database, storage and query engines. This is usually performed in static contexts
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with no evolution in the data. In the context of evolution management, the com-
munity lacks systems and tools for benchmarking versioning and change detection
approaches. To tackle this issue, we address generation of synthetic, evolving data
represented in the RDF model, and we study the requirements and parameters that
drive this process. Furthermore, we discuss query workloads in the context of evo-
lution. To this end, we present EvoGen, a generator for evolving RDF data, that
offers functionality for instance and schema-based evolution, fine-grained change
representation between versions as well as adaptive workload generation. This
work addresses the problems of the first of the three aforementioned directions.
The methods and results have been published in [Mei16; MP16b].

3. SPARQL query execution in state of the art RDF engines is limited by and inher-
ently dependent on the underlying storage and indexing schemes. Existing systems
typically store exhaustive permutations of the standard large three-column triples
table, with each column representing the subject, predicate, and object of a triple.
However, even though the RDF model can give birth to datasets with loosely de-
fined schemas, it is common for an implicit structure to appear in the data. Based
on this emerging structure, we introduce a novel indexing and storage scheme for
RDF data, that takes advantage of the inherent structure of triples in order to effi-
ciently index and store data. To this end, we define the Extended Characteristic Set
(ECS), a schema abstraction that classifies triples based on the properties of their
subjects and objects, and we propose methods and algorithms for the identification
and extraction of ECSs. We show how these can be used to optimize SPARQL
query processing, and we implement axonDB, an RDF storage and querying engine
based on ECS indexing. We perform an experimental evaluation on real world and
synthetic datasets and observe that axonDB outperforms the competition by a few
orders of magnitude. This work addresses the problems of the second of the three
aforementioned directions. The algorithms, methods and results are published in
[Mei+17; MP16a].

4. SPARQL query optimization relies on the design and execution of query plans that
involve reordering triple patterns, in the hopes of minimizing cardinality of inter-
mediate results. In practice, this is not always effective, as many existing systems
succeed in certain types of query patterns and fail in others. This kind of trade-
off is often a derivative of the algorithms behind query planning. To this end, we
introduce a novel join reordering approach that translates a query into a multidi-
mensional vector space and performs distance-based optimization by taking into ac-
count the relative differences between the triple patterns. Preliminary experiments
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on synthetic data show that our algorithm consistently outperforms established
methodologies, providing better plans for many different types of query patterns.
This work addresses the problems of the second of the three aforementioned di-
rections. The methods discussed and the results obtained have been published in
[MP17].

5. Characteristic sets (CS) organize RDF triples based on the set of properties charac-
terizing their subject nodes. This concept is recently used in indexing techniques,
as it can capture the implicit schema of RDF data. While most CS-based ap-
proaches yield significant improvements in space and query performance, they fail
to perform well in the presence of schema heterogeneity, i.e., when the number of
CSs becomes very large, resulting in a highly partitioned data organization. This
has become evident in the aforementioned work on ECS indexing. In this thesis,
we addressed this problem by introducing a novel method for merging CSs based
on their underlying hierarchical structure. To this end, we employ a hierarchical
lattice to capture the ancestral relationships between CSs, identifying dense CSs in
the process and merging dense CSs with their ancestors. The resulting schema is
more compact and efficient, both storage-wise and from the perspective of query
processing, as the size of the CSs as well as the links between them are reduced. We
implemented our approach on top of a relational backbone, where each merged CS
is stored in a relational table, and we performed an extensive experimental study
to evaluate the performance and impact of merging to the storage and querying
of RDF datasets, indicating significant improvements. This work addresses the
problems of the second of the three aforementioned directions.

6. The increasing availability of diverse multidimensional data on the web has led
to the creation and adoption of common vocabularies and practices that facilitate
sharing, aggregating and reusing data from remote origins. One prominent exam-
ple in the Web of Data is the RDF Data Cube vocabulary, which has recently
attracted great attention from the industrial, government and academic sectors as
the de facto representational model for publishing open multidimensional data. As
a result, different datasets share terms from common code lists and hierarchies,
this way creating an implicit relatedness between independent sources. Identifying
and analyzing relationships between disparate data sources is a major prerequisite
for enabling traditional business analytics at the web scale. However, discovery
of instance-level relationships between datasets becomes a computationally costly
procedure, as typically all pairs of records must be compared. In this context, we
define three types of relationships between multidimensional observations, namely
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full containment, partial containment and complementarity, and we propose four
methods for efficient and scalable computation of these relationships. We conduct
an extensive experimental evaluation over both real and synthetic datasets, com-
paring with traditional query-based and inference-based alternatives, and we show
how our methods provide efficient and scalable solutions. This work addresses the
problems of the third of the three aforementioned directions. The results of this
work have been published in [MP14; Mei+16b; Mei+18].

1.2 Thesis Outline

The remainder of this thesis is structured as follows. Chapter 2 presents the data model
and query language for managing and preserving evolving data on the web. Chapter
3 discusses the requirements and presents a framework for benchmarking data manage-
ment systems for evolving RDF. Chapter 4 presents a novel graph indexing and storage
scheme, as well as query optimization algorithms and methods for RDF and SPARQL.
Chapter 5 proposes a method for logical SPARQL query optimization that is based on
triple reordering. Chapter 6 presents novel methods and optimizations for discovering
the underlying schema of semi-structured RDF data, and taking advantage of the hier-
archical similarities in the discovered schema in order to optimize storage, indexing and
query processing. Chapter 7 defines three relationships for multidimensional RDF ob-
servations, and proposes several efficient and scalable algorithms for the computation of
these relationships. Finally, chapter 8 concludes the thesis.
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Chapter 2

A Query Language for Multi-version
Data Web Archives

2.1 Introduction

The Data Web consists of an increasing quantity of scientific, corporate, government and
crowd-sourced data being published and interlinked across disparate sites on the web,
usually in the form of Linked Open Data (LOD). The standard way of modelling LOD is
the Resource Description Framework (RDF)[Con14], which is a W3C recommendation.
RDF supports the modelling of facts about entities in a simple triple format consisting
of a subject, a predicate and an object. Entities are identified by their Uniform Resource
Identifiers (URIs), which are also referred to as Internationalized Resource Identifiers
(IRIs). Collections of triples form directed labelled graphs of nodes connected to other
nodes or literals in semantically meaningful ways. Furthermore, the standard recom-
mendation for querying RDF datasets is SPARQL[PS+06], which is essentially a graph
query language. Because RDF is generic enough to enable users to define custom, loose
relationships between data, it is not trivial to represent more complex meta-correlations,
enable annotations in data at the triple level, assign context, model changes and so on.
Data-aware practices, such as data interlinking between heterogeneous sources and data
visualization, have a huge potential to create insights and additional value across several
sectors, however little attention has been given to the long-term accessibility and usability
of open datasets in the Data Web. Linked open datasets are subject to frequent changes in
the encoded facts, in their structure, or the data collection process itself. Most changes
are performed and managed under no centralized administration, eventually inducing
several inconsistencies across interlinked datasets. LOD should be preserved by keeping
them constantly accessible and integrated into a well-designed framework for evolving
datasets that offers functionality for versioning, provenance tracking, change detection
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and quality control while at the same time provides efficient ways for querying the data
both statically and across time.

Most of the challenges related to the management of LOD evolution stem from the de-
centralized nature of the publication, curation and evolution of interdependent datasets,
with rich semantics and structural constraints, across multiple disparate sites. Traditional
database versioning assumes that data and evolution management take place within well-
defined environments where change operations and data dependencies can be monitored
and handled. On the other hand, web and digital preservation techniques assume that
preservation subjects, such as web pages, are plain digital assets that are collected (usually
via a crawling mechanism), time stamped and archived for future reference. In contrast
to these two approaches, the Data Web poses new requirements for the management of
evolution [Mei+13; Pap13]. Observe Figure 2.1 where an example from the biological
domain is presented. The Experimental Factor Ontology (EFO)[Mal+10] is an ontology
that combines parts of several life science ontologies, including anatomy, dis-ease and
chemical compounds. Its purpose is to enable annotation, analysis and visualization of
data related to experiments of the European Bioinformatics Institute1. In the figure,
a URI that represents a Cell Line class changes between two consecutive versions and
becomes obsolete. EFO entities are published in LOD format, enabling other sites to ref-
erence and interlink with them. EFO is regularly updated and new versions are published
on the web, usually overwriting previous ones. In this context, several interesting prob-
lems and challenges arise related to long-term preservation and accessibility of evolving
LOD datasets:

Modelling evolving datasets. LOD datasets are evolving entities for which addi-
tional constraints may hold related to the way data is published, and evolve as dictated
by domain-specific, complex changes. This calls for appropriate modelling methods for
preserving across time a multitude of dimensions related to the internal structure of a
dataset, its content and semantics as well as the context of its publication. Preservation
should exhibit format-independence, data traceability and reproducibility and a common
representation for data that originate from different models. Reference schemes and ap-
propriate URIs must be properly assigned such that unique identification and resolution
is achieved across different sites, and most importantly across time. Provenance metadata
can capture dataset lineage from the dataset level to the record level. Distributed replica-
tion of LOD enhanced with temporal and provenance annotations can enable long-term
availability and trust.

1http://www.ebi.ac.uk
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Figure 2.1: Evolution of a Cell Line between versions 2.45 and 2.46 of the Experimental
Factor Ontology.

Change management. Changes can occur at different granularity levels. At the dataset
level, datasets are added, republished, or even removed, without versioning or preserva-
tion control; at the schema level, the structure may change calling for repair and validation
on new versions; finally, at the instance level data resources and facts are added, deleted
or updated. Discovering changes and representing them as first class citizens with struc-
tural, semantic, temporal and provenance information is vital in various tasks such as the
synchronization of autonomously developed LOD versions, or visualizing the evolution
history of a particular dataset [PSG13]. A unified framework that deals with evolution
must be able to allow change management as a dimension of the dataset’s evolution.

Longitudinal accessibility and querying. LOD preservation mechanisms must en-
able the long-term accessibility of datasets and their meaningful exploration over time.
Datasets with different time and schema constraints coexist and must be uniformly ac-
cessed, retrieved and combined. Longitudinal query capabilities must be offered such
that data consumers can answer several types of queries, within a version or across sets
of versions. Querying must take place (i) across time, (ii) across datasets and (iii) across
different levels of granularity of evolving things. Considering the above, the benefits of
managing evolving LOD datasets can be placed into two categories, namely quality con-
trol and data analysis. Data evolution provides valuable insights on the dynamics of the
data, their domains and the operational aspects of the communities they are found in,
while tracking the history of, and maintaining proper metadata of data objects across
time enables better interoperability, trust and data quality.
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To address these challenges, in this chapter we propose a conceptual model and a query
language for evolving Linked Open Datasets, as well as an archiving system that im-
plements these proposals. At the basis of the system lies a conceptual model, called
DIACHRON model, that captures structural concepts like datasets and their schemas,
semantics like web resources, their properties and links between them as well as changes
occurring on these concepts in different granularity levels. In the same time, our approach
models in a uniform way both time-aware (evolving) and time-agnostic (diachronic) con-
cepts, representing the interconnections between them. Based on this model, a query
language is designed that specifically caters for the model’s inherent characteristics and
takes advantage of appropriate abstraction levels, thus making the user avoid complicated,
implementation-dependent queries. The query language is designed as an extension of
SPARQL, specific to the DIACHRON model, that tackles the duality of data (evolving
vs. diachronic objects) in order to provide a query mechanism with the ability to correlate
source data with changes, annotations at various levels and other kinds of DIACHRON
related metadata across time. Finally, we implement these as an archiving framework
capable of storing and making available in the long term evolving LOD datasets.

To summarize, this chapter provides the following contributions:

1. We formally define the DIACHRON data model, a conceptual model for the repre-
sentation of datasets and their evolving aspects, such as their structural, semantic,
and metadata evolution. Specifically, we provide entities for modelling data that
change through time in multi-version contexts, where their schema, data and meta-
data exhibit changes in a multitude of levels, from tuples, to collections of datasets.

2. We propose and formally define the DIACHRON Query Language as a means to
enable retrieval of data and metadata across versions and datasets. The proposed
query language enables querying of evolving entities across time, along with the
structural elements of the entities (e.g. the reified triples) as well as the changes
affecting them.

3. We provide an implementation of an archiving system that uses the DIACHRON
model and implements the DIACHRON Query Language as an extension of SPARQL,
and we perform experimental evaluation in terms of usability and performance on
real-world datasets from the life sciences domain.

The rest of this chapter is outlined as follows. In section 2 we discuss related work, in
section 3 we present the DIACHRON data model, in section 4 we present the DIACHRON
query language, in section 5 we describe our implementation of an archive that uses
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the proposed model and query language, while in section 6 we perform experimental
evaluation. Finally, section 7 concludes the chapter.

2.2 Related Work

Managing LOD evolution is a multi-faceted problem that consists of versioning, efficient
archiving, change representation, change detection, model abstraction and provenance
tracking, among others. Work has been done in most of these fields individually, but
few approaches have regarded the issue as a singular problem of many interdependencies,
less so in the case of the Data Web, where datasets evolve independently, often in non-
centralized ways, while citing and using one another. Versioning for LOD in the context of
complete systems or frameworks has been addressed in [AH06; Cic+13; Gra11; HBW15;
ILK12; Kei+11; Bro+11; PJS11; Som+10]. However, these approaches address a subset
of the problems discussed as will be discussed.

Ontology or schema based approaches have been proposed in [BSP11; Cic+13; Kei+11]
with the most prominent example being the PAV ontology [Cic+13], a specialization of
the W3C recommended PROV ontology [Leb+13] for modelling provenance. In our work,
we consider the representation of provenance as an orthogonal problem, in the sense that
any model for representing metadata annotations can be used in conjunction with our
work.

As far as querying is concerned, work has been done in extending SPARQL with temporal
capabilities [BSP11; KK10; Lop+10; PJS11]. Contrary to our approach, in [PJS11]
no explicit data model is proposed, instead temporal information is used to separate
triples in named graphs. Incorporation of annotations and provenance on the query
side has been approached in [Lop+10] where triple annotations serve as context in the
proposed SPARQL extension. This approach however does not differentiate between
types of annotations, and is limited to treating annotations as singular tags of triples.
In [BSP11] an ontology-based approach is followed where temporal reasoning capabilities
are provided to OWL-2.0 and SPARQL is extended to cater for the temporal dimension.
While [BSP11] extends an existing RDF query language with temporal reasoning, it limits
its functionality in this context and does not deal with evolution of structural concepts
such as datasets, tuples, or individual triples. In contrast, our approach aims at providing
querying capabilities for both the semantic and the structural elements of an evolving
dataset. In [KKK12] a triple store is implemented that incorporates spatiotemporal
querying by utilizing the SPARQL extensions proposed in [PJS11]. These approaches
are specifically tuned to address temporal or spatiotemporal querying in RDF data, and
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do not rely on conceptual models for representing in a uniform way semantically rich
evolving datasets, changes, and metadata through time.

In [Som+10] an approach is presented that builds on the Memento framework [Som+09],
an extension of HTTP to include a traversable and queryable temporal dimension, adapted
for LOD purposes. Non-changing, time-independent URIs are employed for current state
identification. Dereferencing past versions of resources is done with temporal content ne-
gotiation, an HTTP extension. We draw from this work the notion of time-independent
URIs for current state identification, however, we are not interested in providing function-
ality at the HTTP level; instead we take on a data-centric rather than a document-centric
approach for deep archiving and preservation of large datasets.

In [WL02], the authors tackle the problem of version management for XML documents
by using deltas to capture differences between sequential versions and use deltas as edit
scripts to yield sequential versions. The introduced space redundancy is compensated by
the query efficiency of storing complete deltas rather than compressed deltas. They go
on to define change detection as the computation of non-empty deltas and they argue
that past version retrieval can be achieved by storing all complete deltas as well as a
number of complete intermediate versions, finding the bounding versions of the desired
ones and applying their corresponding deltas. Finally, they use a query language based
on XQuery in order to enable longitudinal querying and they provide tag indices for each
edit operation for faster delta application. While this approach deals with longitudinal
querying by extending an existing standard, similar to our approach, they do not provide
support for more complex semantic changes, or placeholders for capturing the evolution
of other entity types, such as metadata and provenance annotations.

In [Bun+04], the authors propose a method for archiving scientific data from XML docu-
ments. The approach targets individual elements in the DOM tree of an XML document,
rather than the whole versions themselves. They use time stamping in order to differen-
tiate between the states of a particular element in different time intervals and they store
each element only once in the archive. The timestamps are pushed down to the children
of an element in order to reflect the changes at the corresponding level of the tree, an ap-
proach also followed in [PSG13]. Our approach is inspired by the hierarchical attribution
of time and we adopt this model and partially adapt it to the case of RDF. Moreover, we
extend this hierarchical attribution to generic metadata annotations instead of strictly
temporal.

In [UVTH10] the authors study the change frequency of LOD sources and the impli-
cations on dataset dynamics. They differentiate between the document-centric and the
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entity-centric perspectives of change dynamics, the latter further divided into the entity-
per-document and global entity notions. We partially adopt this distinction in our work,
as will be described further on. Specifically, we introduce a conceptual model that dif-
ferentiates between entity types that represent both the structural aspects of a dataset,
and the semantic ones.

SemVersion [VG06] is a system that computes the semantic differences as well as the
structural differences between versions of the same graph but is limited to RDFS expres-
siveness. DSNotify [PH10] is an approach to deal with dataset dynamics in distributed
LD. The authors identify several levels for the requirements of change dynamics, namely,
vocabularies for describing dynamics, vocabularies for representing changes, protocols for
change propagation and algorithms and applications for change detection. It implements
a change detection framework which incorporates these points in a unified functional-
ity scheme, having as main motivation the problem of link maintenance. Both these
approaches only support full materialization of datasets, contrary to our approach that
supports a hybrid model of storing datasets and semantic deltas. Furthermore, contrary
to our approach, they do not deal with querying over time, changes and metadata.

Our approach differentiates itself by considering versioning, annotating, change manage-
ment, and dataset heterogeneity as necessary components of an evolving dataset, and are
thus tackled together. Furthermore, most of the work presented in this section addresses
the temporal aspect of evolution in datasets, instead we chose to consider temporality as
an inherent characteristic of versioning. It is trivial to explicitly create temporal operators
for DIACHRON QL by evaluating datasets over their temporal metadata and translating
temporal operators to version-based operators such as AT VERSION or BETWEEN
VERSIONS.

2.3 An archive model for evolving datasets

Our modelling approach supports a format-independent archiving mechanism that main-
tains syntactic integrity by making sure that the original datasets are reproducible and
at the same time takes advantage of information-rich content in these datasets. Format-
independence enables different source models (e.g. relational, multidimensional, onto-
logical) to be transformed to a common RDF representation, uniformly annotated with
temporal and provenance information.

The DIACHRON model provides the basis for defining semantically richer entities that
evolve with respect to their source datasets’ history. At the core of the model lies the
notion of the evolving entity, which captures both structural and semantic constructs of
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a dataset and acts as a common placeholder for provenance, temporal, and other types
of metadata.

Evolving entities are identifiable and citable objects. These entities all share a common
ancestor, the Diachronic Entity, which allows the aforementioned requirements to be
addressed on different levels. The different types of entities in the DIACHRON model and
their interactions can be seen in Figure 2.2 and Figure 2.3. Specifically, Figure 2.2 shows
a class diagram that describes the relationships between concepts in the DIACHRON
model, while Figure 2.3 provides an aggregated space where concepts are partitioned in
time-aware vs time-agnostic, and data (non-curated) vs curated information space. There,
example instantiations between the different concepts in the data model are presented.
An example drawn from the EFO ontology can be seen in Figure 2.4. The entities of the
model are described in the following.

2.3.1 Diachronic datasets and dataset instantiations

Diachronic datasets are conceptual entities that represent a particular dataset from a
time-agnostic point of view, which in turn is linked to its temporal instantiations or
versions. Furthermore, diachronic dataset metadata comprise information that is not
subject to change, such as diachronic dataset identifiers. These identifiers serve as ways to
refer to the datasets in a time and/or version unaware fashion (i.e. diachronic citations).
On the other hand, dataset instantiations define temporal versions of diachronic datasets,
holding information on how and when a particular dataset was relevant and actively used.

Definition 1 Diachronic Dataset

A diachronic dataset D is defined as a set d,m where d is a set of dataset versions
d1, . . . , dn and m is a collection of metadata annotations associated with D. Diachronic
datasets usually carry housekeeping information about creation, modification etc. in the
archiving context, which is included in m. In Figure 2.4, ex:EFO represents a diachronic
dataset that describes the EFO ontology through time. The same example entity can be
seen in Listing 7.1 in an example RDF serialization.

Definition 2 Dataset Version

A dataset version, or instantiation, d is defined as a set {R,S, t,m} where R is a record
set and S is a schema set, while t is a collection of temporal information associated with
d, and m is a collection of non-temporal annotations associated with d. In Figure 2.4,
instantiations of ex:EFO can be seen as versions 2.35 and 2.36. These can also be seen
in Listing 7.1 in their serialized form.
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2.3.2 Record sets and Schema Sets

Record sets are collections of data entries (e.g. tuples, triples) over a given subject/pri-
mary key within a particular dataset instantiation. Given a record set and the dataset’s
metadata information, the dataset instantiation can be queried and reproduced in its
original form. Similarly, a schema set contains all schema-related entities (e.g. table defi-
nitions in the relational case, ontology entities in the ontological case etc.). Keeping data
objects separate from schema objects makes versions interpretable by different schemata
(e.g. new schema on old data or vice versa).

Definition 3 Record Set

A record set R is defined as a set {r,m}, where r is a set of records {r1, . . . , rn} and m is
a collection of associated metadata for R. A record set R is always enclosed in the scope
of a dataset instantiation d, as discussed in Definition 2. The record set for version 2.35
of the EFO ontology can be seen in Figure 2.4 and Listing 7.1 as ex : recordSet2.35.

Definition 4 Schema Set

A schema set S is defined as a set {e,m}, where e is a set of schema objects {e1, . . . , en}
and m is a collection of associated metadata for S. A schema set S is always enclosed in
the scope of a dataset instantiation d, as discussed in Definition 2. The schema set for
version 2.35 of the EFO ontology can be seen in Figure 2.4 as ex : schemaSet2.35.

2.3.3 Data and Schema Objects

Data objects consist of records and record attributes. A record represents a most granular
data entry about a particular evolving entity. Records are uniquely identified in order
to make record-level annotation feasible in order to attribute provenance, temporality
and changes on them. A record serves as a container of one or more record attributes.
Every data record is broken down to assertions (facts) that can be expressed as RDF
triples. In this sense, a record reifies the predicate-object pairs for a fixed subject. These
predicate-object pairs are called record attributes. For instance, a tuple from a relational
table is considered to be a record describing the tuple’s primary key, with each relational
attribute being a record attribute. In [Mei+14; Mei+13] we describe in details how
data records from relational, multidimensional and RDF models can be mapped to data
objects in our model. Schema objects represent the schema-related entities of the archived
datasets given the dataset’s source model. For instance, the classes along with their class
restrictions of an ontology, the properties and their definitions (domains, ranges, meta
properties depending on the expressivity) are modelled as schema objects. Similarly to
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data objects, the goal is to provide a reusable modelling mechanism for identifying and
referring to schema elements and their evolution across datasets. In this way, schema
evolution is captured by annotating schema elements with schema changes.

Definition 5 Records

A record r is defined as a set {s, a,m} where s is the identifier, or subject, of r, a is a
collection of record attributes {a1, . . . , an} and m is a collection of associated metadata
for r. In Figure 2.4, an example record can be seen as a part of ex : recordSet2.35. A
record describing the experimental factor EFO_0000887 can be seen in Listing 7.1.

Definition 6 Record Attributes

A record attribute a is defined as a set {p, o,m} where p and o are predicate-object pairs
and mathbfm is a collection of metadata associated with a. In Figure 2.4, the record
attributes for version 2.35 are the direct children of the aforementioned record. In Listing
7.1, two record attributes that describe the label of EFO_0000887 are shown, with the
use of the rdfs : label property.

2.3.4 Diachronic Resources and Resource Instantiations

Similarly to diachronic datasets, a diachronic resource represents a time-agnostic infor-
mation entity. The resource instantiation captures the resource evolution across time and
its realization over a versioned dataset’s records. The definition of a resource consists
of two parts; the resource identification definition comprises of the way an instantiated
resource is identified within the archive. The resource description definition provides the
way a resource is evaluated over the records of a particular dataset instantiation. Re-
sources can be versatile in nature across datasets and data formats. For example, given
an ontology and its instantiation, each class instance can describe a resource identified
by the respective URI. Given a table of employees in a relational database, a resource
in this sense can be a particular employee identified by his primary key. Finally, in a
multidimensional dataset, a resource can be a specific observation identified by the values
of the constituent dimensions. More complex definitions of resources are allowed and, in
fact, encouraged for capturing more high-level, curator specific semantics of evolution
and dataset dynamics.

Definition 7 Diachronic Resources

A diachronic resource E is defined as a set {E, q,m} where E is a set of resource in-
stantiations {E1, . . . , En}, q is a description definition and m is a collection of metadata
associated with E. The description definition q is a DIACHRON query.
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Definition 8 Diachronic Resource Instantiations

A resource instantiation E is defined as a set {g, t,m} where g is a set of data records
{r1, . . . , rn}, t is the temporal information associated with E and m is a collection of
metadata associated with resource E.

2.3.5 Change Sets

Changes are compiled in Change Sets between two dataset instantiations of a diachronic
dataset. These are comprised of changes between record sets, changes between schemata
and changes between resource instantiations of the two datasets under comparison.

Definition 9 Change Sets

A change set C is defined as a set {c,m} where c is a set of changes {c1, . . . , cn} and
m is a collection of metadata associated with C. The change set between versions 2.35
and 2.36 of the EFO ontology can be seen in Figure 2.4 as ex : changeSet2.35 − 2.36.
Furthermore, the same change set can be seen in Listing 7.1 in a serialized form.

The proposed data model provides a conceptual way of uniformly representing low-level
and high-level evolving entities. Within the context of our model, an evolving entity is a
dataset instantiation (affected by changes in its schema and contents), a schema object,
a data object or finally a resource instantiation object. This gives us a uniform way to
model evolution and annotate entities at different levels of granularities with information
related to the changes affecting them. Furthermore, it enables us to enrich evolving
entities with metadata related to the way these entities are published on remote sites and
collected in the archive, such as provenance information, quality and trust.

2.4 The DIACHRON Query Language

2.4.1 Requirements and Overview

The DIACHRON model provides metadata placeholders in different granularities, from
the dataset to the record level. In this section, we motivate the need for an appropriate
query language that exploits the specificities of the data model and provides ways to
achieve the following:

• Dataset and version listing: Retrieve lists of datasets stored in the archive, as well
as lists of the available versions of a given dataset. These can either be exhaustive
or filtered based on temporal, provenance or other metadata criteria.
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ex:EFO rdf:type diachron : DiachronicDataset ;
dcterms : creator " European Bioinformatics Institute " ;
diachron : hasInstantiation ex: EFO_v2 .35 ;
diachron : hasInstantiation ex: EFO_v2 .36 ;
diachron : hasChangeSet ex: ChangeSet_2 .35 _2 .36 .

ex: EFO_v2 .35 rdf:type diachron : Dataset ;
dcterms :date "2015 -01 -02"\^\^ xsd:date ;
diachron : hasRecordSet ex: RecordSet_2 .35.

ex: EFO_v2 .36 rdf:type diachron : Dataset ;
dcterms :date "2015 -02 -02"\^\^ xsd:date ;
diachron : hasRecordSet ex: RecordSet_2 .36.

ex: RecordSet_2 .35 rdf:type diachron : RecordSet ;
diachron : hasRecord ex: Record_1 .

ex: Record_1 diachron : subject efo:EF\ _0000887 ;
diachron : recordAttribue ex: RecordAttribute_1 .

ex: RecordAttribute_1 diachron : predicate rdfs:label ;
diachron : object "liver" .

ex: RecordSet_2 .36 rdf:type diachron : RecordSet ;
diachron : hasRecord ex: Record_2 .

ex: Record_2 diachron : subject efo: EFO_0000887 ;
diachron : recordAttribue ex: RecordAttribute_2 .

ex: RecordAttribute_2 diachron : predicate rdfs:label ;
diachron : object "LIVER" .

ex: ChangeSet_2 .35 -2.36 rdf:type diachron : ChangeSet ;
diachron : oldVersion ex: EFO_v2 .35 ;
diachron : newVersion ex: EFO_v2 .36 ;
diachron : hasChange ex: Change1 .

ex: Change1 rdf:type diachron : LabelModificationChange ;
diachron : parameter1 ex: RecordAttibute_1 ;
diachron : parameter2 ex: RecordAttibute_2 .

Listing 2.1: Example RDF serialization of a diachronic dataset ex:EFO, two dataset
instantiations (versions) ex:EFO_v.235 and ex:EFO_v.236, in their respective record
sets ex:RecordSet_2.35 and ex:RecordSet_2.36. The two record sets contain one record
about efo:EFO_0000887, an original instance of the EFO ontology, which shows how its
label changes its capitalization between versions. Note that the prefix ex is an example
prefix. A change set containing a sample LabelModificationChange can also be seen.
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Figure 2.2: Class diagram for the DIACHRON model.

• Data queries: Retrieve part(s) of a dataset that match certain criteria.

• Longitudinal queries: As above but with the timeline of all types of diachronic
entities. Temporal criteria can be applied to limit the timeline (specific versions or
time periods), or successive versions.

• Queries on Changes: Retrieve changes between two concurrent versions of an entity
(dataset, resource etc.). Limit results for specific type of changes, or for a specific
part of the data.

• Mixed Queries on Changes and Data: Retrieve datasets or parts of datasets that
are affected by specific types of changes.

In this section, we propose the DIACHRON Query Language (DIACHRON QL), to tackle
these requirements, and we discuss its design and implementation as an extension of
SPARQL. The basis of the query language is the DIACHRON graph pattern, which,
in the context of extending SPARQL, is a specialization of a SPARQL graph pattern,

19

Institutional Repository - Library & Information Centre - University of Thessaly
12/06/2024 04:55:53 EEST - 3.15.237.130



Figure 2.3: The DIACHRON model space.

thus making SPARQL queries valid DIACHRON QL queries. New keywords are defined
in order to cover the model’s characteristics and allow the user to query archived data
intuitively, without the need to know the specificities of the implementation. In plain
SPARQL engines, or any other query engine basis, the user would need to know how
the DIACHRON model is implemented in the system, and how its entities are mapped
to the system’s underlying information retrieval engine. With the use of a dedicated
query language, we abstract the implementation details to the DIACHRON QL syntax.
DIACHRON QL introduces keywords that allow defining the scope of a query with respect
to the matched diachronic datasets and their versions, their change sets, or both.

2.4.2 DIACHRON QL basics

Given the above, diachronic datasets, versions and change sets can be bound to variables
with the use of DATASET or CHANGES. This is simply done by using variables instead
of explicit URIs, inside the query body, i.e. not in a FROM clause. For example, consider
the case where we want to retrieve all the information (predicate-object pairs) associated
with the protein efo : EFO0004626, and find out what the state of this information is for
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Figure 2.4: An example of a diachronic dataset (ex:EFO) that has two dataset instanti-
ations (versions 2.35 and 2.36). The record and schema sets of version 2.35 can be seen
in bold blue, while version 2.36 and the change set that is shared between 2.35 and 2.36
can be seen in pale blue.

all the dataset versions of the EFO ontology it appears in (and what are those versions).
That is, the dataset versions as well as the actual information are to be retrieved. In
DIACHRON QL this can be written as follows:
SELECT ? version ?p ?o WHERE {

DATASET <EFO > AT VERSION ? version {
efo: EFO_0004626 ?p ?o

}
}

This will retrieve all versions of EFO joined with predicate-object pairs for the protein
efo:EFO_0004626. If we want to retrieve the records these predicate-object pairs appear
in, without querying for the particular dataset versions. We can retrieve the URIs of the
DIACHRON records these triples appear in by modifying the query as follows:
SELECT ?rec ?p ?o FROM DATASET <EFO > WHERE {
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RECORD ?rec {efo: EFO_0004626 ?p ?o}
}

With the optional use of the RECATT keyword we can retrieve the URIs of the record
attributes of a matched record. The previous query would become:
SELECT ?rec ?ra ?p ?o FROM DATASET <EFO > WHERE {

RECORD ?rec { efo: EFO_0004626
RECATT ?ra {?p ?o}

}
}

When writing a DIACHRON graph pattern, the query can either contain simple triple
patterns, or more verbose constructs that take into account the archive data model and
structure. Specifically, the simple triples will match the dereified data, whereas the
RECORD and RECATT (abbreviation of record attribute) blocks will also take into
account a triple’s record or record attribute.

This is further exemplified in Figure 2.5 where we show how term and variable use is
reflected on the matched graph of a particular reified triple. This way, metadata (e.g.
temporal, provenance) of the records and/or record attributes can be queried as well as
combined with data queries. It should be noted that in the simplest case where only the
data are of interest, the query does not need to include RECORD and RECATT blocks.

Figure 2.5: (a) matches in a simple triple query, (b) matches a blown-out version of the
same query with the RECORD and RECATT terms, selecting both data and structural
elements. (c) matches subject, predicate, object and record, (d) matches predicate, object
and record attribute.
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2.4.3 Query Syntax and Examples

DIACHRON QL clauses are formally described in the following section and an overview of
them is presented in Table 2.1 in E-BNF form. In Table 2.2 usage examples are presented
for all DIACHRON QL clauses.
FROM DATASET <diachronicURI > [[AT VERSION <instantiationURI >]]

The FROM DATASET keyword is followed by a URI of a diachronic dataset to declare
the dataset scope of the query. If no FROM DATASET is given, then the whole corpus of
datasets is queried. The optional AT VERSION keyword limits the selected diachronic
dataset to a specific dataset instantiation. No variables can be given in any of the
parameters of FROM DATASET AT VERSION.

Table 2.1: The DIACHRON query language syntax in E-BNF.

DiachronQuery :=

‘DIACHRON‘
‘SELECT’ (‘DISTINCT‘)? (Var+|’*’)
Source_Clause*
‘WHERE‘ Where_Clause*

Source_Clause :=

( ‘FROM DATASET’ <URI> [‘AT VERSION’ <URI>] |
‘FROM CHANGES’ <URI> [‘BEFORE VERSION’ <URI> |
‘AFTER VERSION’ <URI> |
‘BETWEEN VERSIONS’ <URI>+2] )

Where_Clause :=

( Diachron_Pattern
[‘UNION’ Diachron_Pattern]
[‘OPTIONAL‘ Diachron_Pattern] )

Diachron_Pattern := (Source_Pattern Basic_Archive_Graph_Pattern)

Source_Pattern :=

((‘DATASET‘ <VarOrURI> [‘AT VERSION’ <VarOrURI>]) |
(‘CHANGES’ <VarOrURI> [‘BEFORE VERSION’ <VarOrURI>])
|
(‘CHANGES’ <VarOrURI> [‘AFTER VERSION’ <VarOrURI>]) |
(‘CHANGES’ <VarOrURI>
[‘BETWEEN VERSIONS’ <VarOrURI>+2]))

Basic_Archive_
Graph_Pattern := ‘{‘ SPARQL_Triples_Block* Record_Block* Change_Block* ‘}’

Record_Block :=

‘RECORD‘ <VarOrURI> ‘{‘
<VarOrURI> ((<VarOrURI>+2 ‘.’)*) |
(‘RECATT‘ <VarOrURI> ‘{‘ <VarOrURI>+2 ‘}’)*
‘}’

Change_Block :=

‘CHANGE‘ <VarOrURI> ‘{‘
(<VarOrURI>+2 ‘.’)*
‘}’
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SPARQL_
Triples_Block := As defined in the SPARQL recommendation2.

FROM CHANGES <diachronicURI > [[ BETWEEN VERSIONS <version1URI > <
version2URI > ] || [ BEFORE VERSION <versionURI >] || [AFTER
VERSION <versionURI >]]

FROM CHANGES is used to query change sets directly. It is immediately followed by
a URI of a diachronic dataset that defines the diachronic dataset to be queried on its
changes. If no URI is given, then all existing change sets will be used to match the
query body. FROM CHANGES can optionally be used with BETWEEN VERSIONS,
BEFORE or AFTER VERSION to limit the scope of the changes.
DATASET <URI | ?var > [[AT VERSION <URI | ?var >]] { (query) }

The DATASET keyword differs from FROM DATASET in that it is found inside a query
body. It is followed by either a URI or variable of a diachronic dataset to declare or bind
the scope of the graph. DATASET is inside a WHERE statement and is followed by a
graph pattern, on which the dataset restriction is applied. It is optional, meaning that if
no DATASET clause is defined, then the whole corpus of datasets will be queried, or the
datasets defined in the FROM DATASET clause. The AT VERSION keyword, when ap-
plied to a DATASET statement inside a WHERE clause, is used to either define a specific
dataset instantiation or bind dataset instantiations to a variable for the graph pattern
that follows. However, AT VERSION is optional and if no specific dataset instantiation
URI or variable is declared, AT VERSION is omitted. An example of matching both
triples and versions can be seen in Figure 2.6.
RECORD <record_URI | ?record_var >

{< subjectURI | ? subject_var > ATTRIBUTE_pattern }

RECORD is used inside the body of a graph pattern for querying either a specific DI-
ACHRON record or to match DIACHRON records in the pattern. It is followed by a
record URI/variable. If neither of those is declared, the RECORD keyword can be omit-
ted. Following RECORD is a block containing a graph pattern that can either be of
SPARQL form, or used in conjunction with the RECATT keyword.

Table 2.2: DIACHRON query language keywords and usage examples.

Keyword Parameters Usage example
SELECT variable list SELECT ?x, ?y, ?z

2http://www.w3.org/TR/sparql11-query/
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Table 2.2: DIACHRON query language keywords and usage examples.

Keyword Parameters Usage example

FROM
DATASET

URI of diachronic
dataset

SELECT ?x, ?y, ?z
FROM DATASET <efo>

FROM
DATASET
AT VERSION

URI of dataset
instantiation

SELECT ?x, ?y, ?z
FROM DATASET <efo>
AT VERSION <v1>

FROM
CHANGES

URI of diachronic
dataset

SELECT ?x, ?y, ?z
FROM CHANGES <efo>

FROM
CHANGES
BETWEEN
VERSIONS
(params)

URIs of dataset
instantiations to
define the change
scope

SELECT ?x, ?y, ?z
FROM CHANGES <efo>
BETWEEN VERSIONS <vm>, <vn>

FROM
CHANGES
AFTER /
BEFORE
VERSION
(params)

URI of dataset
instantiation to
define the
start/end of the
change scope

SELECT ?x, ?y, ?z
FROM CHANGES <efo>
AFTER / BEFORE VERSION <vm>

WHERE {
(params) }

DIACHRON
patterns

SELECT ?x, ?y, ?z
FROM DATASET <efo>
WHERE {
?x a efo:Protein ; ?y ?z .
}

DATASET
(params)

URI or variable of
diachronic dataset

SELECT ?x, ?y
WHERE {

DATASET ?x {
?s a efo:Protein.

}
DATASET ?y {

?s dcterms:creator “EBI”
}

}
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Table 2.2: DIACHRON query language keywords and usage examples.

Keyword Parameters Usage example

DATASET . . .
AT VERSION
(params)

URI or variable of
dataset
instantiation

SELECT ?x, ?y
WHERE {

DATASET ?x AT VERSION ?var {
?s a efo:Protein.

}
DATASET ?y AT VERSION <v1> {

?s dcterms:creator “EBI”
}

}

RECORD
(params)

URI or variable of
DIACHRON
record

SELECT ?x, ?r, ?y
WHERE {

DATASET ?x AT VERSION ?var {
RECORD ?r {?s a efo:Protein}

}
DATASET ?y AT VERSION <v1> {

?s dcterms:creator “EBI”
}

}

RECATT
(params)

URI or variable of
a DIACHRON
record attribute

SELECT ?var, ?r, ?ra
WHERE {

DATASET <efo> AT VERSION ?var {
RECORD ?r {

?s RECATT ?ra
{rdf:type efo:Protein}

}
}

}

CHANGES
(params)

URI of diachronic
dataset or variable

SELECT ?c, ?param1, ?value1
WHERE {

CHANGE ?c {?param1 ?value1 }
}

CHANGES
BETWEEN
VERSIONS
(params)

URIs of dataset
instantiations or
variables to define
the change scope

SELECT ?v1, ?v2, ?c
WHERE {
CHANGES <EFO> BETWEEN VERSIONS ?v1,
?v2 {
?c rdf:type co:Add_Definition ;
?p1 [co:param_value ?o3 . rdf:type co:ad_n1 ] ;
?p2 [co:param_value ?o4 . rdf:type co:ad_n2 ]
}
}
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Table 2.2: DIACHRON query language keywords and usage examples.

Keyword Parameters Usage example

CHANGES . . .
AFTER /
BEFORE
VERSION
(params)

URI of dataset
instantiation or
variable to define
the start/end of
the change scope

SELECT ?s ?p ?o
WHERE {
CHANGES <efo>
BEFORE/AFTER VERSION <vm> {
?s ?p ?o}

}
}

CHANGE
(params)

URI of change or
variable

SELECT ?v1, ?v2, ?c, ?p ?o WHERE {
CHANGES <EFO>

BETWEEN VERSIONS ?v1 ?v2 {
CHANGE ?c {?p ?o}

}

RECATT <recattURI | ?recatt_var>

{ <predicateURI | ?predicate_var> <objectURI | ?var> }

RECATT is used inside a RECORD block and separates the subject of a DIACHRON
record with the record attributes that describe it. It is followed by a URI/variable. If no
specific record attribute needs to be queried or matched in a variable, RECATT can be
omitted.

CHANGES <diachronicURI | var> [[BETWEEN VERSIONS <version1URI | ?var1>]
|| [BEFORE VERSION <versionURI | var1>] || [> AFTER VERSION <versionURI |
var1>]]

CHANGES is used to limit the scope of a block within a larger query into a particular
change set, or match change sets to a variable. If no URI is given, then all existing
change sets will be used to match the query body. CHANGES can optionally be used
with BETWEEN VERSIONS, BEFORE VERSION or AFTER VERSION to limit the
scope of the changes or bind the dataset versions that match the change set pattern to
variables.

CHANGE <changeURI | ?change_var>

The CHANGE keyword is used to query a particular change in a fixed query block within
a larger query pattern. It is followed by a specific change URI or a variable to be bound.
The succeeding block is used to declare the change parameters in a predicate-object
manner.
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Figure 2.6: Matching a reified triple in a query with variable versions. Blue nodes are
selected by the query.

2.4.4 DIACHRON QL formal definitions

In order to formally describe DIACHRON QL as a SPARQL extension, it is necessary to
address the DIACHRON model as an extension of RDF, in a manner similar to [KK10;
Lop+10; PAG06; PJS11]. Let I, B, L, V be infinite, pairwise disjoint sets of IRIs, blank
nodes, literals and variables respectively. An RDF triple t is a triple (s, p, o) ∈ (I ∪B)×
(I) × (I ∪ B ∪ L), where s is the subject, p is the predicate and o is the object of the
triple. An RDF graph is a collection of triples g = {t1,t2,. . . ,tn). The union (I ∪B ∪ L)

is denoted as T and represents all possible bound values any node in an RDF graph
can take. The set of all RDF graphs is denoted as G. Given the above, we define the
DIACHRON model entities as follows:

Definition 10 Record Attribute

A record attribute a is a tuple (t, g) where t is an RDF triple, and g is a metadata subgraph
for a. In essence a record attribute associates an RDF triple t with its metadata, expressed
as an RDF graph g. We denote as Ga ⊆ G the set of all record attributes, and as Ia ⊆ I

the set of all record attribute IRI nodes.

Definition 11 Record
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A record r is defined as a tuple (Gs
a, g), where Gs

a ⊆ Ga is a set of record attributes over
subject s, and g is a metadata subgraph associated with r. The set Gs

a is only relevant
to the particular context and is not meant to be an exhaustive list of triples with s as
common subject. We denote as Gr ⊆ G the set of all records, and as Ir ⊆ I the set of
all record IRI nodes.

Definition 12 Record Set

A record set R is defined as a tuple (G
′
r, g), where G

′
r ⊆ Gr is a set of records, and g

is a metadata subgraph associated with R. We denote as GR ⊆ G the set of all record
sets, and as IR ⊆ I the set of all record set IRI nodes.

Definition 13 Schema Set

A schema set S is defined as a tuple (G
′
s, g), where G

′
s ⊆ Gr is a set of schema elements,

and g is a metadata subgraph associated with S . We denote as Gs ⊆ G the set of all
schema sets, and as IS ⊆ I the set of all schema set IRI nodes.

Definition 14 Dataset Instantiation

A dataset instantiation d is a tuple
(
G

′
R, G

′
S, g

)
where G

′
R ⊆ GR and G

′
S ⊆ GS are

the record set and schema set of the instantiation. We denote as Gd ⊆ G the set of all
dataset instantiations, and as Id ⊆ I the set of all dataset instantiation IRI nodes.

Definition 15 Diachronic Dataset

A diachronic dataset D is a tuple
(
G

′

d, g
)

where G
′

d ⊆ Gd is an arbitrary set of dataset
instantiations as per Definition 14. We denote as GD ⊆ G the set of all diachronic
datasets, and as ID ⊆ I the set of all diachronic dataset IRI nodes. Similarly to SPARQL
we allow for blank nodes and literals to be identifier values, as well as triple subjects,
even though in practice this is not supported by most frameworks. Note further that the
metadata subgraph can be an empty graph. This allows for definitions of datasets and
other DIACHRON entities without necessarily associating metadata with them.

The above definitions serve to regard the entities of the DIACHRON model as extensions
of RDF. Examples of these are shown in Figure 2.5 and Table 2.2, as discussed in Section
3.

In order to define the syntax of DIACHRON QL, we briefly recall the notion of a SPARQL
graph pattern presented in [PAG06]. A SPARQL graph pattern expression is defined
recursively as follows:

1. A tuple from (T ∪ V )× (I ∪ V )× (T ∪ V ) is a graph pattern.
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2. If P1 and P2 are graph patterns, then (P1 AND P2), (P1 OPT P2), and (P1 UNION
P2) are graph patterns.

3. If P is a graph pattern and R is a SPARQL built-in condition, then the expression
(P FILTER R) is a graph pattern.

Given this, a DIACHRON QL graph pattern expression (DGP) is defined hierarchically
and recursively as follows:

1. A SPARQL graph pattern P is a DGP.

2. If X ∈ (Ia ∪ V ) then (X RECATT P ) is a DGP (a record attribute pattern).

3. If X ∈ (Ir ∪ V ) then (X RECORD P ) is a DGP (a record pattern).

4. If P is a DGP, X ∈ (ID ∪ V ) and Y, Z ∈ (Id ∪ V ) then :

a. (( (DATASET X) AT VERSION Y ) P ),

b. (( (DATASET X) AFTER VERSION Y ) P ),

c. (( (DATASET X) BEFORE VERSION Y ) P ),

d. (( (DATASET X) AFTER VERSIONS Y , Z ) P )

e. ((DATASET X) P ) are DGPs (dataset instantiation patterns).

5. If P1 and P2 are DGPs, then the following are DGPs:

a. P1 AND P2

b. P1 OPT P2

c. P1 UNION P2

DIACHRON QL built-in conditions for filtering are similar to [PJS11] and are not further
addressed in this chapter. Examples on all keywords and constructs of DIACHRON QL
can be seen in Table 2.2.

2.4.5 Semantics of DIACHRON QL graph pattern expressions

We are now ready to define the semantics of DPG expressions. Borrowing the notation
of [PJS11], a SPARQL mapping, or substitution, , is defined as a partial function µ :

V → T for a subset V′ ⊆ V , such that the variables in V
′ are replaced with values from

T as is defined in . The domain of : dom(µ) is the subset of V where is defined. A pair
of mappings ᾡ1 and ᾡ2 exhibits compatibility when for all v ∈ dom(µ1) ∩ dom(µ2), it
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holds that µ1(v) = µ2(v). Let Ω1 and Ω2 be sets of mappings, then the join, the union,
and the difference between Ω1 and Ω2 are defined as follows:

• Ω1 ./ Ω2 ={µ1 ∪ µ2|µ1 ∈ Ω1, µ2 ∈ Ω2 are compatible},

• Ω1 ∪ Ω2 = {µ|µ ∈ Ω1 or µ ∈ Ω2},

• Ω1 \ Ω2 = {µ ∈ Ω1|∀µ
′ ∈ Ω2, µ and µ

′ are not compatible}.

Finally, the left outer-join (OPTIONAL) is defined as:

• Ω1 ./ Ω2 = (Ω1 ./ Ω2) ∪ (Ω1 \ Ω2).

Given the above, the notion of mapping remains the same in DIACHRON QL.

In DIACHRON QL, the hierarchical relationship between entities enables graph patterns
to be limited in scopes , with respect to the DIACHRON model. Evaluating a triple
pattern within the scope of two different record patterns can result in different output,
and also enables pattern expressions involving the binding of DIACHRON model entities
as well.

Formally, we need to define what the scope of a graph pattern is. A scope is a function
σ : P → T

′ ⊆ T that maps a graph pattern P to a closed set T
′ , so that any mapping

µp of P is only valid with respect to T′ , i.e. µP ⊆ σ(P ). Given this, we go on to define the
lowest wrapping scope λ as a partial function λ : P → σ (I ∪ V ) that maps P with a scope,
such that the variables in P are mapped to elements in that scope, and there exists no
other scope that is a subset of the one derived from . This implies that any graph pattern
P is equipped with a function λ(P ) ∈ σ (I ∪ V ) such that µ(P ) ∈ λ (P ) and @λ′

(P ) 6=
λ (P ) | λ′

(P ) ⊆ λ (P ). Furthermore, we denote with λD′ (P ) when λ(P )is limited to a
specific subset of diachronic datasets and dataset instantiations D′ . Intuitively, a lowest
wrapping scope for a particular query is the lowest entity type in the DIACHRON model
hierarchy where P is expressed. For example, a record attribute pattern Pa in a query is
nested within a record pattern Pr and a dataset instantiation pattern Pd. Then (Pa) =

σ(Pr) and (Pr) = σ(Pd). An example of scoping in a DIACHRON query can be seen in
Figure 2.7.

We are now ready to define the evaluation of a DIACHRON QL graph pattern. Given
a diachronic dataset D with a set of dataset instantiations d over T , such that D

′ ⊆ D

is the subset of D in which d exists, and DGPs P, P1 and P2 defined in D
′ , D′

1 and D
′
2

respectively, then the evaluation of a DGP denoted as [[•]]D′ is as follows:

• [[P ]]D′ = { | dom (µ) = var (P ) and µ (P ) ∈ λD
′ (P ) }

• [[P1 AND P2]]D′
1,D

′
2

= {µ = [[P1]]D′
1
./ [[P2]]D′

2
| µ ∈ λD

′
1
(P1) ∩ λD

′
2
(P2)}
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Figure 2.7: An example of scopes in a DIACHRON QL query.

• [[P1 UNION P2]]D′
1,D

′
2

= {µ = [[P1]]D′
1
∪ [[P2]]D′

2
| µ ∈ λD

′
1
(P1) ∪ λD

′
2
(P2)}

• [[P1 OPT P2]]D′
1,D

′
2

= {µ = [[P1]]D′
1
o [[P2]]D′

2
| µ ∈ λD

′
1
(P1) ∪ λD

′
2
(P2)}

Evaluation of filters remains the same as with the original SPARQL specification [PJS11]
and is not reported herein. Finally, note that we do not consider the case of named
graphs within DIACHRON graph patterns, because the general notion of a SPARQL
named graph is specialized in the more refined DIACHRON entity types.

Given a DIACHRON graph pattern expression (( (DATASET X)AT VERSION Y)P),
its evaluation will be equal to the evaluation of P over diachronic dataset X at version
Y , i.e. the set of all mappings such that µ (P ) ∈ λX′ (P ) , with X

′ being the subset of
X that contains version Y .

2.5 Implementation

In this section we present the implementation of the proposed query language. We first
provide an overview of the overall architecture of the DIACHRON archive. The archive
employs the proposed DIACHRON model for storing evolving LOD datasets. The query
engine is a core component of the archive, responsible for processing queries expressed in
the DIACHRON QL and retrieving data out of the archive.
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2.5.1 System architecture

The architecture of the archive and various components of the archive can be seen in
Figure 2.8. The archive’s web service interface is exposed via the HTTP protocol as the
primary access mechanism of the archive through a RESTful web service API. The Data
Access Manager provides low level data management functionality for the archive. It is
bound to the specific technology of the underlying store, in our case Openlink Virtuoso
7.13, as well as external libraries that provide data access functionality for third-party
vendors. For this we used the Jena semantic web framework4. It serves as an abstraction
layer between the store and the query processor.

Figure 2.8: Architecture of the archive.
3http://virtuoso.openlinksw.com/
4https://jena.apache.org/
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The archive employs a Data Access Manager, a Store Connector, a Data Modeler, an
Archive Optimizer and a Query Processor. The Store Connector is the software package
that provides an API to other components of the archiving module for communication
and data exchange with the underlying store and is implemented with the Virtuoso
JDBC Driver package5. The Data Store employs a Virtuoso 7.1 instance. The Data
Modeler component handles the dataset input functionality and data transformations
from the DIACHRON dataset model to the native data model of the store and vice
versa, and consists of the Data Translator and the Data Loader. The Archive optimizer
component supports the optimization of the datasets’ storage method based on various
archive strategies as shown in [SCF14]. It performs analysis of the dataset characteristics
and chooses the most efficient storage strategy based on metrics.

The Query Processor component is the base mechanism for query processing and thus
data access. It consists of the following subcomponents:

• Validator: validates the DIACHRON queries for syntactic validity against the
DIACHRON QL syntax.

• Query parser: parses the queries in DIACHRON QL so as to create a structure of
elements that correspond to DIACHRON Dataset Entities and DIACHRON query
operators.

• Query Translator: creates the execution plan of DIACHRON queries by trans-
lating the queries in SPARQL. The translator also makes use of the various archive
structures implemented in the persistence store and the appropriate indexes and
dictionaries. The query translator is the subcomponent that ties the DIACHRON
archive module to the specific storage technology of RDF and SPARQL. Translation
is further described in the next subsection.

• Executor: executes the created execution plan step by step and retrieves the raw
data from the store so as to build the result set of the query. It uses also the Data
Modeler component in order to perform, if necessary, data transformations from
the native data model of the underlying store to the DIACHRON dataset model.

2.5.2 Translation of DIACHRON QL to SPARQL

Our implementation is based on mature standards and state of the art triple stores
that implement RDF storage and SPARQL querying. This imposes that DIACHRON
entities are converted to RDF and queries are mapped to SPARQL expressions. In this

5http://docs.openlinksw.com/virtuoso/VirtuosoDriverJDBC.html

34

Institutional Repository - Library & Information Centre - University of Thessaly
12/06/2024 04:55:53 EEST - 3.15.237.130



context, DIACHRON graph patterns can generally be translated to SPARQL as shown in
Table 2.3. However, a direct mapping is not generally possible, as the two models differ
conceptually. The actual translation to SPARQL is ultimately dependent on factors that
are affected by the implementation at hand, such as the storage policies, the structure of
the archive and its dictionary, and the pre-processing requirements of the query engine.
For this reason, we have implemented a middle layer between the DIACHRON QL parser
and the SPARQL query executor, where the following steps take place:

1. Identification of the query’s relevant scope(s), and in-memory mapping to DI-
ACHRON structural elements

2. Extraction and mapping of graph patterns to their respective scopes

3. Conversion of lowest level graph patterns to SPARQL

4. Detection of non-materialized dataset versions that contain possible scope candi-
dates

5. Temporary materialization of non-materialized dataset versions

6. Mapping to final SPARQL query

In the above flow of actions, step 1 is responsible for extracting the scopes σ(Pi) for
all Pi that are sub-expressions of a DIACHRON query expression P. References to their
respective URI nodes or variables point to their subsumed DGP and are stored in memory
for future reference. In step 2, we map each scope to its respective DGP found in the query
string, and populate the query object in-memory. In step 3, we identify the data-relevant
part of the query (i.e. the part that references actual records and attributes), and rewrite
it to SPARQL independently of its scope. In step 4, we detect whether a scope is actually
materialized in the archive. This step deals with cases where the chosen storage policy
differs from full materialization, however it is not in the scope of this work to address
the implementation issues of storage policies, the storage-querying trade-off, or storage
optimization for contexts with versioning. Furthermore, simple lookups in the dictionary
for a given query’s scopes is not sufficient to determine which σ are eventually referenced,
because a scope can be unbound (i.e. a variable). These points are all taken into account
in steps 4 and 5. Finally, step 6 relies on the output of the previous steps in order to
build one or more SPARQL queries that will be executed by the query engine. Hence,
in order to implement DIACHRON QL in a SPARQL setting, the added expressivity of
DIACHRON QL over SPARQL is translated to a series of steps, rather than a direct 1:1
mapping of entities and graph pattern expressions.
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Table 2.3: DIACHRON graph patterns and their translation to SPARQL.

DIACHRON Pattern (Parsed
Syntax)

SPARQL

{?s ?p ?o} {[a evo:Record ;
evo:subject ?s ;
evo:hasRecordAttribute
[ evo:predicate ?p ; evo:object ?o ]]}

RECORD ?r {?s ?p ?o} {?r a evo:Record ;
evo:subject ?s ;
evo:hasRecordAttribute
[evo:predicate ?p ; evo:object ?o]}

RECORD ?r {
?s RECATT ?ra {?p ?o}
}

{?r a evo:Record ;
evo:subject ?s ;
evo:hasRecordAttribute ?ra .
?ra evo:predicate ?p ;
evo:object ?o}

DATASET <EFO> AT VERSION ?v {
RECORD ?r {
?s RECATT ?ra
{?p ?o}
}
}

{GRAPH <dataset_dictionary> {
<EFO> evo:hasInstantiation ?v .
?v evo:hasRecordSet ?rs
}
GRAPH ?rs{
?r a evo:Record ;
evo:subject ?s ;
evo:hasRecordAttribute ?ra .
?ra evo:predicate ?p ;
evo:object ?o }}

FROM DATASET <EFO>
AT VERSION <EFO/v1>
{
RECORD ?r {
?s RECATT ?ra {?p ?o}
}
}

{GRAPH <dataset_dictionary> {
<EFO> evo:hasInstantiation <EFO/v1>
.
<EFO/v1> evo:hasRecordSet ?rs
} GRAPH ?rs{
?r a evo:Record ; evo:subject ?s ;
evo:hasRecordAttribute ?ra .
?ra evo:predicate ?p ;
evo:object ?o }}

FROM CHANGES <EFO>
BETWEEN VERSIONS <EFO/v1>
<EFO/v2>
{
CHANGE ?c {?p ?o}
}

{GRAPH <dataset_dictionary> {
?cs a evo:ChangeSet ;
evo:oldVersion <EFO/v1> ;
evo:newVersion <EFO/v2>
} GRAPH ?cs{
?c a _:Change ; ?p ?o }}
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2.6 Evaluation

In this section we present the evaluation of our approach over a real world evolving biolog-
ical use case of the EFO ontology as well as use case concerning evolving multidimensional
data of the statistical domain published on the web in LOD format following the Data
Cube Vocabulary6 approach. As a first step, in Table 2.4, we provide a qualitative evalua-
tion of supported storage policies, querying scopes, supported change representation, and
metadata granularity of a framework implementing the DIACHRON model and Query
language, compared with related works previously discussed. Specifically, we compare
our approach with traditional version control, as well as SemVersion [VG06], Auer et
al [AH06], Im et al [ILK12], Hauptmann et al [HBW15] and Memento LD [Som+09;
Som+10], and we find that these approaches cover parts of the functionality offered by
a framework that implements DIACHRON. Furthermore, we conducted a performance
evaluation and a usability evaluation. The performance evaluation aims at showing that
there is no significant overhead imposed in query processing that introduces above-linear
performance for queries of increasing difficulty. The usability evaluation aims at mea-
suring with objective metrics the syntax overhead that the proposed DIACHRON Query
Language introduces.

In the first case, we consider 15 consecutive versions of the ontology, that exhibit various
types of changes, both simple and complex, as well as four multidimensional datasets
each comprised of three consecutive versions. We load all datasets into the same archive
instance, and in order to do so, the data are first converted to fit the RDF mapping of
the DIACHRON model. For this, we implemented a conversion mechanism as part of the
Data Modeller component presented in the previous section. The modeller reifies data
to records and record attributes. Data are mapped to the DIACHRON data model in
the following manner. First, classes and their definitions (domains, ranges) are modelled
as schema objects. The triples are grouped by their subjects. For each subject URI, its
corresponding predicate-object pairs are modelled as record attributes and grouped in
records. The subject records are in turn connected with the record attributes created for
each triple associated with a subject URI.

2.6.1 Experimental Evaluation

The goal of the experimental evaluation was to assess the performance of our implemen-
tation w.r.t three main aspects: the time overhead related to the initial loading of the
archive, the time overhead related to the retrieval of the datasets in their original form

6http://www.w3.org/TR/vocab-data-cube/
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Table 2.4: Qualitative comparison of each frameworks support for (a) storage policies, (b)
querying scopes, (c) change representation, and (d) provenance and metadata granularity.
(CB = change-based storage, FM = full materialization)

Storage Querying Changes Provenance
Granularity

Version Control CB (Sequential) N/A Low Level None
SemVersion FM Graph Patterns Low Level None
Auer et al CB (Sequential) Changes High Level Changes
Im et al CB (Aggregated) Graph Patterns Low Level Datasets
Hauptmann et al CB (Sequential) Graph Patterns Low Level Datasets
Memento LD FM Resources N/A Resources

DIACHRON Hybrid

Datasets,
Versions,
Graph Patterns,
Resources,
Changes,
Longitudinal

High Level

Datasets,
Versions,
Resources,
Changes,
Triples

(de-reification and serialization) and the time overhead of executing queries of different
difficulty. Specifically, we want to assess (i) the runtime performance of the pre-processing
step for DIACHRON QL, and (ii) whether there is extra processing overhead that makes
query processing non-linear with respect to query difficulty. Our approach was imple-
mented in Java 1.7, and all experiments were performed on a server with Intel i7 3820
3.6GHz, running Debian with kernel version 3.2.0 and allocated memory of 8GB.

First, bulk operations on whole datasets have been tested, namely loading and retrieving
full dataset versions. Loading and retrieval times can be seen in Figure 2.10 (a) and
(b). A series of 10 tests were run for each version of the datasets and the averages have
been used in computing execution time, using least squared sums. Loading a dataset
in the archive implies splitting it into the corresponding structures, i.e. dataset, record
set, schema set and change set, and storing it in different named graphs. The splits
were done directly in the store using the SPARQL update language and basic pattern
matching, thus no need to put a whole dataset in memory arose, which would be costly in
terms of loading in and building the respective Java objects in Jena7. The increasing sizes
of the input datasets are the effect of their evolution, as new triples are being added. In
Figure 2.10 (b), retrieval times can be seen for the same datasets. Retrieval of a dataset
is the process of de-reifying it to recreate the dataset version at its original form and
structure. As can be seen, both loading times and retrieval fit into a linear regression
w.r.t to the datasets’ sizes as measured in record attributes and imply that no additional

7https://jena.apache.org/
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time overhead is imposed that would destroy linearity as new versions of a dataset are
stored in the archive.

Figures 2.10 (c)-(h) show running times of 14 queries we devised for this experiment. An
analysis of the queries’ characteristics can be seen in Table 2.5. In Figures 2.10 (c) and
(d) we perform a series of queries on different dataset versions. Specifically, two sets of 5
queries have been devised to run on a fixed dataset. Each query is run on one particular
version, and the total running time of all 5 queries in each set (c) and (d) is calculated
after retrieving the results and storing them in memory, which implies a simple iteration
on all results. The query sets are made up from SELECT queries that combine structural
entities (records, record attributes etc.) with actual data entries (subject URIs etc.) in
different levels of complexity. In Figure 2.10 (a) no aggregate functions, OPTIONALs or
other complex querying capabilities have been used, while in Figure 2.10 (b) the queries
consist of selecting, aggregating and filtering graph patterns. As in the case of loading
and retrieval, the archive behaves in a linear way as the size of a dataset increases.

Finally, four queries, Q11-Q14, with variable datasets that search in the entire archive
have been devised and run on an incrementally larger archive, that is, the queries have
been tested on deployments of the archive where versions of datasets are being incremen-
tally added to their corresponding diachronic datasets. The queries use dataset versions
as variables. The results can be seen in Figures 2.10 (e)-(h) where linearity is still being
preserved when new datasets are stored.

Running times for the pre-processing step can be seen in Figure 2.9. Specifically, we
have measured the total running time required to create and populate a DIACHRON
query object, prior to execution, as opposed to a SPARQL query object, for queries
Q1-14 on an archive instance that contains the maximum number of tested versions. The
pre-processing overhead for DIACHRON QL is proportional to the intermediate steps,
but does not impose a large difference when compared with plain SPARQL queries in
the majority of cases. The SPARQL queries appear to impose a constant overhead,
while the time needed to pre-process DIACHRON queries increases along with the query
expressivity and complexity of mapped scopes and DIACHRON elements. Even so, the
pre-processing overhead is negligible (in most cases <100ms). For queries Q13 and Q14
the pre-processing step is very costly, because of the sequenced nature of pre-processing
steps required to combine materialized and non-materialized datasets in queries with
variable diachronic datasets and dataset instantiations.
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Table 2.5: Characteristics of the experiment queries.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14
DISTINCT X X X X X X X X X X X X X X
Unbound predicates X X X X X X X
Filters X X X X
Aggregate Functions X X X X X X X X
ORDER BY X X X X X X X X
OPTIONAL X
SELECT X X X X X X X X X X X X X
CONSTRUCT X
Reified data X X X X X X X
De-reified pattern X X X X X X X X X
Diachronic metadata X X X X X X X X
Unbound named graphs X X X X
Non-materialized datasets X X

Table 2.6: Comparison of (i) number of keywords, (ii) number of triple (or record) pat-
terns, and (iii) number of generated variables not existing in the original query.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14
# keywords (SPARQL) 4 4 4 4 4 7 9 8 8 8 10 12 27 46
# keywords (DIACHRON) 6 6 5 5 5 5 5 6 6 5 7 7 6 7

# TPs (SPARQL) 5 5 5 5 10 6 7 9 9 9 19 21 33 44
# TPs (DIACHRON) 1 1 1 1 1 2 2 2 2 2 4 4 2 2

# non-TP vars (SPARQL) 2 2 1 2 3 2 2 3 2 2 4 5 6 9
# non-TP vars (DIACHRON) 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 2.9: Logarithmic plot of pre-processing time (in milliseconds) for queries Q1-Q14.

40

Institutional Repository - Library & Information Centre - University of Thessaly
12/06/2024 04:55:53 EEST - 3.15.237.130



2.6.2 Usability Evaluation

In order to evaluate usability, we make use of three objective metrics in order to com-
pare the compactness , expressiveness and usability of DIACHRON QL with respect to
SPARQL. Specifically, we compare (i) the number of language-specific keywords used in
each of the 14 queries, (ii) the total number of triple/record patterns, and (iii) the number
of intermediate variables that were neither part of the original query, nor requested by
the user. The results can be seen in Table 2.6.

As the number of SPARQL TPs increases, the number of DIACHRON QL record patterns
remains at low levels, thus abstracting the complexity of writing large queries. This is es-
pecially evident in queries Q13 and Q14, where we have used hybrid storage policies, thus
forcing the query engine to decide on parse-time which dataset versions are materialized
and which have to be materialized as nested graph patterns. For instance, query 13 that
features a bound diachronic dataset with an unbound version (using AT_VERSION ?v)
can be expressed with just two DIACHRON patterns, whereas the SPARQL query uses
33 triple patterns to cater for the versions that follow a mixed storage policy. Note, how-
ever, that independently of the underlying storage policies, even if the user was inclined
to express a query in a language like SPARQL and rely on an existing query engine for
execution, the set of intermediate steps executed by our system would be omitted in the
process, thus limiting the expressivity of the possible queries.

The number of keywords used in each of the two languages for the 14 queries is smaller
for small queries (queries Q1-Q5), but SPARQL tends to overcome DIACHRON in total
number of language-related keywords as the query gets larger and more complicated. This
is also dependent on the various scopes and filters used by a query. Finally, SPARQL
eventually depends on a number of dynamically generated intermediate variables that are
used in the translated query, which is not needed by DIACHRON. These variables bind
dictionary elements, scopes, versions, record sets and so on to variables that are further
used in GRAPH clauses and FILTERs in the SPARQL translation.

2.7 Conclusions

In this chapter, we have discussed the challenges and requirements for the preservation
and evolution management of datasets published on the Data Web and we have presented
an archiving approach that utilizes a novel conceptual model and query language for stor-
ing and querying evolving heterogeneous datasets and their metadata. The DIACHRON
data model and QL have been applied to real world datasets from the life-sciences and
open government statistical data domains. An archive that employs these ideas has been
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implemented and its performance has been tested using real versions of datasets from the
aforementioned domains over a series of loading, retrieval and querying operations.

The growing availability of open linked datasets has brought forth significant new prob-
lems related to the distributed nature and decentralized evolution of LOD and has posed
the need for novel efficient solutions for dealing with these problems. In this respect,
we have highlighted some possible directions and presented our work that tackles evolu-
tion and captures several dimensions regarding the management of evolving information
resources on the Data Web.
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Figure 2.10: Loading times (a), retrieval times (b), select queries without filters and
aggregates (c), select que-ries with filters and aggregates (d), select queries with variable
datasets (e)-(h).
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Chapter 3

Benchmarking Evolution
Management Systems for Linked
Data

3.1 Introduction

In the previous chapter, we have discussed the implications of storing, querying and
managing evolving data. In this chapter, we will discuss the challenge of evaluating
systems that handle RDF evolution, and we will present a novel benchmarking framework
that is designed to evaluate and assess evolution management systems for RDF data.

Evolution in RDF data stems from low-level changes in the datasets, i.e., additions and
deletions of triples through different time points. However, other parameters come in
to play when benchmarking evolution management systems, such as schema vs instance
evolution, change complexity, change distribution, and so on. With SPARQL being
the standard for querying RDF, a remarkable number of efforts have emerged to address
matters of efficiency in storing and querying RDF. However, the same issues have not been
thoroughly addressed in versioning and evolving contexts. Hence, any experimentation
on such systems is unable to rely on arbitrarily large or complex data, because of the
aforementioned lack of synthetic versioned data generators. Therefore, benchmarking
archiving and versioning systems is not a trivial task, as the benchmarking process is not
easily configurable or tailored to custom needs based on existing approaches, an advantage
that stems from synthetic data. Two main aspects must be considered towards this goal.
First, systems must be able to generate synthetic datasets of varying sizes and schema
complexity, in order to approximate different cases of evolution. Second, the performance
evaluation of these tools requires the existence of representative query workloads and
evolving operators.
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In this chapter, we present EvoGen, a synthetic data generator for evolving RDF that is
based on the widely adopted Lehigh University Benchmark generator [GPH05]. EvoGen
addresses generation of consecutive versions with a configurable shift (i.e. change in size
between versions) parameter, configurable schema evolution, as well as query workload
generation functionality. To this end, we build on LUBM’s existing benchmark queries,
and we provide new ones that address the querying dimensions commonly found in dataset
evolution, discussed in the previous chapter.

Contributions. The contributions of this chapter are summarized as follows:

• we present requirements and characteristics for generating synthetic versioned RDF,

• we extend the LUBM ontology with 10 new classes and 19 new properties,

• we propose EvoGen as a benchmarking system for evolving RDF,

• we implement a change logging mechanism, that produces RDF logs of the changes
between consecutive versions following the representational schema of the change
ontology described in [Pap+13b],

• we provide an implementation for adaptive query workload generation, based on
the evolutional aspects of the data generation process.

This chapoter is outlined as follows. Section 2 provides an overview of related work. Sec-
tion 3 discusses requirements for the benchmark, and Section 4 discusses the parameters
of the benchmark in the context of the EvoGen system. Section 5 describes the system’s
implementation, and section 6 concludes the chapter.

3.2 Related Work

In this work, we extende the Lehigh University Benchmark (LUBM) [GPH05], a widely
adopted benchmark for RDF and OWL datasets. LUBM includes an implementation
for generating synthetic data in OWL and DAML formats. Its broader scope includes
benchmarking reasoning systems, as well as RDF storage and SPARQL querying engines
[Sto+08], [KKB15], [KKK10], [BSK07], [Bor+13], [Hus+10], [Pap+12]. It provides an
ontology expressed in OWL, where there exist restrictions between classes so that reason-
ers can perform inferencing. Furthermore, LUBM comes with 14 SPARQL queries with
varying sizes of query patterns, ranging from 1 to 6 triple patterns. Because of the fact
that these can be limiting when stress testing SPARQL engines, they have been extended
in the literature in order to provide more complex patterns (e.g. in [KKB15]). SP2Bench
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[Sch+09] is a generator for RDF data, with the purpose of evaluating SPARQL query-
ing engines. Its scope is mostly query efficiency instead of inferencing, and has been
widely adopted in the literature [SML10; Hus+10; Let+13]. Other approaches in the
context of RDF and SPARQL benchmarking, such as FedBench [Sch+11] and the Berlin
SPARQL Benchmark (BSBM) [BS09], provide fixed data rather than custom data gen-
eration, hence they are not readily capable of providing a benchmark for evolving and
otherwise versioned datasets. The reader is referred to [Dua+11] for an extensive study
and comparison of RDF benchmarks. Finally, Fernandez et al. [FPU15] discuss a series of
metrics for benchmarking archiving systems in Linked Data contexts. Our approach aims
at providing a highly customizable benchmarking suite for creating synthetic and evolv-
ing data, with instance-level and schema-level evolution and adaptive query workload
generation.

3.3 Requirements

Benchmarking processes usually adhere to several functional and non-functional require-
ments concerning the generation of synthetic data and the relevant query workload. Es-
pecially in the case of evolving data, there is a multitude of dimensions to address when
tailoring the benchmark to custom needs.

3.3.1 Configurability

The benchmark should be able to provide a viable degree of configurability through
tunable parameters, regarding the data generation process, the context of the application
that will be tested, and the adaptability of the query workload on the specificities of the
generated evolving data. The differentiation between benchmarks for evolving settings,
and benchmarks for static settings, is that the temporal dimension can randomize the
data generation process, which implies that a dynamic and adaptive query workload
generation process is required as well.

3.3.2 Extensibility

As evolving data are by definition dynamic in nature, new requirements are bound to
arise as application contexts and systematic approaches expand. For this reason, the
benchmark is not considered to be exhaustive. Instead, we consider extensibility to be
a crucial requirement when designing the parameters of the data generation process and
the query workload.
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3.3.3 Mixed Workload

For the aforementioned reasons, the workload of the benchmark must be generated adap-
tively with respect to the required parameters and the generated data. Many traditional
benchmarking techniques that include some sort of data provision, either fixed or dy-
namically generated, usually rely on standardized or otherwise fixed query workloads.
For instance, the LUBM benchmark that provides the foundations to EvoGen, offers a
set of 14 predefined queries that try to address a variety of interesting query patterns
with varying complexities. We argue that in evolving and versioning contexts, the fixed
queries can only represent static contexts, and it is thus crucial to be able to extend
the workload and provide adaptive workloads that reflect the generation process, which
is in turn tailored after the user’s custom needs. For example, the number of versions
and the variations, as well as the complexity of changes between the versions, leads to
significantly different outcomes that can impact the same set of benchmarking tests in
varying and possibly unpredictable ways.

3.4 EvoGen Characteristics

3.4.1 Generated data

EvoGen is based on the widely used LUBM generator, which uses an ontology of concepts
drawn from the world of academia. Specifically, LUBM creates a configurable number of
university entites, which are split in departments. Furthermore, LUBM generates entities
that describe university staff and students, research groups, and publications. Most of
these classes are provided in different types of specializations, as defined in the LUBM
schema ontology. For example, the generator creates varying numbers of lecturers, full
professors, associate professors and assistant professors, as well as undergraduate and
postgraduate students. The created entities are interrelated via direct (e.g., a professors
can be an advisor of a student) or indirect properties (e.g., professors and students can
be co-authors in publications), and their cardinalities adhere to relative ranges that are
hard-coded in the generator. LUBM heavily relies on randomization over these types
of associations, however, it is guaranteed that the schema will be populated relatively
evenly across different runs.

We extend the LUBM ontology by providing 10 new classes and 19 new properties, in
order to implement schema evolution functionality, also maintaining backward compat-
ibility with the original synthetic generator. The new classes are both specializations
(subclasses) of existing ones (e.g. visiting professor, conference publication), and novel
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ex: change1 rdf:type co: Add_Type_Class ;
co: atc_p1 lubm: VisitingProfessor .
ex: change2 rdf:type co: Add_Super_Class ;
co: asc_p1 lubm: VisitingProfessor ;
co: asc_p2 lubm: Professor .
ex: change3 rdf:type co: Add_Property_Instance ;
co: api_p1 AssociateProfessor13 ;
co: api_p2 lubm: doctoralDegreeFrom ;
co: api_p3 University609 .

Listing 3.1: Example RDF in the change log

concepts in the ontology (e.g., research project, scientific event). Through this extension
we are able to implement schema evolution which was not supported in the original ver-
sion, and at the same time keep the original LUBM schema intact to allow backwards
compatibility with existing approaches.

3.4.2 Change Production

We design and implement a component for semantic change generation, which relies on
the change representation scheme presented in [Pap+13b]. Changes are represented as
entities of the Change Ontology, which is able to capture both high level changes, such as
adding a superclass, and low level changes, such as triple insertions and deletions. The
Change Ontology has been adopted by the community and used in change detection and
change representation [Pap+13b] and in [Rou+15] for designing and representing multi-
level changes. Also, it is tightly integrated with the temporal query language DIACHRON
QL [Mei+16a]. EvoGen optionally creates a change set between two consecutive versions,
that includes all changes between the versions, both on the instance and on the schema
level.

3.4.3 EvoGen Parameters

We drive the generation process through a set of abstract parameters that reflect the
user’s needs with respect to the type and amount of changes. Specifically, we use the
notions of shift, monotonicity and strictness as high level characteristics of the generation
process, and we define a parameter for class-centric schema evolution. In what follows,
we will describe these notions.
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3.4.3.1 Parameters regarding instance evolution.

Following the definitions provided in the previous chapter, we treat evolution on the
dataset level by default. In this context, a dataset D is diachronic, when it provides
a time-independent, static representation of all its versions. Given this, let D be a
diachronic dataset, and Di . . . Di+n a set of dataset instantiations at time points ti . . . ti+n.
Then, the shift of dataset D between ti and ti+n, denoted as h(D)|ti+n

ti , is defined as the
ratio of change in the size of the instantiations Di . . . Di+n of D.

h(D)|ti+n

ti =
|Di+n| − |Di|
|Di|

(3.1)

The shift parameter shows how a dataset evolves with respect to its size, through different
points in time. Its directionality is captured by signed values, i.e., a positive shift points to
incremental datasets, whereas a negative shift points to decremental datasets. It captures
the relative different of additions and deletions between two fixed time points, and as a
parameter it allows for generating increasingly larger or decreasingly smaller versions
through the generation process. In EvoGen, h(D)|ti+n

ti , is evenly distributed between all
versions Di . . . Di+n.

The monotonicity of a dataset D determines whether an incremental or decremental
shift changes D monotonically in a given time period [ti, tj]. A monotonic shift requires
additions and deletions to not coexist within the same time period. Therefore, the set
of triples that occur in a series of consecutive versions of D between ti and tj will be
strictly increasing for a monotonic incremental shift, and strictly decreasing in a mono-
tonic decremental shift. In order to make the ratio of low-level incremental (i.e., triple
insertions) to decremental (i.e., triple deletions) changes quantifiable, we use the notion
of monotonicity rate, denoted as m(D)|ti+n

ti , as a parameter between 0 and 1:

m(D)|ti+n

ti =
|ta|i+n

i

|ta|i+n
i + |td|i+n

i

(3.2)

where |ta|lk and |td|lk the number of added and deleted triples between time points tk and
tl. Formally, we define a dataset D to be monotonically incremental when:

h(D)|tltk > 0 and m(D)|tltk = 1

, or more intuitively, when the shift is incremental and there are no triple deletions
between tk and tl. In a similar way, we define a dataset to be monotonically decremental
when

h(D)|tltk < 0 and m(D)|tltk = 0
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, or more intuitively, when the shift is decremental and there are no triple additions
between tk and tl.

3.4.3.2 Parameters regarding schema evolution.

The ontology evolution parameter of a dataset represents the change on the ontology (i.e.,
schema) level, based on the change in the number of total classes in the schema. It can
be used in conjunction with the schema variation parameter that will be defined in what
follows. The ontology evolution parameter, denoted as e(D)|tltk , is the ratio of new classes
to the total number of classes in tl:

e(D)|ti+n

ti =
|ci+n| − |ci|
|ci|

(3.3)

where |ci| is the total number of ontology classes at time ti. We then go on to define the
schema variation parameter. Schema variation, denoted as v(D)|tltk , is a property that
represents that variations in the structure of the schema’s properties that a dataset D

exhibits through time. Because of the schema looseness typically associated with RDF,
we recall the notion of Characteristic Sets [NM11] as the basis for v(D). A characteristic
set of a subject node s is essentially the collection of properties p that appear in triples
with s as subject. Given an RDF dataset D, and a subject s, the Characteristic Set Sc(s)

of s is:

Sc(s) = {p | ∃o : (s, p, o) ∈ D}

and the set of all Sc for a dataset D at time ti is:

Sc(D) = {Sc(s) | ∃p, o : (s, p, o) ∈ D}

The total number of permutations of the properties associated with a given class gives
a maximum number of characteristic sets associated with that class, minus the empty
set, which gives 2n − 1 total permutations of properties for a class ci. Given this, we
consider v(D)|tltk to be a constant parameter between 0 and 1 that quantifies the number of
permutations that the generator will actually generate in the evolving process. Therefore,
for all classes |c| of a dataset D, the total number of permutations for a given time period
is given by the following:

E(D)|tltk = v(D)|tltk ×
|c|∑
i=1

2i − 1 (3.4)

We call E the schema evolution parameter. In essence, (4) quantifies the number and
quality of schema changes in the dataset as time passes.
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3.4.3.3 Parameters regarding query workload generation.

EvoGen generates a query workload that is based on six query types associated with
evolving data defined in the previous chapter. We briefly provide an overview of the
query types and the generated workload in the following:

1. Retrieval of a diachronic dataset. This type of query is used to retrieve all informa-
tion associated with a particular diachronic dataset, for all of its instantiations. It
is a workload-heavy CONSTRUCT query that either retrieves already fully materi-
alized versions, or has to reconstruct past versions based on the associated changes.

2. Retrieval of a specific version. This is a specialization of the previous type, focusing
on a specific (past) version of a dataset. The generator has to be aware of the
context of the process, and create a query that refers to an existing past version.

3. Snapshot queries on the data. For this type of query, we use the original 14 LUBM
queries and wrap them with a named graph associated with a generated version.

4. Longitudinal (temporal) queries. These queries retrieve the timeline of particu-
lar subgraphs, through a subset of past versions. For this reason, we use the 14
LUBM queries and wrap them with variables that take values from particular ver-
sion ranges, and we order by ascending version in order to provide a valid timeline.

5. Queries on changes. This type of querying is associated with the high level changes
that are logged in the change set between two successive versions. We provide a
set of simple change queries that provide the ability to benchmark implementations
that extract and store changes between RDF dataset versions, represented in the
change ontology model.

6. Mixed queries. These queries use sub-queries from a mixture of the rest of the query
types, and provide a way to test implementations that store changes alongside with
the data and its past instantiations.

3.4.3.4 Parameters regarding type of archive.

Finally, we provide some degree of configurability with respect to EvoGen’s serialized
output. More specifically, we allow for the user to request fully materialized versions,
or the full materialization of the first version followed by a series of deltas. This allows
using the generated data in scenarios where the archiving process uses different archiving
strategies, such as full materialization of datasets, delta-based storage, and hybrid storage,
which is a combination of the two. For a discussion of different archiving strategies, the
reader is referred to [FPU15; SCF14].
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3.5 Implementation

The system extends the Lehigh University Benchmark (LUBM) generator, a Java based
synthetic data generator. The LUBM ontology is extended to include 10 new classes and
19 new properties, which serve as a basis for implementing schema evolution functional-
ity. Specifically, we have implemented schema evolution on top of the original ontology,
without affecting the original ontology’s structure for backwards compatibility.

The high-level architecture of EvoGen can be seen in Figure 3.1. The implemented
functionality includes instance-level monotonic shifts, as well as schema-level evolution
by class-centric generation of characteristic sets. The parameters that can be provided
as input by the user in EvoGen are as follows:

1. number of versions: integer denoting the total number of consecutive versions. The
number of versions needs to be larger than 1 for evolving data generation, else the
original LUBM generator is triggered.

2. shift: the value of shift as defined in equation (3.1) of section 4, i.e., h(D)|tjti ,
for a time range [ti, tj], represents the percentage of change in size (measured as
triples) between versions Di and Dj. Currently, EvoGen generates monotonically
incremental and decremental shifts between consecutive versions, and distributes
the changes between all pairs of consecutive versions.

3. monotonicity: A boolean denoting the existence of monotonicity in the shift, or
lack thereof.

4. ontology evolution: this parameter denotes the change in ontology classes with
respect to the original ontology of LUBM, as given by equation (3.3).

5. schema variation: this parameter is used to quantify the total number of permuted
characteristic sets that will be created for each new class introduced in the schema,
as defined by equation (3.4).

The Version Management component and the Change Creation component are the main
components that deal with translating the input parameters to actual instance/schema
cardinalities and weights. They compute how many new instances have to be created
or how many existing instances have to be deleted for each class of the LUBM ontology,
without affecting the structure of the data and the distribution of instances per class.

The functionality is exposed through a Java API that can be invoked by importing
EvoGen’s libraries into third party projects1.

1Source code is available at: https://github.com/mmeimaris/EvoGen
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Figure 3.1: High-level architecture of EvoGen.

The actual distribution of triple insertions and deletions is performed dynamically in
a process that takes into account session information on the evolution context of the
generation. The process also involves several degrees of randomization with respect to
URI and literal values, cardinalities of inter-class properties, selection of characteristic
set permutations and so on. This component is responsible for all interactions with the
Extended LUBM Generator component, which performs the actual serialization of dataset
versions in the file system. In order to distribute the computed changes, we perform
weighting to each class and derive concrete numbers for the instance cardinalities. This
weighting is done in the Weight Assignment Module, which uses normalized weights in the
range of 0..1 for each class, based on studying LUBM’s original data structure and total
instances per class for various input dataset sizes. By multiplying these weights with the
desired shift value h(D)|tjti , we end up with an approximation for the total number of
instances per class.

The Change Materialization module is responsible for creating the change log file. It
interacts with the Change Creation module sequentially, and creates an instance of the
Change Ontology for each insertion and deletion of class instances.

The Version Management component keeps session information on each version during
runtime, the schema of the dataset, the newly introduced classes and characteristic sets
per version, the mapping of dataset versions to their respective files and folders in the
file system and so on. Also, it is responsible for generating different types of archives,
based on the user input; it can generate successive full materialized datasets without any
change set produced, or change-based archives that includes an initial dataset with all
successive deltas, or finally combinations of these approaches (hybrid storage).
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3.6 Evaluation

In order to evaluate and validate the output of EvoGen, we perform a series of genera-
tion tasks for different combinations of numbers of universities and changes, and a fixed
number of 10 versions, and we measure the achieved shift with respect to the required
one. Specifically, we perform 10 runs of generations for three different values of h, namely
h(D) = 0.2, h(D) = 0.4, and h(D) = 0.6 and we report the percentage difference between
the mean of the achieved h and the required one. The results can be seen in Figure 3.2.
With a small number of universities, the achieved shift differs significantly with respect
to the required one, but as the number of universities, i.e. the dataset size, increases,
the error decreases. Therefore, for a reasonably large number of dataset size, (e.g. > 5
universities), EvoGen performs as expected. Note, however, that this evaluation does not
take into account scalability and efficiency issues, which is left as future work.

Figure 3.2: Average of achieved shift over 10 runs for 10 versions, for increasing number
of universities.

3.7 Conclusions and Future Work

In this chapter, we described EvoGen, a system for synthetic and evolving data generation,
with instance and schema level capabilities. Furthermore, EvoGen provides adaptive
workload generation, that creates queries based on the user’s choice of query types and
the context of the generated data.

As future work, we intend to address issues of scalability and efficiency, as well as provide
thorough experimental evaluation of the system by using it to benchmark existing RDF
versioning solutions.
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Chapter 4

Indexing and Query Optimization in
RDF Graph Datasets

4.1 Introduction

In recent years, the Web of Data has been established as a vast source of data from
diverse domains, such as biology, statistics, finance, and health. As these data become
larger and wider in range, complex queries start to emerge, calling for improvements in
the performance of RDF storage and querying engines.

In the case of indexing and query processing, traditional approaches often rely on per-
muting a single table with three columns, representing the subject, predicate and object
(SPO) of a triple, in order to store the triples with different relative orderings. For ex-
ample, the high-performance store RDF-3x [NW10] uses all six permutations of the SPO
table, namely SPO, SOP, PSO, POS, OSP, and OPS, and maintains interesting orders on
the index attributes in order to allow for as many merge joins as possible in a given query
plan. In a similar way, the open source version of Virtuoso 7.2 relies on full and partial
permutations, also catering for named graphs. Query planning and execution on these
systems rely on the data independence assumption, which ignores any inherent structure
in the data. Thus, optimizers mostly rely on first-level statistics, such as the number of
distinct triples with a particular property, and heuristic estimations on join cardinalities.
While these techniques are efficient for evaluating queries with small numbers of unbound
variables and short paths, their performance degrades when adding complex, multi-join
query patterns with potentially low selectivity and large intermediate results between
joins. This shortcoming is more evident in Table 4.1, where we present the running
times from the execution of two queries requiring multiple joins1 on the Reactome and

1Query Q9 from the LUBM experiments and Q8 from the Reactome experiments
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Table 4.1: Runtimes in seconds

axonDB RDF-3x Virtuoso 7.2 TripleBit
Reactome 0.016 4.7 8.1 2.6

LUBM 0.23 8.2 timeout timeout

the LUBM100 datasets using three state of the art RDF query engines, namely RDF-3x,
Virtuoso Opensource 7.2[EM10], and TripleBit[Yua+13]. Even though the datasets are
relatively small (∼16m triples in Reactome, ∼17m triples in LUBM100 with transitive
closure), the engines fail to produce results fast. Other approaches, like property tables
[Wil06] and vertical partitioning [Aba+07], have been proposed for dealing with diversity
in the structure. These group or partition the data based on the sets of properties emit-
ting from each node class. However, these approaches suffer from added space overhead
for null values in sparse properties [Aba+07] and performance reduction as the dataset
size increases [JK05].

This is in part due to the generic nature of the indexes that do not take into account
the inherent structure of the data, and in that it involves relying on first-level statistics,
such as the number of distinct triples with a particular property, or estimations on join
cardinalities. This bias gives rise to optimizers that perform very well on particular query
patterns, but poorly on others. For this reason, large complex queries that involve long
paths in the data can lead to erroneous plans with large intermediate results, or plans that
work on very large subsets of the original data in the case of queries with low selectivity.

Specifically, these approaches tend to be problematic when answering queries that con-
tain long paths (chains) in the data and descriptive star patterns around the chain nodes,
i.e., queries with an abundance of subject-object, and subject-subject joins, which we call
multi-chain-star queries herein. Such an example is shown at the top of Fig. 4.1; its
evaluation on the RDF graph is marked with bold edges at the left of the figure. In
fact, these types of joins are very frequent in real world data, making up for 35% of all
joined patterns2 in empirical studies [Ari+11]. Recent approaches [Pap+14], [Sch+16b],
[Wu+14], [Zen+13] attempt to speed up the query performance over very large datasets
by distributing data and scaling out joins into multiple nodes; still, their query process-
ing, although distributed, relies on the data independence assumption, thus moving the
aforementioned limitations to a distributed setting.

In this chapter, we focus on the limitations of the core modules (i.e., indexing schemes)
of RDF systems to answer complex queries even in relatively small datasets. We present

2In the same study, 60% of the join types are subject-subject joins, thus subject-subject and object-
subject joins make up for 95% of all join types.
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Figure 4.1: An RDF graph (left), its Characteristic Sets (top right), and Extended Char-
acteristic Sets (bottom right). The evaluation of the query shown on the top of the figure
is marked with bold nodes and edges on the graph.

a novel indexing scheme, the ECS index, that aims at accelerating query processing
for conjunctive queries with multi-chain-star patterns. The ECS index is based on the
notion of Extended Characteristic Set (ECS), which captures the inherent structure of
subject-object relationships in an RDF graph. An ECS corresponds to a different type of
subject-object relationship by comprising the different types of triples (i.e., properties) of
the adjacent nodes. We construct an index that maps a triple to an ECS, and we present
an efficient approach that evaluates conjunctive SPARQL queries with multi-chain-star
patterns based on this index. An example RDF graph with four ECSs is shown in Fig. 4.1.
ECS E1 corresponds to the type of relationship between the nodes John and RadioCom,
as well as Bob and RadioCom; it comprises the properties (name,origin,birthday,works-
For) and (address,label,managedBy, registeredIn), respectively. In the same way, all ECSs
of Fig. 4.1 are constructed and all triples in the RDF graph are partitioned based on the
ECS they belong to. ECS are defined as an extension of Characteristic Sets [NM11] to
represent the structure of triples, as opposed to nodes, in the data.

This partitioning requires less storage overhead, compared to the permutation approaches,
by not relying on excessive replications, and decreases the effects of bad estimates by
quickly accessing triples that collectively participate in multiple joins. In short, the
contributions of this work are the following:
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• We define Extended Characteristic Sets (ECS) as a schema abstraction for collec-
tions of triples, based on the work in [MP16a] and [Mei+17],

• we present an algorithm for efficient extraction of ECSs in RDF datasets, as well
as extraction of ECS graphs that represent paths in the data,

• we present an algorithm for query processing on top of an ECS index,

• we implement the approach in axonDB, a reference engine for ECS indexing and
query processing that handles conjunctive multi-chain-star queries, and

• we evaluate its performance on one synthetic and two real datasets with respect
to storage and querying, and we compare it with three widely used systems; our
tool outperforms the competition by 1-3 orders of magnitude, both in the case of
selective and unselective queries.

The rest of this chapter is organized as follows. Section 2 provides preliminary definitions
for RDF and SPARQL, and defines Extended Characteristic Sets (ECSs) and ECS graphs.
Section 3 presents algorithms for extracting characteristic sets and extended characteristic
sets, and for constructing the index. In Section 4, we discuss query processing based on
this index, and in Section 5 we present an experimental evaluation on synthetic and
real-world data. Finally, Section 6 presents related work, and Section 7 concludes the
chapter.

4.2 Related Work

RDF data management systems follow three storage schemes, namely triples tables, prop-
erty tables, and vertical partitioning. A triples table has three columns, representing the
subject, predicate and object (SPO) of a triple. This technique usually replicates data in
different orderings of SPO in order to facilitate sort-merge joins. For example, RDF-3X
[NW10] and Hexastore [WKB08] build tables on all six permutations of SPO, while
RDF-3x also employs indexes for binary and unary projections of the original SPO data.
Similarly, Virtuoso [EM10] uses a large 4-column table for quads, and a combination of
full and partial indexes, while Jena TDB relies on three permutations. Other centralized
RDF systems are built on top of relational backbones, such as Jena SDB, Virtuoso, and
DB2RDF [Bor+13]. These methods have been established in centralized systems and in
fact work well for selective queries with small numbers of joins, however, they tend to
degrade with increasing dataset sizes, large numbers of unbound variables and decreasing
selectivity, as the required index scans become larger. Furthermore, the storage overhead
can become a limiting factor when scaling for very large datasets.
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In distributed settings, a growing body of literature exists, with systems such as H2RDF+
[Pap+14], S2RDF [Sch+16b], SemStore [Wu+14], and TrinityRDF [Zen+13]. H2RDF+
employs all six permutations of the triples table, implemented over Hadoop and HBase.
S2RDF uses a vertical partitioning schema named ExtVP, that takes into account the
joins between vertical partitioning tables, while SemStore focuses on the partitioning
aspects of data in different nodes, and uses TripleBit[Yua+13] in its reference implemen-
tation. TrinityRDF is designed to work in memory, and thus has no disk-based storage
component. However, our focus is on the limitations of the core aspects of centralized
RDF systems to answer complex queries even in relatively small datasets, such as Reac-
tome in our experiments. Thus, it is out of scope to perform a quantitative comparison
with distributed RDF engines, and we leave it as future work to assess how ECS indexing
can work on distributed settings.

Property Tables [Wil06; Aba+07] is a technique that places data in one or multiple tables,
the columns of which correspond to the properties of the dataset. Each row identifies a
subject node and holds the value of each property in the corresponding cells. However,
this causes extra space overhead for null values in cases of sparse properties for a given
class[Aba+07]. Also, it raises performance issues when handling complex queries with
many self-joins, as the amounts of intermediate results tend to be significant, especially
for increasing sizes of datasets [JK05].

Vertical partitioning is a technique that partitions data in tables with two columns. Each
table corresponds to a property in the data, and each row to a subject node [Aba+07].
This approach provides great performance when evaluating queries with bound objects,
but tends to suffer when the sizes of the tables have large variations in size [Sid+08].
TripleBit [Yua+13] is an RDF store that broadly falls under the vertical partitioning
type, but uses bitmaps to store the occurrence or absence of predicate-object pairs in a
table where rows represent subject nodes. In TripleBit, the data is vertically partitioned
in chunks per predicate. While this approach is efficient for reducing the amount of
replication in the data, it suffers from the same problems as property tables. It does not
consider the inherent schema of the triples in order to speed up the evaluation of complex
query patterns, as is the case for axonDB.

Emergent schema extraction has been studied in [PB16], the authors group together CSs
based on semantics and structure, in order to form a much smaller set of tables compared
to the entire set of CSs. Our work, although in the same direction, is technically different,
because we use the notion of ECS, and focus on ECS-based methods. CSs have been
introduced as an abstraction of node types, and used for provision of better estimates of
join cardinalities [NM11]. In this regard, Brodt et al [BSM11] present their approach on
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how the SPO index can be used to identify CSs and assist query processing by decreasing
the number of SS joins that are common in star patterns. We follow this approach in
axonDB with the use of the CS index, which is an SPO permutation partitioned among
all CSs of a dataset. Our notion of the ECS is in fact inspired by the Characteristic
Set, but focuses on triples, rather than nodes. In [MP16a] we have presented a layout of
similar indexing, without providing an implementation or algorithmic contributions. To
the best of our knowledge, this is the first work to use such a structure for RDF indexing
and query processing.

4.3 Preliminaries

RDF and SPARQL. RDF models facts about entities in a triple format consisting of
a subject s, a predicate p and an object o. A collection of triples is usually represented
as a directed labelled graph with subjects and objects being the nodes, and predicates
being the edges of the graph. Formally, let I, B, L be infinite, pairwise disjoint sets of
IRIs, blank nodes and literals, respectively. Then, an RDF triple t is represented by a
triple (s, p, o) ∈ (I ∪ B) × (I) × (I ∪ B ∪ L) and a collection of triples {t1, t2, . . . , tn} is
represented by an RDF graph, in which every node n ∈ T = (I ∪B ∪ L) and every edge
e ∈ I.

Following this notation, a SPARQL query defines a set of triple patterns of the form
(T ∪ V ) × (I ∪ V ) × (T ∪ V ), where V is the set of variables that can be bound to
T . Triple patterns can be recursively combined via AND, OPTIONAL and UNION

operators.

4.3.1 Extended Characteristic Sets (ECS)

One of the benefits of RDF is that it is loosely structured; one can extend and modify
the schema at will, by adding or deleting new triples for properties and classes. Neumann
and Moerkotte [NM11] introduced the notion of characteristic sets as a means to capture
the underlying structure of an RDF dataset. A characteristic set CS identifies node types
based on the set of properties they emit. Formally, given a collection of triples D, and a
node s, the characteristic set Sc(s) of s (or simply Ss) is:

Sc(s) = {p | ∃o : (s, p, o) ∈ D} (4.1)

and the set of all Sc for a dataset D is:

Sc(D) = {Sc(s) | ∃p, o : (s, p, o) ∈ D} (4.2)
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Characteristic sets provide a node-centric partitioning of an RDF dataset, based on the
structure of a node, and they have been used effectively in the characterisation of joins and
cardinality estimation [NM11]. However, they cannot capture the different relationships
of nodes in a dataset, i.e., how triples, instead of nodes, can be partitioned based on their
characteristics. For this reason, we introduce the Extended Characteristic Set (ECS), the
triple-level analogue of the node-based characteristic set. An ECS captures the inherent
schema of triples, based on the properties of their adjacent nodes, i.e., the characteristic
sets of the subject and the object. Formally, given a triple (s, p, o), the ECS Ec(s, o) is
an ordered set containing the characteristic sets of s and o:

Ec(s, o) = {Sc(s), Sc(o) | ∃p : (s, p, o) ∈ D} (4.3)

which is shortly denoted as Es,o. The set of all ECS in D is:

Ec(D) = {Ec(s, o) | ∃p : (s, p, o) ∈ D} (4.4)

An ECS helps to quickly identify the largest superset of graph patterns that contain a
star pattern around s, a star pattern around o, and an edge from s towards o. In the
example of Fig. 4.1, where nodes John and RadioCom are present in the same triple
〈John,worksFor,RadioCom〉 as subject and object respectively, and descriptive star
patterns are present for each of the two nodes. In a similar manner, an ECS is formed
between Bob and RadioCom, Jack and RadioCom, RadioCom and Mike, as well as
RadioCom and UKRegistry. Note that, by definition, if two nodes n1 and n2 are linked
with multiple properties, these are part of the same ECS, which is defined by all the
properties from n1 to n2, along with the rest of the properties emitting from n1 and n2.

Each triple (s, p, o) corresponds to one and only one ECS, i.e., E(s, o). The upper bound
for |Sc(D)| is the distinct number of subject nodes, i.e., nodes that emit property edges,
however, the existence of an inherent structure in RDF data makes the distinct set of
Characteristic Sets that appear in real-world data small [NM11]. Similarly, the maximum
number of ECSs in a given dataset is |Sc(D)|2, that is, one ECS for each pair of char-
acteristic sets. However, in practice, we observe that triples are partitioned in tractable
numbers of ECSs, as it can be seen in Table 4.2 for several real-world and synthetic
datasets.

4.3.2 ECS Graphs and ECS Query Graphs

ECSs can be combined to form a directed graph that captures transitive relationships
between characteristic sets in an RDF dataset. This is useful for representing paths
between types of s, o pairs. An ECS graph is a directed graph GE = (VE, EE) where VE ∈
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Table 4.2: Observed cardinalities of properties, CS and ECS in synthetic and real data.

LUBM BSBM WordNet Reactome EFO GeoNames DBLP
#properties 18 40 64 65 80 36 26

#CS 14 44 779 112 520 851 95
#ECS 68 374 7250 346 2515 12136 733

Ec(D), and EE ∈ (VE × VE) are the nodes and edges of the graph, respectively. A node
in GE corresponds to an ECS of the RDF dataset. A directed edge e = (En1,n2 , En2,n3)

exists when there is at least one triple ta with ECS En1,n2 , whose object is the subject of
a triple tb with ECS En2,n3 . In other words, an edge between two ECSs represents two
sets of triples whose schemas form subject-object joins in the dataset. An ECS chain cE

is a path formed by consecutive edges between ECSs in an ECS graph. An example of
an ECS graph for a given RDF graph is depicted on the right of Fig. 4.1, where we show
the object-subject joins between ECSs of the RDF graph. Consider the query q listed at
the top of the figure. The query defines a chain from n1 to n4 through n2, along with
star patterns around n1, n2 and n4. Its evaluation can be seen with bold edges in both
the RDF and the ECS graph.

An ECS graph provides a suitable abstraction for traversing long paths in the RDF
graph efficiently, without spending computational resources in the execution of subject-
subject self-joins that usually have low selectivity and generate large intermediate results
[Tsi+12]. Instead, it treats subject-object joins as first-class citizens. With the help of
ECS-based preprocessing and indexing, queries can be evaluated on top of the dataset’s
ECS graph, by (i) quickly assessing the existence of one or more ECS sub-graphs that are
super-sets of the query graph, and (ii) finding a minimal set of triples that contribute to
the evaluation of the query. The first point is important for determining whether large,
complicated queries have non-empty results, while the second point allows us to access
and process a small subset of the data that is sure to contribute to the query processing
stage. The latter point is of particular interest when handling complicated queries of long
paths with many unbound variables, and helps avoid large intermediate results.

Given the above, we propose to extract the ECSs out of a query graph and map them to
the dataset’s ECS graph space. A query pattern q is mapped to the ECS query graph
QE based on the identification and extraction of the ECSs of the triple patterns in q.
Formally, a small modification to the ranges in the original definition of characteristic
sets [NM11] is needed in order to allow variable nodes to instantiate characteristic sets
as well. Specifically, a characteristic set Sc(sq) of a node sq in a query pattern is allowed
to be defined over unbound, as well as bound instances of sq, and unbound or bound
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instances of predicates and objects in the triple patterns with sq as subject, i.e., Sc(sq) =

{pq | ∃oq : (sq, pq, oq) ∈ q} , (sq, pq, oq) ∈ (I ∪B ∪ V )× (I ∪ V )× (I ∪B ∪ L ∪ V ).

We have implemented all aforementioned concepts in a native RDF engine, called ax-
onDB. Its overall architecture is shown in Fig. 4.2. There are three core modules,
responsible for a) loading a new RDF dataset and extracting the CS and ECS, b) con-
structing and storing the CS and ECS indexes and c) processing a SPARQL query and
fetching the results. Next sections present the technical details for each module.

4.4 Loading and Indexing

In this section, we provide methods and algorithms for efficient extraction of CS and ECS
from datasets, and show how the ECS structure is used for triple storage and indexing.

Figure 4.2: Overview of system architecture.

4.4.1 Data Loading.

In axonDB, triples are stored on disk as three consecutive integers of 4 bytes, one for
each triple component, namely subject, predicate and object, as is typically done in RDF
stores [Atr+10; NW10; Yua+13]. The id assignment is performed during initial parsing
of the input, and the references are stored in memory during the loading phase until they
are flushed to disk in bulk. During the loading phase, each triple is modelled as a vector
of size 4. The first three positions hold the subject, predicate, and object ids, and the
last position points to the CS of its subject.
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Notice that we reserve 4 bytes (32-bit integers) for each component during the loading
phase, instead of maintaining an encoding of varying size. The usefulness of this verbosity
will become clear later as we use this structure in order to sort the triples both by subject
and CS. Furthermore, it is relatively affordable, as even for 1 billion distinct ids, the
system needs 4 GB of RAM while loading the data. In any case, this structure is held
off-heap and is backed by a memory mapped file in order to avoid overflows during data
loading.

A dictionary is built during parsing, that holds values for the node and predicate ids
(IRIs), as well as for the literals. IRIs are compressed based on their prefixes in order
to avoid tedious duplications of strings that occur frequently in RDF datasets. The
dictionary is then used during query parsing, in order to map bound values from the
query to the actual RDF data in the system, as well as to generate the human readable
results.

4.4.2 Characteristic Set Extraction and CS Index.

A characteristic set Sc(s) is a a set of common properties p1, . . . , pn that are emitted from
a set of subject nodes. The set of all CS Sc(D) can be easily retrieved with a linear scan
on the triples of a dataset [BSM11],[NM11]. The algorithm is presented in Algorithm
1. We sort the triples by subject and construct a new CS each time a new combination
of properties is found in a subject, i.e., while we iterate through triples with the same
subject, we aggregate the properties of these triples, and when the iteration moves on to
the next subject, we hash the bitmap of the aggregated properties and check if it already
exists. If not, we create a new CS with these properties. Each CS is assigned a unique
integer identifier, and holds a bitmap of the properties that define it, where each bit
corresponds to the presence of a property3 in D (e.g., for k properties in D, we construct
a bitmap of length k; in typical datasets - see properties row of Table 4.2 - k is small
enough for the bitmap to fit in a few bytes). This is useful for fast subset checking during
the query preprocessing phase, as will be discussed. During this iteration, we associate a
triple to a CS, based on the CS of the subject node, by setting the fourth element of the
triple’s vector to the integer identifier assigned to the CS.

We then sort the triples by their CS, maintaining the subject as the secondary sort key,
and iterate to construct a big triples table in the SPO ordering for persistent storage.
Algorithm 1 does not show this step, as it returns a mapping from CSs to sets of triples.
It is trivial to iterate through the keys of this mapping (csMap) and flush each CS’s

3The properties are ordered as they appear in the first iteration of the input triples. We use this
predicate ordering as a reference for all other stuctures and indexes that use it.
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triples to the persistent storage sequentially. The CS index is constructed on top of this
table as a B+-tree, where the keys are defined by the id of the CSs. We can use this
index to get the triples associated with a specific CS, by maintaining the start and end
indexes of each CS in the SPO table. This way, the CS Index partitions all triples based
on their subject’s CS and allows us to easily evaluate properties in star patterns around
a given node or variable, with simple range scans. For our running example, the SPO
table and its CS index can be seen in Fig. 4.3. The CS id’s refer to the characteristic
sets that were shown in Fig. 4.1.

Algorithm 1: extractCharacteristicSets
Data: triples: A N × 4 table of ids, where N is the number of triples in the input.

The first three columns are used for subject, predicate and object ids, and
the fourth column is used for CS ids.

Result: csMap: An inverted index, with CS ids as keys, and sets of triples as
values.

1 sort(triples) by subject ;
2 properties← new Set() ;
3 previousSubject← triples[0][0] ;
4 lastIndex← 0;
5 for each i = 1; i ∈ triples do
6 subject← triples[i][0];
7 if previousSubject 6= subject then
8 cs← newCharacteristicSet(csId, properties);
9 for each j = lastIndex; j < i; j ++ do

10 triples[j][3]← csId ;
11 end
12 csId++;
13 lastIndex← i+ 1;
14 properties.clear();
15 properties.add(triples[i][1]);
16 previousSubject← subject;
17 end
18 sort(triples) by CS ;
19 triplesToAdd← newSet();
20 lastCS ← triples[0][3];
21 for each i ∈ triples do
22 if lastCS 6= triples[i][3] then
23 csMap.put(lastCS, triplesToAdd);
24 triplesToAdd.add(triple[i]);
25 lastCS ← triples[i][3];
26 end
27 return csMap;

Analysis. Identification and extractions of CSs comprises sorting the triples once by
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subject, and scanning. This costs O(nlogn + n) for n triples. Furthermore, we sort the
triples a second time, and iterate over them once more in order to store them on disk at
the order of the CS’s appearance, i.e., O(nlogn+ n). Not counting the cost of disk I/O,
the time complexity of this step is O(2nlogn+ 2n).

4.4.3 Extended Characteristic Set Extraction and ECS Index.

The next step is to extract the ECSs, and build the ECS index. A naive way of extracting
the ECSs is to perform an object-subject join on the whole dataset, scan the resulting
rows and create a new ECS for each different combination of the subjects’ and objects’
CSs. A more efficient way is to take advantage of the previously computed CS Index.

Specifically, we utilize the CS Index and iterate through all pairs of CSs looking for
subject-object joins in their chunks of triples that are held in csMap (see Algorithm 1).
When the result of the join between the triples of S1 and S2 is non-empty, we construct
a new ECS E(S1, S2), based on the CSs of the triples’ subjects. This join process enables
us to identify an ECS and retrieve all triples associated with that ECS at the same step.
In other words, given two characteristic sets S1 and S2, and two sets of triples T1 and
T2, whose subjects belong to S1 and S2 respectively, the object-subject join between T1

and T2 will be non-empty when there exist triples that belong in S2, whose subjects are
objects in triples of S1. We can then store the ECS E(S1, S2) along with references to
the identifiers of its subject and object CSs, as well as the triples contained in it. As with
CSs, each ECS is assigned a unique integer identifier. In contrast to the CS Index that
partitions all of the triples in a dataset, the ECS Index partitions only the triples that
pertain to a valid ECS, i.e., whose subject and object have non-empty CSs. These are
triples that describe paths between resources. We store these triples as a PSO table, and
build the ECS Index as a B+-tree on top of this table, where each ECS defines a range
of consecutive triples that belong to it. This way, fetching the triples of a specific ECS
requires a simple range scan over the PSO table. In our running example, the PSO table
and ECS Index can be seen at the bottom of Fig. 4.3. Note that the size of the PSO
table is smaller than the SPO table, which contains all triples of the input data. This is
due to the fact that many triples do not belong to a valid ECS. These are either triples
with literal objects, or triples with objects that do not have any emitting edges, and are
thus described by an empty CS.
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Figure 4.3: Example instantiation of the CS (top) and the ECS (bottom) indexes. The
CS contains the bitmap of a set of properties pi..pk, while the ECS is a composition of a
subject CS and an object CS.

Figure 4.4: Property bitmaps of CSs S1 . . . S5.
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Algorithm 2: extractExtendedCharacteristicSets
Data: csMap: An inverted index that maps characteristic sets to sets of triples

based on the characteristic set that is defined by a triple’s subject node.
Result: ecsMap: An inverted index that maps extended characteristic sets to sets

of triples, ecsLinks: A set of adjacency lists with links between the
retrieved ECSs.

1 ecsMap, subjectCSMap, objectCSMap← new Map();
2 for each Si ∈ csMap do
3 for each Sj ∈ csMap do

/* Perform an object-subject join of triples in Si, Sj */
4 triples← (csMap.get(Si) ./ |o−scsMap.get(Sj));
5 if triples.size()! = 0 then
6 ecs← newECS(Si, Sj);
7 ecsMap.put(ecs, sort(triples));
8 subjectCSMap.get(Si).add(ecs);
9 objectCSMap.get(Sj).add(ecs);

10 end
11 end

/* Find links between ECSs */
12 ecsLinks← newMap();
13 for each Si ∈ objectCSMap.keys() do
14 if Si 6∈ subjectCSMap.keys() then
15 continue;;
16 end
17 for each ecsleft ∈ objectCSMap.get(Si) do
18 for each ecsright ∈ subjectCSMap.get(Si) do
19 ecsLinks.get(ecsleft).add(ecsright);
20 end
21 end
22 end
23 return ecsMap, ecsLinks;

Algorithm 2 shows how ECSs are extracted and mapped to triples. The algorithm takes as
input the csMap and results in two outputs: (i) a mapping of ECSs to sets of triples, and
(ii) and a graph in the form of adjacency lists that represents the links between joinable
ECSs. It iterates through all pairs Si, Sj of CSs (lines 2-4), performs an object-subject
hash-join of their triples Ti, Tj, (line 5) and if the result is not empty, it creates a new ECS
and maps the triples to it, sorted in the PSO order (lines 6-8). This ordering is useful
for early filtering of triples with properties not in the query pattern. After retrieving the
ECSs, the algorithm finds directed links between ECSs (lines 11-15) to construct the ECS
graph. It first populates the subjectCSMap and objectCSMap that link CSs to ECSs
based on their position in the ECSs (lines 9-10). Then, it looks for CSs that are both
objects and subjects in different sets of ECSs, and links these together. The resulting
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adjacency list represents the ECS graph, and is stored as part of the indexing scheme in
axonDB. This is essential in the query preprocessing stage, in which an incoming query
is matched to existing ECS paths in the data.

Analysis. For p CSs, the step of extracting ECSs contains iterating p2 pairs of CSs.
For each pair Si, Sj, the asymptotic cost of a hash join over the triples Ti, Tj of Si, Sj

respectively, is O(|Ti|+|Tj|). Assuming an even distribution of |D| /p triples per CS, where
D is the input dataset, the total cost of ECS extraction is O(p22 |D| /p), or O(p2 |D|).
The computation of ecsLinks entails building the subjectCSMap and objectCSMap,
which in the worst case when all p2 pairs are valid, costs O(p2) insertions. Then, we have
to find object CSs that are both in subjectCSMap and objectCSMap, in order to ensure
that an object CS of an ECS is also a subject CS of another ECS. This can be performed
by iterating over objectCSMap, and for each CS iterating over pairs of ECSs that have
the current CS as key in both objectCSMap and subjectCSMap. Thus, the total cost
of this step is O(p2 + p2 |D|).

4.4.4 ECS Hierarchy

ECSs pertain to a hierarchical structure that defines ancestral, parent-child relationships
between them. We consider that an ECS E1 is a specialization of another ECS E2 if it
contains all properties of E2, i.e., E1 � E2. As will be discussed in the next section, a
query is broken down to query ECSs, derived from the query’s graph pattern. In order
to match a query ECS with an ECS from our index, we perform subset checking between
the query ECS and the ECSs in the index. As a derivative, a query ECS is evaluated by
all ECSs that contain all properties of the query ECS, as they appear in the respective
subject and object CSs. As many of these matched ECSs in the index are hierarchically
related, because they contain at least the same subset of properties, we can use this ECS
hierarchy to improve disk I/O and naturally group together triples that belong to the
same ECS families. In our running example, Fig. 4.4 shows the bitmaps of the CSs, where
each cell denotes the presence (1) or absence (0) of a property pi. The two ECSs E1 and
E2 of Fig.4.3 are hierarchically related, namely E1 � E2, because S1 ⊂ S2, and S3 is
the same for both. To take advantage of this observation, we implement an optimization
that sorts ECSs based on the pre-order traversal of this hierarchy, and stores triples in
the order defined by this traversal. This means that the ECSs of consecutive chunks of
triples on the disk will often be hierarchically related, in an attempt to minimize reading
redundant pages from persistent storage. For computing the hierarchy from ecsLinks,
we sort the ECSs based on the number of the properties they contain, because the less
properties it contains, the more generic and higher in the hierarchy the ECS is. Then, we

69

Institutional Repository - Library & Information Centre - University of Thessaly
12/06/2024 04:55:53 EEST - 3.15.237.130



iterate through the sorted ECSs, traverse their links from ecsLinks and build paths for
each one, taking care to add only one level of children to each previous level of ancestors.
This process results in a graph lattice, where the root nodes are the most generic ECSs
(containing fewer properties), and the leaves are the most specialized ECSs (containing
more properties).

4.4.5 Metadata and statistics

During the loading phase, axonDB computes and stores along with the ECS index, auxil-
iary metadata and statistics in order to assist the pre-processing stage of query evaluation.
First, each ECS maintains pointers to the first occurrences of each property in the in-
dexed PSO table. This helps us avoiding logarithmic searches in large triple collections
during query evaluation. Then, it extracts all edges between ECSs in order to be able
to traverse the ECS graph using standard graph traversal algorithms. The algorithm for
extracting edges is based on finding ECSs that exhibit object-subject joins on the CS
level. This is shown in lines 10-17 of Algorithm 2. Finally, it computes the cardinality
of distinct properties in the triples of each ECS, as well as the cardinalities of distinct
subjects and objects per ECS. These statistics are used by the query planner.

4.5 Query Processing

In this section, we discuss how query processing is performed on top of the ECS Index.
Our goal is to employ the derived index structures in order to reduce the number of scans
over the triples, number of joins, and the amount of intermediate results when evaluating
SPARQL queries with multi-chain-star graph patterns. Still, our approach is efficient for
simple query patterns as well. An overview of the query processing steps is shown in
Fig. 4.5, from top to bottom. Given a query over our example dataset, we first parse
the query statement and identify the characteristic sets around the chain variables, i.e.,
Sx, Sy, Sz, and Sw for ?x, ?y, ?z, and ?w respectively. Then, we extract the query ECSs
Qx,y, Qy,z, Qy,w, and identify the chains between them as well as the type of joins to be
performed; OS correspond to object-subject joins where the triples of an object’s CS are
joined with the triples of the subject’s CS and SS denotes a subject-subject join. Finally,
we match each query ECS to ECSs in the data and we generate the plan that retrieves
and joins triples to output the result. Note that we consider the union of triples from E1

and E2 as Qx,y is matched to both ECSs. For simplicity reasons, we have omitted the
step of processing the restriction of the bound "Director" node. This is performed when
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retrieving E3, by doing a semi-join with the triples of its object CS and filtering out by
the bound object.

Figure 4.5: Query processing for two chain patterns of three query ECSs. Notice that
Qx,y matches both E1 and E1.

4.5.1 Query parsing and ECS query graph extraction

Incoming queries are first converted to ECS query graphs by the query parser. This is
achieved by first exracting the characteristic sets of the query’s nodes, then applying
Algorithm 2 to find the ECSs on the query pattern, to create adjacency lists between
the query ECSs. This procedure is identical to the ECS extraction when loading the
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data, but this time it is performed on the triple patterns of the query. During this step,
the dictionary is used for id resolution of predicates and any other bound nodes in the
patterns. Having identified the query ECSs and the links between them, we traverse
these links in the order of their occurrence, in order to identify chains (i.e., series of
object-subject joins) in the ECS query graph. This results in a set of chain patterns
c1 . . . cn. Finally, we remove chains that are fully contained in other chains. Given that
their number is rather small, this step is efficiently performed with a single nested loop
over the set of chains.

4.5.2 Matching of query ECSs to the ECS index

Each query ECS Qi is matched to zero or more ECSs in the ECS index. We say that
there exists a match between a query ECS Qi = {Sq,left, Sq,right} and an indexed ECS
Ej = {Sj,left, Sj,right}, when the following are true:

Sq,left ⊆ Sj,left (4.5)
Sq,right ⊆ Sj,right (4.6)
p(Qi) ∈ p(Ej) (4.7)

where p(Qi), p(Ej)) are properties of the triple patterns whose subject and object CSs
form ECS Qi and Ej, respectively. In our running example, this is the set of properties
that appear in the P column of the PSO table for the same ECS. If we denote the
set of all ECSs that match Qi as matches(Qi), then when (5)-(7) are true, it holds
that Ej ∈ matches(Qi). Aggregating the triples of all ECSs in matches(Qi), gives the
evaluation eval of Qi, which is given by the following:

eval(Qi) =
k⋃

n=1

T (En), En ∈ matches(Qi) (4.8)

T (En) corresponds to the triples associated with En.

Matching of the query ECSs to the ECS index is performed through a depth-first traversal
on the ECS graph. As shown in Algorithm 3, we iterate over the edges of ecsLinks (line
2), an adjacency list with the ECS graph, and for each ECS as a starting point, we
search for matching ECSs. The DFS traversal is performed by the recursive method
matchDataPatterns (lines 2-4) as detailed in Algorithm 4. The matchDataPatterns

method takes as input a query ECS, an indexed ECS (the starting/current node for the
dfs traversal) and the two ECS graphs (i.e., the query and the indexed ECS graph) and
returns a linked list of ECSs in the data that match the query ECSs. It first evaluates
whether the input query ECS and the ECS in the data satisfy the conditions (5)-(7)
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(line 1-4), otherwise it returns an empty list. Subset checking is performed with bitwise
operations on the property bitmaps. Specifically, a bitmap b1 is a subset of a bitmap b2

when it holds that b1ANDb2 = b1. If all conditions are satisfied, it checks whether the
examined ECS has already been visited or the query chain is empty (line 5) otherwise it
marks the matching ECS as visited and adds it to the matching list of the input query
ECS (Line 7-8). It then proceeds with the dfs traversal on the ECS graph (Line 9), and
evaluates the matching ECSs for the rest of the chain starting from q1, i.e., consecutive
node in the query ECS chain. By performing depth-first traversal on the ECS graph,
it is guaranteed that consecutively matched ECSs over the query are actually linked in
the data, because each reached ECS will be a child of the preceding one. The output of
this process is a set of ECS chains in the ECS graph that match the query’s ECS chains.
If the property of the ECS is unbound, then we match it to all properties found in the
region of the PSO table that matches the rest of the ECS restrictions.

Algorithm 3: matchQueryToECSIndex
Data: ecsLinks: The ECS adjacency list, c(q0 . . . qn−1): A chain of query ECSs
Result: ecsMatches: A linked list of ECS sets that match the ECSs in c

1 ecsMatches← newMap();
2 for each e ∈ ecsLinks.keySet() do
3 matchDataPatterns(e, ecsLinks, c(q0 . . . qn−1), ecsMatches);
4 end
5 return ecsMatches;

Algorithm 4: matchDataPatterns
Data: ecsLinks: The ECS adjacency list, e: The ECS of the current iteration,

c(q0 . . . qn−1): A chain of query ECSs, ecsMatches: A linked list of ECS sets
that match the ECSs in c

Result: ecsMatches: A linked list of ECS sets that match the ECSs in c
1 if q0.subjectCS.bitmap 6⊆ e.subjectCS.bitmap
2 OR q0.objectCS.bitmap 6⊆ e.objectCS.bitmap
3 OR q0.property 6∈ e.properties then
4 return null;
5 if visited(e) OR c.size == 1 then
6 return ecsMatches;
7 visited.add(e);
8 ecsMatches.get(q0).add(e);
9 for each echild ∈ ecsLinks.get(e) do

10 matchDataPatterns(echild, ecsLinks, cq1...qn−1 , ecsMatches);
11 end

In our running example of Fig. 4.1, the query of Fig. 4.5 defines three query ECSs,
namely Qx,y, Qy,z and Qy,w, as can be seen in Fig. 4.5. The algorithm will match E1, E2

to Qx,y because the bitmap of Sx is a subset of both S1 and S2 that constitute the subject
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CSs of E1 and E2 respectively, and the bitmap of Sy is a subset of S3 which is the common
object CS for both E1 and E2. In a similar manner, E4 will be matched to to Qy,z and
E3 to Qy,w.

4.5.3 Query planning.

The query planner decides the join execution order for the various sets of triples cor-
responding to the matched ECS chains of the previous step. The planner distinguishes
between the outer ordering (evaluation of different chains) and the inner ordering (eval-
uation of a specific chain). The outer ordering is useful for filtering out triples as early
as possible based on the common attributes of the different chain patterns. The inner
ordering helps reduce intermediate results in object-subject joins between ECSs, that do
not contribute to the final result.

To get the outer order of chains, each chain’s cost is computed. The general rule is to
order chains based on ascending cost, i.e., cost(ci) ≤ cost(ci+1). The cost of evaluating
a query ECS Qi with unbound nodes (e.g. ?x, ?y for Qx,y in Fig. 4.5) is the cost
of reading all triples of eval(Qi), or its cardinality, that is, cost(Qi) =

∑k
n=1 |T (En)|,

with En ∈ matches(Qi). If either or both of Qi are bound, we estimate the cost of its
evaluation as a constant 1. For consecutive ECSs in a chain ck = Q1 ./ Q2 ./ . . . ./ Qk,
we estimate the cost of the resulting series of joins with the following recursive formula:

cost(cQ1...Qk
) = cost(cQ1...Qk−1

)×mf,os(Qk) (4.9)

where mf,os(Qk) is the multiplication factor of Qk for an object-subject join. The cost of a
chain consisting of one ECS is given as the cardinality of the ECS, which is the base case
of the recursion. The multiplication factor mf of an ECS Ei = {S1,i, S2,i}, where S1,i and
S2,i are the subject CS and object CS of Ei respectively, is an estimation of how many
rows will be generated by performing an object-subject join with Ei at the right side. We
define it as the ratio of (distinct) objects per subject in Ei, i.e., mf,os(Ei) = |oEi

| / |sEi
|,

where |oEi
| and |sEi

| are the distinct subject nodes of S1,i and S2,i respectively. We can use
mf instead of assuming independence between consecutive ECSs, because it is guaranteed
from Algorithm 3 that the consecutive ECSs will be joined on the same sets of CSs, and
not on the whole body of triples. We can afford adopting this type of estimation, because
the cardinalities of the ECSs are generally bound to values much lower than the total
size of the dataset.

For queries with bound nodes in the CSs of Qi, we retrieve the triples of eval(Qi) by first
retrieving the respective CSs, and scanning the regions of the SPO table that refer to
the matched CSs. This, however, may affect the cardinalities of the ECSs; thus, the cost
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model adjusts the counts of distinct object and subject nodes to the numbers derived by
the retrieved triples from the SPO table.

To get the inner ordering, we take into account the fact that all ECSs in a chain are linked
with an object-subject join. This allows us to expand an existing node or sub-chain either
left or right, one ECS at a time. Based on this, we employ a simple heuristic that starts
from the ECS with the lowest cardinality, and expands the chain selecting the ECS with
the minimum cardinality from the left or right.

While other approaches use Dynamic Programming algorithms for finding the optimal
join order based on the employed statistics in order to reduce intermediate results, in
axonDB a large amount of the filtering of triples is already performed at the pattern
matching stage. Thus, the order does not heavily affect the performance of the query
processor, an observation that is reflected in our experiments, where we tested the system
with the planner both disabled and enabled, and we found that while there is indeed a
speed-up factor of 2-3 when the planner is enabled, the improvement is less than an order
of magnitude for all experiments.

4.5.4 Query execution

Each query chain pattern is executed individually, by looking up the ECS index and
joining the triples of each ECS of the matched chains. Multiple chain patterns are joined
in the final step of the execution using hash joins on their common attributes, the join
tables of which are created dynamically during the evaluation of individual chains. Note
that, execution of a chain pattern does not take into account the star pattern variables
when joining consecutive ECSs. Retrieval of the attributes in the star pattern of the
subject and/or object of an ECS is instead achieved when retrieving the ECS from disk,
by performing a merge-join between the ECS’s triples and the triples of the subject/object
CS from the CS Index. In fact, a merge-join is possible because the CS Index maintains
the interesting order of the subject node. However, this will not happen in the case where
none of these variables are part of the query projection. In this case, as is the case for
the queries of Figures 4.1 and 4.5, the restriction for the chain nodes to emit the bound
properties is already enforced by the ECS definition.

For a query ECS Qj, assuming that Ei is the most generic ECS that is matched to
Qj, this entails that all supersets of Ei, i.e., Ei � Ei′ � · · · � Ei′′ will also belong
to matches(Qj), thus the evaluation eval(Qj) must be the union of the triples in the
hierarchically related ECSs that match the pattern, i.e., T (Ei) ∪ T (Ei′) ∪ · · · ∪ T (Ei′′).
Therefore, it is often expected to read the evaluations of ancestors or children of an ECS
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Table 4.3: Size on disk (GB) and loading times (minutes)

# triples input axonDB RDF-3x TripleBit Virtuoso
size time size time size time size time

LUBM2000 370m 54.2 8.12 68 16.54 58 10.88 45 14.6 45
Reactome 16m 2.8 0.71 3 1.07 2 0.74 2 0.91 2
Geonames 172m 18.8 8.24 81 12.48 34 8.6 20 8.56 27

in the same evaluation process. This is the main reasoning behind our approach to store
the triples of hierarchically related ECSs in close locality (see Section III), and essentially
extend the range scan of a match to all of its matching neighbours as well.

4.6 Evaluation

4.6.1 Experimental Setup

We have conducted an extensive experimental evaluation on axonDB with both synthetic
and real-world data, and a comparative study with three high-performance RDF engines,
namely RDF-3x, Virtuoso opensource 7.2 and TripleBit. We have selected three native,
high-performance, and centralized competitors that use different indexing approaches, in
order to perform a system-wide comparison. For axonDB, we experiment with all four
available optimization alternatives, i.e., a base configuration with the ECS hierarchy and
query planner off (denoted with axonDB), two alternatives with one of them on (axonDB-
h and axonDB-qp, respectively), and an optimized configuration with both features on
(denoted with axonDB+), and assess the effect of these components to the performance
of the system. All experiments were performed on a server with Intel i7 3820 3.6GHz,
running Debian with kernel version 3.2.0 and allocated memory of 16GB. For Virtuoso, we
used the recommended tuning parameters given by Openlink, for RDF-3x and TripleBit
we used the default deployment, which is non-tunable.

The aim of the experiments is to assess the performance of axonDB in data loading, query
execution and scalability with synthetic data of increasing sizes. For the query runtime
experiments, we execute the queries 20 times and report the best time. Furthermore,
the experiments have been performed with cold caches, each time dropping the cache
with the use of the sync; echo 1 > /proc/sys/vm/drop_caches command in linux. Our
metrics are: query execution time, loading time and disk storage size. For query execution
time, we set an upper timeout limit at 30 minutes.

Implementation. We have implemented axonDB as an open-source project4, using
4All code and queries are available in http://github.com/mmeimaris/axonDB
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Java 1.8 and the mapDB5 library, a high-performance key-value engine with drop-in
replacements for sets, such as hash tables. axonDB uses mapDB for object serializa-
tion/deserialization and disk I/O on native Java objects. This is also the default way
of serializing and deserializing ECS and CS objects, as well as all auxiliary indexes. All
data structures except for the SPO and PSO tables, are stored as serialized Java objects
using mapdBD. For triple serialization and persistence, axonDB uses byte arrays and
random access files and writes all data in a single binary file, similar to RDF-3x and Vir-
tuoso. The triples in the SPO/PSO tables are serialized as contiguous arrays of integers,
and can be retrieved using range scans defined by the ECS/CS indexes. This format
carries the benefit of being easily partitioned, while reducing disk reads to the number
of matched ECSs per query. The ID-to-String/URI dictionary, which holds values for
the compressed node and predicate ids, as well as the literals, is stored in the form of a
clustered B+-tree, with keys being sorted in ascending order. For this release, axonDB
only supports conjunctive SPARQL queries with equi-joins.

Datasets and Queries. We employ one synthetic and two real-world datasets, widely
used in the literature [NM11], [Wu+14], [Yua+13]. For synthetic data, we have used
the Lehigh University Benchmark (LUBM) data generator to create RDF datasets of
increasing sizes, from 15 (LUBM10) to 370 (LUBM2000) million triples. LUBM uses
an academic ontology of universities, with entities for departments, courses, members
of faculty and so on. Since axonDB does not support inferencing, we extended the
LUBM generator to add all superclasses of an instance’s class, in order to generate the
transitive closure of the subclass relationships, as well as the memberOf and hasAlumnus
properties. For our real-world experiments, we have chosen the Reactome6 dataset, which
contains information about biological pathways, and is rich in long paths with branching
components, and Geonames7, an ontology of geographical features that contains a diverse
schema of varying properties (i.e., large number of CS/ECS) among the same types of
entities, as shown in Table 2.

Regarding the queries, we create two sets of queries for LUBM, one set for Reactome, and
one set for Geonames. LUBM defines 14 queries; most of them are simple, pertaining to
a range of 1 to 6 triple patterns. From these, we select 6 representative queries, namely
2, 4, 7, 8, 9, and 12, which are the most challenging and have the largest numbers of
triple patterns, in order to assess the performance of the system on traditional settings.
To assess the performance on more complex queries, we create a second set of queries,
by modifying 7 of the original queries (2, 3, 4, 8, 10, 11 and 12), converting all bound

5www.mapdb.org
6http://www.ebi.ac.uk/rdf/services/reactome
7http://www.geonames.org/ontology/documentation.html
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Table 4.4: Comparison of different optimization settings for representative queries.

LUBM Reactome Geonames
Q1 Q5 Q8 Q12 GM Q2 Q3 Q7 Q8 GM Q1 Q2 Q4 Q6 GM

axonDB 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
axonDB-h 0.97 0.79 0.83 0.82 0.79 0.76 0.56 0.73 0.99 0.82 0.73 0.81 0.75 0.70 0.74
axonDB-qp 0.77 1.01 0.86 0.98 0.83 0.85 0.57 0.53 0.61 0.73 0.71 0.56 0.65 1.05 0.72
axonDB+ 0.69 0.87 0.66 0.82 0.73 0.68 0.38 0.49 0.61 0.62 0.69 0.49 0.51 0.70 0.64

nodes to variables, and extending their characteristic sets, and we also define 5 additional
ones. The queries are ordered by complexity8, and Q1-8 are highly selective, while Q9-12
are low in selectivity. For the Reactome and Geonames datasets, we construct 8 and 6
queries, respectively, with increasing selectivity and numbers of chain patterns, i.e., 1-3
chains and 3-6 query ECSs. These take advantage of the long paths in the two datasets,
and have progressively larger result sizes. The queries can be seen in the Appendix of
this thesis. In what follows, we present the results.

4.6.2 Experimental Results

Loading. The size in GB and loading time in minutes for the two real datasets and
LUBM2000 can be seen in Table 4.3. Overall, axonDB exhibits the lowest space overhead
for the input data, along with TripleBit which comes second. This is a derivative of the
low degree of data replication imposed by ECS indexing, and the fact that it only uses
two triples tables (SPO and PSO). However, axonDB suffers from longer loading times
compared to all three competitors, because of the added complexity of retrieving the
inherent schema of nodes (i.e., CS index), and triples (i.e., ECS index). Especially for
Geonames, the loading time is significantly longer, because of the large number of ECSs.

Comparison of different optimizations. Table 4.4 compares the four versions of
axonDB (based on the employed optimizations). We experiment with all queries from
the modified LUBM and the two real-world datasets and we report the GM of all queries as
well as the performance for four representative queries that exhibit the highest complexity
in each dataset. The numbers denote the ratio of runtime of each configuration w.r.t.
the runtime of the base implementation, which is shown at the first line. Overall, the
relative performance improvement with all optimizations on is most cases better than
its respective counterparts. The effects of the planner are minimized when the queries
have only one chain, as the outer ordering and thus the cost model are redundant in such
cases (e.g., LUBM Q5, Q12, Geonames Q6). The hierarchy optimization affects most
queries, as multiple related ECSs often differ by a small number of properties in the data.

8Calculated as the product of (#triple patterns)×(#chains)
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(a) Query runtimes for the LUBM dataset (original)

(b) Query runtimes for the LUBM dataset (modified)

(c) Query runtimes for the Reactome dataset

(d) Query runtimes for the Geonames dataset

Figure 4.6: Query runtimes in seconds

Next, we only consider the worst and optimal configurations to compare them with the
competitors.

Query performance - LUBM. All systems can address quite efficiently the original
LUBM queries . This can be seen from the geometric means of the queries in Fig. 4.6(a),
where we experiment with queries 2, 4, 7, 8, 9 and 12, which are the most challenging,
and have more than one triple patterns. Overall, the performance of all systems lies in
the same order of magnitude. Even though axonDB is designed to address more complex
queries, this experiment shows that it can handle simple patterns efficiently as well.

The runtimes for axonDB and axonDB+ against the three competitors for the modified
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LUBM queries can be seen in Fig. 4.6(b) along with their geometric mean (GM). The
actual GM for Virtuoso and TripleBit is equal to, or greater than the maximum depicted
in the figure, as we do not show running times above 30 minutes, or timed-out queries.
As shown, both axonDB configurations outperform the rest, with their geometric mean
improving the competition by at least9 1 order of magnitude. Especially in the case of
queries with complex patterns (Q7-12), axonDB is better by several orders of magnitude,
while Virtuoso and TripleBit suffer several 30-minute timeouts. For Q3, which does not
yield any results, the preprocessor cannot match the query graph to any ECS chains in the
data, and thus does not perform any joins, giving axonDB an advantage of up to 4 orders
of magnitude compared to RDF-3x and Virtuoso (TripleBit timed out). In the more
selective queries Q4 and Q5, axonDB is outmatched by the rest of the systems, because
it does not have permuted indexes that quickly filter out triples that do not contribute
to the solution, and has to suffer a full scan of the matched ECSs instead. However, in
Q7, Q8 and Q9, both TripleBit and Virtuoso exhibited times over 30 minutes. These
queries have long chains with up to 14 triple patterns with all nodes unbound except the
predicates. Thus, the optimizers of these systems spend a lot of time dealing with large
intermediate results created by the abundance of variables.

Reactome. The results are shown in Fig. 4.6(c). Again, both axonDB and axonDB+
outperform the rest for all queries. Even though the dataset is relatively small, the
complexity of the data can lead to queries with non-trivial patterns. This is evident by
the relatively large number of ECSs (346). For the queries with the lowest selectivity
(Q6, Q7 and Q8), axonDB improves the competition by at least one order of magnitude,
while TripleBit fails to answer four queries within 30 minutes. As in LUBM, these
queries (Q1, Q3, Q5, Q6) exhibit a large amount of unbound variables, in long chain
patterns. This provides an intuitive insight that the nature of ECS indexing facilitates
the evaluation of complex query patterns by isolating smaller subsets of the data that
contribute to the result, and thus decreasing the intermediate results that would be
present in traditional indexing paradigms. Instead, an ECS graph matches a query to
smaller and more relevant subsets of the data, and reduces the number of self-joins and
the cardinality of intermediate results.

Geonames. The results for Geonames are shown in Fig. 4.6(d). While axonDB and
axonDB+ configurations outperform in all queries but Q4 and Q6, the improvements
against RDF-3x and Virtuoso are not at the same scale with the previous datasets.
Geonames has over 10,000 different ECSs, thus invoking costly disk reads even for ECSs
with small cardinalities. In fact, this reflects a drawback in the ECS indexing approach,

9In reality, it is more for the timeouts.
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(a) (b)

Figure 4.7: Query execution (a) and dataset loading (b) for increasing sizes of LUBM

where partitioning of the triples by their associated ECS can become a bottleneck when
the partitioning is volatile with respect to the triple cardinality of each ECS. In any
case, axonDB improves the competition by one order of magnitude overall, based on the
observed GM. While TripleBit performs very fast on Q1, Q2 and Q6, it fails to answer
three queries under the 30-minute timeframe, because its vertical partitioning storage
scheme suffers from large intermediate joins in queries with long chains. This is an
indication that such approaches that use inherent schema retrieval, are not suited for
highly versatile RDF datasets.

Scalability. We have experimented with increasing input sizes of LUBM, starting from
15M triples, up to 370M triples. In Fig. 4.7, we report the GM of Q1-Q12 (a), and
the loading time (b) for all four systems, in log-log scales. The query performance of
axonDB+ scales linearly and retains its relative difference by 1-3 orders of magnitude
with the rest of the systems for all input sizes. Loading also appears to scale linearly
with respect to input size, however, due to the ECS extraction of the loading phase,
axonDB+ is outperformed by Virtuoso and RDF-3x as the input size increases. In any
case, our experiments indicate that the methods presented herein are indeed scalable for
larger input sizes.

4.7 Conclusions and Future Work

In this chapter, we have presented axonDB, a native RDF engine that employs ECS
indexing, and discussed its implications on SPARQL processing. To this end Extended
Characteristic Sets, and ECS graphs were introduced, along with methods and algorithms
for ECS retrieval and querying. These have been implemented with two optimizations,
that take into account query planning and hierarchical relationships between ECSs. Fi-
nally, we performed an extensive experimental evaluation against three high-performance
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RDF stores. The experimental evaluation has shown that axonDB outperforms the state
of the art approaches, especially for answering complex query patterns with low selectiv-
ity. As future work, we will address data updates in existing ECS indexes, and study the
application of the approach in a distributed setting.
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Chapter 5

Optimizing SPARQL Query
Planning

5.1 Introduction

5.1.1 Motivation

SPARQL is a W3C recommendation for querying graph data expressed in the Resource
Description Framework (RDF). SPARQL query engines are implemented on either native
RDF stores, or physical implementations of other paradigms, such as relational databases.
In either case, query optimization involves a layer of logical optimization, where the query
plan is constructed. Logical optimization of SPARQL queries heavily depends on the
ability of a query optimizer to provide good plans. This involves reordering of a query’s
triple patterns, in order to minimize intermediate results.

Optimizers use statistics and heuristics in order to search the vast space of potential
query plans and reach a solution without trading off much pre-processing time for actual
query execution time. They rely on first-level statistics, such as the number of distinct
triples with a particular property, and assumptions on the values of deeper level statistics
(e.g. join cardinalities). In practice, this is not always efficient, because the bias imposed
by these techniques gives rise to optimizers that perform very well for particular query
patterns, but poorly on others. As an example, consider the following query, where the
triple patterns are labelled on the left as t1 . . . t5:

Listing 5.1: Example query for the LUBM[GPH05] dataset.
SELECT ?X ?Y
WHERE {

t1: ?X rdf:type ub: Student .
t2: ?Y rdf:type ub: Department .
t3: ?X ub: memberOf ?Y .
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t4: ?Y ub: subOrganizationOf <http :// www. University0 .edu > .
t5: ?X ub: emailAddress ?Z}

Assume that the query processor evaluates the query in the order t1, t5, t3, t2, t4, relying on
statistics that the total number of Students is 99k. It will first attempt to match ?X to all
99k Students and their email addresses, and then retrieve all ub:memberOf associations
for these. Most of the resulting triples will be discarded in the evaluation of t2 and t4,
because we are only interested in Students that are members of a Department that is a
subOrganization of University0. On the other hand, if the order is t2, t4, t3, t1, t5, then
the triple pattern t3 will not be evaluated on all Students, but only on the members of
the matched results for ?Y. Hence, the evaluation of t1 and t5 will be performed on a
much smaller set of intermediate results, thus optimizing query answering. This kind of
optimization can yield results that are orders of magnitude faster than in the case where
no such optimization takes place [NM11; GN14].

In this chapter of the thesis, we introduce and discuss a novel statistical approach for
reordering triple patterns in SPARQL queries, which searches a quadratic plan space and
builds a plan on a bottom-up manner by taking into account relative differences between
triple patterns. This method generates binary left-deep trees, and our evaluation is
centered around this sub-problem. Preliminary experiments show that it outperforms
traditional statistics- and heuristics- based approaches in query planning.

5.1.2 Related Work

There exists a large body of literature on SPARQL query optimization, where many
approaches operate under the data independence assumption, which states that data
are uncorrelated, and cardinalities of joined patterns are computed using heuristic, cross-
product approaches. Stocker et al [Sto+08] propose several statistical and heuristic-based
planning algorithms that involve cardinality estimation both with and without joins. Neu-
mann and Weikum [NW10] in the RDF-3X store use a Dynamic Programming algorithm
and cardinality histograms. However, the optimizer sometimes spends more time than
the actual query execution, some times orders of magnitude slower [GN14]. TripleBit
[Yua+13] uses a Dynamic Query Plan Generation Algorithm (DQPGA) for queries with
multiple consecutive joins, which can be costly for pattern-rich queries. Gubichev and
Neumann provide better estimates by extending Characteristic Sets [GN14]. Kalayci et al
[KKB15] use ant-colonization algorithms for dynamic optimization. The latest version of
Virtuoso uses a greedy query optimization approach that is further assisted by dynamic
sampling and a combination of full and partial indexes [BEP14]. Finally, Tsialiamanis et
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al[Tsi+12] rely solely on triple pattern heuristics to reach good plans without the need
for statistics and indexing.

5.2 Distance-Based Reordering

5.2.1 Query Representation

Let T be the set of all triple patterns in an incoming query q. Each triple pattern ti ∈ T

consists of three nodes, either bound (URIs, blank node IDs or literals) or unbound
(variable), i.e., the subject, predicate and object of ti. Furthermore, let M represent the
set of all unique nodes in the subject and object positions in T , both bound and unbound.
We map each triple pattern ti from T to a |M |-dimensional vector space, where each
vector attribute is an element from M , i.e., a subject or object node from the query.
In this preliminary approach, we assume a solution space of left-deep trees, where the
original problem of finding the best order of triple evaluation is factorial. This is because
for a query q consisting of |T | triple patterns, there are |T |! different permutations of
triples. The factorial problem, commonly solved by dynamic programming algorithms,
guarantees that the solution will be optimal with respect to the chosen cost model.
Unfortunately, recent studies have suggested that even industrial-level query optimizers
do not yield satisfactory results when they are heavily dependent on the cost model
[Lei+15], especially when cost model errors propagate through multiple joins.

In our approach, we map triple patterns from a query into a multidimensional space, and
decide the join order based on the spatial correlations of the patterns, i.e., by comparing
the pair-wise distances of the vectors that represent the triple patterns in the multiple
dimensions, and ranking the patterns based on this comparison. The multidimensional
space is built based on cardinality statistics that are held in a separate index. These pre-
computed statistics are easily calculated in RDF stores, and include the cardinality of
triples with a bound subject, property, and object, as well as the size of the whole dataset.
Specifically, we assume that each triple pattern becomes a m-dimensional vector, and the
value of an attribute mi for a given triple pattern t = (s, p, o), is given by the following
function:

f(t,mi) =

{
card(t), if mi ∈ (s, o)

0, otherwise

Where card(t) is the cardinality of the triple pattern. This is calculated using the follow-
ing rules:

• card(t) = card(p), if p is bound and s,o are unbound,
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• card(t) = max(1, card(p)|S| ), if p and o are bound, and s is unbound,

• card(t) = 1, if p and s are bound, and o is either bound or unbound,

• card(t) = |D|, for all other cases

The cardinality for a bound property card(p) is simply given as the number of triples
with p as the predicate. |D| and |S| are the number of triples in the dataset D, and
the number of distinct subject nodes S respectively. Notice that we do not represent
predicate attributes, which means that the query space will be built entirely based on the
subject and object nodes of all triple patterns in the query. Instead, the information that
comes from the predicates in the triple patterns becomes quantized in the values of the
attributes, as is given by the aforementioned cardinality estimation rules. Especially for
the rdf:type property, we assume the existence of an aggregate index that holds the exact
cardinalities of particular class types. Therefore, in this special case, the second rule is
altered to reflect the exact enumeration of subjects with a specific type. For instance, in
our running example, the cardinality of t1 is 99k, as there exist 99k subjects with rdf:type
ub:Student.

Function f(t,m) can be used to calculate the values of a |T | × |M | matrix, denoted
as Qm, where each row represents a triple pattern in T , and each column represents
an attribute in M , or simply a node in the query pattern. By applying a distance
function and processing the pair-wise distances between rows in Qm, the search space
becomes quadratic with respect to |T |, and the comparisons will be of O(|T |2) complexity,
rather than the original factorial one. Moreover, as we do not evaluate self-distances and
permuations of the same pair (e.g., [t1, t2] and [t2, t1], the actual number of comparisons
will be

(|T |
2

)
, or |T | × (|T | − 1)/2. Even though this reduction in cost comes with the loss

of guarantee of optimality, our experiments show that this approach tends to work well
for all types of queries, even with large numbers of triple patterns.

The matrix Qm for the query of Listing 5.1, is shown in Table 1 for the synthetic dataset
LUBM10 with 1.5m triples. To construct this for dataset D, we apply the estimation rules
based on the pre-computed statistics. For instance, there are 99k triples with rdf:type as
a property and ub:Student as an object, which can be seen in columns 1 and 2 for t1.
Similarly, there are 106k triples with ub:emailAddress as a predicate, which is encoded in
t5. Application of a distance function will generate a |5|× |5| distance matrix of pair-wise
distances between the triple patterns t1 − t5.
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5.2.2 Plan Generation

When Qm is constructed and the distance matrix is calculated, we build sub-plans for
the query, based on the ascending ranking of the pair-wise distances of the triple patterns
in T . The algorithm to build sub-plans can be seen in Algorithm 5. Specifically, we sort
pair-wise distances in ascending order and create an empty queue for sub-plans (Lines
1-3). Then, we iterate through each pair of sorted triple patterns ta, tb (Line 4). If there
exists a sub-plan pi that contains only ta or only tb, we append the non-contained triple
pattern to pi (Lines 5-10). If none of ta, tb are contained in a sub-plan, we create a new
sub-plan and add ta, tb, then push the new sub-plan to the existing queue. The order in
which we add these two depends on the cost of each triple pattern (Lines 11-15). In case
both patterns ta and tb exist in sub-plans, we continue to the next pair.

After we have created a series of (ordered) sub-plans, we iterate through consecutive sub-
plans and attempt to reorder their patterns in order to better capture join relationships
that occur between these. More accurately, if there are more than one sub-plans found,
then we try to rearrange the triples that share common variables between adjacent sub-
plans, so that the joined triple patterns between the two sub-plans are closely located.
This can be seen in Algorithm 6.

Specifically, if there is only one sub-plan, then this is returned as the final plan (Lines
1-3). Else, the algorithm iterates through the subP lans queue with two pointers (Line
4), and prioritizes each pair of sub-plans (Line 5). The prioritizePair function checks for
joins between two consecutive sub-plans (Line 12), i.e. it checks whether the last triple
(tail) in pi is joined with the first triple (head) in pi+1. If they are joined, it returns the
pair as is (Lines 13-15). If not, it finds the first triple in pi+1 that can be joined with the
tail of pi (if one exists), pushes it at the tail of pi and recursively checks the same pair
(Lines 17-21). Finally, the prioritizePair function returns an array of two plans, the
first of which is inserted in the final plan, while the second is used as the first sub-plan of
the next iteration, as it holds the updated ordering. This means that the triple patterns
that are ranked lower in pi+1 will be bubbled-up and re-ranked in order to reflect the join
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relationship between pi and pi+1.

Algorithm 5: generateSubPlans
Data: map: A matrix of triple patterns from the query as rows, and query nodes as

columns
Result: subP lans: An ordered list of sub-sets of query triple patterns, that

constitute subplans.
1 subP lans← newQueue();
2 distances← distanceMatrix(map);
3 sort(distances);
4 for each pair ti, tj ∈ distances | ti 6= tj do
5 if ∃pi ∈ subP lans | ta ∈ pi AND tb 6∈ pi then
6 append tb to pi;
7 continue;
8 else if ∃pi ∈ subP lans | ta 6∈ pi AND tb ∈ pi then
9 append ta to pi;

10 continue;
11 else if 6 ∃pi ∈ subP lans | ta ∈ pi OR tb ∈ pi then
12 p← newList();
13 append minCost(ta, tb) to p;
14 append maxCost(ta, tb) to p;
15 subP lans.push(p);
16 else
17 continue;
18 end
19 return subP lans;

5.2.3 Experiments

We implemented a proof-of-concept version of the query planner in Jena ARQ, and con-
ducted experiments on Jena TDB1, comparing against several statistical reordering ap-
proaches, namely Stocker et al’s PFJ and ONS [Sto+08], Kalayci et al’s Ant System
[KKB15] as well as Jena TDB’s Fixed (JF) and Weighted (JW) optimizers, and the
reordering performed by the open source edition of Openlink Virtuoso 7.2. As triple
pattern ordering is a problem that is orthogonal to the low-level implementation specifics
and design choices (e.g., join implementations, indexing), we use Jena TDB as a com-
mon testbed for all approaches to strictly assess and compare the effect of triple pattern
orderings on query processing. We used LUBM[GPH05] to generate a synthetic dataset
of 15m triples, and measured execution times for 29 queries on the LUBM dataset. The
queries consist of 14 original queries provided by LUBM, and an additional 15 queries of

1https://jena.apache.org/documentation/tdb/
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Algorithm 6: reorderSubPlans
Data: subP lans(p0, . . . , pn−1): A queue of sub-plans
Result: finalP lan: An ordered list of triple patterns, to be executed by the query

engine.
1 if subP lans.size == 1 then
2 finalP lan.push(p0);
3 return finalP lan;
4 for each pi, pi+1 ∈ subP lans do
5 nextPair ← prioritizePair(pi, pi+1);
6 finalP lan.push(nextPair[0]);
7 pi+1 ← nextPair[1];
8 if pi+1.isEmpty then
9 subP lans.remove(pi+1);

10 end
11 return finalP lan;
12 function prioritizePair(pi, pi+1)
13 newPair ← array[2];
14 if pi.tail is joined with pi+1.head then
15 newPair[0]← pi;
16 newPair[1]← pi+1;
17 return newPair ;
18 else
19 for each tk,∈ pi+1 do
20 if pi.tail is joined with tk then
21 pi.push(tk);
22 pi+1.remove(tk);
23 newPair ←prioritizePair(pi, pi+1);
24 end
25 newPair[0]← pi;
26 newPair[1]← pi+1;
27 return newPair;
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increasingly complex shapes and sizes, used in [KKB15]. All code and queries are avail-
able online2. For each approach, we extract an ordering, and feed that directly to the
Jena query processor. Table 2 summarizes the percentages of best plans for all queries.
These are computed by measuring, for each approach, how many plans were the fastest3

in relation to the other approaches, for all queries. Because of the fact that the fastest
plan can be reached by more than one method, we differentiate between plans based on
the generated orderings, and then we compare their execution times. As can be seen,
our method outperforms all other methods for queries of different patterns, namely the
original 14 queries, and the 15 additional queries of star, chain, chain-star, and cyclic
patterns, achieving the best plan 90% of the time, with Virtuoso coming second with
66% of its orderings being the best.

In order to assess how our planner performs with respect to different query types, we
use 15 extended queries originally constructed in [KKB15]. These represent different
query types, and are thus classified into star, chain, cyclic, and chain-star query types, of
varying triple pattern sizes. Their original intention was to provide more complex query
structures of up to 14 triple patterns for LUBM dataset, because the original queries
are limited to 1-6 triple patterns. We measure execution times for each query type
separately, and report these in Tables 3, 4, 5, and 6, for star, chain, cyclic, and chain-star
queries respectively. For each query, the best ordering is marked with a bold execution
time. While we do not show the actual triple orders that were derived by each method,
multiple bold values in the same row indicate that the same order has been achieved by
more than one approach. Note that small differences in execution times for the same
orderings can be attributed to lags imposed by I/O, available CPU resources and other
external factors.

For computing the distance matrix from Qm, we used a simple Euclidean distance function
that measuring distances between triple patterns in the M-dimensional space. Overall,
the results are encouraging for further pursuing this direction. In fact, in 90% of the
queries, our method generated the fastest plan in relation to the other approaches, of
whom the best (VIRT) achieved a rate of 66%, and the rest achieved less than 60%.

5.3 Conclusions and Future Work

Our preliminary results show potential value in a full implementation of a logical query
optimizer. As future work, we intend to design a more mature algorithm for the plan gen-

2https://github.com/mmeimaris/sparqlDistancePlanner
3We measure execution times by executing each query 10 times and reporting the mean.
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Table 5.1: Qm matrix for reference query.

?X Student ?Y Dpt Univ0 ?Z

t1 99k 99k 0 0 0 0

t2 0 0 189 189 0 0

t3 106k 0 106k 0 0 0

t4 0 0 239 0 239 0

t5 106k 0 0 0 0 106k

Table 5.2: Percentage of plans that are best compared to other methods for all queries.

JW JF ONS PFJ ANT VIRT OUR

59% 48% 28% 59% 31% 66% 90%

eration, which takes into account a mix of dataset statistics, historical queries and graph
summarization in order to provide better estimates that lead to more efficient plans. Tak-
ing into account join cardinality estimates will also be implemented. Moreover, we plan
on experimenting with different distance functions in order to capture distances between
triple patterns more accurately. Finally, we intent to perform exhaustive comparisons
with large datasets and queries, as well as other state of the art methods, in order to
assess the scalability of the approach, as well as its implementation in parallel settings.
Towards this end, we will explore how our method can generate flat bushy n-ary join
trees (instead of binary left-deep trees) that tend to be more easily parallelized.
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Table 5.3: Query execution times (seconds) for the star queries.

JW JF ONS PFJ ANT VIRT OUR

Q1 1.01 1.14 1.07 0.61 1.05 0.63 0.57

Q2 0.91 0.92 4.71 0.76 0.79 0.74 0.67

Q3 0.23 0.27 0.23 0.15 3.62 0.21 0.13

Q4 0.17 0.08 0.07 0.07 0.42 0.05 0.03

Table 5.4: Query execution times (seconds) for the chain queries.

JW JF ONS PFJ ANT VIRT OUR

Q1 0.30 0.33 0.37 0.14 1.09 0.39 0.14

Q2 0.49 0.56 0.52 0.77 0.50 0.48 0.48

Q3 322 323 131 292 139 55 53

Q4 54 53 53 163 209 182 49

Table 5.5: Query execution times (seconds) for the cyclic queries.

JW JF ONS PFJ ANT VIRT OUR

Q1 0.05 0.07 0.05 0.04 0.04 0.04 0.04

Q2 0.25 0.24 0.19 0.02 0.20 0.18 0.02

Q3 0.06 0.06 0.31 2.37 0.74 0.04 4.50

Q4 1.06 0.94 1.30 0.64 0.81 0.04 0.52

Table 5.6: Query execution times (seconds) for the chain-star queries.

JW JF ONS PFJ ANT VIRT OUR

Q1 4.16 4.16 4.15 7.39 4.15 5.15 4.15

Q2 5.95 5.92 5.93 5.83 6.67 0.49 0.42

Q3 6.11 4.98 4.75 214.92 6.37 2.35 2.31
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Chapter 6

Hierarchical Characteristic Set
Merging

6.1 Introduction

Recent works in the state of the art in RDF data management have shown that ex-
traction and exploitation of the implicit schema of the data can be beneficial in both
storage and SPARQL query performance [Pha+15][PB16][Mei+17][MSMH17]. This was
also apparent in the previous two Chapters, where ECS indexing came short of address-
ing complicated schema structures, as in the case of Geonames. In order to organize
on disk, index and query triples efficiently, these trends heavily rely on two structural
components of an RDF dataset, namely (i) the notion of characteristic sets (CS), i.e.,
different property sets that characterize subject nodes, and (ii) the join links between
CSs. For the latter, in the previous chapter, we introduced Extended Characteristic Sets
(ECS)[Mei+17], which are typed links between CSs that exist only when there are object-
subject joins between their triples, and we showed how RDF data management can rely
extensively on CSs and ECSs for both storage and indexing, yielding significant perfor-
mance benefits in heavy SPARQL workloads. However, this approach failed to address
schema heterogeneity in loosely-structured datasets, as this implied a large number of
CSs and ECSs (e.g., Geonames contains 851 CSs and 12136 CS links), and thus, skewed
data distributions that impose large overheads in the extraction, storage and disk-based
retrieval[Pha+15][Mei+17].

In this chapter, we exploit the hierarchical relationships between CSs, as captured by
subsumption of their respective property sets, in order to merge related CSs. We follow a
relational implementation approach by storing all triples corresponding to a set of merged
CSs into a separate relational table and by executing queries through a SPARQL to SQL
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transformation. Although, alternative storage technologies can be considered (key-value,
graph stores,etc), we have selected well-established technologies and database systems for
the implementation of our approach, in order to take advantage of existing data indexing
and query processing techniques that have been proven to scale efficiently in large and
complex datasets. To this end, we present a novel system, named raxonDB, that exploits
these hierarchies in order to merge together hierarchically related CSs and decrease the
number of CSs and the links between them, resulting in a more compact schema with
better data distribution. The resulting system, built on top of PostgreSQL, provides
significant performance improvements in both storage and query performance of RDF
data.

In short, our contributions are as follows:

• We introduce a novel CS merging algorithm that takes advantage of CS hierarchies,

• we implement raxonDB, an RDF engine built on top of a relational backbone that
takes advantage of this merging for both storing and query processing,

• we perform an experimental evaluation that indicates significant performance im-
provements for various parameter configurations.

6.2 Related Work

RDF data management systems generally follow three storage schemes, namely triples
tables, property tables, and vertical partitioning. A triples table has three columns, rep-
resenting the subject, predicate and object (SPO) of an RDF triple. This technique
replicates data in different orderings in order to facilitate sort-merge joins. RDF-3X
[NW10] and Hexastore [WKB08] build tables on all six permutations of SPO. Built on a
relational backbone, Virtuoso [EM10] uses a 4-column table for quads, and a combination
of full and partial indexes. These methods work well for queries with small numbers of
joins, however, they degrade with increasing sizes, unbound variables and joins.

Property Tables places data in tables with columns corresponding to properties of the
dataset, where each table identifies a specific resource type. Each row identifies a sub-
ject node and holds the value of each property. This technique has been implemented
experimentally in Jena [Wil06] and DB2RDF [Bor+13], and shows promising results
when resource types and their properties are well-defined. However, this causes extra
space overhead for null values in cases of sparse properties [Aba+07]. Also, it raises
performance issues when handling complex queries with many joins, as the amounts of
intermediate results increase [JK05].
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Vertical partitioning segments data in two-column tables. Each table corresponds to a
property, and each row to a subject node [Aba+07]. This provides great performance
for queries with bound objects, but suffers when the table sizes have large variations in
size [Sid+08]. TripleBit [Yua+13] broadly falls under vertical partitioning. In TripleBit,
the data is vertically partitioned in chunks per predicate. While this reduces replication,
it suffers from the same problems as property tables. It does not consider the inherent
schema of the triples in order to speed up the evaluation of complex query patterns.

In distributed settings, a growing body of literature exists, with systems such as Sem-
pala [Sch+14], H2RDF [Pap+14] and S2RDF [Sch+16a]. However, these are based on
parallelization of centralized indexing and query evaluation schemes.

For these reasons, latest state of the art approaches rely on implicit schema detection
in order to derive a hidden schema from RDF data and index/store triples based on
this schema. Furthremore, due to the tabular structure that tends to implicitly underly
RDF data, recent works have been implemented in relational backbones. In our previous
work [Mei+17], we defined Extended Characteristic Sets (ECSs) as typed links betwen
CSs, and we showed how ECSs can be used to index triples and greatly improve query
performance. In [Pha+15], the authors identify and merge CSs, similar to our approach,
into what they call an emergent schema. However, their main focus is to extract a
human-readable schema with appropriate relation labelling. They do not use hierarchical
information of CSs, rather they use semantics to drive the merging process. In [PB16]
it is shown how this emergent schema approach can assist query performance, however,
the approach is limited by the constraints of human-readable schema discovery. In our
work, query performance, indexing and storage optimization are the main aims of the
merging process, and thus we are not concerned about providing human-readable schema
information or any form of schema exploration. In [MSMH17], the authors use CSs and
ECSs in order to assist cost estimation for federated queries, while in [GN14], the authors
use CSs in order to provide better triple reordering plans. To the best of our knowledge,
this is the first work to exploit hierarchical CS relations in order to merge CSs and improve
query performance.

6.3 Hierarchical CS Merging

6.3.1 Preliminaries

The RDF model does not generally enforce structural rules in the representation of triples;
within the same dataset there can be largely diverse sets of predicates emitting from nodes
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of the same semantic type [Mei+17; Pha+15; NM11]. Characteristic Sets (CS)[NM11]
capture this diversity by representing implied node types based on the set of properties
they emit. Formally, given a collection of triples D, and a node s, the characteristic set
cs(s) of s is cs(s) = {p | ∃o : (s, p, o) ∈ D}.

The set of properties of a CS csi is denoted with Pi. Furthermore, in a given dataset,
each CS represents a set of records identified by a subject node, and all of the values of
the subject node (i.e., objects) for the predicates in Pi. We denote the set of all records
of csi as ri, while csi is represented by a relational table ci that is defined by these two
elements, i.e., ci = (Pi, ri). The tuples in ci are of the form (s, pi,1, . . . , pi,k), where s is
the identifier column (e.g. URI) of a subject node and pi,1, pi,2, . . . , pi,k are the values, i.e.
object nodes, of the properties in Pi for s. In the context of this chapter, with the term
Characteristic Set we will refer collectively to the properties and records of a CS, i.e., its
relational table, rather than just the set of properties proposed in the original definition,
for the sake of simplicity.

Within a given dataset, CSs often exhibit hierarchical relationships, as a result of the
overlaps in their comprising sets of properties. For example, consider two CSs, c1, c2,
describing human beings, with P1 = {type, name} and P2 = {type, name,marriedTo}.
It can be seen that P1 ⊂ P2 and thus c1 is a parent of c2. This relationship entails an
overlap of properties that define the CSs, and can be exploited in order to provide a
means to merge common CSs based on the specialization or generalization of the node
types they describe. In what follows, we formally define the notions of CS subsumption,
hierarchy and ancestral sub-graphs.

Definition 1. (CS Subsumption). Given two CSs, ci and cj, and their property sets
Pi and Pj, then ci subsumes cj, or ci � cj, when the property set of ci is a proper subset
of the property set of cj, or Pi ⊂ Pj. This subsumption forms parent-child relationships
between CSs. CS subsumption relationships can be seen in Figure 6.1(a) as directed
edges between nodes. The set of all parent-child relationships defines a CS hierarchy as
defined in the following.

Definition 2. (CS Hierarchy and Inferred Hierarchy). CS subsumption creates a
partial ordering that essentially defines a hierarchy such that when ci � cj, then ci is a
parent of cj. Formally, a CS hierarchy is a graph lattice L = (V,E) where V ∈ C and
E ∈ (V ×V ). A directed edge between two CS nodes c1, c2 exists in L, when c1 � c2 and
there exists no other ci such that c1 � ci � c2. An example CS hierarchy can be seen in
Figure 6.1(a). Given a hierarchy L, we denote the hierarchical closure of L with Lc, so
that Lc extends L to contain inferred edges between hierarchically related nodes that are
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not consecutive, e.g. a node and its grandchildren. An example inferred hierarchy can
be seen in Figure 6.1(c) for a sub-graph of the graph in Figure 6.1(a), with the inferred
relationships in dashed lines. In the remainder of this chapter, we refer to Lc as the
inferred hierarchy of L.

Definition 3. (CS Ancestral Sub-graphs). Given an inferred hierarchy Lc = (V,E), a
CS cbase and set of CSs c1, . . . , ck, then a = (V

′
, E

′
) is an ancestral sub-graph with cbase

as the lowermost child when ∀i ∈ [1..k], it holds that ci � cbase, and (ci, cbase) ∈ E
′ . This

means that any sub-graph with cbase as a sink node will be an ancestral sub-graph of
cbase. Thus, it holds that a ⊂ Lc. For instance, in Figure 6.1(c), nodes c7, c4, c2 form an
ancestral sub-graph with c7 as the base CS. Similarly, nodes c6, c4, c2 and c6, c5, c2 form
ancestral sub-graphs with c6 as base CS.

Logically, we map each CS to a relational table, so that for a CS ci we create a relational
table ti = (s, pi,1, pi,2, . . . , pi,k), where s is the id of the subject and pi,1 . . . , pi,k are the
properties that belong to Pi, and then we use the CS hierarchy in order to merge the
nodes of an ancestral sub-graph with ci as base into a single table. Specifically, we exploit
the property set overlap in order to merge together smaller parent CSs with larger child
CSs, in order to minimize the effect of NULL values that will appear for properties in
smaller CSs that do no exist in the larger CSs. Thus, cbase will be the most specialized
CS in its ancestral sub-graph. For this reason, we define a merge operator, hier_merge,
as follows.

Definition 4. (Hierarchical CS Merge). Given an ancestral sub-graph a = (V
′
, E

′
),

where V
′
= {c1 = (P1, r1), c2 = (P2, r2), . . . , ck = (Pk, rk)} as defined above, then a

hierarchical merge of a is given as follows: hier_merge(a) = ca, where ca = (P1, ra).
Here, P1 is the most specialized property set in a, as c1 does not have any children in a,

while ra =
k⋃

i=1

r
′
i is the UNION of the records of all CSs in V

′ , where r
′
i is the projection of

ri on P1. This means that r′
i will contain NULL values for all the non-shared properties of

P1 and Pi, i.e., P1\Pi. In essence, hier_merge is an edge contraction operator that merges
all nodes of an ancestral sub-graph into one, while removing the edges that connect them.
For instance, assume that V

′
= {c0 = (P0, r0), c1 = (P1, r1), c2 = (P2, r2)} is the set of

vertices of an ancestral sub-graph with three CSs, with P0 = {pa, pb}, P1 = {pa, pb, pc}
and P2 = {pa, pb, pc, pd}. Thus, c0 � c1 � c2. Hierarchical merging can be seen in Figure
6.2.

Definition 5. (Merge Graph). Given an inferred CS hierarchy Lc = (V,E), a merge
graph is a graph L

′
= (V

′
, E

′
) that consists of a set of n ancestral sub-graphs, and has

the following properties: (i) L
′ contains all nodes in L such that V

′ ≡ V , i.e., it covers
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Figure 6.1: (a) A CS hierarchy graph with dense nodes colored in deep purple, (b)
the connected components derived by cutting off descendants from dense nodes, (c) a
connected component with dashed lines representing inferred hierarchical relationships,
(d) all possible assignments of dense nodes to non-dense nodes.

all CSs in the input dataset, (ii) L′ contains a subset of the edges in L such that E ′ ⊂ E,
(iii) each node is contained in exactly one ancestral sub-graph ai, (iv) all ancestral sub-
graphs are pair-wise disconnected, i.e., there exist no edges between the nodes of different
ancestral sub-graphs. Thus, each ancestral sub-graph can be contracted into one node
unambiguously, using the hier_merge operator. Also, the total number of relational
tables will be equal to the number of ancestral sub-graphs in the merge graph.

Problem Formulation. Given an inferred CS hierarchy Lc = (V,E), the problem is to
find a merge graph L

′
= (V,E

′
) in the form of a set of disconnected ancestral sub-graphs,

that provides an optimal way to merge CS nodes. In other words, the problem is to
find the best set of ancestral sub-graphs from an inferred hierarchy Lc that minimize an
objective cost function cost(x), or more formally:

L
′
= argminx⊂Lccost(x) (6.1)

This formulation entails several problems. First, the notion of cost depends on possibly
subjective factors, such as the query workload, the storage technology, the input dataset
and so on. There is no universal cost model that can be deployed in order to assess the
effectiveness of a merge graph. Moreover, neither the number of ancestral sub-graphs,
nor the set of sub-graph roots is known as part of the input. A CS hierarchy of n nodes
can potentially create 2n sub-graphs, while the number of possible sub-graph roots is
also exponential with the respect to the hierarchy size. Thus, given an arbitrary cost
function, this is a problem of non-uniform graph partitioning on the inferred hierarchy
Lc, which is known to be NP-Hard. That is, even with a deployed cost model, it is still
an exponential problem to enumerate all possible sub-graphs and find the one with the
minimum cost. For these reasons, we approach the problem by deploying a set of rules
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and heuristics that find a good merge graph efficiently and offer improved storage and
query performance, as will be shown in the experiments.

6.3.2 CS Retrieval and Merging

The primary focus of this work is to improve the efficiency of the storage and query
capabilities of relational RDF engines by exploiting the implicit schema of the data in
the form of CSs. However, CS merging results in several problems that need to be
addressed in this context. These are discussed in what follows.

First, the problem of selecting ancestral sub-graphs is a computationally hard one, as
mentioned earlier. For this reason, we rely on a simple heuristic in order to seed the
process and provide an initial set of ancestral sub-graph sink nodes, that will form the
bases of the final merged tables, as defined in Definition 3. For this, we identify dense
CS nodes in the hierarchy (i.e, with large cardinalities) and use these nodes as the bases
of the ancestral sub-graphs. While node density can be defined in many different ways,
in the context of this work we define a ci to be dense, if its cardinality is larger than a
linear function of the maximum cardinality of CSs in D, i.e., a function d : N → R, with
d(ci) = m×|rmax|. Here, m ∈ [0, 1] is called the density factor, and rmax is the cardinality
of the largest CS in D. This means that, by definition, if m = 0, no CSs will be merged,
because all CSs will be considered dense and thus each CS will define its own ancestral
sub-graph, while if m = 1, all no ancestral sub-graph will be defined, and all CSs will be
merged to one large table, as no CS has a cardinality larger than that of the largest CS.
With a given m, the problem is reduced to finding the optimal ancestral sub-graph for
each given dense node.

Second, merging tables results in the introduction of NULL values for the non-shared
columns, which can degrade performance. Specifically, merging CSs with different at-
tribute sets can result in large numbers of NULL values in the resulting table. Given a
parent CS c1 = (P1, r1) and a child CS c2 = (P2, r2) with |P1| < |P2| and |r1| >> |r2|,
the resulting |P2 \ P1| × |r1| NULL cells will be significantly large compared to the total
number of r1 + r2 records, thus potentially causing poor storage and querying perfor-
mance[Pha+15]. For this reason, CS merging must be performed in a way that will
minimize the presence of NULL values. The following function captures the NULL-value
effect of the merge of two CSs ci = (Pi, ri), cj = (Pj, rj) with ci � cj:

rnull(ci, cj) =
|Pj \ Pi| × |ri|

(|rj|)
(6.2)

Intuitively, rnull represents the ratio of null values to the cardinality of the base CS in the
merge. The numerator of the fraction represents the total number of cell values that will
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be null, as the product of the number of non-shared properties and the cardinality of the
parent CS. The denominator represents the cardinality of the base CS. Hence, the base
CS must be a descendant (i.e., with more properties) in order to minimize the presence
of NULLs.

In order to assess an ancestral sub-graph, we use a generalized version of rnull that
captures the NULL value effect on the whole sub-graph:

rgnull(g)|cd =
∑|g|

i=1 |Pd \ Pi| × |ri|
|rd|+

∑|g|
i=1(|ri|)

(6.3)

Here, cd = (Pd, rd) is the dense root of sub-graph g. However, merging a parent to a
dense child changes the structure of the input graph, as the cardinality of the dense node
is increased. To accommodate this, we define a cost function that works on the graph
level, as follows:

cost(g) =
n∑

i=1

rgnull(gi)|cdi (6.4)

where n is the number of dense nodes, cdi is a dense node and gi is the ancestral sub-graph
with cdi as the base node.

Given this cost model and a pre-defined set of dense nodes, our exact algorithm will find
the optimal sub-graph for each dense node. An inferred hierarchy graph can be converted
to a set of connected components that are derived by removing the outgoing edges from
dense nodes, since we are not interested in merging children to parents, but only parents
to children. An example of this can be seen in Figure 6.1(b). For each component, we
can compute cost(g) as the sum of the costs of these components. The main idea is to
identify all connected components in the CS graph, iterate through these components,
enumerate all sub-graphs within the components that start from the given set of dense
nodes, and select the optimal partitioning for each component.

The algorithm can be seen in Algorithm 7. The algorithm works by first identifying all
connected components of the inferred hierarchy (Line 2). Identifying connected compo-
nents is trivially done using standard DFS traversal, and is not shown in the Algorithm.
Then, we iterate each component (Line 3), and for each component, we generate all possi-
ble sub-graphs. Then, we calculate the cost of each sub-graph (Line 7) and if it is smaller
than the current minimum, the minimum cost and best sub-graph are updated (Lines
8-9). Finally, we add the best sub-graph to the final list (Line 11) and move to the next
component.
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Figure 6.2: Merging the tables of c0, c1 and c2.

To generate the sub-graphs, we do not need to do an exhaustive generation of 2n combi-
nations, but we can rely on the observation that each non-dense node must be merged to
exactly one dense node. Therefore, sub-graph generation is reduced to finding all possible
assignments of dense nodes to the non-dense nodes. An example of this can be seen in
figure 6.1. In the figure, nodes c2, c4, c5 are non-dense, while nodes c6, c7, c8 are dense.
All possible and meaningful sub-graphs are enumerated in the table at the right of the
figure, where we assign a dense node to each of the non-dense nodes. An assignment is
only possible if there exists a parent-child relationship between a non-dense node and a
dense node, even if it is an inferred one (e.g. c2 is an inferred parent of c7). Hence, the
problem of sub-graph generation becomes one of generating combinations from different
lists, by selecting one element from each list. The number of lists is equal to the number
of non-dense nodes, and the elements of each list are the dense nodes that are related to
the non-dense node.

Complexity Analysis. Assuming that a connected component g has k non-dense
nodes and d dense nodes, and each non-dense node ki is related to e(ki) dense nodes,
then the number of sub-graphs that need to be enumerated are

∏k
i=1 e(ki). In the example

of figure 6.1, the total number of sub-graphs is e(c2)×e(c4)×e(c5) = 3×2×1 = 6. In the
worst case all k nodes are parents of all d nodes. Then, the number of total sub-graphs
is kd, which makes the asymptotic time complexity of the algorithm O(kd).

6.3.3 Greedy Heuristic

For very small d (e.g. d < 4), the asymptotic complexity of O(kd) is acceptable. How-
ever, in real-world cases, the number of connected components can be small, making d

large. For this reason, we introduce a heuristic algorithm for approximating the prob-
lem, that does not need to enumerate all possible combinations, but instead relies on a
greedy objective function that attempts to find the local minimum with respect to our
defined cost model for each non-dense node. Note that it lies beyond the scope of this
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Algorithm 7: optimalMerge
Data: An inferred hierarchy lattice Lc as a adjacency list , and a set of dense CSs D
Result: A set of optimal ancestral sub-graphs

1 init finalList;
2 connectedComponents← findConnectedComponents(Lc);
3 for each connectedComponent do
4 init min←MAX_V ALUE;
5 init bestSubgraph ;
6 while next← connectedComponent.generateNextSubgraph() do
7 if cost(next) < min then
8 min← cost(next);
9 bestSubgraph← next;

10 end
11 finalList.add(bestSubgraph);
12 end
13 return finalList;

work to compute the degree of approximation to the optimal solution, however, in our
experiments, the heuristic solution is shown to provide significant performance gains.

The main idea behind the algorithm is to iterate the non-dense nodes, and for each
non-dense node, calculate the rnull function and find the dense node that minimizes this
function for the given non-dense node. Then, the cardinalities will be recomputed and
the next non-dense node will be examined. The algorithm can be seen in Algorithm 8.
In the beginning, the algorithm initiates a hash table, mergeMap, with an empty list for
each dense node (Lines 1-4). Then, the algorithm iterates all non-dense nodes (Line 5),
and for each dense node, it calculates the cost rnull of merging it to each of its connected
dense nodes (Lines 5-13), keeping the current minimum cost and dense node. In the end,
the current non-dense node is added to the list of the dense node that minimizes rnull

(Line 14). Notice that we do not need to split the hierarchy into connected components
in order for greedyMerge to work.

Complexity Analysis. Given k non-dense nodes and d dense nodes, where each non-
dense node ki is related to e(ki) dense nodes, the greedyMerge algorithm needs

∑k
i=1 e(ki)

iterations, because we need to iterate all e(ki) nodes for each ki. In the worst case, every
ki is related to all d dense nodes, requiring kd iterations. Assuming a constant cost
for the computation of rnull, then the asymptotic complexity of the greedy algorithm is
O(kd), which is a significant performance when compared to the exponential complexity
of optimalMerge.

Obviously, this process does not necessarily cover all CSs of the input dataset. The
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Algorithm 8: greedyMerge
Data: A hash table p mapping non-dense CSs to their dense descendants, a set of

dense CSs D, and a set of non-dense CSs K
Result: A hash table mapping dense CSs to sets of non-dense CSs to be merged

1 init mergeMap;
2 for each d ∈ D do
3 mergeMap.put(d, newList());
4 end
5 for each k ∈ K do
6 min←MAX_V ALUE;
7 init bestDense;
8 for each dk ∈ p.get(k) do
9 cost← rnull(k, dk);

10 if cost < min then
11 min← cost;
12 bestDense← dk;
13 end
14 mergeMap.get(bestDense).add(k);
15 end
16 return mergeMap;

percentage of the dataset that is covered by this process is called dense CS coverage. The
remainder of the CSs that are not contained by any merge path are aggregated into one
large table containing all of their predicates. If the total coverage of the merging process
is large, then this large table does not impose a heavy overhead in query performance, as
will be shown in the experiments. Finally, we load the data in the corresponding tables.

Figure 6.3: An example of greedy merging. Dense nodes are coloured in deep purple. At
each step, the non-dense node under examination is coloured with green, while the edge
that minimizes rnull can be seen in bold.

6.3.4 Implementation

We implemented raxonDB as a storage and querying engine that supports hierarchical
CS merging, and can be deployed on top of standard RDBMS solutions. Specifically, we
used PostgreSQL 9.6, but raxonDB can be adapted for other relational databases as well.
The architecture of raxonDB can be seen in Figure 6.4.
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Figure 6.4: Architecture of raxonDB.

CS Retrieval and Merging. The processes of retrieving and merging CSs take place
during the loading stage of an incoming RDF dataset. CS retrieval is a trivial procedure
that requires scanning the whole dataset and storing the unique sets of properties that
are emitted from the subject nodes in the incoming triples, and is adopted from our
previous work in [Mei+17] where it is described in detail. After retrieving the CSs, the
main idea is to compute the inferred CS hierarchy and apply one of the described merging
algorithms. Finally, each set of merged CSs is stored in a relational table. In each table,
the first column represents the subject identifier, while the rest of the columns represent
the union of the property sets of the merged CSs. For multi-valued properties, we use
PostgreSQL’s array data type in order to avoid duplication of the rows.

Indexing. We deploy several indexes in raxonDB. First off, we index the subject id
for each row. We also build foreign-key indexes on object-subject links between rows
in different CSs, i.e., when a value of a property in one CS is the subject id of another
CS. Next, we use standard B+tree for indexing single-valued property columns, while we
use PostgreSQL’s GIN indexes, which apply to array datatypes for indexing multi-valued
properties. This enables fast access to CS chain queries, i.e., queries that apply successive
joins for object-subject relationships. Furthermore, we store these links on the schema
level as well, i.e., we keep an index of CS pairs that are linked with at least one object-
subject pair of records. These links are called Extended Characteristic Sets (ECSs) and
are based on our previous work in [Mei+17]. With the ECS index, we can quickly filter
out CSs that are guaranteed not to be related, i.e., no joins exist between them, even
if they are individually matched in a chain of query CSs. Other metadata and indexes
include the property sets of CSs, and which properties can contain multiple values in the
same CS.

Query Processing. Processing SPARQL queries on top of merged CSs entails (i)
parsing the queries, (ii) retrieving the query CSs, (iii) identifying the joins between them,
and (iv) mapping them to merged tables in the database. Steps (i)-(iii) are inherited
from our previous work in [Mei+17]. For (iv), a query CS can match with more than one
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table in the database. For instance, consider a query containing a chain of three CSs,
q1 ./ q2 ./ q3, joined sequentially with object-subject joins. Each query CS qi matches
with all tables whose property sets are supersets of the property set of qi. Thus, each join
in the initial query creates a set of permutations of table joins that need to be evaluated.
For instance, assume that q1 matches with c1, c2, while q2 matches with c3 and q3 matches
with c4, c5. Furthermore, by looking up the ECS index, we derived that the links [c1, c3],
[c2, c3], [c3, c4] and [c3, c5] are all valid, i.e., they correspond to candidate joins in the data.
Then, [c1, c3, c4], [c1, c3, c5], [c2, c3, c4] and [c2, c3, c5] are all valid table permutations that
must be processed. Two strategies can be employed here. The first is to join the UNIONs
of the matching tables for each qi, and the other is to process each permutation of tables
separately and append the results. Given the filtering performed by the ECS indexing
approach, where we can pre-filter CSs based on the relationships between them, the
UNION would impose significant overhead and eliminate the advantage of ECS indexing.
Therefore, we have implemented the second approach, that is, process a separate query
for each permutation. Finally, due to the existence of NULL values in the merged tables,
we must add explicit IS NOT NULL restrictions for all the properties that are contained
in each matched CS and are not part of any other restriction or filter in the original query.

6.4 Experimental Evaluation

We implemented raxonDB on top of PostgreSQL1. We did not extend our previous na-
tive RDF implementation of axonDB [Mei+17], because given the underlying relational
schema of the CS tables, we decided to rely on a well-established relational engine for
both the planning and the execution of queries, instead of re-implementing it. As the
focus of this chapter is to improve RDF storage and querying efficiency in relational set-
tings, we rely on existing mechanisms within PostgreSQL for I/O operations, physical
storage and query planning. In this set of experiments, we report results of implementing
hier_merge with the greedy approximation algorithm, as experimenting with the opti-
mal algorithm failed to finish the merging process even in datasets with small numbers
of CSs.

Datasets. For this set of experiments, we used two synthetic datasets, namely LUBM2000
(≈300m triples), and WatDiv (≈100m triples), as well as two real-world datasets, namely
Geonames (≈170m triples) and Reactome (≈15m triples). LUBM [GPH05] is a customiz-
able generator of synthetic data that describes academic information about universities,
departments, faculty, and so on. Similarly, WatDiv[Alu+14] is a customizable generator

1The code and queries are available in https://github.com/mmeimaris/raxonDB
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(a) Execution time (seconds) for
LUBM

(b) Execution time (seconds)
for Geonames

(c) Execution time (seconds) for
Reactome

Figure 6.5: Query execution times in milliseconds

with more options for the production and distribution of triples to classes. Reactome2 is
a biological dataset that describes biological pathways, and Geonames3 is a widely used
ontology of geographical entities with varying properties. Geonames maintains a rich
graph structure as there is a heavy usage of hierarchical area features on a multitude of
levels.

Loading. In order to assess the effect of hierarchical merging in the loading phase, we
performed a series of experiments using all four datasets. For this experiment, we measure
the size on disk, the loading time, the final number of merged tables, as well as the number
of ECSs (joins between merged tables) and the percentage of triple coverage by CSs
included in the merging process, for varying values of the density factor m ∈ [0, 1]. The
results are summarized in Table 6.1. As can be seen, the number of CS, and consequently
tables, is greatly reduced with increasing values of m. As the number of CSs is reduced,
the expected number of joins between CSs is also reduced, which can be seen in the column
that measures ECSs. Consequently, the number of tables can be decreased significantly
without trading off large amounts of coverage by dense CSs, i.e. large tables with many
null values. Loading time tends to be slightly greater as the number of CSs decreases, and
thus the number of merges increases, the only exception being WatDiv, where loading
time is actually decreased. This is a side-effect of the excessive number of tables (= 5667)
in the simple case which imposes large overheads for the persistence of the tables on disk
and the generation of indexes and statistics for each one.

Query Performance. In order to assess the effect of the density factor parameter m

during query processing, we perform a series of experiments on LUBM, Reactome and
Geonames. For the workload, we used the sets of queries from [Mei+17]. We employ two
metrics, namely execution time and number of table permutations. The results can be
seen in Figures 6.5 and 6.6. As can be seen, hierarchical CS merging can help speed up

2http://www.ebi.ac.uk/rdf/services/reactome
3http://www.geonames.org/ontology/documentation.html
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(a) # of CS permutations for
LUBM

(b) # of CS permutations for
Geonames

(c) # of CS permutations for Re-
actome

Figure 6.6: # of CS permutations for increasing m

Table 6.1: Loading experiments for all datasets

Dataset Size (MB) Time # Tables (CSs) # of ECSs Dense CS
Coverage

Reactome Simple 781 3min 112 346 100%
Reactome (m=0.05) 675 4min 35 252 97%
Reactome (m=0.25) 865 4min 14 73 77%
Geonames Simple 4991 69min 851 12136 100%

Geonames (m=0.0025) 4999 70min 82 2455 97%
Geonames (m=0.05) 5093 91min 19 76 87%
Geonames (m=0.1) 5104 92min 6 28 83%

LUBM Simple 591 3min 14 68 100%
LUBM (m=0.25) 610 3min 6 21 90%
LUBM (m=0.5) 620 3min 3 6 58%
WatDiv Simple 4910 97min 5667 802 100%

WatDiv (m=0.01) 5094 75min 67 99 77%
WatDiv (m=0.1) 5250 75min 25 23 63%
WatDiv (m=0.5) 5250 77min 16 19 55%

query performance significantly as long as the dense coverage remains high. For example,
in all datasets, query performance degrades dramatically when m = 1, in which case the
merging process cannot find any dense CSs. In this case, all rows are added to one large
table, which makes the database only contain one table with many NULL cells. These
findings are consistent across all three datasets and require further future work in order
to identify the optimal value for m.

In order to assess the performance of raxonDB and establish that no overhead is imposed
by the relational backbone, we performed a series of queries on LUBM2000, Geonames and
Reactome, assuming the best merging of CSs is employed as captured by m with respect
to our previous findings. We also compared the query performance with rdf-3x, Virtuoso
7.1, TripleBit and the emergent schema approach described in [PB16]. The results can
be seen in Figure 6.7 and indicate that raxonDB provides equal or better performance
from the original axonDB implementation, as well as the rest of the systems, including
the emergent schema approach, which is the only direct competitor for merging CSs.

107

Institutional Repository - Library & Information Centre - University of Thessaly
12/06/2024 04:55:53 EEST - 3.15.237.130



(a) Execution time (seconds) for
LUBM2000

(b) Execution time (seconds) for
Geonames

(c) Execution time (seconds) for
Reactome

Figure 6.7: Query execution times in milliseconds for different RDF engines

Especially for queries with large intermediate results and low selectivity that correspond
to a few CSs and ECSs (e.g. LUBM Q5 and Q6, Geonames Q5 and Q6) several of the
other approaches fail to answer fast and in some cases time out.

6.5 Conclusions and Future Work

In this chapter, we tackled the problem of merging characteristic sets based on their
hierarchical relationships. As future work, we will study computation of the optimal value
for m, taking into consideration workload characteristics as well as a more refined cost
model for the ancestral paths. Furthermore, we will study application of these findings
in a distributed architecture, in order to further scale the capabilities of raxonDB.
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Chapter 7

Computational Methods for
Containment and Complementarity
in RDF Cubes

7.1 Introduction

The increasing adoption of RDF as the de facto Semantic Web standard has led the in-
dustrial, government, and academic sectors to leverage Linked Data technologies [CRT13;
VT+11] in order to publish, re-use and extend big amounts of proprietary data. A large
subset of data on the web consists of multidimensional data about policies, demographics,
socio-economics and health data among others [Tam16].

Statistical multidimensional data is often represented in the form of data cubes. Un-
der this model, a single data record, named observation or fact, is broadly defined as
the value of a specific measure over several different observed dimensions [CD97]. For
example, Germany’s population for the year 2001 can be represented as an observation
with population as the measure, and location and time as the dimensions, with the values
Germany and 2001 instantiating these dimensions. The use of hierarchical values enables
the representation of information on multiple combinations of levels, such as the female
population of a country in the last decade, or the total population of a city in the last
year. An example of dimension hierarchies can be seen in Figure 7.1. The RDF Data
Cube Vocabulary (QB) [CRT13] provides a schema for RDF multidimensional data, al-
lowing for the representation of schemas, dimensions, measures, hierarchies, observations,
among others. Considering the aforementioned example, its mapping to the RDF QB
vocabulary can be seen in Listing 7.1. RDF QB enables different data publishers to fit
their data in a common meta-schema, and reuse common entities across different sources.
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Hence, remote datasets often exhibit overlaps in the values that instantiate their dimen-
sions and measures, this way creating implicit relationships between observations among
remote sources; for example, an observation can be a specialization or generalization of
another observation from a different dataset, an observation can partially aggregate in-
formation contained in other observations, or finally different observations can capture
complementary knowledge and can be combined together.

Inspired by the notion of fusion cubes [Abe+13] towards self-service analytics, we de-
fine instance-level relationships for multidimensional observations, and we address the
challenge of efficient computation of these relationships over multiple data cubes.

In order to better illustrate the defined relationships, we discuss an example scenario that
will be used throughout this chapter. In this scenario, the user has gathered data from
several remote sources in order to explore unemployment and population demographics.
The gathered data are in the form of observations and originate from Linked Data sources.
As such, they exhibit heavy re-use of the same hierarchies and code lists1. The example
hierarchies are shown in Figure 7.1, and a snapshot of the gathered data is shown in
Figure 7.2, where the analyst has gathered data from three different datasets, namely
D1, D2 and D3.

Observations o11 and o31 have the same values for the refArea and refPeriod dimensions,
while the sex dimension has the most general value possible, i.e., Total. Intuitively, this
means that the two observations measure different things for the same setting, and are
thus complementary. Furthermore, observations o21, o22 measuring unemployment in
Greece and Italy for the year 2001, are generalizations of o32 and o33, because the latter
measure unemployment in Athens and Rome, which are sub-parts of Greece and Italy
respectively, for a sub-period of 2011. For the data of the example, these relationships
can be seen in Figure 7.3.

Discovering relationships such as the above is useful in several tasks. Multidimensional
data enable third parties to study, process and visualize information in order to perform
more complex analytics such as combining different datasets, discovering new knowledge,
assisting socio-centric processes such as data journalism, as well as enabling evidence-
based policy making on the government and industry levels[NDS00; Böh+10; PS+96].
As potential users, we consider data scientists, such as data analysts or, data journalists
and business users, who collect data from external and corporate sources in their personal
data cube for analysis purposes. Then, the added value of detecting such relationships

1Some degree of schema alignment is often necessary in realistic scenarios. This type of alignment is
used in the following two prominent cases: (a) traditional BI settings, where all dimensions provide a
reconciled dimension bus, and (b) user-initiated data collections from the web.
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can be summarized in the following. First and foremost, observations that originate from
different datasets become linked, and thus comparable in future analytical tasks, as in
the case of fusion cubes [Abe+13] towards self-service analytics. Furthermore, navigation
and exploration of aggregations of datasets is facilitated with the existence of links on the
instance level. Traditional OLAP tasks such as rolling up or drilling down can be applied
for the exploration of remote cubes. These types of relationships can help quantify the
degree of relatedness across remote datasets and this way provide recommendations for
online browsing. Finally, materializing these relationships speeds up online exploration,
as well as computation of k-dominance [Cha+06], skylines and k-dominant skylines.

Finding implicit knowledge across different sources is a non-trivial, computationally
challenging task [Böh+10], that is inherently quadratic at its core, since all pairs of
records must be examined. Traditional query processing methods such as SPARQL en-
gines, and inference-based methods fail to address this issue efficiently as the volume
of data increases. For instance, our experiments with recursive, property-path based
SPARQL queries show that even for small numbers of records (≈20,000 observations
from 7 datasets) require more than one hour in commodity hardware to detect and ma-
terialize pair-wise containment relationships. Similary, inference-based methods such as
SWRL [Hor+05] and Jena Rules [Car+04] fail to scale due to the transitive nature and
the universal restrictions of these relationships; the search space expands exponentially
[Don03]. Hence, the need arises to establish more efficient methods that can scale to the
size of the web of data.

Approach Overview. In this chapter, we address efficient computation of three specific
types of relationships in multidimensional data from different sources, namely full contain-
ment, partial containment and complementarity. Full containment between observations
occurs when all dimension values in two observations are hierarchically related in the same
direction, i.e., the containing observation is a generalization of the contained observation,
while partial containment occurs when at least one, but not all of the dimension values
are hierarchically related. Complementarity occurs when two observations identify the
same setting but measure different aspects, and thus hold complementary information.
Specifically for complementarity, we extend the notion of schema complement[DS+12] to
fit observations.

We present a quadratic baseline algorithm for computation of these relationships, and
introduce three alternative methods that target efficiency and scalability, an approach
based on pruning the required comparisons by clustering together related observations,
and two approaches based on the notion of the multidimensional lattice, a data structure
that groups observations based on their defined combination of dimension levels. The
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ex:obs1 a qb: Observation ;
qb: dataSet ex: dataset ;
ex: refPeriod ex:Y2001 ;
sdmx -attr: unitMeasure ex:unit ;
ex: refArea ex:DE ;
ex: population "82 ,350 ,000"^^ xmls: integer .

Listing 7.1: Example RDF Data Cube observation

Figure 7.1: Hierarchical code list for the dimensions in Figure 7.2.

first approach exploits the dimension levels in order to reduce the required comparisons,
whereas the optimized approach makes use of the inherent hierarchical structure of the
lattice to further speed up the detection process. We perform an extensive experimental
evaluation of the 4 methods over 7 real-world multidimensional datasets, and compare
their efficiency with two traditional approaches, namely SPARQL querying and rule-
based inferencing. Finally, we evaluate the scalability of our approach in an artificially
generated dataset.

Contributions. The contributions of this chapter are summarized as follows:

• we formally define the notions of full containment, partial containment and com-
plementarity,

• we present four algorithms, a baseline, data-driven technique for computing these
properties in memory, and three alternative approaches with the scope of improving
performance with respect to efficiency and scalability,

• we perform an extensive experimental evaluation of the achieved efficiency and
scalability over both real-world and synthetic datasets, comparing between the
proposed methods, a SPARQL-based and a rule-based approach.

The remainder of this chapter is organized as follows. Section 2 discusses related work,
Section 3 presents the preliminary definitions and formulates the problem. Section 4
presents the proposed approaches. Section 5 describes the experimental evaluation. Fi-
nally, Section 6 concludes this chapter.
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Figure 7.2: Candidate relationships between observations.

Figure 7.3: Derived containment and complementarity relationships from datasets D1,
D2 and D3 of Figure 7.2.

7.2 Related Work

In the context of RDF, there exists a growing body of research focused on the provi-
sion of tools, methods and techniques for representing, analysing and processing mul-
tidimensional data. In this chapter, we build on, and extend the work presented in
[Mei+16b][MP14], where we introduced the notions of full containment, partial contain-
ment and complementarity, and discussed three approaches for efficient computation of
these relationships. We formally define the problem components and relationships, we
improve upon the presented approaches, and we introduce a novel optimization of the
cube masking approach that targets performance, complementing it with an extended
experimental evaluation.

The general problem of detecting similarities between resources is central in the fields
of entity resolution, record linkage and interlinking [Men+11; NA11; Vol+09; Pap+11;
Eft+17; Pap+16]. However, these approaches are focused on finding links between re-
sources from different datasets without taking into account multidimensional features
such as dimension values. To the best of our knowledge, this is the first work centred
on the definition, representation and computation of relationships between instance-level
multidimensional data.
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7.2.1 Schema-Level Hierarchy Extraction for OLAP

Traditional OLAP and data warehousing systems and frameworks are often used for
performing analytical queries with operators that can generalize (roll-up) or specialize
(drill-down) specific records, based on their defined dimension hierarchies. These are
most commonly built upon a relational backbone, or native data cube implementations
[VZ14], and rely on the management of data from trusted sources with known schemas and
interconnections. The latter assumption does not apply to data analysis in the Data Web,
because the input potentially originates from remote, implicitly related sources. Further-
more, these types of systems are not built for detecting instance-level relationships such
as containment and complementarity. For instance, early approaches on automatic con-
cept hierarchy detection have been proposed, but deal with hierarchy construction on the
schema or the attribute level, rather than the instance level[HF94][Han+96]. Similarly,
extraction of concept hierarchies from web tables and transformation to data cubes has
been studied in [AL12], and extraction of dimension hierarchies from ontological data
has been addressed in [RA07]. Thus, the process of detecting instance-level relationships
must be translated to queries over the employed format (e.g. SQL or SPARQL queries)
in the form of query operators, which makes the detection costly, as will be shown in the
experiments, or derived with the use of customized ETL processes.

7.2.2 Analytical Mining in the presence of hierarchies

The problem of finding related observations in multidimensional data spaces has been
addressed in the field of Online Analytical Mining (OLAM)[MRB99], which refers to the
integration of data mining techniques into traditional OLAP. These methods have been
successfully used for tasks such as classification of observations and detection of outliers
[MRB99][AY01], exploration recommendation[Ali+14][BRV11], intelligent exploratory query
recommendation [SS01], discovery of implicit knowledge[Gia+09] and optimized OLAP
querying[MRB99]. In [RGG15], the authors introduce the shrink operator that exploits
hierarchies as a means to provide summarized and shortened cubes. It achieves this by
clustering together and consequently merging similar facts, in order to assist human-
readability. Their work is not driven by efficiency, as in our case, rather they focus on
improving the presentation of cubes in graphical form. In [CCM15], the authors tackle
the problem of performing roll-up and drill-down operations on continuous dimensions,
rather than fixed dimension values as in our case, and to this end they employ hierarchical
clustering on the numerical values of the dimensions.
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7.2.3 Partial Materialization

In [DT16], the authors target efficiency in the performance of OLAP related tasks by
studying partial materialization techniques for aggregation and summarization of multi-
dimensional observations. Similarly, in [Hal01] the authors propose materialized views for
efficient processing of aggregation queries. These two approaches resemble our notion of
observation containment, and can indeed be complemented by the efficient computation
of this type of relationship on the observation level. In [Xie+16], the authors propose a
probabilistic approach for providing full and partial materialization over aggregate an-
alytics at the cube level. Ibragimov et al. [Ibr+16] use materialized views formulated
as SPARQL queries in order to address the lack of support for incomplete data with
implicit information, and they evaluate their approach on multidimensional RDF data
represented with the QB4OLAP model [EV12], which is an extension of the RDF QB
vocabulary. This way, they provide scalable support for aggregate queries that include
roll-up and drill-down exploration over incomplete data. This work is complementary
to our methods for efficient computation of aggregate relationships between observations
(i.e., observation containment) and the (partial) materialization of RDF views can be
complemented by the optimizations presented in this chapter.

7.2.4 Skyline Computation

The computation of containment relationships has been addressed in different contexts,
with skyline computation being the most prominent one. Specifically, skyline computa-
tion is based on the definition of observation dominance, and asserts the existence of
points in the multidimensional dataset that are not dominated (i.e., fully contained) by
other points [Yua+05; TEO+01; KRR02]. The set of these points comprises the skyline
of a dataset, and has found important applications in summarization and recommenda-
tion tasks in data warehousing. In this regard, full containment is a generalization of the
skyline problem, where we are interested in all intermittent skylines at all of the level
combinations of the hierarchies. Similarly, partial containment in the same context is
referred as the k-dominance problem in [Cha+06], where the authors propose a method-
ology for efficient computation of partial skylines in subsets of the original dimension set
of the input. The problem of Subspace Skyline computation is presented in [Rah+17],
and is defined as the computation of partial skylines in subsets of the dimensions of a
given dataset. This is relevant to our definition of partial containment, however, partial
containment can be defined in several different subsets of the dimensions between two
observations at the same time, which makes our problem more computationally compli-
cated.
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7.2.5 Observation Relationships via Similarity Metrics

As a metric of relatedness, containment and complementarity relationships have the po-
tential to highlight similarity between observations as well as datasets, even though this
is not the main focus of this work. In this regard, Aligon et al.[Ali+14] use query features
in OLAP sessions in order to define distance functions that capture instance-level sim-
ilarities. In a related context, Baikousi et al.[BRV11] propose several similarity metrics
in the form of distance functions that specifically address distances in hierarchical code
lists. In [HL11] the authors propose a set of scalable multidimensional methods via hier-
archical clustering in order to measure similarity between reports in the same cubes. In
the broader context of web-based data sources, the work in [DS+12] defines the notions
of schema and entity complement, the latter of which is the basis for our definition of
observation complementarity.

Recent works in entity resolution (ER) have been shown to perform efficiently in cases
when duplicate entities need to be identified based on pre-defined similarity metrics. As
ER is mainly a quadratic problem, in the sense that all pair-wise comparisons are needed
in order to identify duplicate or similar entries, these works usually focus on providing
fast ways of partitioning the search space in smaller chunks, or blocks, and limiting
the pair-wise comparisons of records within the same, or nearby blocks. Examples of
these have been addressed in [Ben+09][Pap+11][Pap+13a], while the reader is referred
to [Pap+15] for an extensive experimental evaluation of recent schema-less and schema-
aware techniques. While these approaches aim at identifying similar entries, they do not
address cases where the examined attributes (i.e., dimension values) exhibit hierarchical
relationships, as in our case. Furthermore, they provide approximate solutions, rather
than exact ones.

7.2.6 Multidimensional Linked Data Related Approaches

The versatility of the RDF model has enabled the creation of several schemas, vocabular-
ies and ontologies that are used for the representation of multidimensional data, concept
hierarchies, code lists and so on, with the most prominent example being the RDF Data
Cube Vocabulary (QB). Furthermore, many high-level representation models such as
RDFS2 and SKOS3 provide conventions for representing hierarchical dependencies, such
as rdfs:subClassOf, and skos:broader/skos:narrower. In fact, in this work, we rely on
skos concepts and hierarchical properties in order to detect and represent hierarchical
dependencies between values in code lists that are shared among different datasets.

2https://www.w3.org/TR/rdf-schema/
3https://www.w3.org/2004/02/skos/
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In the context of Linked Data, a thorough survey of how OLAP exploration tasks and
processes are performed in the context of the Semantic Web, is given in [Abe+15]. The
authors perform a classification of research works that leverage Semantic Web technolo-
gies for OLAP schema design and data provisioning according to five criteria, namely
materialization, transformations, freshness, structuredness, and extensibility, and further
analyzed these technologies with respect to Reasoning, Computation and Expressivity.
In this regard, our work can be categorized as a computational approach with instance-
level inferred materialization as the ultimate goal, in order to allow for constant-time
access to more complex exploration tasks, such as querying implicit information. The
work in [KSH14] addresses the problem of finding related cube entities amongst differ-
ent and remote sources with the use of an extended Drill-Across operator. The authors
tackle relatedness on the level of the cube schema, and to that end they define related-
ness by quantifying the difficulty of tasks such as conversion between cubes and merging
of different cubes. In [KH13] the authors advocate the development of native engines
that translate traditional OLAP to SPARQL queries and materialized views in order to
tackle the lack of support for analytical workflows in traditional RDF management sys-
tems. In [Kom+16] the authors propose a SPARQL-based ETL framework for extracting
multidimensional star-pattern data and hierarchies from RDF and Linked Data using
dynamically generated SPARQL queries, but the authors note the lack of functionality
regarding information extraction in the form of aggregation functions in their approach.
In [EV16], the authors propose CQL, a conceptual algebra for querying multidimensional
RDF data, which they use to translate SPARQL queries and apply traditional SPARQL
query optimization methods. In [BG17], the authors propose a method for discovering
and merging OLAP cubes in the context of RDF. While this is an interesting approach,
it is not centred on the detection of instance-level relationships, as is the main focus in
our work. In [EV12][Var+16a], the authors present the QB4OLAP vocabulary, an exten-
sion of the RDF QB vocabulary with OLAP constructs such dimension levels, with the
aim to go beyond the representational capabilities of QB and enable native support for
traditional OLAP tasks in Linked Open multidimensional datasets. Extending on this
work, in [Var+16b] the authors implement a tool for performing OLAP-related tasks on
QB Linked Data without requiring SPARQL expertise. To this end, they provide func-
tionality for semi-automatic transformation of existing QB datasets to QB4OLAP, and
high-level query formulation using the generic QL language. Furthermore, they imple-
ment an enrichment module that is able to extract hierarchies and code lists from remote
Linked Data sources.Even though the scope of these works is not to provide efficient
computation of instance-level relationships between observations, as is our focus, they
are complementary to our approach.
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7.3 Problem Definition

In this section, we present preliminaries of our approach and formulate the problem
addressed in this chapter. As was noted in the introduction, in the context of this work
we are interested in processing linked open multidimensional datasets with OLAP cube
characteristics. These datasets must exhibit several characteristics, the main of which is
the conformance to a representational model that allows the description of cubes and cube
facts, i.e., observations. Furthermore, linked open data technologies use commonly agreed
ontologies for describing data across different sites. This enables us to process datasets
which, although being published by different sources, are following the same semantics
for the description of the schema, the values of the dimensions, the unit of measurements,
etc. Under this scope, we consider a problem space consisting of n input datasets, each
of which follows a multidimensional schema in the form of one or more cubes, containing
observation instances. In the following, we present and define the components of the
problem.

Definition 16 Dimension Schema.

Following the definitions in [GGV12], a dimension schema P is a tuple (L,→) where L

is a non-empty finite set of values h1, h2, . . . , hn along with a top value concept named
All, and → is a partial ordering of the values in L. This partial ordering essentially
defines a hierarchy in the values. In the setting of this work, L is a fixed code list, that
is represented by URIs. Furthermore, the → operator in the definition of P defines a
hierarchy such that when hi � hj, where hi, hj are values in L, then hi is a hierarhical
parent of hj. The concept hroot = All is defined as the top level concept in each code list,
i.e., an ancestor of every other value in L, such that ∀hi : hroot � hi. This hierarchical
ancestry is reflexive, i.e. ∀hi : hi � hi. Figure 7.1 shows several code list values in their
respective hierarchies.

Definition 17 Cube Schema.

A cube schema CS is a tuple (P,M), where P is a dimension schema, and M is a finite
set of measures. Measures are essentially measurements of a specific metric that are
instantiated over a point in the multidimensional space defined by P .

Definition 18 Observation.

An observation is a cube instance that defines a single point in the multidimensional space.
More specifically, an observation o is a tuple of the form oa = (h1

a, h
2
a, . . . , h

l
a, v

1
a, v

2
a, . . . , v

m
a ),

where hi
a is the value of dimension Pi, and via is the value of measure Mi for observation

oa. In other words, an observation is an entity that instantiates all of the dimensions
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and measures that are defined in its respective dataset. In our running example, the val-
ues in the white cells represent dimension values (e.g. "Athens" is a value for dimension
refArea), while grey cells represent the values of measures, such as 10% unemployment.

Definition 19 Dataset Structure.

Let D = {D1, . . . , Dn} be the set of all input datasets. A dataset Di ∈ D consists of a set
of data observations Oi = o1, . . . , ok, as well as a set of dimension schemas Pi = P1, . . . , Pl

and a set of measures Mi = M1, . . . ,Mm. Thus, Di is a tuple of the form (Oi, CSi), where
CSi = (Pi,Mi). This means that D is defined as the union of the respective components
of the input datasets, that is, D = (OD, CSD), with OD =

⋃n
i=1 Oi, CSD = (PD,MD),

with PD =
⋃n

i=1 Pi and MD =
⋃n

i=1 Mi. In the running example, all three datasets
D1, D2, D3 share the dimensions refArea and refPeriod. Furthermore, D2 and D3 share
the measure ex:unemployment.

These datasets originate from possibly remote, linked open data sources, and can exhibit
overlap in both their records, and the used/reused vocabularies. Hence, dimension values
that instantiate observation instances are drawn from linked open codelists and vocabu-
laries and can be shared across datasets. This creates the possibility of linkage between
datasets on the instance level, i.e., observations can be related across remote datasets.
For this reason, we will define three types of relationships that pairs of observations can
exhibit, namely full containment, partial containment, and complementarity.

Definition 20 Observation Complementarity.

Complementarity is a binary relationship between a pair of observations. Specifically,
we define complementarity as a function compl : O × O → B, where B is the boolean
set B = {0, 1}. Let oa and ob be two observations that originate from datasets Da =

(Oa, CSa) and Db = (Ob, CSb) respectively, with CSa = (Pa,Ma) and CSb = (Pb,Mb).
Then, oa complements ob when the following conditions hold:

∀Pi ∈ Pa ∩Pb : hi
a = hi

b (7.1)

∀Pj ∈ Pa4Pb : hj
b = hroot (7.2)

where Pa4Pb is the symmetric difference of sets Pa and Pb. When both conditions
hold true, there is a complementarity relationship between oa and ob, i.e., (1) ∧ (2)
⇒ compl(oa, ob) = 1. We denote this with oa

c
= ob. This definition essentially relates

the two observations as occupying the same point in the multidimensional space defined
by their shared dimensions. These shared dimensions Pa ∩ Pb must be instantiated
with the same values from the respective code lists (condition (1)), and all non-shared
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dimensions, i.e., Pa4Pb, must be equal to the root of the dimension hierarchy, i.e.
the value hroot = All, thus providing no further specialization, (condition (2)). This
relationship indicates that the two observations basically identify the same setting. The
complementarity relationship is symmetric, thus oa

c
= ob also implies ob

c
= oa.

For instance, in a one-dimensional setup where the only dimension is refArea, an obser-
vation that measures poverty for the value Greece in this dimension, exhibits complemen-
tarity with an observation that measures population in Greece. If the second observation
originates from a dataset that includes the dimension sex, then the two would comple-
ment each other only if the non-shared dimension (i.e., sex) provides no specialization in
its respective observation. In our example, observations o11 and o31 are complementary,
in that they measure different things for Athens in 2001. Condition (2) holds for o31 in
the sex dimension, where absence of the dimension implies existence of the root value
hroot = All. The fact that o11 refers to all values from the sex dimension does not provide
any further specialization and is inherently found in o31 as well.

Definition 21 Observation Containment.

A special type of directed relationship between a pair of observations exists when one of
the two observations is a specialization of the other. We call this a containment relation-
ship. For instance, the population of Greece implicitly contains all the populations of
Greece’s cities. However, there are cases where only a subset of the dimensions exhibits
this type of relationship between two observations. This is an important relationship as
it shows which dimensions need to be abstracted (i.e., rolled-up) in order for two obser-
vations to become comparable and/or relatable. For this reason, we define two notions
of containment, namely full containment and partial containment. Full containment is
exhibited when all dimension values of one observation are subsumed by the values of
the respective dimensions of another observation, while partial containment is exhibited
when at least one, but not all dimension values are subsumed from one observation to
another.

More specifically, we define the existence of containment as a function cont : O × O →
[0, 1], where a value of 0 means that no containment relationship exists, while a value of
1 means that there exists absolute containment between a pair of observations. When
cont(oi, oj) = 1, we call this full containment. On the other hand, when 0 < cont(oi, oj) <

1, we call this partial containment. These are defined as follows.

Definition 21.1 Full Containment.

Let oa and ob be two observations from datasets Da = (Oa, CSa) and Db = (Ob, CSb)

respectively, with CSa = (Pa,Ma) and CSb = (Pb,Mb). Full containment between two
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observations, oa ∈ Oa and ob ∈ Ob, exists when the following conditions hold:

Pa ∩Pb 6= ∅ (7.3)

∀Pi ∈ Pa ∩Pb : hi
a � hi

b (7.4)

Furthermore, the non-shared dimensions must not provide any further specialization, as
stated in condition (2). When all conditions are true, the pair of observations exhibits
full containment. Therefore, (2) ∧ (3) ∧ (4) ⇒ cont(oa, ob) = 1. We denote this with
oa

f
� ob. The intuition behind these conditions relies on several facts. An observation oa

fully contains ob when values of all shared dimensions for oa are hierarchical ancestors of
the values for the same dimensions in ob as stated in (4). Furthermore, the conjunction
of the two dimension sets must be non-empty, as stated in (3). This condition is needed
because the universal condition in (4) would be evaluated to true in the case that there
are no shared dimensions. Observe that the containment property is not symmetric, i.e.,
given oa

f
� ob, then ob

f
� oa is not implied. In the example, o21 fully contains o32 and o34.

Definition 21.2 Partial Containment.

Let oa and ob be two observations from datasets Da = (Oa, CSa) and Db = (Ob, CSb)

respectively, with CSa = (Pa,Ma) and CSb = (Pb,Mb). Then, oa partly contains ob

when there exists at least one dimension whose value for oa is a hierarchical ancestor of
the value of the same dimension in ob, as stated in the following condition:

∃Pi ∈ Pa ∩Pb : hi
a � hi

b (7.5)

Thus, partial containment is a generalized case of full containment. We denote this as
oa

p
� ob. In the example, observation o21 partially contains o31, because Greece contains

Athens but 2001 does not contain 2011. The notation is summarized in Table 7.1.

Problem Definition. Based on the above, our problem is formulated as follows. Given
a set D of source datasets, and a set O of observations in D, for each pair of observations
oi, oj ∈ O, i 6= j, assess whether a) oi

f
� oj , b) oi

p
� oj and c) oi

c
= oj. In the following

section, we provide our techniques for computing these properties.

7.4 Algorithms for computing complementarity and
containment

In this section, we present four methods for the computation of the proposed relationships,
i.e, full/partial containment and complementarity. We first present a baseline method

121

Institutional Repository - Library & Information Centre - University of Thessaly
12/06/2024 04:55:53 EEST - 3.15.237.130



Table 7.1: Notation

Notation Description
oi The i-th observation in a set O
P A set of dimension schemas
M A set of measure schemas
Pi The i-th dimension in a set P
Mi The i-th measure in a set M
hia Value of dimension Pi for observation oa

hia � hib hia is a parent of hib
hroot The root value All

compl(oa, ob) Complementarity function
cont(oa, ob) Containment function
oa

c
= ob oa complements ob

oa
f
� ob oa fully contains ob

oa
p
� ob oa partially contains ob

that requires quadratic computations, i.e., comparisons for all pairs of observations, and
then we propose three efficient and scalable alternatives. The first uses clustering to group
related observations together and limit comparisons within clusters, the second uses the
notion of a cube mask lattice [HRU96] in order to take advantage of the hierarchical rela-
tionships between the levels of the dimensions of each observation and limit comparisons
between hierarchically related containers, and the third proposes an optimization over
the cube masking method.

7.4.1 Baseline

First, we present a baseline method, which performs comparisons between all pairs of
observations in the input dataset. Performing all pair-wise comparisons makes the base-
line algorithm quadratic, and thus not efficient for large datasets. However, this method
requires minimal preprocessing and is thus suited for smaller input sizes.

Representation. The baseline algorithm works under the premise that observations are
represented as bit vectors in a large bitmap, which essentially defines a multidimensional
feature space. Let D1 = (O1, CS1), . . . , Dn = (On, CSn) be n input datasets, then this
bitmap is represented by an occurrence matrix OM, where each row is defined by an
observation key in

⋃n
i=1Oi, and each column represents a specific value in the codelist

hierarchies of the union of all dimension schemas P =
⋃n

i=1 Pi, with Pi ∈ CSi. That is,
for each observation, we set the bits that correspond to the dimension values of the obser-
vation. This representation also captures the ancestral relationships between hierarchical
values of the dimensions, by encoding the occurrence of a dimension value together with
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all of its parents. For this, we set the value of 1 to all columns that are ancestors of this
value.

Prior to creating the representation space, it is often an implicit requirement of the input
to perform dimension alignment, and have a reconciled dimension bus in the multidimen-
sional space. This can be achieved by applying established entity resolution techniques for
interlinking dimension values across different datasets. Even though we use the inherent
linkage of Linked Open Data, it is often necessary to further resolve disambiguations and
similarities in the data. Note however that Entity resolution tasks are beyond the scope
of this work, which focuses on data analytics rather than on data integration problems.
Thus, we consider that schema alignment and mapping of values is feasible and amortized
over time (especially when data is collected from already processed sources at a regular
basis) .

The occurrence matrix OM is a matrix that is defined over the union of all input datasets,
and encodes each observation with respect to the values, all the way to the root, of its
dimensions. Thus, presence of a dimension value is denoted with the corresponding bit
of the column of the dimension set to 1. Furthermore, hierarchical occurrence is also
represented in OM, by setting all parents of the dimension value to 1, up to the root.

Each observation is defined over this matrix of dimensions |O| × |L| as a bit vector
representing the occurrences of codelist values in their respective dimensions, that is,
each value hi ∈ L becomes a feature, i.e., a column in OM. For example, given an
observation oa, and its value hPj

a for dimension Pj, then the value as well as its hierarchical
subsumption is encoded in OM by assigning a set bit in the column that represents
hi = hj

a, as well as all of the parents of hi. Finally, we set the columns representing hroot

for all observations that do not contain Pj in their schema. This means that dimensions
not appearing in a cube schema are assigned the top concept, this way marking the
distinct lack of specialization in the absence of a dimension.

Conceptually, OM can be vertically partitioned into a series of sub-matrices, each one rep-
resenting one dimension in the unified schema of the input, i.e., OM = [OM1, . . . ,OM|P|],
where OMi is a sub-matrix that represents occurrences for all values of dimension pi. For
the example of Figure 7.2, and given the hierarchical code lists shown in Figure 7.1, the
OM matrix is depicted n Table 7.2. The baseline algorithm uses OM for computing
containment scores, and encoding these scores in a pair-wise containment matrix. The
latter is used for the computation of both the complementarity and the containment
relationships.
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Table 7.2: Matrix OM for the example of Figure 7.2

refArea refPeriod sex
WLD EUR AM GR IT Ath Rom US TX Aus ALL 2001 2011 Jan11 Feb11 T F M

obs11 1 1 0 1 0 1 0 0 0 0 1 1 0 0 0 1 0 0
obs12 1 0 1 0 0 0 0 1 1 1 1 0 1 0 0 1 0 1
obs21 1 1 0 1 0 0 0 0 0 0 1 0 1 0 0 1 0 0
obs22 1 1 0 0 1 0 0 0 0 0 1 0 1 1 0 1 0 0
obs31 1 1 0 1 0 1 0 0 0 0 1 1 0 0 0 1 0 0
obs32 1 1 0 1 0 1 0 0 0 0 1 0 1 1 0 1 0 0
obs33 1 1 0 0 1 0 1 0 0 0 1 0 1 0 1 1 0 0

Table 7.3: (a) Matrix CM1 for dimension refArea of the example of Figure 1, (b) Matrix
OCM for the example of Figure 1

(a)

obs11 obs12 obs21 obs22 obs31 obs32 obs33
obs11 1 0 0 0 1 1 0
obs12 0 1 0 0 0 0 0
obs21 1 0 1 0 1 1 0
obs22 0 0 0 1 0 0 1
obs31 1 0 0 0 1 1 0
obs32 1 0 0 0 1 1 0
obs33 0 0 0 0 0 0 1

(b)

obs11 obs12 obs21 obs22 obs31 obs32 obs33
obs11 1 0 0.33 0.33 1 0.66 0.33
obs12 0.33 1 0.66 0.66 0.33 0.66 0.66
obs21 0.66 0.33 1 0.66 0.66 1 0.66
obs22 0.33 0 0.33 1 0.33 0.66 0.66
obs31 1 0 0.33 0.33 1 0.66 0.33
obs32 0.66 0 0.33 0.66 0.66 1 0.33
obs33 0.33 0.33 0.66 0.33 0.33 0.33 1

Specifically, for each pair of observations, or rows in OM, we calculate a score that de-
notes containment. This score is basically a normalized indicator of how many dimensions
exhibit subsumption between the (ordered) pair of observations. Given a specific dimen-
sion pi, the |O| × |O| matrix that is computed for all pairs of observations is called the
containment matrix for dimension pi. To compute a containment score for a pair of ob-
servations with respect to a specific occurrence matrix OMi of dimension pi = (Li,→), as
per the definition of Section 2, we define a conditional boolean function sf : Bk×Bk → B,
where B is the boolean realm, i.e., B = {0, 1}, and Bk represents the set of bit vectors
of size k = Li. Assuming there is a transformation bv : O → Bk that transforms the
values of an observation to its respective bit vector for a particular dimension, then, sf
is defined as follows:

sf (oa, ob) |OMi
=

{
1, if bv(b) ⊆ bv(a)

0, otherwise
In other words, containment exists if the bit vector of the right-hand observation is a
subset of the bit vector of the left-hand observation. This can easily be computed as a
logical AND operation between the bit vectors of the rows, i.e., if bv(b) ∧ bv(a) = 1, then
bv(b) ⊆ bv(a). We apply sf for oa and ob for dimension pi in OMi. Application of this
function for each dimension returns a set of |P | containment matrices, CM1, . . . ,CMk.
Adding these matrices yields the Overall Containment Matrix OCM:

OCM =
k∑

i=1

CMi
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The values in OCM are normalized between [0, 1], with 0 denoting absence and 1 denot-
ing presence of containment in all involved dimensions. This means that full containment
between a pair of observations is derived when a cell has a value of 1, and partial contain-
ment when a cell has a value between 0 and 1 (non-inclusive). To assert which particular
dimensions exhibit containment in a partial relationship, we examine the cells in CMi

being equal to 1. The occurrence of a 0 value indicates that full containment and com-
plementarity can not hold. Note also that measure overlaps can be easily detected with
a simple lookup. The construction of the OCM matrix is explained in Algorithm 9 com-
puteOCM. We then calculate containment and complementarity using the OCM-based
Algorithm 10 baseline.

Algorithm 9: buildContainmentMatrix
Data: An occurrence matrix OM, a set P of dimensions and their start indices in

OM
Result: An overall containment matrix OCM

1 initialize OCM;
2 for each pi ∈ P do
3 initialize CMpi;
4 for each pair oj, ok ∈ OMpi do
5 if oj AND ok == oj then
6 CMpi[j][k]← 1;
7 else
8 end
9 OCM[j][k]← OCM[j][k] + (CM(pi)/ |P |);

10 end
11 end

Computation of complementarity. Recalling the definition of complementarity, and
specifically condition (1), we can take advantage of the reflexivity of complementarity and
assert that two observations are complementary when (1) and (2) hold bi-directionally.
Specifically, the existence of two equal values ci, cj implies that there exists a bi-directional
hierarchical ancestry relationship, i.e., ci � cj and cj � ci. In this context, if two
observations are related with bi-directional full containment, then they are asserted to
be complementary. Therefore, during the same process of computing containment, we
can also compute the complementarity relationships. For this reason, we use OCM to
assess whether a pair of observations exhibits full containment in both directions, i.e.
oa

f
� ob and at the same time ob

f
� oa. For example, in Table 3, the obs11 and obs31 are

complementary, whereas the obs21 and obs32 are not complementary although exhibit
full containment.
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Complexity Analysis. Building the containment matrix requires n2 iterations over the
full observation vectors, where n is the number of observations in the input. Even though
Algorithm 9 iterates over observations |P| times, one for each dimension, the input for
each iteration is a subset of the observation, as we take into account only the dimension
values for the particular dimension. Hence, assuming that the size of a bit vector is b for
all |P| dimensions, and b =

∑|P|
i=1 bi, where bi is the size of the bit vector for dimension

Pi, then the number of checks with respect to the bit vector size for dimension Pi is bin2.
Adding these for all dimensions,

∑|P|
i=1 bin

2 = b1n
2 + · · · + b|P|n

2 = n2
∑|P|

i=1 bi = n2b.
Therefore, for fixed vectors of size b, the total complexity of this step is O(n2) for n

observations. Then, we iterate once again all of the pairs of observations in Algorithm
10. Therefore, the total iterations required by the baseline approach are 2n2, with an
asymptotic time complexity of O(n2).

The baseline algorithm operates by applying all possible pair-wise comparisons between
observations in the input datasets. Thus, given n observations, the complexity is O(n2).
However, during the iteration of the set of CM matrices, if a 0 is found at any point, we
can skip further computation of full containment and complementarity, because the pair
under comparison is no longer candidate for these relationships, per their definitions.

Storage-wise, OM needs n×|P | space for n observations and |P | dimension properties in
the input, following a multi-dimensional array approach. However, in our implementation,
a sparse matrix implementation is adopted in order to reduce the space complexity.

7.4.2 Computation with Clustering

The baseline approach requires n2 comparisons and thus quickly becomes inefficient for
large datasets as it fails to scale as a result of this complexity. The first proposed alterna-
tive method aims at improving performance by reducing the search space and executing
fewer comparisons between observations. It is based on pre-clustering the input observa-
tions based on their distances in the multidimensional space, and limiting the comparisons
between observations that belong to the same cluster. This approach is shown in Algo-
rithm 11. The occurrence matrix OM is the input of the algorithm, and all rows are
clustered into smaller occurrence matrices (Line 1). Then, the algorithm iterates through
each of these clusters and applies the buildContainmentMatrix and baseline algorithms
to each separate cluster (Lines 3-5). At each step of the iteration, the return arrays are
updated to include the newly retrieved relationships (Line 6).

Notes on the Clustering Step. In our experiments, we employed three clustering
algorithms, namely k/x-means [PM+00], agglomerative clustering and fast canopy clus-
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Algorithm 10: baseline
Data: An overall containment matrix OCM.
Result: SF , Sp, Sc sets of full, partial containment and complementarity

relationships, and a map of partial containment relationships mapP with
the dimensions they exhibit containment in.

1 initialize SF , Sp, Sc;
2 for each pair oj, ok ∈ OCM do
3 if OCM[i][j] == 1 then
4 SF ← SF ∪ (oi, oj);
5 if OCM[j][i] == 1 then
6 SC = SC ∪ (oi, oj);
7 else if OCM[i][j] > 0 then
8 SP = SP ∪ (oi, oj);
9 for each pi ∈ P do

10 if CMpi[i][j] == 1 then
11 mapP (oi, oj, pi) = true

12 end
13 else
14 continue;
15 end
16 end

tering [MNU00]. The input for the distance function of the clustering step is a vector
with the dimension values of the row. While more features such as other semantic and
RDF metadata can be taken into account, previous related work [BRV11] has shown that
simple hierarchical distances of the values of the hierarchy are adequate to characterize
the distance between dimension values. It is out of scope to find the optimal cluster-
ing approach for the computation of the relationships, as finding the optimal clustering
parameterization or a close approximation is a non-trivial task. More sophisticated clus-
tering approaches can be employed, however we base our selection on evaluating our
approach on three representative clustering algorithms, a centroid-based (k/x-means, a
hierarchical (agglomerative) and a fast pre-clustering approach (fast canopy). In order
to optimize the pre-processing step of creating the clusters and assigning points to them,
we first cluster a small sample of the data (in our experiments 10% of the input size),
then we assign the rest of the input to the created clusters.

Complexity Analysis. Time and space complexity of the clustering step depends on the
complexity of the chosen clustering algorithm, the number of clusters and the distribution
of observations in the clusters. The baseline algorithm will run times equal to the number
k of clusters. However, the distribution of observations in clusters is not known for a given
collection of datasets. In the centroid-based case (canopy, k/x-means), assuming an equal
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Algorithm 11: baselineWithClustering
Data: An occurrence matrix OM
Result: SF , Sp, Sc sets for fully, partial containment and complementarity

relationships.
1 clusters← cluster(OM);
2 initialize OCM;
3 for i = 1 to clusters.size do
4 OCMi ← buildContainmentMatrix(clusters[i], P );
5 SFi, SPi, SCi ← baseline(OCMi);
6 SF , SP , SC ← (SF , SPSC) ∪ (SFi, SPi, SCi);
7 end
8 return SF , SP , SC ;

distribution of n
k

observations per cluster, then the time complexity for each cluster is
Θ(n

k
)2 thus making the total time complexity Θ(n

2

k
) . Following a rule of thumb where

k =
√

n
2

, this becomes Θ(n1.5), at the cost of information loss, as will be shown in the
experiments. This does not, however, account for the complexity of the actual clustering
step, which in general is a hard problem of at least quadratic nature (e.g., hierarchical
clustering requires n2logn steps, while k-means can be solved in ndk steps when the
number of dimensions d and the number of centroids k are fixed).

7.4.3 Computation with Cube Masking

In this section, we present an alternative pre-processing method that enables flexible
processing and identification of the containment and complementarity relationships in
the data. The method is based on the notion of cube masks, which are structures that
represent a fixed level instantiation of all the dimensions, derived from the observations
in |D|, and the cube lattice, which represents the cube masks and their interrelationships
into a graph lattice. Following, we provide the definition of these notions.

Definition 22 Cube Masks.

Given a globally fixed dimension ordering, a cube mask ci is a tuple ci = (lp1 , lp2 , . . . , lpn),
where p1 . . . pn are dimensions in P , and lpk is an integer denoting the level of dimension
pk as defined in ci. Note that P is an ordered set, and the set of all cube masks in a
dataset D is denoted with CD. In order to derive cube masks from a given dataset D,
we use a function l : C → N that maps codelist values to the hierarchy level they belong,
and a function mask : O → CD that maps an observation to a specific cube mask. Given
the above, the mask for an observation oi is given as:

mask(oi) = (l(hi
1), l(h

i
2), . . . , l(h

i
k)) (7.6)
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A cube mask can be used as a container structure that holds references to all the obser-
vations that exhibit this level signature. In this sense, a cube mask container ||ci|| can
be defined as the set of all observations for which the evaluation of the mask function is
equal to ci, i.e.:

||ci|| =
n⋃

i=1

oi,mask(oi) = ci (7.7)

Each observation is assigned to exactly one cube mask. This means that for a given
dataset D with k cube masks, the set of all observations O in D is given as the union of
all cube mask containers ||ci||, i.e., O =

⋃k
i=1 ||ci|| .

Definition 23 Cube Lattice.

Given a dataset D and set of cube masks CD as defined, we can build a graph lattice
[HRU96][SDN+98], where each cube mask is a node, and each edge between two nodes
denotes a direct subsumption relationship between the two nodes. In this sense, an edge
in the lattice represents a difference of exactly one level in exactly one dimension between
the two cube mask nodes. Formally, a cube lattice is a graph L = (V,E) where V ∈ CD

and E ∈ (V × V ). Specifically, a directed edge between two nodes exists in L, when
the two nodes exhibit pair-wise subsumption in exactly one dimension, with all other
dimension levels being equal, i.e. the following is true:

E(ci, cj) ∈ L ⇐⇒ ∃pk ∈ P : lipk = ljpk + 1,

∀pm 6= pk : l
i
pm = ljpm

(7.8)

Furthermore, given two cube masks ci and cj, the relationship ci �cube cj is used to denote
that for all dimensions in P , ci is defined in a level that is the same or higher than cj, and
ci is thus a hierarchical ancestor of cj. Formally, this means that there exists a directed
path in L between ci and cj, or that there exists a sequence of vertices pathij = (ci =

v1, v2, . . . , vk = cj) such that (vm, vm+1) ∈ E for 1 6 m < k. This further entails that
each directed pair of nodes from pathij exhibits pair-wise subsumption, i.e. given a path
pathij = (ci = v1, v2, . . . , vk = cj), then ∀m,n ∈ [1 . . . k],m < n→ vm �cube vn .

An example lattice for the three hierarchies of Figure 7.1 can be seen in Figure 7.4.
Using the lattice, we can immediately prune out comparisons between observations that
belong in cube masks that are not hierarchically related. For instance, in the lattice of
the figure, it is unnecessary to compare ||c020|| with ||c310|| for full containment, because
the relationship c310 �cube c020 is not satisfied, i.e., while the cube with signature 310 is
defined on a higher level for dimensions refArea and sex (3 > 0 and 0 > 0 respectively),
the same is not true for dimension refPeriod (1 � 2). Thus, it is guaranteed that no full
containment relationships can be found between ||c020|| and ||c310||.
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Lattice Creation. The multidimensional cube mask lattice L can be created with one
scan on the observations of D, by applying the mask function on each observation and
storing the hash signatures of the unique cube masks into an appropriate data structure,
such as a hash map. Furthermore, during the same iteration, we can derive the set of
all ||ci|| in D. This process can be seen in Algorithm 12. First, we initiate a single scan
through all observations (Line 2), then for each observation we apply the mask function
in order to derive the cube mask of the observation (Line 4), and finally we add the
observation to cubeMaskMap with the found mask as key (Line 5). Then, we iterate
through all the detected cubes in a nested loop and check for subsumption between the
cubes (Lines 7-13).

Algorithm 12: latticeCreation
Result: A mapping of observations to unique cube masks, and an adjacency list

with the edges between hierarchically related cubes.
1 initialize cubeMaskMap, lattice;
2 for each oi ∈ O do
3 initialize cube;
4 cube← mask(oi);
5 cubeMaskMap.put(cube, cubeMaskMap.get(cube).add(oi)) ;
6 end
7 for each ci ∈ cubeMaskMap.keys() do
8 for each cj ∈ cubeMaskMap.keys() do
9 if ci �cube cj then

10 lattice.get(ci).add(cj)
11 end
12 end
13 end
14 return cubeMaskMap, lattice;

Baseline Computation using the Lattice. In the cases of full containment and
complementarity, we do not need to compare observations that belong to lattice nodes
that are not hierarchically related, such as node "121" with node "311". In the case of
partial containment we look for at least one dimension inclusion (i.e. path) in the lattice
before comparing the contents.

Based on these observations, we propose the cubeMasking algorithm (Algorithm 13). The
algorithm first identifies cubes in the input datasets and populates the lattice, mapping
observations to cubes (Line 2). Then, it iterates through cubes (Line 3) and does a pair-
wise check for the cube containment criterion (Line 5). Finally it compares observations
between pairs of cubes that fulfils this criterion (Lines 9-11). In order to perform these
steps, we use a hash table to ensure that a value’s level can be checked in constant
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Example Observations:
[Rome, Jan2011, Female]
[Athens, Jan2011, Male]

321

221 311 320

120

211 220 301 310

111021 201 210 300

121

011 020 101 110 200

010 001 100

000

o12 o32,o33

o11, o31

o21,o22

Example Observation:
[World, All, Total]

Figure 7.4: The lattice for the three hierarchies of Figure 2. Observations in Figure 1 are
mapped to the appropriate node. The number in each node corresponds to the level of
each dimension.

time. We then go on to identify the cubes and build the lattice by iterating through all
observations and extracting their unique combinations of dimensions and levels. To do so,
we apply a hash function on each observation that both identifies and populates its cube
at the same step. Finally, we iterate through the identified cubes and by doing a pair-
wise check for the containment and complementarity criteria, all meaningful observation
comparisons are identified. This can be seen in Algorithm 13.

alysis. In this approach, only the observations between comparable cubes are compared
for the candidate relationships; the multidimensional lattice ensures that the contents of
cube masks that are not hierarchically related will not be iterated quadratically. Thus,
in the worst case, the maximum number of cube masks is defined as the number of
permutations of dimensions and levels, i.e. k(|P |), where k is the maximum level of all
hierarchies and |P | is the number of dimensions. In order to check for comparable pairs
of cube masks, we need to identify if two cube masks belong in the same ancestral path.
Thus, a full (directed) traversal of the lattice is required, starting from the root. The
complexity is equal to the number of vertices, i.e., k(|P |). In the worst case, there will
exist only one mask containing all observations, and all pairs of observations will have
to be compared, thus still making this approach a quadratic one. However, assuming
that there exist k(|P |) > 1 vertices, with c comparable mask pairs found in the traversal,
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Algorithm 13: cubeMasking
Data: A list C with all code list terms as they appear in the datasets, a hash table

levels with a mapping of hierarchical values to their levels, and a list O
observations

Result: SF , Sp, Sc sets for full, partial containment and complementarity
1 initialize cubeMaskMap;
2 cubes, lattice← latticeCreation();
3 for each pair ci, cj ∈ cubes do
4 for each pi ∈ P do
5 if not(cubej.pi ≺ cubek.pi) then
6 break
7 for each oi ∈ cubej do
8 for each oj ∈ cubek do
9 SF[oi, oj]← checkFullContainment(oi, oj);

10 SP[oi, oj]← checkPartialContainment(oi, oj);
11 SC[oi, oj]← checkComplementarity(oi, oj);
12 end
13 end
14 end
15 end
16 return cubeMaskMap;
17 function checkFullContainment
18 for each pi ∈ P do
19 if not isParent(oi.pi, oj.pi) then
20 return false;
21 else return true;
22 end
23 function checkPartialContainment
24 for each pi ∈ P do
25 if isParent(oi.pi, oj.pi) then
26 return true;
27 else return false;
28 end
29 function checkComplementarity
30 if checkFullContainment(oi.pi, oj.pi) && checkFullContainment(oj.pi, oi.pi)

then
31 return true;
32 else return false;

and an average of p << n observations per mask, then the algorithm will require cp2

comparisons instead of n2, with a total cost of O(k(|P |) + cp2). The reason we expect
p << n is that we assume a distribution of all input observations in a tractable and
small number of cube masks. In real world cases, the cube schema is usually defined
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beforehand and populated by observations. Furthermore, the number of cube masks is
restricted by the number and combinations of hierarchical levels in the input dimensions.
As there are usually significantly more dimension values than hierarchy levels, we expect
that all observations will be distributed to a small number of cube masks. This is also
discussed in the experiments, where it can be seen in Figure 7.9 that as the number of
input observations increases, the rate of new cube masks with respect to the input size
decreases.

7.4.4 Optimized Cube Masking

In order to further optimize the computation of the containment and complementarity
relationships, we can take advantage of the relative differences in dimensions between cube
masks compared in the lattice structure that was proposed in Algorithm 13. Specifically,
given two cube masks ci and cj, where ci �cube cj, we can take advantage of the relative
difference in dimension levels between ci and cj in order to define a mapping function
that, given an observation oa ∈ ||ci||, will output the signature of the potential parent
observation ob, for which it holds that mask(ob) = cj. The requirement for this hash
function is that the relative difference in dimensions and their levels between ci and cj is
explicitly known. Formally, assume that there exists a function Ldiff : CD → CD that is
defined as follows:

Ldiff (ci, cj) = (lip1 − ljp1, l
i
p2 − ljp2 . . . l

i
pk − ljpk) (7.9)

where p1 . . . pk are the dimensions, and it holds that ci �cube cj. Ldiff creates a level dif-
ference mask between the parent and child cubes, essentially capturing the level distance
for each dimension pi between ci and cj. The result of Ldiff will be a level mask that
represents the distances in levels between the dimensions of the two cube masks. For in-
stance, consider cube masks c321 and c111 in Figure 7.4. Then, Ldiff (c321, c111) = (2, 1, 0),
which means that the two cube masks have a difference of two levels in the refArea

dimension, a difference of one level in the refPeriod dimension, and a difference of zero
levels in the sex dimension. We denote the level difference mask between ci and cj as Lj

i .

With the use of the Ldiff function, we can further define a function Hdiff : O → O, that,
given an observation oa and a level difference mask Lj

i , i.e., the output of an instance of
Ldiff , Hdiff will output the potential observations that are parents of oa and also conform
to the parent cube mask of the Ldiff function, i.e., ci. This function is defined as follows:

Hdiff (oa)|Ldiff (ci,cj) = Oa (7.10)
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Figure 7.5: The lattice for the three hierarchies of Figure 2. Observations in Figure 1 are
mapped to the appropriate node. The number in each node corresponds to the level of
each dimension.

where Oa =
⋃m

i=1 oi such that for all i, oi
f
� oa, and mask(oi) = cj, or oi ∈ ||cj||. In

other words, Hdiff outputs a set Oa that contains all potential observations that are
parents of the input observation oa with respect to the given Ldiff mask. An example
of the application of Hdiff can be seen in Figure 7.5. In the top of the figure the input
observation is represented as an array of dimension value signatures, pertaining to the
fixed dimension ordering. The representation of the values follows the Dewey Decimal
System, with parent and child values separated by dots. In the middle of the figure, the
Ldiff mask is (2, 0, 0, 1). The mask and the observation instantiate the Hdiff function
which in turn outputs a candidate parent for the input observation, where each value
differs in the number of levels defined by Ldiff .

7.4.5 Computation of Full Containment and Complementarity

Thus, the steps that we then follow in order to derive full containment and complemen-
tarity are as follows:

1. Find next comparable pair of cube masks ci, cj from the lattice

2. Compute Lj
i by applying Ldiff (ci, cj)

3. For each observation oa in ||cj||, apply Hdiff (oa)|Lj
i

4. Check for existence of the output of Hdiff (oa)|Lj
i

in ||ci||

If step 4 is successful, there is a full containment relationship between ci, cj. These steps
are described in detail in Algorithm 14, which also includes computation of complemen-
tarity. Lines 2-4 define an iteration of all nodes in the lattice. Starting from each node,
we traverse the node’s children by using simple recursive pre-order traversal. In Lines
6-19 the recursive function is defined. The condition for termination is that a node does
not have any other children (Lines 7-8). The algorithm first iterates through the node
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where the traversal initiated and each of the node’s children (Line 9). For each pair of ob-
servations, the Ldiff masking function is applied (Line 10). Then, the algorithm iterates
through the contents of the parent node (Line 11) and checks for complementary obser-
vations in the child node (Line 11-13). Then, the algorithm applies the Hdiff function
on the observations of the child cube mask (Line 14) and checks if the candidate parent
(i.e., the result of Hdiff is contained in the parent cube mask (Lines 14-17). Finally, the
recursion continues in the child cube mask (Line 19).

Algorithm 14: optimizedCubeMasking
Data: A map cubes containing cube masks and their links in the lattice
Result: SF , Sp, Sc sets for full containment and complementarity

1 for each ci ∈ cubes do
2 traverse(ci);
3 end
4 function traverse(ci)
5 if cubes.getChildren(ci) == ∅ then
6 return;
7 for each cchild ∈ cubes.getChildren(ci) do
8 Lchild

i ← Ldiff (ci, cchild);
9 for each oi ∈ ||cchild|| do

10 if oi ∈ ||ci|| then
11 SC[oi, oj]← 1;
12 candidate_parent← Hdiff (oa)|Lchild

i
;

13 if candidate_parent ∈ ||ci|| then
14 oj ← candidate_parent;
15 SF[oi, oj]← 1;
16 end
17 traverse(cchild);
18 end

In order for the computation of Hdiff to be both feasible and efficient, we need fast access
to the parents of every codelist value. For this reason, we adopt a representation for obser-
vations that can capture, with small overhead, all parents of a given hierarchical value up
to the root. Under this scheme, the parents of each value are encoded within the signature
of the value. For example, the value Greece can be represented as All.Europe.Greece,
essentially resembling the Dewey Decimal System. Then, with simple operations we can
get the parent of the value that conforms to the defined level difference.

For instance, consider the case where we are comparing cube masks c121 and c100, and
we want to apply Hdiff on an observation oa ∈ c121, with dimension values (All.2011,
All.Europe.Greece, All.Male), using Lc121

c100
= (0, 2, 1). The value of the first dimension

(refPeriod) stays the same, i.e., 2011, as the level difference is 0. However, the values
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for dimensions refArea and sex will both become All, because the level differences are 2

and 1 respectively, which are both the distances of Greece and Male from All respectively.
Eventually, the result of Hdiff in this case is an observation o

′
a = (2011, All, All). By

definition, the mask of o
′
a is c100, however, it is not guaranteed that o

′
a exists in the

dataset. If o
′
a ∈ ||c100||, we can derive that o

′
a fully contains oa, and we can mark the

relationship as computed.

Complexity Analysis. With this optimization, the extra space overhead required for
encoding parent values into the signature of every value in the hierarchies is traded off
for a significant decrease in the required comparisons at the observation level. Following
the analysis of the time complexity of the simple cubeMasking algorithm presented in the
previous section, we assume a total of k(|P |) > 1 cube masks. The optimized masking
algorithm will require k(2|P |) comparisons of cube masks if all cube masks are candidates
for containment, and assuming that the average amount of observations in a cube mask is
p << n, then an iteration of all the observations in one of the two compared masks is re-
quired, thus making the total cost k(2|P |)+p. Thus, assuming that the average number of
observations is asymptotically larger than the average number of cube masks, the asymp-
totic cost of the optimized method is O(p) for the computation of full containment and
complementarity, based on these assumptions. In other words, the optimized algorithm
takes advantage of the knowledge of dimension level differences in a pair of comparable
cube masks in order to directly retrieve the potential parents of the existing observations,
thus eliminating the need for quadratic comparisons between observations of a pair of
cube masks. It should be noted, however, that in the worst case, O(n2) comparisons will
still be needed if only one cube masks exists, containing all n observations.

7.4.6 Computation of Partial Containment

In the case of partial containment, we cannot apply directly the same steps as in full
containment, because partial containment does not require the existence of hierarchical
subsumption between the values of all dimensions of two observations, but instead, a
non-empty subset of these (condition 3). There are two main problems that we have to
overcome in the computation of partial containment using the optimized cube masking
approach. First, given a set of dimensions P = {P1, P2, . . . , Pn} in a cube schema, only a
subset P

′ ⊂ P with P
′ 6= ∅ will exhibit this subsumption between two cube masks. The

set P
′ cannot be determined a priori given the lattice structure, but only when the cube

masks containing the observations are compared, i.e., all combinations of cube masks
must be checked, which makes this a costly procedure. Second, the values of the dimen-
sions which lie in P \ P′ are not expected to exhibit hierarchical relationships between
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the compared observations. Thus, Hdiff cannot be applied in the form of Definition 9 for
detecting partial containment.On the contrary, we must first make two cube masks com-
parable by identifying the dimensions that are candidates for containment, and generalize
to the root value the values of the remaining dimensions.

To address these issues, we propose an alternative optimization based on the optimized
cube masking approach. Given two cube masks ci, cj, after computing Ldiff (ci, cj), we
isolate the positive values in the resulting mask, as these denote the dimensions that
exhibit hierarchical subsumption between the pair of cube masks, and generalize the
rest of the dimension values to hroot. For example, given cube masks c321, c222, then
Ldiff (c321, c222) = (1, 0,−1); the only positive value is the value of the first dimension. The
last two dimensions must be generalized with the root value in order for the observations
in the two masks to become comparable. For this, we refine the definition of Hdiff by
introducing a variant, named H

′

diff , defined as follows:

H
′

diff (oa,P
′
)|Ldiff (ci,cj) = O

′

a (7.11)

where O
′
a =

⋃m
i=1 oi such that for all i, it holds that (i) oi

p
� oa and (ii) hj

i = hroot, where
pj ∈ P \ P′ . Note that, because of the generalization of the values of the dimensions in
P \ P′ , the contents of O′

a are observations that do not exist in the ci cube mask, but
basically represent candidate parents of oa with respect to the dimensions in P

′ .

For computing partial containment, we scan both ||ci|| and ||cj|| once. For each obser-
vation in ||ci||, we create a set of candidate parents by generalizing the dimensions in
P \ P′ , and for each observation in ||cj||, we calculate H

′

diff on P
′ , generalizing as well

the values of P \P′ . This procedure outputs a set of candidates in each one of the cube
mask containers. Finally, we check for candidates that exist in both of these sets. In
brief, the steps for computing partial containment are as follows:

1. Iterate through all pairs of cube masks ci, cj from the lattice

2. Compute Lj
i by applying Ldiff (ci, cj)

3. Derive P
′ by isolating the positive values in Lj

i

4. For each observation oa in ||ci||, generalize all values of the dimensions that are not
in P

′ to the hroot value, and store the result in set O
′
a

5. For each observation ob in ||cj||, apply H
′

diff (ob,P
′
)|Lj

i
and store the result in set

O
′

b

6. For each entry o
′

b in O
′

b, check for existence in O
′
a
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These steps are shown in Algorithm 15. The algorithm iterates through all possible pairs
of cube masks (Lines 1-2), as opposed to the case of full containment, where only child
cube masks are traversed. Then, Ldiff is computed (Line 3) and consequently the set
of containment dimensions P

′ is derived (Lines 4-7). The algorithm iterates through the
container of the outer cube mask (Line 9), and for each observation, it generalizes the
dimension values to the hroot value (Line 10), mapping the newly created observation
to the original one (Line 11). Next, the algorithm iterates through the contents of the
inner cube mask (Line 13) and applies H

′

diff on the contained observations (Line 14).
Each created observation is then checked for existence in the candidates of the outer set,
marking the relationship as partial containment in case of success (Line 15-17).

Algorithm 15: optimizedCubeMaskingPartial
Data: A map cubes containing cube masks and their links in the lattice
Result: Sp set for partial containment

1 for each ci ∈ cubes do
2 for each cj ∈ cubes do
3 Lj

i ← Ldiff (ci, cj);
4 for each lp ∈ Lj

i do
5 if lp > 0 then
6 P

′ ← p;
7 end
8 initialize candidate_seti;
9 for each oa ∈ ||ci|| do

10 o
′
a ← generalize(oa,P \P

′
);

11 candidate_seti.put(o
′
a, oa);

12 end
13 for each ob ∈ ||cj|| do
14 o

′

b ← H
′

diff (ob,P
′
);

15 if candidate_seti.contains(o
′

b) then
16 oa ← candidate_seti.get(o

′

b);
17 SP[oa, ob]← 1;
18 end
19 end
20 end

Complexity Analysis. As in the case for full containment, the extra space overhead
required for encoding the candidate sets for a given pair of cube masks is traded off for a
decrease in the required comparisons at the observation level. Assuming a total of k(|P |)

cube masks, then we need to compare all pairs of cube masks for partial containment, or
k(2|P |). For each compared pair of cube masks, we scan both cube masks and apply the
H

′

diff function in their contents, which makes the total cost k(2|P |) + 2p. Asymptotically,
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this amounts to a linear time complexity of O(p), which is still linear with respect to
the average observation cardinality in the cube masks. As in the other cube masking
approaches, however, in the worst case, there will only exist one cube mask containing the
whole set of observations, which makes the complexity O(n2) for n observations. In real
cases, the performance improvements are still significant and fall under the assumptions
made in these analyses.

7.5 Experimental Evaluation

The goal of the experimental evaluation is to assess the performance of all the above
methods in terms of time efficiency, accuracy and scalability of the proposed algorithms
and evaluate our methods in comparison with inference and SPARQL query processing
techniques widely used for detecting relationships in RDF data. We demonstrate that
our approach achieves small execution time in commodity hardware and outperforms
traditional techniques, which fail to scale up as the number of observations increase. In
the following sections, we first provide the experimental setting, i.e., the datasets used
for the experiments, the metrics and the setup of the experimental environment. Then
we proceed with the evaluation of the proposed metrics, and we present and discuss the
results.

7.5.1 Setting

We have selected seven real-world datasets on government and demographic statistics.
The datasets were taken from Eurostat4, the Eurostat Linked Data Wrapper5, World
Bank6 and the linked-statistics.gr project 7. Eurostat offers a wide variety of statistical
data on countries of the EU region, and while it did not provide data in RDF format at the
time of writing, some of the datasets contained therein are provided through the Eurostat
Linked Data Wrapper in the RDF Data Cube (QB) representation format. World Bank
is a rich source of statistical data for all countries of the world, and linked-statistics.gr is
a project that offers data from the official Greek statistics authority, converted to RDF
with the QB representation. In the case of datasets in the CSV format, we converted
them to QB by adopting the approach of [SS01]. Notably, several other tools can also

4http://epp.eurostat.ec.europa.eu/portal/page/portal/statistics/search_database
5http://estatwrap.ontologycentral.com/
6http://data.worldbank.org/
7http://linked-statistics.gr/
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be used for the conversion, such as CSV2RDF8, OpenCube9 and Open Refine10. In this
context, the header labels of the CSV files are converted to dimensions (each assigned
with a unique URI), and each row becomes an observation. The cell values are matched
automatically to existing terms in the shared code lists.

The datasets consist of a total of 11 dimensions, 6 measures and more than 2,500 unique
hierarchical terms, for a total of 2̃60,000 observation records. The seven datasets cover
demographic statistical data on population, unemployment, births/deaths, national econ-
omy (GDP) and internet adoption by household number, while the dimensions cover fea-
tures such as geographical region, reference periods, country of citizenship, human genre
(sex), level of education, and household size. The dataset details can be seen in Table 4.

We preprocessed the code lists in order to align dimension and hierarchy values across
the input data space, by employing LIMES [NA11], a Linked Data interlinking tool that
is commonly used for term alignment in the LOD cloud. LIMES can be configured
to use restriction rules on the input (for example, candidate matches must exhibit the
same rdf:type values), and has a customizable distance metric parameter, that can be
programmed to use combined distance functions such as aggregates (maximum, average
etc.) on multiple distance functions, such as cosine similarity, jaccard distance and lev-
enshtein distance. For our experiments, we configured LIMES to match the code list
terms by comparing the string URIs, and used their cosine distance in order to discover
matches based on the URI suffixes.

Metrics. The main aim of the experimental evaluation was to compare the performance
of all the proposed methods with respect to execution time. Specifically, we measure
execution time by including the pre-processing and computation steps for the defined
relationships. Furthermore, we report the total number of observations that are ac-
cessed/compared for each method. Especially for the case of the clustering approach, we
are also interested in the achieved recall of the computed relationships, as this method is
the only one that does not guarantee 100% recall. In this sense, recall is defined as the
ratio of correctly found relationships to the number of all relationships in the datasets,
as discovered by the other methods. Note that we do not consider any decrease in recall
induced by the tool used in the dimension alignment step. The alignment process is
performed as a pre-processing step for all algorithms, providing the same input in each
case, and is thus independent from the achieved recall.

8http://www.w3.org/TR/csv2rdf/
9http://opencube-toolkit.eu/

10http://refine.deri.ie/
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Table 7.4: Dataset dimensions, amount of observations and respective measures

Dataset
(# of
obs)

refArea refPeriod sex unit age eco-
nomic
activi-
ties

citi-
zen-
ship

educa-
tion

house-
hold
size

measure

D1

(58k)
Y Y Y Y Y N Y N N Population

D2

(4.2k)
Y Y N Y N N N N Y Members

D3

(6.7k)
Y Y Y Y Y N N Y N Population

D4

(15k)
Y Y N Y N N N N N Births

D5

(68k)
Y Y Y Y Y N Y N N Deaths

D6

(73k)
Y Y N Y N N N N N GDP

D7

(21.6k)
Y Y N N N Y N N N Compensation

Experimental Setup. We implement our approach in Java 1.8 on a single machine
with allocated memory of 16GB DDR3. For the experiments, we gradually increased the
input size, starting from 2̃,000 observations and increasing it with a fixed step of 20,000
observations. For the clustering method, we have experimented with three clustering
algorithms, namely fast canopy, x-means, and hierarchical clustering, using Jaccard sim-
ilarity as a distance metric, and applying them on random 10% samples of the full input.
In the series of experiments, we performed comparisons between the proposed algorithms,
as well as a SPARQL-based and an inference-based alternative.

SPARQL-based approach. We consider a SPARQL-based alternative approach, for
which we devised three queries for the detection of the underlying relationships of contain-
ment and complementarity. For the containment relationships, the subsumption between
dimension values can occur in any level, and thus must be modelled using wildcard-
enabled property paths, which are directly supported by the SPARQL 1.1 recommen-
dation and most of its implementations. However, a requirement for the case of full
containment is the universal restriction over the subsumption of the dimension values.
As SPARQL does not explicitly allow universal quantification in its syntax, it has to be
mimicked with the use of negation and nested recursion, which makes the query compli-
cated to write and costly to execute. Partial containment can be easily detected, but it is
complicated to derive the exact dimensions that do not exhibit containment. Given the
above, and for the sake of simplicity, we design the three queries with the scope of detect-
ing the existence of the relationships, and we do not quantify it like in the computation
of the OCM matrix. The queries can be seen in Appendix B.
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(a) Execution time (seconds) for complementarity

(b) Execution time (seconds) for full containment

(c) Execution time (seconds) for partial containment

Figure 7.6: Execution performance experiments

Rule-based. The rule-based approach consists of three forward-chaining rules imple-
mented in Jena, as the Jena generic rule reasoner is simple to use and offers the required
expressiveness. The rules can be seen in Appendix C.

The datasets and code are available online at http://github.com/mmeimaris.
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(a) Number of observation accesses for full containment

(b) Number of observation accesses for partial containment

Figure 7.7: Quantified accesses to individual observations for containment relationships

7.5.2 Experimental Results

The set of conducted experiments suggests that the baseline algorithm can be improved
significantly by all three of the optimized methods. In what follows, we describe the
achieved results for each of the algorithms.

7.5.2.1 Baseline

The baseline algorithm behaves quadratically with respect to input size, as it performs n2

comparisons for n input observation rows. The results are shown in Figure 7.6(a-c). When
computing full containment and complementarity, the required checks are decreased,
because we can quickly skip pairs of rows that fail the subsumption criterion at least
once. Furthermore, recall from Algorithm 2, that complementarity and full containment
relationships are computed at the same pass, i.e., a bilateral full containment relationship
between two observations implies their complementarity. The total number of observation
pairs compared in the baseline method can be seen in Figure 7.7, and includes all possible
pairs of observations in the datasets.
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Figure 7.8: Achieved recall for the clustering approaches

7.5.2.2 Clustering

The clustering approach has been implemented on top of the baseline, by configuring the
code to cluster the input observation rows and then perform the baseline on each clus-
ter. In this set of experiments, we run three different settings, changing the clustering
algorithm in each one. The three algorithms we have used, two centroid-based and one
agglomerative, are (i) x-means, which is a variant of k-means that automatically con-
figures the number of centroids based on the input, (ii) fast canopy clustering, and (iii)
hierarchical clustering. For all approaches, we configured the system to use a sample 10%
of the input size, and then assigned the remainder of the input to the detected clusters.
We achieved varying degrees of recall, which can be seen in Figure 7.8. According to our
results, the k-means variant achieved the higher degree of recall. In Figure 7.6(a-c) we
report the execution times with x-means, compared with the other approaches. Further-
more, the total number of compared observation pairs can be seen in Figure 7.7 for the
cases of full and partial containment. As a general note, the clustering approach out-
performed the naive baseline algorithm, despite the eventual trade-off between runtime
performance and relationship recall.

7.5.2.3 Cube Masking

The performance of the cubeMasking algorithm yields a substantial improvement with
respect to both the baseline and the baseline with clustering. This is attributed to
several factors. First, the cost of identifying the cube masks and building the lattice
is linear with respect to the input size, as it requires one scan over the data. Second,
the number of comparisons is significantly decreased, as comparisons are limited only
between hierarchically related cube masks, while maintaining full recall. These results
can be seen in Figures 7.6 and 7.7. A potential drawback of this approach is the loss of
the performance advantage (i.e., the decrease of comparisons) when the number of cube
masks is very large with respect to the input rows, or the distribution of the data is
uneven (e.g., a small number of cube masks that cover a large percentage of the input).
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Figure 7.9: Rate of cube masks per row

Figure 7.10: Execution rate (pre-fetching vs non-pre-fetching)

However, the rate of cube masks per input rows tends to converge logarithmically as the
input size increases. This can be seen in Figure 7.9.

While cubeMasking operates in a similar way to the clustering method, it is more efficient
because of the hierarchical relationships between the cube masks, which allow for less
and more relevant comparisons between the observations. We implement the lattice as
a graph data structure, so that we can have fast access to the children of each cube
mask. However, we also experimented with pre-processing the lattice in order to derive
the parent-child relationships and store them in memory for constant time access for each
cube mask. This pre-fetching yielded a 15% improvement of the execution time, as can be
seen in Figure 7.10, at the cost of an extra scan of the cube masks, and a minor imposed
overhead in the storage of the system, for explicitly storing all paths between cube masks
in the lattice (in our experiments, this was less than 1MB for the full dataset).

7.5.2.4 Optimized Cube Masking

The optimized cube masking algorithm yields a substantial improvement in the runtime
performance for the computation of full containment, partial containment and comple-
mentarity, as can be seen in the execution times of Figure 7.6, as well as the total number
of accessed observations in Figure 7.7. This is attributed to its decreased computational
complexity with respect to the original cube masking approach. However, for large num-
bers of dimensions, the Hdiff function becomes costlier as the observation signatures
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require larger numbers of hierarchy abstractions. For the case of partial containment, the
optimization exhibits a smaller relative advantage when compared to the original cube
masking approach as the input size increases, as can be seen in Figure 7.6. However, it
is still the fastest of all the approaches we experimented with.

The optimized cube masking approach is the fastest of all the tested approaches, as it
takes advantage of exact hash signatures which can be checked in constant time. This is
reflected in the experiments shown in Figure 7.6.

7.5.2.5 SPARQL and Rule-based

The runtime performance for these two alternatives is satisfactory for very small input
sizes, as shown in Figure 7.6(a), (b) and (c) (less than 40k observations). However, they
become intractable fast, as they either hit the time-out limits or they have vast memory
requirements. This renders them non-scalable and thus not deployable in realistic settings
over large real world datasets. The quality of performance is dependent on the transitive
nature of the relationships, which quickly makes the search space large. The SPARQL
queries timed out quickly as the number of rows increases when executed in Virtuoso
(see Figure 7.6(c)). In the experiments the SPARQL method was still inadequate after
the query relaxation described in Appendix A. For the rule based approach, the space
overhead became large quickly, triggering several out of memory errors.

7.5.3 Scalability

We conducted a set of experiments to test the scalability of the proposed approaches,
by creating a complementary synthetic dataset (x10 of the full size of the real world
datasets), by following a similar approach as in [Din+11] and extending the existing data
by creating observation rows that follow a projected distribution of the data with respect
to the real-world datasets. More specifically, we used a number of cube masks derived
from Figure 7.9 for 2.5 million observations, and populated the newly created cube masks
accordingly.

As expected, the experiments show that the SPARQL-based and rule-based approaches
do not scale. The results for the rest of the methods are shown in Figure 7.11, with the
dotted line representing the projection of the baseline approach, as it took more than 7
days to complete.

These results show that the clustering, cubeMasking and optimizedCubeMasking methods
are scalable for larger input sizes, with the latter two having a more clear advantage
because of the reduced number of needed comparisons. It should be noted, however,
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Figure 7.11: Execution time (log-log) with synthetic dataset

that in some edge cases where the input contains very large numbers of cube masks
with sparse and even distributions of observations in these cube masks, the cubeMasking
and optimizedCubeMasking approaches will lose their relative advantage to the quadratic
baseline. Such cases justify the need for probabilistic approaches such as clustering,
especially when runtime performance is more important than the achieved recall.

7.6 Conclusions

In this chapter, we have presented and compared four approaches for discovering three
types of instance-level relationships between observations of multidimensional RDF data
cubes. To this end, we have formally defined full containment , partial containment,
and complementarity between multidimensional observations. We performed an exten-
sive experimental evaluation between the proposed approaches and with two traditional
approaches, namely a SPARQL-based and a rule-based method, and we found that our
algorithms outperform the traditional approaches in both execution time and scalabil-
ity. As future work, we intend to tackle incremental updates of the relationships in
dynamically growing datasets. Finally, we plan to study the performance of the proposed
methods in distributed and parallel contexts.
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Chapter 8

Conclusions

In this thesis, we have presented novel models, methods and experimental results that
focus on three directions of RDF data management and SPARQL query processing.

Specifically, the first direction dealt with management of temporal evolution in RDF
databases, and to this end, a novel query language has been proposed as a solution for
enabling RDF archival engines to assign temporal characteristics to SPARQL queries.
Furthermore, a synthetic data generation method has been proposed in order to provide
a highly customizable way of creating synthetic versioned data that evolves over time.
This allows the evaluation of the capabilities of versioning and evolution management
systems and archives.

The second direction dealt with the challenges that arise from the semi-structured and
schema-generic nature of RDF, which gives rise to loosely-structured datasets the hetero-
geneity of which creates problem in the storage, indexing and query answering of modern
RDF engines. In this context, novel methods for indexing, disk-based storage and query
optimization were proposed and evaluated. Furthermore, methods and algorithms for
efficient extraction and compaction of the underlying graph schema of RDF data have
been proposed, improving the state of the art by orders of magnitude.

Finally, the third direction focused on providing algorithms for efficient and scalable
mining of interrelatedness in remote, multidimensional RDF data. Several algorithms
have been proposed, focusing on three particular types of relationships. The conducted
experimental evaluation provides evidence that the proposed methods improve the state
of the art and are scalable to large amounts of data.

148

Institutional Repository - Library & Information Centre - University of Thessaly
12/06/2024 04:55:53 EEST - 3.15.237.130



Bibliography

[Aba+07] Daniel J Abadi et al. “Scalable semantic web data management using vertical
partitioning”. In: VLDB. VLDB Endowment. 2007, pp. 411–422.

[Abe+13] Alberto Abelló et al. “Fusion cubes: towards self-service business intelli-
gence”. In: (2013).

[Abe+15] Alberto Abelló et al. “Using semantic web technologies for exploratory
OLAP: a survey”. In: IEEE transactions on knowledge and data engineering
27.2 (2015), pp. 571–588.

[AH06] Sören Auer and Heinrich Herre. “A versioning and evolution framework for
RDF knowledge bases”. In: International Andrei Ershov Memorial Confer-
ence on Perspectives of System Informatics. Springer. 2006, pp. 55–69.

[AL12] Norah Alrayes and Wo-Shun Luk. “Automatic transformation of multi-
dimensional web tables into data cubes”. In: Data Warehousing and Knowl-
edge Discovery (2012), pp. 81–92.

[Ali+14] Julien Aligon et al. “Similarity measures for OLAP sessions”. In: Knowledge
and information systems 39.2 (2014), pp. 463–489.

[Alu+14] Güneş Aluç et al. “Diversified stress testing of RDF data management sys-
tems”. In: ISWC. 2014.

[Ari+11] Mario Arias et al. “An empirical study of real-world SPARQL queries”. In:
arXiv preprint arXiv:1103.5043 (2011).

[Atr+10] Medha Atre et al. “Matrix Bit loaded: a scalable lightweight join query
processor for RDF data”. In: WWW. ACM. 2010, pp. 41–50.

[AY01] Charu C Aggarwal and Philip S Yu. “Outlier detection for high dimensional
data”. In: ACM Sigmod Record. Vol. 30(2). ACM. 2001, pp. 37–46.

[Ben+09] Omar Benjelloun et al. “Swoosh: a generic approach to entity resolution”.
In: The VLDB JournalThe International Journal on Very Large Data Bases
18.1 (2009), pp. 255–276.

[BEP14] Peter Boncz, Orri Erling, and Minh-Duc Pham. “Advances in Large-Scale
RDF Data Management”. In: Linked Open Data–Creating Knowledge Out of
Interlinked Data. Springer, 2014, pp. 21–44.

[BG17] Sebastian Bayerl and Michael Granitzer. “Discovering, Ranking and Merg-
ing RDF Data Cubes”. In: Semantic Computing (ICSC), 2017 IEEE 11th
International Conference on. IEEE. 2017, pp. 133–140.

[Bor+13] Mihaela A Bornea et al. “Building an efficient RDF store over a relational
database”. In: Proceedings of the 2013 ACM SIGMOD International Con-
ference on Management of Data. ACM. 2013, pp. 121–132.

149

Institutional Repository - Library & Information Centre - University of Thessaly
12/06/2024 04:55:53 EEST - 3.15.237.130



[Bro+11] Brad Brown et al. “Big data: the next frontier for innovation, competition,
and productivity”. In: McKinsey Global Institute (2011).

[BRV11] Eftychia Baikousi, Georgios Rogkakos, and Panos Vassiliadis. “Similarity
measures for multidimensional data”. In: Data Engineering (ICDE), 2011
IEEE 27th International Conference on. IEEE. 2011, pp. 171–182.

[BS09] Christian Bizer and Andreas Schultz. The berlin sparql benchmark. 2009.
[BSK07] Abraham Bernstein, Markus Stocker, and Christoph Kiefer. “SPARQL query

optimization using selectivity estimation”. In: Poster Proceedings of the 6th
International Semantic Web Conference (ISWC). 2007.

[BSM11] Andreas Brodt, Oliver Schiller, and Bernhard Mitschang. “Efficient resource
attribute retrieval in RDF triple stores”. In: CIKM. ACM. 2011, pp. 1445–
1454.

[BSP11] Sotiris Batsakis, Kostas Stravoskoufos, and Euripides GM Petrakis. “Tempo-
ral reasoning for supporting temporal queries in OWL 2.0”. In: International
Conference on Knowledge-Based and Intelligent Information and Engineer-
ing Systems. Springer. 2011, pp. 558–567.

[Bun+04] Peter Buneman et al. “Archiving scientific data”. In: ACM Transactions on
Database Systems (TODS) 29.1 (2004), pp. 2–42.

[Böh+10] Christoph Böhm et al. “Linking open government data: what journalists
wish they had known”. In: Proceedings of the 6th International Conference
on Semantic Systems. ACM. 2010, p. 34.

[Car+04] Jeremy J Carroll et al. “Jena: implementing the semantic web recommenda-
tions”. In: Proceedings of the 13th international World Wide Web conference
on Alternate track papers & posters. ACM. 2004, pp. 74–83.

[CCM15] Michelangelo Ceci, Alfredo Cuzzocrea, and Donato Malerba. “Effectively
and efficiently supporting roll-up and drill-down OLAP operations over con-
tinuous dimensions via hierarchical clustering”. In: Journal of Intelligent
Information Systems 44.3 (2015), pp. 309–333.

[CD97] Surajit Chaudhuri and Umeshwar Dayal. “An overview of data warehousing
and OLAP technology”. In: ACM Sigmod record 26.1 (1997), pp. 65–74.

[Cha+06] Chee-Yong Chan et al. “Finding k-dominant skylines in high dimensional
space”. In: Proceedings of the 2006 ACM SIGMOD international conference
on Management of data. ACM. 2006, pp. 503–514.

[Cic+13] Paolo Ciccarese et al. “PAV ontology: provenance, authoring and versioning”.
In: Journal of biomedical semantics 4.1 (2013), p. 37.

[Con14] World Wide Web Consortium. Resource Description Framework (RDF).
2014. url: https://www.w3.org/RDF/ (visited on 08/02/2017).

[CRT13] Richard Cyganiak, Dave Reynolds, and Jeni Tennison. “The RDF data cube
vocabulary”. In: W3C Recommendation (January 2014) (2013).

[Din+11] Bolin Ding et al. “Differentially private data cubes: optimizing noise sources
and consistency”. In: Proceedings of the 2011 ACM SIGMOD International
Conference on Management of data. ACM. 2011, pp. 217–228.

[Don03] Francesco M Donini. “Complexity of reasoning”. In: The description logic
handbook. Cambridge University Press. 2003, pp. 96–136.

150

Institutional Repository - Library & Information Centre - University of Thessaly
12/06/2024 04:55:53 EEST - 3.15.237.130

https://www.w3.org/RDF/


[DS+12] Anish Das Sarma et al. “Finding related tables”. In: Proceedings of the 2012
ACM SIGMOD International Conference on Management of Data. ACM.
2012, pp. 817–828.

[DT16] Grzegorz Drzadzewski and Frank Wm Tompa. “Partial materialization for
online analytical processing over multi-tagged document collections”. In:
Knowledge and Information Systems 47.3 (2016), pp. 697–732.

[Dua+11] Songyun Duan et al. “Apples and oranges: a comparison of RDF bench-
marks and real RDF datasets”. In: Proceedings of the 2011 ACM SIGMOD
International Conference on Management of data. ACM. 2011, pp. 145–156.

[Eft+17] Vasilis Efthymiou et al. “Parallel meta-blocking for scaling entity resolution
over big heterogeneous data”. In: Information Systems 65 (2017), pp. 137–
157.

[EM10] Orri Erling and Ivan Mikhailov. Virtuoso: RDF support in a native RDBMS.
Springer, 2010.

[EV12] Lorena Etcheverry and Alejandro A Vaisman. “QB4OLAP: a new vocab-
ulary for OLAP cubes on the semantic web”. In: Proceedings of the Third
International Conference on Consuming Linked Data-Volume 905. CEUR-
WS. org. 2012, pp. 27–38.

[EV16] Lorena Etcheverry and Alejandro A Vaisman. “Querying Semantic Web
Data Cubes.” In: AMW. 2016.

[FPU15] Javier D Fernández, Axel Polleres, and Jürgen Umbrich. “Towards Efficient
Archiving of Dynamic Linked Open Data”. In: Proceedings of the 1st DI-
ACHRON workshop. 2015.

[GGV12] Leticia I Gómez, Silvia A Gómez, and Alejandro A Vaisman. “A generic
data model and query language for spatiotemporal OLAP cube analysis”.
In: Proceedings of the 15th International Conference on Extending Database
Technology. ACM. 2012, pp. 300–311.

[Gia+09] Arnaud Giacometti et al. “Query recommendations for OLAP discovery
driven analysis”. In: Proceedings of the ACM twelfth international workshop
on Data warehousing and OLAP. ACM. 2009, pp. 81–88.

[GN14] Andrey Gubichev and Thomas Neumann. “Exploiting the query structure
for efficient join ordering in SPARQL queries.” In: EDBT. 2014, pp. 439–450.

[GPH05] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. “LUBM: A benchmark for
OWL knowledge base systems”. In: Web Semantics: Science, Services and
Agents on the World Wide Web 3.2 (2005), pp. 158–182.

[Gra11] Fabio Grandi. “Light-weight ontology versioning with multi-temporal RDF
schema”. In: SEMAPRO 2011, The Fifth International Conference on Ad-
vances in Semantic Processing. 2011, pp. 42–48.

[Hal01] Alon Y Halevy. “Answering queries using views: A survey”. In: The VLDB
Journal 10.4 (2001), pp. 270–294.

[Han+96] Jiawei Han et al. “DBMiner: A System for Mining Knowledge in Large
Relational Databases.” In: KDD. Vol. 96. 1996, pp. 250–255.

[HBW15] Claudius Hauptmann, Michele Brocco, and Wolfgang Wörndl. “Scalable Se-
mantic Version Control for Linked Data Management.” In: LDQ@ ESWC.
2015.

151

Institutional Repository - Library & Information Centre - University of Thessaly
12/06/2024 04:55:53 EEST - 3.15.237.130



[HF94] Jiawei Han and Yongjian Fu. “Dynamic Generation and Refinement of Con-
cept Hierarchies for Knowledge Discovery in Databases.” In: KDD Workshop.
1994, pp. 157–168.

[HL11] Kevin Chihcheng Hsu and Ming-Zhong Li. “Techniques for finding similar-
ity knowledge in OLAP reports”. In: Expert Systems with Applications 38.4
(2011), pp. 3743–3756.

[Hor+05] Ian Horrocks et al. “OWL rules: A proposal and prototype implementation”.
In: Web Semantics: Science, Services and Agents on the World Wide Web
3.1 (2005), pp. 23–40.

[HRU96] Venky Harinarayan, Anand Rajaraman, and Jeffrey D Ullman. “Implement-
ing data cubes efficiently”. In: ACM SIGMOD Record. Vol. 25. 2. ACM. 1996,
pp. 205–216.

[Hus+10] Mohammad Farhan Husain et al. “Data intensive query processing for large
RDF graphs using cloud computing tools”. In: Cloud Computing (CLOUD),
2010 IEEE 3rd International Conference on. IEEE. 2010, pp. 1–10.

[Ibr+16] Dilshod Ibragimov et al. “Optimizing Aggregate SPARQL Queries Using
Materialized RDF Views.” In: International Semantic Web Conference (1).
2016, pp. 341–359.

[ILK12] Dong-Hyuk Im, Sang-Won Lee, and Hyoung-Joo Kim. “A version manage-
ment framework for RDF triple stores”. In: International Journal of Software
Engineering and Knowledge Engineering 22.01 (2012), pp. 85–106.

[JK05] Maciej Janik and Krys Kochut. “BRAHMS: a workbench RDF store and
high performance memory system for semantic association discovery”. In:
ISWC. Springer, 2005, pp. 431–445.

[Kei+11] Iman Keivanloo et al. “Towards sharing source code facts using linked data”.
In: Proceedings of the 3rd International Workshop on Search-Driven Devel-
opment: Users, Infrastructure, Tools, and Evaluation. ACM. 2011, pp. 25–
28.

[KH13] Benedikt Kämpgen and Andreas Harth. “No size fits all–running the star
schema benchmark with SPARQL and RDF aggregate views”. In: The Se-
mantic Web: Semantics and Big Data. Springer, 2013, pp. 290–304.

[KK10] Manolis Koubarakis and Kostis Kyzirakos. “Modeling and querying meta-
data in the semantic sensor web: The model stRDF and the query lan-
guage stSPARQL”. In: The semantic web: research and applications (2010),
pp. 425–439.

[KKB15] Elem Guzel Kalayci, Tahir Emre Kalayci, and Derya Birant. “An ant colony
optimisation approach for optimising SPARQL queries by reordering triple
patterns”. In: Information Systems 50 (2015), pp. 51–68.

[KKK10] Zoi Kaoudi, Kostis Kyzirakos, and Manolis Koubarakis. “SPARQL query
optimization on top of DHTs”. In: The Semantic Web–ISWC 2010. Springer,
2010, pp. 418–435.

[KKK12] Kostis Kyzirakos, Manos Karpathiotakis, and Manolis Koubarakis. “Stra-
bon: a semantic geospatial DBMS”. In: The Semantic Web–ISWC 2012
(2012), pp. 295–311.

152

Institutional Repository - Library & Information Centre - University of Thessaly
12/06/2024 04:55:53 EEST - 3.15.237.130



[Kom+16] Takahiro Komamizu et al. “H-SPOOL: A SPARQL-based ETL framework
for OLAP over linked data with dimension hierarchy extraction”. In: Inter-
national Journal of Web Information Systems 12.3 (2016), pp. 359–378.

[KRR02] Donald Kossmann, Frank Ramsak, and Steffen Rost. “Shooting stars in the
sky: An online algorithm for skyline queries”. In: Proceedings of the 28th
international conference on Very Large Data Bases. VLDB Endowment.
2002, pp. 275–286.

[KSH14] Benedikt Kämpgen, Steffen Stadtmüller, and Andreas Harth. “Querying
the global cube: Integration of multidimensional datasets from the web”.
In: Knowledge Engineering and Knowledge Management. Springer, 2014,
pp. 250–265.

[Leb+13] Timothy Lebo et al. “Prov-o: The prov ontology”. In: W3C recommendation
30 (2013).

[Lei+15] Viktor Leis et al. “How good are query optimizers, really?” In: Proceedings
of the VLDB Endowment 9.3 (2015), pp. 204–215.

[Let+13] Andrés Letelier et al. “Static analysis and optimization of semantic web
queries”. In: ACM Transactions on Database Systems (TODS) 38.4 (2013),
p. 25.

[Lop+10] Nuno Lopes et al. “AnQL: SPARQLing up annotated RDFS”. In: The Se-
mantic Web–ISWC 2010 (2010), pp. 518–533.

[Mal+10] James Malone et al. “Modeling sample variables with an Experimental Fac-
tor Ontology”. In: Bioinformatics 26.8 (2010), pp. 1112–1118.

[Mei+13] Marios Meimaris et al. “DIACHRON archiving structures and associated
metadata”. In: Deliverable 4.1 of project FP7 601043 (2013).

[Mei+14] Marios Meimaris et al. “Towards a Framework for Managing Evolving In-
formation Resources on the Data Web.” In: PROFILES@ ESWC. 2014.

[Mei+16a] Marios Meimaris et al. “A query language for multi-version data web archives”.
In: Expert Systems 33.4 (2016), pp. 383–404.

[Mei+16b] Marios Meimaris et al. “Efficient Computation of Containment and Com-
plementarity in RDF Data Cubes.” In: EDBT. 2016, pp. 281–292.

[Mei+17] Marios Meimaris et al. “Extended Characteristic Sets: Graph Indexing for
SPARQL Query Optimization”. In: Data Engineering (ICDE), 2017 IEEE
33rd International Conference on. IEEE. 2017, pp. 497–508.

[Mei+18] Marios Meimaris et al. “Computational methods and optimizations for con-
tainment and complementarity in web data cubes”. In: Information Systems
75 (2018), pp. 56–74.

[Mei16] Marios Meimaris. “EvoGen: a Generator for Synthetic Versioned RDF”. In:
Proceedings of the Workshops of the EDBT/ICDT 2016 Joint Conference
(EDBT/ICDT 2016) (EDBT/ICDT). (Bordeaux, France, Mar. 15, 2016).
Ed. by Themis Palpanas et al. CEUR Workshop Proceedings 1558. Aachen,
2016. url: http://ceur-ws.org/Vol-1558/paper9.pdf.

[Men+11] Pablo N Mendes et al. “DBpedia spotlight: shedding light on the web of
documents”. In: Proceedings of the 7th International Conference on Semantic
Systems. ACM. 2011, pp. 1–8.

[MNU00] Andrew McCallum, Kamal Nigam, and Lyle H Ungar. “Efficient clustering
of high-dimensional data sets with application to reference matching”. In:

153

Institutional Repository - Library & Information Centre - University of Thessaly
12/06/2024 04:55:53 EEST - 3.15.237.130

http://ceur-ws.org/Vol-1558/paper9.pdf


Proceedings of the sixth ACM SIGKDD international conference on Knowl-
edge discovery and data mining. ACM. 2000, pp. 169–178.

[MP14] Marios Meimaris and George Papastefanatos. “Containment and comple-
mentarity relationships in multidimensional linked open data”. In: Second
International Workshop for Semantic Statistics SemStats. 2014.

[MP16a] Marios Meimaris and George Papastefanatos. “Double Chain-Star: an RDF
indexing scheme for fast processing of SPARQL joins.” In: EDBT. 2016,
pp. 668–669.

[MP16b] Marios Meimaris and George Papastefanatos. “The EvoGen Benchmark
Suite for Evolving RDF Data.” In: MEPDaW/LDQ@ ESWC. 2016, pp. 20–
35.

[MP17] Marios Meimaris and George Papastefanatos. “Distance-Based Triple Re-
ordering for SPARQL Query Optimization”. In: Data Engineering (ICDE),
2017 IEEE 33rd International Conference on. IEEE. 2017, pp. 1559–1562.

[MPP15] Marios Meimaris, George Papastefanatos, and Christos Pateritsas. “An Archiv-
ing System for Managing Evolution in the Data Web”. In: Proceedings of the
1st DIACHRON workshop. 2015.

[MRB99] Volker Markl, Frank Ramsak, and Rudolf Bayer. “Improving OLAP perfor-
mance by multidimensional hierarchical clustering”. In: Database Engineer-
ing and Applications, 1999. IDEAS’99. International Symposium Proceed-
ings. IEEE. 1999, pp. 165–177.

[MSMH17] G. Montoya, H. Skaf-Molli, and K. Hose. “The Odyssey Approach for Op-
timizing Federated SPARQL Queries”. In: ISWC. 2017.

[NA11] Axel-Cyrille Ngonga Ngomo and Sören Auer. “Limes-a time-efficient ap-
proach for large-scale link discovery on the web of data”. In: integration 15
(2011), p. 3.

[NDS00] Sandra M Nutley, Huw TO Davies, and Peter C Smith. What works?:
Evidence-based policy and practice in public services. MIT Press, 2000.

[NM11] Thomas Neumann and Guido Moerkotte. “Characteristic sets: Accurate car-
dinality estimation for RDF queries with multiple joins”. In: Data Engi-
neering (ICDE), 2011 IEEE 27th International Conference on. IEEE. 2011,
pp. 984–994.

[NW10] Thomas Neumann and Gerhard Weikum. “The RDF-3X engine for scalable
management of RDF data”. In: The VLDB Journal 19.1 (2010), pp. 91–113.

[PAG06] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. “Semantics and Com-
plexity of SPARQL”. In: International semantic web conference. Springer.
2006, pp. 30–43.

[Pap+11] George Papadakis et al. “Efficient entity resolution for large heterogeneous
information spaces”. In: Proceedings of the fourth ACM international con-
ference on Web search and data mining. ACM. 2011, pp. 535–544.

[Pap+12] Nikolaos Papailiou et al. “H2RDF: adaptive query processing on RDF data
in the cloud.” In: Proceedings of the 21st international conference companion
on World Wide Web. ACM. 2012, pp. 397–400.

[Pap+13a] George Papadakis et al. “A blocking framework for entity resolution in
highly heterogeneous information spaces”. In: IEEE Transactions on Knowl-
edge and Data Engineering 25.12 (2013), pp. 2665–2682.

154

Institutional Repository - Library & Information Centre - University of Thessaly
12/06/2024 04:55:53 EEST - 3.15.237.130



[Pap+13b] Vicky Papavasileiou et al. “High-level change detection in RDF (S) KBs”.
In: ACM Transactions on Database Systems (TODS) 38.1 (2013), p. 1.

[Pap+14] Nikolaos Papailiou et al. “H 2 RDF+: an efficient data management system
for big RDF graphs”. In: SIGMOD. ACM. 2014, pp. 909–912.

[Pap+15] George Papadakis et al. “Schema-agnostic vs schema-based configurations
for blocking methods on homogeneous data”. In: Proceedings of the VLDB
Endowment 9.4 (2015), pp. 312–323.

[Pap+16] George Papadakis et al. “Scaling Entity Resolution to Large, Heterogeneous
Data with Enhanced Meta-blocking.” In: EDBT. 2016, pp. 221–232.

[Pap13] George Papastefanatos. “Challenges and Opportunities in the Evolving Data
web”. In: International Conference on Conceptual Modeling. Springer. 2013,
pp. 23–28.

[PB16] Minh-Duc Pham and Peter Boncz. “Exploiting Emergent Schemas to make
RDF systems more efficient”. In: ISWC. Springer. 2016, pp. 463–479.

[PH10] Niko P Popitsch and Bernhard Haslhofer. “DSNotify: handling broken links
in the web of data”. In: Proceedings of the 19th international conference on
World wide web. ACM. 2010, pp. 761–770.

[Pha+15] MD. Pham et al. “Deriving an emergent relational schema from rdf data”.
In: WWW. 2015.

[PJS11] Matthew Perry, Prateek Jain, and Amit P Sheth. “Sparql-st: Extending
sparql to support spatiotemporal queries”. In: Geospatial semantics and the
semantic web. Springer, 2011, pp. 61–86.

[PM+00] Dan Pelleg, Andrew W Moore, et al. “X-means: Extending K-means with
Efficient Estimation of the Number of Clusters.” In: ICML. 2000, pp. 727–
734.

[PS+06] Eric Prud, Andy Seaborne, et al. “SPARQL query language for RDF”. In:
(2006).

[PS+96] Gregory Piatetsky-Shapiro et al. “An Overview of Issues in Developing In-
dustrial Data Mining and Knowledge Discovery Applications.” In: KDD.
Vol. 96. 1996, pp. 89–95.

[PSG13] George Papastefanatos, Yannis Stavrakas, and Theodora Galani. “Captur-
ing the history and change structure of evolving data”. In: DBKDA 2013,
The Fifth International Conference on Advances in Databases, Knowledge,
and Data Applications. 2013, pp. 235–241.

[RA07] Oscar Romero and Alberto Abelló. “Automating multidimensional design
from ontologies”. In: Proceedings of the ACM tenth international workshop
on Data warehousing and OLAP. ACM. 2007, pp. 1–8.

[Rah+17] Md Farhadur Rahmany et al. “Efficient Computation of Subspace Skyline
over Categorical Domains”. In: arXiv preprint arXiv:1703.00080 (2017).

[RGG15] Stefano Rizzi, Matteo Golfarelli, and Simone Graziani. “An OLAM Operator
for Multi-Dimensional Shrink”. In: International Journal of Data Warehous-
ing and Mining (IJDWM) 11.3 (2015), pp. 68–97.

[Rou+15] Yannis Roussakis et al. “A flexible framework for understanding the dynam-
ics of evolving RDF datasets”. In: The Semantic Web-ISWC 2015. Springer,
2015, pp. 495–512.

155

Institutional Repository - Library & Information Centre - University of Thessaly
12/06/2024 04:55:53 EEST - 3.15.237.130



[SCF14] Kostas Stefanidis, Ioannis Chrysakis, and Giorgos Flouris. “On designing
archiving policies for evolving RDF datasets on the Web”. In: International
Conference on Conceptual Modeling. Springer. 2014, pp. 43–56.

[Sch+09] M Schmidt et al. “SP 2 Bench: A SPARQL performance benchmark, ICDE”.
In: Shanghai, China (2009).

[Sch+11] Michael Schmidt et al. “Fedbench: A benchmark suite for federated semantic
data query processing”. In: The Semantic Web–ISWC 2011. Springer, 2011,
pp. 585–600.

[Sch+14] Alexander Schätzle et al. “Sempala: Interactive SPARQL query processing
on hadoop”. In: International Semantic Web Conference. Springer. 2014,
pp. 164–179.

[Sch+16a] Alexander Schätzle et al. “S2RDF: RDF querying with SPARQL on spark”.
In: VLDB. 2016.

[Sch+16b] Alexander Schätzle et al. “S2RDF: RDF Querying with SPARQL on Spark”.
In: Proc. VLDB Endow. 9.10 (June 2016), pp. 804–815. issn: 2150-8097. doi:
10.14778/2977797.2977806.

[SDN+98] Amit Shukla, Prasad Deshpande, Jeffrey F Naughton, et al. “Materialized
view selection for multidimensional datasets”. In: VLDB. Vol. 98. 1998,
pp. 488–499.

[Sid+08] Lefteris Sidirourgos et al. “Column-store support for RDF data manage-
ment: not all swans are white”. In: VLDB 1.2 (2008), pp. 1553–1563.

[SML10] Michael Schmidt, Michael Meier, and Georg Lausen. “Foundations of SPARQL
query optimization”. In: Proceedings of the 13th International Conference on
Database Theory. ACM. 2010, pp. 4–33.

[Som+09] Herbert Van de Sompel et al. “Memento: Time travel for the web”. In: arXiv
preprint arXiv:0911.1112 (2009).

[Som+10] Herbert Van de Sompel et al. “An HTTP-based versioning mechanism for
linked data”. In: arXiv preprint arXiv:1003.3661 (2010).

[SS01] Gayatri Sathe and Sunita Sarawagi. “Intelligent rollups in multidimensional
OLAP data”. In: VLDB. Vol. 1. 2001, pp. 531–540.

[Sto+08] Markus Stocker et al. “SPARQL basic graph pattern optimization using
selectivity estimation”. In: Proceedings of the 17th international conference
on World Wide Web. ACM. 2008, pp. 595–604.

[Tam16] Efthimios Tambouris. “Multidimensional Open Government Data”. In: JeDEM-
eJournal of eDemocracy and Open Government 8.3 (2016), pp. 1–11.

[TEO+01] Kian-Lee Tan, Pin-Kwang Eng, Beng Chin Ooi, et al. “Efficient progressive
skyline computation”. In: VLDB. Vol. 1. 2001, pp. 301–310.

[Tsi+12] Petros Tsialiamanis et al. “Heuristics-based query optimisation for SPARQL”.
In: EDBT. ACM. 2012, pp. 324–335.

[UVTH10] Jürgen Umbrich, Boris Villazön-Terrazas, and Michael Hausenblas. “Dataset
dynamics compendium: A comparative study”. In: Proceedings of the First
International Conference on Consuming Linked Data-Volume 665. CEUR-
WS. org. 2010, pp. 49–60.

[Var+16a] Jovan Varga et al. “Dimensional enrichment of statistical linked open data”.
In: Web Semantics: Science, Services and Agents on the World Wide Web
40 (2016), pp. 22–51.

156

Institutional Repository - Library & Information Centre - University of Thessaly
12/06/2024 04:55:53 EEST - 3.15.237.130

https://doi.org/10.14778/2977797.2977806


[Var+16b] Jovan Varga et al. “QB2OLAP: Enabling OLAP on statistical linked open
data”. In: Data Engineering (ICDE), 2016 IEEE 32nd International Con-
ference on. IEEE. 2016, pp. 1346–1349.

[VG06] Max Völkel and Tudor Groza. “SemVersion: An RDF-based ontology ver-
sioning system”. In: Proceedings of the IADIS international conference WWW/In-
ternet. Vol. 2006. 2006, p. 44.

[Vol+09] Julius Volz et al. “Silk-A Link Discovery Framework for the Web of Data.”
In: LDOW 538 (2009).

[VT+11] Boris Villazón-Terrazas et al. “Methodological guidelines for publishing gov-
ernment linked data”. In: Linking government data. Springer, 2011, pp. 27–
49.

[VZ14] Alejandro Vaisman and Esteban Zimányi. Data Warehouse Systems: Design
and Implementation. Springer, 2014.

[Wil06] Kevin Wilkinson. Jena property table implementation. 2006.
[WKB08] Cathrin Weiss, Panagiotis Karras, and Abraham Bernstein. “Hexastore: sex-

tuple indexing for semantic web data management”. In: VLDB 1.1 (2008),
pp. 1008–1019.

[WL02] Raymond K Wong and Nicole Lam. “Managing and querying multi-version
XML data with update logging”. In: Proceedings of the 2002 ACM sympo-
sium on Document engineering. ACM. 2002, pp. 74–81.

[Wu+14] Buwen Wu et al. “Semstore: A semantic-preserving distributed RDF triple
store”. In: CIKM. ACM. 2014, pp. 509–518.

[Xie+16] Xike Xie et al. “OLAP over probabilistic data cubes I: Aggregating, ma-
terializing, and querying”. In: Data Engineering (ICDE), 2016 IEEE 32nd
International Conference on. IEEE. 2016, pp. 799–810.

[Yua+05] Yidong Yuan et al. “Efficient computation of the skyline cube”. In: Proceed-
ings of the 31st international conference on Very large data bases. VLDB
Endowment. 2005, pp. 241–252.

[Yua+13] Pingpeng Yuan et al. “TripleBit: a fast and compact system for large scale
RDF data”. In: VLDB 6.7 (2013), pp. 517–528.

[Zen+13] Kai Zeng et al. “A distributed graph engine for web scale RDF data”. In:
Proceedings of the VLDB Endowment. Vol. 6. 4. VLDB Endowment. 2013,
pp. 265–276.

157

Institutional Repository - Library & Information Centre - University of Thessaly
12/06/2024 04:55:53 EEST - 3.15.237.130



Appendix A

SPARQL Queries

A.1 Lehigh University Benchmark Original Queries

In this section, the original 14 queries of the Lehigh University Benchmark (LUBM) are
presented.

# Query1
PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
PREFIX ub: <http :// www. lehigh .edu /~ zhp2 /2004/0401/ univ -bench.owl

#>
SELECT ?X
WHERE
{ ?X rdf:type ub: GraduateStudent .

?X ub: takesCourse http :// www. Department0 . University0 .edu/
GraduateCourse0 }

# Query2
PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
PREFIX ub: <http :// www. lehigh .edu /~ zhp2 /2004/0401/ univ -bench.owl

#>
SELECT ?X, ?Y, ?Z
WHERE
{?X rdf:type ub: GraduateStudent .

?Y rdf:type ub: University .
?Z rdf:type ub: Department .
?X ub: memberOf ?Z .
?Z ub: subOrganizationOf ?Y .
?X ub: undergraduateDegreeFrom ?Y}

# Query3
PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
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PREFIX ub: <http :// www. lehigh .edu /~ zhp2 /2004/0401/ univ -bench.owl
#>

SELECT ?X
WHERE
{?X rdf:type ub: Publication .

?X ub: publicationAuthor
http :// www. Department0 . University0 .edu/

AssistantProfessor0 }

# Query4
PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
PREFIX ub: <http :// www. lehigh .edu /~ zhp2 /2004/0401/ univ -bench.owl

#>
SELECT ?X, ?Y1 , ?Y2 , ?Y3
WHERE
{?X rdf:type ub: Professor .

?X ub: worksFor <http :// www. Department0 . University0 .edu > .
?X ub:name ?Y1 .
?X ub: emailAddress ?Y2 .
?X ub: telephone ?Y3}

# Query5
PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
PREFIX ub: <http :// www. lehigh .edu /~ zhp2 /2004/0401/ univ -bench.owl

#>
SELECT ?X
WHERE
{?X rdf:type ub: Person .

?X ub: memberOf <http :// www. Department0 . University0 .edu >}

# Query6
PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
PREFIX ub: <http :// www. lehigh .edu /~ zhp2 /2004/0401/ univ -bench.owl

#>
SELECT ?X WHERE {?X rdf:type ub: Student }

# Query7
PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
PREFIX ub: <http :// www. lehigh .edu /~ zhp2 /2004/0401/ univ -bench.owl

#>
SELECT ?X, ?Y
WHERE
{?X rdf:type ub: Student .

?Y rdf:type ub: Course .
?X ub: takesCourse ?Y .
<http :// www. Department0 . University0 .edu/ AssociateProfessor0 >,

ub:teacherOf , ?Y}
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# Query8
PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
PREFIX ub: <http :// www. lehigh .edu /~ zhp2 /2004/0401/ univ -bench.owl

#>
SELECT ?X, ?Y, ?Z
WHERE
{?X rdf:type ub: Student .

?Y rdf:type ub: Department .
?X ub: memberOf ?Y .
?Y ub: subOrganizationOf <http :// www. University0 .edu > .
?X ub: emailAddress ?Z}

# Query9
PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
PREFIX ub: <http :// www. lehigh .edu /~ zhp2 /2004/0401/ univ -bench.owl

#>
SELECT ?X, ?Y, ?Z
WHERE
{?X rdf:type ub: Student .

?Y rdf:type ub: Faculty .
?Z rdf:type ub: Course .
?X ub: advisor ?Y .
?Y ub: teacherOf ?Z .
?X ub: takesCourse ?Z}

# Query10
PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
PREFIX ub: <http :// www. lehigh .edu /~ zhp2 /2004/0401/ univ -bench.owl

#>
SELECT ?X
WHERE
{?X rdf:type ub: Student .

?X ub: takesCourse
<http :// www. Department0 . University0 .edu/ GraduateCourse0 >}

# Query11
PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
PREFIX ub: <http :// www. lehigh .edu /~ zhp2 /2004/0401/ univ -bench.owl

#>
SELECT ?X
WHERE
{?X rdf:type ub: ResearchGroup .

?X ub: subOrganizationOf <http :// www. University0 .edu >}

# Query12
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PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
PREFIX ub: <http :// www. lehigh .edu /~ zhp2 /2004/0401/ univ -bench.owl

#>
SELECT ?X, ?Y
WHERE
{?X rdf:type ub:Chair .

?Y rdf:type ub: Department .
?X ub: worksFor ?Y .
?Y ub: subOrganizationOf <http :// www. University0 .edu >}

# Query13
PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
PREFIX ub: <http :// www. lehigh .edu /~ zhp2 /2004/0401/ univ -bench.owl

#>
SELECT ?X
WHERE
{?X rdf:type ub: Person .

<http :// www. University0 .edu > ub: hasAlumnus ?X}

# Query14
PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
PREFIX ub: <http :// www. lehigh .edu /~ zhp2 /2004/0401/ univ -bench.owl

#>
SELECT ?X
WHERE {?X rdf:type ub: UndergraduateStudent }

A.2 New LUBM Queries

In this section, the newly defined LUBM queries for the experiments of Chapter 5 are
presented.

# Query 2.1
PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
PREFIX ub: <http :// swat.cse. lehigh .edu/onto/univ -bench.owl#>
SELECT DISTINCT ?s ?y ?z ?w WHERE {

?s ub: researchInterest ?o2 ;
ub: mastersDegreeFrom ?o3 ;
ub: doctoralDegreeFrom ?o4 ;
ub: memberOf ?y ;
rdf:type ?o .
?y rdf:type ?o5 ;
ub: subOrganizationOf ?z .
?z rdf:type ?o6 ;
ub: hasAlumnus ?w .
?w ub:name ?o8

}
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# Query 2.2
PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
PREFIX ub: <http :// swat.cse. lehigh .edu/onto/univ -bench.owl#>
SELECT DISTINCT ?s ?y ?z ?w WHERE {
?s ub: researchInterest ?o2 ;

ub: mastersDegreeFrom ?o3 ;
ub: emailAddress ?o44 ;
ub: worksFor ?y ;
rdf:type ub: UndergraduateStudent .
?y rdf:type ?o5 ;
ub: subOrganizationOf ?z .
?z rdf:type ?o6 ;
ub: hasAlumnus ?o7 .
?s ub: advisor ?w .
?w rdf:type ?o88

}

# Query 2.3
PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
PREFIX ub: <http :// swat.cse. lehigh .edu/onto/univ -bench.owl#>
SELECT DISTINCT ?s ?y ?z ? course WHERE {
?s ub: researchInterest ?o2 ;

ub: mastersDegreeFrom ?o3 ;
ub: emailAddress ?o44 ;
ub: worksFor ?y ;
ub: teacherOf ? course ;
rdf:type ? profType .
? course rdf:type ? courseType .
? course ub:name ? courseName .
? student ub: takesCourse ? course .
? student rdf:type ub: UndergraduateStudent .
? student ub: memberOf ?sm .
?sm rdf:type ? smType .

}

# Query 2.4
PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
PREFIX ub: <http :// swat.cse. lehigh .edu/onto/univ -bench.owl#>
SELECT DISTINCT ?s1 ?pub ?dept WHERE {

?s1 rdf:type ? studentType .
?s1 ub: undergraduateDegreeFrom ?uguni .
?s1 ub: worksFor ?dept .
?dept rdf:type ? deptType .
?dept ub: subOrganizationOf ?sub .
?pub rdf:type ? pubtype .
?pub ub: publicationAuthor ?s1 .

}
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# Query 2.5
PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
PREFIX ub: <http :// swat.cse. lehigh .edu/onto/univ -bench.owl#>
SELECT DISTINCT ?s1 ?pub ?dept WHERE {

?s1 rdf:type ? studentType .
?s1 ub: undergraduateDegreeFrom ?uguni .
?s1 ub: worksFor ?dept .
?dept rdf:type ub: Department .
?dept rdf:type ? deptType .
?dept ub: subOrganizationOf ?sub .
?sub rdf:type ub: University .
?pub rdf:type ub: Publication .
?pub rdf:type ? pubtype .
?pub ub: publicationAuthor ?s1 .
?s1 ub: advisor ? teacher .
? teacher rdf:type ub: Professor .
? teacher ub:name ?tname .
? teacher ub: doctoralDegreeFrom ?tdf .

}

A.3 Reactome Queries

In this section, the queries for the Reactome dataset are presented.

# Query 3.1
SELECT DISTINCT ? pathway ? reaction ? complex ? protein ?ref
WHERE
{ ? pathway rdf:type biopax3 : Pathway .

? pathway biopax3 : displayName ? pathwayname .
? pathway biopax3 : pathwayComponent ? reaction .
? reaction rdf:type biopax3 : BiochemicalReaction .
? reaction biopax3 :right ? complex .
? complex rdf:type biopax3 : Complex .
? complex biopax3 : component ? protein .
? protein rdf:type biopax3 : Protein .
? protein biopax3 : entityReference ?ref .
?ref biopax3 :id ?id ; rdf:type ? refType

}

# Query 3.2
SELECT ? pathway ? reaction ? complex ? protein
WHERE
{ ? pathway rdf:type biopax3 : Pathway .

? pathway biopax3 : displayName ? pathwayname .
? pathway biopax3 : pathwayComponent ? reaction .
? reaction rdf:type biopax3 : BiochemicalReaction .
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? reaction ?rel ? complex .
? reaction biopax3 :left ?left .
? complex rdf:type biopax3 : Complex .
? complex biopax3 : component ? protein .
? protein rdf:type biopax3 : Protein .
? protein biopax3 : entityReference <http :// purl. uniprot .org

/ uniprot /P01308 >
}

# Query 3.3
SELECT DISTINCT ?x
WHERE
{

?x biopax3 : dataSource ?x1 .
?x biopax3 : organism ?x2 .
?x biopax3 : pathwayComponent ?x3 .
?x biopax3 : comment ?x4 .
?x biopax3 : evidence ?x5 .
?x5 ?p ?o .

}

# Query 3.4
SELECT DISTINCT ? pathway ? reaction ? entity
WHERE
{ ? pathway rdf:type biopax3 : Pathway .

? pathway biopax3 : displayName ? pathwayname .
? pathway biopax3 : pathwayComponent ? reaction .
? reaction rdf:type biopax3 : BiochemicalReaction .
? reaction biopax3 :left ? entity .
? entity biopax3 : cellularLocation <http :// purl. obolibrary .

org/obo/GO_0005886 > .
? pathway biopax3 : dataSource ? source .
? source biopax3 :name ? sourceName .

}

# Query 3.5
SELECT DISTINCT ? pathway ? organism ?ref
WHERE
{

? pathway rdf:type biopax3 : Pathway .
? pathway biopax3 : displayName ? pathwayname .
? pathway biopax3 : organism ? organism .
? organism biopax3 :name ? organismName .
? organism rdf:type ? orgType .
? organism biopax3 :xref ?ref .
?ref biopax3 :id ?id ;

rdf:type ? refType
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}

# Query 3.6
SELECT DISTINCT ? pathway ? organism
WHERE
{

? pathway rdf:type ? pathType .
? pathway biopax3 : organism ? organism .
? organism biopax3 :name ? organismName .
? organism rdf:type ? orgType .
? organism biopax3 :xref ?ref .
?ref biopax3 :id ?id ;

rdf:type ? refType
}

# Query 3.7
SELECT DISTINCT ? organism ?ref
WHERE
{

? organism biopax3 :name ? organismName .
? organism rdf:type ? orgType .
? organism biopax3 :xref ?ref .
?ref biopax3 :id ?id ;

rdf:type ? refType
}

# Query 3.8
SELECT DISTINCT *
WHERE
{

?x biopax3 : pathwayComponent ?pw1 .
?pw1 rdf:type ?type1 .
?pw1 biopax3 : pathwayComponent ?pw2 .
?pw2 rdf:type ?type2 .
?pw2 biopax3 : pathwayComponent ?pw3 .
?pw3 rdf:type ?type3 .
?pw3 biopax3 : pathwayComponent ?pw4 .
?pw4 rdf:type ?type4 .
?pw2 biopax3 : pathwayComponent ?pw5 .
?pw5 rdf:type ?type5 .

}

A.4 Geonames Queries

In this section, the queries for the Geonames dataset are presented.
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# Query 4.1
SELECT ?f1 ?f2 ?f3 WHERE
{

?f1 rdf:type ?ft1 ;
gn: parentFeature ?f2 ;
gn: postalCode ?fp1 .

?f2 rdf:type ?ft2 ;
gn: parentFeature ?f3 .

?f3 rdf:type ?ft3 .
}

# Query 4.2
SELECT ?f1 ?f2 ?f3 WHERE
{

?f1 rdf:type ?ft1 ;
gn: parentFeature ?f2 ;
gn: postalCode ?fp1 .

?f2 rdf:type ?ft2 ;
gn: parentFeature ?f3 .

?f3 rdf:type ?ft3 .
?f1 gn: parentCountry ?f3 .

}

# Query 4.3
SELECT ?f1 ?f2 ?f3 ?4 WHERE
{

?f1 rdf:type ?ft1 ;
gn: parentFeature ?f2 ;
gn: postalCode ?fp1 ;
gn: parentADM4 ?fadm1 .

?f2 rdf:type ?ft2 ;
gn: parentFeature ?f3 .

?f2 gn: parentADM3 ?fadm2 .
?f3 rdf:type ?ft3 ;

gn: wikipediaArticle ? fwiki3 .
?f3 gn: parentFeature ?f4 .
?f4 rdf:type ?ft4 .

}

# Query 4.4
SELECT ?f1 ?f2 ?f3 ?4 WHERE
{

?f1 rdf:type ?ft1 ;
gn: parentFeature ?f2 ;
gn: postalCode ?fp1 .

?f2 rdf:type ?ft2 ;
gn: parentFeature ?f3 .
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?f3 rdf:type ?ft3 .
?f1 gn: parentFeature ?f3 .
?f3 gn: parentFeature ?f4 .
?f4 rdf:type ?ft4 .

}

# Query 4.5
SELECT ?f1 ?f2 ?f3 ?adm1 ?fadm1 WHERE {

?f1 rdf:type gn: Feature ;
gn: parentFeature ?f2 ;
gn: postalCode ?fp1 .

?f2 rdf:type ?ft2 ;
gn: parentFeature ?f3 .

?f3 rdf:type ?ft3 .
?f1 gn: parentADM1 ?adm1 .
?adm1 ?p ?fadm1 .
?fadm1 a gn: Feature

}

# Query 4.6
SELECT ?f1 ?adm1 WHERE {

?f1 rdf:type gn: Feature ;
gn: parentADM1 ?adm1 .

?adm1 gn: parentCountry ?fadm1 .
}
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Appendix B

Notes on the SPARQL Approach

Notes on the SPARQL-based approach. As it has been argued in this thesis,
property paths are directly supported by SPARQL 1.1 and are necessary for comput-
ing whether two values are related hierarchically. A different alternative is to compute
the tran-sitive closure of the data and materialize these relationships, however we do not
ad-dress efficient materialization of transitivity in RDF datasets. Universal quantifica-
tion must be mimicked by using a negation construct that in-cludes a nested recursion.
This negation actually ensures that there is no dimension between two candidate obser-
vations that does not exhibit hierarchically related val-ues. This is useful for computing
full containment. On the other hand, partial con-tainment can be detected by SPARQL
ASK queries merely by checking whether at least one occurrence of hierarchically related
values is present in any of the shared dimensions between two observations.

In the case of partial containment, the queries for materializing and detecting pairs of
observations are as follows:

Partial Containment (materialization):
CONSTRUCT {

[
rdf:type imis: PartialContainment ;

imis: containedObservation ?o1 ;
imis: containingObservation ?o2 ;

# other metadata can be added about the containment here
]

}
WHERE {
?o1 a qb: Observation .
?o2 a qb: Observation .
?o1 ?d1 ?v1.
?o2 ?d1 ?v2.
?v1 skos: broaderTransitive /skos: broaderTransitive * ?v2
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}

Partial Containment (detection):
SELECT DISTINCT ?o1 , ?o2
WHERE {

?o1 a qb: Observation .
?o2 a qb: Observation .
?o1 ?d1 ?v1.
?o2 ?d1 ?v2.
?v1 skos: broaderTransitive /skos: broaderTransitive * ?v2
FILTER (?o1 != ?o2)

}

The above query will select pairs of ?o1 and ?o2 that have at least one dimension with
ancestral values; ?v1 must be a parent of ?v2. The above query does not provide the
number of dimensions that participate in the partial containment; this would make the
query more complicated.

In the case of full containment, the queries for materializing and detecting pairs of ob-
servations are as follows:

Full Containment (Materialization):
CONSTRUCT {

[
rdf:type imis: FullContainment ;

imis: containedObservation ?o1 ;
imis: containingObservation ?o2 ;

# other metadata can be added about the containment here
]

}
WHERE {
?o1 a qb: Observation .
?o2 a qb: Observation .
?o1 ?d1 ?v1.
?o2 ?d1 ?v2.
?v1 skos: broaderTransitive /skos: broaderTransitive * ?v2

?o1 ?d2 ?v12 .
?o2 ?d2 ?v22 .
FILTER NOT EXISTS {

OPTIONAL {
?v12 skos: broaderTransitive /skos:

broaderTransitive * ?v22
}
FILTER (! BOUND (? v22))
}
}
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Full Containment (Detection):
SELECT DISTINCT ?o1 , ?o2 WHERE {
?o1 a qb: Observation .
?o2 a qb: Observation .
?o1 ?d1 ?v1.
?o2 ?d1 ?v2.
?v1 skos: broaderTransitive /skos: broaderTransitive * ?v2

?o1 ?d2 ?v12 .
?o2 ?d2 ?v22 .
FILTER NOT EXISTS {

OPTIONAL {
?v12 skos: broaderTransitive /skos:

broaderTransitive * ?v22
}
FILTER (! BOUND (? v22))
}
}

The above queries return pairs observations, ?o1 and ?o2, that have all dimension values
exhibiting ancestral relationships; all ?v1 must be a parent of ?v2 using property paths
of undefined length.

Complementarity (Materialization):

In the case of complementarity, we tested the data against the following SPARQL queries:
CONSTRUCT {

[
rdf:type imis: Complement ;

imis: observation ?o1 ;
imis: observation ?o2 ;

# other metadata can be added about the containment here
]

}
WHERE {
?o1 a qb: Observation .
?o2 a qb: Observation .
?o1 ?d1 ?v1.
?o2 ?d1 ?v1.

FILTER NOT EXISTS {
?o1 ?d2 ?v12 .
?o2 ?d2 ?v22 .
FILTER (? v12 !=? v22)

}
}

Complementarity (Detection):
SELECT DISTINCT ?o1 , ?o2
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WHERE {
?o1 a qb: Observation .
?o2 a qb: Observation .
?o1 ?d1 ?v1.
?o2 ?d1 ?v1.

FILTER NOT EXISTS {
?o1 ?d2 ?v12 .
?o2 ?d2 ?v22 .
FILTER (? v12 !=? v22)

}
}

The queries will return pairs of observations with no different values in their shared
dimensions.

Note that in all of the queries, we have relaxed the conditions presented in section 2, as
the runtimes would be even slower, and their syntax complicated.
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Appendix C

Notes on the Rule-Based Approach

Notes on the rule-based approach. The rule based approach is performed with
forward-chaining rules for the cases of containment and complementarity. For full con-
tainment, we check for pairs of observations that exhibit both existential and universal
quantification in the subsumption of their respective dimension values. The existential
quantification is needed to ensure that there exists at least one relationship, while the
universal is needed to ensure that all relationships exist. The rule for full containment is
as follows:
observation (o1) ∧ observation (o2)
∧ (o1 6= o2)
∧ ∃p.( has_dimension_value (o1 ,p,v1)

∧ has_dimension_value (o2 ,p,v2)
∧ is_ancestor (v1 ,v2))

∧ ∀p.( has_dimension_value (o1 ,p,v1)
∧ has_dimension_value (o2 ,p,v2)
∧ is_ancestor (v1 ,v2))

⇒ full_containment (o1 ,o2)

Similarly, the rule for partial containment checks the existential restriction; that is, we
need at least one pair of dimension values to exhibit a containment relationship between
o1 and o2. Therefore, the rule is as follows:
observation (o1) ∧ observation (o2)
∧ (o1 6= o2)
∧ ∃p.( has_dimension_value (o1 ,p,v)

∧ has_dimension_value (o2 ,p,v))
⇒ partial_containment (o1 ,o2)

The rule for complementarity is activated when two different observations have the same
values for all of their shared dimensions and is summarized in the following:
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observation (o1) ∧ observation (o2)
∧ (o1 6= o2)
∧ ∃p.( has_dimension_value (o1 ,p,v)

∧ has_dimension_value (o2 ,p,v))
∧ ∀p.( has_dimension_value (o1 ,p,v)

∧ has_dimension_value (o2 ,p,v))
⇒ complement (o1 ,o2)
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