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Oscillatory rarefied gas flows are of main theoretical importance in fluid mechanics,
revealing novel non-equilibrium transport phenomena, as well as of strong engineering
interest in various technological fields, including microfluidics and vacuum technology.
As in the case of viscous oscillatory flows, rarefied oscillatory gas flows are encountered
in enclosures, driven by moving boundaries oscillating parallel or vertical to the main
flow and in capillaries of various cross sections, driven by oscillating or pulsatile
pressure or force gradients. Since in rarefied gas flows the classical Navier-Stokes-
Fourier approach is not applicable, kinetic modeling and simulations, based on the
computational solution of the Boltzmann equation or of reliable kinetic model equations
via deterministic or stochastic schemes, have been implemented. Oscillatory gas flows
are in the hydrodynamic regime, when both the mean free path and the oscillation
frequency are much smaller than the characteristic length and the collision frequency
respectively. When either of these restrictions is relaxed, the flow is classified as rarefied
and may be in the transition or free molecular regimes depending on the time and
space characteristic scales. Boundary driven rarefied oscillatory flows have attracted
over the last two decades considerable attention. They may be present in resonating
filters, sensors and actuators, as well as in systems enhancing acoustic transduction or
achieving acoustic cloaking. Pressure or force driven rarefied oscillatory or pulsatile gas
flows have attracted much less attention. They are also encountered in numerous typical
and innovative applications in the transition and free molecular regimes, including
pneumatic lines, electronic cooling, pulse tubes, enhanced heat and mass transfer
devices, gas separation and mixing technologies and gas pumping systems.

In the present Ph.D. thesis oscillatory rarefied gas flows in various flow setups
are considered in the whole range of gas rarefaction and oscillation frequencies. The
investigation includes oscillatory and pulsatile fully-developed gas flow through circular
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and rectangular channels, subject to oscillatory pressure gradients of small amplitude,
as well as to oscillatory nonlinear fully-developed flow between parallel plates, subject
to oscillatory forces of arbitrary amplitude. The investigation in capillaries also includes
oscillatory fully-developed binary gas mixture flow between parallel plates driven by
oscillatory pressure and molar fraction gradients. Furthermore, boundary driven flow
in comb-type enclosures subject to vertical or lateral harmonic motion of the moving
surface is investigated. The analysis is based, depending on the flow configuration on
the deterministic solution of the BGK, Shakhov and McCormack kinetic models, as
well as on the DSMC method. In all flow setups the effect of the flow and geometry
parameters on the macroscopic distributions and overall quantities characterizing the
flow is investigated, providing interesting theoretical and technological findings.

The oscillatory and pulsatile isothermal fully-developed rarefied gas flow in circular
tubes and rectangular ducts respectively are simulated based on the linearized unsteady
BGK kinetic model subject to Maxwell boundary conditions. Computational results
for the amplitude, phase angle and time evolution of the velocity distribution, the
flow rate, the mean wall shear stress, the acting inertial and viscous forces, the
pumping power and the time average pumping power are provided, covering the
whole range of gas rarefaction and oscillation parameters. The results are successfully
validated with corresponding analytical or semi-analytical results in the slip and free
molecular regimes for low and high oscillation frequencies, as well as with steady-state
numerical results, which are reached faster as the flow becomes more rarefied. The
amplitudes of the flow rate and the mean wall shear stress are always smaller than the
corresponding steady ones. In general, as the frequency is increased the amplitude of
the macroscopic quantities is decreased and their phase angle lag with respect to the
pressure gradient is increased approaching asymptotically the limiting value of 900. The
detailed computation of the inertia and viscous forces in terms of the gas rarefaction
and oscillation parameters, clarifies when the flow consists of only one oscillating
viscous region or of two regions, namely the inviscid piston flow in the core and the
oscillating frictional Stokes layer at the wall with the velocity overshooting (Richardson
effect). As the gas rarefaction is increased higher oscillation frequencies are needed to
trigger these phenomena. In terms of the gas rarefaction, there is a non-monotonic
behavior and the maximum flow rate amplitude may be observed at some intermediate
value of the gas rarefaction parameter depending upon the oscillation parameter. The
accommodation coefficient, characterizing the gas-surface interaction, has a significant
effect on the amplitudes of the macroscopic quantities and a very weak one on their
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phases. The time average pumping power is increased as the oscillation frequency is
reduced and its maximum value is one half of the corresponding steady one.

Next, the oscillatory nonlinear force driven fully-developed rarefied gas flow has
been analyzed based on the DSMC method, as well as on the nonlinear BGK and
Shakhov models, subject to diffuse boundary conditions. It has been found that even
with large force amplitudes all macroscopic distributions have sinusoidal pattern with
its fundamental frequency being the same with the driving frequency of the external
force without the appearance of other harmonics, except of the axial heat flow where
the nonlinearities are responsible for generating oscillatory motion containing several
harmonics. Nonlinear effects are becoming more significant in highly rarefied flows
with low oscillation frequencies. The DSMC flow rates have been compared with
corresponding linear oscillatory ones, to find out that at small and moderate external
forces, the agreement between nonlinear and linear flow rates is very good and always
remains less than 10%, while at large external forces the deviation in the flow rate
amplitude reaches about 25%. The bimodal shape of the temperature profile and
nonconstant pressure profile, encountered in steady-state flows in the continuum limit,
are also observed here and strongly depend on the gas rarefaction and oscillation
parameters. The axial heat flow is the most affected macroscopic quantity by the
amplitude of the external force. At large external forces and highly rarefied flows
with low oscillation frequencies it exhibits a complex non-sinusoidal pattern containing
several harmonics. The cycle-average pumping power is increased proportionally to
the square of the external force amplitude and is smaller than the corresponding linear
one following the same trend with the flow rates. In the case of nonisothermal plates,
the space-average normal heat flow is not enhanced by increasing either the oscillation
frequency or the force amplitude. The agreement between the DSMC and kinetic
models is very good in flow rates and shear stresses but it deteriorates in heat flows.

The investigation in oscillatory capillary flows is concluded by examining the
oscillatory pressure and molar fraction driven rarefied binary gas mixture flow between
parallel plates, based on the McCormack model subject to diffuse boundary conditions.
The presented results are for He–Xe, He-Ar and Ne–Ar with their molar fraction
varying from zero to one. The output quantities include the macroscopic quantities of
each species and of the mixture and they are successfully validated in various ways,
including grid refinement, fulfillment of the derived force balance benchmark expression
and systematic comparisons at limiting conditions, such as steady-state binary gas
flow and oscillatory single gas flow. The flow rate, wall shear stress and pumping
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power of the oscillatory binary gas mixture flow have qualitative resemblance with
the corresponding ones in oscillatory single gas flow, in terms of the gas rarefaction
and oscillation parameters, but there are quantitative deviations particularly in the
flow rates depending on the molar fraction and the mixture composition. As the
molecular mass ratio of the heavy over the light species is increased, the mixture
flow rate amplitude becomes larger and the phase angle becomes smaller than the
corresponding ones of the single gas. The variation with respect to the molar fraction
is non-monotonic, taking the maximum and minimum values for the amplitude and
the phase angle respectively at intermediate values of the molar fraction. Concerning
the species, it has been found that as the oscillation frequency is increased, although
the flow rate amplitudes of both species are decreased, the relative difference between
the flow rate amplitudes of the light and heavy species is increased. This behavior
becomes more pronounced as the gas rarefaction is decreased, which is certainly not
expected, since as it is well-known gas separation effects are decreased as the flow
becomes less rarefied. This is due to inertia effects, which are increased with the
oscillation frequency and they influence the flow rate amplitude of the heavy species
much more than of the light one. This effect is further amplified as the flow becomes less
rarefied, overcoming diffusion effects due to intermolecular collisions, provided that the
oscillation frequency is sufficiently large. It has been confirmed that at high frequencies
the flow rate amplitude ratio of the light over the heavy species, independent of the gas
rarefaction parameter, tends to the molecular mass ratio of the heavy over the light
species. Also, the phase lag of the flow rate of the heavy species are always larger than
the corresponding one of the light one, while the velocity overshooting effect becomes
more dominant as the molecular mass of the gas species is increased. The present
results may be useful in the design and development of gas separation devises operating
at moderate and high frequencies in the whole range of gas rarefaction applicable in
various technological fields.

Turning next to boundary driven flows the classical oscillatory Couette flow and
the two-dimensional oscillatory rarefied gas flow in comb-type structures driven by
the vertical/lateral harmonic motion of the moving surface are investigated. The
former one has been analyzed based on the linearized BGK kinetic model and it is
considered mainly for benchmarking the developed complex kinetic codes. Excellent
agreement between the present results and the available ones in the literature is
observed. Also, a computationally efficient marching-type scheme is reported, with the
real and imaginary parts of the kinetic formulation separately treated and solved. In
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addition, two parallelization strategies based on OpenMP and OpenACC directives
are reported and a suitable speed-up is achieved without doing major modifications in
the kinetic solver. Then, the developed validated parallel codes have been accordingly
extended and adapted to all examined flow configurations. The time-dependent comb-
type flow setup has been analyzed based on the linearized Shakhov kinetic model
with diffuse boundary conditions. The vibrating part is the inner one, formatting
complex flow patterns depending on the gas rarefaction and oscillation parameters,
as well as on the comb dimensions. Computational results are presented mainly for
the average normal pressure and shear stress at the moving walls. As the rarefaction
parameter is increased the amplitudes of both quantities are initially reduced reaching
some minimum values, then they slightly increase and oscillate and finally, they
remain constant. The local minimums and maximums in the amplitudes correspond to
certain anti-resonance and resonance states respectively, which may be implemented
to control the system dissipation. The dimensions of the comb assembly affect the
flow significantly at low oscillation frequencies. On the contrary, in the high frequency
regime, the normal pressure and shear stress remain constant despite any change in
comb dimensions. In these cases gas trapping is observed and the flow may be modeled
as one-dimensional. The presented results may be useful in the development of the
new generation acceleration sensors and resonators.

Overall, it may be stated that following specific kinetic formulation, modeling
and simulations, various oscillatory flow setups have been considered in the whole
range of gas rarefaction and oscillation frequency parameters. The investigation of
oscillatory and pulsatile flows of single gases and binary gas mixtures in capillaries due
to externally imposed small or large amplitude driving mechanisms, as well as of the
oscillatory boundary driven comb assembly response, is novel and all corresponding
results are reported for first time in the literature. It is hoped that the theoretical
findings and the computational results reported here will support, at some extend, the
detailed design and optimization of various technological devices.

Keywords: Rarefied gas dynamics, Vacuum technology, Microfluidics, Oscillatory
flow, Pulsatile flow, Richardson effect, Nonlinear oscillatory flow, Oscillatory binary
gas mixture flow, Gas separation, Comb drive assembly, Damping forces
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Αραιοποιημένες ταλαντωτικές και παλμικές ροές αερίων

σε αγωγούς και κοιλότητες με εφαρμογές στην

τεχνολογία κενού και μικρορευστομηχανική

Αλέξανδρος Τσιμπούκης

Πανεπιστήμιο Θεσσαλίας, Ιανουάριος 2020

Επιβλέπων: Καθηγητής Δ. Βαλουγεώργης

Η θεωρητική σημασία των ταλαντωτικών αραιοποιημένων ροών αερίων για τον κλάδο

της μηχανικής ρευστών είναι μεγάλη και εντοπίζεται στην ανακάλυψη καινοτόμων φαινο-

μένων μεταφοράς εκτός θερμοδυναμικής ισορροπίας και στη σύνδεση με ενδιαφέρουσες

εφαρμογές σε διάφορους τεχνολογικούς τομείς όπως η μικρορευστομηχανική και η τε-

χνολογία κενού. ΄Οπως οι υδροδυναμικές ταλαντωτικές ροές, ομοίως οι ταλαντωτικές

αραιοποιημένες ροές αερίων εμφανίζονται είτε σε οριοθετημένους χώρους με τοιχώματα

που ταλαντώνονται παράλληλα ή κάθετα ως προς τη ροή είτε σε αγωγούς όπου η ροή

δημιουργείται από ταλαντωτική ή παλμική διαφορά πίεσης ή δύναμης. Δεδομένου ότι η

κλασσική προσέγγιση Navier-Stokes-Fourier δεν εφαρμόζεται στις αραιοποιημένες ροές
αερίων, έχουν εφαρμοστεί κινητικές τεχνικές μοντελοποίησης και προσομοίωσης, οι οποί-

ες βασίζονται στην υπολογιστική επίλυση είτε της εξίσωσης Boltzmann είτε αντίστοιχης
εξίσωσης κατάλληλου κινητικού μοντέλου μέσω ντετερμινιστικών ή στοχαστικών σχη-

μάτων. Οι ταλαντωτικές ροές αερίων βρίσκονται στο υδροδυναμικό όριο όταν και η μέση

ελεύθερη διαδρομή των μορίων του αερίου είναι μικρότερη ενός χαρακτηριστικού μήκους,

καθώς επίσης και όταν η συχνότητα ταλάντωσης είναι μικρότερη της συχνότητας των

συγκρούσεων. ΄Οταν μια από τις δύο προϋποθέσεις δεν ισχύει, τότε η ροή χαρακτηρίζε-

ται ως αραιοποιημένη και ανάλογα με το μέγεθος του χαρακτηριστικού μήκους και του

χρόνου, ενδέχεται να βρίσκεται στη περιοχή μετάβασης ή στην ελεύθερη μοριακή περιοχή.

Οι αραιοποιημένες ταλαντωτικές ροές αερίων λόγω κίνησης τοιχώματος έχουν διερευνη-

θεί εκτενώς τα τελευταία είκοσι χρόνια. Οι αραιοποιημένες ταλαντωτικές ή παλμικές

ροές αερίων λόγω διαφοράς πίεσης ή δύναμης δεν έχουν λάβει την αντίστοιχη προσοχή.

Οι ροές αυτές εμφανίζονται σε πολλές κλασσικές αλλά και καινοτόμες εφαρμογές στη

περιοχή μετάβασης και στην ελεύθερη μοριακή περιοχή όπως για παράδειγμα σε πνευμα-

τικές γραμμές, σε ψύξη ηλεκτρονικών συστημάτων, σε παλμικούς αγωγούς, σε συσκευές

ενίσχυσης μεταφοράς μάζας και θερμότητας, σε τεχνολογίες διαχωρισμού και ανάμειξης

αερίων και σε συστήματα άντλησης αερίων.
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Στην παρούσα διδακτορική διατριβή, οι ταλαντωτικές αραιοποιημένες ροές αερίων δια-

φόρων διατάξεων ροής μελετώνται σε όλο το εύρος της αραιοποίησης του αερίου και των

συχνοτήτων ταλάντωσης. Η μελέτη περιλαμβάνει ταλαντωτικές και παλμικές πλήρως-

αναπτυγμένες ροές αερίων σε κυλινδρικούς και τετραγωνικούς αγωγούς, που υπόκεινται

σε μικρές διαφορές του πλάτους της πίεσης, όπως επίσης και μη γραμμικές πλήρως-

αναπτυγμένες ροές ανάμεσα από δύο παράλληλες πλάκες, που υπόκεινται σε ταλαντωτι-

κές δυνάμεις μικρού ή μεγάλου πλάτους. Η μελέτη των αγωγών επίσης περιλαμβάνει και

τη ταλαντωτική ροή μείγματος δύο αερίων ανάμεσα από δύο παράλληλες πλάκες λόγω τα-

λαντωτικής διαφοράς πίεσης ή συγκέντρωσης. Επιπλέον, διερευνάται η ταλαντωτική ροή

σε διατάξεις comb είτε κάθετης είτε παράλληλης αρμονικής ταλάντωσης του κινούμενου
τοιχώματος. Ανάλογα με τη διάταξη της ροής, η ανάλυση υιοθετεί είτε τη ντετερμινι-

στική επίλυση των κινητικών μοντέλων BGK, Shakhov και McCormack είτε τη μέθοδο
DSMC. Για όλες τις ροές, μελετάται η επίδραση των παραμέτρων της ροής και της γε-
ωμετρίας πάνω στις μακροσκοπικές κατανομές και στις συνολικές ποσότητες οι οποίες

χαρακτηρίζουν την εκάστοτε ροή και οδηγούν σε ευρήματα με τεχνολογικό και θεωρητικό

ενδιαφέρον.

Η ταλαντωτική ισοθερμοκρασιακή πλήρως-αναπτυγμένη αραιοποιημένη ροή αερίου σε

κυλινδρικό αγωγό και η αντίστοιχη παλμική αραιοποιημένη ροή σε ορθογωνικό αγωγό

προσομοιώνονται με βάση το γραμμικοποιημένο χρονομεταβαλλόμενο κινητικό μοντέλο

BGK σύμφωνα με οριακές συνθήκες τύπου Maxwell. Δίνονται αριθμητικά αποτελέσματα
για το πλάτος, τη διαφορά φάσης και τη χρονική εξέλιξη των ποσοτήτων της ταχύτητας,

της παροχής, της μέσης διατμητικής τάσης στο τοίχωμα, των δυνάμεων της αδράνειας

και του ιξώδους καθώς και της χρονικά μεταβαλλόμενης και μέσης ισχύς άντλησης. Το

εύρος των αποτελεσμάτων καλύπτει όλο το εύρος των παραμέτρων αραιοποίησης και συ-

χνότητας ταλάντωσης. Τα κινητικά αποτελέσματα επιβεβαιώνονται από αποτελέσματα

αναλυτικών ή ημι-αναλυτικών λύσεων στη περιοχή ολίσθησης όπως και στην ελεύθε-

ρη μοριακή περιοχή, καθώς και με αντίστοιχα αριθμητικά αποτελέσματα μόνιμης ροής. Η

μόνιμη ροή εμφανίζεται γρηγορότερα όταν το αέριο είναι πιο αραιό. Τα πλάτη της παροχής

και της μέσης διατμητικής τάσης στο τοίχωμα είναι πάντα μικρότερα από τα αντίστοιχα

μεγέθη της μόνιμης ροής. Γενικά, όταν αυξάνεται η συχνότητα, το πλάτος των μακρο-

σκοπικών ποσοτήτων μειώνεται και η καθυστέρηση της διαφοράς φάσης τους σε σχέση

με τη βαθμίδα πίεσης αυξάνεται και προσεγγίζει την οριακή τιμή των 90
0
. Ο λεπτομερής

υπολογισμός των δυνάμεων αδράνειας και ιξώδους σε σχέση με τις παραμέτρους αραιο-

ποίησης και ταλάντωσης, αποσαφηνίζει πότε η ροή αποτελείται από ένα ή δύο μέρη ροής.

΄Οταν υπάρχουν δύο μέρη ροής, η μία ροή στο κέντρο είναι ροή χωρίς ιξώδες ενώ η άλλη
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εμφανίζει οριακά στρώματα Stokes στα τοιχώματα που χαρακτηρίζονται από υψηλότερη
ταχύτητα σε σχέση με το κέντρο της ροής (φαινόμενο Richardson). ΄Οσο το αέριο γίνεται
πιο αραιό, χρειάζονται υψηλότερες συχνότητες για να εμφανιστεί αυτό το φαινόμενο. Η

συμπεριφορά της παροχής δεν είναι μονοτονική σε σχέση με τη παράμετρο της αραιοπο-

ίησης και το μέγιστο πλάτος της εμφανίζεται σε κάποια ενδιάμεση τιμή της παραμέτρου

αραιοποίησης, η οποία εξαρτάται όμως και από την παράμετρο της ταλάντωσης. Ο συ-

ντελεστής των οριακών συνθηκών τύπου Maxwell, που χαρακτηρίζει την αλληλεπίδραση
αερίου-τοιχώματος, επιδρά σημαντικά μόνο στα πλάτη των μακροσκοπικών ποσοτήτων

ενώ η επίδραση του στη διαφορά φάσης τους είναι πολύ μικρή. Η μέση ισχύς άντλησης

αυξάνεται όταν η συχνότητα ταλάντωσης μειώνεται και η μέγιστη τιμή της ισούται με τη

μισή της αντίστοιχης ισχύς άντλησης μόνιμης ροής.

Στη συνέχεια, αναλύεται η μη γραμμική ταλαντωτική πλήρως αναπτυγμένη αραιοποι-

ημένη ροή αερίου λόγω εξωτερικής δύναμης μέσω της μεθόδου DSMC καθώς και μέσω
των μη γραμμικών μοντέλων BGK και Shakhov σε οριακές συνθήκες πλήρους διάχυσης.
Παρατηρήθηκε πως η χρονική εξέλιξη σχεδόν όλων των ποσοτήτων παραμένει αρμονική

και με συχνότητα ίδια με αυτή της δύναμης χωρίς να εμφανίζονται υψηλότερες αρμονικές

λόγω των μεγάλων δυνάμεων. Η μόνη ποσότητα που εμφανίζει υψηλότερες αρμονικές

είναι η μέση αξονική θερμορροή. Επίσης, η επίδραση των μη γραμμικών φαινομένων ε-

ίναι εντονότερη σε υψηλά αραιοποιημένες ροές και χαμηλές συχνότητες ταλάντωσης. Τα

αποτελέσματα με τη μέθοδο DSMC συγκρίνονται με αντίστοιχα αποτελέσματα της γραμ-
μικής ταλαντωτικής ροής για μικρές δυνάμεις και η απόκλιση μεταξύ των δύο παραμένει

μικρότερη του 10 %. Αντιθέτως, για μεγάλες δυνάμεις η απόκλιση αυξάνεται στο 25 %.

Το διτροπικό σχήμα της κατανομής θερμοκρασίας και η μη συνεχής κατανομή της πίεσης,

που έχουν ήδη μελετηθεί για μόνιμες ροές, παρατηρούνται και εδώ και επιπρόσθετα στη

συγκεκριμένη περίπτωση εξαρτώνται από τη παράμετρο αραιοποίησης και τη παράμετρο

ταλάντωσης. Η ποσότητα που επηρεάζεται περισσότερο από το πλάτος της εξωτερικής

δύναμης είναι η μέση αξονική θερμορροή. Εμφανίζει μία σύνθετη μη-ημιτονοειδής κατανο-

μή που περιέχει αρκετές αρμονικές στη περίπτωση που εφαρμόζονται μεγάλες εξωτερικές

δυνάμεις, σε υψηλά αραιοποιημένες ροές και χαμηλές συχνότητες ταλάντωσης. Η μέση

ισχύς άντλησης αυξάνεται αναλογικά με το τετράγωνο του πλάτους της εξωτερικής δύνα-

μης και είναι μικρότερη από την αντίστοιχη γραμμική, ακολουθώντας πάντα την ίδια τάση

με τις παροχές. Στην περίπτωση μη ισοθερμοκρασιακών πλακών, η μέση κάθετη θερμορ-

ροή δεν ενισχύεται με την αύξηση είτε της συχνότητας ταλάντωσης είτε του εύρους της

δύναμης. Η μέθοδος DSMC και τα κινητικά μοντέλα συμπίπτουν στις παροχές και τις
διατμητικές τάσεις αλλά όχι στη περίπτωση των θερμορροών.
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Η μελέτη των ταλαντωτικών ροών σε αγωγούς ολοκληρώνεται με τη διερεύνηση της

ταλαντωτικής αραιοποιημένης ροής μείγματος δύο αερίων λόγω διαφοράς πίεσης ή συ-

γκέντρωσης ανάμεσα από δύο παράλληλες πλάκες. Η μοντελοποίηση γίνεται με το κι-

νητικό μοντέλο McCormack σε οριακές συνθήκες πλήρους διάχυσης. Παρουσιάζονται
αποτελέσματα για τα μείγματα ΄Ηλιο-Ξένο, ΄Ηλιο-Αργό και Νέον-Αργό των οποίων η

συγκέντρωση κυμαίνεται από μηδέν έως ένα. Τα αποτελέσματα περιλαμβάνουν τις μα-

κροσκοπικές ποσότητες κάθε αερίου και του μείγματος και επιβεβαιώνονται επιτυχώς με

διάφορους τρόπους συμπεριλαμβανομένης της βελτίωσης του πλέγματος, της ικανοποίη-

σης του ισοζυγίου δυνάμεων καθώς και μέσω συγκρίσεων σε οριακές καταστάσεις, π.χ.

με αποτελέσματα της μόνιμης ροής μειγμάτων και με αποτελέσματα της ταλαντωτικής

ροής μονοατομικού αερίου. Η παροχή, η διατμητική τάση στο τοίχωμα και η ισχύς άντλη-

σης της ταλαντωτικής ροής του μείγματος αερίων μοιάζουν ποιοτικά με τις αντίστοιχες

ποσότητες της ταλαντωτικής ροής ενός αερίου, όσον αφορά τις παραμέτρους αραιοποίη-

σης και ταλάντωσης. ΄Ομως, υπάρχουν και ποσοτικές διαφορές ιδιαίτερα στις παροχές οι

οποίες εξαρτώνται από τη συγκέντρωση και τη σύνθεση του μείγματος. ΄Οταν αυξάνεται

ο λόγος μοριακής μάζας του βαρέος συστατικού ως προς το ελαφρύ, τότε το πλάτος της

παροχής του μείγματος γίνεται μεγαλύτερο σε σχέση με το αντίστοιχο της ροής ενός

μονοατομικού αερίου ενώ η διαφορά φάσης γίνεται μικρότερη. Η μεταβολή της παροχής

σε σχέση με τη συγκέντρωση είναι μη μονοτονική ενώ το εύρος και η διαφορά φάσης

της παροχής εμφανίζουν αντίστοιχα μέγιστες και ελάχιστες τιμές στις ενδιάμεσες τιμές

της συγκέντρωσης. ΄Οσον αφορά το κάθε συστατικό, έχει βρεθεί ότι καθώς αυξάνεται η

συχνότητα ταλάντωσης, παρόλο που τα πλάτη της παροχής αμφοτέρων των συστατικών

μειώνονται, η σχετική διαφορά μεταξύ των παροχών των συστατικών αυξάνεται. Αυτό

το φαινόμενο γίνεται πιο έντονο καθώς το αέριο γίνεται πιο πυκνό, κάτι που σίγουρα δεν

είναι αναμενόμενο, αφού είναι γνωστό πως τα φαινόμενα διαχωρισμού ενός αερίου μει-

ώνονται καθώς το αέριο γίνεται πυκνότερο. Αυτό οφείλεται σε φαινόμενα αδράνειας, τα

οποία αυξάνονται όσο αυξάνεται η συχνότητα ταλάντωσης και επηρεάζουν τη παροχή του

βαρέος συστατικού περισσότερο σε σχέση με τη παροχή του ελαφρύτερου. Το φαινόμε-

νο ενισχύεται και άλλο όταν η ροή γίνει πυκνότερη με αποτέλεσμα οι συγκρούσεις των

μορίων να υπερισχύουν των φαινομένων διάχυσης, εφόσον όμως η συχνότητα ταλάντω-

σης είναι αρκετά μεγάλη. ΄Εχει επιβεβαιωθεί ότι στις υψηλές συχνότητες, ο λόγος της

παροχής του ελαφρύτερου συστατικού προς τη παροχή του βαρέος συστατικού τείνει στο

λόγο της μοριακής μάζας του βαρύτερου προς το ελαφρύτερο, ανεξάρτητα από το βαθμό

αραιοποίησης του αερίου. Επίσης, η υστέρηση φάσης της παροχής του βαρέος συστατι-

κού είναι πάντοτε μεγαλύτερη από την αντίστοιχη του ελαφρύτερου, ενώ το φαινόμενο
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της υψηλής ταχύτητας στα τοιχώματα γίνεται περισσότερο έντονο όσο αυξάνεται η μο-

ριακή μάζα του κάθε συστατικού. Τα υπάρχοντα αποτελέσματα μπορούν να αξιοποιηθούν

για το σχεδιασμό και την ανάπτυξη συσκευών διαχωρισμού αερίων που λειτουργούν σε

μέτριες και υψηλές συχνότητες ταλάντωσης και σε όλο το εύρος της αραιοποίησης του

αερίου και να εφαρμοστούν σε διάφορους τεχνολογικούς τομείς.

Στη συνέχεια, μελετάται η κλασσική ταλαντωτική ροή Couette και η δισδιάστατη
ταλαντωτική αραιοποιημένη ροή σε διάταξεις comb που υπόκειται σε κάθετη ή σε πα-
ράλληλη αρμονική ταλάντωση του κινούμενου τοιχώματος. Η ροή Couette αναλύεται με
το γραμμικοποιημένο κινητικό μοντέλο BGK και χρησιμοποιείται κυρίως για τη συγκρι-
τική αξιολόγηση των μιγαδικών κινητικών κωδικών. Πολύ καλή σύγκριση παρατηρείται

ανάμεσα στα υπάρχοντα αποτελέσματα και τα αποτελέσματα της βιβλιογραφίας. Επίσης,

γίνεται αναφορά σε ένα υπολογιστικά αποδοτικό σχήμα τύπου marching όπου το πραγ-
ματικό και το φανταστικό μέρος της κινητικής εξίσωσης επιλύεται ξεχωριστά. Επιπλέον,

γίνεται αναφορά σε δύο στρατηγικές παραλληλοποίησης με βάση τα πακέτα OpenMP και
OpenACC. Το πλεονέκτημα των συγκεκριμένων πακέτων εντοπίζεται στην επιτάχυνση
της διαδικασία επίλυσης του προβλήματος χωρίς να απαιτούνται σημαντικές τροποποιήσεις

στον αρχικό κινητικό κώδικα. Στη συνέχεια, οι αναπτυγμένοι επαληθευμένοι παράλληλοι

κώδικες επεκτείνονται και προσαρμόζονται και στις άλλες εξεταζόμενες ροές αερίων. Η

χρονομεταβαλλόμενη ροή σε διάταξη comb επιλύεται με το γραμμικό κινητικό μοντέλο
Shakhov σε οριακές συνθήκες πλήρους διάχυσης. Το τμήμα που ταλαντώνεται είναι το
εσωτερικό και λόγω της ταλάντωσης εμφανίζονται πολύπλοκα μοτίβα ροής τα οποία ε-

ξαρτώνται από τη παράμετρο αραιοποίησης και ταλάντωσης καθώς και από τις διαστάσεις

της διάταξης comb. Τα αποτελέσματα εστιάζουν στην μέση ορθή και διατμητική τάση
στα κινούμενα τοιχώματα. ΄Οταν αυξάνεται η παράμετρος αραιοποίησης, τα δύο πλάτη των

τάσεων αρχικά μειώνονται μέχρι μια ελάχιστη τιμή, μετά αυξάνονται ελάχιστα και στη

συνέχεια εμφανίζουν μια ταλαντωτική συμπεριφορά μέχρι οι τιμές τους να παραμείνουν

σταθερές. Τα τοπικά ελάχιστα και μέγιστα στα πλάτη αντιστοιχούν σε συγκεκριμένες

καταστάσεις αντι-συντονισμού και συντονισμού αντίστοιχα και αυτές οι καταστάσεις μπο-

ρούν να εφαρμοστούν για έλεγχο του συστήματος. Οι διαστάσεις της διάταξης comb
επηρεάζουν τη ροή σημαντικά σε χαμηλές συχνότητες ταλαντώσεων. Αντίθετα, στη πε-

ριοχή υψηλής συχνότητας οι διαστάσεις της διάταξης comb δεν επηρεάζουν την κάθετη
και τη διατμητική τάση οι οποίες παραμένουν σταθερές. Σε αυτές τις περιπτώσεις παρα-

τηρείται εγκλωβισμός του αερίου και η ροή μπορεί να μοντελοποιηθεί ως μονοδιάστατη.

Τα υπάρχοντα αποτελέσματα μπορούν να αξιοποιηθούν για την ανάπτυξη των αισθητήρων

επιτάχυνσης νέας γενιάς και των ταλαντωτών.
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Εν κατακλείδι, εξετάστηκαν διάφορες περιπτώσεις ταλαντωτικών ροών σε όλο το ε-

ύρος των παραμέτρων της αραιοποίησης του αερίου και της συχνότητας ταλάντωσης αφού

πρώτα χρησιμοποιηθήκαν συγκεκριμένες κινητικές μεθοδολογίες και τεχνικές προσομο-

ίωσης και μοντελοποίησης. Η μελέτη των ταλαντωτικών και παλμικών ροών μονοατομι-

κών αερίων και μειγμάτων αερίων σε αγωγούς με εξωτερικούς κινητήριους μηχανισμούς,

που έχουν είτε μικρό είτε μεγάλο πλάτος ταλάντωσης, καθώς επίσης και της απόκρισης

της ταλαντωτικής ροής σε διάταξη comb είναι καινοτόμα. Τα αντίστοιχα αποτελέσματα
παρουσιάζονται για πρώτη φορά στη βιβλιογραφία. Τα θεωρητικά ευρήματα και τα υπο-

λογιστικά αποτελέσματα που αναφέρθηκαν εδώ μπορεί να αξιοποιηθούν στον λεπτομερή

σχεδιασμό και τη βελτιστοποίηση διαφόρων τεχνολογικών συσκευών.
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Φαινόμενο Richardson, Μη γραμμική ταλαντωτική ροή, Ταλαντωτική ροή μείγματος αε-
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Chapter 1

Introduction

1.1 General concepts

The field of rarefied gas dynamics is one of the most interesting and promising
fields in engineering and physics. Rarefied gas dynamics has existed, in principle,
since the nineteenth century but came in the foreground with space exploration [1].
It is considered as branch of fluid dynamics and its aim is to obtain macroscopic
characteristics based on microscopic behavior of gaseous particles [2]. In general, the
rarefied state of a gas is observed when the average value of the distance between
two subsequent collisions of a molecule, i.e., the molecular mean free path, is not
negligible in comparison with a characteristic length scale of the flow. When this
assumption is valid, the gas is the rarefied state and must be modeled with approaches
based on kinetic theory of gases. Otherwise, when the mean free path is too small
compared to the characteristic length the flow may be considered as a continuous
and the hydrodynamic equations, i.e., the Navier-Stokes-Fourier equations, may be
successfully applied.

The restriction about the molecular mean free path, related to the definition of
rarefied and continuum gas flows, must be always considered both in steady-state
and unsteady gas flow. In nonstationary flows the additional restriction about the
mean free time of gaseous particles must also be considered. More specifically, in
time-dependent flows, the continuum medium approach is valid only if the mean free
time is much smaller than a characteristic time scale of the flow [2]. If the macroscopic
quantities are significantly changed in a very small time interval, the flow must be
considered as rarefied and simulated with kinetic modeling even if the assumption
about the molecular free path isn’t valid [2].
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Simulations of nonstationary rarefied gas flows have attracted considerable attention
over the past years since they have theoretical interest and they are linked to several
technological fields. A typical example is the oscillatory gas flow which can be classified
as either boundary, or pressure/force driven. Depending on the oscillatory motion,
the range of applications is varied. For oscillatory boundary driven flows, there
are plenty of applications regarding microelectromechanical systems (MEMS) and
particularly resonating filters, sensors [3] and actuators [4, 5, 3, 6]. The gyroscope
and the accelerometer are two notable applications that include sensors and actuators.
Besides, the MEMS-based accelerometer used in airbag ignition devices became the first
high-volume product in the area of inertial MEMS [7]. The oscillatory pressure/force
driven internal gas flows are commonly classified as either reciprocating or pulsating
flows. In reciprocating flows, the amplitude of the oscillating velocity is larger than the
mean-time velocity and the flow direction reverses periodically. Reciprocating flows may
occur in reciprocating-piston machines [8], electronic cooling [9], pneumatic actuators
and sensors [10], oscillating heat pipe technology [11], enhanced heat and mass transfer
devices [12–14], gas separation and mixing technologies [15, 16] and vacuum pumping
systems [17, 18]. In pulsating flows, the amplitude of the oscillating velocity is smaller
than the mean-time velocity and the flow direction never reverses. Pulsating flows
mainly occur in bioengineering in lungs and blood vessels of animals and humans
[8, 19], as well as in engineering applications in pump discharging, pneumatic lines
and control systems [12, 20] and pulse tubes [21, 22]. Of course, leading applications
in rarefied gas dynamics also include devices in high altitude aerodynamics [23] and
vacuum technology [22].

It is clear that the number of gas flow applications that operate in rarefied state
is significant. Therefore, in the present dissertation, oscillatory gas flows due to
harmonically oscillating pressure, force and molar fraction gradients as well as moving
walls are investigated. Since the hydrodynamic equations have limitations, kinetic
theory and modeling is used in order to properly simulate the gas flows without
considering restrictions in the length or the time scale. The validity of the kinetic
simulations is confirmed by comparisons between the various kinetic models and the
hydrodynamic equations which are used in their range of applicability. A detailed
description on the thesis contents and structure is provided in the next Section.
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1.2 Dissertation structure and contents

The present thesis aims to the computational study of the pulsatile and oscillatory
flows in the whole range of the rarefaction and oscillation parameter. The study involves
pressure, force and boundary driven flows in various flow configurations. Depending
on the problem, the geometry of the flow may be either simple such as flow between
parallel plates or more complex such as flow in comb-type configurations. All oscillatory
flows are assumed to be far from local equilibrium and the working medium is either a
monoatomic gas or a mixture of gases. The detailed structure of the dissertation is
presented:

In Chapter 2, a review on the theoretical framework is presented. First, the
flow regimes based on the rarefaction of the gas and the oscillation frequency are
analyzed. The review continues with the basic principles of kinetic theory along with
the implemented numerical methods. Next, since oscillatory flows have been extensively
studied in the hydrodynamic regime, a part of the published work is referenced, closely
related to the present thesis is cited, followed by an extensive literature review on
rarefied oscillatory gas flows.

In Chapter 3, the time-dependent isothermal fully-developed rarefied gas flow in a
circular tube driven by harmonically oscillating pressure gradient is investigated, based
on the linearized unsteady BGK kinetic model equation. The hydrodynamic and the
slip solutions are also included. Computational results of the amplitude and the phase
angle of the flow rates and the velocity distributions, as well as of the periodic time
evolution of these macroscopic quantities, are provided.

In Chapter 4, the pulsatile pressure driven fully-developed flow of a rarefied gas
through an orthogonal duct is studied, based on the time-dependent linear BGK equa-
tion, by decomposing the flow into its steady and oscillatory parts. The investigation
is focused on the oscillatory part, which apart from the rarefaction and oscillation
parameters it is also characterized by the duct aspect ratio and the accommodation
coefficient specifying the gas-surface interaction. In addition to the flow rate and the
velocity, the results include the mean acting forces, the mean wall shear stress, and
the oscillatory time-dependent and average pumping powers. The kinetic formulation
of the pulsatile pressure driven fully-developed flow of a rarefied gas between parallel
plates is also considered for complimentary purposes.

In Chapter 5, the nonlinear oscillatory fully-developed rarefied gas flow between
parallel plates due to an external harmonic force is investigated by stochastic and
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deterministic methods, namely the Direct Simulation Monte Carlo and the Discrete
Velocity methods respectively. The force amplitude may be arbitrarily large and
therefore nonlinear effects are becoming more dominant. A comparison is made between
nonlinear and linear results in order to access the nonlinear effects on the oscillatory
macroscopic quantities. Another objective is to identify whether the increased force
amplitude could generate oscillatory motion containing several harmonics. In addition,
some work is performed with nonisothermal plates investigating the coupled flow and
heat transfer phenomena in terms of the temperature ratio between the two plates.

In Chapter 6, the rarefied, oscillatory, pressure and molar fraction driven binary
gas mixture flow between parallel plates is computationally investigated in terms of
the mixture molar fraction and the molecular mass ratio of the species, in a wide range
of the gas rarefaction and oscillation frequency. Modeling is based on the McCormack
kinetic model. The output quantities are in dimensionless form and include the velocity
distributions and flow rates of the species, as well as the flow rate, wall shear stress
and pumping power of the mixture. The presented results are for He–Xe, He-Ar and
Ne–Ar. In addition, the gas separation phenomenon, which occurs due to the higher
speed of the light species particles compared to the heavy ones, is investigated.

In Chapter 7, the rarefied oscillatory Couette flow is studied in terms of the gas
rarefaction and the oscillation frequency. This flow configuration has been investigated
in the literature. However it is also included here since it is used for benchmarking
purposes. Moreover, a parallelization technique based on OpenMP and OpenACC
directives is applied in this flow configuration and it is easily extended in more complex
geometries.

In Chapter 8, the oscillatory rarefied gas flow in a comb-type structure driven by
the vertical/lateral harmonic motion of the moving surface is investigated, based on
the linearized unsteady Shakhov kinetic model equation. Due to the element vibration,
complex flow patterns are formed in the direction perpendicular and parallel to its
surface depending mainly on the gas rarefaction and oscillation parameters. A detailed
parametric study on the computation of the average normal and shear stresses of the
moving walls is performed finding out the behavior of the forces in terms of the gas
rarefaction, the oscillation frequency and the geometry.

In Chapter 9, an overview of Chapters 3-8 with the associated concluding re-
marks is provided. It also includes several thoughts about future work related to the
aforementioned flow configurations.
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1.3 Novelty and scientific contributions

1.3 Novelty and scientific contributions

The investigations of oscillatory and pulsatile flows of single gases and binary gas
mixtures in capillaries due to externally imposed small or large amplitude driving
mechanisms, as well as of the oscillatory boundary driven comb assembly, are novel and
all corresponding results are reported for first time in the literature. In all flow setups
the detailed flow behavior and characteristics are thoroughly investigated. The effects
of the gas rarefaction, oscillation frequency, tangential accommodation coefficient and
aspect ratio, as well as of the molar fraction and mixture composition on the velocity
distributions and overall quantities (flow rates, wall shear and normal stress, pumping
power) are provided in terms of their amplitude and phase angle. The most noticeable
findings of the present Ph.D. thesis may be outlined as follows:

• The velocity overshooting near the walls (Richardson effect), well known in the
hydrodynamic regime, is also observed in oscillatory pressure driven rarefied gas
flows and depends both on the gas rarefaction and the oscillation frequency. As
the gas rarefaction is increased higher oscillation frequencies are needed to trigger
these phenomena.

• The time average pumping power is increased as the oscillation frequency is
reduced and its maximum value is one half of the corresponding steady-state one.

• In nonlinear oscillatory flows, even with large force amplitudes, all macroscopic
distributions, except the axial heat flow, have sinusoidal pattern with their
fundamental frequency being the same with the driving frequency of the external
force without the appearance of other harmonics.

• At small and moderate external forces, the agreement between nonlinear and
linear flow rate amplitudes is very good and always remains less than 10%, while
at large external forces the deviation in the flow rate amplitude reaches about
25%.

• At large external forces and highly rarefied flows with low oscillation frequencies
the axial heat flow exhibits a complex non-sinusoidal pattern containing several
harmonics.

• In oscillatory rarefied binary gas mixture flow as the oscillation frequency is
increased, although the flow rate amplitudes of both species are decreased, the
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relative difference between the flow rate amplitudes of the light and heavy species
is increased and this behavior, due to inertia effects, becomes more pronounced
as the gas rarefaction is decreased.

• At high frequencies the flow rate amplitude ratio of the light over the heavy
species, independent of the gas rarefaction parameter, tends to the molecular
mass ratio of the heavy over the light species.

• In comb-type assemblies, the wall normal and shear stresses affecting the system
dissipation strongly depend on the gas rarefaction and the oscillation frequency
parameters, as well as the comb geometry.

• Certain anti-resonance and resonance states have been identified.

• The comb dimensions affect the flow at low oscillation frequencies, while at
high ones, due to gas trapping, the flow is not affected and may be modeled as
one-dimensional.

• Based on the OpenMP and OpenACC directives, a parallelization strategy is
proposed for solving deterministic kinetic equations with the so-called marching
scheme

All computational results, along with the above outlined remarks, are described
and justified in detail in the corresponding chapters of the present Ph.D. thesis.
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Chapter 2

Literature review

2.1 Flow regimes based in oscillatory gas flows

In oscillatory gas flows the flow regimes are defined based on the Knudsen number
(or the gas rarefaction parameter) and the oscillation parameter related to the flow
space and time scales respectively.

The Knudsen number [24] is defined as

Kn = λ

L
(2.1)

where the molecular mean free path λ is defined as the average value of the distance
between two subsequent collisions of a molecule and L is a characteristic length of the
flow configuration or a length scale of a macroscopic gradient, given by L = φ/ (∂φ/∂x),
where φ is a macroscopic flow quantity. The derivation of the molecular mean free
path λ for hard-sphere molecules is found in [25] and may be written as

λ = 1√
2πd2n

, (2.2)

where n is the number density and d is the molecular diameter. The Knudsen number
can also be written in terms of the Mach and Reynolds numbers as

Kn =
√

γπ

2
Ma

Re , (2.3)

where γ is the ratio of the specific heats of the gas (γ = 5/3 for a monoatomic gas).
Instead of the Knudsen number the gas rarefaction parameter may also be used. It is
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based on an equivalent free path which is proportional to the molecular free path [2]
and it is defined as

δ = PL

µυ0
∼ 1

Kn
, (2.4)

where P is the gas pressure, µ is the gas viscosity at some reference temperature
T and υ =

√
2RgT is the most probable molecular speed (Rg = kB/m, with kB

denoting the Boltzmann constant and m the molecular mass, is the gas constant). It
is noted that the rarefaction parameter is proportional to the inverse Knudsen number.
Based on the Knudsen number (or the rarefaction parameter), the flow regimes can
be classified as follows: continuum (Kn ≤ 0.001), slip (10−3 < Kn ≤ 10−1), transition
(10−1 < Kn ≤ 10), and the free molecular (Kn > 10).

The oscillation parameter is expressed in terms of the intermolecular collision
frequency v and the oscillation frequency ω. The dimensionless oscillation frequency
(or the oscillation speed parameter) has been introduced by Sharipov in [26] and ever
since it has been widely used. Since the intermolecular collision frequency has the
order of P/µ, the oscillation speed parameter [27, 26, 28] is defined as the ratio of the
intermolecular collision frequency ν = P/µ, over the oscillation frequency ω:

θ = P

µω
. (2.5)

Hence, small and large values of θ correspond to high and low oscillations respectively.
At this point it may be useful to point out that the Strouhal number (also known as

the ballistic Stokes number), which is commonly applied in oscillatory flows, is related
to the δ and θ parameters as follows: St = (ωL) /υ0 = δ/θ. Also, it is readily found
that the Stokes number β (or the Womersley number [29], or the kinetic Reynolds
number β2), which is a measure of viscous versus unsteady effects in oscillatory flow,
may be written as β = L

√
ωρ/µ = δ/

√
2θ with ρ being the mass density. For the

purposes of the present dissertation however, it is more convenient parameterizing the
problem in terms of δ and θ, instead of replacing both of them with one of these classical
fluid mechanics numbers, because it is easier to uncouple and separately investigate
the effects due to gas rarefaction and oscillation frequency. Also, the limiting solutions
are identified more clearly.

All investigated oscillatory flows are solved in the whole range of the two parameters
(rarefaction and oscillation), which may vary from zero to infinity. Since an oscillatory
flow is defined by two parameters, it is readily seen that the flow regimes depend now on
both parameters. When the oscillation parameter is large (or the oscillation frequency
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is small) and it is also larger than the rarefaction parameter (δ ≪ θ), the steady-state
regime is established. Here, the magnitude of the oscillatory flow quantities is almost
the same as the corresponding steady-state ones. The flow is in the hydrodynamic
and slip regimes when both δ ≫ 1 and θ ≫ 1, i.e., when both the equivalent mean
free path is small compared to the characteristic length L and the collision frequency
is much higher than the oscillation frequency ω [28]. In these regimes the solution is
based on the unsteady Navier-Stokes equation with either no-slip or slip boundary
conditions. Another limiting regime is the free molecular one (δ ≪ 1) which is seen for
both steady-state and oscillatory flows. Finally, another regime of some interest is the
high-frequency oscillation regime (θ ≪ 1) in which the oscillation frequency is much
larger than the intermolecular collision frequency. In these high oscillation frequencies,
the propagation of the gas is limited due to inertia forces.

A graphical view of all flow regimes is provided in Fig. 2.1, where they are defined
quantitatively versus the rarefaction and oscillation parameters. In addition, the
Knudsen number and the oscillation frequency are added as secondary axes. Time
dependent kinetic modelling should always be used in the free molecular, transition and
high frequency regimes and it can be easily verified with steady-state kinetic equations
and continuum theory.

Finally, in Table 2.1, the rarefaction and the oscillation parameters are presented
in terms of the pressure P and for the characteristic lengths L = [10−6, 10−3, 10−1]
m and oscillation frequencies ω = [102, 104, 106] Hz. The chosen parameters are for
Argon with temperature 293 K. Small dimensions and high frequencies are typical in
MEMS, while the larger dimensions and lower frequencies at low pressures are common
in vacuum technology.

2.2 Elementary principles of kinetic theory

It has been pointed out that solutions based on kinetic theory of gases are valid in
all flow regimes [27, 28]. Here, some main aspects of kinetic theory of gases, which are
implemented in the present thesis, are reviewed. Maxwell and Boltzmann were the
first to realize that the exact dynamics of N particles could not be used in practical
calculations since it would require a vast number of real variables [1] and therefore
they had to recourse to statistics. Maxwell introduced a velocity distribution function
f (t, r, ξ) [30, 31] which gives the probability of finding a molecule around the location
r, with velocity ξ at time t. This distribution function was named after him and it is
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known as the Maxwell or Maxwellian distribution function. It is also known as the
Maxwell-Boltzmann distribution function and it is given by

fM (t, r, ξ) = n (t, r)
[

m

2πkBT (t, r)

]3/2

exp
[
−m (ξ − u (t, r))2

2πkBT (t, r)

]
(2.6)

where n, T and u denote the local density, temperature and velocity vector, m is the
molecular mass and kB is the Boltzmann constant.

Next, Boltzmann derived a transport equation for the distribution function which
is written as [32]

∂f

∂t
+ ξ

∂f

∂r
+ F

∂f

∂ξ
= Q (f, f ′) (2.7)

where Q is the collision term and F is the acceleration which arises due to an external
force field. It is known that the Boltzmann equation is a particle balance equation
along a trajectory. The left hand side of Eq. (2.7) represents the streaming motion of
the molecules along the trajectories associated with the force F . The right hand side
of Eq. (2.7) is expanded into

Q (f, f ′) =
∫∫

(f ′ f ′
∗ − f f∗) gσ (Ω) dΩdξ∗ (2.8)

where f f∗ and f ′ f ′
∗ are the distribution functions of the molecules before and after

collision, respectively, g = |ξ − ξ∗| is the relative velocity, σ is the differential cross
section and dΩ is the differential solid angle [25]. Inside the parenthesis, the first term
is known as the gain part and it refers to particles that obtain a velocity around ξ while
the second term is named as the lost part and the particles obtain a different velocity
than ξ. In general, the right hand side represents the effect of intermolecular collisions
taking molecules in/out the streaming trajectory. It is noted that the derivation of
the Boltzmann equation has two main assumptions with the first one being that only
binary collisions are assumed, limiting its application to dilute gases. The second
one is the hypothesis of molecular chaos (“Stosszahlansatz”) which states that the
distribution function f is uncorrelated with the distribution function f∗ [32].

Another major contribution by Boltzmann is the H -Theorem which states that
for a uniform gas with no external forces acting on the molecules the H -function is a
non-increasing function of time [25]. The H -function is defined as

H =
∫

f log f dξ. (2.9)
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As t → ∞, H will tend to a finite limit, corresponding to a state where dH/dt = 0 which
leads to the Maxwellian distribution. Therefore, the Boltzmann equation describes a
process which is irreversible in time. It is also noted that H -Theorem is equivalent to
the second law of thermodynamics which states that entropy cannot decrease.

The solution of the Boltzmann leads to the distribution function which is then
integrated to yield all the macroscopic quantities of interest. Therefore, the macroscopic
quantities are expressed as moments of the distribution function:

• Number density
n (t, r) =

∫ ∞

−∞
f dξ (2.10)

• Velocity vector
u (t, r) = 1

n (t, r)

∫ ∞

−∞
f dξ (2.11)

• Pressure

P (t, r) = m

3

∫ ∞

−∞
(ξ − u)2 f dξ (2.12)

• Stress tensor
Pij (t, r) = m

∫ ∞

−∞
(ξi − ui) (ξj − uj) f dξ (2.13)

• Temperature
T (t, r) = m

3kBn (t, r)

∫ ∞

−∞
(ξ − u)2 f dξ (2.14)

• Heat flux vector
q (t, r) = m

2

∫ ∞

−∞
(ξ − u)2 (ξ − u) f dξ (2.15)

Eqs. (2.12) and (2.14) are combined to yield the ideal gas law

P (t, r) = n (t, r) kBT (t, r) . (2.16)

2.3 Kinetic models and boundary conditions

Even though the Boltzmann equation describes rigorously the transport phenomena
related to gas flows, its solution is a very challenging task due to the five-fold collision
integral. Therefore, in order to apply kinetic modelling in engineering problems the
complex collision operator must be replaced with a simpler collision model. However,
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each collision model must satisfy the collision invariants and the H -theorem as the
Boltzmann collision integral does. It also needs to provide correct expressions for the
transport coefficients.

The most widely known collision model is the Bhatnagar, Gross and Krook (BGK)
model [33], which has been also proposed, independently, by Welander (1954) [34]. It
is written as

Q = v
(
fM − f

)
(2.17)

where the collision frequency v = P/µ is assumed to be independent of the molecular
velocity and fM is the Maxwellian distribution. The BGK model produces a Maxwellian
distribution after a single collision, while real molecules need a few collisions to attain
this distribution. The advantages of the BGK model are the computational efficiency
and its linearized form. The major shortcoming is that the correct expressions of both
viscosity and thermal conductivity can not be proved simultaneously. As a result, it
gives the Prandtl number Pr = 1 instead of the correct one Pr = 2/3 for monoatomic
gases. However, it has been extensively used in rarefied gas flows and it has provided
satisfying results in the whole range of the Knudsen number [35]. The BGK model along
with the Shakhov model, mentioned in the next paragraph, are applied throughout the
present dissertation.

The Shakhov model was introduced in [36] and its collision term is given by

Q = v

(
fM

[
1 + 2m

15n (kBT )2 q · (ξ − u)
[

(ξ − u)2

2kBT
− 5

2

]]
− f

)
. (2.18)

This model satisfies all collision invariants and provides correct expressions for the trans-
port coefficients. However, the H -theorem can be proved only for its linearized form.
In general, it is considered reliable and it provides accurate results. Another kinetic
model, which satisfies all the prerequisites for the kinetic models but computationally is
more intensive compared to the BGK and Shakhov models is the Ellipsoidal-Statistical
(ES) model [37]. There are several kinetic models for monoatomic gases but the BGK,
Shakhov and ES are the most common ones. In the present thesis both the BGK
and Shakhov models are implemented. There are several other models that have been
proposed for polyatomic gases [38, 39, 37, 40].

It is interesting to note that the distribution function can be linearized in terms
of a small quantity. This quantity may be a boundary wall moving slowly or a small
pressure gradient. The linearization is usually suitable for flow configurations that
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are slightly perturbed from local equilibrium since it may significantly simplify their
solution. In oscillatory flows, the amplitude of the small quantity is used in order to
linearize the kinetic equations. The linear theory along with the linearized kinetic
models is applied in the flow configurations of Chapters 3, 4, 6, 7 and 8. A complete
analysis on linear theory is given in [2].

In the case of gaseous mixtures the involved phenomena are more complex than in
single gases and many kinetic models for mixtures have been derived. They include
the models by Sirovich [41], Morse [42], Hamel [43], McCormack [44], Andries [45]
and Kosuge [46]. Each one has its own drawbacks or limitations and it seems that no
general ideal model exists. Depending upon the specific flow setup each time the most
suitable kinetic model may be chosen [47]. For the flow configurations considered in
the present thesis, the widely used and successfully implemented linear kinetic model
by McCormack is very well suited [48–50, 47, 51]. Its collision term is written as

Lαβ (ca,i) = −γαβha+γαβna+2
γαβua,i − v

(1)
αβ

(
ua,i −

√
ma

mβ

uβ,i

)
− v

(2)
αβ

qa,i −
(

ma

mβ

)3/2

qβ,i

 ca,i

+
[
γαβTa − 2m0

mβ

(Ta − Tβ) v
(1)
αβ

] (
c2

a − 3
2

)
+ 2

[(
γαβ − v

(3)
αβ

)
Pa,ij + v

(4)
αβ Pβ,ij

]
caicaj+

8
5

[(
γαβ − v

(5)
αβ

)
qa,i + v

(6)
αβ qβ,i − 5

8v
(2)
αβ

(
ua −

√
mα

mβ

uβ,i

)]
ca,i

(
c2

a − 5
2

)}
(2.19)

where i, j = x, y, z, i ̸= j , a, β = 1, 2, α ̸= β and ca,i = ui (ma/2KT )1/2 is the
dimensionless molecular velocity with ma denoting the mass of the component. Also,
the terms v

(k)
αβ and γαβ refer to type of collisions while m0 denotes the reduced mass.

It is noted that subscript a refers to each species of the gas mixture. The McCormack
model has been chosen to simulate the oscillatory binary gas mixture flow in Chapter
6.

In order to solve a kinetic theory problem, the Boltzmann equation or the kinetic
models must be complemented by the correct boundary conditions. Maxwell proposed
two simple models for interaction of gas molecules with solid surfaces: the specular
and the diffuse reflection models [52]. However, in order to present the models, the
definition of the scattering kernel W (ξ′ → ξ), which describes the probability that a
molecule with velocity ξ′ will be reflected from the boundary with velocity ξ, must be
specified. Then, the diffuse reflection model assumes that the molecules leaving the
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surface scatter with a Maxwellian distribution, characterized by the velocity nW and
the temperature TW of the surface. The model is written in terms of the scattering
kernel as

WD (ξ′ → ξ) = 1
2π

n ξ
(

m

kBTW

)2
exp

[
−m (ξ − uW )2

2kBTW

]
(2.20)

where n is a unit vector normal to the surface and it is headed towards the flow
direction. In the specular reflection model, only the normal to the wall part of the
relative velocity reverses its direction, while the two tangential remain unchanged. The
scattering kernel of the specular reflection is given by

WS (ξ′ → ξ) = δ [ξ′ − ξ + 2 (ξ n) n] (2.21)

where δ is the Dirac function. The Maxwell diffuse – specular scattering model is
completed when the two previous models are combined to yield

W (ξ′ → ξ) = aWD (ξ′ → ξ) + (1 − a) WS (2.22)

where 0 ≤ a ≤ 1 is the tangential momentum accommodation coefficient. The Maxwell
scattering models have been widely implemented in several gas flow setups [53–55]
and therefore they are also applied in the present thesis. There are more advanced
scattering kernels such as the ones by Epstein [56] and by Cercignani-Lampis [57, 58],
that may be applied in specific flow configurations, where a more detailed description
of the gas-surface interaction is needed.

2.4 Numerical methods

It has been seen that the collision integral of the Boltzmann equation is simplified
with the use of reliable kinetic models. The simplified kinetic models, along with recent
advancements in computer science, have made the solution of kinetic theory problems
feasible. There are several computational methods for obtaining proper solutions in the
transitional regime. Some of them are considered as analytical, such as the moments
method [59, 60], while other combine analytical and numerical methods such as the
Integro-moment method [35, 61]. However, two numerical methods have been widely
embraced by the scientific community: the Discrete Velocity Method (DVM) [62, 63]
and the Direct Simulation Monte Carlo (DSMC) [64].

14

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 08:10:15 EEST - 3.144.111.108



2.4 Numerical methods

The DVM is a deterministic method and it converts the integrodifferential equation
to a system of partial differential equations [1]. The method is based on the discretiza-
tion of the molecular velocity space where the continuum spectrum is substituted by
a discrete set of velocities. The discretization in the physical space is usually based
on a 2nd order central difference schemes. Then, a partial (or an ordinary) differential
equation is solved for each discrete velocity. Finally, the discretized equations are
solved in an iterative manner. The complete formulation along with details on the
iterative procedure is given in [2]. A well-known disadvantage of the method is the
slow convergence in the hydrodynamic and slip regimes which increases computational
time. It is also noted that the accuracy of the numerical results is increased as the
number of the discrete velocities is increased.

The DSMC method, introduced by Bird [65], is a stochastic or probabilistic method.
Each model molecule represents a large number of real gas molecules and their collisions
are also representative. At first, the simulated molecules are moved without considering
any collisions and subsequently the velocities are altered according to the collision
model, which may be either a simple one as the hard sphere and the variable hard
sphere (VHS) [64] model or a more complicated one as the variable soft sphere (VSS)
model [66]. The main drawback of the method is the statistical scattering (or statistical
noise) which is increased for flows with low Mach number. It has been proved that
the DMSC method recovers the solution of the Boltzmann equation as the number of
particles tends to infinity [67].

Oscillatory flows are considered as time dependent flows and in general require
a time dependent kinetic formulation. In cases of harmonic motion however, the
oscillation is composed of two parts: the first one represents the “transient” vibration
which is soon damped; the second part characterizes the periodic harmonic motion
with frequency equal to that of the driving force [68]. The second part is commonly
called “periodic steady-state” and the periodic motion repeats itself exactly, every
successive cycle. Both DVM and DSMC can capture the “full” oscillatory motion
however, in most flow configurations the research interest lies on the second part. Thus,
it is convenient to use the DVM method and subsequently the kinetic model equations
to compute directly the “periodic steady-state” and omit the transient part. This
can be done with various mathematical tools although the most well-known one is by
introducing the complex factor exp (−i ω t) into the kinetic equations. This procedure
reduces computational time and it is analyzed in Chapters 3, 4, 6, 7 and 8 which deal
with linear kinetic theory problems. On the contrary, in the nonlinear oscillatory flow
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considered in Chapter 5 the time dependent formulation is applied. In this latter case
the real and imaginary parts are not separable [68] and consequently the complex
factor cannot be employed. It is noted that only the real part of the complex quantity
has physical significance. Overall, the DVM method is the main numerical method
applied throughout the present dissertation, while the DSMC method is also used only
for nonlinear simulations.

2.5 Oscillatory flows via continuum modelling

Oscillatory flows have been widely investigated in the hydrodynamic regime, based
on the Navier-Stokes equations. Oscillatory flow is originated by Stokes himself,
considering one-dimensional shear flow of a viscous fluid near an oscillating plate
parallel to the flow [69]. This problem is well known as the Stokes second problem.
Another classic fluid mechanics problem is the oscillatory Poiseuille flow induced by an
harmonically oscillating pressure gradient [70–72]. In spite its simplicity, interesting
findings for the velocity field in terms of the oscillation speed have been reported. It
has been seen that for small oscillation frequency the velocity distribution has the
same phase as the pressure gradient, while for large oscillation frequencies the velocity
lags the pressure gradient by 900. Furthermore, in the latter case the flow consists of
the inviscid piston flow core layer and the frictional Stokes wall layer with the velocity
overshooting. The overshoot is also known as the “Richardson annular effect” which
was first observed by Richardson and Tyler [73] when they studied experimentally
the reciprocating flow of air in a tube. They found that the velocity square exhibits
its maximum within the Stokes layer and not, as expected, in the center of the core.
This has been also proved theoretically by Sexl [74]. Several other researchers have
solved the Navier-Stokes equations for velocity in oscillating pipe and channel flows
[75–78]. An extended analysis for pulsating flow in a pipe has been done by Uschida
[78]. Mathematical treatment of oscillatory flows in various geometries includes Fourier
expansion [78], Laplace transform [77] and Green functions [79]. An early survey
of the implemented analytical and semi-analytical methodologies may be found in
[80]. Oscillating and pulsating pressure gradient flows, due to their theoretical and
technological interest, remain an active area of research in the hydrodynamic regime
using continuum based flow models [81, 9, 82–84].

The oscillatory pressure driven flows have also been applied in flow configurations
with concentration gradients. It has been shown that the rate of mass transfer through
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2.5 Oscillatory flows via continuum modelling

a long tube connecting two reservoirs of constant concentration with oscillatory flow is
increased in comparison with pure molecular diffusion [85, 86]. This mass enhancement
occurs even when the net flow rate over a cycle is zero. For fluids containing several
species, the oscillatory motion will cause each species to transport at a different rate
and therefore produce separation of the species [87–90]. This has been shown both
theoretically [89] and experimentally [89] and the mechanism is better explained in
[91]. Furthermore, it has been found that there are crossover oscillation frequencies
[89, 91, 92], where the axial transport of each species is the same. Hence, determining
the optimum parameters for the separation of species is not a trivial task and it is
studied continuously [15, 93, 13]. In conclusion, this area of research, while it has been
extensively studied with continuum based models, has received very little attention in
the transition regime and therefore a similar analysis based on kinetic theory of gases
is going to be presented in Chapter 6.

Owing to the analogy between mass and heat transfer, it has been seen by Kurzweg
[94] that axial heat diffusion is enhanced by an oscillatory motion of the flow. More
specifically, the heat transfer rate from a colder reservoir to the hotter one has been
increased without an accompanying net convective mass transport. The optimum
conditions to achieve maximum heat transfer have been later investigated by Kurzweg
[95] and other researchers [96, 97]. Next, similar flow configurations, where an oscillatory
flow is produced in a long heated pipe has attracted a lot of attention [98–104]. It has
been a controversial point between researchers whether a superposed flow pulsation
enhances heat transfer in the original steady flow. It has been reported that flow
pulsation augments heat transfer in [99, 14], while on the contrary in [100, 102] that
it deteriorates heat transfer. Also, in [101, 104] it is stated that heat transfer is not
affected and finally in [105, 98, 103] it either augments or deteriorates heat transfer,
depending on flow parameters. Clearly this issue it remains an open problem. It
is noted that in Chapter 5 the heat transfer between parallel plates coupled to an
oscillatory flow is investigated in the whole range of the Knudsen number.

Oscillatory boundary driven flows have always received considerable attention. The
correct computation of damping forces along with the spring forces and the inertial
forces is critical for the operation of several devices. Depending on the boundary
motion, the flows are divided into two main categories: pressure-driven flow (squeeze-
film effect), and shear-driven flow (slide damping, lateral damping) [106]. In the first
one, the surface is oscillating vertically to its own plane while in the second one it is
oscillating parallel to the flow direction. Since the bibliography in the current topics is
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abundant, only selected references are cited. The squeeze-film problem has been the
subject of investigation in several scientific disciplines. In tribology, the well-known
Reynolds lubrication theory [107] has been successfully applied for many years. In
fluid mechanics, the motion of the gas is modelled by hydrodynamic equations [108]
while in acoustics, the gas is considered as compressible, inviscid medium with no mean
flow and therefore it can be represented with the wave equation [109]. An excellent
review for the different solutions on the problem of a plate vibrating in the direction
normal to a wall has been given by Beltman [110]. Furthermore, the shear-driven
flow is identified as the Couette flow for slowly moving plates and as Stokes flow for
rapidly moving plates [7]. Here, the solution is mainly based on the Navier-Stokes
equations [111–113] and it may include or exclude the inertia fluid terms depending on
the oscillation frequency.

Both in the squeeze-film and shear-driven flows, significant work has been done
by Veijola [114–116, 6, 117] in the slip regime, by including rarefied effects based on
the implementation of slip boundary conditions in continuum models and increasing
the range of applicability of the hydrodynamic equations. Of course, the aim of the
present work is to compute damping forces in the whole range of the gas rarefaction and
oscillation frequency and this is achieved by applying kinetic modeling, as presented in
Chapters 7 and 8.

2.6 Oscillatory flows via kinetic modelling

Oscillatory flows in the transition regime may be due some gradient in the flow
direction or due to moving boundaries. The former ones, so far, have not been
investigated at all, while the latter ones have been considered at certain extend.

It is noted that steady-state pressure driven flows have been extensively investigated
over the whole range of the Knudsen number [118–121]. In all these solutions the
channel is assumed to be sufficiently long therefore the flow can be considered as fully
developed. The results depend mainly on the Knudsen number and the cross section
and they are obtained with linearized kinetic equations. However, as the length of
the channel is reduced, the nonlinear kinetic equations or the DSMC method need
to be solved [122–125] and the computational cost is increased except for channels
with moderate lengths where the end effect theory may be applied [123, 126]. The
corresponding oscillatory pressure driven flow configurations have not been addressed
except for the ones introduced in the present thesis using the fully developed theory

18

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 08:10:15 EEST - 3.144.111.108
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[127, 128]. Since steady-state pressure/force driven flows are used as a validation tool
for each oscillatory flow, more steady-state references are reported in the introduction
of each Chapter.

Flow configurations due to oscillating boundaries have been investigated. The
sound wave propagation in a rarefied gas due to mechanical vibration is one of the
first problems to be solved with kinetic theory [129–131]. The solution is based on two
different kinetic models [129, 130] and the Boltzmann equation [131] and the compared
numerical and experimental results [132] are found to be in good agreement. The shear
and thermal waves have also been analyzed with the BGK kinetic model [133]. The
main outcome of all the aforementioned research is that the Navier-Stokes equations
are applied only at low oscillation frequencies.

Recently, the development of MEMS has led to a reconsideration of all flow config-
urations related to sound/shear/thermal wave propagation in rarefied gases. Due to
smaller dimensions and higher oscillation frequencies, kinetic modelling is used to access
the range of applicability of the continuum-based models. The research work includes
sound propagation in half space [28], between parallel plates [134–136, 27, 137, 138]
and in rectangular cavities [139], as well as in nonplanar geometries [140–143]. The
corresponding oscillatory shear driven flows between parallel plates [144–146, 28, 147]
and in rectangular cavities [148] have also been considered. In addition to waves
generated with mechanical vibrations, the thermoacoustic (or thermal) waves have
been simulated either in simpler flow configurations (e.g. between parallel plates
[149–151]) or in flows between coaxial cylinders [152]. Of course, all the research work
is based mainly on kinetic type approaches. More specifically, the DSMC approach is
applied in [140–142, 135, 145, 136, 150, 153, 146], the linearized Boltzmann equation
in [144, 149, 134, 139, 148] and the linearized Bhatnagar–Gross–Krook (BGK) and
Shakhov (S) models in [27, 152, 151, 28, 147, 143]. In the deterministic approaches,
the velocity (or the temperature) amplitude of the oscillating plate is assumed to be
adequately small so that the governing equations can be linearized. No restriction
is applied to the oscillation frequency which may be arbitrary large. Also, in most
cases 1st and 2nd order slip results, as well as free molecular analytical solutions are
reported validating the kinetic solutions at the hydrodynamic and the free molecular
limits respectively.

The considerable attention, that the time-dependent rarefied gas flows driven by
harmonically oscillating boundaries have attracted, arises from their application in
a variety of systems, such as resonating filters, sensors and actuators, where the
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computation of the damping forces is crucial in order to control and optimize the
resolution and sensitivity of the signal [106]. More specifically, the research is focused
on the minimization of the damping forces by exploiting either the resonant behavior
of the gas or the optimal combination of sound and thermal waves. It has been found
that the damping force is reduced when the oscillation frequency is oscillating near the
anti-resonance frequency of the gas [154, 155]. Also, combined effects of harmonically
varying the boundary velocity and temperature have been considered to reduce the
signal and achieve “acoustic cloaking” [153, 156].

The above cited works are based on the linearized Boltzmann equation or the
linearized kinetic models, while the ones based on the DSMC method are restricted to
small velocity (or temperature) amplitude of the oscillating plate. Nonlinear oscillatory
flows due to large velocity or temperature amplitudes have been also investigated. For
example, the nonlinear sound wave propagation has been computed with the DSMC
method [157] and the BGK model [158–160]. Also, it has been shown that as the
velocity amplitude of the oscillating wall is increased, the macroscopic quantities may
contain several harmonics [161–163]. The corresponding nonlinear force driven flow has
been recently examined with the DSMC method [164] and it is presented in Chapter 5
along with the deterministic formulation.

Closing this section, it is interesting to cite some works related to oscillatory binary
gas mixture flows. The main flow configuration, that has been studied, is the sound
wave propagation in binary gas mixtures [165, 166]. Also, the thermoacoustic wave in a
binary gas mixtures has been recently investigated and the reciprocal relations between
cross phenomena due to thermoacoustic and vibracoustic waves have been verified [167].
Another outcome of the oscillatory mixture flows is that that the resonances/anti-
resonances found in single gases are not observed for gas mixtures near the continuum
regime due to different excitation modes of each gas [168, 169]. The corresponding
oscillatory binary gas mixture flow due to an harmonically oscillating pressure gradient
has not been addressed so far and it is presented here in Chapter 6.
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Table 2.1 Rarefaction and oscillation parameters in terms of pressure P for Argon,
with T = 293 K, L = [10−6, 10−3, 10−1] m and ω = [102, 104, 106] Hz.

P [Pa] δ (L = 10−6) δ (L = 10−3) δ (L = 10−1) θ (ω = 102) θ (ω = 104) θ (ω = 106)
0.001 1.35(-7) 1.35(-4) 1.35(-2) 7.5(-2) 7.5(-4) 7.5(-6)
0.01 1.35(-6) 1.35(-3) 1.35(-1) 7.5(-1) 7.5(-3) 7.5(-5)
0.1 1.35(-5) 1.35(-2) 1.35 7.5 7.5(-2) 7.5(-4)
1 1.35(-4) 1.35(-1) 1.35(+1) 7.5(+1) 7.5(-1) 7.5(-3)
10 1.35(-3) 1.35 1.35(+2) 7.5(+2) 7.5 7.5(-2)
100 1.35(-2) 1.35(+1) 1.35(+3) 7.5(+3) 7.5(+1) 7.5(-1)
1000 1.35(-1) 1.35(+2) 1.35(+4) 7.5(+4) 7.5(+2) 7.5

Figure 2.1 Flow regimes based on the gas rarefaction δ and oscillation θ parameters.
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Chapter 3

Oscillatory pressure driven rarefied
gas flow in long circular tubes

3.1 Introduction

The time-dependent fully-developed rarefied gas flow driven by harmonically os-
cillating pressure [127], which may be realized by a periodically moving piston or
membrane, has received less attention than the corresponding rarefied oscillatory shear
driven flows. Until recently, simulations have been presented only in the slip regime in
an effort to model pneumatic actuators for pressure sensors [170, 10] and boundary
layer flow controllers in order to improve vehicle stability [171, 172]. This Poiseuille
type oscillatory flow may be also introduced in other applications related to fluidic
resonators and oscillators including microcooling, measuring devices, microseparators
and micropropulsion. A well-known effect in this flow is the “Richardson annular
effect” which may causes problems in processes such as anomalous solid formation
in low-pressure chemical vapor deposition [17]. Besides, this flow is used for lumped-
parameter expressions for the impedance of an incompressible viscous fluid subjected to
harmonic oscillations [173]. The exact expressions based on solutions of the unsteady
Navier-Stokes equations are necessary to avoid large discrepancies in predicted behavior
in microchannels.

Depending on the time and space characteristic scales, the oscillatory Poiseuille
flow may be in all flow regimes. More specifically, when both the mean free path
and the intermolecular collision frequency are less than the characteristic channel size
and the oscillation frequency respectively, the oscillatory flow is in the hydrodynamic
regime. In this regime, it may be analytically solved by applying the unsteady Stokes
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Oscillatory pressure driven rarefied gas flow in long circular tubes

equation subject to no-slip boundary conditions (oscillatory Poiseuille flow in channels
and pipes) [70–72].

However, when either of the time or space restriction is relaxed the flow is in the
transition or the free molecular regimes and the problem must be tackled via kinetic
theory. In this context, the present Chapter is devoted to the kinetic solution of the
rarefied gas flow in a circular tube due to harmonically oscillating pressure gradient [127]
imposed in the longitudinal direction. The periodic flow is investigated by numerically
solving the time-dependent linearized Bhatnagar-Gross-Krook (BGK) kinetic equation
subject to diffuse boundary conditions. Detailed results of the amplitude and the
phase of the bulk velocity and the flow rate are provided in terms of the reference
gas rarefaction parameter and the oscillation parameter. The time evolution of the
macroscopic quantities as well as the dimensional flow rate over an oscillation period is
presented. The limiting solutions in the free molecular and hydrodynamic limits for
very low and high oscillation frequencies are also discussed.

3.2 Flow configuration

Consider the isothermal flow of a monatomic rarefied gas through an infinite long
circular tube of radius R. Let z′ be the coordinate along the tube axis and r′ ∈ [0, R]
the radial distance from the center. The flow is caused by an externally imposed
oscillatory pressure gradient of the form

dP̃ (z′, t′)
dz′ = dP (z′)

dz′ cos (ωt′) = R
[

dP (z′)
dz′ exp (−iωt′)

]
(3.1)

where R denotes the real part of a complex expression, i =
√

−1, t′ is the time
independent variable, dP (z′) /dz′ is the amplitude of the oscillating pressure gradient
and ω is the oscillation (cyclic) frequency. The flow is assumed fully developed and
therefore, the pressure distribution P̃ (z′, t′) is independent of r′, i.e., spatially varies
only in the flow direction. The oscillatory pressure gradient yields an unsteady gas
flow in the z′−direction, which depends harmonically on time and it is characterized
by its bulk velocity given by

Ũ (t′, r′) = R [U (r′) exp (−iωt′)] , (3.2)
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where U (r′) is a complex function completely determining the oscillatory pressure
driven flow. For ω = 0 the well-known stationary cylindrical Poiseuille flow is deduced.
It is clear from Eqs. (3.1) and (3.2), that in general, the pressure gradient and velocity
are not in phase with each other.

The flow parameters defining the problem are the gas rarefaction parameter δ and
the dimensionless oscillation frequency θ. The first one is the same as in steady-state
configurations and it is given by

δ = PR

µυ
(3.3)

where µ is the gas viscosity at some reference temperature T and υ =
√

2RgT is
the most probable molecular speed (Rg = kB/m, with kB denoting the Boltzmann
constant and m the molecular mass, is the gas constant). The rarefaction parameter
is proportional to the inverse Knudsen number. The second one is the ratio of the
intermolecular collision frequency ν = P/µ, over the oscillation frequency ω:

θ = P

µω
(3.4)

Hence, small and large values of θ correspond to high and low pressure gradient
oscillation respectively. The two parameters are independent of each other.

Next, it is convenient to introduce the dimensionless independent variables

x = x′/R, z = z′/R and t = t′ω, (3.5)

as well as the dimensionless amplitude of the local pressure gradient defined as

XP = R

P

dP

dz′ (3.6)

with the assumption of XP << 1. This assumption is typical in fully developed flows
(also in steady-state setups), in order to permit the linearization of the governing
kinetic equation [2]. The dimensionless complex velocity distribution

u (r) = U (r′)
XP υ

= uRe (r) + iuIm (r) = uA exp (iuP ) (3.7)

is also introduced. The subscripts Re and Im denote the real and imaginary parts,
while the subscripts A and P denote the amplitude and the phase of the complex
velocity. Then, the dimensionless time-dependent velocity distribution is accordingly
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defined as
ũ (r, t) = Ũ (r′, t′)

XP υ
= R [u (r) exp (−it)] =

= R [uA (r) exp [i (uP (r) − t)]] = uA (r) cos [t − uP (r)] (3.8)

It is evident that both uA (r) and uP (r) are of main importance in determining the
flow behavior and they will be computed in terms of the two main parameters, δ and
θ, fully defining the flow.

In addition, the mass flow rate is also of major practical importance. It is defined
as

˜̇M (t′) = R
[
Ṁ exp (−iωt′)

]
(3.9)

where
Ṁ = 2πρ

∫ R

0
U (r′) r′dr′ (3.10)

with ρ denoting the mass density. Introducing the dimensionless quantities defined
in Eqs. (3.6)-(3.8) in Eq. (3.10) and implementing the equation of state P = ρυ2/2
results to Ṁ = πR2PXP G/υ, where

G = 4
∫ 1

0
u (r) rdr. (3.11)

The dimensionless flow rate G may be written in complex notation as

G (δ, θ) = GRe (δ, θ) + iGIm (δ, θ) = GA (δ, θ) exp [iGP (δ, θ)] , (3.12)

where its real GRe and imaginary GIm parts, as well as its amplitude GA and phase
GP , may be computed by integrating the corresponding velocity distributions in Eq.
(3.7). The time-dependent form of the dimensionless flow rate is given by

G̃ (t, δ, θ) = R [G exp (−it)] = R [GA exp [i (GP − t)]] = GA (δ, θ) cos [t − GP (δ, θ)]
(3.13)

It is expected that as ω → 0 (or θ → ∞), the imaginary parts of the macroscopic
quantities are gradually diminishing and the solution tends towards the steady-state
one.
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3.3 Kinetic formulation and numerical scheme

For arbitrary values of the parameters δ and θ the flow may be simulated at the
kinetic level by the time-dependent BGK kinetic model equation [33, 2], which for the
present axisymmetric (r′, z′) set up may be written as [53, 2]

∂f̃

∂t′ + ξr
∂f̃

∂r′ − ξφ

r′
∂f̃

∂φ
+ ξz

∂f̃

∂z′ = P

µ

(
fM − f̃

)
. (3.14)

Here, f̃ = f̃ (t′, r′, ξ) is the unknown distribution function, ξ = (ξr, ξφ, ξz) is the
molecular velocity vector, φ ∈ (0, 2π) is the corresponding angle in the r′ − φ plane,
P/µ is the collision frequency and

fM = n
(

m

2πkT

)3/2
exp

[
−m

[
ξ − Ũ (t′, r′)

]2/
(2kT )

]
(3.15)

is the local Maxwellian distribution. Due to the assumption of isothermal fully
developed flow the temperature T is constant and the number density n varies only in
z′−direction. Also, the macroscopic velocity Ũ (t′, r′) is defined by Eq. (3.2) and may
be obtained by the first moment of the distribution function according to

Ũ (t′, r′) = 1
n

∫
ξzf̃ (t′, r′, ξ) dξ. (3.16)

Due to the condition of very small local pressure gradient (XP ≪ 1) the unknown
distribution function is linearized as

f̃ (t′, r′, ξ) = f0
[
1 + XP h̃ (t, r, c) + XP z exp (−it)

]
, (3.17)

where c = ξ/υ, f0 = n
π3/2υ3 exp [−c2] is the absolute Maxwellian and h̃ (t, r, c) is

unknown perturbed distribution function. Substituting expression (3.17) into Eq.
(3.14) and introducing the dimensionless variables as defined in Eqs. (3.5) and (3.6),
yields the time-dependent linearized BGK kinetic model equation

δ

θ

∂h̃

∂t
+ cr

∂h̃

∂r
− cφ

r

∂h̃

∂φ
+ cze−it = δ

(
2czR (ũ) − h̃

)
. (3.18)

Here, δ and θ are defined by Eqs. (3.3) and (3.4) respectively, while ũ (r, t) is the
dimensionless time-dependent velocity distribution given in Eq. (3.8).
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Next, it is convenient to introduce the complex distribution function h (r, c) so that

h̃ (t, r, c) = R [h (r, c) exp (−it)] . (3.19)

Also, the molecular velocity vector c = (cr, cφ, cz) is transformed as c = (ζ, φ, cz), where
cr = ζ cos φ and cφ = ζ sin φ. Then, Eq. (3.18) is rewritten in terms of h as

ζ cos φ
∂h

∂r
− ζ sin φ

r

∂h

∂φ
+ h

(
δ − δ

θ
i

)
+ cz = 2δczu, (3.20)

where the macroscopic velocity is given by

u (r) = 1
π

∫ ∞

−∞

∫ 2π

0

∫ ∞

0
czhe−c2

dζdφdcz. (3.21)

At this stage the z−component of the molecular velocity vector may be eliminated
by applying the so-called projection procedure and introducing the reduced distribution
function

Y (r, ζ, φ) = 1
π

∫ ∞

−∞
h (r, ζ, φ, cz) exp

[
−cz

2
]

dcz. (3.22)

Equation (3.20) is multiplied by cz exp (−c2
z) /

√
π and the resulting equation is inte-

grated over cz to deduce

ζ cos φ
∂Y

∂r
− ζ sin φ

r

∂Y

∂φ
+
(

δ − i
δ

θ

)
Y = δu + 1

2 , (3.23)

where u (r) is defined by Eq. (3.7) and it is computed from the reduced distribution
function according to

u (r) = 1
π

∫ 2π

0

∫ ∞

0
Y e−ζ2

ζdζdφ. (3.24)

It is noted that Y = YRe + iYIm is complex and obviously, the same applies for u (see
Eq. (3.7)). Equation (3.23) is the governing kinetic equation and it is valid in the
whole range of δ and θ.

Turning now to the boundary conditions it is noted that purely diffuse scattering
is assumed at the wall, i.e., f+ = fM

w , where the superscript (+) denotes particles
departing from the wall and fM

w is the Maxwellian distribution defined by the wall
conditions. Based on the above and following the linearization and projection procedures
it is readily deduced that the wall boundary (r = 1) is given by

Y (1, ζ, φ) = 0, π/2 < φ < 3π/2. (3.25)
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3.3 Kinetic formulation and numerical scheme

At the symmetry axis (r = 0), molecules are reflected specularly, i.e.,

Y (0, ζ, φ) = Y (0, ζ, φ − π) , 0 < φ < π/2, 3π/2 < φ < 2π. (3.26)

The flow setup is now properly defined by Eq. (3.23) with the associated condition (3.24)
subject to boundary conditions (3.25) and (3.26). For each pair of input parameters δ

and θ the complex velocity u (r) and the corresponding complex flow rate G, given by
Eq. (3.11), are computed.

The numerical solution is deterministic. The discretization in the molecular velocity
space is performed using the discrete velocity method. The continuum spectrum
ζ ∈ [0, ∞)is substituted by a discrete set ζm, m = 1, 2...M , which is taken to be the
roots of the Legendre polynomial of order M , accordingly mapped from [−1, 1] to
[0, ∞). Also, a set of discrete angles φn, n = 1, 2...N equally spaced in [0, 2π] is defined.
The discretization in the physical space is based on a second order central difference
scheme by dividing the distance r ∈ [0, 1] into L segments. The discretized equations
are solved in an iterative manner. The iteration map is concluded when the following
criteria are fulfilled:

∣∣∣u(k+1)
Re,i − u

(k)
Re,i

∣∣∣ < ε and
∣∣∣u(k+1)

Im,i − u
(k)
Im,i

∣∣∣ < ε, i = 1, 2...L + 1 (3.27)

Here, the superscript k denotes the iteration index, uRe,i and uIm,i are the real and
imaginary part of macroscopic velocity respectively at each node i and ε is the tolerance
parameter. This numerical scheme has been extensively applied in steady-state and
time-dependent flow configurations with considerable success [174, 175, 53]. In general,
the number of iterations required for convergence is increased as either θ or δ are
increased. The most computationally intensive cases are when both flow parameters are
large and the flow is in the slip and hydrodynamic regimes. The numerical parameters
have been gradually refined to ensure grid independent results up to at least three
significant figures.

Furthermore, the revert to dimensional quantities is straightforward. The mass flow
rate is written as

˜̇M (t′) = R
[

πR3

υ

dP

dz′ G exp (−iωt′)
]

= R
[
ṀA cos (MP − ωt′)

]
(3.28)
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Oscillatory pressure driven rarefied gas flow in long circular tubes

where ṀA = πR3

υ
dP
dz′ GA. Eq. (3.28) may also be restructured as

dP

dz′ =
R
[ ˜̇M (t′)

]
R
[

πR3G
υ

exp (−iωt′)
] =

R
[
υṀA cos (MP − ωt′)

]
R [πR3GA cos (GP − ωt′)]

(MP =GP )= υṀA

πR3GA

. (3.29)

Eq. (3.29) is an ordinary differential equation with an unknown quantity (ṀA). It can
be simplified since the phase angle lag GP is the same for both the dimensional and
dimensionless flow rate. An iterative procedure is applied in order to fit ṀA with the
boundary conditions of Eq. (3.29). As the pressure is increased in a tube of length L,
the dimensionless flow rate is evaluated either with the expression

G = 1
P1 − P2

∫ P2

P1
G (δ, θ) dP = 1

δ1 − δ2

∫ δ2

δ1
G (δ, θ) dδ (3.30)

or with the similar one

G = 1
P1 − P2

∫ P2

P1
G (δ, θ) dP = 1

θ1 − θ2

∫ θ2

θ1
G (δ, θ) dθ. (3.31)

Since both parameters are directly related to pressure, Eqs. (3.30) and (3.31) are
always valid. As the pressure increases both parameters are increased. It is noted
that the real and the imaginary parts are integrated separately and then the total
amplitude GA and the total phase GP are computed.

Closing this section it is interesting to comment on the behavior of Eq. (3.23) at
limiting values of θ or δ. As θ → ∞ (ω = 0) and δ << θ (finite values of δ), Eq.
(3.23) is reduced to the one describing the steady-state cylindrical Poiseuille rarefied
gas flow at the corresponding δ. In the specific case of δ = 0 with θ > 0, the kinetic
equation for steady-state flow at the free molecular limit is recovered. At the other
end, as θ → 0 (ω → ∞), Eq. (3.23) yields Y → 0, i.e., the solution tends to vanish at
very high frequencies due to fluid inertia. It is expected this behavior at the limiting
conditions to be also present in the numerical solution.
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3.4 Hydrodynamic and slip regimes

3.4 Hydrodynamic and slip regimes

At the hydrodynamic and slip regimes the oscillatory fully developed flow is defined
by the z−momentum equation [71, 72]

ρ
∂Ũ (j)

∂t′ = −dP̃

dz′ + µ

(
∂2Ũ (j)

∂r′2 + 1
r′

∂Ũ (j)

∂r′

)
, (3.32)

where the pressure gradient dP̃ (z′, t′) /dz′ is defined by Eq. (3.1) and the bulk velocity
Ũ (j) (t′, r′), with j = H, S, denoting the hydrodynamic and slip solutions, is defined by
Eq. (3.2).

Introducing the dimensionless quantities (3.5)-(3.8), along with the definitions (3.3)
and (3.4), Eq. (3.32) is rewritten in dimensionless form in terms of the present notation
as

∂2u(j)

∂r2 + 1
r

∂u(j)

∂r
+ 2i

δ2

θ
u(j) = −δ. (3.33)

Here u(j) = u(j) (r) is the complex hydrodynamic or slip velocity and it may be
written in the form of Eq. (3.7), as u(j) (r) = u

(j)
Re (r) + iu

(j)
Im (r) = u

(j)
A (r) exp

[
iu

(j)
P (r)

]
,

j = H, S. Then, integrating the velocity distribution over the cross section, according
to Eq. (3.11), the complex flow rate, G(j) = G

(j)
Re + iG

(j)
Im = G

(j)
A exp

(
iG

(j)
P

)
, j = H, S,

is recovered. Equation (3.33), is valid in the hydrodynamic and slip regimes and in
practice, it may be applied for large values of δ and θ.

In the hydrodynamic regime (j = H) the associated boundary conditions include
the axi-symmetry condition at r′ = 0 and the no-slip condition at r′ = R, written as

du(H) (r)
dr

∣∣∣∣∣
r=0

= 0, u (1) = 0 (3.34)

Equation (3.33) subject to boundary conditions (3.34) is analytically solved to yield
the velocity distribution and the flow rate in the hydrodynamic regime [71, 72]:

u(H)(r) = i
θ

2δ

1 −
J0
(
r
√

2iδ/
√

θ
)

J0
(√

2iδ/
√

θ
)
 (3.35)

G(H) = i
θ

δ

1 − 2
√

θ√
2iδ

J1
(√

2iδ/
√

θ
)

J0
(√

2iδ/
√

θ
)
 (3.36)

31

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 08:10:15 EEST - 3.144.111.108



Oscillatory pressure driven rarefied gas flow in long circular tubes

Here, J0 and J1 are the Bessel functions of the first kind of zero and first order
respectively.

In the slip regime (j = S) the axi-symmetry boundary condition at r′ = 0 remains
the same, while at the wall the slip boundary condition in introduced [2]:

du(S) (r)
dr

∣∣∣∣∣
r=0

= 0, u(S) (1) = −σP

δ

du(S)

dr

∣∣∣∣∣
r=1

(3.37)

The viscous slip coefficient σP = 1.016 is known and it is computed by solving the
corresponding half-space viscous slip flow setup (or Kramers problem) based on the
linearized BGK model equation [2]. Equation (3.33) subject to boundary conditions
(3.37) is analytically solved to yield the velocity distribution and flow rate in the slip
regime:

u(S) (r) = i
θ

2δ

1 −
J0
(√

2i δ√
θ
r
)

J0
(√

2i δ√
θ

)
−

√
2iσP√

θ
J1
(√

2i δ√
θ

)
 (3.38)

G(S) = i
θ

δ

1 − 2
√

θ√
2iδ

J1
(√

2i δ√
θ

)
J0
(√

2i δ√
θ

)
−

√
2iσP√

θ
J1
(√

2i δ√
θ

)
 (3.39)

These analytical solutions are implemented to check the accuracy of the numerical
scheme at large values of δ and θ.

In both the hydrodynamic and slip regimes, two limiting solutions may be considered
based on the quantity δ/

√
θ, which is proportional to the ballistic Stokes number and

measures viscous versus unsteady effects in oscillatory flows. The analysis is applied
only in the flow rate expressions. First, assuming 1 ≪ δ ≪

√
θ, i.e., that the oscillation

frequency is very slow (ω → 0 or θ → ∞), Eqs. (3.36) and (3.39) are manipulated
by expanding the Bessel functions for small arguments δ/

√
θ ≪ 1. By keeping only

the main terms the well-known flow rates of the stationary cylindrical Poiseuille flow
subject to constant pressure gradient are recovered in the hydrodynamic and slip
regimes [2]:

G(H) = δ

4 , G(S) = δ

4 + σP . (3.40)

Secondly, assuming δ ≫
√

θ ≫ 1, the Bessel functions in Eqs. (3.36) and (3.39) are
now expanded for large arguments δ/

√
θ >> 1 and, following some manipulation, the

following expressions are obtained:

G(H) = θ3/2

δ2 + i
θ

δ

(
1 −

√
θ

δ

)
(3.41)
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3.5 Results and discussion

G(S) = θ3/2

δ2 + i
θ

δ

1 −
√

θ

δ

(
1 + 2σP√

θ

)−1
 (3.42)

The closed-form expressions (3.40)-(3.42) are also applied to examine the accuracy of
the kinetic solutions at these limits provided that the corresponding restrictions in
terms of δ and θ are fulfilled.

3.5 Results and discussion

The fully developed rarefied gas flow in a cylindrical tube due to an imposed
oscillatory pressure gradient has been simulated in a wide range of the gas rarefaction
and oscillation parameters. The computed dimensionless complex velocity distributions
and flow rates are based on the kinetic formulation, while some complimentary analytical
results in the slip regime are also reported. The results include the amplitude and the
phase angle, as well as the periodic time evolution of the macroscopic quantities.

In Table 3.1, the flow rate amplitude GA (δ, θ) is presented in terms of the gas
rarefaction δ ∈ [10−4, 102] and the oscillation parameter θ = [0.1, 1, 10, 50, 102]. In
addition, the flow rate amplitude in the slip regime G

(S)
A (δ, θ), based on the analytical

expression (3.39), is provided in the 7th and 8th column of Table 3.1 for θ = 50 and
θ = 102 respectively and for δ ≥ 1. In the last column of Table 3.1, the well-known
flow rates of the steady-state cylindrical Poiseuille flow with constant pressure gradient
(θ → ∞), denoted by GSS (δ), for δ ≤ 10 are also included [2].

By comparing GA (δ, θ) with the corresponding G
(S)
A (δ, θ) it is readily seen that

the agreement is, in general, good and more important that it is improved as both
δ and θ are increased. On the contrary, even for these two relatively large values
of θ, the discrepancies are gradually increased as δ is decreased. This comparison
demonstrates the efficiency of the kinetic results to properly recover the analytical slip
solution, as well as the range of validity of the slip solution depending on the required
accuracy. Next, the values GA (δ, θ) for the large oscillation parameter θ = 102 (or very
small oscillation frequency ω) are compared to the corresponding steady-state flow
rates GSS (δ). It is seen that the agreement is very good in small and intermediate
values of δ (free molecular and part of transition regimes) and then, as δ is further
increased the discrepancies also increase. It is evident that in order to recover the
steady-state solution it requires: a) the oscillation parameter to be large (which it
is, since θ = 102) and b) δ << θ (which is not, when δ > 10). This is in agreement
with the reported behavior of the kinetic equation (3.23) as θ → ∞ approaching the
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Oscillatory pressure driven rarefied gas flow in long circular tubes

stationary solution (last paragraph in Section 3.3), as well as with the analytical results
in the hydrodynamic and slip regimes, where it has been shown that the steady-state
solution is recovered as θ → ∞, with δ ≪

√
θ (Section 3.4). In general, steady-state

conditions may be reached faster as the flow becomes more rarefied (or as δ is decreased)
provided of course that the oscillation parameter is adequately large (ω adequately
small).

The discussion on Table 3.1 is continued by analyzing the behavior of the flow
rate amplitude GA (δ, θ) in the whole range of δ and θ. For any given δ, GA (δ, θ) is
monotonically increased as θ is increased, with GA (δ, θ) being always less than the
corresponding stationary solution GSS (δ). The dependency of GA (δ, θ) on δ is more
complex. For θ ≤ 1, as δ is increased, GA (δ, θ) is monotonically decreased, while for
θ ≥ 10 it is initially decreased until δ = 0.5, where a local minimum is observed, then it
is increased up to some δ, which depends on θ, and finally as δ is further increased it is
again decreased. It is noted that for all θ, as δ → 0, the well-known analytical steady-
state free molecular flow rate equal to 8/ (3

√
π) = 1.504 [2], is properly recovered. Also,

for small values of θ and adequately dense atmosphere (large values of δ), GA (δ, θ)
tends to diminish. This behavior, which appears in high oscillation frequencies (small
θ) is due to inertia forces (the fluid has great difficulty to reach a peak flow) and will
be further analyzed, later on, by examining the velocity distributions.

In Table 3.2, the dimensionless flow rate phase GP (δ, θ) is presented in terms of the
same parameters as in Table 3.1. The phase angles vary between zero and π/2 = 1.571,
which correspond to no phase and maximum phase difference respectively between
the flow rate and the pressure gradient. The dimensionless flow rate phase in the slip
regime G

(S)
P (δ, θ), based on the analytical expression (3.39), is also provided in the last

two columns of Table 3.2 for θ = 50 and θ = 102 with δ ≥ 1. The comparison between
the corresponding GP (δ, θ) and G

(S)
A (δ, θ) support all remarks previously made for

the flow rate amplitudes and also, establishes more confidence to the kinetic solution,
which is in very good agreement with the slip analytical solution, provided that the
oscillatory flow is in the slip regime.

Furthermore, it is seen from Table 3.2 that, as expected, for any given δ, the phase
difference GP (δ, θ) is increased as θ is decreased, i.e., as the oscillation frequency is
increased. Taking into consideration the corresponding values of GA (δ, θ) in Table 3.1,
it is concluded that as the oscillation frequency is increased the flow rate amplitude is
decreased, while the phase shift is increased. At very high frequencies and adequately
large δ, this may result to almost zero amplitude with π/2 phase difference. Also, for
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3.5 Results and discussion

any given θ, GP (δ, θ) is monotonically increased with δ, i.e., the phase difference is
almost zero in the free molecular regime and then, it is increased as the oscillatory flow
becomes less rarefied, reaching the maximum phase angle lag in the hydrodynamic
limit.

A view, in graphical form, of the flow rate amplitude GA (δ, θ) and phase GP (δ, θ)
is provided in Figure 3.1, where these quantities are plotted versus δ/θ for θ =
[0.1, 1, 10, 50, 102]. The behavior of GA (δ, θ) in terms of the ratio δ/θ is qualitatively
similar to the one observed in Table 3.1 in terms of δ. For θ = [0.1, 1], GA (δ, θ)
is monotonically reduced, while for θ = [10, 50, 102] is initially decreased, then it is
increased up to some δ/θ ∈ [0.1, 1] and finally it is decreased. This behavior is justified
by the fact that when the oscillation frequency is adequately high (θ = [0.1, 1]),GA (δ, θ)
is significantly affected and it is monotonically reduced, while when the oscillation
frequency is not high enough (θ = [10, 50, 102]), GA (δ, θ) has some resemblance with
the steady-state flow rate profile including the Knudsen minimum, as long as δ/θ is
sufficiently small to ensure δ << θ (as reported above steady-state conditions are
reached as θ → ∞ , with δ << θ). Then, as δ/θ is further increased the inequality
condition does not hold and GA (δ, θ) is decreased. With regard to the phase difference,
GP (δ, θ) is monotonically increased with δ/θ. At very small values of δ/θ (free molecular
regime) it is almost zero, then at moderate values of δ/θ (transition regime) it is rapidly
increased and finally at large values of δ/θ (slip and hydrodynamic regimes) it is
asymptotically increased reaching the limiting value of π/2. An interesting and useful
outcome of Figure 3.1 may be the determination of the optimal gas rarefaction level
for a given oscillation frequency to induce the maximum flow rate amplitude GA (δ, θ).

In Figure 3.2, the time evolution of the dimensionless flow rate, defined in Eq. (3.13)
as G̃ (t, δ, θ) = GA cos (t − GP ), is plotted over one period of oscillation t ∈ [0, 2π] for
typical values of δ and θ. The time evolution of the dimensionless pressure gradient is
equal to cos t and it is also plotted to facilitate the phase shift observation between
pressure gradient and dimensionless flow rate. It is seen that G̃ (t, δ, θ) depends heavily
both on the gas rarefaction parameter and the oscillation frequency. When δ = 0.1,
the G̃ (t, δ, θ) profiles for θ = [1, 10, 102] (low and moderate oscillation frequencies) are
very close to each and in phase with the pressure gradient, while for θ = 0.1 (high
oscillation frequency) G̃ (t, δ, θ) has a significantly smaller amplitude and a lagging
phase angle. As δ is increased the effect of θ becomes more dominant. At δ = 1, the
G̃ (t, δ, θ) profiles only for θ = [10, 102] are close to each other and in phase, while for
θ = [0.1, 1] the amplitude is reduced and the phase angle lag is increased. Actually now,
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for θ = 0.1 the amplitude is very small and the phase angle lag is almost π/2. This
behavior is further enhanced at δ = 10, where the effect of the oscillation frequency
is very significant for θ = [0.1, 1, 10] and remains not important only for θ = 102. As
expected these results are in very good agreement with the remarks made in Table 3.1
and Table 3.2. It is also concluded that the peak of the flow rate amplitude always
falls short of reaching the corresponding flow rate of the steady-state Poiseuille flow
with constant pressure gradient. This is clearly contributed to the inertia of the fluid,
which must be accelerated in each cycle and therefore this effect is intensified as the
flow becomes more viscous and the oscillation frequency is increased.

Similar to Figure 3.2, in Figure 3.3 the mass flow rate ˜̇M (t) of Helium is presented
over time t′ for a tube of length L = 0.1 m. The radius of the tube is R = 0.016 m
and the pressure at the beginning of the tube is P1 = 1 Pa while at the end is P2 = 5
Pa. The properties of Helium at T0 = 25 0C are υ = 1103 m/s and µ = 1.939 × 105 Pa
s. The mass flow rate is plotted for three oscillation frequencies ω = [250, 570, 2000]
Hz. The purpose here is to observe the differences between the dimensional and
dimensionless results. It is clear that the behavior of the mass flow rate is similar to
the dimensionless flow rate and it is decreased as the oscillation frequency is increased.
However, results based on different oscillation frequencies cannot be easily compared
since the dimensionless oscillation period isn’t the same as it has been in Figure
3.2. Here, the oscillation period is decreased as the oscillation frequency is increased.
Therefore, it is more convenient to use dimensionless results instead of dimensional
ones in oscillatory flows.

Next, the behavior of the velocity distributions in terms of δ and θ is investigated. In
Figure 3.4, the amplitude uA (r) and the phase angle uP (r) of the velocity distribution
are plotted for δ = [0.1, 1, 10] and θ = [10−2, 10−1, 1, 10] covering a wide range of
the flow parameters. As the oscillation parameter is decreased, i.e., the oscillation
frequency is increased, the amplitude is reduced and the phase angle lag is increased.
This behavior is expected and it is in accordance to the flow rate results studied above.
Here, it is more interesting to focus on the radial variation of the velocity amplitude
and phase angle with regard to δ and θ. Starting with uA (r) it is seen that for some
δ and θ (e.g., δ = 0.1 and θ ≥ 0.1) the velocity amplitudes have the expected shape
with their maximum at r = 0, while the corresponding phase angles are small and
almost constant in the radial direction. However, as δ is increased and θ is reduced,
uA (r) remains constant from the center of the tube until close to the wall, where it
rapidly changes. In these cases (e.g., δ = 1 and θ ≤ 0.1 or δ = 10 and θ ≤ 1) near the
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wall there is a region where the velocity amplitude is higher than in the center of the
flow. The corresponding values of uP (r) are large, resulting to phase angle lags up to
900 with regard to the pressure gradient and also, they are constant from the center
of the tube until this region close to the wall, where they change significantly in an
oscillatory manner. The thickness of this region is decreased as δ is increased and θ is
reduced. Therefore, in high or even moderate frequencies (it depends on δ), the flow
consists of two layers: the inviscid piston flow in the core, dominated by inertia forces
and the frictional Stokes wall layer dominated by viscous forces. This flow description,
including the velocity overshoot, which is known as “annular effect” or “Richardson
effect”, is well known in classical hydrodynamics [70–72]. It is interesting however, to
see that these effects are also present in oscillatory rarefied flows. Of course as the gas
rarefaction is increased, higher oscillation frequencies are needed to trigger these flow
patterns.

In Figure 3.5, the time evolution of the dimensionless velocity distribution, defined in
Eq. (3.8) as ũ (r, t) = uA cos (t − uP ), is plotted versus the radial distance r at certain
times t ∈ [0, 2π] covering one period of oscillation for δ = 1 with θ = [10−2, 10−1, 1, 10].
The observed radial variation of the velocity distribution at these timeframes is the
typical one expected, as the oscillation parameter is increased, i.e., as the oscillation
frequency is decreased. The two layers flow pattern with the core oscillating in a
plug-flow mode and the velocity maximum (or minimum) inside the thin Stokes layer
plus the small amplitude and large phase angle lag, are all clear at θ = 10−2 and then,
as θ is increased these effects are reduced and finally, they are diminishing at θ = 10,
where the velocity profile has an amplitude close to the corresponding steady-state
one and the phase angle lag with the pressure gradient is small. Furthermore, it is
interesting to note that at high frequencies ( θ = 10−2, 0.1) and at times t = 0 and
t = π the velocity distribution along the radial direction changes sign and may be
either positive or negative. This velocity reversal does not show up at low frequencies
(large θ). In addition, the position of the maximum or the minimum of the velocity
distribution is moving with time in the radial direction inside the Stokes layer. This is
clearly shown in the case of θ = 0.1 where the overshoot is carried away from the wall
[176]. Although this motion is due to viscous diffusion it does have some resemblance
with transverse decaying waves from the boundary towards the centerline of the pipe.

Closing this section a remark with regard to the Strouhal number, defined as
St = δ/θ, is made. In Figure 3.6, ũ (r, t), is plotted versus the radial distance r

at certain times t ∈ [0, 2π] covering one period of oscillation for δ = θ = 0.1 and
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δ = θ = 10. In both setups, St = 1. It readily seen that the radial variation of ũ (r, t)
in the two setups at the same time steps, although the Strouhal number is the same, is
completely different. This is a clear indication that the St number is not adequate, only
by itself, to characterize the flow. Furthermore, according to previous observations,
for δ = 0.1 the flow is highly rarefied and even with θ = 0.1, it behaves like a low
oscillation flow, while for δ = 10, the flow is dense enough and even with θ = 10, it
start to behave like a moderate to high frequency flow. In this latter case the Stokes
layer is thick and affects the whole velocity profile. The corresponding time dependent
flow rates obtained by integrating the velocity profiles presented in Figs. 3.4 and 3.5
may be found, in most cases, in Fig. 3.2.

3.6 Concluding remarks

The time-dependent isothermal fully-developed rarefied gas flow in a cylindrical
tube driven by harmonically oscillating pressure gradient is investigated based on the
linearized unsteady BGK kinetic model equation. The two parameters characterizing
the flow are the gas rarefaction and the oscillation parameters. Computational results
for the amplitude and the phase angle of the flow rates and the velocity distributions
have been provided in a wide range of these two parameters in tabulated and graphical
form. In addition, the time evolution of the macroscopic quantities over a cycle is also
reported. The limiting flow rates in the slip and free molecular regimes for very low
and high speed oscillations are properly recovered by the kinetic solution and very
good agreement with analytical solutions in these regimes has been obtained.

The flow rate amplitude is decreased as the oscillation frequency is increased.
However, in terms of the gas rarefaction the dependency is not monotonic and it
is found that for a given oscillation parameter, there is an optimum gas rarefaction
level to obtain the maximum flow rate amplitude. The phase shift of the flow rate is
monotonically increased as the oscillation frequency is increased and the gas rarefaction
is decreased. At low oscillation frequencies the flow rate and velocity distribution are
in phase with the pressure gradient, while as the frequency is increased the amplitude
of the macroscopic quantities is decreased and the phase angle lag is increased. At
high frequencies the flow consists of the core oscillating in a plug-flow mode and the
Stokes layer with a velocity overshoot. These effects, which are well-known in classical
hydrodynamics, are also present in oscillatory rarefied flows. Of course, as the gas
rarefaction is increased it is more difficult for energy to be transferred from the initial
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oscillation to the bulk flow and therefore higher oscillation frequencies are needed to
observe these phenomena.
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Table 3.1 Flow rate amplitude GA (δ, θ) in terms of gas rarefaction parameter δ and
oscillation parameter θ.

δ GA (δ, θ) G
(S)
A (δ, θ) G SS (δ)

θ = 0.1 θ = 1 θ = 10 θ = 50 θ = 100 θ = 50 θ = 100 θ → ∞
0.0001 1.502 1.504 1.504 1.504 1.504 1.504
0.001 1.488 1.499 1.499 1.499 1.499 1.499
0.01 1.381 1.472 1.476 1.476 1.476 1.476
0.05 1.073 1.413 1.430 1.430 1.430 1.430
0.1 8.151(-1) 1.369 1.404 1.404 1.404 1.404
0.5 2.014(-1) 1.142 1.383 1.386 1.387 1.387
1 1.002(-1) 8.512(-1) 1.444 1.458 1.458 1.266 1.266 1.458
2 4.999(-2) 4.837(-1) 1.575 1.654 1.657 1.513 1.515 1.658
4 2.500(-2) 2.457(-1) 1.570 2.078 2.103 1.985 2.008 2.111
6 1.667(-2) 1.646(-1) 1.300 2.444 2.550 2.380 2.480 2.588
8 1.250(-2) 1.238(-1) 1.046 2.670 2.956 2.627 2.903 3.074
10 1.000(-2) 9.919(-2) 8.649(-1) 2.723 3.282 2.695 3.242 3.564
15 6.667(-3) 6.630(-2) 6.034(-1) 2.383 3.594 2.372 3.576
20 5.000(-3) 4.979(-2) 4.635(-1) 1.953 3.342 1.946 3.333
30 3.334(-3) 3.323(-2) 3.167(-1) 1.407 2.575 1.404 2.570
40 2.500(-3) 2.494(-2) 2.405(-1) 1.100 2.052 1.098 2.050
50 2.000(-3) 1.996(-2) 1.939(-1) 9.022(-1) 1.706 9.009(-1) 1.704
100 1.000(-3) 1.009(-2) 1.058(-1) 4.747(-1) 9.228(-1) 4.743(-1) 9.223(-1)
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3.6 Concluding remarks

Table 3.2 Flow rate phase GP (δ, θ) (rad) in terms of gas rarefaction parameter δ and
oscillation parameter θ.

δ GP (δ, θ) G
(S)
P (δ, θ)

θ = 0.1 θ = 1 θ = 10 θ = 50 θ = 100 θ = 50 θ = 100
0.0001 4.646(-3) 5.632(-4) 5.767(-5) 1.156(-5) 5.780(-6)
0.001 3.254(-2) 4.088(-3) 4.200(-4) 8.415(-5) 4.208(-5)
0.01 1.905(-1) 2.709(-2) 2.793(-3) 5.588(-4) 2.794(-4)
0.05 5.774(-1) 9.447(-2) 9.857(-3) 1.972(-3) 9.862(-4)
0.1 8.730(-1) 1.613(-1) 1.699(-2) 3.399(-3) 1.700(-3)
0.5 1.461 5.837(-1) 6.797(-2) 1.362(-2) 6.810(-3)
1 1.512 9.535(-1) 1.395(-1) 2.807(-2) 1.404(-2) 2.564(-2) 1.282(-2)
2 1.542 1.278 3.173(-1) 6.557(-2) 3.282(-2) 6.276(-2) 3.141(-2)
4 1.557 1.434 7.217(-1) 1.762(-1) 8.883(-2) 1.727(-1) 8.702(-2)
6 1.561 1.480 1.015 3.287(-1) 1.692(-1) 3.250(-1) 1.672(-1)
8 1.564 1.503 1.175 5.053(-1) 2.715(-1) 5.022(-1) 2.694(-1)
10 1.565 1.517 1.263 6.809(-1) 3.901(-1) 6.790(-1) 3.882(-1)
15 1.567 1.535 1.371 1.008 7.012(-1) 1.009 7.004(-1)
20 1.568 1.544 1.423 1.177 9.451(-1) 1.179 9.456(-1)
30 1.569 1.553 1.473 1.321 1.194 1.322 1.195
40 1.569 1.557 1.498 1.387 1.299 1.388 1.300
50 1.570 1.560 1.513 1.426 1.357 1.426 1.358
100 1.570 1.565 1.542 1.500 1.468 1.500 1.468
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Oscillatory pressure driven rarefied gas flow in long circular tubes

Figure 3.1 Flow rate amplitude GA (δ, θ) and phase GP (δ, θ) (rad) in terms of the
ratio of the gas rarefaction parameter δ over the oscillation parameter θ, with θ =
[0.1, 1, 10, 50, 102].
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3.6 Concluding remarks

Figure 3.2 Time evolution of flow rate G̃ (t, δ, θ) over one period of oscillation for
δ = [0.1, 1, 10] and θ = [0.1, 1, 10, 102]; the time evolution of the dimensionless pressure
gradient equal to cos t is also included.
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Oscillatory pressure driven rarefied gas flow in long circular tubes

Figure 3.3 Time evolution of mass flow rate ˜̇M (t′) kg/s over time t′ s for ω = 250 Hz
(top), ω = 570 Hz (middle) and ω = 2000 Hz (bottom).
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3.6 Concluding remarks

Figure 3.4 Velocity distribution amplitude uA (r) and phase angle uP (r) versus radial
distance r for δ = [0.1, 1, 10] and θ = [10−2, 10−1, 1, 10].
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Oscillatory pressure driven rarefied gas flow in long circular tubes

Figure 3.5 Time evolution of velocity distribution ũ (r, t) versus radial distance r at cer-
tain times t ∈ [0, 2π] over one period of oscillation for δ = 1 with θ = [10−2, 10−1, 1, 10]
(dashed lines refer to t ∈ [0, π) and solid lines to t ∈ (π, 2π]).
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3.6 Concluding remarks

Figure 3.6 Time evolution of velocity distribution ũ (r, t) versus radial distance r at
certain times t ∈ [0, 2π] over one period of oscillation for δ = θ = 0.1 (left) and
δ = θ = 10 (right); the Strouhal number in both cases is equal to 1 (dashed lines refer
to t ∈ [0, π) and solid lines to t ∈ (π, 2π]).
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Chapter 4

Pulsatile pressure driven rarefied
gas flow in rectangular ducts

4.1 Introduction

Pulsatile pressure driven flows have been extensively investigated in the hydrody-
namic regime. However, in the transition and the free molecular regimes it hasn’t been
studied. In this Chapter, the rarefied gas flow due to pulsating pressure gradient in
channels of rectangular cross section is investigated [128]. It is noted that superimpos-
ing the reciprocating flow and the corresponding steady-state flow yields the pulsatile
pressure driven flow which it simulated based on the linearized BGK equation, with the
assumption of small pressure gradients. Since the analysis in the previous Chapter is
focused only on the velocity distributions and the flow rates as well as the comparison
between the flow regimes, computational results for more macroscopic quantities are
provided here. Except for the velocities and the flow rates, the following quantities
are presented: the mean wall shear stress, the acting viscous, pressure and inertia
forces and the pumping power. Therefore, in this Chapter a more detailed analysis
about the pulsatile flow and correspondingly the oscillatory flow is presented. It is
noted that following the theoretical understanding of the involved flow parameters
on the macroscopic quantities in all flow regimes, rarefied pulsatile flows may be
introduced in several microfluidics and vacuum technology applications [177, 92, 22].
More specifically, a typical application is the pulse tube cryocooler where the correct
phase response between gas movement and pressure oscillation is vital to the heat
transfer. The relevant heat transfer is based on a thermoacoustic oscillation of a small
gas portion (reservoir) that “undulates” back and forth [178].
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Pulsatile pressure driven rarefied gas flow in rectangular ducts

The Chapter is organized as follows: In Section 4.2, all macroscopic quantities of
the rarefied pulsatile gas flow are described in detail, decomposing the flow into the
oscillatory and steady parts. Also, the dimensionless parameters characterizing the
flow are specified. In Section 4.3, the kinetic formulation of pulsatile flow through
a duct and between parallel plates with the associated boundary conditions and the
implemented numerical scheme are provided. The numerical results are presented in
Section 4.4 and they include the amplitude, phase angle and time evolution of the
most important macroscopic quantities in terms of the parameters specifying the flow.
The velocities and flow rates are given in Section 4.4.1 and Section 4.4.2 respectively,
the mean wall shear stresses and the acting forces in Section 4.4.3 and the pumping
powers in Section 4.4.4. The concluding remarks are outlined in Section 4.5. Finally,
in Appendix A.1, closed form expressions in the hydrodynamic and slip regimes are
provided respectively.

4.2 Flow configuration and definition of macroscopic
quantities

Consider the time-dependent isothermal flow of a monatomic rarefied gas through a
long duct with a constant rectangular cross section restricted as −H/2 ≤ y′ ≤ H/2 and
−W/2 ≤ x′ ≤ W/2. Without loss of generality, the height is assumed to be smaller or
equal to the width of the channel (H ≤ W ). The area and the perimeter of the channel
cross section are defined by A′ = H × W and Γ ′ = 2 (H + W ) respectively. The flow
is caused by a pulsatile pressure gradient that consists of a constant part that does not
vary in time and that produces a steady flow forward, plus an oscillatory part, with
the oscillation frequency ω, that moves the fluid only back and forth and that produces
zero net flow over each cycle. Furthermore, the duct is considered as adequately long,
in order to ignore end effects and assume pulsatile fully-developed flow. This flow
set-up has been extensively investigated in the hydrodynamic regime [72], while the
corresponding work in the transition and free molecular regimes is limited [127].

Next, the main flow quantities of the pulsatile flow are introduced first in dimensional
and then, in dimensionless form. The local pulsatile pressure gradient depends on the
flow direction z′ and time t′. It may be written as

dP̂P UL (t′, z′)
dz′ = dPS (z′)

dz′ + dP̂ (z′, t′)
dz′ = dPS (z′)

dz′ + dP (z′)
dz′ cos (ωt′) =
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4.2 Flow configuration and definition of macroscopic quantities

= dPS (z′)
dz′ + dP (z′)

dz′ R [exp (−iωt′)] (4.1)

where dP̂P UL/dz′, dPS/dz′ and dP̂ /dz′ refer to the pulsatile, steady and oscillatory
pressure gradients, dP (z′) /dz′ is the amplitude of the oscillating pressure gradient,
while R denotes the real part of a complex expression, with i =

√
−1. It is evident

that the time average over one period of the pressure gradient of the oscillatory flow is
zero, while of the pulsatile flow is different than zero and equal to the steady pressure
gradient. Due to the linearity of Eq. (4.1), the steady and oscillatory parts of the
pulsatile fully-developed flow can be solved independently of each other. This is a
useful breakdown, because the steady part of the flow has already been solved in
[58, 179] and therefore, only the oscillatory part remains for investigation.

The pulsatile pressure gradient generates a gas flow in the z′−direction, which is
characterized by its pulsatile velocity and shear stress distributions given by

ÛP UL (t′, x′, y′) = US (x′, y′)+Û (t′, x′, y′) = US (x′, y′)+R [U (x′, y′) exp (−iωt′)] (4.2)

and
Π̂P UL,jz′ (t′, x′, y′) = ΠS,jz′ (x′, y′) + Π̂jz′ (t′, x′, y′) =

= ΠS,jz′ (x′, y′) + R [Πjz′ (x′, y′) exp (−iωt′)] , j = x′, y′ (4.3)

respectively. In all cases the pulsatile quantities consist of the steady and oscillatory
parts. The superscript ∧ always denotes time-dependent quantities. The complex
functions U (x′, y′), Πx′z′ (x′, y′) and Πy′z′ (x′, y′) completely determine the oscillatory
pressure driven flow. From Eqs. (4.1)-(4.3), it is seen that in general, the pressure
gradient, the velocity and the shear stress are not in phase with each other. Integrating
the velocity over the cross section and the wall shear stress along the perimeter of the
cross section the mean velocity and mean wall shear stress are defined:

¯̂
UP UL (t′) = 1

A′

∫∫
A′

ÛP UL (t′, x′, y′) dA′ = ŪS + ¯̂
U (t′) = ŪS + R

[
Ū exp (−iωt′)

]
(4.4)

¯̂
ΠP UL,W (t′) =

∫
Γ ′

Π̂P UL,jz (t′, x′, y′) dΓ ′ = Π̄S,W + ¯̂
ΠW (t′) = Π̄S,W +R

[
Π̄W exp (−iωt′)

]
(4.5)

The quantities with the subscript “S” always denote the steady part, while Ū and Π̄W

are complex and related to the oscillatory part.
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Pulsatile pressure driven rarefied gas flow in rectangular ducts

Furthermore, the pulsatile mass flow rate is defined as

ˆ̇MP UL (t′) =
∫∫

A′
ρ (t′, z′) ÛP UL (t′, x′, y′) dA′ = ṀS +Ṁ (t′) = ṀS +R

[
Ṁ exp (−iωt′)

]
(4.6)

where ṀS and Ṁ (t′) denote the steady and oscillatory mass flow rates, while the mass
density ρ = ρ (t′, z′) varies in time and in the axial direction (it is constant at each
cross section) and it is defined by the equation of state once the operating pressure
and temperature are specified. The net oscillatory mass flow rate over one oscillation
cycle is zero.

Next, based on the mean velocity and wall shear stress, the inertia (or acceleration)
F̂ ′

I (t′) and viscous F̂ ′
V (t′) forces acting on a fluid volume A′dz′ passing through the

channel are given by

F̂ ′
P UL,I (t′) = ρdz′A′ ∂

¯̂
UP UL (t′)

∂t′ = ρdz′A′ ∂
¯̂
U (t′)
∂t′ = F̂ ′

I (t′) (4.7)

and
F̂ ′

P UL,V (t′) = F ′
S,V + F̂ ′

V (t′) = dz′Γ ′
(

Π̄S,W + ¯̂
ΠW (t′)

)
. (4.8)

As expected the inertia force is related only to the oscillatory part, while the viscous
force has both steady and oscillatory parts. At any point in time, the driving pressure
force

F̂ ′
P UL,P (t′) = F ′

S,P + F̂ ′
P (t′) = A′dPS + A′dP̂ (t′) (4.9)

must equal the net sum of the viscous and inertia forces that may add or subtract from
each other at different times within the oscillatory cycle. Then, the following steady
and oscillatory force balances are formed:

Steady: A′dPS = dz′Γ ′Π̄S,W (4.10)

Oscillatory: A′dP̂ (t′) = ρdz′A′ ∂
¯̂
U (t′)
∂t′ + dz′Γ ′ ¯̂

ΠW (t′) . (4.11)

It is noted that due to the fully-developed flow there is no net momentum flux.
Finally, the pumping power needed to drive the pulsatile flow is defined as

Ê ′
P UL (t′) = E ′

S + Ê ′ (t′) (4.12)
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4.2 Flow configuration and definition of macroscopic quantities

where the steady the oscillatory pumping powers are given by the product of the
corresponding acting pressure forces times the mean velocities written as

E ′
S = A′dPSŪS (4.13)

and
Ê ′ (t′) = A′dP̂ (t′) Ū (t′) = A′dP cos (ωt′) R

[
Ū exp (−iωt′)

]
(4.14)

respectively. Since the oscillatory part Ê ′ (t′) does not produce any net flow forward
and since the steady part E ′

S is the same as that in steady flow, any power expenditure
on the oscillatory part of the flow reduces the efficiency of the flow. It is noted that the
integral of the oscillatory pumping power over one cycle in nonzero, hence oscillatory
flow requires energy to maintain even the net flow is zero. This energy expenditure is
required to balance the energy dissipation at the channel wall, while the net energy
expenditure for accelerating and decelerating the flow is zero [72].

The parameters which define the problem in dimensional form include the gas
properties, the operating pressure and temperature, the channel geometry and the
oscillation frequency. They are significantly reduced by introducing the corresponding
quantities in dimensionless form, allowing in parallel, a more detailed flow investigation.
To achieve that the two dimensionless flow parameters defining the present pulsatile
flow are specified [127]. The first one is the gas rarefaction parameter δ and it is given
by

δ = PH

µυ
(4.15)

where µ is the gas viscosity at some reference temperature T and υ =
√

2RT is the
most probable molecular speed (R = kB/m, with kB denoting the Boltzmann constant
and m the molecular mass, is the gas constant). The second one is the frequency
parameter θ and it is given by

θ = P

µω
(4.16)

where (P/µ) is the intermolecular collision frequency and ω the oscillation frequency.
As θ → ∞, the oscillatory part of the flow diminishes.

Also, the dimensionless independent space and time variables

x = x′/H, y = y′/H, z = z′/H and t = t′ω, (4.17)
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Pulsatile pressure driven rarefied gas flow in rectangular ducts

with −1/2 ≤ y ≤ 1/2 and −H/ (2W ) ≤ x ≤ H/ (2W ) are introduced. The dimension-
less area and perimeter of the channel cross section are defined by A = A′/H2 and
Γ = Γ ′/H respectively, while Γ/A = 2 (1 + H/W ). The dimensionless amplitude of
the local oscillatory pressure gradient is

X = H

P (z′)
dP (z′)

dz′ = 1
P (z)

dP (z)
dz

, (4.18)

with X << 1. This assumption is typical in fully-developed flows (also in steady-state
setups), in order to permit the linearization of the governing kinetic equation and it is
valid for any pressure difference provided that the channel is adequately long [179, 2].
For comparison purposes between the oscillatory and steady flow, the amplitude of the
oscillatory pressure gradient is taken equal to the steady one (dP/dz′ = dPS/dz′). In
this way, X = XS, and the peak values of the macroscopic quantities (velocity, flow
rate, shear stress, and pumping power) of the oscillatory flow can be compared with
the corresponding ones of the steady flow.

All velocities (pulsatile, oscillatory and steady) are non-dimensionalized by the
most probable speed υ. More specifically, Eq. (4.2) is divided by (υX) to yield

ûP UL (t, x, y) = uS (x, y) + û (t, x, y) (4.19)

where uS (x, y) is the steady flow velocity and û (t, x, y) is the oscillatory flow velocity,
which may be written as

û (t, x, y) = R [u (x, y) exp (−it)] = R [uA (x, y) exp (i (uP (x, y) − t))] =

= uA (x, y) cos [t − uP (x, y)] (4.20)

In Eq. (4.20) the subscripts A and P denote the amplitude and the phase angle of the
complex oscillatory velocity u (x, y). The mean velocities are also non-dimensionalized
by the most probable speed υ and the resulting mean steady and oscillatory velocities
are denoted by ūS and ¯̂u (t) respectively.

Next, the dimensionless flow rate is defined by introducing (4.17), (4.19) and (4.20)
along with the equation of state P = ρυ2/2 into Eq. (4.6) to obtain ˜̇MP UL (t′) =
H2PXĜP UL (t) /υ, where

ĜP UL (t) = GS + Ĝ (t) . (4.21)
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4.2 Flow configuration and definition of macroscopic quantities

In Eq. (4.21), GS is the well-known steady flow rate given by [179]

GS = 2 H

W

∫ 1/2

−1/2

∫ W/(2H)

−W/(2H)
uS (x, y) dxdy (4.22)

and Ĝ (t) is the oscillatory flow rate given by

Ĝ (t) = 2 H

W

∫ 1/2

−1/2

∫ W/(2H)

−W/(2H)
û (t, x, y) dxdy. (4.23)

The oscillatory flow rate Ĝ (t) may be also written as

Ĝ (t) = R [G exp (−it)] = R [GA exp (i (GP − t))] = GA cos (GP − t) (4.24)

where the flow rate G, as well its amplitude GA and phase angle GP , may be computed
by integrating accordingly the corresponding velocity quantities. Based on the above
definitions it is readily seen that the dimensionless flow rates may be connected
to the dimensionless mean velocities by the following expressions: GS = 2ūS and
Ĝ (t) = 2¯̂u (t).

All stresses (pulsatile τ̂P UL, oscillatory τ̂ and steady τS) are non-dimensionalized by
(2PX). The mean pulsatile wall shear stress ¯̂τP UL,W (t) which consists of the steady
mean wall shear stress τ̄S,W plus the oscillatory one ¯̂τW (t) written as

¯̂τW (t) = R [τ̄W exp (−it)] = R [τ̄W,A exp (i (τ̄W,P − t))] = τ̄W,A cos (t − τ̄W,P ) . (4.25)

In Eq. (4.25) the subscripts A and P denote the amplitude and the phase angle of the
corresponding oscillatory complex shear stresses.

All forces in Eqs. (4.7)-(4.9) are divided by (PXP H2) to yield the corresponding
dimensionless ones:

F̂P UL,I (t) = F̂I (t) = dzA
δ

θ

dĜ

dt
= dzA

δ

θ
GA sin (GP − t) (4.26)

F̂P UL,V (t) = FS,V + F̂V (t) = 2dzΓ
[
τ̄S,W + ¯̂τW (t)

]
=2dzΓ [τ̄S,W + τ̄W,A cos (τ̄W,P − t)]

(4.27)
F̂P UL,P (t) = FS,P + F̂P (t) = Adz (1 + cos t) (4.28)
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Pulsatile pressure driven rarefied gas flow in rectangular ducts

The balance equations of the steady FS,V = FS,P and oscillatory F̂I (t)+ F̂V (t) = F̂P (t)
forces in dimensionless form are:

Steady: τ̄S,W = A/ (2Γ ) =
[
4
(

1 + H

W

)]−1
(4.29)

Oscillatory: δ

θ
GA sin (GP − t) + 4

(
1 + H

W

)
τ̄W,A cos (τ̄W,P − t) = cos t. (4.30)

Equation (4.29) has been also reported in previous works related to steady fully-
developed flows through channels of various cross sections [180, 181]. Equation (4.30)
is the corresponding one for oscillatory flow. The first and second terms at the left
hand side refer to the inertia and viscous forces respectively, while the right hand side
refers to the pressure forces. In Section 4.4.3, these forces are plotted for various values
of δ and θ.

Finally, the dimensionless pumping power is derived by dividing Eqs. (4.12)-(4.14)
by (υX) (XP ) H2 to find ÊP UL (t) = ES + Ê (t), where the steady pumping power is
ES = AdzGS/2 and the oscillatory one is written as

Ê (t) = 1
2Adz cos tG (t) = 1

2Adz cos tR [G exp (−it)] =

= 1
2Adz cos tR [GA exp (i (GP − t))] = 1

2AdzGA cos t cos (GP − t) . (4.31)

By integrating Eq. (4.31) over one oscillation cycle, the average pumping power over
the cycle is formed as

Ē = 1
2π

∫ 2π

0
Ê (t) dt = 1

4AdzGA cos (GP ) . (4.32)

In the low frequency regime, where GP → 0 and GA ≃ GS, it is seen that the average
oscillatory pumping power is half of the corresponding steady one (Ē ≃ ES/2).

The prescribed pulsatile flow is solved here in the whole range of δ and θ, which
may vary from zero to infinity and for various aspect ratios H/W ∈ [0, 1]. The solution
is based on the kinetic modeling described in the next section. The oscillatory flow
rate G, mean wall shear stress τ̄W and pumping powers Ê (t) and Ē are probably the
most important quantities from a technological point of view, while the oscillatory
velocity u (x, y) is more important from a theoretical point of view providing an insight
view of the flow characteristics. All these quantities along with their time evolution
are provided in the results section.
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4.3 Kinetic formulation and numerical scheme

4.3 Kinetic formulation and numerical scheme

4.3.1 Pulsatile flow in a rectangular duct

For arbitrary values of the parameters δ and θ the flow must be simulated based
on kinetic theory, where the main unknown is the distribution function f = f (t′, r′, ξ),
which is a function of time t′, position vector r′ = (x′, y′, z′) and molecular velocity
vector ξ = (ξx, ξy, ξz). The unknown distribution obeys the time-dependent nonlinear
two-dimensional BGK equation [182]

∂f

∂t′ + ξx
∂f

∂x′ + ξy
∂f

∂y′ + ξz
∂f

∂z′ = P

µ

(
fM − f

)
(4.33)

where (P/µ) is the collision frequency and

fM (t′, r′, ξ) = n
(

m

2πkT

)3/2
exp

[
−m

(
ξ − ÛP UL

)2
/

(2kT )
]

(4.34)

is the local Maxwellian distribution. Due to the assumption of isothermal fully-
developed flow the temperature T is constant and the number density n = n (z′) varies
only in the z′−direction. Also, the macroscopic velocity has only the z′−component and
it is the same with the pulsatile velocity defined in Eq. (4.2), i.e., ÛP UL =

(
0, 0, ÛP UL

)
.

The pulsatile velocity and shear stress (defined in Eq. (4.3)) at some position z′ in the
flow direction may be obtained by the first and second moments of f according to

ÛP UL (t′, x′, y′) = 1
n

∫
ξzf̃ (t′, r′, ξ) dξ (4.35)

and
Π̂P UL,jz′ (t′, x′, y′) = m

∫
ξj

(
ξz − ÛP UL

)
f (t′, r′, ξ) dξ, j = x′, y′ (4.36)

respectively.
The condition of small local pressure gradient (X ≪ 1) allows the linearization of

Eq. (4.33) by representing the unknown distribution function as

f (t′, r′, ξ) = f0
[
1 + XĥP UL (t, x, y, c) + Xz (1 + exp (−it))

]
, (4.37)

where c = ξ/υ, f0 = n
π3/2υ3 exp [−c2] is the absolute Maxwellian and ĥP UL (t, x, y, c) is

the unknown perturbed distribution function referring to the pulsatile fully-developed
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Pulsatile pressure driven rarefied gas flow in rectangular ducts

flow, which may be decomposed as

ĥP UL (t, x, y, c) = hS (x, y, c) + ĥ (t, x, y, c) (4.38)

with ĥS (x, y, c) and ĥ (t, x, y, c) referring to the steady and oscillatory parts respec-
tively. Substituting expressions (4.37) and (4.38) into Eq. (4.33) and introducing
the dimensionless variables, yields the following two linearized BGK kinetic model
equations:

cx
∂hS

∂x
+ cy

∂hS

∂y
+ cz = δ [2czuS (x, y) − hS (x, y, c)] (4.39)

δ

θ

∂ĥ

∂t
+ cx

∂ĥ

∂x
+ cy

∂ĥ

∂y
+ cze−it = δ

[
2czRû (t, x, y) − ĥ (t, x, y, c)

]
(4.40)

The first one describes the steady fully-developed flow through an orthogonal duct and
it is solved in [179, 2]. The second one describes the oscillatory fully-developed flow
and it is the one to be solved in the present work.

Since Eq. (4.40) is linear, it is convenient to introduce the complex distribution
function h (x, y, c) so that

ĥ (t, x, y, c) = R [h (x, y, c) exp (−it)] . (4.41)

Also, the molecular velocity vector c = (cx, cy, cz) is transformed as c = (ζ, φ, cz),
where cr = ζ cos φ and cφ = ζ sin φ. Then, Eq. (4.40) is rewritten in terms of h as

ζ cos φ
∂h

∂x
+ ζ sin φ

∂h

∂y
+ h

(
δ − δ

θ
i

)
+ cz = 2δczu (x, y) . (4.42)

The non-dimensionalization, linearization and the molecular velocity vector transfor-
mation are also applied to the velocity and the shear stress given by Eqs. (4.35) and
(4.36) to obtain:

u (x, y) = 1
π

∫ ∞

−∞

∫ 2π

0

∫ ∞

0
czhe−c2

dζdφdcz (4.43)

τxz (x, y) = 1
π

∫ ∞

−∞

∫ 2π

0

∫ ∞

0
(ζ cos φ) czhe−c2

dζdφdcz (4.44)

τyz (x, y) = 1
π

∫ ∞

−∞

∫ 2π

0

∫ ∞

0
(ζ sin φ) czhe−c2

dζdφdcz. (4.45)

At this stage the component cz of the molecular velocity vector may be eliminated
by applying the so-called projection procedure and introducing the reduced perturbed
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4.3 Kinetic formulation and numerical scheme

distribution function

Y (x, y, ζ, φ) = 1
π

∫ ∞

−∞
h (x, y, ζ, φ, cz) exp

[
−cz

2
]

dcz. (4.46)

Equation (4.46) is multiplied by cz exp (−c2
z) /

√
π and the resulting equation is inte-

grated over cz to deduce

ζ cos φ
∂Y

∂x
+ ζ sin φ

∂Y

∂y
+
(

δ − i
δ

θ

)
Y = δu − 1

2 . (4.47)

Operating similarly on the moments of h, given by Eqs. (4.43)-(4.45), yields:

u (x, y) = 1
π

∫ 2π

0

∫ ∞

0
Y e−ζ2

ζdζdφ (4.48)

τxz (x, y) = 1
π

∫ 2π

0

∫ ∞

0
(ζ cos φ) Y e−ζ2

ζdζdφ (4.49)

τyz (x, y) = 1
π

∫ 2π

0

∫ ∞

0
(ζ sin φ) Y e−ζ2

ζdζdφ (4.50)

It is noted that Y = YRe + iYIm is complex and the same applies for the velocity u (x, y)
and the shear stresses τjz (x, y), j = x, y.

Turning now to the boundary conditions it is noted that Maxwell diffuse-specular
boundary conditions are used. The gas–surface interaction is modeled as [182]

f+ = αfM
W + (1 − α) f−, c · n > 0, (4.51)

where the superscripts (+) and (−) denote distributions leaving from and arriving
to the boundaries respectively, fM

W is the Maxwellian defined by the wall conditions,
0 ≤ α ≤ 1 is the tangential momentum accommodation coefficient corresponding to the
percentage of diffuse reflection of the gas at the wall and n is the unit vector normal
to the boundaries and pointing towards the flow. Following the linearization and
projection procedures as defined above it is readily deduced that at the wall boundaries

Y + = (1 − α) Y −, c · n > 0. (4.52)

These boundary conditions are applied at y = ±1/2 and x = ±H/ (2W ).
Closing this section it is interesting to comment on the behavior of Eq. (4.47)

at limiting values of θ and δ. When both δ >> 1 and θ >> 1, the flow is in the
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Pulsatile pressure driven rarefied gas flow in rectangular ducts

hydrodynamic or slip regimes [127]. In these regimes analytical solutions, based on
the unsteady Stokes equation with either no-slip or slip boundary conditions, have
been obtained and presented in Appendix A.1. As θ → ∞ (ω → 0) and δ << θ (finite
values of δ), Eq. (4.47) is reduced to the one describing the steady fully-developed flow
through a rectangular duct at the corresponding δ. In the specific case of δ = 0, with
θ > 0, the kinetic equation for steady-state flow at the free molecular limit is recovered.
At the other end, as θ → 0 (ω → ∞), Eq. (4.47) yields Y → 0, i.e., the solution tends
to vanish at very high frequencies due to fluid inertia. It is expected the behavior of
Eq. (4.47) at the limiting conditions to be reflected in the numerical results.

4.3.2 Limiting case of oscillatory flow between parallel plates

It is seen that as the aspect ratio H/W is reduced, the two-dimensional flow
gradually tends to the corresponding one-dimensional flow between parallel plates. In
this Section, the formulation of the kinetic equation with the associated conditions for
the limiting case of H/W = 0 is provided.

The flow setup is reduced to pulsatile flow between two parallel plates and it is
modeled by the one-dimensional time-dependent BGK model in the domain −1/2 ≤
y ≤ 1/2. Following a mathematical manipulation similar to the one presented in
Section 4.3.1, the steady and oscillatory parts of the pulsatile flow are modeled. The
steady part results to the well-known kinetic formulation of steady Poiseuille flow
between parallel plates [2]. The oscillatory part results to the following equations:

cy
∂h

∂y
+ h

(
δ − δ

θ
i

)
+ cz = 2δczu (y) , (4.53)

u (y) = 1
π3/2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
czhe−c2

dcxdcydcz, (4.54)

τxz (y) = 1
π3/2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
cyczhe−c2

dcxdcydcz. (4.55)

Next, the cx and cz components of the molecular velocity vector are eliminated by
introducing the reduced distribution function

Y (y, cy) = 1
π

∫ ∞

−∞

∫ ∞

−∞
h (x, cx, cy, cz) exp

[
−cz

2 − cx
2
]

dcxdcz. (4.56)
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4.3 Kinetic formulation and numerical scheme

Equation (4.53) is multiplied by cxcz exp (−c2
x − c2

z) /π and the resulting equation is
integrated over cx and cz to deduce

cy
∂Y

∂y
+
(

δ − i
δ

θ

)
Y (y, cy) = δu (y) − 1

2 (4.57)

with Y being a complex function, while the velocity and shear stress distributions are

u (y) = 1√
π

∫ ∞

−∞
Y e−c2

ydcy and τ (y) = 1√
π

∫ ∞

−∞
cyY e−c2

ydcy. (4.58)

The Maxwell diffuse-specular boundary conditions become

Y + (∓1/2, cy) = (1 − α) Y − (∓1/2, cy) , cx

>
<0. (4.59)

The one-dimensional oscillatory flow problem (H/W = 0), defined by Eqs. (4.57)-
(4.59), is solved in order to have a complete view of the effect of the channel aspect
ratio H/W ∈ [0, 1] on the oscillatory flow characteristics.

4.3.3 Numerical scheme

The kinetic formulation of the oscillatory fully-developed flow in a rectangular duct
is properly defined by Eq. (4.47) with the associated moments (4.48)-(4.50) subject to
boundary conditions (4.52). The numerical solution is deterministic. The discretization
in the molecular velocity space is performed using the discrete velocity method. The
continuum spectrum ζ ∈ [0, ∞) is substituted by a discrete set ζm,m = 1, 2...M , which
is taken to be the roots of the Legendre polynomial of order M , accordingly mapped
from [−1, 1] to [0, ∞). Also, a set of discrete angles φn, n = 1, 2...N equally spaced in
[0, 2π] is defined. The discretization in the physical space is based on a second order
central difference scheme. The discretized equations are solved in an iterative manner
and the iteration map is concluded when the criteria

∣∣∣u(k+1)
Re,i,j − u

(k)
Re,i,j

∣∣∣ < ε and
∣∣∣u(k+1)

Im,i,j − u
(k)
Im,i,j

∣∣∣ < ε (4.60)

is fulfilled. Here, ε is the tolerance parameter, the superscript k denotes the iteration
index, i, j = 1, 2...L + 1 are the nodes in the physical space, while uRe,ij and uIm,ij are
the real and imaginary part of macroscopic velocity respectively at each node (i, j).
This numerical scheme has been extensively applied in steady-state and time-dependent
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Pulsatile pressure driven rarefied gas flow in rectangular ducts

flow configurations with considerable success [174, 175, 180, 181, 127]. The numerical
parameters have been gradually refined to ensure grid independent results up to at
least three significant figures. The numerical solution of the oscillatory flow between
parallel plates is similar to the one described above. It is also easier to solve since only
the y- component of the molecular velocity vector is needed.

Once the kinetic problem is solved the oscillatory complex velocity u (x, y) =
uA (x, y) exp [iuP (x, y)] and shear stress τjz (x, y) = τjz,A (x, y) exp [iτjz,P (x, y)], j =
x, y are computed in terms of δ, θ, H/W and α. The overall oscillatory quantities of
the flow rate, the mean wall shear stress and the pumping power are deduced in a
straightforward manner, based on the expressions provided in Section 4.2. The pulsatile
flow quantities are also readily deduced by adding the corresponding steady ones.

4.4 Results and discussion

Numerical results of the time evolution, as well as of the amplitude and phase angle
of the main macroscopic quantities in terms of the gas rarefaction parameter δ, the
oscillation parameter θ, the duct aspect ratio H/W and the accommodation coefficient
α are provided, in four subsections. Section 4.4.1 describes the velocity distributions in
pulsatile and oscillatory flows. Sections 4.4.2 and 4.4.3 describe the overall quantities
of flow rate and mean acting forces (including the mean wall shear stress) respectively.
Since the corresponding steady parts are well-known results are provided only for
the oscillatory parts. Finally, Section 4.4.4 describes the oscillatory time-dependent
and average pumping powers including a comparison with the corresponding steady
pumping powers.

4.4.1 Velocity distributions

In Figure 4.1, the time evolution over one cycle of the oscillatory û (t, 0, y) and
pulsatile ûP UL (t, 0, y) = uS (0, y)+ û (t, 0, y) velocity distributions, given in Eqs. (4.19)-
(4.20), are plotted with respect to y ∈ [−1/2, 1/2] at x = 0 in the case of a square
duct (H/W = 1). The plots are for δ = [0.1, 1, 10] covering a wide range of the gas
rarefaction and θ = 0.1, 10 referring to high and low frequency oscillation respectively.
The evolution is shown with a time step of π/2, at t = 0, π/2, π and 3π/2. As expected,
the oscillatory velocity over one cycle, takes both positive and negative values (the fluid
is moved forth and back) and the time average velocity over one cycle is zero (no net
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4.4 Results and discussion

flow). The effect of θ on the amplitude of the oscillatory velocity is significant. As it is
seen, it is greatly reduced as θ is decreased and this behavior becomes even stronger
as δ is increased (less gas rarefaction). The time evolution of the pulsatile velocity is
obtained by superimposing on the oscillatory velocity the corresponding steady one,
which depends only on δ. Since the steady flow is independent of θ the behavior of
the pulsatile velocity with respect to θ is qualitatively the same with the oscillatory
one. Consequently, at large θ (e.g., θ = 10), where the amplitude of the oscillatory
velocity is large, the difference between the amplitude of the pulsatile velocity and the
corresponding steady one is also large. On the contrary, as the oscillatory flow tends to
diminish, which is happening as θ is decreased and δ is increased, the pulsatile velocity
gradually tends to the steady one at the corresponding δ. This is particularly evident
at θ = 0.1 and δ = 10, where ûP UL (t, 0, y) ≃ uS (0, y). As it is outlined in Section 4.2,
the present results are based on the assumption that the amplitude of the oscillatory
pressure gradient is the same with the steady pressure gradient (dPS/dz′ = dP̂ /dz′).
Having this in mind it is interesting to note that the pulsatile velocity takes only
positive values, i.e., there is no flow reversal at any time. This observation may be
technologically significant in applications where a pulsatile flow is desired, e.g. in order
to enhance mixing or heat transfer under rarefied conditions, without however having
particles moving opposite to the pumping direction or hot gas transported backwards
into colder regions. In any case, if dPS/dz′ < dP̂/dz′, although the net flow is nonzero,
flow reversal may be present.

In Figure 4.2, the contours of the oscillatory velocity amplitude uA (x, y) are
presented in a two dimensional layout for square (H/W = 1) and orthogonal (H/W =
0.1) ducts, with δ = [0.1.1, 10] and θ = 0.1. As it is seen at this relatively high
oscillation frequency the effect of δ moving from the free molecular (δ = 0.1) through
the transition (δ = 1) up to the slip (δ = 10) regime is remarkable. At δ = 0.1 there is a
very close qualitative resemblance with the corresponding steady one, with the velocity
amplitude taking its maximum values at the center of the cross section of the duct and
then, it is monotonically reduced towards the walls of the cross section. At δ = 10,
the situation is reversed, with the maximum amplitudes appearing in a very thin layer
adjacent to the walls, while outside this layer the velocity amplitude is smaller and
almost constant. At the intermediate value of δ = 1 the maximum amplitudes occur
in a wider region between the center and the walls of the duct. This description is
valid for both aspect ratios. Furthermore, the velocity overshooting (known as the

63

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 08:10:15 EEST - 3.144.111.108
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“Richardson effect”), is well-known in the hydrodynamic regime [72] and it has been
also recently observed in oscillatory rarefied gas flow through a tube [127].

The oscillatory velocity amplitude uA and phase angle uP along the symmetry
axis x = 0 are plotted in Figs. 4.3 and 4.4 for oscillatory flow through a square duct
(H/W = 1) and an orthogonal duct (H/W = 0.1) respectively for various values of δ and
θ. In the former case x ∈ [−1/2, 1/2] and in the latter one x ∈ [−H/ (2W ) , H/ (2W )].
The objective here is to comment on the dependency of uA and uP on δ and θ, as well
as to observe the effect of the aspect ratio H/W . Always, as θ is decreased, i.e., the
oscillation frequency is increased, the amplitude uA is reduced and the phase angle
lag uP is increased. It is also seen that in general at small δ and large θ (e.g., δ = 0.1
and θ ≥ 0.1) the velocity amplitudes have the expected shape with their maximum
appearing at the center of the duct, while the corresponding phase angles are small.
However, as δ is increased and θ is reduced the velocity amplitude is flattening in the
core of the flow and the maximum amplitude is appearing in a region far from the
center of the orthogonal duct. At large δ and small θ (e.g., δ = 10 and θ ≤ 1) uA

remains constant from the center of the duct until close to the wall and then, in a thin
layer adjacent to the wall it is rapidly increased and decreased. The corresponding
phase angle lags uP are large, even up to π/2 with regard to the pressure gradient and
they remain constant from the center of the duct until the wall layer, where they change
significantly in an oscillatory manner. The thickness of the region where the velocity
overshooting occurs is decreased as δ is increased and θ is reduced. Therefore, in high
or even moderate frequencies (it depends also on δ), the flow consists of two layers:
the inviscid piston flow in the core, dominated by inertia forces and the frictional
Stokes wall layer dominated by viscous forces. Comparing the corresponding results
in Figs. 4.3 and 4.4, it is clearly seen that the velocity overshooting (or Richardson
effect) appears first in the orthogonal duct and then in the square duct. For example at
δ = θ = 0.1, δ = θ = 1 and δ = θ = 10, the velocity amplitudes for H/W = 1 (Figure
4.3) take their maximum values at the duct center, while for H/W = 0.1 (Figure 4.4)
their maximum values occur far from the duct center. It is concluded that as the aspect
ratio H/W is reduced the velocity overshooting appears at smaller δ and/or larger θ.

4.4.2 Flow rates

The behavior of the oscillatory flow rates Ĝ = GA cos (t − GP ) in terms of δ, θ, the
aspect ratio H/W and the accommodation coefficient α is investigated.
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In Figure 4.5, the flow rate amplitude GA and phase angle GP are provided in terms
of δ with θ = [1, 10, 102] and H/W = [1, 0.5, 0.1, 0]. The case of H/W = 0 corresponds
to oscillatory flow between parallel plates. Purely diffuse reflection is assumed at the
wall (α = 1). It is clearly seen that θ has a strong effect on the amplitude GA, while its
effect on GP is very weak. More specifically, for θ = 1, GA is monotonically decreased
as δ is increased, while for θ = [10, 102] it is initially decreased, then it is increased
up to some local maximum appearing at δ ∈ [5, 15] and finally it is decreased. This
behavior is justified by the fact that at adequately high oscillation frequencies (e.g.,
θ = 1), GA is significantly affected and it is monotonically reduced with increasing
δ. On the contrary at low oscillation frequencies (e.g., θ = [10, 102]), the variation of
GA with δ has some resemblance with the steady flow rate including the presence of
a Knudsen minimum, as long as δ is sufficiently small to ensure δ << θ. Then, as δ

is further increased the inequality does not hold and GA is decreased. With regard
to the phase angle, GP is always monotonically increased with δ and it is almost
independent of the oscillation frequency θ. At very small values of δ it is almost zero,
then at moderate values of δ it is rapidly increased and finally, at large values of δ it is
asymptotically increased reaching the limiting value of π/2. The described behavior of
GA and GP with regard to δ and θ is qualitatively the same in all aspect ratios H/W .
It is clear however, that the aspect ratio has quantitatively a significant effect on GA

and a weak effect on GP , which becomes even weaker as θ is increased and the flow
becomes stationary. In general, GA is always increased as H/W is decreased and this
is more evident for δ < 1. Concerning the value of the local maximum of GA at large
θ within some δ ∈ [5, 15] again it is increased as the aspect ratio H/W is decreased
obtaining the maximum value in the case of flow between parallel plates (H/W = 0).

In Figure 4.6, the flow rate amplitude GA and phase angle GP are provided in
terms of δ with θ = [0.1, 1, 10], H/W = [1, 0.1] and the accommodation coefficient
α = [1, 0.85, 0.7]. As expected, GA (δ, θ) is monotonically increased as α is decreased,
i.e., the reflection becomes more specular. The phase angle GP however, does not
strongly depend on the type of gas-surface interaction. As α is decreased the phase
angle lag is only slightly increased for the same δ and θ, which becomes more evident
as θ is decreased and at moderate values of δ.

In Figure 4.7, the oscillatory flow rate Ĝ = GA cos (t − GP ), is plotted versus time
t ∈ [0, 2π] for typical values of δ and θ with H/W = [1, 0.1]. The time evolution
of the dimensionless pressure gradient is equal to cos t. It is seen that Ĝ strongly
depends on both the gas rarefaction parameter and the oscillation frequency. When
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δ = 0.1, the Ĝ profiles for θ = [1, 10, 102] (low and moderate oscillation frequencies)
are very close to each and in phase with the pressure gradient, while for θ = 0.1 (high
oscillation frequency) Ĝ has a smaller amplitude and a larger lagging phase angle. As δ

is increased the effect of θ becomes gradually more dominant. At δ = 1, the Ĝ profiles
only for θ = [10, 102] are close to each other and in phase, while for θ = [0.1, 1] the
amplitude is reduced and the phase angle lag is increased. This behavior is further
enhanced at δ = 10, where the effect of the oscillation frequency is very significant for
θ = [0.1, 1, 10] and remains not important only for θ = 102. It is seen that at δ = 1
and θ = 0.1, as well as at δ = 10 and θ = 0.1, 1 the amplitudes are very small and the
phase angle lags are almost π/2. These observations are valid for both aspect ratios.
Quantitatively, as H/W is decreased moving from the square duct to the parallel plates
setup the amplitude is increased and the phase angle lag is slightly increased, which is
in agreement with the observations in Figure 4.6. It is also noted that the peak of the
flow rate amplitude always falls short of reaching the corresponding steady flow rate,
which is clearly contributed to the inertia of the fluid, which must be accelerated and
decelerated in each cycle.

Tabulated results of the flow rate amplitude GA and phase angle GP for the specific
case of an orthogonal duct with H/W = 0.1 are presented in Tables 4.1 and 4.2
respectively in terms of the gas rarefaction δ ∈ [10−4, 102] and the oscillation parameter
θ = [0.1, 1, 10, 50, 102]. In addition, the flow rate amplitude G

(S)
A and phase angle G

(S)
P

in the slip regime, based on the analytical expression (A.9), are provided for δ ≥ 1
with θ = 50 and θ = 102. In the last column of Table 4.1, the well-known steady flow
rates (θ → ∞), denoted by GS (δ), for δ ≤ 15 are also included [179]. By comparing
GA and GP with the corresponding G

(S)
A and G

(S)
P it is readily seen that there is very

good agreement up to at least two significant figures for δ > 10 (both δ and θ must be
large) and then, as δ is decreased the discrepancies are gradually increased. Also, the
values GA (δ, θ) for the large oscillation parameter θ = 102 are in very good agreement
with the corresponding steady flow rates GS (δ) in small and intermediate values of δ

and then, as δ is further increased the discrepancies also increase. This is expected
since steady conditions are recovered provided that the oscillation parameter is large
(which it is, since θ = 102) and also δ << θ (which is the case only when δ < 10).
These comparisons demonstrate the accuracy of the kinetic results.

Furthermore, it is seen in Table 4.1 that for any given δ, GA is monotonically
increased with θ, being always less than the corresponding stationary solution GS (δ).
Also, as δ is increased, for θ ≤ 1, GA is monotonically decreased, while for θ ≥ 10 it is
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initially decreased until δ = 1, where a local minimum is observed, then it is increased
up to some δ, which depends on θ, and finally as δ is further increased it is again
decreased. As δ → 0 and for all θ, the solution tends to the semi-analytical steady free
molecular flow rate, which is equal to 1.991 (see Table II in [179]). For small values
of θ and adequately large values of δ, GA tends to diminish, since due to the high
oscillation frequency and the deduced inertial forces the gas has great difficulty to
reach a peak flow.

In Table 4.2, for any given δ the phase angle GP is increased as θ is decreased,
i.e., as the oscillation frequency is increased. At very high frequencies and adequately
large δ, this may result to almost zero amplitude with π/2 phase angle. Also, for any
given θ, GP is monotonically increased with δ, being almost zero in the free molecular
regime and then, it is increasing as the oscillatory flow becomes less rarefied, reaching
the maximum phase angle lag in the hydrodynamic limit. Overall, as the oscillation
frequency is increased the flow rate amplitude is decreased, while the phase angle is
increased, which in accordance with the observations made in Section 4.4.1 for the
velocity distributions.

4.4.3 Mean wall shear stresses and acting forces

Next, the behavior of the oscillatory mean wall shear stress ¯̂τW = τ̄W,A cos (t − τ̄W,P )
in terms of δ, θ and H/W is investigated. It is noted that the steady mean wall shear
stress τ̄S,W = 0.25 (1 + H/W )−1 is independent of δ and depends only on the aspect
ratio H/W (Section 4.2, Eq. (4.29)).

In Figure 4.8, the oscillatory mean wall shear stress amplitude τ̄W,A and phase angle
τ̄W,P (δ, θ) are plotted in terms of δ with θ = [1, 10, 102] and H/W = [1, 0.5, 0.1, 0]. For
very small values of δ the mean wall shear stress amplitude τ̄W,A takes the same value
as the corresponding steady one τ̄S,W at the same H/W . Then, as δ is increased it
is slightly reduced and then, from some δ in the late transition or slip regimes it is
rapidly decreased. The value of δ where this rapid decrease of τ̄W,A is starting depends
on θ and it is increasing as θ is decreasing. At θ = [1, 10, 102] the corresponding values
of δ are about δ = [0.1, 2, 10]. Thus, the variation of τ̄W,A does not include the local
maxima observed in the variation of GA (Figure 4.5). This overall behavior of τ̄W,A is
valid for all values of the aspect ratio H/W . Also, it is seen that τ̄W,A depends strongly
on the aspect ratio, particularly in the free molecular and slip regimes and it is always
increased as H/W is decreased. The dependency of the oscillatory mean wall shear
stress phase angle τ̄W,P on δ, θ and H/W is very close to the corresponding one of
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Pulsatile pressure driven rarefied gas flow in rectangular ducts

the flow rate phase angle GP in Figure 4.5. More specifically, it is increased with δ

having a rapid increase in the transition regime, it is also increased as θ is decreased
and finally, it demonstrates a weak dependency on H/W .

It is noted that comparing the corresponding phase angle lags τ̄W,P and GP , it has
been found (although it is not clear in Figs. 4.5 and 4.8) that τ̄W,P is almost always
slightly smaller than GP leading to the fact that the mean wall shear stress has a
smaller phase angle lag than the flow rate. This observation is always true in the slip
and hydrodynamic regimes [78, 72]. It has been found however, that in some narrow
band of the transition regime close to δ ≃ 1 and high oscillation frequency θ ≤ 1, τ̄W,P

may be slightly larger than GP .
In Figure 4.9, the oscillatory shear stress ˜̄τW (t, δ, θ) = τ̄W,A cos (t − τ̄P ) is plotted

versus time t ∈ [0, 2π] for typical values of δ and θ with H/W = [1, 0.1]. The time
evolution of the dimensionless pressure gradient is equal to cos t. As expected, ˜̄τW

depends on both the gas rarefaction parameter and the oscillation frequency and
behaves similarly to the flow rate Ĝ (Figure 4.7). As θ is decreased the amplitude is
decreased and the lagging phase angle is increased and this behavior becomes more
intense as δ is increased. Furthermore, as H/W is decreased, the amplitude is increased,
while the phase angle is slightly increased.

Next in Figure 4.10, the oscillatory inertia F̂I , viscous F̂V and pressure F̂P forces, as
defined in Eq. (4.30) are plotted over one oscillation period t ∈ [0, 2π] for δ = [0.1, 1, 10],
θ = [0.1, 1, 10] and H/W = 1. The forces are readily computed based on the amplitudes
and phase angles of the flow rate and mean wall shear stress. In all cases the force
balance equation (4.30) is satisfied. The inertia forces refer to the core flow and the
viscous forces refer to the Stokes layer. It is interesting to observe the behavior of
F̂I and F̂V in terms of δ and θ. The phase difference between these two forces is
always π/2. In the cases of (δ = θ = 0.1), (δ = θ = 1) and (δ = θ = 10) the viscous
and inertia forces lag and lead the corresponding pressure force respectively by a phase
angle of π/4. The amplitudes of the two forces are about the same. Then, in the cases
of (δ = 10, θ = 1, 0.1) and (δ = 1, θ = 0.1), the inertia forces almost coincide with the
corresponding pressure forces, while the viscous forces lag the other two forces by almost
π/2 and their amplitudes are close to zero. The flow consists of two regions: the core
region oscillating in a plug mode and, adjacent to the wall, the oscillating thin viscous
or Stokes layer with the velocity overshooting. Finally, in the cases of (δ = 1, θ = 10)
and (δ = 0.1, θ = 1, 10) this behavior is reversed, i.e., the viscous coincide with pressure
forces, while the inertia forces lead by almost π/2 and their amplitudes are close to
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4.4 Results and discussion

zero. The flow consists of one oscillating region with no velocity overshooting. This
description clarifies the behavior of the inertia and viscous forces in terms of θ and
more important in terms of δ, e.g., at δ = 10 and θ ≤ 1 the flow is dominated mainly
by inertia forces, while at δ = 0.1, the flow will be dominated by inertia forces only if
θ < 0.1.

It is noted finally, that based on the computed quantities, Eq. (4.30) is satisfied
very accurately, which of course provides additional confidence about the validity of
the numerical results.

4.4.4 Pumping power

In Figure 4.11, the oscillatory pumping power, defined as Ê/ (Adz) = = GA cos (GP − t) cos t/2
(see Eq. (4.31)), is plotted in terms of t ∈ [0, 2π] for δ = [0.1, 1, 10] and θ =
[0.1, 1, 10, 102] with H/W = 0.1. The pumping power has two peaks within each
oscillatory cycle because it consists of the product of the oscillatory pressure times the
oscillatory flow. Its integral over one cycle is not zero in order to drive the oscillatory
flow, although the oscillatory net flow is zero. The dependency of the oscillatory pump-
ing power on δ and θ is similar to the one observed for the flow rate, i.e. in general, as
θ is decreased (the oscillation frequency is increased) its amplitude is decreased and its
phase angle lag is increased. This behavior becomes more dominant as δ is increased.

As pointed above, even when the flow is reversed, which is occurring at the second
half of the oscillation cycle at time t ∈ [π/2, π] where the flow rate is negative, the
pumping power remains positive. It is seen however, in Fig. 4.11 that at certain times
t ∈ [0, 2π], the oscillatory pumping power may become negative. This is more evident
at large δ and small θ and it is occurring because in dense gases and at relatively
high frequencies the flow rate is completely out of phase with the pressure gradient
(it becomes proportional to a sinusoidal function). Thus, when the pressure gradient
becomes negative and the flow is reversed, the sign of the flow rate remains positive
for a certain time interval and during this interval the overall pumping power becomes
negative. This time interval is increased as θ is decreased. Of course in rarefied gases
and/or low frequencies Ê is always positive because the flow rate is in phase with the
pressure gradient.

Finally, in Figure 4.12, the average oscillatory pumping power Ē/Adz = GA cos (GP ) /4
(see Eq.(4.32)) over one period of oscillation in terms of δ are plotted, with θ =
[0.1, 1, 10, 102] and for ducts with H/W = 1 and 0.1. The steady pumping power
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Pulsatile pressure driven rarefied gas flow in rectangular ducts

ES = AdzGS/2, which depends only on δ, is also plotted for comparison purposes. It
is seen that as the oscillatory flow approaches steady conditions, which is the case
of θ = 102 and δ ≤ 10, as expected, Ē is about half of ES. This behaviour is even
extended to smaller values of θ provided that δ is adequately small (δ << θ). Also,
as δ → 0 and for all θ the steady free molecular flow is recovered, Ē is exactly one
half of the steady free molecular pumping power. Furthermore, in cases where δ ≥ θ

the average oscillatory pumping power is smaller than these limiting values and it is
significantly decreased with θ. This is expected since at very high frequencies the flow
rate amplitude tends to diminish. Also, the local maximum values of Ē at large θ

are appearing due to the corresponding behaviour of GA, shown in Figure 4.5. With
regards to the aspect ratio, Ē is increased as H/W is increased.

4.5 Concluding remarks

The pulsatile isothermal fully-developed flow in an orthogonal duct is investigated
by decomposing the flow into the steady and oscillatory parts. The steady part is
well-known and therefore, the investigation is focused mainly on the oscillatory part,
which is numerically solved, based on the time-dependent linear BGK equation, in a
wide range of the gas rarefaction parameter δ ∈ [0, 102] and the oscillation parameter
θ ∈ [10−2, 102], as well as for various values of the duct aspect ratio H/W ∈ [1, 0]
and the tangential momentum accommodation coefficient α ∈ [0, 1]. It is noted
that δ and θ are inversely proportional to the Knudsen number and the oscillation
frequency respectively. The results are in dimensionless form and include all macroscopic
quantities of theoretical and technological interest and more specifically, the amplitude
and phase angle, as well as the time evolution of the velocity distribution, the flow rate,
the mean wall shear stress, the acting inertial and viscous forces, the pumping power
and the time average pumping power. The results have been successfully validated at
limiting values of δ and θ by comparison with corresponding analytical results in the
slip regime (both δ >> 1 and θ >> 1), in the free molecular regime (δ → 0) and with
numerical results for steady fully-developed flow (θ → ∞ and δ << θ).

Always as θ is decreased (i.e., the oscillation frequency is increased) the amplitude
of all macroscopic quantities is decreased and their phase angle lag with respect to
the pressure gradient is increased. Actually, at very small θ the amplitude tends to
diminish and the phase angle lag approaches the limiting value of π/2. It is important
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to note however, that as δ is decreased (i.e., the gas becomes more rarefied) higher
frequencies are needed to trigger the behavior described above.

For comparison purposes the amplitude of the oscillatory pressure gradient is taken
to be equal with the steady pressure gradient. Having this in mind it is useful to note
that the pulsatile velocity distribution, which is obtained by adding the oscillatory and
steady velocities, is always positive and therefore, there is no flow reversal. Furthermore,
the amplitudes of the flow rate and the mean wall shear stress are increased with θ

being always smaller than the corresponding steady ones. In terms of gas rarefaction
the dependency of the flow rate amplitude is not monotonic indicating that at moderate
and large θ there is a critical δ to obtain the maximum flow rate. The mean wall
shear stress amplitude remains almost constant in the free molecular and transition
regimes and then it is rapidly reduced. Comparing the corresponding phase angle
lags of the flow rate and the mean wall shear stress it has been found that in most
cases the former one is slightly larger, while this situation is reversed in a narrow
band of the transition regime and high oscillation frequencies. Concerning the duct
aspect ratio, it has been found that as the aspect ratio H/W is decreased the flow rate
and mean wall shear stress amplitudes are increased, while their phase angle lags are
slightly affected. Similarly, the gas-surface interaction at the wall, specified by the
accommodation coefficient α, has a significant effect at the amplitudes and almost no
effect at the phase angles of the macroscopic quantities.

The inertia and viscous forces, having always a phase difference of π/2, are computed
in a wide range of δ and θ. Their amplitudes are about the same when δ = θ. As δ

is increased and θ is decreased the inertia forces dominate causing a core oscillating
plug-flow with a thin Stokes layer. In the opposite situation (i.e., as δ is decreased
and θ is increased) the viscous forces become more important causing a typical viscous
oscillatory flow without velocity overshooting.

Finally, the oscillatory pumping power has two peaks within each oscillatory cycle
and its integral over one cycle is not zero. The nonzero time average pumping power is
needed to maintain the oscillatory flow, although the oscillatory net flow is zero and it
is increased as the oscillation frequency is reduced. Actually, as stationary conditions
are reached, the time average pumping power is obtaining its maximum values, which
have been found to be one half of the corresponding steady ones. Adding the time
average oscillatory pumping power with the steady one, yields the total average power
to maintain the pulsatile flow.
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Pulsatile pressure driven rarefied gas flow in rectangular ducts

Table 4.1 Flow rate amplitude GA (δ, θ) in terms of gas rarefaction parameter δ and
oscillation parameter θ for H/W = 0.1.

δ GA (δ, θ) G
(S)
A (δ, θ) GSS (δ)

θ = 0.1 θ = 1 θ = 10 θ = 50 θ = 100 θ = 50 θ = 100 θ → ∞
0.0001 1.984 1.988 1.988 1.988 1.988 1.988
0.001 1.939 1.973 1.974 1.974 1.974 1.974
0.01 1.648 1.892 1.903 1.903 1.903 1.903
0.05 1.057 1.712 1.758 1.759 1.759 1.759
0.1 7.543(-1) 1.583 1.666 1.667 1.667 1.667
0.5 2.033(-1) 1.116 1.451 1.456 1.456 1.456
1 9.992(-2) 8.084(-1) 1.411 1.426 1.427 1.104 1.104 1.427
2 4.999(-2) 4.793(-1) 1.431 1.492 1.494 1.263 1.265 1.494
4 2.499(-2) 2.462(-1) 1.414 1.719 1.732 1.567 1.578 1.737
6 1.666(-2) 1.646(-1) 1.245 1.952 1.999 1.841 1.881 2.016
8 1.250(-2) 1.237(-1) 1.042 2.142 2.262 2.059 2.168 2.307
10 9.999(-3) 9.914(-2) 8.720(-1) 2.259 2.503 2.198 2.428 2.605
15 6.666(-3) 6.627(-2) 6.043(-1) 2.216 2.918 2.191 2.874 3.364
20 5.000(-3) 4.977(-2) 4.622(-1) 1.931 2.989 1.920 2.966
30 3.333(-3) 3.323(-2) 3.157(-1) 1.409 2.548 1.405 2.541
40 2.500(-3) 2.494(-2) 2.398(-1) 1.093 2.054 1.091 2.050
50 2.000(-3) 1.996(-2) 1.934(-1) 8.959(-1) 1.698 8.941(-1) 1.696
100 1.000(-3) 9.990(-3) 9.832(-2) 4.725(-1) 9.167(-1) 4.721(-1) 9.159(-1)
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Table 4.2 Flow rate phase angle GP (δ, θ) (rad) in terms of gas rarefaction parameter δ
and oscillation parameter θ for H/W = 0.1.

δ GP (δ, θ) G
(S)
P (δ, θ)

θ = 0.1 θ = 1 θ = 10 θ = 50 θ = 100 θ = 50 θ = 100
0.0001 9.593(-3) 1.179(-3) 1.201(-4) 2.403(-5) 1.201(-5)
0.001 6.085(-2) 8.113(-3) 8.321(-4) 1.665(-4) 8.324(-5)
0.01 3.015(-1) 4.828(-2) 5.024(-3) 1.005(-3) 5.026(-4)
0.05 6.989(-1) 1.487(-1) 1.582(-2) 3.166(-3) 1.583(-3)
0.1 9.217(-1) 2.343(-1) 2.541(-2) 5.087(-3) 2.544(-3)
0.5 1.442 6.409(-1) 8.037(-2) 1.612(-2) 8.062(-3)
1 1.510 9.416(-1) 1.451(-1) 2.924(-2) 1.462(-2) 2.242(-2) 1.121(-2)
2 1.540 1.241 2.901(-1) 5.970(-2) 2.988(-2) 5.191(-2) 2.597(-2)
4 1.555 1.421 6.145(-1) 1.410(-1) 7.085(-2) 1.320(-1) 6.629(-2)
6 1.560 1.473 8.931(-1) 2.481(-1) 1.261(-1) 2.385(-1) 1.210(-1)
8 1.563 1.497 1.082 3.753(-1) 1.949(-1) 3.658(-1) 1.896(-1)
10 1.565 1.512 1.202 5.130(-1) 2.758(-1) 5.044(-1) 2.704(-1)
15 1.567 1.532 1.345 8.340(-1) 5.113(-1) 8.293(-1) 5.067(-1)
20 1.568 1.542 1.405 1.057 7.463(-1) 1.056 7.433(-1)
30 1.569 1.551 1.462 1.274 1.076 1.275 1.075
40 1.569 1.556 1.490 1.360 1.239 1.361 1.240
50 1.570 1.559 1.507 1.405 1.322 1.406 1.322
100 1.570 1.565 1.539 1.492 1.455 1.492 1.455
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Pulsatile pressure driven rarefied gas flow in rectangular ducts

Figure 4.1 Time evolution of oscillatory û (0, y, t) (left) and pulsatile ûP UL (0, y, t)
(right) velocity distributions in terms of distance y ∈ [−1/2, 1/2] at certain times
t ∈ [0, 2π] for H/W = 1, δ = [0.1, 1, 10] and θ = [0.1, 10].
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4.5 Concluding remarks

Figure 4.2 Contours of oscillatory velocity amplitude uA (x, y) for H/W = 1 (left) and
H/W = 0.1 (right), δ = [0.1, 1, 10] and θ = 0.1.
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Figure 4.3 Oscillatory velocity amplitude uA (x, 0) and phase angle uP (x, 0) in terms
of distance x ∈ [−1/2, 1/2] for H/W = 1, δ = [0.1, 1, 10] and θ = [10−2, 0.1, 1, 10].
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Figure 4.4 Oscillatory velocity amplitude uA (x, 0) and phase angle uP (x, 0) in terms
of distance x ∈ [−H/ (2W ) , H/ (2W )] for H/W = 0.1, δ = [0.1, 1, 10] and θ =
[10−2, 0.1, 1, 10].
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Pulsatile pressure driven rarefied gas flow in rectangular ducts

Figure 4.5 Oscillatory flow rate amplitude GA and phase angle GP in terms of gas
rarefaction parameter δ for θ = [1, 10, 102] and H/W = [1, 0.5, 0.1, 0].
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Figure 4.6 Oscillatory flow rate amplitude GA and phase angle GP in terms of the
gas rarefaction parameter δ for H/W = 1 (solid lines) and H/W = 0.1 (dashed lines),
θ = [10−1, 1, 10] and accommodation coefficient α = [1, 0.85, 0.7].
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Figure 4.7 Oscillatory flow rate Ĝ over one oscillation period for an orthogonal duct
with H/W = 1 (left) and H/W = 0.1 (right) for δ = [0.1, 1, 10] and θ = [0.1, 1, 10, 102].

80

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 08:10:15 EEST - 3.144.111.108
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Figure 4.8 Oscillatory mean wall shear stress amplitude τ̄W,A (δ, θ) and phase angle
τ̄W,P (δ, θ) in terms of the gas rarefaction parameter δ for θ = [1, 10, 102] and H/W =
[1, 0.5, 0.1, 0].
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Figure 4.9 Oscillatory mean wall shear stress ¯̂τW over one oscillation period for H/W = 1
(left) and H/W = 0.1 (right), δ = [0.1, 1, 10] and θ = [0.1, 1, 10, 102].
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Figure 4.10 Oscillatory inertia F̂I , viscous F̂V and pressure F̂P forces over one oscillation
period for δ = [0.1, 1, 10], θ = [0.1, 1, 10] and H/W = 1 (all forces are divided by Adz).
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Pulsatile pressure driven rarefied gas flow in rectangular ducts

Figure 4.11 Oscillatory pumping power Ê over one oscillation period for δ = [0.1, 1, 10],
θ = [0.1, 1, 10, 102] and H/W = 0.1 (pumping power is divided by Adz).
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Figure 4.12 Average pumping power Ē over one period of oscillation along with the
steady-state pumping power ĒS in terms of the rarefaction parameter δ for H/W = 1
(left) and H/W = 0.1 (right) with θ = [0.1, 1, 10, 102] (pumping powers are divided
byAdz).
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Chapter 5

Nonlinear oscillatory
fully-developed rarefied gas flow
between parallel plates

5.1 Introduction

The coupled flow and heat transfer phenomena in simple flow configurations is of
major importance in many applications. However, the linearized kinetic equations
cannot capture the heat transfer effects since the flow and heat transfer phenomena are
decoupled due to linear theory. Therefore, in this Chapter the assumption of the small
oscillatory pressure gradient is removed and the nonlinear time-dependent rarefied gas
flow due to an external oscillatory force with arbitrary magnitude is studied.

It is noted that steady-state force driven Poiseuille type flows have been investigated
[183–188] based on kinetic theory and modelling, clarifying certain phenomena and
paradox appearing near the continuum regime that cannot be described by the typical
hydrodynamic approach. Such phenomena include the non-constant pressure profile
across the channel, the bimodal shape of the temperature profile with a slight shallow
at the channel center and the presence of axial heat flow. The analysis has been based
on asymptotic methods [183, 185, 188], kinetic model equations [183, 186] and the
DSMC method [184, 185, 187] and is extended in a wide range of the Knudsen number
[183, 184, 186–188].

Considering all above and taking into consideration that in Chapters 3-4 (or in
[127, 128]), the results are formally limited to small amplitudes of the oscillating pressure
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Nonlinear oscillatory fully-developed rarefied gas flow between parallel plates

gradient, in the present Chapter, the nonlinear time-dependent fully-developed rarefied
gas flow between parallel plates, driven by an oscillating external force, is considered.
Modelling is based on the DSMC method [64], the BGK [33] and the Shakhov [36]
models focusing on the effect of the external force on the coupled flow and heat transfer
phenomena in a wide range of the gas rarefaction and oscillation frequency. The time
behavior of the macroscopic quantities, including the flow rate, the friction factor, the
heat flow vector and the pumping power in terms of the flow conditions is analyzed.
The accuracy of the results is benchmarked in various ways including the comparison
with the corresponding oscillatory linearized results as the amplitude of the external
oscillating force is reduced and steady-state results as the oscillation frequency tends
to zero.

In addition, the heat transfer part is very interesting in rarefied flow conditions
due to a promising application that is related to cooling of micro-electronic equipment.
There the flow is in the late transition and early slip regimes and the pulsatile mechanism
is applied to enhance advection. Therefore, a related flow configuration may be the
nonlinear oscillatory flow coupled to an applied heat transfer between parallel plates.
The plates are nonisothermal and a heat flow is beginning from the hotter plate
to the colder one. In parallel, the nonlinear oscillatory flow is maintained and the
oscillation frequency, the force magnitude and the temperature difference between the
plates may be arbitrary large. Thus, it is interesting to investigate whether a flow
oscillation enhances heat transfer. In this part of the Chapter, the normal and axial
heat flows are mostly discussed since they are the direct aim of this study. Some other
macroscopic quantities such as the mass flow rate, the velocity and the temperature
are also considered. It is reminded that this flow configuration has been extensively
studied in the hydrodynamic regime and several references have been mentioned in
Section 2.5.

The remaining of the Chapter is structured as follows: In Section 5.2, the flow
configuration is presented, all involved quantities are described in detail and the
dimensionless parameters defining the flow are prescribed. In Section 5.3, the details of
the DSMC modeling, including the implemented numerical parameters, are presented.
The deterministic formulation is included in Section 5.4. The numerical results and
the discussion are presented in Section 5.5, which is divided for clarity purposes into
five subsections. The first four subsections are devoted to the nonlinear oscillatory
force driven flow with isothermal plates while the last one is devoted to the nonlinear
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oscillatory force driven flow with nonisothermal plates. The concluding remarks are
outlined in Section 5.5.

5.2 Flow configuration

Consider the oscillatory nonlinear fully-developed flow of a monoatomic rarefied
gas, confined between two parallel infinite plates located at y′ = ±H/2, due to an
external harmonic force acting on the gas per unit mass in the x−direction parallel
to the plates. The plates are kept at constant temperatures T1 and T2. The external
force is defined as

F̃ ′ (ω, t′) = F ′ cos (ω t′) , (5.1)

where ω is the oscillation frequency, t′ is the time and F ′ is the force amplitude. The
convenient complex factor exp (−iωt′) [127, 128] cannot be employed since the force
amplitude F ′ may be arbitrarily large and in nonlinear oscillatory flows the real and
imaginary parts are not separable. The induced flow is in the x−direction and the gas
moves back and forth producing zero net flow over one cycle.

The flow is assumed to be fully-developed and the oscillatory macroscopic distribu-
tions of practical interest, characterizing the flow, include the x−component Ux′ (y′, t′)
of the velocity vector, the number density N (y′, t′), the temperature T (y′, t′), the
shear stress Πx′y′ (y′, t′) and the axial and normal heat flow components Qx′ (y′, t′)
and Qy′ (y′, t′) respectively, with −H/2 ≤ y′ ≤ H/2 and 0 ≤ t′ ≤ 2π/ω. The local
pressure between the plates is given by the equation of state P = NkBT , where kB is
the Boltzmann constant.

Furthermore, the overall quantities of main importance for technological purposes
are, the mass flow rate

M ′ (t′) = m
∫ H/2

−H/2
N (y′, t′) Ux′ (y′, t′) dy′, (5.2)

where m is the molecular mass, the space-average number density, velocity and axial
heat flow

N̄ (t′) = 1
H

∫ H/2

−H/2
Ndy′, Ūx′ (t′) = 1

H

∫ H/2

−H/2
Ux′dy′andQ̄x′ (t′) = 1

H

∫ H/2

−H/2
Qx′dy′ (5.3)

respectively (the space-average of the normal heat flow is zero) and the pumping power
defined as the product of the acting force times the mean velocity, written for the fluid
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element (H × dx′) as

E ′ (t) = (Hdx′)
(
mN̄F ′ cos (ωt′)

)
Ūx (t′) . (5.4)

It is also noted that the corresponding steady-state nonlinear Poiseuille-type flow has
been considered in [183–185, 189, 188].

The parameters defining the above dimensional flow setup include the external
force amplitude, the oscillation frequency and the distance between the plates, as well
as the operating pressure and temperature and the gas properties. They can be all
grouped into four dimensionless parameters, fully characterizing the flow:

1. The first one is the gas rarefaction parameter δ given by

δ = P0H

µ0υ0
, (5.5)

where P0 is a reference pressure, µ0 is the gas viscosity at reference wall tempera-
ture T2 and υ0 =

√
2RgT2 is the most probable molecular speed (Rg = kB/m is

the gas constant).

2. The second one is the frequency parameter θ given by

θ = P0

µ0ω
, (5.6)

where (P0/µ0) is the reference intermolecular collision frequency and ω, as speci-
fied above, is the oscillation frequency. As θ → ∞ (ω → 0), the steady-state flow
configuration is reached [183–185, 189, 188].

3. The third one is the force amplitude parameter

F = F ′H

υ2
0

(5.7)

and it is the inverse of the square of the Froude number (Fr). The effect of the
external force on the flow is increased with F and nonlinear effects are becoming
dominant. On the contrary, as F is decreased the corresponding linear oscillatory
flow, which is linearly proportional to the force magnitude, is gradually recovered.
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5.2 Flow configuration

4. The final one is the temperature ratio defined as

β = T1

T2
(5.8)

When the ratio is β = 1, the temperature at the plates is kept constant and equal
leading to the nonlinear oscillatory rarefied gas flow. If the ratio is β > 1, then
the coupled nonlinear oscillatory flow with heat transfer between parallel plates
is obtained.

At this point it is convenient to introduce the following dimensionless variables:

x = x′

H
, dx = dx′

H
, y = y′

H
, dy = dy′

H
, t = t′

(H/υ0)
(5.9)

n = N

N0
, ux = Ux′

υ0
, τ = T

T2
, pxy = Πx′y′

2P0
, p = P

2P0
, qx = Qx′

υ0P0
, qy = Qy′

υ0P0
(5.10)

The equation of state becomes p = nτ/2. Then, introducing the dimensionless parame-
ters (5.5)-(5.7) and variables (5.9) and (5.10) into Eqs. (5.1)-(5.4) the corresponding
quantities are readily deduced. The dimensionless external force acting on the gas per
unit mass becomes

F̃ (δ, θ, t) = F cos
(

δ

θ
t

)
. (5.11)

The dimensionless flow rate, space-average number density, velocity, axial and normal
heat flow and the pumping power are given by

M (t) = M ′

2P0 (H/υ0)
=
∫ 1/2

−1/2
n (t, y) u (t, y) dy, n̄ (t) =

∫ 1/2

−1/2
n (y, t) dy, (5.12)

ūx (t) =
∫ 1/2

−1/2
ux (y, t) dy, q̄x (t) =

∫ 1/2

−1/2
qx (y, t) dy, q̄y (t) =

∫ 1/2

−1/2
qy (y, t) dy

(5.13)
and

E (t) = E ′ (t′)
HP0υ0

= 2dxn̄ (t) ū (t) F cos
(

δ

θ
t

)
(5.14)

respectively. Although the cycle-average net flow is zero, the corresponding average
pumping power is not, in order to maintain the oscillatory flow. The cycle-average
pumping power over one oscillation is computed as

Ē = 1
2π

∫ 2π

0
E (t) dt = Fdx

π

∫ 2π

0
ū (t) cos

(
δ

θ
t

)
dt. (5.15)
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Nonlinear oscillatory fully-developed rarefied gas flow between parallel plates

Similarly, the cycle-average wall shear stress at the channel wall may be defined as

p̄W = 1
2π

∫ 2π

0

√
p2

W dt, (5.16)

where pW = pxy (1/2, t) denotes the dimensionless wall shear stress.
The balance of all forces per unit length acting on a fluid volume Hdx′ may be

written as F̃ ′
D (t′) = F̃ ′

I (t′) + F̃ ′
V (t′), where F̃ ′

D (t′), F̃ ′
I (t′) and F̃ ′

V (t′) are the
external, inertia (or acceleration) and viscous forces respectively, given by

F̃ ′
D (t′) = mN̄F ′ (ω, t′) Hdx′, (5.17)

F̃ ′
I (t′) = mN̄

∂Ū (t′)
∂t′ Hdx′ (5.18)

and
F̃ ′

V (t′) = 2Π ′
W (t′) dx′, (5.19)

with Π ′
W (t′) = Π ′

x′y′ (H/2, t′) denoting the dimensional wall shear stress. Then,
introducing the dimensionless variables the force balance equation reads as

∂ū (t)
∂t

+ 2pW (t)
n̄ (t) = F cos (δt/θ) . (5.20)

Equation (5.20) is applied to ensure the accuracy of the computational results for all
values of δ, θ and F .

The solution of the problem described above is obtained in a stochastic manner by
numerically solving the DSMC method and in a deterministic manner by the nonlinear
BGK and Shakhov model equations presented in Sections 5.3 and 5.4, respectively.

5.3 Stochastic DSMC formulation

The typical DSMC approach, with the No Time Counter (NTC) scheme proposed
by Bird [64], is implemented. The time evolution of the particle system within a small
time interval ∆t′ is split into two consecutive steps: free motion of all particles and
binary collisions of particles. The molecular velocity vector ξ = (ξx, ξy, ξz) and the
time step ∆t′are non-dimensionalized as ζ = (ζx, ζy, ζz) = ξ/υ0 and ∆t = ∆t′/ (H/υ0)
respectively. Purely diffuse boundary conditions are considered at the walls (y = ±1/2),
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5.3 Stochastic DSMC formulation

while periodic boundary conditions are applied in the x− and z−directions. Hard
sphere (HS) molecules are assumed.

The external force is introduced by accordingly altering the particle velocities at
each time step, during the free motion of the DSMC algorithm. The particle velocities
in the x−direction are altered according to

ζ̂x = ζx + F cos
(

δ

θ
t

)
∆t (5.21)

where ζx and ζ̂x denote the x−component of the molecular velocity of some particle
before and after the external acceleration is applied and ∆t is the dimensionless time
step size.

The maximum number of collisions in each cell is given by

Ncol =
N (N − 1) FNσT g′

r,max∆t′

2V ′
C

(5.22)

where N is the number of model particles in the cell, VC
′ is the volume of the cell, FN

is the number of real particles per model particle, σT is the total collision cross section
and g′

r,max is the maximum relative velocity. The number of collisions is also written in
terms of dimensionless quantities as

Ncol = N (N − 1) gr,maxδ∆t√
2πVCNP

(5.23)

where NP is the total number of model particles, VC = V ′
C/H3 is the dimensionless cell

volume and gr,max = g′
r,max/υ0 is the dimensionless relative velocity.

The distance between the parallel plates is divided into NC = 200 uniform cells
with 2 collision subcells in each cell and the average number of particles per cell is 100
resulting in a total of NP = 2 × 104 particles. The time step is chosen such that it is
about 1/3 of the cell transversal time H/ (NCυ0) and also less than 10−3 times the
period of oscillation. The macroscopic quantities are sampled for specific time steps
and ensemble averaged over a large number of process trajectories. The number of
trajectories ranges from 103 to 5 × 105, depending on the case. This gives a sample
size ranging from 105 to over 107 for each cell, which is sufficiently large to reduce the
statistical scatter of the macroscopic quantities. It is noted that, as δ/θ is decreased
the oscillation period is increased and therefore the required computational load for a
single trajectory is also increased. On the other hand, as δ/θ is increased the required
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Nonlinear oscillatory fully-developed rarefied gas flow between parallel plates

computational effort is decreased. Thus, the largest number of trajectories (5 × 105) is
seen for θ = 0.1 and δ = 50. At the other limit for θ = 102 and δ = 0.1, although the
number of trajectories is much smaller (about 103), the statistical scatter is also small.

The macroscopic quantities are volume based calculated and are given by the
following expressions:

n = N (tk)
(NP /NC) (5.24)

ua = 1
N (tk)

N(tk)∑
i=1

ζα,i (tk) , α = x, y, z (5.25)

τ = 2
3N (tk)

N(tk)∑
i=1

(
ζ2

x,i (tk) + ζ2
y,i (tk) + ζ2

z,i (tk)
)

− 2
3
(
u2

x + u2
y + u2

z

)
(5.26)

pαβ = n

N (tk)

N(tk)∑
i=1

(ζα,i (tk) ζβ,i (tk)) − nuαuβ, α, β = x, y, z (5.27)

p = ητ/2 (5.28)

qa = n

N (tk)

N(tk)∑
i=1

[
ζα,i (tk)

(
ζ2

x,i (tk) + ζ2
y,i (tk) + ζ2

z,i (tk)
)]

− 3
2nτua − 2 (uxpαx + uypαy + uzpaz) − n

(
u2

x + u2
y + u2

z

)
ua, α = x, y, z (5.29)

In Eqs. (5.24)-(5.29), tk denotes the different time step in which the sampling is
performed and N (tk) is the number of particles in the cell at time tk. It is noted that
the averaging is performed across all ensemble average trajectories.

5.4 Deterministic formulation

In deterministic kinetic modeling the main unknown is the distribution function
f (t′, y′, ξ), which for this flow configuration is a function of time t′, space variable y′

and molecular velocity vector ξ = (ξx, ξy, ξz). The flow is simulated by two different
kinetic models, the BGK model [33] and the Shakhov model [190]. The unknown
distribution obeys the time-dependent nonlinear one-dimensional BGK equation

∂f

∂t′ + ξy
∂f

∂y′ + F̃ ′ ∂f

∂ξx

= P

µ

(
fM − f

)
(5.30)
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5.4 Deterministic formulation

where µ = µ (T ) is the viscosity at temperature T . The local Maxwellian distribution,
denoted as fM , is defined as

fM = N

(2πRgT0)3/2 exp
(

− m

2kBT0

(
(ξx − Ux)2 + ξ2

y + ξ2
z

))
. (5.31)

Similar to the BGK model, the distribution f obeys the time-dependent nonlinear
one-dimensional Shakhov equation

∂f

∂t′ + ξy
∂f

∂y′ + F̃ ′ ∂f

∂ξx

= P

µ

(
fS − f

)
(5.32)

where

fS = fM

[
1 + 2m

15N (kBT )2 (Qx (ξx − Ux) + Qyξy)
(

m

2kBT

[
(ξx − Ux)2 + ξ2

y + ξ2
z

]
− 5

2

)]
.

(5.33)
The dimensionless distribution function g = f u3

0/N0 and molecular velocity, along with
the rarefaction parameter defined by Eq. (5.5), the dimensionless quantities defined by
Eqs. (5.9)-(5.10) and the expression for the viscosity given by the inverse power law
(IPL) molecular interaction, are introduced into Eqs. (5.30), (5.31), (5.32) and (5.33)
to yield the corresponding equations in dimensionless form:

∂g

∂t
+ ζy

∂g

∂y
+ F cos

(
δ

θ
t

)
∂g

∂ζx

= δρτ 1−ωP

(
gM − g

)
, (5.34)

gM = ρ

(πτ)3/2 exp
−

(ζx − ux)2 + ζ2
y + ζ2

z

τ

 , (5.35)

∂g

∂t
+ ζy

∂g

∂y
+ F cos

(
δ

θ
t

)
∂g

∂ζx

= δρτ 1−ωP

(
gS − g

)
, (5.36)

gS = gM

1 + 2
15ρτ 2 (qx (ζx − ux) + qyζy)

(ζx − ux)2 + ζ2
y + ζ2

z

τ
− 5

2

 . (5.37)

Instead of non dimensionalizing time t with H/υ0, the non dimensional time t may be
defined as t = t′ω. Therefore, an alternate form of the Eq. (5.34) is given by

δ

θ

∂g

∂t
+ ζy

∂g

∂y
+ F cos (t) ∂g

∂ζx

= δρτ 1−ωP

(
gM − g

)
. (5.38)
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Nonlinear oscillatory fully-developed rarefied gas flow between parallel plates

The S model kinetic equation is similar to (5.38). The advantage of the non dimension-
alization of time with frequency is that the oscillation period is the same for different
oscillation parameters. Hence, the comparison between results with different values of
θ is straightforward.

Furthermore, the ζx and the ζz components of the molecular velocity can be
eliminated by introducing the following reduced distribution functions

Y (t, y, ζy) =
∫ +∞

−∞

∫ +∞

−∞
g (t, y, ζx, ζy, ζz) dζxdζydζz, (5.39)

Φ (t, y, ζy) =
∫ +∞

−∞

∫ +∞

−∞
ζxg (t, y, ζx, ζy, ζz) dζxdζydζz, (5.40)

Λ (t, y, ζy) =
∫ +∞

−∞

∫ +∞

−∞
ζ2

z g (t, y, ζx, ζy, ζz) dζxdζydζz, (5.41)

Ψ (t, y, ζy) =
∫ +∞

−∞

∫ +∞

−∞
ζ2

xg (t, y, ζx, ζy, ζz) dζxdζydζz, (5.42)

Ω (t, y, cy) =
∫ +∞

−∞

∫ +∞

−∞
ζx

[
ζ2

x + ζ2
z

]
g (t, y, ζx, ζy, ζz) dζxdζydζz. (5.43)

By operating accordingly on Eqs. (5.34) and (5.35) the following coupled integrodiffer-
ential equations are obtained for the BGK model

∂Y

∂t
+ ζy

∂Y

∂y
= δρτ 1−ωP

(
Y M − Y

)
(5.44)

∂Φ

∂t
+ ζy

∂Φ

∂y
− F cos

(
δ

θ
t

)
Y = δρτ 1−ωP

(
ΦM − Φ

)
(5.45)

∂Λ

∂t
+ ζy

∂Λ

∂y
= δ0ρτ 1−ωP

(
ΛM − Λ

)
(5.46)

∂Ψ

∂t
+ ζy

∂Ψ

∂y
− 2F cos

(
δ

θ
t

)
Φ = δρτ 1−ωP

(
ΨM − Ψ

)
(5.47)

∂Ω

∂t
+ ζy

∂Ω

∂y
− F cos

(
δ

θ
t

)
(3Ψ + Λ) = δρτ 1−ωP

(
ΩM − Ω

)
(5.48)

where
Y M = ρ√

πτ
exp

(
−

c2
y

τ

)
, (5.49)

ΦM = Y Mux, (5.50)

ΛM = Y M τ

2 (5.51)

96

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 08:10:15 EEST - 3.144.111.108



5.4 Deterministic formulation

ΨM = Y M [2u2
x + τ ]
2 , (5.52)

ΩM = ΦM
[
u2

x + 2τ
]

. (5.53)

It is noted that the corresponding differential force terms have been transformed into
non-differential source terms by utilizing integration by parts [186]. The projection
procedure is the same for the S model and the governing equations are identical to the
ones of the BGK model except for the equilibrium distribution functions which are
given by

Y S = Y M

1 +
2ζyqy

(
2ζ2

y − 3τ
)

15ρτ 3

 , (5.54)

ΦS = ΦM

(
1 +

4ζ3
y qyux + 2ζyτ (ζyqy − 3uxqy) − τ 2qx

15ρuxτ 3

)
, (5.55)

ΛS = ΛM

(
1 +

4ζ3
y qy − 2ζyqyτ

15ρτ 3

)
, (5.56)

ΨS = ΨM

(
1 +

8ζ2
y qxuxτ − 4qxuxτ 2 + 4ζ3

y qy (u2
x + τ) − 2ζyτqy (3u2

x + τ)
15ρτ 3 (u2

x + τ)

)
, (5.57)

ΩS = ΩM(1 +
qxτ 2 (−3u2

x + 2τ) + 4ζ3
y qyux (u2

x + 2τ)
15ρτ 3ux (u2

x + 2τ) −

(
2ζ2

y qxτ − 2uxζyτqy

)
(3u2

x + 2τ)
15ρτ 3ux (u2

x + 2τ) ).

(5.58)
The macroscopic quantities in Eqs. (5.49)-(5.58) are readily deduced by applying

the same non-dimensionalization and projection procedures. They are written in terms
of the associated distribution functions:

Number density: n (t, y) =
∫ ∞

−∞
Y dζy (5.59)

Velocity: ux (t, y) = 1
ρ

∫ ∞

−∞
Φdζy (5.60)

Temperature: τ (t, y) = 2
3ρ

∫ ∞

−∞

[(
ζ2

y + u2
x

)
Y − 2uxΦ + Λ + Ψ

]
dζy (5.61)

Heat flow: qx (t, y) =
∫ ∞

−∞

(
Ω − 2uxΨ + 3u2

xΦ − u2
xY + ζ2

y Φ − uxζ2
y Y − ux (Λ + Ψ)

)
dζy

(5.62)
qy (t, y) =

∫ ∞

−∞

(
c3

yY + cy (Λ + Ψ) − 2uxcyΦ
)

dcy (5.63)

Shear stress: pxy (t, y) =
∫ ∞

−∞
ζyΦdζy (5.64)
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Nonlinear oscillatory fully-developed rarefied gas flow between parallel plates

At the boundaries, the reduced distribution functions representing outgoing particles
are denoted by

[
Y +, Φ+, Λ+, Ψ+, Ω+

]
. They are equal to the Maxwellian distributions

which are defined by the wall conditions. Based on the above and following the
projection procedure, the boundary conditions are formed

Y
(

∓1
2 , ζy

)
= n∓√

πβ∓
exp

(
−ζ2

y

β∓

)
, (5.65)

Φ
(

∓1
2 , ζy

)
= 0, (5.66)

Λ
(

∓1
2 , c

)
= n∓

2

√
β∓

π
exp

(
−ζ2

y

β∓

)
, (5.67)

Ψ
(

∓1
2 , ζy

)
= n∓

2

√
β∓

π
exp

(
−ζ2

y

β∓

)
, (5.68)

Ω
(

∓1
2 , c

)
= 0, (5.69)

where the parameter β∓ receives the values

β∓ =

 β, ζy > 0
1, ζy < 0

 (5.70)

and n∓ are parameters which they are given in terms of the ingoing distributions
satisfying the impermeability wall conditions in Eqs. (5.71)-(5.72)

n− = −2
√

π

β

∫ 0

−∞
ζyY

(
−1

2 , ζy

)
dζy, ζy > 0 (5.71)

n+ = 2
√

π
∫ +∞

0
ζyY

(1
2 , ζy

)
dζy, ζy < 0 (5.72)

It is noted that as β = 1 the boundary conditions correspond to the nonlinear flow
with isothermal plates.

The kinetic formulation of the nonlinear oscillatory fully-developed flow setup
is defined by Eqs. (5.44)-(5.53) (or Eqs. (5.54)-(5.58) for the S model) with the
associated moments (5.59)–(5.64) subject to boundary conditions (5.65)-(5.69). The
numerical solution is obtained by discretizing the molecular velocity, physical and
temporal spaces. The discretization in the molecular velocity space is performed using
the discrete velocity method and in the physical space it is based on a second order
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5.5 Results and discussion

central difference scheme. The velocity continuum spectrum ζ ∈ [0, ∞) is substituted
by a discrete set ζm,m = 1, 2...M , which is taken to be the roots of the Legendre
polynomial of order M , accordingly mapped from [−1, 1] to [0, ∞). Concerning the
temporal discretization, a semi-implicit scheme is used as in [175] and at each time
step the governing equations are solved to find the unknown distribution functions.
Then, the macroscopic quantities are estimated from Eqs. (5.59)-(5.64) based on a
Gauss–Legendre quadrature. The numerical parameters, i.e., the time and space steps
as well as the number of the discrete molecular velocities, have been gradually refined
to ensure grid independent results up to at least two significant figures. The results
presented in the Section 5.5 have been obtained with 1001 nodes in the physical space,
M = 80 and time step ∆t = 10−4.

5.5 Results and discussion

Numerical results of the main macroscopic quantities are provided in terms of
the force amplitude F = [0.05, 0.1, 0.5], corresponding to small, moderate and large
force amplitudes and in a wide range of the gas rarefaction and oscillation parameters
δ = [0.1, 1, 10, 20, 50] and θ = [0.1, 1, 10, 20, 102] respectively as well as the temperature
ratio β = [1.22, 3, 19] for the oscillatory flow with the nonisothermal walls. Most
of the results are computed with the DSMC method and results obtained with the
deterministic models are reported when they are used. The presented results have
reached the “periodic steady-state”, implying that as time is further increased, the
solution remains the same between cycles. The time t of an oscillation period is always
multiplied with δ/θ in order to compare the results for different values of δ and θ on
the same basis. All results are in dimensionless form.

Five subsections are provided describing the effect of F , δ and θ and β on all
macroscopic quantities of theoretical and technological interest. The results in Sections
5.5.1-5.5.4 are based on the oscillatory flow with isothermal walls. In Section 5.5.1
the flow rate behavior, including a comparison with corresponding oscillatory linear
and steady-state nonlinear results, is presented. Section 5.5.2 deals with the behavior
of the space-dependent and the space-average macroscopic quantities (axial velocity,
temperature, pressure and wall shear stress) between the plates. The behavior of
the axial and normal heat flow distributions between the plates, as well as of the
space-average axial heat flow are discussed in Section 5.5.3. Section 5.5.4 describes
the oscillatory and cycle-average pumping powers. Finally, in Section 5.5.5 the space-
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Nonlinear oscillatory fully-developed rarefied gas flow between parallel plates

average normal and axial heat flow as well as the mass flow rate and the distributions
of axial velocity and temperature based on the oscillatory flow with nonisothermal
walls are presented.

5.5.1 Flow rates

In Figure 5.1 the flow rate M (t), given by Eq. (5.12), is plotted over one cycle
for δ = [0.1, 1, 10], θ = [0.1, 1, 10, 20, 102] and F = [0.05, 0, 5]. It is observed that for
all values of δ, θ and more important for both values of F , corresponding to weak
and strong driving external forces, the flow rate always has sinusoidal pattern with
its fundamental frequency being the same with the driving frequency of the external
harmonic force without the appearance of other harmonics. There is a phase angle
lag between the flow rate and the external force, which has been also observed in
[127, 128] and it is clearly contributed to the variation of δ and θ. It is noted that
the external force varies as a cosine function. Roughly speaking the flow rate and the
external force are almost in phase when δ is much smaller than θ and out of phase
when δ is about the same or larger than θ. This behavior however, remains identical
for both values of F and therefore the external force has no effect on the phase angle
lag. Furthermore, it is seen that the amplitude of the flow rate is significantly reduced
when the oscillation parameter is decreased (i.e., when the oscillation frequency ω is
increased) due to inertia effects and this becomes more evident as the gas rarefaction
parameter is increased and the flow becomes more viscous. Again, this description
remains the same for both values of F and therefore, it may be stated that the external
force magnitude does not have an effect on the qualitative behavior of the flow rate in
terms of δ and θ. Of course, as F is increased the flow rate amplitude is also increased.
The ratio of the strong over the weak implemented force amplitudes is equal to ten. It
may be observed however, that the corresponding ratio of the flow rate amplitudes in
some cases (e.g. when δ < θ) is not necessarily the same. This is due to the presence
of nonlinear effects and it is more clearly demonstrated in the following discussion
concerning Table 5.1, where tabulated results of the flow rate amplitudes are presented.

In Table 5.1, the flow rate amplitude MA is tabulated for δ = [0.1, 1, 10, 20, 50],
θ = [0.1, 1, 10, 20, 102] and F = [0.05, 0.1, 0.5]. More specifically, in order to directly
compare with the corresponding linear results and since the linear solution is directly
proportional to F , the present DSMC flow rate amplitudes are divided by the external
force F and are provided as MA/F in the 3rd, 4th and 5th column of Table 5.1. The
linear flow rate amplitudes GA (δ, θ) obtained in [128] (see Fig. 5 in [128]) by solving
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the linearized BGK model equation are also provided in the 6th column of Table 5.1. In
the last three columns of Table 5.1 the relative difference on a percentage basis between
linear and DSMC flow rate amplitudes, defined as |MA/F − GA| /GA, are tabulated.
It is seen that for F = 0.05 and F = 0.1 the deviation between the corresponding
DSMC and linear solutions is less than 3% for δ ≥ 1 and for all values of θ, while for
δ = 0.1 and θ = 10, 20, 102 the deviation is increased up to about 10%. It is evident
that nonlinear effects are becoming more pronounced in highly rarefied atmospheres
(small δ) and low frequencies (large θ). For F = 0.5 all deviations between DSMC and
linear results are further increased due to nonlinear effects. Again however, the largest
deviations reaching up to about 25% are occurring at δ = 0.1 and θ = 10, 20, 102

(δ << θ). Furthermore, for F = 0.5 it is seen that the deviations remain small in the
transition regime (δ = 1) and then, as δ is further increased the deviations are also
increased at low frequencies reaching up to about 10%, 13% and 16% at δ = 10, 20
and 50 respectively when θ = 102. It must be noted that the qualitative behavior of
the nonlinear flow rate amplitude in terms of δ and θ remains the same as of the linear
results. More specifically with regard to δ for θ = [0.1, 1] the amplitude is decreased
monotonically as δ is increased, while for θ = [10, 20, 102] it is initially decreased, then
it is increased up to some local maximum and finally, it is again decreased. With
regard to θ it is monotonically increased with θ (or as the oscillation frequency ω is
decreased).

Overall it may be stated that the presence of strong external harmonic forces
does not significantly affect the mass flow rate of the oscillatory flow, i.e., there is
no distortion of the amplitude-frequency response curve. In a very wide range of
gas rarefaction and oscillation frequencies, at small and moderate external forces the
agreement between DSMC and linear flow rates is very good and always remains less
than 10%, while at large external forces the deviation in the flow rate amplitude reaches
about 25% indicating that nonlinear effects are becoming more significant. In addition,
the accuracy of the DSMC solution in the linear limit is benchmarked.

In Figure 5.2, a comparison between the DSMC flow rate M (t) with the corre-
sponding flow rates obtained with the BGK and the Shakhov kinetic models, presented
in Section 5.4, is performed for F = [0.05, 0.5]. It is readily seen that the agreement
between the kinetic models and the DSMC method is always very good except for
δ = 0.1, θ = 10 or in highly rarefied atmospheres and low frequencies. The small
discrepancies are gradually decreased as the rarefaction parameter is increased and/or
as the oscillation parameter is decreased. This behavior is seen for both values of the
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force amplitude F . The comparison demonstrates the accuracy of both the stochastic
and the deterministic results for various rarefaction and oscillation parameters covering
a wide range of the flow regimes.

In Table 5.2, a comparison between the present DSMC normalized flow rate
amplitude MA/F with the corresponding normalized slip flow rate amplitude M

(S)
A /F ,

presented in Appendix A.2, as well as with the steady-state flow rate M (st)/F based
on a steady-state DSMC code is performed for F = 0.5. The slip solution is valid
for large values of both δ and θ, while the steady-state solution holds for θ → ∞
(ω = 0) and for all δ. Therefore, the comparison with the slip solution is performed
for θ = [10, 20, 102] and δ = [5, 10, 20, 50] and with the steady solution for the same θ

and in a much wider range of δ. It is seen that for all three values of θ the agreement
between the corresponding DSMC MA/F and slip M

(S)
A /F flow rate amplitudes is

very good, up to at least 2-3 significant figures, for δ = [50, 20] and it drops to 1-2
significant figures, for δ = 10, while there are significant discrepancies for δ = 5, which
are further increased for smaller δ and θ. Furthermore, there is very good agreement
between the DSMC flow rate amplitudes MA/F for θ = 102 and the corresponding
steady-state flow rates M (st)/F in the whole range of the gas rarefaction parameter δ.
It is also seen that the deviations increase with δ, which is also expected, since steady
conditions are recovered provided that the oscillation parameter is large (which it is,
since θ = 102) and also δ << θ (which is the case only when δ < 10). Also, as expected
the deviations are increased as θ is decreased. The results in Table 5.2 indicate the
range of applicability of the slip solution, as well as the validity of the DSMC solution
in the range of parameters where the slip solution is valid and in the limit of very small
oscillation frequencies.

Since all the aforementioned results are based on HS molecules, it is interesting
to note the differences between the intermolecular collision models. Thus, in Table
5.3, the flow rate amplitude MA/F divided by the external force F is tabulated for
δ = [0.1, 1, 10], θ = [0.1, 1, 10, 102] and F = [0.05, 0.5]. The results are based on the
nonlinear BGK model and three intermolecular collision models (HS, IPL, Maxwell)
are presented. It is well known that the effect of the collision model is not significant
in nonlinear pressure driven flows [191] and this is also seen here for highly rarefied
atmospheres and low frequencies or when δ < θ is valid. These small discrepancies are
only present for F = 0.5, while for F = 0.05 the mass flow rate amplitude is the same
for values of δ and θ. It is also clear that as θ is decreased the differences between
the intermolecular collision models are reduced and they are diminished for δ ≥ θ.
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Therefore, in high and very high oscillation frequencies the intermolecular potential
doesn’t affect the mass flow rate even for large force amplitudes.

5.5.2 Velocity, temperature, pressure and wall shear stress
distributions

The time evolution of the axial velocity ux (y, t), the normalized pressure distribution
p (y, t) /p (0, t) and the temperature τ (y, t) are considered, in terms of the distance
y ∈ [−1/2, 1/2] between the parallel plates at certain time steps t = [0, π/2, π, 3π/2]
over one cycle t ∈ [0, 2π] for F = 0.5. The objective is to investigate, in parallel, the
oscillatory behavior of the macroscopic distributions between the plates in dense and
rarefied atmospheres. The presented results are for selected pairs of (δ, θ), which are
considered from the physical point of view as the most representative and interesting.

The velocity distributions ux (y, t), shown in Figure 5.3 for δ = 0.1, with θ =
[0.1, 1, 10] and δ = 10, with θ = [10, 20, 102] are qualitatively very similar to the corre-
sponding ones obtained solving the linear oscillatory flow in [128], while quantitatively
there are deviations, which are analogous to the deviations discussed in the flow rates
in Section 3.5. Over one cycle the velocity distributions, as expected, take both positive
and negative values and the cycle-average velocity is zero. As θ is decreased (higher
frequency) the velocity amplitude is reduced and this behavior becomes stronger as
δ is increased (less rarefied). Actually, in the cases of θ < δ the velocity amplitude
is almost diminished, even for F = 0.5. Also, as θ is decreased the phase angle lag
between the velocity and the external force is increased and therefore, they are almost
in phase when δ < θ and out of phase for δ ≥ θ (the phase angle lag is about π/2).
In all cases presented in Figure 5.3, except for (δ, θ) = (10, 10), the velocity profiles
have the typical shape with their amplitudes appearing a maximum at the channel
center and reducing monotonically toward the walls. For (δ, θ) = (10, 10) however, at
t = [0, π] the velocity profiles have two maximum amplitudes appearing between the
channel center and the walls. This phenomenon, called “Richardson effect” or “velocity
overshooting”, is well known in oscillatory internal flows in the continuum regime [72]
and has been recently analyzed in the transition regime [127, 128]. In general, as δ is
increased and θ is decreased the velocity amplitude remains constant from the center
of the channel until close to the walls and the velocity overshooting occurs in a thin
viscous layer adjacent to the wall. This description is not discussed here, in detail,
since it has been shown before and only a typical case is shown in Figure 5.4. Thus, the
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Richardson effect is also present in nonlinear oscillatory flow and of course the bimodal
velocity profile encountered at high frequencies and adequately dense atmospheres is
not physically related by any means with the bimodal temperature profiles encountered
in steady-state nonlinear force driven Poiseuille type flows [183–185, 189, 188].

In Figure 5.5, the temperature distributions τ (y, t) are plotted in terms of y at
t = [0, π/2, π, 3π/2] for the same flow parameters F , δ and θ with the ones in Figure 5.3
for the velocity distributions plus the intermediate case of δ = 1, with θ = [1, 10, 102].
The temperature has been non-dimensionalized with the wall temperature (Eq. (5.10))
and over one cycle it takes positive values above one (no cooling is observed). Similarly
to the velocity, as θ is decreased the temperature amplitude is reduced and the
phase angle lag with respect to the external force is increased. It is seen that the
plotted temperature profiles coincide at t = [0, π], as well as at t = [π/2, 3π/2], which
is justified since the temperature and velocity distributions are in phase with the
former ones taking only positive values. Comparing the temperature profiles between
δ = 0.1, δ = 1 and δ = 10 it seen that they are qualitatively different. For δ = 0.1
the temperature always has its minimum value at the channel center and then, is
monotonically increased toward the walls. At the other end, for δ = 10 the temperature
profile possesses the bimodal shape observed in steady-state flow setups. At certain
times, the temperature has a shallow at the channel center, then moving toward the
walls it is symmetrically increased, with respect to y, up to some maximum and finally,
it is decreased again. At other times however, the temperature has its maximum at
y = 0 and it is monotonically decreased toward the walls. In the intermediate value of
δ = 1 the temperature profiles combine the characteristics of the temperature profiles
from both cases of δ = 0.1 and δ = 10. Overall, as θ is decreased, although the
temperature amplitude attenuates, on a relative basis the temperature well at y = 0 is
about the same, while the maximum values are pushed closer to the walls. This bimodal
behavior is due to the non-equilibrium effects predicted in [183–185, 188]. However, the
oscillatory DSMC results may be affected, at some extend, by the oscillatory velocity
overshooting. At this stage the contribution of the Richardson effect in the bimodal
temperature numerics remains subtle and indistinguishable due to statistical noise
fluctuations, which do not allow a detailed investigation for flow setups for θ < δ, where
the velocity overshooting becomes more dominant. Conclusively, it may be stated
that the temperature profiles may be at δ = 10 (dense atmospheres) either convex or
convex/concave and at δ = 0.1 (rarefied atmospheres) only concave. This transition,
as seen in Figure 5.5 (δ = 1 ), occurs gradually as the gas rarefaction is decreased.
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A complete view of the temperature oscillation over one cycle, is shown in Figure
5.6 where the time evolution of the temperature at the channel center, denoted by
τ (0, t), over one cycle is plotted for δ = [0.1, 1, 10], θ = [0.1, 1, 10, 20, 102] and F = 0.5.
It is seen that the temperature has two maxima (and two minima) per cycle. As it
has been noted before, clearly the amplitude of the oscillation is reduced with θ and
for δ = 1 and θ = 0.1, as well as for δ = 10 and θ = [0.1, 1] it almost diminishes. This
is expected since the velocity amplitude at these values of δ and θ is also diminished,
the heat dissipation is significantly reduced and the gas temperature remains almost
isothermal. Also, for δ < θ the temperature profiles are in phase with the external force,
while for δ ≥ θ they are out of phase, with the maximum phase angle lag occurring at
the highest frequency (θ = 0.1). Although the presented results are only for F = 0.5 it
is noted that as F is decreased, the temperature variation is gradually reduced and
linear isothermal oscillatory flow is recovered.

In Figure 5.7, the time evolution of the normalized pressure distribution p (y, t) /p (0, t)
is plotted in terms of y at t = [0, π/2, π, 3π/2] for the same flow parameters F , δ and
θ with the ones in Figure 5.3 for the velocity distributions. The pressure p (0, t) refers
to the pressure at the center of the channel (y = 0) and the ratio p (y, t) /p (0, t), over
one cycle is positive with values larger than or equal to one. It is clearly seen that the
pressure distribution between the plates is not constant, which has been also observed
in the corresponding steady-state. The deviation of the normalized pressure from one,
appears in all examined values of δ, θ and its behavior has a very close qualitative
resemblance with the corresponding deviation of temperature.

In Figure 5.8, the instantaneous wall shear stress pW = pxy (1/2) is plotted over
one cycle for δ = [0.1, 1, 10], θ = [0.1, 1, 10, 20, 102] and F = [0.05, 0.5]. For all values
of δ, θ and for both values of F the wall shear stress behaves as a sinusoidal function
having the same frequency with the one of the external force. Also, the wall shear
stress is in phase with the flow rate plotted in Fig. 5.1 and therefore, as it was
observed for the flow rate, the shear stress phase angle lag remains the same for both
force amplitudes. Furthermore, the amplitude of the wall shear stress oscillation is
monotonically decreased with θ and this becomes more evident as δ is increased. As
F is increased the amplitude of the wall shear stress is increased in a similar manner
with the flow rate amplitude. Overall, it is clear that the wall shear stress qualitatively
closely resembles the behavior of the flow rate in terms of all flow parameters.

An overall quantity of practical interest in oscillatory flows is the cycle-average wall
shear stress p̄W [8], given by Eq. (5.16). In Figure 5.9, the normalized cycle-average wall
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shear stress p̄W /2F is provided in terms of δ for θ = [0.1, 1, 10, 20, 102] and F = 0.5.
As δ is increased, in general, the cycle-average wall shear stress is decreased. For
θ = [0.1, 1], p̄W is reduced rapidly in the transition regime and then very slowly in the
slip regime, while for θ = [10, 20, 102] this behavior is reversed, i.e., it is reduced very
slowly in the transition regime and then rapidly in the slip regime. In all cases p̄W is
increased with θ. The present description is representative for all force amplitudes.

Closing this section it is noted that the accuracy of the computed macroscopic
variables has been successfully tested based on the balance equation (5.20). More
specifically, for all values of F , δ and θ considered here, the corresponding computed
space-average velocity, density and wall shear stress satisfy Eq. (5.20) over a time cycle
with great accuracy.

5.5.3 Axial and normal heat flow distributions

The behavior of the axial qx (y, t) and normal qy (y, t) components of the heat
flow vector, parallel and vertical to the plates respectively, as well as of the space-
average axial flow q̄x (t) are discussed in terms of the flow parameters δ, θ and F . The
space-average normal flow is zero.

The space-average axial flow q̄x (t), given by Eq. (5.13), is plotted over one cycle
in Figure 5.10 for δ = [0.1, 1, 10] and θ = [0.1, 1, 10, 20, 102] with F = [0.05, 0, 5]. It is
readily seen that there are significant qualitative differences between the corresponding
cycle-average heat flow for F = 0.05 and F = 0.5. For the small external force
amplitude F = 0.05, q̄x (t) for all values of δ and θ has a sinusoidal behavior over
time. It is also observed that with respect to the corresponding flow rates, presented
in Figure 5.1, it has a phase angle lag of about π/2 and therefore, as expected from
the corresponding steady-state results [183–185, 188], the space-average axial flow is in
most cases opposite to the flow rate. For the large external force amplitude F = 0.5,
q̄x (t) shows over one cycle various patterns. Observing carefully the results, it is seen
that for δ = 0.1 with θ = 0.1, δ = 1 with θ = [0.1, 1] and for δ = 10 and θ = [0.1, 1, 10],
i.e. in all cases where δ ≥ θ, q̄x (t) exhibits a sinusoidal pattern having with respect to
the corresponding flow rates about the same phase angle lag of π/2. On the contrary, in
all cases where δ < θ, q̄x (t) exhibits a rather complex non-sinusoidal pattern indicating
that the introduced nonlinearities are responsible for the generation of oscillatory
motion containing several harmonics. In addition, the phase angle lag between the
corresponding cycle-average axial flow and flow rate is not π/2 and depending on
the specific parameters it varies from zero to π/2. These results are in agreement
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with the discussion in Table 5.1, where the DSMC results for F = [0.05, 0.1, 0.5] have
been compared with corresponding linear results to find out that nonlinear effects
are becoming more significant in highly rarefied flow (small δ) and low oscillation
frequencies (large θ). Thus, at F = 0.5 the space-average axial flow for δ ≥ θ should be
in most cases opposite to the flow rate, while for δ < θ, depending on the phase angle
lag, it may flow either in the same or the opposite direction. Furthermore, it is noted
that when the external force amplitude is increased from F = 0.05 to F = 0.5, i.e., ten
times, the amplitude of q̄x (t) is increased for all δ and θ about five times. Also, for
both values of F , the amplitude of q̄x (t), as with all other macroscopic quantities, is
reduced with θ and almost diminishes at very high frequencies as the gas becomes less
rarefied and this is the reason that in Fig. 5.10, the plots for δ = 10 and θ = [0.1, 1]
are omitted as indistinguishable.

The behavior of the nonlinear q̄x (t) patterns for δ = [1, 10] and θ = [10, 20, 102] is
further investigated with the assistance of Fourier transform analysis to find out that
the space-average axial heat flow may be well-fitted by a sinusoidal function as

q̄x (t) = q̄
(1)
x,A cos

(
t − q̄

(1)
x,P

)
+ q̄

(3)
x,A cos

(
t − q̄

(3)
x,P

)
, (5.73)

where q̄
(1)
x,A, q̄

(1)
x,P and q̄

(3)
x,A, q̄

(3)
x,P are the amplitude and the phase of the 1st and 3rd

harmonics. The amplitude of the 2nd, as well as of higher than the 3rd order harmonics
is at least one order of magnitude smaller than the 1st and 3rd order harmonics and
are not included in Eq. (5.73). Tabulated results of the amplitudes and phases of
Eq. (5.73) are presented in Table 5.4. It is seen that space-average axial heat flow for
δ = θ evolves with a single oscillation frequency, which is the same with the one of the
external harmonic force, while for δ < θ a third harmonic emerges with an amplitude,
which may be of the same or even larger order of the first one. This distortion of the
sinusoidal pattern is clearly contributed to nonlinear interaction and has been already
pointed out in [161, 163].

In Figure 5.11, the axial qx (y, t) and normal qy (y, t) heat flow distributions are
plotted in terms of y at certain times t = [0, π/2, π, 3π/2] over a cycle for F = 0.5 and
the following selected pairs of (δ, θ) = [(0.1, 1) , (1, 10) , (10, 102)]. The specific values
of the gas rarefaction and oscillations parameters fulfill the condition δ < θ and are the
ones where nonlinear effects are mostly pronounced (see discussions for Table 5.1 and
Figure 5.10). The corresponding steady-state heat flow is also included for comparison
purposes. Starting with the axial heat flow distributions qx (y, t) it is seen that the
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profiles for specific times may take both positive and negative values (e.g. δ = 1, θ = 10,
t = 0 or t = π). This is expected and also happens at the corresponding steady-state
profiles. It is found however, that this specific behavior is present only when F = 0.5
and δ < θ, while in all other cases examined here, the qx (y, t) profiles along y will be
either only larger or only smaller than zero. Therefore, the complex behavior of the
space-average heat flow q̄x (t) observed at F = 0.5 and δ < θ may be due to the fact
that qx (y, t) at fixed times t ∈ [0, 2π] may be both positive and negative.

Continuing with the normal heat flow distributions qy (y, t), it is seen that the
profiles over one cycle are oscillating about a mean value curve. In most cases they are
taking negative and positive values at the lower (−0.5 ≤ y < 0) and upper (0 < y ≤ 0.5)
half of the channel, which is justified by the fact that heat flows from the gas towards
the channel walls. For some values of δ and θ however, e.g. for θ = 1 and δ = 0.1,
at certain times over a cycle, the normal heat flow distributions in the lower and
upper half may not follow this behavior and take far from the boundaries positive and
negative values respectively. Of course, the profiles are always antisymmetric about
y = 0, where qy (0, t) = 0, resulting to q̄y (t) = 0.

5.5.4 Pumping power

The pumping power E (t) and the cycle-average pumping power Ē are discussed
in terms of the flow parameters δ, θ and F . Even though the net flow is zero, the
cycle average pumping power is not, in order to maintain the oscillatory flow and it is
important to compute it mainly for technological purposes.

In Figure 5.12, the pumping power E (t), given by Eq. (5.14), is plotted over one
cycle for δ = [0.1, 1, 10], θ = [0.1, 1, 10, 20, 102] and F = [0.05, 0, 5]. The pumping
power is proportional to the product of the external force F ′ (t) times the space-average
axial velocity ūx (t). The behavior of ūx (t) is similar to the flow rate M (t) since in
most cases the mean number density is close to one (n̄ (t) ∼ 1). Thus, since E (t) is
proportional to cos2 (t) it has two maxima (and two minima) within each cycle, as seen
in Figure 5.12. By increasing the external force amplitude by one order of magnitude
the pumping power amplitude is increased approximately by two orders. However the
qualitative behavior of E (t) remains the same for both values of F , as it should, since
it is related with macroscopic quantities which are not affected qualitatively by the
amplitude of the external force. As the oscillation frequency is increased its amplitude
is decreased and its phase angle lag is increased. The negative values of E (t), shown in
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Figure 5.11 at some times t ∈ [0, 2π], are due to the large phase angle lag between the
mean velocity and the external force and this issue has already been analyzed in [128].

The cycle-average pumping power Ē/dx, given by Eq. (5.15), is provided in Figure
5.13 in terms of δ for θ = [0.1, 1, 10, 20, 102] with F = [0.05, 0.5]. The steady-state
pumping power E(st)/dx is also plotted for comparison purposes. Roughly speaking,
Ē is increased proportionally to the square of F . Qualitatively there is very good
agreement between linear and nonlinear pumping powers. The average pumping power
remains about constant for δ < θ and it is decreased for δ ≥ θ, except for θ = 102

where a local maximum is observed at some δ ∼ 25, which is due to the corresponding
behavior of the flow rate amplitude MA shown in Table 5.1. Comparing the oscillatory
and steady-state results it is seen that the former one is about one-half of the latter
one when δ < θ. However, the detailed nonlinear results indicate that the nonlinear
normalized average pumping power solution Ē/F is smaller than the corresponding
linear one, following the same trend of the flow rates.

5.5.5 Flow with nonisothermal walls

At first, the reported results include the mass flow rate and the distributions of
the axial bulk velocity and the temperature. They are presented mainly in terms
of the temperature ratio and the differences between the flows with isothermal and
nonisothermal walls are pointed out. Next, the space-average as well as the distributions
of the axial and normal heat flow are studied in terms of the temperature ratio, the
force magnitude, the rarefaction and oscillation parameters.

In Figure 5.14, the flow rate M (t) is plotted over one cycle for δ = [0.1, 1, 10], θ = 1
F = 0.5 and β = [1.22, 3, 19]. The flow rate with the isothermal plates (β = 1) is also
included for comparison purposes. The results are based on the Shakhov model even
though similar remarks can be derived with the DSMC method and the BGK model.
The behavior of M (t) has been thoroughly analyzed in Section 5.5.1 and therefore
here the comments are given in terms of the temperature ratio. It is observed that
the temperature ratio does not have an effect on the qualitative behavior of the flow
rate in terms of δ and θ. However, as β is increased the flow rate is reduced for small
rarefaction parameters. The interesting part here is that for larger values of δ the
effect of the temperature ratio is reduced leading to the conclusion that the flow rate
is affected by β only for high gas rarefaction and for δ ≫ θ.

In Figure 5.15, the axial velocity distributions ux (y, t) are presented for δ = 10,
θ = 1 and F = 0.5 with β = [1.22, 3, 19]. They are plotted in terms of y at certain
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times t = [0, π/2, π, 3π/2]. It has been seen that as δ > θ the velocity amplitude
remains constant from the center of the channel until close to the walls and the velocity
overshooting occurs in a thin viscous layer adjacent to the wall. This annular effect
isn’t affected for small temperature ratios. However, as β is increased this behavior is
distorted near the hotter plate and the overshoot is vanished at the t = [π/2, 3π/2].
The magnitude of the velocity isn’t altered since the rarefaction parameter is larger
than the oscillation parameter leading to high frequency oscillations where the effect
of the temperature ratio on the flow properties is weak.

Moreover, the temperature distributions τ (y, t) are presented in terms of y at
certain times t = [0, π/2, π, 3π/2] and for θ = 1, F = 0.5, β = [1.22, 3, 19] with δ = 0.1
(left) and δ = 10 (right). At first, it is seen that as the temperature ratio is increased
the temperature is also increased for both rarefaction parameters. In terms of δ however
the magnitude of the temperature depends also on the temperature ratio. For small
values of β, the temperature is decreased as the rarefaction parameter is increased.
This behavior has already been seen in Section 5.5.2 where as δ > θ and for β = 1 the
high frequency oscillations reduce the magnitude of the temperature. It is interesting to
note that for δ = 0.1 the temperature profile may be concave at certain times while for
δ = 10 the profile is almost linear. As β is increased, the temperature profile becomes
linear for both values of the rarefaction parameter. In addition, the temperature
coincides at t = [0, π/2, π, 3π/2] which states that the temperature isn’t affected by the
high frequency oscillation in all temperature ratios. On the other hand, for δ = 0.1 the
plotted temperature profiles coincide at t = [0, π], as well as at t = [π/2, 3π/2] which
shows that the temperature retains its oscillatory motion even though the temperature
ratio is increased. Therefore, in low oscillation frequencies, the temperature has a
sinusoidal behavior due to the force however as the frequency is increased it is advanced
without any periodicity.

Next, in Figs. 5.17-5.19 the space average heat flow q̄y (t) is presented over time t

for β = [1.22, 3, 19], δ = [0.1, 1, 10] and θ = [0.1, 1, 10] with F = 0.05 (left) and F = 0.5
(right). The space average heat flow coupled to a steady state force is also included.
The presented results have been computed with the BGK kinetic model. At first, it is
seen that as β is increased the temperature ratio is increased and therefore q̄y is also
increased. Also, it is increased more gradually for larger temperature ratios than for
smaller ones. While the heat flow coupled to a steady state force is constant for all
involving parameters, the heat flow coupled to an oscillatory force is affected by the
oscillation and begins oscillating even though the temperature ratio is constant. It
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5.5 Results and discussion

is interesting to note that q̄y may be oscillating however its maximum never exceeds
the heat flow coupled to steady state force. In all cases, the oscillation parameter
doesn’t increase the magnitude of the heat flow which is always equal or lesser than
the steady-state case. Thus, the main outcome from Figs. 5.17-5.19 is that as the
oscillation frequency of the force is increased the normal heat flow isn’t enhanced for
any rarefaction and oscillation parameter.

However, it is also clear that the time evolution of q̄y is altered according to the
oscillation and rarefaction parameters. More specifically, in Fig. 5.17, the heat flow is
oscillating for all values of θ. The amplitude and the phase lag of the heat flow q̄y is
decreased and increased respectively as the oscillation parameter is decreased. Hence,
the oscillation of the force creates a forced oscillation in the heat flow q̄y. This behavior
is also seen as the rarefaction parameter is increased in Figure 5.18 except for θ = 0.1
where the heat flow is increased without periodicity. It seems that as δ > θ, the high
frequency oscillations stall the evolution of the normal heat flow and consequently it
needs more time to reach its maximum value. The largest time is always seen for the
largest temperature ratios. Despite the high oscillation frequency, the normal heat
flow advances in time without oscillating. Besides, there remarks are also confirmed in
Fig. 5.19 where the normal heat flow shows small periodicity only for θ = 10. In Fig.
5.19, the normal heat flow q̄y hasn’t converged into its final value for θ = 0.1 and even
though it is not seen here, it will reach a maximum value (close to the value of the
heat flow coupled to steady state force) at t = 300.

Finally, the dependency on the force amplitude is analyzed. The behavior of the
q̄y is qualitatively the same for both values of the force amplitude F . However, as δ

is increased the effect of the oscillating force is decreased for small force magnitudes
(F = 0.05). This behavior is confirmed with the small deviations of q̄y and the lack
of periodicity for δ = 1 and small values of θ. It seems that as F is increased the
forced oscillation of q̄y becomes more significant only for small rarefaction parameters
(e.g. δ = [0.1, 1]). It is noted that the commented behavior is also encountered in the
Shakhov and DSMC results.

In Table 5.5, the space average heat flow q̄y is presented at the final time instant
t = 10 · 2π and for β = [1.22, 3, 19], δ = [0.1, 1, 10] and θ = 1 with F = [0.05, 0.5].
The results are based on the DSMC method as well as the kinetic models, BGK and
Shakhov. Since the behavior of the q̄y (t) has already been described, here a comparison
between the DSMC heat flow with the corresponding heat flows obtained with the BGK
and the Shakhov kinetic models is performed. At first, the BGK model is compared
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Nonlinear oscillatory fully-developed rarefied gas flow between parallel plates

with the DSMC method. It is seen that the agreement between the two of them is
good for small rarefaction parameters (e.g., δ = [0.1, 1]) and for all temperature ratios.
However, as δ is increased the BGK model fails to capture the DSMC solution and the
deviations are also increased. Even though the relative errors are not shown here, the
largest deviation between the DSMC method and the BGK model is 30% for δ = 10
and β = 3. Of course, the BGK model isn’t suitable for nonisothermal flows and
therefore the Shakhov model is investigated next. The deviations between the Shakhov
model and the DSMC method remain small for all values of the rarefaction parameter
as well as the temperature ratios. It is interesting to note that the largest deviation
is seen for δ = 0.1 and β = 1.22 however for larger temperature ratios the relative
error between the Shakhov model and the DSMC method is reduced. It is also noted
that the force amplitude has a very weak effect on all the comparisons. Overall, the
Shakhov model is considered as a more reliable model for nonisothermal flows than
the BGK model since it recovers the correct Prandtl number. The following results are
based on the Shakhov model.

The space-average axial heat flow q̄x (t) is plotted over one cycle in Figure 5.20, for
δ = [0.1, 1, 10], θ = 1 and β = [1, 1.22, 3, 19] with F = 0.5. It is readily seen that the
heat flow exhibits the same behavior for all the small temperature ratios. For δ = 0.1,
as β is increased the behavior of the axial heat flow q̄x (t) changes completely. Not
only it is opposite to the other cases but it also is out of phase with them. In addition,
the magnitude of q̄x (t) is decreased even though the normal heat flow is increased.
However, as δ is increased, the aforementioned behavior is reversed. The magnitude of
q̄x (t)is increased and all the heat flows seem to be in phase with each other. Thus, the
behavior of q̄x (t) depends heavily on δ and θ and depending on the temperature ratio
it may change completely. It has already been seen in Section 5.5.3 that when δ ≥ θ

the sinusoidal behavior is always established and this is also valid here for all values of
the temperature ratio.

In Figure 5.21, the normal qy (y, t) heat flow distribution is plotted in terms of y at
certain times t = [0, π/2, π, 3π/2] over a cycle for F = 0.5, θ = 1 and β = [1.22, 3, 19]
with δ = 0.1 (left) and δ = 10 (right). It is seen that the profiles over one cycle are
oscillating about a mean value curve for small values of δ and β. As the temperature
ratio β is increased the profiles at the time steps t = [0, π] are getting larger than the
corresponding ones at t = [π/2, 3π/2]. Also, the certain profiles cease to be symmetric
about a mean value. Next, as δ is increased the behavior of qy (y, t) is completely
altered. The propagation of heat flow is the same at all time steps. As the temperature
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ratio is increased the profile of the heat flow becomes nonlinear and its magnitude is
increased. The commented behavior is in accordance with the remarks related to Figs.
5.17-5.19.

Continuing with the axial heat flow distributions qx (y, t), they are presented in
Figure 5.22. They are plotted in terms of y at certain times t = [0, π/2, π, 3π/2] over
a cycle for F = 0.5, θ = 1 and β = [1.22, 3, 19] with δ = 10. Here, the rarefaction
parameter is larger than the oscillation one leading to high oscillation frequencies.
It is clear that the axial heat flow is larger near the walls than in the center of the
flow field. This behavior has already been seen in Section 5.5.2 where the velocity
shows overshootings near the walls. It seems that the axial heat flow has similar
overshootings which are present at all time steps. Also, the profiles are symmetrical
for the small temperature ratio. As β is increased the heat flow is increased and it
becomes larger near the upper half of the channel. The heat flow overshootings are
still seen in certain time steps even though the symmetry of the profiles is lost due to
the larger temperature ratios.

5.6 Concluding remarks

The oscillatory nonlinear fully-developed flow of a monoatomic gas between parallel
plates due to an external harmonic force acting on the gas per unit mass is numerically
investigated in a wide range of the gas rarefaction parameter δ (inversely proportional to
the Knudsen number) and of the oscillation parameter θ (inversely proportional to the
oscillation frequency) for force amplitudes F = [0.05, 0.1, 0.5] (inversely proportional
to the square of the Froude number) corresponding to small, moderate and large
amplitudes. An extra parameter is the temperature ratio β between the two plates and
it is used for investigating the coupled flow and heat transfer phenomena. Modelling
and simulations are based on the DSMC method, the BGK and the Shakhov kinetic
models. The results are in dimensionless form and include the macroscopic distributions
of axial velocity, temperature, pressure, wall shear stress and heat flow vector, as well
as space- and/or cycle-averaged macroscopic variables to deduce overall quantities such
as the flow rate, the average wall shear stress, the average axial heat flow and pumping
power. The first part of the concluding remarks is related to the oscillatory flow with
isothermal plates and the second one with nonisothermal plates.

The DSMC results have been systematically compared with corresponding linear
BGK results. Of course, the comparison has been limited to the axial velocity and
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the flow rate since linear theory cannot capture coupled momentum and heat transfer
effects. At small and moderate external forces, the agreement between DSMC and
linear flow rates is very good and always remains less than 10%, while at large external
forces the deviation in the flow rate amplitude reaches about 25%. Nonlinear effects
are becoming more significant in highly rarefied flow and low oscillation frequencies,
i.e., when δ < θ. For all values of F , δ and θ however, the flow rate has a sinusoidal
pattern with its fundamental frequency being the same with the driving frequency
of the external harmonic force without the appearance of other harmonics. Thus,
the behavior of the present DSMC flow rates have a close qualitative resemblance
with the corresponding linear ones in terms of δ and θ. It may also be stated that
the applicability range of linear theory is well beyond its mathematical restriction of
infinitesimal small force amplitudes.

Concerning the temperature and pressure profiles across the channel it has been
seen that they strongly depend on δ and θ. The bimodal shape of the temperature
profile and the not constant pressure profile, appearing in steady-state setups have been
also observed here. The temperature profiles at certain times over a cycle are at small
δ only concave having a minimum at the channel center and monotonically increasing
toward the walls, while as δ is increased the profiles become either convex/concave
or only convex. The deviation of the pressure from the reference one appears in all
values of examined values of δ, θ and has a very close qualitative resemblance with the
corresponding temperature deviation. Both quantities as well as the wall shear stress
behave as sinusoidal functions having the same frequency with the one of the external
force and they are about in phase with the flow rate. In all cases as the oscillation
frequency is increased (θ is decreased) the amplitude of the oscillation is decreased and
the phase angle lag with the external force is increased.

The axial heat flow is the macroscopic quantity which is most affected by the
external force F . For F = 0.05 and all values of δ, θ, as well as for F = 0.5 and δ ≥ θ

it has a sinusoidal pattern, while for F = 0.5 and δ < θ it exhibits a rather complex
non-sinusoidal pattern indicating that the introduced nonlinearities are responsible
for the generation of oscillatory motion containing several harmonics. This has been
confirmed by a Fourier transform analysis showing that a third harmonic emerges with
the same or even larger amplitude from the first one. Therefore, the space-average
axial heat flow, depending on the phase angle lag with the flow rate, may be in the
opposite or the same direction with the flow rate. The normal heat flow is affected by
the external force in a manner similar to the other macroscopic distributions (except

114

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 08:10:15 EEST - 3.144.111.108
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the axial heat flow) and exhibits a sinusoidal behavior. The normal heat flow profiles
oscillate about a nonzero mean curve taking negative and positive values at the lower
and upper half of the channel and this remains valid for all flow parameters.

The cycle-averaged oscillatory pumping power is not zero, although there is no
net flow, in order to maintain the oscillatory flow. Approximately, it is increased
proportionally to the square of F . The detailed results indicate that the nonlinear
average pumping power is smaller than the corresponding linear one, following the
same trend of the flow rates. In general, there is very good qualitative agreement
between the corresponding linear and nonlinear pumping powers.

Next, remarks based on the oscillatory nonlinear flow with nonisothermal plates are
given. It has been seen that in the hydrodynamic regime the heat transfer enhancement
due to oscillatory motion has been a controversial issue. Here, it seen that the axial
oscillatory motion doesn’t enhance the normal heat flow which arises due to the different
plate temperatures. In fact, it is either equal or lesser than the corresponding normal
heat flow of the steady-state force driven flow with nonisothermal plates. It is also
seen that in low force frequencies (or when δ ≪ θ) the normal heat flow is affected by
the oscillation and it shows a sinusoidal behavior even though its driving force isn’t
an harmonic excitation. In high frequencies (or when δ ≫ θ), this periodic behaviour
is diminished and the normal heat flow advances very slowly in time since the high
frequency flow stalls its evolution. It is also noted that the magnitude of the force
has a weak effect on the normal heat flow. Furthermore, the axial heat flow depends
heavily on the rarefaction and oscillation parameters as well as the temperature ratio.
For small rarefaction parameters δ, it is decreased as β is increased while for larger
values of δ, it is increased.

It also interesting to note that the effect of the temperature ratio on the mass flow
rate is significant only for small rarefaction and larger oscillation parameters. It has
been seen that the velocity overshooting is affected by the large temperature ratios
and the profile of the velocity changes near the hotter plate. Also, the temperature
depends heavily on the rarefaction parameter and the temperature ratio. As the ratio
is increased it is always increased and its behavior is altered in terms of δ, for small
values it coincides at certain times while for large ones it coincides at all times.

Overall, it seems that in low oscillation frequencies the normal heat flow and the
temperature present periodic behavior due to the driving oscillatory force while in high
frequencies they propagate in time without periodicity.
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Table 5.1 Normalized flow rate amplitude MA/F for F = [0.05, 0.1, 0.5] and various
values of δ and θ along with the relative difference with the linear results [128].

δ θ MA/F LinearGA Relative difference
F = 0.05 F = 0.1 F = 0.5 F = 0.05 F = 0.1 F = 0.5

0.1 0.1 7.69(-1) 7.69(-1) 7.69(-1) 7.68(-1) 0.16 0.16 0.16
1 1.78 1.77 1.57 1.82 2.07 2.76 13.9
10 1.91 1.85 1.53 2.03 5.91 8.87 24.6
20 1.91 1.85 1.53 2.03 5.96 8.95 24.7
100 1.89 1.83 1.52 2.03 7.06 9.83 25.4

1 0.1 1.00(-1) 9.99(-2) 9.99(-2) 1.00(-1) 0.09 0.05 0.02
1 8.30(-1) 8.30(-1) 8.29(-1) 8.29(-1) 0.09 0.10 0.10
10 1.49 1.48 1.36 1.52 2.13 2.50 10.5
20 1.50 1.49 1.36 1.53 2.21 2.65 11.3
100 1.50 1.49 1.36 1.54 2.31 2.85 11.7

10 0.1 1.00(-2) 1.00(-2) 1.00(-2) 1.00(-2) 0.02 0.03 0.03
1 9.92(-2) 9.92(-2) 9.92(-2) 9.93(-2) 0.46 0.42 0.38
10 8.89(-1) 8.90(-1) 8.88(-1) 8.89(-1) 1.76 1.98 7.41
20 1.54 1.54 1.53 1.55 1.95 2.31 9.87
100 2.62 2.60 2.22 2.65 1.82 2.50 10.9

20 0.1 4.98(-3) 5.01(-3) 5.00(-3) 5.00(-3) 0.04 0.09 0.02
1 4.99(-2) 4.98(-2) 4.98(-2) 4.98(-2) 0.01 0.01 0.01
10 4.66(-1) 4.66(-1) 4.65(-1) 4.66(-1) 0.63 0.63 1.90
20 8.90(-1) 8.90(-1) 8.89(-1) 8.91(-1) 1.29 1.50 6.70
100 3.11 3.10 2.85 3.13 1.92 2.45 13.1

50 0.1 2.01(-3) 2.00(-3) 2.00(-3) 2.00(-3) 0.05 0.03 0.01
1 1.99(-2) 2.00(-2) 2.00(-2) 2.00(-2) 0.03 0.03 0.03
10 1.94(-1) 1.94(-1) 1.94(-1) 1.94(-1) 0.05 0.08 0.13
20 3.79(-1) 3.79(-1) 3.79(-1) 3.79(-1) 0.18 0.23 1.17
100 1.72 1.72 1.71 1.73 1.41 2.05 16.4
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Table 5.2 Normalized nonlinear and slip flow rate amplitudes MA and M
(S)
A for F = 0.5

and various values of δ and θ along with the corresponding steady solution M (st).

δ MA M
(S)
A M (st)

θ = 10 θ = 20 θ = 100 θ = 10 θ = 20 θ = 100 θ → ∞
0.1 1.53 1.53 1.52 1.53
1 1.36 1.36 1.36 1.36
2 1.41 1.42 1.42 1.42
5 1.37 1.66 1.72 0.662 0.828 0.915 1.72
10 0.888 1.53 2.22 0.874 1.516 2.561 2.23
20 0.466 0.889 2.85 0.461 0.883 3.093 3.06
50 0.194 0.379 1.71 0.193 0.378 1.721

Table 5.3 Normalized flow rate amplitude MA/F for different intermolecular potentials
(HS, IPL, Maxwell), F = [0.05, 0.5] and various values of δ and θ obtained with the
BGK model.

δ θ Hard sphere
(ωP = 1/2)

IPL (ωP = 0.7) Maxwell
(ωP = 1)

F = 0.05 F = 0.5 F = 0.05 F = 0.5 F = 0.05 F = 0.5
0.1 0.1 7.68(-1) 7.68(-1) 7.68(-1) 7.68(-1) 7.68(-1) 7.67(-1)

1 1.82 1.69 1.82 1.71 1.82 1.73
10 2.02 1.70 2.02 1.73 2.02 1.79
100 2.02 1.70 2.02 1.73 2.03 1.79

1 0.1 1.00(-1) 1.00(-1) 1.00(-1) 1.00(-1) 1.00(-1) 1.00(-1)
1 8.28(-1) 8.27(-1) 8.28(-1) 8.26(-1) 8.28(-1) 8.26(-1)
10 1.52 1.40 1.52 1.40 1.52 1.40
100 1.54 1.40 1.54 1.40 1.54 1.40

10 0.1 1.00(-2) 1.00(-2) 1.00(-2) 1.00(-2) 1.00(-2) 1.00(-2)
1 9.96(-2) 9.96(-2) 9.96(-2) 9.96(-2) 9.96(-2) 9.96(-2)
10 8.81(-1) 8.78(-1) 8.81(-1) 8.78(-1) 8.81(-1) 8.79(-1)
100 2.62 2.19 2.62 2.13 2.62 2.05
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Table 5.4 Amplitudes and phases of the space-average axial heat flow q̄x (t) correspond-
ing to Eq. (5.73) for specific values of δ and θ, with F = 0.5.

δ θ q̄
(1)
x,A q̄

(3)
x,A q̄

(1)
x,P q̄

(3)
x,P

1 1 7.39(-2) 2.63(-3) 1.67 -0.140
10 5.16(-2) 3.82(-2) -3.09 -0.875
20 4.84(-2) 3.83(-2) -3.10 -0.419
100 4.72(-2) 3.82(-2) -3.13 -0.0683

10 10 1.31(-2) 3.79(-4) 1.88 -0.643
20 1.73(-2) 3.01(-3) 2.39 1.28
100 8.44(-3) 1.42(-2) -1.03 -1.08

Table 5.5 Space average heat flow q̄y (t = 10 · 2π) for θ = 1, F = [0.05, 0.5] and
δ = [0.1, 1, 10] obtained with the DSMC method as well as the BGK and Shakhov
models.

q̄y (t = 62.8) DSMC BGK Shakhov
β δ F = 0.05 F = 0.5 F = 0.05 F = 0.5 F = 0.05 F = 0.5

1.22 0.1 1.091(-1) 1.186(-1) 1.233(-1) 1.327(-1) 1.248(-1) 1.343(-1)
1 8.239(-2) 8.294(-2) 8.446(-2) 8.499(-2) 9.186(-2) 9.220(-2)
10 2.780(-2) 2.777(-2) 2.306(-2) 2.307(-2) 2.944(-2) 2.944(-2)

3 0.1 1.328 1.388 1.348 1.397 1.367 1.416
1 1.019 1.025 9.430(-1) 9.474(-1) 1.028 1.032
10 3.607(-1) 3.603(-1) 2.722(-1) 2.722(-1) 3.482(-1) 3.483(-1)

19 0.1 1.586(+1) 1.607(+1) 1.621(+1) 1.634(+1) 1.662(+1) 1.674(+1)
1 1.330(+1) 1.333(+1) 1.307(+1) 1.309(+1) 1.450(+1) 1.451(+1)
10 6.296 6.297 4.969 4.970 6.367 6.367
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Figure 5.1 Flow rate M (t) over one oscillation cycle t ∈ [0, 2π] for various values of δ
and θ with F = 0.05 (left) and F = 0.5 (right).
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Nonlinear oscillatory fully-developed rarefied gas flow between parallel plates

Figure 5.2 Flow rate M (t) obtained with the DSMC method, the BGK and the Shakhov
kinetic models over one oscillation cycle t ∈ [0, 2π] for various values of δ and θ with
F = 0.05 (left) and F = 0.5 (right).
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Figure 5.3 Time evolution of velocity ux (y, t) at certain time steps t ∈ [0, 2π] for
various values of θ, F = 0.5 and δ = 0.1 (left) and δ = 10 (right).
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Figure 5.4 Time evolution of velocity ux (y, t) at certain time steps t ∈ [0, 2π]for δ = 10,
θ = 1 and F = 0.5.
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Figure 5.5 Time evolution of temperature τ (y, t) at certain time steps t ∈ [0, 2π]for
various values of θ, F = 0.5 and δ = 0.1 (left), δ = 1 (middle) and δ = 10 (right).
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Figure 5.6 Temperature τ (0, t) over one oscillation cycle t ∈ [0, 2π] for δ = [0.1, 1, 10],
θ = [0.1, 1, 10, 20, 102] and F = 0.5.
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5.6 Concluding remarks

Figure 5.7 Time evolution of normalized pressure p (y, t) /p (0, t) at certain time steps
t ∈ [0, 2π] for various values of θ, F = 0.5 and δ = 0.1 (left) and δ = 10 (right).
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Figure 5.8 Wall shear stress pW (t) over one oscillation cycle t ∈ [0, 2π] for various
values of δ and θ with F = 0.05 (left) and F = 0.5 (right).
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Figure 5.9 Normalized cycle-average wall shear stress p̄W / (2F ) in terms of δ for various
values θ and F = 0.5.
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Figure 5.10 Space-average axial heat flow q̄x (t) over one oscillation cycle t ∈ [0, 2π] for
various values of δ and θ with F = 0.05 (left) and F = 0.5 (right).
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Figure 5.11 Time evolution of axial qx (y, t) (left) and normal qy (y, t) (right) heat
flow at certain time steps t ∈ [0, 2π] for F = 0.5 and various values of θ and δ; the
corresponding steady-state axial and normal heat flows are also included.
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Figure 5.12 Pumping power E (t) over one oscillation cycle t ∈ [0, 2π] for various values
of δ and θ with F = 0.05 (left) and F = 0.5 (right).
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Figure 5.13 Cycle-average pumping power Ē in terms of δ for F = [0.05, 0.5] and
θ = [0.1, 1, 10, 20, 102].
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Figure 5.14 Flow rate M (t) (S-model) over one oscillation cycle t ∈ [0, 2π] for F = 0.5,
θ = 1 and β = [1.22, 3, 19] with δ = [0.1, 1, 10].
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5.6 Concluding remarks

Figure 5.15 Time evolution of velocity ux (y, t) (S-model) at certain time steps t ∈ [0, 2π]
for F = 0.5, θ = 1 and β = [1.22, 3, 19] with δ = 10.
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Figure 5.16 Time evolution of temperature τ (y, t) (S-model) at certain time steps
t ∈ [0, 2π] for F = 0.5, θ = 1 and β = [1.22, 3, 19] with δ = 0.1 (left) and δ = 10
(right).
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Figure 5.17 Space average heat flow q̄y (t) over time t for β = [1.22, 3, 19], δ = 0.1 and
θ = [0.1, 1, 10] with F = 0.05 (left) and F = 0.5 (right).
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Nonlinear oscillatory fully-developed rarefied gas flow between parallel plates

Figure 5.18 Space average heat flow q̄y (t) over time t for β = [1.22, 3, 19], δ = 1 and
θ = [0.1, 1, 10] with F = 0.05 (left) and F = 0.5 (right).
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5.6 Concluding remarks

Figure 5.19 Space average heat flow q̄y (t) over time t for β = [1.22, 3, 19], δ = 10 and
θ = [0.1, 1, 10] with F = 0.05 (left) and F = 0.5 (right).
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Nonlinear oscillatory fully-developed rarefied gas flow between parallel plates

Figure 5.20 Space average heat flow q̄x (t) (S-model) over time t for β = [1.22, 3, 19],
θ = 1 and δ = [0.1, 1, 10] and F = 0.5.
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5.6 Concluding remarks

Figure 5.21 Time evolution of normal heat flow qy (y, t) (S-model) at certain time steps
t ∈ [0, 2π] for F = 0.5, θ = 1 and β = [1.22, 3, 19] with δ = 0.1 (left) and δ = 10
(right).
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Nonlinear oscillatory fully-developed rarefied gas flow between parallel plates

Figure 5.22 Time evolution of axial heat flow qx (y, t) (S-model) at certain time steps
t ∈ [0, 2π] for F = 0.5, θ = 1 and β = [1.22, 3, 19] with δ = 10.
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Chapter 6

Oscillatory pressure and molar
fraction driven rarefied binary gas
mixture flow between parallel
plates

6.1 Introduction

In several flow configurations it is possible that a gas mixture is found instead of a
single gas. Even though modelling of monoatomic gases is always needed, it is also
beneficial to investigate gas mixtures. A suitable kinetic model for this type of flows is
the well-known McCormack collision model. It is noted that the McCormack model is
used only in the linearized framework where the speed of the flow is small compared to
the characteristic molecular velocity. Moreover, rarefied oscillatory gas mixture flows
encountered in enclosures, driven by moving boundaries oscillating parallel or vertical
to the main flow have already been reported in Section 2.6. On the other hand, the
oscillatory pressure-and molar fraction driven binary gas mixture flows haven’t been
investigated.

In this context, the Chapter is devoted to the kinetic solution of the rarefied os-
cillatory binary gas mixture flow between parallel plates due to harmonically either
oscillating pressure gradient or molar fraction gradient, imposed parallel to the plates.
Modeling is based on the time-dependent linearized McCormack kinetic model equa-
tion subject to diffuse boundary conditions via the discrete velocity method. The
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between parallel plates

investigation is focused on the effect of the molecular mass ratio of the components
of the mixture and of its molar fraction on the oscillatory behavior of the velocity
distribution, the kinetic coefficients, the wall shear stress and the pumping power of the
species (only for the pressure-driven flow) and of the mixture, in a wide range of the gas
rarefaction and the oscillation frequency. Specific attention is also given to the effect of
the oscillation frequency on gas separation, which, as it is well-known, is contributed
to the different molecular velocities of the light and heavy species of the mixture
[192–194]. Due to its technological interest, gas separation has attracted considerable
attention in previous investigations concerning steady-state binary gas mixture flow
through long and short capillaries [195, 48, 49, 196–198], time-dependent binary gas
mixture expansion through short tubes into vacuum [199, 200] and in microchannels
with oscillating barriers [201] and moving walls [202] in the free molecular regime.

The Chapter is structured as follows: In Section 6.2, the flow configuration is
described and all input and output quantities, including the dimensionless parameters
characterizing the flow, are prescribed. In Section 6.3, the kinetic formulation and the
implemented numerical scheme are presented. The numerical results are presented and
discussed in Section 6.4, which is divided for clarity purposes into four subsections.
The concluding remarks are outlined in Section 6.5.

6.2 Flow configuration

Consider the rarefied oscillatory fully-developed isothermal binary gas mixture flow
between two infinite long parallel plates. The flow is in the x′−direction parallel to the
plates, which are fixed at y′ = ±H/2. At some arbitrary fixed position along the plates,
the flow is caused by either an externally imposed harmonically oscillating pressure
gradient of the form

dP̃

dx′ = R
[

dP

dx′ exp (−iωt′)
]

, (6.1)

or an harmonically oscillating molar fraction gradient of the form

dC̃

dx′ = R
[

dC

dx′ exp (−iωt′)
]

, (6.2)

where R denotes the real part of a complex expression, i =
√

−1, t′ is the time
independent variable, ω is the oscillation (cyclic) frequency and dP/dx′ and dC/dx′

denote the amplitude of the oscillating pressure and molar fraction gradient respectively.
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6.2 Flow configuration

The binary gas mixture consists of two monoatomic species of molecular masses mα,
with the index “α = 1, 2”, always referring, without loss of generality, to the light and
heavy species of the mixture respectively. The corresponding local number densities of
the mixture components, defined by ñα (t′), oscillate harmonically as

ñα (t′) = R [nα exp (−iωt′)] , (6.3)

where nα, a = 1, 2 is the local amplitude of the oscillating number density of each
species. The number density of the mixture is ñ (t′) = ñ1 (t′) + ñ2 (t′), while the molar
fraction of the mixture is the ratio of the number density of the light species over the
mixture number density, given by

C̃ (t′) = R [C exp (−iωt′)] , (6.4)

with
C = n1

n
= n1

n1 + n2
(6.5)

being the local amplitude of the molar fraction. The molar fraction amplitude of
the heavy species is 1 − C. The mean molecular mass of the mixture is given by
m = Cm1 + (1 − C) m2. The number densities of the species and the mixture are
related to the corresponding pressures with the equation of states as P̃α = ñαkT

and P̃α = ñαkT respectively, where P̃α are the partial pressures, P̃ = P̃1 + P̃2 is the
total pressure, T is the reference temperature and k is the Boltzmann constant. The
mass densities of the species and the mixture are defined as ρα = mαnα and ρ = mn

respectively.
Then, the deduced time-dependent flow quantities of practical interest include the

bulk velocity Ũa,i (t′, y′), shear stress Π̃a,i (t′, y′) and heat flow Q̃a,i (t′, y′) of the two
species α = 1, 2, which depend on y′, the space independent variable vertical to the
plates and vary harmonically with time t′ as

Z̃a,i (t, y) = R [Za,i (y) exp (−iωt′)] (6.6)

where Z̃a,i (t, y) =
[
Ũa,i (t, y) , Π̃a,i (t, y) , Q̃a,i (t, y)

]
, while Za,i (y) = [Ua,i (y) , Πa,i (y) , Qa,i (y)]

is a vector of the corresponding complex functions. Also, the subscripts i = P and
i = C denote the flow due to the pressure and molar fraction gradient respectively. By
combining Ua,i (y) and Πa,i (y) the hydrodynamic velocity and shear stress of the gas
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Oscillatory pressure and molar fraction driven rarefied binary gas mixture flow
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mixture are obtained as

Ui (y) = 1
ρ

[ρ1U1,i (y) + ρ2U2,i (y)] = m1

m
CU1,i (y) + m2

m
(1 − C) U2,i (y) (6.7)

and
Πi (y) = 1

n
[n1Π1,i (y) + n2Π2,i (y)] = CΠ1,i (y) + (1 − C) Π2,i (y) (6.8)

respectively. The shear stress at the wall is denoted by ΠW .
In addition, of major theoretical and technological importance are the deduced

oscillatory particle flow rates of the two species

J̃ ′
a,i (t′) = R

[
J ′

a,i exp (−iωt′)
]

, (6.9)

where Ja,i are complex functions, given by

J ′
a,i = nα

∫ H/2

−H/2
Ua,idy′, (6.10)

as well as the corresponding mixture particle flow rate

J̃ ′
i = J̃ ′

1,i + J̃ ′
2,i (6.11)

and the molar fraction flow rate

J̃ ′
i = n1

∫ H/2

−H/2

(
Ũ1,i − Ũ2,i

)
dy′ (6.12)

Another overall quantity of practical interest is the pumping power needed to drive the
oscillatory mixture flow, given by the product of the acting pressure force times the
average hydrodynamic velocity of the mixture Ū ′(P ) (t′) over the cross section, written
as [128, 72]

Ẽ ′ (t′) = HdP̃ (t′) Ū ′
(P ) (t′) = HdP cos (ωt′) R

[
Ū(P ) exp (−iωt′)

]
, (6.13)

where ŪP
′ =

∫H/2
−H/2 UP dy′. It is noted that the pumping power is applied only in the

pressure driven oscillatory flow. The particle flow rates and the pumping power are
given in particles per second per meter and in Watt per meter respectively.

Furthermore, based on the average hydrodynamic velocity and the wall shear stress
of the mixture, the inertia (or acceleration) and viscous forces respectively, acting on a
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6.2 Flow configuration

fluid element may be defined. At any time over a cycle, the net sum of these two forces,
which may add or subtract to each other at different times within the oscillatory cycle,
must be equal to the pressure force driving the oscillatory flow. The detailed analysis is
presented in Appendix B.2, where the time-dependent force balance expression (B.18),
to be used for benchmarking purposes, is derived.

At this stage it is convenient to introduce the dimensionless independent variables

x = x′/H, y = y′/H, t = t′ω, (6.14)

the dimensionless amplitude of the local pressure gradient as well as of the local molar
fraction gradient

XP = H

P

dP

dx′ = 1
P

dP

dx
<< 1, XC = H

C

dC

dx′ = 1
C

dC

dx
<< 1 (6.15)

and the characteristic speed of the mixture υ =
√

2kT/m. The condition of both
XP << 1 and XC << 1 is due to the fully developed flow assumption. Then, the bulk
velocity, shear stress and heat flow in Eq. (6.6) are non-dimensionalized by (υ), (2P )
and (υP ) respectively to yield:

ũa,i (t, y) = R [ua,i (y) exp (−it)] =

= R
[
u

(A)
α,i (y) exp

[
i
(
u

(P )
a,i (y) − t

)]]
= u

(A)
α,i (y) cos

[
t − u

(P )
a,i (y)

]
(6.16)

ϖ̃a,i (t, y) = R [ϖa,i (y) exp (−it)] =

= R
[
ϖ

(A)
α,i (y) exp

[
i
(
ϖ

(P )
a,i (y) − t

)]]
= ϖ

(A)
α,i (y) cos

[
t − ϖ

(P )
a,i (y)

]
(6.17)

q̃a,i (t, y) = R [qa,i (y) exp (−it)] =

= R
[
q

(A)
α,i (y) exp

[
i
(
q

(P )
α,i (y) − t

)]]
= q

(A)
α,i (y) cos

[
t − q

(P )
α,i (y)

]
(6.18)

In Eqs. (6.16)-(6.18) the superscripts (A) and (P ) refer to the amplitude and the phase
angle respectively of each complex quantity while the subscripts i = P and i = C

denote the flow due to the pressure and molar fraction gradient respectively. Obviously,
the dimensionless time-dependent bulk velocity ũa,i (t, y), shear stress ϖ̃a,i (t, y) and
heat flow q̃a,i (t, y) of the two species are not necessarily in phase to each other and more
importantly to either the oscillating pressure gradient in Eq. (6.1) or the oscillating
molar fraction gradient in (6.2). The dimensionless velocity and shear stress of the
mixture (see Eqs. (6.7) and (6.8)) are denoted by ui (y) and ϖi (y) respectively.
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Oscillatory pressure and molar fraction driven rarefied binary gas mixture flow
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Furthermore, the flow rates in Eqs. (6.9) and (6.10) are non-dimensionalized by
(PH/mυ) to obtain the dimensionless oscillatory particle flow rates of each species

G̃a,i (t′) = R [Ga,i exp (−it)] = R
[
G

(A)
α,i exp

[
i
(
G

(P )
α,i − t

)]]
= G

(A)
α,i cos

[
t − G

(P )
α,i

]
,

(6.19)
where

Ga,i = G
(A)
α,i exp

(
iG

(P )
α,i

)
= 2

∫ 1/2

−1/2
ua,idy. (6.20)

In order to study the dimensionless flow rates of the mixture, it is necessary to introduce
the so-called kinetic coefficients which are given in [48]. They are non-dimensionalized
by (PH/mυ) and the dimensionless kinetic coefficients Λ̃PP , Λ̃CP , Λ̃PC and Λ̃CC are
written as

Λ̃Pi (t) = R [ΛPi exp (−it)] = Λ
(A)
P i cos

[
t − Λ

(P )
P i

]
, (6.21)

Λ̃Ci (t) = R [ΛCi exp (−it)] = Λ
(A)
Ci cos

[
t − Λ

(P )
Ci

]
, (6.22)

where i = P, C (with P denoting the flow due to pressure gradient and C the flow
due to molar fraction gradient) and the superscripts (A) and (P ), always referring
to amplitudes and phase angles respectively. The complex dimensionless kinetic
coefficients ΛPi and ΛCi are given by

ΛPi = CG1,i + (1 − C) G2,i, (6.23)

ΛCi = C (G1,i − G2,i) . (6.24)

It is also noted that the cross kinetic coefficients are identical (Λ̃CP = Λ̃P C) via the
Onsager-Casimir equations [203]. In addition, the pumping power in Eq. (6.13) is
non-dimensionalized by (υHXP P ) to find the dimensionless oscillatory pumping power

Ẽ (t) = dx cos (t) R [ūP exp (−it)] = 1
2dx cos (t) R

[[
m1

m
CG1,P + m2

m
(1 − C) G2,P

]
exp (−it)

]
.

(6.25)
Here, the dimensionless mean velocity has been substituted by the dimensionless flow
rate, since it is readily seen that Gαi = 2ūαi. By integrating Eq. (6.25) over one
oscillation cycle, the average pumping power over the cycle is derived as

Ē = 1
2π

∫ 2π

0
Ẽ (t) dt = 1

4dx
[
m1

m
CG

(A)
1,P cos G

(P )
1,P + m2

m
(1 − C) G

(A)
2,P cos G

(P )
2,P

]
. (6.26)
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6.3 Kinetic formulation and modeling

It is pointed out that although the net flow rate over one cycle is zero, a nonzero
cycle-average pumping power is required to maintain the oscillatory flow. In the low
frequency regime, where the imaginary part of all macroscopic quantities is gradually
diminished and the phase angles tend to zero the steady-state solution is approached.

The objectives of the present Chapter include the computation of the macroscopic
distributions of the velocity and shear stress in Eqs. (6.16) and (6.17), the particle flow
rates of the species and the kinetic coefficients of the mixture in Eqs. (6.19)-(6.24) and
the pumping powers in Eqs. (6.25) and (6.26), in terms of the parameters characterizing
the flow. As in the case of oscillatory single gas flow, the oscillatory binary gas mixture
flow between parallel plates is also characterized by the gas rarefaction and oscillation
parameters. The gas rarefaction parameter is proportional to the inverse Knudsen
number, defined as

δ = PH

υµ
, (6.27)

where P is a reference pressure, H is the distance between the plates, υ is the
characteristic speed of the mixture and µ is the viscosity coefficient of the mixture at
reference temperature T . The oscillation parameter is the ratio of the intermolecular
collision frequency defined as ν = P/µ over the oscillation frequency ω, given by

θ = P

µω
. (6.28)

The steady-state conditions are reached as θ → ∞ (ω → 0). In addition to δ and θ,
the composition of the binary gas mixture, i.e., the molecular masses m1 and m2 of
the two monoatomic components, as well as the amplitude of the molar fraction C,
must be specified.

Once the parameters δ, θ, m1, m2 and C are defined, the input data are complete
and the flow behavior and characteristics for any binary gas mixture in the whole range
of the gas rarefaction and oscillation frequencies may be investigated. The solution is
obtained based on the infinite capillary theory via linear kinetic modeling described in
the next section.

6.3 Kinetic formulation and modeling

The steady-state fully-developed binary gas mixture flow between parallel plates,
driven by pressure, temperature and molar fraction gradients, in the whole range of
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gas rarefaction, has been considered in [48]. Modeling has been based on McCormack
kinetic model [44], which has been proven to be a very reliable model, fulfilling all
associated requirements (satisfies the conservation laws, the H-theorem and provides
correct values for all transport coefficients). Here, the work follows the formulation in
[48] related only to the pressure and molar fraction gradient part and it is accordingly
extended to include the oscillatory flow behavior.

Due to the condition of small local gradients (XP ≪ 1 and XC ≪ 1) the unknown
time-dependent distribution function of each species can be linearized in a standard
manner as

fα (t, x, y, cα) = f 0
α (cα)

[
1 + h̃α (t, y, cα)

]
, (6.29)

where
f 0

α (cα) = nα

(
m

2πkT

)3/2
exp

[
−c2

α

]
(6.30)

is the absolute Maxwellian of each species, h̃α (t, y, cα) are the unknown perturbed
distribution functions and cα = [cαx, cαy, cαz] is the dimensionless molecular velocity
vector, with α = 1, 2 always denoting the light and heavy species respectively. Fur-
thermore, taking advantage of the harmonic motion, the complex distribution function
hα (y, cα) is also introduced so that

h̃α (t, y, cα) = R [hα (y, cα) exp (−it)] . (6.31)

Based on Eqs. (6.29) and (6.31), the problem under consideration may by formulated
in terms of hα (y, cα) by the following system of two linearized Boltzmann equations:

− i
δ

θ

√
mα

m
hα + cαy

∂hα

∂y
= ωα

2∑
β=1

Lαβhα − cαx (XP + ηαXC) , a = 1, 2 (6.32)

where η1 = 1 and η2 = −C/ (1 − C). In Eq. (6.32), ωα = δ (C/γ1 + (1 − C) /γ2)
√

mα/m,
while Lαβ is the linearized McCormack collision term and γα (a = 1, 2) are the collision
frequencies of each species, both given in detail in Appendix B.1. Comparing Eq.
(6.32) with the corresponding steady-state one in [48], it is readily seen that the only
difference is the first term at the left hand side of Eq. (6.32) plus the fact that here,
the unknown distributions and the associated macroscopic quantities in the collision
term are complex. Obviously, as θ → ∞ (ω → 0) Eq. (6.32) tends to the steady-state
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6.3 Kinetic formulation and modeling

one. It is also noted that since Eq. (6.32) is linear its solution can be decomposed as

hα = ha,P XP + ha,CXC (6.33)

and accordingly, the moments of distribution function are written as

uα = ua,P XP + ua,CXC , qα = qa,P XP + qa,CXC , ϖα = ϖa,P XP + ϖa,CXC . (6.34)

As it is well-known, the z− and x−components of the molecular velocity vector
may be eliminated, greatly reducing the computation effort of solving Eq. (6.32), by
applying the so-called projection procedure and introducing the following reduced
distribution functions:

Φα (y, cay) = 1
π

√
m

mα

∫ ∞

−∞

∫ ∞

−∞
hα (y, cα) cax exp

[
−cax

2 − caz
2
]

dcaxdcaz, (6.35)

Ψα (y, cay) = 1
π

√
m

mα

∫ ∞

−∞

∫ ∞

−∞
hα (y, cα) cax

(
c2

ax + c2
az − 2

)
exp

[
−c2

ax − c2
az

]
dcaxdcaz.

(6.36)
Then, Eq. (6.32) is multiplied successively by the functions

√
m/mαcax exp (−c2

ax − c2
az) /π

and
√

m/mαcax (c2
ax + c2

az − 2) exp (−c2
ax − c2

az) /π and the resulting equations are in-
tegrated over cax and caz to deduce the following four coupled equations for the four
unknown reduced complex distribution functions:

−i
δ

θ

√
mα

m
Φα + cαy

∂Φα

∂y
+ ωαγαΦα =

−1
2

√
m

mα

(XP + ηαXC) + ωα

{
γαuα − v

(1)
αβ (uα − uβ) − 1

2v
(2)
αβ

(
qα − mα

mβ

qβ

)
+

+2
√

m

mα

[(
γα − v(3)

αα + v(4)
αα − v

(3)
αβ

)
ϖα + v(4)

ααϖβ

]
cay+

+2
5

[(
γα − v(5)

αα + v(6)
αα − v

(5)
αβ

)
qα + v

(6)
αβ

√
mβ

mα

qβ − 5
4v

(2)
αβ (uα − uβ)

] (
c2

ay − 1
2

)}
(6.37)

−i

√
mα

m

δ

θ
Ψα + cαy

∂Ψα

∂y
+ ωαγαΨα =

4
5ωα

[(
γα − v(5)

αα + v(6)
αα − v

(5)
αβ

)
qα + v

(6)
αβ

√
mβ

mα

qβ − 5
4v

(2)
αβ (uα − uβ)

]
(6.38)
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In Eqs. (6.37) and (6.38) α, β = 1, 2, with α ≠ β, while the expressions for the quantities
v

(k)
αβ are given in terms of the Chapman-Cowling integrals [25]. The macroscopic

quantities uα, ϖα and qα at the right hand side of Eqs. (6.37) and (6.38) are defined in
Eqs. (6.16), (6.17), (6.18) and (6.34) respectively and after applying the linearization
and projection procedures, they are obtained as moments of Φα and Ψα as follows:

uα (y) = 1√
π

∫ ∞

−∞
Φα exp

(
−c2

ay

)
dcay, (6.39)

ϖα (y) = 1√
π

√
mα

m

∫ ∞

−∞
Φαcay exp

(
−c2

ay

)
dcay, (6.40)

qα (y) = 1√
π

∫ ∞

−∞

[
Ψα +

(
c2

ay − 1
2

)
Φα

]
exp

(
−c2

ay

)
dcay. (6.41)

In the present work purely diffuse reflection at the walls is assumed. It is readily
deduced that the outgoing reduced distribution functions at the two walls are identically
equal to zero, i.e.

Φα (±1/2, cαy) = Ψα (±1/2, cαy) = 0, cαy

>
<0. (6.42)

Thus, the kinetic formulation of the problem is properly defined by the system of Eqs.
(6.37) and (6.38), subject to the boundary conditions (6.42), along with the associated
moments (6.39)-(6.41).

It is interesting to comment on the behavior of the flow and of Eqs. (6.37) and (6.38)
at limiting values of the involved parameters. The flow is in the hydrodynamic regime
when both δ >> 1 and θ >> 1. Also, as θ → ∞, Eqs. (6.37) and (6.38) are reduced to
the corresponding ones describing steady-state binary gas flow between parallel plates
[48]. At the other end, as θ → 0, the flow is in the very high oscillation frequency
regime, with the amplitude of the distribution functions Φα and Ψα diminishing due
to fluid inertia, while as δ → 0, with θ > 0, the kinetic equations for steady-state
binary gas flow in the free molecular limit are recovered [48]. Furthermore, C = 0 or
for binary gas mixtures with species having the same molecular mass m1 = m2, Eqs.
(6.37) and (6.38) are reduced to the corresponding ones for oscillatory single gas flow
that has been presented in Chapter 4.

The above set of equations is computationally solved based on the discrete velocity
method [63] in the cy−space and on the second-order diamond finite difference scheme
[49] in the y−space. The continuum spectrum of cy ∈ (−∞, ∞) is properly transferred
to [0, ∞) and then, it is replaced by a set of discrete velocities m = 1, 2, ..., M , which are
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taken to be the roots of the Hermite polynomial of order M , accordingly mapped from
(−∞, ∞) to [0, ∞). The macroscopic distributions are numerically integrated by the
Gauss-Hermite quadrature scheme. The specific set of discrete molecular velocities has
been found to be very effective in the whole range of gas rarefaction. The discretized
equations are solved in an iterative manner between the kinetic equations (6.37) and
(6.38) and the moment equations (6.39)-(6.41). Since the computed quantities are
complex their real and imaginary parts are obtained. The iteration map is concluded
when the following criterion in terms of the bulk velocity and the heat flow of the
species is fulfilled:

ε
(κ)
j = max

i

{∣∣∣u(κ)
1,j,i − u

(κ−1)
1,j,i

∣∣∣+ ∣∣∣u(κ)
2,j,i − u

(κ−1)
2,j,i

∣∣∣+ ∣∣∣q(κ)
1,j,i − q

(κ−1)
1,j,i

∣∣∣+ ∣∣∣q(κ)
2,j,i − q

(κ−1)
2,j,i

∣∣∣} < ε

(6.43)
Here, ε is the tolerance parameter, the superscript (κ) is the iteration index, the
subscript j = R, ℑ refers to the real and imaginary part of the macroscopic quantity
and the subscript i = 1, 2, ..., I refers to the node number in y ∈ [−1/2, 1/2]. The
numerical parameters have been gradually refined to ensure grid independent results
up to at least three significant figures with M = 128 and I = 104. The implemented
computational scheme has been previously successfully applied to steady-state binary
gas mixture and oscillatory single gas flows [48, 49, 197, 127, 128].

Once the real and imaginary part of the macroscopic distributions and of the
overall quantities (e.g. flow rates) are obtained, it is straightforward to compute their
amplitudes and phase angles, as well as the corresponding time-dependent quantities,
presented and discussed in the next section.

6.4 Results and discussion

Computational results of the oscillatory pressure- and molar fraction driven flows
are presented in this Section. Results for the pressure-driven velocity distributions and
flow rates, the kinetic coefficient Λ̃PP and some complimentary quantities (wall shear
stress and pumping power) are presented in Sections 6.5.1, 6.5.2 and 6.5.3 respectively,
in a wide range of the gas rarefaction and oscillation parameters δ and θ, as well
as of the molar fraction C ∈ [0, 1] and the molecular mass ratio of the heavy over
the light species m2/m1. In addition, results for the molar fraction-driven velocity
distributions and the kinetic coefficients ΛCC and ΛPC are presented in Section 6.5.4.
Although several binary gas mixtures have been considered, the effect of m2/m1 is

151

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 08:10:15 EEST - 3.144.111.108



Oscillatory pressure and molar fraction driven rarefied binary gas mixture flow
between parallel plates

demonstrated by presenting results mostly for He–Xe, with m2/m1 = 32.8 and Ne–Ar,
with m2/m1 = 1.98. To better demonstrate the flow characteristics in oscillatory
pressure-driven binary gas mixture flow, comparisons between the present results
and the corresponding ones for steady-state binary gas flow in [48] and oscillatory
single gas flow in Section 4.4.2 (or in [128]) are performed. The accuracy of the
computational scheme and the presented results has been accordingly validated by
grid refinement, by always fulfilling the benchmark balance expression (B.18) and
by systematic comparisons with previous works at limiting values of the involved
parameters (e.g. C = 0, θ → ∞, δ, θ ≫ 1). It is noted that the results of the molar
fraction-driven flow are compared with the corresponding ones for steady-state binary
gas flow in [48]. All results are in dimensionless form.

6.4.1 Pressure-driven velocity distributions

The amplitudes and the phase angle of the complex macroscopic velocity distribu-
tions uα,P = u

(A)
α,P exp

(
iu

(P )
α,P

)
of the two species are reported in Figs. 6.1, 6.2 and 6.3

for various values of δ, θ and C. Most of the results are for He–Xe, while some results
for Ne–Ar are also presented.

In Fig. 6.1, the distributions of the velocity amplitude u
(A)
α,P (y) and the phase

angle u
(P )
a,P (y) of each species of the He–Xe gas mixture, with C = 0.5, are provided

for δ = [0.1, 1, 10] and θ = [0.1, 1, 10]. It is evident that both He and Xe present the
same qualitatively behavior in terms of the gas rarefaction and oscillation parameters.
Also, as expected, there is a close qualitative resemblance with corresponding results,
presented in [127, 128], for oscillatory flows of single gases. Very briefly, it is observed
that as θ is decreased, the amplitude u

(A)
α,P is decreased, while the phase angle u

(P )
a,P is

increased. It is also seen that at small δ and large θ (e.g., δ = 0.1 and θ ≥ 1) the
velocity amplitudes have the expected shape with their maximum appearing at the
center of the flow field, while at large δ and small θ (e.g., δ = 10 and θ ≤ 1) the velocity
amplitudes are flattening in the core of the flow and the maximum amplitudes are
appearing in thin layers adjacent to the walls. The corresponding phase angles in the
former case are small, while in the latter one are large close to the limiting value of
π/2. This is the so-called “velocity overshooting” or “Richardson effect”, well-known
for long time in oscillatory viscous flows [78, 72] and recently reported in gas rarefied
flows [127, 128]. In the present Chapter, the investigation is focused in comparing the
above described flow patterns and characteristics between the light and heavy species
of the mixture.
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It is readily seen, in Fig. 6.1 that the velocity amplitudes of He are always about
one order of magnitude larger than the corresponding ones of Xe. It is well-known
from investigations in steady-state binary gas mixture flows, that lighter species travel
faster than heavier ones, resulting to gas separation, which is increased as the gas flow
becomes more rarefied [48, 49]. Therefore, the present results are expected. However, it
is interesting to note that as θ is decreased, i.e., as the oscillation frequency is increased,
the relative difference between the velocity amplitudes of the light and heavy species
is increased. This becomes more evident at δ = 10, where the amplitudes of He and
Xe for θ = 10 are relatively close to each other, since the flow is in the hydrodynamic
regime, while for θ = 1 and 0.1 the difference between them is gradually increased. On
the contrary, the velocity phase angles of He are always smaller than the corresponding
ones of Xe. In general, the velocity phase angles are increased as θ is decreased. It may
be stated that as the oscillation frequency is increased the velocity amplitude and phase
angle of both species is decreased and increased respectively. Clearly however, the
difference between the velocity amplitudes of the light and heavy species is increased
with the oscillation frequency, not only for small but also for large values of the gas
rarefaction parameter. This is a first indication that in oscillatory gas mixture flows,
gas separation may be intensified as the oscillation frequency is increased due to inertia
forces, which affect differently the light and heavy species.

In Fig. 6.2, the distributions of the velocity amplitude u
(A)
α,P (y) and the phase

angle u
(P )
a,P (y) of each species of the He–Xe gas mixture, with C = [0, 0.1, 0.5, 0.9], are

provided for δ = [0.1, 1, 10] and θ = 1. Here, the effect of the molar fraction on the
velocity amplitude and the phase angle is investigated for typical values of the gas
rarefaction and oscillation parameters. The case of C = 0 corresponds to oscillatory
single gas flow. As C is increased from zero to 0.9, i.e., the molar fraction of the light
species (He) is increased, the velocity amplitudes and phase angles of both species are
decreased and increased respectively. Of course, as C → 1, the single gas flow results
(C = 0) are recovered [48, 49]. It is noted that the changes in u

(A)
1,P (y) and u

(P )
1,P (y) of

He in terms of C, compared to the corresponding ones u
(A)
2,P (y) and u

(P )
2,P (y) of Xe, both

qualitatively and quantitatively, on a relative base, are about the same. This behavior
remains the same in the whole range of gas rarefaction and oscillation parameters.

In Fig. 6.3, the distributions of the velocity amplitude u
(A)
α,P (y) of each species

of the binary gas mixtures of He–Xe, He-Ar and Ne–Ar, with C = [0.1, 0.4, 0.7, 0.9],
are provided for δ = 10 and θ = 0.1. The specific values of the gas rarefaction and
oscillation parameters, associated with high frequency oscillatory flow between the
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transition and slip flow regimes, are suitable for investigating the velocity overshooting
phenomenon in the components of the two mixtures. Observing the velocity amplitudes
of He, Ne, Ar and Xe, it is evident that for these flow parameters, velocity overshooting
is always present. More importantly, it is seen that as the gas becomes heavier, the
velocity overshooting becomes sharper appearing, along with its maximum value, closer
to the wall in a layer which is gradually becoming thinner. This description remains
valid for all molar fractions tested. Comparing the behavior of the velocity amplitudes
of the species, it is seen that the shape of the profiles of He and Xe as well as of He and
Ar is quite different, while of Ne and Ar is similar, since the difference in the molecular
masses of the species is much larger in the former than in the latter case. Overall, it is
clear that the Richardson effect becomes more dominant as the molecular mass of the
gas species is increased.

Having obtained a description of the dependency of the velocity distribution of
each species of the binary gas mixture on the molecular masses and molar fraction in a
wide range of the flow parameters, in the next section the corresponding behavior of
the flow rates is investigated.

6.4.2 Pressure-driven kinetic coefficients and flow rates

The reported results include the complex kinetic coefficient ΛPP = Λ
(A)
PP exp

(
iΛ

(P)
PP

)
(Figs. 6.4, 6.5 and 6.6) and the complex flow rates of the species Gα,P = G

(A)
α,P exp

(
iG

(P )
α,P

)
(Figs. 6.7, 6.8, 6.9 and 6.10) as well as of the time-dependent kinetic coefficient
Λ̃PP (t) = Λ

(A)
PP cos

[
t − Λ

(P )
PP

]
(Fig. 6.11). The effect of the oscillation frequency on

the gas separation phenomenon is investigating by computing the amplitude ratio
G

(A)
1,P /G

(A)
2,P and the phase angle difference G

(P )
2,P − G

(P )
1,P of the two species.

In Fig. 6.4, the He–Xe kinetic coefficient amplitude Λ
(A)
PP and phase angle Λ

(P )
PP are

provided in terms of δ ∈ [10−4, 102], with θ = [1, 10, 102] and C = [0, 0.25, 0.5, 0.75, 0.9].
The results for oscillatory single gas flow (C = 0), previously reported in [128], are also
included here for comparison purposes. It is seen that the flow rate amplitudes and
phase angles of the mixture (C ̸= 0) depend on the flow parameters very similarly to
the corresponding single gas ones (C = 0). The behavior of the single gas flow rate
in terms of the flow parameters has been analyzed in detail in [127] and it remains
the same in the binary gas mixture flow and therefore is not repeated here. It is only
pointed out that as θ is decreased (the oscillation frequency is increased), the kinetic
coefficient amplitude is decreased and the phase angle is increased. Focusing on the
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effect of the molar fraction, it is seen that always the kinetic coefficient amplitude is
larger and the phase angle is smaller than the corresponding ones of the single gas.
Also, Λ

(A)
PP and Λ

(P )
PP vary non-monotonically with C. More specifically, as C is increased,

Λ
(A)
PP is initially increased until the molar fraction is in the range of C ∈ [0.5, 0.75] and

then it is decreased to reach the single gas one, while Λ
(P )
PP varies in the opposite way,

i.e., it is first decreased and then increased. It is noted that the effect of C on Λ
(A)
PP

remains significant in all oscillation regimes, while its effect on Λ
(P )
PP is important only

in high and moderate frequencies and becomes negligible at low frequencies. At large
values of the gas rarefaction parameter (δ ≥ 10) the effect of C is gradually diminished.

A more detailed view of the effect of the molar fraction on the kinetic coefficient is
shown in Fig. 6.15, where its amplitude Λ

(A)
PP and phase angle Λ

(P )
PP are provided in terms

of C for many values of θ = [0.1, 1, 10, 50, 102] and the typical value of δ = [0.1, 1, 10].
The non-monotonic behavior of Λ

(A)
PP and Λ

(P )
PP in terms of C, along with its dependency

on θ , are clearly demonstrated. It is seen that the amplitude Λ
(A)
PP strongly depends on

C for all θ, but it varies more significantly as the oscillation parameter is increased. The
phase angle Λ

(P )
PP depends on C for small values of θ, while it is practically independent

of C for θ ≥ 10. This behavior remains qualitative the same in the whole range of
gas rarefaction, with the general observation that the effect of the molar fraction is
more pronounced as δ is decreased and the flow becomes more rarefied. Also, as δ is
increased the maximum kinetic coefficient amplitude appears at larger molar fractions.
Similar to Fig. 6.15, the amplitude Λ

(A)
PP and phase angle Λ

(P )
PP of Ne-Ar are presented

in Fig. 6.16. It is readily seen that the kinetic coefficient amplitude Λ
(A)
PP and the phase

angle Λ
(P )
PP of the mixture in terms of C, are becoming flat completely independent of

the molar fraction due to the small difference in the molecular masses of the species.
Next, the investigation is continued by considering the amplitudes and the phase

angles of the mixture components in terms of C and m2/m1, which are of particular
interest in investigating the gas separation phenomenon for various values of δ, θ. As
reported in [194], gas separation in rarefied steady-state pressure-driven binary gas flows
though capillaries may be analyzed by computing the ratio of the particle flow rates
J1/J2. It has been shown that the ratio J1/J2, independently of C, is monotonically
increased as δ is decreased, varying from one in the hydrodynamic limit (δ → ∞),
where there is no separation, up to its maximum value, equal to

√
m2/m1 (1 − C) /C,

in the free molecular limit (δ → 0), where the flow of each species is independent [194].
Therefore, in the present work dealing with complex quantities, instead of explicitly
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providing the species flow rate amplitudes and phase angles, the amplitude ratio
G

(A)
1,P /G

(A)
2,P and the phase angle difference G

(P )
2,P − G

(P )
1,P of the two species are reported.

In Fig. 6.7, the ratio of flow rate amplitudes G
(A)
1,P /G

(A)
2,P is provided in terms

of δ ∈ [10−4, 102] for the He–Xe gas mixture, with C = [0.05, 0.35, 0.65, 0.95] and
θ = [10−2, 0.1, 1, 10, 102]. At θ = 10 the ratio G

(A)
1,P /G

(A)
2,P varies qualitatively similarly

as in the steady-state binary gas flow setup. It is about constant or slightly reduced
in the free molecular regime, then it is rapidly decreased in the transition regime and
finally, in the slip and hydrodynamic regime goes asymptotically to one. However, at
θ = 1 and θ = 0.1 the behavior of G

(A)
1,P /G

(A)
2,P is completely different. It remains about

constant in free molecular regime, but then, it is rapidly increased in the transition
regime and finally, as δ is further increased, it keeps asymptotically increasing to some
constant value. This behavior, with the minimum and maximum values of G

(A)
1,P /G

(A)
2,P

appearing at the free molecular and hydrodynamic limits respectively and the rapid
increase in the transition regime (completely reversed compared to the steady-state
behavior) becomes more pronounced as θ is decreased. It is evident that the oscillation
parameter θ has a dominant effect on the amplitude ratio of He over Xe, which is
significantly increased as θ is decreased (at θ = 0.1 the flow rate amplitude of He
is about thirty times larger than of Xe). This behavior is due to the corresponding
behavior of the velocity amplitudes commented in Fig. 6.1 and it is contributed to
inertia forces, which are increased with the oscillation frequency and they influence
the bulk velocity amplitude of the heavy species much more than of the light one.
Therefore, as θ is decreased, the flow rate amplitude of the heavy species decreases
much more significantly than the light one and although both amplitudes are decreased
the velocity amplitude ratio of the light over the heavy species is increased. This effect
is magnified in the transition regime, as the flow becomes less rarefied overcoming
diffusion effects due to increased intermolecular collisions and therefore, as δ is increased
the amplitude ratio keeps increasing. It is seen that the effect of C with regard to
these flow characteristics is rather small and becomes even smaller as the oscillation
frequency is increased (θ is decreased). In general, the amplitude ratio is slightly
increased with the molar fraction.

In Fig. 6.8, the ratio of flow rate amplitudes G
(A)
1,P /G

(A)
2,P is provided in terms

of δ ∈ [10−4, 102] for the Ne-Ar gas mixture, with C = [0.05, 0.35, 0.65, 0.95] and
θ = [10−2, 0.1, 1, 10, 102]. The behavior is qualitatively the same with the corresponding
one of the He-Xe mixture for all values of the oscillation parameter θ. However due to
the small difference in the molecular masses of the species the dependency of the ratio
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on C is negligible. The only noteworthy variation in terms of C is observed for θ = 1
and for large values of δ (e.g., δ ≥ 1). It is noted that the maximum value of the ratio
is much smaller than in Fig. 6.7.

The ratio of flow rate amplitudes G
(A)
1,P /G

(A)
2,P is presented again in Fig. 6.9, in

terms of θ ∈ [10−4, 102] for the He-Xe and Ne-Ar gas mixtures, with C = 0.5 and
δ = [0.1, 1, 10]. At high oscillation frequencies (θ ≤ 10−2), although the flow rate
amplitude of each species is decreased, the ratios of the species amplitudes take their
highest values, which are almost constant independent of the gas rarefaction parameter
δ and equal, as it is numerically found, with the molecular mass ratio of the heavy over
the light species m2/m1 (G(A)

He,P /G
(A)
Xe,P = 32.8,G(A)

Ne,P /G
(A)
Ar,P = 1.98). Then, at moderate

oscillation frequencies (10−2 < θ < 10) the amplitude ratio is rapidly decreased in
all gas rarefaction regimes. Finally, at small oscillation frequencies (θ ≥ 10) the
corresponding steady-state results are asymptotically recovered. Obviously, the effect
of the molecular mass ratio m2/m1 on the ratio of the flow rate amplitude of the light
over the heavy species is dominant.

In Fig. 6.10, the difference of the flow rate phase angles G
(P )
2,P − G

(P )
1,P is provided

in terms of δ ∈ [10−4, 102] for the He–Xe gas mixture, with C = [0.05, 0.35, 0.65, 0.95]
and θ = [0.1, 1, 10]. At θ = 10, as well as at θ = 1, the difference of the flow rate phase
angles G

(P )
2,P − G

(P )
1,P is monotonically increased with δ, with a rapid increase occurring

at intermediate values of δ in the transition regime. This is not the case at θ = 0.1,
where the difference G

(P )
2,P − G

(P )
1,P is first increased, reaching some maximum value in

the transition regime and then it is decreased reaching asymptotically some constant
value. This behavior is also present at θ < 0.1 (not shown here), with the maximum
value appearing at lower δ, as θ is decreased. In general, it is demonstrated that there
is phase angle difference between the flow rates of the two species of the mixture.

In Figure 6.11, the phase lag between the oscillatory pressure gradient, the flow
rates of each species and kinetic coefficient Λ̃PP is demonstrated, by plotting the time-
dependent flow rates G̃1,P (t) of He, G̃2,P (t) of Xe, as well as Λ̃PP (t) = CG̃1,P (t) +
(1 − C) G̃2,P (t) of the He–Xe gas mixture with C = 0.5, over one cycle t ∈ [0, 2π] for
δ = [0.1, 1, 10] and θ = [0.1, 10]. It is noted that the dimensionless time-dependent
pressure gradient is equal to cos (t). In the case θ = 10 (low oscillation frequency),
all quantities when δ = [0.1, 1] are in phase to each other, while when δ = 10 they
are out of phase, with G̃2,P (t) having a larger phase lag, compared to G̃1,P (t), with
respect to the pressure gradient. In the case θ = 0.1 (high oscillation frequency), when
δ = 0.1 all quantities are almost in phase to each other, while when δ = [1, 10] they
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are out of phase. For θ = 0.1 and δ = 10, the maximum phase angle lag, almost equal
to π/2, is observed. Again the phase angle lag of the flow rate of Xe is larger than the
one of He. The phase lag of the Λ̃PP is, as expected, between the phase lags of the
two species. Also, the amplitudes of the oscillatory He flow rate are much larger than
the corresponding ones of Xe. All these remarks are in agreement with the discussion
presented in terms of the amplitudes and the phase angles of the species flow rates in
Figs. (6.7, 6.9 and 6.10). Overall, it may be stated that the oscillatory flow rates and
pressure gradient are in phase when δ << θ and completely out of phase when θ << δ,
with the heavier species have larger phase angle lags compared to the lighter ones.

Closing this subsection on the flow rates it is noted that the flow rates of other
mixtures (e.g. He-Ar), as well as of their species, have been computed, in the whole
range of the molar fraction and for various values of the flow parameters. The flow
rate amplitude ratio G

(A)
1,P /G

(A)
2,P and phase angle difference G

(P )
2,P − G

(P )
1,P of the species

of all binary gas mixtures tested have a close resemblance with the corresponding ones
for He and Xe. However, quantitatively the results are different with the values of
G

(A)
1,P /G

(A)
2,P and G

(P )
2,P − G

(P )
1,P becoming much smaller and gradually independent of C,

as the molecular mass ratio m2/m1 is decreased, recovering the oscillatory single gas
behavior as m2/m1 → 1. This remark, well-known in steady-state flows, remains valid
also in oscillatory gas mixture flows. The results for He–Ar and other mixtures of
monoatomic gases are not reported here because it is believed that they do not provide
any additional important information concerning the understanding of the oscillatory
binary gas flow properties and characteristics.

The most interesting finding concerning the flow rates is that, independent of the
molar fraction and the gas rarefaction regime, the amplitude ratio of the oscillatory
flow rates of the light over the heavy species is significantly increased as the oscillation
frequency is increased. Clearly, these results may be of major technological importance
in developing gas separation apparatus in the whole range of the Knudsen number.

6.4.3 Pressure-driven wall shear stress and pumping power

Complementary quantities of the oscillatory binary gas mixture of practical interest,
namely the wall shear stress ϖW,P = ϖ

(A)
W,P exp

(
iϖ

(P )
W,P

)
(Fig. 6.12), as well as the

oscillatory pumping power Ẽ (t) (Fig. 6.13) and cycle-average pumping power Ē (Fig.
6.14), given by Eqs. (6.25) and (6.26) respectively, are here considered.

In Fig. 6.12, the wall shear stress amplitude ϖ
(A)
W,P and phase angle ϖ

(P )
W,P are

provided in terms of C ∈ [0, 1] for θ = [0.1, 1, 10, 50, 102] and the typical value of
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δ = [0.1, 1, 10]. It is readily seen that as the molar fraction varies between zero
and one, both the wall shear stress amplitude and phase angle remain constant for
θ = [10, 50, 102] and vary slightly for θ = [0.1, 1]. It is evident that the dependency
of the shear stress on the molar fraction is very weak and this behavior remains the
same in the whole range of gas rarefaction. As expected ϖ

(A)
W,P is decreased and ϖ

(P )
W,P is

increased as θ is decreased. Actually, ϖ
(A)
W,P almost diminishes at very high oscillation

frequencies. Furthermore, as θ is increased and the oscillation frequency tends to zero,
the shear stress amplitude ϖ

(A)
W,P approaches the limiting value of 0.25, which is the

steady-state dimensionless wall shear stress, independent of δ [204], while the shear
stress phase angle ϖ

(P )
W,P approaches zero. These results further validate the accuracy

of the present oscillatory binary gas mixture computational approach.
In Fig. 6.13, the time-dependent pumping power Ẽ (t) of the He–Xe gas mixture

with C = 0.5, over one cycle t ∈ [0, 2π] is plotted for δ = [0.1, 1, 10] and θ = [0.1, 10].
More specifically, instead of Ẽ (t), the results correspond to the normalized time-
dependent pumping power Ẽ (t) /dx. Obviously, the pumping power has two peaks
within each oscillatory cycle because it consists of the product of the oscillatory flow
times the oscillatory pressure gradient and its integral over one cycle is not zero in order
to drive the mixture flow, although the oscillatory net flow is zero. The dependency
of the mixture pumping power on the flow parameters is similar to the one observed
in oscillatory single gas flow [164, 128]. In general, as θ is decreased its amplitude is
decreased and its phase angle lag is increased and this behavior becomes more dominant
as δ is increased. As it has already been seen in [128], the oscillatory pumping power,
at certain times within the time period t ∈ [0, 2π], may become negative due to the
pressure gradient which becomes negative when the flow is reversed. At the same time
the sign of the flow rate, due to the phase angle lag, remains positive leading to a
negative pumping power. This is mainly occurring when the flow rate is out of phase.
These remarks remain valid in the whole range of the molar fraction. Furthermore,
the effect of C on the amplitude of the mixture pumping power is negligible in most
cases and becomes more important as both δ and θ are decreased, where the amplitude
of the mixture pumping power is decreased as C is increased. Also, the effect of the
molar fraction on the phase angle of the mixture pumping power is very small.

In Fig. 6.14, the normalized cycle-average pumping power Ē/dx for the binary
gas mixtures of He–Xe and Ne–Ar in terms of C is plotted for various values of
θ = [0.1, 1, 10, 102] and the typical values of δ = [0.1, 1, 10]. The corresponding steady-
state pumping power ĒS of the binary gas mixture flow of He–Xe and Ne–Ar are
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also plotted for comparison purposes. In general, as θ is decreased the cycle-average
pumping power is decreased, which is expected since as the oscillation frequency is
increased the flow rate amplitude is decreased. At large values of the oscillation
parameter (θ ≥ 10), as the flow becomes stationary the cycle-average pumping power
becomes half of the corresponding steady-state one. The same trend has been observed
in oscillatory single gas flows [164, 128]. Furthermore, the effect of the molar fraction
on the cycle-average pumping powers of He–Xe and Ne–Ar is very weak.

6.4.4 Molar fraction-driven flow: velocity distributions and
kinetic coefficients

The binary gas mixture flow due to oscillating molar fraction is studied in this
Section. The results include the velocity of each species as well as the kinetic coefficients
Λ̃PP and Λ̃PC . The differences between the pressure-driven flow and molar fraction-
driven flow are also commented.

In Fig. 6.15, the distributions of the velocity amplitude u
(A)
α,C (y) and the phase

angle u
(P )
a,C (y) of each species of the He–Xe gas mixture, with C = 0.5, are provided for

δ = [0.1, 1, 10] and θ = [0.1, 1, 10]. It is evident that behavior of the velocity amplitude
and the phase angle of both species is similar to the corresponding one in Fig. 6.1.
The velocity amplitudes of He are always than the corresponding ones of Xe. On the
contrary, the velocity phase angles of He are always smaller than the corresponding
ones of Xe. However, it is evident that when δ ≫ θ (e.g., δ = 10 and θ = 0.1) the
difference between the phase angles of the two species is diminished. This isn’t seen
in Fig. 6.1 where there is a phase angle difference between the velocities of the two
species of the mixture even in small oscillation parameters. It is also interesting to
note that the so-called “velocity overshooting” or “Richardson effect”, already seen
in oscillatory pressure-driven flows, is observed here in flows due to oscillating molar
fraction gradient. In general, the velocity distributions of the molar fraction-driven
flow are quite similar to the corresponding ones of the pressure-driven flow.

In Fig. 6.16, the amplitudes of the kinetic coefficients Λ
(A)
CC and Λ

(A)
PC are provided

in terms of δ ∈ [10−4, 102], with θ = [1, 10, 102] and C = [0.05, 0.25, 0.5, 0.75, 0.9].
It is seen that both amplitudes Λ

(A)
CC and Λ

(A)
PC are decreased monotonically as the

rarefaction parameter is increased. This trend is observed for all values of the molar
fraction C. Focusing on the effect of the molar fraction, the amplitude Λ

(A)
CC is increased

monotonically as the molar fraction is increased or as the mixture becomes lighter.
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The amplitude of the coefficient Λ
(A)
CC is the one with the strongest dependency on C.

Furthermore, the amplitude of the coefficient Λ
(A)
CP varies non-monotonically with the

molar fraction C. More specifically, as C is increased, Λ
(A)
PC is initially increased until

the molar fraction is C = 0.75 and then it is decreased to reach the single gas one. Of
course, since Λ

(A)
PC is a cross effect, it is diminished for either C = 0 or C → 1. Another

noteworthy remark is that for C = 0.5 and θ = 10, Λ
(A)
PC is rapidly decreased while for

all the other parameters it is gradually reduced. The effect of C is gradually reduced
at large values of the rarefaction parameter (δ ≥ 10).

A more detailed view of the effect of the molar fraction on the complex kinetic
coefficient ΛCC is shown in Fig. 6.17, where its amplitude Λ

(A)
CC and phase angle Λ

(P )
CC

are provided in terms of C for many values of θ = [0.1, 1, 10, 50, 102] and the typical
values of δ = [0.1, 1, 10]. It is evident that as the molar fraction is increased both the
amplitude Λ

(A)
CC and the phase angle Λ

(P )
CC are increased. However, it is interesting to

note that this behavior isn’t encountered for all values of the oscillation parameter.
More specifically, the amplitude Λ

(A)
CC varies non-monotonically with C when δ > θ.

As C is increased it is initially increased, until the molar fraction is in the range of
C ∈ [0.5, 0.8] and then it is decreased. Therefore, the kinetic coefficient ΛCC depends
strongly on the oscillation parameter and it is decreased as θ is decreased even when
the mixture becomes very light. It is also noted that the phase angle Λ

(P )
CC is increased

monotonically as the oscillation parameter is decreased, following the behavior of the
kinetic coefficient Λ

(P )
P P . The largest value of phase angle Λ

(P )
CC is always observed for

very light mixtures and small oscillation parameters.
In Fig. 6.18, the amplitude Λ

(A)
PC and phase angle Λ

(P )
PC are provided in terms of the

molar fraction C for θ = [0.1, 1, 10, 50, 102] and with δ = [0.1, 1, 10]. It is seen that
the amplitude Λ

(A)
PC presents a non-monotonic behavior. As C is increased, Λ

(A)
PC is

initially increased until the molar fraction is in the range of C ∈ [0.7, 0.9] and then it
is decreased to reach the single gas one where it is diminished. This behavior is seen
for all values of the oscillation and rarefaction parameters. In terms of the oscillation
parameter, it is interesting to note that the amplitude Λ

(A)
PC varies non-monotonically.

As θ is decreased it reaches a maximum for θ = 1 and then it is decreased for θ = 0.1.
For large values of δ, this maximum is seen for θ = 10. Thus, the amplitude of the
kinetic coefficient Λ

(A)
PC has a resonant behavior in terms of θ which hasn’t been seen in

the other kinetic coefficients. Furthermore, the phase angle Λ
(P )
PC is increased as the

molar fraction C is increased for all values of the rarefaction parameter. Also, as the
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oscillation parameter is decreased the phase angle is always increased except for δ = 10
where it varies non- monotonically.

Finally, the investigation is ended by considering the effect of the intermolecular
potential on the kinetic coefficients. Since it has been seen in [48] that the effect of
the intermolecular interaction potential is more important in the kinetic coefficients
ΛCP and ΛCC , a similar comparison is made here for the amplitudes of the two kinetic
coefficients. In Tables 6.1 and 6.2 the amplitudes of the kinetic coefficients Λ

(A)
CC and Λ

(A)
PC

are presented respectively for two molecular models: the rigid spheres and a realistic
potential of the intermolecular interaction. The details of the potentials are presented
in [48]. The amplitudes are provided for several values of the rarefaction parameter
δ = [10−2, 10−1, 1, 10, 102] and the molar fraction C = [0.1, 0.25, 0.5, 0.75, 0.9] with
the oscillating parameter being θ = [0.1, 1, 10]. At first, it is seen that the impact
of the potential on both amplitudes, Λ

(A)
CC and Λ

(A)
PC , is significant for large values of

θ and δ (e.g., θ, δ ≥ 1). Actually, the largest differences are always seen for θ = 10
and δ = 100. On the contrary, the smallest ones are seen for small values of the
oscillation parameter. It seems that in high frequency oscillation flows the effect of the
intermolecular potential is diminished. Furthermore, as the molar fraction is increased
the differences between the intermolecular potentials are slightly reduced even though
it isn’t directly seen in Tables 6.1 and 6.2. It is also noted that the resonant behavior
of the amplitude Λ

(A)
PC is seen for both potentials (e.g., C = 0.5 and δ = 1). In general,

the intermolecular potential has a significant effect on the kinetic coefficients ΛCP and
ΛCC for larger values of θ and δ or as the flow tends to the hydrodynamic regime.

6.5 Concluding remarks

The rarefied oscillatory pressure- and molar fraction driven fully-developed isother-
mal binary gas mixture flow between parallel plates is computationally investigated in
terms of the mixture molar fraction C ∈ [0, 1] and the molecular mass ratio m2/m1 of
the heavy over the light species, in a wide range of the gas rarefaction parameter δ

and oscillation parameter θ, which are inversely proportional to the Knudsen number
and the oscillation frequency respectively. Modeling is based on the McCormack
kinetic model equation, subject to diffuse boundary conditions. The computed output
quantities are in dimensionless form and include macroscopic quantities of theoretical
and technological importance. More specifically, the amplitude and phase angle of
the velocity distributions and flow rates of the two species, as well as of the kinetic
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coefficients and wall shear stress of the mixture are reported. In addition, the time
evolution of the kinetic coefficient Λ̃PP and the pumping power, as well as the cycle-
average pumping power due to the pressure gradient are provided. The results refer to
the binary gas mixtures of He–Xe, He-Ar and Ne–Ar. The numerical work has been
successfully validated in various ways, including grid refinement, fulfillment of a derived
force balance benchmark expression and systematic comparisons with corresponding
works, available in the literature, at limiting conditions, such as steady-state binary
gas flow as θ → ∞ [48] and oscillatory single gas flow when C = 0 or m1/m2 = 1 [128].

The flow rate, wall shear stress and pumping power of the binary gas mixture flow
due oscillating pressure gradient have qualitative resemblance with the corresponding
ones in oscillatory single gas flow, in terms of δ and θ, but there are quantitative
deviations particularly in the flow rates depending on C and m2/m1. As in the case
of single gases, as θ is decreased (the oscillation frequency is increased), always the
amplitude of all quantities is decreased, while their phase angle is increased. The effect
of the mixture components and its molar fraction is very important on the velocities
and the corresponding flow rates of the species of the mixture, as well as the ratio of
their flow rate amplitudes.

Concerning the mixture quantities, it has been found that as m2/m1 is increased,
the kinetic coefficient amplitude Λ

(A)
P P becomes larger and the phase angle Λ

(P )
P P becomes

smaller than the corresponding ones of the single gas. The variation with respect to C

is non-monotonic, taking the maximum and minimum values for the amplitude and the
phase angle respectively at intermediate values of the molar fraction. The variation
of the amplitude Λ

(A)
P P and the phase angle Λ

(P )
P P is more significant at small and large

frequencies respectively. The time evolution of the Λ̃PP is in phase with the oscillatory
pressure gradient when δ << θ and completely out of phase when θ << δ. On the
contrary, it has been found that the mixture wall shear stress and pumping power
depend very weakly on C and m2/m1 in the whole range of δ and θ.

Concerning the species quantities and starting with the velocity distributions, it
has been found that as the oscillation frequency is increased, although the velocity
amplitudes of both species are decreased, the relative difference between the velocity
amplitudes of the light and heavy species is increased. This behavior is observed at
small δ and it becomes more pronounced as δ is increased, which is not expected,
since as it is well-known gas separation effects are decreased as the flow becomes less
rarefied and is dominated by intermolecular collisions. In parallel, the velocity phase
angles of both species are increased, without observing a specific pattern with regard
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to their phase angle difference. Obviously, a similar behavior has been observed in
the corresponding flow rates, which has been systematically investigated in terms
of the ratio of the flow rate amplitude of the light over the heavy species. In small
oscillation frequencies (large θ), the variation of the ratio of the flow rate amplitude
is the expected one, i.e., it is decreased as the flow becomes less rarefied. However,
at moderate and high oscillation frequencies the behavior is reversed and the ratio
of the flow rate amplitude is increased as the flow becomes less rarefied. It has been
found that as θ is decreased, the flow rate amplitude of the heavy species is decreased
much more significantly than of the light one and therefore, the ratio of the flow rate
amplitude of the light over the heavy species is increased. It is believed that this is due
to inertia effects, which are increased with the oscillation frequency and they influence
the velocity (and flow rate) amplitude of the heavy species much more than of the
light one. This effect is further amplified as δ is increased and the flow becomes less
rarefied, overcoming diffusion effects due to intermolecular collisions, provided that θ

is sufficiently small. This behavior depends weakly on C but very strongly on m2/m1.
It has been confirmed that at high frequencies the flow rate amplitude ratio of the
light over the heavy species, independent of δ, tends to the molecular mass ratio of
the heavy over the light species m2/m1. Furthermore, it is worthwhile to note that
the phase lag of the velocity and the flow rate of the heavy species are always larger
than the corresponding ones of the light one, while the velocity overshooting effect,
well-known in oscillatory flows, becomes more dominant as the molecular mass of the
gas species is increased. These observations are in agreement with previous remarks
concerning the inertia effect on the flow rate amplitudes of the two species.

Next, it has been seen that the kinetic coefficients Λ
(A)
CC and Λ

(A)
CP decrease monoton-

ically as δ is increased for a constant value of the oscillation parameter. The amplitude
Λ

(A)
CC varies non-monotonically in terms of the molar fraction C only for small values of

θ while the amplitude Λ
(A)
CP varies in the whole range of the oscillation parameter. In

addition, the variation of amplitude Λ
(A)
CP with respect to θ is non-monotonic, taking

the maximum for the amplitude at an intermediate value of the oscillation parameter.
This isn’t seen in the other kinetic coefficients, Λ

(A)
P P and Λ

(A)
CC , which are increased

monotonically as the oscillation parameter is increased. Furthermore, the phase angles
of the kinetic coefficients, Λ

(A)
CC and Λ

(A)
CP , are increased as the mixture becomes lighter.

Finally, the effect of the intermolecular potential is also investigated for the oscil-
latory molar fraction driven flow. It has been seen that the molecular model affects
the kinetic coefficient amplitudes, Λ

(A)
CC and Λ

(A)
CP , significantly for large values of the
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rarefaction and oscillation parameters. On the contrary, for small values of θ the effect
of the potential is diminished.
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Table 6.1 Amplitude of the kinetic coefficient Λ
(A)
CC in terms of C and δ for rigid spheres

and realistic potential of the He–Xe mixture with θ = [0.1, 1, 10].

C δ Rigid spheres Realistic potential
θ = 0.1 θ = 1 θ = 10 θ = 0.1 θ = 1 θ = 10

0.1 0.01 1.477 1.760 1.771 1.485 1.799 1.813
0.1 8.119(-1) 1.076 1.087 8.231(-1) 1.120 1.134
1 2.448(-1) 4.640(-1) 4.752(-1) 2.536(-1) 5.126(-1) 5.280(-1)
10 2.788(-2) 8.710(-2) 9.189(-2) 2.862(-2) 1.053(-1) 1.133(-1)
100 2.812(-3) 9.395(-3) 1.000(-2) 2.882(-3) 1.154(-2) 1.262(-2)

0.25 0.01 3.421 4.177 4.220 3.436 4.252 4.301
0.1 1.850 2.556 2.599 1.871 2.645 2.695
1 5.382(-1) 1.108 1.152 5.541(-1) 1.211 1.268
10 5.983(-2) 2.112(-1) 2.268(-1) 6.099(-2) 2.508(-1) 2.760(-1)
100 6.025(-3) 2.283(-2) 2.481(-2) 6.133(-3) 2.751(-2) 3.088(-2)

0.5 0.01 5.854 7.560 7.743 5.869 7.631 7.820
0.1 3.023 4.610 4.798 3.048 4.716 4.916
1 8.014(-1) 1.999 2.180 8.162(-1) 2.141 2.361
10 8.496(-2) 3.904(-1) 4.448(-1) 8.575(-2) 4.470(-1) 5.275(-1)
100 8.533(-3) 4.223(-2) 4.922(-2) 8.604(-3) 4.884(-2) 5.967(-2)

0.75 0.01 7.171 1.022(+1) 1.092(+1) 7.179 1.023(+1) 1.093(+1)
0.1 3.305 6.092 6.798 3.322 6.155 6.884
1 7.214(-1) 2.540 3.170 7.266(-1) 2.657 3.377
10 7.271(-2) 4.867(-1) 6.738(-1) 7.289(-2) 5.282(-1) 7.797(-1)
100 7.284(-3) 5.201(-2) 7.617(-2) 7.300(-3) 5.655(-2) 9.010(-2)

0.9 0.01 7.913 1.284(+1) 1.487(+1) 7.919 1.283(+1) 1.496(+1)
0.1 2.921 7.211 9.232 2.931 7.252 9.391
1 4.821(-1) 2.590 4.304 4.829(-1) 2.667 4.584
10 4.786(-2) 4.202(-1) 9.227(-1) 4.789(-2) 4.342(-1) 1.069
100 4.789(-3) 4.354(-2) 1.069(-1) 4.791(-3) 4.487(-2) 1.269(-1)
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Table 6.2 Amplitude of the kinetic coefficient Λ
(A)
CP in terms of C and δ for rigid spheres

and realistic potential of the He–Xe mixture with θ = [0.1, 1, 10].

C δ Rigid spheres Realistic potential
θ = 0.1 θ = 1 θ = 10 θ = 0.1 θ = 1 θ = 10

0.1 0.01 1.289 1.464 1.453 1.297 1.503 1.494
0.1 7.474(-1) 9.106(-1) 8.940(-1) 7.574(-1) 9.513(-1) 9.373(-1)
1 2.365(-1) 4.290(-1) 3.907(-1) 2.450(-1) 4.736(-1) 4.338(-1)
10 2.694(-2) 8.406(-2) 8.679(-2) 2.766(-2) 1.016(-1) 1.069(-1)
100 2.717(-3) 9.076(-3) 9.644(-3) 2.785(-3) 1.115(-2) 1.217(-2)

0.25 0.01 2.917 3.370 3.341 2.930 3.442 3.420
0.1 1.681 2.108 2.064 1.700 2.187 2.150
1 5.166(-1) 1.014 9.157(-1) 5.319(-1) 1.107 1.007
10 5.742(-2) 2.025(-1) 2.124(-1) 5.853(-2) 2.405(-1) 2.582(-1)
100 5.782(-3) 2.191(-2) 2.376(-2) 5.886(-3) 2.640(-2) 2.958(-2)

0.5 0.01 4.672 5.598 5.538 4.684 5.664 5.614
0.1 2.650 3.541 3.448 2.671 3.628 3.544
1 7.546(-1) 1.778 1.580 7.687(-1) 1.904 1.706
10 7.993(-2) 3.667(-1) 4.064(-1) 8.067(-2) 4.200(-1) 4.817(-1)
100 8.028(-3) 3.973(-2) 4.619(-2) 8.095(-3) 4.595(-2) 5.600(-2)

0.75 0.01 4.827 6.115 6.040 4.833 6.117 6.039
0.1 2.646 3.924 3.792 2.659 3.960 3.829
1 6.428(-1) 2.095 1.829 6.475(-1) 2.191 1.937
10 6.458(-2) 4.315(-1) 5.762(-1) 6.475(-2) 4.684(-1) 6.669(-1)
100 6.470(-3) 4.619(-2) 6.742(-2) 6.484(-3) 5.022(-2) 7.977(-2)

0.9 0.01 3.676 4.933 4.883 3.679 4.911 4.838
0.1 1.902 3.195 3.079 1.909 3.207 3.076
1 3.687(-1) 1.773 1.583 3.692(-1) 1.826 1.670
10 3.641(-2) 3.188(-1) 6.669(-1) 3.643(-2) 3.293(-1) 7.731(-1)
100 3.643(-3) 3.311(-2) 8.091(-2) 3.645(-3) 3.412(-2) 9.608(-2)
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Figure 6.1 Velocity amplitude u
(A)
a,P (y) and phase angle u

(P )
a,P (y) of each species of He–Xe,

with C = 0.5, for δ = [0.1, 1, 10] and θ = [0.1, 1, 10] (He: solid lines, Xe: dashed lines).
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Figure 6.2 Velocity amplitude u
(A)
α,P (y) and the phase angle u

(P )
a,P (y) of each species of

He–Xe, with C = [0, 0.1, 0.5, 0.9], for δ = [0.1, 1, 10] and θ = 1 (He: solid lines, Xe:
dashed lines).
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Figure 6.3 Velocity amplitude u
(A)
α,P (y) of each species of He–Xe, He-Ar and Ne–Ar,

with C = [0.1, 0.4, 0.7, 0.9], for δ = 10 and θ = 0.1.
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Figure 6.4 Kinetic coefficient amplitude Λ
(A)
PP and phase angle Λ

(P )
PP of He-Xe in terms

of δ ∈ [10−4, 102], with C = [0, 0.25, 0.5, 0.75, 0.9] and θ = [1, 10, 102].
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Figure 6.5 Kinetic coefficient amplitude Λ
(A)
PP and phase angle Λ

(P)
PP of He-Xe in terms

of the molar fraction C for δ = [0.1, 1, 10] and θ = [10−1, 1, 10, 50, 102].
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Figure 6.6 Kinetic coefficient amplitude Λ
(A)
PP and phase angle Λ

(P )
PP of Ne-Ar in terms

of the molar fraction C for δ = [0.1, 1, 10] and θ = [10−1, 1, 10, 50, 102].
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Figure 6.7 Ratio of flow rate amplitudes G
(A)
1,P /G

(A)
2,P of the species of He-Xe in terms of

δ ∈ [10−4, 102], with C = [0, 05, 0.35, 0.65, 0.95] and θ = [10−2, 0.1, 1, 10, 102].
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Figure 6.8 Ratio of flow rate amplitudes G
(A)
1,P /G

(A)
2,P of the species of Ne-Ar in terms of

δ ∈ [10−4, 102], with C = [0, 05, 0.35, 0.65, 0.95] and θ = [10−2, 0.1, 1, 10, 102].

175

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 08:10:15 EEST - 3.144.111.108



Oscillatory pressure and molar fraction driven rarefied binary gas mixture flow
between parallel plates

Figure 6.9 Ratio of flow rate amplitudes G
(A)
1,P /G

(A)
2,P of the species of He-Xe and Ne-Ar,

with C = 0.5, in terms of θ ∈ [10−4, 102] for δ = [0.1, 1, 10].
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Figure 6.10 Difference of the flow rate phase angles G
(P )
2,P −G

(P )
1,P of the species of He-Xe in

terms of δ ∈ [10−4, 102], with C = [0.05, 0.35, 0.65, 0.95] and θ = [10−2, 0.1, 1, 10, 102].
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Figure 6.11 Time-dependent flow rates G̃1,P (t) of He, G̃2,P (t) of Xe and Λ̃PP (t) of
He–Xe, with C = 0.5, over one cycle t ∈ [0, 2π] for δ = [0.1, 1, 10] and θ = [0.1, 10].
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Figure 6.12 Wall shear stress amplitude ϖ
(A)
W,P and phase angle ϖ

(P )
W,P of He-Xe in terms

of C for θ = [0.1, 1, 10, 50, 102] and δ = [0.1, 1, 10].
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Figure 6.13 Normalized time-dependent pumping power Ẽ (t) /dx of He–Xe, with
C = [0, 0.1, 0, 5, 0.9], over one cycle t ∈ [0, 2π] for δ = [0.1, 1, 10] and θ = [0.1, 10].
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Figure 6.14 Normalized cycle-average pumping power Ē/dx of He–Xe and Ne–Ar in
terms of C for δ = [0.1, 1, 10] and θ = [0.1, 1, 10, 102] (ĒS is the steady-state pumping
power).
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Figure 6.15 Velocity amplitude u
(A)
a,C (y) and phase angle u

(P )
a,C (y) of each species of

He–Xe, with C = 0.5, for δ = [0.1, 1, 10] and θ = [0.1, 1, 10] (He: solid lines, Xe: dashed
lines).

182

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 08:10:15 EEST - 3.144.111.108



6.5 Concluding remarks

Figure 6.16 Kinetic coefficient amplitudes Λ
(A)
CC and Λ

(A)
PC of He-Xe in terms of δ ∈

[10−4, 102], with C = [0, 0.25, 0.5, 0.75, 0.9] and θ = [1, 10, 102].

183

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 08:10:15 EEST - 3.144.111.108



Oscillatory pressure and molar fraction driven rarefied binary gas mixture flow
between parallel plates

Figure 6.17 Kinetic coefficient amplitude Λ
(A)
CC and phase angles Λ

(P )
CC of He-Xe in terms

of the molar fraction C for δ = [0.1, 1, 10] and θ = [10−1, 1, 10, 50, 102].

184

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 08:10:15 EEST - 3.144.111.108



6.5 Concluding remarks

Figure 6.18 Kinetic coefficient amplitude Λ
(A)
PC and phase angle Λ

(P )
PC of He-Xe in terms

of the molar fraction C for δ = [0.1, 1, 10] and θ = [10−1, 1, 10, 50, 102].
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Chapter 7

Oscillatory boundary driven
rarefied gas flow between parallel
plates

7.1 Introduction

Oscillatory boundary-driven flows have been widely investigated in the whole range
of the Knudsen number and the oscillation frequency. More specifically, the oscillatory
shear driven rarefied gas flow (or the oscillatory Couette flow) has been solved with
deterministic modelling in [144, 28, 147] and stochastic modelling in [145, 146]. Even
though this flow configuration has already been studied, it is added in the current
Thesis since it was used in order to test the complex kinetic codes before the other flow
configurations were investigated. The oscillatory shear-driven flow is computed with
the linearized unsteady BGK kinetic model equation and the solution is benchmarked
with the corresponding results in [28]. The flow is characterized by the gas rarefaction
and the oscillation parameter. Furthermore, two parallelization strategies based on
Open Multi-Processing (OpenMP) [205] and OpenACC® [206] directives are proposed
and tested. Both techniques use a set of directives to specify code and data that
can be parallelized. The OpenMP of shared memory model uses multiple threads to
express the parallelism however it can be used only in a single computing node. The
OpenACC directives supports offloading of both computation and data from a host
device (typically a CPU host) to an accelerator device (typically a GPU).
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Oscillatory boundary driven rarefied gas flow between parallel plates

7.2 Flow configuration

Consider the rarefied oscillatory fully-developed isothermal monatomic gas flow
between two infinite long parallel plates. The flow is in the x′−direction normal to the
plates, which are fixed at y′ = ±H/2. The flow is caused by the oscillating lower plate
at y′ = −H/2 and the velocity of the plate is written as

ŨW = R [UW exp (−iωt′)] , (7.1)

where R denotes the real part of a complex expression, i =
√

−1, t′ is the time
independent variable, ω is the oscillation (cyclic) frequency and UW denotes the
amplitude of the oscillating plate. The oscillating plate yields an unsteady gas flow in
the y′−direction, which depends harmonically on time and it is characterized by its
bulk velocity given by

Ũ (t′, x′) = R [U (x′) exp (−iωt′)] , (7.2)

and its shear stress given by

P̃xy (t′, x′) = R [Pxy (x′) exp (−iωt′)] . (7.3)

The functions [U (x′) , Pxy (x′)] are complex ones and they aren’t in phase neither with
each other nor with the oscillating plate.

The flow parameters defining the problem are the gas rarefaction parameter δ and
the oscillation parameter θ. The first one is given by

δ = PH

µυ
(7.4)

where µ is the gas viscosity at some reference temperature T and υ =
√

2RT is the
most probable molecular speed (R = k/m, with k denoting the Boltzmann constant
and m the molecular mass, is the gas constant). The second one is the oscillation
parameter θ which is written as

θ = P

µω
. (7.5)

Next, it is suitable to introduce the dimensionless independent variables

x = x′/H, y = y′/H, t = t′ω. (7.6)
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7.3 Kinetic formulation and numerical scheme

Then, the bulk velocity and shear stress in Eqs. (7.2)-(7.3) are non-dimensionalized by
(UW ) and (υ/ (2UW P )) respectively to yield:

ũ (t, x) = R [u (x) exp (−it)] =

= R
[
u(A) (x) exp

[
i
(
u(P ) (x) − t

)]]
= u(A) (x) cos

[
t − u(P ) (x)

]
(7.7)

p̃xy (t, x) = R [pxy (x) exp (−it)] =

= R
[
p(A)

xy (x) exp
[
i
(
p(P )

xy (x) − t
)]]

= p(A)
xy (x) cos

[
t − p(P )

xy (x)
]

. (7.8)

In Eqs. (7.7)-(7.8) the superscripts (A) and (P ) refer to the amplitude and the phase
angle respectively of each complex quantity. The amplitude and the phase of both
quantities are computed in a wide range of the rarefaction and oscillation parameters.
The shear stress at the wall is denoted by PW .

7.3 Kinetic formulation and numerical scheme

The flow is simulated at the kinetic level by the time-dependent BGK kinetic model
equation [33], which is written as

∂f̃

∂t′ + ξx
∂f̃

∂x′ = P

µ

(
fM − f̃

)
. (7.9)

Here, f = f (t′, x′, ξ) is the unknown distribution function which is a function of time
t′, position x′ and molecular velocity vector ξ = (ξx, ξy, ξz). The local Maxwellian
distribution is written as

fM = n
(

m

2πkT

)3/2
exp

[
−m

[
ξ − Ũ (t′, x′)

]2/
(2kT )

]
, (7.10)

where the number density n and the temperature T are constant due to the isothermal
fully developed flow assumption. The velocity and shear stress (defined in Eqs. (7.2)-
(7.3)) may be obtained by the first and second moments of f according to

Ũ (t′, x′) = 1
n

∫
ξxf̃ (t′, x′, ξ) dξ (7.11)

and
P̃xy (t′, x′) = m

∫
ξx

(
ξy − Ũ

)
f̃ (t′, x′, ξ) dξ, (7.12)
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Oscillatory boundary driven rarefied gas flow between parallel plates

respectively.
Next, the condition of small velocity amplitude of the oscillating wall (UW ≪ 1)

allows the linearization of Eq. (7.9) by representing the unknown distribution function
as

f (t′, x′, ξ) = f0

[
1 + h̃ (t, x, c) UW

υ

]
, (7.13)

where c = ξ/υ, f0 = n
π3/2υ3 exp [−c2] is the absolute Maxwellian and h̃ (t, x, c) is the

unknown perturbed distribution function. Substituting expressions (7.13) into Eq.
(7.9) and introducing the dimensionless variables, yields the following linearized BGK
kinetic model equation:

δ

θ

∂h̃

∂t
+ cx

∂h̃

∂x
= δ

[
2cyũ (t, x) − h̃ (t, x, c)

]
. (7.14)

Since Eq. (7.14) is linear, it is convenient to introduce the complex distribution function
h (x, c) so that

h̃ (t, x, c) = R [h (x, c) exp (−it)] . (7.15)

Then, Eq. (7.14) is rewritten in terms of h as

h

(
δ − δ

θ
i

)
+ cx

∂h

∂x
= 2δcyu (x) . (7.16)

The non-dimensionalization and linearization procedures are also applied to the velocity
and the shear stress given by Eqs. (7.11) and (7.12) to obtain:

u (x) = 1
π3/2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
cyhe−c2

dcxdcydcz, (7.17)

pxy (x) = 1
π3/2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
cxcyhe−c2

dcxdcydcz. (7.18)

At this stage the components cy and cz of the molecular velocity vector may be
eliminated by applying the projection procedure and introducing the reduced perturbed
distribution function

Y (x, cx) = 1
π

∫ ∞

−∞

∫ ∞

−∞
cyh (x, cx, cy, cz) exp

[
−c2

y − c2
z

]
dcydcz. (7.19)
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7.3 Kinetic formulation and numerical scheme

Equation (7.19) is multiplied by cy exp
(
−c2

y − c2
z

)
/π and the resulting equation is

integrated over cy and cz to deduce
(

δ − i
δ

θ

)
Y + cx

∂Y

∂x
= δu. (7.20)

Operating similarly on the moments of h, given by Eqs. (7.17)-(7.18), yields:

u (x) = 1√
π

∫ ∞

−∞
Y e−c2

xdcx, (7.21)

pxy (x) = 1√
π

∫ ∞

−∞
cxY e−c2

xdcx. (7.22)

It is noted that the distribution function Y as well as the velocity u and the shear
stress pxy are complex quantities.

Next, the same non-dimensionalization and linearization procedures are also applied
in the boundary conditions. The Maxwell diffuse boundary conditions supplementing
the governing equation (7.20) are written as

Y (−1/2, cx) = 1, cx > 0 (7.23)

Y (1/2, cx) = 0, cx < 0. (7.24)

The kinetic formulation of the oscillatory Couette flow is defined by Eq. (7.20) with the
associated moments (7.21)-(7.22) subject to boundary conditions (7.23)-(7.24). The
numerical solution is based on the DVM method which substitutes the continuum
spectrum cx ∈ [0, ∞) a discrete set cx,m, m = 1, 2...M , which is taken to be the roots
of the Legendre polynomial of order M , accordingly mapped from [−1, 1] to [0, ∞).
The discretization in the physical space is based on a second order central difference
scheme. The discretized equations are solved in an iterative manner and the iteration
map is concluded when the criteria

∣∣∣u(k+1)
Re,i − u

(k)
Re,i

∣∣∣ < ε and
∣∣∣u(k+1)

Im,i − u
(k)
Im,i

∣∣∣ < ε (7.25)

is fulfilled. Here, ε is the tolerance parameter, the superscript k denotes the iteration
index, i = 1, 2...L + 1 are the nodes in the physical space, while uRe,i and uIm,i are the
real and imaginary part of macroscopic velocity respectively at each node (i).

191

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 08:10:15 EEST - 3.144.111.108



Oscillatory boundary driven rarefied gas flow between parallel plates

Here it is interesting to note that if the complex notation is directly applied
in a computer code then the discretization in the physical space is similar to the
corresponding one of the steady-state kinetic equations. However, if the governing
equation (7.20) is separated into real and imaginary parts then specific attention should
be given in the discretization process. At first, the complex distribution function is
written as Y = YRe + iYIm then it is inserted into Eq. (7.20) and finally the real and
imaginary parts are given in the discretized form:

cx,m
∂Y

(k+1/2)
Re

∂x

∣∣∣∣∣∣
i,m

+ δ Y
(k+1/2)

Re

∣∣∣
i,m

+ δ

θ
YIm

(k+1/2)
∣∣∣∣∣
i,m

= δ u
(k)
Re

∣∣∣
i
, (7.26)

cx,m
∂Y

(k+1/2)
Im

∂x

∣∣∣∣∣∣
i,m

+ δ Y
(k+1/2)

Im

∣∣∣
i,m

− δ

θ
YRe

(k+1/2)
∣∣∣∣∣
i,m

= δ u
(k)
Im

∣∣∣
i
. (7.27)

Eqs. (7.26)-(7.27) are rewritten as

cx,m

Y
(k+1/2)

Re,i+ 1
2 ,m

− Y
(k+1/2)

Re,i− 1
2 ,m

h
+ δ

2

(
Y

(k+1/2)
Re,i+ 1

2 ,m
+ Y

(k+1/2)
Re,i− 1

2 ,m

)
+ δ

2θ

(
Y

(k+1/2)
Im,i+ 1

2 ,m
+ Y

(k+1/2)
Im,i− 1

2 ,m

)
= δ

2
(
uRe,i+ 1

2
+ uRe,i− 1

2

)(k)
,

(7.28)

cx,m

Y
(k+1/2)

Im,i+ 1
2 ,m

− Y
(k+1/2)

Im,,i− 1
2 ,m

h
+ δ

2

(
Y

(k+1/2)
Im,i+ 1

2 ,m
+ Y

(k+1/2)
Im,,i− 1

2 ,m

)
− δ

2θ

(
Y

(k+1/2)
Re,i+ 1

2 ,m
+ Y

(k+1/2)
Re,i− 1

2 ,m

)
= δ

2
(
uIm,i+ 1

2
+ uIm,,i− 1

2

)(k)
,

(7.29)

where h is the distance between adjacent nodes in the physical space. It is seen that
the two equations are coupled and the term Y

(k+1/2)
Im,i+ 1

2 ,m
is in the Eq. (7.28) even though

it is computed from Eq. (7.29). Therefore, Eq. (7.29) is solved in terms of Y
(k+1/2)

Im,i+ 1
2 ,m

and then the solution is inserted into Eq. (7.28) which is given by

Y
(k+1/2)

Re,i+ 1
2 ,m

=
[
1 + T0 + T02

θ2 (1 + T0)

]−1



(
1 − T0 − T 02

θ2(1+T 0)

)
Y

(k+1/2)
Re,i− 1

2 ,m

−T 0(1−T 0)
θ(1+T 0) Y

(k+1/2)
Im,i− 1

2 ,m

+T0
(
uRe,i+ 1

2
+ uRe,i− 1

2

)(k)

+ T 02

θ(1+T 0)

(
uIm,i+ 1

2
+ uIm,i− 1

2

)(k)


, (7.30)

where T0 = hδ/2cx,m. The imaginary part is given by Eq. (7.29) since the real part of
the distribution function has been already computed by Eq.(7.30). It is noted that Eq.
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7.4 Parallelization techniques

(7.30) is derived for positive values of the molecular velocity cx,m. In conclusion, the
use of Eqs. (7.28)-(7.29) isn’t encouraged since the complex solution of Eq. (7.20) is
more easily solved.

7.4 Parallelization techniques

In all the deterministic kinetic solvers the computational cost is high since the
investigated problems can be from 2D up to 5D. In the current flow configuration,
the cost is the minimum since the problem is 1D in the physical space and 1D in
the molecular velocity space. In DVM the continuum molecular velocity spectrum is
replaced by a discrete set of molecular velocities, and thus the partial integrodifferential
kinetic equation (7.20) is reduced to a set of differential equations. Each of these
differential equations corresponds to one discrete velocity and can be solved separately.
Therefore, the main strategy for parallelization is to assign each molecular velocity in
a different processor. The estimates of the distribution functions at each processor
are summed to estimate the updated macroscopic quantities [207]. The solution is
performed in an iterative manner and the update data are exchanged between different
molecular velocities one time per iteration. In the present Section, the aforementioned
remarks are applied into two parallel versions of the kinetic solver, the first one is
based on OpenMP directives while the second one is based on OpenACC directives.

7.4.1 Kinetic solver with OpenMP directives

Usually each CPU can solve independently a number of equations by using MPI
processes or by employing OpenMP threads. With the OpenMP directive “!$omp
parallel do”, the iterations of a do-loop are divided into the threads of the CPU and
therefore the lop can be executed in parallel. This is also called loop-level parallelism
[208] and it usually involves making small changes to the source code where the
performances bottlenecks are seen. However, there is a more generalized parallel region
construct to express parallel execution where multiple loops could be inside this region.
This practice has the benefit that it can reduce the overhead of emerging threads and
synchronization that is necessary when each parallel loop or region is created [208].

A parallel region is created with the directive “!$omp parallel clause” and it
includes the kinetic iteration algorithm. The term “clause” refers to the data that
can be “private”, “shared”, “default”, “reduction”, and “if ”. In the kinetic solver, the
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Oscillatory boundary driven rarefied gas flow between parallel plates

clause “private” is used to identify variables that are used as temporary within the
parallel region such as the indexes of the loops or some coefficients necessary for the
marching scheme. Also, if the distribution function isn’t stored for all the nodes in the
molecular velocity space, then it should also be declared as “private” in order to avoid
race conditions. The race condition is explained in the next Section. Moreover, the
“shared” variables typically include the roots and weights of the quadrature integration
scheme and the macroscopic quantities from the previous iterations. Actually, these
variables don’t change their values in the parallel region. If it is necessary, only a single
thread can update them in order to avoid race conditions. The “reduction” variables
include the new macroscopic quantities which are computed with a reduction process
from the new distribution functions.

Next, inside the parallel region the available OpenMP threads are mapped to the
iterations of the loop with the molecular velocities. Each OpenMP thread executes a
part of the loop. The new distribution functions are computed serially in the inner
loops with the marching scheme. It is noted that since the OpenMP threads have
already been assigned with work they can’t be redeployed to acquire new computational
load. Also, if the distribution functions are kept only for the nodes in the physical
space then the distribution functions must be declared private. Then, the macroscopic
quantities are computed and finally the relative error is computed. This procedure
terminates the current iteration and then the error is checked in order to either finish
or continue the computations. If the computations are continued, then the OpenMP
threads are assigned with new computational work without having to be recreated.

7.4.2 Kinetic solver with OpenACC directives

The parallelism in a GPU is expressed differently. OpenACC defines three levels of
parallelism: gang, worker, and vector. Additional execution may be marked as being
sequential. This structure is also the same for CUDA where the equivalent to gang
is the block, the equivalent to worker is the warp and the equivalent to vector is the
thread. Vector parallelism is applied with vector operations that are performed with a
particular vector length, indicating how many data elements may be operated on with
the same instruction. Gang parallelism applied with gangs that work independently of
each other and may not synchronize. Worker parallelism is between vector and gang
levels. Using these three levels of parallelism, plus sequential, a programmer can map
the parallelism in the code to any device. The more explicitly this mapping is done
the less portable the code is even though it maximizes efficiency [209].
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7.4 Parallelization techniques

The changes in the kinetic iteration algorithm are shown in Fig. 7.1 where the
typical flow chart has been introduced with the OpenACC additions. The data region
will be explained later. At the first the attention is focused inside the iteration map
where the computations are made. The do-loops where the values of the previous
iterations are stored, are parallelized with the gang clause before each do-loop (“!$acc
parallel loop gang”). This accounts for the 1st acc parallel loop that is seen in Fig. 7.1.

Next, the molecular velocities are mapped to the gangs of the GPU. A single gang
solves each molecular velocity. The number of gangs depends on the GPU however
it can be around hundreds or even thousands. Here, the strategy is divided into two
cases depending on whether the distribution function is stored at the memory for
all molecular velocities. If it is stored then the parallel region is enabled with the
directive “!$acc parallel loop gang”. This is the first strategy and it is usually applied
in 1D problems where the spatial nodes are limited. However, in the second strategy,
where the distribution function is stored at the memory only for spatial nodes, the
distribution function needs to be declared “private”. This means that each gang has a
private copy of the distribution function in its memory. This is necessary only when
the distribution function of the current molecular velocity is kept in the memory. Thus,
when several gangs are employed, they need to compute their copy of the distribution
function for a certain molecular velocity. By making private the distribution function,
each gang computes a certain distribution function and therefore it works only on
certain part of data. Otherwise if the distribution function isn’t made private, the
gang one could affect the distribution function of the gang two and then a data race is
encountered leading to incorrect results. Of course, by keeping Y private for each gang
this increases the memory in the GPU since the gangs are usually several hundred.
Hence, the number of gangs is going to be limited depending on how many variables
are being made private. After each loops ends the directive “!$acc end parallel loop” is
needed.

The next level of parallelism is introduced in the following do-loops which compute
the new distribution functions and the macroscopic quantities and it is shown with the
color green in Fig. 7.1. In this part of the solver a severe bottleneck is encountered. In
the serial and parallel versions, a data dependency exists when the new distribution
function is computed which leads to slower computations. In the OpenACC version,
due to the data dependency, this part of the code is executed sequentially with the
following command: “!$acc loop seq”. Eliminating the data dependency will decrease
the computation time.
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Oscillatory boundary driven rarefied gas flow between parallel plates

The computation of the macroscopic quantities is a reduction process and it is
different in the two strategies. It is noted that OpenACC does not support array
reduction while OpenMP does. When one or more loop iterations need to access an
element in memory at the same time data races can occur. For instance, if one loop
iteration is modifying the value contained in a variable and another is trying to read
from the same variable in parallel, different results may occur depending on which
iteration occurs first. In serial programs, the sequential loops ensure that the variable
will be modified and read in a predictable order, but parallel programs don’t make
guarantees that a particular loop iteration will happen before another.

In the first strategy, the gangs are mapped to the spatial nodes and the vectors
to the velocity nodes. The macroscopic quantities are reduced to temporary values
and then each vector adds its partial sum to the general one that is assigned to a gang.
In the second strategy, the clause “atomic” is needed since each gang has a private
copy of the distribution function. The “atomic” directive will ensure that two vectors
will not attempt to perform the update in the macroscopic quantity simultaneously.
Finally, the calculations for the convergence criterion are parallelized with the directive
“!$acc parallel loop gang” as it is shown in Fig. 7.1. The error is checked in the host
(or the CPU) and if an extra iteration is needed the same processes are repeated.

Even after applying all the aforementioned remarks there is a high chance that the
solver is much slower than the serial CPU version. It is critical to understand that the
main optimization in GPU’s is done by handing efficiently the memory access. Since
there is a separate memory in a GPU it is better to copy all data in the GPU with a
single transfer instead of copying continuously data from the host memory to the GPU.
In CUDA the memory optimization is of major importance since the programmer can
handle all the available types of memory, the global, the shared and the texture memory.
In OpenACC the main difference with CUDA is that the parallel loops will run in the
GPU even if there aren’t any data declared in the GPU while in CUDA the data have
to be declared before the computations. Therefore, in OpenACC the computations are
made in the GPU however the constant transfer of data is maximizing the overall time.
All of the above point to the fact that each host code needs a region where the data
are defined in the GPU. Thus the directive “!$acc data” is applied which ensures that
all the variables used in the computations are declared in the GPU and they are stored
there for as long as the computations continue. After convergence has been reached
then the data region ceases to exist. Each variable is defined differently in the directive
and a complete analysis is given in [209]. Here for the kinetic solver, the clause “copyin”
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is used for variables such as the roots and the weights of the integration method, the
clause “copy” for variables such as the macroscopic quantities and the clause “create”
for variables such as the arrays where the previous values of the macroscopic quantities
are stored. It is mentioned that the size of all variables must be declared explicitly.

After optimizing data transfer the next step is to optimize the compute kernel.
There are two tuning choices: changing the number of vectors per gang or changing
the total number of gangs used. The parallel or kernel directives are extended in order
to add the “vector_length” which the default value is 32 and can change to 1, 32, 64,
128, 256, 512, 1024. The “num_gangs” changes the number of gangs to the value that
is the most efficient. It is noted that all these optimizations need to be verified with a
profiler which is usually the PGPROF [210] for OpenACC and CUDA FORTRAN.

7.5 Results and discussion

Computational results include the amplitude and the phase angle of the shear
stress at the walls pW . The results are benchmarked with the Tables 2 and 3 from
[28]. Different grids in the physical and velocity spaces have been applied and very
good agreement between the present results and [28] is achieved with M = 300 and
N = 10000. In addition, the parallelization strategies are benchmarked and the
corresponding computational times and the speed-up are presented for different grids
in the physical and velocity spaces.

In Table 7.1, the wall shear stress amplitude p
(A)
W (∓1/2) is presented in terms of

the gas rarefaction δ ∈ [10−2, 50] and the oscillation parameter θ = [0.1, 1, 10, 50]. For
any given δ, p

(A)
W (−1/2) is monotonically decreased as θ is increased while p

(A)
W (1/2) is

monotonically increased. In addition, for any given θ, as δ is increased, p
(A)
W (1/2) is

monotonically decreased. The dependency of p
(A)
W (−1/2) on δ is more complex. At

first, it is decreased until a certain value in the interval 0.1θ ≤ δ ≤ θ, where a local
minimum is observed, then it is increased up to some δ, which depends on θ, and finally
as δ is further increased it becomes constant. It is noted that for all θ, as δ → 0, the
well-known analytical steady-state free molecular flow rate equal to 1/ (2

√
π) = 0.282

[28], is properly recovered. Also, for small values of θ and adequately dense atmosphere
(large values of δ), p

(A)
W (1/2) tends to diminish while the value of p

(A)
W (−1/2) becomes

constant. This behavior, which appears in high oscillation frequencies (small θ) is due
to inertia forces and the fluid is rapidly reduced as it propagates in the physical space.
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Oscillatory boundary driven rarefied gas flow between parallel plates

In Table 7.2, the wall shear stress phase angle p
(P )
W (∓1/2) is presented in terms of

the gas rarefaction δ ∈ [10−2, 50] and the oscillation parameter θ = [0.1, 1, 10, 50]. For
any given θ, as δ is increased, i.e., as the oscillation frequency is increased, the phase
angle p

(P )
W (−1/2) is decreased until a certain value and then it is slightly increased. As δ

is further increased it becomes constant. On the other hand, the phase angle p
(P )
W (1/2)

is monotonically increased as δ is increased. It is noted that for all θ, as δ → 0,
the phase angle at both walls becomes zero since the steady-state flow is recovered.
Furthermore, in terms of a constant value of δ the behavior is more complex. For
δ ≤ 0.1, as θ is increased, p

(P )
W (−1/2) is monotonically increased, while for 0.1 < δ < 8

it is initially decreased until some value of θ, where a local minimum is observed, and
then it is increased. For δ > 8, the phase angle p

(P )
W (−1/2) is monotonically decreased

as θ is increased. It is also noted that the phase angle p
(P )
W (1/2) is monotonically

decreased as θ is increased. Finally, the aforementioned remarks for both the amplitude
and the phase angle of the wall shear stress are in agreement with the corresponding
ones in [28].

Next, the computational time for three versions of the kinetic solver are presented
in Table 7.3. The versions are: serial, parallelized with the OpenMP directives (4 and
8 threads) and parallelized with the OpenACC directives. Here, since the flow is 1D,
the OpenACC version is the first of the cases mentioned in Section 7.4.2. The tested
CPU is the INTEL® Core i7-7700K @4.2 GHz with a maximum number of 8 threads
and the tested GPU is the NVIDIA® TITAN Xp. The results have been obtained for
M = 80, 300, 1000 and N = 103, 104, 105. The execution time of all versions has been
measured for 389 iterations (simulation case for δ = θ = 10). The computational time
of the serial version is always the largest and it is considered as the reference case.

At first, it is seen that the OpenACC version always needs the least time except
for M = 80 and N = 104, 105 where the OpenMP version with 8 threads exceeds it.
It seems that the increased number of spatial nodes affects the time and since the
molecular velocities aren’t enough, the GPU isn’t fully used. Both OpenMP versions
decrease the computational time however it seems that the one with the 8-threads
isn’t as efficient as the one with the 4-threads. The decrease in computational time
isn’t equivalent to the employed threads. However, the additional threads aren’t fully
employed since the current tests are made on the operating system Windows®. It is
noted that the parallelized versions haven’t been optimized. The loop scheduling is
the default one and it is done by the PGI® compiler. A more detailed analysis on the

198

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 08:10:15 EEST - 3.144.111.108



7.6 Concluding remarks

scheduling of the OpenMP threads and more importantly on the gangs and the vector
length of the GPU could further decrease the computational time.

Finally, the speed-up between the serial and the parallelized versions is defined as
S = Tserial/Tpar where par denotes each parallelized version, the one with 4 OpenMP
threads, the other one with 8 OpenMP threads and the final one with the OpenACC
directives. In Table 7.4, the speed-up S is presented in terms of several values of the
velocity and physical space grids for the three parallelized versions. It is seen that the
OpenACC version has the largest speed-up in comparison with the OpenMP versions.
The speed-up of the OpenACC version is increased as the velocity grid is increased. As
the spatial nodes are increased the speed-up is also increased. However, the increase is
larger when the molecular velocities are increased. This behavior is expected since they
are directly connected to the gangs of the GPU. On the contrary, the spatial nodes are
executed sequentially as the marching scheme is applied and therefore this stalls the
computations leading to smaller speed-up. It is noted that the achieved occupancy
is only 10% out of 100% when no loop scheduling is applied. It is possible that the
speed-up will become larger if optimization techniques are applied.

Furthermore, the ideal speed-up in CPUs is linear which means that for 4 threads
the ideal speed-up is 4. From Table 7.4, it is seen that the OpenMP version with
the 4-threads presents a close to ideal behavior for most velocity and spatial grids.
However, the OpenMP version with the 8-threads presents a worse behavior. While it
increases the speed-up, the increase isn’t equivalent to the more employed threads. It
is mentioned before that a more appropriate operating system is needed for the current
tests. If the same OpenMP version runs in the HPC facility GRNET-ARIS, which uses
the processor Intel XEON E5-2680v2 with 20 cores, the speed-up increases to 18.5 and
it is considered sufficient.

7.6 Concluding remarks

The time-dependent isothermal fully developed rarefied gas flow between parallel
plates driven by harmonically oscillating plate is benchmarked with the corresponding
results in [28]. The solution is based on the linearized unsteady BGK kinetic model
equation. The two parameters characterizing the flow are the gas rarefaction and the
oscillation parameters. The results are in very good agreement with [28] and a brief
discussion about the amplitude and the phase angle of both walls is included.
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Oscillatory boundary driven rarefied gas flow between parallel plates

Next, two parallelization strategies based on the OpenMP and OpenACC directives
are presented. In the OpenMP version, the molecular velocities are executed in parallel
while in the OpenACC version the parallel execution includes both molecular velocities
and spatial nodes. It has been seen that both versions decrease computational time
and increase the speed-up between them and the serial version. Between the two
parallel versions, the faster one is the OpenACC version, which runs on a GPU, and it
presents a speed-up of 15.5 for the denser grids. In addition, the parallel versions aren’t
optimized and the loop scheduling is based on the compiler. Optimizing the loops
could decrease further the computational time. It is noted that the directives provide
a reasonable speed-up without changing significantly the original FORTRAN code
and this is their most significant advantage. The main disadvantage of the OpenMP
method is that it is restricted to a single computing node. The main disadvantage of
the OpenACC method is that it doesn’t achieve the maximum efficiency in a parallel
code. In order to achieve it, the CUDA programming model must be used. A recent
example of the capabilities of modelling based on CUDA is presented in [211] where a
program based on a single GPU outcomes a MPI parallelized CPU program running
on 96 CPU cores.

Finally, the parallelization strategies reported in this Chapter are mostly used for
two dimensional flows such as the rarefied gas flow in a comb-type assembly which is
presented in the next Chapter.
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Table 7.1 Wall shear stress amplitude p
(A)
W in terms of gas rarefaction parameter δ and

oscillation parameter θ.

δ p
(A)
W

θ = 0.1 θ = 1 θ = 10 θ = 50
y = −1/2 y = 1/2 y = −1/2 y = 1/2 y = −1/2 y = 1/2 y = −1/2 y = 1/2

0 2.82(-1) 2.82(-1) 2.82(-1) 2.82(-1) 2.82(-1) 2.82(-1) 2.82(-1) 2.82(-1)
0.01 2.80(-1) 2.75(-1) 2.80(-1) 2.80(-1) 2.80(-1) 2.80(-1) 2.80(-1) 2.80(-1)
0.05 2.79(-1) 2.35(-1) 2.71(-1) 2.70(-1) 2.71(-1) 2.71(-1) 2.71(-1) 2.71(-1)
0.1 2.81(-1) 1.89(-1) 2.63(-1) 2.58(-1) 2.61(-1) 2.61(-1) 2.61(-1) 2.61(-1)
0.5 2.82(-1) 3.84(-2) 2.52(-1) 1.80(-1) 2.09(-1) 2.08(-1) 2.08(-1) 2.08(-1)
1 2.82(-1) 7.33(-3) 2.66(-1) 1.11(-1) 1.74(-1) 1.68(-1) 1.70(-1) 1.69(-1)
2 2.82(-1) 4.99(-4) 2.70(-1) 4.19(-2) 1.47(-1) 1.20(-1) 1.26(-1) 1.25(-1)
4 2.82(-1) 6.77(-6) 2.69(-1) 5.91(-3) 1.53(-1) 6.53(-2) 8.88(-2) 8.21(-2)
6 2.69(-1) 9.37(-4) 1.62(-1) 3.45(-2) 7.74(-2) 6.00(-2)
8 1.63(-1) 1.78(-2) 7.70(-2) 4.57(-2)
10 1.63(-1) 9.14(-3) 8.03(-2) 3.51(-2)
15 1.62(-1) 1.72(-3) 8.65(-2) 1.77(-2)
20 1.62(-1) 3.24(-4) 8.70(-2) 8.69(-3)
30 8.66(-2) 2.08(-3)
40 8.66(-2) 4.98(-4)
50 8.66(-2) 1.19(-4)
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Oscillatory boundary driven rarefied gas flow between parallel plates

Table 7.2 Wall shear stress phase p
(P )
W in terms of gas rarefaction parameter δ and

oscillation parameter θ.

δ p
(P )
W

θ = 0.1 θ = 1 θ = 10 θ = 50
y = −1/2 y = 1/2 y = −1/2 y = 1/2 y = −1/2 y = 1/2 y = −1/2 y = 1/2

0.01 -2.58(-3) 1.65(-1) -4.49(-4) 1.74(-2) 0 1.74(-3) 0 3.48(-4)
0.05 -1.92(-2) 7.03(-1) -7.25(-3) 8.31(-2) -8.09(-4) 8.42(-3) -1.62(-4) 1.68(-3)
0.1 -2.49(-2) 1.25 -2.22(-2) 1.61(-1) -2.64(-3) 1.65(-2) -5.30(-4) 3.30(-3)
0.5 -1.90(-2) 4.28 -1.59(-1) 7.14(-1) -3.81(-2) 8.12(-2) -7.72(-3) 1.63(-2)
1 -1.88(-2) 6.97 -1.87(-1) 1.31 -1.16(-1) 1.72(-1) -2.44(-2) 3.46(-2)
2 -1.88(-2) 1.12(+1) -1.66(-1) 2.28 -3.12(-1) 3.93(-1) -7.83(-2) 8.05(-2)
4 -1.88(-2) 1.80(+1) -1.66(-1) 3.73 -5.20(-1) 9.56(-1) -2.50(-1) 2.11(-1)
6 -1.66(-1) 4.63 -5.23(-1) 1.57 -4.45(-1) 3.92(-1)
8 -5.08(-1) 2.18 -5.87(-1) 6.16(-1)
10 -5.06(-1) 2.79 -6.56(-1) 8.71(-1)
15 -5.06(-1) 4.30 -6.69(-1) 1.57
20 -5.06(-1) 5.83 -6.52(-1) 2.28
30 -6.50(-1) 3.68
40 -6.51(-1) 5.08
50 -6.51(-1) 6.48

Table 7.3 Computational time in seconds for different versions of the kinetic solver
with several grids M = 80, 300, 1000 and N = 103, 104, 105

M N Serial OpenMP-4 threads OpenMP-8 threads OpenACC
80 103 1.3 0.4 0.7 0.6

104 13.5 4.5 2.5 3.9
105 135.5 40.3 24.8 36.8

300 103 4.9 1.5 1.1 0.8
104 50.9 15.1 9.0 5.1
105 512.8 141.9 88.4 49.5

1000 103 17.1 5.5 4.0 1.4
104 186.9 55.2 42.3 11.8
105 1857.3 540.6 411.5 119.9
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7.6 Concluding remarks

Table 7.4 Speed-up S for different versions of the kinetic solver with several grids
M = 80, 300, 1000 and N = 103, 104, 105

M N OpenMP-4 threads OpenMP-8 threads OpenACC
80 103 3.1 1.7 2.1

104 3.0 5.4 3.5
105 3.4 5.5 3.7

300 103 3.4 4.4 6.4
104 3.4 5.7 9.9
105 3.6 5.8 10.4

1000 103 3.1 4.3 12.6
104 3.4 4.4 15.9
105 3.4 4.5 15.5
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Oscillatory boundary driven rarefied gas flow between parallel plates

Figure 7.1 Flow diagram of the typical iteration algorithm with OpenACC directives
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Chapter 8

Oscillatory rarefied gas flow in
vertically/laterally driven
comb-type assemblies

8.1 Introduction

Damping forces on solid structures are caused by the collisions of the gas molecules
impinging on the structure’s surface. Squeeze flow damping (SFD) [212] refers to
the energy that must be dissipated to displace the air in the plate to substrate gap
as it oscillates vertically. If the plate oscillates laterally then the major source of
energy dissipation is the viscous drag through the relative fluid-structure sliding
and this is usually referred as slide flow damping. In the hydrodynamic regime,
when the inertial forces are neglected, squeeze flow damping in air gaps of oscillating
structures may be modelled with the Reynolds equation [213] which considers the
viscous and compressibility effects. However, the Reynolds equation is usable only up
to a certain frequency, from there on the inertia forces must be considered leading to
wave propagation models [110]. Similarly, the slide flow is modelled as either a Couette
or a Stokes flow [112]. In the slip regime, continuum-based solutions, that include
rarefaction effects, have also been reported [214, 116]. In the transition regime, the
squeeze flow has been simulated with DSMC [215] as well as with the steady-state
ES-BGK model [216] while the slide flow has been widely investigated with kinetic
models [2].
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Oscillatory rarefied gas flow in vertically/laterally driven comb-type assemblies

A typical structure that combines both types of damping, squeeze and slide flow, is
the two-dimensional configuration of a comb type structure. This flow configuration
is common [217, 112, 218] and it has been reported in [5, 219] where a steady-state
kinetic type approach has been implemented for the steady-state flow. These comb
structures are normally operated at very low pressure (usually from 0.01 to 1000 Pa
[220]) in order to reduce gas damping. However, it is interesting to note that gas
damping may also be reduced if the device is operated close to the corresponding
frequency of an antiresonance [154]. Furthermore, while the typical range of frequencies
is around 3-5 kHz for accelerometers and 18-20 kHz for gyroscopes, there is need for
extended sensing bandwidths for the next generation of inertial MEMS which will
lead to higher operation frequencies [221]. Also, the plates in resonators are often
driven at high frequencies on the order of MHz [7] which leads to small values of the
oscillation parameter (see Table 2.1). Therefore, as the range of frequencies is increased,
inertial forces must be included and a time-dependent kinetic formulation needs to be
considered.

In this context, the present work is devoted to the kinetic solution of the time
dependent rarefied gas flow in a comb type structure due to oscillating inner walls.
The periodic flow is investigated by numerically solving the time-dependent linearized
Shakhov kinetic equation subject to diffuse boundary conditions. The motion of the
comb type structure is analyzed in order to provide insights in the flow characteristics
such as the squeeze flow damping, the slide damping and the sound waves that appear
at high frequencies. Detailed results of the dimensionless amplitude and the phase of
all the average normal and shear stresses at the moving walls are provided in terms of
the reference gas rarefaction and oscillation parameter as well as the different sets of
geometries for the comb type structure. Other dimensionless output quantities include
the amplitudes of the number density, velocity and temperature.

The remaining of the Chapter is structured as follows: In Section 8.2, the flow
configuration is presented and the dimensionless parameters defining the flow are
prescribed. The details of the kinetic modeling and the numerical scheme are presented
in Sections 8.3 and 8.4 respectively. The numerical results and the discussion are
presented in Section 8.5, which is divided into four Subsections. The concluding
remarks are outlined in Section 8.6.
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8.2 Flow configuration

8.2 Flow configuration

The geometry of the periodically comb type structure to be considered, with the
coordinate system and its origin, is shown in Figure 8.1. The fixed parameters are
d1, d2, d3, d4, L1 and L2. It is assumed that the geometry repeats itself with a period
L. Next, consider the flow of a rarefied gas between the two parts of the structure,
where the outer part is stationary while the inner one is moving with constant velocity.
The flow is considered as unbounded in the z direction and it depends on both x

and y. Due to the imposed periodicity, only one section with length L of the comb
structure may be considered. The flow domain under investigation is bounded by the
flow inlet and outlet boundaries at y = −L2/2 − d1 − d3/2 and y = L2/2 + d1 + d3/2,
respectively, and by the top and bottom walls. All the walls are considered isothermal
with temperature T0. Depending on the moving part movement, there are two distinct
cases: a) the inner movable part moves with velocity ŨW = R [UW exp (−iωt′)] in the
y direction while the external stationary part is fixed and b) the inner movable part
moves with velocity ŨW = R [UW exp (−iωt′)] in the x direction. The first case is a
vertically driven comb type structure while the second one is a laterally driven comb
type structure. Also, R denotes the real part of a complex expression, i =

√
−1, t′ is

the time independent variable, UW is the amplitude of the oscillating wall and ω is
the oscillation (cyclic) frequency. According to Figure 8.1, if the moving wall oscillates
vertically the squeeze flow is seen at the walls 1 and 2 of the comb and the slide flow
at the wall 3. On the contrary, in the case of lateral motion, the squeeze flow is seen at
the wall 3 and the slide flow at the walls 1 and 3.

Both flows, squeeze and slide, are generated by the oscillating plate either in the
x or the y direction and they are characterized by the bulk velocity Ũx, Ũy, number
density ñ, temperature T̃ , heat flux Q̃x, Q̃y, and stress tensor P̃ . When the oscillation
frequency is high enough then sound waves are generated in the direction normal to
moving part and their properties are given by the same macroscopic quantities. All of
the quantities depend harmonically on time and are given by

ñ (t′, x′, y′) = R [n (x′, y′) exp (−iωt)] + n0 (8.1)

Ũx (t′, x′, y′) = R [Ux (x′, y′) exp (−iωt)] (8.2)

Ũy (t′, x′, y′) = R [Uy (x′, y′) exp (−iωt)] (8.3)
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T̃ (t′, x′, y′) = R [T (x′, y′) exp (−iωt)] + T0 (8.4)

Q̃x (t′, x′, y′) = R [Qx (x′, y′) exp (−iωt)] (8.5)

Q̃y (t′, x′, y′) = R [Qy (x′, y′) exp (−iωt)] (8.6)

P̃ij (t′, x′, y′) = R [Pij (x′, y′) exp (−iωt)] , i = x, y, z, j = x, y, z, i ̸= j (8.7)

P̃ij (t′, x′, y′) = R [Pij (x′, y′) exp (−iωt)] + P0, i = x, y, z, j = x, y, z, i = j (8.8)

where n (x′, y′), Ux (x′, y′), Ux (x′, y′), T (x′, y′), Qx (x′, y′), Qy (x′, y′) and Pij (x′, y′)
are complex functions and P0 is the equilibrium pressure while n0 = P0/kBT0 is the
equilibrium number density. For ω = 0 the squeeze and slide flows are simplified due
to the drop of the time dependent term.

The flow parameters defining the problem are the gas rarefaction parameter δ and
the dimensionless oscillation frequency θ. The first one is the same as in steady-state
configurations and it is given by

δ = P0d
′
1

µυ
(8.9)

where µ is the gas viscosity at some reference temperature T0 and υ =
√

2RgT0 is the
most probable molecular speed (Rg = kB/m, with kB denoting the Boltzmann constant
and m the molecular mass, is the gas constant). The second one is the ratio of the
intermolecular collision frequency ν = P0/µ, over the oscillation frequency ω:

θ = P0

µω
. (8.10)

Next, by taking the distance d1 as the characteristic length of the problem it
is convenient to introduce the dimensionless independent variables along with the
non-dimensional distances of the moving part and stationary part

x = x′/d′
1, y = y′/d′

1, t = t′ω, (8.11)

L1 = L′
1/d′

1, L2 = L′
2/d′

1, d2 = d′
2/d′

1, d3 = d′
3/d′

1, d4 = d′
4/d′

1 (8.12)

as well as the macroscopic quantities in dimensionless form defined as

u = U/UW , ρ = (n υ) / (n0 UW ), τ = (T0 υ) / (n0 UW ), Πij = (Pij υ) / (2P0 UW ).
(8.13)
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8.3 Kinetic formulation

Each dimensionless time-dependent complex macroscopic quantity may be written as

ã (t, x, y) = R [a (x, y) exp (−it)] = R [aA (x, y) exp (iaP (x, y)) exp (−it)] = aA cos [t − aP ]
(8.14)

where a = [ux, uy, ρ, Πij, qx, qy, τ ] and the subscripts A and P denote the amplitude and
the phase of each complex quantity. It is evident that both αA (t, x, y) and αP (t, x, y)
are of main importance in determining the flow behavior and they will be computed in
terms of the two main parameters, δ and θ, fully defining the flow. It is also expected
that as ω → 0 (or θ → ∞), the imaginary parts of the macroscopic quantities are
gradually diminishing and the solution tends towards the steady-state one.

In addition, the average gas stresses are also of major practical importance since
they are needed in order to evaluate the damping forces in squeeze and slide flow. The
average normal stress is denoted as Π̄yy in the y direction for a vertically driven comb
structure while as Π̄xx in the x direction for a laterally driven one. In both cases the
average shear stress is denoted as Π̄xy. Thus, the time dependent average gas stress
over the length is defined as

˜̄Πij (t, x, y) = R
[
Π̄ij exp (−it)

]
, (8.15)

where

Π̄ij (y) =
∫ L1

0
Πij (x, y) dx

/
L1, Π̄ij (x) =

∫ L2

0
Π̄ij (x, y) dy

/
L2 (8.16)

with ij = xx, yy, xy.

8.3 Kinetic formulation

For arbitrary values of the parameters δ and θ the flow may be simulated at the
kinetic level by the time-dependent Shakhov kinetic model equation written as

∂f̃

∂t′ + ξx
∂f̃

∂x′ + ξy
∂f̃

∂y′ = P0

µ

(
fS − f̃

)
(8.17)

where

fS = fM

1 + 2m

15n (kT )2 Q̃
(
ξ − Ũ

) 
(
ξ − Ũ

)2

2kT
− 5

2


 (8.18)
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with

fM = n
(

m

2πkT

)3/2
exp

−m

[
ξ − Ũ (t′, x′, y′)

]2
(2kT )

 (8.19)

being the local Maxwellian distribution. Here, f̃ = f̃ (t′, x′, y′, ξ) is the unknown
distribution function and ξ = (ξx, ξy, ξz) is the molecular velocity vector. Also, ñ,
Ũ , T̃ , Q̃, P̃ij and P̃ are the macroscopic distributions of number density, velocity,
temperature, heat flow and stress respectively, which may be obtained by the moments
of the distribution function according to

ñ (t′, x′, y′) =
∫ +∞

−∞
f̃ (t′, x′, y′, ξ) dξ, (8.20)

Ũ (t′, x′, y′) = 1
n

∫ +∞

−∞
ξf̃ (t′, x′, y′, ξ) dξ, (8.21)

T̃ (t′, x′, y′) = m

3nkB

∫ +∞

−∞

(
ξ − Ũ

)2
f̃ (t′, x′, y′, ξ) dξ, (8.22)

Q̃ (t′, x′, y′) = m

2

∫ +∞

−∞

(
ξ − Ũ

) (
ξ − Ũ

)
f̃ (t′, x′, y′, ξ) dξ, (8.23)

P̃ij (t′, x′, y′) = m
∫ +∞

−∞

(
ξi − Ũi

) (
ξj−Ũj

)
f̃ (t′, x′, y′, ξ) dξ. (8.24)

Due to the condition of the much smaller velocity amplitude of the moving part than
the most probable molecular velocity (UW ≪ υ) the unknown distribution function is
linearized as

f̃ (t′, x′, y′, c) = f 0
[
1 + UW

υ
h̃ (t′, x′, y′, c)

]
, (8.25)

where c = ξ/υ, f0 = n
π3/2υ3 exp [−c2] is the absolute Maxwellian and h̃ (t, x, y, c) is

unknown perturbed distribution function. Substituting expression (8.25) into Eq.
(8.17) and introducing the dimensionless variables as defined in Eqs. (8.11) and (8.13),
yields the time-dependent linearized Shakhov kinetic model equation

δ

θ

∂h̃

∂t
+cx

∂h̃

∂x
+cy

∂h̃

∂y
= δ

(
R
(

ρ̃ + 2cxũx + 2cyũy+τ̃
(

c2 − 3
2

)
+ 4

15 (cxq̃x + cy q̃y)
(

c2 − 5
2

))
− h̃

)
.

(8.26)
Here, δ and θ are defined by Eqs. (8.9) and (8.10) respectively, while ρ̃ (t, x, y),
ũx (t, x, y), ũy (t, x, y), τ̃ (t, x, y), q̃x (t, x, y) and q̃x (t, x, y) are time-dependent macro-
scopic quantities given in Eqs. (8.1)-(8.8) after introducing the dimensionless variables
defined in Eq. (8.13).
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8.3 Kinetic formulation

Next, it is convenient to introduce the complex distribution function h (x, y, c) so
that

h̃ (t, x, y, c) = R [h (x, y, c) exp (−it)] . (8.27)

Also, the molecular velocity vector c = (cx, cy, cz) is transformed as c = (ζ, φ, cz),
where cr = ζ cos φ and cφ = ζ sin φ. Then, Eq. (8.27) is rewritten in terms of h as

cr
∂h

∂x
+cφ

∂h

∂y
+h

(
δ − δ

θ
i

)
= δ

(
ρ + 2crux + 2cφuy+τ

(
c2 − 3

2

)
+ 4

15 (crqx + cφqy)
(

c2 − 5
2

))
.

(8.28)
At this stage the z−component of the molecular velocity vector may be eliminated

by applying the so-called projection procedure and introducing the reduced distribution
functions

Y (x, y, cr, cφ) = 1√
π

∫ ∞

−∞
h (x, y, cr, cφ, cz) exp

[
−cz

2
]

dcz, (8.29)

X (x, y, cr, cφ) = 1√
π

∫ ∞

−∞
h (x, y, cr, cφ, cz)

(
c2

z − 1
2

)
exp

[
−cz

2
]

dcz. (8.30)

Equation (8.28) is multiplied by cz exp (−c2
z) /

√
π and

(
c2

z − 1
2

)
1√
π

exp (−cz
2) and the

resulting equations are integrated over cz to deduce(
δ − i

δ

θ

)
Y +cr

∂Y

∂x
+cφ

∂Y

∂y
= δ

(
ρ + 2uxcr + 2uycφ + τ

(
c2 − 1

)
+ 4

15 (crqx + cφqy)
(
c2 − 2

))
,

(8.31)(
δ − i

δ

θ

)
X + cr

∂X

∂x
+ cφ

∂X

∂y
= δ

(
τ

2 + 2
15 (crqx + cφqy)

)
, (8.32)

where the macroscopic quantities are defined by Eqs. (8.1)-(8.8) and they are computed
from the reduced distribution function according to

ρ (x, y) = 1
π

∫ 2π

0

∫ +∞

0
Y e−ζ2

ζdζdφ, (8.33)

ux (x, y) = 1
π

∫ 2π

0

∫ +∞

0
Y e−ζ2

ζ2 cos φdζdφ, (8.34)

uy (x, y) = 1
π

∫ 2π

0

∫ +∞

0
Y e−ζ2

ζ2 sin φdζdφ, (8.35)

τ (x, y) = 1
π

∫ 2π

0

∫ +∞

0

2
3
[
Y
(
ζ2 − 1

)
+ X

]
ζe−ζ2

dζdφ, (8.36)

qx (x, y) = 1
π

∫ 2π

0

∫ +∞

0

[
Y
(
c2 − 2

)
+ X

]
e−ζ2

ζ2 cos φdζdφ, (8.37)
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qy (x, y) = 1
π

∫ 2π

0

∫ +∞

0

[
Y
(
c2 − 2

)
+ X

]
e−ζ2

ζ2 sin φdζdφ, (8.38)

Πxy (x, y) = 1
π

∫ 2π

0

∫ +∞

0
Y e−ζ2

ζ3 sin φ cos φdζdφ, (8.39)

Πxx (x, y) = 1
π

∫ 2π

0

∫ +∞

0
Y e−ζ2

ζ3 (cos φ)2 dζdφ, (8.40)

Πyy (x, y) = 1
π

∫ 2π

0

∫ +∞

0
Y e−ζ2

ζ3 (sin φ)2 dζdφ. (8.41)

Equations (8.31)-(8.32) are the governing kinetic equations with their associated
moments (8.33)-(8.41) and they are valid in the whole range of δ and θ. It is noted
that as θ → ∞ (ω = 0) and δ << θ Eqs. (8.31)-(8.32) are reduced to the steady-state
rarefied gas flows in a comb type-structure. At the other end, as θ → 0 (ω → ∞), the
solution tends to be constant at very high frequencies indicating a fully trapped gas
situation [154].

Turning now to the boundary conditions it is noted that purely diffuse scattering
is assumed at the wall, i.e., f+ = fM

w , where the superscript (+) denotes particles
departing from the wall and fM

w is the Maxwellian distribution defined by the wall con-
ditions. Based on the above and following the linearization and non-dimensionalization
procedures it is readily deduced that

h̃+ = ρ̃w + 2 c · ŨW + τ̃w

(
c2 − 3

2

)
⇒ h+ = ρW + 2 c · UW + τw

(
c2 − 3

2

)
(8.42)

where τW denotes the non-dimensional temperature of the boundary. The non-
dimensional quantity ρW can be estimated by the usual impermeability condition,
which states that the normal component of the gas velocity on the wall vanishes. Next,
the projection procedure as well as the mapping in the polar coordinate system are
applied in order to reduce Eq. (8.42) to

Vertical motion: Y + = ρW + 2 ζ sin φ + τw

(
ζ2 − 1

)
(8.43)

Lateral motion: Y + = ρW + 2 ζ cos φ + τw

(
ζ2 − 1

)
(8.44)

X+ = τw/2. (8.45)

In the vertical motion, the movable part is moving in the y direction while in the
lateral motion in the x direction. It is noted that the two motions are independent of
each other. The boundary conditions for Eq. (8.31) are given in Tables 8.1 and 8.2 for
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vertical and lateral motion respectively and for the walls (1-10) according to Figure
8.1.

Table 8.1 Boundary conditions for comb type structures under vertical motion

Wall Angle Y + ρw Eq.

1 0<φ < π ρw + 2 ζ sin φ
√

π − 2√
π

∫ π

0

∫ ∞

0
Y −e−ζ2

ζ2 sin φdζdφ (8.46)

2 π < φ < 2π ρw + 2 ζ sin φ −
√

π + 2√
π

∫ 2π

π

∫ ∞

0
Y −e−ζ2

ζ2 sin φdζdφ (8.47)

3, 4, 5 −π
2 < φ < π

2 ρw + 2 ζ sin φ − 2√
π

∫ π
2

− π
2

∫ ∞

0
Y −e−ζ2

ζ2 cos φdζdφ (8.48)

6, 7, 10 π
2 < φ < 3π

2 ρw
2√
π

∫ 3π
2

π
2

∫ ∞

0
Y −e−ζ2

ζ2 cos φdζdφ (8.49)

8 π < φ < 2π ρw

2√
π

∫ 2π

π

∫ ∞

0
Y −e−ζ2

ζ2 sin φdζdφ (8.50)

9 0 < φ < π ρw − 2√
π

∫ π

0

∫ ∞

0
Y −e−ζ2

ζ2 sin φdζdφ (8.51)

Table 8.2 Boundary conditions for comb type structures under lateral motion

Wall Angle Y + ρw Eq.

1 0<φ < π ρw + 2 ζ cos φ − 2√
π

∫ π

0

∫ ∞

0
Y −e−ζ2

ζ2 sin φdζdφ (8.52)

2 π < φ < 2π ρw + 2 ζ cos φ
2√
π

∫ 2π

π

∫ ∞

0
Y −e−ζ2

ζ2 sin φdζdφ (8.53)

3, 4, 5 −π
2 < φ < π

2 ρw + 2 ζ cos φ
√

π − 2√
π

∫ π
2

− π
2

∫ ∞

0
Y −e−ζ2

ζ2 cos φdζdφ (8.54)

6-10 See Eqs. (8.49)-(8.51)

The boundary conditions for Eq. (8.31) at the walls (6-10) are the same for both
cases. In all walls the boundary condition for Eq. (8.32) is the same, X+ = 0 since all
the walls of the comb type structure are at isothermal conditions τw = 0. The flow field
is periodic in the x direction with period L. Then, the periodic boundary conditions
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at the inlet and the outlet of the flow field imply that

Y (0, −L2/2 − d1 − d3/2, cr, cφ) = Y (0, L2/2 + d1 + d3/2, cr, cφ) , (8.55)

X (0, −L2/2 − d1 − d3/2, cr, cφ) = X (0, L2/2 + d1 + d3/2, cr, cφ) . (8.56)

Finally, the flow setup is now properly defined by Eqs. (8.31)-(8.32) with the associated
conditions (8.33)-(8.41) subject to boundary conditions (8.46)-(8.56). It is noted that
the displacement in the y or the x direction of the moving wall isn’t taken into account
due to the small wall velocity amplitude hypothesis that has been made in Eq. (8.25).

8.4 Numerical scheme

The numerical solution is deterministic. The discretization in the molecular velocity
space is performed using the discrete velocity method. The continuum spectrum
ζ ∈ [0, ∞)is substituted by a discrete set ζm, m = 1, 2...M , which is taken to be the
roots of the Legendre polynomial of order M , accordingly mapped from [−1, 1] to
[0, ∞). Also, a set of discrete angles φn, n = 1, 2...N equally spaced in [0, 2π] is defined.
The discretization in the physical space is based on a second order central difference
scheme by the flow domain in rectangular elements denoted by (i, j), with i = 1, 2, ..., I

and j = 1, 2, ..., J . The discretized equations are solved in an iterative manner. The
iteration map is concluded when the following criteria are fulfilled:

ε
(k)
Re = max

i,j


∣∣∣u(k)

x,Re,i,j − u
(k−1)
x,Re,i,j

∣∣∣+ ∣∣∣u(k)
y,Re,i,j − u

(k−1)
y,Re,i,j

∣∣∣+ ∣∣∣ρ(k)
Re,i,j − ρ

(k−1)
Re,i,j

∣∣∣
+
∣∣∣q(k)

x,Re,i,j − q
(k−1)
x,Re,i,j

∣∣∣+ ∣∣∣q(k)
y,Re,i,j − q

(k−1)
y,Re,i,j

∣∣∣+ ∣∣∣τ (k)
Re,i,j − τ

(k−1)
Re,i,j

∣∣∣
 < 10−7,

(8.57)

ε
(k)
Im = max

i,j


∣∣∣u(k)

x,Im,i,j − u
(k−1)
x,Im,i,j

∣∣∣+ ∣∣∣u(k)
y,Im,i,j − u

(k−1)
y,Im,i,j

∣∣∣+ ∣∣∣ρ(k)
Im,i,j − ρ

(k−1)
Im,i,j

∣∣∣
+
∣∣∣q(k)

x,Im,i,j − q
(k−1)
x,Im,i,j

∣∣∣+ ∣∣∣q(k)
y,Im,i,j − q

(k−1)
y,Im,i,j

∣∣∣+ ∣∣∣τ (k)
Im,i,j − τ

(k−1)
Im,i,j

∣∣∣
 < 10−7.

(8.58)
Here, the superscript k denotes the iteration index, subscripts Re and Im are the
real and imaginary part of each macroscopic quantity respectively at each node (i, j)
and ε(k) is the error after k iterations. This numerical scheme has been extensively
applied in steady-state and time-dependent flow configurations with considerable success
[222, 223, 127]. In general, the number of iterations required for convergence is increased
as either θ or δ are increased. The most computationally intensive cases are when both
flow parameters are large and the flow is in the slip and hydrodynamic regimes. The
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numerical parameters have been gradually refined to ensure grid independent results
up to at least two significant figures with M = 16, N = 100 and I = J = 301. It is
noted that the OpenMP parallelization strategy, presented in Section 7.4.1, is applied
in this two-dimensional flow and the molecular angles are assigned into the available
threads.

8.5 Results and discussion

The rarefied gas flow in a comb type structure due to an imposed oscillatory wall
has been simulated in a wide range of the gas rarefaction and oscillation parameters.
The computed dimensionless complex density, velocity, temperature distributions and
average stress distributions are based on the kinetic formulation. The results include
the amplitude and the phase angle. A detailed investigation and parametrization of
the average stress distributions, in terms of all involved geometric and flow parameters,
is performed. Simulations based on the present methodology have been performed
for L1 = 5.68, L2 = 0.8, d2 = 1.3 and d1 = d3/2 = d4. In the 2D flow configuration
reported in [219] the geometrical characteristics are L′

1 = 15 µm, L′
2 = 2.56 µm,

d′
1 = 3.2 µm and d′

2 = 4.2 µm and they are considered in the present work as the
typical length scales from which the non-dimensional lengths are deduced.

The results are organized into four Subsections. In Section 8.5.1, the average
normal and shear stress at the moving walls are presented in terms of the rarefaction
and oscillation parameter. Section 8.5.2 includes the average stresses in terms of the
different lengths of the comb type structure. Two dimensional contours as well as a
comparison with literature results are discussed in Section 8.5.3. Finally, Section 8.5.4
describes the oscillatory rarefied gas flow due to the lateral motion of the inner part.

8.5.1 Average stresses on the moving walls

In Figure 8.2, the average normal stress amplitude Π̄yy,A (L2/2) and phase Π̄yy,P (L2/2)
at the surface 1 are presented in terms of the gas rarefaction δ ∈ [10−4, 102] and the
oscillation parameter θ = [0.1, 1, 10]. It is clearly seen that the amplitude of the average
stress Π̄yy,A (L2/2) depends non-monotonically on δ. For θ = [0.1, 1] and at small values
of δ (free molecular regime), it remains constant. Then, as δ is increased, it is decreased
until δ = θ, where a minimum is observed. Next, as δ is further increased, it oscillates
until it reaches a constant value (Π̄yy,A = 1.005) for δ ≫ θ which corresponds to the
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high frequency regime. This limiting value is almost the same as in 1-D oscillatory flow
configurations [27]. For θ = 10, the Π̄yy,A (L2/2) has a more intense oscillatory behavior
in comparison with the corresponding ones for the smaller values of θ. Therefore, it is
seen that a minimum value is presented in the interval θ < δ < 2θ which has also been
reported in 1-D oscillatory flow configurations [27]. This minimum δ/θ ≈ 1.43 has also
been seen in [149] even though this work is focused on a thermoacoustic wave. The
minimum here is appeared at the same oscillation parameter as in [149]. The minimums
that are appeared in the amplitude of the average normal stress are very important
since they indicate the existence of an antiresonance in which the damping force is
minimized. In the continuum regime (large value of δ and θ) the number of maximum
(resonances) and minimum (anti-resonances) are increased (e.g. for θ = 10, δ > 10).
On the contrary in the transition regime only a single minimum is observed (e.g. for
δ ≈ θ). Furthermore, the dependency of Π̄yy,A (L2/2) on θ is more complex. Until
δ < 0.5 the amplitude Π̄yy,A (L2/2) is increased as θ is increased. As δ is increased, the
pattern isn’t clear enough to draw definitive remarks. Finally, it is noted that these
values of θ are indicative and the behavior of Π̄yy,A (L2/2) may include more minimum
and maximum values.

The discussion on Figure 8.2 is continued by analyzing the behavior of the average
normal stress phase Π̄yy,P (L2/2) in the whole range of δ and θ. For θ = [0.1, 1],
the phase difference Π̄yy,P (L2/2) depends non-monotonically on δ. At first, as δ is
increased it is increased and then it is decreased until it reaches a negative constant
value. The behavior of Π̄yy,P (L2/2) for θ = 10 is more resonant as δ is increased.
Moreover, the dependency on δ is quite complex and the phase changes significantly in
an oscillatory manner. This behavior is expected to include more complex phenomena
when the values of θ are increased. In addition, it seems that the phase lag tends to
zero when a resonance or an antiresonance occurs. It is also seen that after a minimum
is presented (e.g. for θ = 10, δ = 15) the phase Π̄yy,P (L2/2) becomes negative and as
δ is increased and a maximum is appeared, then Π̄yy,P (L2/2) becomes positive (e.g.
for θ = 10, δ = 100).

In Figure 8.3, the shear stress amplitude Π̄xy,A (L1) and phase Π̄xy,P (L1) at the
surface 3 are presented in terms of the gas rarefaction δ ∈ [10−4, 102] and the oscillation
parameter θ = [0.1, 1, 10, 102]. A similar qualitative behavior to Π̄yy,A (L2/2, δ, θ) is
seen for Π̄xy,A (L1, δ, θ) although the amplitudes of the shear stress along surface 3 is
one order of magnitude smaller than the amplitudes of the normal stress on surface.
As δ is increased Π̄xy,A (L1, δ, θ) is reduced and it oscillates until it reaches a constant
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value (Π̄xy,A = 0.2803) for δ ≫ θ. As δ becomes much larger than θ the difference
between the normal and the shear stress is reduced. Also, as with the normal stress
amplitude, the shear stress amplitude (e.g. for θ = 0.1, δ = 2) is also very close to the
limiting value as in 1-D oscillatory Couette flow configuration [28] even if there the flow
is considered as incompressible. In addition, even though the two quantities present
the same qualitatively behavior, the attributes of the flow here are different. The sound
waves that are generated in the top part of the flow configuration aren’t present here
and instead transversal waves are generated from the wall 3. The analytical behavior
of the flow will be discussed further in the Section 8.5.3 where the contours of all the
macroscopic quantities will be presented.

The phase Π̄xy,P (L1) also presents the same qualitatively behavior as the normal
stress phase Π̄yy,P (L2/2). However, by comparing Figures 8.2 and 8.3, it is seen
that there are some small differences between the two stresses. For θ = [0.1, 1, 10]
the minimum of the Π̄xy,A (L1) is achieved for δ = θ. On the contrary, for θ = 10,
the minimum of the Π̄yy,A (L2/2) is achieved for δ = 15, a slightly larger rarefaction
parameter. The comparison between the phases of the two stresses reveals a different
behavior near each minimum. The average normal shear stress phase Π̄xy,P (L1) changes
its sign and becomes negative sooner than the corresponding phase Π̄yy,P (L2/2).

A more detailed analysis about the effect of θ is given in Figure 8.4 where the
normal stress amplitude Π̄yy,A (L2/2) and phase Π̄yy,P (L2/2) are presented in terms of
the oscillation parameter θ and for δ = [0.1, 1, 10]. For δ ≤ 1, as θ is increased, Π̄yy,A is
monotonically increased until a local maximum is observed, then it is decreased up to
some θ, which depends on δ, and a minimum is seen. Finally, as θ is further increased
it is again increased until it reaches a constant value at the steady-state regime as it
has been seen in Fig. 8.2. However, for δ = 10 before the local maximum there is a
small decrease and a local minimum is observed. As θ is increased the trend is the
same as for δ ≤ 1. It is noted that the minimum seen in Fig. 8.2 it is also seen here
for δ/θ ≈ 1.43. It is also interesting to check the scaling law derived in [154] in the
current 2D analysis. According to [154], a resonance is seen when θ ≈ 0.33δ and an
anti-resonance when θ ≈ 0.75δ. From Fig. 8.4 it seems that the scaling law captures
all the major resonance and anti-resonance states. Moreover, from the corresponding
Figure for the phase it is seen that the trend is qualitatively the same as with the
amplitude however for very large values of θ the phase Π̄yy,P is decreased to zero. This
is expected since the flow is headed to the steady-state regime. Also, as in Fig. 8.2, it
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seems that the corresponding phase is equal to zero for certain values of θ in which the
maximum and the minimum of the amplitude are appeared.

Similarly with Figure 8.4, in Figure 8.5 the shear stress amplitude Π̄xy,A (L1)
and phase Π̄xy,P (L1) are presented in terms of the oscillation parameter θ and for
δ = [0.1, 1, 10]. As it has been observed in Fig. 8.3 the results are qualitatively the
same with the normal stress amplitude. The trends are the same however here the
minimums and the maximums are not as intensive as the ones seen for the normal
stress amplitude. Accordingly, with the shear stress amplitude, the trend of the phase
Π̄xy,P is the same as the trend in the normal stress phase. Here, it is also seen that
the phase is very close to zero as θ is deceased.

Closing this section the data contained in the previous Figures are shown here in
terms of the ratio of the gas rarefaction parameter δ over the oscillation parameter θ or
the Strouhal number defined as St = δ/θ. As it has been already pointed out in [127],
the Strouhal number is not adequate, only by itself, to characterize the flow. Both
parameters, δ and θ, are need in order to accurately compute the forces. In Figure 8.6,
the normal stress amplitude Π̄yy,A (L2/2) and the shear stress amplitude Π̄xy,A (L1)
are given for θ = [0.1, 1, 10] with the dashed lines and for δ = [0.1, 1, 10] with the solid
lines. In the first case the gas rarefaction parameter δ is varied with the oscillation
parameter θ being constant while exactly the opposite is applied for the second case.
The comparison is made between θ = 10 and δ = 10, etc. It is clear that near δ/θ ≈ 1.4
the minimum is the same for both lines, dashed and solid and for all three distinct
cases. Therefore, the same result is achieved when δ = 14.3 and θ = 10 but also when
δ = 10 and θ = 6.97. This leads to two different sets of parameters that they achieve
this minimum in the normal stress amplitude. For example, this could be useful in the
design of an application, knowing that changing the oscillation frequency but also the
distance (not simultaneously) could lead to the same results.

As the ratio δ/θ is increased it is seen that behavior is almost the same for θ = 0.1
and δ = 0.1 however for θ = 10 and δ = 10 it is not the same. For example, near
δ/θ ≈ 2.8 a maximum (resonance) is observed and it is different between θ = 10
and δ = 10. As δ/θ is further increased the trends are different for each case even
though the ratio is the same. Thus, depending on the application the optimal solution
isn’t trivial. It depends on its structural and operational restrictions (e.g. due to the
limitation of the oscillation frequency ω, the oscillation parameter θ is larger leading
to a larger resonance for δ/θ ≈ 2.8). Similar trends are observed for the shear stress
amplitude Π̄xy,A. Therefore, the effect of θ on the stress amplitude for a constant δ
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and similarly the effect of δ on the stress amplitude for a constant θ are quite different
and extensive computations or scaling laws such as the ones reported in [154, 148] are
needed in order to investigate all possible solutions. Also, the use of dimensionless
kinetic databases should be applied with carefulness due to the resonant behavior of
the flow.

8.5.2 Effect of geometrical parameters

Typical examples of the parametric analysis that can easily be performed by the
proposed kinetic approach are given in this section. More specifically, the effect on the
stresses of the length L1 dimension is shown in Table 8.3, of the width L2 dimension in
Table 8.4 and of the gap d2 dimension in Table 8.5. In all cases, the flow configuration
with L1 = 5.68, L2 = 0.8, d2 = 1.3 and d1 = d3/2 = d4 is considered as the reference
operation scenario. The influence of each parameter is studied in terms of the amplitude
of the normal stress Π̄yy,A (L2/2) and the shear stress Π̄yy,A (L2/2) by varying this
parameter and keeping the remaining ones unchanged. All the results are given in
terms of the gas rarefaction δ = [0.1, 1, 10] and the oscillation parameter θ = [0.1, 1, 10].
It is useful to divide the results into three frequency regimes: the low frequency one
(θ = 10,δ = [0.1, 1] and θ = 1,δ = 0.1), the moderate frequency one (δ ≈ θ) and the
high frequency one (θ = 0.1,δ = [1, 10] and θ = 1, δ = 10).

In Table 8.3, the average normal stress amplitude Π̄yy,A (L2/2) and shear stress
amplitude Π̄xy,A (L1) are presented for different dimensions L1 = [3.4, 9] along with
their relative differences with the original one L1 = 5.68. The primary goal here
is to comment based on the increase or decrease of the L1 dimension. In the low
frequency regime, as L1 is increased Π̄yy,A (L2/2) and Π̄xy,A (L1) are also increased. In
the moderate frequency regime, this behavior is reversed and Π̄yy,A (L2/2) is decreased
as L1 is increased while Π̄xy,A (L1) continues to increase. In the high frequency regime,
as L1 is increased both amplitudes remain almost constant. As a general remark, while
in all other cases, increasing the L1 dimension leads to smaller average distribution
Π̄yy,A (L2/2) for θ = 10 and δ = 0.1 it leads to larger stress distribution. It is also
seen that as the gas regime becomes more dense (e.g. for θ = δ = 10), the relative
differences are increased by the change in the dimension while they aren’t so easily
affected in a more rarefied regime (e.g. for θ = δ = 0.1). Overall, the differences in the
shear stress amplitude are smaller than the corresponding ones in the normal stress
amplitude. This is expected since the computation of Π̄yy,A (L2/2) depends strongly
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on L1 dimension. Π̄xy,A (L1) is affected mainly for θ = 10 and when the L1 dimension
is decreased to L1 = 2.4.

In Table 8.4, the average normal stress amplitude Π̄yy,A (L2/2) and shear stress
amplitude Π̄xy,A (L1) are presented for different dimensions L2 = [0.4, 2] along with
their relative differences with the original one L2 = 0.8. It seems that the change in
the L2 dimension doesn’t affect much the normal stress amplitude Π̄yy,A (L2/2). It
remains almost constant as L2 is increased or decreased and the only large difference
is presented in the low frequency regime. Regarding now the shear stress amplitude
Π̄xy,A (L1), in the low frequency regime, as L2 is increased Π̄xy,A (L1) is also increased
while in the high frequency regime it remains constant. For L2 = 0.4 it is seen that the
relative differences are smaller than the corresponding ones for L2 = 2. It is also noted
that for δ = θ, the relative difference is increased for L2 = 2, especially for δ = θ = 10
where the largest difference is observed. Therefore, it is seen that as L2 is decreased to
L2 = 0.4 the effect of L2 becomes smaller and only for larger values of L2 the Π̄xy,A (L1)
is increased due to the direct connection of the L2 dimension to the slide damping.

In Table 8.5, the average normal stress amplitude Π̄yy,A (L2/2) and shear stress
amplitude Π̄xy,A (L1) are presented for different dimensions d2 = [0.6, 2.6] along with
their relative differences with the original one d2 = 1.3. It is seen that the normal
stress amplitude Π̄yy,A (L2/2) isn’t greatly affected by the increase or decrease in the
d2 dimension. In the low frequency regime, as d2 is increased Π̄yy,A (L2/2) is decreased
while in the high frequency regime it remains almost constant. In addition, Π̄xy,A (L1) is
also decreased as d2 is increased however the difference is largest than the corresponding
one for Π̄yy,A (L2/2). As d2 is decreased the gap is also decreased leading to the fact
that the gas is further compressed. This affects directly and strongly the Π̄xy,A (L1)
and in a smaller level the Π̄yy,A (L2/2). It is noted that for δ = θ = 0.1, the relative
difference is larger for the larger dimension d2 = 2.6 while for δ = θ = 10 it is larger for
the smaller dimension d2 = 0.6. Thus, it seems that the d2 dimension affects differently
the damping forces Π̄xy,A (L1) in each frequency regime.

8.5.3 Flow characteristics and range of validity of 1-D equa-
tions analysis

In Figure 8.7, the velocity amplitude uy,A and the normal stress amplitude Πyy,A

are presented for δ = [0.1, 1, 10] and θ = 1 in two dimensional contours. It is useful to
recall Fig. 8.1 and its notation in order to discuss the current Figure. It is obvious
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that the movement of the moving part affects significantly the flow field in all cases
and the damping mechanism changes as δ is increased. The analysis is focused in the
upper part of the comb type structure since the amplitudes are symmetrical between
the top and the bottom part. For δ = 0.1, the velocity amplitude uy,A is large between
the walls 3 and 10. It is also large above the wall 1 and below the wall 3. Similarly,
the corresponding normal amplitude Πyy,A is also large and it extends in the whole
area between the walls 1 and 8 and between the walls 2 and 9. As δ is increased the
amplitude uy,A remains large in the area confined by the walls 4,6,1 and 8. However,
the behavior of the normal stress amplitude is changed. Not only it is reduced but
also its maximum value is now appeared at the wall 8 and not at the moving wall 1.
This is related to the propagation of the acoustic waves and particularly the formation
of standing-waves. When the oscillation parameter is close to the standing-wave
frequencies the normal stress is minimized at the wall 1 while the velocity remains
large. This minimum has been seen in Fig. 8.2. It is also observed that between the
walls 4 and 6 the amplitude Πyy,A is close to zero since the movement of the moving
part is in the y− direction. For δ = 10, the amplitudes are changed again. Here, the
behavior of Πyy,A is qualitatively the same as with the velocity amplitude and the
maximum of the amplitude is appeared at the wall 1. It is also seen that the flow field
is reduced near the moving part.

This confinement is more clearly observed in Fig. 8.8 where the density amplitude
ρA and the temperature amplitude τA are presented for δ = [0.1, 1, 10] and θ = 0.1 in
two dimensional contours. Here, the oscillation parameter θ is equal to 0.1 which leads
to oscillation of higher frequency. For δ = 0.1, it seems that both amplitudes are large
in the whole area between walls 1, 4 and 8. As δ is increased the confinement of the
gas is more visible for ρA while the amplitude of the temperature τA still extends in a
large area between the walls 1 and 8. As δ is further increased the phenomenon known
as full trapped gas situation [154] is clearly seen. Both amplitudes (ρA and τA) are
reduced in a tiny layer near the moving part and in the rest of the flow field they are
almost zero. Therefore, the complete computation of the whole flow domain by using
two dimensional equations may not be necessary. The solution given by the equivalent
1-D flow configurations, the oscillatory rarefied shear driven flow and the sound wave
propagation, might be the same as the 2-D flow configuration for certain values of δ

and θ.
It has been observed before that for a constant value of θ as δ is increased the

gas is confined in a very small area near the moving wall. Therefore, due to the large
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computational effort that is required to solve the 2-D geometry it would be useful
to check the range of the validity of the equivalent 1-D problems. In Table 8.6, the
average normal stress amplitude Π̄yy,A (L2/2) from the current work and the one in
[27] in terms of gas rarefaction parameter δ for θ = [0.1, 1, 10] are presented. It is
deduced that for θ = 0.1, even for δ = 0.1 the comparison is good and the relative
error is around 3% and becomes smaller as δ is increased. For θ = 1 the error between
the approaches diminishes after δ ≫ 10. As θ is increased the error is very large for the
present values of δ however it is expected that as δ is increased the relative error is going
to be reduced. Furthermore, in Table 8.7, the average shear stress amplitude Π̄xy,A (L1)
from the current work and the one in [28] in terms of gas rarefaction parameter δ and
for θ = [0.1, 1, 10] are presented. The same qualitatively behavior for the error of Π̄xy,A

as for the error of Π̄yy,A is observed here even though there are small quantitatively
deviations. Closing this section, it is concluded that the 1-D equations can be applied
when δ is much larger than θ (δ ≫ θ).

8.5.4 Rarefied gas flow in lateral driven comb type assemblies

The oscillatory rarefied gas flow in a comb-type structure driven by the lateral
harmonic motion of the moving surface is defined by Eqs. (8.31)-(8.32) with the
associated conditions (8.33)-(8.41) subject to boundary conditions (8.52)-(8.56). Also,
the geometrical parameters are the same as the ones in the vertically driven comb
type assembly. The amplitudes of the average normal and shear stresses as well as
the amplitudes of the velocity in the x-direction, the normal stress in the x-direction,
the density and the temperature are included in this subsection. It is noted that the
presented components of the velocity and the stress are in the x-direction since the
motion of the movable part is in this direction.

In Fig. 8.9, the average normal stress amplitude Π̄xx,A (L1, δ, θ) at the surface 3 and
the shear stress amplitude Π̄xy,A (L2/2, δ, θ) at the surface 1 are presented in terms of
gas rarefaction parameter δ and for oscillation parameter θ = [0.1, 1]. It is seen that the
amplitude of the average normal stress has a similar behavior with the corresponding
normal stress in Fig. 8.2 for both values of θ. Furthermore, the amplitude of the
average shear stress is qualitatively different in comparison with the corresponding
shear stress in Fig. 8.3 for both values of θ. It is increased as the rarefaction parameter
is increased and it reaches a constant value as δ ≫ θ. The minimums seen in the
vertically driven comb aren’t shown here since the movement of the inner part is in
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the x-direction and the wall 4 seems to affect the shear stress at the wall 1. Of course
more simulations are needed in order to justify this assumption.

In Figure 8.10, the velocity amplitude ux,A and the normal stress amplitude Πxx,A

are presented for δ = [0.1, 1, 10] and θ = 1 in two dimensional contours. The flow
characteristics are different here due to the lateral movement of the inner part. More
specifically, the values of both quantities are increased between the walls 1, 4 and 8
and 3 and 10. This behavior is expected since they are close to the moving walls. The
velocity amplitude is decreased near the corner of the walls 8 and 10 where the initial
oscillation dampens due to the increased distance L1. On the other hand, the normal
stress is significant in the whole computational domain and the largest values are seen
near the moving walls and the inlet and outlet of the flow. As δ is increased the gas
moves more closely towards the moving walls and its velocity and normal stress are
decreased as it departs from them. As δ is further increased this phenomenon becomes
even more significant and the gas trapping, already mentioned in vertically driven
combs, is seen.

In Figure 8.11, the density amplitude ρA and the temperature amplitude τA are
presented for δ = [0.1, 1, 10] and θ = 1. At first, it is evident that the behavior of the
density and temperature is similar to the aforementioned one in Fig. 8.10. As δ is
increased the values of the quantities are reduced in the computational domain and
they remain large near the moving walls. It is also seen that the largest values are near
the inflow and outflow of the domain and between the walls 3 and 10. In conclusion,
the decreased gas rarefaction combined with high oscillation frequency leads to gas
trapping which is more significant in the laterally-driven comb type assembly due to
the small length of the moving walls. Therefore, as δ ≫ θ the one-dimensional models
should be used whether the movable part moves in the y- or x-direction.

8.6 Concluding remarks

The oscillatory flow of a monoatomic gas in a comb type assembly due to the
vertical/lateral harmonic motion of the moving surface is numerically investigated in
a wide range of the gas rarefaction parameter δ and of the oscillation parameter θ

for several sets of geometric parameters corresponding to small, moderate and large
lengths. Modeling and simulations are based on the linearized unsteady Shakhov kinetic
model equation. The results are in dimensionless form and include the macroscopic
distributions of velocity in the y- and x-direction, density, temperature and stress
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vector, as well as space-averaged macroscopic variables to deduce overall quantities
such as the average normal and the shear stresses. The movement of the inner part
is either in the x- or in the y- direction leading to gas flow in a vertically- or in a
laterally-driven comb type assembly.

A complete visualization of the flow characteristics is shown with the amplitude
of the velocity, normal stress, density and temperature. They are presented in the
whole computational domain for several gas rarefaction and oscillation parameters. It
is seen that all quantities are significantly affected by the oscillatory motion and the
gas rarefaction. As the rarefaction parameter is increased and the oscillation frequency
is high the gas trapping phenomenon becomes apparent. Also, as the rarefaction
parameter is increased the damping mechanism is changed leading to different normal
stress distributions which are visible in the whole computational domain. It is noted
that the aforementioned behavior is seen in both comb type assemblies, the vertically-
and laterally-driven one.

In order to study the damping forces, the average normal stress and the shear stress
are computed in the moving walls. The normal stress is connected with the oscillatory
squeeze flow and the shear stress with the oscillatory slide (or shear) flow. It is found
that in terms of the gas rarefaction and oscillation parameters the dependency of both
quantities is not monotonic. The local minimums and maximums in the amplitudes
correspond to certain anti-resonance and resonance states which are triggered by the
increasing oscillation frequency as well as the other dimensional parameters, such as the
pressure and the characteristic distance. It is also seen that in many cases there are two
different sets of rarefaction and oscillation parameters that can create an anti-resonance
state which may be useful in the design of a comb type assembly. Moreover, the phases
of the shear stress and the normal stress are equal to zero in these states and they
also depend non-monotonically on the rarefaction and oscillation parameters. After
an anti-resonance is seen the phases become negative and as the gas rarefaction is
decreased and a resonance is seen, then they become positive. Furthermore, as δ ≫ θ

the amplitude and the phase of the shear and normal stress tend to constant values.
Also, in this regime due to gas trapping the macroscopic quantities may be evaluated
by one-dimensional kinetic equations since the agreement between the two-dimensional
and one-dimensional flow results is very good.

In terms of the dimensions, the shear and the normal stress depend heavily on
the dimensions in the low frequency regime while for high frequencies they remain
constant despite any change in the dimensions. More specifically, the dimension L1
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affects mostly the normal stress at the wall 1 and as it is increased the normal stress is
also increased. It is worthwhile to note that near the anti-resonance states the previous
trend is reversed and the normal stress is reduced. In addition, the shear stress is
mostly affected by the variation in the dimension d2. As d2 is reduced the shear stress
is increased. In the anti-resonance states the trend is reversed and the shear stress is
reduced. In terms of the dimension L2, the shear stress is reduced as the L2 is reduced.

Overall, it may be concluded that the two-dimensional geometry is always needed
in the low frequency regime while in the high frequency it may be omitted and simpler
one-dimensional flows can be used.
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Table 8.3 Average stress amplitude Π̄yy,A (L2/2, δ, θ) and Π̄xy,A (L1, δ, θ) in terms of
gas rarefaction parameter δ and oscillation parameter θ for comb type structures under
vertical motion for different dimensions L1 = [3.4, 9] along with their relative differences
(%) with the reference one L1 = [5.68].

Π̄yy,A (L2/2, δ, θ) Π̄xy,A (L1, δ, θ)
θ δ L1 = 3.4 L1 = 5.68 L1 = 9 |∆3.4| |∆9| L1 = 3.4 L1 = 5.68 L1 = 9 |∆3.4| |∆9|

0.1 0.1 6.965(-1) 6.498(-1) 6.350(-1) 6.70 2.28 2.139(-1) 2.163(-1) 2.154(-1) 1.1 0.4
1 1.012 1.010 1.009 0.20 0.11 2.799(-1) 2.799(-1) 2.799(-1) 0.0 0.0
10 1.004 1.005 1.005 0.05 0.03 2.804(-1) 2.804(-1) 2.804(-1) 0.0 0.0

1 0.1 2.478 3.838 4.573 54.90 19.15 4.783(-1) 5.086(-1) 4.762(-1) 6.3 6.4
1 6.293(-1) 5.739(-1) 5.544(-1) 8.80 3.41 1.829(-1) 1.874(-1) 1.866(-1) 2.5 0.4
10 9.591(-1) 9.599(-1) 9.603(-1) 0.08 0.04 2.638(-1) 2.638(-1) 2.638(-1) 0.0 0.0

10 0.1 2.849 5.922 1.119(+1) 107.84 88.95 5.410(-1) 7.585(-1) 1.075 40.2 41.8
1 2.138 3.436 4.282 60.67 24.63 4.678(-1) 5.242(-1) 5.040(-1) 12.1 3.9
10 5.354(-1) 4.494(-1) 4.320(-1) 16.05 3.87 7.881(-2) 9.600(-2) 8.882(-2) 21.8 7.5

Table 8.4 Average stress amplitude Π̄yy,A (L2/2, δ, θ) and Π̄xy,A (L1, δ, θ) in terms of
gas rarefaction parameter δ and oscillation parameter θ for comb type structures under
vertical motion for different dimensions L2 = [0.4, 2] along with their relative differences
(%) with the reference one L2 = [0.8].

Π̄yy,A (L2/2, δ, θ) Π̄xy,A (L1, δ, θ)
θ δ L2 = 0.4 L2 = 0.8 L2 = 2 |∆0.4| |∆2| L2 = 0.4 L2 = 0.8 L2 = 2 |∆0.4| |∆2|

0.1 0.1 6.516(-1) 6.498(-1) 6.491(-1) 0.27 0.10 2.243(-1) 2.163(-1) 2.324(-1) 3.6 7.4
1 1.010 1.010 1.010 0.00 0.00 2.776(-1) 2.799(-1) 2.809(-1) 0.8 0.4
10 1.005 1.005 1.005 0.00 0.00 2.792(-1) 2.804(-1) 2.811(-1) 0.4 0.3

1 0.1 3.814 3.838 3.900 0.65 1.60 4.650(-1) 5.086(-1) 5.531(-1) 9.4 8.7
1 5.759(-1) 5.739(-1) 5.747(-1) 0.34 0.12 1.931(-1) 1.874(-1) 2.157(-1) 3.0 15.1
10 9.599(-1) 9.599(-1) 9.599(-1) 0.00 0.00 2.577(-1) 2.638(-1) 2.663(-1) 2.4 0.9

10 0.1 5.768 5.922 6.353 2.67 7.29 6.670(-1) 7.585(-1) 8.847(-1) 13.7 16.6
1 3.396 3.436 3.539 1.16 3.01 4.830(-1) 5.242(-1) 5.620(-1) 8.5 7.2
10 4.589(-1) 4.494(-1) 4.503(-1) 2.07 0.20 1.042(-1) 9.600(-2) 1.390(-1) 7.9 44.8
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Table 8.5 Average stress amplitude Π̄yy,A (L2/2, δ, θ) and Π̄xy,A (L1, δ, θ) in terms of
gas rarefaction parameter δ and oscillation parameter θ for comb type structures
under vertical motion for different dimensions d2 = [0.6, 2.6] along with their relative
differences (%) with the reference one d2 = [1.3].

Π̄yy,A,top (δ, θ) Π̄xy,A,m (δ, θ)
θ δ d2 = 0.6 d2 = 1.3 d2 = 2.6 |∆0.6| |∆2.6| d2 = 0.6 d2 = 1.3 d2 = 2.6 |∆0.6| |∆2.6|

0.1 0.1 6.437(-1) 6.498(-1) 6.512(-1) 0.94 0.22 2.175(-1) 2.163(-1) 2.369(-1) 0.5 9.5
1 1.010 1.010 1.010 0.00 0.00 2.793(-1) 2.799(-1) 2.799(-1) 0.2 0.0
10 1.005 1.005 1.005 0.00 0.00 2.804(-1) 2.804(-1) 2.804(-1) 0.0 0.0

1 0.1 4.027 3.838 3.800 4.68 0.99 7.879(-1) 5.086(-1) 3.643(-1) 35.4 28.4
1 5.649(-1) 5.739(-1) 5.756(-1) 1.60 0.30 1.749(-1) 1.874(-1) 2.100(-1) 7.1 12.1
10 9.599(-1) 9.599(-1) 9.599(-1) 0.00 0.00 2.641(-1) 2.638(-1) 2.638(-1) 0.1 0.0

10 0.1 7.368 5.922 5.609 19.63 5.29 1.448 7.585(-1) 4.426(-1) 47.6 41.7
1 3.737 3.436 3.350 8.06 2.50 8.394(-1) 5.242(-1) 3.646(-1) 37.5 30.5
10 4.375(-1) 4.494(-1) 4.579(-1) 2.72 1.89 6.212(-2) 9.600(-2) 1.083(-1) 54.5 12.8

Table 8.6 Extend of validity of 1D-solution in [27] by comparison with the present
2D-analysis for the average normal stress amplitude Π̄yy,A (L2/2, δ, θ) in terms of gas
rarefaction parameter δ for θ = [0.1, 1, 10].

δ Π̄yy,A (L2/2, δ, θ) Π̄yy,A (δ, θ) [27]
θ = 0.1 θ = 1 θ = 10 θ = 0.1 θ = 1 θ = 10

0.01 3.923 6.129 6.153 5.392 48.85 789.4
0.1 0.649 3.838 5.922 0.6255 5.234 47.59
0.5 0.975 1.085 4.666 0.9709 1.176 10.04
1 1.010 0.5739 3.436 1.008 0.5337 5.039
2 1.004 0.7949 2.168 1.006 0.7686 2.456
4 1.005 0.9606 1.302 1.007 0.9645 1.313
6 1.005 0.9667 0.9359 1.007 0.9695 0.8822
8 1.005 0.9543 0.6649 1.007 0.9553 0.6156
10 1.005 0.9599 0.4494 1.007 0.9617 0.4045
15 1.005 0.9584 0.3173 1.007 0.96 0.2242
20 1.005 0.9583 0.8022 1.007 0.9599 0.7795
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Table 8.7 Extend of validity of 1D-solution in [28] by comparison with the present
2D-analysis for the average shear stress amplitude Π̄xy,A (L1, δ, θ) in terms of gas
rarefaction parameter δ for θ = [0.1, 1, 10].

δ Π̄xy,A (L1, δ, θ) Π̄xy,A (δ, θ) [28]
θ = 0.1 θ = 1 θ = 10 θ = 0.1 θ = 1 θ = 10

0.01 0.4983 0.7581 0.7639 0.2821 0.2821 0.2821
0.1 0.2163 0.5086 0.7585 0.2801 0.2797 0.2797
0.5 0.2768 0.2329 0.6551 0.2788 0.2714 0.2709
1 0.2799 0.1874 0.5254 0.2813 0.2634 0.2612
2 0.2802 0.2748 0.3717 0.2819 0.2521 0.2093
4 0.2803 0.2506 0.2253 0.2819 0.2665 0.1741
6 0.2803 0.2616 0.1289 0.2819 0.2696 0.1465
8 0.2803 0.2627 0.0848 0.2819 0.2688 0.1531
10 0.2804 0.2638 0.0959 0.2819 0.2688 0.1622
15 0.2804 0.2647 0.1615 0.2819 0.2688 0.1632
20 0.2804 0.2653 0.1801 0.2819 0.2688 0.1627
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Figure 8.1 Flow configuration in a comb-type structure
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Figure 8.2 Average normal stress amplitude Π̄yy,A (L2/2, δ, θ) and phase
Π̄yy,P (L2/2, δ, θ) at surface 1 in terms of gas rarefaction parameter δ and for oscillation
parameter θ = [0.1, 1, 10].

Figure 8.3 Average shear stress amplitude Π̄xy,A (L1, δ, θ) and phase Π̄xy,P (L1, δ, θ)
at surface 3 in terms of gas rarefaction parameter δ and for oscillation parameter
θ = [0.1, 1, 10].
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Figure 8.4 Average normal stress amplitude Π̄yy,A (L2/2, δ, θ) and phase
Π̄yy,P (L2/2, δ, θ) at surface 1 in terms of the oscillation parameter θ and for gas
rarefaction parameter δ = [0.1, 1, 10].

Figure 8.5 Average shear stress amplitude Π̄xy,A (L1, δ, θ) and phase Π̄xy,P (L1, δ, θ) at
surface 3 in terms of the oscillation parameter θ and for gas rarefaction parameter
δ = [0.1, 1, 10].
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Figure 8.6 Average normal stress amplitude Π̄yy,A (L2/2, δ, θ) and shear stress amplitude
Π̄xy,A (L1, δ, θ) in terms of δ/θ, for gas rarefaction parameter δ = [0.1, 1, 10] and
oscillation parameter θ = [0.1, 1, 10].
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Figure 8.7 Contours of velocity uy,A (δ, θ) and normal stress amplitude Πyy,A (δ, θ) for
comb type structures under vertical motion with δ = [0.1, 1, 10] and θ = 1.
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Figure 8.8 Contours of density ρA (δ, θ) and temperature amplitude τA (δ, θ) for comb
type structures under vertical motion with δ = [0.1, 1, 10] and θ = 0.1.
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Figure 8.9 Average normal stress amplitude Π̄xx,A (L1, δ, θ) and shear stress amplitude
Π̄xy,A (L2/2, δ, θ) in terms of gas rarefaction parameter δ and for oscillation parameter
θ = [0.1, 1].

235

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 08:10:15 EEST - 3.144.111.108



Oscillatory rarefied gas flow in vertically/laterally driven comb-type assemblies

Figure 8.10 Contours of velocity ux,A (δ, θ) and normal stress amplitude Πxx,A (δ, θ) for
comb type structures under lateral motion with δ = [0.1, 1, 10] and θ = 1.
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Figure 8.11 Contours of density ρA (δ, θ) and temperature amplitude τA (δ, θ) for comb
type structures under lateral motion with δ = [0.1, 1, 10] and θ = 1.
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Figure 8.11 Contours of density ρA (δ, θ) and temperature amplitude τA (δ, θ) for comb
type structures under lateral motion with δ = [0.1, 1, 10] and θ = 1.
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Chapter 9

Concluding remarks

9.1 Summary and contributions

In the present dissertation, oscillatory rarefied gas flows in capillaries and enclosures
have been investigated. The oscillatory motion is always considered as harmonic and
it may be induced by an oscillating pressure gradient, external force, molar fraction
or boundary wall. Modelling is based on kinetic theory by implementing suitable
kinetic models and the DSMC method. The kinetic solution is valid in the whole
range of the gas rarefaction parameter (or Knudsen number) and the oscillation
frequency, which may be as high or even higher than the intermolecular collision
frequencies. The amplitude of the oscillatory motion is considered as either small or
arbitrary large, leading to linearized or nonlinear kinetic equations respectively. The
simulations are based on monoatomic single gases and binary gas mixtures. The flow
configurations include flows between parallel plates, in circular tubes, in rectangular
ducts and in comb-type assemblies. Oscillatory and pulsatile rarefied gas flows may
be applied in several technological devices including sensors, controllers, resonators,
pumps, cooling setups, gas separators and mixers. Since the emerging technologies
in vacuum technology and MEMS require low pressures and/or reduced dimensions,
as well as high resonance frequencies, kinetic type approaches are needed to properly
compute the flow characteristics in a wide range of space and time scales. A brief recap
of the flow configurations modeled and simulated with kinetic modeling in the present
work is reviewed in the next paragraphs.

In Chapter 3, the oscillatory pressure driven fully-developed rarefied gas flow in
a circular tube is investigated, based on the linearized time-dependent BGK kinetic
model equation. Computational results of the amplitude and the phase angle of the
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flow rates and the velocity distributions, as well as of the periodic time evolution
of these macroscopic quantities, are provided. The limiting flow rates in the slip
and free molecular regimes for very low and high frequency oscillations are properly
recovered by the kinetic solution. It is seen that at low oscillation frequencies, the flow
rate and velocity distribution are in phase with the pressure gradient, while as the
frequency is increased the amplitude of the macroscopic quantities is decreased and the
phase angle lag is increased. In terms of the gas rarefaction, there is a non-monotonic
behavior and the maximum flow rate amplitude may be observed at some intermediate
value of the gas rarefaction parameter depending upon the oscillation parameter. At
high frequencies, the flow consists of the core oscillating in a plug-flow mode and
the Stokes layer with the velocity overshoot. These effects, which are well known
in classical hydrodynamics, are also present in oscillatory rarefied flows even though
higher oscillation frequencies are needed to trigger these phenomena.

In Chapter 4, the pulsatile pressure driven fully-developed flow of a rarefied gas
through an orthogonal duct is investigated by decomposing the flow into its steady
and oscillatory parts. The investigation is focused on the oscillatory part, which is
numerically solved, based on the time-dependent linear BGK equation, in a wide range
of the gas rarefaction parameter and the oscillation parameter, as well as for various
values of the duct aspect ratio and the tangential momentum accommodation coefficient.
Numerical results are provided for the amplitude, phase angle and time evolution of
the velocity distribution, the flow rate, the mean wall shear stress, the acting inertial
and viscous forces, the pumping power and the time average pumping power. Always
as the oscillation frequency is increased, the amplitude of all macroscopic quantities is
decreased and their phase angle lag with respect to the pressure gradient is increased.
It is also observed that at small and moderate frequencies there is a critical degree
of gas rarefaction in the transition regime, where a maximum flow rate is obtained.
Concerning the duct aspect ratio, it has been found that as the aspect ratio is decreased
and tends to zero, which corresponds to pulsatile flow between parallel plates, the
flow rate and mean wall shear stress amplitudes are increased, while their phase lags
are slightly affected. Similarly, the accommodation coefficient has a significant effect
on the amplitudes and a very weak one on the phases of the macroscopic quantities.
Furthermore, the detailed computation of the inertia and viscous forces in terms of
the gas rarefaction and oscillation parameters, clarifies when the flow consists of the
inviscid piston flow in the core and the oscillating Stokes layer at the wall with the
velocity overshooting. Finally, the oscillatory pumping power has two peaks within
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each oscillatory cycle and its integral over one cycle is not zero. The time average
pumping power is increased as the oscillation frequency is reduced and its maximum
value is one half of the corresponding steady one.

In Chapter 5, the nonlinear oscillatory fully-developed rarefied gas flow between
parallel isothermal and nonisothermal plates due to an external harmonic force is
investigated by the DSMC method and kinetic models. The parameters include the gas
rarefaction and oscillation parameters, the force amplitude and the temperature ratio
between the plates. The results are in dimensionless form and include the axial velocity,
temperature, pressure, wall shear stress and heat flow vector, as well as the flow rate,
cycle-averaged wall shear stress, space-averaged axial heat flow and pumping power.
In terms of the mass flow rate amplitude, the DSMC results have been compared with
nonlinear oscillatory kinetic model (BGK and Shakhov) results and the agreement
is very good. However, there are significant discrepancies in the axial and normal
heat flows. The DSMC results have been also compared with linear oscillatory results
to find out that the largest deviation in the flow rate amplitude reaches about 25%
at large external forces. Furthermore, all macroscopic distributions have sinusoidal
pattern with its fundamental frequency being the same with the driving frequency
of the external force without the appearance of other harmonics, except of the axial
heat flow where the nonlinearities are responsible for generating oscillatory motion
containing several harmonics. Nonlinear effects are becoming more significant in highly
rarefied flows and low oscillation frequencies. Furthermore, in the nonlinear oscillatory
flow with nonisothermal plates, it is seen that the space-average normal heat flow
presents a periodic behavior only for low force oscillation frequencies and its magnitude
is affected only by the temperature ratio.

In Chapter 6, the rarefied, oscillatory, pressure-and molar fraction driven binary gas
mixture flow between parallel plates is investigated. The extra parameters here include
the mixture molar fraction and the molecular mass ratio of the species, increasing
significantly the computational effort. Modeling is based on the McCormack kinetic
model. The output quantities are in dimensionless form and include the velocity
distributions and flow rates of the species, as well as the kinetic coefficients, wall shear
stress and pumping power of the mixture. Due to inertia forces, the heavier species are
affected more drastically than the lighter ones resulting to large differences between the
flow rate amplitudes of the species, which are increased as the flow becomes less rarefied,
provided that the oscillation frequency is adequately high. At very high frequencies the
ratio of the flow rate amplitudes of the light over the heavy species is approximately
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equal to the inverse of their molecular mass ratio in the whole range of gas rarefaction.
It is seen that independent of the molar fraction and the gas rarefaction regime, the
amplitude ratio of the oscillatory flow rates of the light over the heavy species is
significantly increased as the oscillation frequency is increased. The present results
may be of major technological importance in developing and designing gas separation
apparatus in the whole range of the Knudsen number that operate at moderate and
high frequencies.

In Chapter 7, the oscillatory fully-developed shear driven rarefied gas flow between
parallel plates is computationally investigated in terms of the gas rarefaction and
oscillation parameter. This problem has been considered mainly for benchmarking
purposes, as well as for optimizing the computer codes. It is pointed out that when
the real and imaginary parts of the kinetic equation are solved separately, a specific
treatment of the marching scheme is required. It is also seen that a suitable speed-up
is achieved when two parallelization strategies based on OpenMP and OpenACC
directives are applied.

In Chapter 8, the oscillatory rarefied gas flow in comb-type structures driven by
the vertical/lateral harmonic motion of the moving surface is investigated. Modelling
is based on the linearized unsteady Shakhov kinetic model equation. Computational
results are presented mainly for the average normal pressure and shear stress of the
moving walls in terms of the oscillation frequency, the gas rarefaction and the geometry
of the structure. As the rarefaction parameter is increased, the amplitudes of both
quantities are initially reduced, reaching some minimum values (anti-resonance state).
Then, they are slightly increased and start to oscillate until they remain constant.
Also, two-dimensional plots of the velocity, normal pressure, density and temperature
amplitude are presented in order to visualize the whole flow domain. In addition, the
gas trapping phenomenon is seen for low gas rarefaction and high oscillation frequencies.
In the high frequency regime, the flow may be treated as one-dimensional. Finally, for
low frequencies the stresses depend heavily on the comb dimensions, while for high
frequencies they remain constant despite any changes in dimensions.

It is hoped that the theoretical findings and the computational results reported
here will support, at some extend, the detailed design and optimization of various
technological devices.
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9.2 Future work

The work of the present Ph.D. thesis may be further extended to more complex
time-dependent flow configurations. In this framework some research topics that can
be implemented in the future are presented.

In oscillatory and pulsatile pressure-driven flows, the fluid displacement may be
taken into account in an effort to simulate flows in more complex geometries. The
effect of the piston displacement can be also considered. Although the computational
effort will be significantly increased, the obtained results will be tailor-made directly
connected to technological applications.

Furthermore, taking into consideration that in the hydrodynamic regime the axial
heat diffusion between two containers of different temperature may be enhanced
due to some axial oscillatory fluid motion, it may be interesting to investigate the
corresponding problem in the transition regime. In this effort it is required in order
to couple the pressure and temperature effects to solve the nonlinear problem and to
investigate if the increased heat transfer rate will be maintained as the gas rarefaction
is increased.

Extending the work on oscillatory binary gas mixture flows, the gas separation
effect may be investigated by considering gas expansion of long capillaries into vacuum.
In this setup the pressure gradient amplitude in the inlet may vary in the whole range
of the Knudsen number at the entrance, while at the outlet is always set equal to zero.
The profiles of the amplitude of the pressure and concentration along the capillary may
be obtained and then the conductances of the two species may be deduced in order to
explore if and how much the oscillatory motion increases gas separation. Obviously
the work may be repeated for mixtures with more than two species.

The comb type structure may be further investigated as a part of an accelerometer
or a resonator taking into account other sources of damping in addition to fluid damping.
Also, the effect of the displacement of the moving parts of the comb assembly may be
considered to have a more complete and probably accurate description.

In all proposed work a common factor is the increased computational cost. Therefore,
it is necessary that the parallelization techniques must be extended. A first scenario is
to couple the OpenMP/MPI with the OpenACC directives in order to exploit more
GPUs. A second one is to couple the OpenACC directives with CUDA. When the
maximum efficiency is reached with the OpenACC directives, the CUDA programming
model is employed in certain kernels to gain speed-up that OpenACC cannot deliver.
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The work of the present Ph.D. thesis is strictly computational. The development
of suitable experimental rigs close to the flow configurations considered here and the
comparison with the present numerical results will be obviously very useful.
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Appendix A

Solutions in the hydrodynamic and
slip regimes

A.1 Analytical solution of the oscillatory flow in a
rectangular duct

The hydrodynamic and slip regimes are characterized by large values of both
flow parameters δ and θ. As δ → ∞ and θ → ∞, by retaining the fully-developed
flow assumption the continuity equation is identically satisfied and the z−momentum
equation becomes [10, 75, 72]

ρ
∂Û

(m)
P UL

∂t′ = −dP̂P UL

dz′ + µ

∂2Û
(m)
P UL

∂x′2 + ∂2Û
(m)
P UL

∂y′

 , (A.1)

where the pressure gradient dP̂P UL (z′, t′) /dz′ and velocity Û
(m)
P UL (t′, x′, y′), with m =

H, S denoting the hydrodynamic and slip solutions, are defined by Eqs. (4.1) and (4.2)
respectively. The pressure gradient and the velocity are decomposed into the steady
and oscillatory parts. The former one yields the steady Stokes equation and the latter
one may be written in dimensionless form as

∂2u(m)

∂y2 + ∂2u(m)

∂x2 + 2i
δ2

θ
u(m) = −δ, (A.2)

where u(m) = u(m) (x, y), m = H, S, is the complex hydrodynamic or slip velocity.
Equation (A.2) is also known as the unsteady Stokes equation. The steady and
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Solutions in the hydrodynamic and slip regimes

unsteady Stokes equations subject to no-slip and slip boundary conditions have been
solved analytically in [224] and [10] respectively. Here, we are interested mainly to the
oscillatory flow and therefore, the solution of Eq. (A.2) is provided in terms of the
present notation without however describing the methodology.

In the hydrodynamic regime (m = H), Eq. (A.2) subject to the associated no-slip
boundary conditions u (x, ±1/2) = 0 and u (±H/2W, y) = 0 is solved to yield

u(H) = 4δ
∞∑

j=0

sin (bj/2)
bjpj

2

[
1 − cosh (pjx)

/
cosh

(
W

2H
pj

)]
cos (bjy) , (A.3)

where bj = (2j + 1) π, j = 0, 1, 2, 3, ... and pj =
√

b2
j − 2iδ2/θ. The velocity field is

integrated according to Eq. (4.22) to find the hydrodynamic flow rate

G(H) = 8δ
∞∑

j=0

1 − cos bj

b2
jp

2
j

[
pj − 2H

W
tanh

(
W

2H
pj

)]
. (A.4)

Then, the velocity field is differentiated with respect to x and y to find the shear
stresses

τ (H)
xz = −2

∞∑
j=0

sin (bj/2)
bjpj

[
1 − sinh (pjx)

/
cosh

(
W

2H
pj

)]
cos (bjy) (A.5)

and

τ (H)
yz = −2

∞∑
j=0

sin (bj/2)
p2

j

[
1 − cosh (pjx)

/
cosh

(
W

2H
pj

)]
sin (bjy) . (A.6)

In the slip regime (m = S), Eq. (A.2) subject to the associated slip boundary
conditions [10]

u(S) (x, ±1/2) = ∓ σP

δ

du(S)

dy

∣∣∣∣∣
y=±1/2

and u(S) (±H/ (2W ) , y) = ∓ σP

δ

du(S)

dx

∣∣∣∣∣
x=H/(2W )

(A.7)
where σP = 1.016 is the viscous slip coefficient is solved to yield

u(S) = 4δ
∞∑

j=0

sin (bj/2) cos (bjy)
bjp2

j

(
1 + 2σP

δ
sin2 (bj/2)

)
1 − cosh (pjx)

cosh
(

W
2H

pj

)
+ σP

δ
pj sinh

(
W
2H

pj

)
 (A.8)
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A.2 Numerical solution for nonlinear oscillatory flow between parallel plates

In Eq. (A.8) pj =
√

b2
j − 2iδ2/θ, while the eigenvalues bj are the roots of the tran-

scendental equation bj tan (bj/2) = δ/σP . Then, the slip flow rate and shear stresses
are

G(S) = 8δ
∞∑

j=0

1 − cos bj

b2
jpj

3
(
1 + 2σP

δ
sin2 (bj/2)

)
pj − 2H

W

1
coth

(
W
2H

pj

)
+ σP

δ
pj

 (A.9)

τ (S)
xz = −2

∞∑
j=0

sin (bj/2) cos (bjy) sinh (pjx)
bjpj

[
1 + 2σP

δ
sin2 (bj/2)

] [
cosh

(
W
2H

pj

)
+ σP

δ
pj sinh

(
W
2H

pj

)] (A.10)

τ (S)
yz = −2

∞∑
j=0

sin (bj/2) cos (bjy)
p2

j

(
1 + 2σP

δ
sin2 (bj/2)

)
1 − cosh (pjx)

cosh
(

W
2H

pj

)
+ σP

δ
pj sinh

(
W
2H

pj

)
 (A.11)

The closed form expressions (A.4)-(A.6) and (A.9)-(A.11) are implemented to validate
the kinetic solution for large values of both δ and θ.

A.2 Numerical solution for nonlinear oscillatory flow
between parallel plates

The hydrodynamic and slip regimes are characterized by large values of both the
gas rarefaction and oscillation parameters. As δ → ∞ and θ → ∞, by retaining the
fully developed flow assumption, the x−momentum incompressible equation becomes
[185]

ρ
∂U (m)

∂t′ = −ρF̂ ′ + µ
∂2U (m)

∂y′2 , (A.12)

where, ρ is the mass density, µ is the viscosity and U (m) (t′, y′) is the unknown macro-
scopic velocity, with m = H, S denoting the hydrodynamic and slip solutions respec-
tively. Introducing the dimensionless variables of Eqs. (5.9) and (5.10) into Eq. (A.12)
yields the following conservation equations in dimensionless form:

∂u(m)

∂t
= −F cos

(
δ

θ
t

)
+ 1

2δ

∂2u(m)

∂y2 (A.13)

Equation (A.13) is subject in the hydrodynamic (m = H) and slip (m = S) regimes
to the no-slip u(H) (±1/2) = 0 and slip

u(S) (±1/2) = ∓ σP

δ

du(S)

dy

∣∣∣∣∣
y=±1/2

(A.14)

269

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 08:10:15 EEST - 3.144.111.108



Solutions in the hydrodynamic and slip regimes

boundary conditions respectively. In Eq. (A.14), σP = 1.016 is the viscous slip
coefficient [2].

Once the velocity distribution is found, the flow rate is readily deduced according
to

M (S) (t) =
∫ 1/2

−1/2
u(S) (t, y) dy. (A.15)

Here Eq. (A.13) with boundary condition (A.14) is numerically solved using 2nd order
finite difference schemes in time and space under the assumption of constant properties.
The corresponding steady-state analytical solution [185] is properly recovered as θ → ∞.
The present numerical results are used in Table 5.2 to check the range of validity of
the slip regime and the accuracy of the DSMC solution in the slip regime.
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Appendix B

McCormack kinetic model and
momentum balance in binary gas
mixture flows

B.1 Elements of the McCormack linearized colli-
sion term

The McCormack linearized collision term [44] for the flow between parallel plates is
written as

Lαβh̃a = −γah̃a + 2
√

ma

m

{
γαβŨa − v

(1)
αβ

(
Ũa − Ũβ

)
− 1

2v
(2)
αβ

(
Q̃a − ma

mβ

Q̃β

)}
cax

+4
[(

γαβ − v
(3)
αβ

)
Π̃a + v(4)

ααΠ̃β

]
caxcay

+ 4
5

√
ma

m

{(
γαβ − v

(5)
αβ

)
Q̃a + v

(6)
αβ

√
mβ

mα

Q̃β − 5
4v

(2)
αβ

(
Ũa − Ũβ

)}
cax

(
c2

a − 5
2

)
. (B.1)

The collision frequencies γa = γaa + γαβ are expressed as

γα =
SaSβ − v

(4)
αβ v

(4)
βα

Sβ + v
(4)
αβ

, (B.2)
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McCormack kinetic model and momentum balance in binary gas mixture flows

where Sa = v(3)
aa − v(4)

aa + v
(3)
aβ . In Eqs. (B.1) and (B.2), α = 1, 2, β ≠ α and the

quantities v
(1−6)
αβ are given by

v
(1)
αβ = 16

3
mαβ

ma

nβΩ11
αβ, (B.3)

v
(2)
αβ = 64

15

(
mαβ

ma

)2
nβ

(
Ω12

αβ − 5
2Ω22

αβ

)
, (B.4)

v
(3)
αβ = 16

5
m2

αβ

mamβ

nβ

(10
3 Ω11

αβ + mβ

ma

Ω22
αβ

)
, (B.5)

v
(4)
αβ = 16

5
m2

αβ

mamβ

nβ

(10
3 Ω11

αβ − Ω22
αβ

)
, (B.6)

v
(5)
αβ = 64

15

(
mαβ

mα

)3 mα

mβ

nβ

(
Ω22

αβ +
(

15
4

mα

mβ

+ 25
8

mβ

mα

)
Ω11

αβ − 1
2

mβ

mα

(
5Ω22

αβ − Ω13
αβ

))
,

(B.7)

v
(6)
αβ = 64

15

(
mαβ

mα

)3
(

mα

mβ

)3/2

nβ

(
−Ω22

αβ + 55
8 Ω11

αβ − 5
2Ω12

αβ + 1
2Ω13

αβ

)
, (B.8)

mαβ = mamβ

(ma + mβ) , (B.9)

The Chapman-Cowling integrals Ω
(ij)
αβ [25] for the rigid sphere interaction are written

as
Ω

(ij)
αβ = (j + 1)!

8

[
1 − 1 + (−1)i

2 (i + 1)

](
πKT

2mαβ

)
(da + dβ)2 , (B.10)

where da, a = 1, 2 is the diameter of the molecule of each species.

B.2 Formulation of the force balance expression

The inertia (or acceleration), viscous and pressure forces of the mixture acting on a
fluid volume per unit length (Hdx′) are given by

F̃I (t′) = Hdx′ρ
∂Ū ′ (t′)

∂t′ , (B.11)

F̃V (t′) = 2dx′Π̃W (t′) (B.12)

and
F̃P (t′) = HdP̃ (t′) (B.13)
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B.2 Formulation of the force balance expression

respectively, where ρ = nm is the molecular mass density, Ū ′ (t′) is the average
hydrodynamic velocity of the mixture and Π̃W (t′) is the wall shear stress of the
mixture. All forces are divided by (HPXP ) to yield the corresponding dimensionless
ones:

f̃I (t′) = 2dx
δ

θ

∂ū′ (t′)
∂t

= dx
δ

θ

[
m1

m
CG

(A)
1 sin

(
G

(P )
1 − t

)
+ m2

m
(1 − C) G

(A)
2 sin

(
G

(P )
2 − t

)]
(B.14)

f̃V (t′) = 4dxϖ̃W (t′) = 4dxϖ
(A)
W cos

(
t − ϖ

(P )
W

)
(B.15)

f̃P (t′) = dx cos t (B.16)

Since there is no net momentum flux, at any time during a time cycle, the pressure
force is equal to the inertia plus the viscous forces:

f̃P (t′) = f̃I (t′) + f̃V (t′) (B.17)

Substituting Eqs. (B.14)-(B.16) into Eq. (B.17) yields the force balance expression in
dimensionless form:

δ

θ

[
m1

m
CG

(A)
1 sin

(
G

(P )
1 − t

)
+ m2

m
(1 − C) G

(A)
2 sin

(
G

(P )
2 − t

)]
+4ϖ

(A)
W cos

(
t − ϖ

(P )
W

)
= cos t

(B.18)
Equation (B.18) is used for confirming the accuracy of the computed amplitudes and
angle phases of the flow rate and the shear stress.
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