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A bstract

The aim of this thesis is to investigate how the effective diffusivity of flake filled polymeric 

membranes is altered by the presence and properties of flakes, such as their aspect ratio (α), 

volume fraction (φ), orientation (θ) and alignment relative to the direction of diffusion (θ +  

e). We show that as a result of the dispersion of flakes in the polymeric matrix, materials 

with improved barrier properties are produced since the flake existence causes an increase in 

the distance travelled by the diffuse species through the membrane. This degree of difficulty is 

described by the Barrier Improvement Factor (B IF ) and this coefficient is used to quantify the 

effect of the flake presence on the membrane barrier properties.

Besides the technological importance of this topic, an additional motivation for this investiga­

tion was the fact that the already proposed models have shown a small range of applicability 

and in general have limited success in providing a unifying framework for the description of the 

barrier properties of said materials. To address this issue we have carried out a comprehensive 

computational study and proposed and tested new theoretical models able to describe B IF  for 

a range of flake concentrations and orientations.

The present thesis used 2D & 3D RVEs with periodic geometries and periodic boundary con­

ditions that were created using a variety of computational tools including applications and 

algorithms that were written from scratch for the needs of this study. Subsequently with the 

created geometries we run simulations using the OpenFOAM toolbox in our laboratory cluster 

which was set up in the beginning of this thesis. With this combination of existing and new 

computational tools we managed to create a toolchain that enabled us to run thousands of 

simulations covering all the studied parameters in their full range and - in to our knowledge 

- the most comprehensive study in the literature so far. Also contrary to most earlier studies 

the simulations were carried out in RVEs of realistic complexity, containing 1000s of individual 

flakes. We also check our results against the existing models described in the literature and we 

examine some common misconceptions and problems that exist in the field.

K eyw ord s: Composite materials, Flakes, Diffusion, Transport Phenomena, Barrier Properties, 

2D & 3D modelling, Simulation, Barrier Improvement Factor (BIF).
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Π ερίληψ η

Σκοπός αυτής της εργασίας είναι η διερεύνηση του τρόπου με τον οποίο μεταβάλλεται ο συντελε­

στής διαπερατότητας ενός σύνθετου υλικού, ενισχυμένου με φυλλίδια, με έμφαση στις πολυμερικές 

μεμβράνες. Οι ιδιότητες των υλικών αυτών μεταβάλλονται από την παρουσία και τις ιδιότητες των 

φυλλιδίων, όπως η αναλογία διαστάσεων (α), το κλάσμα όγκου (φ), ο προσανατολισμός (θ) και 

η διακύμανση του προσανατολισμού (θ+ε). Δείχνουμε ότι ως αποτέλεσμα της διασποράς των 

φυλλιδίων στο υλικό, παράγονται υλικά με βελτιωμένες ιδιότητες φραγμού αφού η ύπαρξη των 

φυλλιδίων προκαλεί αύξηση στην διαδρομή που πρέπει να ακολουθηθεί από τα μόρια, ιόντα κλπ, 

διαμέσου του υλικού. Αυτός ο βαθμός δυσκολίας περιγράφεται από τον συντελεστή Barrier Im­

provement Factor (BIF), ο οποίος χρησιμοποιείται για την ποσοτικοποίηση της επίδρασης της 

παρουσίας φυλλιδίων στις ιδιότητες φραγμού.

Εκτός από την τεχνολογική σημασία αυτού του θέματος, πρόσθετο κίνητρο για την έρευνα αυτή 

ήταν το γεγονός ότι τα ήδη προτεινόμενα μοντέλα έχουν δείξει ένα μικρό εύρος εφαρμογής και 

γενικά έχουν περιορισμένη επιτυχία στην παροχή ενός ενοποιητικού πλαισίου για την περιγραφή 

των ιδιοτήτων φραγμού των εν λόγω υλικών. Για να αντιμετωπίσουμε αυτό το ζήτημα, πραγματο­

ποιήσαμε μια ολοκληρωμένη υπολογιστική μελέτη και προτείνουμε νέα θεωρητικά μοντέλα ικανά 

να περιγράψουν το BIF για μια σειρά μεγεθών, συγκεντρώσεων και προσανατολισμών φυλλιδίων.

Στην παρούσα διατριβή χρησιμοποιήσαμε 2D & 3D RVEs με περιοδικές γεωμετρίες και περιοδικές 

οριακές συνθήκες που δημιουργήθηκαν χρησιμοποιώντας μια ποικιλία υπολογιστικών εργαλείων 

που περιλαμβάνουν εφαρμογές και αλγορίθμους που γράφτηκαν και υλοποιήθηκαν για τις ανάγκες 

αυτής της μελέτης. Στη συνέχεια δημιουργήθηκαν γεωμετρίες και εκτελέστηκαν προσομοιώσεις 

χρησιμοποιώντας την εργαλειοθήκη του OpenFOAM στο εργαστηριακό μας cluster το οποίο 

στήθηκε στην αρχή αυτής της διατριβής. Με αυτόν τον συνδυασμό υφιστάμενων και νέων υπολο­

γιστικών εργαλείων καταφέραμε να δημιουργήσουμε μια ακολουθία ενεργειών που μας επέτρεψε 

να τρέχουμε χιλιάδες προσομοιώσεις και οι οποίες καλύψανε όλες τις παραμέτρους που μελετήθη­

καν στο πλήρες εύρος τους και αποτελούν - όσο γνωρίζουμε - την πιο ολοκληρωμένη μελέτη στη 

βιβλιογραφία μέχρι στιγμής.

Επίσης αντίθετα με προηγούμενες μελέτες οι προσομοιώσεις πραγματοποιήθηκαν σε RVEs με 

ρεαλιστική πολυπλοκότητα, που περιείχαν περισσότερα από 1000 φυλλίδια. Ελέγξαμε επίσης τα 

αποτελέσματά μας σε σχέση με υπάρχοντα μοντέλα που περιγράφονται στη βιβλιογραφία και εξε­

τάσαμε μερικές κοινές παρανοήσεις και προβλήματα που υπάρχουν στον τομέα.

Λ έξ ε ις  κ λ ε ιδ ιά : Σύνθετα υλικά, Φυλλίδια, Διάχυση, Φαινόμενα μεταφοράς, Ιδιότητες φραγμού, 

2D & 3D μοντελοποίηση, προσομείωση, Συντελεστής βελτίωσης ιδιοτήτων φραγμού
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Sum m ary

After the introduction in Chapter 1 where we discuss the characteristics of composite mate­

rials and the theoretical background of diffusion, a new algorithm is introduced in Chapter 2 

(FastRSA), with which we can create periodic 2D geometries that approach the packing limit 

at every value of (α). This has enabled us to calculate more accurately the statistical properties 

of such geometries especially at high (α) contrary to the classic RSA algorithm which shows a 

weakness in approaching the maximum packing limit in these cases.

From Chapter 3 to Chapter 6 we examine 2D systems that simulate composites with ribbon­

like flakes. In Chapter 3 we examine the effect that deviations from perfect alignment have on 

barrier properties. The transition in the behavior of B IF  between the dilute and concentrated 

regime is clearly shown in our computational results. Using these results we propose a model 

that is a function of (αφ) and (e). In Chapter 4 we study unidirectional misaligned systems and 

uncover the combined effect of (θ) and (αφ) on BIF. This is expressed in the form of a model 

that, contrary to earlier published studies, respects the rotational invariance of the diffusivity 

tensor. With the use of this model we get excellent agreement with the computational results 

in all misalignment angles and for a wide range of (αφ) up to 40. At Chapter 5 a comparison 

is made between our model and existing models in the field. By comparing the existing models 

with our model and with the computational results we see how the existing models deviate in 

the semi-dilute and concentrated regime and how this deviation renders them unusable in these 

cases. The effect of geometrical formulation and boundary conditions is examined in detail 

and we show the problems that arise from poorly formulated simulations. At Chapter 6 we 

present a closed form solution for the effective diffusivity coefficient in cases where the flakes 

are randomly oriented inside the RVE. This solution predicts with accuracy the behavior of 

B IF  even at large (θ) and (αφ).

Finally in Chapter 7 we extend successfully the 2D models to 3D geometries and we introduce 

a new metric (M ) for the description of the B IF  of 3D systems with flakes of various shapes 

that cover the most frequently flake geometries. For misaligned flakes they show that as (M ) 

increases the evolution of B IF  is no longer monotonic but it approaches a plateau value which 

is determined by (θ).
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Chapter 1

Introduction

Polymeric membranes of various materials with remarkable properties that serve a wide range 

of applications have been developed and emerged by the polymer industry in recent decades. 

Approaching lower orders of magnitude, we notice that nanocomposite polymeric membranes 

belong to a new class of composites that promise many as materials with improved properties for 

almost all industrial applications and especially in medicine, food packaging, power generation. 

photovoltaic systems, fuel cells coatings, various chemical separations of elements such as water 

desalination as well as numerous other applications. In many applications and if required, the 

permeability of the membranes or otherwise their selective permeability can be controlled.

In particular, we refer to applications in the field of medicine or nano-medicine (referring to the 

nanometer-nm scale - 10-9m ), where nanotechnology achievements have already appeared re­

cently in semi-permeable membrane filters. High-permeability polysulfone membranes, in which 

the porous texture of the inner layer is controlled at the nanoscale level, and pores with selec­

tive permeability have also been developed and tested. Also it is possible to construct ’’ smart” 

membranes and integrate them into a continuous-mode, portable or implantable biological sys­

tems such as artificial kidneys. We also have applications in electronics where production of 

almost chemically pure deionized water, necessary for the production of computer boards and 

microchips, became possible after applying appropriate reverse osmosis systems by using new 

composite polymeric membranes. Nanocomposite polymeric membranes are also used in ap­

plications such as municipal waste treatment for the filtration and reuse of water, in modern 

food technology, enhancing consumer safety and maintaining food quality as of course in many 

other separation applications. Finally the use of membranes helps address the very important

1
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problem of lack of drinking water by methods of separation processes by membranes such as 

reverse osmosis and reverse electrodialysis, or even desalination with thermal methods. This 

gives access to 97% of the total ground water, which is in the seas and oceans with high dis­

solved salt content (about 35gr per liter), where the most energy-efficient solution today is 

desalination using reverse osmosis membranes using desalination modules as shown in Figure 

1.1.

In recent years there has been a remarkable interest in composite membranes which use inor­

ganic reinforcing agents in the form of flakes with high values of aspect ratio. These reinforce­

ment cases include flakes with micron-size dimensions, from inorganic materials such as mica 

and more recently to nanoscale dimensions, using clay minerals such as Hectorite, Saponite and 

Montmorillonite [1]. Such enhancers have been shown to be highly effective since they have 

the potential to significantly increase the distance traveled by the diffusion molecules across 

the membrane. In addition a very important factor is that the desired insulation properties 

can be achieved by using a small amount of reinforcement means and therefore a low overall 

cost. Although membrane reinforcement is a well-known category of research, its dependence

Figure 1.1: Representation of seawater desalination system using a spiral wound membrane 
module [2].

on microstructural factors such as spatial distribution, size distribution and orientation of the 

reinforcing agents in the polymer matrix is not well understood. A  number of researches have 

been carried out in this field and in order to further understand the part of the dependence of
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the membrane transport phenomena on factors of the microstructure of the reinforcing media, 

various results have been obtained and will be analyzed.

The study of such systems (of great geometrical complexity) requires the acceptance of certain 

assumptions in order to be implemented. For example, for a solution comprising of flakes with 

an aspect ratio (ratio of the length to the width of the flake to which the letter a  will refer 

to) equal to 100, should have a charge rate of less than 0.01% to be considered diluted and 

therefore to accessed by analytical methods. For a non-dilute solution the concentration of 

the diffuser around each flake is disturbed by the presence of adjacent flakes, which makes the 

experimental verification difficult to impossible and their numerical approximation one-way. 

More specifically the product (αφ) (the aspect ratio (a) times the volume fraction (φ)) is an 

important factor to consider when analyzing such systems [1].

The present thesis presents an immediate numerical approach for predicting insulation prop­

erties and transport phenomena through flake-filled polymeric materials. In particular, we 

study the variation of their diffusion coefficient as a function of parameters such as the volume 

fraction, dimensions and orientation of the flakes. The numerical calculations are performed 

in two and three dimensions (2D & 3D) for composite membranes comprising of oriented and 

random orientated flakes using the OpenFOAM toolbox. In addition to reviewing the litera­

ture and studying some of the theoretical models of existing literature we attempt to predict 

the diffusion coefficient of composite polymeric membranes with a newly developed model that 

gives accurate results for both 2D and 3D geometries as well in a range that extends from the 

dilute well in to the concentrated regime. Also an attempt is made to evaluate the results and 

comment on their predictions.

1.1 Polym ers

Polymers are materials consisting of large molecules (macromolecules) that are created by the 

repetition of building blocks (monomers) that are interconnected by covalent bonds. Polymers 

cover a wide range of applications and come from petroleum-based organic raw materials. In 

this class of materials belongs bakelite, neoprene, nylon, PVC, polystyrene, polyacrylonitrile 

etc. Etymologically, the word polymers comes from the Greek words very +  part, which is a 

definition that appropriately describes the enormous number of molecules that make up the 

macromolecule. Polymers are prepared by joining many of the same molecules, that is, the
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monomers, by the following procedures:

1. The polymerization method

2. The method of polycondensation

P oly m erization  : This method produces polymers having the same composition as the origi­

nal monomers such as the polymerization of ethylene to form polyethylene (Figure 1.2). Dur­

ing polymerization, products of double, triple and generally multiple molecular weight can be 

formed. Polymerization is effected by the influence of heat (thermal), free radicals (radical), 

catalysts (catalytic), radiation (radioactive) etc. The pure monomer and its solutions or emul­

sions under the presence of the above factors is polymerized. The quality and properties of the 

polymers prepared by polymerization are influenced by various physical and chemical factors, 

the most important of which are: the properties of the monomer, temperature, pressure the 

nature of the polymerization environment and the presence of impurities, excipients or stabiliz­

ers. Depending on the additions and process conditions polymers of different molecular weight 

are produced whose properties vary [3].

Η H\ /
n C=C/ \

Η H

Η Η Η Η Η H

/ \ / \ / \
Η Η Η Η Η H

Η H

i i Jn
Η H

Figure 1.2: Polymerization of ethylene

P o ly con d en sation  : In this method, along with the formation of a megalomolecule, small 

molecular products such as water, hydrogen chloride, alcohol etc. are separated. There are 

two types of polycondensation reactions. Homopolymerization, which is a process between the 

same monomers e.g. amino acids and the heteropolyscubation in which two different monomers 

usually take part e.g. dicarbonic acid and diamine. The main factors that influence the course 

of the polycondensation and determine the properties of the products that are produced are the 

reaction temperature the structure of the original monomer and the types and amounts of cat­

alysts. Synthetic resins, polyamides, polyesters, etc. are manufactured in the polycondensation 

industry [4].
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1.2 Classification of polym ers

The classification of polymers based on their mechanical response to high temperatures is 

shown in Figure 1.3. Another distinction of polymers can be made by the criterion of whether

Figure 1.3: Classification of polymers based on their mechanical properties at high temperatures

the molecular chain monomer is the same or different. This is how we distinguish between 

homopolymer and copolymer if we have the same or different monomer, respectively. Figure 

1.4 shows this classification: In the same figure we can see that copolymers are divided into

Figure 1.4: Classification of polymers by their structural units (monomers)

random, graft, and block groups depending on how the structural elements are rotated on the 

polymer chain. In Figure 1.5 we can see various cases of the molecular chain structure for a 

copolymer.
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1.2.1 Com posite m aterials

Composite materials are defined as the combination of two or more materials, each having 

different properties. In these cases we get an excellent combination of properties by mixing 

two or more materials. This improved behaviour is referred to as the principle of combined 

action. The modern term ’’composites” refers to materials that are made of artificial rather 

than natural. In addition, the two phases of the composite must be chemically dissimilar and 

separated by a distinct interface.

Composites are classified into three general categories (Figure 1.6): (a) particle-reinforced, (b) 

fiber-reinforced, and (c) structural composites. Each category has at least two subdivisions. 

In the first case, the dispersed phase has approximately the same dimensions in all direc­

tions. In the second case, the dispersed phase has the flake geometry (i.e. a large ratio of 

length/thickness). In the third case there is a combination of composite and homogeneous ma­

terials (This classification follows the presentation of materials found in [6]). Most composites 

consist of two phases: the matrix, which is continuous and surrounds the other phase, and the 

dispersed phase. The matrix of composites is a vital part of their composition and its role is 

to keep the flakes together and the choice of an appropriate matrix depends on the tempera­

ture and the environment that the material is to be used [7]. The good affinity between the 

dispersed phase and the matrix is very important for the proper functioning of the composite. 

The interface is defined as the contact area between the two constituent materials at the border 

of their surface.

On the other hand, the reinforcement phase is the phase that gives the composite material its 

improved properties compared to the properties of the matrix. However, in addition to the
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Figure 1.6: Classification of polymers.

structure and surface morphology of composite materials with reinforcing agents, there are also 

microscopic factors affecting these reinforcing agents and which influence the final properties of 

composites such as concentration, size, shape, distribution, alignment and also their orientation 

and length. The properties of the composite material are a function of the properties of the 

two phases, their relative proportion rates and the geometry of the dispersed phase. The latter 

means the shape and size of the dispersed particles, their distribution, and their orientation. 

These features are shown in Figure 1.7. In the present work as already mentioned, we will

Figure 1.7: Schematic representations of the various geometrical and spatial characteristics of 
particles of the dispersed phase that may influence the properties of composites: (a ) concen­
tration, (b) size, (c) shape, (d) distribution, and (e) orientation [8].

focus on how the diffusion coefficient varies with respect to the orientation of the flakes (θ), 

the degree of filling of the material (φ) and the ratio of the length/width of the flake (a  for 2D 

problems and r for 3D problems).
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1.2.2 C om posite polym ers

The term composite polymers is used to describe particle-reinforced polymers that occur in 

various forms, such as spheres, fibers and flakes. In the present work, we will deal with flake 

type reinforcement in polymeric membranes. The orientation of the amplification can be specific 

or random, so we have respectively aligned or random systems. Figure 1.8 shows the various 

cases of composite polymers [9]. In advanced composite materials, reinforcing agents are made 

of either inorganic materials (glass, carbon, metals, ceramics) or organic materials (polymers). 

The total worldwide market for composites was estimated at $25x109 in 1998 and is estimated 

to grow by approximately 5% each year. The market for composites is dominated by glass- 

reinforced polyester and thermosetting resins which account for almost 90% of total production.

Continuous fiber reinforced Particle-filled

Figure 1.8: Reinforcement material distributions [9].

1.3 M embrane Technology

The membrane is a permeable or semi-permeable phase, which often consists of a thin polymer 

or other material, which restricts the movement of certain components. According to the 

IUPAC definition, it is a structure with very large lateral dimensions in relation to its thickness 

and through which, under the influence of various driving forces, the mass transfer effect may 

occur [10]. A more general definition is: “A membrane is called a phase or group of phases 

lying between two different phases, which is physically and/or chemically distinct from them 

and which, due to its properties and the applied field strength, can control the mass transfer 

between these two phases” [11]. More practical, therefore, is a material formed as a thin layer, 

which is inserted between two fluid phases (mixtures or solutions) and which is permeable 

to the components of these two phases. However, because each component has a different
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membrane crossing capability, we can, with the help of a suitable driving force (eg pressure, 

chemical potential, concentration) move material from one phase to another and as a result 

have different compositions on the side to which the movement is made relative to the other 

side. That is, this additional phase constitutes a barrier-insulation between a feed stream to be 

separated and a stream of products. The membrane controls the relative rate of transfer of the 

components through it and divides the supply into a stream enriched in specific components 

and into a stream of low concentration therein. Therefore, the membranes are characterized 

by a selectivity in the passage of molecules and can serve as separation processes for mixtures 

or solutions in their constituents. The driving force for the separation of gases and vapours 

is the partial pressure difference across the membrane, while for liquids the difference is the 

concentration. The membranes, depending on the material from which they are made, are 

divided into inorganic and polymeric. The former usually consist of ceramic materials or zeolites 

(solids with very specific pores, often referred to as “molecular sieves” ) although there are also 

cases of appropriately prepared metal membranes. Inorganic membranes are microporous,

i.e. their selectivity is due to the existence of pores with very small dimensions that allow 

passage only on particles below a certain size (micromoles, macromolecules, colloidal particles, 

depending on the pore size of each membrane).

An example of polymeric membranes is that of non-conductive polymeric membranes. Inorganic 

membranes can be used mainly in gas mixture separation, and in particular for low molecular 

weight components, because there are higher diffusion rates, which makes the process more effi­

cient. These membranes are advantageous in terms of heat resistance and chemical stability but 

are disadvantaged in cost and mechanical strength. Polymeric membranes have an advantage 

where inorganic ones are disadvantaged - and vice versa. They are suitable for processes that 

occur in milder conditions, especially with respect to temperatures that cannot rise to very high 

levels without decomposing the polymeric material. Although it is possible to form membranes 

with pores of various dimensions, so-called asymmetric non-porous, dense membranes are of 

particular interest. Their characterization as asymmetric is due to their peculiar structure of 

two layers with different characteristics. In general, dense non-porous membranes have a much 

lower permeability coefficient than microporous but, due to their very small thickness, the rate 

of diffusion per unit cross-sectional area can be very high.

In addition to asymmetric and elastomeric membranes, there are also membranes consisting of 

amorphous polymers whose glass transition temperature (Tg) is above ambient temperature.
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In them, the permeability plays a primary role, while in elastomeric materials, the solubility is 

equally, if not more important. The relative stiffness that characterizes the structure of these 

amorphous polymers makes them similar in this respect to inorganic membranes, although in 

terms of static characteristics they resemble elastomeric membranes because they are amor­

phous materials. Thus amorphous polymeric membranes are more applicable to gas mixtures, 

mainly of low molecular weight such as e.g. for the separation of atmospheric air into oxygen 

and nitrogen. Elastomeric materials will serve in cases of heavier components or liquids. How­

ever, the distinction is not absolute and the chemical similarity between polymer and passing 

constituents plays an important role [12].

1.4 Transport phenomena through membranes

There are many historical references to the birth of membrane science, but all acknowledge that 

Thomas Graham in 1829 was the first person to observe gas transport phenomena. Thomas 

Graham observed that a deflated pig bladder could swell to a point until it burst if exposed 

to CO2. He then suggested that CO2 dissolves on the wet surface of the bladder and then 

enter its interior through capillary phenomena [13]. After 37 years, in 1866, and after exper­

iments involving the enrichment of oxygen using natural rubber, Thomas Graham proposed 

a three-stage diffusion mechanism called “Colloidal diffusion” . This model is now known as 

the “solution-diffusion model” . Very generally this mechanism involves the adsorption of the 

diffusible molecule to the membrane followed by its diffusion into the membrane and desorp­

tion on the other side. During the diffusion step, Thomas Graham suggested that the diffused 

component behaves as if it were liquid. All this has led to the development of the solution- 

diffusion model, which is the basis for modelling molecular transport phenomena through many 

materials [14], [15].

The transfer of gases through materials by the effect of a pressure gradient on the two ends of 

the material can take place through two basic mechanisms:

1. Diffusion and flow of gas to the bulk material through the solution-diffusion model

2. Flow through material imperfections (heterogeneous, pinholes, porous, micro-channels, 

small fractures and grain boundaries)

In conclusion, the mechanisms for transfer of gases through polymeric membranes require com­
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plete characterization of the microstructure and knowledge of the permeability properties of 

the matrix. Before discussing the mechanisms in more detail, some basic concepts are out­

lined below. The properties of a membrane with respect to its gas permeability are usually 

characterized by: a) the transmission rate of the gas, defined as the volume of gas at standard 

conditions of pressure and temperature, passing through a region of the membrane per second 

divided by the pressure difference on both sides of the membrane and b) the permeability of 

the gas to steady state.

Therefore the mean permeability through a material is the steady state flow (J ) divided by the 

pressure difference at both ends. In the case of homogeneous polymeric membranes, such as 

polymeric films, and for gases that do not interact strongly with the polymer, such as oxygen, 

permeability is an essential property of the membrane independent of polymer thickness and is 

called intrinsic permeability [14].

In general, the process of transferring gases and vapour through membranes or films is called 

permeation. The driving force is a diversification in chemical potential. In many cases it is 

simpler and just as appropriate to use a variation in concentration or pressure. This is very 

useful in permeability measurements, which represent reality, by applying a difference in partial 

pressures on both sides of the membrane. In various technological applications there is often 

interest in calculating the diffusion coefficient of an element (e.g. a gas) through a polymeric 

membrane under equilibrium conditions. The size used practically to quantify the mass transfer 

phenomena of a polymeric membrane is the Permeation P  defined as:

p  (Gas Quntity) · (Membrane Thickness) (1 1)
(Surface) · (Time) · (Pressure Drop)

where the above relationship applies to the case of a gas permeator located under different 

partial pressures on both sides of the membrane. The process of transfer (sorption-diffusion- 

desorption) of a gas to a polymeric membrane is shown in Figure 1.9. The gas transport consists 

of the following steps:

1. Adsorption of the gas to the surface of the membrane

2. Diffusion of gas into the polymeric membrane

3. Desorption from the surface of the opposite side of the membrane

To simulate, atomically, the overall phenomenon of gas flow in a polymeric membrane, is
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Figure 1.9: Sorption-diffusion-desorption process [16].

impossible as it exhibits a very slow time evolution compared to the achievable simulation 

times. Also the sorption/desorption process requires information on the polymer surface which 

most of the times is not available. The solubility of a gas-penetrator in a polymer depends on 

the nature and intensity of the polymer-penetrator interactions relative to the corresponding 

polymer-polymer and penetrator-penetrator as well as the number, size and distribution of the 

accesible cavities that are formed along the chains in which the gas molecules may remain. 

The dual-mode sorption model is one that gives a satisfactory description of the solubility 

dependence of concentration or pressure on a glassy polymer. According to this model, there 

are two distinct molecular populations that make up the gas within the polymer: (a )  molecules 

dissolved in the polymer by the usual Henry procedure and their C d concentration is linearly 

proportional to pressure, and (b) C h gas concentration molecules which are dissolved in a 

limited number of given pre-existing cavities within the polymeric matrix. The concentration 

of C d depends on the pressure p through the relationship:

C d =  Hp (1.2)

where H is the Henry constant. The C h concentration is given by:

(1.

that is, the Langmuir-type relation where CTO is the saturation constant and b is the affinity 

constant. The total concentration C of dissolved gas at a given pressure p is given by the sum

C h =  C
bp

1 +  bp
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of Equations 1.2 and 1.3

C  =  CD +  Ch =  Hp +  (1.4)
1 +  bp

The dual sorption model applies to a large number of gases and polymers, but in the case of 

large molecules at high concentrations structural and dynamic changes in the polymer matrix 

due to the presence of gas are introduced and different models should be used. For the ad­

sorption of gases on elastic polymers it has been experimentally shown that the Langmuir part 

of the equation (1.4) can be removed and Henry’s law applies even to pressures of hundreds 

of atmospheres [17]. Solubility S  is related to the excess free energy of a gas dissolved in the 

polymer by the following relation:

S  = exp (  s v f )  (15)

where A G  is the potential difference, kB is the Boltzmann constant and T is the temperature.

The diffusion of a gas penetrator into the amorphous polymeric matrix is governed by the 

molecular size of the penetrator and its interactions with the polymer as well as by the shape, 

size, distribution and connectivity of the dispersed portions of the accessible volume of the 

system. At high temperatures (well above the glass transition temperature Tg (below Tg the 

polymer behaves like glass e.g. it is tough and stiff) the polymeric matrix performs local thermal 

motions which redistribute its accessible volume and connectivity by creating and/or removing 

free cavities. In these thermal movements of the polymer chains the intracellular molecule is 

entrapped and often (relatively) moves to new positions. Accordingly, diffusion consists of a 

large set of small, local, and random motions of the molecule. In the case of low temperatures 

the diffusion mechanism in glassy polymers is much more complex [18], [19]. In this case the 

polymer matrix is more or less clogged and the distribution of its free cavities is permanent. The 

main characteristic of diffusion in glassy polymers is that the gas molecule spends most of its 

time trapped in a free-volume cluster and rarely travels to a neighbouring cluster via a channel 

that is opened instantly due to thermal disturbances in low density or kinetic regions. The 

diffusivity in glassy polymers is orders of magnitude smaller than the corresponding melt and 

depends on the number, the connectivity of the free volume cavities as well as the distribution 

of constant rates that determine the transitions between them [14], [17].

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 22:41:33 EEST - 18.118.195.39



14

1.5 Types of Diffusion

Diffusion is called the mechanism of transfer of molecules (identical or different) inside the 

mass of a material due to their thermal excitation. The effect of diffusion is to mix molecules 

of similar or different substances through their random thermal motion. Following is a brief 

description of the diffusion types [20].

Self-d iffu sion : According to the IUAPAC definition, the self-diffusion coefficient is the diffu­

sion coefficient (D *) of the i-th (i) number of species when the chemical potential equals zero. 

It is related to the diffusion coefficient (Dj) by the relation:

D * D d(lnCj) 
j d(lnai)

(1.6)

where α* the activity of the species in solution and C  the concentration of species ( i).

S u b stitu tio n  d iffu sion : It refers to the crystalline solids and is the transfer of foreign atoms 

or voids (holes) to the matrix positions of the crystalline matrix. In this case, the size of foreign 

and maternal atoms is approximately the same, and the mechanism is greatly facilitated by 

the existence of gaps in the original mesh. In general, atoms and voids flow as the diffusion 

progresses.

In te rstit ia l d iffu sion : It is the transfer of aliens to the extracellular positions of the crystalline 

matrix. Typical examples of the various types of diffusion are shown in Figure 1.10.
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Figure 1.10: Diffusion type in crystalline solids.

1.5.1 Diffusion m echanisms

In substitutional diffusion and self-diffusion, individuals can move from one position to another 

if the energy derived from their thermal action exceeds their activation energy q (Figure 1.11). 

The existence of voids or defects in the grid while increasing the temperature facilitates this

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 22:41:33 EEST - 18.118.195.39



15

movement. The activation energy in the self-diffusion and substitutional diffusion is equal to

Figure 1.11: Changes in the oscillating energy of atoms [21].

the sum of the energy required to create a void and the energy to move it. On the other 

hand, in the diffusion of substitution, smaller atoms move from the parent atoms to one of the 

extracellular sites without any permanent movement of the matrix atoms [22]. Consequently, 

the required activation energy in the substitution diffusion is less than that of the diffusion or 

filling in grid gaps.

1.6 Fick’s Laws of Diffusion

This kind of diffusion phenomenon is mathematically described by Fick's laws and for this to 

occur the concentration of the diffuse element in the direction of mass transfer must have a 

gradient, as shown in Figure 1.12. A general definition of Fick’s laws could be that the first law 

refers to diffusion under time-constant conditions, while the second law describes the diffusion 

under time-varying concentration conditions.
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Figure 1.12: Diffusion and diffuse element concentration gradient

1.6.1 F ick ’s F irst Law

Adolf Fick proposed that, in a one-dimensional system, the flux is proportional to the concen­

tration gradient and it can be described by the following relation [23], [24]:

J
D ' Wox

(1.7)

where:

1. J  is the flux (mol /  m 2 s').

2. D is the diffusion coefficient or diffusivity (m2/s).

3. C (for ideal mixtures) is the concentration (m ol/m 3).

4. x is position (m).

The flux J  is defined as the number of atoms passing through a plane of unit area per unit time 

and the negative sign indicates that the diffusion is opposed to the concentration gradient, i.e. 

from high to low concentration areas of the diffusing species, as shown in Figure 1.13.
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Figure 1.13: Fick’s First Law - Diffusion of atoms from a surface into the bulk of a material 
[25].

1.6.2 F ick ’s Second Law

The time variation of the concentration, at each point of the solution, is proportional to the 

spatial variation of the flux (J ) and is given, under constant diffusion coefficient, by the following 

equation:
dC  _  D 
dt dx2

(1.8)

where:

1. C is the concentration (m ol/m 3).

2. t is time (t).

3. D is the diffusion coefficient (m2/s).

4. x is the length (m).

In steady state the Equation 1.8 can be written as:

d2C
dx2

dC
0 ^  _  const.

dx

By combining Equation 1.7 and 1.9 we get:

j  _  d  dC _  d  ^ C  _  D Cout — Cin 
dx Δ χ  l

(1.9)

(1.10)
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Figure 1.14: Non-steady-state diffusion profile and explanation of the derivation of Fick s second 
law [23].

Considering that from Equation 1.4 we can maintain as a good approximation (for low con­

centrations and small molecules) only the linear term (according to Henry) of the right, we 

have:

Cout Spout and Cin Spin (1.11)

By combining Equations 1.10 and 1.11 we get:

J D · S  · Pin Pout
l

(1.12)

In Equation 1.12 the product of the Diffusivity (D ) to the solubility (S ) defines the permeability 

(P ) and we get:
Δ ρ

' T (1.13)

In fact the permeability is controlled by the dissolution and diffusion steps. The diffusion 

coefficient D, is a measure of the movement speed of the diffusible molecules in the polymer while
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the diffusion coefficient S, is an indication of the number of penetrated molecules diffused. The 

two coefficients together describe the coefficient of penetration, commonly called permeability 

P.

P  =  D - S (1.14)

In conclusion, a direct calculation of the permeability from Equation 1.1 can be avoided and 

the permeability can be described by the “sorption-diffusion” mechanism using the Equation 

1.14. A basic understanding of the diffusion phenomenon can help distinguish the insulation 

characteristics of polymers. A diffusible molecule moves to a barrier surface by a multi-step 

process where the molecule first contacts the polymer surface. In the polymer, the molecule 

that penetrates diffuses randomly as its own thermal kinetic energy keeps it in motion from 

vacuum to vacuum, between the macromolecular chains of the polymer. This random diffusion 

results in the (macroscopic) movement of the diffuser toward the polymer side in contact with 

a high concentration of the diffuser in the contact side with a low concentration of diffuser.

1.7 Description of diffusion models

1.7.1 Solution-Diffusion model

The solution diffusion model is widely accepted as the primary model for describing transport 

phenomena in relation to chemical potential differentiation and relates to processes such as 

dissolution, reverse osmosis, gas permeability and more. These different modes of diffusion 

can be transformed into other more practical ones by changing the chemical potentials with 

measurable forces. This is achieved by using basic thermodynamic principles that relate the 

differentiation of chemical potentials to pressure, temperature, concentration and electrokinetic 

forces. Therefore, in the case of gas permeability, the differentiation of the chemical potential 

may be related to the differentiation of the gas concentration within the membrane. This model 

assumes that the pressure within the membrane is uniform and that the variation of chemical 

potential along the membrane can only be expressed as a function of concentration. When 

these conditions are met then the Solution-Diffusion Model can be used to calculate the mass 

flow rate of a gas through a dense membrane [17].

The mass flow rate can be defined as the amount of material passing through a section of 

the membrane over a specified period of time. When using the chemical potentials and Fick’s
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first law to describe gas permeability, it is easily understood that the system is in equilibrium. 

The permeability of gases can be simplified by considering one-dimensional flow. The one­

dimensional assumption holds because differences in diffusion and concentration in the other 

directions are negligible [26].

Due to the uniformity of the surface concentration, there is no differentiation in the other 

directions. When all these assumptions are used, then the description of the gas transport 

effect can be described by the following equation:

Ji L V t  =
τ ε μ

i dx
(1.15)

1.7.2 T im e-Lag m ethod

The time lag is the time required for a gas to penetrate a membrane. It can be calculated using 

differential or integral techniques based on permeability or absorption rate data. According to 

the integral technique, the accumulation of gas in a space that has previously been evacuated 

over time is measured. This space is separated from the gas source by a membrane which 

has previously undergone degassing (removal of the gases inside it). A typical example of an 

experimental measurement for a gas permeability is shown in the following Figure 1.15.

Time Lag is defined as the point where the pressure is equal to zero, that is, where the extension 

of the straight line of the graph meets the x-axis of time (point i in the diagram). The reference 

curve is divided into two regions, the former referring to steady-state diffusion and the linear 

part being its reference curve. The second region is the unsteady-state diffusion region and 

refers to the initial pressure increase [18]-[26].

1.8 Barrier Improvement Factor - B IF

Concerning the very important part of the composite membranes, which we study in the present 

work, we can say that as a result of the dispersion of the flakes in the polymeric matrix, materials 

with improved insulating properties are produced since the existence of the flakes causes an 

increase in the distance traveled by the diffuse species through the membrane. This degree of 

difficulty depends on the loading rate of the reinforcing agents as well as on some characteristics, 

such as their size and orientation within the matrix and the overall effect is described by the
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Figure 1.15: Schematic representation of the gas permeation process using the integral technique

Barrier Improvement Factor (BIF). Therefore this coefficient is used to quantify the effect of the 

flakes on the membrane barrier properties. Figure 1.16 schematically illustrates the increase in 

the distance travelled by the dispersed molecules through the composite polymer when flakes 

are present. It is not possible for any molecule to pass through the flakes as the flakes are 

impermeable. The Barrier Improvement Factor (BIF) has been used in a number of literature

Figure 1.16: Path comparison between a membrane with no flakes and a membrane that includes 
flakes. The difference is obvious between the two materials.

references to study the permeability of gases through composite or simple polymeric materials 

and to describe their barrier properties. The final measurement which shows us the effectiveness 

of reducing the permeability of a polymeric membrane equals the permeability of the original
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polymer to the permeability of the composite polymer. So the Barrier Improvement Factor 

(BIF) can be defined as P0/P f and it turns out to be expressed also from the fractions D 0/D f 

and J 0/ J f  given that solubility S  does not change and the conditions remain the same during 

diffusion both in the pure polymer and in the composite membrane.

To differentiate the starting state (pure polymer) from the composite membrane (polymer in 

the presence of flakes) we use the index (0) and ( f ), respectively, for each membrane and the 

definition of BIF that we use in the present work is

B I F
Do
D f ’

D 0 >  D f , (BarrierIm provem entFactor >  1) (1.16)

Finally, we can say that an additional utility of (BIF) is that it allows the comparison of the 

results of the barrier properties of composite polymeric membranes with random and aligned 

distributions of flakes as we will see later in this work.

1.9 Flake characteristics that affect the B IF

1.9.1 The effect of flake length

The degree of difficulty of arranging the flakes inside the polymer increases with increasing 

length, as we will see in the geometry generation because the space available is limited and 

is further reduced when large flakes get random orientations. This problem is typical and is 

presented in the next chapter where some of the examples of geometries we have studied in this 

work are presented in detail. Composite membranes are distinguished in those in which the 

size (length) of the flakes is not different, and in those in which their size varies. In Figure 1.17 

we can see pictures depicting the two aforementioned categories of composite membranes.

1.9.2 The effect of flake orientation

The orientation of the flakes in a polymeric matrix, their concentration, and their distribution 

play a key role in the properties of the composite. In terms of orientation there are two extreme 

arrangements: (1) parallel alignment of the flakes with one axis, and (2) completely random 

arrangement. For high loading rates (φ >  20%) some problems arise in the construction of 

the composite, since the flake cannot be fully covered by the matrix material for geometrical
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Figure 1.17: Membrane classes by size of (a) fixed length, (b) variable length and thickness

reasons. Many times, not only one type of flake is used to enhance the matrix but a mixture 

of two or more types. These are called hybrid composites [1].

Figure 1.18: Flake distribution of flakes in polymeric matrix composites: (left) continuous and 
aligned flakes, (right) discontinuous and randomly oriented flakes.
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Chapter 2

Geometry generation in 2D. A novel 

FastRSA algorithm: Statistical 

properties and evolution of 

microstructure1

Sum m ary

In this chapter we deal with the creation of 2D geometries that were used in this work. Specifi­

cally we describe the RSA (Random Sequential Adsorption) algorithm which is used extensively 

for the creation of geometries not only for these types of problems but in numerous other appli­

cations as well. We also deal with the problem of the asymptotic nature of the algorithm which 

becomes a problem especially as a  =  l/t  (the aspect ratio of a flake) is increased. We developed 

an algorithm (FastRSA) which can create high packing geometrical configurations in a much 

shorter time compared with traditional RSA algorithms especially when used with particles of 

large a . We also examine, with the use of this algorithm and its ability to create such configu­

rations, the way the statistical properties evolve during the process and we use that calculation 

for determining an accurate estimation of the maximum packing that can be achieved. Also 

we shed light to the mechanisms of the formation of nematic structures as they appear in high

A s  published in Physica A: A. Tsiantis, T.D. Papathanasiou, A novel FastRSA algorithm: Statistical 
properties and evolution of microstructure, Physica A: Statistical Mechanics and its Applications, Volume 534, 
2019, 122083, ISSN 0378-4371, https://doi.Org/10.1016/j.physa.2019.122083
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packing configurations and we also introduce and use the concept of the probability field that 

is created around each particle.

In the beginning of the chapter we introduce the mathematical background behind the RSA  

process and we describe the key areas that are formed around a particle and their interactions. 

Then we describe the RSA and FastRSA algorithms (Figure 2.1). Their difference lies in the 

introduction of an extra step that calculates and uses the space properties around each particle. 

By using this information we are able to overcome the slow convergence of the algorithm 

to a high count configuration. After that we use the FastRSA algorithm for determining

a b

Figure 2.1: (a) RSA algorithm, (b) FastRSA algorithm. The difference between the two algo­
rithms is the extra step in FastRSA which can calculate the probability of placing a particle.

the space properties and their interactions. We show how space is polarized by the presence 

of particles and we reveal the mechanisms behind their interactions. We show that these 

interactions determine the creation of RSA configurations and their statistical properties mainly 

the formation of nematic structures and the degree of packing.

The use of FastRSA has enabled us to create high density packings in reasonable cpu time 

and also it can give us the ability to examine the statistical properties of such configurations 

since we can calculate precisely all the corresponding probabilities that define them. Also 

we describe the mathematical background that governs the RSA process by looking in to 

the geometrical details and interactions between particles in such geometries. The ability of
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ba

Figure 2.2: Achieved packing at various a  using the two algorithms. (a) a  =  1000 (b) a  =  10. 
In (a) the packing achieved with RSA (0.04) at 300sec is achieved in the first 10 seconds with 
FastRSA (x30 speed-up). Similarly in (b) the speed-up is x15.

FastRSA to examine the space properties has enabled us to describe accurately and discuss the 

evolution of microstructure, especially the creation of nematic structures. We provide estimates 

of the maximum packing which we compare with published results. Finally besides an accurate 

estimation of maximum packing for various a  also we show the difference in speed between the 

two algorithms as it can be seen in Figure 2.2.
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2.1 A bstract

While the Random Sequential Adsorption (RSA) process for the generation of 2D geometries 

containing discrete entities has been extensively studied, both in terms of numerical simulations 

and in terms of its statistical properties, all the mechanisms involved are not fully understood, 

especially in dense configurations of elongated particles. This is mainly due to the very slow 

asymptotic approach to high packing configurations, especially when highly elongated particles 

are involved, which makes the creation of such configurations a time consuming task. For 

the estimation of the statistical properties of such configurations we therefore have to resort to 

extrapolations that do not always give accurate results. In this work we reveal the interaction of 

the mechanisms that come into play in the RSA process. We specifically show that the overall 

result of an RSA process is the summary outcome of these interwoven mechanisms, namely 

those involving the formation and destruction of Particle Area, Overlap Area and Influence 

Area -  terms which we introduce and define in this work -  resulting in a behavior that often 

appears counter-intuitive. We also show the shift of their importance as the particle aspect 

ratio a  varies and explain how nematic structures are created when high aspect ratio particles 

are involved as well as the mechanisms behind their appearance. Following this, we propose 

a new algorithm for the process of random sequential adsorption (named FastRSA) which is 

capable of creating very high count configurations through all the range of particle aspect ratios 

and which follows Feder’s law with a θ ~  τ -1/2 behavior instead of the θ ~  τ -1/3 of the classic 

approach, where τ  is the number of attempts to place a particle and θ is the degree of packing. 

We show how the new algorithm can be coupled with the classic RSA approach and point 

out the benefits of such a coupling. Use of the FastRSA algorithm has enabled us to study 

the evolution of the extent of packing using actual geometries, without the need to resolve to 

extrapolations and assumptions. For the case of highly elongated particles, this is the first time 

in our knowledge that estimations of maximum packing from actual configurations near the 

jamming limit have been obtained.

2.2 Introduction

Random Sequential Adsorption (RSA) is a process by which geometrical entities (particles) 

are randomly and sequentially added on a substrate of surface A, with the requirements that
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(i) no repositioning of an entity occurs after it has been placed and (ii) no overlap between 

entities occurs. The RSA process has been adequately described in the literature [1], [2], [3], 

[4] for various cases and geometries in 1D, 2D and 3D geometries, and is extensively used for 

the modelling of chemical reactions [5], in biology [6], [7] and in a variety of problems involving 

packing and packing estimations. Also much work has been done studying various aspects both 

in special case of geometries [8] or in an attempt to shed light to the statistical background 

[9] or special spatial properties [10] of RSA configurations. Recently new methods for more 

precise estimations of maximum packing have been introduced [11], [12]. In brief, the process 

of creating such a particle configuration involves the selection of one random point CP with 

coordinates (CX and CY) and a random angle ω and the subsequent placement of a particle 

at that point with the selected orientation angle. If the thus placed particle overlaps with any 

of the previously deposited particles, this attempt (CX , CY, ω) is rejected, the newly added 

particle is removed and the process starts again with a different set of random coordinates and 

angle. The process stops when no more particles can be added, at which point the configuration 

is considered to have reached the ‘jamming limit - 0J ’ which is defined as the area occupied by 

particles divided by the total available area, at the end of the RSA process. In practice, the 

RSA process stops after a predefined number of placement attempts (or elapsed CPU time) is 

reached. A result of the statistical nature of the RSA process and especially of the fact that it 

follows Feder’s law [4], namely that the achieved packing scales with a (negative) power of the 

number of placement attempts, is that the difficulty of placing additional particles increases 

dramatically as the RSA process evolves. As a result it is practically impossible to achieve high 

density and high count configurations, especially when elongated particles are used such as, 

for example, in fibrous composites [13]. One consequence of this is that multi-particle, direct 

simulations (such as transport phenomena or elasticity) in heterogeneous materials at very high 

packing densities have to-date been impossible to carry out, even though there are numerical 

schemes which could make such simulations possible [14]. An additional consequence of this 

state of affairs is that existing estimates of the ultimate packing densities achieved by an RSA 

process are not the result of actual simulations that have actually reached the jamming limit, 

but are instead extrapolations and therefore uncertain. This is especially true for elongated 

particles, such as rod-like macromolecules, viruses, fibers etc. Earlier computations have shown 

[15], [16], [17] that, using the classic RSA approach the evolution of packing scales with a power 

of (τ ), typically BJ  ~  τ -1/3 where τ  is the number of (successful or not) placement attempts.
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Swedsen [2] has proposed that the exponent in the above relationship between packing and 

placement attempts is (-1/d), where (d) is the dimensionality of the problem. In this work we 

will try to clarify these results and to provide some insight into observed discrepancies.

We deal with square and elongated rectangular particles of length=l and w idth=t and various 

aspect ratios a  = l / t  ranging from 1 (randomly oriented squares) to more than 103 (fiber­

like elongated rectangles) and develop a new algorithm for the sequential adsorption process 

(named FastRSA in the rest of the manuscript). This algorithm is shown to offer a significant 

improvement in speed over the traditional RSA, by operating on the full scale of probabilities 

at any given candidate point of an area A. It belongs to the family of algorithms that are used 

to find the visibility polygon from a point, a significant problem in computer graphics [18], 

where such algorithms are used for faster rendering of 3D scenes. We show that the proposed 

FastRSA algorithm achieves significantly higher packing densities at realistic execution times 

and also that it follows Feder’s law with BJ  ~  τ -1/2.

2.3 Geom etrical definitions and formulation

Consider one particle (as part of a multi-particle assembly) placed at point C  with its elongated 

axis at an angle ue and a candidate particle at point CP with its elongated axis forming an 

angle ωη with the horizontal, as shown in Figure 2.3. Any attempt to place a new particle 

in such an assembly will be unsuccessful if the new particle overlaps with pre-existing ones. 

Existence of such overlaps is not random, but for a given set of C  and CP and angles ω,= and 

ωη, depends on the relative position and the relative angle ω =  ω,= — ωη between the new particle 

(subscript n) and the pre-existing one (subscript e). If we plot the space comprised of all points 

where a new particle cannot be placed with respect to a pre-existing particle, at all levels of 

the relative angle ω =  ω,= — ωη, we form the highlighted polygonal areas shown in Figure 2.3. 

These polygons are the result of the Minkowski Sum [19] between the pre-existing particle P  

and the new particle Βωη. The Minkowski Sum is defined as the locus of points satisfying

P  +  B  :=  p +  b : p G P, b G B  (2.1)

and can be described briefly as the polygon that is created if we define as P  the already placed 

particle and B  the newly arrived particle with its center at a random point CP. For every
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pre-existing particle P  we can define the corresponding set of polygons M  for ω E [0,π] (due 

to symmetry, the polygons at angle ω are equal to -ω), as:

M  =  J >  +  Β ω :=  p +  b : p E P, b E Βω] (2.2)
ω=0

where P  is an already placed particle and Β ω is a new particle at point CP and relative angle 

ω. By using the above definitions we can now define the probability of successfully placing a

Figure 2.3: Placement of new particles of relative angle ω and their relation with the correspond­
ing Minkowski polygon. Particles with center point inside the Minkowski polygon intersect with 
the pre-existing particle while new particles with their center point outside do not intersect. 
(left) ω =  0o, (middle) ω =  45o, (right) ω =  90o

new particle at point CP with a relative angle ω as

p =  1
M ' 
~M

(2.3)

where M  is the set calculated from Equation 2.2 and M ' is the subset of Minkowski polygons 

that CP resides in. Using the above result, we can define the following three areas that are 

formed around a particle as

1. The Overlap Area (AO) as the area of points outside of a particle where p =  0,

2. The Influence Area (A /) as the area where 0 <  p <  1 and

3. The Particle Area (AP) as the area inside the particle for which also p =  0.

We can define geometrically the above areas by saying that the Overlap Area (AO) is the area 

that extends from the boundaries of the particle to a distance t/2  and the Area of Influence

(A/ ) extends from the boundary of the overlap area up to a distance R =  1/2V P + 12 from
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the particle’s boundaries (Figure 2.4a). We see that every point in the Overlap Area belongs 

to every polygon that is created as the result of the Minkowski sum, that is VBW, CP E Β ω as 

seen in Figure 2.4b. This is also easily derived from geometry since every point CP that has a 

distance smaller than t/2  from a pre-existing particle will inevitably collide with it. Similarly, 

the points in the Influence Area belong to some but not all the polygons of set M .

From the above definitions it becomes easy to draw a conclusion for the acceptance or rejec­

tion of a candidate point for the placement of a new particle; if the point CP lies within the 

Minkowski polygon that is constructed from a pre-existing particle (P ) and a candidate particle 

at point CP and angle ω (Β ω), then this candidate point is rejected for particle placement using 

this angle. In the case however that the point resides in the Influence Area, successful particle 

placement may be possible at this point, using a different angle ω'.

Such a calculation, even though it seems intuitively easy, is of no practical use due to the 

sheer amount of geometrical calculations that need to be performed for every ω E [0,π]. We 

can however speed it up if we notice that we do not have to test against all the combinations 

of angles and polygons but instead we can check only for specific key angles that are formed 

between the new center point and an existing particle. We describe this procedure in the 

following section and we see that by calculating a visibility polygon from point CP we can 

calculate the available arcs that allow for the placement of a newly arrived particle.

Figure 2.4: (left) Geometrical characteristics of area around a particle with length l, width t 
and a  = l / t =2 . (right) Minkowski polygons of set M  as defined in Equation 2.2. The outline of 
Overlap Area and Interaction Area is easily seen. The number of drawn polygons in the right 
image is small for visual clarity
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2.4 Com putational

Visibility polygon algorithms consist of two phases - a broad phase and a narrow phase [18]. 

The broad phase is used to massively filter out elements -in our case particles- which are away 

from the neighborhood of the point of interest CP; this is a first elementary step in speeding up 

calculations. During the narrow phase, we only deal with the elements that are near the area of 

interest. In the context of the FastRSA algorithm, we use a variation of such a procedure for the 

precise estimation of a visibility circle or radius R and the arc segments over which an attempt 

to place a particle at CP will be successful with a probability p = 1 .  In its implementation, 

the algorithm computes and returns a pair of elements; the first element is the probability of 

placement (p*) which is 1 if a particle can be placed and 0 if a particle cannot be placed. The 

second element is a list containing the boundaries of the available arc segments over which 

the placement of this particle is possible; each element of the list consists of two angle values 

(ω1,ω2) defining the edges of these arc segments. In the case where a particle cannot be 

placed this list is empty. This is the main difference between FastRSA and the classic approach 

(named ClassicRSA in the text)- the latter will use brute force to find an acceptable angle for 

the placement of a particle at each randomly chosen CP.

2.4.1 Fast R SA  calculation steps

FastRSA consists of the following steps which are explained in detail:

1. Preprocessing steps

1.1 A uniform grid is constructed which partitions the available area in grid cells. This 

way the majority of particles is excluded from consideration since they belong in 

cells that are away from our point of interest

1.2 Pre-calculate numerical values that are to be used extensively during the course of 

the algorithm

Following preprocessing, the main loop of the algorithm is executed, in which we aim to place 

a particle in a randomly selected point CP. The loop runs as long as the desired packing is 

achieved or a user specific number of tries has been reached. The following steps are followed 

for every placement trial.
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2. Broad phase

Executed for every particle that is in the grid cells surrounding the point CP

2.1 Check against the AABB (Axis Aligned Bounding Boxes) and a square AABB of 

size V l2 +  t2 where (l) is the length and (t) the thickness of the particle, centered at 

CP. If they overlap then we continue with this particle to the next step. Otherwise 

the next particle in the grid cells is selected and we return to step 2.1.

2.2 Check against the distance of the nearest point of the previously selected rectangle 

and point CP. If the distance is smaller than 1/2 · V l2 +  t2 then we add this particle 

to the list of particles that have to be considered in the narrow phase, otherwise we 

continue with the next particle from step 2.1.

3. Narrow Phase

If the list of particles for consideration is empty then the combination of point CP and 

angle θ can be used without further calculations. If the list is not empty then for every 

particle in the list we execute the following:

3.1 Find the intersection points of a circle located at CP and having diameter R =  

V l2 + 12 and the segments that make the particle from the previous step (Figure 

2.5a).

3.2 Create the circles that are centered in the intersection points (CP1, CP2) with radius 

t/2  (Figure 2.5b). This is to avoid overlap and the reasoning for this is obvious from 

Figure 2.5c

3.3 Find the tangent points T1,T2 of the segments originating from point CP to the 

previously formed circles (Figure 3c).

3.4 Exclude the arc that is formed from the points T1,C P,T 2 from the available arc 

spaces that we can use (Figure 2.5d).

4. End Phase

4.1 If after the above subtraction the available arc space is not empty then a) an angle 

ω that falls within the available arc space is selected randomly, b) a new particle is 

placed after a final collision check is made and c) we return to step 1

4.2 If the resulting available arc space is empty we reject the point P, select a different 

point and we return to step 2.1.
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The geometrical calculations involved in the above algorithm may appear tedious, however they 

offer two significant advantages. The first is that they work for every a  and they are not limited 

to square or near square particles. The second is that they do not require the creation and 

handling of large arrays that would limit their usage to small numbers of particles. In fact the 

algorithm works extremely well and produces configurations within 2% of jamming limit with 

numbers of particles in the range of tenths of millions in reasonable CPU  times with today's 

standards (less than an hour for ~20 million particles of a  =1000 on an i7 Desktop PC with 

8Gb of RAM).

a b

c d

Figure 2.5: FastRSA algorithm steps. (a) Calculation of points P \ ,P 2, (b) Calculation of circles 
of radius t/2, (c) Calculation of points T \,T 2, (d) Calculation of the resulting arc. In this 
particular case, the arc corresponding to the grey part of the circle corresponds to admissible 
angles for the placement of a particle at point CP. Due to symmetry the mirror arc is also 
excluded.

From the above we can see that the probability p of placing a particle defined earlier in Equation
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a

c

b

d

Figure 2.6: FastRSA steps for multiple pre-existing particles. (a) Initial configuration involving 
three pre-existing particles and the candidate point (CP), (b) Calculation of intersection and 
tangent points, (c) Calculation of available arcs. The resulting available arcs are shown in white 
and the rejected arcs are shown in color- each color corresponding to exclusion due to one of the 
pre-existing particles(d) placement of a new particle after randomly picking an angle θ inside 
the available arc space (shown in white in Figure 2.6c).

2.3 can be also expressed as:

Pp
Avaiable Arc Space

2Π
[ωι, ω2\ i U . . .  U [ωι, ω2\ v

2Π
(2.4)

where [ω1, ω2\ is the arc space that is returned from the FastRSA algorithm for every point CP. 

We can also introduce the following definition for p *  at point CP as

Pp
1, pcP >  0

, PcP =  00
(2.5)
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2.5 R esu lts and discussion

2.5.1 S tatistical and geom etrical properties

We see from the previous definitions that each particle creates a probability field around it which 

forbids other particles to be placed, at certain angles, within the surrounding space. The value 

of this probability field at every point CP around a particle can be calculated using Equation

2.4 and Equation 2.5. Examples of this probability field, as computed by FastRSA, around 

particles of various aspect ratios (α), is shown in Figure 2.7. At points inside the particle 

and inside the Overlap Area the probability value is 0 and at points outside the Influence 

Area is always 1. In Figure 2.8 we can see the computed probability field in multi-particle 

configurations of various aspect ratios (α). It is interesting to note the unpredictable nature of 

the evolution of the Interaction Area A /. As a increases the areas that are rendered un-usable 

for particle placement due to interactions of each particle's Influence Area become progressively 

more important and constitute the limiting factor in achieving a high packing. We can define 

the following two quantities over the entire area A as:

A r- A
pdA, Totalp*A =  p*dA (2.6)

Obviously, each of these quantities changes as the RSA process evolves and each can be cal­

culated for any (α) of interest. This is illustrated in Figure 2.9, which shows the evolution of 

the total probability, as function of the (evolving) packing density at various particle aspect 

ratios (α). Evidently, this probability drops sharply as the RSA process evolves and maximum 

packing is approached. We also observe that p *  is orders of magnitude larger than p, espe­

cially when particles of high aspect ratio are involved. From Figure 2.9 it becomes clearer why 

FastRSA is much faster that ClassicRSA, especially in the case of elongated particles; since 

FastRSA utilizes p *, which is several orders of magnitude larger than p, for a given area A, it 

can successfully place particles at a much faster rate. In summary, the efficacy of a particle 

placement process depends on the available area. We show that, in turn, the evolution of this 

area depends on three mechanisms. These mechanisms remove available space from the total 

area A, and as a result, as new particles are added the total available space decreases. The 

interaction of these mechanisms gives valuable insights about the manner in which Random 

Sequential Adsorption works and is described in the following.

TotalpA
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a

c d

Figure 2.7: Contour plot of probability for placing a particle p for various particle aspect ratios 
a , at 0.1 intervals, from 0 at the Overlap Area around the particle (innermost contour) to 1 at 
a distance R =  1/2 · V l2 + t2 from the particle. a) a  = 1 , b) a  = 2 , c) a  =10, d) a  =100. Due 
to symmetry only half or quarter of each particle is shown.

P artic le  A re a  (AP)

The first and obvious mechanism is the placement of the particles themselves. As each particle 

is added, an area equal to the area of a particle (l · t) is removed from A. This area obviously 

evolves linearly with the addition of particles as AP =  NT · l · t where NT is the number of added 

particles at attempt τ .
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a

c

b

d

Figure 2.8: Contour plot of probability p and p *  for placing a particle in a pre-existing configu­
ration at two values of the particle aspect ratio a . (a) p plot for a  =2 . (b) p *  plot for a  =2.(c) 
p plot for a  =10. (d) p *  plot for a  =10. It is easily seen that p *  creates a binary probability 
field where values are either 1 (grey areas in Figure 2.8b and Figure 2.8d) or 0 (white areas) 
while p creates a field that varies from 0 to 1 as the distance from a particle increases

O verlap  A re a  (A O)

The second mechanism depends on the way the Overlap Area that surrounds the particles 

evolves as additional particles are placed. As discussed earlier in section 2 as new particles 

are added the area surrounding each particle at a distance up to t/2  from the particle sides is 

rendered unusable because any particle with a center point inside this area will overlap with the 

previously placed particle, irrespective of its orientation. However this area can overlap with 

similar areas of surrounding particles as it can be seen in Figure 2.10. As the process evolves, 

the extent of these overlaps increases and with the addition of new particles the Overlap Area 

surrounding an existing set of particles is reduced by being occupied by newly-added particles
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Figure 2.9: Plot of p and p *  onto an area A as particles are added. We can see that p *  is 
orders of magnitude larger at the same packing θ especially as a  increases.

while also new Overlap Area is generated with the addition of each new particle. The process 

is illustrated in Figures 2.10 and 2.11.

a b

Figure 2.10: Detail view of the evolution of Overlapping Areas between two steps. Overlap 
area is shown in white. With the addition of a new particle (solid grey in image (b)), area that 
was characterized as overlap area (white) switches to particle area (black). Also the particle 
removes area from A and transforms it into Overlap Area (dotted area) and Particle Area 
(colored gray).

In teraction  A re a  an d  Influence A rea

The third mechanism that comes into play is the evolution of Interaction Area and Influence 

Area. Interaction Area consists of the points that cannot be used for placement of particle
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a b

Figure 2.11: Evolution of Overlap Areas (shown as white) during the particle addition process.

centers because no particle can be added due to geometrical constraints. As particles are 

placed onto a surface, new particles can’t be added in various points around them because they 

cannot fit at any orientation. These areas are formed outside the Overlap Area of pre-existing 

particles but from the interaction of their Influence Areas (A /). For example, a particle might 

allow the placement of a new particle at a point CP that falls in its Influence Area, with an 

angle θ, but the same point might belong to the Influence Area of nearby particles which might 

not allow the placement of a new particle at this specific angle. As a result no particles can 

be placed in this point at any angle 0o <  ω <  180o. From the above we define the Interaction 

Area as the area that no particles can be added due to constraints that are imposed from the 

Influence Areas of surrounding particles. The evolution of Interaction Areas can be seen in 

Figure 2.12. For elongated particles these areas tend to become extremely large and occupy a 

big part of the total area A even if the area of individual particles is small.

T o ta l availab le  su rface  a re a

From the previous discussion, it is evident that placement of a particle at a point CP depends 

on where this point resides in respect to the other, pre-existing particles. If the point CP falls 

within a particle or in its Overlap Area it cannot be selected for placement of a new particle. 

If a point falls outside the Areas of Influence of the existing particles then a new particle can 

be placed in this point at any angle (ω). However if it falls within the Areas of Influence of 

nearby particles, the algorithm described above will screen potential candidate points. From
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b

d

Figure 2.12: (a), (b). Evolution of Interaction Areas (shown as white) between time steps. 
The probability of placing a particle ( p * ) is zero in these areas. Areas where p * =1  are shown 
as red. The potential for the formation of nematic structures, with locally aligned particles is 
clearly visible at latter stages of the process. (c), (d) detail of areas between particles where 
p * = 0  (in white color) at a  =512

the above we can define the Available Space (As ) for the addition of a new particle as

As  =  A — Ap — Ao — Ai  (2.7)

The total Available Space (As ) for particle placement is the result of the interaction of the 

above three mechanisms, which are not evolving monotonically as the RSA process unfolds, as 

it can be seen in Figure 2.13. We see that for small a  the mechanism that subtracts large areas 

from A is the evolution of Overlap Areas while for large a  the limiting mechanism becomes the
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evolution of Interaction Area. This observation is at the heart of the well-known differences in

performance in terms of achieved packing of RSA algorithms when particles of small or large 

(a) are used.

Figure 2.13: Evolution of area coverage mechanisms for various a . In the Y  axis we can see 
the area fraction that is characterized as Interaction Area (a) and Overlap Area (b).

2.5.2 Particles of high aspect ratio and the form ation of nem atic 

structures

From the definitions of Overlap Area and Influence Area we see that as a  increases the Overlap 

Area around each particles decreases since it is proportional to t/2 . On the contrary, the 

Influence Area is proportional to l and therefore increases. In the case of elongated particles 

(l ^  t , a  ^  1) we see (Figure 2.13) that the main mechanism that influences AS is the evolution 

of the Interaction Area. Since Interaction Areas occupy a big part of the total area A, new 

particles can be added only in close alignment with pre-existing ones. This can be easily seen 

in Figure 2.12 where it becomes obvious that the only possible way for new particles to be 

placed is in close correlation with their angles and thus, the only mechanism that could allow 

the addition of new particles in dense configurations is the formation of nematic structures. It 

appears therefore that for elongated particles the creation of nematic structures is a fundamental 

consequence of the RSA process and it emerges as packing increases. It also shows us the 

importance of the initial steps of the adsorption process, since the particles that arrive first 

create the scaffold which guides the addition of new ones as it can be easily seen in Figure 2.14. 

We can also note that, since the areas between existing particles become smaller, the available

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 22:41:33 EEST - 18.118.195.39



46

angles that can be used are limited to a very narrow range. Obviously, the ClassicRSA, by 

trying to randomly select, from the entire space 0 <  ω <  π, an angle ω that has to fall within 

a very limited range, needs many attempts for the same point CP before successfully picking 

one that would allow the placement of a particle.

a b

Figure 2.14: (a), (b). Evolution of alignment of particles between time steps as packing in­
creases. By comparing the two Figures it is easy to see that the newly arrived particles in (b) 
(thin lines) are forced to align parallel to the pre-existing particles (bold lines).

2.5.3 H ybrid mode

We have shown that as particles get deposited within an area (A) they change the properties 

of the surrounding space by creating a probability field around them. We define as ’polarized 

space’ in terms of an angle (ω) the set of points at which the probability (p) is p <  1. If 

we plot this field not in terms of p and p* as in Figure 2.8 but in terms of relative angles ω 

we can see how the total area gets polarized in these specific angles during the RSA process 

(Figure 2.15). As new particles are deposited to a configuration their corresponding Minkowski 

Polygons at various angles ω (Βω) occupy a progressively larger area of A. As we explained 

earlier in section 2, if a point lies within a Minkowski polygon Βω of a particle, it cannot be 

used for the placement of a new particle with this specific angle ω. Therefore as particles are 

added, the area A has less space left for specific angles ω and eventually there is no more area 

left within A for these specific angles.

Plotting the evolution of the area that remains un-polarized for various angles ω during the 

adsorption process we get the following results:

Using the above charts (and the underlining calculations) we can define the ‘Freezing Point’
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a l

a2

a3

b1

b2

b3

cl

c2

c3

Figure 2.15: Polarization of space around deposited particles. a 1 . . .  a3, θ =  0o, b1 . . .  b3, θ =  45o, 
c1 . . .  c3, θ =  90o. In images a i . . .  a3 we see the space occupied by the Minkowski Polygons of 
ω =  0o. In images b1 . . .  b3 the Minkowski polygons at ω =  45o are shown and in c1 . . .  c3 
the corresponding polygons at ω =  90o. The space occupied by the corresponding Minkowski 
polygons is easily seen.

at a relative angle ω (F P M) as the packing fraction (θω) at which a specific relative angle ω 

cannot be used anymore for placement of particles. This means that no new particles can be 

entered at any point CP within the Area A at angle ω; the already existing particles won’t allow 

this, since all area A is occupied by the Minkowski polygons Β ω of the pre-existing particles.
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Figure 2.16: (a), (b). Evolution of polarization areas. (a) a  =10, (b) a  =100. We can see that 
as packing increases space (A) becomes completely polarized at various relative angles meaning 
that these angles cannot be used anymore.

For example in regards to Figure 2.16a, no more particles can be placed at ω =  π/2 after 

the packing has exceeded the value of θ =  0.3 - the corresponding polarized area fraction has 

dropped to zero, while at the same packing (~30%) there is a 20% of the total area available 

for the placement of particles parallel to pre-existing ones (zero relative angle ω). In Figure 

2.16b, which corresponds to more slender particles (a  =100), the F P 45 is around θ =  0.08, at 

which packing there is an over 80% probability of placing particles aligned with pre-existing 

ones. Obviously, the formation of nematic structures is statistically favored at a much lower 

packing in the case of slender particles.

We can use the above observation and introduce a Hybrid Mode in the operation of the Fas- 

tRSA  algorithm that essentially begins the adsorption process with the ClassicRSA and after 

a point it switches to the FastRSA algorithm. This way we can have a configuration that has 

the statistical properties of ClassicRSA up to a user-defined point and the speed of FastRSA 

afterwards, along with the nematic structures that follow. For example, in the configurations 

of Figure 2.17, switching to the FastRSA after θ =  0.5 and θ =  0.2 (for a  =10 and a  =100 

respectively) will produce configurations that are equivalent to Classic RSA up to a certain 

point. With the selection of such a switching point near the jamming limit we could produce 

configurations with very small statistical differences between the classic RSA approach and Fas­

tRSA since the configuration near jamming limit is essentially frozen in all but a small range of 

relative angles near ω=0 which would lead to the formation of nematic structures using both 

algorithms. We can see in Figure 2.17 the behaviour of the hybrid mode in terms of speed and
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packing achieved.

a b

Figure 2.17: Packing evolution during hybrid mode. (a) a  =10, (b) a  =100. We see the 
difference in speed, especially as a  increases. In this case simulation ended when a specific 
CPU time was reached

2.5.4 Estim ation  of m axim um  packing

As a geometrical configuration evolves with the addition of new particles, the FastRSA algo­

rithm, through its ability to calculate p and p *  at every point, allows the measurement of 

various spatial properties such as the amount of Overlap Area and Interaction Area and thus 

leading to the accurate calculation of the total Available Space for particle placement (AS). 

Using a Monte Carlo sampling procedure to calculate AO and Aj , Available Space (AS) can be 

estimated using Equation 2.7. Obviously, the jamming limit (0 j) of a configuration can thus be 

found as the point at which AS becomes zero. Extensive simulations (Figure 2.18) have shown 

that the Available Space (AS) can be described by a function of the following form

As  =  M  · (θτ -  0 j)k (2.8)

where θJ  is the maximum packing (jamming limit) at the point where the Available Space 

becomes zero and where θτ is the packing after (τ ) attempts, at which point NT particles have 

been placed. The fit of Equation 2.8 to computational results for various values of the particle 

aspect ratio a  can also be seen in Figure 2.18.

We also calculate the maximum packing using the assumption that it follows Feder's Law with

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 22:41:33 EEST - 18.118.195.39



50

BJ  ~  τ  1/2 . Results of more than 50 calculations in various a  with an accuracy at the 4th 

decimal digit are shown in Table 1 where we list and compare:

i. The estimation of maximum packing using FastRSA results based on Feder’s Law using 

an expression of the form Βτ ~  τ -1/3.

ii. The estimation of maximum packing using FastRSA results based on Feder’s Law using 

an expression of the form θτ ~  τ -1/2.

iii. The coefficients M and K  determined from fitting the computational results to Equation

2.8.

iv. The maximum packing as estimated from the extinction of Available Space at Equation 

2.7

v. The actual achieved maximum packing from our simulations with FastRSA algorithm

vi. Literature estimation of maximum packing based on ClassicRSA [12]; only available for 

a  <  2.

We can see that using the results from FastRSA with an estimation of the form based on τ -1/3 

systematically overestimates the maximum packing and that a behavior of τ -1/2 is closer to 

our actual packing results with FastRSA.

Figure 2.18: Evolution of the Available Space (AS , as calculated from Equation 2.7) along with 
best fit curves of Equation 2.8 calculated for various a.
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Table 2.1: Values of maximum packing (OJ ) as calculated with various methods. (M) and (k) 
refer to Equation 2.8.

a

Maximum packing 
estim ate 

(extrapolation 
according to r 1/2}

Maximum packing 
estim ate 

(extrapolation 
according to τ 1/3)

M (Ejj.9) k(Eq.9) As Calculation 
(eq. 7)

Actual packing 
achieved by 

FastRSA

Results [12] 
ClassicRSA

1 0.54014 0.54307 7.4147 2.6067 0.5391 0.53439 0.52767
1.1 0.55264 0.55503 7.0603 2.5676 0.5502 0.54793 0.53854
1.2 0.56009 0.56303 7.5488 2.5804 0.5565 0.55434 0.54473
1.3 0.56414 0.56656 8.4505 2.6215 0.5607 0.55938 0.54791
1.4 0.56638 0.56943 9.2565 2.6509 0.5627 0.56043 0.54924
1.5 0.56649 0.56871 10.1029 2.6824 0.5639 0.56208 0.54948
1.6 0.56681 0.56928 10.6283 2.6932 0.5638 0.56195 0.54907
1.7 0.56619 0.56858 11.0529 2.6982 0.5632 0.56143 0.54829
1.8 0.56490 0.56720 11.5403 2.7020 0.5619 0.56040 0.54727
1.9 0.56376 0.56610 12.5669 2.7395 0.5615 0.55917 0.54610

2 0.56289 0.56583 13.0941 2.7474 0.5603 0.55714 0.54481
4 0.53196 0.53481 25.8425 3.0199 0.5334 0.52628 -

8 0.48661 0.48936 23.4209 3.0037 0.4895 0.48118 -

16 0.43327 0.43588 13.3233 2.7124 0.4321 0.42812 -

32 0.37886 0.38146 10.1504 2.5561 0.3759 0.37372 -

64 0.32646 0.32863 8.7139 2.4441 0.3232 0.32210 -

128 0.28082 0.28361 8.0687 2.3634 0.2774 0.27520 -

256 0.24218 0.24576 7.4502 2.2842 0.2384 0.23503 -

512 0.20931 0.21274 6.7758 2.2010 0.2057 0.20246 -

1024 0.18355 0.20420 6.5911 2.1478 0.1784 0.17154 -

2.5.5 A lgorithm  perform ance and results

In the following we present some results on the performance of the FastRSA  algorithm. Con­

figurations were created with particles of aspect ratio from 1 to 1024 and involving N  particles 

placed in a periodic square unit cell. For each a , N  was selected to be high enough in order to 

achieve a uniform orientation distribution of the particles; it typically was N  >  107 for small 

(a  <  10) and it was increasing as a  was increasing so that the length l of each particle would be 

less than 103 of the total area length (typically N  >  108 for a  >100). Periodic conditions were 

used to avoid wall effects due to particle alignment and/or particle exclusion at the borders of 

the unit cell.

In Figures 2.19 and 2.20 we show the maximum packing achieved with FastRSA at various 

particle aspect ratios. Our algorithm consistently achieves a maximum packing that is almost 

2 percentage points higher (depending on a) than the values reported in the literature so far. 

It should be noted that such literature estimates are not actually achieved packings but rather 

extrapolations based on a power exponent of (-1/3). Besides the difference in the estimated 

packing values, FastRSA can achieve configurations that are by a margin of less than 1% from 

the theoretical jamming limit even for large a . This can be explained if we consider that the 

FastRSA works by calculating p *  which can either take the value of 1 or 0. So if a point
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is selected for particle placement a particle will either be placed, at the first attempt, or not 

placed, depending on whether p *  is one or zero, and no further iterations are required. Classic 

RSA works not only by trying to find an acceptable point CP but by also finding, randomly, 

an acceptable angle over the entire arc space from 0o to 180o. This as we explained in section 

4 becomes extremely difficult especially in large a  because the formation of nematic structures 

can allow only for a very limited range of angles at every point of A. So, in the ClassicRSA 

algorithm, even if the same point is selected many times, successful particle placement is not 

certain, while, in contrast, the FastRSA algorithm will place (or not place) a particle at the first 

attempt. Therefore FastRSA fulfils one the basic assumptions of Swenden’s analysis in which 

every point has to have an equal probability to be selected for the placement of a particle. 

By using Classic RSA two points CP1 and CP2 that could be used for particle placement 

(Pi =  P2 =  1) don’t have the same probability p because they also have to pass the random 

process of selecting an acceptable angle θ and thus

p 1 =  p\ · Available Arc Spacep1 =  p  ̂ · Available Arc Spacep2 (2.9)

In addition, ClassicRSA will always produce a lower packing because of the nature of the

probability field on which it operates. Specifically, as the field is created as a result of the 

placement of pre-existing particles, points that are nearby the particles have a probability p 

that becomes smaller as we move closer to the particles. It is as if the pre-existing particles 

repel the new ones since the field that has been created around them gives a smaller p and
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Figure 2.20: Packing achieved by FastRSA for various a  as given in Table 1.

a

so it becomes harder for ClassicRSA to use the points nearby existing particles. As a result 

ClassicRSA will fill the empty spaces first, where p is larger and as a consequence bigger 

interaction and overlapping areas will be created at the initial stages of a RSA configuration 

which will lead inevitably to a less efficient use of space and a smaller maximum packing.

2.6 Conclusions

A new RSA algorithm (FastRSA ) with the ability to achieve very dense 2D geometrical configu­

rations, with high particle count and using particles of aspect ratio from 1 to 1024, is introduced 

and studied. Using this algorithm we throw light to the inner mechanisms of an RSA process 

and explain its behaviour, in statistical terms, as we approach the jamming limit. We show 

that the total packing achieved is affected by the sum of the interaction of the spatial properties 

of the area A. Specifically we see how the Interaction Area, the Overlap Area and the Particle 

Area evolve throughout the RSA process and how they interact to produce the final config­

uration. We can also see the shift of their importance as a  varies. We explain how nematic 

structures are created in dense packings of high aspect ratio particles in an RSA process and 

we show the main mechanisms behind their appearance. Our results further show that this 

approach can achieve packings that are ^ 2  percentage points higher through all the range of 

aspect ratios a  and we have shown how these high packings can be obtained in much faster 

computational times. Out algorithm follows Feder’s Law and Swensen’s conjecture, generating 

very dense geometrical configurations exhibiting a behavior of θτ ~  τ -1/2.
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Chapter 3

Orientational randomness and its 

influence on the barrier properties of 

flake-filled composite films1

Sum m ary

In this chapter we study the role that flake orientational randomness plays in the barrier prop­

erties of composite materials. For doing this we solve an elliptic equation for the concentration 

field (for steady state systems) at a unit cell containing up to 500 flakes that assume random 

positions and their orientation angle takes uniform values at the interval [—e, e], e E [—90o, 90o] 

(Figure 3.1). The flakes are considered to be elongated, that is their aspect ratio a  is greater 

that 1 (a  =  50,100,1000) and the product αφ ranges from 0.01 (dilute regime) to 15 (concen­

trated regime). We use periodic boundary conditions at the sides of the unit cell ( C /  =  Cright) 

and periodic geometrical conditions (the unit cell effectively creates a tile) as shown in Figure 

3.2. Numerous simulations (>  2500 cases) are solved at the full range of the above parameters.

Solving for the concentration field enables us to calculate the effective diffusion coefficient D e//  

and with this we calculate the Barrier Improvement Factor ( B I F  =  1/D e/ / ). We see how the 

BIF depends on the flake aspect ratio a  =  l/t, the volume fraction (φ) and flake orientation as 

expressed by the misalignment angle (e).

1 As published in Journal of Plastic Film & Sheeting: Papathanasiou, T., & Tsiantis, A. (2017). Orientational 
randomness and its influence on the barrier properties of flake-filled composite films. Journal of Plastic Film & 
Sheeting, 33(4), 438-456. https://doi.org/10.1177/8756087916682793
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The results show us that there is a significant difference between dilute (αφ <  1) and concen­

trated systems (αφ >  1) in the behaviour of the BIF. In the dilute regime the BIF evolves 

linearly with e and in concentrated systems it deviates from this behaviour as e increases.

Using these results we propose a scaling that includes the effects of both e and αφ and we 

come to the conclusion that the bigger the misalignment angle the bigger the deviation from 

the anticipated barrier improvement especially as αφ increases.

Finally at the end of this chapter we investigate the ratio B I F random/ B I F aligned and we confirm 

earlier results.

Figure 3.1: Typical 2D flake geometry. l is the flake length and t is the flake width. The flake 
axis assumes a random orientation inside [—e, +e]. θ is assumed to be 0 in the geometries used 
in this chapter. The diffusion direction is along the Y-axis.

Figure 3.2: Typical concentration boundary conditions used in this study. The concentration 
(C ) is 0 at the top and 1 at the bottom. In the left and right of the RVE periodic boundary 
conditions are used.
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3.1 A bstract

This direct numerical study investigated the effect of orientational randomness on the bar­

rier properties of flake-filled composites. Over 2500 simulations have been conducted in two­

dimensional, doubly periodic unit cells, each containing 500 individual flake cross-sections 

which, besides being spatially random, assume random orientations within an interval [—e, +e], 

(0 <  e <  π/2). We consider long flake systems (aspect ratio α =  50,100, and 1000) from the di­

lute (αφ =  0.01) to the concentrated (αφ =  15) regime, where (φ) is the flake volume fraction. 

At each (e) and (αφ), several realizations are generated. At each of those, the steady-state 

diffusion equation is solved, the mass flux across a boundary normal to the diffusion direction 

is computed and an effective diffusivity D eff  calculated from Fick’s Law. The computational 

results for D eff  are analyzed and the effects of (e) and (αφ) are quantified. These differ in 

the dilute (αφ <  1) and in the concentrated regimes (1 <  αφ <  15). In the dilute regime, 

the barrier improvement factor is a linear function of (e and a power function of (αφ), with 

the exponent (~  1.07) independent of orientation. In concentrated systems, we find that for 

aligned flakes or flakes showing small deviations from perfect alignment, the barrier improve­

ment factor approaches the quadratic dependence on (αφ) predicted by theory. However, the 

power exponent is found to decrease as (e) increases, from 1.71 in the aligned system (e =  0) 

to ~  0.9 in the fully random system (e =  π/2). We propose a scaling which incorporates the 

effects of both (αφ) and (e) on the barrier improvement factor, resulting in a master curve for 

all (αφ) and (e). Our results suggest that the anticipated barrier property improvement may 

not be realized if the flake orientations exhibit a significant scatter around the desired direction.

3.2 Introduction

Flake-filled polymeric composites, incorporating mica, glass, or metallic flakes, offer significant 

processing and property advantages, such as high dimensional stability and low warpage in 

molding, uniform in-plane mechanical properties and superior mechanical performance for two­

dimensional loading, corrosion protection, sound insulation as well as appearance and color 

control [1]-[4] Flake-filled polymeric composites also find uses as barrier materials in food 

packaging, where the objective is to hinder the oxygen, CO2, or other vapor diffusion to and 

from a container [5], [6], while maintaining all the formability and design advantages afforded
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by plastic materials. One additional advantage is that the geometries in which such barrier 

property improvement is to be realized are very similar to those in which the mechanical 

superiority of flake-filled systems is also evident, such as in plates, shells, cylinders, pipes, etc.; 

therefore, barrier improvement can be combined with good mechanical performance. Besides 

micron-sized flakes of inorganic materials such as mica, nano-scale platelets of clay minerals 

such as hectorite, saponite, and montmorillonite and more recently graphene-oxide platelets 

of aspect ratios well over 1000 have been used for this purpose [7]. It has been demonstrated 

that incorporating such fillers aligned perpendicular to the macroscopic diffusion direction can 

be very effective in increasing barrier properties by providing a tortuous diffusion path for the 

diffusing species. When the flakes are randomly placed and well aligned, the predicted barrier 

efficiency improvement ranges from being (~  αφ) in dilute systems, where (α) is the aspect ratio 

and (φ) the flake volume fraction, to being ~  (αφ)2 in more concentrated dispersions [6], [8], 

[9]. Considering the usually large flake aspect ratio, significant barrier property improvement 

can be achieved by adding a small amount of filler. Computational and experimental studies 

are in agreement with these predictions [10]-[18].

While earlier works quantified the difference in barrier properties between aligned and ran­

dom systems, there is limited understanding on how intermediate orientation states as well 

as random deviations from a predominant orientation might affect barrier properties. This 

is a significant shortcoming, especially for flake composites manufactured from the melt state 

through polymer processing operations [19], [20]. In such operations (extrusion, compression 

or injection molding, thermoforming and others) flake orientation is achieved as flakes tend 

to orient along the prevailing flow field -  either in the main flow direction with shear flow or 

transverse to it with extensional flow. Special care is therefore needed in designing polymer 

processing equipment for a desired flake orientation [21] and even then, it is possible that, when 

it comes to ’on-site’ use, not all flakes will be oriented perpendicular to the macroscopic diffu­

sion direction [19], [20]. Even when the final average orientation is the desired one, not all flakes 

end up oriented in the desired direction, but instead have a distribution of orientations. The 

way this misalignment affects barrier properties is not well understood. This work’s objective 

is to address this issue.
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3.3 Com putational

We carry out steady-state diffusion computations in doubly periodic representative volume 

elements (RVEs) containing up to 500 individual flake cross-sections. These are added in the 

domain sequentially, using a random sequential addition (RSA) procedure. Specifically, at each 

flake placement attempt, three random numbers are used to assign the flake center coordinates 

and its orientation angle (e). The latter is allowed to be uniformly distributed in the interval 

[e, —e]. If e =  0, all flakes are oriented normal to the macroscopic diffusion direction. If e =  π/2 

flakes are allowed to assume completely random orientations. Intermediate states are formed 

for 0 <  e <  π/2. If, after placement, no overlap with other flakes is detected, the process 

continues with the next flake, until the desired number of flakes has been placed, or, until no 

flake has been placed after 5M attempts; the latter number signals an abortive case.

High aspect ratio flakes were considered with aspect ratio (a) equal to 50, 100, and 1000. While 

flakes with (a) in excess of 1000 can be associated with nanocomposites [4], [5], [7], it is known 

that melt processing severely degrades flake size in traditional as well as nano-flake composites 

[22]. In that case, our predictions concerning the BIF can be viewed as an upper bound, and 

composites with substantially lower flake aspect ratios would exhibit lower BIFs.

In order to enable subsequent computational domain meshing, a minimum allowable flake 

separation (δ) is imposed; we used 4=2t where (t) is the flake thickness. In a rectangular 

unit cell with dimensions (H) (in the bulk diffusion direction) and (L) containing (N) flakes of 

dimensions (t, l) with α = l/t , the flake area fraction is φ =  N a t2/L H  and each flake length is 

l =  \/Τ Η α φ /Ν . In multi-particle simulations, using doubly periodic RVEs is essential when 

dealing with elongated particles in order to eliminate artefacts of oriented (or, depleted) layers 

which appear adjacent to cell boundaries. Figure 3.3 shows unit cells obtained for various values 

of (e) with flakes extended outside the RVE limits to highlight the doubly periodic geometry. 

The boundary conditions are cyclic on the right and left boundaries, namely C1e/t(0,y) and 

Cright(L ,y). On the top and bottom boundaries, fixed concentration values are prescribed. On 

each flake surface, we impose d C /dn  =  0, indicating that the flakes are impermeable. It is 

known that in practical flake filled composite applications, surfactants or surface modifiers are 

often used to facilitate flake dispersion in the polymer matrix and this could create irregular 

interfaces between the flakes and the matrix. We would expect our results to be valid for 

such systems also, as long as the flakes remain impermeable and as long as the matrix/flake
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Figure 3.3: Example doubly periodic unit cells containing 500 randomly placed flake cross­
sections. From top left to bottom right: e =  0 ,π /8 ,π /4  and π/2, αφ =1 . Flakes assume 
random orientations in the interval [—e, +e], (α) is the flake aspect ratio and (φ) the flake 
volume fraction.

proportions are not affected, that is, as long as no substantial inter-phase regions are formed 

[17] At each (e) and (αφ), we generate 10 different realizations. The computational meshes are 

created by the mesh generating program Salome through an automated procedure developed in­

house and each contain ~ 1 06 triangular elements. Figure 3.4 shows examples. These meshes are 

used by OpenFoam ™  to solve the steady-state diffusion equation V 2C  =  0, C  being the solute 

concentration, and obtain the distribution of C  in the domain of interest. An isotropic matrix 

material assumption is also made. Figures 3.5 and 3.6 show typical concentration distributions, 

in which flake distributions corresponding to large (αφ) can also be seen. It is clear that, in the 

presence of orientational randomness, the macroscopically one-dimensional distribution of (C) 

typical of dilute systems becomes progressively two dimensional as (αφ) increases. This is at 

the heart of the observed variation in D ef f , as will be discussed in the following section. The 

solution also supplies the value of (dC/dn) at each point on the upper (or lower) boundary. 

Thus, the mass flux along this boundary can be calculated as

L dC
J  =  — D0 dx (3.1)

ο dn
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Figure 3.4: Computational mesh details. (α) is the flake aspect ratio and (φ) the flake volume 
fraction. (Left) α =100 and αφ =1 , (Right) α =1000 and αφ =0.1

where n  is the outward unit vector and L is the width of the unit cell.

Because of impermeable flakes crossing boundaries, which results in sudden local changes of 

the flux, care must be taken in performing this integration. In this work, we used adaptive 

intervals and only accepted values of the integral when these were convergent with refinement. 

Equating this flux with the one obtained from Fick’s law in a macroscopic equivalent cell (whose 

diffusivity is D ef f ), we obtain

D eff
H  · D0 
A C · L

dC
d N

dx
L

0
(3.2)

where C  is the macroscopically imposed concentration difference and D 0 the diffusivity of the 

matrix material. These effective diffusivities will be presented and discussed for various values 

of (e), (a), and (φ) in the following sections.

We examined how the number of flakes included in the RVE affected the computed D ef f . Due 

to the doubly periodic nature of our RVEs, a convergent value is achieved with a relatively small 

(100) number of flakes; however, we chose to work with N=500 to allow the systems to form 

inter-flake arrangements closer to what might be encountered in reality (e.g. Figures 3.5 and 

3.6) and whose existence will be reflected in the computed effective diffusivities. In addition, and 

since the flake length to the characteristic length ratio of the unit cell is l =  V L H  =  \ J αφ/ N , 

it is evident that a larger (N) will help keep that ratio at acceptable levels; for αφ and N=500 

that ratio is 0.17, which we deem acceptable, given that our unit cells are doubly periodic.

One note on the actual orientation statistics of the generated geometries is in order. While at
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Figure 3.5: Concentration distribution in samples with e =  π/4. The number of flakes is N=500. 
Flakes assume random orientations in the interval [—e, +e],(a) is the flake aspect ratio and (φ) 
the flake volume fraction.

Figure 3.6: Concentration distribution in randomly oriented samples e =  π/2. The number 
of flakes is N=500. Flakes assume random orientations in the interval [—e, +e],(a) is the flake 
aspect ratio and (φ) the flake volume fraction.

lower concentrations, the target random distribution of orientation angles is readily achieved, 

this is not a given at high αφ, as seen in Figures 3.5 and 3.6. Besides checking the orientation 

angle frequency distribution (the cumulative distribution would be a straight line for uniformly 

distributed orientation angles), we also evaluated a more formal orientation metric, namely the 

flow orientation strength ( f ) defined as f  =  1 — 4det(A ) where (A) is the orientation tensor 

whose components are defined as A j  =  (pi'Pj). The brackets indicate ensemble averaging over 

the entire flake population and p is the the orientation vector of each flake cross-section [21].

For a random orientation, we expect that f =0 . For the two-dimensional cross-sections consid­

ered in this study, pi =  sin θ,ρ2 =  cos θ, and the tensor A  is

A
(sin2 θ) (sin θ cos θ)

(sin2 θ cos θ) (cos2 θ)
(3.3)
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It is straightforward to compute the orientation parameter in our computational samples ( f ), 

since the orientation vectors p  of all flakes are directly available. For αφ =10, in a set of 10 

realizations, we find that the average orientation parameter is f av(αφ =  10) =  0.00961 ±  0.0051 

(at the 95% confidence level). At the more extreme value of αφ =20 (at which we have 

not reported results for π/2), we find that f av(αφ =  20) =  0.028 ±  0.02. For f av(αφ =  1) =  

0.00907±0.0037. For comparison, a calculation of ( f ) in which 500 angles (6*) were simply picked 

using a random number generator (without eliminating overlaps and thus without creating the 

structures of Figure 3.6 gave f  ~  0.00202. In conclusion, for randomly oriented systems 

(e =  π /2), there is a gradual deviation of the orientation parameter ( f ) from zero, as well as 

an increase of the corresponding standard deviation with increasing (αφ) but only at very high 

(αφ). For (αφ) at which we report results, the related statistics confirm that we are still safe 

in what would be considered “random” regime.

One final computational issue arising in fully aligned high (αφ) systems is the fact that flakes 

may end up placed very close to the upper/lower RVE boundary and due to their large length 

and parallel orientation effectively “screen” a large portion of it. This can result in high scatter 

in the predicted D e/ /  values, something that is not expected from the physics of the problem. 

The generated meshes can also be severely distorted in that region and this is significant, 

since subsequent flux calculation requires differentiating the concentration profile across that 

line. This was resolved by setting, for aligned systems only, a minimum flake separation from 

the upper/lower boundaries equal to 20 times the flake thickness and by finely meshing these 

regions.

3.4 R esu lts and discussion

In the following, we present the results of a comprehensive computational study of diffusion 

across doubly periodic unit cells, each containing 500 randomly placed impermeable flakes of 

rectangular cross-section. Complete randomness corresponds to e =  π /2, while more narrow 

distributions are obtained for e <  π/2. This is a situation of relevance to flake composites 

manufactured from the melt state (or through other liquid-based processing routes), where a 

flow-induced average orientation is typically accompanied by random variations around that 

average orientation.

Figure 3.7 plots the barrier improvement factor (B IF = D 0/D e/ / ) versus the maximum misalign­
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ment angle (e) for all computational results. It is evident that, for the (e) and (αφ) studied, the 

computed B IF ’s vary over five orders of magnitude; this indicates that further data analysis is 

justified. Figure 3.8 presents D0/D eff  versus (αφ). One observes that the flake aspect ratio 

appears to have very little effect on D eff  for the (α) studied. Earlier studies [15] show that, 

in the dilute limit, aspect ratios higher than 50 at constant (αφ) do not noticeably change the 

diffusion coefficient, which approaches a plateau value. Our data suggests that this conclusion 

can be extended at least into the semi-concentrated regime. Obviously, the key observation 

concerning the data in Figure 3.8 is that the effective diffusivity at each (e) appears to be a 

power function of (αφ), namely

D eff
Do

1 +  ^,(αφ)η
(3.4)

in which the power exponent (n) seems to not remain constant at the higher (αφ). For this 

reason, the following data analysis will be carried out separately for the dilute regime (αφ < 1) 

and the more concentrated systems -  (αφ) up to 15.

Figure 3.7: Computed barrier improvement factor (BIF) versus angle. All results (2552 data 
points) corresponding to α =  50,100,1000, misalignment angles (0 <  e <  π/2) and αφ as 
indicated. Flakes assume random orientations in the interval [—e, +e], (α) is the flake aspect 
ratio and (φ) the flake volume fraction
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Figure 3.8: D eff  /D 0 versus αφ . All computational results (2552 data points) corresponding to 
α =50, 100, 1000, all misalignment angles (0 <  e <  π /2) and 0.005 <  αφ <  15. Aligned flakes 
form the lower edge of the data envelope, while randomly oriented systems with e =  π/2 the 
upper edge. Flakes assume random orientations in the interval [—e, +e], (a) is the flake aspect 
ratio and (φ) the flake volume fraction

3.4.1 D ilute system s (0.005 <  αφ <  1)

Figure 3.9 plots ln(BIF-1) versus ^(α φ ) for αφ <  1 and selected (e) along with the best-fit 

lines. All lines are parallel to one another suggesting that the exponent (n) in Equation 3.4 is 

not a function of (e). The mean for (n) is 1.07, its standard deviation 0.00923 and the 95% 

confidence interval is ± 4  · 10-4.

Equation 3.4 is an excellent fit to the computational data at all (e), with a correlation coefficient 

greater than 99% in all cases. Further data analysis suggests that both parameters (m) and (n) 

are very weakly dependent on (α). We find that (m) varies linearly with (e) between 0 and π/2 

(99.5% correlation), with slope 0.317 and intercept 1.021, while (n) is practically constant and 

averaging 1.07 -  as evidenced by the lines in Figure 3.9 being parallel to each other. If these 

are taken into account, Equation 3.4 can be written in terms of the BIF as

B I F  -  1 
1.021 — 0.317e (αφ)1.”7 (3.5)

Equation 3.5 suggests a scaling of the computational data in the dilute regime for all states of 

misalignment. Statistical analysis of the results in light of equation 3.5 shows that at the 95%
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Figure 3.9: Computational results for the barrier improvement factor (BIF) versus ln(αφ) in 
the dilute regime at selected misalignment angles (e). Flakes assume random orientations in 
the interval [—e, +e], (α) is the flake aspect ratio and (φ) the flake volume fraction

confidence level, it is
B I F -  1

1.004 ±0 .0034 (3.6)
(1.021 -  0.317e) · (αφ)1»7 

Figure 3.10 plots the computational results as suggested by Equation 3.5. The scatter observed 

at all (αφ) and for all orientation states (0 <  e <  π/2) is substantially reduced. Figure 3.10 

also shows the model predictions of Lape et al. [8] according to which the BIF is given by

Do (1 +  αφ/3)2
D e f f  1 -  φ

(3.7)

In this case, for (α) and (αφ) comparable to those used in our computations, we can safely set 

1 — φ ~  1 in which case the model of Lape et al. [8] is a quadratic polynomial in (αφ) and in 

the dilute regime, the linear term dominates.

The linear relationship F(e) =  1.021 — 0.317e was derived from analyzing the computational 

data. In addition, we have examined the use and performance of functions of the form S (e) =  

A cos2(e) +  B  sin2(e) to describe the misalignment effect on diffusivity. This functional form can 

be inferred by closely inspecting Figure 3.7 in the dilute regime, and this inference also appears 

in the orientation distribution function of Yang et al. [23] used to describe flake orientation in 

composite coatings. We fitted our data with a function of the form S(e) and found the best-fit
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parameters to be A =  1.01 and B  =  0.53. The original data can therefore also be reduced to a 

master expression of the form

B I F  — 1
[1.01 cos2 e +  0.53 sin2 e] · (αφ)1Ό7 0.9984 ±0.0033 (3.8)

The two expressions, Equations 3.6 and 3.8 are practically equivalent and this can be under-

Figure 3.10: Computed barrier improvement factor (BIF) versus αφ in the dilute regime, plotted 
as suggested by Equation 3.5, where F(e) =  1.021 — 0.317e, with (e) in rad. The broken line are 
the predictions of Lape et al. [8] for the quantity (BIF-1); these correspond to a fully aligned 
composite (e =  0). Flakes assume random orientations in the interval [—e, +e], (α) is the flake 
aspect ratio and (φ) the flake volume fraction

stood by observing that the scaling function F(e) is essentially a linear approximation of S (e). 

Equation 3.8 allows us to compare our computations and model predictions to experimental 

evidence [23] namely that for small misalignment angles (θ), it is D eff  (θ =  0)/D eff  (θ) «  cos2 θ, 

in which θ =  0 corresponds to a composite with flakes fully aligned normal to the diffusion di­

rection. The above statement implies that B I F  «  cos2 θ /D αligraed and, since in the dilute regime 

1 /D aligned ~  αφ, we deduce that per experimental evidence B I F  ~  (αφ)1.07cos2(e) for small 

(θ). From Equation 3.8, one easily sees that for small angles (sin(e) ~  0) our computations and 

model predict that B I F  ~  (αφ)1.07cos2(e), which agrees with the above experimental observa­

tion -  if the “misalignment” angle θ in the previous expression is directly related to (e) of our 

work. Without additional information, it is logical to consider that to be the case; however, for 

that reason, we treat this agreement as “qualitative” .

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 22:41:33 EEST - 18.118.195.39



70

3.4.2 Concentrated system s (2 <  αφ < 15)

Similar to Figure 3.9, Figure 3.11 plots the computed BIF versus 1η(αφ) in the concentrated 

regime. It is evident from these as well as from additional results at all other (e) values that the 

exponent of the power law Equation 3.4 is now a strong function of the misalignment angle (e). 

We find that it can be approximated as n(e) =  1.632 — 0.575(e), with the angle (e) expressed 

in rad. The correlation coefficient of that fit is 0.972. On the other side, (e) and (m ) were not 

correlated (correlation coefficient 0.07) and (m) is therefore approximated by its average value 

m =0.793±0.006 (95% confidence level).

A correlation between BIF and (αφ) in the concentrated regime could therefore be

1 , ( B I F  — 1 λ , , N
1.632 -  0.575e n 0.793 =  η(αφ) (3 J)

If this were to hold, the BIF data plotted versus (αφ) in the manner suggested by Equation

Figure 3.11: Computed barrier improvement factor (BIF) versus ^(αφ ) in the concentrated 
regime (αφ >  1). For clarity, only data corresponding to e=0, 0.8, and π/2 are shown (294, 
83, and 294 data points, respectively). The best-fit lines and their slopes (n) are also shown. 
α=50, 100, and 1000. Flakes assume random orientations in the interval [—e, +e], (α) is the 
flake aspect ratio and (φ) the flake volume fraction

3.9 would fall on a straight line with unit slope. Figure 3.12 shows that this is indeed the case, 

with the slope of the best-fit line being 1.046. The correlation coefficient of 1 632i 0 575eInB0JF9-1 
versus ^(α φ ) is 0.973. There is still scatter around that line; however, this is anticipated for
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such dense systems and we note the significant reduction in scatter as compared to the raw 

data; in that case, the correlation between ln(BIF-l) and ln(a0) is 0.743.

Statistical analysis of the results in light of Equation 3.9 above shows that at the 95% confidence 

level, it is
Ιη(αφ) · (1.632 -  0.575e)

In BIF -1 
0.793

1.0464 ±0 .0197 (3.10)

It is interesting to see the complete picture, over all (e) and (αφ) studied (Figure 3.13). In the

Figure 3.12: Summary of computed barrier improvement factor (BIF) versus ^(α φ ) at high 
concentration (αφ= 2, 5, 7.5, 10, 12.5, 15) for αφ =50, 100, 1000 and (e) from 0 to π/2. The 
data transformed as suggested by Equation 3.9 are shown as circles (left axis). The raw data 
are shown as (+ ) are plotted as ln(BIF-1) (right axis). There is a total of 985 data points. 
Flakes assume random orientations in the interval [—e, +e], (α) is the flake aspect ratio and (φ) 
the flake volume fraction

vertical axis, the raw data, presented as ln(BIF-1), are shifted upwards by five units so as to 

be clearly discernible from the scaled data, which are presented as

and

DATA =  ln [(B IF  -  1)/F(e)]

D ATA
ln (B IF  -  1)/0.793 

1.632 — 0.575e

fo r  αφ <  1

fo r  αφ >  1

(3.11)

(3.12)

The scaled data, for all (αφ), can be described as a linear function of ^(α φ ) with slope 1.05 and 

intercept 0.07 (correlation 0.999) One final note on how the data behaves for perfect alignment 

(e =  0) and complete randomness (e =  π/2). Figure 3.14 shows the BIF predictions from
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Figure 3.13: Summary of all computed results (over 2500 data points) plotted as suggested 
by equations 3.11 and 3.12. The raw data have been shifted up by five units, so as not to 
overlap with the scaled results. The scatter reduction offered by the proposed scaling, both in 
the dilute and concentrated regime, is evident. (α) is the flake aspect ratio and (φ) the flake 
volume fraction

the data-derived models in this study, namely Equation 3.5 for αφ <  1 and Equation 3.9 for 

αφ >  1. Also, shown in Figure 3.14 are the model predictions of Lape et al. [8] for aligned 

flakes and Liu et al. [24] in which B I F  «  (1 +  2αφ/3π)2 for randomly oriented flakes. For the 

aligned systems, it is clear that the Lape et al. [8] model agrees with our data very well and 

into the concentrated regime, approaching a quadratic rise with (αφ). However, the randomly 

oriented composite is very different. While up to αφ ~  2, its BIF follows the same trend with 

the oriented data, namely BIF-1 ~  (αφ)1'07, and is in good agreement with the Liu et al. [24] 

model up to αφ ~  2. In the concentrated regime, the BIF rate of rise with (αφ) drops and the 

BIF appears to be trending towards a plateau value.

The implication of these results is significant. While the BIF of the aligned flake composite 

shows a near-parabolic increase with (αφ), as would be expected from theory [8], [9] randomly 

oriented composites deviate from that behaviour and, instead, achieve BIF values which seem 

to plateau for increasing (αφ) at a fraction of the BIF of the corresponding aligned compos­

ite. A similar result is implicit in the work of Lusti et al.[15] While these authors did not 

elaborate on the matter, they presented computational results for 3D randomly placed and 

oriented systems of disks, in the dilute and semi-dilute regimes, in terms of the parameter
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χ =  (Do -  Drandom)/ (Do/Daiigned), and proposed a polynomial form for (χ) which best de­

scribed their data, namely χ =  χ(αφ) =  0.0082(αφ)2 +  0.0879(αφ) +  0.4157. While that 

polynomial is strictly limited to the (αφ) in which data were obtained (αφ <  7), it shows that 

the BIF of a randomly oriented flake system will grow slower with (αφ) in the semi-dilute 

regime than the BIF of a fully aligned system. Figure 3.15 plots our computational results for

Figure 3.14: Predictions of equations 3.5 and 3.9 for the barrier improvement factor (BIF) of a 
flake composite in two cases; aligned flakes (o) and randomly oriented flakes (+ ). The predic­
tions of Lape et al. [8] corresponding to an aligned and those of Liu et al. [24] corresponding 
to a randomly oriented composite are also shown. (α) is the flake aspect ratio and (φ) the flake 
volume fraction

the ( B I F ) rand0m /( B I F )aligned ratio. We also plot the same ratio, when the B I F random is com­

puted from the polynomial χ(αφ) proposed in Lusti et al. [15] and the B I F aligned is the same 

as the one computed in our study. Also, we plot the same ratio as (1 +  2αφ/3π)2/(1 +  α φ /λ)2 

in which the nominator corresponds to Liu et al. [24] for randomly oriented flakes and the 

denominator corresponds to Lape et al. [8] for an aligned composite. There is a qualitative 

agreement between the latter and our computational results up to intermediate (αφ) (ratio 

dropping with increasing αφ) and also a quantitative agreement up to αφ ~  2. At higher 

(αφ) values, however, the ratio (1 +  2αφ/3π)2/(1 +  α φ /λ)2 is predicted to approach a plateau, 

indicating the same (terminal) rate of increase for the B I F random as for the B I F aligned -  for 

very concentrated, or very long flake systems. In this respect, these predictions differ from 

our results as well as from Lusti et al. [15] This point certainly merits further investigation; 

however, our work in this direction is complicated by the ordering that naturally occurs in high
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(αφ) systems of long flakes and the resulting progressive loss in orientational randomness. It 

is quite possible that randomly oriented systems at extreme (αφ) simply do not exist. We are 

currently researching this topic.

Figure 3.15: Ratio of the barrier improvement factor (BIF) of a randomly oriented composite 
divided by the BIF of an aligned flake composite as a function of (αφ), where (α) is the aspect 
ratio of the flake and (φ) its volume fraction. Computational results are shown as points (o). 
Also, shown are the ratio predictions based on earlier studies [15], [8], [24]

3.5 Conclusions

We have presented the results of a computational study in flake-filled composites aimed at 

elucidating the effect of deviations from perfect alignment on their barrier properties. These 

deviations take the form of uniformly distributed random variations in orientation angle (θ) 

within the envelope [—e, +e] in systems in which the average orientation is always perpendicular 

to the diffusion direction. The computed results for D eff  are analyzed and the effect of (e) is 

decoupled from (αφ) to a satisfactory degree. These dependencies differ in the dilute (αφ <  1) 

and in the concentrated regimes (15 <  αφ <  15). In the dilute regime, the BIF is a power 

function of (αφ), with the exponent (~  1.07) being independent of the extent of orientational 

randomness, a finding that is in line with existing theories. The effect of misalignment is found 

to be described by a linear function of the maximum misalignment angle (e). A scaling is 

proposed by which we derive a simple explicit BIF model which incorporates both, (αφ) and
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(e). Through the proposed scaling, the data collapse on a line and the correlation coefficient is

0.996. We note that the proposed scaling is in agreement with experimental evidence. In the 

concentrated case (αφ >  1), we find that the power exponent is a function of the maximum 

misalignment angle (e). For aligned systems (e =  0) or systems showing small deviations from 

perfect alignment, we find that the BIF approaches the quadratic dependence on (αφ) predicted 

by theory. However, the power exponent is reduced progressively as the deviation from perfect 

alignment increases, from 1.71 in the aligned system to ~0.9 in the fully random one. A scaling 

is also proposed here by which all data fall on a line of slope 1.04 with a correlation coefficient 

0.973. This suggests that the theoretically anticipated improvement in barrier properties may 

not be realized if the flake orientations exhibit a significant scatter around the desired direction, 

regardless of the average fiber orientation, which may well be perpendicular to the bulk diffusion 

direction. Finally, we investigated the B I F random/ B I F aiigned ratio; our computational results 

show this ratio decreases as (αφ) increases into the semi-concentrated regime, in line with earlier 

findings [15].
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C h a p t e r  4

T h e  B a r r i e r  P r o p e r t i e s  o f  F l a k e - F i l l e d  

C o m p o s i t e s  w i t h  P r e c i s e  C o n t r o l  o f  

F l a k e  O r i e n t a t i o n 1

Sum m ary

In this chapter we deal with the properties of flake filled composites in cases where all the flakes 

assume the same orientation. In this cases all the flakes are parallel to each other and all have 

the same angle θ with the X  axis (Figure 4.1).

Figure 4.1: Flake geometry used in this chapter. All flakes assume an angle θ with the horizontal 
(X ) axis. The direction of diffusion is also shown (from C =1 to C =0).

xAs published in Materials Sciences and Applications: Tsiantis, A. & Papathanasiou, Thanasis. (2017). The 
Barrier Properties of Flake-Filled Composites with Precise Control of Flake Orientation. Materials Sciences 
and Applications. 08. 234-246. 10.4236/msa.2017.83016.

79

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 22:41:33 EEST - 18.118.195.39



80

We solve an elliptic equation for the concentration field of diffusion (steady state) in numerous 

simulations with unit cells filled within a range of N=500 to 3000 flakes and at various ori­

entations (θ). We use very elongated particles (α=100 & 1000) and αφ ranging from 0.01 to 

40. Especially for extremely dense systems (αφ >  15) this work is the first in the literature to 

introduce results for the BIF (Barrier Improvement Factor).

By combining the models of Nielsen and Lape for the principal diffusivity components (normal 

and parallel to the flake axis) we define a new theoretical model for the BIF and it is clearly 

seen how our model exhibits an excellent agreement with the numerical results at the full range 

of all the studied parameters, in more than 4 orders of magnitude of αφ (from 0.01 to 40) and 

for θ =  0o to 90o. Finally the change in the behaviour of BIF at dense systems is demonstrated

Figure 4.2: Summary of computational results (circles) for α =1000 and θ =0 , 0.1, 0.2, 0.4, 
0.6, 0.8, and 1.0, all in rad. We observe the anticipated quadratic rise of the BIF with (αφ) 
for higher values of (αφ) at θ=0 and also a progressively lower plateau reached at increasing 
values of the misalignment angle (θ). The predictions of Equation 4.11 are also shown as solid 
lines. Total of 1295 data points.

and specifically our model and the results clearly indicate that at these high density systems 

the quadratic dependence of BIF with αφ is lost as θ increases. This shows the importance of 

flake alignment and is discussed in detail in the final section of this chapter especially in the 

case of dense systems.
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4.1 A bstract

Additive manufacturing, especially in the form of 3D printing, offers the exciting possibility of 

generating heterogeneous articles with precisely controlled internal microstructure. One area 

in which this feature can be of significant advantage is in diffusion control, specifically in the 

design and fabrication of microstructures which minimize the rate of transport of a solute to 

and from a contained fluid. In this work we focus on the use of flake-filled composites and study 

computationally and theoretically the effect of misalignment on their barrier properties. We 

conducted over 1500 simulations in two-dimensional, doubly-periodic unit cells each containing 

up to 3000 individual flake cross-sections which are randomly placed and with their axes forming 

an angle (π/2 — θ) with the direction of macroscopic diffusion. We consider long-flake systems 

of aspect ratio (α) 100 and 1000, from the dilute (αφ=0.01) and into the concentrated (αφ=40) 

regime. Based on the rotation properties of the diffusivity tensor, we derive a model which is 

capable of accurately reproducing all computational results (0.01 <  αφ <  40 and 0 <  θ <  π/2). 

The model requires as inputs the two principal diffusivities of the composite, normal and parallel 

to the flake axis. In this respect, we find that the models of Lape et al. [1] and Nielsen [2] form 

an excellent combination. Both our model and our computational data predict that at | θ | >  0 

the quadratic dependence of the Barrier Improvement Factor (BIF) on (αφ) is lost, with the 

BIF approaching a plateau at higher values of (αφ). This plateau is lower as (θ) increases. 

We derive analytical estimates of this maximum achievable BIF at each level of misalignment; 

these are also shown to be in excellent agreement with the computational results. Finally we 

show that our computational results and model are in agreement with experimental evidence 

at small values of (θ).

4.2 Introduction

Additive manufacturing, especially in the form of 3D printing, offers the exciting possipossibility 

of generating articles with precisely controlled internal microstructure. One area in which this 

feature can be of significant advantage is in diffusion control, specifically in the design and 

fabrication of microstructures which allow for minimization of the transport of a solute to/from 

a contained fluid. Flake-filled polymeric composites, incorporating mica, glass or metallic 

flakes have found many uses in this direction, as they offer significant processing and property
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advantages, namely high dimensional stability and low warpage in molding, uniform in-plane 

mechanical properties, corrosion protection, sound insulation as well as appearance and color 

control [3]-[7]. Micron-sized flakes of inorganic materials such as mica, nano-scale platelets 

of clay minerals such as hectrite, saponite and montmorillonite and more recently graphene- 

oxide platelets of aspect ratios well over 1000, have been used for this purpose [6]. It has 

been demonstrated that incorporation of such fillers aligned perpendicular to the direction of 

macroscopic diffusion can be very effective in increasing the tortuosity of the diffusion path of 

the diffusing species. When the flakes are in general randomly placed, as would be the case in 

a flake composite manufactured from the melt, the predicted improvement in barrier efficiency 

ranges from being ~  (αφ) in dilute systems, where (α) is the aspect ratio and (φ) the volume 

fraction of the flakes, to being (αφ)2 in more concentrated dispersions [1], [9]-[16].

One notable disadvantage of traditional processing methods vis-a-vis flake-filled composites is 

the fact that flake orientation cannot be precisely controlled. In such operations (extrusion, 

compression or injection molding, thermoforming and others) flake orientation is achieved due 

to the propensity of the flakes to orient in accordance to the prevailing flow field -  either in the 

main direction of flow when the flow is shear or transverse to it when the flow is extensional 

[17]. An additional shortcoming of traditional flow-processing routes is the inability to utilize 

high flake loadings since, in that case, the viscosity of the resulting melt becomes prohibitively 

high. Given the capability afforded by 3D printing to fully control flake orientation as well as 

generate articles with flake loadings approaching those at maximum packing, it is desirable to 

predict the effective diffusion coefficient (or its inverse, the barrier improvement factor, B IF ) 

as an explicit function of the flake orientation angle and for very high, previously untenable, 

concentrations.

The two main approaches which have been used in the literature to-date for this purpose are

(i) an ad-hoc incorporation of orientation metrics in existing models for the B IF  [8], [18] and

(ii) derivation of B IF  models from diffusion path calculations [19]-[21]. In both cases, the 

proposed models have been derived for low or very-low flake concentrations and have not been 

extensively tested in the moderate to high-concentration regime, which will be of importance 

in any 3D printing application. In addition, by not respecting the rotational properties of the 

diffusivity tensor, these models are not grounded on a sound theoretical footing. This paper 

addresses the above issues both computationally and theoretically, by proposing a model based 

on the two principal diffusivities of a flake composite. We also show that the implications of
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our theoretical model are fully supported by extensive computational results.

4.3 Com putational

We carry out steady-state diffusion computations in doubly-periodic unit cells containing up 

to 3000 individual flake cross-sections. These are added in the domain sequentially, using a 

Random Sequential Addition (RSA) procedure. Specifically, at each flake placement attempt, 

two random numbers are used to assign the coordinates of the flake center while its orientation 

angle (θ) is fixed and the same for all flakes. If, after placement, no overlap with other flakes 

is detected, the process continues with the next flake, until the desired number of flakes has 

been placed, or, until no flake can be placed after 50,000 attempts; in this case no geometry is 

generated. In order to enable subsequent meshing of the computational domain, a minimum 

allowable distance between flakes is imposed; this is (2t) where (t) is the thickness of the flake. 

Since in this work we have dealt with flakes of high aspect ratio (a  =  100 and a  =  1000), 

this minimum distance requirement is deemed reasonable so as to not result in excessive local 

mesh refinement. In a rectangular unit cell of dimensions (H ) and (L) containing (N ) flakes 

of dimensions (t, a ) , the flake area fraction (φ) is φ =  N a t2/L H  and (l) is the length of each 

flake l =  \ J L H (αφ )/Ν . We have looked at systems in which 0.01 <  40 <  αφ. At higher values 

of (αφ) it becomes impossible to fill the space with non-overlapping flake crossections. This 

not-withstanding, the present study is to our knowledge the first to investigate systems of such 

large concentration.

In multi-particle simulations, use of doubly-periodic cells is essential when dealing with elon­

gated particles so as to eliminate artefacts of oriented (or, depleted) layers which would oth­

erwise appear adjacent to cell boundaries [10], [15]. The effect of the RVE dimensions on the 

computed effective diffusivity is also eliminated when using periodic unit cells. A sample unit 

cell, showing flakes oriented at an angle θ =  0.8 rad with respect to the horizontal (x) axis 

(extended slightly outside the limits of the unit cell to show the doubly-periodic geometry) is 

shown in Figure 4.3.

The boundary conditions are cyclic on the right and left boundaries, namely Clef t(0,y) =  

Cright(L,y). On the top and bottom boundaries, fixed values of concentration are prescribed. 

On the surface of each flake we impose, indicating that the flakes are impermeable. At each 

level of (a) and (φ) we generate ~  10 different realizations, each containing up to 3000 randomly
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Figure 4.3: Sample unit cell -  doubly-periodic -  containing 500 flake crossections, all oriented 
at an angle θ =0.8  rad to the horizontal (x) axis. a  =  100, αφ =  1. On the right is shown a 
detail of the computational mesh.

placed flakes. The computational meshes are created by the mesh generating program Salome 

through an in-house automated procedure and contain between ~  106 triangular elements.

These meshes are then used by OpenFoam to solve the steady-state diffusion equation V 2C  =  0, 

(C ) being the solute concentration, and provide its distribution in the domain of interest. The 

assumption of an isotropic matrix material is also made. The solution also supplies the value 

of d C /d n at each point on the upper (or lower) boundary. As a result, the mass flux along this 

boundary can be calculated as
rL dC

Jn =  -D o  dx (4.1)
ο dn

where the subscript (n) indicates numerically computed value, n  is the outward unit vector 

and (L) is the width of the unit cell. Because of impermeable flakes crossing boundaries, which 

results in sudden local changes of the flux, care must be taken in performing this integration. 

In this work, we used adaptive intervals and only accepted values of the integral when these 

were convergent with refinement. Equating this flux with the one obtained from Fick’s law in 

a macroscopic equivalent cell (whose diffusivity is D ef f ) we obtain

D ef f
H  · Do L d C .
Δ — · L  J0 dn dX

(4.2)

where Δ — is the macroscopically imposed concentration difference and H the height of the unit 

cell. These effective diffusivities will be presented and discussed for various values of (θ), (a) 

and (φ) in the following sections.
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4.4 R esu lts and Discussion

In the following we present the results of a comprehensive computational study of diffusion 

across doubly-periodic unit cells, each containing up to N =3000 randomly placed impermeable 

flakes of rectangular cross-section. In such a system, the orientation of each flake is defined by 

the orientation angle (θ) formed between the vertical axis (y), which is taken to be the direction 

of macroscopic diffusion, and the outward normal vector on the flake surface. The horizontal 

axis is indicated as (x). Parametric studies have shown that for N>200 the obtained D eff 

were practically indistinguishable; this conclusion extended for (αφ) as large as 40; therefore 

most of our computations have been carried out in RVEs containing 500 flake cross sections. 

We look at systems ranging from dilute to concentrated and in which the fiber orientation 

(θ) changes between zero (flake orientation perpendicular to the direction of diffusion) to π/2 
(fibers oriented along the direction of macroscopic diffusion). We have carried out computations 

in unit cells similar to those of Figure 4.3 for α =100 and α =  0.01, 0.1,1.0 and αφ =  10, as 

well as for α =1000 and 0.01 <  αφ <  40.

4.4.1 Effect of flake m isalignm ent on effective diffusivity

Representative results of the distribution of (C ), also showing the corresponding flake distribu­

tions, are shown in Figures 4.4 and 4.5. We define as D n the diffusivity of such a system when

Figure 4.4: Distribution of concentration in geometries with θ = 0  and αφ =  1,10, 40. The 
distribution of flakes is also visible. The number of flakes is N=500.

θ =  0o (all flakes oriented perpendicular to the direction of macroscopic diffusion) and D 22 the 

diffusivity when θ =  90o (all flakes oriented parallel to the direction of diffusion). D n  and D 22
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Figure 4.5: Distribution of concentration in geometries with θ =  π/4 and αφ =  1,10, 40. The 
distribution of flakes is also visible. The number of flakes is N=500.

are the principal values of the two-dimensional diffusivity tensor, D. The diffusivity tensor D ’ 

corresponding to a system in which the flakes assume an orientation angle θ (counter-clockwise 

with respect to the x-axis) can be determined according to the relation D ' =  Q D Q T , where 

Q is the rotation tensor.

Q
cos θ — sin θ 

sin θ cos θ
(4.3)

Hence

D'
D u  cos2 θ +  D 22 sin2 θ 

—D u  sin θ cos θ +  D 22 sin θ cos θ

D n  sin θ cos θ +  D 22 sin θ cos θ 

D n  sin2 θ +  D 22 cos2 θ
(4.4)

Therefore, the effective diffusivity of this system in the direction (y) forming an angle (π/2 — θ) 

with the axis of the flakes will be

Deff (θ) =  D ll cos2 θ +  D 22 sin2 θ (4.5)

We will investigate the use of Equation 4.5 to determine D eff  (θ), provided the principal per­

meabilities D 11 and D 22 are known. By comparing its predictions to our computational results 

we will identify which models for D ll and D 22 give the best agreement with computation.

In the first instance we have compared the computational results for dilute cases (αφ =  0.01 

and αφ =  0.1) with the predictions of Equation 4.5, in which Nielsen’s [2], model has been used
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for D u  and D 22, namely

D22 Do 1 -  Φ
1 +  φ/2α

and D n D o
1 -  Φ

1 +  αφ/2
(4.6)

Extensive comparisons have shown that predictions of Equation 4.5 based on Nielsen’s model for 

D n  and D 22 are close to the computational results only for the very dilute regime (αφ ~  0. 01). 

For progressively higher of (αφ) there is a growing discrepancy.

It is of course possible to use diffusivity models for D n and D 22 more suitable for concentrated 

suspensions. A review and evaluation of available models has been carried out by Chen and 

Papathanasiou [11]. Of the models discussed there, we single out those of Cussler and co-workers 

[1], [9] mainly because of their relevance to the systems modeled here (randomly placed flakes) 

as well as due to the small number of adjustable parameters needed in their implementation 

and their extensive use in the literature. Lape et al. [1] proposed that for diffusion across 

arrays of unidirectional randomly placed flakes it is

D o =  (1 +  αφ/3)2 (4 7)
Deff = 1  -  φ ( . )

In deriving this model, the tortuosity factor was taken to be 1+αφ/3 and it was further assumed 

that the ratio of the areas available for diffusion is

Ao/A f =  (1 +  αφ/3)/(1 — φ). (4.8)

Implicit in the above derivation is the assumption that the diffusion paths around a flake form 

straight lines; therefore it is not unreasonable to treat the factor ’3’ in the expression above 

as a geometrical parameter that may be adjusted if so suggested by the data. Since that was 

found to be the case in analyzing our data, we use the model of Lape et al. [1] in the form:

Do (1 +  α φ /λ)2
Deff 1 — φ

(4.9)

in which (λ) is an adjustable geometrical parameter. Another model suitable for concentrated 

aligned flake systems [9] reads
D 0 1 +  α2 φ2

D f f  =  β  (1 -  φ)
(4.10)

where (β ) is also an adjustable geometric factor. The following Figure 4.6 gives a comparison
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between the computational results, for flakes with α =  100 and for αφ = 1  and αφ =  10, in 

unit cells similar to those of Figure 4.5 and the predictions of Equation 4.5, in which D n is 

taken from [1], [9] and D 22 from [2]. It is evident that use of models for D n  more suitable 

for concentrated systems results in significantly improved predictions of D eff  for all (θ). The 

model of Lape et al. [1] gives an excellent agreement with the computational results for λ=2.5  

even for (αφ) as low as 0.01 (especially away from θ ~  π/2) with a slight adjustment of λ to 2.7 

at αφ=0.01, while the model of Cussler et al. [9], gave a very good fit with β =1.15 at αφ >  1. 

The latter model (Equation 4.10) can also be used at lower (αφ) values with proper adjustment 

of the parameter (β); at αφ =  0.1 best agreement was obtained for β =0.117 and at αφ =  0.01 

best agreement was obtained for β =0.014. Finally, it is noteworthy that near θ =  π/2 (flakes 

oriented almost parallel to the direction of diffusion) the numerical results are in very close 

agreement with Equation 4.5 for all concentrations. Since at θ ~  π/2 the term containing D 22 
dominates, this shows that Nielsen's model for diffusion parallel to the flakes is a reliable one, 

even for (αφ) as high as 10.

αφ = 1  and αφ =  10. The legend refers to the model used in place of D n . For D 22 Nielsen’s 
model [8] was used. In all cases α =  100, β  =  1.15 in Equation 4.10 and λ=2.5  in Equation 4.9.

Additional comparisons for α =  1000 and higher values of (αφ ) are shown in Figure 4.7, in 

terms of the BIF. There are 50 computational data-points at each value of (αφ ) and those at 

the same (θ) almost completely overlap. This has been shown before [11], namely that spatial 

randomness has a very small effect on the diffusivity of such systems.

In summary, our computational results and the comparisons presented above have shown that
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Figure 4.7: Comparison of computational results (points) with predictions of Equation 4.5 for 
αφ= 20 and αφ=40. The legend refers to the model used in place of D n . For D 22 Nielsen’s 
model [8] was used. In all cases α=1000, β  =1-15 in Equation 4.9 and λ=2.5  in Equation 4.10.

the effective diffusivity D e/ /  of a system of randomly placed flakes oriented at an angle (π/2 — θ) 

with the direction of macroscopic diffusion can be predicted by

De// (θ) =  1 φ 2 θ i 1 φ · 2 θ
Do (1 +  α φ /λ)2 +  1 +  φ/2α (4.11)

where λ=2.5. As explained above, this model is in excellent agreement with the computational 

data for the entire range of (αφ) and (θ) studied. In addition, we compare the predictions of 

our model to a well-known experimental result [22], [23], namely that for small values of the 

misalignment angle (θ) it is
De/f (θ =  0) =  cos2 θ (4.12)

De// (θ)

in which θ=0 corresponds to a composite fully aligned normal to the direction of diffusion. If 

D n  is the diffusivity of the fully-aligned system, the B IF  implied by the above statement will 

be
cos2 θ

(4.13)B I F 1 =  «  αφ cos2 θ
D 11

From Equation 4.5 it can be seen that the B IF  implied by our model, (setting, without loss of 

generality or relevance, D 22 ~  D0 ~  1) is

B I F 2
1 i (D 11 -  1) cos2 θ (4.14)1
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As shown in Figure 4.8, at each value of (θ) the predictions of Equation 4.14 approach asymptot­

ically those of Equation 4.13 albeit at progressively higher values of D n (that is, for more dilute 

systems) as (θ) increases. However, the limiting behavior of Equation 4.14 in the concentrated 

regime (small D n ) suggests a qualitatively different behavior for the BIF. Our computational 

results support this prediction, as will be elaborated upon in the following section. With ref­

erence to Figure 4.8, if the model of Lape et al. [1] is adopted for D n , a value of D n =0.1 

corresponds to αφ =  6.5 while a value D n=0.01 will give αφ =  27. Therefore, our model is 

consistent with Equation 4.13 well into the semi-concentrated regime, for small misalignment 

angles.

Figure 4.8: Predictions of Equation 4.14 (broken lines) showing its asymptotic approach to the 
experimental result represented by Equation 4.13 (solid line). Larger values of D n  correspond 
to more dilute systems.

4.4.2 The effect of flake concentration

In aligned systems, it is known [1], [9], [10] that the B IF  scales with (αφ)2 at higher concentra­

tions, and linearly with (αφ) in the dilute regime. No such definitive information is available 

when deviations from perfect alignment occur. Figure 4.9 shows all our computational results 

for α =  1000. It is clear that while the quadratic rise with (αφ) is indeed observed in aligned 

systems (θ =  0), this asymptotic behaviour is lost as (θ) increase and the B IF  approaches a 

plateau value; this plateau is lower the larger the misalignment angle (θ) is. The implication
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of this result is that for the full potential of large - α flake systems as diffusion barriers to be 

realized, good alignment is essential. Also shown in Figure 4.9 are the predictions of Equation 

4.11; as in Figures 4.7 and 4.8 the agreement between the two is excellent.

Figure 4.9: Summary of computational results (circles) for a  =  1000 and θ =  0, 0.1, 0.2, 0.4, 
0.6, 0.8, and 1.0, all in rad. We observe the anticipated quadratic rise of the B IF  with (αφ) 
for higher values of (αφ) at θ=0 and also a progressively lower plateau reached at increasing 
values of the misalignment angle (θ). The predictions of Equation 4.11 are also shown as solid 
lines. Total of 1295 data points.

4.4.3 Lim iting behaviour of the B I F  at very high (αφ)

In light of the excellent agreement between computational results and Equation 4.11 it is 

possible to use the latter to obtain analytical estimates of the leveling-off values of the B IF  

(lim (B IF)) at each (θ), by observing that the first term of Equation 4.11 becomes negligible at 

high (αφ), leaving

lim (B IF  )αφ 1 -  φ
1 +  φ/2α

i - ι
sin2 θ (4.15)

Figure 4.10 compares our computational results to the predictions of Equation 4.15 as well as 

the approach to that limit based on Equation 4.11. A conclusion is obvious -  the quadratic 

rise of the B IF  with (αφ) is lost when θ >  0. For a misalignment as small as 5.7o (0.1 rad) the 

upper limit on the achievable B IF  from Equation 4.9 is 104 -  a three-fold decrease from the 

theoretical B IF  of a perfectly aligned composite with αφ =  40 and a multi-fold decrease from
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an aligned composite of even higher (αφ). In fact, for such concentrated systems the departure 

from the theoretical B IF  can be very rapid at small misalignment angles, as can be inferred 

from Equation 4.15. This we show in Figure 4.11 in which we plot the predictions of Equation 

4.15 along with our computational results for α =  1000 and αφ =  40.

Figure 4.10: The approach to the B IF  limit (as predicted by Equation 4.15, dotted lines) for 
θ =  0.1, 0.2 and 0.4 (in rad) as well as the predictions of Equation4.11 (solid lines). Points are 
computational results. α =  1000

Figure 4.11: Computed B IF  at αφ =  40 (α =  1000) as a function of the misalignment angle 
(θ). With a solid line are shown the predictions of Equation 4.15. The rate of decline in barrier 
performance with even a slight misalignment is very significant at small (θ), when (αφ) is large
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The above comments and results are particularly pertinent to high aspect ratio flakes, such as 

found in exfoliated nanoclay or graphene composites, for which even at low (φ) a high (αφ) 

value can be achieved; in our simulations in which α =  1000, the maximum αφ of 40 translates 

into φ =  4%. Evidently, Equation 4.15 in that case says that the limiting B IF  is only a 

function of the misalignment angle -  and our computations are in complete agreement with 

this prediction. At higher loadings, Equation 4.15 predicts that the limiting B IF  will increase 

for larger values of (αφ).

4.5 Conclusions

In this study we proposed a model for the Barrier Improvement Factor (B IF ) of misaligned flake 

composites which is valid up to very high flake concentrations, as could be found in composites 

fabricated by 3D printing. The model requires as inputs the two principal diffusivities of the 

composite, normal and parallel to the flake axis. In this respect, we find that the models of 

Lape et al. [1] and Nielsen [2] form an excellent combination.

This model was tested exhaustively by comparing to predictions of 2D computer simulations 

which included up to 3000 randomly placed but uniformly oriented flake cross-sections in each 

RVE. Each cross-section forms an angle (π/2 — θ) with the direction of macroscopic diffusion. 

Over 1500 simulations were carried out and upon comparison the model was found in agreement 

with computational results for all misalignment angles and for values of (αφ) up to 40.

Both our model and our computational data predict that at | θ | >  0 the quadratic dependence 

of the B IF  on (αφ) is lost, with the B IF  approaching a plateau at higher values of (αφ). This 

plateau is lower as (θ) increases. We derive analytical estimates of this maximum achievable 

B IF  at each level of misalignment; these are also shown to be in excellent agreement with 

the computational results. Finally we show that our computational results and model are in 

agreement with experimental evidence at small values of (θ).

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 22:41:33 EEST - 18.118.195.39



94

4.6 References

1. Lape, N.K., Nuxoll, E.E. and Cussler, E.L. (2004) Polydisperse Flakes in Barrier Films. 
Journal of Membrane Science, 236, 29-37. https://doi.Org/10.1016/j.memsci.2003. 
12.026

2. Nielsen, L.E. (1967) Models for the Permeability of Filled Polymer Systems. Journal 
of Macromolecular Science Part A: Chemistry, 5, 929-942. https://doi.org/10.1080/ 
10601326708053745

3. Panwar, A., Choudhary, V. and Sharma, D.K. (2013) Role of Compatibilizer and Pro­
cessing Method on the Mechanical, Thermal and Barrier Properties of PS/Organoclay 
Nanocomposites. Journal of Reinforced Plastics and Composites, 32, 998-1002. https: 
//doi.org/10.1177/0731684413477770

4. Pavlidou, S. and Papaspyrides, C.D. (2008) A  Review on Polymer-Layered Silicate Nano­
Composites. Progress in Polymer Science, 33, 1119-1198. https://doi.org/10.1016/ 
j.progpolymsci.2008.07.008

5. Pajarito, B. and Kubuchi, M. (2013) Flake-Filled Polymers for Corrosion Protection. 
Journal of Chemical Engineering of Japan, 46, 18-26.https://doi.org/10.1252/jcej. 
12we133

6. Mohamadi, M., Garmabi, H. and Keshavarzi, F. (2016) An Investigation on the Effects 
of Organo-Modified Fluoromica on Mechanical and Barrier Properties of Compatibilized 
H D P E  Nanocomposite Films. Journal of Plastic Film and Sheeting, 32, 10-33. https: 
//doi.org/10.1177/8756087915569097

7. Lagaron, J.M. and Nunez, E. (2011) Nanocomposites of Moisture-Sensitive Polymers and 
Biopolymers with Enhanced Performance for Flexible Packaging Applications. Journal 
of Plastic Film and Sheeting, 28, 79-89. https://doi.org/10.1177/8756087911427756

8. Lee, K.-H., Hong, J., Kwak, S.J., Park, M. and Son, J.G. (2015) Spin Self-Assembly 
of Highly Ordered Multilayers of Graphene-Oxide Sheets for Improving Oxygen Barrier 
Performance in Polyolefins. Carbon, 83, 40-47. https://doi.org/10.1016/j.carbon. 
2014.11.025

9. Cussler, E.L., Hughes, S.E., Ward, W.J. and Aris, R. (1988) Barrier Membranes. Journal 
of Membrane Science, 38, 161-74. https://doi.org/10.1016/S0376-7388(00)80877-7

10. Lebovka, N., Khrapatiy, S., Vygornitskyi. and Pivovarova, N. (2014) Barrier Properties 
of K-Mer Packings. Physica A, 408, 19-27. https://doi.org/10.1016Zj.physa.2014.

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 22:41:33 EEST - 18.118.195.39

https://doi.Org/10.1016/j.memsci.2003
https://doi.org/10.1080/
https://doi.org/10.1016/
https://doi.org/10.1252/jcej
https://doi.org/10.1177/8756087911427756
https://doi.org/10.1016/j.carbon
https://doi.org/10.1016/S0376-7388(00)80877-7
https://doi.org/10.1016Zj.physa.2014


95

04.019
11. Chen, X. and Papathanasiou, T.D. (2007) Barrier Properties of Flake-Filled Membranes: 

Review and Numerical Evaluation. Journal of Plastic Film and Sheeting, 23, 319-346. 
https://doi.org/10.1177/8756087907088437

12. Dondero, M., Cisilino, A.P. and Tomba, J.P. (2013) Experimental Validation of Compu­
tational Models for Mass Transport through Micro Heterogeneous Membranes. Journal 
of Membrane Science, 437, 25-32. https://doi.org/10.1016/j.memsci.2013.02.039

13. Minelli, M., Baschetti, M.G. and Doghierri, F. (2011) A  Comprehensive Model for Mass 
Transport Properties in Nanocomposites. Journal of Membrane Science, 381, 10-20. 
https://doi.org/10.1016/j.memsci.2011.06.036

14. Tan, B. and Thomas, N.L. (2016) A  Review of the Water Barrier Properties of Poly- 
mer/Clay and Polymer/Grapheme Nanocomposites. Journal of Membrane Science, 514, 
595-612. https://doi.org/10.1016/j.memsci.2016.05.026

15. DeRocher, J.P., Gettelfinger, B.T., Wang, J., Nuxoll, E.E. and Cussler, E.L. (2005) 
Barrier Membranes with Different Sizes of Aligned Flakes. Journal of Membrane Science, 
254, 21-30. https://doi.org/10.1016/j.memsci.2004.12.025

16. Papathanasiou, T.D. and Tsiantis, A. (2016) Orientational Randomness and Its Influence 
on the Barrier Properties of Flake-Filled Composite Films. Journal of Plastic Film and 
Sheeting, On Line.

17. Papathanasiou, T.D. and Guell, D.C. (1997) Flow Induced Alignment in Composite M a ­
terials. Woodhead Publishing, Cambridge. https://doi.org/10.1201/9781439822739

18. Bharadwaj, R.K. (2001) Modeling the Barrier Properties of Polymer-Layered Silicate 
Nanocomposites. Macromolecules, 34, 9189-9192. https://doi.org/10.1021/ma010780b

19. Greco, A. (2014) Simulation and Modeling of Diffusion in Oriented Lamellar Nanocom­
posites. Computational Materials Science, 83, 164-170. https://doi.org/10.1016/j. 
commatsci.2013.11.019

20. Greco, A. and Maffezzoli, A. (2013) Two-Dimensional and Three-Dimensional Simulation 
of Diffusion in Nanocomposite with Arbitrarily Oriented Lamellae. Journal of Membrane 
Science, 442, 238-244. https://doi.org/10.1016/j.memsci.2013.04.038

21. Sorrentino, A., Tortora, M. and Vittoria, V. (2006) Diffusion Behavior in Polymer-Clay 
Nanocomposites. Journal of Polymer Science Part B: Polymer Physics, 44, 265-274. 
https://doi.org/10.1002/polb.20684

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 22:41:33 EEST - 18.118.195.39

https://doi.org/10.1177/8756087907088437
https://doi.org/10.1016/j.memsci.2013.02.039
https://doi.org/10.1016/j.memsci.2011.06.036
https://doi.org/10.1016/j.memsci.2016.05.026
https://doi.org/10.1016/j.memsci.2004.12.025
https://doi.org/10.1201/9781439822739
https://doi.org/10.1021/ma010780b
https://doi.org/10.1016/j
https://doi.org/10.1016/j.memsci.2013.04.038
https://doi.org/10.1002/polb.20684


96

22. Yang, C., Smyrl, W.H. and Cussler, E.L. (2004) Flake Alignment in Composite Coatings. 
Journal of Membrane Science, 231, 1-12. https://doi.Org/10.1016/j.memsci.2003. 
09.022

23. Eitzman, D.M., Melkote, R.R. and Cussler, E.L. (1996) Barrier Membranes with Tipped 
Impermeable Flakes. AIChE Journal, 42, 2-9. https://doi.org/10.1002/aic.690420103

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 22:41:33 EEST - 18.118.195.39

https://doi.Org/10.1016/j.memsci.2003
https://doi.org/10.1002/aic.690420103


C h a p t e r  5

A n  e v a l u a t i o n  o f  m o d e l s  a n d  

c o m p u t a t i o n a l  a p p r o a c h e s  f o r  t h e  

b a r r i e r  p r o p e r t i e s  o f  c o a t i n g s  

c o n t a i n i n g  f l a k e s  o f  h i g h  a s p e c t  r a t i o 1

Sum m ary

In this chapter we compare existing models with our results as described in the previous chap­

ters. We show the shortcomings of such models and their discrepancies with numerical results. 

For this we use an extensive dataset of numerical simulations that solve Fick’s First Law for 

steady state problems and extend in to 4 orders of magnitude in terms of (αφ) and in the full 

range of misalignment angles (θ). Also we show the problems that arise when poorly defined 

numerical studies in terms of boundary conditions and geometry construction of unit cells are 

used.

The geometries of the unit cells we used in this study exhibit both periodic boundary condi­

tions and periodic geometrical conditions (Figure 5.1). We also solve the same problems by 

using combinations of adiabatic boundary conditions and non periodic geometrical boundary 

conditions. This has allowed us to examine not only possible problems that arise when inap-

A s  published in Journal of Coatings Technology and Research: Tsiantis, A., Papathanasiou, T.D. An 
evaluation of models and computational approaches for the barrier properties of coatings containing flakes of 
high aspect ratio. J  Coat Technol Res 16, 521-530 (2019). h ttps://do i.org/10.1007/s11998-018-0130-z
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propriate boundary conditions are used but also to examine the effect of the periodic geometry 

in the numerical solutions as well. We can clearly see from our study that the wrong boundary 

conditions introduce such an error in the numerical results that they are rendered effectively 

useless even in the limits of the range of semi-dilute systems (αφ >  1). At the same time 

the superiority of the periodic boundary and geometrical conditions is shown where we can 

see that with their use, even in extremely distorted unit cells, the obtained results remain the 

same (Figure 5.3). Using the above results we are able to pinpoint the cause of problems in 

the formulation of some models especially in the concentrated region.

Figure 5.1: Periodic geometry used in this study. (a) Unit cell in periodic arrangement. Each 
tile is an identical copy of the center tile. (b) Detail at the tile borders. Only 500 flakes are 
shown for clarity.

At the second part of this chapter we discuss in detail the differences between our model and 

models that have been proposed in the literature so far. It is clearly seen that many proposed 

solutions have shortcomings not only due to wrong assumptions that reduces their use in a 

limited scope of (αφ) but they were suffering from numerical problems as well because of poor 

simulation definitions.

We have checked our numerical results for spatial convergence by using the Richardson extrap­

olation method. This way we estimated the simulation accuracy and we were able to determine 

the best settings in both number of flakes (N) to use and also the number of mesh elements in 

the numerical solution for obtaining as accurate as possible simulation results.
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5.1 A bstract

We report on the results of a comprehensive two-dimensional computational study of diffusion 

across disordered, two-phase flake composites. Our objective is (1) the evaluation of existing 

literature models for the effect of flake orientation and (2) the evaluation of the influence of 

boundary conditions and unit-cell types on the predicted barrier properties. Flake orientation 

is an important parameter affecting barrier properties in flake-filled composites, as the barrier 

efficacy of such systems depends significantly on the extent to which the flakes have been 

oriented as close as possible to being perpendicular to the direction of macroscopic diffusion. 

Our comparisons rely on an extensive set of computational results in two-dimensional, doubly- 

periodic unit cells, each containing up to 3000 individual unidirectional flake cross-sections 

which are randomly placed and with their axes forming an angle (π/2 — θ) with the direction 

of macroscopic diffusion. A unique feature of our study is the consideration of high aspect 

ratio (α) systems with α =  100 and α =  1000, from the dilute (αφ =  0.01) and into the 

very concentrated (αφ =  40) regime. The effective diffusivity of the corresponding unit cells is 

computed from the imposed concentration difference and the computed mass flux, using Fick's 

Law. We show that use of cyclic boundary conditions and doubly-periodic unit cells results in 

effective diffusivities which are in agreement with theory and invariant of the shape of the unit 

cell. In addition, we show that the use of adiabatic boundary conditions produces erroneous 

results at high flake concentrations. Comparison of our results with existing theoretical models 

revealed several shortcomings of the latter concerning both, the effect of flake concentration 

(αφ) and the effect of the orientation angle (θ). The principal reason for the latter shortcomings 

is the fact that said models do not respect the rotational invariance of the diffusivity tensor.

5.2 Introduction

Flake-filled polymeric composites find uses as barrier materials, among others in food packaging, 

where the objective is to hinder the diffusion of Oxygen, H2O vapors and/or CO2 to and from 

a container while maintaining all the advantages of formability and design afforded by plastic 

materials. Flakes of inorganic materials such as mica, nano-scale platelets of clay minerals 

such as hectorite, saponite and montmorillonite as well as graphene-oxide platelets of aspect 

ratios well over 1000, have been used for this purpose [1], [2]. It is known that incorporation
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of such fillers aligned perpendicular to the direction of macroscopic diffusion is very effective in 

increasing the barrier properties by increasing the tortuosity of the diffusion path of the diffusing 

species. Theory and computation agree that, for flakes aligned perpendicular to the direction 

of macroscopic diffusion, the improvement in barrier efficiency ranges from being ~  (αφ) in 

dilute systems, where (α) is the aspect ratio and (φ) the volume fraction of the flakes, to being 

~  (αφ)2 in more concentrated dispersions [3]-[6]. When deviations from such perfect alignment 

occur, our understanding is not as clear, even though the topic of flake misalignment and its 

effect on the Barrier Improvement Factor ( B I F  =  D 0/D ef f , where D 0 is the diffusion coefficient 

of the neat matrix material and D eff  the diffusion coefficient of the composite) is definitely of 

great practical interest - actual melt-processed composites are never characterized by perfect 

flake alignment in the desired direction [7]. The two main approaches used to derive analytical 

models for the barrier efficiency of misaligned systems have been either an ad-hoc incorporation 

of orientation metrics in existing models [2], [8], [9] or derivation of models from diffusion path 

calculations [10]-[12].

In an extensively cited paper, Bharasdwaj [9] combined the Herman's orientation parameter 

(H ) with Nielsen’s model [13] which is suitable for dilute suspensions. The metric (H ) has 

been used with success to describe orientation of axisymmetric entities such as fibers and 

macromolecules; however, with the flake-composites considered here this is not the case, since 

two angles are required to describe their orientational state. In that case Herman’s function 

provides an incomplete characterization [14]. In a similar direction, Lee at al. [2] have proposed 

combining Cussler’s model [3], [4], suitable for aligned-flake systems at higher concentrations, 

with the Herman’s parameter to account for the effect of flake misalignment on diffusivity. 

Predictions were compared to experimental data and differences in the permeability of sheets 

produced by different methods were attributed by the authors to variations in orientation. 

Greco [10] and Greco and Maffezzoli [11] derived analytical models for the effective diffusivity, 

based on diffusion path length considerations; their models incorporated explicitly the flake 

orientation angle. They also studied computationally 2D systems containing up to 75 flakes 

oriented at an angle (±θ), defined as the angle formed between the outward normal vector to 

the flake surface and the direction of diffusion, and 3D systems containing up to 20 randomly 

placed and aligned disks, whose orientation varied between perpendicular and parallel to the 

direction of diffusion. Conditions up to αφ=3.5 were examined. Sorrentino et al. [12] similarly 

proposed models for the effective diffusivity of 2D and 3D misaligned flake systems based on
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diffusion path arguments. A recent review of the topic and an evaluation of existing models 

has been given by Dondero et al [8]. They concerned themselves with the case when the fibers 

assume orientations which are randomly distributed around a mean direction and with systems 

of dilute and semi-dilute systems of low aspect ratio (α <  50 and αφ <  5.0). All previous 

studies have limited themselves to these or similar values of (α) and (αφ).

Nevertheless, very high aspect ratio flakes have appeared in recent years in the context of 

nanotechnology (montmorillonite, graphene) and they have offered the potential of generating 

very dense flake dispersions at relatively low levels of (φ). There is therefore a need to (1) 

investigate computationally the effect of high aspect ratio and high concentration on barrier 

properties and also to (2) examine critically the relevance of existing theoretical or empirical 

models to such systems.

In the present study we deal with flakes of α =  100 and α =  1000 and (αφ) up to 40. Such 

highly concentrated systems have not been considered to-date in the technical literature. We 

consider 2D systems systems in which all flakes are uniformly oriented forming a fixed angle 

with the direction of macroscopic transport. This feature obviously limits the applicability of 

some of our findings to unidirectional systems - at an angle with the direction of macroscopic 

diffusion. Such systems are of practical interest due to the simple fact that while flakes may 

show a uniform orientation in a finished composite part or film, the direction of orientation is 

not necessarily the same with the direction of macroscopic diffusion. Literature models such 

as those of references [11] and [12] have been developed addressing that need. Figure 5.2, an 

example of the types of microstructures addressed in this work, shows (almost) unidirectional 

montmorilonite platelets dispersed in a Nylon matrix. One additional and significant novelty 

of the present work is that, contrary to earlier studies [6], [8], in which the computational unit 

cells were characterized by adiabatic boundary conditions at their side faces, we consider fully 

periodic geometries and cyclic boundary conditions. We show that in highly concentrated sys­

tems, use of adiabatic boundary condition on the side walls will result in erroneous predictions 

of the Barrier Improvement Factor. At high values of (αφ), as those achieved in this study, it 

is important to compute and report values of the Barrier Improvement Factor (BIF) and not of 

the effective diffusivity, since the latter is close to zero and thus make it difficult to differentiate 

between the predictions of various models.
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Figure 5.2: TEM picture of a Nylon/Organoclay composite film produced by melt extrusion, 
showing exfoliated and near-unidirectional platelets. The direction of this process-induced 
orientation is not necessarily normal to the direction of bulk diffusion, the latter determined 
chiefly by the geometry of the coating and of the substrate. Results obtained in the P I’s 
laboratory at the University of South Carolina (2008).

5.3 Com putational

The computations were carried out in 2D unit cells, generated by adding up to 3000 individual 

flake cross-sections to a containing geometry (H /L=1) using a Random Sequential Addition 

(RSA) algorithm. The planar coordinates of the center of each flake are determined using 

a random number generator, while the orientation angle (θ) is fixed and the same for all 

flakes. The algorithm checks for overlap of the last placed flake with existing ones in a sub­

region surrounding the center of the last-placed flake, and, if no overlap is detected, the process 

continues with the addition of the next flake, until the desired number of flakes has been placed, 

or, until no flake can be placed after 105 attempts; in this case the algorithm exits without a 

result and a new attempt commences. A minimum allowable distance (2t) between flakes is 

imposed, where (t) is the thickness of the flake; this is necessary so that the resulting geometry 

can be subsequently meshed. If the dimensions of the unit cell are (H) and (L) and if it contains 

(N) flakes of dimensions (t, a ), the flake area fraction (φ) is φ =  N a t2/L H  and the length (l) 

of each flake is l =  \ J L H (αφ )/Ν . The effect of the number of flakes as well as the convergence
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of our results with mesh refinement was studied extensively and the results are presented in 

Appendix-1. In relation to the three-dimensional reality, our simulations are strictly valid for 

ribbon composites, that is, for composites with flakes extending infinitely in the out-of-plane 

direction. There are no published comparisons between 2D and 3D simulations in flake-filled 

systems; however, 2D simulations are expected to produce a conservative estimate of the BIF.

Cyclic boundary conditions are used on the right and left boundaries, specifically Cle/ t(0,y) =  

Cright(L, y), where (C ) is the solute concentration. The concentration (C ) is fixed on the top 

and bottom boundaries, so that a macroscopic concentration difference (AC) is established. 

Since the flakes are impermeable, it is d C /dn  =  0 on their surfaces. At each pair of (α) and (φ) 

we generate ~10 different geometries; these differ in flake placement. An in-house procedure is 

used to mesh the resulting domains using the mesh generating program Gmsh [17]; each case 

contains ~4x106 triangular elements. These meshes are ported into OpenFoam to solve the 

steady-state diffusion equation V 2C  =  0 and provide its distribution in the domain of interest. 

The solution also supplies the value of (dC/dn) at each boundary point. As a result, the mass 

flux along the top (or bottom) boundary, on which (C ) is constant, can be calculated using

=  - D ° l  ( d n ) dx (51)

where n is the outward unit vector and (L) is the width of the unit cell. If D e//  is the effective 

diffusivity of an equivalent representative material, equating this flux with the one obtained 

from Fick’s law we obtain

D e//
H _ D  f L ( d C \  dx
& C  · L  l  \ d n )

(5.2)

In the following sections we will discuss the effect of geometry and boundary conditions on 

D e/ /  and also compare our predictions with available literature models.

Use of doubly periodic unit cells eliminates the effect of the dimensions and aspect ratio of 

the computational domain on the computed effective diffusivity and thus renters the studied 

geometries true RVEs. Alternative approaches [6], [8], result in artifacts, such as oriented or 

depleted layers adjacent to boundaries, and thus in predictions of D e/ /  which are not geometry- 

invariant. This is demonstrated in Figure 5.3, which shows computational results for the 

predicted effective diffusivity (De/ / ) for αφ = 5  and θ= π /4  and various shapes of unit cells. As 

expected, use of periodic unit cells coupled with cyclic boundary conditions results in geometry- 

invariant effective diffusivities.
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Figure 5.3: The predicted BIF (~  1 /D eff) as function of the aspect ratio (H/L) of the unit 
cell. The inserts also show typical flake distributions. The number of flakes shown has been 
reduced for clarity

5.4 R esults and Discussion

In the following we present the computational results obtained in two-dimensional doubly- 

periodic unit cells, each containing up to N=3000 randomly placed impermeable flakes of rect­

angular cross-section. The horizontal axis is indicated as (x). We look at systems in which the 

fiber orientation (θ) changes between zero (flake orientation perpendicular to the direction of 

macroscopic diffusion) to π/2 (fibers oriented along the direction of macroscopic diffusion). We 

have carried out computations in unit cells similar to those of Figure 5.3 (H /W =1) for a  =100, 

a  =  1000 and 0.01 <  αφ <  40.

5.4.1 Effect o f boundary conditions

The effect of the boundary conditions on the predicted effective diffusivities in flake-filled com­

posites has not been analyzed in previous studies. Chen and Papathanasiou [6] and Dondero 

and co-workers [8] used non-periodic unit cells and adiabatic conditions on the side boundaries 

of the unit cells. Being aware that this would have some impact on the predicted diffusivities, 

both, as a result of flake layers forming adjacent to unit-cell walls as well as a result of artifi­

cially restricting diffusion across these boundaries, they computed the effective diffusivity from 

a central region of their unit cells. While correct, this is certainly inefficient and does not offer a 

clear estimate of possible errors or any guidance on the required size of this internal region. In
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the following we summarize the results of an extensive comparison of BIFs predicted through 

the use of unit cells having

i. doubly-periodic geometry

ii. geometry in which flakes were excluded from crossing boundaries

iii. cyclic boundary conditions and

iv. adiabatic boundary conditions

Characteristics (iii) and (iv) refer to the boundary condition applied on the two vertical sides 

of the unit cell (the two horizontal sides being at constant concentration).

For such systems, by taking into account the rotational properties of the diffusivity tensor, which 

dictates that D eff  (θ) =  D u  cos2 θ +  D 22s in ^  =  D u  +  (D22 — D u ) sin2 θ and by utilizing the 

models of Lape et al. [4] and Nielsen [13] for the principal diffusivities D n and D 22 respectively, 

Tsiantis and Papathanasiou [15] proposed the following model for D ef f :

Deff (θ) 
Do

1 — φ
(1 +  α φ /λ)2

cos2^) + 1 -  Φ
1 +  φ /2α

sin2^ ) (5.3)

This model was found [15] to be in excellent agreement with computational predictions for 

0 <  θ <  π/2 and αφ <40. A key result of both, this model and of the computational results of 

reference [15] is the fact that at θ >  0 the BIF (~  1/D ef f ) does not grow monotonically with 

(αφ) but instead it reaches a plateau value; this plateau value is reduced as (θ) increases and 

as (θ) approaches π/2 the BIF approaches the (plateau) value implied by the Nielsen model 

[13].

Figure 5.4 shows predicted values of the BIF as function of (αφ) for various combinations of 

unit cell type and boundary conditions. It is interesting to observe that while the effect of unit 

cell type and/or boundary conditions is very small for dilute systems, thus validating in earlier 

studies [6] ,[8], major differences are observed for αφ >  5 -  this is incidentally the concentration 

beyond which no results have been reported in the literature this far.

For all conditions, as long as the system remains in the dilute or semi-dilute regime (αφ <  5) 

the results appear to be little affected by the type of unit cell or by the boundary conditions 

used, the effect being more pronounced as (θ) increases. However, for concentrated systems the 

predicted BIF is affected dramatically by the choice of the unit cell type or of the boundary 

conditions, in a quantitative as well as in qualitative sense. In fully-aligned systems (θ =0 ) the
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α φ  1

ba

Figure 5.4: Predicted values of the BIF as function of flake concentration (αφ) for various 
combinations of geometry (periodic/non-periodic) and boundary conditions on the side walls 
(cyclic/adiabatic). Two values of the misalignment angle and H /W =1.

key factor appears to be the type of geometry used; as long as the geometry is periodic (that 

is, flakes are allowed to cross the vertical boundaries of the unit cell) the correct behavior is 

predicted, namely a quadratic dependence on (αφ) at high values of (αφ), in agreement with 

the model of Lape et al. [4] and earlier computational results of [6]. However, use of a non­

periodic geometry results in the prediction of a totally wrong dependence of the BIF on (αφ) 

(Figure 5.4a), probably as a result of the formation of flake-exclusion zones adjacent to the 

vertical boundaries. The approach used in references [6] and [8] to deal with this problem will 

most probably reduce or even eliminate this error, but in the absence of direct evidence it can 

only be seen as empirical. For misaligned systems (Figure 5.4a) only a periodic unit cell and 

cyclic boundary conditions result in the anticipated behavior of the BIF, all other combinations 

yielding unacceptable predictions. The reasons for this can be inferred by examining the contour 

maps of concentration in selected cases, as shown in Figures 5.5 and 5.6. It is evident that the 

imposition of adiabatic conditions changes the nature and direction of the mass transfer in a 

way that renders the geometry a non-representative unit cell; therefore the computed diffusivity 

can no longer be considered an effective property but rather a “component property” , the result 

of the particular set of conditions and of the particular geometry.

The combined effect of the type of boundary conditions used and of the aspect ratio of the unit 

cell is shown in Figure 5.7. It is clear that use of adiabatic conditions on the vertical boundaries 

of the unit cell will only yield the correct effective diffusivity if the aspect ratio of the unit cell 

(L/H) is greater than 10. Otherwise, the predicted BIF will be overestimated several-fold and 

thus be completely unreliable.
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Figure 5.5: Concentration profiles in systems with αφ =1 , θ =45o and cyclic (left) and zero- 
gradient (right) boundary conditions on the vertical boundaries. The flakes are also visible. 
The number of flakes is N=3000

Figure 5.6: Concentration profiles in systems with αφ =10, θ =4 5 o and cyclic (left) and zero- 
gradient (right) boundary conditions on the vertical boundaries. The flakes are also visible. 
The number of flakes is N=3000

5.4.2 Com parison to other relevant m odels

In the following we compare the computational results and the predictions of the model of 

Equation 5.3 for D eff  to the predictions of other literature models. Among existing models, 

the model of Bharadwaj [9] was derived by combining Nielsen’s model [13] with Herman’s ori­

entation parameter H  =  1 (3(cos2 θ) — 1) where the brackets () indicate ensemble averaging 

over the entire flake population. For general, three-dimensional orientation distributions, the 

parameter H is zero for a random system, takes the value 1 for flakes aligned perpendicular 

to the direction of diffusion) and -0.5 for flakes oriented along the direction of diffusion. For
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Figure 5.7: The combined effect of the shape of the unit cell (expressed by the ratio H /L) and 
of the type of boundary conditions used on the computed barrier factor (BIF). αφ =10, θ =45o 
and N=3000. (H) is the height and (L) the length of the unit cell

two-dimensional distributions of orientations, such as those dealt with in this study, this in­

terpretation is no longer correct. The above limits in (H ) are based on the fact that in a 3D 

randomly oriented distribution of flakes it is (cos2 θ) =  1/3 while in a 2D random system it is 

(cos2 θ) =  1/ 2. The Herman parameter should therefore be expressed as H  =  2(cos2 θ) — 1 so 

that it yields H = 0  for a random and H =1  for a transverse system. For a system aligned along 

the direction of diffusion this definition will give H = -1. With this in mind the expression of 

reference [9] for D e// takes the form

D e //(θ) =  1 — φ =  1 — φ (5 4)
Do 1 +  0.25αφ(Η +  1) 1 +  0.5αφ( ^ 2 θ) ( . )

Equation 5.4 yields the Nielsen model for flakes aligned perpendicular to the direction of dif­

fusion (θ =0) and to the dilute limit result (De// ~  1 — φ) for flakes parallel to the direction 

(θ =  π/2). The term (H + 1) in Equation 5.4 is the 22-diagonal component of the orientation 

tensor (A), defined as Ay =  (p p j). Since for the two-dimensional cross-sections considered in 

this study, pi =  sin θ ,ρ2 =  cos θ, it is

A
(sin2 (θ))

(sin2(θ) c o s^ ))

(s in ^ ) c o s^ )) 

(cos2 (θ))
(5.5)

Lee et al. [2] proposed to use the Herman’s orientation function in the context of Cussler’s 

model [3], which is more suitable for dense systems; in 2D and using (H ) in the form indicated
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earlier, the expression for Deff reads

Deff (θ) 
Do

α2φ2 . 2 ....
1 +  1 — φ (cos (9))

-1
(5.6)

The above models [Equations 5.3 and 5.4] are meant to be used for a population of flakes with a 

distribution of orientation angles; we will nevertheless compare their predictions to our results.

In the case of flakes with precise orientation, Greco et. al. [10], [11], derived, using diffusion 

path arguments, closed form expressions for the diffusivity of unidirectional systems comprised 

of misaligned flakes in terms of the misalignment angle (θ). The expressions for D eff  are:

and

respectively.

Deff (9) =  ____________ 1— Φ______________
Do [1 +  / 2(1 — /2 / 2) · αφ ■ cos2 (9)]4

Deff (9) 
Do

1 - φ

1 + π
3 .6 2 /3

■ αφ ■ cos(9) ■ (1
- 4

sin(9))

(5.7)

(5.8)

Based also on diffusion path arguments, Sorrentino et al. [12] proposed a model for misaligned- 

flake composites which for unidirectional flakes reads

Deff (9) 
Do

1 -  Φ
(a  +  2)2 [a sin(9) +  2cos(9)]2 (5.9)

In the case of large (α) Equation 5.9 will predict that for flakes oriented perpendicular to the 

direction of diffusion De f f (0) 0, (the formal limit as (9) approaches zero is 4(1 — φ)/(α +  2)2
and thus, the predicted BIF will grow ~  a 2).

The predictions of the above models will not revert to a rotation-independent diffusivity when 

a  ~  1 and therefore should only be used for elongated particles. All above models (Equations 

5.4 and 5.6-5.9) revert to the mixing rule result D ef f (9 =  π/2) ~  D 0(1 — φ) when the flakes 

are aligned with the direction of diffusion. For 9 =  0, the model of reference [9] predicts 

that B IF —1 =  αφ/2, in agreement with the assumption of a dilute system, while the model 

of reference [2] predicts B IF —1 =  (αφ)2 in agreement with the assumption of a concentrated 

system. The model of reference [10] predicts that for 9 =  0, D eff  =  (1 — φ)/(1 +  /2 (1  — / 2 / 2 )  ■ 

αφ)4 and this will not predict correctly the principal diffusivity D 11. It should be noted, that the
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exponent (4) in the denominator of Equation 5.7 was obtained by curve-fitting computational 

results for the effective diffusion path and it is conceivable that an exponent closer to 2 would 

result is a similar fit. Obviously the numerical predictions of the above models for aligned flake 

systems (θ =0) differ significantly from each other. More significantly, their predictions do not 

agree with the well-tested models for D u .

Predictions of the above models vis-a-vis the concentration of flakes (expressed by (αφ) are 

shown in Figure 5.8 for two values of (θ), namely θ =  0 and θ =  45o. Our computational results 

obtained for various types of unit cells and various boundary conditions are also shown.

() ()" /;
Numerical Results - Periodic BC & Geometry v  /
Numerical Results - Adiabatic BC/Periodic Geometry /  /  
Numerical Results - Adiabatic BC/Non Periodic Geomefry 
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Bharadwaj (2001) n  j

Lee (2015) / '  ;
Greco (2014) / /  /
Greco & Maffezzoli (2013) / /  ,·*

0= 45°
Numerical Results - Periodic BC & Geometry 
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Bharadwaj (2001)
Lee (2015) ,
Greco (2014) /
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Figure 5.8: Comparison of computational results with theoretical models for a range of (αφ

In the following, we focus our comparisons on the predicted effect of (θ); these are shown in 

Figure 5.9 for various values of (αφ). Our computational results at each (αφ) are superimposed 

as well. In order to allow for a comparison that will focus on the effect of misalignment angle 

(θ) and will not be overwhelmed by different predictions at (θ=0), as shown in Figure 5.7, we 

compute and compare a normalized diffusivity

D norm
D ell (θ) -  Deff (θ =  0)

Deff (θ =  Π/2) -  Deff (θ =  0)
(5.10)

which can be seen as a measure of the deviation from the diffusivity of a fully aligned system. 

The terms D eff (θ =  0) and D eff (θ =  π /2) in each case are obtained from the corresponding 

model.

For dilute concentrations there is agreement between our computations and the models, with 

the exception of the model of Greco and Maffezzoli [11], which appears to be in better agreement 

with computational results only in the range of intermediate concentrations. The predictions

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 22:41:33 EEST - 18.118.195.39



111

Figure 5.9: Comparison of the predictions of literature models with the computational results 
of this study. α =1000, αφ =0.1, 1 and 2.5.

of references [2], [9] and [10] diverge, significantly, from computational results at αφ >  5. The 

model of Sorrentino et al. [12] is in very good agreement with both, our computations and 

the proposed model Equation 5.3 but only for large (αφ). At lower (αφ), it dictates that the 

predicted D eff  (from Equation 5.9) at θ = 0  will always be ~0 , irrespective of the value of (αφ), 

unless we deal with very low aspect ratio flakes.

5.5 Conclusions

We have presented the results of a computational evaluation of the effect of misalignment on 

the effective properties of composites filled with high aspect ratio flakes. We allow the flakes 

to assume orientations in an interval ranging from zero (aligned perpendicular to macroscopic 

diffusion) to π/2 (aligned parallel to macroscopic diffusion). We analyze the results and compare 

them to the predictions of existing theoretical models, including one which the barrier properties 

of the composite are related to the two principal diffusivity and thus to flake loading (αφ) as 

well as (θ). After careful evaluation of the spatial convergence of our computations, we also 

examine the effect of boundary conditions on the predicted effective diffusivity. Our results 

show that at higher flake loading, use of adiabatic boundary conditions at the side walls of the 

unit cell will result in erroneous predictions for the effective diffusivity. We show that use of 

cyclic conditions will result in effective diffusivities which are, as expected, unaffected by the 

shape of the unit cell. We also show that most existing literature models do not respect the 

rotational invariance of the diffusivity tensor and for this reason their predictions diverge from 

computational results at moderate to high flake concentrations.
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5.6 A ppendix 1

Examination of the spatial convergence of a simulation is an essential step in determining 

simulation accuracy and eliminating mesh-dependence. The Richardson extrapolation method 

we use allows us to obtain the highest order estimate for the value of an unknown function ( f ) at 

the limit of zero grid spacing (infinitely dense mesh), from a range of lower order values, which 

are obtained using progressively finer meshes. The advantage of this approach is significant 

when large numbers of simulations are to be performed, since one does not need to use fine 

grids but instead, obtain the limiting value f h =  0 from the results of simulations using coarser 

meshes.

The method involves performing simulations on two or more successively finer grids. As the 

grid is refined (grid cells become smaller and the number of cells in the domain increases), the 

spatial discretization errors decrease and should asymptotically approach the machine accuracy 

at the limit of zero grid spacing. The order of convergence n for three levels of grid spacing is 

defined as:

n =  l n ( f f— f f \  /ln (r) (5.11)
\ f 2 — J l j

where r is the refinement factor r =  h2/h 1 and where f i ,  f 2 and f 3 are values of the computed 

function (in our case, of the effective diffusion coefficient). By computing the rate of convergence 

from equation (5.11), one can get an estimate of the value of the unknown function ( f ) at zero 

grid spacing, using, for example,

fh=0 =  f i  +  f —f  (5-l2)

The quality of this estimate of f h =  0 is based on the calculation of the Grid Convergence Index 

(GCI) [16]. The GCI based on the fine grid is defined as:

G C Ifme =  - f i - 1 (5.13)
rn — 1

where —s is a safety factor equal to 3.0 or 1.25 for 2- or 3-grid comparison, respectively. The 

GCI on the coarser grid is computed as:

rn— I ρ I
G C Icoarse =  ns 1 1 1 =  r nGCIi,2 (5.14)rn 1
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If the ratio of the grid convergence indices (GCI) based on the fine and the coarser meshes is 

close to one, the computations used to compute f h =  0 have been performed in the region of 

the asymptotic range of convergence of our problem, and thus, the value of f h =  0 computed 

from Equation (5.12) is reliable.

As an example, we use a case with θ =  45o, αφ =  10 and N =  3000, for which five 2D 

unstructured meshes with different cell numbers were created on the same geometry. We will 

use the three coarsest meshes (grid numbers 5, 4 and 3) to perform the analysis described above, 

and the results on the finer meshes (grids 1 and 2) will be compared with the asymptotic value 

at zero grid spacing obtaining from the Richardson extrapolation method. The results are 

shown in Figure 5.10.

0,530

0,528

0,526

f

0,524

0,522

0,520

0,518

0,516

0,514

Grid number Normalized grid spacing Diffusivity D
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5 5  (  ~ 1  M  c e l l s ) 0 , 5 2 7 7
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Figure 5.10: Numerical values for the effective diffusivity obtained using the same geometry 
but with variable grid spacing. As grid spacing decreases the cell count increases. Meshes are 
refined as we move from right to left.

The order of convergence is found (Equation 5.11) to be n =  log( Q'5277-0 5222 ) / l ° g (2) =  1.176878, 

and the effective diffusivity is computed form Equation (5.12) to be D h=0 =  0.518376. Since 

we used three levels of grid refinement, F S =  1.5. The GCI computed for the grids 3 and 4, 

as well for grids 4 and 5, using Equations 5.13 and 5.14 is GCI3,4 =  0.52368% and GCI4,5 =  

1.17230%, and thus, the asymptotic range of convergence ratio is =  0.99015 =  1,

indicating that we are in the regime of asymptotic convergence range.

Figure 5.11 shows how the effective diffusion coefficient varies with the number of mesh elements 

and flake numbers.
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Figure 5.11: Representative convergence of numerical results in terms of the number of flakes 
considered and also in terms of the Richardson extrapolation method outlined above. W e  
show the values used for the convergence study with constant flake number (N=3000) and the 
values from cases with variable flake numbers. The result obtained for use in the Richardson 
extrapolation method were obtained in one specific geometry having N=3000 (see Figure below) 
on which only the mesh size was varied

Figure 5.12: Detail of a region in a geometry of interest in which successively finer meshes are 
constructed.
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C h a p t e r  6

A  N e w  C l o s e d  F o r m  S o l u t i o n  f o r  t h e  

B a r r i e r  P r o p e r t i e s  o f  R a n d o m l y  

O r i e n t e d  a n d  H i g h l y  F i l l e d  N a n o - F l a k e  

C o m p o s i t e s 1

Sum m ary

In this chapter we introduce a model for the BIF for composite materials with flakes that are 

randomly oriented so that —e <  θ <  +e, with 0o <  e <  90o (Figure 6.1). Such models have 

been introduced in the past but they suffer from either small validation range (αφ <  5) or they 

are based on various ad-hoc orientational metrics of unproven correctness.

In our case we treat the RVE as if it consists of resistances in series and/or in parallel, in the 

direction of diffusion, based on the model presented in Chapter 3. We perform an averaging 

that takes into account the orientational randomness and we compare the computational results 

with the Harmonic, Arithmetic and Geometric average. We found that computational results 

follow the Harmonic average with good agreement in the range of (e) and (α) tested.

In the second part we compare our model with earlier published results. We found that these

models can show big differences in their predictions and the numerical results, while our model

A s  published in Journal of Composite Materials: Tsiantis, A., & Papathanasiou, T. (2019). A closed-form 
solution for the barrier properties of randomly oriented high aspect ratio flake composites. Journal of Composite 
Materials, 53(16), 2239-2247. https://doi.org/10.1177/0021998318825295
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Figure 6.1: Various 2D RVEs. (a) θ =  0,e =  45o, (b) θ =  0,e =  90o, (c) 2D RVE with 
θ =  0, e =  90o in perspective view. The flakes can be seen extending like ribbons in the Z-axis. 
1000 flakes are shown for clarity.

exhibits a better overall behaviour.

There is still a degree of empiricism in our proposed solution, and this can be traced in the 

choice of the tortuosity parameter (λ) used in the context of the model of Lape et. al. for 

the principal diffusivity D u (fully aligned system). Similar empirical coefficients can be found 

in the other models tested in this Chapter. However, because of the robust foundation of our 

model a good fit with computational results at all states of misalignment is achieved, once a 

value of (λ) is determined by fitting the unidirectional data. In other models, the corresponding 

geometrical factors will have to become functions of (αφ) and (e) in order for their predictions 

to be reliable across the entire space of concentration and misalignment.

It is also to be noted that our model shows very good agreement with computational results 

in cases where α >  1000 by using in the numerical simulations flakes that have zero width 

(t=0). This way we have effectively simulated materials with extremely big (α) such as flake 

nanocomposites. Our model shows consistently good agreement even in these extreme cases.
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6.1 A bstract

We derive closed form solutions for the effective diffusion coefficient of flake-filled composites, in 

which the flakes are randomly placed and oriented, with the orientations uniformly distributed 

in an interval [—e, +e], 0 <  e <  π/2. Our solutions are based on the arithmetic and harmonic 

averaging of the diffusivity of unidirectional misaligned flake systems, the latter having the 

form , where D n and D 22 are the principal components of the diffusivity tensor and (θ) the 

misalignment angle. Using large-scale 2D simulations, some involving up to 50.000 individual 

flakes in one unit cell and spanning the regime from dilute to highly concentrated, the proposed 

solutions are tested against and confirmed by computational results. We use both, traditional 

2D and also 1D representations of the flake cross-sections. The 1D representation is suitable for 

very high aspect ratio flakes, such as exfoliated nano-platelets of montmorillonite or graphene- 

oxide. This approach greatly simplifies the construction of the computational mesh. It is also 

the only feasible approach to model flake nano-composites (a  >  1000), in which (αφ) can 

reach levels in excess of 100. Such high levels of (αφ) are obviously unrealistic in traditional 

flake composites and existing literature has reported results for values of (αφ) only up to 10. 

Comparison of the derived closed form solutions to computational results reveals that both 

the harmonic and the arithmetic averages are adequate in dilute systems; however, at large 

values of (αφ) and (e) only the harmonic average is in good agreement with the computational 

results. The predictions of the proposed solution (harmonic averaging) are also compared to 

those of existing literature models for the effective diffusivity of flake composites. We find 

that discrepancies become very significant at large (e) and also at large values of (αφ), pointing 

further to the conclusion that the proposed solution is currently the only accurate one to predict 

the effective diffusivity of randomly oriented and highly concentrated nano-flake composites.

6.2 Introduction

Prediction of the barrier properties of flake-filled composites has been the subject of active 

research in recent years, due to their importance as barrier materials and in nano-technology. 

Original models for aligned-flake composites have been derived from analysis of simple unit- 

cells corresponding to idealized flake arrangements [1], [2]. These have been found to be in 

good agreement with computation, even in cases when the spatial arrangement of the flakes
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deviate drastically from regular packing [3]. The key and rather undisputed result concerning 

aligned systems is that the Barrier Improvement Factor ( B I F  1/D eff), Deff being the 

effective diffusivity of the composite, is a quadratic polynomial of (αφ), where (α) is the aspect 

ratio of the flakes and (φ) their volume fraction [4]. When the flake orientations deviate from 

perfect alignment, the picture is far less clear. When the flakes assume a fixed orientation 

with respect to the direction of bulk transport, [5] proposed a model capable of reproducing 

2D computational results for (αφ) up to 40. When the flakes assume random orientations, 

either fully or within an interval [—e, +e], numerical results along with an empirical model 

capable of representing them for (αφ) up to 15 have been presented in [6]. A review of the 

state of the art along with a new model for the barrier properties of flake systems in which 

the flakes orientations are normally distributed within an interval and for (αφ) up to 5, have 

been presented in [7]. This problem has also been reviewed in [8] where detailed reference to 

earlier work has been made. Three dimensional simulations using the Latice-Boltzman method 

have been presented in [9] and the conclusion was reached that for flakes of high aspect ratio 

(argued in [9] to be between 4.500 and 10.500 for graphene) existing models do not capture 

the variation of barrier properties. From a literature review, it is evident that, while the topic 

has received significant attention in the last 15 years, there does not exist a single predictive 

model capable of capturing both, the effect of concentration and the effect of orientational 

randomness on the barrier properties of flake composites. This is particularly true for high 

aspect ratio nano-composites, for which very high values of (αφ) can be achieved; the (αφ) 

implied in [9] for a graphene composite in LD PE can be as high as 100. Since earlier models 

have been validated with computational results for (αφ) only up to 7, their suitability for this 

class of materials is not proven [9]. It is also evident that existing models are based on the ad-hoc 

utilization of orientational metrics without a solid theoretical footing and, most importantly, 

without preserving the rotational invariance of the diffusivity tensor. With these in mind, 

the purpose of the present communication is to propose a model for the barrier properties of 

randomly oriented flake composites which will incorporate both, the effect of flake concentration 

and the effect of orientational randomness. The model is free of ad-hoc pronouncements and 

is solidly footed on averaging of the diffusivity tensor. The model is tested extensively with 

computational results and is found to be valid for all states of misalignment and for the entire 

range of (αφ) that is achievable computationally.
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6.3 Theoretical

Consider a system of randomly placed and randomly oriented flakes. The orientation of each 

flake is defined by the angle (θ) formed between the vertical axis (y), which is taken to be the 

direction of macroscopic diffusion, and the outward normal vector on the flake surface. The 

horizontal axis is indicated as (x). D n is the diffusivity of such a system of flakes when θ 

=  00 (all flakes oriented perpendicular to the direction of macroscopic diffusion) and D 22 the 

diffusivity when θ =  900 (all flakes oriented parallel to the direction of diffusion) - D n  and D 22 
are the principal values of the two-dimensional diffusivity tensor, D. In this case, the effective 

diffusivity (Def f ) in the direction (y) of such a system of misaligned flakes can be expressed as 

a function of the misaligned angle (θ) as:

D ef f  (θ) =  D n  cos2 θ +  D 22 sin2 θ (6.1)

Equation 6.1 can be used to determine the diffusion coefficient of a system of misaligned flakes, 

provided D11 and D n are known. In previous work [5] we investigated computationally the 

performance of Equation 6.1 and determined that the best agreement with the computational 

results was obtained when the models of [12] and [4] were used for the principal diffusivities, 

namely

D22 D0 1 -  Φ
1 +  φ/2α

and D n D0 1 -  Φ
(1 +  α φ /λ)2

(6.2)

respectively, where D 0 is the diffusivity of the matrix material. The parameter (λ) is meant to 

reflect the tortuous path of the solute around each flake and it was set to λ = 3  in the original 

model of [4]; a value of λ=2 .5  was found to give the best agreement between Equation 6.1 

and our 2D  computational results and this value has been used throughout this study. Once 

established, Equation 6.1 can be used as the basis of deriving estimates of the effective diffusivity 

in systems in which the flakes assume a range of orientations. For that purpose, some type of 

averaging must be performed.

The arithmetic mean is defined as D ef f =  — Σ -  Dj where Dj for i =  1. . .  N  are the diffusivities 

of the N sub-cells which comprise the geometry of interest. Each sub-cell is characterized by a 

flake orientation angle (θι). The arithmetic mean corresponds to a system in which mass trans­

port is envisaged to occur through resistances in parallel; this assumption is more consistent 

with a dilute system of flakes, in which, macroscopically, lines of constant concentration will
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tend to be equally spaced and parallel to one another. For a continuous distribution of flake 

orientations with it will be

( D f  > =  2L £  (D n cos2 θ +  D 22 sin2 B)dB =  1 (D n +  D 22) +  (D n -  D 22) (6.3)

where brackets are used to indicate averaging and the superscript (α) indicates arithmetic 

mean. In Equation 6.3 the pre-factor (1/2e) corresponds to flakes being oriented with equal 

probability at each orientation within the interval [—e, +e]. Other probability functions can also 

be included in Equation 6.3. In the special case when e =  π/2, corresponding to a system in 

which the flakes assume all possible orientations with equal probability (random orientation), 

it is

(De// > =  2(D11 +  D 22) (6.4)

In the dilute limit and using dilute-regime models for D 11 and D 22 [12], namely

D22 Do 1 -  Φ
1 +  φ/2α

and D 11 Do
1 -  Φ

1 +  αφ/2
(6.5)

we can derive an explicit expression for the arithmetic mean of a system with random (e =  π /2) 

distribution of orientations, in terms of (φ) and (α).

( D f  >
(1 — φ)(4α +  φ +  φα2) 

(2α +  φ)(2 +  αφ)
· Do (6.6)

If the model of [4] is used for D 11, the arithmetic mean (D"y> can also be obtained in closed 

form in terms of (φ), (α) and (λ) from Equation 6.3 as

( D f  >
(1 — φ)(λ2φ +  4λ2 α +  4λφα2 +  2φ2α3 

2(2α +  φ)(λ +  αφ)2
(6.7)

Equation 6.7 is also suitable for concentrated systems.

If transport in a flake composite is better approximated by resistances in series, the Harmonic 

mean, defined as 1 /D ef  =  (1/N ) · (1/D j), is a more appropriate measure. As above, for a

continuous distribution of orientations it will be

<D f z  >
1 i  (D u cos2 θ +  D 22 sin2 θ) ^ θ

0/ D 11D 22
arctan

D 22
D

tan(e) (6.8)
11

1
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where the superscript (h) indicates the harmonic mean. When e =  π/2 (randomly oriented 

system), Equation 6.8 gives

(D e//) =  V  D 11D22 (6.9)

Closed form expressions in terms of (α), (λ) and (φ) can be obtained by substituting D 11 and 

D 22 in Equation 6.8 with the corresponding models, as was done in the case of the arithmetic 

mean (Equations 6.6 and 6.7 above).

According to the Harmonic averaging (Equation 6.9), the ratio between the effective diffusivity 

of a system comprised of aligned flakes over the diffusivity of a system comprised of randomly 

oriented flakes can be found to be

D aligned   ID 11   A\ / a  I α φ/2
D random V D22 α(αφ +  A)

(6.10)

in which the models of [4] and [12] were used for D 11 and D 22 respectively. Evidently, for very 

long flakes, Equation 6.10 predicts that the ratio is proportional to (1/αφ).

Finally, the geometric mean provides that

D e// (6.11)

where Π  indicates a product and (N ) is again the number of sub-cells comprising the system. 

In that case, for a continuous distribution of (θ) it will be

(Dg/ / ) =  exp
1

ln (D 11 cos2 θ +  D 22 sin2 B)dB
— €

(6.12)

where again a uniform distribution of orientations is assumed and the superscript (g) stands 

for the geometric mean.

In the following, we will validate the proposed model (Equations 6.3, 6.8 and 6.13) by comparing 

its predictions to computational results. Subsequently, we will compare its predictions to 

those of existing literature models. Comparison of model predictions to experimental data 

is a not-sostraightforward matter, since, in order for the comparison to be meaningful, the 

microstructure of the physical specimens (in terms of placement, dispersion and orientation 

of the platelets/flakes) should be comparable to those of the theoretical model (uniformly 

dispersed flakes, with their orientations uniformly distributed between [-e, +e]). In addition,
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several physico-chemical factors come into play in nano-composites and as a result the observed 

BIFs show a very significant scatter. Wolf and co-workers [10] have presented a comprehensive 

summary and analysis of all experimental data published on the topic of barrier properties 

of nano-composites (to O2, CO 2 and H2O) between 1995 and 2015. It is very instructive 

to see that almost half the experimental data show that inclusion of nano-fillers results in a 

decrease of the BIF of the composite. The authors of [10] clearly show that this is because 

it is very common, when preparing a nano-composite specimen, to have other factors present, 

such as formation of high-D interphases, chemical modification of the matrix, formation of 

agglomerates, particle attrition etc. Dontero and coworkers [11] validated the use of diffusion 

theory and theoretical diffusivity models for platelet filled composites systems. They conducted 

ODOL diffusion experiments in carefully constructed PDM S models which included carefully 

aligned slender obstacles and found a good agreement between measured and computed diffusion 

profiles.

6.4 R esults and Discussion

6.4.1 Com putational

We carry out a comprehensive computational evaluation of the above-proposed models, using 

earlier obtained data [6] as well as results of new computations. All our computations are two 

dimensional and as such, are strictly valid for ribbon-composites, which are materials in which 

the flakes have a very long length in the out-of-plane direction. Comparison between 2D and 3D 

computational results in randomly oriented flake systems are currently unavailable; however, 

the 2D results provide a low (conservative) estimate of the BIF of the composite. In all cases 

the open-source computational environment OpenFoam was used. Details of the computations 

have been presented in [5] and [6] and are omitted here for the sake of brevity. Each geometry 

contained usually 3,000 randomly placed impermeable flake cross-sections; however, unit cells 

containing 10.000 or 50.000 flake cross-sections were also considered. Such an example is shown 

in Figure 6.2. We look at systems ranging from dilute to concentrated and in which the fiber 

orientations (θ) assume random values in the interval [—e, +e], 0 <  e <  π/2. In addition to two­

dimensional flake cross-sections, we also consider an alternative, one-dimensional flake repre­

sentation, suitable for flakes of very high aspect ratio, as would be the case in platelet-reinforced
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Figure 6.2: (Left) Example geometry and concentration profile in a system containing N=50.000 
individual flake cross-sections with αφ =10. Due to their small size, the outline of the flakes is 
only faintly visible and can be inferred by local variations in the concentration field. (Right) 
Example geometry with N=3,000 and αφ =  20 . In both cases the flakes assume fully random 
orientations (e =  π /2).

nano-composites. In this, each flake is represented by one line, on which the impermeability 

condition (d C /d n =  0) is applied. Figure 6.3.b shows a detail of such a geometry containing 1D 

flake cross-sections, along with the computational mesh. For comparison, a 2D representation 

is shown in Figure 6.3.a. Obviously, when impermeable lines are used, instead of rectangles, 

to represent flake cross-sections, the use of the volume fraction (φ) becomes irrelevant. Recog­

nizing that in a 2D representation it is αφ =  (N l2)/H L , where (l) is the length of each flake 

and H, L, the dimensions of the containing unit cell, we choose to form “lines” by connecting 

the two mid-points of the short sides of the corresponding rectangle (Figure 6.3). In this case, 

a measure of the concentration of the corresponding 1D-flake system is the ratio (N l2/H L ). 

Figure 6.4 shows a comparison between the predictions of the two approaches for D ef f . It can 

be seen that the use of impermeable lines to represent flakes is an acceptable simplification 

when large aspect ratio flakes are considered. Because of the simplicity a 1D representation 

affords to meshing, the range of computationally achievable flake concentrations is expanded 

in this manner. However, since in the 1D representation the excluded volume is always zero, 

irrespective of the number and size of the flakes, this approach is expected to break down at 

high values of (φ). This is not a serious short-coming however; when high aspect ratio flakes 

are involved, very large (αφ) values can be achieved at very low values of (φ); with reference 

to Figure 6.4, the maximum achieved value of αφ =30 corresponds to φ =0.003 (0.3%). The
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Figure 6.3: (Left) Detail of a geometry and the corresponding computational mesh, when 
the flake cross-sections are represented by 2D rectangles of aspect ratio a  = l / t  . (Right) 
Corresponding detail and mesh when the flakes are represented by one-dimensional lines. (l) 
and (t) are the length and thickness of the flake respectively

good agreement in Figure 6.4 suggests that, for the loadings and (a) considered, the observed 

barrier property improvement is due to the increase in the tortuosity caused by the presence of 

the flakes and not the result of any excluded volume. This conclusion was also reached in [9] 

and appears to suggest that in flake nano-composites the improvement in barrier performance 

is entirely due to the increase of the tortuosity of the medium.

6.4.2 Com parison of theoretical predictions to com putational re­

sults

Figure 6.5 shows a comparison between the Arithmetic, Harmonic and Geometric averages, 

defined by Equations 6.3, 6.8 and 6.13 above, to the computational results for D ef f . As outlined 

previously, in computing an average one needs to decide on an appropriate model for the 

principal diffusivities D u  and D 22. For D 22, Nielsen’s model [11] has been shown to be reliable 

in the case when the flakes are aligned parallel to the direction of diffusion even for (αφ) as 

high as 50. In the following we use the model of [4] for D n as it gave the best fit to earlier 

computational results [5] ,[6], with a value of λ=2.5.

As expected, it is (D^y) >  (Dgy) >  (Dj^). When the two terms D n and D 22 in the integral 

kernel of Equations 6.3, 6.8 and 6.13 are approximately equal (as would be the case in a dilute
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Figure 6.4: Comparison of the predicted effective diffusivity of a system with randomly oriented 
flake cross-sections (e =  π/2) which are considered to be either 2D rectangles of aspect ratio α 
=  1000 or 1D lines, for a range of values of (αφ) (in the 2D representation) and (N l2)/H L ) (in 
the 1D representation). In the case of 2D representation, the data of [6] were used (+ ). In the 
case of 1D representations, results shown (o) correspond to N=3000

suspension of flakes, αφ <  0.1) the results of the three averages are practically indistinguishable. 

However, significant differences appear in the concentrated regime. These differences are more 

pronounced at higher values of (e). When these differences become significant (large values 

of (e) and (αφ), choice of the correct averaging becomes important. It is evident that the 

arithmetic average is definitely an inappropriate model for computing the effective diffusivity 

of randomly oriented and concentrated flake systems -  irrespective of the models used for D n 

and D 22. In conjunction with the model of [4], the harmonic average is found to give a very 

good fit to the computational results for the entire range of (αφ) studied.

As the spread in flake orientations narrows, the three averages come closer, with the harmonic 

mean remaining closer to the computational results, as shown in the following Figure 6.6 for 

e=0.8 rad. The generation of computational meshes becomes easier as the flake orientation 

range decreases; as a result the computationally achievable range of (αφ) increases as (e) de­

creases.

Comparisons for a case of lower aspect ratio (α =  50), in which flake cross-sections are neces­

sarily represented as 2D rectangles, are shown in Figure 6.7.

Large values of (αφ) are not achievable when the flake aspect ratio is low. In the case of Figure
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Figure 6.5: Comparison of computational results (points) and the predictions of the arithmetic, 
harmonic and geometric averages (Equations 6.3, 6.8 and 6.13) based on the model of [4] for 
D u  and [11] for D 22. Random flake orientations (e =  π/2). The computational results shown 
correspond to the use of 1D flake cross-sections, therefore, instead of (αφ) the corresponding 
measure of concentration is N l2)/H L , where N=3000 and H =L  are the dimensions of the unit 
cell.

6.7 with a  =  50, αφ = 1 0  implies a volume fraction of 20%; this level of packing is at the 

limit of what can be achieved in real composite fabrication as well as in the generation of a 

computational RVE. The analytical predictions for the ratio D aligned/D random , expressed by 

Equation 6.10, are compared to computational results in Figure 6.8. The implication of this 

chart as well as of Equation 6.10 is that the ratio of the Barrier Improvement Factors (BIF) 

of the aligned and random composite scales with (αφ) and thus, the benefit to be gained by 

aligning the flakes is larger the more concentrated the system is. The effect of the flake aspect 

ratio, as predicted by the Harmonic average (Equation 6.8) is compared to computational results 

in Figure 6.10, for fully random flake orientations (e =  π/2) and for e =  0.8 rad. The numerical 

data as well as the model predictions follow an asymptotic behavior at increasing (a), with a 

limiting value already reached at α =  100. This is in agreement with earlier published studies 

[13] - [16] as well as in agreement with experimental studies in well disersed nano-composites 

[10].
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Figure 6.6: Comparison of computational data (points) and the predictions of the arithmetic, 
harmonic and geometric averages. Random fiber orientation between [-e, +e] (e=0.8 rad or 
45.8o). The computational results shown correspond to the use of 1D flake cross-sections, there­
fore, instead of (αφ) the corresponding measure of concentration is N l2/H L , where N=3000, l 
is the flake length and H = L  are the dimensions of the unit cell.

0 .8 - 0

u.

14 0.4 O'
—  Arithmetic Average
—  Harmonic Average
—  Geometric Average 
o Computational

ct=50

Arithmetic Average
Harmonic Average

2.2 C.2beo metric Average o ?
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0 01

Figure 6.7: Comparison of computational data (points) corresponding to α =50 and the pre­
dictions of the arithmetic, harmonic and geometric averages. (Left) Random fiber orientation 
(e =  n/2); (Right) e =  45o. 2D representation of the flake cross-sections

6.4.3 Com parison with existing m odels

Among existing models which express the effect of misorientation on the barrier properties of 

flake composites, the model of Bharadwaj [17] was proposed by combining Nielsen’s model [12] 

with Herman’s orientation parameter 2(3(cos2 0) — 1) where the brackets ( . . .)  indicate ensemble 

averaging over the flake population. For general, three-dimensional orientation distributions,

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 22:41:33 EEST - 18.118.195.39



130

Figure 6.8: Comparison between analytical predictions based on the proposed model (Equation 
6.10, line) and computational results (o). The latter were obtained using 1D representation 
of the flakes and the former correspond to a  =  1000. The concentration corresponding to the 
computational results is expressed by the ratio N l2/ H 2, as outlined in previous section.

the parameter (H) takes the value of zero for a random system, 1 for flakes aligned in the 

direction from which the angle (0) is measured (that is, perpendicular to the direction of 

diffusion) and -0.5 for flakes oriented along the direction of diffusion. For two-dimensional 

distributions of orientations, such as those dealt with in this study, this interpretation is no 

longer correct. In a 3D randomly oriented distribution of flakes it is (cos2 0) =  1/3 while for 

a 2D random distribution of orientations it is (cos2 0) =  1/2. For this reason, we express the 

Herman parameter as H  =  1/2[2(cos2 0) — 1]. In this form, for a randomly oriented system it is 

H=0; a system aligned perpendicular to the direction of diffusion will have H =1/2  and a system 

aligned along the direction of diffusion will have H =-1/2. With this in mind the expression for 

D eff  takes the form

D eff = ______ 1 — φ_______ =  1 — φ (6 -13)
D 0 1 +  (H  +  1/2) · αφ/2 1 +  (a0 /2)(cos2 0)

Equation 6.13 correctly reverts to the Nielsen model for flakes aligned normal to the direction 

of diffusion (0 =  0) and to the dilute limit model (Deff  ~  1 — φ) for flakes aligned parallel to the 

direction of diffusion (0 =  π/2). It should be noted that the term (H +1/2) in Equation 6.13 is no 

different than the 22-diagonal component of the orientation tensor (A) defined as Aij =  (piPj).
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Figure 6.9: Effect of flake aspect ratio on the D eff  as predicted by Equation 6.8 (lines) for 
e =  π/2 and e=0.8 rad. In both cases, αφ =1.0. Points are computational results obtained for 
N=500. 2D representation of flake cross-sections.

Since for the two-dimensional cross-sections considered in this study, p 1 =  sin θ ,ρ2 =  cos θ, it is

A
(sin2 θ) (sin θ cos θ)

(sin2 θ cos θ) (cos2 θ)
(6.14)

Using a similar reasoning, Lee et al. [18] proposed to use Herman’s orientation function but in 

the context of Cussler’s model [1], which is more suitable for dense systems; adapted to a 2D 

system and using (H) in the form indicated earlier, the resulting expression for D ef f  reads

Deff θ 
Do

1 + α2φ2
1— Φ

-, -1
(cos2 θ) (6.15)

Recently Dondero et al. [7] proposed a model which also makes use of the orientational metric 

(H). Keeping in mind our previous discussion on the application of the Herman’s orientation 

function in 2D and 3D systems, we write the model of [7] as

Deff θ =  ______ 1 -  φ______  =  1 -  φ

D o [1 +  (H  +  1 ]2 [1 +  ^ ( c o s 2 θ)]2

The ensemble average directional cosine term (cos2 θ) assumes a simple and easier to understand 

form, when the flakes assume equi-probable random orientations in the interval [—e, +e]. It can
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be shown that
1 . 2 1 sin(2e)

H +  2 = (cos2 e) +  ^
(6.17)

and thus, in case of a uniform distribution of flake orientations, the model of [7] can be written 

as
n .~  1 -  φ ,

ψ (6.18)eff
0 1 +  (1 +  ̂  ^

2
18

Similarly, expressions involving the misalignment range (e) can be obtained for the models of [12] 

and [13]. The predictions of Equations 6.9, 6.16 and 6.18 are compared to the models derived in 

this study and to computational results in the following figures. Figure 6.10 shows comparisons 

corresponding to a  =  1000 and e =  π/2. The computational results shown correspond to 2D 

flake representation and N =  5000 and also to 1D flakes and N =  3000. It is evident that the 

model proposed in this study follows the computational results much more closely, up to very 

large values of the concentration parameter (αφ). When the misalignment angle decreases, the 

predictions of the various models come closer together and also closer to the computational 

results. This is shown in Figure 6.11. In the case of small misalignment angles, the predictions 

of the models based on the harmonic, arithmetic and geometric averages are also close to each 

other (e.g Figure 6.7 above).

\  \  ’\ \ + \  .

Present study \ \ r \
Dondero et al. (2016) \ \  —Y -

\ \
Leeetal. (2015) \ \  Nftfc.

- o Computational \  \  v "  "
2D flakes, a=1000, \  \  \  '
N=5,000 \  \  \  ■

+ Computational \  \  '
1D flakes, N=3,000 \ \

ε=π/2

_!__________I_________
\ \

_________ 1_2___i____
0.01 0.1 1 10 100

(αφ) or (N/2/H2)

Figure 6.10: Comparison between computational results for 2D and 1D flakes (o, + )  and the 
predictions of various theoretical models. The results of the current study correspond to the 
use of the harmonic average, Equation 6.8
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Figure 6.11: Comparison between computational results for 1D flakes (o) and the predictions 
of various theoretical models, when flakes assume random orientations in the interval [-10o, 
+  10o]. The results of the current study shown correspond to the use of the harmonic average, 
Equation 6.8

6.5 Conclusions

We have presented a closed form solution for the effective diffusion coefficient of flake-filled 

composites, in which the flakes are randomly placed and oriented, with the orientations uni­

formly distributed in an interval [+e, —e], 0 <  e <  π/2. Our solution is based on the harmonic 

averaging of the diffusivity of unidirectional misaligned flake systems, and has been extensively 

validated using large-scale 2D simulations. In these simulations we have used both, tradi­

tional 2D (rectangles of finite aspect ratio) and also 1D (lines) representations of the flake 

cross-sections. The 1D representation is suitable for very high aspect ratio flakes, such as ex­

foliated nano-platelets of montmorillonite or graphene-oxide. This approach greatly simplifies 

the construction of the computational mesh. It is also the only feasible approach to model 

flake nano-composites (a  >1000), in which (αφ) can reach levels in excess of 100. The actual 

aspect ratio (a) of nano-platelets is not easy to measure [15] and its value is sometimes un­

clear. In certain cases, values of (a) were reported based on fitting simple, and in light of the 

present study, inadequate, permeability models to experimental data. For example, in [9] it 

was clear that a perfect fit between model and experiment could only be achieved if a value of 

(a) that was about 1/3 of the correct value was used. Our proposed solution for D eff  offers a 

better alternative in case such an indirect estimation of (a) is to be attempted. Our solution is
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found to be in very good agreement with computational results for all stages of misalignment 

(from unidirectional to random) and for (αφ) up to 30 for a randomly oriented composite and 

higher for lower (e). The predictions of the proposed solution were also compared to those of 

existing literature models. We find that discrepancies become very significant at large (e) and 

also at large values of (αφ), pointing further to the conclusion that the proposed solution is 

currently the only accurate one to predict the effective diffusivity of randomly oriented and 

highly concentrated nano-flake composites.

There is still a degree of empiricism in our proposed solution, and this can be traced in the 

choice of the tortuosity parameter (λ) used in the context of the model of [4] for the principal 

diffusivity D n (fully aligned system). Similar empirical coefficients can be found in the other 

models tested in this study, such as in Equations 6.14-6.18. However, because of the robust 

foundation of our model on the properties of the diffusivity tensor and on formal averaging 

(e.g. Equation 6.8), a good fit with computational results at all states of misalignment is 

achieved, once a value of (λ) is determined by fitting the unidirectional data. In other models, 

the corresponding geometrical factors will have to become functions of (αφ) and (e) in order 

for their predictions to be reliable across the entire space of concentration and misalignment.
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C h a p t e r  7

A  g e n e r a l  s c a l i n g  f o r  t h e  b a r r i e r  f a c t o r  

o f  c o m p o s i t e s  c o n t a i n i n g  t h i n  l a y e r e d  

f l a k e s  o f  r e c t a n g u l a r ,  c i r c u l a r  a n d  

h e x a g o n a l  s h a p e 1

7.1 A bstract

We propose a general scaling which allows for the results of 3D mass transfer computations 

in layered flake composites containing square, circular or hexagonal flakes to collapse on a 

single master curve. We show that the Barrier Improvement Factor ( B I F  ~  1 /D e/ / ) of such 

composites is well represented by a power function of that scale (M ) namely B I F  =  (1 +  M )2. 

Our simulations are carried out in three-dimensional multi-particle RVEs each containing up to 

4000 randomly placed individual flakes. The flakes are represented as two-dimensional squares, 

disks or hexagons; this representation is suitable for very thin flakes, such as exfoliated nano­

platelets. Around 3000 simulations are carried out, and the effective B IF  is computed for 

different values of flake orientation, shape, dimensions and number density. We show that our 

scaling is consistent with the traditional representation of the BIF as a power function of (αφ), 

(α) and (φ) being the aspect ratio and the volume fraction of the flakes, while at the same 

time offering a generalized approach that is valid for all flake shapes. When the flakes are

W art of this chapter was submitted in: Journal of Membrane Science, https://www.journals.elsevier. 
com/journal-of-membrane-science
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layered at an angle (θ) to the direction of macroscopic diffusion, we propose a model for the 

B IF  in terms of the principal diffusivity and (θ); this is found to be in very good agreement 

with computational results, which show that while the B IF  increases with increasing (M ), 

this increase is no longer monotonic but, instead, B IF  approaches an asymptotic plateau value 

which is determined by (θ).

7.2 Introduction

Flake-filled composites are of interest in applications in which the transport of a species is to 

be hindered without resorting to the use of expensive and possibly environmentally hazardous 

additives [1]-[3]. Notable examples of such “passive” barrier materials can be found in packaging 

applications [4], [5], sound insulation [6], anti-corrosion coatings [7] as well as in fire-retarding 

polymers [8]. In all cases, the impetus for the use of (essentially) two-dimensional flakes lies in 

the tortuous internal structure of the corresponding composites, which allows for a substantial 

improvement (~  (αφ)2) in barrier properties at very modest flake concentrations. In addition, 

the fluid mechanics of the manufacturing (injection molding, blow molding) or application 

(coating) processes lead to orientation of the flakes that is largely parallel to the surface of 

the part and thus perpendicular to the direction of diffusion. In fire-retarding plastic parts 

manufactured by injection molding, the fountain flow and the shear gap-wise flow [9] result 

in highly oriented surface and subsurface regions, thus maximizing the barrier effect. The 

effect of flake concentration on the barrier properties have been studied, mainly in 2D [10]-[14] 

and models have been proposed, some of which [10], [11], have been found to be in excellent 

agreement with computational results in two-dimensional RVEs [15]-[20]. However, all these 

results are strictly valid for ribbon composites and their relevance to three-dimensional reality 

is yet to be proven.

There have been some notable attempts to simulate transport across fully three-dimensional 

flake-filled composites. Nagy and Duxbury [21] carried out random walk computations in large- 

scale 2D and 3D geometries containing randomly placed unidirectional square-shaped platelets 

(sticks in 2D) of finite volume. They concluded that a quadratic polynomial of (αφ), where 

(α) is the flake aspect ratio and (φ) the total flake volume fraction, can represent the B IF  of 

such a composite over a wide range of concentrations, up to αφ =  30 in 3D configurations. The 

coefficients of this polynomial were determined by fitting computational results. Lusti et al.
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[22] presented a small number (40 geometries) of finite element simulation results in systems 

containing ~  50 disks (aspect ratio 3, 10 and 100) dispersed randomly in a cubic RVE. They 

presented the first quantitative comparison between randomly oriented and aligned composites, 

expressing the difference in terms of a dimensionless parameter. Greco et al. [23], [24], consid­

ered composites containing stacks of unidirectional disks; a total of 85 simulations were run, in 

which orientation angle, the number of disks in a stack and the volume fraction varied. Greco 

(2014) [25], carried out 3D simulations also in disk-containing systems, in which the volume 

fraction, the aspect ratio (from 10 to 50) and the orientation angle were varied. Recently, 

Roding at al. [26] presented results of a large-scale study in systems each containing 1000 disks 

of circular or elliptical shape. They carried out ~  1000 transient diffusion simulations, using 

a dynamic “random walk particle tracking” scheme. After [21] these were the first dynamic 

simulations for transport across flake filled systems and also the first attempt to model large- 

scale 3D systems. The influence of several morphological factors, such as flake misorientation, 

flake shape, flake thickness and flake polydispercity, was discussed. The works of [26] and [21] 

not-withstanding, it is fair to say that there has been no detailed study of three-dimensional 

diffusion in flake composites that covers a comprehensive range of the pertinent parameters. 

Beyond disks or squares, the effect of the flake shape on effective diffusivity remains largely 

unknown, even though hexagonal flakes are known to occur, (eg. in Graphene, MgO2, hBN) - 

with the exception of the work of [27] who suggested a heuristic modification of the model of 

Cussler et al [11] to be used in the case of hexagonal flakes. In addition, the effect of misorien­

tation has only received spotty attention and remains to be quantified. Finally, the relevance of 

existing and well-studied models for fully-aligned systems [10]-[12] to three-dimensional reality 

is not proven. In fact, the study of Roding [26] has raised significant questions on the valid­

ity of existing 2D models. In this study we carry out a comprehensive (~  3000 simulations) 

computational study of steady state diffusion in three-dimensional, multi-particle (up to 4000 

flakes in each RVE) and periodic RVEs with the objective of giving answers to some of these 

questions.

7.3 Com putational

Steady-state diffusion computations in three-dimensional Representative Volume Elements (RVEs) 

were carried out using the open source package OpenFoam. Each RVE is a parallepiped of di­
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mensions L, H, D (along the X, Y and Z axes respectively) and contains a number (N ) of 

flakes placed in random positions. We consider flakes of square, circular and hexagonal shape, 

as shown in Figure 7.1. For the purpose of geometry generation, the circular flakes are inscribed 

in the corresponding rectangular shaped flake and the hexagonal flake is inscribed in the corre­

sponding circular geometry. The thickness dimension of the flakes was taken to be zero; this is 

not far from reality since in flake systems of practical importance flake thickness is very small 

comparing to the planar dimensions. We define the planes that are formed from the X -Y  axis, 

X-Z axis and Y-Z axis as PXY, PXZ and PYZ respectively (Figure 7.2). The plane PXZ is 

perpendicular to the direction of diffusion ( Y ); P X Y  is perpendicular to the Z-axis where the 

flake rotation is taking place and PYZ is normal to the X-axis. The diffusion direction is taken 

to be along the Y-axis with C  =  0 at y =  0 and C  =  1 at y =  H . The equation solved is the 

steady-state diffusion equation :

V 2 C  =  0 (7.1)

The above equation was solved on RVEs generated using an in-house software solution that 

can create any variety of 2D and 3D RVEs with any combination of boundary and geometrical 

periodic conditions, including a user-specified number of flakes with any combination of sizes, 

shapes, spatial distributions and orientations. Subsequently the geometry files were imported 

to the mesh generator GMSH [28] and a triangular mesh was created with element count in the 

order of 100M. Finally the simulations were solved using the OpenFOAM toolkit [29].

Figure 7.1: Flake shapes considered in this study with their geometrical characteristics. l is 
the side of the square flake, R is the radius of the disk and S  the side of the hexagon.

The boundary conditions on the top and bottom surfaces of the unit cell are:

C  (XYplane) ,Y=0 =  0 and C (ZXplane),Y= 1 =  1 (7.2)

Periodic conditions are applied at the sides of the RVE, namely

C (X Y plane) ,X=0 =  C (XYplane),X=1 and C (ZXplane),Y=0 =  C (ZXplane),Y=1 (7.3)
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Figure 7.2: (left) Schematic of the RVE and the geometrical characteristics of rectangular flakes. 
(right) a sample geometry containing N  =  4000 square flakes at θ =  0o.

In 2D models, use of periodic conditions has been shown [15] to eliminate artifacts due to the 

shape of the unit cell and we see, from the results shown in Figure 7.3, that this is also true in 

3D models as well.

Figure 7.3: Invariance of computational results for D eff with size/shape of the RVE. Shown 
are values of D eff calculated for various sizes of RVE’s at θ =  0 and having M  =  0.25. In all 
cases the height of the RVE was kept constant. In (a) and (b) the height and depth were kept 
constant (H =  D = 1 )  and the length was changed (L <  H ). In the middle case (c) the RVE is 
a cube of unit length (L =  H  =  D = 1 ) .  In (d) and (e) the depth and the length changed while 
being kept equal (L =  D <  H ). The middle case (c) has N  =  4000 flakes. In the other cases 
the number of flakes (N ) was changed accordingly in order to keep the flake number-density, 
N /A V , and thus the scale M, constant.

The flakes are placed within the RVE using a random sequential addition procedure, in which 

random numbers assign the centroid coordinates of the flake. For a flake to be placed in the 

chosen position a triangle-triangle collision detection algorithm [30] was used since each flake
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is represented as a combination of triangles. If any triangle of the candidate flake overlaps 

with any triangle of the pre-existing flakes the position is rejected and a new combination of 

coordinates and appropriate angle is chosen until the RVE is filled with the desired number of 

flakes or a predetermined number of tries (107) is reached. During the collision detection stage a 

small safety distance between flakes was considered in order to avoid the creation of degenerate 

cells at the later stage of meshing. In randomly oriented configurations, the orientation vectors 

are assigned random values and the flakes are rotated at the X  axis then the Y axis and finally 

at the Z axis. In the cases where the flakes are unidirectional, the rotation is applied only to 

the Z axis thus rotating the flakes perpendicular to the direction of diffusion, as illustrated in 

Figure 7.2a. In Figure 7.4 we can see additional example geometries of various shapes.

a b c

Figure 7.4: Example geometries containing oriented flakes at θ =  0. (a) hexagonal, (b) circular 
and (c) rectangular. In all cases N=4000.

Solution of Equation 7.1 supplies the concentration (C ) and the concentration gradient (dC/dn) 

at each position of the domain. Figure 7.5 shows a representative concentration field as well 

as a representative distribution of the corresponding flux field on the top surface of the RVE. 

Once the flux (Q ) on the top surface is computed, an effective diffusivity (D ef f ) of the unit cell 

can be calculated from Fick's law as:

D eff
H  · Do 

A C - D - L
f D L dZ dxdz
o o dn

(7.4)

The so computed D ef f  is the D yy principal diffusivity that will be used in later section of this 

paper. In the following we will investigate the effect of flake size, shape, orientation and number 

density on the computed effective diffusivities. In the process we will propose a novel scaling 

that allows for a generalization of the observed behavior.
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a b c

Figure 7.5: Concentration fields in a 3D flake system containing randomly placed circular and 
rectangular flakes. (a) & (b) show circular flakes oriented at 45o to the direction of diffusion. 
(a) shows the concentration distribution, along a clipping plane at Z = 1, from the bottom of 
the unit cell where C =1 (coloured red) to the top where C =0 (coloured blue) in the periodic 
surface of the unit cell and on the flakes. (b) shows a close-up view is shown near the bottom 
of the unit cell (the colors in the image are out of scale for illustration purposes). (c) Shows a 
typical flux distribution on the top surface of a unit cell with rectangular flakes. The underlying 
placement of flakes can be inferred from variations in the flux field.

7.4 R esults and Discussion

7.4.1 Scaling of the results

At first we will focus our attention on the analysis and scaling of computational results. A 

suitable scale should be based on observations [26] that, among various parameters, the flake 

area and flake shape (elongated vs. square) affect the effective diffusivity. We have therefore 

chosen to represent our results in terms of a dimensionless parameter (M ) defined as:

N  · (A)2
AV · (P )

(7.5)

where (A) is the flake area, (P ) its perimeter, AV is the volume of the RVE and the ratio 

(A /P ) can be taken as a characteristic length of the flake, expressing also the flake shape. In 

the case of flakes of square shape, A =  l2 and P  =  41, resulting in

N  · l3
• A V

(7.6)

This result is consistent with earlier work in 2D flake systems [10], [18], where it was shown 

that for flakes of zero thickness (in 2D these are represented by straight lines) a suitable scale 

is N (l/H )2. The expressions for (M ) in the case of disk-shaped and hexagonal flakes can be
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shown to be

M  =  2 i V nR3 (circular),
27 N

M h =  S 3 (hexagonal) (7.7)

Our results for all flake shapes and concentrations, scaled in terms of the parameter (M ), are 

summarized in Figure 7.6. It is observed that use of the scale (M ) collapses all data, irrespective 

of flake shape, on a single master curve. The form of the scaled data suggests that the effective 

diffusivity (Deff) of a three-dimensional flake composite can be expressed as a power function 

in terms of (M ). The simplest possible such function which follows our results very closely, is

D eff =
1

(1 +  M  )2 (7.8)

in which the scale (M ) is based on the general definition of Equation 7.5 and is expressed 

by Equations 7.6 -  7.7 for the case of square, disk and hexagonal shaped flakes. The form 

of the power function of Equation 7.8 is in line with earlier studies in 2D systems [10], [18], 

and it essentially confirms, also in 3D, that in systems with flakes aligned perpendicular to the 

direction of macroscopic transport, the B IF  will asymptotically grow with the square of the 

appropriate scale, in our case (M).

Figure 7.6: Computational results obtained for different geometries and their comparison to 
Equation 7.8. The formula used in the computation of (M ) is different at each geometry, 
depending on flake shape (Equations 7.6 and 7.7 for flakes of square, disk and hexagon shape 
respectively).

We can easily notice from Equations 7.6 and 7.7 that the flake dimensions scale with a power
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of (3) of the corresponding flake characteristic length. This leads to inclusions whose size grows 

fast with (l), as can be seen in Figure 7.7 where comparisons between geometries corresponding 

to various M for square geometries are shown. While at large values of (M ) (Figure 7.7c) the 

flake dimensions seem large compared to the RVE, we have shown that the use of periodic 

geometries and periodic boundary conditions eliminates the edge effects even in extremely 

elongated RVEs (Figure 7.3).

b

Figure 7.7: Scaling of geometries according to different M. The top view of the RVE is shown 
with square geometries at θ =  0. M  =  0.01 (left), M  =  1.0 (center) and M  = 1 0  (right). In all 
cases the dimensions of the unit cell remain the same therefore the relative size of the flakes is 
clearly seen.

7.4.2 R elation with previous work

As elaborated in the Introduction, all previous studies were concerned with disk-shaped or 

square flakes. These are geometries in which a definition of the flake aspect ratio (α) can 

be given without much ambiguity. It is natural therefore that the product (αφ), (φ) being 

the flake volume fraction, was the scale of choice. For the case of 3D flakes of square shape 

(φ =  N  · l2 · t /A V ), the B IF  was found in [21] to be represented by

B I F  = 1  +  6ι(αφ) +  C2 (αφ)2 (7.9)

In Equation 7.9, t is the flake thickness and α =  l/t  is a definition of the flake aspect ratio. The 

constants C 1 and C2 were determined in [21] by fitting computational results of ( B I F  — 1)/(αφ) 

vs. (αφ) and were found to be Ci =  0.44 ±  0.03 and C2 =  0.05 ±  0.005. It is instructive to 

compare the results of the proposed model (Equation 7.8) to those of [21], and Equation 7.9.
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According to Equation 7.8, B I F  =  (1 +  M )2 =  1 +  2M  +  M 2. For the case of square flakes 

Equation 7.6 can be rearranged by dividing and multiplying with flake thickness (t) so that

M ,  =  1  N T t  1 =  αφ
4 AV t 4

(7.10)

Therefore, for the case of square flakes, our proposed model for the B IF  gives

BIFsq =  (1 +  Ms, )2 =  1 +  2 αφ +  ^ ( α φ )2 (7.11)

resulting in C 1 =  0.5 and C2 =  0.0625. A comparison between our results and Equation 7.9 is 

shown in Figure 7.8 in which we plot ( B I F  — 1)/αφ vs αφ.

αφ

Figure 7.8: Computational results for square flakes at θ =  0 plotted as suggested by Eq. 7.9. 
The intercept gives Ci =  0.4987 and this compares favourably with the value of 0.5 anticipated 
from Eq. 7.11. The slope gives C2 =  0.0591; and this is very close to the result C2 =  0.05 of 
[21] and also compares to 0.0625=1/16 anticipated from Eq. 7.11.

The values for C i and C2 obtained from our computational results are very close to those of 

[21], the differences probably originating from the different numerical method used and also 

from the fact that in our study the flake thickness has been neglected, flakes being in our case 

essentially 2D entities. In the case of circular and hexagonal flakes, it can be shown that the 

concentration metric (αφ) is related to the scaling parameters M h and M c as αφ =  4M c for 

the case of circular and αΙρΗαφ =  M h for the case of hexagonal flakes. In obtaining these, the 

aspect ratio of the disk is defined as α =  2R /t, while for the hexagon, α =  Lc/t, where Lc is a
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Table 7.1: Values of the polynomial coefficients C 1 and C2 obtained from our computational 
results (Figs. 7.8 & 7.9) for various flake shapes.

Squares Squares [21] Disks
Hexagons

(α =  L C/t) (α =  2S /t)
Ci 0.4987 0.44 0.4715 1.91 0.4015
C2 0.0591 0.05 0.0498 0.876 0.0413

Implied from Eq . 7.8
Ci 0.5 0.5 2.0 0.4325
C2 0.0625 0.0625 1.0 0.04687

characteristic length defined as (Area)/(Perim eter) ( Lc =  7 3  · S /4 ). It is therefore,

B I F c = 1  +  2  · αφ + Q )  · (αφ)2 (7.12)

yielding Ci =  1/ 2 and C2 =  1/16 for disks and

B I F h =  1 +  2αφ +  (αφ)2 (7.13)

yielding C 1 =  2 and C2 =  1 for hexagons. If, alternatively, the aspect ratio of the hexagon is 

based on its longest diagonal, which is 2 S , then it can be shown that

αφ =  7 3 M h (7.14)

In that case,
7 3  3

B I F h =  1 +  ^ _  αφ +  (54 (αφ)2 (7.15)

yielding C 1 =  7 - / 4  and C2 =  3/64.

The computational results for disk-shaped and hexagonal flakes are plotted as suggested by 

Equations 7.12, 7.13 & 7.15 in Figure 7.9. As in the case of square flakes, we find that the 

computational results follow closely the behaviour suggested by Equation 7.9, with suitably 

defined coefficients. Our results are summarized in Table 7.1.

7.4.3 Com parison to predictions of existing m odels

In the following we compare the results of our 3D computations and the proposed model 

(Equation 7.8) with the predictions of frequently used models for the B IF  of flake composites,
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Figure 7.9: Computational results for circular and hexagonal flakes at θ =  0 plotted as suggested 
by Eq. 7.9. The intercepts give C 1 =  0.4715 for disks and C 1 =  1.91 for hexagons, in which 
case aspect ratio is based on L C. These compare with the values of 1/2 and 2 suggested by 
Eqs. 7.12 & 7.13. The slopes give C2 =  0.0498 and C2 =  0.876 and these compare to 1/16 
(for disks) and 1.0 (for hexagons) suggested by Eqs. 7.12 & 7.13. In Fig. 7.9b the linear fit 
corresponding to the alternative definition of the aspect ratio (based on the long diagonal of 
the hexagon, Eq. 7.23) is also shown. The corresponding best-fit values are Ci =  0.4015 and 
C2 =  0.0413.

namely those of [10], [11]. The relevant equations are:

D 0 (1 +  α φ /λ)2
D,eff 1 -  φ

(7.16)

and
D 0 α2 φ2= 1 + (7.17)

D eff β  (1 -  φ)

Where (λ) and (β ) are geometrical factors, reflecting the tortuous path the diffusing species 

follows as it travels around individual flakes. It is understood that these geometrical factors 

will depend on flake shape. In the original work of [11] it was suggested that λ =  3. Computa­

tional results of [17] in 2D geometries (in which flake cross sections are represented as lines or 

rectangles) have given a best fit for λ =  2.5. In the present study the flakes are infinitely thin 

and thus 1 — φ ~  1, yielding

2 1
B I F  =  (1 +  α φ /λ)2 =  1 +  αφ +  — (αφ)2

λ λ2 (7.18)
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Comparing this expression to the previously derived expressions for the BIF of composites con­

taining square, circular and hexagonal flakes, we are able to obtain estimates of the geometrical 

parameter (λ) for each flake shape.

1. For squares λ =  4, (2 /λ  =  0.5 and 1 /λ2 =  1/16)

2. For disks λ =  4, (2 /λ  =  1/2 and 1 /λ2 =  1/16), when aspect ratio is defined as a  =  2R/t.

3. For hexagons

(a) λ =  1, (2/λ  =  2 and 1/ λ 2 =  1), if aspect ratio is based on characteristic length 

L c =  V3 · S/4.

(b) λ =  8 ^ 3 /3 , (2/λ  =  λ/ 3/4 and 1 /λ2 =  3/64) if the longest flake diagonal is used in 

the calculation of the aspect ratio of the flake (a  =  2S /t)

For the particular case of hexagonal flakes, [27] have proposed an expression for the BIF, based 

on a generic model of the form of Equation 7.17 and using heuristic diffusion path arguments. 

The expression offered is

B I F  =  1 +  2 7 (αΦ)2 (7.19)

While omission of the linear term is bound to affect the predictions of this model, especially 

in the dilute and semi-dilute regimes, the coefficient of the quadratic term will determine the 

asymptotic growth of B IF  vs. (αφ) in the concentrated regime. This coefficient, 2/27 =  0.074, 

compares with the coefficient 0.0413 (Table 7.1) obtained from our computational data for 

hexagonal flakes (Fig. 7.9b) when the aspect ratio is based on the flake longest diagonal and to 

the value 3/64 =  0.0469 inferred from Eq. 7.23. Note that this value would be very different if 

the flake aspect ratio were to be determined by using a different flake length in calculating the 

flake aspect ratio.

7.4.4 The effect of flake orientation

Having proposed Equation 7.8, we further investigate the effect of flake misalignment, by con­

sidering unidirectional systems in which the flakes form an angle (θ) with the direction of 

diffusion, as shown in Figure 7.10. We carry out simulations for θ =  15o, 30o and 45o, for 

various flake shapes and dimensions. In all simulations N  =  4000.
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a b c

Figure 7.10: 3D oriented flake configurations at θ =  45o. Number of flakes has been reduced to 
500 for visual clarity.

In line with similar work in 2D [17], in order to capture the effect of misalignment we investigate 

the use of expressions of the form:

Deff (θ ) 
Do

1
(1 +  M  )2cos2 θ +  sin2 θ (7.20)

Since in our study the flake thickness is neglected, the flake volume fraction is zero and the 

second principal diffusivity D 22 is the same as that of the matrix material (D0 =  D 22). Figure

Figure 7.11: Computational results (points) and model predictions (lines) for various flake 
shapes and orientations. Model predictions based on Equation 7.20.

7.11 summarizes the results of our computations as well as the predictions of Equation 7.20. 

It is clear that misalignment reduces the barrier factor. In a manner similar to what has been
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observed in 2D systems, our results also show that when θ >  0 the B IF  does no longer grow 

with the square of (M ), but that it approaches a plateau value as (M ) increases. From Equation 

7.20 it is clear that this plateau value is a function of the misalignment angle (θ).

7.4.5 The effect of flake aspect ratio

One obvious result of Equations 7.5-7.7 is that D eff  will decrease as the flake area, A f =  l · w 

increases. At each level of flake area, Equation 7.6 can also predict the effect of flake aspect ratio 

on D ef f . In the case of rectangular flakes we have defined r as r =  l/w and Af =  l · w =  l2r . 

Therefore, the scale parameter (M ) of Equation 7.5 for constant A f (indicated as MA) becomes

Ma =  N  (Af )15 -  (7.21)
A 4 Γ  f  2(1 +  r) v '

b c

Figure 7.12: Sample geometries at various r. (a) r =  4, (b) r =  1 and (c) r =  1/4 and in all 
cases θ =  45o.

In Figure 7.12 we can see characteristic geometries at various r and in Figure 7.13 we can see 

the comparison between numerical results and analytical results from Equation 7.13. Along 

with Equation 7.6, Equation 7.13 provides an expression for D eff  in terms of (r ). Evidently, 

dM A/d r  <  0, therefore as r increases, D eff  is predicted to increase.

Results of simulations for various r are also summarized in Figure 7.14, which illustrates the 

effect of flake shape on the effective diffusivity (Def f ), for the case when the flake diagonal is 

kept constant. It is clear from Figures 7.13 and 7.14 that maximum barrier effect is achieved by 

using square flakes (r =1). This effect is more pronounced when the flakes are aligned normal 

to the direction of diffusion (θ=0). This result is in agreement with Roding et al. 2018 in which
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Figure 7.13: Computational results and model predictions for rectangular flakes at constant 
area (Af =  0.0075), 1/20 <  r <  20 and θ =  0.

it was found that elongated ellipsoidal disks are less effective, for barrier purposes, than disks 

of circular profile. Elongated particles are less effective as barrier materials, since they provide 

shorter alternative diffusion paths around their small axis, than would rectangular or circular 

inclusions. Also as we deviate from the case of square flakes the effective diffusivities are the 

same if we interchange l and w and as a result D eff (r) =  D eff (1/r).

Figure 7.14: D eff versus r *  as other geometrical characteristics, namely flake diagonal remains 
constant for two angles (θ =  0o, 45o). The number of flakes is N=4000 at all simulations. The 
line is drawn for visual aid.

We can take this analysis one step further and express the BIF, as suggested by Equation 7.6,
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in terms of the flake aspect ratio. Equation 7.6 gives

B I F  =  1 +  2M  +  M 2 (7.22)

By using the flake (planar) aspect ratio r =  w /l >  1, the scale (M ) can be expressed as

M
N  1 l 

Δ Υ  2(1 +  r ) t
1

2(1 +  r )
· αφ (7.23)

in which case we have assumed that the flake aspect ratio (such as used in [21] or [26]) is defined 

as α =  w/t, where (w) is the larger flake dimension. Therefore, the coefficients C 1 and C2 from 

Equation 7.7 can be expressed in terms of the flake aspect ratio, as

Ci =
1

1 +  r ,
and C2 =

1
4(1 +  r )2 (7.24)

The above results are plotted in Figure 7.15 where we can see the lines with intercept C 1 and 

slope C2 as they are plotted from the computational results. We can also see in Figure 7.16 

these coefficients and their comparison with model predictions (Equation 7.16).

Figure 7.15: Lines with coefficients C 1 (intercept) and C2 (slope) obtained from computational 
data.

From the above relations for r =1 , we recover the result C 1=0.5, C2=0.0625. When r >  1, it is 

clear that C 1 <  0.5 and C2 <  0.0625, in agreement with the observation that the best barrier 

result is obtained for square flakes.
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a b

Figure 7.16: (a) Plot of coefficient Ci and (b) of coefficient C2 from Equation 7.7 compared 
with computational results.

7.5 Conclusions

We have investigated computationally three dimensional transport in composite systems con­

sisting of randomly placed unidirectional flakes of square, circular and hexagonal shape. Anal­

ysis of the results reveals that use of a scale of the form M  =  (N /A V ) · (A) · (A /P ) is capable 

of reducing the B IF  for composites containing flakes oriented perpendicular to the direction of 

macroscopic diffusion on one single master curve. This master curve is represented by a power 

function of the form B I F  =  (1 +  M )2. The proposed scale requires knowledge of the number 

density and dimensions (Area, Perimeter) of the flakes. We show how the common description 

of the B IF  as a quadratic polynomial of (αφ) can be deducted from our general model and find 

the appropriate polynomial coefficients for each flake shape. We show that beyond disks and 

squares, these coefficients are very sensitive to the length used in the calculation of the flake 

aspect ratio (α). Our model is also compared to established models which, being developed 

using heuristic diffusion path arguments, include an adjustable geometrical constant; we derive 

values for these geometrical constants at each flake shape. Additional simulations in systems in 

which the flakes form an angle with the direction of the macroscopic diffusion, have resulted in 

a model for the B IF  in terms of the principal diffusivity and (θ); this is found to be in very good 

agreement with computational results, which show that while the B IF  increases with increasing 

(M ), this increase is no longer monotonic but, instead, B IF  approaches an asymptotic plateau 

value which is determined by (θ).
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C h a p t e r  8

C o n c l u s i o n

8.1 Sum m ary of Thesis Achievements and Contributions 

to Knowledge

1. A new algorithm for creating high packing geometrical configurations in 2D space and 

more detailed results of maximum 2D packing for particles with aspect ratio (α) from 1 

to 1000+.

2. Developed a phenomenological, data-based model for the B IF  of 2D ribbon-filled com­

posites, which accounts for the effect of both, concentration (expressed by αφ) and ori­

entational randomness.

3. We have shown beyond doubt the importance of periodic geometrical and periodic bound­

ary conditions in solving diffusion problems in unit RVE’s and the erroneous results that 

can be produced from deviations from the correct modelling conditions. 4

4. Proposed and tested a novel, previously unavailable closed form model for the BIF of 2D 

ribbon-filled composites (Chapter 6 & Reference [7.18]). This model offers a rational way 

for the inclusion of the effect of orientational randomness, at all concentration regimes. 

It should be noted that prior to this work, the effect of orientational randomness was 

accounted for by an ad-hoc inclusion of terms of the form (cos2(d)) in existing models; 

we have shown that that approach produces mistaken predictions when the concentration 

(expressed by αφ) deviates from the dilute regime.
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5. A  new dimensionless metric for the description of BIF evolution in the full range of 3D 
geometries with various flake shapes, aspect ratios and orientations.

8.2 Recom m endations for Future Work

The results from the present research could be extended in the future into the following research 
areas: 1 2 3

1. Further investigation of the evolution of 2D RSA created geometries. This could lead to 
an analytical solution for the 2D packing estimation. Also a new algorithm for accurate 
estimation of packing could be created.

2. Numerical studies that take into account the spatial variability in the distribution of flakes 
inside unit cells in both 2D and 3D geometries. This could lead to an accurate coupling 
between numerical, theoretical and experimental data.

3. Improvement of the 2D and 3D models by taking into account the deformation zones 
around flakes that are created by the interaction of the matrix material with the flake 
material.
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