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Abstract

Phyllosphere and rhizosphere are plant-associated micro-habitats that are known to
support diverse microbial communities whose structure is mediated by plants. We aimed
to disentangle the mechanisms shaping the microbial communities in the phyllosphere and
the soil root zone and identify their response to agricultural practices like soil organic
amendment and pesticide application. The focus was on plants indigenous to
Mediterranean ecosystems, some of them producing essential oils which are known to

exert antimicrobial activities, and also cultivated plants.

We initially explored the factors shaping the microbial community of the
phyllosphere in plants native to semi-arid Mediterranean ecosystems using gq-PCR and
amplicon sequencing approaches. We collected leaves at two largely contrasting seasons
(summer and winter) from 8 perennial plants with varying attributes, that belong to
different functional groups: (i) woody sclerophyllous evergreen, semi-deciduous and non
woody shrubs (ii) aromatic and non-aromatic. We determined the abundance of bacteria,
Crenarchaea, fungi, Alternaria and Cladosporium (main airborne fungi) via g-PCR, and
the structure of the epiphytic bacterial, archaeal and fungal community via amplicon
sequencing. We observed strong seasonal effects but no clear plant-host effects on
microbial abundance: bacteria showing higher abundance in the winter, and all others in
the summer. Plant-host and season were equal determinants of the composition of the
bacterial and fungal communities, whereas the archaeal community showed plant-host
driven patterns. Plant habit exhibited a stronger filtering effect on the epiphytic microbial
communities compared to the aromatic plant nature which affected only the fungal
community. The bacterial community was dominated by Chloroflexi and a-proteobacteria
in the summer and winter respectively, with OTUs of Sphingomonas, Rhizobia and
Methylobacterium favored in the winter. The archaeal community was dominated by the
Soil Crenarchaeotic Group (SCG) and Aenigmarchaeota. The fungal community is mostly
comprised of Ascomycota with Capnodiales, Pleosporaceae and Dothioraceae being key

members whose abundance varied by plant host and season.

We extended our study on aromatic plants by exploring their use, as soil
amendments. We employed a pot study to examine the impact of peppermint (Menta
piperita), spearmint (Menta spicata) and rosemary (Rosemarinus officinalis), in
comparison with an organic fertilizer, on the dynamics of key bacterial taxa, Crenarchaea,
fungi and functional microbial groups like ammonia-oxidizing bacteria (AOB) and
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archaea (AOA), sulfur-oxidizing bacteria (SOB) and catA-, pcaH-carrying bacteria
involved in C cycling. We further explored possible interactions between soil amendments
and the presence of tomato plant. Soil amendment with peppermint, spearmint and the
organic fertilizer increased the abundance of proteobacteria and fungi, in contrast to
rosemary, characterized by essential oils with a different chemical profile compared to
mints, which benefited these copiotrophic microbial groups only in the presence of tomato
plants. We further explored this complex interaction via amplicon sequencing analysis of
bacteria, archaea and fungi. This verified the key role of rosemary soil amendment in
shaping the bacterial, archaeal and fungal community and its beneficial role in the
abundance of proteobacteria. Multivariate analysis identified OTUs belonging to
Actinobacteria, mostly associated with undisturbed soil systems (i.e Blastococcus,
Rubrobacter, Solirubrobacter, Agromyces) that were negatively affected by rosemary
amendment. On the contrary we observed a striking dominance of the cellulose-
decomposing basidiomycetes Minimedusa in soils amended with rosemary. The known
antibiotic properties of this fungus might explain the negative effects of rosemary soil

amendment on Nectriaceae also observed.

We finally explored the potential impact of pesticides, as external perturbation
factor, on the abundance and diversity of the microbial communities on plant leaves and
the soil root zone. We tested the hypothesis that these two habitats support distinct
microbial communities but exhibit a similar response (accelerated biodegradation or
toxicity) to their repeated exposure to the biodegradable fungicide iprodione. Pepper
plants received four repeated foliage or soil applications of iprodione which accelerated
its degradation in soil (DTso 1st=1.23 and DTso 4th = 0.48 days) and on plant leaves
(DTs0_1st >365 and DTso 4th = 5.95 days). The composition of the epiphytic and soil
bacterial and fungal communities, determined by amplicon sequencing, were significantly
altered by iprodione. The archaeal epiphytic and soil communities responded differently;
the former showed no response to iprodione. Three closely related iprodione-degrading
Paenarthrobacter strains were isolated from soil and phyllosphere. They hydrolyzed
iprodione to 3,5-dichloraniline (3,5-DCA) via the formation of 3,5-dichlorophenyl-
carboxiamide and 3,5-dichlorophenylurea-acetate, a pathway shared by other soil-derived

arthrobacters implying a phylogenetic specialization in iprodione biotransformation.

Overall, we showed that phyllosphere is a habitat colonized by diverse bacteria

and fungi, while archaea are less abundant and diverse. The epiphytic microbial
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community in Mediterranean plants, is shaped by plant-host and seasonality. The use of
aromatic plants as soil amendment was found to stimulate copiotrophic microorganisms
and microorganisms allelopathic against soil-borne plant pathogens. Finally, we showed
that the epiphytic microbiome, responds to pesticide applications, with some microbes
became acclimated to degrade pesticides. This thesis has reported the first epiphytic
bacterium, a Paenarthrobacter strain, that could degrade iprodione and also suggested an

uncommon specialization of Arthrobacter in the degradation of this fungicide.
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Iepiinyn

H pvAddéoparpa kot n prédoearpa eivor HiKpo-gvolonTiLoTo TOV LTOV TOL Eival YVOOTO
OTL PEPOLVV TOIKIAOHOPPEG UIKPOPLOKES KOWVOTNTES, 1) SO T®V oToiwv e€apTdTot amd To
QLTO. XKOTOG LG NTAV 1) SLEPEHVNOT TOV UNYOVICUDV TOV SLOUOPPOVOVV T IKPOPLOKT
KOWOTNTO TNG PLAAOGPALPOS KL TOL £6A(QOVG TOV PpioKeTal TEPYUETPIKA TG piloc, Kot
N TALTOMOINOCN NG OMOKPIONG TOVG O KOAMEPYNTIKEG TPOKTIKEG, OTMOC M YPNON
€00POPEATIOTIKAOV KOl O1 EQAPLOYES YEOPYIKOV papudkmy. Eotidoaue og ynyevi putd
0V Mecoyelokoh GUGTAIATOC, LEPIKA EK TMOV OTOI®MV Tapdyovv afépia £hata Tov ival
YVOOTA Y10l TIG AVTILIKPOPLOKES TOVS 1010TNTES, KOl EMIONG O€ KAAAMEPYOVUEVA PUTA.

Apyikd OlEpELVNCOLE TOVG TAPAYOVTEG TOL OLOUOPPOVOLV TN HKPOPLoK)
KOWOTNTO NG  (QLAAOGOUIPOS YNYEVOV QLUTOV TOL MUdvudpov Mecoyelakon
OlKOGLOTHLOTOG, XPNolomoldvTag poceyyioelg ue g-PCR ka1 amplicon sequencing.
YoMEEape QUALD oTIC 000 €mOYEG He TIC MEYOALTEPEG avTiBécelg (kalokaipt Kot
YEWDVOG) 0O 8 TOAVETN PUTA LLE OLAUPOPETIKA YAPAKTNPIGTIKA TOV AVIIKOVV GE OLAPOPES
Aertovpyikég opadec: (i) agBorn EvAdon okAnpo@uAla, @pOyavo kot moeg, (ii)
apopotikd kot pn-apopotikd. Kabopicape v apbovia tov Baxtnpiov, Kpevapyaiov,
uokntov Alternaria xor Cladosporium (koprot agpopetapepopevol poknTeg) nécw Q-
PCR, kot ™ doun NG EMMPUTIKNAG KOWOTNTOG TOV BakTnpimv, apyainy Kot LUKNTOV HECH
amplicon sequencing. [Mopoatmpnoaue évtovn enidpacn g exoyng, oAld oyt Eexabapn
enidpacm Tov ELTOV-EevioTn otn HikpoPlakt] aeBovio: M Poaktnplokn aebovia MTav
VYNAOTEPN TOV YEWDVA, Kot 1 apBovio OA®V TV VTOAOMOV LKPOOPYOVICUOV MTOV
avENUévn To KaAokaipt.

Dduto-Eeviong Ko gmoyn| elyav iom emidpaon o1 ocboTEoN NG UIKPOPLOKNG
KowoTTOG TOV PakTnpimv Kot HUKAT®V, EVO 1 KovoTnTo Tov apyaiov kabopiletor and
10 PLTO-EevioT). To PLTIKO 100G amOTEAEL ONUAVTIKOTEPO TAPAYOVTO AUOPPOCNS TOV
EMPVTIKOV HKPOPLOIKDOV KOWVOTNT®MV, GE GYECT UE TNV OPOUATIKT GDON TOV PLTOV, N
omoio emmpedlel povo t pokntiokn kowdtta. H Baxtnploxn kowdtmta kuplapyeiton
an6d Chloroflexi kot a-ITpmteofaktiplo 10 KAAOKAIPL KOl YEWDVOE OVTIGTOUYQ, UE TO
OTUs twv Sphingomonas, Rhizobia ka1 Methylobacterium vo gvvoovvtat tov yeipumva. H
Kowotta tov opyoiov kvplopyeitor amd Soil Crenarchaeotic Group (SCG) kot
Aenigmarchaeota. H poknrtioxn xowotnto amoteleitar kvpiog amd Ascomycota pe
Capnodiales, Pleosporaceae kot Dothioraceae, va givat o péAn-KAEWS10 TOV OTTOI®V 1
apOovia d10popomotEiTal AVALOY®S TOL PLTOV-EEVIGTI KO TNG ETOYNG.

Emekteivape tn pedétn pog Kot 6to opopatikd QuTd, E£EPELVAOVTIS TN YP1|ON TOVS
o¢  edapoPfertiotikd. Ilpaypatomomcape £€vo melpopo pe yAAoTpeg, OCTE Vo
ueketnoovue v emidpaon tng péviog (Menta piperita), tov dvocpov (Menta spicata)
Kot tov devdporifavov (Rosemarinus officinalis), oe oclOykpion pe éva opyovikod
€00POPEATIOTIKG, 6T dLVOUIKT TOV KUPLOV Baxtnplokov taxa, Kpevapyaiov, pokntov
Kol GAL®OV AEITOVPYIKOV HIKPOPLOK®V OHAd®V, OTMG TO OUUOVIN-0EEWMTIKA PakThpla
(AOB) kot apyaio. (AOA), ta Beio-oéedmtikd Paktipio (SOB) kot T catA-, pcaH-
eépovto Poaktnpla, TO OmOoiol EUMAEKOVIOL OTOV KOKAO Tov dvBpaxa. EmumAéov
dtepevvnoope mOaveg aAANAETIOPAcElS HETOED EG0POPEATIOTIKAOV KOl TOPOVGIOG TOV
evtov topdtag. H PeAtioon Tov  €0dpovg pe péEVTA, OLOGUO KOl  OPYOVIKO
e00poPerTioTiKd, avénce v agbovia Tov [lpoteoPaktnpiov kot pokntov. Avtifeta o
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devoporifavo, To omoio £xel YopaKTNPLOTIKO 0BEPL0 EAOO LE SLOPOPETIKT) GVGTACT) GE
oY£0M UE TIC HEVTEG £0POCE EVEPYETIKA OTIC KOTIOTPOPIKES AVTEG LKPOPLOKES OUADEG,
UOVO KAt TV TOpovsio. Tov eUTOL TG Topdrtoc. EmmpocBitmg efepevviocape Tig
TOAMOTAOKEC OAANAETIOPaoE pHéow avaivong amplicon sequencing otig pikpoPlokés
Koot TEC TV Baktnpinv, apyaiov kot pokitov. Avtd emiPefaince Tov poro kKAEWl ToV
devoporifavov ¢ £00POPEATIOTIKOD GTN GVOTOON TNG POKINPIOKNAG KOU HLUKNTIOKNG
KOWOTNTOG KoOMdG Kol avThig ToV apyainv, oAAL Kol TOV EVEPYETIKO TOL POAO GTNV
agBovia tov Ipwteofaxtnpiov. H gpapuoyn tov devoporifavov ennpéace apvntikd
OTUs mov avikovv ota AxktivoPfaxtiplo, to omoio oyetilovtal kupimg pe aveyyuyta
edapikd cvotiuato (m.y. Blastococcus, Rubrobacter, Solirubrobacter, Agromyces), 6mwc
TPOEKVYE OO TNV TOALTAPOYOVTIKT avAAivot. Avtifeta mapatnpnOnie pio EVIVTOGLOKY
Kuplopyio TV dwomaot®v  Kuttapivig Paocidtopvkntov  Minimedusa oe  €ddon
eumhovtiopéva e devoporifovo. Ot yvwoTtég avTiukpoPlakés 1010TnTeg ToV poKN T
avtol iom¢ va ENyoHV TNV apvNTIKN EMPPOT TOV dEVOPOAIPOVOL MG E0APOPEATIOTIKOD,
nov wapatnpnOnke ota Nectriaceae.

Téhog, efepevvnioope v mbovhy E€MOPOCT TOV YEOPYIKOV QPUPUIKOV, ©C
e€mtepcol mapdyovra doTapayng ™S agboviag Kol TOKIAOTNTOS TOV HKPOPLOK®V
KOWOTNT®OV 6TA GUAAL TOV GVTOV Kol 6TO £30(p0G oTNV mepLoyn TS pilac. EEetdoape v
VILAOECT OTL AV TA TAL HVO EVOLULTILLOTO EVD PEPOVY SLOPOPETIKES LIKPOPLOKES KOVOTNTEG,
avTdpovv 1o B0 (emrayvvopevn Prodtdomacn 1 ToEKOTNTA) TNV ETOVOAAUPAVOLEVT)
ékbeon tovg oto Prodaomdpevo pvknroktovo iprodione. Xe  @utd  mmepldc
EQOUPUOCTNKAY TEGGEPIS EMAVOAAUPOVOUEVESG QUAAIKEG 1) €OQPIKES EQUPUOYEG TOV
iprodione, dwdikooio mov emtdyvve T oldomoon oto £3apog (DTs 15t=1.23 kou
DTso ath = 0.48 nuépec) ko ota @OAAa (DTso 15t >365 ko DTso ath = 5.95 nuépeg). H
oVOTOGCN TNG EXPVTIKNG KO 00PIKNG PAKTNPLOKNG KoL LUK TIOKNG KOWVOTNTOG, 1] OToia
kabopiotnke pe amplicon sequencing, dAha&e oTaTIOTIKOG onpavTikd amd to iprodione.
H emoutikn kot €601k kovdtnTa TOV ap)ainyv oviEdpuce SI0POPETIKA: LLE TO TPADTO
va unv avtidpd oto iprodione. Tpia cvyyevikd oteléyn Paenarthrobacter mov diaomovv
10 iprodione, anopovodnkay amd £50pog Kot eOAL. Ydpoivouvv to iprodione ce 3,5-
dichloraniline (3,5-DCA) péocm oynuatiopot 3,5-dichlorophenyl-carboxiamide ot 3,5-
dichlorophenylurea-acetate, évo povomdtt mov popdlovton pe dAlo arthrobacters mov
&yovv omopoveobel amd to £00p0g, MPOTEIVOVTOC il QUAOYEVETIKY] €10KELOT OTN
Bropetaocynuotiopd tov iprodione.

Yvvolikd, amodsiope Tmg 1 ELAALOGPaAPO glvar Eva gvdlaitnia ov amotkileTot
amd SLPOPETIKA PaKTpia Ko LOKNTES, EVO N apovia Kot TOKIAOHOPPIn TOV opyoimV
elvar pewwpévn. H emeutikr] pikpoPlokn kowvotnta tov Mecoyslokdv  QUTOV
SO PPOVETOL Omd TO PVTO-EEVIOTY| KO TNV €moyn. H epappoyn apouatik®v gutov mg
edapofertiotikov Bpédnke va Oleyeipel TOVE KOMOTPOPIKOVS LWKPOOPYAVICUOVS Ko
oAAnAomafnTKovg evavtiov edapoyevav eutomaboyovav. Télog, amodeiope OTL TO
EMPVTIKO HIKpOPlopo, avIOPA OTIC EQOPUOYEC YEMPYIK®OV QOUPUAK®OV, UE UEPIKA
piKpoPia vo eykMpatiCovior 6To va S106movy YE®PYIKE pdppaka. AVt 1 S1O0KTOPIKY|
datpPn avépepe 10 MPMOTO EMPLTIKO PokThplo, éva otélexoc Paenarthrobacter, to
omoio gival avo vo dlaond to iprodione kot emiong mpoteivel pior un-kowvn e1dikevon
tov Arthrobacter ot didomacn owToL TOL HLKNTOKTOVOL.
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1. General introduction

Plant and microbes live closely together with the symbiotic association between
arbuscular mycorrhizal fungi and plants been the most ancient (Selosse and Le Tacon
1998). The evolution and application of novel methodological tools in microbial ecology
revealed that the different plant parts (roots, stems, leaves) support an enormous diversity
of microorganisms, eukaryotic and prokaryotic (Bringel and Couée 2015; Lundberg et al.
2012; Manter et al. 2010; Vandenkoornhuyse et al. 2002). The identification of the
different micro-habitats of microorganisms on plants and the diversity of microorganisms
occupying these micro-sites, led to the introduction of new terms to describe this intimate
association: ‘holobiont” and ‘hologenome’. The former was coined by Zilber-Rosenberg
and Rosenberg (2008) to describe the multi-cellular plant host and its associated
microbiota as a functional entity in which co-evolutionary selection between the host and
the microorganisms likely occurs. In accordance the hologenome refers to the genome
pool of the holobiont comprising the genome of the plant host and the genomes of the
microorganisms colonizing its different compartments (Rosenberg and Zilber-Rosenberg
2016). In this context Vandenkoornhuyse et al. (2015) argued that the functional traits of
the plant microbiome should be included in plant holobiont, where some key plant host
functions are outsourced to the associated microbiota. In addition, the plant microbiota,
due to their genetic plasticity, offer an auxiliary but really effective mechanism for the

plants to rapidly adapt to environmental conditions and inevitably, biologically evolve.
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1.1.  Phyllosphere

1.1.1. Phyllosphere as a microbial habitat

In the mid-50s the term ‘phyllosphere’ was first suggested by Last (1955) who stated
that,”“...as with roots and the ‘rhizosphere’, leaves have a ‘phyllosphere’, with a
characteristic microflora that may contain many species”. This term was further evolved
by Ruinen (1961) which suggested that “The external surface of the leaf, as an
environment for microorganisms, can be termed ‘phyllosphere’ by analogy with the
‘thizosphere’ of roots”. In present days, the term phyllosphere is referred to “the leaf
surface (phyllosphere) as a habitat that features two intimately connected but very
different compartments, i.e. the leaf surface landscape (phylloplane) and the surface
waterscape (phyllotelma). Phyllosphere includes all the cuticle-attached microbes in
addition to those that are present in the waterscape” (Doan and Leveau 2015).
Phyllosphere, in contrast to rhizosphere can be considered, for several plant species, an
ephemeral habitat considering the life cycle of annual plants or leaf senescence and fall of

perennial deciduous plants (Vorholt 2012).

The size of the plant phyllosphere at the global scale has been estimated to reach
ca. 1 million km? (upper and lower leaf surface) (Lindow and Brandl 2003; VVorholt 2012)
being the habitat of approximately 10°-107 bacteria cells/cm?. This sums up to an
estimated 10%° bacteria on the plant phyllosphere globally. Considering these numbers,
we could presume that the epiphytic bacteria will have a major role in global ecosystem
functioning and nutrients cycling (Lindow and Brandl 2003). Bacteria colonize plant
phyllosphere along with other microorganisms such as fungi and archaea, which are also
encountered in phyllosphere at a lower population (Vorholt 2012), although a good

estimate of their global population is still missing.
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1.1.2. Characteristics of the phyllosphere

Phyllosphere is a harsh oligotrophic environment characterized by low nutrients
availability and highly heterogenic distribution of nutrients and water (Vorholt 2012). The
extreme environmental conditions such as wind, UV radiation, rain and high and low
temperatures determine the composition of the epiphytic microbial community along with
the ability of microorganisms to compete under conditions of poor nutrient supply. This
very characteristic, affects their interactions with other microbes as well as with the host
(Doan and Leveau 2015) and makes phyllosphere a hotspot for microorganisms, such as
prokaryotes (Bacteria and Archaea), eukaryotes (fungi, oomycetes and nematodes), and

viruses (Koskella 2013; Lindow and Brandl 2003; Vorholt 2012).

In general, microbial survival on plant phyllosphere is based on the capacity of
epiphytic microorganisms to develop mechanisms to cope with the extreme oligotrophic
and adverse environmental conditions prevailing in this plant micro-habitat. Such
mechanisms include (i) the capacity of epiphytic microorganisms to produce pigments to
cope with UV radiation exposure (Sundin 2002) (ii) the production of chemical warfare
agents by epiphytic bacteria to compete for nutrients and space (Helfrich et al. 2018) (iii)
the production of extracellular polysaccharides (Gal et al. 2003) and biosurfactants
(Schreiber et al. 2005) to facilitate their attachment on leaf surfaces and to get protected
by desiccation (iv) the production of indole acetic acid (IAA) which facilitates plant
nutrient leakage and microbial survival (Brandl et al. 2001), (v) the enhanced capacity of
epiphytic bacteria (i.e. Sphingomonas) to acquire substrates (sugars, amino acids,
acetates) through their wide repertoire of porins and ABC transporters (Knief et al. 2012)
and to utilize C1 (methanol) and organosulfonic compounds (i.e. Methanobacterium sp.)

(Miiller et al. 2016).
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1.1.3. Leaf morphological and physiological features affect microbial colonization
of the phyllosphere

Phyllosphere topography can be pictured as a jungle, with a harsh ground formed by
epicuticular wax crystals where veins would be grooves, stomata and hydathobes being
cracks and craters, while trichomes and fungi would appear as trees and vines (Figure 1)
(Vacher et al. 2016). The cuticle wax composition is affecting the microbial composition
on the phyllosphere (Bodenhausen et al. 2014; Reisberg et al. 2013). Leaf stomata and
hydathobes are microbial hotspots (Esser et al. 2015; Hirano and Upper 2000; Peredo and
Simmons 2018; Remus-Emsermann and Schlechter 2018; Saldafia et al. 2011), where
microbes gather to exploit water and nutrients exudated. An example of such a bacteria is
Methanobactaerium extorguens, that has been found to flourish in the microsites around
stomata where methanol is released (Abanda-Nkpwatt et al.2006). Regarding epiphytic
glands, they are heavily colonized by microorganisms equipped with mechanisms that
enables them to cope with oxidative stress (Karamanoli et al. 2012). One of many
examples, is Pseudomonas syringae which colonizes the base of glandular trichomes and
forms small colonies on grooves between epidermal cells, to have access to carbon-
containing compounds exudated by glands (Monier and Lindow 2004). Another such
example is Pseudomonas citronellolis which is equipped with genes encoding enzymes
for the degradation of long chained alkanes and terpenes released by the glands of plants

(Remus-Emsermann et al. 2016).
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Figure 1. lllustration of some structural and functional attributes of the phyllosphere. (a)
The leaf cross section diagram shows the flow of several metabolites used as nutrients by
phyllosphere microorganisms. These microorganisms use the sugars and inorganic
nutrients exported to the leaf surface through leaching (Van Der Wal and Leveau 2011)
and guttation (Singh 2014) and can also use volatile organic compounds (VOCs) emitted
by the leaf, such as methanol (Knief et al. 2012). Phyllosphere microorganisms are in
contact with the waxy layer covering the leaf, the cuticle, on both the upper (adaxial) and
the lower (abaxial) leaf surface. Stomata and hydathodes are major points of entry for
microorganisms into internal leaf tissues. (b—d) These attributes of the phyllosphere
habitat are revealed by atomic force microscopy: (b) cuticular striae on the upper leaf
surface of grapevine (Vitis vinifera cv. Zweigelt), (c) wax rosettes on the upper leaf surface
of pedunculate oak (Quercus robur), and (d ) a stoma on the lower leaf surface of
grapevine (V. vinifera cv. Zweigelt). Schematic representation of leaf surface (adopted by

Vacher et al. (2016)).
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1.1.4. Phyllosphere: who is there and why?

We do know that phyllosphere is a habitat of microorganisms, but how did they end up
there? The microbial community of phyllosphere is assembled via transfer from other
plant compartments (rhizosphere and endophytic community), from other environmental
compartments (air and soil) or transferred vertically from the maternal plant (seed)
(Lemanceau et al. 2017). Considering that plant phyllosphere constitutes the interface
between plant and air, the latter is expected to constitute a main deposit of microbes
colonizing the plant phyllosphere (Whipps et al. 2008). On the other hand plant-associated
microbial communities have been found to be compositionally nested from the ground up
suggesting that soil represents an important source of plant-surface microbiomes (Amend
et al. 2019). In this frame first Copeland et al. (2015) in canola, bean and soybean and
then Grady et al. (2019) in miscanthus and switchgrass observed a clear bacterial
succession on the phyllosphere with leaf bacterial community resembling the soil bacterial
community at the start of the growing season but gradually becoming enriched with
epiphytic bacteria by the end of the season suggesting a strong plant filtering effect along

the growing season.

Epiphytic Bacteria: The bacterial community of the phyllosphere is mainly composed of
Proteobacteria, with  a-Proteobacteria  (e.g.  Rhizobiales, Methylobacterium,
Sphingomonas), being the most abundant, followed by vy-Proteobacteria (e.g.
Pseudomonas) (Bodenhausen et al.2013; Delmotte et al. 2009; Kembel et al. 2014; Knief
et al. 2012; Redford et al. 2010; Redford and Fierer 2009; Ren et al. 2014; Ruiz-Pérez et
al. 2016). Actinobacteria, B-Proteobacteria and Bacteroidetes have been also reported as
common dwellers of the plant phyllosphere (Aydogan et al. 2018; Jackson and Denney
2011; Schlaeppi et al. 2014; Thapa and Prasanna 2018).
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The bacteria of plant phyllosphere can serve various ecological and functional
roles: (i) methylotrophic bacteria are dominant members of the epiphytic bacterial
community being able to transform C1 compounds like methanol released by plant surface
processes and hence promoting global C cycling (Sy et al., 2005; Abanda-Nkpwatt et al.,
2006; Delmotte et al., 2009; Knief et al., 2012; Iguchi et al., 2015; Madhaiyan et al., 2015;
Trotsenko et al., 2001; Fedorov et al., 2011) (ii) diazotrophic bacteria have been found in
the phyllosphere (Ali et al. 2012; Freiberg 1998; Fiirnkranz et al. 2008; Rico et al. 2014;
Ruinen 1965). They carried iron-molybdenum nitrogenase systems leanding them able to
fix atmospheric N, (iii) bacteria able to degrade organic pollutants reside on the plant
phyllosphere (Ning et al. 2012; Sangthong et al. 2016; Scheublin et al. 2014) (iv) some
epiphytic bacteria and archaea produce IAA and promote plant growth (Brandl et al. 2001;
Taffner et al. 2019) (v) several of the epiphytic microbes are plant (i.e. Pseudomonas,
Erwinia, Septoria, Erysiphe, Cladosporium) and human pathogens (i.e. Salmonella,
Enterobacteriaceae) compromising plant health and food safety (Cernava et al. 2019;

Moulas et al. 2013; Ottesen et al. 2015; Ramos 2004; Sapkota et al. 2015).

Epiphytic Fungi: The fungal community of the phyllosphere is dominated by
Ascomycetes (Coince et al. 2014; Cordier et al. 2012a; Jumpponen et al. 2010; Jumpponen
and Jones 2009a; Kembel and Mueller 2014; Perez et al. 2009) with the most common
classes being Sordariomycetes, Dothideomycetes and Eurotiomycetes (Fonseca-Garcia et
al. 2016; Fort et al. 2016; Horton et al. 2014; Martirosyan et al. 2016), and the most
abundant genera being Aureobasidium, Cladosporium and Alternaria. Basidiomycetes are
less abundant on the plant phyllosphere with Tremellomycetes and Agaricomycetes being

the most abundant classes, while members of the genera Cryptococcus are the most
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common basidiomycetes on the plant phyllosphere (Cordier et al. 2012a; Jumpponen et

al. 2010; Jumpponen and Jones 2009b; Ottesen et al. 2013).

The majority of epiphytic fungi are saprotrophs, biotrophic pathogens or lichens
(Jumpponen and Jones, 2009b). Epiphytic fungi can act as (i) protectors of their host plant
from other phytopathogens using various direct and indirect mechanisms (Arnold and
Lutzoni 2007; Saikkonen 2007). Such an example is Aureobasidium pullulans, which is
among the most abundant fungal species in the phyllosphere (Cordier et al. 2012b, 2012a;
Fort et al. 2016; He et al. 2012; Magan and Baxter 1996) and has the capacity to
antagonize plant pathogenic microbes (Castoria et al. 2001; Wachowska and Glowacka
2014; Zhang et al. 2010), (ii) as decomposers of plant exudates (Migahed and Nofel, 2001;
Jumpponen and Jones, 2009b; Yang et al., 2016) and (iii) as primary (exhibiting plant-
specific traits like Zymoseptoria tritici) or secondary plant pathogens (being more general

colonizers like Cladosporium and Alternaria) (Sapkota et al. 2015).

Epiphytic archaea: Archaea are less abundant on the plant phyllosphere, compared to
bacteria and fungi (Vorholt 2012). Recent metagenomic analysis suggested that epiphytic
archaea could participate in important ecosystem functions like N assimilation, CO>
fixation, auxin biosynthesis, DNA repair and oxidative response (Taffner et al., 2018).
Follow up studies by the same group reinforced the versatile metabolic potential of
epiphytic archaea which carried genes for FMN, FAD and glycogen degradation plus an
operative glyoxylate cycle which is used most probably as an adaptation mechanism in
order to be able to use C1 compounds instead of sugars, which are not that abundant on
the plant phyllosphere (Taffner et al. 2019). Little is known about the composition of the

archaeal epiphytic community. The few studies available suggest a dominance of
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Euryarchaeota (i.e. Methanomicrobia, Halobacteria, Thermoprotei) and Thaumarchaeota
(i.e. Candidatus Nitrosocosmicus and Nitrososphaera) (Knief et al. 2012; Ruiz-Pérez et

al. 2016; Taffner et al. 2018, 2019).

1.1.5. Factors shaping the epiphytic microbial community

1.1.5.1. Plant genotype

The structure of the epiphytic microbial community differs among different plant
genotypes (Balint-Kurti et al. 2010; Balint et al. 2013; Bodenhausen et al. 2014; Cordier
et al. 2012b; Horton et al. 2014; Hunter et al. 2010, 2015; Mason et al. 2015; Wagner et
al. 2016) and different plant species (Inacio et al. 2010; Kembel and Mueller 2014;
Kembel et al. 2014; Kim et al. 2012; Lambaiset al. 2014; Redford et al. 2010; Sapkota et
al. 2015). All the above studies have identified plant host as the major determinant of the
composition of the microbial communities colonizing the phyllosphere (Ruppel et al.,
2008; Kembel and Mueller, 2014; Kembel et al., 2014; Laforest-Lapointe et al., 2016a,
2016b; Martirosyan et al., 2016). However, even within the same plant or the same plant
species, there are structural variations in the phyllospheric microbial community which
are shaped according to leaf age (YYadav et al., 2011; Wagner et al., 2016), the position of
the leaves in the canopy (Cordier et al., 2012a), and the leaf status and health (i.e. water
content, infestations by pests and fungi/bacteria) (YYadav et al., 2005). The recruitment of
the microbial community by plants seems to be evolutionary more complex than
previously thought, with higher bacterial diversities linked to higher plant productivity
(Laforest-Lapointe et al. 2017). Hence it is now believed that plants recruit

microorganisms in line with the biological features of the different microorganisms i.e.
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plant growth promoting or antibiosis (Vorholt 2012), defense system against insects

(Mason et al. 2016) and their own ecological strategies (Laforest-Lapointe et al. 2017).

Several studies have pointed to the morphological and chemical features of each
plant as key determinants of the composition of the epiphytic microbial communities. For
example Kembel et al. (2014) studied the composition of the epiphytic bacterial
community in 57 tree species co-localized in a tropical forest and identified wood density,
growth and mortality rates, leaf mass per area, leaf thickness and leaf N and P
concentration as leaf traits that showed a significant correlation with the microbial
composition of the phyllosphere. Similarly, Laforest-Lapointe et al. (2016a) observed leaf
N content, leaf mass per area and wood density as the most important factors shaping the
epiphytic bacteria community in five forest plant species. Hunter et al. (2015) identified
leaf surface wax and leaf surface hydrophobicity as the key leaf traits affecting the
composition of the fungal community in 26 different lettuce cultivars. Yadav et al. (2005)
identified P leaf content, water content and thickness of the adaxial epidermis as the best
explanatory variables for the size of the epiphytic bacterial community on the
phyllosphere of nine native plants of a semi-arid Mediterranean ecosystem in Greece. A
range of recent studies using plant mutants which exhibit altered leaf physiology and
morphology further reinforced the role of leaf traits on the phyllospheric microbial
community composition. For example, Bodenhausen et al. (2014) showed that
Arabidopsis thaliana mutants lacs2 and pccl, that exhibited altered cuticle formation,
showed altered epiphytic bacterial composition and increased bacterial abundance.
Similarly, Ritpitakphong et al. (2016) showed that A. thaliana mutants bdg and lacs2.3
characterized by thinner cuticle leaf phenotypes supported different bacterial communities
dominated by Pseudomonas and Rhizobium compared to wild type plants where

Burkholderia dominated.
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1.1.5.2. Plants Biogeography

Microorganisms on the phyllosphere are exposed to local environmental conditions such
as wind, UV radiation, high or low temperatures and rain events. Hence it is expected that
the microclimate of a region would affect the composition of the epiphytic microbial
communities. Several studies have looked among other factors on the impact of plant
location on the epiphytic microbial assemblage process and tried to identify distance-
decay relationships within certain microbial groups. Such studies have looked into the
phyllosphere microbial composition in plants from the same or different species collected
from geographically distant regions. In most of these studies biogeography seemed to be
a less important factor than plant species (Copeland et al. 2015; Laforest-Lapointe et al.
2016b; Qian et al. 2018; Sapkota et al. 2015). However other studies have identified a
strong endemism exhibited by epiphytic microbes. For example, Agler et al. (2016)
identified plant location as the stronger determinant (explaining 25-35% of the variation)
on the epiphytic bacterial, fungal and oomycetal communities on A. thaliana cultivars.
Coleman-Derr et al. (2016) monitored the composition of the epiphytic bacterial and
fungal community in agave plant cultivars collected from distant geographical areas. They
showed that the major factor driving the assembly of the epiphytic fungal community is
the geographic origin of the host, contrasting with bacterial assemblages that are primarily
sculpted by the plant-host. These results pose for higher endemism of fungi compared to
bacterial populations, most probably driven by climatic and dispersal constraints (Bonito
et al. 2014). Beyond fungi, Methylobacteria, considered ubiquitous epiphytic dwellers,
also exhibited strong endemism colonizing equally well different plant species in the same
site, with plant location being the most significant determinant of the presence in the plant

phyllosphere (Knief et al. 2010).
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1.1.5.3. Seasonality

The epiphytic microbial community structure is seasonally dynamic. Seasonal effects on
the composition of the epiphytic microbial communities have been reported for bacteria
(Agler et al. 2016; Copeland et al. 2015; Pefiuelas et al. 2012; Rastogi et al. 2012; Redford
and Fierer 2009) and fungi (Jumpponen et al., 2010; Cordier et al., 2012b; Pefiuelas et al.,
2012; Gomes et al., 2018), whereas little is known about the seasonal patterns of archaea
on the plant phyllosphere. Season alteration imposes drastic changes on the moisture,
temperature and UV radiation levels which are expected to induce reciprocal changes on
the structure of the epiphytic microbial community (Beattie 2011; Corrigan and
Oelbermann 2010; Joung et al. 2017). Laforest-Lapointe et al. (2016a) looked at the
seasonality of plant phyllosphere and identified limited variation on microbial
composition along time, a result most probably attributed to the short study duration (90
days). In contrast other studies have identified strong seasonal effects on the composition
of the epiphytic microbial communities (Copeland et al. 2015; Gomes et al. 2018; Redford
et al. 2010). It is anticipated that studies following the dynamics and diversity of the
epiphytic microbial communities in regions with strong seasonal variations regarding
climatic conditions (i.e. Mediterranean basin) will magnify potential seasonal effects.
Regarding seasonal abundance patterns of epiphytic microbes, bacteria show increasing
abundance during winter (Copeland et al. 2015; Thompson et al. 1993), whereas fungi
have a higher population during the summer period (Jumpponen and Jones 2014; Osono
and Mori 2005; Pefiuelas et al. 2012). However the diversity of both fungal and bacterial
epiphytic communities seems to increase during the summer (Pefiuelas et al. 2012; Rastogi
et al. 2012). In contrast we know little about the seasonal response of epiphytic archaea

both at the abundance and diversity level.
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1.1.5.4. Microbe-microbe interactions on the plant phyllosphere

Beyond the interactions of epiphytic microorganisms with the plant host, which have a
strong effect on the composition of the phyllospheric microbial community, microbe-
microbe interactions could also exert strong structural effects on this plant micro-habitat.
In most of the studies looking at the contribution of different factors like plant genotype,
season and location on the epiphytic microbial community composition these factors
explain usually not more than 40-50% of the variation (Agler et al. 2016; Grady et al.
2019; Laforest-Lapointe et al. 2016a; Redford et al. 2010). Hence the rest could be
associated with other explanatory factors such as microbe-microbe interactions. In a
pioneering study Agler et al. (2016) suggested that hub microorganisms on the plant
phyllosphere act as replicators of the interactions of biotic and abiotic factors affecting the
microbiome and mediate strong changes in the composition of the epiphytic microbiome.
They identified the oomycete Albugo and the basidiomycetes Dioszegia as such hub
microorganisms which were negatively correlated with the abundance of several
microbial taxa but themselves are strongly affected by plant host and season respectively.
Such complex interactions are expected to be the focus of future studies shedding more

light on the assemblage mechanisms of the epiphytic microbial communities.

1.1.6. Phyllosphere microbial communities in a Mediterranean ecosystem

Mediterranean semi-arid ecosystems are characterized by alternation of cold and wet with
hot and dry seasons expected to endure a strong selection on the plant microbiome (Yadav
et al. 2008). The plant community of these ecosystems is dominated by non-woody shrubs

and woody evergreen sclerophyllous or seasonally dimorphic plants, with several of them

30

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 22:08:09 EEST - 3.145.107.127



being aromatic (YYadav et al. 2005). Previous studies in such ecosystems showed that non-
woody shrubs like Calamintha nepeta and Melissa officinalis supported higher epiphytic
bacterial populations compared to woody plants native to the same ecosystem (Yadav et
al. 2004, 2005, 2008). In this context Yadav et al. (2005) observed significant positive
correlations between bacterial abundance and the water and P content of leaves and the
trichome density. Whereas they reported a negative correlation between bacterial
abundance and total phenolics, leaf thickness, mesophyll and abaxial epidermis thickness.
Contrasting results have been obtained from different studies when correlating bacterial
abundance with essential oil presence and concentrations. For example, Yadav et al.
(2005, 2008) reported a higher abundance of bacteria and higher functional diversity
(determined by ECOPLATES) in aromatic vs non aromatic plants. In contrast,
Karamanoli et al. (2000) showed that the abundance of epiphytic bacteria in four aromatic
plants depended on the antibacterial activity of their essential oils with lavender
(Lavandula aungustifolia), characterized by the lower levels of essential oils, having the
higher bacterial population, compared to the other three plants (Greek oregano, Greek
sage and rosemary), having lower epiphytic bacterial population and higher
concentrations of more active essential oils. In a more extensive study, Karamanoli et al.
(2005) studied 19 native and cultivated plants and showed that all plants rich in secondary
metabolites harbored low epiphytic bacterial populations, in line with the high
antimicrobial activity of the constituents of essential oils (Kadoglidou et al. 2011;
Sivropoulou et al. 1997). In contrast to all the above studies Yadav et al. (2004) did not
observe a significant correlation between the essential oil concentration of plants and
epiphytic bacterial abundance. More recent studies by Vokou et al., (2012) showed, via
culture-independent analysis (denaturating gradient gel electrophoresis, DGGE), clear

structural differences in the epiphytic bacterial community between sclerophyllic
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evergreen plants (plus Myrtus communis) and aromatic Lamiaceae plants. Overall these
studies suggest strong and complex interactions between the native plants of such semi-
arid Mediterranean ecosystems and the bacteria colonizing their leaves. One key gap in
our current knowledge about the epiphytic communities in such ecosystems concerns the
factors shaping the epiphytic community of other key microbial communities, like fungi

and archaea.

1.2. Rhizosphere as a microbial habitat

The soil zone, named rhizosphere for the first time by Hiltner (1904), is a thin layer of soil
that surrounds the root. It is the home of a plethora of microorganisms. The rhizosphere,
can support up to 10! microbial cells per gram of root (Egamberdieva et al. 2008),
composed of 102 to 10° different bacterial species (Gans et al. 2005; Mendes et al. 2011;
Torsvik and @vreas 2002; Tringe et al. 2005). Despite the adjacency of rhizosphere to
soil, the richness of rhizospheric bacterial community is usually lower compared to the
bacterial richness in the surrounding bulk (Bulgarelli et al. 2012) but often lower than the

bacterial diversity of the phyllosphere (Fonseca-Garcia et al. 2016; Yang et al. 2016).

1.2.1. Rhizosphere characteristics as a micro-habitat

Microorganisms colonize the rhizosphere to get access and exploit the energy-rich plant
exudates. Plants tend to channel up to 50% of their photosynthates into the rhizosphere,
which are then released as root exudates (Bais et al. 2006). This results in an abundant
microbial population colonizing this root zone compared to the surrounding bulk soil, a
phenomenon known as ‘rhizosphere effect’” (Figure 2) (Cheng 2009). Based on the content

of root exudates, plant rhizosphere is dominated by heterotrophic microbes which could
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exploit the C-rich organic compounds of the rhizodeposits (Berendsen et al. 2012;
Bonfante and Anca 2009; Lemanceau et al. 2017; Mendes et al. 2011). Root exudates are
composed of ions, free oxygen and water, enzymes, mucilage (polymerized sugars), and
a diverse array of carbon-containing primary (i.e. low molecular mass compounds like
amino acids, sugars and organic acids) and secondary metabolites like antimicrobial
compounds, nematicides and flavonoids (Hejl and Koster 2004; Marschner et al. 2011;
Philippot et al. 2013). As a result, rhizosphere is a battlefield, that microorganisms fight

to acquire plant-derived nutrients (Raaijmakers et al. 2009).

@ <> Badteria
@ Living root cap border cell
Z 7277 Decaying root cap border cells

Organic compounds released by
oo rhizodepostion
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Figure 2 Schematic representation of niche differentiation at the root-soil interface,
adopted by Bulgarelli et al. (2013). From outside to inside, the habitats are the soil,
rhizosphere, and endosphere. Rhizodeposits generated from root cap border cells and the
rhizodermis provoke a shift in the soil biome. Cellular disjunction of the root surface
during lateral root emergence provides a potential entry gate for the rhizosphere

microbiota into the root interior.

1.2.2. The microbial community of the rhizosphere; Who is there and why?

Rhizosphere is a multi-microbial habitat where bacteria, fungi, oomycetes, viruses and
archaea coexist (Bonkowski et al. 2009; Buée et al. 2009; Meeting 1992; Raaijmakers et
al. 2009), being attracted by the nutrient resources that the plant is exudating through its
roots. Important processes that are supported by the rhizospheric microbial community
includes pathogenesis, plant protection, antibiosis and geochemical cycling of minerals
(Kent and Triplett 2002). Beyond all these the rhizosphere microbiome has a strong effect
on plant health by helping plants to cope with abiotic stresses (i.e. drought or salinity)
(Pérez-Jaramillo et al. 2016; Zancarini, Lépinay, et al. 2013) and stimulate growth through

enhanced acquisition of nutrients (Mendes et al. 2011; Pieterse et al. 2014).

Regarding its composition the bacterial community in the rhizosphere is
dominated by Proteobacteria, followed by Bacteroidetes, Acidobacteria and Firmicutes
(Buée et al. 2009; DeAngelis et al. 2009; Fierer et al. 2009; Gomes et al. 2001; Mendes et
al. 2011; Peiffer et al. 2013; Sharma et al. 2005; Uroz et al. 2010). It encompasses
pathogens and their beneficial counterparts, plant growth promoters and symbionts.
Undoubtedly, the best-known symbiosis between plant roots and bacteria is this of

nitrogen-fixing bacteria of the family of Rhizobiaceae and legume plants. Other bacteria
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may also contribute to biogeochemical cycling in the rhizosphere and soil like (i)
ammonia-oxidizing bacteria belonging to the B-proteobacterial genera Nitrosomonas and
Nitrosospira, which convert ammonium to nitrate through the intermediate production of
hydroxylamine (Hawkes et al. 2002; Leininger et al. 2006); (ii) methane-oxidizing
bacteria which are able to convert methane produced by methanogens in soil anaerobic
niches (Fierer et al. 2007) and (iii) denitrifying bacteria which convert nitrates to N». In
fact, denitrification is highly promoted in the rhizosphere due to the high concentration of
available C that favor denitrifying bacteria (Philippot et al. 2009), and the high
consumption of oxygen by plants leading to the establishment of anaerobiosis in

rhizosphere micro-sites favoring denitrification (Henry et al. 2008).

The fungal community in the rhizosphere is composed mainly of Ascomycetes,
Basidiomycetes and Glomeromycetes, the latter encompassing the obligatory symbiotic
arbuscular mycorrhizal fungi. Saprotrophic fungi in the rhizosphere (Berg et al. 2005; de
Boer et al. 2008; Viebahn et al. 2005; Zachow et al. 2008) could be yeasts and filamentous
fungi with representatives of all major terrestrial phyla (Ascomycota and Basidiomycota)
and subphyla like Mucoromycotina (Berg et al. 2005; Renker et al. 2004; Vujanovic et al.
2007). Rhizosphere is the habitat of (i) plant-beneficial, symbiotic or non-symbiotic, fungi
which promote plant vigor and protect plants from infestations by other microorganisms.
This group contains endo- and ectomycorrhizal fungi and non-symbiotic beneficial fungi
(if) mycoparasitic fungi (Mendes et al. 2013) and (iii) pathogenic fungi (i.e Fusarium
oxysporum, Verticillium dahliae) and oomycetes (i.e. Pythium sp., Peronospora sp.,
Phytophthora sp.) that compromise plant health (Mendes et al. 2011; Weller et al. 2002;
Buée et al. 2009; Raaijmakers et al. 2009). The contribution of fungi in these processes
has been shown to affect the composition of terrestrial plant community (Bell et al. 2006)

and ecosystem productivity (Van der Heijden et al. 1998; Maherali and Klironomos 2007).
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Archaea have been detected at appreciable abundance in the soil rhizosphere. They
are key players in soil nitrification (Leininger et al. 2006), methane production (Erkel et
al. 2006) and other nutrient cycling processes. Studies examining the role and abundance
of ammonia-oxidizing archaea in rhizospheric soil have provided contradictory results.
Some studies noted a predominance of ammonia-oxidizing archaea over bacteria in the
plant rhizosphere (Chen et al. 2008; Hussain et al. 2011; Kleineidam et al. 2011), while
others indicated the reverse (Glaser et al. 2010; Trias et al. 2012; Wei et al. 2011). Thion
et al. (2016) studied the abundance of ammonia oxidizing archaea vs bacteria in the
rhizosphere vs bulk soil of 20 plants and showed that ammonia-oxidizing archaea showed
increasing abundance in the rhizosphere of plants with high N demands (vs bulk soil), but
no rhizosphere effect under conservative plants. This was attributed to the higher affinity
of ammonia-oxidizing archaea for NHz and hence their stimulation over their bacterial
counterparts under low ammonium fertilization (Lehtovirta-Morley et al. 2016; Prosser
and Nicol 2012). Regarding the composition of the archaeal rhizospheric community,
Crenarchaeota are the most abundant taxon in the rhizosphere (Bintrim et al. 1997;
Borneman and Triplett 1997; Ochsenreiter et al. 2003), followed by methanogenic
archaea, which prevail in anaerobic soil conditions like in rice paddy fields (Conrad 2007,

Conrad et al. 2008; Nouchi et al. 1990; Ramakrishnan et al. 2001).

1.2.3. Factors shaping the microbial community of the rhizosphere

Although rhizosphere is considered a more stable habitat than phyllosphere, quite many
factors can affect the composition of its associated microbial community. Environmental
factors (Bonito et al. 2014; Schreiter et al. 2014; Shakya et al. 2013) and seasonal
fluctuations (Dunfield and Germida 2003; VVan Overbeek and Van Elsas 2008) can impose
strong filtering effects on the assemblage of the rhizospheric microbial community. Soil
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is considered the biological pool that supplies microorganisms to the rhizosphere. Several
studies have suggested that the soil microbial community determines to a large extent the
rhizospheric microbial community, while plant has a secondary structural effect
(Bulgarelli et al. 2012; Garbeva et al. 2008; Lundberg et al. 2012; Schlaeppi et al. 2014;
Shakya et al. 2013). Soil physicochemical properties such as pH, texture, organic matter
content, micro-aggregate stability and the availability of nutrients, have a confounding
effect on the composition of the rhizosphere microbial community (Berg and Smalla 2009;
Bulgarelli et al. 2012, 2013, 2015; Duffy et al. 1997; Dumbrell et al. 2010; Hamel et al.
2005; Hoper et al. 1995; Lacey and Wilson 2001; Lareen et al. 2016; Mendes et al. 2013;
Philippot et al.2013; Rasmussen et al. 2002; Rotenberg et al. 2005; Toljander et al. 2008).
For example soil pH was identified as the most significant factor affecting the abundance
of certain bacterial taxa (i.e. Acidobacteria, Verrucomicrobia) and functional microbial
guilds (i.e. ammonia-oxidizing bacteria) in the soil and rhizosphere (Prosser and Nicol
2008; Da Rocha et al. 2013; Thion et al. 2016). In support of this, many studies have
revealed that soil properties have a strong influence on the composition of bacterial and
mycorrhizal communities in rhizosphere (Andrew et al. 2012; Inceoglu et al. 2012; De

Ridder-Duine et al. 2005; Santos-Gonzalez et al. 2011).

Beyond soil effects on the rhizospheric microbiota, plants themselves could drive
the colonization of their rhizosphere. Indeed several previous studies have reported
significant differences in the abundance and composition of the soil microbial community
in the rhizosphere of different plant genotypes (Andreote et al. 2009; Inceoglu et al. 2010;
Lundberg et al. 2012; Van Overbeek and Van Elsas 2008; Pérez-Jaramillo et al. 2016;
Zancarini, Mougel, et al. 2013) or plant species (Grayston et al. 1998; Latour et al. 1996;
Miethling et al. 2000; Pivato et al. 2009; Smalla et al. 2001). Chemical and morphological

attributes of the plant root like their architecture (Satbhai et al. 2015) and their exudates
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composition (Badri et al. 2012; van Dam and Bouwmeester 2016; Mendes et al. 2014;
Pérez-Jaramillo et al. 2016; Vandenkoornhuyse et al. 2015) can impose strong filtering
effects on the composition of the microbial community. In addition plant growth stage
(Herschkovitz et al. 2005; Lerner et al. 2006; Van Overbeek and Van Elsas 2008) and the
root zone (Baudoin et al. 2002; Liljeroth et al. 1991; Marschner et al. 2011; Yang et al.
2000) also affect the composition of the rhizospheric microbial community. This is not
surprising if we consider that these factors are interlinked with the size, morphology and

architecture of plant roots and affect the chemical composition of root exudates.

Beyond the taxonomic diversity of rhizospheric microbial communities, plants
seem to modulate their rhizosphere microbiota by recruiting microorganisms with
potential beneficial attributes (Philippot et al. 2013). Such microorganisms can exhibit
phenotypes which promote seed germination, seedling vigor, plant growth and
development, improved capacity to acquire nutrients, protection from pests and diseases,
and overall enhanced productivity and mycorrhization (Berg and Smalla 2009; Chaparro

et al. 2013; De-la-Pena et al. 2010; Mendes et al. 2011, 2013; Mougel et al. 2006).

1.3. Effects of agricultural practices on the epiphytic and rhizospheric microbial
communities

Beyond the interactions of plant with its surrounding environment, farming practices
seriously affect the composition of the microbial community in plant-associated
compartments (phyllosphere and rhizosphere) and soil. Among those, application of
agrochemicals (pesticides and fertilizers) and organic amendments can reshape the
microbial communities in these compartments (Vacher et al. 2016; Walter et al. 2007).

Initial studies using first generation molecular tools and phospholipid fatty acid analysis
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showed strong structural differences in the rhizosphere and soils under organic and
conventional cultivation regimes (Esperschiitz et al. 2007; Hartmann et al. 2006; Widmer
et al. 2006). Hartmann et al. (2015) explored the composition of the soil microbial
community under long-term organic and conventional farming and detected distinct
microbial composition with organic farming soils and rhizosphere dominated by microbial
groups involved in the decomposition of organic compounds found in composts and
manures. In a more recent study Li et al. (2019) observed profound differences in the -
diversity of the rhizospheric bacterial community under organic cultivation compared to
integrated and conventional cultivation schemes which were also associated with
increased suppressiveness towards Phytophtora capsici. Karlsson et al. (2017) showed a
higher fungal richness in wheat leaves from organic farms compared to conventionally

cultivated wheat farms in the same region.

Pesticides constitute an integral part of modern agriculture. Upon their application
in soil, rhizosphere or on plant foliage they interact with indigenous microorganisms with
the outcome ranging from toxicity to microorganisms not being able to cope with pesticide
exposure, to microbial acclimation leading to energy-derived microbial degradation of
pesticides (Karpouzas et al. 2016). To date several studies have explored the interactions
of pesticides with the soil and rhizospheric microbial community (Gallego et al. 2019;
Itoh et al. 2014; Karas et al. 2018; Storck et al. 2018), while less are known about the
pesticides effects on the epiphytic microbial community (Gu et al. 2010; Ottesen et al.

2015; Perazzolli et al. 2014).

Organic soil amendment is another practice which is commonly used in low-input
and conventional agriculture to improve soil fertility, porosity and structure. In this
context organic amendments of variable forms and composition ranging from plant
residues to biochar and animal manures have been used for this purpose. Such practices

39

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 22:08:09 EEST - 3.145.107.127



impose strong changes in the diversity and function of the soil and rhizospheric microbial
communities depending on the composition of the organic amendments applied (Francioli
et al. 2016; Herrmann et al. 2019; Lehmann et al. 2011; Rieke et al. 2018). Most of these
studies have proposed that the changes induced on the soil microbiota, could be largely
explained by changes in the physicochemical characteristics of the soils amended with pH

and organic carbon identified as the key explanatory variables.

1.3.1. Pesticides application

1.3.1.1. Pesticides microbial toxicity (negative interaction)

Phyllosphere is a habitat which is more directly exposed to environmental changes
compared to soil and rhizosphere. However, regarding pesticide exposure things are
different. Phyllosphere receives direct application of foliage applied pesticides, while soil
and rhizosphere are exposed to pesticides through drenching with soil applied pesticides,
and indirectly through runoff from leaves of the excess of sprayed pesticides. To date
several studies have focused on the toxicity of pesticides on the epiphytic microbial
community with results not being conclusive, largely varying based on the plant host and
the pesticide studied. Andrews and Kenerley (1978); Glenn et al. (2015); Zhou et al.
(2011) reported negative effects of pesticides on epiphytic microorganisms, while others
observed beneficial or no effects (Walter et al. 2007; Moulas et al. 2013; Jensen et al.
2013; Perazzolli et al. 2014). For example, Zhang et al. (2008; 2009) showed that
cypermethrin application induced significant alterations in the composition of the
epiphytic bacterial community in cucumber and pepper plants reflected in a significant
increase in the total bacterial abundance and especially of gram negative bacteria, while

other bacteria were negatively affected. Similarly, Gu et al. (2010) showed that the
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application of the fungicide enostroburin induced significant changes in the composition
of the epiphytic bacterial community with Pantoea phylotypes benefiting and
Pseudomonas being negatively affected. More recent studies using amplicon sequencing
analysis revealed a remarkable resilience of the epiphytic microbial community to

pesticides exposure (Ottesen et al. 2013; Perazzolli et al. 2014; Sapkota et al. 2015).

The impact of pesticides on soil and rhizosphere microbial communities have
attracted much more attention compared to phyllosphere, however the results are also
inconclusive. This probably stems from variable experimental protocols used and
variation in the soil and pesticide properties which have a profound effect on pesticide
dissipation and hence on the extent of exposure (Karpouzas et al. 2014b). Numerous
studies have observed significant pesticide effects on the diversity and function of the soil
bacterial community (Bruck 2009; Nettles et al. 2016; Pusenkova et al. 2016). For
example Karpouzas et al. (2014a), following a tiered lab to field experimental approach,
showed than the herbicide nicosulfuron induced at low soil concentrations (0.25-1 pg g)
significant reductions in the abundance of Gram negative (b-proteobacteria,
planctomycetes), Gram positive bacteria (actinobacteria) and fungi. In a similar study
Karas et al. (2018) observed an inhibitory effect of chlorpyrifos and tebuconazole on the
abundance of ammonia-oxidizing bacteria and archaea which recovered by the end of the
study, and a stable reduction in the abundance of sulfur-oxidizing bacteria. Other studies
did not observe significant effects of pesticides on the soil and rhizospheric microbiota
(Wang et al. 2004; Lupwayi et al. 2009; Mifiambres et al. 2010; Nettles et al. 2016; Ju et
al. 2017; Storck et al. 2018). Regarding soil and rhizospheric fungi, their response to
pesticide exposure has been the focus of a limited number of studies with the results

indicating negative effects on their diversity and biomass, with a magnification of the
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negative effects when fungicide application is involved (Bending et al. 2007; Cappelletti

et al. 2016; Howell et al. 2014).

Several studies have showed that often it is not the pesticide parent compounds
imposing the negative effects on the soil and rhizospheric microbial communities but
transformation products that exhibit higher toxicity (Karas et al. 2018; Papadopoulou et
al. 2016; Zhang et al. 2016). In such a study Vasileiadis et al. (2018) observed a significant
effect on the bacterial and the fungal community by the application of iprodione which
were eventually associated with the formation and accumulation of 3,5-dichloroaniline, a
major transformation product of iprodione. Similarly, Karas et al. (2018) showed a
significant negative correlation between the two demethylated transformation products of

isoproturon and the activity of P-cycling enzymes and aminopeptidase.

Significant attention has been given to the effects of pesticides on the function of
key microbial groups which are sensitive to pesticide exposure while at the same time
they carry out key microbial functions, like ammonia-oxidizing microorganisms and
arbuscular mycorrhizal fungi. The former are responsible for the rate-limiting step in
nitrification, the oxidation of ammonia to nitrite through the intermediate formation of
hydroxylamine (Prosser and Nicol 2008). The latter are obligate symbionts in most
terrestrial plants increasing plant uptake of phosphorus, water and other nutrients sources
(Kiers et al. 2011). Ammonia-oxidizing microorganisms have been proposed as ideal
microbial indicators to assess the soil microbial toxicity of pesticides (Karpouzas et al.
2016) due to the existence of advanced and standardized tools to assess their abundance,
function and diversity, their sensitivity to external perturbations (Wessén and Hallin 2011)
and their key role in ecosystem functioning (Prosser and Nicol 2008). Previous studies
have indicated that exposure of soil and rhizosphere to various non-fungicide pesticides
like glyphosate (Feld et al. 2015), simazine, (Hernandez et al. 2011), mesotrione (Crouzet
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et al. 2009), ethoxyquin (Papadopoulou et al. 2016) and fungicides like iprodione
(Vasileiadis et al. 2018) induced transitory or permanent inhibition of ammonia-oxidizing
microorganisms. Similar studies with arbuscular mycorrhizal fungi have also suggested
adverse effects in their capacity to colonize plant hosts (Ipsilantis et al. 2012; Karpouzas
et al. 2014b) and facilitate P uptake by plants (Zocco et al. 2011). Most if not all of the
studies, except those focusing on arbuscular mycorrhizal fungi, have been performed in
the absence of plants whose presence might have increased the resilience of the soil
microbial community. Newman et al. (2016) studied the impact of glyphosate in the
rhizosphere of corn and soybean samples (not comparatively to bulk soil) and observed a
significant increase of Proteobacteria upon glyphosate exposure and a complementary
decrease in Acidobacteria. Similarly, Singh et al. (2015a; 2015b) reported strong adverse
effects of chorpyrifos, cypermethrin and azadirachtin on the diversity of rhizospheric
bacteria and fungi and also on the abundance of microorganisms involved in the different

steps of N cycle including nitrifiers, denitrifiers and nitrogen-fixing bacteria.

Despite the numerous reports on the response of bacteria and fungi to pesticides
we know very little about the impact of pesticide compounds on phyllosphere and
rhizospheric/soil archaea. The only relevant information is coming from studies looking
at the impact of pesticides on archaea belonging to key functional groups like ammonia-
oxidizers and methanogens. For example, ammonia-oxidizing archaea seem to be
impaired by the application of pesticides like ethoxyquin, iprodione, glyphosate (Feld et
al. 2015; Papadopoulou et al. 2016; Vasileiadis et al. 2018). Beyond these functional
archaeal groups, only Howell et al. (2014) showed that the fungicide azoxystrobin did not

impose any effects on the archaea community in soil.
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1.3.1.2. Pesticides enhanced microbial degradation (beneficial interaction)

Repeated soil applications of certain pesticide groups like organophosphates (Singh and
Walker 2006), carbamates (Karpouzas et al 1999), phenoxyalkanoics (Smith and Lafond
1990), phenylureas (Cox et al. 1996) and triazines (Krutz et al. 2010) could increase the
population of microorganisms that carry or have evolved specialized catabolic enzymes
for the rapid transformation of these pesticides (Baelum et al. 2006; Rousidou et al. 2017).
This phenomenon has been termed ‘enhanced biodegradation’ and under conducive
edaphoclimatic conditions could jeopardize the biological efficacy of pesticides (Suett et
al. 1987). Soil exhibiting enhanced biodegradation of certain pesticides has been used for
the isolation of pesticide — degrading bacteria. These bacteria could be exploited in
bioengineering and bioaugmentation applications to maintain environmental quality.
Examples of such bacteria include Variovorax and Sphignomonads that degrade
phenylurea herbicides (Dejonghe et al. 2003; Yan et al. 2016), Arthrobacters that degrade
iprodione (Athiel et al. 1995; Campos et al. 2015), Sphingomonads and Pseudomonas
degrading carbamates (Nguyen et al. 2014; Rousidou et al. 2016) and triazines (De Souza
et al. 1995). Following studies identified the genes and enzymes that were responsible for
the degradation of these pesticides. Yan et al. (2018) identified a hydrolase CehA and a
monoxygenase CfdC that are responsible for the transformation of carbofuran by a
Sphingomonas strain. Perruchon et al. (2017) identified a monoxygenase (OppA) as
responsible for the first step in the transformation of ortho-phenylphenol by a
Sphingomonas haloaromaticamans strain and disentangled the genetic network of the
bacterium involved in the complete transformation of the fungicide via a multi-omics
approach. Similarly, Gu et al. (2013) identified pdmAB, encoding a N-demethylase, as the
key gene controlling the first step in the transformation of the herbicide isoproturon from

a Sphingomonas strain.
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In contrast to soil and rhizosphere, the potential of the microbial community of the
phyllosphere to degrade pesticides in an enhanced rate is largely unknown. In the only
relevant study to date Ning et al. (2012) isolated bacteria from the phyllosphere of rape
plants repeatedly treated with the organophosphorus insecticide dichlorvos which were
able to rapidly transform this pesticide. The arsenal of catabolic genes and enzymes
carried by epiphytic catabolic bacteria, their possible divergence from the catabolic

genetic traits carried by their soil and rhizosphere counterparts is yet a black box.

1.3.2. Effects of soil amendments on the microbial community

Soils intensively cultivated are often deficient in soil nutrients. In addition soils in the
Mediterranean region are rather poor in organic matter. Fertilization of agricultural soils
with synthetic and organic fertilizers could avert these deficiencies and maintain a good
nutrient status ensuring high crops productivity. The application of fertilizers depending
on their composition are expected to alter soil physicochemical properties to a certain
extent (i.e. pH, organic matter content, N content etc) and this is often reflected in the size

and composition of the soil and rhizospheric microbial communities.

In a meta-analysis paper Geisseler and Scow (2014) showed that long term mineral
fertilization increased microbial biomass by over 15% and this increase was a function of
a parallel increase in the organic carbon content. When the effects of inorganic fertilizers
on the soil microbial activity were explored, both positive and negative effects were
reported (Gianfreda and Ruggiero 2006; Guo et al. 2011; Nannipieri et al. 2012).
Compared to inorganic fertilizers, the application of organic amendments induced
significant alterations in the soil and rhizospheric microbial communities, and increased

soil microbial biomass (Esperschiitz et al. 2007; Lentendu et al. 2014; Marschner et al.
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2004 Lazcano et al. 2013) and microbial activity (Hoitink and Boehm 1999; Hu and Gru
1999; Malik et al. 2013; Peacock et al. 2001). This is probably a reflection of the
oligotrophic nature of soil, with microorganisms responding rapidly to the release of fresh
organic matter which could be easily assimilated and used for microbial growth
(Demoling et al. 2007). In support of this Spyrou et al. (2009) showed that soil amendment
with pulverized fruits of the Melia azedarach, which contain a mixture of limonoids with
biocidal properties, induced significant increases in the soil heterotrophic bacteria and
fungi and masked potential inhibitory effects of the bioactive compounds contained in this
material. Soil amendment with various organic materials like composted plant residues
are also effective in suppressing diseases caused by fungal pathogens (Diab et al. 2003;

Veeken et al. 2005).

Mediterranean semi-arid ecosystems support phyto-communities rich in aromatic
plants (Celiktas et al. 2007; Pintore et al. 2002; Vokou and Liotiri 1999). These produce
essential oils characterized by high in vitro antimicrobial activity against plant pathogenic
fungi, bacteria (Iscan et al. 2002; Karamanoli et al. 2000; Pintore et al. 2002; Santoyo et
al. 2005; Soylu et al. 2010; Vokou et al. 2003) and also high allelopathic activity against
weeds commonly found in Mediterranean agricultural soils like Amaranthus retroflexus,
Echinochloa cruss-gali, Portulaca oleracea (Argyropoulos et al. 2008; Vokou 1992,
1999). The antimicrobial properties of the essential oils have been associated with the
presence of isoprenoid volatile compounds (Karamanoli et al. 2000; Daferera et al. 2003;
Kalemba and Kunicka, 2003) like carvone, menthol and isomethone in the essential oils
of M. spicata and Metha piperita (Kadoglidou et al. 2011; Karamanoli et al. 2018), a-
pinene, cineol, camphor, borneol in the essential oil of R. officinalis (Cobellis et al. 2015;

Karamanoli et al. 2000, 2018), thymol and carvacrol in the essential oil of Origanum
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vulgare subsp. hirtum (orgeno) and 1,8-cineol and camphor in Salvia fructicosa (sage)

(Karamanoli et al. 2000).

These properties of aromatic plants combined with their high abundance in the
Mediterranean region gave birth to the idea of using their litter as organic soil amendment
serving a dual purpose: enriching the nutrient poor soils of the Mediterranean region with
fresh organic carbon and suppress soil-borne plant pathogens and weeds through the
release of bioactive compounds present in the essential oils. Chalkos et al., (2010) first
tested the impact of soil amendment with composted aromatic plant residues from M.
spicata (spearmint) and S. fruticosa (sage) on plant growth and soil microbiota. They
observed significant increases in the population of bacteria and fungi, inhibition of weed
emergence and a positive effect on the growth of tomato plants with the most prominent
growth promotion effect seen with spearmint. Follow up studies by Kadoglidou et al.
(2014) showed that soil amended, this time with dried plant residues of spearmint, had
increased soil bacterial population and higher growth and vigor of tomato plants compared
to sage-amended samples where no beneficial or inhibitory effect was observed. Cavalieri
and Caporali (2010) tested the essential oils of cinnamon (Cinnamomum zeylanicum L.),
lavender (Lavandula spp.) and peppermint (Mentha x piperita L.) on seed germination of
7 Mediterranean weed species (Amaranthus retroflexus L., Solanum nigrum L., Portulaca
oleracea L., Chenopodium album L., Sinapis arvensis L., Lolium spp. and Vicia sativa)
and showed high anti-germinating activity against all weeds at concentration levels of 1.8-
5.4 mg Lt under controlled conditions, whereas higher concentrations of essential oils
were required (345.6 mg L) for effective inhibition of weed germination in greenhouse

tests.
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1.4. Objectives of the thesis

In the frame of this thesis we tried to identify the main environmental and genetic factors
shaping microbial community in the phyllosphere of selected indigenous plants of the
Mediterranean landscape using amplicon sequencing of the 16S rRNA gene and the ITS
genomic region for the prokaryotic and fungal communities respectively. We assumed
that plant host and season will have a confounding effect on the assemblage of the
epiphytic microbial community, while extra plant host attributes like plant habit and their
capacity to produce essential oils with antimicrobial properties (aromatic plants) could be
an extra filtering mechanism in shaping epiphytic microbial communities in such
ecosystems. Following up on the use of aromatic plants, we explored the impact of their
utilization as soil amendments (dried plant residues) on the abundance and diversity of
functional microbial groups (i.e. ammonia-oxidizing microorganisms, sulfur-oxidizing
bacteria etc) and the whole bacterial, fungal and archaeal community using g-PCR and
amplicon sequencing approaches respectively. Our hypothesis was that aromatic plant
biomass will affect soil microbial communities, in the presence or absence of plant roots,
through essential oils release and fresh biomass addition. Finally, we studied the response
of the epiphytic microbial community of a cultivated crop (pepper) on the repeated
exposure to a biodegradable fungicide (ie. Iprodione) comparatively to the microbial
community in the soil root zone. We hypothesized that both communities will respond in
the same way to pesticide exposure resulting either in enhanced biodegradation of the
applied chemical or in toxicity to certain members of the microbial community (i.e. fungi).
To address this hypothesis we employed a pot experiment where (a) we monitored the
degradation of the pesticide applications in the two habitats with chromatographic analysis
to determine if repeated applications induced enhanced biodegradation of the pesticide in

both compartments; (ii) we determined the microbial succession in the two habitats along
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the repeated pesticide application scheme using amplicon sequencing analysis and (iii) we
isolated iprodione-degrading bacteria from both habitats and explored their taxonomic and

metabolic association. To summarize the key objectives of this thesis were

1. to identify the effects of factors like season and plant host (and plant habit or
aromatic character) on the abundance and composition of the epiphytic microbial
community in native plants of a semi-arid Mediterranean ecosystem.

2. to investigate the potential impact of aromatic plants, native to the Mediterranean
ecosystem, used as soil amendments on the soil microbial community in the
presence or absence of roots from cultivated plants.

3. to determine the comparative response of the microbial community on the plant
phyllosphere and on the soil plant root zone to successive pesticide applications
and further to identify common cues associated either with microbial toxicity or

microbial acclimation to pesticide biodegradation
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Chapter 2

Season or Plant species: Which factor shapes the
epiphytic bacterial, archaeal and fungal community in a

typical semi-arid Mediterranean ecosystem?

The work presented in Chapter 2 is included in the following article:

Katsoula A., Vasileiadis S., Karamanoli K., Vokou D., Karpouzas D.G. (2019). Season or
Plant species: Which factor shapes the epiphytic bacterial, archaeal and fungal community

in a typical semi-arid Mediterranean ecosystem?. Microbial Ecology to be submitted
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2.1. Introduction

Phyllosphere constitutes an enormous habitat for microorganisms, with an estimated size
of up to 4x108 km? (Morris et al. 2002), making it sufficiently large to have major effects
on global nutrient cycling (Delmotte et al. 2009). It is highly oligotrophic, with
heterogenic nutrient and water availability where microorganisms are challenged by
extreme environmental conditions like UV irradiation and temperature (Miiller and
Ruppel 2014; Rastogi et al. 2012). Despite that, phyllosphere is occupied by a highly
diverse microbial community (Cernava et al. 2019; Kembel et al. 2014) whose members
have evolved specific functional traits ensuring fitness in this hostile environment
(Delmotte et al. 2009; Miiller et al. 2016). In this context Helfrich et al. (2018) recently
showed that epiphytic bacteria are champions in the biosynthesis of a wealth of novel

biocidal natural products.

Plants employ filtering mechanisms to shape their epiphytic microbiota (\VVorholt
2012). This in turn affects plant traits by mediating plant responses to biotic and abiotic
stress (Ritpitakphong et al. 2016), biosynthesizing plant auxins (Taffner et al. 2019),
degrading organic pollutants (Scheublin et al. 2014) and C1 compounds (Delmotte et al.
2009). Vandenkoornhuyse et al. (2015) argued that the functional traits of the plant
microbiome should be included in an extended plant phenotype called plant holobiont,
where some key plant-host functions are outsourced to the rhizospheric, endophytic or
epiphytic microbiota. In this frame, Laforest-Lapointe et al. (2017) showed that plant
community productivity is positively related to epiphytic bacterial diversity reinforcing
the importance of the interplay between plant and phyllospheric microbes on ecosystem

functioning.

Several studies have looked into the composition of the epiphytic microbial
community. Bacteria are the main dwellers of the plant phyllosphere, followed by fungi,
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while archaea are less abundant (Vorholt 2012) but encompass important functional traits
like N assimilation, C fixation, auxin biosynthesis and oxidative response (Taffner et al.
2019). The bacterial community on the phyllosphere is dominated by Proteobacteria,
Bacteroidetes, Firmicutes and Actinobacteria (Bodenhausen et al. 2014; Durand et al.
2018; Kembel and Mueller 2014; Knief et al. 2012; Peredo and Simmons 2018; Rastogi
et al. 2012), the fungal community by Ascomycotes and Basiodiomycetes (Coince et al.
2014; Jumpponen et al. 2010; Toju et al. 2018; Yao et al. 2019), while the archaeal
community is less explored and the few studies available showed a dominance of
Euryarchaeota (i.e. Methanomicrobia) and Thaumarchaeota (i.e. Candidatus
Nitrosocosmicus and Nitrososphaera) (Knief et al. 2012; Ruiz-Pérez et al. 2016; Taffner

etal. 2018, 2019).

Plant phyllospheric microbial communities are shaped following deterministic
mechanisms with soil and air being the main reservoirs of microbial inocula (Grady et al.
2019; Wehking et al. 2018). Most studies have identified plant genotype as the main
determinant of the composition of the bacterial and fungal epiphytic community
(Bodenhausen et al. 2014; Laforest-Lapointe et al. 2016a; Sapkota et al. 2015) and have
attributed this to plant leaf functional traits (i.e. leaf thickness, leaf surface wax, trichomes
density) (Hunter et al. 2015; Kembel and Mueller 2014; Laforest-Lapointe et al. 2016b).
Geographical location (i.e. local climatic conditions) has been identified as a secondary
contributor to the variation in the composition of the epiphytic microbial communities
(Agler et al. 2016; Knief et al. 2010) with distance-decay relationships being important
for fungi but not for bacterial communities (Coleman-Derr et al. 2016). Epiphytic
microbial communities are also seasonally diverse with climatic conditions having a
profound impact on the bacterial and fungal diversity (Copeland et al. 2015; Gomes et al.

2018; Jackson and Denney 2011).
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Mediterranean  semi-arid  ecosystems constitute unique environments
characterized by alternation of cold and wet with hot and dry seasons expected to endure
a strong selection on the plant microbiome. They are dominated by non-woody shrubs and
woody evergreen sclerophyllous or seasonally dimorphic plants, with several of them
being aromatic. Previous studies in such ecosystems showed that non-woody shrubs
supported higher epiphytic bacterial populations and aromatic plants showed higher
bacterial abundance, richness and metabolic diversity (Yadav et al. 2004, 2005, 2008).
Following studies by Vokou et al. (2012) showed clear structural differences in the
epiphytic bacterial community between sclerophyllic evergreen plants (plus Myrtus
communis) and aromatic Lamiaceae plants. All the above studies used culture-dependent
or low-resolution culture-independent methods (i.e. DGGE - cloning), which, unlike
amplicon next generation sequencing methods, fail to provide an in-depth analysis of the
bacterial epiphytic diversity (Miiller and Ruppel 2014). Furthermore, little is known about
the composition of the epiphytic fungal and archaeal communities in such Mediterranean

ecosystems and the factors shaping epiphytic microbiomes.

In this context we tested the hypothesis that plant host and/or season are the key
factors shaping the epiphytic bacterial, archaeal and fungal communities of plants in a
semi-arid Mediterranean ecosystem. To verify this hypothesis we determined, via g-PCR
and amplicon sequencing analysis respectively, the abundance and the composition of the
epiphytic community of bacteria, archaea and fungi at two distinct seasons (summer vs
winter) in eight perennial plants characterized by different ecophysiological and
functional traits (woody sclerophyllous, woody semi-deciduous, non-woody, aromatic
and non-aromatic etc.), all located in the same semi-arid Mediterranean ecosystem, hence

exposed to the same climatic conditions and microbial inocula.
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2.2. Materials and Methods

2.2.1. Sampling site, plant species and seasonality

The study site is a semi-arid Mediterranean ecosystem located in Sithonia peninsula
(location Armenistis, Halkidiki, 40°9"' N, 23°54' E), Northern Greece (Supplementary
Figure S1). The climate of the region is characterized by rather mild and wet winters and
hot and dry summers (Yadav et al. 2004). We studied the phyllosphere microbial
community in eight indigenous and co-existing perennial plant species. The sampled
plants species could be categorized according to their plant traits as (a) woody evergreen
sclerophyllous like Arbutus unedo L., Myrtus communis L., Phyllirea latifolia L., Pistacia
lentiscus L., Quercus coccifera L., (b) woody, low, drought semi-deciduous like Cistus
incanus L. and Lavandula stoechas L., and (c) non-woody like M. officinalis L., found in
less arid sites of the studied ecosystem. Plants can be further categorized as aromatic like
M. communis, L. stoechas, P. lentiscus, C. incanusand M. officinalis and non-aromatic

like the rest of the plants studied (YYadav et al. 2004).

Samples were collected in July 2013 (summer season) and January 2014 (winter
season). For each sample three individual plants were randomly selected and 5 mature,
well-developed and healthy leaves per individual plant were collected. Leaves were
immediately placed in sterile plastic bags and transported on ice boxes in the laboratory

where they were stored at -20°C until further processed.

2.2.2. DNA extraction
DNA extraction from plant phyllosphere was performed as described by Moulas et al.
(2013) with slight modifications. Briefly, 1-3 g of intact fresh leaves were immersed in

sterilized ddH20, in sterilized centrifuge tubes and were subjected to sonication for 7 min
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to detach epiphytic microbial cells from the leaf surface. The leaves were removed, with
forceps and the content of the tubes was centrifuged for 15 min at 15000xg. The
supernatant was discarded, and the microbial pellet collected was used for DNA extraction
with the PowerSoil® DNA isolation kit (MoBio Laboratories, Inc., West Carlsbad, CA,
USA). The integrity of the extracted DNA was checked via agarose gel (0.8%)
electrophoresis and it was quantified using a Qubit fluorometer with a Quant-iT HS

double-stranded DNA (dsDNA) assay kit (Invitrogen, USA).

2.2.3. g-PCR analysis of the abundance of epiphytic microbial groups

We determined the abundance of total bacteria, Crenarchaea, fungi and of specific fungal
genera like Cladosporium and Alternaria, known to be major constituents of the airbone
fungal inoculum in urban, rural and semi-arid ecosystems (Grinn-Gofron et al. 2019) via
g-PCR. The abundance of total bacteria and Crenarchaea was determined using primers
Eub338 (Muyzer et al. 1993) - Eub518 (Qvreds and Torsvik 1998) and 771f-957R
(Ochsenreiter et al. 2003) respectively, amplifying the 16S rRNA gene. The abundance of
total fungi was determined using primers ITS3F and ITS4R (White et al. 1990) that
amplify the ITS2 region. The abundance of fungi belonging to the genus Cladosporium
was determined with primers Clado-SYBR-PF-Clado-SYBR-PR (Zeng et al. 2006) that
amplify a part of the mt SSU rDNA gene of most fungi belonging to this genus including
C. cladosporiodes, C. sphaerospermum, C. cucumerinum, C. oxysporum, C. elatum and
C. herbarum. Finally the abundance of fungi of the genus Alternaria were determined
with the primer pair of DirlLITSSAIt - Inv1ITSAIt (Pavon et al. 2011) that amplify the ITS
gene of most plant-associated Alternaria sp. including A. alternata, A. arborescens, A.

infectoria, A. solani, A. tennuissima etc. The sequences of the primers used, and q-PCR
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conditions are listed on Supplementary Table S1. Q-PCR reactions were carried out in a
Stratagene Mx3005P Real-Time PCR System, in a total volume of 10 uL containing 5 uL
of the KAPATag SYBR Green® PCR master mix (Kapa Biosystems, Wilmington,
Massachusetts, USA), 250 ng of BSA, 10 ng of soil DNA and 2 uM of each primer. The
abundance of each microbial group was determined with the use of standard curves
constructed using serial dilutions of linearized plasmids containing the studied genes. Q-

PCR efficiency in all cases ranged between 91 and 103%.

2.2.4. Amplicon sequencing analysis of the phyllosphere microbial community

The effects of plant host and season on the structure of the epiphytic community of
bacteria, archaea and fungi were determined with amplicon sequencing of the 16S rRNA
and ITS respectively via HiSeq lllumina Rapid Mode 2x250 bp paired-end in the DNA
Sequencing Center of the Brigham Young University, USA. Bacterial and archaeal 16S
rRNA were amplified with primers 515f-806r (Caporaso et al. 2012; Walters et al. 2015)
following the protocol of the Earth Microbiome Project (Caporaso et al. 2018). The
amplification of ITS was done with primers ITS7-1TS4 (Ihrmark et al. 2012; White et al.
1990) following the protocol described by Ihrmark et al. (2012). For all PCR amplification
the Q5® High-Fidelity DNA Polymerase (NEB, Ipswich, Massachusetts, USA) was used.
All samples were initially amplified (28 amplification cycles) using the domain-specific
primers mentioned above, followed by a PCR (7 amplification cycles) using the same
primers carrying indexes for meta-barcoding of samples. Primers sequences and PCR
conditions used in amplicon sequencing analysis are presented in Supplementary Tables

S2 and S3 respectively.
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Removal of PCR and sequencing artifacts, OTU matrix generation and taxonomic
sequence classification were performed as follows. The raw sequence data were
demultiplexed with Flexbar v3.0 (Dodt et al. 2012) and they were quality controlled with
Trimmomatic v0.32 (Bolger et al. 2014). The resulting high quality read pairs were
assembled to the amplicon of their origin in cases overlaps occurred with FLASH v1.2.8
(Magoc and Salzberg 2011) using the default parameters amended to allow a maximum
overlap of 250 bp and no mismatches between read-pairs. The remaining tasks were
carried out with the I0TUs v1.58 perl wrapper (Hildebrand et al. 2014). OTU calling at
97% identities was performed with the UPARSE v10.0.240 software (Edgar 2013).
Chimeric sequences were identified with the UCHIME v4.2 software (Edgar et al. 2011)
using the RDP Gold database vMicrobiomeutil-r20110519 for bacteria and the UNITE
ITS2 v985.20150311 reference database (Nilsson et al. 2015) for fungi, while sequence
classification was performed with Lambda v0.9.1 (Hauswedell et al. 2014) against the
Silva v128 small ribosomal subunit database (Yilmaz et al. 2014) for bacteria and the

UNITE ITS v7_99 20150302 database (Kdljalg et al. 2013) for fungi.

2.2.5. Bioinformatic and statistical analysis of data

All statistical analysis was performed with the R v3.5.2 software (R Core Team 2017). Q-
PCR data were subjected to two-way ANOVA, Tuckey HSD and Kruskal-Wallis post-
hoc tests after Nemenyi, with agricolaevl.3-1 (De Mendiburu 2019) and PMCMR
(Pohlert 2016) package respectively, to determine the effects of plant host x season and
plant type (aromatic vs non aromatic / evergreen woody / semi-deciduous woody / non-

woody) x season on the abundance of bacteria, fungi and Crenarchaea.
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The OTU matrices of bacteria, archaea and fungi obtained by amplicon sequencing
were used to assess the impact of season and plant species on the a- and B-diversity of
epiphytic microorganisms. Alpha-diversity indices like Richness (S), Inverse Simpson
(Jost 2006), Shannon, and Pielou's evenness (Pielou 1975) were calculated, using the
vegan package v2.5-3 (Oksanen et al. 2018). The data obtained were subjected to two-
way ANOVA, as described above for the g-PCR data, to determine the effect of season x
plant host. Regarding effects on the B-diversity, differential abundance (DA) tests were
employed to identify taxa and OTUs responsive to the two main factors (season and plant
host)using the Fisher’s exact test as implemented in the EdgeR package v3.24.3 (Robinson
et al. 2010) for P-values of 0.05 (adjusted according to the Benjamini-Hotchberg
algorithm (Benjamini and Hochberg 1995)). The impact of season and plant host on the
structure of the significantly affected member sub-communities (as determined by the DA
tests) of bacteria, archaea and fungi was assessed via canonical analysis as follows.
Detrended Correspondence Analysis (DCA) was performed and, depending on the first
axis length value, Canonical Correspondence Analysis (CCA) was preferred over
Redundancy Analysis (RDA), if this value was higher than 3 standard deviations (SD)
and vice versa according to a previously suggested strategy (Lep$ and Smilauer 2003).
DCA first axis values greater than 3 SD imply overall unimodal responses of community
member abundances against the environmental gradients (rendering the chi squared
distances of CCA more suitable) as opposed to lower values which imply overall linear
responses to environmental gradients (rendering the Euclidean distances of RDA more
suitable). Multivariate statistical analyses were performed using the packages Vegan v2.4-
4 (Oksanen et al. 2018), Entopart v1.4-7 (Marcon and Hérault 2015) and EdgeR v3.24.3

(Robinson et al. 2010), the latter for DA tests, of the R v3.5.2 software (R Core Team
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2017). The data were submitted to Sequence Read Archive (SRA) of NCBI with

bioproject accesion number PRINA531404.

2.3. Results

2.3.1. Effects of plant-host and season on the abundance of epiphytic
microorganisms

The sampling season had a significant main effect (p<0.05) on the epiphytic bacterial
abundance, which was significantly higher in the winter, whereas no significant effect
(p>0.05) of plant-host was observed (Fig. 1a). Within each plant significant seasonal
effects on the bacterial abundance were observed for M. communis, A. unedo and M.
officinalis. Regarding Crenarchaea (Fig. 1b) and fungi (Fig. 1c), season was the sole factor
that induced significant main effects (p<0.001) with higher abundance observed in the
summer. Within each plant significant seasonal variations were evident for the
Crenarcheal abundance in L. stoechas and M. officinalis and for the fungal abundance in
C. incanus, A. unedo, M. communis, Q. coccifera. In line with the overall fungal
community, Alternaria showed significantly higher abundance (p<0.01) in the summer,
while the plant host and its interactions with season were not significant (p>0.05) (Fig
1d). Significant seasonal variations within plants were evident for C. incanus, P. lentiscus,
Q. coccifera. Similarly, Cladosporium showed significantly higher abundance in the
summer (p<0.001), with most plants supporting higher Cladosporium numbers in the
summer vs winter (Fig. le). Plant host had a significant main effect (p<0.01) on
Cladosporium abundance with P. latifolia, showing significantly higher abundance in the

summer compared to M. officinalis, which showed the lowest Cladosporia abundance.

84

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 22:08:09 EEST - 3.145.107.127



We further explored potential differences in the abundance of epiphytic
microorganisms based on their aromatic character (aromatic vs non-aromatic) or plant
habit (woody evergreen, woody semi-deciduous, non-woody) (Supplementary Figure S2).
There were no significant differences (p>0.05) in the abundance of the studied microbial
groups between aromatic and non-aromatic plants with the sole exception of
Cladosporium sp. where significantly higher abundance was evident in the non-aromatic
plants at both seasons. Plant habit did not significantly affect (p>0.05) the abundance of
bacteria, total fungi and Alternaria but had a significant effect on the abundance of
Crenarchaea and Cladosporium. Hence a significantly higher abundance (p<0.05) of
Crenarchaea was evident in M. officinalis (non-woody) compared to evergreen and semi-
deciduous woody plants. Conversely, a significantly lower abundance (p<0.05) of

Cladosporium was evident in M. officinalis compared to evergreen plants.
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Figure 1. The abundance of bacteria (a), Crenarchaea (b), total fungi (c), Alternaria sp.

(d) and Cladosporium sp. (e) in the phyllosphere of eight plants native to a semi-arid

Mediterranean ecosystem. Capital letters above bars indicate significant differences
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between seasons in each studied plant, while lower case letters indicate significant
differences between plants within each studied season. Each bar is the mean of three

biological replicates + the standard deviation.

2.3.2. Effects of plant-host/season on the epiphytic microbial diversity

Our sequencing effort provided adequate coverage of the microbial diversity on the plant
phyllosphere as suggested by (a) the Good's coverage estimates (Supplementary Table S4)
which had values of 0.98-1.00 for bacteria, 0.92-1.00 for archaea and 0.99-1.00 for fungi
and (b) rarefaction curves which reached a plateau for all studied microbial domains

(Supplementary Fig. S3).

2.3.2.1. Effects on the a-diversity of the epiphytic microbial community

Significant seasonal effects on the a-diversity of bacteria were evident in Shannon index
and Pielou’s evenness (p<0.05) in L. stoechas, P. latifolia, M. communis and Q. coccifera
and in Simpson index in M. communis and L. stoechas (p<0.01) with consistently higher
values in the winter (Supplementary Fig. S4). Within season analysis revealed that in the
summer (i) M. communis showed significantly lower Simpson index values (p<0.05)
compared to most other plants, (ii) P. lentiscus showed significantly higher values
(p<0.05) of Richness compared to L. stoechas. Regarding archaea, we observed
significant seasonal effects (p<0.01) for Simpson and Pielou's evenness indices in P.
latifolia with higher values observed in winter. Similarly, P. latifolia showed significantly
lower values (p<0.05) of Shannon, Simpson and Pielou’s evenness indices compared to
most other plant hosts in the summer (Supplementary Fig. S4). Regarding fungi,

significantly higher values (p<0.05) for Shannon and Simpson indices were evident in the
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winter vs summer in L. stoechas, M. communis, Q. coccifera and in all plants except P.
lentiscus and C. incanus for Pielou's evenness (Supplementary Fig. S4). Similarly, C.
incanus showed significantly higher values (p<0.05) of Simpson and Pielou's evenness

compared L. stoechas in the summer.

2.3.2.2. Effects on the p-diversity of the epiphytic microbial community

The bacterial community was dominated by a-proteobacteria and KD4-96 (Chloroflexi),
whose abundance on the phyllosphere of all plants (except Q. coccifera) showed a
compensatory pattern in the different seasons; a-proteobacteria were dominant in the
winter, while KD4-96 dominated in the summer (Fig. 2a). Other bacterial taxa which were
detected consistently in the phyllosphere of the studied plants included Actinobacteria, y-
proteobacteria, Cytophagia, Bacilli and B-proteobacteria. It is worth noting that Q.
coccifera was the sole plant whose epiphytic bacterial community was seasonally stable
with a-proteobacteria dominating in both seasons and d-proteobacteria being present at
high relative abundance only in the phyllosphere of this particular plant (Supplementary
Fig. S5). The epiphytic archaeal community was dominated by the Soil Crenarchaeotic
Group (SCG) and Aenigmarchaeota. The former dominated the phyllosphere of C.
incanus, L. stoechas and M. communis and the latter the phyllosphere of A. unedo, P.
latifolia and P. lentiscus (Fig. 2b). In contrast to the bacterial community, we observed a
strong seasonal variation in the archaeal community only for Q. coccifera with SCG and
Aenigmarchaeota dominating in the summer and Methanomicrobia taking over in the
winter (Supplementary Fig. S5). The epiphytic fungal community was dominated by
Ascomycetes (orders Capnodiales, Pleosporales and Dothideales) and Basidiomycetes
(orders Tremellales, Agaricales and Rusullales). A clear seasonal shift in the fungal
community was evident in all plants with uncultured Ascomycota prevailing in the
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summer. However, their abundance was significantly reduced in the winter when
Capnodiales and Pleosporales showed increasing relative abundance (Fig 2¢). Regarding
basidiomycetes, Russulales and Agaricales showed compensatory patterns in the two
seasons, with the former being more abundant in the summer and replaced by Agaricales

in the winter (Fig. 2c, Supplementary Figure S5).
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Figure 2. Stacked barplots showing the relative abundance of the main bacterial, archaeal
and fungal taxa in the phyllosphere of the studied plants during summer and winter.

Values are means of three biological replicates separately analyzed.

Multivariate statistical tests identified significant effects of plant host and season

on the B-diversity of bacteria, archaea and fungi. RDA showed that both plant host and
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season exerted significant effects (p<0.001) on the bacterial and fungal community
explaining 37.6% (20.7 and 16.9% attributed to plant host and season respectively) (Fig.
3a) and 53.6% (28.4 and 25.2% attributed to season and plant host respectively)
respectively (Fig.3c). Regarding archaea CCA revealed that although both main factors
had a significant effect (p<0.001) on the composition of the epiphytic archaeal
community, plant host exerted a much stronger effect (19.3% of the variance) compared

to season (3.7% of the variance) (Fig. 3b).
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Figure 3. Canonical Correspondence Analysis (CCA) or redundancy analysis (RDA)

(depending on the outcome of the first axis or detrended correspondence analysis) of the
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bacterial (a), archaeal (b) and fungal (c) epiphytic community. The tested model was that
of the microbial community structure being a function of the season and plant host, with
the coefficient of determination providing the model shared variance and the p-value

indicating the null hypothesis probability (i.e. no effect).

We further explored how epiphytic microbial communities are shaped according
to plant habit (evergreen, semi-deciduous, non-woody plants) or their aromatic nature
(aromatic vs non-aromatic plants). CCA analysis revealed a clear and significant
(p<0.001, ANOVA analysis) separation (i) only of the epiphytic fungal community
between aromatic and non-aromatic plants along CCA2 (Fig. 4c), and (ii) of the bacterial,
archaeal and fungal communities between evergreen, semi-deciduous and non-woody
plants along CCA2 (Fig. 5). Apart from plant type effects, in all cases sampling season
showed a consistent and significant effect (p<0.001, ANOVA) on the composition of the

bacterial, archaeal and fungal communities (Fig. 4 and 5).
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Figure 4. Canonical Correspondence Analysis (CCA) of the bacterial (a), archaeal (b) and

fungal (c) community in aromatic and non aromatic plants during summer and winter.
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Aromatic plants: M. communis, L. stoechas, P. lentiscus, C. incanus and M. officinalis;

Non-aromatic plants: A. unedo, Q. coccifera and P. latifolia.
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Figure 5. Canonical Correspondence Analysis (CCA) of the bacterial (a), archaeal (b) and

fungal (c) community in woody evergreen, woody semi-deciduous and non-woody plants
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during summer and winter. Woody evergreen plants: A. unedo, M. communis, P. latifolia,
P. lentiscus, Q. coccifera (b) woody, semi-deciduous plants: C. incanus and L. stoechas;

Non-woody: M. officinalis

Non-Metric Multidimensional Scaling (NMDS) analysis identified key OTUs,
which were associated with particular plant - season combinations (Fig. 6). Furthermore,
a heatmap presents the relative abundance of OTUs with relative abundance higher than
2% in the different plants in the two seasons (Supplementary Fig. S6). OTU 1 belonging
to KD4-96 Chloroflexi (family Anaerolinaceae) became dominant in all studied plants in
the summer. Several other bacterial OTUs were associated with certain plants in the
summer season like (i) OTU49 belonging to proteobacteria which was associated with C.
incanus (ii) OTU22 and OTU24, both belonging to Afipia sp., which were associated with
Q. coccifera (Fig. 6a and Supplementary Fig. S6a). Conversely, several OTUs were
associated with certain plant hosts in the winter like: (i) OTUs 11 and 14 belonging to
Sphingomonas associated with the phyllosphere of C. incanus, M. officinalis and A. unedo
(if) OTUs 26 and 27 belonging to Rhizobiales associated with C. incanus and L. stoechas
(iii) OTUs 38, 41, 80 and OTU 19, all belonging to Methylobacterium, associated with
M. officinalis and Q. coccifera respectively (Fig. 6a, Supplementary Fig. S6). Regarding
archaea OTUs 1621 and 1546, belonging to Aenigmarcheota, were associated with P.
lentiscus regardless of the season and OTUs 1887 and 1987 assigned to Methanomicrobia
were associated with Q. coccifera in the winter (Fig 6b, Supplementary Fig. 6b). NMDS
analysis of the fungal community revealed that the relative abundance of OTUs 9, 26 and
28, belonging to the order Capnodiales, were favored in the winter samples collected from
C. incanus (Fig. 6c). In contrast during summer OTUs 1 and 2 belonging to Ascomycota
were dominant in all plants studied (Fig. 6¢). Furthermore OTUs 24 and 29 belonging to
the family Venturiaceae were associated with P. latifolia in the winter, while OTU 21
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belonging to Pezizomycetes, was closely associated with M. officinalis regardless of the

season (Supplementary Fig. 6).
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community structure being a function of the season (S for summer, W for winter) and the
plant host, with the coefficient of determination providing the model shared variance and
the p-value indicating the null hypothesis probability (i.e. no effect). Arrows indicate the
OTU gradients among samples as linearly regressed to the sample scores (i.e. OTUs are

more abundant in the samples of their arrow directions).

2.4. Discussion

We studied the effects of season and plant host on the abundance and diversity of bacteria,
archaea and fungi colonizing the phyllosphere of a range of perennial plants native to a
typical semi-arid Mediterranean ecosystem. Season appeared as the stronger determinant
of the abundance of both prokaryotic and eukaryotic microbial groups studied. Epiphytic
bacterial abundance was higher in winter, in line with several previous studies (Maignien
et al. 2014; Peniuelas et al. 2012; Rastogi et al. 2012). This result could be attributed to the
higher water content of the plant leaves during winter which exert a strong positive effect
on bacterial abundance in semi-arid ecosystems like the one studied (Yadav et al. 2005).
In the same ecosystem Yadav et al. (2004) showed, via plate counting, higher bacterial
counts on plant leaves during the winter season. On the contrary Crenarchaea, fungi,
Alternaria and Cladosporium exhibited a reversed seasonal pattern with higher abundance
in the summer. Inacio et al. (2002) also found, in a similar semi-arid ecosystem in Portugal
composed of Quercus, Cistus and P. lentiscus, that epiphytic fungal populations increased
gradually from March to November. Similarly, Osono and Mori (2005) noted a gradual
increase in fungal abundance on the phyllosphere of Fagus crenata as the growing season
progressed. The seasonal effect on the abundance of Crenarchaea is reported for the first
time and could be attributed to ecophysiological traits of this microbial group, which
enable them to flourish under extreme conditions (Reed et al. 2013), or exploitation of

new niches which were previously occupied by bacteria. Crenarchaeal abundance was
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folds lower compared to the bacterial abundance. Similarly Taffner et al. (2019) studied
the archaeome in phyllosphere, rhizosphere and bulk soil and reported that the former was
the habitat with the lowest functional hits. Furthermore, Thapa et al. (2017) reported a

folds lower abundance of archaea in the phyllosphere of different rice cultivars.

We did not observe a strong and consistent plant host effect on the abundance of
the epiphytic microbial communities We further explored possible effects of plant traits
like the aromatic nature and plant habit on epiphytic microbial abundance. The aromatic
nature of plants did not affect the abundance of bacteria, crenarchaea and fungi, except
Cladosporia which showed a significantly lower abundance in aromatic plants. This is not
surprising considering the well documented toxicity of essential oils produced by aromatic
plants like M. officinalis (Menezes et al. 2015, 2016) and M. communis (Kordali et al.
2016) on Cladosporium sp. On the other hand, plant habit had a more clear effect on
microbial abundance with enriched Crenarchea in M. officinalis (hon-woody plant)
compared to woody plants, in contrast to Cladosporia which showed the opposite response
(enriched in woody plants). This is probably a function of the different structural and
chemical features of the leaves in evergreen woody and non-woody shrubs; the former
characterized by thick leaves and mesophyll, low water and phosphorus contents, and
absence of trichomes compared to the latter which are characterized by high nitrogen,
phosphorus, and water contents (Yadav et al. 2005). Overall, our results contrast findings
of Yadav et al. (2005) who reported in the same ecosystem, using a plate counting
approach, a significantly higher bacterial abundance in aromatic plants and in non-woody
shrubs. This discrepancy could be attributed to the different methodological approaches
used in the two studies (g-PCR vs plate counting) and slight but significant differences in
the plants studied (Calamintha nepeta studied by Yadav et al. (2004, 2005, 2008) is a

non-woody shrub which was the second most colonized plant).
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The epiphytic bacterial community was dominated by a-proteobacteria, especially
of the orders Rhizobiales and Sphingomonadales, in line with several previous studies
(Delmotte et al. 2009; Fierer et al. 2011; Grady et al. 2019; Kembel and Mueller 2014;
Laforest-Lapointe et al. 2016b; Redford et al. 2010; Toju et al. 2018). The dominance of
bacteria of these orders, i.e. Methylobacterium sp. and Sphingomonas sp., has been
associated with key functional attributes like methanol consumption, capacity for
anoxygenic aerobic photosynthesis, utilization of organosulfonic compound, assimilation
of amino acids and dicarboxylates, increasing presence of porins for rapid transportation
of sugars and other carbon sources (Delmotte et al. 2009; Knief et al. 2012; Miiller et al.
2016), all favoring their epiphytic fitness. An interesting feature of the epiphytic bacterial
community was the strong seasonal pattern of the Chloroflexi, belonging to the family
Anaerolineaceae, which are common dwellers of the phyllosphere (Copeland et al. 2015;
Knief et al. 2012; Ottesen et al. 2016). This family encompasses obligate anaerobic
bacteria known to degrade low molecular weight alkanes (Liang et al. 2015; Savage et al.
2010), which are major components of the plant epicuticular waxes (Aragon et al. 2017).
The presence of anaerobic bacteria on the phyllosphere is not uncommon (Gargallo-
Garriga et al. 2016) and is probably associated with prevalence of oxygen limiting
conditions on micro-sites of the spatial heterogenous leaf surface supporting the

degradation of alkane components of epicuticular waxes.

The epiphytic fungal community in the studied ecosystem was dominated by
Ascomycetes and, Basidiomycetes at a lower frequency (Jumpponen et al. 2010;
Perazzolli et al. 2014). Uncultured Ascomycota dominated the plant phyllosphere in the
summer, but they were displaced partially by members of the orders Capnodiales and
Pleosporales in the winter. These orders encompass fungi belonging to Cladosporium and

Alternaria. Aureobasidium (order Dothideales) was also abundant on the phyllosphere of
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all plants at both seasons. Members of these genera are typical epiphytic fungi colonizing
the phyllosphere of all plants (Hunter et al. 2015; Jumpponen et al. 2010; Sapkota et al.

2015).

The archaeal epiphytic community on native plants of the semi-arid Mediterranean
ecosystem were colonized by SCG and Aenigmarcheota, both showing plant host
specificity. The former has been reported as dominant in the phyllosphere of Eruca sativa
(Taffner et al. 2019), while the presence of members of the new lineage of
Aenigmarchaeota on the plant phyllosphere is reported for the first time. SCG dominated
the phyllosphere of C. incanus, L. stoechas and M. communis, whereas the
Aenigmarchaeota dominated A. unedus, P. latifolia, P. lentiscus. The first plant group
encompass semi-deciduous seasonally dimorphic (C. incanus, L. stoechas) and aromatic
plants (M. communis, L. stoechas), whereas the second includes sclerophyllous evergreen
plants whose leaves exhibit different chemical and structural attributes (Yadav et al. 2005)

that might select diverse archaeal phyllospheric communities.

A unique feature of the archaeal epiphytic community was the dominance of
Methanomicrobia on the phyllosphere of Q. coccifera in the winter. Methanomicrobia
encompass anaerobic methanogenic archaea which could survive under a wide range of
environmental conditions (Taubner et al. 2015) including plant phyllosphere, where they
have been detected before (Knief et al. 2012; Taffner et al. 2018). Beyond the unique
assembly of the archaeal community, Q. coccifera supported an equally unique assembly
of bacteria which was largely stable across seasons and characterized by the consistent
presence of &-proteobacteria. This proteobacterial class encompass anaerobic sulfate-
(Desulfovibrio), sulfur- (Desulfuromonas) (Devereux et al. 1990) and iron-reducing
bacteria (i.e Anaeromixobacter), aerobic nitrite oxidizers (i.e. Nitrospira) (Koch et al.
2015) and predatory bacteria (Bdellovibrio and Mixococcus) (Im et al. 2018; Reichenbach
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1999). The presence of 3-proteobacteria on the phyllosphere has been reported before
(Bragina et al. 2012; Redford et al. 2010; Sagaram et al. 2009). Members of the genus
Bdellovibrio and the order Myxococcales participated at low relative abundance (<1%) in
the core microbiome of Quebec temperate forest (Laforest-Lapointe et al. 2016b), while
Miura et al. (2019) monitored the presence of Bdellovibrio and Anaeromixobacter on the
leaves of conventionally cultivated vines. The concurrent presence of Methanomicrobia
and o-proteobacteria suggest the prevalence of anaerobic microsites on the phyllosphere
of Q. coccifera where these microorganisms could thrive, as also suggested by Taffner et
al. (2018). Among the plants studied Q. coccifera is characterized by high thickness of
leaves and messophyl, limited availability of nutrients and water, high phenolics content
and absence of trichomes (Yadav et al. 2005). These features might promote the
development of micro-anaerobic conditions on its phyllosphere favouring the

proliferation of methanogenic archaea and anaerobic 6-proteobacteria.

Multivariate statistical analysis showed that plant genotype and season had an
equivalent contribution in shaping the epiphytic bacterial and fungal community. The
strong filtering effect of plant species on the epiphytic bacterial (Laforest-Lapointe et al.
2017a, 2017b; Redford et al. 2010; Wassermann et al. 2017) and fungal communities
(Qian et al. 2018; Sapkota et al. 2015; Yao et al. 2019) is well documented and has been
attributed to different ecological strategies, functional and chemical traits of the plant
hosts (Kembel and Mueller 2014; Laforest-Lapointe et al. 2016b). Bacterial and fungal
diversity on plant phyllosphere are dynamic in time although clear seasonal patterns are
less well studied. For example Agler et al. (2016) and Laforest-Lapointe et al. (2016b)
identified sampling time as the less significant variable in shaping the epiphytic bacterial
and fungal community in Arabidopsis and in five plants in a temperate forest respectively.

These studies looked at the temporal dynamics of the epiphytic communities at a rather
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short scale (90 d), in contrast to our study which determined seasonal effects on two
distinct seasons with clearly contrasting climatic conditions, hence expected to maginfy
possible effects on the epiphytic bacterial and fungal communities. Similarly, Gomes et
al. (2018) observed a strong seasonal effect on the composition of the epiphytic fungal
community on olives (Spring vs Autumn), and Jackson and Denney (2011) reported
distinct seasonal patterns on the epiphytic bacterial community of Magnolia grandiflora

plants with August samples carrying the most diverse community.

When plant traits were explored as a further mechanism shaping epiphytic
microbial communities in this Mediterranean ecosystem, we observed that the plants
aromatic nature exerted a significant effect only on the epiphytic fungal community. The
potential effects of essential oils produced by aromatic plants on epiphytic fungi might be
a plausible explanation for these results. Essential oils are known to exert high in vitro
toxicity to bacteria and fungi (Hammer et al. 1999; Kadoglidou et al. 2011), although in
situ their antimicrobial activity is less pronounced. Previous studies have suggested that
essential oils could shift microbial balance in soil from fungi to bacteria (Vokou et al.
1984), in line with the selective effect of aromatic plants on the composition of the
epiphytic fungal community. However further studies, this time focusing on the
phyllosphere of aromatic plants are required to shed light into the filtering mechanism on
epiphytic fungi. On the other hand, plant habit exerted a strong effect on the composition
of all microbial communities grouping to evergreen, semi-deciduous and non-woody
plants. Our findings are in agreement with Vokou et al. (2012) who observed, in the same
ecosystem using DGGE analysis,a grouping of the epiphytic bacterial communites based

on plant habit but not according to their aromatic character.

We further identified bacteria and fungi associated with certain plant hosts and
seasons. Methylobacteria, Rhizobiales and Sphingomonas, all constituting typical
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epiphytic bacteria (Delmotte et al. 2009; Grady et al. 2019; Knief et al. 2012; Ryffel et al.
2015) were negatively associated with the phyllosphere of woody semi-decidous (C.
incanus, L. stoechas), M. officinalis and Q. coccifera in the summer. In line with our
findings Aydogan et al. (2018) observed a reduction in the abundance of Sphingomonas
and Rhizobium on the phyllosphere of the herbaceous plant Gallium album upon exposure
to warming conditions simulating a climate change scenario. Regarding fungi, we noticed
an enrichment of Capnodiales in C. incanus during the winter season. Capnodiales
encompass typical epiphytic fungi like Cladosporium sp., Toxicocladosporium sp. which
exhibit tolerance to environmental conditions commonly encountered on the plant
phyllosphere like high solar irradiation, osmotic stress and fluctuating water availability
(Egidi et al. 2014), hence their epiphytic fitness (Qian et al. 2018). Gomes et al. (2018)
also reported a strong seasonal pattern in the composition of epiphytic fungi on olive

leaves with Davidiellaceae (i.e. Cladosporium) dominating in the spring.

In contrast to the the bacterial and fungal communities, plant host was the main
determinant of the archaeal epiphytic community with season having a much weaker
effect. Little is known regarding the factors shaping the archaeal epiphytic community. In
a pioneering study Taffner et al. (2019) suggested that archaea are habitat-specific
colonizers with their communities differing between phyllosphere, rhizosphere and bare
soil, whereas the effect of plant-host has not been studied in a consistent manner. We
provide first evidence that the archaeal epiphytic community is driven storngly by the

plant host and less by seasonal variation in the studied Mediterranean ecosystem.
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2.5. Conclusions

Semi-arid Mediterranean ecosystems support a unique plant community encompassing
woody evergreen and semi-deciduous shrubs and non woody species with variable
chemical and functional attributes, which are exposed to contrasting climatic conditions
(summer vs winter). We report here that the native plants on these ecosystems support
diverse bacterial, fungal and archaeal communities on their phyllosphere whose
abundance vary seasonally, and their composition is shaped by both the plant host and the
season, with the exception of archaea whose epiphytic community showed strong plant
host patterns. Plant habit was a stronger determinant of the composition of the epiphytic
microbial communities compared to plants aromatic character. Q. coccifera was the sole
plant that exhibited strong filtering effects supporting a quite distinct bacterial and
archaeal community with limited seasonal fluctuations for the former and large seasonal
variations in the latter microbial domain. Our study provides the first comprehensive and
in-depth analysis of the factors shaping the epiphytic prokaryotic and fungal communities

in a semi-arid Mediterranean ecosystem.
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2.7. Supplementary Data

Chapter 2 - Season or Plant species: Which factor shapes the epiphytic bacterial,
archaeal and fungal community in a typical semi-arid Mediterranean ecosystem?

Supplementary Fig. S1. The location and a view of the studied ecosystem
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Supplementary Fig. S2. The abundance of epiphytic bacteria (a and b), Crenarchaea (c
and d), total fungi (e and f), Alternaria sp. (g and h) and Cladosporium sp. (i and j) in the
studied plants grouped according to their aromatic character (aromatic vs non-aromatic)
and plant habit (evergreen woody, semi-deciduous woody, non woody). Capital letters
above bars indicate significant differences between seasons in each studied plant group,
while lower case letters indicate significant differences between plant groups within each
season. Each bar is the mean of three replicates + the standard deviation.
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Supplementary Fig. S3. Rarefaction curves denoting the diversity coverage obtained by
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community

116

Institutional Repository - Library & Information Centre - University of Thessaly

09/06/2024 22:08:09 EEST - 3.145.107.127



Bacteria

Shannon W Summer ® Winter

7
[ A A A
A b f e
s B B, I
4
B B
| I I
2
1
0
EA A A N
& . o8 & bf & &
~ - & o &
e Simpson
A A
1 a . - a_ s 3o &
BabE ab aE
08
06
04
02
0
& & P @ & & & &
& & o“? \.3?6‘ é“’b 6&*“’ o Q\e‘g
F o v < & & F
Richness
1400

258 5B
o 8 88 8 8 8
I

¥
8
%4
" —
"
=—
.
_
%
5
g
/_-""
"

& & @ @ & &
o o & € &
& & & & & e
B o A < o & <
S o &>
5 F:e\ous eveness
09 A
08 ] B
0.7 I.
0.6 B B
B8
05
0.4
03
0.2
01
o
’ 3 o & & @ &
& & £ ¥ ﬁ °° &
& « & & & &
& o w q\ ‘_n & o
~ & o &

Archaea
Shannon m Summer ® Winter
25
a
[ ab I
2
15 ] al
ab
1 I
s
0
Gd?w? G“o @ &\e
S o
V &
A [* o . ",_o D_:. o8
1 Simpson
09 3 a
a
i f I ab A -[ I i & b
0.7 abl 1 1
06 ab
05
04 Bb,
03
0.2
01
o
é}@» Ch@)ﬁ b&so sﬁ}@ &L& 6‘(\0@« 5\“@ c“&
o « \ & e &
N 2 s Q ¥ & o o
" Richness
18
16
14 ]
12 I
10 _ -
s -
6
4
2
0
e o 2 e o &
& A LI
o <« I & & & & &
o (” 2 % o oF &
o L

Fungi
. Shannon WSummer M Winter
pod
s A 'i l I [
I
B
8 B
| I I I |
1
o
3 & > 5 & & & &
ey S ¢ & & & &
& &8 & & e
~ « Al Q- vkc. o Ks
1.20E+00 Simpson
A A A A
1.00E+00 a ab - ~ 2
=] = abz ab
Bd I Bap Bab  Bab)
B.00E-01
6.00E-01
4.00E-01
2.00€-01
0.00E+00
& & o & b & &
P A A A A
o &8 A & & &
e AR
8.00E+02 Richness

7.00E402
6.00E+02 l I

5.00E+02 & I
4.00E+02
3.00E+02 [
2.00E+02 [
1.00E+02 I
0.00E+00
S t

o » » i
7.00E-01 I I I 1
Bab

Supplementary Fig. S4. The impact of season and plant-host on the a-diversity indices Shannon, Simpson, Richness and Pielou’s evenness
calculated for bacteria, archaea and fungi in the phyllosphere of the studied plants. Significant seasonal effects within each plant are denoted with

capital letters, whereas significant plant host effect within each season are denoted with lower case letters (level of significance <0.05).

Institutional Repository - Library & Information Centre - University of Thessaly

09/06/2024 22:08:09 EEST - 3.145.107.127

117



Bacteria

Archaea

Taxa
. Soil Crenarchaeotic Group SCG
. uncl. Aenigmarchaeota
. uncl. Archaea
|8 wmethanomicrobia
1 8 tremopiasmata
. uncl. Woesearchaeota DHVEG 6
B oters

Fungi Taxa
|I|IIIIIII|II||I =
Supplementary Fig. S5. Stacked barplots showing the relative abundance (RA) of the

8] Ewotiomycetes
.erloomcees

main bacterial, archaeal and fungal taxa in the phyllosphere of each studied plant in

summer and winter.

Taxa

. Aphaproteobacteria
B woass

. uncl. Protecbacteria
. Actincbacteria

. ‘Gammaprotecbacteria
B oromaia

. Bacili

. Betaproteobacteria
. uncl. Bacteria
. Delaprotecbacteria

8] omes

% of
@ ~ 3
3 B 2

»
&

A

@ ~ =]
=} o S

% of RA

N
1]

0

1

=]
3

~
a

B reemenomycetes
8 urct Fungi

. Sordariomycetes
B cestomycetes
. Lecanoromycetes
B v sasigomycota

|8 othess

% of RA
8

w
&

o

Winter
Winter

Summer
Summer

A _unedo_L._:
A._unedo_L._Winter
C._incanus__L._Winter
_sloechas L
L._stoechas_L._Winter
_communis_L
M__officinalis_L._Winter
P._latfolia_L._Summer
P._latifolia_L._Winter
_lentiscus_L_Summer
P_lentiscus_L.
Q._cocdfera_L._Winter

C_incanus__L._Summer
P,

M._communis_L._Summer
M__officinalis_L._Summer
Q._coccifera_L._Summer

M.

L

118

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 22:08:09 EEST - 3.145.107.127



Bacteria Archaea Fungi

OTU_1 uncl 4 83

OTU_102 Paracoccus 1187 uncl. uncit archaeon 10
_109 Mucilaginibacter 1222 uncl. uncit archaeon 39 5

OTU_11 Sphingomonas 10 1508 Candidatus Nitrososphaera

1546 uncl. Aenigmarchaeota
1575 uncl. Archaea

1597 uncl. Archaea S
1621 uncl. Aenigmarchaeola
1887 uncl. Methanomicrobia

OTU_120 Pseudomonas 1981 uncl. uncit archaeon 1

OTU_123 und. Protecbacteria

OTU_124 Erwinia 1987 uncl. Methanomicrobia
128 undl. Alphaproteobacteria 0 2017 uncl. uncit archaeon
OTU_ 14 Sphingomonas 2036 uncl. uncit archaeon
OTU_22 Afipia 2055 uncl. Archaea )
OTU_24 Afipia 2256 Candidatus Nitrososphaera

OTU_26 uncultured organism
OTU_27 uncultured organism
OTU_30 Methylocelia
OTU_31 uncl. Proteobacteria
OTU_33 Methylocella
OTU_34 uncultured organism
OTU_36 uncl. Proteobacteria
OTU_37 uncultured organism
OTU_38 Methylobacterium
OTU_41 Methylobacterium
OTU_42 Pseudomonas
OTU_48 Pseudomonas
OTU_49 uncl. Proteobacteria
OTU_50 uncl, Aiphaprotecbacteria
OTU_54 Varbvorax

247 uncl. uncit archaeon
2530 unclt archaeon
2664 uncl. uncit archaeon
2797 uncl. Archaea

2837 uncl. uncit archaeon
3042 uncit archaeon
3055 uncl. uncit archaeon
3175 uncl. uncit archaeon
3299 uncl. Archaea [HEE
335 uncl. uncit crenarchaeote i OTU_43 uncl. Chaetothyriales
3522 uncl. uncit archaeon I 07U 44 unci. Herpotrichieliacene
3552 Candidatus Nitrososphaera + . 246 wndl,

3620 uncl. uncit archaeon
3662 uncl. Methanomicrobla
3815 uncl. uncit archaeon
3817 uncl. uncit archaeon
387 uncl. uncit archaeon
3972 uncl. uncit archaeon
431 uncl. uncit archaeon OTU_76 uncl. Montagnulaceae
4627 uncl. Archaea OTU_B Aureobasidium

582 uncl. Archaea

63 und. Aenigmarchaeota
705 uncl. uncit archaeon
992 uncl. Aenigmarchaeota

OTU_80 Methylobacterium
OTU_85 Streptococcus

OTU_88 uncl, Aiphaprotecbactera
OTU_91 uncl, Gracilibacteria
OTU_84 Pantoea

e s 1
_225“ siBE-“E E E [ 22 E, _E 5 OTU_98 uncl. Chaetotyriales
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Supplementary Figure S6. Heatmaps presenting the dominant bacterial, archaeal and fungal OTUs (relative abundance (RA) >2%) and
their association with plant hosts in the different seasons. The data are clustered in log10 scale and the legend scaling represents the
percentage of RA. Asterisks indicate OTUs that showed higher than 5% RA.
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Supplementary Table S1. Primers and conditions used for gq-PCR determination of the abundance of bacteria, Crenarchaea, fungi,
Cladosporium and Alternaria.

2 In all cases a melting curve of 95°C for 1 min, 60°C for 30 sec and a final step of 95°C for 30 sec was implemented to evaluate the
specificity of the product formed.

Microbial Primers Gene Amplicon Primers sequences (5°-3°) Thermocycling

Group target size (bp) conditions?

Bacteria 338f-518r 16S 180 ACTCCTACGGGAGGCAGCAG Initial denaturation at
rRNA ATTACCGCGGCTGCTGG 95°C for 3 min,

denaturation at 95°C
for 15 sec, and
annealing at 62°C for

20 sec (35 cycles)
Crenarchaea 771f-957R 16S 186 ACGGTGAGGGATGAAAGCT Initial denaturation at
rRNA CGGCGTTGACTCCATTG 95°C for 3 min,

denaturation at 95°C
for 3 sec, annealing at
55°C for 30 sec and
an 120xtension at
72°C for 11 sec (35

cycles)
Fungi ITS3F-ITS4R ITS 336 GCATCGATGAAGAACGCAGC Initial denaturation at
TCCTCCGCTTATTGATATGC 95°C for 3 min,

denaturation at 95°C
for 3 sec, annealing at
53°C for 20 sec and
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an 121xtension at
72°C for 11 sec (36
cycles)

Cladosporium Clado-SYBR-PF  mtSSU 110 TACTCCAATGGTTCTAATATTTTCCTCTC Initial denaturation at
— Clado-SYBR- rRNA GGGTACTCAGACAGTATTTCTAGCCT 95°C for 3 min,

PR denaturation at 95°C

for 15 sec, annealing

at 68°C for 30 sec and

an 121xtension at

72°C for 11 sec (40

cycles)
Alternaria DirlITSSAIt- ITS 370 CGACTTGTGCTGCGCTC Initial denaturation at
Inv1ITSAIlt TGTCTTTTGCGTACTTCTTGTTTCCT 95°C for 3 min,

denaturation at 95°C
for 10 sec, annealing
at 60°C for 1 min (35
cycles)
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Supplementary Table S2. The primers used in the current study. BO0O0X-515f and FIO00X-1TS4r are indexed primers used in the second
amplification step which are composed of the sequence of the universal primers 515f (bacteria, archaea) and ITS4r (fungi) (bold), the
indexes used for samples barcoding (underlined) and a TT sequence at the 5’ end of each primer.

Primers

Sequence (5°-3)

Gene target Fragment Length (bp) Reference

Bacteria and Archaea

515f

806r

B0001-515f
B0002-515f
B0003-515f
B0004-515f
B0005-515f
B0006-515f
B0007-515f
B0008-515f
B0009-515f
B0010-515f
B0011-515f
B0012-515f
B0013-515f
B0014-515f
B0015-515f
B0016-515f
B0017-515f
B0018-515f
B0019-515f
B0020-515f

GTGYCAGCMGCCGCGGTAA
GGACTACNVGGGTWTCTAAT
TTCTTCTTCGTGTGYCAGCMGCCGCGGTAA
TTCTCAATGGTGTGYCAGCMGCCGCGGTAA
TTCAGTTCAGTGTGYCAGCMGCCGCGGTAA
TTCGAATCAGTGTGYCAGCMGCCGCGGTAA
TTGTCAGGTGTGTGYCAGCMGCCGCGGTAA
TTGAAGTTCGTGTGYCAGCMGCCGCGGTAA
TTGCAACAAGTGTGYCAGCMGCCGCGGTAA
TTGGACGACGTGTGYCAGCMGCCGCGGTAA
TTCTTCAAGGTGTGYCAGCMGCCGCGGTAA
TTCTCAGAAGTGTGYCAGCMGCCGCGGTAA
TTCAGTAAGGTGTGYCAGCMGCCGCGGTAA
TTCGACAATGTGTGYCAGCMGCCGCGGTAA
TTGTCGATAGTGTGYCAGCMGCCGCGGTAA
TTGAAGGAAGTGTGYCAGCMGCCGCGGTAA
TTGCAGTATGTGTGYCAGCMGCCGCGGTAA
TATATCAGGGTGTGYCAGCMGCCGCGGTAA
TTCTTGTCAGTGTGYCAGCMGCCGCGGTAA
TTCATATGGGTGTGYCAGCMGCCGCGGTAA
TTCAGACTTGTGTGYCAGCMGCCGCGGTAA
TTCGAGCACGTGTGYCAGCMGCCGCGGTAA
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B0021-515f
B0022-515f
B0023-515f
B0024-515f
B0025-515f
B0026-515f
B0027-515f
B0028-515f
B0029-515f
B0030-515f
B0031-515f
B0032-515f
B0033-515f
B0034-515f
B0035-515f
B0036-515f
B0037-515f
B0038-515f
B0039-515f
B0040-515f
B0041-515f
B0042-515f
B0043-515f
B0044-515f
B0045-515f
B0046-515f
B0047-515f
B0048-515f

TTGTGTATCGTGTGYCAGCMGCCGCGGTAA
TTGACTATGGTGTGYCAGCMGCCGCGGTAA
TTGCCTAGTGTGTGYCAGCMGCCGCGGTAA
TATATCGTCGTGTGYCAGCMGCCGCGGTAA
TTCTTGAGTGTGTGYCAGCMGCCGCGGTAA
TTCATAGTCGTGTGYCAGCMGCCGCGGTAA
TTCAGAGGAGTGTGYCAGCMGCCGCGGTAA
TTGTTCAGAGTGTGYCAGCMGCCGCGGTAA
TTGTGTGAAGTGTGYCAGCMGCCGCGGTAA
TTGACGTGAGTGTGYCAGCMGCCGCGGTAA
TTGCCTCACGTGTGYCAGCMGCCGCGGTAA
TATATGCACGTGTGYCAGCMGCCGCGGTAA
TTCTTGGACGTGTGYCAGCMGCCGCGGTAA
TTCATCACAGTGTGYCAGCMGCCGCGGTAA
TTCAGCAGTGTGTGYCAGCMGCCGCGGTAA
TTGTTCGTTGTGTGYCAGCMGCCGCGGTAA
TTGTGACTAGTGTGYCAGCMGCCGCGGTAA
TTGACGAATGTGTGYCAGCMGCCGCGGTAA
TTGCCAATCGTGTGYCAGCMGCCGCGGTAA
TATAACGAGGTGTGYCAGCMGCCGCGGTAA
TTCTATAGGGTGTGYCAGCMGCCGCGGTAA
TTCATCGATGTGTGYCAGCMGCCGCGGTAA
TTCAGCCAAGTGTGYCAGCMGCCGCGGTAA
TTGTTGTAGGTGTGYCAGCMGCCGCGGTAA
TTGTGCAATGTGTGYCAGCMGCCGCGGTAA
TTGAGTTGGGTGTGYCAGCMGCCGCGGTAA
TTGCCAGAGGTGTGYCAGCMGCCGCGGTAA
TATAAGTGGGTGTGYCAGCMGCCGCGGTAA
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B0049-515f

TTCTATCTCGTGTGYCAGCMGCCGCGGTAA

Fungi

ITS7f

ITS4r

FI0001-1TS4r
F10002-1TS4r
F10003-1TS4r
F10004-1TS4r
F10005-1TS4r
F10006-1TS4r
F10007-1TS4r
F10008-1TS4r
F10009-1TS4r
F10010-1TS4r
F10011-1TS4r
F10012-1TS4r
F10013-1TS4r
F10014-1TS4r
F10015-1TS4r
F10016-1TS4r
F10017-1TS4r
F10018-1TS4r
F10019-1TS4r
F10020-1TS4r
F10021-1TS4r
F10022-1TS4r
F10023-1TS4r

GTGARTCATCGAATCTTTG
TCCTCCGCTTATTGATATGC
TTAACCTTGGATCCTCCGCTTATTGATATGC
TTAACCGAAGATCCTCCGCTTATTGATATGC
TTAACGACAGATCCTCCGCTTATTGATATGC
TTACTTACGGATCCTCCGCTTATTGATATGC
TTACTTGTCGATCCTCCGCTTATTGATATGC
TTACTAGAGGATCCTCCGCTTATTGATATGC
TTACTCTGAGATCCTCCGCTTATTGATATGC
TTACTCCTTGATCCTCCGCTTATTGATATGC
TTACTGGCAGATCCTCCGCTTATTGATATGC
TTACATTGCGATCCTCCGCTTATTGATATGC
TTACAGTAGGATCCTCCGCTTATTGATATGC
TTACAGGTTGATCCTCCGCTTATTGATATGC
TTACCTAACGATCCTCCGCTTATTGATATGC
TTACCTCTAGATCCTCCGCTTATTGATATGC
TTACCTGGTGATCCTCCGCTTATTGATATGC
TTACCATCGGATCCTCCGCTTATTGATATGC
TTACCGTTCGATCCTCCGCTTATTGATATGC
TTACGTCAGGATCCTCCGCTTATTGATATGC
TTACGATACGATCCTCCGCTTATTGATATGC
TTACGACCAGATCCTCCGCTTATTGATATGC
TTACGCCGCGATCCTCCGCTTATTGATATGC
TTACGCGTAGATCCTCCGCTTATTGATATGC
TTAGTTCTGGATCCTCCGCTTATTGATATGC
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F10024-1TS4r
F10025-1TS4r
F10026-1TS4r
F10027-1TS4r
F10028-1TS4r
F10029-1TS4r
F10030-1TS4r
F10031-1TS4r
F10032-1TS4r
F10033-1TS4r
F10034-1TS4r
F10035-1TS4r
F10036-1TS4r
F10037-1TS4r
F10038-1TS4r
F10039-1TS4r
F10040-1TS4r
F10041-1TS4r
F10042-1TS4r
F10043-1TS4r
F10044-1TS4r
F10045-1TS4r
F10046-1TS4r
F10047-1TS4r
F10048-1TS4r
F10049-1TS4r

TTAGTTGGAGATCCTCCGCTTATTGATATGC
TTAGTAACCGATCCTCCGCTTATTGATATGC
TTAGTACGTGATCCTCCGCTTATTGATATGC
TTAGATCCTGATCCTCCGCTTATTGATATGC
TTAGATGAGGATCCTCCGCTTATTGATATGC
TTAGACTACGATCCTCCGCTTATTGATATGC
TTAGACATGGATCCTCCGCTTATTGATATGC
TTAGAGTCAGATCCTCCGCTTATTGATATGC
TTAGCAGATGATCCTCCGCTTATTGATATGC
TTAGCCTGTGATCCTCCGCTTATTGATATGC
TTAGGTACAGATCCTCCGCTTATTGATATGC
TTAGGCGCCGATCCTCCGCTTATTGATATGC
TTCTTATGGGATCCTCCGCTTATTGATATGC
TTCTTACTCGATCCTCCGCTTATTGATATGC
TTCTTAGCAGATCCTCCGCTTATTGATATGC
TTCTTCAGTGATCCTCCGCTTATTGATATGC
TTCTTCGACGATCCTCCGCTTATTGATATGC
TTCTTGAAGGATCCTCCGCTTATTGATATGC
TTCTTGGTTGATCCTCCGCTTATTGATATGC
TTCTATTCCGATCCTCCGCTTATTGATATGC
TTCTATAGGGATCCTCCGCTTATTGATATGC
TTCTAACAGGATCCTCCGCTTATTGATATGC
TTCTACCGAGATCCTCCGCTTATTGATATGC
TTCTAGTTGGATCCTCCGCTTATTGATATGC
TTCTAGCCTGATCCTCCGCTTATTGATATGC
TTCTAGGAAGATCCTCCGCTTATTGATATGC
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Supplementary Table S3. PCR reagents and thermocycling conditions used for amplicon sequencing analysis.

PCR reaction

Concentra

Reagents Volume (pl) tions Comments

Primer F 1 0.5 uM

Primer R 1 0.5 uM

BSA 0.4 0.4 pg/ul Added only in the first amplification step

Polymerase Q5 (2x

Ma)s/terMix) el 10 1x

ddH20 5.6

DNA 2 0.2 ng/ul

Total 20

PCR conditions

Step Temperature (°C) Time Number of Cycles

Initial Denaturation 98 30 sec

Denaturation 98 10 sec . . e . .

Annealing 50 for bacteria/ 55 for fungi 30 sec 28 in the f|r_s¥ ampllflcatlon step / 7 in the
) second amplification step

Extension 72 30 sec

Final extension 72 10 min
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Supplementary Table S4. Goods coverage estimation for each sample analysed via HiSeq
Illumina next generation sequencing.

Samples Bacteria Archaea Fungi
Lavandula stoechas Summer_Repl 0.99 1.00 1.00
Lavandula stoechas Summer_Rep2 1.00 0.90 1.00
Lavandula stoechas Summer_Rep3 1.00 0.94 1.00
Lavandula stoechas Winter_Repl  1.00 1.00 1.00
Lavandula stoechas Winter_Rep2  0.99 0.95 0.99
Lavandula stoechas Winter_Rep3  1.00 0.99 1.00

Cistus incanus Summer_Repl 1.00 1.00 1.00
Cistus incanus Summer_Rep2 0.99 0.98 1.00
Cistus incanus Summer_Rep3 0.99 0.99 1.00
Cistus incanus Winter_Repl 0.99 1.00 0.99
Cistus incanus Winter_Rep2 0.99 1.00 0.99
Cistus incanus Winter_Rep3 0.99 0.95 1.00
Arbutus unedo Summer_Repl 0.99 0.98 0.99
Arbutus unedo Summer_Rep2 0.99 0.99 0.99
Arbutus unedo Summer_Rep3 1.00 0.92 1.00
Arbutus unedo Winter_Repl 1.00 0.96 1.00
Arbutus unedo Winter_Rep2 1.00 1.00 1.00
Arbutus unedo Winter_Rep3 0.99 0.98 1.00

Phylirea latifolia Summer_Repl 0.99 1.00 1.00
Phylirea latifolia Summer_Rep2 1.00 0.99 1.00
Phylirea latifolia Summer_Rep3 1.00 1.00 0.99
Phylirea latifolia Winter_Repl 0.99 0.99 1.00
Phylirea latifolia Winter_Rep2 0.99 0.98 1.00
Phylirea latifolia Winter_Rep3 1.00 0.99 1.00
Pistacia lentiscus Summer_Repl 0.99 0.94 0.99
Pistacia lentiscus Summer_Rep2 1.00 0.96 0.99
Pistacia lentiscus Summer_Rep3 0.99 0.98 0.99
Pistacia lentiscus Winter_Repl 0.98 0.97 0.99
Pistacia lentiscus Winter_Rep?2 0.99 0.97 0.99
Pistacia lentiscus Winter_Rep3 0.99 0.98 0.99
Myrtus communis Summer_Repl  1.00 0.99 1.00
Myrtus communis Summer_Rep2 1.00 0.97 1.00
Myrtus communis Summer_Rep3 1.00 0.96 0.99
Myrtus communis Winter_Repl 0.99 0.99 0.99
Myrtus communis Winter_Repl 0.98 0.99 0.99
Myrtus communis Winter_Repl 1.00 0.99 1.00
Quercus coccifera Summer_Repl  1.00 0.98 0.99
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Quercus coccifera Summer_Rep2
Quercus coccifera Summer_Rep3
Quercus coccifera Winter_Repl
Quercus coccifera Winter_Rep2
Quercus coccifera Winter_Rep3
Melissa officinalis Summer_Repl
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Chapter 3

The impact of soil amendment with peppermint, spearmint
and rosemary on the abundance and diversity of the soil

microbiota

The work presented in Chapter 3 is included in the following article:
Katsoula A., Vasileiadis S., Karamanoli K., Vokou D., Karpouzas D.G. (2019). The impact of

soil amendment with peppermint, spearmint and rosemary on the abundance and diversity of

the soil microbiota. To be submitted.
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3.1. Introduction

Application of organic amendments derived from various sources, including crop residues
(Nguyen et al. 2016), biosolids (Paramashivam et al. 2017; Sanchez-Monedero et al. 2004) and
agro-industrial wastes (Negassa et al. 2011), is a common strategy to improve soil productivity,
especially in organic farming where synthetic fertilizers cannot be used. This practice increases
soil organic matter and nutrient concentrations and under certain conditions could augment the
capacity of soils to suppress plant pathogens (Diab et al. 2003; Veeken et al. 2005) and weeds
(Efthimiadou et al. 2012). In addition to all these, soil organic amendments impose strong
alterations on the soil microbiota leading to significant increases in microbial biomass and
activity (Peacock et al. 2001; Hu and Gru 1999; Malik et al. 2013; Lazcano et al. 2013),
attributed to the release of copious amounts of easily assimilated C sources in soil (Demoling

et al. 2007).

Previous studies have proposed the use of residues of aromatic plants indigenous to the
Mediterranean region as soil amendments to increase soil fertility and control soil-borne plant
pathogens (Chalkos et al. 2010) and weeds (Cavalieri and Caporali 2010). The latter is
attributed to the capacity of these plants to produce essential oils exhibiting high biological
activity against several soil plant pathogenic fungi, bacteria (Iscan et al. 2002; Soylu et al.
2010), and weeds (Argyropoulos et al. 2008). Essential oils are a blend of low-molecular
weight isoprenoid compounds with oxygenated molecules exhibiting higher anti-germinating
and anti-microbial activity compared to hydrocarbons (Vokou et al. 2003). Despite that, both
stimulatory and inhibitory effect on soil microbial respiration and soil microbial biomass were
evident when essential oils or their individual constituents were applied in soils (Mifiambres et
al. 2010; Vokou et al. 1984, 2002; Vokou and Liotiri 1999). Similarly, amendment of soil with

131

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 22:08:09 EEST - 3.145.107.127



plant residues of various aromatic plants resulted in contrasting effects depending on the
aromatic plant used (Chalkos et al. 2010; Hassiotis and Dina 2010; Kadoglidou et al. 2014).

Rosemarinus officinalis (rosemary), Mentha spicata (spearmint) and Mentha piperita
(peppermint) are all members of the Lamiaceae family, indigenous aromatic plants in
Mediterranean ecosystems, which are rich in essential oils. These exert a multifaceted
bioactivity stemming from their highly diverse chemical composition (Karamanoli et al. 2018).
The main constituents of the essential oil of spearmint and peppermint are carvone and menthol
(Kadoglidou et al. 2011; Radaelli et al. 2016), while 1,8-cineol and camphor are the major
components of the essential oil of rosemary (Karamanoli et al. 2000, 2018; Radaelli et al.
2016). The essential oil of spearmint exhibits antifungal activity (Adam et al. 1998; Kadoglidou
et al. 2011) and the essential oil of rosemary has been shown to exert strong antimicrobial
(Gachkar et al. 2007; Pintore et al. 2002), bacteriostatic (Karamanoli et al. 2000) and antifungal
activity (Santoyo et al. 2005). Little is known regarding the effects of soil amendment with leaf
litter of these aromatic plants on the soil microbiota. Initially Chalkos et al. (2010) reported a
beneficial effect of soil amendment with composted residues of spearmint on the bacterial and
fungal biomass and on tomato plants growth and similar results were observed by Kadoglidou

et al. (2014), this time using non composted plant material.

The main aim of this study was to explore the effects of soil amendment with residues
of spearmint, peppermint and rosemary, selected based on the different chemical composition
of their essential oils, on the soil microbial community using g-PCR. We determined the
abundance of important bacterial taxa, crenarchaea, fungi and key functional microbial groups
like ammonia-oxidizing microorganisms (AOM), sulfur-oxidizing bacteria (SOB) and bacteria
involved in the catabolism of biogenic and xenobiotic aromatic compounds in soil. In this
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context we further explored the hypothesis that the presence of tomato plant roots will offset,
through the supply of C- and N-rich root exudates (Broeckling et al. 2008; Steinauer et al.
2016), any effects of essential oil constituents on the soil microbial community. Based on the
initial findings we further explored the impact of rosemary plant residues, in the presence or
absence of tomato plants, on the diversity of bacteria, archaea and fungi using amplicon

sequencing analysis of the 16S rRNA and ITS respectively.

3.2. Materials and Methods

3.2.1. Plants, Soil and Soil Amendments

Peppermint, spearmint and rosemary plants were purchased from a commercial supplier. For
peppermint and spearmint, the whole aboveground biomass was used, whereas for rosemary
only the leafy upper part of the shoots. Plant material was cut into small pieces, air-dried in the
dark to a moisture content of 5-7%, and stored in the dark at 12 °C until use. A commercially
available organic fertilizer produced by decomposed organic matter (Bio-Humus) was used in
the pot experiment. The physicochemical characteristics of the soil amendments used are

shown in Table 1.

Table 1. The physicochemical properties of the soil amendments used in the study

Soil Organic Total N C/N P K Mg
Amendments  Matter (%) (%)

(mggh)  (nogh) (ugg™)

Organic 41.5+0.25 1.05+0.01 22.96+0.66 127.6+7.8 10.8+0.3 12.9+0.6

amendment

Spearmint 31.5+0.5 0.31+0.02 58.38+2.98 52.9+0.6 22.9+0.5 24.4+0.2
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Peppermint 33.5+0.5 0.31+0.03 61.78+0.43 65.0+0.5 23.5+1.1 26.6+1.1

Rosemary 13.5+0.5 0.08+0.01 104.49+4.66 39.4+0.5 10.0+0.2 11.8+0.6

The soil used for the pot experiment was a silty clay loam (32% clay, 56% silt, 12%
sand), with pH 7.8 and an organic matter content of 3.1%, obtained from a field left in fallow
for a 10-year period. A detailed analysis of its physicochemical properties is given by

Kadoglidou et al. (2014) (Supplementary Table S1).

3.2.2. Pot experiment

A pot experiment was employed in March 2014 to assess the effects of soil amendment with
residues of different aromatic plants on the soil microbial community. Sixty plastic pots (2 kg)
were separated into five groups of 12 pots each. The first three sets of pots were filled with a
mixture of soil with 4% (w/w) of residues of peppermint, spearmint and rosemary respectively.
The fourth set of pots was filled with a mixture of soil with a portion of a commercial organic
fertilizer which equals to the N and P offered by the aromatic plant residues. This treatment
served as a comparative treatment to the plant residue amendment treatments but without
essential oils. The final 12 pots were filled with soil without any amendment to serve as non-
amended controls. Six pots from each treatment were seeded with 10-15 tomato seeds
(Solanum lycopersicum, cv EZ NOAM) which were thinned to four upon emergence. All pots
were watered daily, and they were maintained at ambient temperature (16-24°C) and 45-60%
humidity. To summarize there were 5 soil amendment treatments (spearmint (Ms), peppermint

(Mp), rosemary (Ro), organic fertilizer (A) and non-amended (C), by two sampling times (30
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and 60 days), by two planting treatments (tomato or no tomato plants), by three replicates per
combination. Thirty days later the three seeded pots and three non-seeded pots per treatment
were harvested (plants were removed) and the soil of the pots was homogenized and used for
DNA extraction and downstream measurements as described below. From the six remaining
pots per treatment, three were seeded again with tomato as described before and the other three
were left unseeded and incubated as described above. Thirty days later (60 days from the start
of the experiment) all pots were harvested, and the soil was used for DNA extraction and

downstream activities as described below.

3.2.3. Soil DNA extraction

Upon collection soil samples were homogenized and immediately stored at -20°C until
processed for DNA extraction. This was performed from 0.5 g of soil (dry weight) with the
PowerSoil® DNA isolation kit (MoBio Laboratories, Inc., West Carlsbad, CA, USA)
according to the manufacturer’s instruction. The integrity of the extracted DNA was checked
via agarose gel (0.8%) electrophoresis and it was quantified using a Qubit fluorometer with a

Quant-iT HS double-stranded DNA (dsDNA) assay kit (Invitrogen, USA).

3.2.4. Determination of the abundance of selected microbial groups via q-PCR

We determined the abundance of key soil microbial taxa including total bacteria, a-, B-, v-
Proteobacteria, Actinobacteria, Firmicutes, Crenarchaea, and total fungi via g-PCR. In all cases

the 16S rRNA was used a target gene for the quantification of bacterial and Crenarchaeal

135

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 22:08:09 EEST - 3.145.107.127



abundance, while the ITS region was used for the determination of fungal abundance. The

primers and thermocycling conditions used are given in Supplementary Table S2.

We further determined the abundance of key functional microbial groups in soil having
a key role in N, C and S cycling. In this respect we determined the abundance of the amoA
gene of ammonia-oxidizing bacteria (AOB) and archaea (AOA), the soxB gene of sulfur-
oxidizing bacteria (SOB) and the pcaH and catA genes encoding protocatechuate dioxygenase
and 1,2-catechol dioxygenase respectively, involved in the degradation of biogenic aromatic
molecules in soil. All primers and thermocycling conditions used are shown in Supplementary

Table S3.

All g-PCR measurements were performed in a Stratagene Mx3005P Real-Time PCR
System. Reactions volume was 10 pL containing 5 pL of the KAPATag SYBR Green® PCR
master mix (Kapa Biosystems, Wilmington, Massachusetts, USA), 0.2 ul of each primer
(except 0.1 pl for AOM and 0.5 pl for fungi and catA) (20 uM), 0.2 ul of BSA (400 uM) and
1 ul of soil DNA (0.2-10 ng depending on the target group) and sterilized ddH>O to the final
volume. The abundance of each microbial group was determined with the use of standard
curves constructed using serial dilutions of linearized plasmids containing the studied genes.

PCR efficiency in all cases ranged between 82 and 102%.

3.2.5. Amplicon sequencing analysis of the soil microbial community
The effects of rosemary soil amendment, in the presence or absence of tomato plants, on the
community of bacteria, archaea and fungi was determined by amplicon sequencing analysis of

the 16S rRNA and ITS respectively via HiSeq Illumina Rapid Mode 2x250 bp paired-end in
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the DNA Sequencing Center Department of Biology of the Brigham Young University, USA.
Bacterial and Archaeal 16S rRNA were amplified with primers 515f-806r (290 bp) (Caporaso
et al. 2012; Walters et al. 2015) following the protocol of the Earth Microbiome Project
(Caporaso et al. 2018). The amplification of ITS was done with primers ITS7-ITS4 (310 bp)
(White et al. 1990; Ihrmark et al. 2012) following the protocol described by lhrmark et al.
(2012). All samples were initially amplified (28 amplification cycles) using the domain-
specific primers mentioned above, followed by a semi-nested PCR (7 amplification cycles)
using primers carrying indexes for meta-barcoding of samples. The PCR reaction volume was
20 pl composed of 1 pl of each primer (0.5 uM), 0.4 ul of BSA (400 ng pl™) only in the first
PCR step, 10 ul of Q5® High-Fidelity DNA Polymerase master mix (NEB, Ipswich,
Massachusetts, USA), 2 pl of template DNA (0.2 ng pl™) and 5.6 pl of sterilized ddH-O.

Primers sequences and PCR conditions are presented in Supplementary Table S4.

Removal of PCR and sequencing artifacts, OTU matrix generation and taxonomic
sequence classification were performed as follows. The raw sequence data were demultiplexed
to their samples of origin with Flexbar v3.0 (Dodt et al. 2012) and they were quality controlled
with Trimmomatic v0.32 (Bolger et al. 2014). The resulting high quality read pairs were
assembled to the amplicon of their origin with FLASH v1.2.8 (Magoc and Salzberg 2011) using
the default parameters amended to allow a maximum overlap of 250 bp and no mismatches
between read-pairs. The remaining tasks were carried out with the IOTUs v1.58 perl wrapper
(Hildebrand et al. 2014). OTU calling at 97% identities was performed with the UPARSE
v10.0.240 software (Edgar 2013). Chimeric sequences were identified with the UCHIME v4.2
software (Edgar et al. 2011) using the RDP Gold database vMicrobiomeutil-r20110519 for
bacteria and the UNITE ITS2 v985.20150311 reference database (Nilsson et al. 2015) for
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fungi, while sequence classification was performed with Lambda v0.9.1 (Hauswedell et al.
2014) against the Silva v128 small ribosomal subunit database (Yilmaz et al. 2014) for bacteria

and the UNITE ITS v7_99 20150302 database (Koljalg et al. 2013) for fungi.

3.2.6. Statistical analysis

3.2.6.1. Statistical analysis of g-PCR and relative abundance data

The g-PCR and relative abundance data (as derived by the amplicon sequencing analysis) were
analyzed by MANOVA to determine the effects of soil amendment, plant and sampling time.
Depending on the outcome of the MANOVA, we further focused on the interactions of soil
amendment with plant and/or soil amendment with sampling time, where significant
differences were identified by ANOVA and posthoc tests. All analyses were performed with

the SPSS Statistics 21 software (IBM corporation, New York, U.S.)

3.2.6.2. Statistical analysis of microbial diversity data

The OTU matrices of bacteria, archaea and fungi were used to assess the impact of rosemary
soil amendment, in the presence or not of tomato plants, on the a- and p-diversity. The effects
on the a-diversity were determined via calculation of diversity indices like richness (S), Fisher
Alpha, Inverse Simpson (Jost 2006), Shannon, and Pielou's evenness (Pielou 1975). The data
obtained from soil, were subjected separately to two-way ANOVA and post-hoc tests to
determine the impact of soil treatment, tomato plant and sampling time on the a-diversity of

bacteria, archaea and fungi.
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We further assessed the effects of rosemary soil amendment in the presence or absence
of tomato plants on the B-diversity of bacteria, fungi and archaea. Hence, differential
abundance (DA) tests performed with the Fisher’s exact test as implemented in the EdgeR
package v3.24.3 (Robinson et al. 2010) for P-values of 0.05 as adjusted according to the
Benjamini-Hotchberg algorithm (Benjamini and Hochberg 1995) were employed to identify
taxa and OTUs responsive to the soil different soil treatments. The impact of soil amendment,
tomato plant and sampling time on the structures of the significantly affected member sub-
communities (as determined by the DA tests) of bacteria, archaea and fungi was assessed via
canonical analysis as follows. Detrended Correspondence Analysis (DCA) was performed and,
depending on the first axis length value, Canonical Correspondence Analysis (CCA) was
preferred over Redundancy Analysis (RDA), if this value was higher than 3 standard deviations
(SD) according to a previously suggested strategy (Leps$ and Smilauer 2003). DCA first axis
values greater than 3 SD imply overall unimodal responses of community member abundances
against the environmental gradients (rendering the chi squared distances of CCA more suitable)
as opposed to lower values which imply overall linear responses to environmental gradients
(rendering the Euclidean distances of RDA more suitable). All the statistical processing of
amplicon sequencing data was performed with the R v3.5.2 software (R Core Team 2017) and
the packages Vegan and ggplot2. The data were submitted to Sequence Read Archive (SRA)

of NCBI with bioproject accesion No PRINA556152.
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3.3. Results

3.3.1. Effects of the different soil amendment on the abundance of key microbial taxa

MANOVA showed that tomato plant and soil amendment treatments and their interactions
imposed significant main effects (p<0.001) on the abundance of a-proteobacteria, while
significant interactions between these two factors were also observed (p<0.001)
(Supplementary Table S5). Regardless of sampling time and in the absence of tomato plants,
peppermint, spearmint and the organic fertilizer induced a significant increase in the abundance
of a-proteobacteria compared to the non-amended soil (Fig 1a). This pattern was differentiated
in the presence of tomato plants where soil amendment with rosemary induced a significant
increase in the abundance of a-proteobacteria (p<0.05) compared to the unamended samples.
Time-wise, the significant stimulatory effect of peppermint on the abundance of a-
proteobacteria at 30 days (p<0.05) was not maintained at 60 days where rosemary seemed to
impose a significant increase in the abundance of a-proteobacteria always compared to the non-

amended controls (Supplementary Fig. S1a).

Regarding p-proteobacteria, MANOVA showed that all main factors (plant, soil
amendment, time) (p<0.001) and their interactions (p<0.05) had a significant effect on their
abundance (Supplementary Table S5). Regardless of time, in the absence of tomato plants soil
amendment with peppermint and spearmint significantly increased the abundance of B-
proteobacteria compared to the control. Similarly, to a-proteobacteria, this pattern changed in
the presence of tomato plants where soil amendment with peppermint, and rosemary, showed
a significantly higher abundance of PB-proteobacteria compared to the control (Fig. 1b).
Furthermore, we observed a significantly higher abundance of B-proteobacteria (p<0.05) in the

rosemary-amended samples in the presence of tomato compared to the samples with no tomato
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plants. (Fig. 1b). Regarding temporal changes, the significant increase in the abundance of -

proteobacteria in the peppermint and rosemary amended samples at 30 days was still visible

and extended to spearmint amended samples at 60 days (Supplementary Fig. S1Db).
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Figure 1. The abundance of a-proteobacteria (a), B-proteobacteria (b), y-proteobacteria (c),

actinobacteria (d), firmicutes (e), total bacteria (f), Crenarchaea (g) and total fungi (h) in soil

samples amended with an organic fertilizer (A) or plant residues of peppermint (Mp), rosemary

(Ro), spearmint (Ms) and in non-amended plants. Each value is the mean of three replicates

with error bars representing the standard deviation of the mean. Within plant treatment bars

designated by the same lower-case letter are not significantly different (p<0.05). Whereas
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within each amendment treatment bars designated by the same capital letter are not

significantly different (p<0.05).

Regarding y-proteobacteria, MANOVA showed that plant and soil amendment had a
significant main effect (p<0.001) on their abundance with all main factors’ interactions being
also significant (p<0.05) (Supplementary Table S5). We noticed that in the absence of tomato
plants, and regardless of the sampling time, spearmint and peppermint induced a significant
increase in the abundance of y-proteobacteria (Fig. 1c). In contrast, in the presence of tomato
plants we observed a significant increase in the abundance of y-proteobacteria in the rosemary-
amended samples compared to the non-amended samples and the samples amended with the
organic fertilizer, but also compared to the corresponding rosemary amended samples in the
absence of tomato (Fig 1c). Regarding temporal patterns, we observed an increase in the
abundance of y-proteobacteria in the samples amended with the three aromatic plants compared
to the control and the samples amended with the commercial organic fertilizer (Supplementary

Fig. 1c)

Soil amendment (p<0.001) and sampling time (p<0.05) were the only main factors that
induced significant effects on the abundance of actinobacteria, while significant interactions
were evident only between plant x time (p<0.05) (Supplementary Table S5). Regarding soil
amendment main effect, we noticed a significantly higher abundance of actinobacteria in the
spearmint, peppermint and organic fertilizer amended samples compared to the unamended
samples and the rosemary amended samples (Fig 1d). Significantly higher abundance of
actinobacteria (p<0.05) was evident at peppermint and spearmint amended samples at 30 days

(Supplementary Fig. S1d). This stimulatory effect extended to the organic fertilizer amended
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samples at 60 days. Regarding firmicutes, significant main effects of soil amendment (p<0.05)
and time (p<0.05) on the abundance of firmicutes were observed, whereas there were no

significant interactions between main factors (Fig. 1e)

We further looked in the abundance of total bacteria, crenarchaea and fungi. Significant
main effects on the abundance of total bacteria were induced only by soil amendment
(p<0.001), while significant interactions (p<0.05) were only observed between plant and time
(Supplementary Table S5). Regardless of time no significant effects of soil amendment on the
abundance of total bacteria in the presence or absence of tomato plants were observed (Fig. 1f).
On the temporal basis, rosemary soil amendment induced a significant (p<0.05) increase in the
abundance of total bacteria compared to peppermint and the non-amended samples, whereas

this effect did not persist at day 60 (Supplementary Fig. S1f).

Regarding Crenarchaea soil amendment was the sole main factor that had a significant
effect (p<0.001) on their abundance, while significant interactions between plant and soil
amendment (p<0.05) and between soil amendment and time (p<0.05) were observed
(Supplementary Table S5). Regardless of sampling time and in the absence of tomato plants,
we observed a significant increase in the abundance of Crenarchaea in soils amended with
peppermint, spearmint and the organic fertilizer compared to the non-amended soil (Fig. 19).
This effect was cancelled in the presence of tomato plants and no significant differences in the
abundance of Crenarchaea between the different soil treatments were observed. Instead we
noted a significant increase in the abundance of Crenarchaea in the rosemary amended samples
and the non-amended samples in the presence of tomato plants vs non planted samples (Fig
1g). When the interactions between time and treatment were explored, we observed a

significantly higher abundance of Crenarchaea in samples amended with the organic fertilizer
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compared to the peppermint amended and the non-amended samples only at 30 days

(Supplementary Fig. 1g).

Regarding fungi, all main factors and their interactions had a significant effect on their
abundance except the interaction between treatment x time (Supplementary Table S5).
Regardless of time and in the absence of plants soil amendment with peppermint, spearmint
and rosemary showed a higher fungal abundance compared to the non-amended samples (Fig
1h). In contrast in the presence of tomato plants only rosemary and peppermint amended
samples supported a significantly higher abundance of fungi compared to the non-amended
controls. When the interactions between time and treatment were investigated, the amendment
of soil with all three aromatic plants induced a significant increase (p<0.05) in the abundance
of soil fungi at 30 days, a stimulatory effect which persisted only in the rosemary amended

samples at 60 days (Supplementary Fig. 1h).

3.3.2. Effects of the different soil amendments on the abundance of key functional
microbial groups

Soil amendment was the sole main factor than induced significant effects on the abundance of
AOA (p<0.001), while significant interactions between plant and soil amendment (p<0.05) and
between soil amendment and sampling time (p<0.05) were observed (Supplementary Table
S5). In the absence of tomato plants soil amendment with the organic fertilizer significantly
increased the abundance of AOA compared to the non-amended samples and the samples
amended with spearmint, whereas in the presence of tomato plants the stimulatory effect of the

organic fertilizer on the abundance of AOA was extended to rosemary-amended samples which
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also showed significantly higher abundance of AOA compared to the non-amended samples
(Fig. 2a). The significant positive effect of the organic fertilizer and rosemary compared to the
non-amended samples was observed at 30 days and remained significant only in the samples
amended with the organic fertilizer at 60 days (Supplementary Fig. 2a). Regarding AOB, we
observed a significant main effect only of time (p<0.001) with higher AOB abundance
observed at 30 compared to 60 days (Supplementary Table S5). The abundance of SOB was
significantly affected by soil amendment (p<0.001), time (p<0.001) and their interactions
(p<0.05). Regardless of time and plant presence, soil amendment with peppermint, spearmint
and the organic fertilizer showed a significantly higher abundance of SOB compare to the non-
amended samples, which did not differ from the rosemary amended. We observed a significant
increase in the abundance of SOB with time in the samples amended with spearmint,
peppermint and the organic fertilizer but not in soils amended with rosemary which were not

significantly different from the control at both times (Supplementary Fig. S2c).
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Figure 2. The abundance of ammonia-oxidizing archaea (AOA) (a), ammonia-oxidizing
bacteria (AOB) (b), sulfur-oxidizing bacteria (SOB) (c) and of bacteria carrying genes pcaH
(d) and catA (e) involved in the degradation of aromatic molecules in soil samples amended
with an organic fertilizer (A) or plant residues of peppermint (Mp), rosemary (Ro), spearmint
(Ms) and in non-amended plants (C). Each value is the mean of three replicates with error bars
representing the standard deviation of the mean. Within plant treatment bars designated by the
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same lower-case letter are not significantly different (p<0.05). Whereas within each
amendment treatment bars designated by the same capital letter are not significantly different
(p<0.05).

The abundance of pcaH was significantly affected by soil amendment (p<0.05), while
significant interactions between plant and soil amendment (p< 0.001) were also observed
(Supplementary Table S5). In the absence of tomato plants, we observed a significantly higher
abundance of pcaH in the samples amended with peppermint and the organic fertilizer
compared to the non-amended samples, while the peppermint amended samples showed
significantly higher abundance compared to the rosemary amended samples (Fig. 2d). This was
reversed in the presence of tomato plants where the peppermint amended samples showed a
significantly lower abundance compared to the corresponding samples in the absence of tomato
plants but also to the samples amended with the organic fertilizer and rosemary (Fig 2d).
Regardless of the presence of tomato plants, we observed a significant decrease in the
abundance of pcaH in the rosemary amended samples from 30 to 60 days (Supplementary Fig.
S2d). Finally, soil amendment (p<0.001) and time (p<0.001) induced significant main effects
on the abundance of catA genes but no significant interactions between the main factors were
observed (Supplementary Table S5, Fig. 2e). When temporal changes in the abundance of catA
genes were explored, we observed a significantly higher abundance of catA in the peppermint
and spearmint samples compared to the non-amended samples, a result which was maintained

at 60 days only for peppermint (Supplementary Fig. S2e).
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3.3.3. Effects of rosemary soil amendment, in the presence or absence of tomato plants,
on the composition of the soil microbial community

Based on the abundance data, which indicated a clear beneficial effect of tomato plants on
several of the microbial groups studied (proteobacteria, fungi, Crenarchaea) in the rosemary-
amended samples, we further explored this interaction at the microbial diversity level using
amplicon sequencing. An overall view of the composition of the soil microbial community and
changes occurring at the order or class level in the relative abundance of bacteria, archaea and
fungi is given in Figure 3. The soil bacterial community is composed of a-Proteobacteria,
Actinobacteria, with classes Thermoleophilia and Rubrobacteria dominating, y-proteobacteria,
bacilli and B-proteobacteria (Fig. 3a). A-proteobacteria showed a significantly higher relative
abundance (p<0.05) in the rosemary-amended samples at both sampling days showing a
compensatory effect with Actinobacteria of the classes Rubrobacteria and Thermoleophilia,
both significantly decreasing (p<0.05) in the rosemary amended samples. On the contrary, -
and y- proteobacteria are favored (p<0.05) in the soils amended with rosemary, the latter only
at 60 days. Bacilli showed significantly higher abundance (p<0.05) in the non-amended
samples in the absence of tomato plants at 60 days respectively, whereas Sphingobacteria
showed a significantly higher abundance (p<0.01) in the rosemary-amended samples at 60 days
regardless of the presence of tomato plant. The archaeal soil community was dominated by
members of the Soil Crenarchaeotic Group (SCG), while Thermoplasmata appear only in the

non-amended samples in the absence of tomato plants (Fig. 3b).
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rosemary plant residues or non-amended and collected at 30 and 60 days. Values are the mean
of three biological replicates processed and analyzed separately.

The fungal community is dominated by Ascomycota belonging to Sordariomycetes
(orders Hypocreales, Sordariales, Xylariales) and Dothideomycetes (order Pleosporales),
while Basiodiomycota become main members of the community in the samples treated with
rosemary due to the dominance of Cantharellales and Atheliales (only in the absence of tomato
plants), both belonging to Agaricomycetes (Fig. 3c). This significant increase (p<0.01) in the
abundance of Cantharellales in the rosemary amended samples was accompanied by (i) a
significant decrease (p<0.01) in the relative abundance of Sordariales and (ii) a significant

increase (p<0.05) in the relative abundance of Xylariales.

3.3.4. Effects of rosemary soil amendment, in the presence or absence of tomato plants,
on the a- and B-diversity of soil bacteria, archaea and fungi

Overall our sequencing effort provided adequate coverage of the microbial diversity on all
samples analyzed as suggested by the rarefaction curves which reached a plateau for all studied
microbial domains (Supplementary Fig. S4). The OTU matrix obtained was used to calculate
different a-diversity indices for the treatments employed. Overall we did not observe
significant effects of the different factors (tomato, soil amendment and interactions) on the a-
diversity of bacteria and archaea with the only exception being the significantly higher values
of Fishers alpha in the presence of tomato between rosemary-amended and non-amended
samples at 60 days (Supplementary Fig. S4). In contrast, the different treatments had a larger

overall effect on the a-diversity of fungi with significantly lower values of Simpsons and
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Shannon indices in the rosemary-amended samples in the absence of tomato compared with
the non-amended samples at 60 days. Similarly, a significant lower value of Piclou’s evenness
were observed in the rosemary amended samples regardless of the presence of tomato plants
compared to the non-amended samples in the absence of tomato at 60 days (Supplementary

Figure S5).

Regarding the effects of the main factors on the B-diversity of the different microbial
communities, RDA revealed that soil amendment (p<0.001) and sampling time (p<0.05) had a
significant effect on the bacterial community explaining 63.1 and 19.6% of the variance
respectively (Fig. 4a). Regarding archaea, RDA showed that only soil amendment (p<0.01)
had a significant effect on their community composition explaining 52.8% of the variance.
Finally, CCA analysis of the fungal community revealed a significant effect of soil amendment
(p<0.001) and time (p<0.05) explaining 48.6 and 27.7% of the variance respectively. The
presence of plant did not have a significant effect in the composition of any of the microbial

domains studied (p>0.05).
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community structure (bacterial/fungal/archaeal) being a function of the soil treatment, plant
presence and sampling time, with the coefficient of determination providing the model shared

variance and the p-value indicating the null hypothesis probability (i.e. no effect).

Further Non Metric Multidimensional Scaling (NMDS) analysis of the bacterial
community revealed that OTUs belonging to Rubrobacter (OTUs 3 and 20), Solirubrobacter
(OTUs 4 and 13), Agromyces (OTU 11), Blastococcus (OTU 7) and Microcoleus (OTUs 6 and
8) were thriving in the non-amended soil samples, the latter particularly at 60 days in the
presence of tomato plants. Whereas OTU 24 belonging to Xanthomonas was favored in the
rosemary amended soil samples (Fig. 5a, Supplementary Figure S5). NMDS analysis for
archaea did not reveal a clear association between soil treatments and OTUs of SCG and
Candidatus Nitrososphaera (Fig. 5b). Regarding fungi, we identified OTUs belonging to
Ascomycota (OTUs 1 and 2), Agaricomycetes (OTUs 36 and 40) and Nectriaceae (OTUs 13
and 14) that are favored in the non-amended soil samples. In contrast OTUs belonging to
Cantharellales (genus Minimedusa, OTUs 5 and 6) and Atheliaceae (genus Athelia, OTUs 27
and 33) were found to thrive in the soil amended with rosemary (Fig. 5c, Supplementary Fig.

S5).
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presence and sampling time, with the coefficient of determination providing the model shared
variance and the p-value indicating the null hypothesis probability (i.e. no effect). Arrows
indicate the OTU gradients among samples as linearly regressed to the sample scores (i.e.

OTUs are more abundant in the samples of their arrow directions).

3.4. Discussion

Soil amendment with aromatic plants, native to the Mediterranean region, could be a useful
mean to enrich the poor soils of the Mediterranean basin with fresh organic carbon and at the
same time impose a potential suppressive effect on soil plant pathogens through the release of
the bioactive constituents of essential oils produced by these aromatic plants (Kadoglidou et
al. 2014). In our study the amendment of soil with dried plant residues of such aromatic plants
induced strong effects on the abundance of the different soil microbial groups with the direction
of the effects depending largely on the aromatic plants used and the presence of tomato plant.
Soil amendment with peppermint, and spearmint induced significant increases in the
abundance of a-, - and y-proteobacteria in the absence of tomato plants. This is in accordance
with the copiotrophic nature of members of these bacterial sub-classes which grow rapidly in
carbon-rich environments (Fierer et al. 2007; Francioli et al. 2016). Whereas, no equivalent
increases in the abundance of proteobacteria were evident in the samples amended with the
organic fertilizer suggesting that the growth of proteobacteria upon soil amendment with mints
could not be entirely attributed to the addition of large amounts of fresh and decomposable
organic matter. Other constituents of the aromatic plants like mono-terpenes, exerting
antimicrobial activities (Daferera et al. 2003; Iscan et al. 2002; Kadoglidou et al. 2011), might
contribute to the proliferation of proteobacteria, in line with the involvement of members of

these classes in the biodegradation of carvone, menthol (Marmulla and Harder 2014) and cineol
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(Hawkes et al. 2002) in soil. Previous studies have also demonstrated a stimulatory effect of
spearmint soil amendment on microbial abundance using plate counting approaches (Chalkos
et al. 2010; Kadoglidou et al. 2014), which fail to differentiate between different microbial
classes and provide a partial picture of the soil microbial abundance (Yarza et al. 2014). This
is the first study to report on the effects of soil amendment with aromatic plants on individual

microbial classes using advanced molecular tools.

In contrast to peppermint and spearmint, soil amendment with rosemary did not induce
a significant increase in the abundance of a-, -, y-proteobacteria in the absence of tomato
plants. Rosemary produces essential oils with different composition compared to peppermint
and spearmint (cineol, camphor, a- and B-pinene are its major components) (Jiang et al. 2011),
a feature that might dictate the different response of the microbial community to rosemary
amendment. A further support to the differential effects of rosemary soil amendment on
microbial abundance is provided by parallel measurements of the concentrations of the
components of the essential oils in the soil samples amended with the different plant material
(Karamanoli et al. 2018). The major components of the rosemary essential oils (i.e. cineol,
camphor, a- and p-pinene) showed little if any degradation in the 60 days of the study. Whereas
the components of the essential oils of peppermint (menthol, isomenthone) and spearmint
(carvone, menthol, isomenthone) were degraded to levels up to 90% by the end of the study.
The rapid degradation of the components of the essential oils of mints in soil explains the
significant increases in the abundance of B-proteobacteria, Crenarchaea, AOA and SOB at 60
days. In accordance we did observe a reverse pattern in rosemary-amended samples, composed
of persistent monterpenoids, with significantly lower abundance of Actinobacteria, AOB and
pcaH-carrying bacteria at 60 days.
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The response of the soil microbial community to rosemary amendment drastically
changed in the presence of tomato plants which appear to stimulate a significant increase in the
abundance of a-, B-, y-proteobacteria and fungi. This beneficial interaction of tomato plants
with rosemary soil amendment was evident despite a phytotoxicity effect that tomato plantlets
suffered in the rosemary-amended soil during the course of the study of (Technical Report
ARISTEIA Il project ESEPMINENT). It is widely known that plants could exert a strong
filtering effect in their root zone through production of a cocktail of compounds including
sugars, amino acids, low molecular weight organic acids and polysaccharides, collectively
called rhizodeposits, which favor the proliferation of copiotrophic microorganisms (Philippot
et al. 2013). We speculate that the plant, most probably through its root exudates, provides
extra carbon sources to support the growth and proliferation of proteobacteria and fungi, hence
counterbalancing potential inhibitory effects driven by the rosemary plant material essential oil

to the soil microbiota.

We also examined the impact of different soil amendments on key functional microbial
groups involved in C, N and S cycling. Soil amendment induced variable responses by the
AOA which were stimulated by the organic fertilizer and rosemary, characterized by the
highest and the lowest total N content amongst the materials studied, respectively (Table 1).
On the other hand, we did not observe any clear effect of the different treatments on the
abundance of AOB. The positive effect of certain soil amendments on AOA and not on AOB
could be attributed to the proposed mixotrophic nature of the former (Qin et al. 2014). Previous
studies have also reported variable response of ammonia-oxidizing microorganisms to soil
amendments depending on the nature of the material added to the soil (Chen et al. 2008; Xue
et al. 2016). Wessén et al. (2010) showed that AOA were more responsive to the different soil
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amendments and increased in abundance upon straw amendment in soil, compared to AOB
whose abundance was little affected by the different treatments. Similarly, AOA were benefited
numerically by the addition of labile organic carbon in the form of glucose in soil, whereas
AOB were not responsive (Wang et al. 2015). The response of AOA and AOB to the different
treatments cannot explain the significantly lower concentration of nitrates in the soil amended
with rosemary compared to all the other treatments (Appendix Figure 1). This discrepancy
might be associated with the limitations of DNA-based approaches to enumerate AOA and
AOB compared to RNA-based approaches which have been proven more sensitive in

identifying inhibitory effects of stressors to AOM (Papadopoulou et al. 2016).

Soil amendment with spearmint, peppermint and the organic fertilizer stimulated SOB
compared to rosemary and the non-amended samples at both sampling dates. This could be
explained by the release of readily oxidizable sulfur substrates by the specific soil amendments,
although these data are not available in the current study. Little is known about the response of
SOB to soil organic amendments, although they appear sensitive to abiotic stressors like
pesticides (Karas et al. 2018), endocrine disrupting substances (Van Ginkel et al. 2010) and
metals (Oh et al. 2011). We further assessed the effect of soil organic amendments on the
abundance of bacteria carrying pcaH and catA genes encoding key enzymes of the B-
ketoadipate pathway being a major route of biogenic and xenobiotic aromatic compounds in
soil (Harwood and Parales 1996). These genes are widespread in soil bacteria (ElI Azhari et al.
2008) and have been proposed as indicators of the genetic potential of the soil microbiota for
organic C decomposition and C cycling (El Azhari et al. 2010, 2012). We observed contrasting
patterns in the response of pcaH and catA-carrying bacteria. The former were stimulated by
soil amendment with organic fertilizer and peppermint in the absence of tomato plants, while
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no response of catA-carrying bacteria was observed. Amendment of soil with fresh organic
matter releases large amounts of biogenic phenolic compounds (Marwati et al. 2003) which
triggered the proliferation of bacteria carrying pcaH involved in the degradation of such
compounds. In line with our findings, previous studies have observed significant increases in
the abundance of pcaH-carrying bacteria in soil amended for a period of 19 years with sewage
sludge (El Azhari et al. 2012) and pesticides like fenhexamide (Borzi et al. 2007). The lack of
similar response by catA-carrying bacteria might be a function of the type of biogenic aromatic

compounds released in soil by the amendments.

The beneficial effects of rosemary soil amendment on the abundance of proteobacteria
and fungi in the presence of tomato plants, led us to further explore these complex interactions
using amplicon sequencing analysis. Soil amendment was the factor having the strongest effect
on the composition of all the studied microbial domains with time effects being marginally
significant for bacteria and fungi. This time we did not observe a significant effect of plant on
the composition of the microbial community, in contrast to its effect in the abundance of
proteobacteria and fungi in rosemary-amended samples. This is not surprising considering that
the g-PCR data focus on the abundance of certain microbial taxa compared to amplicon
sequencing which gives a broad picture of potential effects which might obscure effects of
plants on specific microbial groups. Similarly, with the abundance data we observed a
significant increase in the abundance of a-, - and y-proteobacteria upon soil amendment with
rosemary with OTUs belonging to Xanthomonas driving this effect for y-proteobacteria.
Members of the genus Xanthomonas are known as degraders of xenobiotic organic compounds
like pesticides (Rayu et al. 2017) and antibiotics (Thelusmond et al. 2016), hence their
involvement in the degradation of aromatic compounds and monoterpenes released upon soil
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amendment with rosemary cannot be ruled out. On the other hand, we observed a significant
decrease in the relative abundance of Actinobacteria driven by OTUs belonging to
Solirubrobacter, Rubrobacter, Agromyces and Blastococcus. Members of these genera are
ubiquitous in non-disturbed and pristine soils (Castro et al. 2019; Lee et al. 2011; Liao et al.
2019), while their functional and ecological role in soil seems to be associated with the
degradation of xylose (i.e. Agromyces) (Pepe-Ranney et al. 2016) and of biogenic organic

compounds (i.e. Blastococcus) (Wang et al. 2018).

Regarding fungal community, soil amendment with rosemary induced a striking
beneficial effect on OTUs of the order Cantharellales, assigned to the genus Minimedusa.
Members of Minimedusa are known as prolific early colonizers and decomposers of cellulose
in soil (Pinzari et al. 2014), which explains their predominance in soil upon addition of
cellulosic material like rosemary plant residues. In addition they are known to possess
allelopathic properties exerting strong antifungal activity against Fusarium oxysporum f.sp.
narcissi (Beale and Pitt 1995), a property that might be associated with their high dominance
in the rosemary amended soils and the negative effect on the abundance of OTUs belonging to

the family Nectriaceae where F. oxysporum belongs.

3.5. Conclusions

Soil amendment with biomass of peppermint, spearmint and rosemary, aromatic plants
indigenous in the Mediterranean region, imposed variable effects on the abundance of key
microbial taxa. Peppermint and spearmint had a beneficial effect on copiotrophic

proteobacteria and fungi, compared to rosemary which showed the same stimulatory effect to
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the same copiotrophic microorganisms only in the presence of tomato plants suggesting
complex interactions between rosemary, soil microbiota and plant roots. Further investigation
of these complex interactions via amplicon sequencing analysis revealed that soil amendment
with rosemary was the key determinant of the composition of the bacterial, archaeal and fungal
community. Rosemary soil amendment exerted negative effects on Actinobacteria mostly
associated with non-disturbed soil ecosystems (i.e. Blastococcus, Rubrobacter, Agromyces,
Solirubrobacter) and stimulated cellulose-degrading basidiomycetes (i.e. Minimedusa) with
potential antifungal properties, a feature which will be explored in follow up studies aiming to
identify the mechanisms and components of these microbiota responses to rosemary soil

amendment.

3.6. References

Adam K, Sivropoulou A, Kokkini S, Lanaras T, Arsenakis M. Antifungal Activities of
Origanum vulgare subsp. hirtum, Mentha spicata, Lavandula angustifolia, and Salvia
fruticosa Essential Oils against Human Pathogenic Fungi. Journal of Agricultural and
Food Chemistry. 1998;46(5):1739-1745.

Argyropoulos El, Eleftherohorinos 1G, Vokou D. In vitro evaluation of essential oils from
Mediterranean aromatic plants of the Lamiaceae for weed control in tomato and cotton
crops. Allelopathy Journal. 2008;22(1):69-78.

El Azhari N, Bru D, Sarr A, Martin-Laurent F. Estimation of the density of the protocatechuate-
degrading bacterial community in soil by real-time PCR. European Journal of Soil
Science. 2008;59(4):665-673.

El Azhari N, Devers-Lamrani M, Chatagnier G, Rouard N, Martin-Laurent F. Molecular
analysis of the catechol-degrading bacterial community in a coal wasteland heavily
contaminated with PAHSs. Journal of Hazardous Materials. 2010;177(1-3):593-601.

El Azhari N, Lainé S, Sappin-Didier V, Beguet J, Rouard N, Philippot L, Martin-Laurent F.
Long-term impact of 19 years’ farmyard manure or sewage sludge application on the
structure, diversity and density of the protocatechuate-degrading bacterial community.
Agriculture, Ecosystems and Environment. 2012;158:72-82.

Beale RE, Pitt D. The antifungal properties of Minimedusa polyspora. Mycological Research.
1995;99(3):337-342.

Benjamini Y, Hochberg Y. Controlling the False Discovery Rate : a Practical and Powerful
161

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 22:08:09 EEST - 3.145.107.127



Approach to Multiple Testing. Journal of the Royal Statistical Society Series B
(Methodological). 1995;57(1):289-300.

Bolger AM, Lohse M, Usadel B. Genome analysis Trimmomatic: a flexible trimmer for
Illumina sequence data. Bioinformatics. 2014:1-7.

Borzi D, Abbate C, Martin-Laurent F, EI Azhari N, Gennari M. Studies on the response of soil
microflora to the application of the fungicide fenhexamid. International Journal of
Environmental Analytical Chemistry. 2007;87(13-14):949-956.

Broeckling CD, Broz AK, Bergelson J, Manter DK, Vivanco JM. Root exudates regulate soil
fungal community composition and diversity. Applied and Environmental Microbiology.
2008;74(3):738-744.

Caporaso JG, Ackermann G, Apprill A, Bauer M, Berg-Lyons D, Betley J, Fierer N, Fraser L,
Fuhrman JA, Gilbert JA, Gormley N, Humphrey G, Huntley J, Jansson JK, Knight R,
Lauber CL, Lozupone CA, McNally S, et al. Earth microbiome project: EMP 16S Illumina
Amplicon Protocol. protocols.io. 2018:1-7. Available at:
https://www.protocols.io/view/emp-16s-illumina-amplicon-protocol-nuudeww.

Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley
J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R. Ultra-high-throughput
microbial community analysis on the Illumina HiSeq and MiSeq platforms. The ISME
Journal. 2012;6(8):1621-1624.

Castro JF, Nouioui I, Asenjo JA, Andrews B, Bull AT, Goodfellow M. New genus-specific
primers for PCR identification of Rubrobacter strains. Antonie van Leeuwenhoek. 2019.

Cavalieri A, Caporali F. Effects of essential oils of cinnamon, lavender and peppermint on
germination of Mediterranean weeds. Allelopathy Journal. 2010;25(2):441-452.

Chalkos D, Kadoglidou K, Karamanoli K, Fotiou C, Pavlatou-Ve AS, Eleftherohorinos IG,
Constantinidou HIA, Vokou D. Mentha spicata and Salvia fruticosa composts as soil
amendments in tomato cultivation. Plant and Soil. 2010;332(1):495-5009.

Chen XP, Zhu YG, Xia Y, Shen JP, He JZ. Ammonia-oxidizing archaea: Important players in
paddy rhizosphere soil? Environmental Microbiology. 2008;10(8):1978-1987.

Daferera DJ, Ziogas BN, Polissiou MG. The effectiveness of plant essential oils on the growth
of Botrytis cinerea, Fusarium sp. and Clavibacter michiganensis subsp. michiganensis.
Crop Protection. 2003;22(1):39-44.

Demoling F, Figueroa D, Baath E. Comparison of factors limiting bacterial growth in different
soils. Soil Biology & Biochemistry. 2007;39(10):2485-2495.

Diab HG, Hu S, Benson DM. Suppression of Rhizoctonia solani on Impatiens by Enhanced
Microbial Activity in Composted Swine Waste-Amended Potting Mixes. Phytopathology.
2003;93(2):1115-1123.

Dodt M, Roehr JT, Ahmed R, Dieterich C. FLEXBAR—Flexible Barcode and Adapter
Processing for. Biology. 2012;1:895-905.

162

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 22:08:09 EEST - 3.145.107.127



Edgar RC. UPARSE : highly accurate OTU sequences from microbial amplicon reads. Nature
Methods. 2013;647:1-5.

Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and
speed of chimera detection. Bioinformatics. 2011;27(16):2194-2200.

Efthimiadou A, Froud-Williams RJ, Eleftherohorinos I, Karkanis A, Bilalis DJ. Effects of
organic and inorganic amendments on weed management in sweet maize. International
Journal of Plant Production. 2012;6(3):291-307.

Falkowski PG, Fenchel T, Delong EF. The microbial engines that drive earth’s biogeochemical
cycles. Science. 2008;320(5879):1034-1039.

Fierer N, Beadford MA, Jackson RB. Toward an ecological classification of soil bacteria.
Ecology. 2007;88(6):1354-1364.

Francioli D, Schulz E, Lentendu G, Wubet T, Buscot F, Reitz T. Mineral vs. organic
amendments: Microbial community structure, activity and abundance of agriculturally
relevant microbes are driven by long-term fertilization strategies. Frontiers in
Microbiology. 2016;7:1446.

Gachkar L, Yadegari D, Rezaei MB, Taghizadeh M, Astaneh SA, Rasooli I. Chemical and
biological characteristics of Cuminum cyminum and Rosmarinus officinalis essential oils.
Food Chemistry. 2007;102(3):898-904.

Van Ginkel SW, Hassan SHA, Oh SE. Detecting endocrine disrupting compounds in water
using sulfur-oxidizing bacteria. Chemosphere. 2010;81(2):294-297.

Harwood CS, Parales RE. The B-Ketoadipate Pathway and the Biology of Self-Identity. Annual
Review of Microbiology. 1996;50:553-590.

Hassiotis CN, Dina EIl. The Influence of Aromatic Plants on Microbial Biomass and
Respiration in a Natural Ecosystem. Israel Journal of Ecology & Evolution.
2010;56(2):181-196.

Hauswedell H, Singer J, Reinert K. Lambda : the local aligner for massive biological data.
Bioinformatics. 2014;30(17):349-355.

Hawkes DB, Adams GW, Burlingame AL, Ortiz de Montellano PR, De Voss JJ. Cytochrome
P450(cin) (CYP176A), isolation, expression, and characterization. Journal of Biological
Chemistry. 2002;277(31):27725-32.

Hildebrand F, Tadeo R, Voigt AY, Bork P, Raes J. LotuS : an efficient and user-friendly OTU
processing pipeline. Microbiome. 2014;2:1-7.

Hu SJ, Gru NJ. Dynamics of bacterial populations in relation to carbon availability in a residue-
amended soil. Applied Soil Ecology. 1999;13(1):21-30.

Ihrmark K, Bodeker ITM, Cruz-Martinez K, Friberg H, Kubartova A, Schenck J, Strid Y,
Stenlid J, Brandstrom-Durling M, Clemmensen KE, Lindahl BD. New primers to amplify
the fungal ITS2 region - evaluation by 454-sequencing of artificial and natural
communities. FEMS Microbiology Ecology. 2012;82(3):666—677.

163

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 22:08:09 EEST - 3.145.107.127



Iscan G, Kirimer N, Kurkcuoglu M, Baser KHC, Demirci F. Antimicrobial screening of
Mentha piperita essential oils. Journal of Agricultural and Food Chemistry.
2002;50(14):3943-3946.

Jiang Y, Wu N, Fu YJ, Wang W, Luo M, Zhao CJ, Zu YG, Liu XL. Chemical composition and
antimicrobial activity of the essential oil of Rosemary. Environmental Toxicology and
Pharmacology. 2011;32(1):63-68.

Jost L. Entropy and diversity. Opinion. 2006;113(2):363-375.

Kadoglidou K, Chalkos D, Karamanoli K, Eleftherohorinos IG, Constantinidou HIA, Vokou
D. Aromatic plants as soil amendments: Effects of spearmint and sage on soil properties,
growth and physiology of tomato seedlings. Scientia Horticulturae. 2014;179:25-35.

Kadoglidou K, Lagopodi A, Karamanoli K, Vokou D, Bardas GA, Menexes G, Constantinidou
HIA. Inhibitory and stimulatory effects of essential oils and individual monoterpenoids
on growth and sporulation of four soil-borne fungal isolates of Aspergillus terreus,
Fusarium oxysporum, Penicillium expansum, and Verticillium dahliae. European Journal
of Plant Pathology. 2011;130(3):297-309.

Karamanoli K, Ainalidou A, Bouzoukla F, Vokou D. Decomposition profiles of leaf essential
oils in the soil environment. Industrial Crops & Products. 2018;124:397-401.

Karamanoli K, Vokou D, Menkissoglu U, Constantinidou HI. Bacterial colonization of
phyllosphere of mediterranean aromatic plants. Journal of Chemical Ecology.
2000;26(9):2035-2048.

Karas PA, Baguelin C, Pertile G, Papadopoulou ES, Nikolaki S, Storck V, Ferrari F, Trevisan
M, Ferrarini A, Fornasier F, Vasileiadis S, Tsiamis G, Martin-Laurent F, Karpouzas DG.
Assessment of the impact of three pesticides on microbial dynamics and functions in a
lab-to-field experimental approach. Science of the Total Environment. 2018;637—
638:636-646.

Kdljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, Bates ST, Bruns
TD, Bengtsson-Palme J, Callaghan TM, Douglas B, Drenkhan T, Eberhardt U, Duefias
M, Grebenc T, Griffith GW, Hartmann M, Kirk PM, et al. Towards a unified paradigm
for sequence-based identification of Fungi. Molecular Ecology. 2013;22(21):5271-5277.

Lazcano C, Gomez-Brandon M, Revilla P, Dominguez J. Short-term effects of organic and
inorganic fertilizers on soil microbial community structure and function. Biology and
Fertility of Soils. 2013;49(6):723-733.

Lee M, Ten LN, Woo SG, Park J. Agromyces soli sp. nov., isolated from farm soil.
International Journal of Systematic and Evolutionary Microbiology. 2011;61:1286-1292.

Leps J, Smilauer P. Multivariate Analysis of Ecological Data using CANOCO. New York,
USA: Cambridge University Press; 2003.

Liao J, Xu Q, Xu H, Huang D. Natural farming improves soil quality and alters microbial
diversity in a cabbage field in Japan. Sustainability. 2019;11:3131.

Magoc T, Salzberg SL. FLASH : fast length adjustment of short reads to improve genome
164

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 22:08:09 EEST - 3.145.107.127



assemblies. Bioinformatics. 2011;27(21):2957—-2963.

Malik MA, Khan KS, Marschner P, Ali S. Organic amendments differ in their effect on
microbial biomass and activity and on P pools in alkaline soils. Biology and Fertility of
Soils. 2013;49(4):415-425.

Marmulla R, Harder J. Microbial monoterpene transformations-a review. Frontiers in
Microbiology. 2014;5:346.

Marwati U, Funasaka K, Toyota K, Katayama A, Marwati U. Functional characterization of
soil microbial communities based on the utilization pattern of aromatic compounds. Soil
Science and Plant Nutrition. 2003;49(1):143-147.

Mifiambres GG, Conles MY, Lucini EI, Verdenelli RA, Meriles JM, Zygadlo JA. Application
of thymol and iprodione to control garlic white rot (Sclerotium cepivorum) and its effect
on soil microbial communities. World Journal of Microbiology and Biotechnology.
2010;26(1):161-170.

Negassa W, Baum C, Leinweber P. Soil amendment with agro-industrial byproducts:
Molecular-chemical compositions and effects on soil biochemical activities and
phosphorus fractions. Journal of Plant Nutrition and Soil Science. 2011;174:113-120.

Nguyen DH, Scheer C, Rowlings DW, Grace PR. Rice husk biochar and crop residue
amendment in subtropical cropping soils: effect on biomass production, nitrogen use
efficiency and greenhouse gas emissions. Biology and Fertility of Soils. 2016;52(2):261—
270.

Nilsson RH, Tedersoo L, Ryberg M, Kristiansson E, Hartmann M, Unterseher M, Porter TM,
Bengtsson-PalMe J, Walker DM, De Sousa F, Gamper HA, Larsson E, Larsson KH,
KolJalg U, Edgar RC, Abarenkov K. A Comprehensive, Automatically Updated Fungal
ITS Sequence Dataset for Reference-Based Chimera Control in Environmental
Sequencing Efforts. Microbes and Environments. 2015;30(2):145-150.

Oh SE, Hassan SHA, Van Ginkel SW. A novel biosensor for detecting toxicity in water using
sulfur-oxidizing bacteria. Sensors and Actuators, B: Chemical. 2011;154(1):17-21.

Papadopoulou ES, Tsachidou B, Sulowicz S, Menkissoglu-Spiroudi U, Karpouzas DG. Land
spreading of wastewaters from the fruit-packaging industry and potential effects on soil
microbes: Effects of the antioxidant ethoxyquin and its metabolites on ammonia oxidizers.
Applied and Environmental Microbiology. 2016;82(2):747—755.

Paramashivam D, Dickinson NM, Clough TJ, Horswell J, Robinson BH. Potential
environmental benefits from blending biosolids with other organic amendments before
application to land. Journal of Environmental Quality. 2017;46(3):481-489.

Peacock AD, Mullen MD, Ringelberg DB, Tyler DD, Hedrick DB, Gale PM, White DC. Soil
microbial community responses to dairy manure or ammonium nitrate applications. Soil
Biology & Biochemistry. 2001;33(7-8):1011-1019.

Pepe-Ranney C, Campbell AN, Koechli CN, Berthrong S, Buckley DH. Unearthing the
ecology of soil microorganisms using a high resolution DNA-SIP approach to explore

165

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 22:08:09 EEST - 3.145.107.127



cellulose and xylose metabolism in soil. Frontiers in Microbiology. 2016;7:703.

Philippot L, Raaijmakers JM, Lemanceau P, Van Der Putten WH. Going back to the roots: The
microbial ecology of the rhizosphere. Nature Reviews Microbiology. 2013;11(11):789—
799.

Pielou EC. Ecological Diversity. 8th editio. New York: John Wiley & Sons; 1975.

Pintore G, Usai M, Bradesi P, Juliano C, Boatto G, Tomi F, Chessa M, Cerri R, Casanova J.
Chemical composition and antimicrobial activity of Rosmarinus officinalis L. oils from
Sardinia and Corsica. Flavour and Fragrance Journal. 2002;17(1):15-19.

Pinzari F, Reverberi M, Pifiar G, Maggi O, Persiani AM. Metabolic profiling of Minimedusa
polyspora (Hotson) Weresub & P.M. LeClair, a cellulolytic fungus isolated from
Mediterranean maquis, in southern Italy. Plant Biosystems. 2014;148(2):333-341.

Qin W, Amin SA, Martens-Habbena W, Walker CB, Urakawa H, Devol AH, Ingalls AE,
Moffett JW, Armbrust E V., Stahl DA. Marine ammonia-oxidizing archaeal isolates
display obligate mixotrophy and wide ecotypic variation. PNAS. 2014;111(34):12504—
12500.

R Core Team. R: a language environment for statistical computing. 2017. Available at:
https://cloud.r-project.org/.

Radaelli M, da Silva BP, Weidlich L, Hoehne L, Flach A, Mendonca Alves da Costa LA, Ethur
EM. Antimicrobial activities of six essential oils commonly used as condiments in Brazil
against Clostridium perfringens. Brazilian Journal of Microbiology. 2016;47(2):424-430.

Rayu S, Nielsen UN, Nazaries L, Singh BK. Isolation and molecular characterization of novel
chlorpyrifos and 3,5,6-trichloro-2-pyridinol-degrading bacteria from sugarcane farm
soils. Frontiers in Microbiology. 2017;8:518.

Robinson MD, Mccarthy DJ, Smyth GK. edgeR : a Bioconductor package for differential
expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139-140.

Sanchez-Monedero MA, Mondini C, De Nobili M, Leita L, Roig A. Land application of
biosolids. Soil response to different stabilization degree of the treated organic matter.
Waste Management. 2004;24(4):325-332.

Santoyo S, Cavero S, Jaime L, Ibanez E, Senorans FJ, Reglero G. Chemical Composition and
Antimicrobial Activity of Rosmarinus officinalis L. Essential Oil Obtained via
Supercritical Fluid Extraction. Journal of Food Protection. 2005;68(4):790-795.

Soylu EM, Kurt S, Soylu S. In vitro and in vivo antifungal activities of the essential oils of
various plants against tomato grey mould disease agent Botrytis cinerea. International
Journal of Food Microbiology. 2010;143(3):183-1809.

Steinauer K, Chatzinotas A, Eisenhauer N. Root exudate cocktails: the link between plant
diversity and soil microorganisms? Ecology and Evolution. 2016;6(20):7387—7396.

Thelusmond JR, Strathmann TJ, Cupples AM. The identification of carbamazepine
biodegrading phylotypes and phylotypes sensitive to carbamazepine exposure in two soil

166

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 22:08:09 EEST - 3.145.107.127



microbial communities. Science of the Total Environment. 2016;571:1241-1252.

Veeken AHM, Blok WJ, Curci F, Coenen GCM, Termorshuizen AJ, Hamelers HVM.
Improving quality of composted biowaste to enhance disease suppressiveness of compost-
amended , peat-based potting mixes. Soil Biology & Biochemistry. 2005;37(11):2131—
2140.

Vokou D, Chalkos D, Karamanlidou G, Yiangou M. Activation of soil respiration and shift of
the microbial population balance in soil as a response to Lavandula stoechas essential oil.
Journal of Chemical Ecology. 2002;28(4):755-768.

Vokou D, Douvli P, Blionis GJ, Halley JM. Effects of monoterpenoids, acting alone or in pairs,
on seed germination and subsequent seedling growth. Journal of Chemical Ecology.
2003;29(10):2281-2301.

Vokou D, Liotiri S. Stimulation of soil microbial activity by essential oils. Chemoecology.
1999;9:41-45.

Vokou D, Margaris NS, Lynch JM. Effects of volatile oils from aromatic shrubs on soil
microorganisms. Soil Biology and Biochemistry. 1984;16(5):509-513.

Walters W, Hyde ER, Berg-lyons D, Ackermann G, Humphrey G, Parada A, Gilbert JA,
Jansson JK. Improved Bacterial 16S rRNA Gene (V4 and V4-5) and Fungal Internal
Transcribed Spacer Marker Gene Primers for Microbial Community Surveys. mSystems.
2015;1(1):e00009-15.

Wang X, Wang C, Bao L, Xie S. Impact of carbon source amendment on ammonia-oxidizing
microorganisms in reservoir riparian soil. Annals of Microbiology. 2015;65(3):1411—
1418.

Wang Z, Zhang J, Wu F, Zhou X. Changes in rhizosphere microbial communities in potted
cucumber seedlings treated with syringic acid. PLoS ONE. 2018;13(6):e0200007.

Wessén E, Nyberg K, Jansson JK, Hallin S. Responses of bacterial and archaeal ammonia
oxidizers to soil organic and fertilizer amendments under long-term management. Applied
Soil Ecology. 2010;45(3):193-200.

White TJ, Bruns T, Lee S, Taylor J. Amplification and Direct Sequencing of Fungal Ribosomal
Rna Genes for Phylogenetics. In: PCR Protocols: A Guide to Methods and Applications.
Academic Press, Inc.; 1990:315-322.

Xue C, Zhang X, Zhu C, Zhao J, Zhu P, Peng C, Ling N, Shen Q. Quantitative and
compositional responses of ammonia-oxidizing archaea and bacteria to long-term field
fertilization. Scientific Reports. 2016;6:28981.

Yarza P, Yilmaz P, Pruesse E, Glockner FO, Ludwig W, Schleifer KH, Whitman WB, Euzéby
J, Amann R, Rossell6-Mora R. Uniting the classification of cultured and uncultured
bacteria and archaea using 16S rRNA gene sequences. Nature Reviews Microbiology.
2014;12(9):635-645.

Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, Schweer T, Peplies J, Ludwig
W, Glockner FO. The SILVA and “““ All-species Living Tree Project ( LTP )’ taxonomic

167

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 22:08:09 EEST - 3.145.107.127



frameworks. Nucleic Acids Research. 2014;42:643—648.

168

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 22:08:09 EEST - 3.145.107.127



3.7. Supplementary Data

Chapter 3- The impact of soil amendment with peppermint, spearmint and rosemary on
the abundance and diversity of the soil microbiota
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Appendix Figure I. The organic matter content (a), total N (b), concentration of ammonium
(c) and nitrates (d) in the soil samples amended with organic fertilizer (A), spearmint (Ms),
peppermint (Mp), rosemary (Ro) and in unamended samples (C). Error bars represent the
standard deviation of the mean of three replicates. Graphs were adopted from the final report
of the ARISTEIA II project ESEPMINENT. Organic matter was determined with the wet
oxidation method, total N with the Kjeldhal method and the concentrations of ammonium and
nitrates according with Bremmer (1960).
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Supplementary Figure S1. The abundance of a-proteobacteria (a), B-proteobacteria (b), v-
proteobacteria (c), actinobacteria (d), firmicutes (e), total bacteria (f), Crenarchaea (g) and total fungi
(h) in soil samples amended with an organic fertilizer (A) or plant residues of peppermint (Mp),
rosemary (Ro), spearmint (Ms) and in non-amended plants. Each value is the mean of three replicates
with error bars representing the standard deviation of the mean. Within time bars designated by the
same lower-case letter are not significantly different (p<0.05). Whereas within each amendment
treatment bars designated by the same capital letter are not significantly different (p<0.05).
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Supplementary Figure S2. The abundance of ammonia-oxidizing archaea (AOA) (a), ammonia-
oxidizing bacteria (AOB) (b), sulfur-oxidizing bacteria (c) and of bacteria carrying genes pcaH (d) and
catA (e) involved in the degradation of aromatic molecules in soil samples amended with an organic
fertilizer (A) or plant residues of peppermint (Mp), rosemary (Ro), spearmint (Ms) and in non-amended
plants (C). Each value is the mean of three replicates with error bars representing the standard deviation
of the mean. Within time bars designated by the same lower-case letter are not significantly different
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(p<0.05). Whereas within each amendment treatment bars designated by the same capital letter are not
significantly different (p<0.05).
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Supplementary Figure S3. Rarefaction curves denoting the diversity coverage obtained by our
sequencing effort for the bacterial (a), archaeal (b) and fungal (¢) communities in the different samples

analyzed.
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Supplementary Figure S4. The a-diversity |nd|ces Shannon Slmpson Flsher alpha Rlchness and
Pielous evenness calculated for bacteria, archaea and fungi in the non-amended (control) or rosemary-
amended samples (Rosemary) in the presence (Tomato) or absence (No Tomato) of tomato plants and
collected at 30 (blue) and 60 days (yellow). Values are the mean of three replicates + the standard
deviation of the mean. Within each treatment bars designated with the same capital letter are not
significantly different at the 5% level, whereas within each sampling time bars designated by the same
lower-case letter are not significantly different at the 5% level.
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Supplementary Figure S5. Heatmaps presenting the dominant bacterial (a), archaeal (b) and fungal
(c) OTUs (relative abundance (RA) >2%) and their association with plant hosts in the different seasons.
The data are clustered in log10 scale and the legend scaling represents the percentage of RA. Asterisks
indicate OTUs that showed higher than 5% RA.
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Supplementary Table S1. Physicochemical properties of the soil used in the pot

experiment.
Soil physicochemical properties
pH 7,82
Electrical conductivity (Ec) 1,80 mmhos/cm
CaCO3 1,73 g¢/100g of soil
Organic matter 312 %
Fe 14,91 ppm
Zn 2,75 ppm
Mn 36,31 ppm
Cu 3,13 ppm
Niotal 1886 ppm
P 10567 ppm
NOs 162 ppm
NH4* 29890 ppm
K* 187 ppm
Mg* 550 ppm
Ca?* >2000 ppm
C:N 6,77
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Supplementary Table S2. Primers and thermocycling conditions used for the determination of the abundance of key microbial taxa.

Microbial Gene Primers Primer sequences (5" to 3) Thermocycling conditions  References
group target
Total bacteria 16S rRNA Eub338 ACTCCTACGGGAGGCAGCAG Initial denaturation 95°C for 3 Ovreas & Torsvik
min; 35 cycles at 95°C for 3 1998
Eub 518  ATTCCGCGGCTGCTGG sec, 62°C for 20 sec; melting  Muyzer et al.,
curve at 95°C for 1 min, 60°C 1993
for 30 sec and 95°C for 30 sec
a-Proteobacteria  16S rRNA Eub338 ACTCCTACGGGAGGCAGCAG Initial denaturation 95°C for 3 Ovreas & Torsvik
min; 40 cycles at 95°C for 3 1998
AlIf684R  TACGAATTTYACCTCTACA sec, 60°C for 20 sec, 72°C for  Mijhling et al.
11 sec; melting curve at 55°C  o0g
for 5 sec and 95°C for 1 sec
B-Proteobateria  16S rRNA Eub338 ACTCCTACGGGAGGCAGCAG Initial denaturation 95°C for 3  Ovreas & Torsvik
min; 40 cycles at 95°C for 3 1998
Beta682r  ACCATTTCACTGCTACACG sec, 63°C for 20 sec, 72°C for  Mfijhling. et al.
11 sec; melting curve at 55°C  9ng
for 5 sec and 95°C for 1 sec
y-Proteobacteria  16S rRNA Gamma CMATGCCGCGTGTGTGAA Initial denaturation 95°C for 3 Miihling. et al.
350f min; 35 cycles at 95°C for 3 2008
Gamma ACTCCCCAGGCGGTCDACTTA  sec, 56°C for 20 sec, 72°C for
871r 11 sec; melting curve at 55°C
for 5 sec and 95°C for 1 sec
Actinobacteria 16S rRNA Actino_235 CGCGGCCTATCAGCTTGTTG Initial denaturation 95°C for 3 Fierer. et al. 2005
Eub 518  ATTCCGCGGCTGCTGG min; 35 cycles at 95°C for3 - \yyzer et al.,
sec, 60°C for 20 sec, 72°C for 1993
11 sec; melting curve at 55°C
for 5 sec and 95°C for 1 sec
Firmicutes 16SrRNA Lgc 353 GCAGTAGGGAATCTTCCG Meier, et al. 1999
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Eub 518 ATTCCGCGGCTGCTGG Initial denaturation 95°C for 3~ Muyzer et al.,
min; 35 cycles at 95°C for 3 1993
sec, 60°C for 20 sec, 72°C for
11 sec; melting curve at 65°C
for 30 sec and 95°C for 30 sec
Crenarchaea 16S rRNA 771f ACGGTGAGGGATGAAAGCT Initial denaturation 95°C for 3~ Ochsenreiter et al.,

957R CGGCGTTGACTCCAATTG min; 35 cycles at 95°C for3 - 2003

, 53°C for 30 sec, 72°C fi
Eub_518  ATTCCGCGGCTGCTGG 11 soe: melting curve at ss°C Muyzer et al,

for 5 sec and 95°C for 1 sec 1993
Fungi ITS ITS3F GCATCGATGAAGAACGCAGC Initial denaturation 95°C for 3~ White et al., 1990
ITS4R TCCTCCGCTTATTGATATGC ~ Mim; 35 cycles at 95°C for 3
sec, 53°C for 20 sec, 72°C for
11 sec; melting curve at 95°C
for 1 min, 65°C for 30 sec and
95°C for 30 sec
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Supplementary Table S3.
groups via g-PCR.

Primers and thermocycling conditions used for the determination of the abundance of key functional microbial

Gene
target

Microbial group

Primers

Primer sequences (5" to 3")

Thermocycling conditions

References

Ammonia- amoA

oxidizing archaea

Ammonia- amoA

oxidizing bacteria

Sulfur-oxidizing  soxB

bacteria

Protocatechuate
dioxygenase

pcaH

catA

Arch-amoAF
Arch-amoAR

amoA-1F
amoA-2R

SoxB_710F
SoxB_1184R

PCAHF
PCAHr

CATAf

STAATGGTCTGGCTTAGACG
GCGGCCATCCATCTGTATGT

GGGGTTTCTACTGGTGGT

CCCCTCKGSAAAGCCTTCTTC

ATCGGYCAGGCYTTYCCS
MAVGTGCCGTTGAARTTGC

GAGRTSTGGCARGCSAAY
CCGYSSAGCACGATGTC

ACVCCVCGHACCATYGAAGG

Initial denaturation 95°C for 3 min;
40 cycles at 95°C for 15 sec, 53°C
for 30 sec, 72°C for 45 sec; melting
curve at 55°C for 5 sec and 95°C
for 1 sec

Initial denaturation 95°C for 3 min;
45 cycles at 95°C for 15 sec, 57°C
for 30 sec, 72°C for 45 sec; melting
curve at 55°C for 5 sec and 95°C
for 1 sec

Initial denaturation 95°C for 3 min;
40 cycles at 95°C for 5 sec, 55°C
for 10 sec, 72°C for 30 sec; melting
curve at 55°C for 5 sec and 95°C
for 1 sec

Initial denaturation 95°C for 3 min;
6 cycles at 95°C for 15 sec, 60°C
for 30 sec (0.5°C increase per
cycle), 72°C for 30 sec, 80°C for
15 sec and 30 cycles at 95°C for 15
sec, 57°C for 30 sec, 72°C for 30
sec and 80°C for 15 sec; melting
curve at 55°C for 5 sec and 95°C
for 1 sec

Institutional Repository - Library & Information Centre - University of Thessaly

09/06/2024 22:08:09 EEST - 3.145.107.127

Francis et al., 2005

Rotthauwe et al., 1997

Tourna et al., 2014

El Azhari et al., 2008

El Azhari et al., 2010

178



1,2-catechnol CATAr CGSGTNGCAWANGCAAAGT
dioxygenase

Initial denaturation 95°C for 3 min;
8 cycles at 95°C for 15 sec, 62°C
for 30 sec (0.5°C increase per
cycle), 72°C for 45 sec and 30
cycles at 95°C for 15 sec, 58°C for
30 sec and 72°C for 45 sec;
melting curve at 55°C for 5 sec and
95°C for 1 sec
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Supplementary Table S4. Primers used for the amplicon sequencing analysis of the 16S rRNA gene of bacteria and archaea and the ITS region
of fungi. BO00X-515f and FI000X-ITS4r are indexed primers used in the second amplification step which are composed of the sequence of the
universal primers 515f (bacteria, archaea) and ITS4r (fungi) (bold), the indexes used for samples barcoding (underlined) and a TT sequence at the
5'end of each primer.

Primers

Sequence (5'-3")

Thermocycling conditions

Reference

Bacteria and archaea

515f

806r

B0001-515f
B0002-515f
B0003-515f
B0004-515f
B0005-515f
B0006-515f
B0007-515f
B0008-515f
B0009-515f
B0010-515f
B0011-515f
B0012-515f
B0013-515f
B0014-515f
B0015-515f
B0016-515f
B0017-515f

GTGYCAGCMGCCGCGGTAA
GGACTACNVGGGTWTCTAAT
TTCTTCTTCGTGTGYCAGCMGCCGCGGTAA
TTCTCAATGGTGTGYCAGCMGCCGCGGTAA
TTCAGTTCAGTGTGYCAGCMGCCGCGGTAA
TTCGAATCAGTGTGYCAGCMGCCGCGGTAA
TTGTCAGGTGTGTGYCAGCMGCCGCGGTAA
TTGAAGTTCGTGTGYCAGCMGCCGCGGTAA
TTGCAACAAGTGTGYCAGCMGCCGCGGTAA
TTGGACGACGTGTGYCAGCMGCCGCGGTAA
TTCTTCAAGGTGTGYCAGCMGCCGCGGTAA
TTCTCAGAAGTGTGYCAGCMGCCGCGGTAA
TTCAGTAAGGTGTGYCAGCMGCCGCGGTAA
TTCGACAATGTGTGYCAGCMGCCGCGGTAA
TTGTCGATAGTGTGYCAGCMGCCGCGGTAA
TTGAAGGAAGTGTGYCAGCMGCCGCGGTAA
TTGCAGTATGTGTGYCAGCMGCCGCGGTAA
TATATCAGGGTGTGYCAGCMGCCGCGGTAA
TTCTTGTCAGTGTGYCAGCMGCCGCGGTAA
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Initial denaturation 98°C for
30 sec, 28/7 cycles (first PCR
step/second PCR step) at
98°C for 10 sec, 50°C for 30
sec and 72°C for 30 sec, final
extension 72°C for 10 min

Caporaso et al., (2012)
Walters et al., (2015)
This study
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B0018-515f
B0019-515f
B0020-515f
B0021-515f
B0022-515f
B0023-515f
B0024-515f
B0025-515f

TTCATATGGGTGTGYCAGCMGCCGCGGTAA
TTCAGACTTGTGTGYCAGCMGCCGCGGTAA
TTCGAGCACGTGTGYCAGCMGCCGCGGTAA
TTGTGTATCGTGTGYCAGCMGCCGCGGTAA
TTGACTATGGTGTGYCAGCMGCCGCGGTAA
TTGCCTAGTGTGTGYCAGCMGCCGCGGTAA
TATATCGTCGTGTGYCAGCMGCCGCGGTAA
TTCTTGAGTGTGTGYCAGCMGCCGCGGTAA

Fungi

ITS7f
ITS4r

F10001-1TS4r
F10002-1TS4r
F10003-1TS4r
F10004-1TS4r
F10005-1TS4r
F10006-1TS4r
F10007-1TS4r
F10008-1TS4r
F10009-1TS4r
F10010-1TS4r
F10011-1TS4r
F10012-1TS4r
F10013-1TS4r
F10014-1TS4r

GTGARTCATCGAATCTTTG
TCCTCCGCTTATTGATATGC
TTATTACCGGATCCTCCGCTTATTGATATGC
TTATTAGGCGATCCTCCGCTTATTGATATGC
TTATTCTCCGATCCTCCGCTTATTGATATGC
TTATTCGTGGATCCTCCGCTTATTGATATGC
TTATTGCGAGATCCTCCGCTTATTGATATGC
TTATACTGGGATCCTCCGCTTATTGATATGC
TTATACCTCGATCCTCCGCTTATTGATATGC
TTATACGCAGATCCTCCGCTTATTGATATGC
TTATAGACCGATCCTCCGCTTATTGATATGC
TTATGTTCGGATCCTCCGCTTATTGATATGC
TTATGTGACGATCCTCCGCTTATTGATATGC
TTATGAAGGGATCCTCCGCTTATTGATATGC
TTATGAGCTGATCCTCCGCTTATTGATATGC
TTATGCCATGATCCTCCGCTTATTGATATGC
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Initial denaturation 98°C for
30 sec, 28/7 cycles (first PCR
step/second PCR step) at
98°C for 10 sec, 55°C for 30
sec and 72°C for 30 sec, final
extension 72°C for 10 min

Ihrmark et al., (2012)
White et al., (1990)
This study
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FI10015-1TS4r TTATGGTGTGATCCTCCGCTTATTGATATGC
F10016-1TS4r TTAATTCGCGATCCTCCGCTTATTGATATGC
FI0017-1TS4r TTAATCCAGGATCCTCCGCTTATTGATATGC
F10018-1TS4r TTAATCGGTGATCCTCCGCTTATTGATATGC
F10019-ITS4r TTAATGTGGGATCCTCCGCTTATTGATATGC
F10020-1TS4r TTAATGCCTGATCCTCCGCTTATTGATATGC
F10021-1TS4r TTAATGGACGATCCTCCGCTTATTGATATGC
F10022-1ITS4r TTAACTTCCGATCCTCCGCTTATTGATATGC
F10023-1TS4r TTAACTAGGGATCCTCCGCTTATTGATATGC
F10024-1TS4r TTAACAGTCGATCCTCCGCTTATTGATATGC
F10025-1TS4r TTCATCTTCGATCCTCCGCTTATTGATATGC
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Supplementary Table S5. The results of the MANOVA of the g-PCR data. Statistically significant differences are shown in bold letters (p<0.05).

Source df Mean Square F Probability
a-proteobacteria

Plant 1 1.75E+11 9.68 0.001
Soil amendment 4 1.36E+11 7.54 0.001
Time 1 2.88E+10 1.60 0.210
Plant * Soil amendment 4 9.75E+10 5.40 0.001
Plant * Time 1 3.07E+09 0.17 0.680
Soil amendment * Time 4 1.17E+10 0.65 0.630
Plant * Soil amendment * Time 4 1.53E+10 0.85 0.500
B-proteobacteria

Plant 1 2.43E+08 10.08 0.001
Soil amendment 4 5.28E+08 21.91 0.001
Time 1 5.26E+08 21.83 0.001
Plant * Soil amendment 4 9.00E+07 3.74 0.010
Plant * Time 1 1.14E+08 4.75 0.040
Soil amendment * Time 4 6.60E+07 2.74 0.040
Plant * Soil amendment * Time 4 9.91E+07 4.11 0.010
y-proteobacteria

Plant 1 2.69E+09 10.08 0.001
Soil amendment 4 2.71E+09 10.14 0.001
Time 1 9.63E+06 0.04 0.850
Plant * Soil amendment 4 1.90E+09 7.12 0.001
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Plant * Time 1 1.38E+09 5.18 0.030

Soil amendment * Time 4 8.60E+08 3.22 0.020
Plant * Soil amendment * Time 4 1.01E+09 3.79 0.010
Actinobacteria

Plant 1 4.10E+10 1.09 0.304
Soil amendment 4 4.43E+11 11.73 0.000
Time 1 1.80E+11 4.78 0.035
Plant * Soil amendment 4 1.04E+10 0.28 0.892
Plant * Time 1 1.98E+11 5.26 0.027
Soil amendment * Time 4 2.18E+10 0.58 0.680
Plant * Soil amendment * Time 4 5.50E+10 1.46 0.233
Firmicutes

Plant 1 1.01E+09 0.60 0.440
Soil amendment 4 5.59E+09 3.33 0.020
Time 1 1.08E+10 6.43 0.020
Plant * Soil amendment 4 2.40E+09 1.43 0.240
Plant * Time 1 2.38E+09 1.42 0.240
Soil amendment * Time 4 1.24E+09 0.74 0.570
Plant * Soil amendment * Time 4 2.00E+09 1.19 0.330
Total bacteria

Plant 1 7.39E+10 0.64 0.430
Soil amendment 4 5.48E+11 4.73 0.001
Time 1 3.12E+11 2.69 0.110
Plant * Soil amendment 4 1.86E+11 1.61 0.190
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Plant * Time 1 4.88E+11 4.21 0.050
Soil amendment * Time 4 1.66E+11 1.43 0.240
Plant * Soil amendment * Time 4 6.49E+10 0.56 0.690
Crenarchaea

Plant 1 1.42E+08 3.63 0.060
Soil amendment 4 3.94E+08 10.09 0.001
Time 1 2.56E+07 0.65 0.420
Plant * Soil amendment 4 1.39E+08 3.56 0.010
Plant * Time 1 1.18E+08 3.02 0.090
Soil amendment * Time 4 1.09E+08 2.78 0.040
Plant * Soil amendment * Time 4 5.54E+07 1.42 0.250
Total fungi

Plant 1 6.37E+09 33.94 0.001
Soil amendment 4 7.03E+09 37.46 0.001
Time 1 2.16E+09 11.52 0.001
Plant * Soil amendment 4 1.83E+09 9.77 0.001
Plant * Time 1 4.29E+09 22.86 0.001
Soil amendment * Time 4 4.90E+08 2.61 0.050
Plant * Soil amendment * Time 4 1.08E+09 5.78 0.001
Ammonia - oxidizing archaea

Plant 1 3.84E+06 1.55 0.220
Soil amendment 4 3.01E+07 12.11 0.001
Time 1 7.74E+05 0.31 0.580
Plant * Soil amendment 4 9.29E+06 3.74 0.010
Plant * Time 1 7.00E+06 2.82 0.100
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Soil amendment * Time 4 1.06E+07 4.25 0.010

Plant * Soil amendment * Time 4 4.93E+06 1.99 0.120
Ammonia - oxidizing bacteria

Plant 1 1.20E+05 0.29 0.600
Soil amendment 4 8.63E+05 2.05 0.110
Time 1 7.99E+06 18.98 0.001
Plant * Soil amendment 4 6.96E+05 1.65 0.180
Plant * Time 1 8.54E+05 2.03 0.160
Soil amendment * Time 4 3.81E+05 0.90 0.470
Plant * Soil amendment * Time 4 6.46E+05 1.53 0.210
Sulfur-oxidizing bacteria

Plant 1 8.61E+05 0.60 0.440
Soil amendment 4 2.98E+07 20.77 0.001
Time 1 5.66E+07 39.48 0.001
Plant * Soil amendment 4 1.44E+06 1.00 0.420
Plant * Time 1 3.55E+05 0.25 0.620
Soil amendment * Time 4 6.17E+06 4.30 0.010
Plant * Soil amendment * Time 4 1.10E+06 0.77 0.550
pcaH-carrying microorganisms

Plant 1 1.24E+09 0.06 0.810
Soil amendment 4 7.54E+10 3.40 0.020
Time 1 8.09E+10 3.65 0.060
Plant * Soil amendment 4 1.35E+11 6.09 0.001
Plant * Time 1 1.06E+09 0.05 0.830
Soil amendment * Time 4 3.87E+10 1.74 0.160
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Plant * Soil amendment * Time 4 1.43E+10 0.64 0.630
catA-carrying microorganisms

Plant 1 7.95E+05 3.53 0.070
Soil amendment 4 3.08E+06 13.70 0.001
Time 1 3.95E+06 17.56 0.001
Plant * Soil amendment 4 3.59E+05 1.59 0.190
Plant * Time 1 5.13E+05 2.28 0.140
Soil amendment * Time 4 5.41E+05 2.40 0.070
Plant * Soil amendment * Time 4 5.01E+05 2.23 0.080
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Chapter 4

The response of soil and phyllosphere microbial
communities to repeated application of the fungicide

iprodione: Accelerated biodegradation or toxicity?

The work presented in Chapter 4 is included in the following article:

Katsoula A., Vasileiadis S., Sapountzi M., Karpouzas D.G. (2019)._The response of soil
and phyllosphere microbial communities to repeated application of the fungicide
iprodione: Accelerated biodegradation or toxicity? FEMS Microbial Ecology. under

review
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4.1. Introduction

Microorganisms are highly responsive to environmental stress conditions. Pesticides
applied either in soil or on plant foliage constitute potential environmental stressors for
the microbial communities colonizing these habitats. Several studies have explored the
responses of the soil microbial communities to pesticides (Gallego et al. 2019; Itoh et
al. 2014; Karas et al. 2018). Repeated applications of pesticides, a common practice in
modern agriculture, lead to the accumulation of pesticide residues in soil, when the
indigenous microbial community has limited capacity to degrade the given compound,
with potential negative effects on the soil microbial community. In such an example
nicosulfuron at concentration levels of 0.25 - 1 pg g™ imposed significant reductions in
the abundance of key microbial groups (B-proteobacteria, planctomycetes,
actinobacteria), on the activity of C- and P-cycling (Karpouzas et al. 2014a), and
reduced significantly the colonization levels and diversity of endomycorrhizal fungi in
maize plants (Karpouzas et al., 2014b). In contrast, repeated soil application of certain
pesticide groups like organophosphates (Singh and Walker 2006), carbamates
(Karpouzas et al 1999), and triazines (Krutz et al. 2010) could lead to the proliferation
of a small fraction of the soil microbial community which carries specialized catabolic
enzymes used for the growth-linked degradation of these pesticides (Itoh et al. 2014;
Rousidou et al 2017). This phenomenon has been termed accelerated biodegradation
and under conducive edaphoclimatic conditions could jeopardize the biological

efficacy of pesticides (Suett et al. 1987).

In contrast to our good knowledge of the interactions of pesticides with the soil
microbial community, we are only just starting to explore the interaction of pesticides

with microbial communities in other relevant habitats like plants (Perazzolli et al. 2014)
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and insects (Cheng et al. 2017). The phyllosphere is a micro-ecosystem where
microorganisms are exposed to various environmental constraints (i.e. UV, desiccation,
limited nutrients) and potential stressors like pesticides (Vorholt 2012). Zhang et
al.(2009a and 2009b) and Gu et al. (2010) first studied the potential effects of synthetic
pesticides on the epiphytic microbial community, using PLFAs and molecular
fingerprinting, and observed significant but transient effects. Subsequent studies using
amplicon sequencing reported a remarkable resilience of the epiphytic microbial
community to pesticides (Ottesen et al. 2015; Perazzolli et al. 2014). In contrast, very
little is known about the potential of the epiphytic microbial community for accelerated
biodegradation of pesticides or the identity of the microorganisms responsible for
biodegradation and their relevant degradative genes. In the only relevant study to date,
Ning et al (2012) isolated epiphytic bacteria from rape plants systematically treated
with dichlorvos which were able to degrade this organophosphorus insecticide,
although the establishment of accelerated biodegradation of dichlorvos on the plant
phyllosphere was not explored. The capacity of the epiphytic microbial community to
rapidly degrade foliage-applied pesticides can be beneficial from the environmental and
human health perspective, while in its extreme, it could threaten the biological efficacy

of foliage-acting pesticides, an aspect largely overlooked.

Iprodione is a fungicide used via foliage application or soil drenching for the
control of a range of plant pathogenic fungi (Grabke et al. 2014). It has been identified
as potential carcinogen (USEPA 1998) and endocrine disrupting substance (Blystone
et al. 2007). Soil pH is the main factor affecting its dissipation in soil with higher
degradation rates observed in alkaline soils (Walker 1987). Biodegradation is the main

dissipation process of iprodione in soil. Repeated applications of iprodione in soil are
191

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 22:08:09 EEST - 3.145.107.127



known to result in the establishment of accelerated biodegradation (Martin et al. 1990;
Mitchell and Cain 1996) and loss of its biological efficacy (Entwistle 1986). Studies in
soils exhibiting accelerated biodegradation of the fungicide led to the isolation of
iprodione-degrading bacteria (Athiel et al. 1995; Campos et al. 2015; Yang et al. 2018)
which hydrolyzed iprodione to 3,5-dichloroaniline (3,5-DCA) via the formation of two
transient metabolic products; 3,5-dichlorophenyl-carboxiamide (metabolite 1) and 3,5-
dichlorophenylurea-acetate (metabolite 1lI). On the contrary, soil application of
iprodione has been also shown to induce negative effects on the abundance of soil
bacteria (Zhang et al., 2017c), on the abundance and a-diversity of soil fungi (Zhang et
al., 2017a) and on microbial activity and processes involved in N cycling (Zhang et al.,
2017b; Zhang et al. 2018). Recently Vasileiadis et al. (2018) showed that 3,5-DCA and
not iprodione was responsible for the inhibitory effects observed on the ammonia-
oxidizing microorganisms in soil and the general microbial activity. Still, we are
missing the information about the potential response, toxicity or accelerated

biodegradation, of the epiphytic microbial community to iprodione exposure.

In this study, we explored the hypothesis that phyllosphere and the soil root
zone support largely different microbial communities, however we expect them to
exhibit a similar response to their repeated exposure to a biodegradable pesticide like
iprodione. This response could span from accelerated degradation by a fraction of the
microbial community, to toxicity on members of the microbial community. In this
context, a pot experiment with pepper plants repeatedly treated with iprodione, either
at the foliage or through soil drenching (chosen plant and pesticide application modes
are relevant to iprodione commercial use), was undertaken. Potential accelerated

biodegradation of iprodione was evaluated through determination of its degradation at
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each application in the soil root zone and on pepper leaves, while the overall response
of the bacterial, archaeal and fungal community on plant leaves and on the soil root
zone was determined via 16S rRNA and ITS amplicon sequencing respectively.
Bacteria able to degrade iprodione were isolated via enrichment cultures from both soil
and plant leaves and the transformation pathway of iprodione was determined to
explore the presence of habitat-specific catabolic traits in iprodione-degrading bacteria

isolated from the phyllosphere and the soil root zone.

4.2. Material and Methods

4.2.1. Chemicals and soil

The commercial formulation of iprodione (Rovral® 50%WP), kindly provided by
BASF Hellas, was used for the treatment of pepper plants and soil. Iprodione and 3,5-
DCA analytical standards (Pestanal®, purity >97%) were purchased by Sigma-Aldrich
(St. Louis, Missouri, USA), while 3,5-dichlorophenyl-carboxiamide (metabolite 1) and
3,5-dichlorophenylurea-acetate (metabolite 1), two intermediate transformation
products of iprodione, were synthesized as described before (Campos et al. 2017). All
analytical standards were used for the preparation of stock solutions in methanol (1000
mg L1). The soil used was collected from a fallow agricultural field of the Hellenic
Agricultural Organization-Demeter in Larissa, Greece (39°63'27"N, 22°36'74"E), with
no history of pesticide application for the last 15 years. Soil samples were collected
from the top 20 cm according to a protocol of the International Organization for

Standardization for collection and handling of samples (ISO 10381-2:2002). Upon
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collection, the soil was homogenized, sieved (2-mm pore size), and stored at 4°C until

used. The soil was clay loam with a pH of 7.55 and an organic carbon content of 1.05%.

4.2.2. Pot experiment set-up

Sixty-two pepper plants (Capsicum annuum var. annum (florinis)) at the 3-4 leaf stage
were transplanted into 5-L pots filled up with ca. 6 kg of soil wet weight. Plants were
left to grow at ambient conditions (open air, below a net for protection against extreme
weather conditions) in the pots (May to July 2017) until flowering, when applications
of iprodione were implemented to simulate a realistic application timing of the
fungicide. During this period, the plants were watered every day, adjusting the soil
moisture content to 50% of its water holding capacity. The first 12 planted pots were
treated via soil drenching with 50 ml of an aqueous solution of iprodione (100 mg L)
aiming to a soil concentration of 1.5 pg g%, assuming diffusion of the pesticide, applied
at the recommended dose rate, to 5 cm depth and a soil bulk density of 1.5 kg L. The
plants in the second set of 30 pots were sprayed individually with 25 ml of an aqueous
solution of iprodione (1500 mg L™1). This dose was selected based on the recommended
rate of 300 mg a.i. per 100 L of spraying liquid applied in 40000 plants per ha. The soil
or the foliage of the pepper plants in the remaining 20 pots (2 x 10 pots) were treated
with 50 or 25ml of water without iprodione respectively to serve as untreated controls.
The same application scheme was repeated four times at 30-day intervals. Immediately
after each pesticide application and at regular intervals thereafter triplicate soil (with a
cork borer from the root zone in each pot) and leaf samples (each replicate sample was
composed of five leaves per plant) were collected from relevant pots and stored at -
20°C for analysis of iprodione and 3,5-DCA residues. Similarly, triplicate soil and leaf

samples collected at 0 (only on the first application event), 10 and 30 days after each
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pesticide application were processed for DNA extraction as described below. The
leaves collected were well-developed and healthy, of the same size and maturity level,

located in the upper part of canopy to minimize the risk of soil transfer.

4.2.3. Pesticides residue analysis

Iprodione and its transformation products were extracted from soil as described by
Campos et al. (2015). Briefly, 5g of soil were extracted with 10 ml of acetonitrile by
shaking at 200rpm for 1h at 25°C. The extract was centrifuged at 10,000 rpm for 10
min and the supernatant was collected and filtered through 0.22 ym PTFE membrane
syringe filters (Whatman) before being directly analyzed by HPLC-PDA as described
by Campos et al. (2017). The same procedure was followed for the extraction of
iprodione and 3,5-DCA from leaves with the only difference that an extra sonication
step of 5 min was employed prior to shaking. Fortification tests with pepper leaves at
three concentration levels (7.5, 75, and 750 mg L) gave recoveries of 92.9, 96.7 and
92.8% respectively for iprodione, 74.2, 85.7 and 80.1% for metabolite 1, 100.3, 98.7

and 86.2% for metabolite 11 and 79.5, 100.2 and 94.9% for 3,5-DCA.

4.2.4. DNA extraction from soil and epiphytic microbial biomass

Soil DNA extraction was performed from 0.5 g of soil (dry weight) with the
PowerSoil® DNA isolation kit (MoBio Laboratories, Inc., West Carlsbad, CA, USA).
DNA extraction from leaves was performed as described by Moulas et al., (2013) with
slight modifications. Briefly, 6 g of intact fresh leaves were immersed in sterilized

ddH-0 in sterile centrifuge tubes and were subjected to sonication for 7 min to detach
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epiphytic microbial cells from the leaf surface. The leaves were removed with forceps
and the content of the tubes was centrifuged for 15 min at 15000xg. The supernatant
was discarded, and the microbial pellet collected was used for DNA extraction with the

PowerSoil® DNA isolation kit.

4.2.5. Amplicon sequencing analysis of the soil and epiphytic microbial
community

The composition of the community of bacteria, archaea and fungi in soil and on plant
leaves were determined with amplicon sequencing of the 16S rRNA gene and the ITS
region via HiSeq Illumina Rapid Mode 2x250 bp paired-end reads (Illumina Inc., San
Diego, CA, USA) in the DNA Sequencing Center Department of Biology of the
Brigham Young University (GSC-BYU, Provo, UT, US). Bacterial and archaeal 16S
rRNA genes were amplified with the primer set 515f-806r (Caporaso et al. 2012;
Walters et al. 2015) following the protocol of the Earth Microbiome Project (Caporaso
et al. 2018). The amplification of ITS was performed with the primers ITS7-1TS4
(Thrmark et al. 2012; White et al. 1990) following the protocol described by Ihrmark et
al.(2012). For all PCR amplifications, the Q5® High-Fidelity DNA Polymerase (NEB,
Ipswich, Massachusetts, USA) was used. All samples were initially amplified (28
amplification cycles) using the domain-specific primers mentioned above, followed by
a PCR (7 amplification cycles) using primers carrying sample associated indexes for
performing the multiplex sequencing. Primers and PCR conditions are listed in

Supplementary Tables S1 and S2 respectively.
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The raw sequence data were demultiplexed to their samples of origin with
Flexbar v3.0 (Dodt et al. 2012), the reads were quality trimmed with Trimmomatic
v0.32 (Bolger et al 2014) using the default parameters for paired-end reads and filtering
the Illumina adapter collection at the sequence edge. The resulting read pairs were
assembled to the amplicon of their origin in cases overlaps occurred with FLASH v1.2.8
(Magoc and Salzberg 2011) using the default parameters to allow a maximum overlap
of 250 bp and no mismatches between read-pairs. The remaining tasks were carried out
with the 10TUs v1.58 perl wrapper (Hildebrand et al. 2014). OTU calling at 97%
identities was performed with the UPARSE v10.0.240 software (Edgar et al. 2013).
Chimeric sequences were identified with the UCHIME v4.2 software (Edgar 2011)
using the RDP Gold database vMicrobiomeutil-r20110519 for bacteria and the UNITE
ITS2 v985.20150311 reference database (Nilsson et al. 2015) for fungi. Sequence
classification was performed with Lambda v0.9.1 (Hauswedell et al. 2014) against the
Silva v128 small ribosomal subunit database (Yilmaz et al 2014) for bacteria and the
UNITE ITS v7_99 20150302 database (Koljalg et al. 2013) for fungi, while

misclassified sequences were removed from downstream analysis.

4.2.6. Isolation and characterization of iprodione-degrading bacteria

4.2.6.1. Enrichment cultures and isolation

At 30 days after the fourth application of iprodione, soil and leaf samples from the
iprodione-treated pots were collected. Three 50-g soil samples were collected from the
plant root zone of each pot and they were composited to a single uniform soil sample

which was used as starting inoculum in soil enrichments. Similarly, three to five intact
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and fully developed leaves were collected from each of the pots that had received
repeated iprodione applications and they were bulked up in one sample. The isolation
of iprodione-degrading bacteria from soil and leaf samples was done by enrichment
cultures in mineral salts medium (MSM), MSM supplemented with NH4Cl (MSMN)
or sodium citrate (MSM+SC) amended with iprodione (10 mg L™). In those media
iprodione constituted the sole C and N, C or N source respectively. Growth media were
prepared as previously described (Campos et al 2015; Perruchon et al. 2015) and they
were supplemented with iprodione by addition of appropriate amounts of a sterile
DMSO stock solution (10,000 mg L™Y). In all cases the DMSO percentage in the growth
media did not exceed 0.2%, which according to preliminary tests did not have any

effects on the growth and degrading capacity of bacteria.

For the isolation of iprodione-degrading bacteria from plant leaves, 5 g of
pepper leaves were placed in a centrifuge tube fully immersed in TE buffer and 0.01%
Tween 80. The samples were vortexed for 30 sec, agitated for 15 min in an orbital
shaker at 200 rpm and placed in an ultrasonic bath for 3 min. They were then vortexed
(30 sec) and shaken for 5 min before centrifugation at 8000xg for 7 min. The
supernatant was discarded, and the microbial pellet was redissolved in 2 ml of sterilized

ddH»0 which was used as inoculum for the enrichment cultures.

Enrichment cultures in the three selective media were inoculated with 0.5 ml of
the epiphytic microbial pellet or 0.5 g of soil. Triplicate flasks for each selective media
were inoculated, while duplicate non-inoculated flasks per medium were not inoculated
to measure the abiotic degradation of iprodione. All flasks were placed in an orbital

shaker at 180 rpm at 25°C. Immediately after inoculation and at regular intervals
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thereafter, aliquots (0.5 ml) were collected from the enrichment cultures to determine
the transformation of iprodione. At the point where more than 50% degradation of
iprodione occurred, aliquots of the enrichment culture (0.5 ml) were used to inoculate
fresh enrichment cultures of the corresponding medium. This enrichment procedure
was repeated three more times and at the point where more than 50% degradation of
the fourth iprodione application had occurred serial dilutions were prepared and spread
on iprodione-amended (20 mg Lt) MSM, MSMN and MSM+SC agar plates prepared
as described by Karpouzas and Walker (2000). The plates were incubated for 4-5 days
at 25°C and 120 well-separated colonies (20 per medium X matrix combination) were
picked up and tested for their degrading ability in the corresponding liquid medium.
Cultures exhibiting >50% iprodione degradation in 6 days were considered as positive
and they were plated on LB and the respective selective media agar plates to check
purity. The bacteria that appeared as pure in plates went through another cycle of single

colony testing of their degradation capacity before processed for DNA extraction.

4.2.6.2. Identification of iprodione-degrading bacteria

DNA extraction from the bacterial isolates was performed with the NucleoSpin®
Tissue kit (MACHEREY-NAGEL GmbH & Co. KG, Diiren, Germany). The primer
pair 8f-1512r, which amplifies the near full size of the 16S rRNA gene (1504 bp)
(Felske et al. 1997), was used for the identification of the isolated bacteria as described
previously (Perruchon et al. 2015). The near full length 16S rRNA sequence was
subjected to phylogenetic analysis as described by Campos et al. (2015) and the

phylogenetic tree was prepared using Seaview4 (Gouy et al. 2010). The 16S rRNA
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sequences of the iprodione - degrading strains were deposited in the GenBank under

the accession numbers MK386866 to MK386885.

4.2.6.3. Characterization of the transformation pathway of iprodione by the
isolated bacteria

Triplicate flasks of MSM amended with iprodione (10 mg L) were inoculated with
fresh cultures of the selected isolated bacterial strains grown to the late logarithmic
phase (ODgoo= 0.1 corresponding to ca. 2x107 cells mIt). Triplicate non-inoculated
flasks for each medium were also prepared as abiotic controls. All samples were
incubated on a shaking platform at 25°C. The degradation of iprodione and the
formation of metabolite I, metabolite 11 and 3,5-DCA were measured immediately after
inoculation and at regular intervals thereafter by HPLC-PDA as described by Campos

et al. (2017).

In parallel we determined the proliferation of the two Paenarthrobacter strains
along the degradation of iprodione via g-PCR. So 2 ml aliquots were removed from
each bacterial culture (triplicates per bacterium) at 4, 8, 12, 24, 36, 48, 69, 72, 93 and
117 h. Samples were centrifuged at 11,000 rpm for 2 min and the bacterial pellet was
used for DNA extraction with the Nucleospin Tissue kit (MACHEREY-NAGEL
GmbH & Co. KG, Diiren, Germany) using the manufacturers’ protocol for gram
positive bacteria. The extracted DNA was quantified by the Qubit dSDNA BR assay kit
using a Qubit® 2.0 Fluorometer (Life Technologies). A set of primers Paen F (5'-
ACATGAACCGGAAAGACCTG-3") and Paen R (3'-TGGGATTAGCTCCACCT

CAC-5") was specifically designed to amplify a 292 bp fragment of the 16S rRNA gene
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of the Paenarthrobacter strains. Primers were designed with the online software

Primer3Plus (http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cqi) and

their specificity was first checked in silico with the online tool Primer-BLAST
(http://ncbi.nlm.nih.gov/tools/primer- blast/) and then in vitro. gPCR was performed in
a CFX connect Real Time (Bio-Rad, Hercules, USA) system in 10 pL reaction volumes
containing 1x KAPA SYBR®FAST qPCR Master Mix (2x%) Universal (KAPA
BIOSYSTEMS, Boston, USA), 0.4 uM of each primer and 0.1 ng DNA. The
thermocycling program used was as follows: 3 min at 95 °C; 40 cycles of 10 s at 95 °C,
30 s at 58 °C, 10 s at 72 °C; and followed by melting curve analysis to check the
specificity of the products. The copy numbers of the 16S rRNA gene were determined
via external standard curves as described by Rousidou et al. (2013). qPCR efficiencies

were 98.9% with r2 = 0.994.

4.2.7. Data analysis

4.2.7.1. Pesticides degradation kinetics

The dissipation data of iprodione were fitted to four kinetic models as suggested by the
FOCUS working group (FOCUS 2006): the single first order (SFO) exponential decay
model and three biphasic models (hockey-stick, first order multi-compartment and
double first order in parallel). The goodness of fit was assessed using a y? test (<15%,
for a=0.05), visual inspection, and the distribution of residuals. All kinetics analysis
were performed on the R software with the mkin package. Significant differences (level
of significance 5%) between the degradation rates (kdeg) Of the repeated applications of

iprodione in soil and on plant leaves were determined with the student’s t-test. The
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confidence intervals of the degradation rates obtained by fitting the kinetic models to

the degradation data were converted to standard deviations using the formula:
SD = VN x (Upper limit — Lower limit) / 3.92 (eq.1)

where N = sample size and 3.92 is the standard error for a 95% confidence interval.

4.2.7.2. Statistical analysis of microbial diversity data

The OTU matrices of bacteria, archaea and fungi were used to assess the impact of
iprodione and 3,5-DCA on the a- and B-diversity. The impact of iprodione on the a-
diversity was determined via calculation of the diversity indices richness (S), Fisher
Alpha, Inverse Simpson, Shannon (Jost 2006) and Pielou's evenness (Pielou 1975). The
data per habitat were subjected to two-way ANOVA and post-hoc tests to determine
the impact of iprodione and time (main factors) on the a-diversity of bacteria, archaea
and fungi and also on the relative abundance of the major bacterial, archaeal and fungal
taxa. Moreover, differential abundance (DA) tests for identifying taxa and OTUs that
were responsive to iprodione treatment were performed using the Fisher’s exact test for
P-values of 0.05 as adjusted according to the Benjamini-Hotchberg algorithm

(Benjamini and Hochberg 1995).

The impact of iprodione on the structure of the communities of bacteria, archaea
and fungi in phyllosphere and soil was assessed by multivariate analysis. To enhance
the statistical test sensitivity, only the differentially abundant OTUs were used for
downstream multivariate tests that provided the variance portion of these

subcommunities that coincided with the experimental treatments. Detrended
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Correspondence Analysis (DCA) was performed and, Canonical Correspondence
Analysis (CCA) was preferred over Redundancy Analysis (RDA) if the first axis value
was higher than 3 standard deviations, in accordance to a previously suggested strategy
(Leps and Smilauer 2003). DCA first axis values greater than 3 standard deviations
imply overall unimodal responses of community member abundances against the
environmental gradients (rendering the chi squared distances of CCA more suitable) as
opposed to lower values which imply overall linear responses to environmental
gradients (rendering the Euclidean distances of RDA more suitable). Spearman’s
correlation tests between the measured concentrations of iprodione and 3,5-DCA in soil
and on plant leaves and the sequence counts of bacterial, fungal genera and archaeal
classes were carried out to assess possible effects of either the parent compound or 3,5-
DCA on the microbial community members. All statistical analyses were performed
with the R v3.5.2 software (R Core Team 2017) using the packages Vegan v2.4-4
(Oksanen et al. 2018), Entopart v1.4-7 (Marcon and Herault 2015) and EdgeR v3.24.3
(Robinson et al. 2010), the latter for DA tests. The data were submitted to Sequence

Read Archive of NCBI with bioproject accesion number PRINA513949.

4.3. Results

4.3.1. Degradation of iprodione in soil and phyllosphere

The degradation patterns of iprodione in soil and on plant leaves are presented in Figure
1. In all cases the degradation of iprodione was best described by single first order
(SFO) kinetics (Table 1). Iprodione showed a rapid degradation in soil observed even

from the first application (DTs0=1.24 days) (Table 1). Its degradation rate remained
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constant in the second (DTso = 1.23 d) and third (DTso = 1.14 d) applications and it was
significantly (p<0.05) accelerated at the fourth application (DTso = 0.45 d). On plant
leaves, no degradation of iprodione was observed during the 30 d after the first
application of iprodione (DTso extrapolated >365 days). However, a significant increase
(p<0.05) in its degradation was evident in the second, third and fourth application with
DTsovalues of 15.1, 11.5 and 5.95 days, respectively (Table 1). The soil degradation of
iprodione was accompanied by the transient formation of 3,5-DCA (Figure 1a). In
contrast, on pepper leaves no 3,5-DCA or any of the other transformation products
considered (metabolites | and Il) were detected during iprodione degradation (Figure
1b).
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Figure 1. The degradation patterns of the four successive applications of iprodione (@)

and the formation and dissipation of its main metabolic product 3.5 dichloroaniline
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(3,5-DCA) (m) in soil (a) and plant leaves (b). Each value is the mean of three replicates

with error bars representing the standard deviation of the mean.

Table 1. The kinetic parameters describing the degradation of iprodione in soil and
leaves of pepper plants calculated by fitting the data to the single first order (SFO)
kinetics model.

Habitat Application number DTso (days) yx2 (%)

Soil 1 1.24 6.7
2 1.23 7.1
3 1.14 7.7
4 0.45 14.3

Leaves 1 >365 1.3
2 151 7.2
3 11.5 20.6
4 5.95 14.3

4.3.2. The impact of iprodione on the microbial community

4.3.2.1. The composition of the soil and epiphytic microbial community

In total 1,596,046 quality sequences for bacteria and archaea (9,959 - 59,201 and 10,132
— 45,180 sequences per sample in soil and leaves respectively) and 1,200,925 for fungi
(9,137-29,835 and 8,344-35,455 sequences per sample in soil and leaves respectively)

were obtained. These were assigned to 4,872 OTUs for bacteria and archaea, and to
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4,560 OTUs for fungi. Rarefaction curves reached a plateau in all samples suggesting
that our sequencing effort adequately covered the diversity of epiphytic and soil
bacteria, archaea and fungi (Supplementary Figure S2). This is further supported by the
Good’s coverage (Good, 1953) values for bacteria, archaeca and fungi which were

98.3+0.0%, 92.6+0.1% and 99.7+0.0% respectively (Supplementary Table S3).

Soil and plant leaves supported distinct bacterial, fungal and archaeal
communities (Figure 2). The epiphytic bacterial community was dominated by
Proteobacteria (mostly y-, a- and B-Proteobacteria), which constituted on average more
than 50% of the total bacterial community, followed by Actinobacteria (mostly of the
class of Rubrobacter) and Bacilli (Figure 2a). In contrast, the bacterial community in
the soil root zone showed a more even composition with high abundance of
Actinobacteria (Rubrobacteria, Thermoleophilia), followed by Proteobacteria (y- and
a-Proteobacteria) and Bacilli (Figure 2a). The Soil Crenarchaeotic Group (SCG)
prevailed in the phyllosphere at the earlier sampling dates, while Aenigmarchaeota,
Eyryarchaeota and Bathyarchaeota were abundant only sporadically and their relative
abundance did not follow a temporal or treatment trend (Figure 2b). The archaeal
community in the soil root zone was dominated by SCG, while Thermoplasmata were
detected at low abundances throughout the experimental duration in all samples (Figure
2b). The epiphytic fungal community was dominated by Ascomycetes (mainly
Dothideomycetes, Sordariomycetes, Microbotryomycetes), and Basidiomycetes (mostly
Tremellomycetes) were detected at a lower abundance (Figure 2c). Ascomycetes
(Sordariomycetes, Dothideomycetes, Eurotiomycetes, Pezizomycetes) also prevailed in
the soil root zone, while Basidiomycetes (Agaricomycetes, Tremellomycetes) were less

abundant (Figure 2c). Significant temporal patterns on the relative abundance of certain
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bacterial, archaeal and fungal taxa were observed only in the phyllosphere regardless
of iprodione-treatment: (i) y- and a-Proteobacteria were displacing each other in the
bacterial community during the experimental duration; the former showed significant
increases (p<0.05) in their relative abundance after the 2nd and 4th applications and
significant decreases (p<0.05) after the 1st and 3rd applications, compared to o-
Proteobacteria that showed the exact opposite patterns, (ii) the relative abundance of
Tremellomycetes and Microbotryomycetes increased with time (p<0.001) and (iii) the

relative abundance of SCG decreased with time (p<0.05) (Figure 2).
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mean.
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4.3.2.2. Effects of iprodione on the diversity of the microbial community

Iprodione did not induce significant effects on the a-diversity of bacteria, archaea and
fungi in the soil root zone as shown by the different diversity indices (Supplementary
Figure S1). Whereas, foliage applications of iprodione induced significant effects on
the a-diversity of fungi (increase of Simpson index p<0.05) and archaea (increase of

Pielou's evenness index, p<0.05) (Supplementary Figure S1).

CCA or RDA explored the effect of iprodione on the B-diversity in the two
studied habitats and identified OTUs that increased in relative abundance in the
presence or in the absence of iprodione exposure. The fungicide had a significant
(p<0.001) treatment-wise effect on the structures of bacterial community members in
both habitats (Figure 3a and 3b). In the soil root zone, OTUs belonging to a-
Proteobacteria (Rhizobium, Rubellimicrobium, Microvirga, Altererythrobacter),
Gemmatimonadetes (Longimicrobium), Chloroflexi and Blastococcus increased in
relative abundance in the samples treated with iprodione (Figure 3a). In the
phyllosphere, OTUs belonging to Bacteroidetes (Mucilaginibacter, Spirosoma)
Enterococcus, and Entomoplasmateles showed increasing abundance in the iprodione-
treated samples, whereas OTUs belonging to Actinobacteria (Corynebacterium,
Arthrobacter, Pseudonocardia), Staphylococcus and Escherichia-Shigella showed
increased abundance in the phyllosphere of plants not treated with iprodione (Figure
3b). When the impact of iprodione on the p-diversity of archaea was investigated, RDA
(Figures 3c) and CCA (Figures 3d), revealed a significant effect (p<0.01) only in the
soil root zone, where several OTUs (135, 751, 1042) affiliated to Canditatus
Nitrososphaera showed increased abundance in the non-treated samples (Figure 3c).

Iprodione induced significant treatment-wise changes (p<0.001) in the B-diversity of
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fungi in both studied habitats (Figure 3e and 3f). OTUs belonging to Dothideomycetes
(Lasiosphaeriaceae), Sordariomycetes (Fusarium, Nectriaceae, Clonostachys),
Basidiomycetes (Entoloma), and Chytridiomycetes (Spizellomyces) increased in
relative abundance in the soil root zone samples treated with iprodione, in contrast to
OTUs belonging to Cladosporium and Aureobasidium which showed increased
abundance in the samples not treated with iprodione (Figure 3e). In the phyllosphere,
we observed OTUs belonging to Saccharomycetes, Sordariomycetes (Nigrospora),
Mucorales, Chytridiomycetes (Rhizophlyctidales) and Basidiomycetes (Puccinia) that
showed increased abundance in iprodione-treated plants, compared to OTUs belonging
to Agaricomycetes (Hypholoma, Parasola) and Taphrinomycetes (Taphrina) that

flourished in the samples not treated with iprodione (Figure 3f).

Further Spearman's correlation tests identified significant correlations between
iprodione and 3,5-DCA concentrations and the abundance of bacterial and fungal
genera, and archaeal classes, obtained from amplicon sequencing (Supplementary
Figure S3). Hence, 3,5-DCA concentrations in the soil root zone were negatively
correlated with Sphingomonas and positively correlated with Thermoplasmatales.
Iprodione concentrations on the phyllosphere were positively correlated with fungi
belonging to the genera of Coniosporium, Chalastospora, Alternaria and negatively

correlated with fungi of the genera Sordaria, Rhodotorula and Bensingtonia.
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Figure 3. Multivariate analysis (Canonical Correspondence Analysis — CCA — or
redundancy analysis — RDA — depending on the outcome of the first axis or detrended
correspondence analysis) of the bacterial (a, b), archaeal (c, d) and fungal (e, f) OTU
matrix in the soil root zone (a, ¢, €) and in the phyllosphere (b, d, f). The tested model
was that of the community structure (bacterial/fungal/archaeal) being a function of the
iprodione application with the coefficient of determination providing the model shared
variance and the p-value indicating the null hypothesis probability (i.e. no effect).
Arrows indicate the OTU gradients among samples as linearly regressed to the sample

211

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 22:08:09 EEST - 3.145.107.127



scores (i.e. OTUs are more abundant in the samples of their arrow directions). Due to
the fact that the tested parameter is one, only a single axis (X-axis) is canonical
(contains the constrained variance) and the second axis (Y-axis) is that of the first
principal component or the first correspondence analysis axis.

4.3.3. Isolation of iprodione-degrading bacteria from soil and phyllosphere

The transformation of iprodione in the enrichment cultures inoculated with soil and
epiphytic microbial pellet was rapid in all media, while a slower degradation of
iprodione was observed in the non-inoculated samples throughout the enrichment
cultures (Supplementary Fig. S4). From the 120 colonies screened for iprodione
degradation in the corresponding media, two colonies (TAL1 and TA2), obtained from
the MSM + iprodione soil enrichment cultures, and three colonies obtained from the
MSM + iprodione (LP1, LP8) and MSM + SC (LP13) leaf enrichment cultures achieved
more than 90% degradation in 6 days, compared to each medium control. Further sub-
culturing and purification tests resulted in the isolation of three pure cultures named
TAL.6, TAL.8 and LP13.7 which were composed of the same colony morphotype.
Phylogenetic analysis based on the sequences of the 16S rRNA gene showed that all
three isolates were closely associated and belonged to the genus Paenarthrobacter with
highest match to a P. nitroguajacolicus strain (>99%) (Figure 4). Sequencing alignment
of the full length 16S rRNA gene showed that the leaf isolate LP13.7 differed by the
sol isolates TA1.6 and TA1.8 in 1 and 2 bp respectively, while the two soil isolates

showed variation in 3 nucleotides.
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Figure 4. Phylogenetic analysis of the iprodione-degrading isolates TA1.6, TA1.8 and
LP13.7 based on the complete 16S rRNA gene sequence. 1000 bootstrap replicates
were run with PhyML following the GTRGAMMAI (General Time Reversible with
GAMma rate heterogeneity and considering Invariable sites) model. The bootstrap
support is expressed in a scale from 0 to 100. The NCBI accession numbers of each

bacterium are indicated.

4.3.4. Transformation of iprodione by the isolated bacteria

TA1.8 (soil-derived) transformed iprodione within 69 h with a DTso of 19.8 h, as
calculated by fitting the SFO kinetic model to the degradation data. The transformation
of iprodione was accompanied by the transient formation of 60 and 40 nmol ml*? of
metabolites | and 11 respectively at 48 h. These were further transformed to 3,5-DCA
which showed a peak concentration at 69 h and partially degraded thereafter (Figure
5a). A similar transformation pattern was evident for LP13.7 (phyllosphere-derived)

where the rapid degradation of iprodione (DTso = 15.2 h) was accompanied by the
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transient formation of metabolite 1 and metabolite I, the latter at concentrations
exceeding the 100 nmol ml* (Figure 5b). Metabolite Il was further transformed to 3,5-
DCA which peaked between 36 and 48 d and degraded partially until the end of the
study. Q-PCR analysis revealed that the rapid degradation of iprodione was
accompanied by the proliferation of both bacteria strains from 36 h to maximum

abundance at 117 h (Supplementary Fig. S5).
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—&—|prodione
—e 3,5-DCA
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Figure 5. The degradation of iprodione (M) and the formation and degradation of
metabolite | (A), metabolite Il (®) and 3,5-dichloraniline (3,5-DCA) (O) by isolates
TAL1.8 (a) and LP13.7 (b) in MSM. The degradation of iprodione in non-inoculated
controls is also presented (L], dashed line). Each value is the mean of three replicates
with error bars representing the standard deviation of the mean.

4.4. Discussion
Repeated applications of iprodione in the soil root zone and on plant leaves accelerated

the degradation of iprodione in both habitats. Previous studies have also reported an
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accelerated degradation of iprodione in soils repeatedly treated with the fungicide in
the laboratory and in soils from fields with history of fungicide exposure (Martin et al.
1990; Mercadier et al. 1996; Walker 1987). However, accelerated degradation of
pesticides on the plant phyllosphere has not been reported before. The documented
vulnerability of iprodione to accelerated biodegradation in soil coupled with the
degradation pattern observed in the phyllosphere of pepper plants suggest that the
epiphytic microbial community is equally capable to degrade iprodione in an

accelerated mode.

Amplicon sequencing analysis showed that phyllosphere samples and samples
collected from the soil root zone samples supported distinct microbial communities, in
accordance with previous studies in rice (Knief et al. 2012), populus (Cregger et al.
2018) and the evergreen shrub Scaevola taccada (Amend et al. 2019). The epiphytic
bacterial community was dominated by Sphingomonadales, Methylobacteriaceae and
Pseudomonadaceae, in line with specific functional traits of members of these groups
which support their epiphytic fitness like the efficient intracellular uptake of sugars
(Sphingomonas), the assimilation of methanol released on plant phyllosphere
(Methylobacteriaceae) and the motility to access nutrients (Pseudomonas), (Delmotte
et al. 2009; Knief et al., 2012; Ryffel et al., 2016). Actinobacteria was the most
abundant taxon in soil, as reported previously (Papadopoulou et al. 2018). The epiphytic
and soil fungal communities were dominated by Ascomycetes and Basidiomycetes with
different classes prevailing in the two habitats. Dothideomycetes, and Tremellomycetes
prevailed on plant leaves most likely due to their capacity to thrive in extreme
environments (Balint et al. 2015; Yang et al. 2016; Gdanetz and Trail 2017), and the

capacity of members of Tremellomycetes (i.e. Cryptococcus, Dioszegia) to tolerate
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extreme temperatures and acquire and utilize nutrients in harsh environments (Wang et
al., 2016). Sordariomycetes and Agaricomycetes dominated in soil in line with their
capacity to efficiently exploit nutrients available in the root zone (Hussain et al. 2011;
Simoes et al. 2015; Wang et al. 2018). The SCG was dominant in the soil archaeal
community followed by Thermoplasmata, in accordance with previous reports
(Chronakova et al. 2015; Vasileiadis et al. 2013). In contrast the epiphytic archaeal
community was more diverse and comprised of the SCG, Aenigmarcheota and
Eyryarcheota. Previous studies have suggested that archaea are under-represented in
the phyllosphere (Knief et al. 2012; Miiller et al. 2015), hence their epiphytic
communities have not been extensively explored. Recently Taffner et al. (2019) verified
the epiphytic dominance of the SCG and Eyryarcheota on the phyllosphere of Eruca

sativa, however the factors shaping epiphytic communities of archaea remain unknown.

The composition of the bacterial and fungal epiphytic and soil communities was
significantly altered by the application of iprodione, in contrast to archaea whose -
diversity was significantly altered by iprodione only in soil. Recent studies using
amplicon sequencing showed that iprodione, either repeatedly applied in soil (Zhang et
al. 2017b; Zhang et al. 2017c) or used at increasing dose rates (Vasileiadis et al. 2018)
induced significant changes on the B-diversity of soil bacteria and fungi. Additionally,
our study provides first evidence for the response of the epiphytic microbial

communities, including archaea, to pesticides exposure.

We further identified OTUs which increased in relative abundance in the
presence or absence of iprodione. Hence iprodione application favored epiphytic

microorganisms which (i) are involved in biomass decomposition like
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Mucilaginibacter (Pankratov et al. 2007), Saccharomycetes, Mucorales,
Rhizophlyctidales (Letcher et al. 2008; Hoffmann et al. 2013) (ii) are potential human
pathogens like the lactic acid bacterium Enterococcus (Lebreton et al., 2013), often
observed in plant phyllosphere (Vokou et al., 2012), and plant pathogens like
Nigrospora (Wang et al. 2017) and Puccinia (Abbasi et al. 2005), (iii) are insect
symbionts like Entomoplasmatales (Kautz et al. 2013), which could act as pathogens
or exhibit mutualistic and manipulative effect on their host (Funaro et al., 2011). The
stimulation of plant pathogenic fungi belonging to Nigrospora and Puccinia, that are
within the spectrum of activity of iprodione (Mueller et al., 2005), might be associated
with its accelerated biodegradation on plant leaves compromising its biological
efficacy. In contrast in the absence of iprodione we observed increased abundance of
OTUs assigned to (i) potential human and plant pathogens like Staphylococcus,
Escherichia-Shigella and Corynebacterium, Taphrina, respectively (Chattaway et al.
2017; Oliveira et al. 2017; Richardson et al. 2018; Tsai et al. 2014) and (ii) organic
matter decomposers like Parasola and Hypholoma (Nagy et al. 2009). In soil, iprodione
treatment favored OTUs of «a-Proteobacteria belonging to Rhizobiales,
Erythrobacteraceae, Methylobacteraceae, in line with findings by Zhang et al., (2017c)
who also reported an increase in the abundance of OTUs belonging to the same a-
Proteobacterial taxa in soil after four repeated applications of iprodione. This could be
attributed to their involvement in growth-linked degradation of iprodione or more likely
to their capacity to tolerate iprodione and occupy soil niches liberated from competition
upon toxicity of iprodione or grow on cell constituents released from dead microbial
cells intoxicated by iprodione, in line with the copiotrophic lifestyle of a-
proteobacterial classes (Fierer et al., 2012). Iprodione also favored fungal OTUs which

217

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 22:08:09 EEST - 3.145.107.127



(i) are involved in cellulose decomposition like Spizellomyces (Letcher et al. 2008) (ii)
are mycoparasitic like Clonostachys (Salamone et al. 2018) and (iii) belong to taxa rich
in plant pathogens like Fusarium and Nectriaceae (Lombard et al. 2015), in line with
the limited fungicidal activity of iprodione against Fusaria (Smiley and Craven, 1979).
In contrast, in the absence of iprodione exposure fungal OTUs associated with
saprotrophic fungi like Cladosporium (Bensch et al. 2012) and Aureobasidium (Zalar
et al. 2008) were favored. An observation worth noting was the high abundance of
OTUs belonging to Candidatus Nitrososphaera, an ubiquitous soil ammonia-oxidizing
crenarchaeon (Tourna et al. 2011), in the untreated soil samples denoting a potential
toxicity of iprodione. Similarly, Vasileiadis et al., (2018) demonstrated via amplicon
sequencing analysis a significant negative correlation between iprodione soil
concentrations and the abundance of OTUs belonging to the lineage Nitrososphaerales
which encompass the OTUs of Candidatus Nitrososphaera identified in our study.
Overall the application of iprodione significantly affected, positively or negatively, the
abundance of OTUs assigned to microbial groups with important role for the
homeostasis of the plant - soil ecosystem, which should be reconsidered in the context

of the one-health system approach (Destoumieux-Garzon et al., 2018).

Apart from pesticide-driven effects, we observed clear succession in the
abundance of certain bacterial and fungal taxa in the phyllosphere but not in soil. This
is not surprising considering that compared to soil the leaf surface is directly exposed
to extreme air temperatures (high or low), UV radiation, wind and precipitation which
drastically affect the composition of the epiphytic community (Copeland et al. 2015;
Hamonts et al. 2018). An observation worth noting is the compensatory relationship

between a- and y-Proteobacteria in the phyllosphere, regardless of iprodione treatment,
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where one replaces the other along the experimental period. Similar observations were
reported in the phyllosphere of perennial biofuel crops and were attributed to nutrient

availability regulated by the plant development stage (Grady et al. 2019).

Enrichment cultures from soil and phyllosphere samples repeatedly treated with
iprodione resulted in the isolation of phylogenetically close but not identical
Paenarthrobacter strains from soil and plant phyllosphere. The genus
Paenarthrobacter was recently formed by the reassignment of strains belonging to the
Arthrobacter aurescens subgroup (Busse and Busse 2016). It comprises bacteria
characterized by high catabolic versatility like the atrazine-, nicotine- and 4-
nitroguaiacol-degrading strains P. aurescens TCl1 (Mongodin et al. 2006), P.
nicotinovorans pAO1(Mihasan et al. 2018) and P. nitroguaiacolicus (Kotou¢kova et al.
2004), respectively, showing also remarkable fitness in soil (Mongodin et al. 2006) and
plant phyllosphere (Scheublin and Leveau 2013; Scheublin et al. 2014). Our strains
clustered together with two other iprodione-degrading strains; the recently isolated
iprodione-degrading strain Paenarthrobacter YJN-5 (Yang et al. 2018) and

Arthrobacter sp. strain C1 isolated from a grassland soil in Chile (Campos et al. 2015).

The bacteria isolated hydrolyzed iprodione to 3,5-DCA with the intermediate
formation of metabolites I and Il. This transformation pathway is shared among bacteria
isolated from soils (Athiel et al. 1995; Campos et al. 2017; Yang et al. 2018) but it is
reported for the first time in bacteria isolated from the plant phyllosphere. The capacity
of the isolated bacterium, from the phyllosphere, to transform iprodione to 3,5-DCA
contradicts to the lack of detection of this metabolite on plant leaves despite the

accelerated degradation of iprodione. This could be most probably attributed to the
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rapid photo-degradation and volatilization of 3,5-DCA on leaves surface once formed
(Papantoni et al. 1995; Othmen and Boule 1999). The presence of extremely efficient
3,5-DCA-degrading epiphytic microorganisms, which rapidly degrade 3,5-DCA, is
unlikely considering the remarkable recalcitrance of 3,5-DCA, the most recalcitrant
amongst DCA isomers, to microbial degradation (Yao et al., 2011). The consistent
presence of iprodione-catabolic traits in Arthrobacter-like bacteria isolated from distant
geographic areas suggests a potential phylogenetic specialization of this bacterial genus
in the degradation of iprodione which is not common in the bacterial world. This is
further supported by the isolation of phylogenetically related iprodione-degrading
Paenarthrobacter strains from soil and plant phyllosphere in our study. The mechanism
driving this potential specialization of Arthrobacter-like bacteria to iprodione

biodegradation would be further explored using comparative genomics.

No OTUs matching the 16S rRNA of our iprodione-degrading isolate were
found in the amplicon sequences of the soil and epiphytic bacterial community.
Correlation testing showed significant positive correlations between 3,5-DCA and
iprodione concentration in soil and plant leaves with the abundance of bacterial,
archaeal and fungal genera which have never been reported (i.e. Thermoplasmata,
Coniosporium) or scarcely reported (Micromonospora, Alternaria) as pesticide
degraders (Lipok et al, 2003, Fuentes et al., 2010). The positive correlation between
Alternaria OTUs and iprodione concentrations might be attributed to resistance
mechanisms since Alternaria plant pathogens are within the spectrum of fungicidal
activity of iprodione (Mukherjee et al., 2003) and resistance to iprodione is ubiquitous
amongst Alternaria strains (McPhee 1980; Ma et al., 2004). Although our sequencing

effort provided a good coverage of the bacterial diversity in soil and phyllosphere
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samples it cannot be excluded that the isolated bacterium remained at low abundance
throughout the pot study due to the limited growth supported by the in situ
concentrations of iprodione in the soil and phyllosphere environment studied. In
support of this, Gallego et al. (2019) showed that pesticide-degrading bacteria constitute
a particularly small fraction of the total bacterial community whose response to
repeated pesticide exposure is not often detectable with DNA-based amplicon
sequencing approaches and become visible only when RNA-based amplicon

sequencing targeting the active fraction of the bacterial community are used.

4.5. Conclusions

Overall, repeated soil and foliage applications of iprodione induced compositional
alterations in the soil and the epiphytic bacterial and fungal community. On the one
hand it affected, negatively or positively, microorganisms with critical functional roles
for the homeostasis of the plant-soil system. On the other hand it resulted in the
accelerated biodegradation of iprodione, a result not previously reported in plant foliage
and whose consequences for the (i) agricultural practice (i.e. loss of pesticide efficacy
towards plant pathogens) (ii) environmental quality and (iii) consumers health
(pesticides-free environment and products) could be important. Closely related
iprodione-degrading bacteria of the genus Paenarthrobacter were isolated from soil
and plant leaves repeatedly treated with iprodione, adding to the list of soil arthrobacters
degrading iprodione and implying a possible phylogenetic specialization in the
degradation of this compound. Further studies will aim to (i) disentangle the mechanism

driving the development of pesticide accelerated biodegradation in the plant
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phyllosphere and (ii) explore the arsenal of genes carried by the isolated bacteria with
a putative role in the transformation of iprodione using comparative genomics and

transcriptomics.

4.6. References

Abbasi M, Goodwin SB, Scholler M. Taxonomy , phylogeny , and distribution of
Puccinia graminis , the black stem rust : new insights based on rDNA sequence
data. Mycoscience. 2005;46:241-247.

Amend AS, Cobian GM, Laruson AJ, Remple K, Tucker SJ, Poff KE, Antaky C, Boraks
A, Jones CA, Kuehu D, Lensing BR, Pejhanmehr M, Richardson DT, Riley PP.
Phytobiomes are compositionally nested from the ground up. PeerJ.
2019;7:e6609.

Andersen HR, Vinggaard AM, Rasmussen TH, Gjermandsen IM, Bonefeld-jergensen
EC. Effects of Currently Used Pesticides in Assays for Estrogenicity |,
Androgenicity , and Aromatase Activity in Vitro. Toxicology and Applied
Pharmacology. 2002;179:1-12.

Athiel P, Alfizar, Mercadier C, Vega D, Bastide J, Davet P, Brunel B, Cleyet-Marel JC.
Degradation of iprodione by a soil Arthrobacter-like strain. Applied and
Environmental Microbiology. 1995;61(9):3216-3220.

Balint M, Bartha L, O’Hara RB, Olson MS, Otte J, Pfenninger M, Robertson AL, Tiffin
P, Schmitt I. Relocation, high-latitude warming and host genetic identity shape the
foliar fungal microbiome of poplars. Molecular Ecology. 2015;24(1):235-248.

Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: a Practical and
Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society
Series B (Methodological). 1995;57(1):289-300.

Bensch K, Braun U, Groenewald JZ, Crous PW. The genus Cladosporium. Studies in
Mycology. 2012;72:1-401.

Bertelsen JR, De Neergaard E, Smedegaard-Petersen V. Fungicidal effects of
azoxystrobin and epoxiconazole on phyllosphere fungi, senescence and yield of
winter wheat. Plant Pathology. 2001;50:190-205.

Blystone CR, Lambright CS, Furr J, Wilson VS, Gray LE. Iprodione delays male rat
pubertal development, reduces serum testosterone levels, and decreases ex vivo
testicular testosterone production. Toxicology Letters. 2007;174:74-81.

Bolger AM, Lohse M, Usadel B. Genome analysis Trimmomatic : a flexible trimmer
for Illumina sequence data. Bioinformatics. 2014:1-7.

222

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 22:08:09 EEST - 3.145.107.127



Busse HJ. Review of the taxonomy of the genus Arthrobacter emendation of the genus
Arthrobacter sensu lato proposal to reclassify selected species of the genus
Arthrobacter in the novel genera Glutamicibacter gen. nov. Paeniglutamicibacter
gen. nov., Pseudoglutamic. International Journal of Systematic and Evolutionary
Microbiology. 2016;66(1):9-37.

Campos M, Karas PS, Perruchon C, Papadopoulou ES, Christou V, Menkissoglou-
Spiroudi U, Diez MC, Karpouzas DG, V. C, Menkissoglu-Spiroudi U, Diez MC,
Karpouzas DG. Novel insights into the metabolic pathway of iprodione by soil
bacteria. Environmental Science and Pollution Research. 2016;24:152-163.

Campos M, Perruchon C, Karas PA, Karavasilis D, Diez MC, Karpouzas DG.
Bioaugmentation and rhizosphere-assisted biodegradation as strategies for
optimization of the dissipation capacity of biobeds. Journal of Environmental
Management. 2017;187(February):103-110.

Campos M, Perruchon C, Vasilieiadis S, Menkissoglu-Spiroudi U, Karpouzas DG,
Diez MC. Isolation and characterization of bacteria from acidic pristine soil
environment able to transform iprodione and 3,5-dichloraniline. International
Biodeterioration and Biodegradation. 2015;104:201-211.

Cao L, Shi W, Shu R, Pang J, Liu Y, Zhang X, Lei Y. Isolation and characterization of
a bacterium able to degrade high concentrations of iprodione. Canadian Journal
of Microbiology. 2018;64(1):49-56.

Caporaso JG, Ackermann G, Apprill A, Bauer M, Berg-Lyons D, Betley J, Fierer N,
Fraser L, Fuhrman JA, Gilbert JA, Gormley N, Humphrey G, Huntley J, Jansson
JK, Knight R, Lauber CL, Lozupone CA, McNally S, et al. Earth microbiome
project: EMP 16S Illumina Amplicon Protocol. protocols.io. 2018:1-7. Available
at: https://www.protocols.io/view/emp-16s-illumina-amplicon-protocol-
nuudeww.

Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM,
Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R. Ultra-
high-throughput microbial community analysis on the Illumina HiSeq and MiSeq
platforms. The ISME Journal. 2012;6(8):1621-1624.

Chattaway MA, Schaefer U, Tewolde R, Dallman TJ, Jenkins C. Identification of
Escherichia coli and Shigella Species from Whole-Genome Sequences. Journal of
Clinical Microbiology. 2017;55(2):616-623.

Cheng D, Guo Z, Riegler M, Xi Z, Liang G, Xu Y. Gut symbiont enhances insecticide
resistance in a significant pest , the oriental fruit fly Bactrocera dorsalis ( Hendel
). Microbiome. 2017;5:1-12.

Chronakova A, Schloter-Hai B, Radl V, Endesfelder D, Quince C, Elhottova D, Simek
M, Schloter M. Response of Archaeal and Bacterial Soil Communities to Changes
Associated with Outdoor Cattle Overwintering. PLoS ONE. 2015;10(8):1-22.

Copeland JK, Yuan L, Layeghifard M, Wang PW, Guttman DS. Seasonal Community
Succession of the Phyllosphere Microbiome. Molecular Plant-Microbe
Interactions. 2015;28(3):274-285.

223

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 22:08:09 EEST - 3.145.107.127



Cregger MA, Veach AM, Yang ZK, Crouch MJ, Vilgalys R, Tuskan GA, Schadt CW.
The Populus holobiont : dissecting the effects of plant niches and genotype on the
microbiome. Microbiome. 2018;6(31):1-14.

Delmotte N, Knief C, Chaffron S, Innerebner G, Roschitzki B, Schlapbach R, von
Mering C, Vorholt JA. Community proteogenomics reveals insights into the
physiology of phyllosphere bacteria. Proceedings of the National Academy of
Sciences of the United States of America. 2009;106(38):16428-16433.

Dodt M, Roehr JT, Ahmed R, Dieterich C. FLEXBAR—Flexible Barcode and Adapter
Processing for. Biology. 2012;1:895-905.

Edgar RC. UPARSE : highly accurate OTU sequences from microbial amplicon reads.
Nature Methods. 2013;647:1-5.

Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity
and speed of chimera detection. Bioinformatics. 2011;27(16):2194-2200.

Entwistle N, Owen P, Patterson DA, Jones L V. The Occurrence of Chlordiazepoxide
Degradation Products in Sudden Deaths Associated with Chlordiazepoxide
Overdosage. Journal of Forensic Science Society. 1986;26:45-54.

Felske A, Rheims H, Wolterink A, Stackebrandt E, Akkermans ADL. Ribosome
analysis reveals prominent activity of an uncultured member of the class
Actinobacteria in grassland soils. Microbiology. 1997;143:2983-2989.

FOCUS. Guidance Document on Estimating Persistence and Degradation Kinetics
from Environmental Fate Studies on Pesticides in EU Registration.; 2006.

Gallego S, Devers-lamrani M, Rousidou K, Karpouzas DG, Martin-laurent F. Science
of the Total Environment Assessment of the effects of oxamyl on the bacterial
community of an agricultural soil exhibiting enhanced biodegradation. Science of
the Total Environment. 2019;651:1189-1198.

Gdanetz K, Trail F. The Wheat Microbiome Under Four Management Strategies, and
Potential for Endophytes in Disease Protection. Phytobiomes. 2017;1(3):158-168.

Gouy M, Guindon S, Gascuel O. SeaView Version 4 : A Multiplatform Graphical User
Interface for Sequence Alignment and Phylogenetic Tree Building. Molecular
Biology Evolution. 2010;27(2):221-224.

Grabke a, Fernandez-Ortufio D, Amiri A, Li X, Peres N a, Smith P, Schnabel G.
Characterization of iprodione resistance in Botrytis cinerea from strawberry and
blackberry. Phytopathology. 2014;1:396-402.

Grady KL, Sorensen JW, Stopnisek N, Shade A. Assembly and seasonality of core
phyllosphere microbiota on perennial biofuel crops. Nature Communications.
2019;10:4135.

Gu L, Bai Z, Jin B, Hu Q, Wang H, Zhuang G, Zhang H. Assessing the impact of
fungicide enostroburin application on bacterial community in wheat phyllosphere.
Journal of Environmental Sciences. 2010;22(1):134-141.

224

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 22:08:09 EEST - 3.145.107.127



Hamonts K, Trivedi P, Garg A, Janitz C, Grinyer J, Botha FC, Anderson IC, Singh BK.
Field study reveals core plant microbiota and relative importance of their drivers.
Environmental Microbiology. 2018;20(1):124-140.

Hauswedell H, Singer J, Reinert K. Lambda : the local aligner for massive biological
data. Bioinformatics. 2014;30(17):349-355.

Hildebrand F, Tadeo R, Voigt AY, Bork P, Raes J. LotuS : an efficient and user-friendly
OTU processing pipeline. Microbiome. 2014;2:1-7.

Hoffmann K, Pawlowska J, Walther G, Wrzosek M, Hoog GS De, Benny GL, Kirk
PM, Voigt K. The family structure of the Mucorales : a synoptic revision based on
comprehensive multigene-genealogies. Persoonia. 2013;30:57-76.

Hussain Q, Liu Y, Zhang A, Pan G, Li L, Zhang X, Song X, Cui L, Jin Z. Variation of
bacterial and fungal community structures in the rhizosphere of hybrid and
standard rice cultivars and linkage to CO2 flux. Microbial ecology. 2011;78:116—
128.

Ihrmark K, Bodeker ITM, Cruz-Martinez K, Friberg H, Kubartova A, Schenck J, Strid
Y, Stenlid J, Brandstrom-Durling M, Clemmensen KE, Lindahl BD. New primers
to amplify the fungal ITS2 region - evaluation by 454-sequencing of artificial and
natural communities. FEMS Microbiology Ecology. 2012;82(3):666-677.

Itoh H, Navarro R, Takeshita K, Tago K, Hayatsu M. Bacterial population succession
and adaptation affected by insecticide application and soil spraying history.
Frontiers in Microbiologyodiers. 2014;5:457.

Jensen B, Knudsen IMB, Andersen B, Nielsen KF, Thrane U, Jensen DF, Larsen J.
Characterization of microbial communities and fungal metabolites on field grown
strawberries from organic and conventional production. International Journal of
Food Microbiology. 2013;160(3):313-322.

Jost L. Entropy and diversity. Opinion. 2006;113(2):363-375.

Karas PA, Baguelin C, Pertile G, Papadopoulou ES, Nikolaki S, Storck V, Ferrari F,
Trevisan M, Ferrarini A, Fornasier F, Vasileiadis S, Tsiamis G, Martin-Laurent F,
Karpouzas DG. Assessment of the impact of three pesticides on microbial
dynamics and functions in a lab-to-field experimental approach. Science of the
Total Environment. 2018;637-638:636-646.

Karpouzas DG, Giannakou 10, Walker A, Gowen SR. Reduction in biological efficacy
of ethoprophos in a soil from Greece due to enhanced biodegradation : comparing
bioassay with laboratory incubation data. Pesticide Science. 1999;55:1089-1094.

Karpouzas DG, Kandeler E, Bru D, Friedel I, Auer Y, Kramer S, Vasileiadis S, Petric
I, Udikovic-Kolic N, Djuric S, Martin-Laurent F. A tiered assessment approach
based on standardized methods to estimate the impact of nicosulfuron on the
abundance and function of the soil microbial community. Soil Biology and
Biochemistry. 2014;75:282-291.

Kautz S, Rubin BER, Russell JA, Moreau CS, Kautz S, Rubin BER, Russell JA, Moreau
S. Surveying the Microbiome of Ants : Comparing 454 Pyrosequencing. Applied
225

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 22:08:09 EEST - 3.145.107.127



and Environmental Microbiology. 2013;79(2):525-534.

Kembel SW, Mueller RC. Plant traits and taxonomy drive host associations in tropical
phyllosphere fungal communities 1. Botany. 2014;92(4):303-311.

Kikuchi Y, Hayatsu M, Hosokawa T, Nagayama A, Tago K. Symbiont-mediated
insecticide resistance. PNAS. 2012;109(22):8618-8622.

Knief C, Delmotte N, Chaffron S, Stark M, Innerebner G, Wassmann R, von Mering
C, Vorholt J a. Metaproteogenomic analysis of microbial communities in the
phyllosphere and rhizosphere of rice. The ISME Journal. 2012;6(7):1378-1390.

Koljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, Bates ST,
Bruns TD, Bengtsson-Palme J, Callaghan TM, Douglas B, Drenkhan T, Eberhardt
U, Duenas M, Grebenc T, Griffith GW, Hartmann M, Kirk PM, et al. Towards a
unified paradigm for sequence-based identification of Fungi. Molecular Ecology.
2013;22(21):5271-5277.

Kotouckova L, Schumann P, Durnova E, Sproer C, Sedlacek I, Neca J, Zdrdhal Z,
Némec M. Arthrobacter nitroguajacolicus sp. nov., a novel 4-nitroguaiacol-
degrading acinobacterium. International Journal of Systematic and Evolutionary
Microbiology. 2004;54(3):773-777.

Krutz LJ, Shaner DL, Weaver MA, Webb MT, Thomson SJ, Wiley J. Agronomic and
environmental implications of enhanced s -triazine degradation. Pest Management
Science. 2010;66:461-481.

Leps J, Smilauer P. Multivariate Analysis of Ecological Data using CANOCO.; 2003.

Letcher PM, Powell MJ, Barr DJS, Churchill PF, Wakefield WS, Picard KT, Beakes
GW. Rhizophlyctidales d a new order in Chytridiomycota. Mycological Research.
2008;112:1031-1048.

Lombard L, van der Merwe NA, Groenewald JZ, Crous PW. Generic concepts in
Nectriaceae. Studies in Mycology. 2015;80:189-245.

Magoc T, Salzberg SL. FLASH : fast length adjustment of short reads to improve
genome assemblies. Bioinformatics. 2011;27(21):2957-2963.

Martin C, Vega D, Bastide J, Davet P. Enhanced degradation of iprodione in soil after
repeated treatments for controlling Sclerotinia minor. Plant and Soil.
1990;127:140-142.

Mercadier C, Garcia D, Vega D, Bastide J, Coste C. Metabolism of iprodione in adapted
and non-adapted soils; effect of soil inoculation with an iprodione-degrading
Arthrobacter strain. Soil Biology and Biochemistry. 1996;28(12):1791-1796.

Meylan WM, Howard PH. Computer estimation of the atmospheric gas-phase reaction
rate of organic compounds with hydroxyl radicals and ozone. Chemosphere.
1993;26(12):2293-2299.

Mihdsan M, Babii C, Aslebagh R, Channaveerappa D, Dupree E, Darie CC. Proteomics
based analysis of the nicotine catabolism in Paenarthrobacter nicotinovorans.

226

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 22:08:09 EEST - 3.145.107.127



Scientific Reports. 2018;8:1-9.

Mifiambres GG, Conles MY, Lucini EI, Verdenelli RA, Meriles JM, Zygadlo JA.
Application of thymol and iprodione to control garlic white rot (Sclerotium
cepivorum) and its effect on soil microbial communities. World Journal of
Microbiology and Biotechnology. 2010;26(1):161-170.

Mitchell JA, Cain RB. Rapid onset of the accelerated degradation of dicarboximide
fungicides in a UK soil with a long history of agrochemical exclusion. Pesticide
Science. 1996;48:1-11.

Mongodin EF, Shapir N, Daugherty SC, Deboy RT, Emerson JB, Shvartzbeyn A,
Radune D, Vamathevan J, Riggs F, Grinberg V, Khouri H, Wackett LP, Nelson
KE, Sadowsky MJ. Secrets of Soil Survival Revealed by the Genome Sequence of
Arthrobacter aurescens TC1. PLoS Genetics. 2006;2(12):e214.

Moulas C, Petsoulas C, Rousidou K, Perruchon C, Karas P, Karpouzas DG. Effects of
systemic pesticides imidacloprid and metalaxyl on the phyllosphere of pepper
plants. BioMed Research International. 2013;2013:969750.

Miiller H, Berg C, Landa BB, Auerbach A, Moissl-Eichinger C, Berg G. Plant
genotype-specific archaeal and bacterial endophytes but similar Bacillus
antagonists colonize Mediterranean olive trees. Frontiers in Microbiology.
2015:;6:1-10.

Nagy LG, Kocsubé S, Papp T, Vagvolgyi C. Phylogeny and character evolution of the
coprinoid mushroom genus Parasola as inferred from LSU and ITS nrDNA
sequence data. Persoonia. 2009;22:28-37.

Nilsson RH, Tedersoo L, Ryberg M, Kristiansson E, Hartmann M, Unterseher M, Porter
TM, Bengtsson-PalMe J, Walker DM, De Sousa F, Gamper HA, Larsson E,
Larsson KH, KolJalg U, Edgar RC, Abarenkov K. A Comprehensive,
Automatically Updated Fungal ITS Sequence Dataset for Reference-Based
Chimera Control in Environmental Sequencing Efforts. Microbes and
Environments. 2015;30(2):145-150.

Ning J, Gang G, Bai Z, Hu Q, Qi H, Ma A, Zhuan X, Zhuang G. In situ enhanced
bioremediation of dichlorvos by a phyllosphere Flavobacterium strain. Frontiers
of Environmental Science and Engineering in China. 2012;6(2):231-237.

Oliveira A, Oliveira LC, Aburjaile F, Benevides L. Insight of Genus Corynebacterium :
Ascertaining the Role of Pathogenic and Non-pathogenic Species. Frontiers in
Microbiology. 2017;8:1-18.

Ottesen AR, Gorham S, Pettengill JB, Rideout S, Evans P, Brown E. The impact of
systemic and copper pesticide applications on the phyllosphere microflora of
tomatoes. Journal of the Science of Food and Agriculture. 2015;95(5):1116-1125.

Pankratov TA, Tindall BJ, Liesack W, Dedysh SN. Mucilaginibacter paludis gen. nov.,
sp. nov. and Mucilaginibacter gracilis sp. nov., pectin-, xylan- and laminarin-
degrading members of the family Sphingobacteriaceae from acidic Sphagnum peat
bog. International Journal of Systematic and Evolutionary Microbiology.

227

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 22:08:09 EEST - 3.145.107.127



2007;57:2349-2354.

Papadopoulou ES, Genitsaris S, Omirou M, Perruchon C, Stamatopoulou A, loannides
I, Karpouzas DG. Bioaugmentation of thiabendazole-contaminated soils from a
wastewater disposal site : Factors driving the ef fi cacy of this strategy and the
diversity of the indigenous soil bacterial community. Environmental Pollution.
2018;233:16-25.

Perazzolli M, Antonielli L, Storari M, Puopolo G, Pancher M, Giovannini O, Pindo M,
Pertot I. Resilience of the natural phyllosphere microbiota of the grapevine to
chemical and biological pesticides. Applied and Environmental Microbiology.
2014;80(12):3585-3596.

Perruchon C, Batianis C, Zouborlis S, Papadopoulou ES, Ntougias S, Vasileiadis S,
Karpouzas DG. Isolation of a diphenylamine-degrading bacterium and
characterization of its metabolic capacities, bioremediation and bioaugmentation
potential. Environmental Science and Pollution Research. 2015;22(24):19485—
19496.

Pielou EC. Ecological Diversity. 8th editio. New York: John Wiley & Sons; 1975.

Qin S, Yeboah S, Xu X, Liu Y, Yu B, Romeo O. Analysis on Fungal Diversity in
Rhizosphere Soil of Continuous Cropping Potato Subjected to Different Furrow-
Ridge Mulching Managements. Frontiers in Microbiology. 2017;8:1-10.

R Core Team. R: a language environment for statistical computing. 2017. Available at:
https://cloud.r-project.org/.

Rastogi G, Tech JJ, Coaker GL, Leveau JHJ. A PCR-based toolbox for the culture-
independent quantification of total bacterial abundances in plant environments.
Journal of Microbiological Methods. 2010;83:127-132.

Richardson EJ, Bacigalupe R, Harrison EM, Weinert LA, Lycett S, Vrieling M, Robb
K, Hoskisson PA, Holden MTG, Feil EJ, Paterson GK, Tong SYC, Shittu A,
Wamel W Van, Fitzgerald JR. Gene exchange drives the ecological success of a
multi-host bacterial pathogen. Nature Ecology & Evolution. 2018;2(9):1468—
1478.

Robinson MD, Mccarthy DJ, Smyth GK. edgeR: a Bioconductor package for
differential expression analysis of digital gene expression data. Bioinformatics.
2010;26(1):139-140.

Rousidou C, Karaiskos D, Myti D, Karanasios E, Karas P, Tourna M, Tzortzakakis EA,
Karpouzas DG. Distribution and function of carbamate hydrolase genes cehA and
mcd in soils: the distinct role of soil pH First. FEMS Microbiology Ecology.
2017;93(1).

Salamone AL, Gundersen B, Inglis DA, Salamone AL, Gundersen B, Inglis DA,
Salamone AL, Gundersen B, Inglis DA. Clonostachys rosea , a potential biological
control agent for Rhizoctonia solani AG-3 causing black scurf on potato
Rhizoctonia solani AG-3 causing black scurf on potato. Biocontrol Science and
Technology. 2018;28(9):895-900.

228

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 22:08:09 EEST - 3.145.107.127



Scheublin TR, Deusch S, Moreno-forero SK, Miiller JA, Van Der Meer JR, Leveau
JHJ. Transcriptional profiling of Gram-positive Arthrobacter in the phyllosphere :
induction of pollutant degradation genes by natural plant phenolic compounds.
Environmental Microbiology. 2014;16(7):2212-2225.

Scheublin TR, Leveau JHJ. Isolation of Arthrobacter species from the phyllosphere and
demonstration of their epiphytic fitness. MicrobiologyOpen. 2013;2:205-213.

Simoes MF, Antunes A, Ottoni CA, Amini MS, Alam |, Alzubaidy H, Mokhtar N,
Archer JAC, Bajic VB. Soil and Rhizosphere Associated Fungi in Gray
Mangroves (Avicennia marina) from the Red Sea — A Metagenomic Approach.
Genomics Proteomics Bioinformatics. 2015;13:310-320.

Singh BK, Walker A. Microbial degradation of organophosphorus compounds. FEMS
Microbiology Reviews. 2006;30:428-471.

Suett DL. Influence of treatment of soil with carbofuran on the subsequent performance
of insecticides against cabbage root fly (Delia radicum) and carrot fly (Psila rosae).
Crop Protection. 1987;6:371-378.

Technical Committee ISO/TC 190, Soil quality, Subcommittee SC 2 S. Soil quality-
Sampling-Part2: Guidance on sampling techniques. In: 1SO 10381.; 2002.

Tourna M, Stieglmeier M, Spang A, Konneke M, Schintlmeister A, Urich T.
Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proc. Natl.
Acad. Sci. USA. 2011;108(20):8420-8425.

Tsai IJ, Tanaka E, Masuya H, Tanaka R, Hirooka Y, Endoh R, Sahashi N, Kikuchi T.
Comparative Genomics of Taphrina Fungi Causing Varying Degrees of Tumorous
Deformity in Plants. Genome Biology and Evolution. 2014;6(4):861-872.

Tupinamba DD, Cantdo ME, Yonara O, Costa A, Bergmann JC, Kruger RH, Kyaw
CM, Barreto CC, Quirino BF. Archaeal Community Changes Associated with
Cultivation of Amazon Forest Soil with Oil Palm. Hindawi. 2016;2016:0-8.

U.S. Environmental Protection Agency (USEPA). Registration Eligibility Decision
(RED) Iprodione. Prevention, Pesticides and Toxic Substances. US EPA
ARCHIVE. 1998:9.

Vasileiadis S, Puglisi E, Arena M, Cappa F, Veen JA Van, Cocconcelli PS, Trevisan
M. Soil microbial diversity patterns of a lowland spring environment. FEMS
Microbiology Ecology. 2013;86:172—184.

Vasileiadis S, Puglisi E, Papadopoulou ES, Pertile G, Suciu N, Pappolla RA, Tourna
M, Karas PA, Papadimitriou F, Kasiotakis A, Ipsilanti N, Ferrarini A, Sutowicz S,
Fornasier F, Menkissoglu-Spiroudi U, Nicol GW, Trevisan M, Karpouzas DG.
Blame it on the metabolite: 3,5-dichloraniline rather than the parent compound is
responsible for decreasing diversity and function of soil microorganisms. Applied
and Environmental Microbiology. 2018;84(22):e01536-18.

Vidaver AK. The plant pathogenic corynebacteria. Annual Review of Microbiology.
1982;36:495-517.

229

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 22:08:09 EEST - 3.145.107.127



Vorholt JA. Microbial life in the phyllosphere. Nature reviews. Microbiology.
2012;10(12):828-40.

Walker A. Futher observations on the enhanced degradation of iprodione and
vinclozolin in soil. Pesticides Science 21, 219-231. 1987;21:219-231.

Walters W, Hyde ER, Berg-lyons D, Ackermann G, Humphrey G, Parada A, Gilbert
JA, Jansson JK. Improved Bacterial 16S rRNA Gene (V4 and V4-5) and Fungal
Internal Transcribed Spacer Marker Gene Primers for Microbial Community
Surveys. mSystems. 2015;1(1):e00009-15.

Wang M, Liu F, Crous PW, Cai L. Phylogenetic reassessment of Nigrospora :
Ubiquitous endophytes , plant and human pathogens. Persoonia. 2017;39:118—
142.

Wang Z, Zhang J, Wu F, Zhou X. Changes in rhizosphere microbial communities in
potted cucumber seedlings treated with syringic acid. PLoS ONE.
2018;13(6):€0200007.

White TJ, Bruns T, Lee S, Taylor J. Amplification and Direct Sequencing of Fungal
Ribosomal Rna Genes for Phylogenetics. In: PCR Protocols: A Guide to Methods
and Applications. Academic Press, Inc.; 1990:315-322.

Yang Z, Jiang W, Wang XX, Cheng T, Zhang D, Wang H, Qiu J, Cao L, Wang XX,
Hong Q. An amidase gene ipaH is responsible for the initial degradation step of
iprodione in strain Paenarthrobacter sp. YJN-5. Applied and Environmental
Microbiology. 2018;84(July):e01150-18.

Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, Schweer T, Peplies J,
Ludwig W, Glockner FO. The SILVA and “““ All-species Living Tree Project (
LTP )’ taxonomic frameworks. Nucleic Acids Research. 2014;42:643-648.

Zalar P, Gostincar C, Hoog GS De, UrSi¢ V, Sudhadham M. Redefinition of
Aureobasidium pullulans and its varieties. Studies in Mycology. 2008;61:21-38.

Zhalnina K V, Dias R, Leonard MT, Quadros PD De, Camargo FAO, Drew JC,
Farmerie WG, Daroub SH, Triplett EW. Genome Sequence of Candidatus
Nitrososphaera evergladensis from Group | . 1b Enriched from Everglades Soil
Reveals Novel Genomic Features of the Ammonia- Oxidizing Archaea. PLoS
ONE. 2014;9(7):e101648.

Zhang BG, Tang L, Hoefel D, Tang L, Wang X, Li B, Li Z, Zhuang G. The impact of
cypermethrin pesticide application on the non-target microbial community of the
pepper plant phyllosphere. Science of the Total Environment. 2009;407:1915—
1922.

Zhang M, Teng Y, Zhang Y, Ford R, Xu Z. Effects of nitrification inhibitor 3 , 4-
dimethylpyrazole phosphate and fungicide iprodione on soil fungal biomass and

community : based on internal transcribed spacer region. J Soils Sediments.
2017;17:1021-1029.

Zhang M, Wang W, Bai SH, Zhou X, Teng Y, Xu Z. Antagonistic effects of nitrification
inhibitor 3,4-dimethylpyrazole phosphate and fungicide iprodione on net
230

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 22:08:09 EEST - 3.145.107.127



nitrification in an agricultural soil. Soil Biology and Biochemistry. 2018;116:167—
170.

Zhang M, Wang W, Wang J, Teng Y, Xu Z. Dynamics of biochemical properties
associated with soil nitrogen mineralization following nitrification inhibitor and
fungicide applications. Environmental Science and Pollution Research.
2017;24:11340-11348.

231

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 22:08:09 EEST - 3.145.107.127



4.7. Supplementary Data

Chapter 4 - The response of soil and phyllosphere microbial communities to
repeated application of the fungicide iprodione: Accelerated biodegradation or

toxicity?
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Supplementary Figure S1. The impact of iprodione on the a-diversity indices
Richness, Fisher alpha, Simpson, Shannon and Pielou’s evenness of bacteria, archaea
and fungi in the phyllosphere of pepper plants and in soil. Significant differences
between control (ctr) and iprodione-treated samples (Ipr) within each habitat are
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denoted with asterisks (* level of significance 0.05).
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Supplementary Fig. S2. Rarefaction curves denoting the diversity coverage obtained
by our sequencing effort for the bacterial (a), archaeal (b) and fungal (c) epiphytic and
soil community.
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Supplementary Figure S3. Heatmap of Spearman’s correlation between the measured
concentrations of iprodione and 3,5-dichloraniline (3,5-DCA) in soil and phyllosphere
and bacterial and fungal genera and archaeal classes. The significance level of the
different concentrations are designated with asterisks (*, **, *** correspond to
significance levels of 0.05, 0.01 and 0.001 respectively).
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Supplementary Figure S4. The degradation of iprodione (M) and the formation of
3,5-dicholoroaniline (3,5-DCA)(®) in enrichment cultures in MSM (a, b), MSMN (c,
d) and MSM+SC (e, f) supplemented with iprodione which were inoculated with soil
or epiphytic biomass collected from pots repeatedly treated with iprodione. The
transformation of iprodione and the formation of 3,5-DCA in non-inoculated cultures
of the corresponding media was also determined (dashed line, empty symbols). Each
value is the mean of three replicates + the standard deviation of the mean.
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Supplementary Figure S5. The proliferation of Paenarthrobacter sp. strains TAL1.8
(O) and LP13.7 (M) during degradation of iprodione as determined by g-PCR analysis
of their 16S rRNA gene. Each value is the mean of three replicates with error bars
representing the standard deviation of the mean.
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Supplementary Table S1. The primers used in the current study. BO0O0X-515f and FI000X-ITS4r are indexed primers used in the second
amplification step which are composed of the sequence of the universal primers 515f (bacteria, archaea) and ITS4r (fungi) (bold), the indexes used
for samples barcoding (underlined) and a TT sequence at the 5' end of each primer.

Primers

Sequence (5'-3")

Gene target Fragment Length (bp) Reference

Bacteria and Archaea

515f

806r

B0001-515f
B0002-515f
B0003-515f
B0004-515f
B0005-515f
B0006-515f
B0007-515f
B0008-515f
B0009-515f
B0010-515f
B0011-515f
B0012-515f
B0013-515f
B0014-515f
B0015-515f
B0016-515f
B0017-515f

GTGYCAGCMGCCGCGGTAA
GGACTACNVGGGTWTCTAAT
TTCTTCTTCGTGTGYCAGCMGCCGCGGTAA
TTCTTCAAGGTGTGYCAGCMGCCGCGGTAA
TTCTTGTCAGTGTGYCAGCMGCCGCGGTAA
TTCTTGAGTGTGTGYCAGCMGCCGCGGTAA
TTCTTGGACGTGTGYCAGCMGCCGCGGTAA
TTCTATAGGGTGTGYCAGCMGCCGCGGTAA
TTCTATCTCGTGTGYCAGCMGCCGCGGTAA
TTCTATGCAGTGTGYCAGCMGCCGCGGTAA
TTCTAACAGGTGTGYCAGCMGCCGCGGTAA
TTCTAGTTGGTGTGYCAGCMGCCGCGGTAA
TTCTCTTGTGTGTGYCAGCMGCCGCGGTAA
TTCTCTAACGTGTGYCAGCMGCCGCGGTAA
TTCTCAATGGTGTGYCAGCMGCCGCGGTAA
TTCTCAGAAGTGTGYCAGCMGCCGCGGTAA
TTCATATGGGTGTGYCAGCMGCCGCGGTAA
TTCATAGTCGTGTGYCAGCMGCCGCGGTAA
TTCATCACAGTGTGYCAGCMGCCGCGGTAA
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B0018-515f
B0019-515f
B0020-515f
B0021-515f
B0022-515f
B0023-515f
B0024-515f
B0025-515f
B0026-515f
B0027-515f
B0028-515f
B0029-515f
B0030-515f
B0031-515f
B0032-515f
B0033-515f
B0034-515f
B0035-515f
B0036-515f
B0037-515f
B0038-515f
B0039-515f
B0040-515f
B0041-515f
B0042-515f

TTCATCGATGTGTGYCAGCMGCCGCGGTAA
TTCAATCGTGTGTGYCAGCMGCCGCGGTAA
TTCAATGACGTGTGYCAGCMGCCGCGGTAA
TTCAACTAGGTGTGYCAGCMGCCGCGGTAA
TTCAACATCGTGTGYCAGCMGCCGCGGTAA
TTCAAGAGAGTGTGYCAGCMGCCGCGGTAA
TTCAAGGTTGTGTGYCAGCMGCCGCGGTAA
TTCAGTTCAGTGTGYCAGCMGCCGCGGTAA
TTCAGTAAGGTGTGYCAGCMGCCGCGGTAA
TTCAGACTTGTGTGYCAGCMGCCGCGGTAA
TTCAGAGGAGTGTGYCAGCMGCCGCGGTAA
TTCAGCAGTGTGTGYCAGCMGCCGCGGTAA
TTCAGCCAAGTGTGYCAGCMGCCGCGGTAA
TTCAGGTATGTGTGYCAGCMGCCGCGGTAA
TTCGTTCTAGTGTGYCAGCMGCCGCGGTAA
TTCGTTGGTGTGTGYCAGCMGCCGCGGTAA
TTCGTAGAGGTGTGYCAGCMGCCGCGGTAA
TTCGTGATCGTGTGYCAGCMGCCGCGGTAA
TTCGATGTGGTGTGYCAGCMGCCGCGGTAA
TTCGAATCAGTGTGYCAGCMGCCGCGGTAA
TTCGACAATGTGTGYCAGCMGCCGCGGTAA
TTCGAGCACGTGTGYCAGCMGCCGCGGTAA
TTGTTCAGAGTGTGYCAGCMGCCGCGGTAA
TTGTTCGTTGTGTGYCAGCMGCCGCGGTAA
TTGTTGTAGGTGTGYCAGCMGCCGCGGTAA
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B0043-515f
B0044-515f
B0045-515f
B0046-515f
B0047-515f
B0048-515f
B0049-515f
B0050-515f
B0051-515f
B0052-515f
B0053-515f
B0054-515f
B0055-515f
B0056-515f
B0057-515f
B0058-515f
B0059-515f
B0060-515f
B0061-515f
B0062-515f
B0063-515f
B0064-515f
B0065-515f
B0066-515f
B0067-515f

TTGTATCGAGTGTGYCAGCMGCCGCGGTAA
TTGTAATGGGTGTGYCAGCMGCCGCGGTAA
TTGTAAGTCGTGTGYCAGCMGCCGCGGTAA
TTGTAGAACGTGTGYCAGCMGCCGCGGTAA
TTGTCTTCAGTGTGYCAGCMGCCGCGGTAA
TTGTCTCTTGTGTGYCAGCMGCCGCGGTAA
TTGTCAGGTGTGTGYCAGCMGCCGCGGTAA
TTGTCGATAGTGTGYCAGCMGCCGCGGTAA
TTGTGTATCGTGTGYCAGCMGCCGCGGTAA
TTGTGTGAAGTGTGYCAGCMGCCGCGGTAA
TTGTGACTAGTGTGYCAGCMGCCGCGGTAA
TTGTGCAATGTGTGYCAGCMGCCGCGGTAA
TTGTGGTGTGTGTGYCAGCMGCCGCGGTAA
TTGATAGCAGTGTGYCAGCMGCCGCGGTAA
TTGATCTTGGTGTGYCAGCMGCCGCGGTAA
TTGATCAACGTGTGYCAGCMGCCGCGGTAA
TTGATGAGGGTGTGYCAGCMGCCGCGGTAA
TTGAACTCAGTGTGYCAGCMGCCGCGGTAA
TTGAAGTTCGTGTGYCAGCMGCCGCGGTAA
TTGAAGGAAGTGTGYCAGCMGCCGCGGTAA
TTGACTATGGTGTGYCAGCMGCCGCGGTAA
TTGACGTGAGTGTGYCAGCMGCCGCGGTAA
TTGACGAATGTGTGYCAGCMGCCGCGGTAA
TTGAGTTGGGTGTGYCAGCMGCCGCGGTAA
TTGAGTCATGTGTGYCAGCMGCCGCGGTAA
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B0068-515f
B0069-515f
B0070-515f
B0071-515f
B0072-515f
B0073-515f
B0074-515f
B0075-515f
B0076-515f
BO077-515f
B0078-515f
B0079-515f
B0080-515f
B0081-515f
B0082-515f
B0083-515f
B0084-515f

TTGAGAGTGGTGTGYCAGCMGCCGCGGTAA
TTGAGCCTCGTGTGYCAGCMGCCGCGGTAA
TTGAGGACAGTGTGYCAGCMGCCGCGGTAA
TTGCATAAGGTGTGYCAGCMGCCGCGGTAA
TTGCATGTTGTGTGYCAGCMGCCGCGGTAA
TTGCAACAAGTGTGYCAGCMGCCGCGGTAA
TTGCAGTATGTGTGYCAGCMGCCGCGGTAA
TTGCCTAGTGTGTGYCAGCMGCCGCGGTAA
TTGCCTCACGTGTGYCAGCMGCCGCGGTAA
TTGCCAATCGTGTGYCAGCMGCCGCGGTAA
TTGCCAGAGGTGTGYCAGCMGCCGCGGTAA
TTGGTTGTCGTGTGYCAGCMGCCGCGGTAA
TTGGTATGAGTGTGYCAGCMGCCGCGGTAA
TTGGTCTATGTGTGYCAGCMGCCGCGGTAA
TTGGTGCCAGTGTGYCAGCMGCCGCGGTAA
TTGGAACTTGTGTGYCAGCMGCCGCGGTAA
TTGGACATAGTGTGYCAGCMGCCGCGGTAA

Fungi

ITS7f

ITS4r

F10001-1TS4r
F10002-1TS4r
F10003-1TS4r
F10004-1TS4r
F10005-1TS4r

GTGARTCATCGAATCTTTG
TCCTCCGCTTATTGATATGC
TTATTACCGGATCCTCCGCTTATTGATATGC
TTATTAGGCGATCCTCCGCTTATTGATATGC
TTATTCTCCGATCCTCCGCTTATTGATATGC
TTATTCGTGGATCCTCCGCTTATTGATATGC
TTATTGCGAGATCCTCCGCTTATTGATATGC
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F10006-1TS4r
FI0007-1TS4r
F10008-1TS4r
F10009-1TS4r
F10010-1TS4r
FI0011-1TS4r
F10012-1TS4r
F10013-1TS4r
F10014-1TS4r
F10015-1TS4r
F10016-1TS4r
FI0017-1TS4r
F10018-1TS4r
F10019-1TS4r
F10020-1TS4r
FI0021-1TS4r
F10022-1TS4r
F10023-1TS4r
F10024-1TS4r
F10025-1TS4r
F10026-1TS4r
FI0027-1TS4r
F10028-1TS4r
F10029-1TS4r
F10030-1TS4r
FI0031-1TS4r

TTATACTGGGATCCTCCGCTTATTGATATGC
TTATACCTCGATCCTCCGCTTATTGATATGC
TTATACGCAGATCCTCCGCTTATTGATATGC
TTATAGACCGATCCTCCGCTTATTGATATGC
TTATGTTCGGATCCTCCGCTTATTGATATGC
TTATGTGACGATCCTCCGCTTATTGATATGC
TTATGAAGGGATCCTCCGCTTATTGATATGC
TTATGAGCTGATCCTCCGCTTATTGATATGC
TTATGCCATGATCCTCCGCTTATTGATATGC
TTATGGTGTGATCCTCCGCTTATTGATATGC
TTAATTCGCGATCCTCCGCTTATTGATATGC
TTAATCCAGGATCCTCCGCTTATTGATATGC
TTAATCGGTGATCCTCCGCTTATTGATATGC
TTAATGTGGGATCCTCCGCTTATTGATATGC
TTAATGCCTGATCCTCCGCTTATTGATATGC
TTAATGGACGATCCTCCGCTTATTGATATGC
TTAACTTCCGATCCTCCGCTTATTGATATGC
TTAACTAGGGATCCTCCGCTTATTGATATGC
TTAACAGTCGATCCTCCGCTTATTGATATGC
TTAACCTTGGATCCTCCGCTTATTGATATGC
TTAACCGAAGATCCTCCGCTTATTGATATGC
TTAACGACAGATCCTCCGCTTATTGATATGC
TTACTTACGGATCCTCCGCTTATTGATATGC
TTACTTGTCGATCCTCCGCTTATTGATATGC
TTACTAGAGGATCCTCCGCTTATTGATATGC
TTACTCTGAGATCCTCCGCTTATTGATATGC

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 22:08:09 EEST - 3.145.107.127

241



F10032-1TS4r
F10033-1TS4r
F10034-1TS4r
FI10035-1TS4r
F10036-1TS4r
FI0037-1TS4r
F10038-1TS4r
F10039-1TS4r
F10040-1TS4r
F10041-1TS4r
F10042-1TS4r
F10043-1TS4r
F10044-1TS4r
F10045-1TS4r
F10046-1TS4r
F10047-1TS4r
F10048-1TS4r
F10049-1TS4r
F10050-1TS4r
FI0051-1TS4r
F10052-1TS4r
F10053-1TS4r
F10054-1TS4r
F10055-1TS4r
F10056-1TS4r
FI0057-1TS4r

TTACTCCTTGATCCTCCGCTTATTGATATGC
TTACTGGCAGATCCTCCGCTTATTGATATGC
TTACATTGCGATCCTCCGCTTATTGATATGC
TTACAGTAGGATCCTCCGCTTATTGATATGC
TTACAGGTTGATCCTCCGCTTATTGATATGC
TTACCTAACGATCCTCCGCTTATTGATATGC
TTACCTCTAGATCCTCCGCTTATTGATATGC
TTACCTGGTGATCCTCCGCTTATTGATATGC
TTACCATCGGATCCTCCGCTTATTGATATGC
TTACCGTTCGATCCTCCGCTTATTGATATGC
TTACGTCAGGATCCTCCGCTTATTGATATGC
TTACGATACGATCCTCCGCTTATTGATATGC
TTACGACCAGATCCTCCGCTTATTGATATGC
TTACGCCGCGATCCTCCGCTTATTGATATGC
TTACGCGTAGATCCTCCGCTTATTGATATGC
TTAGTTCTGGATCCTCCGCTTATTGATATGC
TTAGTTGGAGATCCTCCGCTTATTGATATGC
TTAGTAACCGATCCTCCGCTTATTGATATGC
TTAGTACGTGATCCTCCGCTTATTGATATGC
TTAGATCCTGATCCTCCGCTTATTGATATGC
TTAGATGAGGATCCTCCGCTTATTGATATGC
TTAGACTACGATCCTCCGCTTATTGATATGC
TTAGACATGGATCCTCCGCTTATTGATATGC
TTAGAGTCAGATCCTCCGCTTATTGATATGC
TTAGCAGATGATCCTCCGCTTATTGATATGC
TTAGCCTGTGATCCTCCGCTTATTGATATGC
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F10058-1TS4r
F10059-1TS4r
F10060-1TS4r
FI0061-1TS4r
F10062-1TS4r
F10063-1TS4r
F10064-1TS4r
F10065-1TS4r
F10066-1TS4r
FI0067-1TS4r
F10068-1TS4r
F10069-1TS4r
F10070-1TS4r
FI0071-1TS4r
F10072-1TS4r
FI0073-1TS4r
F10074-1TS4r
FI0075-1TS4r
F10076-1TS4r
FI0077-1TS4r
F10078-1TS4r
F10079-1TS4r
F10080-1TS4r
FI0081-1TS4r
F10082-1TS4r
F10083-1TS4r

TTAGGTACAGATCCTCCGCTTATTGATATGC
TTAGGCGCCGATCCTCCGCTTATTGATATGC
TTCTTATGGGATCCTCCGCTTATTGATATGC
TTCTTACTCGATCCTCCGCTTATTGATATGC
TTCTTAGCAGATCCTCCGCTTATTGATATGC
TTCTTCAGTGATCCTCCGCTTATTGATATGC
TTCTTCGACGATCCTCCGCTTATTGATATGC
TTCTTGAAGGATCCTCCGCTTATTGATATGC
TTCTTGGTTGATCCTCCGCTTATTGATATGC
TTCTATTCCGATCCTCCGCTTATTGATATGC
TTCTATAGGGATCCTCCGCTTATTGATATGC
TTCTAACAGGATCCTCCGCTTATTGATATGC
TTCTACCGAGATCCTCCGCTTATTGATATGC
TTCTAGTTGGATCCTCCGCTTATTGATATGC
TTCTAGCCTGATCCTCCGCTTATTGATATGC
TTCTAGGAAGATCCTCCGCTTATTGATATGC
TTCTCTTAGGATCCTCCGCTTATTGATATGC
TTCTCTACAGATCCTCCGCTTATTGATATGC
TTCTCTCTTGATCCTCCGCTTATTGATATGC
TTCTCTGGCGATCCTCCGCTTATTGATATGC
TTCTCCATCGATCCTCCGCTTATTGATATGC
TTCTCCGCTGATCCTCCGCTTATTGATATGC
TTCTCGTGAGATCCTCCGCTTATTGATATGC
TTCTGTGTAGATCCTCCGCTTATTGATATGC
TTCTGAACCGATCCTCCGCTTATTGATATGC
TTCTGACGTGATCCTCCGCTTATTGATATGC
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FI0084-1TS4r TTCTGCTCAGATCCTCCGCTTATTGATATGC

Supplementary Table S2. PCR reagents and thermocycling conditions used for amplicon sequencing analysis.

PCR reaction

Reagents Volume (ul) Concentrations Comments

Primer F 1 0.5 uM

Primer R 1 0.5 uM

BSA 0.4 0.4 ng/ul Added only in the first amplification step
Polymerase Q5 (2x MasterMix) 10 1x

ddH:20 5.6

DNA 2 0.2 ng/pl

Total 20

PCR conditions

Step Temperature (°C) Time Number of Cycles
Initial Denaturation 98 30 sec
Denaturation 98 10 sec 28 in the first amplification step / 7 in the second amplification step
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Annealing
Extention

Final extention

50 for bacteria/ 55 for fungi 30 sec

72

72

30 sec

10 min

Supplementary Table S3. Sequence depth of the samples analyzed based on Good’s Coverage estimation. Each value is the mean value of three

biological replicates+ the standard deviation.

Samples Good's coverage (%)
Habitat Treatment Application No_days post application Bacteria Archaea Fungi
Soil Iprodione 1 00d 0.99+0.00 0.99+0.00 1.00+0.00
1 30d 0.99+0.00 0.99+0.00 1.00+0.00
2 _10d 0.99+0.00 0.99+0.01 1.00+0.00
2_30d 0.99+0.01 0.99+0.00 1.00+0.00
3 10d 0.99+0.00 0.99+0.01 1.00+0.00
3 30d 0.98+0.00 0.98+0.01 1.00+0.00
4 30d 0.98+0.01 0.98+0.02 1.00+0.00
Control 1 00d 0.99+0.00 1.00+0.00 1.00+0.00
1 30d 0.98+0.01 0.98+0.01 1.00+0.00
2_10d 0.97+0.01 0.96+0.03 1.00+0.00
2_30d 0.99+0.00 0.98+0.01 1.00+0.00
3 10d 0.96+0.03 0.97+0.01 0.99+0.00
3 30d 0.98+0.01 0.93+0.08 1.00+0.00
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4 30d 0.98+0.00 0.97+0.01 1.00+0.00

Phyllosphere Iprodione 1 00d 0.97+0.01 0.93+0.10 1.00+0.00
1_30d 0.98+0.00 0.67+0.14 1.00+0.00

2_10d 0.99+0.01 0.76+0.13 1.00+0.00

2_30d 0.98+0.00 0.96+0.09 0.99+0.01

3 10d 0.99+0.00 0.95+0.04 0.99+0.00

3 30d 0.99+0.00 0.92+0.09 0.99+0.01

4 30d 0.99+0.01 0.96+0.01 0.99+0.00

Control 1 00d 0.97+0.01 0.95+0.01 0.99+0.00
1 30d 0.98+0.01 0.89+0.05 0.99+0.01

2_10d 0.99+0.00 0.77+0.21 1.00+0.00

2_30d 0.99+0.00 0.64+0.08 0.99+0.00

3 10d 0.97+0.01 0.92+0.11 0.99+0.00

3 30d 0.99+0.00 0.92+0.11 1.00+0.00

4 30d 0.99+0.00 0.99+0.01 1.00+0.00
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Chapter 5

General Discussion and Future Perspectives
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5.1. General Discussion

Phyllosphere and rhizosphere are plant-associated micro-habitats that are known to
support diverse microbial communities whose structure is mediated by plants (Philippot
et al. 2013; Vorholt 2012). We aimed to disentangle the mechanisms shaping microbial
communities in the phyllosphere and the soil root zone and identify their response to
agricultural practices like soil organic amendment and pesticide application. In this
frame the focus was on plants indigenous to Mediterranean ecosystems, with some of
them producing essential oils which are known to exert antimicrobial activities, while

effects on cultivated plants were also explored.

We initially explored the factors shaping the microbial community of the
phyllosphere in plants native to semi-arid Mediterranean ecosystems using g-PCR and
amplicon sequencing approaches. We observed strong season effects on microbial
abundance which varied according to the microbial domain studied; Crenarchaea,
fungi, Alternaria and Cladosporia flourished in the summer as also reported before
(Inécio et al. 2002; Osono and Mori 2005), in contrast to bacteria which showed
increasing abundance in the winter (Maignien et al. 2014; Pefiuelas et al. 2012; Rastogi
et al. 2012; Yadav et al. 2004). Bacterial communities were dominated by typical
epiphytic o-Proteobacteria (i.e. Methylobacterium, Rhizobium and Sphingomonas)
(Aydogan et al. 2018; Delmotte et al. 2009; Grady et al. 2019; Knief et al. 2012; Ryffel
et al. 2015) and Chloroflexi (Anaerolinaceae), (Copeland et al. 2015; Knief et al. 2012;
Ottesen et al. 2016) which exhibited clear seasonal patterns; o-proteobacteria were
favored in the winter and Chloroflexi in the summer. We extended our monitoring to
epiphytic fungi and archaea, for which nothing is known regarding their ecological role

and community composition in such plant communities. The fungal community was
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dominated by Ascomycetes (Jumpponen et al. 2010; Perazzolli et al., 2014),
Capnodiales, Pleosporaceae and Dothioraceae being key members whose abundance
varied by plant host and season. We report that the archaeal epiphytic community of
these plants is dominated by members of the Soil Crenarchaeotic Group (SCG),
previously reported by Taffner et al. (2019) as main members of the community, and
Aenigmarchaeota, reported for the first time as dwellers of the plant phyllosphere. The
structure of the bacterial and fungal epiphytic communities were shaped by both season
and plant-host, unlike the archaeal community whose composition was host-plant
driven, as Taffner et al. (2019) previously reported. Further analysis on the plant
features that determine the epiphytic microbial community showed that plant habit had
a stronger effect on the assemblage of the epiphytic microbial communities compared
to the aromatic nature which was a main determinant only of the fungal community.
The strong seasonal effect on the abundance and diversity of epiphytic bacteria and
fungi in plants of typical semi-arid Mediterranean ecosystems could be alarming
considering the key role of the epiphytic microbiome in the ecological strategies and
productivity of the plants (Laforest-Lapointe et al. 2017). These effects are expected to
be further magnified in the coming years under climate change, especially in such semi-

arid ecosystems exposed to rather extreme seasonal variations.

From the studied plants, Quercus coccifera showed unique features in the
assemblage of its epiphytic microbiome. The bacterial community was stable across
season, whereas its archaeal community showed strong seasonal variations in contrast
to the patterns observed in the other studied plants. In addition, the epiphytic
microbiome of Q. coccifera encompassed unique members like &-Proteobacteria,

previously reported in the plants of the same order as Quercus (Bragina et al. 2012;
250

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 22:08:09 EEST - 3.145.107.127



Laforest-Lapointe et al. 2016; Miura et al. 2019; Redford et al. 2010; Sagaram et al.
2009) and Methanomicrobia (Taffner et al. 2018). Q. coccifera leaves are characterized
by high thickness and thick messophyll, limited availability of nutrients and water, high
phenolics content and absence of trichomes (Yadav et al. 2005), features that might
promote the establishment of micro-anaerobic conditions on its phyllosphere occupied

by methanogenic archaea and anaerobic -proteobacteria.

We extended our study on aromatic plants by exploring their use, as soil
amendment in the frame of implementation of sustainable agricultural practices in the
Mediterranean region where these plants are native. We hypothesized that soil
amendment with residues of aromatic plants like rosemary, spearmint and peppermint
will impose strong alterations on the microbial community at the soil/rhizosphere
interface driven by the release of the bioactive constituents of the essential oils of these
plants (Kadoglidou et al. 2014). We determined these effects on different microbial
groups, some of them having a key functional role in biogeochemical cycling, using g-
PCR in comparison to the effects imposed by a commercial organic fertilizer and non-
amended samples. In addition, we tested all these effects in the presence or absence of
tomato plants, reinforcing the role of plant roots on shaping microbial communities in
the root zone. We observed that soil amendment with peppermint, spearmint and the
organic fertilizer stimulated the abundance of all proteobacteria and fungi regardless of
the presence of tomato plants, in line with the copiotrophic character of these microbial
groups (Fierer et al. 2007; Francioli et al. 2016). In contrast soil amendment with
rosemary stimulated these copiotrophic groups only in the presence of tomato plants.
The different effects of rosemary, compared to mints, on the soil microbiome is most

probably associated with the different monoterpenoid components of the essential oils
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of the different aromatic plants released in the soil upon incorporation of their residues
(Karamanoli et al. 2018). The stimulation of copiotrophic microorganisms in the soil
root zone upon amendment with rosemary plant residues only in the presence of tomato
plants is most probably associated with the beneficial effect of rhizodeposits, known to
favor copiotrophs (Philippot et al. 2013), which might avert any negative effects
imposed by the components of the essential oils of rosemary. We further noticed
variable response of different functional microbial groups to soil amendment. N-
cycling microbial groups like AOA were stimulated by the amendment of soil with
rosemary and the organic fertilizer, while AOB were not responsive. The differential
response of the two ammonia-oxidizing microbial groups was most probably associated
with the mixotrophic nature of AOA (Qin et al. 2014). S-cycling microbial groups like
SOB were stimulated by soil amendment with mints and the organic fertilizer, a
response most probably driven by the release of organosulfur containing substrates
upon soil amendment, a hypothesis which remains to be tested. Little is known about
the response of SOB to soil amendment with fresh organic matter and our study offers
new insights on this area. Regarding microbial groups involved in C-cycling and
specifically in the catabolism of aromatic compounds, we observed different responses
of pcaH- and catA-carrying bacteria with the former stimulated by peppermint and
organic fertilizer soil addition, while the latter showed no response. The differential
response patterns of these two microbial groups could be related to the variable

composition of the materials incorporated in soil.

All the above data suggested complex interactions between plant roots,
components of the plant residues of rosemary and the soil microbiome which were

further pursued via amplicon sequencing analysis. We noticed that rosemary soil
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amendment was the stronger determinant of the structure of the bacterial and fungal
community followed by time, whereas the presence of plant had no effect on the
microbial composition. We observed a stimulation of a-, B- and y-Proteobacteria with
members of the genus Xanthomonas driving this effect for y-Proteobacteria, in line with
members of this group being capable of degrading xenobiotic organic compounds like
pesticides (Rayu et al. 2017) and antibiotics (Thelusmond et al. 2016), making them
candidate monoterpenes degraders. Whereas, Actinobacteria of the genera
Solirubrobacter, Rubrobacter, Agromyces and Blastococcus, known to thrive in non-
disturbed and pristine soils (Castro et al. 2019; Lee et al. 2011; Liao et al. 2019) were
negatively affected by rosemary soil amendment. However, the most striking effect of
rosemary soil amendment was the dominance of basidiomycetes of the order
Cantharellales, genus Minimedusa, being favored by the release of fresh cellulosic
material in the soil root zone. These fungi are known as early colonizers of cellulosic
materials having allelopathic activity on Fusarium phytopathogens (Beale and Pitt
1995), hence the reduced abundance of Fusarium oxysporium f. sp. narcissi in the
rosemary-amended soils. The stimulatory effect of rosemary plant residues soil
incorporation on allelopathic basidiomycetes like Minimedusa could be exploited in
soil amendment strategies to enhance the suppressiveness of agricultural soils to soil-

borne plant pathogens.

We finally tested how another potential perturbation factor like pesticides could
affect the epiphytic microbial community in comparison with the microbial community
of the soil root zone. Our hypothesis was that repeated applications of a biodegradable
fungicide like iprodione would impose similar responses to the microbial communities

in the two plant-associated habitats which could span from microbial acclimation
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towards enhanced biodegradation of the pesticide, to toxicity on members of the soil
microbial community which could not readily metabolize the fungicide. Repeated
application of iprodione on the foliage and via soil drenching of pepper plants, resulted
in an accelerated degradation of the pesticide both in soil and on the phyllosphere. The
vulnerability of iprodione to enhanced biodegradation is well-documented (Martin et
al. 1990; Mercadier et al. 1996; Walker 1987), however it is the first time that this is
demonstrated on the plant phyllosphere with potential consequences for the (i)
agricultural practice (i.e. loss of pesticide efficacy towards plant pathogens) (ii)
environmental quality and (iii) consumers health (pesticides-free environment and

products), which should be further considered.

Amplicon sequencing analysis of the microbiome in the soil root zone and in
the phyllosphere along this repeated application scheme showed that the bacterial and
fungal communities were responsive to iprodione application at both studied habitats,
whereas the archaeal community was affected only in soil root zone. Several members
of the epiphytic and rhizospheric microbial community were found to be positively or
negatively affected by iprodione including the ubiquitous in soil AOA Candidatus
Nitrososphaera, plant and human pathogens and organic matter decomposers which
might affect the homeostasis of the plant-soil system and should be reconsidered in the

frame of the one-health approach.

Following up the enhancement of the degradation of iprodione on plant
phyllosphere and in the soil root zone, we isolated from both habitats bacteria able to
degrade iprodione. Interestingly all three isolates, two from soil and one epiphytic, were

identified based on 16S rRNA sequencing as Paenarthrobacter strains clustering
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together with other iprodione-degrading strains, like Paenathrobacter YJN-5 (Yang et
al. 2018) and Arthrobacter sp. strain C1 (Campos et al. 2015) previously isolated from
distant geographical areas. Our bacteria degraded iprodione to 3.5-DCA, with the
intermediate formation of metabolite |1 and Il, a pathway shared with other soil
iprodione — degrading bacteria (Athiel et al. 1995; Campos et al. 2017; Yang et al. 2018)
but reported for the first time in epiphytic bacteria. All these results highlight a
consistent presence of iprodione-catabolic traits in Arthrobacter-like bacteria isolated
from distant geographic areas suggesting a potential phylogenetic specialization of this
bacterial genus in the degradation of iprodione which is not common in the bacterial

world.

Overall, we showed that plant phyllosphere is a habitat colonized by diverse
bacteria and fungi, while archaea are less abundant and diverse. The epiphytic microbial
community in plants native to a semi-arid Mediterranean ecosystem, including typical
aromatic plants, was shaped by a variety of factors with plant-host and seasonality being
strong determinants. The use of aromatic plants as soil amendment stimulated
copiotrophic microorganisms found in the soil plant root zone and cellulose-degraders
with allelopathic activities against soil-borne plant pathogens, an observation worth
pursuing further. Finally, we showed that beyond native Mediterranean plants, the
epiphytic microbiome of cultivated plants like pepper responds to external
perturbations like pesticide applications with some of its members being affected
negatively or positively, while others became acclimated to degrade pesticides with the
same efficiency as their counterparts in the soil root zone. On top of all the above, this

thesis reported the first epiphytic bacterium, a Paenarthrobacter strain, that could
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degrade iprodione and suggested an uncommon specialization of Arthrobacters in the

degradation of this fungicide.

5.2. Future perspectives
From our findings new scientific questions have emerged which we expect to pursue in

the future like:

1. Finding the chemical and morphological plant traits that shape the epiphytic
microbial communities in such semi-arid Mediterranean ecosystems, with
particular attention given to Q. coccifera which appears to support a unique
microbial assemblage on its leaves.

2. Further looking into the underling mechanism driving the beneficial outcome of
the interaction of plant roots and rosemary soil amendment on the microbial
community, by looking at reciprocal effects on plant primary metabolites and
the persistence of essential oil components in the tomato rhizosphere.

3. Unraveling the genetic features that ensure the epiphytic and soil fitness and
survival of the iprodione-degrading Paenarthrobacter sp. strains isolated from
the two compartments via comparative genomic analysis.

4. Discovering the network of genes involved in the degradation of iprodione by
the Paenarthrobacter strains and the evolutionary mechanisms of this
phenotype (i.e. plasmid encoded or not, mechanisms of acquisition etc.) using
transcriptomic/proteomic analysis.

5. Utilizing iprodione-degrading bacteria in bioremediation processes i.e. in the
treatment of wastewaters from fruit packaging plants or the treatment of fruits
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sprayed with iprodione to safeguard environmental quality and consumers

safety respectively.
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Isolation of Pure Cultures, Optical Microscopy.
Molecular Techniques: RNA/DNA Extraction, Polymerase Chain
Reaction (PCR, RT-PCR, g-PCR), Agarose Gel Electrophoresis, DNA
Cleanup from PCR, Ligation Reaction, Transformation of Bacterial
Cells, Restriction Enzyme Digestion, Isolation of Plasmid DNA,
Denaturing Gradient Gel Electrophoresis, Construction of Clone library.
Analytical Techniques: HPLC, GC-MS

Computer skills: Basic knowledge of Bioinformatics and Analysis of Illumina DNA
Sequencing Data, Adequate user of R, Familiar with Ubuntu operating
system

Microsoft Office operation (Word, Excel, PowerPoint).
Foreign Languages: Greek: Native
English: Fluent

PUBLICATIONS IN PEER-REVIEWED JOURNALS:

Katsoula A, Vasileiadis S, Karamanoli K, Vokou D, Karpouzas DG. Season or Plant species:
Which factor shapes the epiphytic bacterial, archaeal and fungal community in a typical
semi-arid Mediterranean ecosystem? Microbial Ecology. 2019; to be submitted.

Katsoula A, Vasileiadis S, Sapountzi M, Karpouzas DG. The response of soil and phyllosphere
microbial communities to repeated application of the fungicide iprodione: Accelerated
biodegradation or toxicity? FEMS Microbiology Ecology. 2019; Minor Revision.

Lagos S, Perruchon C, Katsoula A, Karpouzas DG. Isolation and characterization of soil
bacteria able to rapidly degrade the organophosphorus nematicide fosthiazate. Letters in
Applied Microbiology. 2019;68(2):149-155.

Papazlatani C, Rousidou C, Katsoula A, Kolyvas M, Genitsaris S, Papadopoulou KK,
Karpouzas DG. Assessment of the impact of the fumigant dimethyl disulfide on the
dynamics of major fungal plant pathogens in greenhouse soils. European Journal of Plant
Pathology. 2016;146(2):391-400.

ABSTRACTS IN CONFERENCE PROCEEDINGS:

— Katsoula A., Papazlatani C., Papadimitriou A., Rousidou C., Papadopoulou K. K.,
Karpouzas D. G., Estimation of the population levels of soil-born fungal plant
pathogens in soils from greenhouses in Western Greece via q-PCR, 6" National
Mikrobiokosmos Conference, Athens, Greece (3-5/4/2015).
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— Katsoula A., Papazlatani C., Papadimitriou A., Rousidou C., Papadopoulou K. K.,
Karpouzas D. G. Estimation of the population levels of  soil-born  fungal plant
pathogens in soils from greenhouses in Western Greece via g-PCR, 6"  National
Mikrobiokosmos Conference, Athens, Greece (3-5/4/2015).

— Karamanoli K., Karpouzas D.G., Katsoula A., Sainis I., Voggoli D., Monokrousos N.,
Halley J.M., Yadav R.K.P., Constantinidou H.-I.A., Damialis A, Vokou D. Exploring
the leaf, airborne, and soil microbial communities in a Mediterranean ecosystem, 10"
International Symposium on Phyllosphere Microbiology, 19-23/07/2016, Monte
Verita, Ascona, Switzerland

— Katsoula A, Karamanoli K, Ainalidou A, Chalkos D, Vokou D, Karpouzas DG, Soil
amendment with aromatic plant material influences the structure and function of the
soil microbial community, 8" Congress of the Hellenic Ecological Society,
Thessaloniki, Greece (20-23/11/2016)

— Katsoula A, Karamanoli K, Monokrousos N, Vokou D, Karpouzas DG, Which factors
drive the composition of the microbial community in the phyllosphere of the plants of
a Mediterranean ecosystem? 8th Congress of the Hellenic Ecological Society,
Thessaloniki, Greece (20-23/11/2016)

— Katsoula A, Karagkiozi E, Karamanoli K, Vokou D, Karpouzas DG, The diversity of
phyllospheric Crenarchaea and fungi in a Mediterranean ecosystem: the impact of
season and plant hosts. 7" Conference of Microbiokosmos, 10 years of Microbial
communities in Action, Athens, Greece (7-9/04/2017).

— Katsoula A., Vasileiadis S., Karpouzas D.G., Rhizosphere and phyllosphere response
to repeated application of the fungicide iprodione: Selection for biodegradation or
toxicity? 17" International Society of Microbial Ecology (ISME), Leipzig, Germany
(12-17/08/2018).

— Katsoula A., Vasileiadis S., Sapountzi M., Karpouzas D.G., The response of the soil
and phyllosphere microbial community to repeated application of the fungicide
iprodione: Selection for biodegradation or toxicity? 8" Conference of Microbiokosmos,
Microbial Communities as Growth Engines from Greece, Patra, Greece (18-
20/04/2019).

— Papazlatani V.C., Perucchon C., Katsoula A., Lagos S., Papadopoulou E.S., Vasileiadis
S., Karas P.A. and Karpouzas G.D., Isolating bacteria able to rapidly degrade
fungicides used in fruit packaging industry: Tailored made inocula for the treatment of
relevant agro-industrial effluents. 8" Conference of Microbiokosmos, Microbial
Communities as Growth Engines from Greece, Patra, Greece (18-20/04/2019).

— Mitsagga C., Giavasis I., Katsoula A., Vasileiadis S., Karpouzas D. and Papadopoulou
K., Characterization, Identification and Physiological Studies of a Pigment-producing
Tentative Pseudomonas spp. with Antifungal Properties. 8" Conference of
Microbiokosmos, Microbial Communities as Growth Engines from Greece, Patra,
Greece (18-20/04/2019).

SEMINARS ATTENDANCE:

24/09/2015: Writing & Publication of Scientific Papers, University of Thessaly, VVolos

19-23/09/2016: Attendance to Summer School of “Pesticides and Soil Microbes in the Era of
Omics: Technological Advances and New Challenges for the Industry and the
Academia”, organized within the frame of LOVE TO HATE project (IAPP Marie Curie
Action FP7) of University of Thessaly, in collaboration with Patras Universuty, INRA
— Dijon-France, ENOVEO cp kot AEIFORIA srl., Paou Monastery, Magnissia, Greece.

263

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 22:08:09 EEST - 3.145.107.127



14-15/06/2017: Short course on meta-omics and their application on environmental
microbiology. Organized by American Society of Microbiology, Paou Monastery,
Magnissia, Greece.

24-28/06/2018: 1% Summer School of Mikrobiokosmos 2018, “The role of microbiome in
ecosystem functioning, food security, human health and environmental protection”,
Paou Monastery, Magnissia, Greece.

18/04/2019: Pre-Conference Hands-on Workshop: Analysis of microbial NGS data, organized
in the context of the 8°° Conference of Microbiokosmos, Microbial Communities as
Growth Engines from Greece, Patra, Greece (18-20/04/2019).

SOCIAL CONTRIBUTION:

2019/2014: Volunteering to the project Researcher’s Night. A European volunteering project,
that aims to inform the public about a researcher’s work.

2015/2016: Volunteering in the project “Microbes go kindergarten”. A volunteering project,
visiting kindergarten schools to educate students about a researcher’s job.

2018: Volunteering to the project Thessaly Science Festival. A festival that presents local
scientific work and explains science to public.
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