University of Thessaly

PhD Dissertation

Exploiting Intrinsic Hardware Guardbands and
Software Heterogeneity to Improve the Energy
Efficiency of Computing Systems

Author: Supervisor:

Panagiotis Koutsovasilis Christos D. Antonopoulos

Advising committee:
Christos D. Antonopoulos,
Nikolaos Bellas,

Spyros Lalis

A dissertation submitted in fulfillment of the requirements

for the degree of Doctor of Philosophy
to the

Department of Electrical and Computer Engineering

March 25, 2020

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

https://www.uth.gr
https://www.linkedin.com/in/panos-koutsovasilis-b44906117/
https://faculty.e-ce.uth.gr/cda/
https://faculty.e-ce.uth.gr/cda/
https://faculty.e-ce.uth.gr/nbellas/
https://faculty.e-ce.uth.gr/lalis/
https://www.e-ce.uth.gr

[Tavemotuio ®socoaAiag

Adaktopikr Aatpipn

A&wonotnon twv Eyyevov IepriBwpiov Ilpocstaciag
0V YA1kov Kon T1¢ Eyyevoog Etepoyéverag tov
Aoylopikov ywx tn BeAtioon g Evepyelakng

AnoSoTIKOTNTAG TOV YTIOAOYIGTIKOV ZUOTNHATOV

ZUyypagéag: EmfAénowv:
[Mavayliotng Xpnotog A. AviovOmovAog
Kovtoofaoiing

ZupPouvAevtikn emtponn:
Xprotog A. AVimvomovAog,
NikoAoog MmEAAXG,
Xmopog AGANG

H S1atpifin vmofAnOnke yia v eKANPwOT TV AMAITHOEWY

yla v amovour) At6akTopikol AUTAOUATOS
oT0

Tunpa HAektpoAoywv Mnyavikov kat Mnxavikov YToAoylotov

25 Maptiov 2020

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

https://www.uth.gr
https://www.linkedin.com/in/panos-koutsovasilis-b44906117/
https://www.linkedin.com/in/panos-koutsovasilis-b44906117/
https://faculty.e-ce.uth.gr/cda/
https://faculty.e-ce.uth.gr/cda/
https://faculty.e-ce.uth.gr/nbellas/
https://faculty.e-ce.uth.gr/lalis/
https://www.e-ce.uth.gr

Committee

Christos D. Antonopoulos

Associate Professor

Department of Electrical and Computer Engineering, University of Thessaly
Advisor

Nikolaos Bellas

Associate Professor

Department of Electrical and Computer Engineering, University of Thessaly
Advising Committee Member

Dimitris Gizopoulos

Professor

Department of Informatics and Telecommunications, University of Athens
External Committee Member

George Karakonstantis

Assistant Professor

Electronics, Electrical Engineering and Computer Science, Queen’s University of
Belfast

External Committee Member

Georgios Keramidas

Assistant Professor

Department of Informatics, Aristotle University of Thessaloniki
External Committee Member

Nectarios Koziris

Professor

Electrical and Computer Engineering, National Technical University of Athens
External Committee Member

Spyros Lalis

Associate Professor

Department of Electrical and Computer Engineering, University of Thessaly
Advising Committee Member

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

ii

“The reality we can put into words is never reality itself.”

Werner Heisenberg

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

1ii

Abstract

Panagiotis Koutsovasilis

Exploiting Intrinsic Hardware Guardbands and Software
Heterogeneity to Improve the Energy Efficiency of
Computing Systems

A key challenge for both current- and next-generation computing infrastructure
deployments is to increase the delivered computational performance within stringent
power budget constraints due to power delivery, cooling and cost-related concerns.
Techniques such as transistor shrinking, frequency scaling, and parallelism exploita-
tion have contributed to shaping the power efficiency envelope of today’s computing
systems. However, all of the aforementioned practices are bound to hit the power wall
of CMOS technology. Another approach towards power efficiency is hardware-level
specialization. Heterogeneous computing combines different architectures, each ap-
propriate for specific computational patterns, within the same system. A typical
example is General Purpose programming on Graphics Processing Units (GPGPU),
which exploits GPUs to efficiently execute certain classes of embarrassingly parallel
computations. Heterogeneous computing, though, comes at the expense of signifi-
cantly increased programmer effort.

At the same time, chip manufacturers are introducing redundancy at various levels
of CPU design to guarantee fault-free operation, even for worst case combinations of
non-idealities in process variation and system operating conditions. This redundancy
partly translates to CPUs operating at a higher voltage than what is strictly required,
in the form of voltage margins. However, these worst case scenarios may appear only
rarely or even not at all during the lifecycle of a given machine. Consequently, the
operating voltage setting is overly pessimistic for typical operating conditions and
leads to excessive power dissipation, which hinders the effort towards improving the
power efficiency of computing infrastructures.

On the software side, programmers very often write code that solves problems at
a significantly higher accuracy than actually required to meet the Quality of Service
(QoS) requirements of the application. In the same vein, all parts of the code are

treated as equally important, despite the fact that their contribution to the quality of

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

iv

the end result may vary significantly. As a result, developers tend to write programs
that “over-compute”, a practice which results in lower energy efficiency.

The quest for more energy-efficient systems may necessitate a transition from
CMOS towards a more efficient semiconductor technology. However, until a new,
commercially viable candidate technology appears, optimizing the energy efficiency
of systems based on CMOS technology is a worthy undertaking. In this disserta-
tion we focus on the exploitation of the intrinsic hardware guardbands and software
heterogeneity. We design and develop mechanisms that reduce the CPU operating
voltage and, thus, minimize the CPU power footprint by considering and exploiting
the computational characteristics of the executed workload. Besides improving en-
ergy/power efficiency, these mechanisms can also be used to mitigate performance
penalties induced on a power-constrained platform. We also evaluate the trade-off be-
tween quality of results and energy efficiency when combining heterogeneous com-
puting with various approximation techniques. More specifically:

Power capping is commonly used to regulate the limited power resources of com-
puting infrastructure deployments. We investigate the impact of reducing CPU volt-
age margins on the efficiency of software- and hardware-based power capping mech-
anisms on a variety of commercial, off-the-shelf platforms. We observe that operation
at reduced voltage margins can significantly improve the efficiency of existing power
capping mechanisms in terms of performance, CPU and system node power, as well
as CPU temperature. Based on our investigation, we introduce a CPU power capping
mechanism that preserves performance in power-constrained environments by oper-
ating the CPU at reduced voltage margins to reduce frequency throttling. We show
that CPU power capping at reduced voltage margins results in performance improve-
ment by up to 64% and 24% on average, compared with Intel’s RAPL and Dynamic
Frequency Scaling (DFS) mechanisms, respectively. Given that CPU operation at
reduced voltage margins may potentially limit the effectiveness of a reliability safe-
guard introduced by manufacturers, we validate the robustness of our approach with
a set of long-running experiments. We also show that significant energy gains can
be achieved even when taking into account the cost of checkpointing and recovery in
large-scale systems.

Furthermore, we investigate the association of workload characteristics with the
extent of exploitable reduction of CPU voltage margins. We introduce a run-time
governor that dynamically reduces the supply voltage of modern multicore Intel x86-
64 CPUs. Our governor employs a model that takes as input a set of performance
metrics which are directly measurable via performance monitoring counters and have
high predictive value for the minimum tolerable supply voltage, to dynamically pre-
dict and apply the appropriate reduction for the workload at hand. Compared to the

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

conventional DVFS governor of Intel x86-64 CPUs, our approach achieves signifi-
cant energy savings, up to 42% and 34%, respectively, for two off-the-shelf processor
families.

The quantification and exploitation of CPU voltage margins requires long ex-
perimental campaigns, involving multiple systems, multiple configurations and nu-
merous different workloads. Moreover, these experimental campaigns have different
targets: characterization of CPU voltage margins, data collection, validation and ex-
perimental evaluation of the proposed techniques. Motivated by the complexity of
these experimental campaigns, we developed a framework that significantly simpli-
fies the configuration and automates the execution of such experimental campaigns.
It supports multiple execution modes, namely OS-controlled and bare-metal execu-
tion, it can recover from system crashes due to aggressively reduced voltage margins,
and can detect symptoms of erratic workload behavior in the form of Machine Check
Exceptions (MCEs), system log entries, or even Silent Data Corruptions (SDCs) if
the correct output is supplied as a reference.

Finally, we investigate whether the combination of heterogeneous and approx-
imate computing can yield favorable solutions in the energy efficiency vs. quality
of results tradeoff. Approximate computing minimizes the energy footprint of appli-
cations at the expense of output quality. More specifically, under the premise that
not all parts or execution phases of a program affect the quality of its output equally,
developers can introduce approximations in less significant parts of their code in an
educated manner, in order to improve the energy efficiency of code execution. We
experiment with a set of applications from different domains, with diverse character-
istics. We have modified the applications to exploit both heterogeneity and approx-
imations. We evaluate them on heterogeneous platforms (comprising of CPUs and
GPUs) and quantify the isolated and combined effect of heterogeneous and approx-
imate computing. Our results show that heterogeneous and approximate computing,
independently, result in significant energy gains. Moreover, they can be combined to

drastically minimize the energy footprint of executions by up to 94%.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

vi

ITepiAnym

Mavayiwtng KovtooBaoiing

A&ionoinon twv Eyyevav TepiBwpiwv Ipootaoiag Tou
YAiko0 ka1 ¢ Eyyevoig Etepoyéveiag tou Aoyiopikod yia
™ BeAtiowon ¢ Evepyeiakng ATodoTikOTnTag TV
YnoAoylotikwv Xvompudtwv

Mia Baoikn mpoKAnon ywx tn oXediaon LIOAOYIOTIKOV GUOTNHAT®Y OTIG HEPEG
HOG, OAAG Ko 0TO PHEANOV, elval N ad&non TG eENeePYRTTIKIG IKAVOTNTOG EVIOG OL-
OTNPQOV TIEPLOPLOHUDV KATAVAADOTG 10XV0G, AOY® TTAXPAYOVI®Y TIOV OXETI{OVTAL [IE TO
KOOTOG Agttoupyiag kot Po&ng, aAA& Kot TEXVIKOLG TIEPLOPLOHOVG Tpopodoaiag. Te-
XVIKEG OTI®G N Helwon TV S100TACE®V TV TpaviioTtop, N Sixxeiplon TG cuXVOTNTAG
Agrtovpyiag v pHovadwy enegepyaoiag Kat o TapaAAnAopog éxouv noN adlomoin et
WOoTe va SapopPwbel 1o TpEXoV eMiMeSo AMOSOTIKOTN TG 10XVOC TWV VTTOAOYIOTIKMV
oLOTNHATOV. OpKG OAeG 01 TTpoaVaPEPBEITEG TTPAKTIKEG OEV HTTOPOVV VX TIPOCPEPOLY
OTHOVTIKEG TIEPAITEP® PEATIOOELG. M1t EVOAARKTIKT] TIPOCEYYLOT| Y10 TN BEATI®OON NG
EVEPYELIOKNG AMOSOTIKOTNTOG TETOIWV CLOTNHATWV eivon 1) e&eldikevon oe enimedo
VAIKOU. LTIG ETEPOYEVEIG APXITEKTOVIKEG CUVUTIAPYXOLV S1POPETIKG €16 emeepya-
OTIKQV HOVAS®V, LE SIXQOPETIKA XAPOKTNPLOTIKA OTOSOTIKOTNTAG, KXOEUIX KOTAA-
ANAN Yyl oLYKeKPILEVO LITOAOYIOTIKG poTifa. Eva tumko mapadetypa eivat i vtoAo-
YIOTIKT] YEVIKOU OKOTIOD i€ Xprion KapTav Ypaikev (GPUs) — GPGPU - ota mAaiowx
NG Omoiag a&loMoIoVVTAL KAPTEG YPUPIK®V Y1X TNV EKTEAEOT| HOQKA TTpaAAnAoTol-
NOH®V VTTOAOYIOH®V HE GUYKEKPIHEVH XOPAKTNPLOTIKA. Q0Td00, N a&lomoinon g
ETEPOYEVELAG TIPODTIOBETEL OTHAVTIKT] EMITAEOV TIPOYPAUHATIOTIKT] TTPOOTIAOEIX KOTh
TO XpOVO QVATITLENG TOL AOYLOPIKO.

Tnv 181 oTIypn, 01 KATAOKEVAOTEG DAIKOVD EVOWHATOVOLV TTAEOVOOHO GE TIOA-
AamAG emineda Katd tn Sidpkela g oxedlaong ene&epyaoT®v, OOTE Vo gyyun oy
opOn eKTEAEOT] OKOH O KL LTIO SLGHEVEIG CLVELAG OV TIAPAPETPWV TIOL OPEiAovTa,
HETAEL GAAGV, OTNV EYYEVI] KATAOKEVAOTIKI] KVOHOLOYEVELX TV TPAV{IoTOp KOl 0TIg
ouvOnkeg Asttovpyiag Tov cvotpatog. ‘Evag tétolog pnyaviopdg eival n epappoyn
EMAVLENUEVIG TAOTG TPOPOSOTING TOV EMEEEPYATTI] GE GYEOT) JLE QLTI TTOL TIPAYLOTIKA

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

vii

anoteiton (mepBwpio tdong tpogodooiag). QLotdoo, 0 CLVOLAGHOG aKpaix Suojie-
VOV TIHPAPETP®V AELTOLPYING EIval eEOPETIKA OTIAVIOC 1) UTTOPEL VX PNV EHOAVIOTEL
TOTE KAt TN SApKELR TOL KUKAOL (NG TV eneepyaatav. LuvakoAovba,) Siayei-
plom NG Téong TpoPodoaciag eivar vrepBoAkd amoo1080&N Yl TIG TUTIIKEG GLUVOTKEG
Aertoupyiag Kot 0dnyel oe aypeiaota LPNAT KATAVEA®GOT 10XV0G, AEITOVPYDVTOG KOG
€UMOS10 0NV TPOCTIABEI BEATIOONG TN G EVEPYELAKTG AMTOSOTIKOTNTAG TWV GCLCTNHA-
TOV.

Z10 eminedo TOL AOYLOPIKOU, Ol TPOYPUHHATIOTEG TIOAD GLXVA YPAPOLV KOOIKO
TIOL €MAVEL TPOPBANHATA PE OHAVTIKE LYNAGTEPN aKpifela amd auTr) oL TPAYHATL
QTOTELTON Y10 TNV KOALYT] TV MOITHOEDV TTOIOTNTAG TNG EQUPHOYNG. 10 1510 TAa-
010, OAX TO TUN HOTA TOU KOSIKKX XVTIHETOMILOVTOL)G 6100V OT|HAVTIKA, TIOAPOAO TIOU
T] OLVEICPOPK TOLG TNV TOLOTNTA TOL TEAIKOD AMOTEAEGHATOG HTIOPEL VO Slapépel
onpavtikd. Katd ovvénela teivovpe vo umep-umoAoyi{oupe Kat | TAOT| oUTH EMIOTG
Aettoupyet eEMPBAPLVTIKE WG TIPOG TNV EVEPYELAKT] KTOSOTIKOTNTA.

H avaykn ylix meplocotepo evepyeloKE MOSOTIKA CLOTIHHATA EVEEXETAL VA €V-
Bappuvel) petafaon amd myv texvoroyia CMOS mpog pia amodoTikdtepr TeXVO-
Aoyia oxediaong nuaywyov. Qotdoo, HEXPL VO EPEAVIOTEL HIX VEXR, EUTIOPIKA BLod-
Ol LIOYT X TEXVOAOYiQ, T BEATIOTOMOINGOT TNG EVEPYELNKTG XTTOSOTIKOTINTOG TWV
ovoTpdtwv mov PBacilovion oty texvoroyi CMOS amoteAel onpavtikn 61€€080
KOl GVTIKEIPEVO €peLVaG. XNV Tapovoa SIGAKTOPIKT| Satpifn StepeuvavTal TPOTOL
BeAtioTonoinong Tng evepyelakng amod0TIKOTNTOG LTTOAOYLIOTIKOV CUOTNHATWV aélo-
TIOLWVTOG TNV PEIWOT TOV ENXVENHEVOV 0PIV AEITOLPYING DAIKOV KOl TNV €TEPOYE-
VELX TOL DAIKOU KOl TOL AOYLOHIKOU. AVOMITOGGOVHE PNYXAVIGHOVUE IOV HELDVOULV TNV
Tdon Aettovpyiog Tov eMeePynaTn, Kal GLVOKOAOLON TO EVEPYELOKO TOL AMOTUNIWH,
AVOAOY®G TWV LTTOAOYIOTIKOV XXPAKTNPLOTIKAOV TV EKTEAOVHEV®V VTTOAOYIOTIKMV
épywv. ITépav ¢ BeAtinong g evepyelaKng armoSOTIKOTNTAG, XVTOL Ol PNYXAVIOHOL
HTIOpOUV €miong va ¥XpnotponolnBolv yia v eAayloTonoinon g emntwong otnyv
eMbéoon T®V CLOTNHATWY, OTAV KLTA e§AVAYKALOVTAL VO AEITOVPYOVV LTIO TIEPLOPL-
OHOUG KaTavaA®mong 10x006. Emiong, a§loAoyovyie T oxéon HETagD NG EVEPYELOKTG
QMOSOTIKOTN TG KOl TG TIOLOTNTAG AMOTEAECHATWV OTav GLVOLALETON 1 XPTOT| ETE-
POYEVOV CUCTNHATWV HE TEXVIKEG TIPOCEYYLOTIKOV LTTOAOYIGHOV. [Ti0 cuykekplpéva:

H emBoAr| evog péylotou opiov KATavaA®ong 10X00¢ TV ENeepynaTaV (power
capping) amoteAel pio KaBlepwEVN TEXVIKT Y1 T SIOXEIPLOT| TV TIEPLOPLOHEVRV TIO-
PV TPOPOS0GLiaG LTTOAOYIOTIK®V LTTIOSOH®V. XTN S1ATPIPT| HEAETAHE TOV AVTIKTUTIO
NG AEAOYIOHEVNG HEIWOTG TOL eMALENHEVOL 0piov TGOTG TPOPOoSoTiag TV eneep-
YOOTQV OTNV amOSOTIKOTNTH PUNYAVICH®OV power capping Tov LAOTOIOVVTAL OE ETti-
nedo eite Aoylop1KoD, €ite LAKOD. [TelpapaTi{OpacTe pe TOAAATIAEG, EPTIOPIKG S1Be-

OlEG UPXITEKTOVIKEG eMe&epyaoT®V. [Tapatnpovpe 0Tl | Heiwon TNG TAeovA{oVoaG

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

viil

Tdong Aertovpyiog odnyel o feAtioon g emidoong, TNG KATAVAAWGCTG EVEPYELRG OE
eminedo ene&epyaotn Kal KOpPBov Kat g Beppokpaciag Tov enegepyaotr). Baoiopié-
VOl OTNV TOPATIAV® PEAETT), ELOAYOVHE EVAV VEO UNYAVIOHO TIEPLOPLTHOD TNG 10XVOG
Aertovpylag Tov enelepyaatn, MOL adlomolel TV pelwon g mAgovalovoag TAoNG
TPOPOS0Cing Kot mpoa@epel vYMAAdTepn enidoon €wg 64% kol 24% KAtk HEGO OpO,
o€ oyéon He Kabiepwpévoug pnyaviopong onwg 1o Intel RAPL ko i Suvapikn kAt-
HAK®OOT oLXVOTNTAG, AVTIOTOKA. QO0TOO0O0, I AELTOLPYIX TOL EMEEEPYAOTH| HE HEIW-
peva eplBopla Taong tpo@odoaciag evdexetal SUVNTIKA va HELWOEL TNV aEL0MOTIX
Agrtovpyiag Tov CLOTAHATOG. Tl To AGY0 ALTO, EMKVPWVOLLE TOV HNYXAVIOHO HOG
HEO® MG OEPAG HOKPOXPOVGV TElpapdtav. EmmAéov deiyvoupe nwg n Agttovpyia
TOU EMELEPYOOTH) HE HEWWHEVA TIEPIB®PLA TAONG TPOPOSOTING TTHPapEVEL KEPSOPOPQ,
WG TIPOG TNV EVEPYELNKT] KATAVAADOT], OKOHX KOl GE CLUOTHHATO HEYAANG KATHOKOG
KOl KON Kal 0tav ouvumoAoyicovpe v emmAéov emfdpuvon, Adyw g duvvn-
TIKA PELWHEVNG K ELOTILOTIOG, HNXAVIOH®V YO TNV AVTLHETOMIOT TOAVOV CQOALATWV,
onwg 1 xpnon checkpointing / amokatdotaong.

Emnpbdobeta, HEAETAUE T GLOYETION TV XXPAKTNPLIOTIKOV TOU LTTOAOYLOTIKOV
€PYOU L€ TO €VPOG NG AELOTONOIHNG PElwoNG TNG TAEOVALOLOAG TAON G TPOPOSOTing
Tou ene&epyaotr. ITI0 GLYKEKPIPHEVO ELCAYOVHE HNYAVIOHO O OTI010¢ HEIWVEL Suva-
HIKG TV T60T Tpo@odoaciag ot eneepynotég Intel x86-64. O pnyaviopog pag Baoi-
Ceton o povTEAO TO omoio dEXETAN WG E10060 — KATK TO XPOVO EKTEAEDT|G — TIOCOTIKEG
mANpoeopieg yia TV aAAnAenidpaon tov AoylopHikoL Tov eKTeAeitan pie T0 LTTOKEI-
HEVO LAIKO. Ot MANPOPOPIEC AVTEC TIPOEPXOVTAL KO TOVG PETPNTEG GCLUBAVIWY TTIOVL
elvan StBéopot atoug ene&epyaoteg Intel kot €xovv mpoyvwotikn a&la yix v eAa-
X1O0TN OVEKTN Thon tpogodoaiag, n omoix amoteAel kot v €080 ToL poviéAov. O
HNXOVIOHOG PG OLUVETIAG LTTIOAOYICEL KAl eMBAAAEL SUVAPIKG TNV KATAAANAT K&Oe
OTIYHN Helwon Tdong Tpo@odoaiag yia To LTOAOYIOTIKO €pyo TTOL eKTEAEITAL. XUyKpl-
TIKA HE KaflepwEVOLG HNXAVIOHOVG IOV S10EWpI{OVTaL TIG TAPAHETPOLG AELTOLPYING
(T&on Kot oLXVOTNTA) TOL EMEEEPYNTTH], O HNXAVIOHOG HOG ETUTUYXAVEL €0G 42% Kot
34% avtioToo HEIWOT TNG EVEPYELNKTG KATAVAA®ONG Y1 SU0 ePTOPIKG SaB€ajieg
owkoyéeveleg eneéepyaotmv Intel.

H moootikonoinon kot n a&lonoinon mg peiwong tov neptBupiov tdong tpo-
@od0o0oiag Tov enelepyaotn anmaltel VPV, HAKPOXPOVO TIEIPAUATIONO, HE TTOAAATIAG
oLOTHHOTA Kol ToALGPIBpEG eQappoyeg. EmmAgov, o1 akoAovBieg melpapatmy evoe-
XETOL VO £X0LV SIXQOPETIKOVG GTOXOLG: TNV TIOCOTIKOTOINOT TwV Teplfnpiwv Tdong
Tpo@odoaciag tov eneepynotn, T ovAAoyn dedopévwy (profiling), v emkOpwon
KOl TNV TIEIPAHATIKT a§lOAOYNOT TV TPOTEIVOHEVAOV HNYXOVIOH®V. OpHOEVOL OO
TNV €YYEVI] TOAVTTAOKOTITO TIOV €XOLV TETOLEG TIEIPAPATIKEG KAHTIAVIEG, OXEOIALOVIE

KOl DAOTIOIOVE LTTOSOHT TIOL ATTAOTIOLEL OT|HAVTIKG TOV OPLOHO KOl OVTOHTOTIOLEL

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

ix

NV €KTEAEON TETOWWV aKoAoLBV melpapatewyv. H vnodopn pag vmootnpilel moA-
AXAODG TPOTIOVG EKTEAEDTIG EQUPHOYDYV, EITE TIAV® QMO AEITOVPYIKO GUOTIHA, E1TE
anevBeiog TAVE amd T0 LAIKO, UTOPEL VA aVOKAHPEL A0 KATAPPELCT] TOL GLOTH-
Hotog Aoym emBeTikng peimwong Tev epbwpinv tdong tpogodoaciag kot pmopei va
QVIXVEVOEL CUUTITOHATH AOTAOOVE CLUTIEPLPOPAG TNG EKACTOTE EQAPLOYTG T) TOL GL-
oTnpatog eAéyxovtag yia AaBn Machine Check Exceptions (MCEs) kou Silent Data
Corruptions (SDCs), ta TEAELTAIO EPOCOV N AVAHEVOHEVT 0WOTH ££080¢ elvan Srobe-
On.

TéAog, Stepevuvolpie KATA TOGO 0 GLVOLAGHAE ETEPOYEVELNG TOV DAIKOU KOl 1 TTPO-
OEYYLOTIKI] DTIOAOYLOTIKT] PTIOpPEL Vo amo@épel emBLUNTEG AVOEIG WG TIPOG TN OXEOT)
EVEPYELXKNG AMOSOTIKOTN TG KO HEIWOTG TOIOTNTOG TV anoTEAeTHAT®Y. H mpooey-
YIOTIKT] UTTOAOYLOTIKT] EACKIOTOTOLEL TO EVEPYELOKO QMOTUTIOWN TOV EQUAPLOYDV OF
B&pog g Mo10TNTAG TV amoTeAeOHATWY. ITio ouykekplpéva, Sedopiévou OTL OAa Ta
THAHOTO 1 Ol QAOELG EKTEAEOT|G HIXG EQAPHOYNG deV eMnpealovy e&loov TNV Moo Ta
TV AMOTEAEGHAT®V, Ol TIPOYPAHHATIOTEG HTTOPOVYV VA a§1OTIOINCOLY, HLE GTOXEVHEVO
TPOTIO, TIPOCEYYIOTIKEG TEXVIKEG O€ AYOTEPO OTIHAVTIKA THNHOTH TOU KOSIKA TOUG,
TIPOKELPEVOL Va BeATinbel N evepyelakT] amodoTIKOTNTA TOV EKTEAOVHEVOL KMOSIKA.
[MTewpapati{OHAOTE e €V GUVOAO EQAPHOYDV HE SIAPOPETIKA XAXPAKTNPLOTIKA, OTTO
S10(QOPETIKOVG TOHEIG TNG EMOTHHUNG KAl TNG HNXaVIKNG. Ot epappoyég Tpomomnolron-
KOV OOTE VA a§loT0100V TOO0 TNV ETEPOYEVELX VAIKOD, GC0 KOl TNV TIPOCEYYLIOTIKN
vroAoylotikn. H aloAdynon npaypatonoteiton oe etepoyeveiq MAXTQOppEG (TTov Tie-
pLAapBavouy emegepyaoTEG KO KAPTEG YPOAPIKAOV) HE OTOXO TNV TTOCOTIKOTIOINOT TOL
EMPUEPOVE KA TOL GUVSLAOHUEVOL OPEAOVG AOY® TNG XPTOT|G ETEPOYEVOV GUOTNHATWV
KOl TIPOCEYYLOTIKTG LITOAOYLOTIKNG. Ta amoteAéopata pag detyvouy nwg n aglomnoinon
NG ETEPOYEVELNG TOV DAIKOV KOl TOU AOYIGHIKOU (HEO® TIPOCEYYioE®mV) aveEapTnTa
EXEL WG AMOTEAECHA T HEIWOT TNG KATAVAA®ONG evépyelag. EmmAéov, umopouv va
oLVOLAOTOVV, MOTE VU HELWOOLY SPACTIKA TO EVEPYELOKO QMOTUTIWHN TNG EKTEAECT|G
AOY1OHIKOU €mG Kot Kt 94%.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Acknowledgements

This dissertation is the result of research work conducted while I was pursuing my
PhD degree in the Department of Electrical and Computing Engineering of University
of Thessaly in Greece.

First and foremost, I would like to thank my mentors, Professors Christos D.
Antonopoulos, Nikolaos Bellas, and Spyros Lalis from the University of Thessaly.
They have been exceptionally good at guiding me during my initial steps, throughout
my MSc and PhD. Without their guidance and mentoring none of this work would be
possible. They were always available to discuss and provide constructive criticism.

I would also like to thank my family. Especially, I owe to my father, Spyros, for
teaching me to always pursue my dreams and my mother, Helen, for her unconditional
love and support all along my academic pursuits. Also, my friends will always have
a special place in my heart because they were always there during good times, and
bad times to support me with patience and love.

Furthermore, special thanks to my friends and colleagues Kalogirou Christos and
Maroudas Manolis with whom [shared, pretty much all of my research career thus
far. Our joined research efforts and stimulating discussions were very educating.

Last but not least, I acknowledge the funding agencies which made this research
possible with their financial support. These include the European Commission through
the UniServer H2020 and SCoRPiO FP7 projects, and the European Social Fund and

Greek national resources through the Centaurus project (Aristeia II action).

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Contents

Abstract

HepiAnyn
Acknowledgements

1 Introduction
1.1 Problem e
1.2 Motivation. o . i e e e e e e e e e
1.3 Contributions e
1.3.1 CPU operation at reduced voltage margins
1.3.2 Combining approximate & heterogeneous computing
1.4 Outline e

2 Background

2.1 Platforms Overview
2.1.1 Intel-Based systems
Frequency adjustment

Supply voltage adjustment

Power and performance monitoring mechanisms

2.1.2 ARM-based platforms
Frequency adjustment

Supply voltage adjustment

Power and performance monitoring mechanisms

2.2 Centaurus Runtime & Programming Model
221 Platformmodel

22.2 ExecutionModel 0.

223 Directives e e

3 The Impact of CPU Voltage Margins on Power-Constrained Execution
3.1 Characterization of Voltage Margins
3.2 Power Capping Approaches
3.2.1 Existingtechniques

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Xi

iii

vi

0 J Ul Ul W

10
10
10
10
11
12
13
13
14
14
15
15
15
16

Xii

322 RAPL-RM e 23
323 RVSCap. it et e 23
3.3 Experimental Study oo, 25
331 Benchmarks. 25
3.3.2 Effects of CPU voltage margins on power capping 27
3.3.3 Combining RVSCap with hybrid power capping mechanisms 34
3.4 Platforms Comparison, 36
3.5 Power Modeling to Mitigate Hardware Limitations 39
3.6 RelatedWork L. 41

4 Dynamic Reduction of Workload-Dependant CPU Voltage Margins 44

4.1 Offline Quantification of Voltage Margins 45

4.2 Voltage Margins Modeling and Estimation 49

421 Profiling e 50

422 Modeltype 51

4.2.3 Modeltraining 52

4.3 Extended Dynamic Voltage Scaling 55

4.4 Experimental Evaluation 57

45 Relatedwork 62

5 System Reliability when Operating at Reduced Voltage Margins 65

5.1 The Tradeoff of Operating CPUs at Reduced Voltage Margins . .. 66
5.1.1 Validation of Reduced Voltage Scaling power Capping (RV'S-

Cap) and Extended Dynamic Voltage Scaling (xDVS) ... 66

5.1.2 Effect of Operation at Reduced Voltage Margins on MTBF . 66

5.1.3 Effects of Operation at Reduced Voltage Margins in Large,
Scale-out Deployments 67
5.2 Hardware Mechanisms 69

6 AFramework for Large-Scale Experimentation at Reduced CPU Voltage

Margins 71
6.1 Framework Objectives 72
6.2 (XM)? for OS-controlled Execution 72
6.2.1 Client configuration 73
6.2.2 Applications configuration 75
6.2.3 Database o 79
6.3 Node Resetting Controller 79
6.4 RelatedWork 80

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

xiil

7 The Individual and Combined Energy Efficiency Effects of Approximate

& Heterogeneous Computing 82

7.1 Platform Assumptions 83
7.1.1 Hardware assumptions 83

7.1.2 Software assumptions 83

7.2 Applications e e e 84
721 LULESH it 85

7.2.2 Molecular Dynamics 86

7.2.3 Monte CarloPDEsolver 87

724 K-Means e 87

725 Fisheye 88

726 DCTMV e e 89

7.2.7 SPS-Stereo e e e e e 89

7.3 Evaluation 90
731 LULESH i 91

7.3.2 Molecular Dynamics 92

7.3.3 Monte CarloPDEsolver 93

734 K-Means e 94

7.3.5 Fisheye 95

736 DCTMV it 96

7.3.7 SPS-Stereo e 98

74 RelatedWork 99

8 Concluding Remarks 101
8.1 Summary e 101

8.2 Conclusions e 102

83 FutureWork 104

A Related Publications 105
B Contribution to Joint Publications 107
Bibliography 110

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

List of Figures

1.1

1.2

2.1
2.2
2.3
24
2.5
2.6

3.1
3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

Impact of reducing CPU voltage margins on performance when the
CPU operates at a pPOWEI Cap. « « « « v ¢ v v v v v v v e e e e e e o
Accurate (left) vs Approximate (right) output of a disparity map depth

estimation application. 0. ..

Speedshiftoverview.
Overview of Intel FIVR.
CPPC APl overview. 0 i i i v it it i it e
Overview of PMD domain of X-Gene processors
OpenCL Platform Model [14]
Task life in the Centaurus framework.

Voltage (y-axis) vs. frequency (x-axis) foreach CPU.
Flowchart of RVSCap. Only a few components (in blue) are different
and need to be developed for each target platform.
Uops retiring(%) normalized wrt. CPU max performance (Table 2.1)
onXeonE3.
Retired instructions per cycle (IPC)(%) normalized wrt. CPU max
performance (Table 2.1) on X-Gene 2.
Retired instructions per cycle (IPC)(%) normalized wrt. CPU max
performance (Table 2.1) on X-Gene 3.
Power consumption on Skylake for different applications, power caps
and power capping methodologies.
CPU and total node power dissipation, CPU temperature and perfor-
mance for different power caps and power capping mechanisms on
XeonE3. e
Power consumption on X-Gene 3 for different applications, power
caps and power capping methodologies.
Power consumption on X-Gene 2 for different applications, power

caps and power capping methodologies.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Xiv

22

27

27

31

32

3.10

3.11

3.12

3.13

3.14

3.15

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8
4.9

4.10

4.11

XV

CPU and total node power dissipation, CPU temperature and perfor-

mance for different power caps and power capping mechanisms on

CPU and total node power dissipation, CPU temperature and perfor-

mance for different power caps and power capping mechanisms on

Normalized performance (wrt. to uncapped execution) and node power
consumption on Xeon E3 and X-Gene processors. 35
Percentage of experiments (benchmarks) for which each processor
achieved the highest throughput at a given powercap. 37
Classes of applications, in terms of performance sensitivity to fre-
quency reduction. e e e e 38
Predictions of our power estimation models for Xeon E3, and X-Gene

PrOCESSOIS. . v v v v v e 40

Evaluation of MSR s settings for 34 benchmarks (10 runs each) in
each workstation. 46
Percentage of experiments for which single core, or multi-instance/
threaded workloads resulted to narrower voltage margins. 47
Percentage of experiments in which any given core resulted being the
weakest during our characterization phase. 48

Average (across all configurations) failure probability CDF for each

CPU, with respect to the applied MSRyset- « « « =« v v v v v v v v 48
Voltage margins for a range of CPU operating frequencies for Skylake
2andHaswell 2. o oo 49

The number of dispatched uops in port 1 during the execution time
of anapplication. L . 53
Prediction of our model with and without the safety margin, for sam-
ples in the validation dataset. 54
FSM diagram of the xDVS governor. 55
MSRss; applied by xDVS on Skylake 2, for sudden transitions be-
tween workloads with different margins. 57
The bars show the average dynamic MSR . applied by xDVS, for
Skylake (up) and Haswell (down) workstations. 58
Timeline showing the MSR . for consecutive single core execu-

tions of four applications on all target parts (CPU chips). 59

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

4.12

4.13

5.1

5.2

6.1
6.2
6.3

7.1
7.2
7.3

7.4
7.5
7.6
7.7
7.8

7.9
7.10

The timeline showing the MSR e, applied by xDVS, while execut-
ing the large applications in full system utilization for Skylake (up)
and Haswell (down) workstations.
Energy gains of xDVS when compared with Intel P-state governor
for Skylake (up) and Haswell (down) CPUs.

Energy reduction of RVSCap with checkpointing vs. execution at
nominal settings without checkpointing, for MT BFy 9, MTBFjg
and different C-R parameters.
Energy reduction of xDVS with checkpointing vs. execution at nomi-
nal settings without checkpointing, for MT'B Fy 9, M'T' B F} ¢ and dif-
ferent C-R parameters. v v v v v v v v e e e e e

(XM)? for OS-Controller execution overview.
Complementary circuit for resetting the target platform.

Controlling the state of multiple platforms with a Raspberry Pi SoC.

LULESH evaluation
MDevaluation
Positions of particles for a fully approximate (red) and accurate (blue)
EXECULION). & v v v v v e e e e e e e e e e e e e e e e e e
Monte Carlo PDE solver evaluation
K-Means evaluation
Fisheyeevaluation
DCT MV evaluation
(a) DCT MV fully accurate output, (b) DCT MV fully approximate
OUtPUL v ot e e e e e e e e e e e e e e
SPS-Stereo evaluation,
(a) (b) Respectively, left and right images of the captured scene (c)
SPS-Stereo fully accurate output, (d) SPS-Stereo fully approximate
output, (e) Heatmap of pixel intensity differences of fully accurate vs
fully approximate output.o

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

XVi

69

72

List of Tables

2.1

3.1
3.2

4.1

6.1

7.1

Characteristics of the four target CPUs.

Benchmarkset.
Average gains of RVSCap, compared with RAPL and DFSCap for
Xeon and X-Gene processors respectively, under aggressive and re-
laxed power caps, for the different compute-intensity groups of the
benchmarks.

Most influential performance metrics for V,,;,, as ranked by the MI

algorithm.

(XM)? configuration differences to perform a characterization or an

evaluation experimental campaign.

List of target applications and their characteristics.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

XVii

Xviii

Dedicated to my family and
friends

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 1

Introduction

The Internet is on the verge of a turning point due to the ever-increasing Internet-
connected intelligent devices that in the upcoming decade will be in the orders of
tens of billions forming the Internet of Things (IoT). Each intelligent device is push-
ing a little data to the Internet, and a little data pushed by billions of smart devices in
Homes, Cities, and Environments will be aggregated to become Big Data, stored and
processed currently in huge central datacenters. These large data sets are becoming
a core asset in the economy, fostering new industries, processes, and products and
creating significant competitive advantages [1]. Turning this opportunity into prod-
ucts and employment growth critically depends on overcoming a formidable obstacle:
harnessing efficiently the imminent data flood in the Future Internet. This is contin-
gent on improving the performance of servers that run internet/cloud-based services
while reducing their power consumption. This is very important for reducing the
running costs in a server farm that supports today’s datacenters and cloud providers,
while at the same time it enables the placement of servers co-located with the origin
of the data (e.g. sensors) where power is limited [2].

As a consequence, current and next-generation devices and systems must evolve
to (a) operate on completely new principles, and (b) support completely new archi-

tectures.

1.1 Problem

Modern datacenters and high-performance computing (HPC) systems are expected
to operate under a tight power budget due to cost, power delivery, and cooling lim-
itations. This is a challenging undertaking, as in the past decade power and cool-
ing costs have doubled [3]. In particular, CPUs account for up to 60% of the total
power consumption of compute nodes [4], whereas datacenter cooling has a power
footprint equal to that of the compute infrastructure. An important exercise for both
the datacenter and HPC domains is to design and deploy techniques that optimize

throughput/performance in a power-constrained environment.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 1. Introduction 2

However, aggressive CMOS technology scaling into lower nanometer geometries
has led to the variability of transistor characteristics. Traditionally, techniques for
dealing with transistor variability involve extra provisioning in logic and memory
circuits, in the form of increased voltage margins, reduced operating frequencies and
error correction circuitry. Such voltage margins are specified at design time by taking
into account the implementation technology, power budget, worst case timing paths,
operating conditions, and fabrication process variations.

These voltage margins lead to significant power overheads, which conflicts with
the challenges of limiting power dissipation. The average power overhead of CPU
voltage margins can be in the order of 35% [5], yet most of the time these margins
are excessive and translate to unnecessary power overhead, as the worst-case com-
binations of adverse conditions that were considered at design time may appear only
rarely or even not at all during the life cycle of a given processor. Providing an end-to-
end approach that effectively reduces these margins, could have a significant impact
on such systems, as the resulting energy gains would enable the utilization of extra
resources to support additional parallelism and increased computational capacity. A
critical challenge though is to reduce the margins as much as possible, yet without
compromising the reliability of the system.

Another hardware/software approach to improve performance per Watt, that does
not affect the reliability of the system but requires extra programmer effort, is het-
erogeneous computing. Heterogeneous computing exploits accelerators which are
optimized for efficiently executing certain computational patterns. GPUs are a pop-
ular family of accelerators which, in contrast to conventional CPU-like architectures,
offer massive, partially asynchronous parallel execution through many computational
cores. Although their power footprint is slightly higher than that of a typical CPU,
they are superior in terms of performance per Watt. At the expense of a few extra
Watts, applications that exhibit sufficient parallelism and GPU-friendly computation
and memory access patterns can utilize GPUs to reduce execution time and by exten-
sion their energy footprint.

A more aggressive software approach towards improving the energy efficiency of
applications, which, similarly to heterogeneous computing requires extra program-
mer effort, is approximate computing. Computing systems are traditionally engi-
neered and expected to execute programs under the assumption that all computations
have the same significance (importance) for the quality of program output. Approx-
imate computing disrupts this rather conservative approach, by relaxing the require-
ment for fully accurate output, thus enabling a new trade-off among performance,
energy footprint and quality of results.

The combination of heterogeneous and approximate computing opens up new

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 1. Introduction 3

possibilities for power/energy management, energy footprint minimization of appli-
cations and hardware classification in terms of energy efficiency. Software can be
extended by approximate computing techniques to enable applications that operate
under tight energy budgets. Hardware accelerators can be designed to natively sup-
port different approximations when instructed to. Large scale datacenters and HPC
infrastructure deployments could significantly cut down their power costs, adapt to
more stringent power caps and set new standards to metrics such as performance per
Watt.

1.2 Motivation

Figure 1.1 depicts the power consumption of bzip2 from the SPEC CPU2006 bench-
mark suite [6] for three different execution scenarios: one without a CPU power cap
(dark red line) and two at a CPU power cap of 20W at nominal (orange line) and at
reduced CPU voltage margins (green line). The experiments have been performed
on a Xeon E3-based node which has a Thermal Design Power (TDP) of 80W, and,
thus, the 20W power cap is rather restrictive. We concurrently run multiple instances
of bzip2 to fully engage all four cores of the CPU. The horizontal distance between
the ending points of the dark red and orange vertical lines indicate the performance
penalty due to CPU power capping. Similarly, the horizontal distance between the
ending points of the orange and green vertical lines represent the performance gains
of CPU voltage margins reduction, compared with nominal CPU operation for the
same cap.

In the power-constrained execution with nominal CPU operation, the clock fre-

quency is reduced significantly to meet the cap, leading to a 36% drop in performance.

70
60 4 Power capping
Herformance penalty
—
50 -
= CPU voltage marging
< 40 - reduction
9;’ performance dain
[} «—>
a 30
20 cccscassmpaRRER e g == =====f- >
10 A
0 100 200 300 400 500 600 700 800
Time (sec)
<« - - CPU power cap Uncapped exec.
Capped exec. Capped exec. at
at reduced voltage margins nominal operation

Figure 1.1: Impact of reducing CPU voltage margins on performance
when the CPU operates at a power cap.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 1. Introduction 4

On the other hand, with CPU operation at reduced voltage margins, the 20W power
cap is met without underscaling the frequency as much, and hence, with substan-
tially lower performance degradation. More specifically, for the power-constrained
execution at nominal voltage, the CPU frequency is 1.9 GHz on average and for the
execution at reduced voltage margins (—170 mV reduction) the average CPU fre-
quency is 2.5 GHz. As a result, we observe 22% improved performance at reduced
voltage margins compared with capped execution at nominal voltage. These results
demonstrate the opportunity of harnessing voltage margins to meet restrictive power
caps without resorting to extreme frequency downscaling.

Furthermore, for certain processor families, CPU voltage margins depend on the
computation characteristics of the executing workload. More specifically, the re-
duction of voltage margins, that does not compromise the system reliability, varies
for workloads that exhibit different resource utilization patterns. For example, for
the Xeon E3 system of the previous example, we observe that the safe reduction of
CPU voltage margins is —192mV and —270mV for h264ref and gromacs applica-
tions, respectively, from the SPECCPU 2006 [7] benchmark suite. This divergence
demonstrates the opportunity of increasing the energy savings, due to operation at
reduced voltage margins, for several applications.

However, as already mentioned CPU operation at reduced voltage margins may
affect the system reliability. An approach that does not affect the reliability of the sys-
tem and offers significant energy savings is the combination of heterogeneous with
approximate computing. Approximate computing disrupts the traditional and rather
conservative computing approach, by relaxing the requirement for fully accurate out-
put, thus enabling a new trade-off among performance, energy footprint and quality
of results. Approximate computing builds upon two observations: (a) several appli-
cation domains, such as simulations, computer vision, media applications, etc. can
tolerate a certain degree of results imprecision, and (b) result quality is not equally
affected by all computations of a program; some computations can be approximated
or even dropped without heavily penalizing output quality.

As an example, Figure 1.2 presents the output of an application that estimates a
dense disparity map of a scene. As shown in the Figure, there are minor differences
between the results of the accurate and the approximate versions of the application,
because the approximation used lowers the resolution of the sub-regions scanning in
the scene. However, the main outputs of the application, namely object positioning,
and disparity estimations are still correct. Moreover, with this approximation and
by executing the application entirely on a GPU we can achieve sufficient quality
of output with 37% improvement in energy consumption, compared with accurate

execution of the application on a CPU.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 1. Introduction 5

Figure 1.2: Accurate (left) vs Approximate (right) output of a disparity
map depth estimation application.

1.3 Contributions

1.3.1 CPU operation at reduced voltage margins

We study the reduction of CPU voltage margins, based on the premise that the worst-
case combinations, which were considered at design time and translate to higher CPU
operating voltage in the form of voltage guardbands, may appear only rarely or even
not at all during the lifecycle of a given processor. On the other hand, the reduction of
CPU voltage margins may compromise the reliability of the system. This mandates
an extensive experimental and theoretical study that ultimately answers the following
questions: “How to exploit the voltage margins reduction ?”, “Is the system reliability

affected ?”, and “How to automate the complex experimentation process ?”.

How to exploit the voltage margins reduction?

A critical step in the exploitation of voltage margins is to identify how they can be
reduced without compromising, at least observably, system reliability. More specif-
ically, we need to identify how different CPU utilization scenarios affect the amount
by which the CPU operating voltage can be reduced. As an example, we need to ob-
serve the difference in voltage margins when a workload utilizes all the cores versus
a single core of the CPU, as well as, how applications with different computational
characteristics affect the CPU operation at reduced voltage margins.

In the context of this dissertation, we investigate all of the aforementioned as-
pects and present the results for four different commercially available, off-the-shelf,
processors. We find that there is a significant amount of divergence in the width of
the CPU voltage margins, depending on the microarchitecture of the processor, and
there is a substantial differentiation, even for processors of the same architecture.

Based on our findings, which we will present in detail in the following Chapters,
we observe that for certain processors, that exhibit wide voltage margins, there is
workload dependability of the extent of CPU operating voltage reduction that can be

applied without leading to erroneous execution. However, there are processors, with

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 1. Introduction 6

significantly lower voltage margins, for which the aforementioned effect is almost
negligible and completely diminishes when the workload utilizes all the CPU cores.
In other words, there is a static portion of CPU voltage margins that can be exploited,
but in certain architectures, there is also another dynamic (workload-dependant) por-
tion that can be exploited and leads to greater energy savings. To this end, we present
two approaches in the following Sections that exploit appropriately both static and

dynamic voltage margins for the corresponding CPUs. More specifically,

* We study the effects of reducing the width of the static CPU voltage margins
under power-constrained execution. To the best of our knowledge, this is the
first work that studies the interplay between CPU power capping and opera-
tion at reduced margins, using multiple evaluation metrics and experimenting
across multiple platforms. Also, we experimentally, on real systems, demon-
strate that conventional CPU power capping mechanisms can be combined with

operation at reduced voltage margins.

* We exploit the workload-dependability of CPU voltage margins by designing
an online voltage scaling governor that dynamically adjusts the supply voltage
based on a model predicting the extent of exploitable voltage margins. The
model is trained using data collected during characterization and profiling ex-

perimental campaigns.

Is system reliability affected?

Although, the aforementioned approaches reduce the CPU voltage margins in an ed-
ucated manner that does not lead to observable erratic behavior, given that the CPU
operates outside its nominal, manufacturer-defined operating envelope, the possibil-
ity of the CPU accidentally entering an operating region where errors may occur can
not be eliminated. Both in current and future large-scale systems reliability is and
will remain an inherent, first-class design concern, leading to the implementation and
use of fault tolerance mechanisms (such as checkpointing and restart), even for sys-
tems operating within their nominal configuration envelope. In order to validate the
robustness of our mechanisms for reducing voltage margins, we orchestrate a large-
scale validation campaign on 16 systems, which lasted for 23 days. Based on our
results, we provide a pessimistic estimation of the new Mean Time Between Failures
(MTBF) when the CPU operates at reduced voltage margins and we show that, even
when combined with a fault-tolerance mechanism such as checkpointing, the energy

gains of voltage margins reduction remain attractive.

How to automate the complex experimentation process?

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 1. Introduction 7

A necessary undertaking for exploiting CPU voltage margins is quantifying the width
of the respective margins. Moreover, mechanisms that operate the systems outside
their nominal configuration envelope mandate long, complex validation and evalua-
tion campaigns. As a consequence, there is a need for a framework that supports mul-
tiple platforms of different architectures, supports different software stacks — namely
OS-controlled and bare-metal execution — can reliably extract the voltage margins of
a CPU, and evaluate the performance and robustness of the aforementioned mech-
anisms. Also, this framework must identify symptoms of errors due to operation at
reduced voltage margins, such as Machine Check Exception errors, and Silent Data
Corruptions. At the same time, it needs to be resilient to external problems, such
as power outages or network failures. We introduce eXtended Margins eXperiment
Manager ((XM)?) which automates the evaluation of software on systems operating
outside their nominal configuration envelope. Although (XM)? supports both bare-

metal and OS-controlled execution, we will focus on the OS-controlled flavor.

1.3.2 Combining approximate & heterogeneous computing

We study the combination of heterogeneous with approximate computing, based on
the premise that specific phases of computation may incur a high performance and
energy toll without a significant contribution to the quality of the result. We focus
on applications for which the algorithmic logic of at least some of their phases can
be efficiently executed on accelerators such as GPUs. Our study ultimately provides
answers to the following questions: “Can approximate and heterogeneous computing
be combined ?”, and “What is the effect in the energy efficiency vs. quality of results
tradeoff ?”.

Can approximate and heterogeneous computing be combined?

There are several applications for which the combination of approximate and hetero-
geneous computing can yield significant energy consumption savings without signif-
icant / non-tolerable effect to the quality of results. For example, applications that
simulate systems of bodies, ranging from atoms to stars and galaxies, are a perfect
match to apply the combination of heterogeneous with approximate computing. The
governing law of such a system is the equation of motion for particles and, thus, the
computational phase can be parallelized at the granularity of a particle, enabling the
exploitation of a GPU. Moreover, due to the nature of the simulation, not all parti-
cles affect with the same significance the motion of other particles. More specifically,
particles that are further away, from the particle of interest, have negligible impact on

its motion. As a result, an approximation that would result in saving computational

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 1. Introduction 8

resources with minimal impact to the quality of results is setting a cut-off distance

beyond which the interaction of particles is not considered.

What is the effect in the energy efficiency vs. quality of results tradeoff?
Effectively combining heterogenous with approximate computing to gracefully trade-
off application output quality with energy/performance gains requires a systematic
approach to executing programs using the principles heterogeneous and approximate
computing. We introduce a set of 7 applications, that are part of AcHEe (Approxi-
mate Computing and Heterogeneity for Energy efficiency), modified to exploit both
heterogeneity and approximate computing. Our application set is developed using
mainly OpenCL nomenclature, therefore it can target any architecture and accelera-
tor device supporting OpenCL. Each application comes with both accurate and ap-
proximate implementations of its computationally intensive parts. The latter exploit
different types of approximations, carefully chosen to balance between energy effi-
ciency and quality degradation of results. For example, in the case of the DCT MV
application we find that the combination of heterogeneous and approximate comput-
ing resulted in 98.7% improved energy efficiency compared with a fully accurate
execution on a CPU, at the expense of a tolerable quality loss (PSNR lower by 5 dB,
from 38 dB to 33 dB).

1.4 Outline

Chapter 2 provides the technical background assumed by the following Chapters.

Chapter 3 introduces our approach for exploiting CPU voltage margins reduc-
tion under power-constrained execution. To this end, we present RVSCap, a novel
CPU power capping mechanism that operates the CPU at reduced voltage margins,
minimizes the performance penalty of power capping at restrictive caps, reduces the
power footprint at more generous caps and supports multiple platforms.

Later, in Chapter 4, we introduce xDVS. xDVS is a dynamic voltage scaling gov-
ernor that exploits the workload dependability of CPU voltage margins. More specif-
ically, we discuss the prediction models of voltage margins reduction and then focus
on the design, implementation and evaluation of the xDVSgovernor.

Chapter 5 validates RVSCap and xDVS. We, then, discuss system reliability,
fault-tolerance aspects and present the expected energy gains in large-scale deploy-
ments where a fault-tolerance mechanism, such as checkpointing, is necessary.

Chapter 6 introduces (XM)?, a framework to automate experimental campaigns
for CPU voltage margins characterization, application profiling, xDVS and RVSCap-
validation and evaluation.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 1. Introduction 9

Then, in Chapter 7, we present our modifications to a set of applications in order
to exploit both heterogeneity and approximate computing. In particular, we show-
case in practice different approximation techniques for various applications. More-
over, we show that when these approximations are combined with the utilization of
accelerators, such as GPUs, the energy efficiency is significantly improved.

Finally, Chapter 8 concludes the dissertation.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

10

Chapter 2

Background

This Chapter outlines the necessary background to assist the reader in following the
discussion in the subsequent Chapters, which introduce the contributions of this dis-

sertation.

2.1 Platforms Overview

This Section explains how we adjust the operating points of the CPUs used in the
context of this dissertation (Table 2.1), briefly discusses their power-saving modes

and outlines their performance monitoring functionality.

2.1.1 Intel-Based systems
Frequency adjustment

Intel CPUs from the Skylake family, and later on, feature the Speedshift [8] mecha-
nism. Asshown in Figure 2.1, Speedshift enables fully autonomous control of P-State
selection by the CPU, known as Hardware P-States (HWP), supporting a dynamic,
wide power range with faster transition times between the minimum and maximum

supported CPU frequencies. To this end, for all the CPUs, utilized in the context of

Table 2.1: Characteristics of the four target CPUs.

Characteristic Xeon E3-1220v5 17-4790K X-Gene 2 | X-Gene 3
CPU Cores 4 4 8 32
Hardware threads 4 8 8 32
Base clock freq. 3.0GHz 4.0GHz 2.4GHz 3.0GHz
Turbo clock freq. 3.3GHz 4.4GHz - -
Lowest clock freq. 0.8GHz 0.8MHz 0.3GHz | 0.375GHz
Supply Voltage (V;4) 1.15V 1.07V 0.98V 0.87V
Manufacturer Intel Intel APM APM
Family Skylake Haswell ARMvV8 ARMvV8
Technology 14nm 22nm 28nm 16nm
Max Performance 4 (issue-slots/cycle) | 4 (issue-slots/cycle) | 4 (IPC) 4 (TPC)
Freq. Control HWP P-State CPPC CPPC
TDP (W) 80 88 35 125

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 2. Background 11

Autonomous or OS

PO-1
core
*

>

RICE
t i

Highest . : Lowest
Optional: Desired
Frequency Frequency
Maximum Frequency Minimum
Frequency Frequency

Figure 2.1: Speedshift overview.

this dissertation, all cores are clocked with the same frequency. The OS may disable
autonomous scaling by setting the maximum and minimum frequencies of a P-State
to the same value. Prior Intel CPUs, before the Skylake family such as the Haswell
family, feature a similar mechanism, namely the Intel P-State driver, which features

the same logic as Speedshift but is implemented in software.

Supply voltage adjustment

Moreover, the latest generations of Intel CPUs, from the Haswell family and later on,
feature the Fully Integrated Voltage Regulator (FIVR) [9] mechanism which selects
the optimal supply voltage V, for CPU cores according to the frequency of the CPU
cores and the executing workload (Figure 2.2). More specifically, FIVR operation
requires the presence of voltage regulators (VRs) which are separated into two stages,
with the first stage of VRs responsible for converting the Power Supply Unit (PSU)
or battery voltage (12-20V) to approximately 1.8V and distributing it across the CPU

PSU or Battery 6
1

Motherboard
VR VPSU to VCCIN (~1.8V)
1 |
Programmable MSR MSR
Model-Specific OFFSET OFFSET
Registers — CIORE\S — RITG

VCCIN| VCCIN|VCCIN| VCCIN

FIVRs CORE | CORE | CORE | corg | VCCIN| [VPSU

RING DDR

3 2 1 0
Load i
(logic, PLLs, etc.)

Figure 2.2: Overview of Intel FIVR.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 2. Background 12

die. The second stage is comprised of inner-chip VRs — the total number of VRs is
product dependant — which are 140 MHz synchronous multiphase buck converters
with up to 16 phases. Each FIVR is independently programmable to achieve optimal
operation of the domain it is powering.

It is possible for the software to alter the supply voltage, as shown in Equation 2.1,
by writing an offset value into specific Model-Specific Registers (MSRs). Although
there are separate MSRs for the core and uncore components, we empirically ob-
served that the supplied voltage changes only when both registers are set to the same
value. Thus, we operate the core and the uncore components with the same voltage
offset (MSRgse). Note that FIVR does not support an independent per-core adjust-
ment of the offset, therefore the offset applies to all CPU cores.

Vig = Vaa — MSR,ffset (2.1

Power and performance monitoring mechanisms

Furthermore, Intel CPUs can save energy when idling, by setting CPU cores in a
low-power mode. There are several such modes, or so-called C-states, which per-
form clock and power gating to different units inside the core. C-states are numbered
starting from C0, the normal CPU operating state in which all CPU modules are pow-
ered up and clocked. Higher power-saving states result in an increasing number of
circuits and signals being power- or clock-gated, putting the core into a deeper sleep
state. The deeper the core sleep state, the higher the performance and energy penalty
to revert to C'0.

Another power-related mechanism in the arsenal of modern Intel CPUs, includ-
ing the ones used in the context of this dissertation, is the RAPL [10] mechanism.
RAPL is a hardware power reporting and capping mechanism that directly observes
the power consumption of the CPU. When RAPL enforces a power cap, it samples
CPU power consumption within a user-specified time window and solves a linear
equation [10, 11] to dynamically decide and apply the most suitable frequency and
voltage pair from the DVFS operating points supported by the CPU. The cap enforce-
ment time window can be as narrow as 1 msec.

To quantify the interaction of applications with hardware Intel CPUs have on-chip
Performance Monitoring Units (PMUs), used. For the CPUs used in this dissertation,
only up to 8 performance counters per core can be monitored simultaneously. When
the hyper-threading capability is enabled, the number of available registers is reduced
to 4. Exceeding these limits causes the interleaved monitoring of performance coun-
ters. Typically, the PMUs are used by profilers to obtain the CPU resource utilization.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 2. Background 13

2.1.2 ARM-based platforms

Frequency adjustment

Both ARMv8 microprocessors, namely the Applied Micro’s X-Gene 2 and X-Gene
3, used in the context of this dissertation, offer high-end processing performance and
contain a dedicated subsystem that features Power Management processor (PMpro)
which is orchestrated by a Scalable Lightweight Intelligent Management processor
(SLIMpro) to enable flexibility in power management, resiliency, and end-to-end
security. The dedicated PMpro processor exposes advanced power management ca-
pabilities, such as thermal protection, configures system attributes (e.g. regulates
supply voltage, etc.) and clock gating mechanisms. Such capabilities are monitored
and managed by the SLIMpro which communicates directly with PMpro through an
integrated I2C controller and can be accessed by the Linux kernel.

Both processors support the Collaborative Processor Performance Control (CPPC)
power and performance management API as it is defined in ACPI 5.0+ specification.
CPPC is a new approach to control the CPU performance using an abstract continu-
ous scale in contrast with the traditional discretized P-state scale. As shown in Fig-
ure 2.3, the flow of adjusting the operating frequency involves initially the OS making
a change request of the frequency to the platform. The communication between the
OS and platform occurs through the Platform Communication Channel (PCC). Af-
terward, the platform (in our case the PMPro) optimizes the new frequency request
(desired performance), taking into consideration the maximum, lowest and reduction
tolerance performance factors. Also, the frequency can be adjusted at the granularity
of CPU cores pairs, which are called PMDs, and can range from 300 MHz up to 2.4
GHz at 300 MHz steps in X-Gene 2 and from 375 MHz to 3.0 GHz at 100 MHz steps
in X-Gene 3.

Frequency Allowed Range

A
\ 4

Maximum Desired I Minimum

Frequency Frequency Frequency
Frequency
Reduction Tolerance

Figure 2.3: CPPC API overview.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 2. Background 14

Supply voltage adjustment

Moreover, both microprocessor chips have three independently regulated voltage do-
mains the PMD (Processor MoDule), PCP (Processor Complex) and the Standby
Power domain, with which we can selectively regulate the voltage independently.
The power domain that includes the CPU cores as well as the cache memories hier-
archy is the PMD (Processor MoDule) domain (shown in Figure 2.4) and is the one
that consumes the largest part of the overall power consumption. All the PMDs (4
PMDs in X-Gene 2 and 16 PMDs in X-Gene 3) operate at the same voltage which
can change from the nominal 980mV downwards in X-Gene 2 and from the nominal
870mV in X-Gene 3. The PCP domain includes the operating voltage of the DRAM
controllers, the central switch and the I/O bridge. Also, the Power Standby domain
includes the SLIMpro and PMpro microcontrollers and the corresponding interfaces
for the I?C buses.

Power and performance monitoring mechanisms

The SLIMpro mechanism can read and report the current power consumption of all
power domains of the X-Gene processors. In contrast with Intel CPUs, the X-Gene
processors do not feature any power capping mechanism. However, they do offer
Performance Monitoring Units which capture the computational characteristics of
applications. For both X-Gene processors only up to 4 performance counters per

core can be monitored simultaneously.

32 x ARMv8 Cores @ 3GHz IPMD |
8 x DDFM @ 2667MH2 1

| i | IARMvBRARMVS| | i i ARMv8JARMVvE
Core §§ Core Core § Core
DDH4

I I T 2L

i I | ARMvBRARMVS| | i i ARMvBJARMvE
Core § Core Core § Core

Shared 32KB L3 Cache

Figure 2.4: Overview of PMD domain of X-Gene processors [12].

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 2. Background 15

2.2 Centaurus Runtime & Programming Model

This Section provides an overview of the Centaurus Runtime & Programming
model [13], which we use for the study on the combination of heterogeneous and

approximate computing which we discuss in Chapter 7.

2.2.1 Platform model

Centaurus assumes a heterogeneous system, consisting of several accelerator devices
capable of performing computations independently of the main host CPU. Each of
these devices is typically based on a different hardware architecture, thus contributes
a unique set of capabilities to the overall system. Energy consumption may be signif-
icantly different between devices too, depending on the architecture, semiconductor
fabrication geometry, and device utilization. Also in the general case, the availability
of each device on a heterogeneous system is not known at any given time. Devices
may be busy or disabled depending on the overall system configuration.

The Centaurus platform inherits the typical OpenCL [14] platform model, de-
picted in Figure 2.5, providing an abstract execution model for all available devices.
That means as a rule, that the programmer can not — in general — make assumptions
such as which device executes which computation, however, they can suggest, or

even enforce execution on a specific device.

Processing | s '—'H
Element =10 D'_".|:| J rdl F

-~

Compute Unit Compsie Device

Figure 2.5: OpenCL Platform Model [14]

2.2.2 Execution Model

The execution model also resembles the OpenCL one: the main computation is orga-
nized in tasks, each implemented as an OpenCL kernel. The tasks execute on one or
more devices, and a host program manages task creation and synchronization.

The programmer defines and spawns tasks from the host program, annotated with

information about their significance for the quality of results and data dependencies.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 2. Background 16

The compiler generates different code versions for each case, accurate and approx-
imate. The underlying Centaurus runtime system is responsible for orchestrating
the execution and the selection of the accurate or approximate implementation for
each task, based on information provided by programmers/end-users through direc-

tive clauses. Figure 2.6 depicts the life cycle of a task, from creation to completion.

Master @
thread Dequeue a
ready taskand ~ ___o--=mTTTm=el - _N!ove
h start async. P ~~._ finished
'1 Memory :-ccoeeoeeens TR .—.T.;._.,_.,_.:_.,_.,_.;,_.,_.,_,:_.,_,._,._, ‘sggsk
n transfers to _J_;::: ————————— =~ : =
’ i : -
g Create a task 3 Ki'e—\ll_cf - ¢ Async. Task K
1 bl ;Y transfers h execution ,'
' ‘Q thread e) thread ’ e @
: .
- A Py N -
. R N . @ N Dequeue a
, : N , ~o
, : Ssoo L’ ~o) task and
s : Dequeue a task == transfer
-7 : @ and decide Equeue a resultsto
: accurate or finished : Finished
‘Enqueue a task host : p
M k: . i :
love tasks 3 -ready task Execution approxlrlnale Finished tasks
with resolved Tasks with : ready execution execution
dependencies resolved tasks tasks
Tasks with dependencies I
unresolved i
dependencies OpenCL device

Figure 2.6: Task life in the Centaurus framework.

A newly spawned task usually has to wait on a queue until all its data dependencies
are resolved. Then the runtime transfers its input data to the OpenCL device it will be
executed on, executes it either accurately or approximately and then transfers back

the output results to the host memory.

2.2.3 Directives

Throughout this Section we employ Discrete Cosine Transform (DCT), a code mod-
ule used in many multimedia algorithms, as a minimal example to illustrate the use
of the main programming model concepts. DCT transforms image blocks to blocks
of frequency coefficients. Coefficients corresponding to lower spatial frequencies
are more significant for the quality of the final image, due to the fact that the human
eye is more sensitive to those frequencies. Listing 2.1 outlines the implementation of
DCT.

Listing 2.2 summarizes the #pragma directive used for task creation. The body
of the accurate implementation of the task is defined as a function call, which corre-
sponds to an OpenCL kernel. We explain each clause referring to our DCT example
in Listing 2.1.

The significant() clause specifies the relative significance of the computation im-
plemented by the task for the quality of the output, with a value (or an expression) in
the range [0.0, 1.0]. If set to 1.0 or omitted, the runtime will always execute the task

accurately. If set to zero, the runtime will always execute the task approximately, or

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 2. Background 17

void dctAccurate(double *image,double *result,int subblock) {/*0penCL codex*/}
void dctApprox(double *image, double *result, int subblock) {/*0penCL codex*/}

int subblocks=2%4, subblockSize=4*2, blockSize=32, imgW=1920, imgH=1080;
/*DCT block to 2x4 subblocks with different significance, image dimensionsx*/
6 double sgnf_lut[] = { 1, .9, .7, .3,

7 .8, .4, .3, .1};

8 void DCT(double *image, double *result, double sgnf_ratio) {/* entry point */
9 for (int id = 0; id < subblocks; id++) { /*spawn dct task group*/

10 #pragma acl task in(image) out(&result[id*subblockSize]) \

1 label("dct") \

12 significant (sgnf_lut[id]) approxfun(dctApprox) \

13 workers (blockSize, blockSize) groups(imgW, imgH)

14 dctAccurate (image, result, id);

15 }

16 #pragma acl taskwait ratio(sgnf_ratio) label("dct") /*execution barrierx/

1
2
3
A
5

Listing 2.1: Programming model use case: Discrete Cosine Transform
(DCT) on blocks of an image.

even discard it if an approximate implementation is not available. The DCT example
defines each task’s significance at line 12 using values from a lookup table defined
at line 6.

The approxfun() clause allows the programmer to provide an alternative, approx-
imate implementation of the task. This is generally simpler and less accurate (may
even return a default value in the extreme case), however has a lower energy footprint
than its accurate counterpart. For example, dctApprox() which is defined at line 12
may set all coefficient values equal to zero. Both accurate and approximate functions
take the same arguments which are handled in an abstract way by the runtime system.

The programmer explicitly specifies the input and output arguments of each task
with the in() and out() clauses. Line 10 shows the data dependencies of our DCT
example. The corresponding information is exploited by the runtime system for de-
pendence analysis and scheduling, as well as for data management. We also support
array ranges, in the form of array[i:i+size], as arguments to in() or out() clauses to
further reduce unnecessary data transfers.

The programmer can explicitly associate a task for execution on a specific device
using the bind() clause. This limits the flexibility of the programming model, however
it proves useful in case an implementation is optimized for a specific device or would
not be executed efficiently in certain devices. The suggest() clause is a relaxed version
of bind(); it serves as a hint to the runtime, which can however be ignored. We do
not use this feature in Listing 2.1, however a possible usage would look like this:
bind(GPU_ID).

To specify the work-items and work-groups geometry for kernel execution the

programmer uses the workers() and groups() clauses, which follow the semantics of

#pragma acl task [significant(expr)] [approxfun(function)] \
[in(varlist)] [out(varlist)] \
[bind (device_type)] [suggest(device_type)] \
[workers(int_expr_list)] [groups(int_expr_list)] \

1
2
4
5 [label("name")]

Listing 2.2: #pragma acl task

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 2. Background 18

1 #pragma acl taskwait [label("name")] [ratio(double)]

Listing 2.3: #pragma acl taskwait

local- and global work size of OpenCL, respectively. We specify the desired geometry
at line 13 as a function of the input image dimensions.

Finally, the label() clause can be used to associate tasks with named task groups.
Each group is characterized by a unique identifier (group name, given as a string).
In this example, line 11 qualifies our task group created at line 10, with the name
”dct”. The programmer can synchronize and control the quality of computations
between tasks within the same group using the taskwait directive which we introduce
in Listing 2.3.

The taskwait directive specifies an explicit synchronization point, acting as an
execution and memory barrier. By default, taskwait waits on all issued tasks so far,
unless the label() clause (16) is present, which limits the explicit barrier only to tasks
of the specific task group. In our example the control flow waits for the ”dct” task
group to finish (line 16).

The ratio() clause accepts as an argument a value (or an expression which results
to a value) ranging in [0.0, 1.0]. It specifies the minimum percentage of tasks of the
specific group that the runtime should execute accurately. ratio is a single knob which
allows the programmer or the user to control the energy footprint / quality tradeoff.
For our DCT example we let the user set the acceptable ratio boundary through the
sgnf_ratio variable, as shown at line 16.

Furthermore, our DCT example in Listing 2.1 shows: (a) how the programmer
can spawn and group together tasks of different significance (lines 10-13), and (b)

the usage of an explicit barrier (line 16) with a specified ratio().

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

19

Chapter 3

The Impact of CPU Voltage Margins

on Power-Constrained Execution

In this Chapter, we focus on the question “How to exploit CPU voltage margins reduc-
tion?”. More specifically, we study the effects of carefully reducing the aforemen-
tioned static, workload-independent part of the CPU voltage guardbands in power
capped environments. We focus on CPU power consumption, power consumption at
the node-level (at the plug), performance/throughput and CPU temperature. We com-
pare power capping when operating at reduced margins against conventional hard-
ware, software, and hybrid (a combination of hardware & software) approaches under
nominal voltage margins. We also investigate whether operation at reduced margins
can be combined with conventional power capping approaches.

Our evaluation involves three different off-the-shelf CPUs, namely an Intel x86-
64 (Xeon E3-1220v5) and two ARMv8 (AppliedMicro X-Gene 2 and X-Gene 3),
which are used to run a mix of benchmarks from various suites, such as SPEC CPU2006 [6],
CloudSuite [15], Parsec [16], as well as various stress-tests [17, 18, 19].

Our experimental study shows that reducing CPU voltage margins can signifi-
cantly improve performance, reduce CPU & node power consumption, as well as
CPU temperature. More specifically, reduction of voltage margins results in im-
proved performance compared with conventional power capping approaches by 64%,
30% and 34% on average for Xeon E3, X-Gene 2 and X-Gene 3, respectively. Also,
it outperforms hybrid power capping solutions, namely PUPIL [11], by 24%, 22%
and 5% on average for Xeon E3, X-Gene 2 and X-Gene 3, respectively.

The main contributions and outcomes of our work are the following:

1. We characterize the voltage margins of the x86-64 Skylake processors for both
single- and multi-instance/threaded benchmarks. To the best of our knowl-
edge, we are the first to evaluate the voltage margins of a 14nm (Skylake)

processor and also the first to evaluate the V;,,;,, of x86 multi-core CPUs using

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 3. The Impact of CPU Voltage Margins on Power-Constrained Executiod0

multi-instance/threaded benchmarks. Our offline characterization spans from

common benchmark suites to stress tests and micro-viruses.

2. To the best of our knowledge, this is the first work that studies the interplay be-
tween CPU power capping and operation at reduced margins concerning vari-

ous metrics and across multiple platforms.

3. We experimentally, on real systems, demonstrate that conventional CPU power
capping mechanisms can be combined with operation at reduced voltage mar-

gins.

4. We introduce Reduced Voltage Scaling power Capping (RVSCap), a novel
CPU power capping mechanism that operates the CPU at reduced voltage mar-
gins, minimizes the performance penalty of power capping at restrictive caps,
reduces the power footprint at more relaxed caps and supports multiple plat-

forms.

3.1 Characterization of Voltage Margins

Since we investigate the interplay between reducing CPU voltage margins and power
capping mechanisms, it is necessary to quantify the voltage margins of the target
platforms through a characterization process. We employ the (XM)? framework (dis-
cussed in Chapter 6) and apply a methodology similar to that in prior work [20, 21,
22, 23, 24], for the CPUs of Table 2.1, using SPEC CPU2006 [6], Parsec [16] and
micro-virus [24] benchmarks.

More specifically, for each CPU frequency point we run each benchmark 20 times
at each voltage step, in the entire range from the nominal voltage point down to the
lowest sub-nominal voltage, referred as V,,;,, at which any workload executes suc-
cessfully without any hardware reported error, silent data corruption (SDC), or system
crash. As an additional robustness test for the value of V/,,;,,, we execute each bench-
mark 1000 more times and verify that all runs finish successfully. For SDC detection
we compare the output of each workload under reduced voltage margins with the cor-
responding one produced by nominal execution. This V,,;, quantification methodol-
ogy is conservative, because it misses workload-dependent opportunities to further
reduce V,,.;,, yet we opt to potentially sacrifice some additional power efficiency to
mitigate and preclude any erratic behavior, such as SDCs, when voltage margins are
aggressively reduced [21, 22, 24].

Figure 3.1 illustrates the V,,,;,, identified by our characterization for a range of op-

erating frequencies for all three CPUs. The grey area shows a configuration where —

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 3. The Impact of CPU Voltage Margins on Power-Constrained Executio@1

during our extensive characterization — at least one workload did not execute suc-
cessfully. The point at the boundary of the green area (safe operation) and grey area
(unsafe operation) corresponds to V,,;,. For the Xeon E3 processor, which supports
DVFS, we observe that V,,,;,, drops with frequency reduction. In terms of absolute
values, the width of voltage margins ranges from 240mV to 170mV depending on
the CPU operating frequency. The observation that the width of voltage margins
varies is critical, as the voltage manipulation mechanism of the Xeon E3 processor is
offset-based; the different width of voltage margins across different CPU frequencies
requires extra care to be taken when transitioning between frequencies.

For the X-Gene 2 and X-Gene 3 processors, which only support dynamic fre-
quency scaling (DFS), the nominal operating voltage is constant for all frequencies,
at 980mV and 875mV, respectively. Moreover, major differences in V,,;, can be
observed only after reducing the frequency to half of that used by the highest perfor-
mance operating point. Both X-Gene processors use clock skipping in combination
with clock division to generate the effective frequency of processor cores [21]. When-
ever the target frequency is less than half of the maximum clock frequency, clock
division is first applied. All other intermediate frequency points are implemented
with clock skipping, either on the original or on the divided clock frequency. This
explains why we do not observe any variation of V,,;, at intermediate frequencies,
with relatively large V,,,;, differences at frequencies where clock division is applied.
Voltage margins are, again, wider at lower frequencies.

The outcome of this characterization (shown in Figure 3.1) is an extended voltage-
frequency curve for each CPU, which, for each frequency, provides the sub-nominal
voltage V,,.;, deemed to be safe by the characterization campaign for all workloads.

We note that the aging effects of the CPUs are out of the scope of this study. Also,
we do not investigate system operation at extreme temperatures. Prior research [25,
26] indicates that CPU voltage margins are wider at higher temperatures, due to the
transistor-level effect of temperature inversion. However, other components such as
disks [27] and DRAMSs [28] are more failure-prone at higher temperatures, which
makes it difficult to reason about node reliability at extreme temperature conditions.
For this reason, in our experiments we operate all our machines under typical data-
center conditions [29] (at an ambient temperature of 21-23 °C), even though this is

expected to result in narrower CPU voltage margins.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 3. The Impact of CPU Voltage Margins on Power-Constrained Executiol?2

s1f3
@ 1] !
[% 0.9 N R
e i
X 2 0.6 -
~ 05
0.4 toioia Nm i ooy N e H N O w'o S e
12 OO ddddddcdcdcddANANANANANANANNANNMMMNOHM
<11 A
NS 19
c 209 1 ’
2 g 0.8 1 4
Q=07 1
X S 0.6 -
8'5 :
.4 (Y).Iq_lm ©I'\.lemloIHINlmlq:lml©IwIO’IOIHI(\!ImIvI
OO0 00000 T T A" =1 ANNNNON
1.2 1
m <17 -
© <10 -
€ 209 -
2 808 =
8
=05]
0.4 T O I O ANN T IO R T T ANO F OO DO
OO0 O0OO0OO0HAATAAAAAAAANANANANNANANANNANM
Frequency (GHz)

/3 Voltage Margins
Nominal V-F curve
Reduced voltage margins V-F curve

Figure 3.1: Voltage (y-axis) vs. frequency (x-axis) for each CPU.
3.2 Power Capping Approaches

3.2.1 Existing techniques

This Section discusses how the available power capping approaches enforce power
caps. There are numerous software-based capping approaches in the literature [30, 31,
32, 33], which use CPU performance counters to monitor key performance metrics.
These metrics are then used to calculate the CPU frequency downscaling required to
enforce the cap.

Also, modern Intel CPUs, as already mentioned in Section 2.1.1, feature RAPL [10],
a hardware power capping mechanism that directly observes the power consumption
of the CPU. On the other hand, the X-Gene processors do not provide a hardware
capping mechanism.

PUPIL [11]is arecent technique for maximizing the performance of multithreaded
applications on Intel x86-64 systems. PUPiL uses RAPL for power capping and ma-
nipulates thread allocation to cores based on a heuristic thread-packing algorithm for
identifying the best performing threads-to-cores ratio, where the number of threads
is larger than the number of cores. PUPIL measures performance indirectly using
heartbeats [34] which are generated by the executing workloads.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 3. The Impact of CPU Voltage Margins on Power-Constrained Executiod3

3.2.2 RAPL-RM

To investigate the impact of exploiting voltage margins on power capped environ-
ments, we combine the existing RAPL mechanism with reduced voltage margins
(RAPL-RM). Similarly to RAPL, RAPL-RM supports only Intel CPUs. Also, given
that RAPL switches between frequencies under hardware control, in RAPL-RM we
conservatively apply the safest Voltage offset that corresponds to the narrower voltage
margin (170mV) across all frequencies, missing the opportunity to further decrease

the voltage by up to 70mV at specific frequencies.

3.2.3 RVSCap

To maximize the power gains introduced by reducing CPU voltage margins and hence
minimize the performance penalty induced by a power cap, we design and implement
Reduced Voltage Scaling power Capping (RVSCap), a software-based power cap-
ping mechanism that reduces CPU voltage by shaving-off pessimistic margins. Also,
unlike RAPL and the RAPL-RM extension discussed above, RVSCap is a software-
based mechanism that can be employed in widely different platforms, merely by im-
plementing a few platform-specific components.

Similarly to RAPL and RAPL-RM, RVSCap is a closed-loop mechanism that
measures the average power consumption of the CPU at the boundaries of time win-
dows, identifies the CPU operating point that satisfies the specified power cap (based
on the equation P = C'V2F), and then enforces that operating point for the follow-
ing time window. However, in contrast to RAPL and RAPL-RM, RVSCap includes
all the necessary logic mentioned in Section 3.1 for safe transition between different
(Vinin,F') pairs. This is critical, as the width of the voltage margin varies across CPU
frequencies and a premature adjustment of CPU frequency without properly setting
the V,,,;,, will result in a system crash.

As shown in Figure 3.2, when RVSCap needs to take action because the current
power consumption (as reported by the CPU at execution time, e.g. through RAPL
on Intel and SLIMPro on X-Genes) is above the defined CPU power threshold, it first
checks if the cap can be met by scaling the CPU voltage to a sub-nominal, yet safe
level for the current operating frequency, based on the V,,,;,, quantified via the offline
characterization (Section 3.1). If the estimated power reduction by voltage scaling
is not sufficient, RVSCap re-calculates the power consumption for the immediately
lower operating frequency and the corresponding V/,,;,,. This is repeated, in an itera-
tive fashion, until an operating point is found that meets the desired power cap, which
is then applied to the CPU.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 3. The Impact of CPU Voltage Margins on Power-Constrained Executiod4

Cap Interval Safe Vmin-Frequency
(RIW) (RIW) vector (R/IW)
| |
Sysfs attributes | | Userland

Kernel-space

Measure power |:| Platform indepedent

|
|
|
|
|
consumption :

. Platform dependent

Can y

. Yes
i increase) Calculate new
meet the frequency increased frequency —
cap? > and voltage

Yes
Calculate voltage

further the .
" reduction

I
|
I
|
|
|
|
|
I
|
|
|
I
|
|
|
|
I
|
| voltage?

— e e N]

interval

l

reduced frequency

Adjust frequency Adjust voltage

Figure 3.2: Flowchart of RVSCap. Only a few components (in blue)
are different and need to be developed for each target platform.

In the opposite case, when the current power consumption is below the threshold,
RVSCap calculates and applies the operating point with the highest frequency that
meets the power cap. In case RVSCap applies the maximum CPU frequency, the
exploitation of voltage margins translates to lower CPU power consumption. This
additional power budget slack can be used to power-on additional nodes, thus increas-
ing the active computational capacity of the datacenter or can be exploited towards
reducing power and cooling costs.

RVSCap is a simple, lightweight mechanism, that supports multiple platforms
and can be used by any user-level runtime system. More specifically, RVSCap can
support any platform that exposes the CPU power consumption and allows indepen-
dent adjustment of the CPU operating frequency and voltage. To port RVSCap to a
new platform, one only needs to implement a small number of platform-dependent
components that provide the high-level (platform-independent) API used by the rest
of the mechanism (see Figure 3.2).

The effective cap enforcement interval depends on the low-level mechanisms that

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 3. The Impact of CPU Voltage Margins on Power-Constrained Executiod5

are available in the underlying platform. We experimentally find that for the Intel
Xeon E3 CPU an effective interval of cap enforcement can be as low as 10 msec
with 0.29% performance overhead. On the other hand, this interval is much higher,
at approximately 1 sec, for the X-Gene platforms. This is because every request of
the capping mechanism (reading the CPU power consumption or setting the CPU
operating frequency) has to go through an /?C interface to the SLIMpro processor
and then to the PMpro processor.

3.3 Experimental Study

In this Section, we discuss the results of a detailed experimental study of the effects of
exploiting reduced voltage margins during power-constrained execution. The study
has been conducted using three different platforms that feature the CPUs in Table 2.1.
We discuss results in terms of performance, CPU, and node power consumption, as
well as CPU operating temperature. More specifically, we capture the CPU power
consumption as reported through RAPL for Xeon E3 and SLIMpro for X-Genes.
Also, CPU operating temperature is reported through MSRs for Xeon E3 and through
SLIMpro for X-Genes. For node power consumption we utilize an external power
meter at the plug of each system. Moreover, we combine execution at reduced voltage
margins with other state-of-the-art power-capping approaches, such as RAPL and
PUPIL and compare against state-of-the-art techniques based on execution at nominal

operating points.

3.3.1 Benchmarks

We use 16 benchmarks from SPEC CPU2006 [6], CloudSuite [15], Parsec [16], and
individual stress-tests [17, 18, 19] for FP computations, thermal load, and memory
use, as shown in Table 3.1. Note that the CloudSuite benchmarks and the stress-tests
are not a part of the characterization process, presented in Section 3.1. We include
them in our experimental study, as an extra validation of the safety of V/,,;,, values
identified during the characterization process. For parallel and sequential benchmarks
we manipulate the degree of parallelism and the number of co-executing instances re-
spectively, to achieve maximum core utilization and maximize the CPU power foot-
print. CloudSuite benchmarks are the only exception, since they can not be scaled in
a practical manner.

To better understand the behavior of the benchmarks of Table 3.1 in a power-

constrained execution environment, we categorize them into three groups according

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 3. The Impact of CPU Voltage Margins on Power-Constrained Executiod6

Table 3.1: Benchmark set.

Suite Benchmark | Ref. name | Throughput metric | Input
Data Analytics danal MB/sec default
. Data Caching dcach requests/sec default
Cloud-Suite [15] Web Search wsrch searchDriver default
Web Serving wserv elggDriver default
Blackscholes blcks prices/sec native
Facesim fcsim frames/sec native
Parsec [16] —— - .
Fluidanimate fanim steps/sec native
Swaptions Swpts swapt./sec native
SPEC Bzip2 bzip2 MB/sec ref
CPU Bwaves bwves steps/sec ref
2006 Gromacs grmcs frames/sec ref
[6] h264Ref h264r frames/sec ref
Memstress mstre Bytes/sec default
Stress-tests Linpack [17] Ipack equat./sec default
Prime95 [18] mprime primes/sec default
Firestarter [19] fires fma ops/sec default

to their instruction retirement rate, thus, implicitly according to their compute inten-
sity. Figure 3.3 shows the percentage of retired micro-operations (uops), averaged
across all 4 CPU cores of the Xeon E3, for each benchmark. Following Intel’s Top-
Down Microarchitecture Analysis Method (TMAM) [35], the remaining uops are
attributed to bad-speculation, as well as to back-end and front-end bound operations,
which cover several types of stalls that prevent the delivered uops from retiring. Sim-
ilarly, Figure 3.4 depicts the retired instructions per cycle (IPC) averaged across all
8 CPU cores of the X-Gene 2, for each benchmark. Moreover, the behavior is very
similar, as can been seen by comparing Figures 3.4 and 3.5, on the 32-core X-Gene
3 as well.

Most benchmarks in CloudSuite have low compute intensity, as they do not uti-
lize all the available CPU cores. Interestingly, some benchmarks exhibit different
behavior on the Xeon E3 and X-Gene 3. For example, facesim is more compute-
intensive than Blackscholes on the Xeon E3, whereas it turns out to be (far) less
compute-intensive on the X-Gene 3, where its execution leads to a larger number
of slow memory accesses. This is due to the higher thread contention for capacity at
the last level cache of X-Gene. On Xeon E3, 4 threads share 8MB of L3, whereas on
X-Gene 3 all 32 threads share 32 MB of L3.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 3. The Impact of CPU Voltage Margins on Power-Constrained Executio7

100%
80% -
60% A
40% A
20% A

0% A

App

Uop
Retiring (%)

Compute
Intensity Low Medium High

Figure 3.3: Uops retiring(%) normalized wrt. CPU max performance
(Table 2.1) on Xeon E3.

100%
80% -

9 60% A
= 40%
20% -
0% -
App

Compute
Intensive

-

ow Medium Intensive

Figure 3.4: Retired instructions per cycle (IPC)(%) normalized wrt.
CPU max performance (Table 2.1) on X-Gene 2.
100%

dcachl|

>
o
o
wsrch
wserv
danal

Intensity Low

Figure 3.5: Retired instructions per cycle (IPC)(%) normalized wrt.
CPU max performance (Table 2.1) on X-Gene 3.

3.3.2 Effects of CPU voltage margins on power capping

In this Section, we quantify the impact of exploiting reduced CPU voltage margins
in power capped environments, for various CPU power capping mechanisms.

Figure 3.6 reports the power consumption of the Intel Xeon E3 processor platform
for an aggressive, a relaxed, and a conservative power cap when executing Data-
caching, Fluidanimate, and Bzip2 applications. To this end, as aggressive, we set
the lower power threshold that can be achieved only by scaling the CPU operating
frequency, namely 30W and 10W for X-Gene 3 and X-Gene 2, respectively. As
conservative, we set a power cap which can be achieved with no frequency scaling
for all the workloads in our evaluation. The conservative power cap corresponds to
60W for Xeon E3, 80W for X-Gene 3, and 30W for X-Gene 2. Finally, the relaxed
cap lies in the middle of the aggressive and conservative caps, namely at 50W and
20W for X-Gene 3 and X-Gene2 respectively.

Firstly, we observe that RVSCap strictly adheres to the given power constraints,

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 3. The Impact of CPU Voltage Margins on Power-Constrained Executiod8

Aggressive Cap Relaxed Cap Conservative Cap
70 70 70
§60 1 60 60
= 50 1 50 A 50 A
@9 WMM WWM»WW | sttt
< 340 A 40 40 ~
EE
3 vl Ve T
% 8 30 A 30 _rm-ww-w 30 Joaruma. |
B o
SO]]
s 20 20 20
210 10 10
a
0 T T T T T T 0 T T T T T T 0 T T T T T T
0O 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
Time (sec) Time (sec) Time (sec)
70 70 70
§ 60 60 60
= 50 50 50
Ee]
= | | N]
~ g 40 40 40
2 3
S g 30 1 30 1 30 1
oy 20 20 -
2
o 10 A 10 10 1
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
Time (sec) Time (sec) Time (sec)
70 70 70
~ 60 A 60 60
2
50 1 50 50
2 | memmsomprur mpepwerrery e e T e r . mcaaat
= g 40 1 40 40 1
F] 3
8350 P | — ey e 30 | et e
£8
8§32 = 20 20 |
E 10 A 10 1 10 1
0 T T T T T 0 T T T T T 0 T T T T T
0 100 200 300 400 500 600 0 100 200 300 400 500 600 0 100 200 300 400 500 600
Time (sec) Time (sec) Time (sec)
RVSCap ——RAPL Cap-free execution Power Cap

Figure 3.6: Power consumption on Skylake for different applications

(rows), power caps (columns) and power capping methodologies (lines

in each chart). The blue line corresponds to cap-free execution in nom-

inal settings. Vertical lines with double arrows indicate the completion
time of each execution.

thus can provide the fundamental functionality of a capping mechanism. The dis-
tance between the blue and orange vertical double arrow lines, which mark the exe-
cution completion time of each benchmark without any capping (cap-free execution)
and the conventional capping mechanism (RAPL) respectively, indicates the perfor-
mance penalty due to conventional power capping. Similarly, the difference between
the green and orange vertical double arrow lines, the latter marking the completion
time of the benchmark with RVSCap, indicates the performance gains of RVSCap
compared with the conventional power capping mechanism. Unlike the other two
benchmarks, Data Caching runs for a fixed amount of time. In this case, the through-
put metric is requests per second, thus the performance impact due to power capping
is not visible in the plots. For the aggressive power cap of 20 Watts, RVSCap deliv-
ers 22% higher throughput for Fluidanimate and Data Caching, and 18% for Bzip2,
compared to RAPL. For higher power budgets, RAPL can afford high CPU operating

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 3. The Impact of CPU Voltage Margins on Power-Constrained Executiod9

frequencies and does not suffer any significant performance degradation.

Note that the blue and orange lines completely coincide (blue line is not visible)
at the conservative cap of 60 Watts in Figure 3.6. In this case, the power cap is
higher than the power footprint of the application when executing without any power
constraints, so the cap is not restrictive. In such scenarios, RVSCap delivers the same
throughput with a smaller power consumption footprint. This is evident for all three
benchmarks, when the CPU operates at the maximum frequency. In this case RVSCap
achieves 29% less power consumption for Fluidanimate, 30% for Data Caching and
26% for Bzip2.

Furthermore, for the Xeon E3 CPU, we evaluate the following power capping
techniques: i) RVSCap, ii) conventional RAPL, and iii) RAPL-RM. Figure 3.7 shows
the results. The x-axis of each row represents the benchmarks under different CPU
power caps, sorted according to their compute intensity (section 3.3.1). The left y-
axis (and the corresponding bars) quantifies the absolute values of each metric. The
two lines refer to the right y-axis and show the average per cap relative increase or
reduction among all benchmarks of the respective metric, attained by RAPL-RM and
RVSCap over RAPL.

We observe that RVSCap outperforms both RAPL and RAPL-RM and depending
on the enforced cap the gains translate to improved performance or lower power con-
sumption both at CPU and node level, as well as lower CPU operating temperature.
In general, the trend is that for aggressive power caps (15W - 18% of Xeon E3 TDP)

CPU pkg power
consumption (W)

120 40%

Node power
consumption (W)

©

Norm. Throughput w.rt. CPU temperature

uncapped execution (%)

Cap 15w 3BW 55W 75W
mmmm RVSCap mmmm RAPL-RM RAPL —— RVSCap avg. / cap e RAPL-RM avg. / cap

Figure 3.7: CPU and total node power dissipation, CPU temperature

and performance for different power caps and power capping mecha-

nisms on Xeon E3. Bar plots correspond to the left y-axis and lines to
the right y-axis.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 3. The Impact of CPU Voltage Margins on Power-Constrained ExecutioB0

the reduced voltage margins enable significantly improved performance. For higher
caps (35W,55W - 43%,68% of Xeon E3 TDP), which are restrictive for fewer bench-
marks, the voltage margins reduction results in both performance gains and reduction
in power consumption and operating temperature of the CPU. Eventually, for higher
caps (75W - 94% of Xeon E3 TDP) where conventional power capping typically does
not result in performance penalties, voltage margins reduction results in lower power
dissipation and CPU temperatures.

As an example, RVSCap results in a 104% higher performance for Linpack under
aggressive power caps, while for relaxed power caps it reduces node power con-
sumption and CPU operating temperature by 31% and 19% respectively, compared
with RAPL. On average, depending on the enforced cap, RVSCap delivers up to 64%
improved performance, 32% lower CPU power consumption, 24% lower power con-
sumption at the node level and 16% lower CPU temperature, compared with RAPL. In
comparison with RAPL-RM, RVSCap delivers on average up to 17% improved per-
formance, 8% lower CPU power consumption, 6% lower node power consumption
and 4% lower CPU operating temperature. These gains are because RVSCap can dy-
namically apply the appropriate V,,,;,, for each CPU operating frequency, rather than
using the safest V,,,;,, across all frequencies.

More specifically, RAPL-RM switches between frequencies under hardware con-
trol and lacks the necessary logic for adjusting voltage reduction accordingly, to avoid
imminent system crashes, during the frequency transitioning. Consequently, the only
safe voltage reduction for RAPL-RM is the one that corresponds to the narrower volt-
age margin across all CPU frequencies. On the contrary, RVSCap is controls, at the
same time, both the CPU frequency and voltage operating points and, hence, can ap-
ply the appropriate V/,,,;,, for each CPU operating frequency and achieve higher ben-
efits from voltage margins reduction. Moreover, RVSCap can achieve a 55W power
cap without performance throttling on any of the benchmarks. On the other hand, in
order to enforce the same cap RAPL and RAPL-RM have to throttle the performance
in 3 and 2 of the 16 benchmarks, respectively.

Given that X-Gene processors do not support DVFS and do not offer any power
capping mechanism, to present a comprehensive comparison with execution at re-
duced voltage margins enabled by RVSCap, we implement a software power capping
mechanism that employs only frequency scaling to emulate a conventional frequency
scaling power capping mechanism (DFSCap). More specifically, DFSCap has the
same logic as RVSCap, however, it does not consider operating at reduced voltage
margins points.

Figure 3.8 presents the power profiles of our experiments on the X-Gene 3 plat-
form. Note that power dissipation fluctuates around the limit for both RVSCap and

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 3. The Impact of CPU Voltage Margins on Power-Constrained ExecutioB1

conventional power capping. This is because SLIMpro updates the reported power
consumption information every 1 second. This architectural limitation restricts RVS-
Cap to just one monitoring / adaptation cycle per second (in the Xeon CPU, RVSCap
performs one such cycle every 10 msec). In some cases, this may allow instanta-
neous power spikes to occur. Still, on average RVSCap conforms to the requested
power consumption cap. Figure 3.9 depicts the corresponding results for X-Gene 2,
which exhibits the same behavior as X-Gene 3. Also, it should be noted that this long
monitoring/adaptation interval, which is a concern on X-Gene 2 and X-Gene 3 pro-
cessors, is still equal or shorter than intervals used in prior software-based or hybrid
software/hardware works [11, 30].

Figures 3.10 and 3.11 illustrate the performance of those mechanisms on the
X-Gene 2 and X-Gene 3 CPUs, respectively. The trends are generally similar to what

was observed on the Intel-based system. The requested power cap acts as a knob that

Aggressive Cap Relaxed Cap Conservative Cap
’;\90] A A A 90 1 A A A 90 ~ A
‘EBO 1 80 A 80
o 870 1 70 70 -
‘g 260 - 60 60 -
= 3550 50 50 A
[=N \}
8 540 1 A 40 1 VN 40 -
E (-2 30 v “\&/’Qy WV 30 A1 30 1
L a§> 20 A 20 1 20 A
© 10 1 10 A 10 A
D- 0 T T T T T T 1 0 T T T T T 1 O T T T T T 1
0 20 40 60 80 100 120 140 0O 10 20 30 4 50 60 0O 10 20 30 40 50 6
Time (sec) Time (sec) Time (sec)
; 90 y | 90 4
= 80 80
S 70 70
Q.
o~ E 60 60
2 350 50
5 g 40 40
O 30 30
3 20
g 20
o 10 10 1
& o4 ! ! ! 4 0 4 Y ! 0 ! ! |
0 2500 5000 7500 10000 0 600 1200 1800 2400 3000 0 500 1000 1500 2000
= Time (sec) Time (sec) Time (sec)
= 90 1 x 90 1 90 - 7'y
s 80 80
2.2 70 A 70
- Q.
£ £ 60 1 60 - 60
& 2 50 - 50 50 1
© 5404 40 40 |
£ 030 30 - 30 { WWWWWWWWM
o ?g B 20 A 20 -
3 10 A 10 | 10 1
oo r r r . . | 0 r r . r 0 r r r r . .
0 100 200 300 400 500 600 0 100 200 300 400 500 600 0 100 200 300 400 500 600
Time (sec) Time (sec) Time (sec)
———RVSCap ———DFSCap Cap-free execution Power Cap

Figure 3.8: Power consumption on X-Gene 3 for different applications
(rows), power caps (columns) and power capping methodologies (lines
in each chart). The blue line corresponds to cap-free execution in nom-
inal settings. Vertical lines with double arrows indicate the completion
time of each execution.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 3. The Impact of CPU Voltage Margins on Power-Constrained ExecutioB2

Aggressive Cap Relaxed Cap Conservative Cap
35 A 35 N 4 4 35 4
30 A 30 4 30
B
L8 A
T8 i J
EEX 20 \]\/« Y m% 20
g 215 15 1 15 1
RS
30 i AA s anha Ly] 1
T g 10 AvavRI 10 10
§ 5 1 5 1 5 1
0 ! ! ! 4 ! 0 ! ! ! ! VYV 0 ! ! ! v !
0 100 200 300 400 500 600 0 25 50 75 100 125 150 0 25 50 75 100 125 150
Time (sec) Time (sec) Time (sec)
35 35 35 Y
_.30 30 i 1
S
= 25
i)
‘g 20 -
N
2 3
5 g 15
O 10
@
5 54
a
0 T T T 0 T T T T T 0 T T T T T
0 2000 4000 6000 8000 0 400 800 1200 1600 2000 2400 0 400 800 1200 1600 2000 2400
Time (sec) Time (sec) Time (sec)
35 7'y 35 35 Y
~ 30 1 30 1 30
2
- 25 4
£ 5 20
=]
g E
o2 15
£3
85 10
§ 5 5
0 . — — 0 . — — 0 — — -
0 100 200 300 400 500 600 0 100 200 300 400 500 600 0 100 200 300 400 500 600
Time (sec) Time (sec) Time (sec)
RVSCap ~———DFSCap Cap-free execution Power Cap

Figure 3.9: Power consumption on X-Gene 2 for different applications

(rows), power caps (columns) and power capping methodologies (lines

in each chart). The blue line corresponds to cap-free execution in nom-

inal settings. Vertical lines with double arrows indicate the completion
time of each execution.

directs the benefits introduced by the reduction of voltage margins towards either per-
formance gains for aggressive caps, or reduced power consumption for higher, less
restrictive power caps. Notably, the voltage margins reduction on X-Gene processors
do not have a significant impact on CPU operating temperature, as was the case on
Xeon E3. This is because the CPU fans on both X-Gene systems operate in two fixed,
distinct modes (low and high rate), depending on CPU temperature. On the contrary,
for the Intel platform, the rotation rate (rpm) of the CPU fans scales accordingly with
the CPU temperature.

On average, depending on the requested cap, RVSCap delivers up to 30% im-
proved performance, 11% reduced CPU power consumption, 4% reduced node power
consumption and 1% reduced CPU temperature for X-Gene 2 compared with DFS-
Cap. On X-Gene 3, the respective gains are 34% improved performance, 8% lower

CPU power consumption, 5% lower node power consumption and 1% reduced CPU

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 3. The Impact of CPU Voltage Margins on Power-Constrained ExecutioB3

20%
15%
10%
5%
0%
20%
15%
10%
5%
0%
3.0%
60 - 2.3%
1.5%
20 0.8%
0.0%
36%
30%
24%
18%
12%
6%
0%

(%)

CPU pkg power
consumption (W)

Node power
consumption (W)

CPU temperature Avg. Node power Avg. CPU pkg power
reduction /cap (%) cons. reduction /cap cons. reduction /cap
(%)

CPU temperature
©)
Ny
S
|

Avg. Throughput w.rt. Avg,

Norm. Throughput w.r.t.
uncapped execution (%)
improvement / cap (%)

2
mmmm RVSCap wmmm DFSCap = RVSCap avg. / cap

Figure 3.10: CPU and total node power dissipation, CPU temperature

and performance for different power caps and power capping mecha-

nisms on X-Gene 2. Bar plots correspond to the left y-axis and lines
to the right y-axis.

o}
o

D
o

(%)

CPU pkg power
consumption (W)
w
S

o

NN
o u
o o

150
100 +

Node power
consumption (W)

reduction / cap (%) cons. reduction /cap cons. reduction / cap
(%)

CPU temperature
©
D
S

o e R RN s >

Avg. Throughput w.r.t. Avg. CPU temperature Avg. Node power Avg. CPU pkg power

Norm. Throughput w.r.t.
uncapped execution (%)
improvement / cap (%)

i

110w
mmmm RVSCap mmms DFSCap e RVSCap avg. / cap

SW|

Figure 3.11: CPU and total node power dissipation, CPU temperature

and performance for different power caps and power capping mecha-

nisms on X-Gene 3. Bar plots correspond to the left y-axis and lines
to the right y-axis.

temperature.

So far, our investigation indicates that the exploitation of CPU voltage margins in
a power capped environment (RVSCap), outperforms CPU capping mechanisms that
control the DVFS operating points of the CPU, such as RAPL, and the CPU operating

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 3. The Impact of CPU Voltage Margins on Power-Constrained ExecutioB4

frequency like DFSCap. Table 3.2 summarizes the gains attained by RVSCap over
RAPL for Xeon E3 and over DFSCap for X-Gene processors, averaged over the three
compute intensity groups of benchmarks, under aggressive and relaxed power caps.
We observe that on Xeon E3 the high-intensity benchmark group demonstrates the
highest performance benefits for aggressive caps and the lowest power consumption
and CPU operating temperature for relaxed caps. For the X-Gene processors we
observe that, under aggressive power caps, the highest compute intensity group again
has the highest performance gains. Such a behavior is expected, since benchmarks, in
the high compute-intensity group, devote most of their execution time to performing
computations, in contrast with lower intensity groups which are memory- or I/O-
bound. Consequently, the frequency throttling caused by an aggressive power cap
directly affects their performance and even the slightest frequency increase will result
in a performance increase.

Moreover, modern Intel processors, like the Xeon E3 used in the context of this
dissertation, exploit a hardware mechanism, namely C-States, which dynamically
powers on or off different modules of the CPU, according to the resource requirements
of the workload. Due to this mechanism, we observe that, for conservative power
caps, the reduction of voltage margins, for the Xeon-E3, results in different energy
gains for different intensity groups. However, the X-Gene processors do not feature
a similar mechanism and, consequently, the reduction of voltage margins results in

similar energy gains irrespective of the compute-intensity of the benchmark.

3.3.3 Combining RVSCap with hybrid power capping mechanisms

As discussed in Section 3.2, hybrid power capping approaches exploit the nominal
DVFS points of the CPU (by directly controlling frequency, such as Intel’s RAPL

Table 3.2: Average gains of RVSCap, compared with RAPL and DF-

SCap for Xeon and X-Gene processors respectively, under aggressive

and relaxed power caps, for the different compute-intensity groups of
the benchmarks.

Power Metric Xeon E3 X-Gene 2 X-Gene 3

Cap Low | Medium | High | Low | Medium | High | Low | Medium | High
Perfor-

agsi‘;zs' mrﬁj‘r‘(‘)f; 30% | 69% | 102% | 11% | 36% | 37% | 3% | 43% | 49%
ment

relaxed | CEUPOWEr [ogo, | 3306 | 3796 | 11% | 12% | 10% | 9% | 7% | 8%
Node

relaxed power 17% 25% 31% 3% 5% 5% 5% 5% 6%
reduction
CPU tem-

relaxed perature 17% 16% 17% 1% 2% 2% 1% 2% 2%
reduction

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 3. The Impact of CPU Voltage Margins on Power-Constrained ExecutioB5

does) in combination with the placement of threads to cores. PUPiL [11], a state-of-
the-art work in CPU power capping, combines RAPL with thread-packing to maxi-
mize performance in power constrained executions. In this Section, we evaluate the
effects of combining RVSCap with PUPIL to evaluate whether RVSCap is orthog-
onal to, and can be combined with any mechanism that controls different execution
knobs, apart from CPU frequency and voltage, like PUPIL does for CPU cores uti-
lization. On the X-Gene processors, we combine thread-packing with DFSCap and
with RVSCap. On the Intel CPU, we combine thread-packing with RAPL (as in [11])
and RVSCap.

Figure 3.12 shows the performance and node power consumption for RAPL,
RVSCap, RAPL+PUPIL, and RVSCap+PUPIL. Given that PUPIL [11] is effective on
multithreaded workloads only (where thread-packing can be applied), we use three
additional multithreaded benchmarks: k-means, jacobi, and stream, which were also
not included in the characterization process of the CPUs presented in Section 3.1. To

g

-

o E £

wze

c o

o o 1

o -

X 3 80

< N | N <
60 1 \ \ \ R R
g :~‘:i\:|,::l\:\.::\::
..\‘\'\\ N M NN NN NN \\\\\\.\\ N
S E] M N N N N N N N N RN N ™N N ™N N N N
35 20 {M \\‘\\‘~|\ N N N NN N N NN N IR R
\.\\k\i.\F‘i‘n\!n\!\ﬁ.n\
S) clelalelale clelalelaele clelaleslal e clelale]e
© _ztv._._o:‘é‘_xm._._o:axm._._o‘:axm_._o:a
mlSIEIBIE[E|5|S|2E|2|5|2|5 2|2 E|2|5|2|5|2|2|E|2|5|€|5]2
Cap 15w 35W 55 W 75W

g1o

_—

88

P

c a

[}

Q. g

X ez

o £

-

3

20 W 30 W
BPUPIL+DFSCap

S

)

™28

o O

:n_

]

Q. = v

xgg N q .:\‘\“ \::.
‘,.“,u,i::i~:~::n=‘.=:.u
85 o | o TAON (AR (AN RN FARR SN oo UGN (AR RN CICN SR NG oac SR SR AN ERN BN A oo ORI AN RN TN
z2 olsfelelelelgle2|slelelclelgle|s|elelg]lelg|le(s|elelale]e
e ow|S|E|2| 5|85 2|5|E|2|5|8|5| 5|5\ E|2|5|8|5]8|5|E|8|5|8 5|8

x|«=| 8 7] x|= |8 7 || & 7] x|<=|8 7]
Cap 30 W 50 W 70W 90 W
DFSCap = RVSCap oPUPIL+DFSCap @RVSCap + PUPIL

Figure 3.12: Normalized performance (wrt. to uncapped execution)

and node power consumption for RAPL, RVSCap, PUPiL, and RVS-

Cap+PUPiL on Xeon E3 and for DFSCap, RVSCap, DSFCap+PUPIL
and RVSCap+PUPIL on X-Gene processors.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 3. The Impact of CPU Voltage Margins on Power-Constrained ExecutioB6

facilitate a more direct comparison with [11], we measure the performance as the rate
of heartbeats that are delivered within a time window (PUPIL employs a heartbeat
framework implemented at the code level of the workload [34]).

On Xeon E3, RAPL+PUPIL roughly matches RAPL in terms of performance, ex-
cept for facesim where it outperforms RAPL. For restrictive power caps, both RVS-
Cap and RVSCap+PUPIL outperform RAPL+PUPiL on average by 24% and 36%,
respectively. This clearly shows that reduced voltage margins can provide additional
benefits on top of state-of-the-art hybrid power capping methods. The limited ef-
fectiveness of RAPL+PUPIL can be attributed to the fact that Xeon E3 is a single
socket system and has only 4 CPU cores, whereas [11] evaluates RAPL+PUPIL on a
dual-socket system with a total of 32 CPU cores.

The results are similar for X-Gene 2. The small number of CPU cores limits the
performance gains of DFSCap+PUPIL, which is outperformed by RVSCap and RVS-
Cap+PUPIL on average by 22% and 33%, respectively, for restrictive power caps.
However, on X-Gene 3, the high CPU core count allows DFSCap+PUPIL to achieve
greater performance gains for several benchmarks (such as facesim and stream). Still,
RVSCap and RVSCap+PUPIL continue to outperform DFSCap+PUPiL by 5% and
27% on average, respectively. The only case where DFSCap+PUPIL outperforms
RVSCap is stream , but the combined RVSCap+PUPIL is the most efficient approach
as it takes advantage of both thread-packing and the operation of the CPU at reduced
voltage margins.

Our investigation shows that, as expected, thread-packing requires a high CPU
cores count to achieve notable performance gains. In contrast, the reduction of volt-
age margins improves both performance and power efficiency irrespectively of the
number of CPU cores. Also, the synergistic operation at reduced voltage margins
with thread-packing (RVSCap + PUPIL) is not only possible but also leads to bet-
ter results than each of these mechanisms separately. Consequently, RVSCap can be
used as a drop-in replacement of other power capping mechanisms in the context of

more complex, multi-level power efficiency optimization techniques.

3.4 Platforms Comparison

Based on these results, it is evident that the educated reduction of conservative CPU
voltage margins significantly reduces the performance penalty introduced by conven-
tional power capping approaches. Moreover, when the power consumption footprint
of the workload remains below the power cap, the same performance is achieved with

less power consumption.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 3. The Impact of CPU Voltage Margins on Power-Constrained ExecutioB7

Recent works [3, 36, 37, 38, 39, 40] try to model and simulate different aspects
of datacenters. They focus on maximizing the energy-efficiency and minimizing
the costs for operators. Motivated by this line of research, we perform a compari-
son among the processors at hand, in terms of performance/throughput, to highlight
the impact of voltage margin reduction on those aspects of datacenters. Also, since
power-constrained execution can result in CPU frequency throttling, we provide a
model that predicts the performance degradation of a workload according to the CPU
operating frequency.

Figure 3.13 quantifies the percentage of benchmarks for which each CPU proved
to be the most efficient in terms of throughput under a specific power cap. We exclude
X-Gene 2 from comparisons for power caps higher than the 30 Watt, as those caps
exceed its TDP, therefore the comparison would be unfair.

For the conventional power capping mechanisms such as RAPL and DFSCap, as
shown in Figure 3.13, Intel Xeon E3 is the most efficient processor, up to the 40 Watt
power cap. For higher power envelopes, X-Gene 3 dominates, in terms of throughput.
However, when reducing CPU voltage margins with the utilization of RVSCap (see
Figure 3.13) Intel Xeon E3 becomes significantly more efficient, approaching the
performance of X-Gene 3 for higher power consumption budgets. This is because
Intel Xeon E3 has wider voltage margins than X-Gene 3, which results in greater
performance improvement under power-constrained execution.

In terms of which is the most appropriate platform for each scenario, despite the

narrower voltage margins of X-Gene 2, when the power budget is limited and lies

100% - Nominal Operation

80% -
60%
40% -
20%
0%

Power consumptlon threshold (W

Benchmarks (%)

3 100%- Reduced Voltage Margins Operation
5 80%-
% 60% 1
£ 40%-
2 20%-
g 0% T T T
50 60 70
Power consumption threshold (W)
@Xeon E3 o X-Gene 2 @ X-Gene 3

Figure 3.13: Percentage of experiments (benchmarks) for which each
processor achieved the highest throughput at a given power cap.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 3. The Impact of CPU Voltage Margins on Power-Constrained ExecutioB8

0% 10% 20% 30% 40%
0% ,

10%

20%

Xeon E3
Performance reduction (%)

30%

40%

Frequency Reduction (%)
0% 20% 40% 60% 80% 100%

0%

20%

40%

60%

X-Gene 2
Performance reduction (%)

80%

100%
Frequency Reduction (%)
0% 20% 40% 60% 80% 100%

0%

S
'g 20%

%5
2B 40%

Q =

Q3
X S 60%

£
2 809
5 80%

a
100%

—— CloudSuite —— SPEC CPU 2006

=@==Memory-bound Cluster ==@=Mixed Cluster
=@== Compute-bound Cluster

Figure 3.14: Classes of applications, in terms of performance sensi-

tivity to frequency reduction.

below 20 Watts, as is often, for example, the case in Edge computing deployments,
this is the only processor that is capable of operating within the designated budget.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 3. The Impact of CPU Voltage Margins on Power-Constrained ExecutioB9

For higher power budgets, Intel Xeon E3 delivers sufficient throughput for cloud and
single-threaded benchmarks. However, for benchmarks that are inherently parallel,
X-Gene 3 is the most efficient CPU due to its higher core count.

The performance of an application depends on CPU operating frequency, but
some applications are more sensitive to frequency scaling. To quantify this effect,
motivated by our observations in Section 3.3.1, we measure the execution time of the
applications, presented in Table 3.1, for each of the frequency points applicable on
the Xeon E3, X-Gene 2 and X-Gene 3 processors. After extracting the performance
profile for each application on each frequency point, we apply a K-Means clustering
algorithm to form clusters of applications with similar behavior.

We identify three main clusters of applications with distinctly different behav-
ior. As shown in Figure 3.14, the applications within each of these clusters exhibit
similar performance degradation as a function of frequency scaling on all three plat-
forms. The first cluster, to which we refer as compute-bound, includes applications
with performance degradation which scales almost linearly to CPU frequency reduc-
tion, with a ratio of approximately 1x. The second cluster, referred to as mixed, is less
affected by the frequency reduction, however, aggressive frequency reduction leads
to significant performance. The third memory-bound cluster includes applications
that are relatively insensitive to frequency reduction. Moreover, we observe some
differentiation, in terms of performance degradation with frequency underscaling, of
the aforementioned application clusters between the Xeon E3 and the X-Gene pro-
cessors. Such differences can be attributed to the completely different architectures
of the platforms, different CPU cores count, different size of the processor caches,
different RAM size, as well as, different types of system disks (Solid State Drives
versus conventional Hard Disk Drives).

To this end, a future line of research could try to exploit modeling the performance
of applications, in order to design quality of service- (QoS) aware power capping

policies.

3.5 Power Modeling to Mitigate Hardware Limitations

Based on the results of our investigation, we observe that the effectiveness of a power
capping mechanism heavily depends on the interval at which the underlying hardware
mechanism, such as RAPL for Intel and SLIMpro for X-Gene processors, can report
the current CPU power consumption and can apply the CPU configuration parameters
instructed by the mechanism. These are the reasons why RVSCap, may momentar-
ily slightly exceed the enforced power cap in the case of the X-Gene processors. To

mitigate this effect, in conjunction with the fact that this is a hardware limitation, we

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 3. The Impact of CPU Voltage Margins on Power-Constrained Executiod0

w B
($)] o

w
o

Xeon E3
Predicted Power (Watt)
N N
o (6]

[
a1

=
o

10 15 20 25 30 35 40

Actual Power (Watt)
30

25

20

X-Gene 2
Predicted Power (Watt)

15

10
10 15 20 25 30

Actual Power (Watt)
80

75
70
65
60
55
50
45

40
40 50 60 70 80
Actual Power (Watt)

@ Model predictions

X-Gene 3
Predicted Power (Watt)

Figure 3.15: Predictions of our power estimation models for Xeon E3,
and X-Gene processors.

develop a model that estimates power consumption. Given the model, a power cap-

ping mechanism can utilize it to — at least — mitigate the latency of periodic power

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 3. The Impact of CPU Voltage Margins on Power-Constrained Executiod1

monitoring queries. For example, on X-Gene processors RVSCap could maintain a
higher interval rate of cap enforcement by employing the power consumption models,
for a fixed number of consecutive frames, and, thus, predict the current power con-
sumption until the underlying hardware mechanism provides the actual measurement
of the power consumption.

We estimate the power consumption function, as follows: First, we run a series of
experiments used, and numerous nominal and underscaled voltage-frequency points.
We record the power consumption, measured through RAPL and SLIMPro, for Xeon
E3 and X-Gene processors, respectively. Then, based on this data, we use linear re-
gression, using 80% and 20% of the data as training and validation set respectively,
to compute the parameters of the model Power = A + B * u * V2 x f which esti-
mates power consumption as a function of CPU utilization w, supply voltage V' and
frequency f. This model can then serve as the power estimation function for power
capping policies.

As shown in Figure 3.15, for the Xeon E3 CPU, we get A = 3.03 and B = 10.74,
which predicts power consumption with R = (.99 and a root mean square error
(RMSE) of 0.78 for the unseen configurations at nominal operating points. For the
X-Gene 3 CPU, the values of the parameters are A = 0.72 and B = 17.88, yield-
ing R? = 0.99 and an RMSE of 0.77. Similarly, for the X-Gene 2 CPU, A = (.84
and B = 7.71, yielding R? = 0.99 and an RMSE of 0.16. The low RMSE indi-
cates that the predictions of both models are close to the actual power consumption.
Furthermore, as an extra validation step, we repeated the series of experiments for
configurations at extended margins and we verified that the accuracy of the power
estimation models remains in the aforementioned RMSEs.

3.6 Related Work

Several approaches relax voltage guardbands to increase energy efficiency. In par-
ticular, [41, 42] present heuristics that dynamically reduce voltage margins, based on
the feedback of error correction ECC mechanism built-in Itanium 9560, and [43] rely
on dedicated hardware protection mechanisms introduced at chip design-time to re-
duce voltage margins. Also, [21, 22, 24] authors present an automated system-level
analysis on multi-core CPUs based on the ARMv8 64-bit architecture when pushed
to operate in scaled voltage conditions. [23] targets the same ARMvVS8 architecture
and combines the voltage margins of both CPU and DRAM modules to improve the
potential energy savings. [44] presents, similar to this work, static offline analysis

that quantifies the CPU voltage margins on x86-64 processors.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 3. The Impact of CPU Voltage Margins on Power-Constrained Executiod2

In contrast with our work, presented in this Chapter, all of the aforementioned
prior approaches are completely agnostic of CPU power capping, target CPU archi-
tectures that do not support hardware power capping, focus on a limited range of CPU
frequencies and rely on specific CPU design, topology and behavior to carefully ex-
ploit the reduction of voltage margins. Consequently, all these attributes make prior
work incompatible with existing power capping approaches. Furthermore, none of
the previous research efforts projects the potential energy gains in large-scale deploy-
ments, as this work does, where CPU power capping is typically useful, however, a
fault tolerance mechanism, such as checkpointing, is also necessary.

Earlier power capping solutions [30, 31] are software-based, rely on external
power meters and control CPU key factors such as frequency. However, several
research efforts note that coordinating multiple components provides greater perfor-
mance under a power cap than management of a single component in isolation. More
specifically, work [45] focuses on a class of services with very high CPU and memory
demands, best represented by internet search, and propose a power-aware resource
allocation algorithm for the CPU and the memory which is driven by SLA and al-
lows for various dynamic cluster configurations, from energy-optimal to resource-
usage-optimal. Also, the authors in [46, 47] introduce several approaches to multi-
component power management, that continue to deliver maximum performance for
a given power budget even as new components become available or existing com-
ponents are disabled. Furthermore, the authors in [48] propose a control-theoretical
methodology to complement architecture design and show that their approach meets
performance requirements, while consuming less power than any fixed one, and it is
capable of attaining the same goals. The authors of [49] present a fine-grain char-
acterization, expose the opportunity for power savings using low-power modes of
each primary server component, and introduce and validate a performance model to
evaluate the impact of processor- and memory-based low-power modes on the search
latency distribution. Also, [50] explores how to integrate power management mech-
anisms and policies with the virtualization technologies being actively deployed in
these environments.

Recent works for improving performance under power-constrained environments,
compare many existing power capping mechanisms [11, 51] for a wide range of
scenarios, and report that RAPL capping almost ubiquitously outperforms previous
software-based capping methods. Based on this observation, several state-of-the-art
works propose hybrid solutions, which combine software mechanisms with RAPL.
In particular, [11] proposes PUPIL, a hybrid software-hardware framework, which
uses RAPL in conjunction with a heuristic algorithm for identifying the best thread
placement on cores scheme (thread-packing). Furthermore, [52] also relies on RAPL

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 3. The Impact of CPU Voltage Margins on Power-Constrained Executiod3

to cap the power of the CPU and RAM. It explores how cross-component power al-
location of a single node will affect the performance of multi-threaded workloads,
under a constrained power budget. [53] presents a holistic methodology that utilizes
the techniques used in [11, 52] synergistically to further improve the performance
of parallel workloads. Moreover, [54] introduces PTRADE, a performance manage-
ment framework that is general with respect to the components it manages and can
be deployed to work on a new system with different components without redesign
and reimplementation. Moreover, [55] integrates migration and co-scheduling poli-
cies into an operating system scheduler and into a virtualization system, allowing
placement decisions to be made both within and across physical nodes, and reducing
contention both for individual tasks and complete applications. [56] introduces a new
metric for CPU energy performance, millions-of-instructions-per-joule (MIPJ), con-
siders several methods for varying the clock speed dynamically under control of the
operating system, and evaluates the performance of these methods using workstation
traces. [57] surveys the vast field of research on energy-cognizant schedulers and
discusses scheduling techniques to perform energy-efficient computation.

The previous works on power capping propose software-level optimizations, po-
tentially in conjunction with hardware techniques such as RAPL, to improve perfor-
mance in power-constrained environments. However, as shown in our investigation,
CPU voltage margins reduction in the form of RVSCap results in better performance
compared to the hybrid RAPL+PUPIL mechanism utilized in these works. Most im-
portantly as shown, our approach is compatible with the above state-of-the-art solu-
tions and could be employed in conjunction with them to provide additional perfor-

mance benefits.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

44

Chapter 4

Dynamic Reduction of
Workload-Dependant CPU Voltage

Margins

In this Chapter we, again, focus on the question “How to exploit CPU voltage margins
reduction?”. More specifically, we investigate the workload-dependability of the ex-
tent of possible voltage margins reduction and how to exploit it to further improve the
power-efficiency of computing systems. However, a critical challenge is to reduce
the margins as much as possible yet without compromising the reliability of the sys-
tem. To this end, we have designed, developed, deployed and evaluated a run-time
Extended Dynamic Voltage Scaling (xDVS) governor for off-the-self systems, which
dynamically and adaptively reduces voltage margins by applying a lower, yet safe
CPU supply voltage to improve power and energy consumption. The xDV'S governor
monitors the utilization of CPU resources and uses a prediction model to estimate and
apply a new safe supply voltage to the CPU. To train the prediction model we perform
an offline characterization of voltage margins on Haswell i7—4790 and Skylake Xeon
E3-1220 v5 processors, by utilizing (XM)? (presented in Chapter 6), using a diverse
set of benchmarks which stress different components of the CPU microarchitecture,
such as the rate of FP computations, thermal load, and memory pressure.

The main contributions and outcomes discussed in this Chapter are the following:

1. We develop a model that takes as input selected CPU performance counters and
core utilization and estimates the voltage margin of the workload on the specific
CPU part for the base CPU frequency. This estimation can be exploited to
safely undervolt CPUs to achieve lower power consumption and higher energy

efficiency.

2. To the best of our knowledge we are the first to implement and deploy a Ex-
tended Dynamic Voltage Scaling(xDVS) governor, which, guided by such a

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 4. Dynamic Reduction of Workload-Dependant CPU Voltage Margins 45

model, dynamically adjusts the CPU supply voltage to levels below conserva-
tive nominal values. Compared to the stock Intel (P-state) DVFS governor, our
approach achieves energy savings up to 42% for Skylake and 34% for Haswell

CPUs with negligible overhead on performance.

We do not include the X-Gene processors in this study, because of the limitations
already discussed in Chapter 3. More specifically:

» The workload-dependent part of voltage margins on X-Gene processors is very
narrow under higher CPU core utilization.

* The underlying hardware mechanisms introduce high latency to monitor CPU
parameters and to adjust CPU configuration. As an example, for X-Gene 2
and X-Gene 3 processors, due to very long path (user-space, operating system,
I*C interface, SLIMPro controller, voltage regulator), the latency of voltage

adjustment is 1.193sec and 0.906sec, respectively, on average.

These limitations significantly hinder the implementation of online, workload-
dependent voltage margins reduction policies on X-Gene processors.

4.1 Offline Quantification of Voltage Margins

In this Section, we quantify the minimum tolerable supply voltage V,,;,, by utilizing
the (XM)? framework for OS-controlled execution, presented in Chapter 6. More
specifically, we use both single- and multi-instance/threaded benchmarks included
in the SPEC CPU2006 [58] and Parsec [16] benchmark suites, the Linpack [59]
benchmark, as well as a number of stress tests (Prime95 [60], Firestarter [61], Stress-
NG [62]). For Stress-NG in particular, we include all 68 sub-tests that stress the
CPU. Each benchmark is executed in two modes: either occupying a single core, or
all cores of the target CPU. Single-instance/threaded experiments are executed once
per core, with the running thread pinned on the respective core while the rest of the
cores are idle. To fully utilize the CPU, multi-instance/threaded benchmarks are ex-
ecuted with a degree of parallelism equal to the number of cores, whereas in the case
of single-instance benchmarks we achieve full utilization by co-executing as many
copies of the benchmark as the number of cores. We refer to the combination of
benchmark versions and core mappings as configurations. We deem a level of volt-
age reduction as safe, for a given configuration, when the corresponding benchmark
executes correctly for 10 consecutive times and there are no SDCs, MCE errors, and

system crashes. As an additional robustness test for the value of V/,,;,,, we validate

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 4. Dynamic Reduction of Workload-Dependant CPU Voltage Margins 46

each configuration 1000 more times, at the corresponding level of voltage reduction,
and verify that there is none of the aforementioned erratic behavior.

We perform the experimental analysis on six workstations, four featuring an Intel
Skylake Xeon CPU called Skylake 1 - 4, and two featuring an Intel Haswell i7 CPU,
called Haswell 1, Haswell 2. All workstations run Ubuntu 16.04LTS with Linux Ker-
nel version 4.10.0-38-generic. Table 2.1 outlines the characteristics of each worksta-
tion as well as the nominal supply voltage for both architectures under maximum
utilization.

As we discussed in Chapter 2, the reduction of CPU operating voltage for In-
tel processors is offset-based. Figure 4.1 illustrates the experimentally identified
MSR¢tset, which when applied results in the corresponding V/,,;,,, for the four Sky-
lake and two Haswell CPUs, running 34 benchmarks. Since the SPEC CPU2006

Applications

swptns
frstrt

Inpack

str_ng
prime

frgmine

fdanim

Skylake 1
MSR Offset (mV)

Skylake 2
MSR Offset (mV)

Skylake 3
MSR Offset (mV)

Skylake 4
MSR Offset (mV)

=
N
o

Haswell 1
=
N
o

MSR Offset(mV) MSR Offset (mV)
S
o

@
o

Haswell 2
o e
R O N b
o O O O

Applications

Minimum MSR Offset Maximum MSR Offset

mmmm Full Utilization mmmm \Weakest Core = Strongest Core

Figure 4.1: Evaluation of MSR e settings for 34 benchmarks (10

runs each) in each workstation; the higher the bar, the wider the ex-

ploitable voltage margin. The horizontal dotted lines show the maxi-
mum (red) and minimum (black) values of MSR y¢fset.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 4. Dynamic Reduction of Workload-Dependant CPU Voltage Margins 47

benchmarks are single-instance, the respective margins for the fully utilized CPUs
are determined by executing simultaneously four instances of the benchmark on each
4-core CPU. Voltage margins span from 17% to 24% and 9% to 13% of the nominal
V4 for the Skylake and Haswell microarchitectures, respectively. The difference be-
tween min and max voltage margin values (7% and 4% of nominal V,, for Skylake
and Haswell, respectively) is the workload-dependent margin.

Figure 4.2 shows that in the large majority of the experiments, multi-instance/
threaded benchmark executions have narrower margins than when running the bench-
marks in a single-threaded/instance configuration. This observation emphasizes the
importance of using both single- and multi-instance/threaded programs to correctly
assess Viin.

Moreover, unlike previous studies on ARMv8 [22] and Itanium [63] CPUs that
revealed intermediate voltage regions of unsafe operation where indications of erratic
behavior may be observed, for the architectures investigated in this study the transi-
tion to unreliable operation when voltage drops below V,,;,, is abrupt and always leads
to crashes. Even in the few cases where SDCs or MCE errors were observed, these
errors were accompanied by an immediate system or application crash.

We also observe margin variations across different cores of the same part (the
difference between margins of the strongest and weakest core of each CPU). The
Vinin variation when executing the same single-instance benchmarks with different
cores can reach up to 45mV and 32mV for Skylake and Haswell, respectively. In
Figure 4.3 we present the percentage of times each core was ranked as the weakest
in terms of voltage margin when executing a single-instance benchmark. In contrast
to the findings of the characterization of ARMv8 and Itanium, the CPUs in this study
do not exhibit the pattern of a consistently weakest and a consistently strongest core;

in our case, the strongest/weakest core varies across chips and even on the same chip

100% -
2 80%-
g]
= 60%-+
(O]
g l
v 40%-
%]
X 20%-A
0%-]
Skylake Haswell

m Single Core m Full Utilization

Figure 4.2: Percentage of experiments for which single core, or multi-
instance/threaded workloads resulted to narrower voltage margins.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 4. Dynamic Reduction of Workload-Dependant CPU Voltage Margins 48

100%

80%-
60%-
40%-

% of experiments

20%o-
0%-

Skylake Haswell
mCore0 mCorel mCore2 mCore3

Figure 4.3: Percentage of experiments in which any given core re-
sulted being the weakest during our characterization phase.

across benchmarks (Figure 4.3).

Figure 4.4 shows the cumulative distribution function (CDF) of the average (across
all configurations) failure probability of each CPU, as a function of the applied
MSR¢ssec. Note that lower slope CDF curves indicate a broader range of undervolt-
ing opportunities, depending on the characteristics of the workload and the resource
pressure exercised. For example, Skylake 4 offers an MSR . range between 196mV
to 271mV in which different benchmark configurations will run successfully. On the
contrary, Haswell 2 has a narrower dynamic range (105 to 145mV) exhibiting a step-
wise behavior. All four parts of the Skylake family have similar margins, with Skylake
1 being able to operate at lower V;; values than the rest.

Moreover, we identified the voltage margins for a range of operating frequen-
cies, for both CPU architectures. Figure 4.5 shows that for each frequency there is

a workload-independent (green part, static) and a workload-dependent (yellow part,

100%

Propability of failure
(%)
(o))
S
>

20%-

0%- —

0 50 100 150 200 250 300
MSR Offset (mV)

———Skylake 1 ~ ——— Skylake 2 Skylake 3
Skylake 4 Haswell 1 Haswell 2

Figure 4.4: Average (across all configurations) failure probability
CDF for each CPU, with respect to the applied MSR gffse.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 4. Dynamic Reduction of Workload-Dependant CPU Voltage Margins 49

dynamic) voltage margin which allows CPU voltage reduction without any crashes
or SDCs. The static margin corresponds to a voltage range where no applications
fail. The dynamic margin, in turn, corresponds to a voltage range where some — yet
not all — applications fail during the characterization. The workload-dependent part
of the margin increases (albeit slightly) at higher frequencies. Specifically, for Sky-
lake 2 at 3.0GHz, the total margin is 268mV (24.5% of the nominal supply voltage),
out of which 62mV is attributed to the workload-dependent margin. On the other
hand, at 1.0GHz frequency, the margin is 199mV (27.5% of the nominal voltage),
but the workload-dependent range is only 4mV (1.9%). Similarly, for the Haswell
2 at 3.6GHz, the total margin is 145mV (14.4% of the nominal supply voltage) and
the workload-dependent margin is 52mV. At 1.0GHz frequency, voltage margin is
318mV (39.7% of the nominal voltage), but the workload-dependent range is only
10mV (3.1%).

The Skylake family exhibits wider margins compared with the Haswell family,
by 103mV on average. Essentially, CPUs are black boxes and the observed nominal
settings and voltage margins are a result of physical limitations (geometry), archi-
tectural limitations, designer decisions, targeted market, etc. More specifically, as
shown in Figure 4.5, at 3.0GHz frequency with nominal voltage settings, Skylake
operates at 1078mV and Haswell at 960mV. As a result, the reduction of voltage mar-
gins (MSRge;) is lower for the Haswell CPU but in terms of the lowest subnominal
voltage, the differences are not that profound.

4.2 Voltage Margins Modeling and Estimation

Microarchitectural events that disrupt the flow of pipeline execution and influence

pressure on CPU resources significantly affect the minimum CPU supply voltage

Frequency
1100 1.0GHz | 1.5GHz | 20GHz | 25GHz | 3.0GHz | 3.6 GHz

] >
1000 o
900 *,0,4/0 ©
800 et
7007
600]

500
400

]

Voltage (mV)

Skylake
Haswell

CPU
Static Margins Dynamic Margins == Crash
—o— Skylake P-States ©o— Haswell P-States

Figure 4.5: Voltage margins for a range of CPU operating frequencies
for Skylake 2 and Haswell 2.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 4. Dynamic Reduction of Workload-Dependant CPU Voltage Margins 50

(Vinin) required for error-free execution [64]. As software dynamically interacts with
the underlying hardware, such events appear at different intensities, therefore the
effective V,,;, may vary during execution (dynamic voltage margins). This presents
opportunities for dynamic, workload-aware undervolting at execution time.

This Section introduces the methodology we used to build a model that predicts
an operating voltage V,, which is lower than the nominal supply voltage V, but safe,
i.e., higher than V/,,;,, for the specific combination of workload characteristics, execu-

tion configuration, and CPU part. The four steps of our approach are the following:

1. We determine the V/,,;,, for different cores (and all cores together) of the target
CPU part for different workloads via offline characterization, as discussed in

the previous Section;

2. We profile the same workloads to quantify their interaction with the CPU using

online performance counters;

3. We combine V,,,;,, characterization and the profiling data to fit two models
(based on Random Forest Regression [65]) one for single-instance execution
and one for multi-instance/threaded execution that dynamically predict a safe

supply voltage V;;

4. and finally the models are used by a dynamic voltage scaling governor to dy-
namically adjust the supply voltage based on the models’ predictions as well

as the resource pressure of the CPU.

Note that this can be relatively time-consuming (in our case, the characterization
took two days) and thus may not be affordable during the CPU production stage.
However, in HPC and cloud environments it could be performed as part of the de-

ployment process before a node becomes operational in the infrastructure.

4.2.1 Profiling

During profiling, we use a set of performance metrics observable through the respec-
tive PMU counters to quantify the utilization of and pressure to microarchitectural
components. Intel x86-64 PMUs can only track a limited number of performance
counters at the same time (in the CPU families we use in this study, up to 8 per
core). We consider 85 and 80 performance metrics for Skylake and Haswell, respec-
tively. We include all the metrics used by Intel’s Top-down Microarchitecture Anal-
ysis Method (TMAM) [35], as well as additional metrics that capture operational
aspects of the system, such as the CPU operating temperature, CPU power consump-

tion, and DRAM power consumption. To collect data for all respective metrics, we

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 4. Dynamic Reduction of Workload-Dependant CPU Voltage Margins 51

perform multiple executions for each benchmark configuration, and in each execu-
tion, we record a subset of performance counters until all metrics are covered. We
sample the counters every 100ms using Linux Perf tools [66]. As we discuss later,
we reduce the number of metrics used for model training to a maximum of 8, so we
can sample all corresponding performance counters in a single execution at xDVS

deployment time.

4.2.2 Model type

Our goal is to estimate a safe MSR¢; according to the resource utilization and pres-
sure quantified by the performance metrics. The values obtained by offline character-
ization do not always exhibit a simple, monotonic behavior concerning the obtained
performance metrics. Consequently, linear regression models do not adequately cap-
ture the MSR ¢ Of the applications. Instead, to predict MSR; as a combination
of the aforementioned metrics, we employ a machine learning ensemble technique,
called Random Forest Regression (RFR) [65]. A random forest is a collection of re-
gression decision trees, each used to independently predict a value based on an input
vector. The model predicts by averaging over the predictions of all regressions trees.

Due to the limitations of Intel PMU, at execution time we are limited to concur-
rently measuring up to 8 PMU events per core. For our model to be applicable in
an online manner, the number of performance metrics/features needs to be reduced.
This also avoids overfitting and decreases the runtime overhead of the model. To
reduce the number of performance metrics, we rank their importance by estimating
their mutual information (MI) for the MSR s target variable. MI is an algorithm
commonly used for feature selection in machine learning [67]. It ranks different fea-
tures by assigning weights so that the higher the weight the more important the feature
for modeling. The algorithm assigned the highest importance to the metrics listed in
Table 4.1 in decreasing order of importance. Note that the highest-ranked metrics
essentially characterize the instruction mix of the workload.

During the offline profiling phase, the performance metrics are collected through
multiple executions for the same configuration of each experiment. After the MI
ranking step, we repeat the experiments so that the selected metrics (Table 4.1) are
collected during the same execution. These data are normalized to take values be-
tween 0 and 1. As a normalizer, we use the sum of all available slots during the
sampling period, which is equal to the number of pipeline slots (4 in our architecture)
multiplied by the number of clock cycles (the respective counter does not fall into the

limitation of 8 PMU events per core).

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 4. Dynamic Reduction of Workload-Dependant CPU Voltage Margins 52

Skylake Haswell

UOPS_DISPATCHED.PORT 0: IDQ.ALL_DSB_CYCLES_4_UOPS:

Uops dispatched for execution in port 0 (Port 0 - .

is responsible for Int., FP, vector ALU, mult, .C%dle.s m.whzc%Decode Stream Buffer (DSB)
div and branch operations). Is dellvering 4 LOps.
UOPS_DISPATCHED.PORT 4 UOPS_EXECUTED.PORT_0:

Uops dispatched for execution in port 0 (Port 0
is responsible for Int., FP,vector ALU, mult,
div and branch operations).

Uops dispatched for execution in port 4 (Port 4
is responsible for Store operations)

UOPS_DISPATCHED.PORT 1: UOPS_EXECUTED.PORT 1:

Uops dispatched for execution in port 1T (Port 1 | Uops dispatched for execution in port 1 (Port 1
is responsible for Int., FP and vector ALU is responsible for Int., FP and vector ALU
operations). operations).

UOPS_DISPATCHED.PORT_5 UOPS_EXECUTED.PORT_5:

Uops dispatched for execution in port 5 (Port 5

is responsible for Int. and vector ALU Uops dispatched for execution in port 5 (Port 5

is responsible for Int., vector ALU operations).

operations).

UOPS_DISPATCHED.PORT 2 UOPS_EXECUTED.PORT 2:

Uops dispatched for execution in port 2 (Port 2 | Uops dispatched for execution in port 2 (Port 2
is responsible for Load operations). is responsible for Load operations).
EXE_ACTIVITY.PORTS UOPS_EXECUTED.PORT 6

Cycles for which one uop began execution on

any port, and the Reservation Station was not Uops dispatched for execution in port 6 (Port §

is responsible for Int., and branch operations).

empty.

UOPS_EXECUTED.THREAD UOPS_EXECUTED.PORT 3

Number of Uops executed by this hardware Uops dispatched for execution in port 3 (Port 3
thread. is responsible for Load operations.)

MEM _UOPS.ALL_STORES: MEM _UOPS.ALL_STORES:

Number of store operations retired. Number of store operations retired.

Table 4.1: Most influential performance metrics for V,;,, as ranked
by the MI algorithm.

Finally, recall that MSR s, besides being dependent on the workload, also de-
pends on the resilience of the specific cores (inter-core variation) and degree of CPU
utilization. Moreover, in a realistic scenario, the operating system may, indepen-
dently of our mechanisms, modify the topology of active cores via thread migration.
Our model should provide a safe setting irrespective of workload mapping to cores.
To capture these variations, we construct two models for each CPU part. One model
covers the case of single-core execution (single-core model) and is trained using the
MSR¢1ec Of the weakest core for each benchmark configuration. The other model
covers the case where multiple cores are occupied (multi-core model) and is trained
using the data of the benchmark configurations that use all cores of the CPU. So, in
total, we build 12 different models (6 CPU parts, each having 2 models for single-
and multi-core CPU utilization).

4.2.3 Model training

Most applications exhibit different execution phases in terms of CPU resource pres-
sure and performance characteristics. For example, Figure 4.6 shows the number of
uops dispatched for execution in port 1 for the first 30 secs of execution for two ap-

plications with a single-phase (swaptions, hmmer) and one application with multiple

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 4. Dynamic Reduction of Workload-Dependant CPU Voltage Margins 53

= 18
=]
g -
. 1.6 -
@é 1.4 -
25]
o
a9 21 \ : N ! U
v c 1
B8~ 10
4 0 5 10 15 20 25 30
o Time (sec)
> facesim swaptions hmmer

Figure 4.6: The number of dispatched uops in port 1 during the exe-
cution time of an application.

phases (facesim). However, our offline characterization determines the single worst-
case V., across all execution phases of an application. This can negatively affect
the effectiveness of training our model as it will overgeneralize, trying to correlate
wildly varying performance counter patterns with the same V/,,;,,.

To provision for such cases, we bias the training input set to include mainly appli-
cations with few execution phases such as hmmer and swaptions. We first rank the 34
benchmarks according to the number of phases they exhibit, normalized to their exe-
cution time. Phase change detection is performed by monitoring large changes (more
than 10%) on any of the Level-1 performance metrics of TMAM [35]. The smaller the
number of phase changes, the higher the ranking of the application. Then, we select
the top 90% (most stable) applications for training and validation. 90% of the selected
applications are used for training and 10% for validation. The remaining 10% of ap-
plications (the ones with the largest number of phase changes) serve as the testing
(evaluation) set. The validation set includes bodytrack, freqmine, gcc, and the test-
ing set includes facesim, zeusmp, fluidanimate, stress_ng. Figure 4.11 validates our
training decision, as the model can correctly generalize and predict different phases
of an application even though these applications are not included in the training pro-
cedure. Note that the MSR e, changes of facesim in Figure 4.11 are similar to the
phase changes of Figure 4.6.

The training input set, which consists of samples (in 100ms sampling intervals) of
the eight performance counters (Table 4.1) of the applications selected for training,
is used to train the Random Regression Forest to minimize the Root Mean Square
Error (RMSE) between the predicted V), and the V/,;, determined via the offline
characterization. Typically, RFR is defined by a predefined number of different sim-
ple estimators (the decision trees) and by the maximum depth of each decision tree.
Using a large number of estimators and/or using deep trees for the prediction can
both incur high-performance penalties, and result in overfitting. In the end, the mod-

els that minimized the RMSE for both the training and validation set consist of only

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 4. Dynamic Reduction of Workload-Dependant CPU Voltage Margins 54

three estimators, with the maximum depth of each estimator being equal to three.
The average RMSE is 7.01mV and 5.45mV for the Skylake and Haswell families,
respectively.

Over- or under-prediction is a common side-effect of many modeling approaches.
In our case, over-predicting the MSR ¢ would result in reducing the supply voltage
below V/,.;,, leading to unreliable operation. Therefore, as a last step, we introduce
a small safety margin to the estimated MSR s value. For each model, the safety
margin is set equal to the RMSE between the value that is predicted for the validation
data, and the MSR ¢ Value that was observed during the offline characterization for
the respective applications in the validation set. Equation 4.1 provides the final offset
that is applied on the MSR registers of the CPU (where X denotes the input vector to
the model).

MSR’Offset(X) = MSROffset()z) — safetyMargin 4.1)

The safety margin controls the aggressiveness of our methodology. Using very
small values would result in aggressive undervolting at the risk of reduced reliability,
whereas too large safety margins would merely decrease the energy gains. A con-
servative, yet pessimistic, safety margin is the maximum error between the predicted
values and the validation data. Instead, we use RMSE as safety margin (7.01 and 5.45
mV for the Skylake and Haswell families, respectively) and trust the modeling pro-
cedure to correctly handle the outliers. Our approach is validated in the evaluation;
no failures have been observed during application execution.

Figure 4.7 shows the predictions of our model for benchmarks in the validation

< 260

240+ /g/o

230+
220+ =
210+
200+

N

(&)

(@)
]

sada
RN

Predicted MSR Offfset (mV
ol

¢
90 ©
190 200 210 220 230 240 250 260
Observed MSROffset (mV)
m Voltage reduction without safety margin
¢ Voltage reduction with safety margin

Figure 4.7: Prediction of our model with and without the safety mar-
gin, for samples in the validation data set.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 4. Dynamic Reduction of Workload-Dependant CPU Voltage Margins 55

set, running on the two Skylake processors, with and without the safety margin. The
black line represents the MSR.; Values that would be predicted by a perfect model
(corresponding to the observed V/,,,;,,). Predictions above the line correspond to appli-
cation phases that can be executed in a V;; lower than the conservative, application-
wide V/,,;, which was obtained in the offline characterization. Such cases are dis-
cussed in Section 4.4. Including the safety margin reduces power efficiency but en-

ables safe operation.

4.3 Extended Dynamic Voltage Scaling

The model introduced in the previous Section can be used online, to enable fine-
grained undervolting at runtime, according to the resource pressure quantified by per-
formance counters samples and the number of cores utilized by the workload. To this
end, we have implemented an extended dynamic voltage scaling governor (xDVS),
which runs periodically. Upon invocation, it feeds the model with the performance
counter measurements collected during the previous interval and uses the MSR e
suggested by the model to derive a less-than-nominal but still safe supply voltage V.

The xDVS governor is implemented as a Finite State Machine (FSM), depicted
in Figure 4.8. The V, selected for the next interval depends on the prediction of the
model, the number of active cores and the current state of the governor. Below we
describe the states and the logic of xDVS:

Back-Off: In this state, the measurements collected during the previous interval
are not considered as representative for the workload during the next interval and,

therefore, should not used as input for the model. This is the case, for example, when

V'dd;- V'dd; ;> 5mV

Active Cores > 0

Active Cores ==

i = current frame

Figure 4.8: FSM diagram of the xXDVS governor.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 4. Dynamic Reduction of Workload-Dependant CPU Voltage Margins 56

a core starts executing a new process/thread, or after a long idle period that allowed
the operating system to place that core in a higher C-state (lower power mode). In
this state, xDVS does not invoke the model and applies the nominal V.

Step-Up: This state provides a smooth transition between the Back-Off and the
Stable states. When in this state, the governor invokes the model to perform predic-
tions in a way similar to the Stable state, but if the model suggests a large reduction
to the supply voltage, this is applied gradually, in smaller steps of 5 mV. This fil-
ters abrupt and potentially risky — in terms of reliability, should the behavior of the
workload change again — voltage reductions.

Stable: The governor collects performance counter values for each core and in-
vokes the single-core or multi-core model depending on whether only one or more
cores are currently active. Then, based on the suggested MSR ¢, the governor ap-
plies the new V.

The xDVS governor monitors which cores are active, by observing the percentage
of time the system was in the C'0 state (C'0 residency) of each core. We consider a
core as active when C0 residency goes above 70%, and a core is classified as inactive
when the corresponding C'0 residency drops below 50%. We avoid thresholds close
to 100% or 0% as this would result in unnecessarily high transition sensitivity (e.g.,
a core would be considered as active when merely moving the mouse of a desktop).

When all cores are considered as inactive, the xDVS governor enters/stays in the
Back-Off state to provide a setup time to new workloads. When there is at least one
active core during two consecutive sampling intervals, xDVS transitions to the Step-
Up state. It remains in this state until the supply voltage is gradually reduced to the
level suggested by the model, and once this level is reached the governor enters the
Stable state.

Whenever the model suggests a large increase to the supply voltage, the increase
is implemented immediately (without any stepping), irrespective of the state of xDVS
as this is considered an emergency and any delay could compromise the reliability of
the system. Also, increasing the supply voltage does not introduce any risk if the
workload suddenly changes; in the worst case, an opportunity for energy savings will
be missed.

Figure 4.9 illustrates the level of undervolting applied by xDVS on Skylake 2 for
an indicative scenario with two abruptly alternating workloads with significantly dif-
ferent margins, namely gromacs, and h264ref. We execute four instances of each of
the applications to fully utilize the CPU. As discussed in Section 4.1, the CPU supply
voltage can be reduced by 257mV and 198mV for gromacs and h264ref respectively.
In every transition from the workload with high tolerance (gromacs) to the work-
load with a lower tolerance (h264ref), the level of undervolting drops immediately

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 4. Dynamic Reduction of Workload-Dependant CPU Voltage Margins 57

to increase the CPU supply voltage. In the reverse transitions, the undervolting level
gradually increases (CPU voltage decreases) until it reaches the level that is suggested
by the model.

180] Ll T L] T L T Ll T L L T T L] T L T T
0 5 10 15 _. 20 25 30 35 40 45
Time (sec)

gromacs full CPU util. === h264ref full CPU util. xDVS

Figure 4.9: MSR¢se¢ applied by xDV'S on Skylake 2, for sudden tran-
sitions between workloads with different margins.

4.4 Experimental Evaluation

In this Section, we evaluate the ability of the xDVS governor to dynamically identify
voltage margins based on our prediction model and drive the CPU to a more energy-
efficient state. We quantify the resulting energy gains using the benchmarks in the
test set (stress_ng, zeusmp, fluidanimate,facesim), which have not been used during
model training and validation and we compare the energy gains of xDVS against
the Intel P-state DVFS governor. We used Linux Perf [66] tool to monitor energy
consumption.

In addition, we evaluate xDV'S with 4 larger-scale applications, namely Gem5 [68],
a CPU miner [69], the compilation of the Linux Kernel [70] and Polybench [71].
More specifically, Gem5 simulates an ARM processor using the system emulation
mode. During the simulation, we execute a variety of simple micro-kernels such as
Integer and Floating-Point Matrix Multiplication, Sorting algorithms, and Combina-
toric problem-solving kernels. The CPU miner employs five different hashing algo-
rithms (Bitcore, Sha256d, Xevan, Timetravel, and Cryptonight [72]), all used to per-
form mining for different cryptocurrencies such as Litecoin and Bitcoin. Finally, we
use multiple solvers and stencils included in the Polybench suite such as Alternating
Direction Implicit (ADI), Jacobi, LU factorization, Gram—Schmidt process, Gauss—
Seidel. Each one of these 4 larger-scale applications is executed for approximately 1
hour. Figure 4.10 shows the average MSR s, applied by xDVS when applications
are executed on all cores, or on the weakest core. For the large-scale applications, in
which there is no offline characterization, we present the average dynamic MSR yfse;

across all single-core executions.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 4. Dynamic Reduction of Workload-Dependant CPU Voltage Margins 58

The MSR 15 applied by xDVS includes the extra safety margin, thus we expect
it to be, on average, more pessimistic than the MSR . identified by offline char-
acterization (as shown in Figure 4.10). The voltage applied by xDVS (including the
safety margin) is on average 9.3mV and 8.2mV higher than the one identified by of-
fline characterization for the Skylake and Haswell microarchitectures respectively.
Despite the safety margin, there are cases in which xDVS successfully identifies ap-
plication phases and adjusts the supply voltage to lower values than those identified
in the offline characterization, without compromising system reliability. Note in Fig-
ure 4.10 that xDVS identifies wider static and dynamic (phase-dependent) voltage
margins for the Skylake family, which is compatible with the findings of the offline
characterization presented in Figure 4.4.

Figure 4.11 shows the dynamically applied MSR s when four benchmarks are
scheduled for consecutive execution on the same core for all Skylake and Haswell
processors. XDV can capture the dynamic nature of the applications. As an example,
in facesim (an iterative application that executes 3 separate kernels per iteration) the
MSR¢1sec Varies between 201mV and 233mV, for Skylake 2, as the model captures
the phases of the application. Similar behavior is observed for all Skylake processors
for facesim application where xDVS captures the periodic phase changes and drives

undervolting even more aggressively than what static MSR e dictates (gray line).

_.260
>
§,240 ¢ <><> 3
..q_,) QO+HR 0 ¢ . .
Ulgzzo 0. 7 ’0 Q @ .0 099
O B0 O Q 73
o 200
0
= 180
HEHEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
1®5|2(5|E|5| 8] &|5|8|5|E|5 8] BI5|8| 5| E|5| 8l =] & 5| 2| 5| €| 5| &
I A TR =t R e B o] Al T RS AR R B o R R AR R A BT R SR
Skylake 1 Skylake 2 Skylake 3 Skylake 4
S 150
E 130 shor 13 i
ko] 1 0 [
_ 0 ®
% 110 b 1] !
@ 90 | |
0
= 70
EEEHREEEEEEBEEEEE
=18(5/8|5[E|5| 8l5| 8| 5|8 5| E|5|
2" |2|= (2] 65213 V2] = | 2| §l5| °
Haswell 1 Haswell 2
m Full Utilization = Weakest Core o Offline Characterization

Figure 4.10: The bars show the average dynamic MSR¢sse¢ applied by
xDVS, for Skylake (up) and Haswell (down) workstations. The min-
max bars represent the minimum and the maximum MSR e applied
by xDVS. The gray diamond represents the MSR¢se; as identified by
offline characterization at the granularity of the whole application.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 4. Dynamic Reduction of Workload-Dependant CPU Voltage Margins 59

ricd — r1¢¢ — 2.2 122
LT LeTz LETC LETC LE9z €92
£ 02 £ 702 £ 702 £ 702 £ Hmwm £ Xelerd
3 1967 g F96T 8 H96T 8 96T 8 (265 8 oe
8 /8T & /8T RS /8T ke /8T & l622 8 l6ce
L6.T L6.T L6.T F6.LT FTze 122
] 0T] LOLT] 3 L0LT] _|-o:] -wwm | Le1e
° 29T ° H291 © H29T ° 29T ° [78¢ © 793¢
= reST b FEST T FEST < FEST IS 78T 5] 78T
£ ST S LSYT = LSYT £ FSYT £ 18/1T £ 18/ T
= L9ET = LoeT g 9ET g F9ET S r0LT g r0ZT
2o gzt 2 lgeT 2 2 lgeT 2 2 gz 22 19l 23 r1ot
S 3 laTT ~0 =2 ~0 3 —~ 0 2 ~0 3 FEST~ © =2 FEST ~
5 = 61To s = F6TI o= = F6TTQ = = | BTl = = = SO LT
8 — TE 8 — LTIt S 8 — g 8 — e 8 — ——0e1 8 8§ — L9ET &
s &Smw &Smm &amw &Smw ﬁﬂmm »ﬂm
o L o L o L o - o - o -
< g V6 E< E 6 E< g 6 =< E 6 E<E Lote < € [OTTE
7 IS8) IS8 7] -G8 7] -G8) Lz0T 7] 20T
> o} >5 > =} >
o) FLL o} FLL [} FLL o} FLL o} -6 fa} Le6
N 69 N L69 N L69 N 69 N -wm N -mm
09 L09 L09 — 109 r r
] les T bes] bes] les] IR NE — 82
o Lt =2 Ley =) Ley = et =2 u LTS =) 175
o L5e o Lge o Lge o e o = A o A
0 r9z 0 Loz o Loz o -oe 2 0orE 4 7€
£ LT £ LT £ LT £ LT £ =[5 £ [5¢
7} Ls 7} L6 n ls 17} Ls 7} 3 Hw n ”w
— 0 0 0 -0 =0 _ —==+0
O O OO OO [eNoNeolNolNoNol [eNeolNolNolNoNo) [cNeolNeolNoNolNol [eNeoNeoNolNoNe) [eNeoNoloNoNo)
WO N O WO NO WO < N O VO NO O < NO 0w © O < N O O
N N NN N - N NN NN - NN NN N A N NN NN - LI B | —
(Aw) 19810 SN (Aw) 19sPO dSW (Aw) 198O YSI (Aw) 18840 US (Aw) 198O USIN (Aw) 19shJO USIN
TaelAs zaye|ls cayels vayelis T ||]dmseH ZllamseH

Offline Characterization

xDVS
core executions of four applications on all target parts (CPU chips).

Figure 4.11: Timeline showing the MSRsse¢ for consecutive single

Institutional Repository - Library & Information Centre - University of Thessaly

21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 4. Dynamic Reduction of Workload-Dependant CPU Voltage Margins 60

On Haswell processors, on the other hand, the prediction model employed by xDVS
does not identify such opportunities for facesim.

Figure 4.12 shows the MSR . timeline when the four larger-scale applications
are executed on each workstation. The graphs reveal relatively large intra-family mar-
gin variations, as well as variations due to different workload characteristics. Note
that the xXDVS governor can capture the different algorithms consecutively used by
the CPU miner application. Note also the steep MSR; drops when the OS sched-
ules a new application, due to our xDVS governor transitioning to the Back-Off state.
Interestingly, when running the Linux kernel compilation on the Haswell proces-
sors, the governor transitions frequently to the Back-Off state. The Haswell PCs are
equipped with a slow Hard Drive Disk (HDD). When compiling, the large source
files of the kernel and object files are read from and written to the HDD, resulting in
the C'0 residency of each core to drop below 50% (since most of the time cores wait
for I/O operations). This makes xDVS to transition to the Back-Off state. This ef-
fect is not observed on the Skylake workstations, as they are equipped with fast Solid
State Drive (SSD). Figure 4.13 shows that the xXDV'S governor achieves 29.59% and
21.93% average CPU energy gains and can reach up to 42.68% and 34.37% for the

Applications
- kernel | cpu_miner | polybench | gem5
260
%’240- fn LN
1 =1 — 1--'- Iy
¥ 220 -
O o
o 200
5]
2180 T
OLONI\MONQ'OLOHKONGJMO\Q‘O\DHI\NOO@O\LQHLDN
HM%LOI\O\HNQ'LOI\OOOHMLDOCI)O\HN nM~Nooao
AN <t VOANINNOEAMUNOONTOVOOMILNAOHMUO
HHHHHNNF\!NMMMMMﬁ'ﬁ'#ﬁ'meﬁLﬂm
Time (sec)
—— Skylake 1 Skylake 2 Skylake 3 Skylake 4
Applications
— kemnel | cpu_miner | polybench | gem5
> 140
=120
£ 100 Y
x 80
0
= 60 e e — r
OQ'I\OMI\OMKOONNOONNanNanv—i$00v—igl\v—|$l\
HN$U’)\O®O\OHMWLDI\®O\HNMLD N Q) — M LN
AN <t wONﬂ'I\O\Hmml\Oﬂv—iﬁ'kOCDONgkOONHMLDI\
A AANANANNANOOMOOOOD S <t tnnWnWn
Time (sec)
Haswell 1 Haswell 2

Figure 4.12: The timeline showing the MSR . applied by xDVS,
while executing the large applications in full system utilization for
Skylake (up) and Haswell (down) workstations.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 4. Dynamic Reduction of Workload-Dependant CPU Voltage Margins 61

_45%
S
2 30%
8
>
15%
=2
9]
c
u.| O%t:nmEEE MEAEABEREERERAEEFEEREREEEREEE
dE B AR EE HEEERRE R EEEEERREEEEEEE
blﬂn)muw"nwblﬁmuq.)".oﬂ-‘blﬂn’mUw".owblqm’muq;"_ow
21" [8|%|2]515] O3]~ [2]F 2| 6|5] o8| T |8|=| 2| 5[5 oR] V8| <255 ©
Skylake 1 Skylake 2 Skylake 3 Skylake 4

Energy gains (%)

Haswell 1 Haswell 2

m Full Utllization = Weakest Core

Figure 4.13: Energy gains of xXDVS when compared with Intel P-state

governor for Skylake (up) and Haswell (down) CPUs. The grey hori-

zontal lines represent the MSRy¢¢s¢ Obtained by the offline characteri-
zation.

Skylake and Haswell processors respectively, compared with the Intel P-state gov-
ernor. Higher gains are — as expected — obtained when cores of the CPU are highly
utilized.

Note that when xDVS is enabled, Intel’s Turbo Boost technology is disabled and
the operating frequency is pinned to the CPU maximum nominal frequency. This in-
compatibility between xDV'S and Turbo Boost technology is because of the way the
Turbo Boost mechanism operates. More specifically, there are different Turbo Ra-
tio limits, which translate to various CPU operating frequencies, for different CPU
utilization intensities — in terms of utilized CPU cores — by the executing workload.
Consequently, when Turbo Boost is enabled, the CPU operating frequency is con-
trolled by the hardware and changes without any notification to the system software
stack. The performance penalty due to disabling Turbo Boost translates to an average
execution slowdown of 8.73% and 5.59% for the Skylake and Haswell processors,
respectively. However, the performance overhead of the xXDVS governor itself is
minimal. When the governor is active and the prediction requires only 160ns, while
changing the new MSR s requires 155us. On average, the performance overhead is
equal to merely 0.04% of execution time when xDV'S operates at a 100ms interval. If
the interval is set to 10ms (lowest supported sampling interval of performance coun-
ters through Perf API), the overhead remains at 0.04% for single-core utilization but
increases up to 3.5% on average at full CPU utilization. Even in this case, xDVS still

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 4. Dynamic Reduction of Workload-Dependant CPU Voltage Margins 62

provides significant energy gains compared to the Intel P-State CPU governor.

4.5 Related work

In contrast to our work, all previous efforts in predicting voltage margins using perfor-
mance counters only report theoretical energy gains, without deploying their model.
They rely only on theoretical results which, if not validated in real hardware, could
result in unreliable operation and even system crashes. Moreover, they do not project
the potential energy gains, as this work does, in large scale deployments, for which
a fault tolerance mechanism — such as checkpointing — is necessary. Our FSM based
governor uses performance counter values to reduce the voltage margin of the system
at run time on real hardware for unseen workloads which consist of several different
applications executing concurrently.

In particular in [22], due to the manifestation of SDCs before system crashes, the
authors propose a severity function that can predict safe, SDC-free undervolt lev-
els for each core of the processor. Based on this function and the corresponding
core Vi, resulted from the offline characterization, they produce a linear regres-
sion model that predicts the V,,;, of a core for a single-instance workload. Their
model is trained and evaluated using only single-core executions. In contrast to their
work, we use multi-instance/threaded workloads and demonstrate their importance as
multi-instance/threaded workloads usually result in more conservative V,,,;,,. More-
over, [22] states that V,,;, prediction is uncorrelated to performance counters and in
combination with limited dynamic variation of V/,,;,, in ARMvV8 a naive prediction
of using average values is sufficient. In a more recent paper [73], the same authors
present a comprehensive statistical analysis for the same platform that improves pre-
diction on dynamic variations. Note also that we identify margin deviations between
off-the-shelf, commercially available parts, and not parts from extreme corner nodes
(TTT, TFF, and TSS in [22]).

In [74] the authors characterize the voltage margins of two x86-64 micropro-
cessors (Sandy-Bridge-E and Haswell) for a subset of the SPEC CPU2006 bench-
mark suite. Similar to [22], they do not consider the implications induced by multi-
instance/threaded executions. We show that multi-instance/threaded executions sig-
nificantly limit the depiction of the whole voltage margins spectrum. Also, in our
work, we quantify the voltage margin deviations between off-the-shelf parts that be-
long to the same CPU family and eventually deploy a governor that exploits effec-
tively the voltage margins.

The heuristics presented in [63] and [75], that dynamically reduce voltage mar-

gins while always preserving safe operation, are based on the error correction ECC

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 4. Dynamic Reduction of Workload-Dependant CPU Voltage Margins 63

hardware built on modern processors such as the server-class Intel Itanium 9560. A
key observation here is that as V,;; is lowered, ECC correctable errors appear before
uncorrectable errors (SDCs and CPU crashes). The rate of ECC correctable errors is
used as an indicator of how to adjust the V;; voltage. In our work, errors reported by
the ECC mechanism appear very rarely, and they are always accompanied by imme-
diate CPU crashes. We do not rely on ECC, but rather predict a safe supply voltage
using a selected set of performance counters as estimators. Eventually, the methodol-
ogy we propose is generic enough that can be applied to any processor, that provides
the ability to manipulate the supply voltage, by measuring performance counters.

Authors in [76] exploit the voltage margins of a server-class 8-core Power7+ pro-
cessor. In contrast to our work, this approach utilizes specialized hardware mecha-
nisms such as critical path monitor sensors and digital phase-locked loops, to detect
and exploit the margins. As the number of utilized cores increases by the executing
workload, the larger the IR drops are across the chip. The power gains obtained by
their adaptive margin scheme begin to diminish as the executing workload utilizes
more CPU cores. On the contrary, the CPU families under investigation in our work,
exhibit the exact opposite trend, where greater power improvements are observed
on multi-threaded/instance workloads. More importantly, our xDVS governor can
exploit voltage margins regardless of the CPU core utilization scheme.

A study of the voltage margins on several Kepler and Fermi GPUs is presented in
[77]. They first characterize the impact of the process, temperature and voltage vari-
ation on V,,;,, and then predict safe values of V,,;, by deploying a linear regression
and a neural network model. They show that high energy margins can be achieved by
shaving conservative guardbands in modern GPUs. Our work targets CPU architec-
tures which are significantly more complex than GPUs. Moreover, typically CPUs
- contrary to GPUs - serve volatile workloads, with diverse characteristics, consist-
ing of mixed user and OS jobs. Our model can provide accurate voltage margins
predictions for workloads which consist of a mixture of different benchmarks.

Based on microarchitectural events (such as branch mispredictions and cache
misses) that flush and stall the CPU pipeline and cause large voltage droops, in [64]
they propose a voltage emergency predictor that learns the signatures of such volt-
age emergencies and triggers a CPU throttling mechanism (e.g. increase voltage or
decrease frequency) to prevent their recurrence. This work is based on CPU model-
ing on the Simplescalar simulator. In a subsequent paper, the authors measure run
time voltage emergencies on a Core 2 Duo processor and attribute them to pipeline
stalls and flush [78]. Based on these experimental observations, they propose that

a mechanism that uses more aggressive margins and a recovery (check-point based)

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 4. Dynamic Reduction of Workload-Dependant CPU Voltage Margins 64

scheme may be better than a fail-safe static margin. Moreover, they propose a pro-
gram scheduling mechanism so that the combined voltage droop is canceled out as
much as possible. Unlike our work, the previous papers do not resort to undervolting
to reduce voltage margins but instead, they describe techniques and provide solid de-
sign guidelines that could be exploited by the supplementary mechanism we describe
in Chapter 5.

Several proposed techniques present design approaches at the circuit or micro-
architectural level that trade reliability for lower voltage, by attempting to reduce the
voltage down to the point that produces maximum allowable errors without caus-
ing catastrophic failures [79]. Several approaches propose methods that ensure the
correct operation of caches under undervolted conditions at the microarchitectural
level [80, 81, 82]. Architectural techniques are presented to eliminate data corrup-
tion, and by extension enable cache operation at scaled voltage settings. In our work,
we are only interested in the behavior of the whole CPU, and not of any specific com-
ponent. The Razor processor is designed with builtin support for dynamic detection
and correction of timing failures of the critical paths [83]. EVAL is a framework for
dynamic adaptation of supply voltage, processor frequency and body bias using a
machine learning algorithm [84]. Similar ideas include dynamic pipeline adaptation
transferring the time slack of faster pipeline stages to the slower ones (ReCycle)[85],
and using variable latency techniques to mitigate the impact of variations on the reg-
ister file and execution units in a microprocessor [86].

Furthermore, many approaches employ simulations and modeling techniques to
provide design guidelines for future hardware. Authors in [87] propose a multi-core
processor that can scale its resources and the number of operating cores to lower
than that of integrated to meet certain power constrains. Several approaches [88,
89, 90] employ regression analysis to map certain performance counters to micro-
architectural events and power-delivery estimation. [91] explores ECC protection
mechanisms to enable low-power caches through a detailed SRAM failure modeling.
[92] introduces a workload-dependent technique to identify the paths excited by indi-
vidual applications on ultra-low-power microprocessors and reduce voltage to a level
that meets the timing of those paths (instead of all paths).

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

65

Chapter 5

System Reliability when Operating at
Reduced Voltage Margins

In this Chapter, we focus on the question “Is the system reliability affected?” by the
operation of the CPU at reduced voltage margins. The reduction of voltage margins,
even when performed in an educated and careful manner, may affect the resilience
of the CPU to errors. This would, in turn, make the system more prone to failures,
reducing the Mean Time Between Failures (MTBF). Both methodologies presented in
Chapter 3 and in Chapter 4 operate the CPU at hand at subnominal voltages. Although
we have not observed any crashes and SDCs in our experiments, voltage underscaling
inevitably comes at the cost of increased probability of system failure compared to
nominal CPU operation (where malfunctions occur too, yet with lower probability).

We discuss the organization and results of a long-running campaign that was con-
ducted to validate the robustness of the mechanisms, presented in Chapter 3 and
Chapter 4. Based on the results of the validation, we statistically estimate the ef-
fect of operation at reduced voltage margins on the MTBF at different confidence
levels and system scales. Finally, we investigate whether the energy gains due to
operation at reduced voltage margins outweigh the extra cost — due to the potentially
increased MTBF — of fault tolerance mechanisms such as checkpointing in large-scale
deployment scenarios.

The main contributions and outcomes of our work are the following:

1. To the best of our knowledge, this is the first work that experimentally evaluates
the effects of CPU operation at reduced voltage margins with long experiments

and statistically estimates the respective effects on large-scale deployments.

2. We estimate the expected energy gains of CPU operation at reduced voltage
margins when taking into account the extra cost of a fault-tolerant mechanism,

such as checkpointing and restore.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 5. System Reliability when Operating at Reduced Voltage Margins 66

5.1 The Tradeoff of Operating CPUs at Reduced Volt-

age Margins

5.1.1 Validation of Reduced Voltage Scaling power Capping (RVS-
Cap) and Extended Dynamic Voltage Scaling (xDVS)

To assess the risk of CPU operation at reduced voltage margins, we performed a long
experimental evaluation on 16 identical Xeon E3 systems. During this campaign,
RVSCap was constantly enabled on all systems, and random power caps in the range
[15W, 75W] (80W is the TDP of this CPU) were enforced on randomly selected com-
binations of applications from our benchmark set (Table 3.1). Also, we repeated the
same experiment for xDVS governor. More specifically, xDVS was enabled on all
nodes while executing randomly selected combinations of applications from our full
set of benchmarks (presented in Section 3.3).

Both experiments were concluded, independently, after a total of 8832 device-
hours, 552 hours (23 days) per system, without any observed failure such as crash,
silent data corruption (SDC), or any detected error. We opted to end the experiments
at this particular time point and provide a pessimistic lower-bound of the systems
MTBE. However, these experimental results provide a solid indication that our mech-
anisms can exploit the CPU voltage margins reduction without limiting the reliability

of operation of the systems.

5.1.2 Effect of Operation at Reduced Voltage Margins on MTBF

Based on the results discussed in section 5.1.1 and in order to provide a pessimistic
estimation on the MTBF of systems that operate with RVSCap and xDVS, we assume
that 1 system out of the 16 experiences a transient error at 552 hours.

Prior studies show that the MTBF of individual nodes in large-scale facilities
can be captured by a Weibull distribution with decreasing hazard rate (DHR, shape

parameter x = 0.7) [93, 94, 95, 96]. In particular, we use the following equation
MTBF = 1F(1+ 1) (5.1)
A K ’

where I refers to the gamma distribution, A and « are the scale parameter and the
shape parameter of the Weibull distribution law, respectively. When x = 1 the dis-
tribution is exponential with a constant failure rate and when x = 0.7 the distribution
transforms to DHR. We note that Weibull with DHR takes into account infant mortal-

ity phenomena, which is consistent with our observations during the characterization

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 5. System Reliability when Operating at Reduced Voltage Margins 67

process of the Xeon E3 CPUs where the selection of CPU voltages below V/,,;,, led to
failures almost instantly.
In order to calculate the scale parameter (\), we solve the following Weibull Cu-

mulative Distribution Function (CDF) equation for A
F)=1—¢ Q)" (5.2)

where, based on the results of our experimental analysis, ¢ equals to 552 hours, x
(shape parameter) equals to 0.7 and F'(t = 552 hours) equals to 6.25% because we
assumed 1 system failing out of the total of 16 systems.

Furthermore, given the limited number of systems tested, we apply the chi-squared
distribution to extrapolate and calculate the most pessimistic (minimum) MTBF for
different confidence levels (CLs) [97, 98] based on the following equation

2 MTBF

MTBFq~ =
X o (2n+2)

(5.3)

where X2 refers to the chi-square distribution, MTBF is the experimentally ob-
served MTBF and n the number of failures. To this end, we assume a distribution
with 2 degrees of freedom (n = 0) [97, 98], since we did not observe any errors
during the testing. Eventually, based on the results of our risk assessment analysis,
for a confidence level of 90% MTBFy9 > 634.79 days. Note that it is common
for industry assessments to provide MTBF at a 60% CL [99] which in our case is
MTBFyg > 1595.65 days.

5.1.3 Effects of Operation at Reduced Voltage Margins in Large,

Scale-out Deployments

Assuming a platform that employs N nodes to execute a workload, the respective
MTBPF, 4 = MTBF, 4./ N, where MT BF,,; and MT BF,,,q. are the MTBF val-
ues for the whole platform and the node respectively, for any continuous failure dis-
tribution [93], as is the case with DHR Weibull.

To deal with the increased probability of failure, large-scale systems typically
perform checkpointing. Given that such mechanisms introduce overhead, we eval-
uate whether energy savings achieved thanks to operation at reduced voltage mar-
gins outweigh this overhead. Although there are more sophisticated checkpointing
mechanisms [93], we pessimistically assume a blocking, coordinated checkpointing
scheme that is performed at the optimal period to capture the impact of voltage mar-

gins reduction even in such inefficient implementations. More specifically, we use

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 5. System Reliability when Operating at Reduced Voltage Margins 68

the following equations of the analysis in [93] which estimate the overhead (WASTE)
and the optimal checkpointing period (77,)

C 1 T
ASTE=1-(1-2)(1-—— (D - 4
WAS (T) (MTBFplat(e 2)) 64
Tope = |/ 2(MTBF,,, — D — R)C (5.5)

where C' is the checkpointing cost, 7" is the period of checkpointing, R is the cost
of restoring the checkpoint, D is the downtime.

Figure 5.1 illustrates the energy benefits to be expected for a power capped execu-
tion at reduced margins with checkpointing vs. an execution at nominal CPU settings
and no checkpointing. We should note here that, when executing at large-scale, nodes
do fail and checkpointing/restart provision is necessary even when the CPU operates
at nominal settings. By comparing with nominal executions without checkpointing
we overestimate the protection overhead due to CPU operation at reduced voltage
margins. Therefore, the overall energy gains reported in the following paragraphs
are conservative.

Without loss of generality, we choose a constant D = 2 minutes and welet C' = R
vary from 5 up to 60 minutes. The dashed black line represents the energy gains when
operating at reduced margins with the most relaxed power cap but without any check-
pointing and assuming no failures (infinite MTBF). We do not show a comparison for
more restrictive CPU power caps, as these anyway result in higher energy gains (see
Section 3.3).

Number of platform components
50/ 2 200 400 600 800 1000
(0]

? Energy cons. with RVSCap and no checkpointing (%)
0/,

é 20%] < N C:R:5mm

8] P

2 15% - <R lomin

1 |

>

£ 10% -

()

c J

L

5% -

00/0 T T T T T T T -
MTBF,, 126.96 3.17 1.59 1.06 0.79 0.63
MTBF,, 319.13 7.98 3.99 q 2.66 1.99 1.60

ays

—o0— Energy reduction (%) for DHR and different C-R parameters with MTBF; 4
<©— Energy reduction (%) for DHR and different C-R parameters with MTBFg ¢

Figure 5.1: Energy reduction of RVSCap with checkpointing vs. ex-
ecution at nominal settings without checkpointing, for MT BFy 9,
MT BFj¢ and different C- R parameters.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 5. System Reliability when Operating at Reduced Voltage Margins 69

Number of platform components

5 200 400 600 800 1000
— 40% I ' Energly cons. ;Niﬂ’] xD\IIS and ﬁo checklpoinﬁng' (%) I
S3wlfE=—_"_""""" ; _______ C_R_S_ i A i
T =RK=5m
S 30% e —C=Rlomir?
é 25% - C=R=20min
£ 20%
g 15% -
w 10% -
5% -
00/0 T T T T T T T T T 1
MTBF,, 126.96 3.17 1.59 1.06 0.79 0.63
MTBF,, 319.13 7.98 3.99 2.66 1.99 1.60

days
—0— Energy reduction (%) for DHR and different C-R parameters with MTBF, o
<©— Energy reduction (%) for DHR and different C-R parameters with MTBF ¢

Figure 5.2: Energy reduction of xDVS with checkpointing vs. ex-
ecution at nominal settings without checkpointing, for MT BFy 9,
MT BFj¢ and different C- R parameters.

Similarly, Figure 5.2 shows the corresponding energy gains for large-scale de-
ployments when xDVS governor is combined with checkpointing vs. an execution at
nominal CPU settings and no checkpointing.

Our analysis shows that both RVSCap and xDVS mechanisms (and operation at
reduced margins in general) can provide energy gains even at scale, and for rather
costly checkpointing implementations. For instance, in a system with 1000 nodes,
operation at reduced margins, through RVSCap, remains beneficial if C' + R is under
40 minutes for M'I' BF} ¢. For the much higher confidence level of MT' B F} g, usage
of RVSCap is beneficial as long as C' 4+ R is less than 20 minutes. Similarly, in
a system with 1000 nodes, usage of xDVS remains beneficial with energy gains at
17.5% and 6.7% for the confidence levels of MT'BF, ¢ and MT BF} g, respectively,
even for costly C' + R overhead at 40 minutes. xXDV'S provides more energy benefits
compared with RVSCap because xDVS exploits the workload-dependent portion of
the CPU voltage margins and can reduce further, according to the executing workload,
the CPU operating voltage.

5.2 Hardware Mechanisms

The RVSCap mechanism, presented in Chapter 3, exploits the reduction of the static,
workload-independent, portion of the CPU voltage margins to minimize the perfor-
mance penalty induced for power-constrained execution. On the other hand, the

xDVS mechanism, presented in Chapter 4, depends on the behavior of the current

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 5. System Reliability when Operating at Reduced Voltage Margins 70

workload, during a sampling period, as this is quantified by the monitored perfor-
mance counters. Our experimental evaluation demonstrates that, for typical work-
loads, the performance counters can be successfully used as indicators to reduce the
CPU supply voltage. However, the sampling of the performance counters and the
supply voltage adjustment can be as frequent as every 10ms. The adaptivity fre-
quency may be too low to capture events caused by specific — potentially malicious —
workloads, namely voltage droop viruses, that produce large voltage fluctuations and
expose the susceptibilities of the power delivery network of microprocessors [100,
101, 102]. Typically, such workloads consist of a periodic sequence of high activity
and low activity instruction regions at a frequency equal to the resonance frequency of
the power delivery network (50 —200M H z in modern CPUs). This pattern simulates
the invocation of high CPU activity workloads immediately after a period of very low
activity, which causes large di/dt swings and large voltage droops, as shown in prior
work [103].

The problem of voltage droop detection and mitigation in modern CPU and GPUs
is (and should be) addressed at the hardware level with specialized circuitry [104,
105]. A high-speed droop detection mechanism continuously monitors the power
grid causing a rapid charge shunt to the V, rail to correct a voltage emergency within
a few clock cycles. Ideally, these mechanisms could also inform the software stack
when voltage emergencies are detected, acting as a trigger towards more conservative
undervolting. To this end, the X-Gene 3 processor offers such voltage droop counters
that can be monitored from the software [21].

In general, stronger error protection and error recovery mechanisms to correct
timing violations are very helpful as extra protection during aggressive voltage scal-
ing. Note also that voltage droop viruses are difficult to generate and may be differ-
ent across not only different microarchitectures but also across different CPU parts.
Moreover, on top of a realistic software stack, the background operating system ac-
tivity (jitter) smooths out large voltage swings caused by such viruses [78]. To this
end, we tried to produce large di/dt swings and large voltage droops by alternating
phases of high and low activity at different frequencies, based on the findings of prior
work [103]. We experimented on the Intel-based platforms, presented in the Chap-
ter 2. However, our effort did not result in tighter CPU voltage margins, compared to
those identified by our characterization. This is attributed to the fact that all the Intel
systems we experimented on, in contrast with the X-Gene 2 processor used in prior
work [103], feature a Load Line Calibration (LLC) mechanism to mitigate such steep

voltage swings.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

71

Chapter 6

A Framework for Large-Scale
Experimentation at Reduced CPU
Voltage Margins

In this Chapter we focus on the question “How to automate the complex experimen-
tation process?”. The work presented in Chapter 3 and Chapter 4 exploits the reduc-
tion of CPU voltage margins to improve the energy efficiency of program execution,
and/or to minimize the performance penalty induced when the CPU operates under a

power consumption limit. This effort involves:

* Characterization of the CPU voltage margins of different architectures and dif-

ferent parts of each architecture.
* Data collection for training the models used.
» Experimental evaluation of the techniques introduced in Chapters 3 and 4.

* Validation of the robustness of the techniques with long-running experiments,

as discussed in Chapter 5.

All the aforementioned items mandate long, complex experimental campaigns,
involving multiple systems and multiple workloads, with different computational
characteristics. Moreover, this process needs to be reactive to errors potentially in-
duced due to overly aggressive reduction of voltage margins (during the characteriza-
tion phase) and able to recover and continue the experimental campaign. It also needs
to be resilient to issues external to the experiments, such as power or network outages
(especially in the case of long-running experimental campaigns, as is the case in the
validation phase). The latter must be handled gracefully, so there is no information
loss or wrong quantification of voltage margins.

We introduce (XM)? (eXtended Margins eXperiment Manager) which automates
the evaluation of software on systems operating outside their nominal configuration

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 6. A Framework for Large-Scale Experimentation at Reduced CPU
Voltage Margins

envelope. Although (XM)? supports both bare-metal and OS-controlled execution,

in the context of this dissertation, we will focus on the OS-controlled flavor.

6.1 Framework Objectives

Our vision is to provide a versatile and robust framework that facilitates the execution
of such complex experimental campaigns on any target platform. To this end, the

main objectives of (XM)? are the following:

* To support platforms with different CPU architectures;
+ To support operation at multiple CPU frequencies;

+ To support multiple execution schemes of applications, such as single-, multi-

instance, and multi-threaded;
* To detect any erratic system behavior due to voltage margins reduction;

+ To recover the target platform in case of an error that caused the target platform

to crash;

* To distinguish between errors due to operation at reduced voltage margins and

external ones, such as power or network outages, and act accordingly;

6.2 (XM)? for OS-controlled Execution

As Figure 6.1 shows, the core components of (XM)? for OS-controlled execution are
the Server and the Client components. More specifically, the Server component runs
on a separate machine and is the orchestrator of the experimental campaigns. The

Client component, which is responsible for servicing all the requests of the Server

=

Database

Based on the Client Configuration invoke the client i

JSON @ (utilizes SSH) ;

Client i Connect to the Server and provide the exact details i

Configuration : of the Client machine. !
« | Client

[:@ Prepare the Client machine for the experimental !

| : h

JSON j campaign (e.g. stop unnecessary OS services) =|:

! Acknowledge the Server request. !

Applications i i

Configuration i Based on the Applications Configuration start the i

— :@ experimental campaign of the Client machine. R

— r »

| |

| |

| |

Figure 6.1: (XM)? for OS-Controller execution overview.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 6. A Framework for Large-Scale Experimentation at Reduced CPU
Voltage Margins

component, runs on the target platform. Both of these components are written in
Python, which is installed out-of-the-box in most Linux-based distributions. Python
is the perfect match for the needs of (XM)?, as the language offers fast prototyping, a
vast variety of packages, and, as it is a script-based language, it does not require any
binary compilation to support different platform architectures. On the other hand,
Python is an interpreted language which results in a larger memory footprint and
lower performance when compared to a native binary. However, (XM)? is by design
I/O bound and, consequently, it neither induces measurable overhead, nor affects the
observed behavior of the target system.

Initially, the Server component finds the IP of the orchestrator machine and binds
a TCP port for the communication with the Client component. Afterward, the Server
component, based on the Client Configuration, transfers the corresponding files and
executes the Client component on the target platform, with the appropriate IP and
TCP port arguments, by using the SSH protocol (through the paramiko pip package).
Then the Client component sends an ACK payload to the Server. Later on, the Server,
based on the Applications Configuration and the entities of the database, initiates the
experimental campaign. The Client and Applications configuration, as well as the

database functionality of (XM)? will be presented in detail in the following Sections.

6.2.1 Client configuration

We need to provide the necessary information of the target platform, such as IP, cre-
dentials for SSH connection, etc., so that (XM)? can remotely invoke the experimen-
tal campaigns. To this end, we designed a JSON-based configuration file, as shown in
Listing 6.1, that provides all the necessary information to (XM)?. More specifically,
based on the properties of hostname, port, username, and password, (XM)? connects
to the target platform and uploads all the necessary files of the Client component
which are defined by the property files to the path as specified by the dir property.

After the files uploading, the Server component executes the Client component
on the target platform and waits for an incoming connection to the corresponding
TCP port. As soon as the Client sends the ACK payload, the Server initializes the
target platform by sending the commands of the init property to the Client. Note that
these commands are BASH shell commands. As shown in Listing 6.1, which is an
example Client configuration for an Intel-based platform, at the initialization phase
the Server disables the NMI watchdog of the Linux kernel and loads the MSR kernel
module which is necessary for manipulating the operating frequency and voltage of
Intel CPUs.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 6. A Framework for Large-Scale Experimentation at Reduced CPU

74

Voltage Margins

1 {

2 "hostname": "10.64.16.50",

3 "port": 22,

4 "username" : "kkkkokkk!"

5 "password": "kkkxkokx!

6 "files": [

7 "ClientMain.py",

9 1,

10 "dir": "/opt/characterizationClient",

11 "init": [

12 "echo 0 > /proc/sys/kernel/nmi_watchdog",
13 "modprobe msr",

15 1,

16 "campaign_mode": "characterization",
17 "frequency_nominal": "0x19e0001lele",
18 "frequency_cmd": [

19 "wrmsr -a 0x774 Y {frequencyl}"

20 1,

21 "undervolt_nominal": O,

2 "undervolt_cmd": [

23 "/opt/intel_under %{undervolt}"
2 1,

25 "restart": {

26 "type": "sftp",

27 "username" : "kkkkkkk'"

28 "password": "skkkxkk!

29 "hostname": "10.64.16.97",

30 "cmds": [

31 "restart_pc.py 10.64.16.50",
32 "sleep 120"

33]

4 }

35}

Listing 6.1: (XM)?2 Client Configuration file for Intel-based platforms.

The property of campaign_mode informs (XM)? on the kind of the experimental
campaign. The possible values of this property, are characterization or evaluation.
For the value of characterization, (XM)? will perform the characterization of CPU
voltage margins, while for the value of evaluation, (XM)? will not control the oper-
ating points of CPU and will only evaluate, in terms of performance and (optionally)
execution correctness, each application found in Applications configuration, that we
will discuss in detail in the following Section. As a result, if we want to quantify
the CPU voltage margins of a platform we set the value to characterization. When
we need to evaluate the reliability of a mechanism that controls the CPU operating
frequency and voltage, such as the two mechanisms presented in Chapter 3 and Chap-
ter 4, we set the value to evaluation.

Another two important properties, that are needed by (XM)? when campaign_mode
is set to characterization, are frequency_nominal, and frequency_cmd which, as the
name implies, correspond to the frequency value under nominal CPU operation and
the BASH command(s) by which the (XM)? can apply the target CPU frequency,
respectively. In the same spirit, undervolt_nominal represents the nominal undervolt

value, which for the Intel-based example is zero since underscaling the CPU operating

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 6. A Framework for Large-Scale Experimentation at Reduced CPU
Voltage Margins

voltage is offset-based. undervolt_cmd provides the BASH command(s) by which the
(XM)? can change the operating voltage of the CPU. Note that frequency_cmd and
undervolt_cmd contain two special string tokens %f{frequency} and %{undervolt}, re-
spectively. These two tokens are filled accordingly, by (XM)? at runtime, depending
on the stage of the characterization campaign.

Furthermore, as (XM)? evaluates software on systems operating outside their
nominal configuration envelope, a way to reset the target platform is necessary, be-
cause an aggressive reduction of the CPU operating voltage will lead to a system
crash. This is controlled by the property restart. In Listing 6.1, we configure the
(XM)? to connect to a remote machine, through the SSH protocol (specified by the
properties type, username, password, and hostname), and issue the BASH commands
that will successfully reset the target platform. A detailed description of how we chose

to implement this functionality will be presented in a later Section.

6.2.2 Applications configuration

At this point, (XM)? has initialized the target platform according to the Client con-
figuration and the actual experimental campaign is ready to begin. However, (XM)?
needs extra information about the applications. To this end, we designed a JSON-
based configuration file, namely Applications configuration, which encapsulates all
the necessary information for (XM)? to execute the corresponding applications. List-
ing 6.2 presents an example of such configuration that contains a single application,
h264ref.

Initially, (XM)? parses each application, inside the configuration file, for the fre-
quencies and the cores properties. According to these, (XM)? will create len(frequencies)
* len(cores), in total, experimental sub-campaigns, for the corresponding application,
that capture all the possible CPU cores utilization schemes for all the specified CPU
operating frequencies. In case these properties are not specified for the application,
(XM)? will create only one sub-campaign at the frequency_nominal, as specified in
the Client configuration, and at all CPU cores utilization. Moreover, when cam-
paign_mode is set to evaluation, (XM)? will not adjust any of the CPU operating
points and it will create len(cores) sub-campaigns. The name property corresponds
to the application name and it is the unique identifier of the application in the (XM)?
database. (XM)? uses this identifier to distinguish between complete and pending
sub-campaigns.

Another important property, when campaign_mode is set to characterization, is

undervolt_search_method. This property defines how (XM)? will transition between

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 6. A Framework for Large-Scale Experimentation at Reduced CPU

Voltage Margins
1L
2 {
3 "name": "h264ref",
4 "cores": [
5 "0,1,2,3",
6 "o s on
i], C.
9 "frequencies":

10 "0x0808000808", // 800 MHz

12 "0x1414001414", // 2000 MHz
13 "0x1A1A001A1A", // 2600 MHz

14 "0x2121002121" // 3300 MHz
15 1,
16 "undervolt_search_method": "binary_half",
17 "lower_bound": 150,
18 "upper_bound": 400,
19 "undervolt_step": 100,
20 "preparation_cmds": [...],
21 "pre_app_cmd": null,
2 "app_cmd": "cd /opt/h264ref && taskset -c %{cpu_idl} ./h264ref
23 -d ./data/ref/input/foreman_ref_encoder_baseline.cfg >
24 ./%{app_name}_%{cpu_idl}",
25 "post_app_cmd": null,
26 "sdc_cmd": "cd /opt/h264ref && ./checkSDC.sh
27 ./%{app_name}_%{cpu_id} ./golden",
28 "sdc_pattern": "SDC detected",
29 "multithreaded": false,
30 "nominal_time": 600,
"run_times": 3

"run_fixed": 1200

ORI R

34]

Listing 6.2: (XM)? example of Applications Configuration file that
contains h264ref.

the different CPU voltage operating levels for a given sub-campaign and it can have

the following values:

« Linear: In this search mode, (XM)? decreases the CPU operating voltage lin-
early, starting from the lower_bound undervolting level with a step defined
by the undervolt_step property, until erratic system behavior or a crash are
detected. This search mode is recommended for target platforms that exhibit

narrow voltage margins, such as the X-Gene processors presented in Table 2.1.

« binary_half: Asshown in Listing 6.3, in this search mode, (XM)? initially per-
forms the Linear search mode, with a voltage reduction step of 100mV, until
erratic system behavior or a crash are detected. The resulting undervolting level
will be the upper_bound. Also, during the search of upper_bound, each voltage
reduction step that finishes without any erratic system behavior or crashes be-
comes the lower_bound. When a crash is detected, the search algorithm knows
that the voltage reduction that corresponds to the V/,,;,, (does not result to erratic
system or application behavior) lies between lower_bound and upper_bound.
Therefore, it recursively performs a binary search between those two bounds,
in order to accurately identify the respective undervolting level. This search

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 6. A Framework for Large-Scale Experimentation at Reduced CPU

77

Voltage Margins

1 upper_bound = None

2 lower_bound = 0

3 undervolting_level = 100

4

5 # linear search

6 while upper_bound is None:

7 status = characterize(undervolting_level)
8 if (status == 0K):

9 lower_bound = undervolting_level

10 else:

11 upper_bound = undervolting_level

12 continue

13

14 undervolting_level += 100

15

16 # binary search

17 while upper_bound - lower_bound >= 5:

18 undervolting_level = lower_bound + (upper_bound - lower_bound)/2
19 status = characterize (undervolting_level)
20 if (status == 0K):

21 lower_bound = undervolting_level

22 else:

23 upper_bound = undervolting_level

24

25 vmin = lower_bound

Listing 6.3: pseudocode of binary_half search mode of (XM)?2.

mode is recommended for target platforms that exhibit wide voltage margins,

such as the Intel-based processors presented in Table 2.1.

The preparation_cmds define all the necessary initialization BASH shell com-
mands that an application may require. (XM)? executes these commands only once at
the beginning of each sub-campaign. In the same spirit, the properties pre_app_cmd
and post_app_cmd include shell commands that are executed every time before and
after the actual application execution, respectively. These two properties are com-
plementary and they serve potential needs such as monitoring the system while the
application is running. As an example, we could utilize these two properties to start
Linux perf and measure performance counters of the CPU just before the execution
and right after the termination of the application.

The property app_cmd is the shell command that (XM)? will issue to execute the
application. Moreover, based on the boolean multithreaded property, (XM)? iden-
tifies the application as multi-threaded or single-instance. In case the value of mul-
tithreaded property is true, (XM)? will search for the special string %{cpu_id} in
app_cmd and it will replace it, at runtime, with the corresponding CPU cores count
of the sub-campaign. Also, (XM)? will set the CPU affinity of the application threads
to the corresponding CPU cores, by wrapping the app_cmd with the proper taskset
system command. On the other hand, when the value of multithreaded property is
false, (XM)? will issue as many app_cmd instances as the CPU cores count of the
sub-campaign, and it will set, for each one independently, the proper CPU affinity

through taskset system command.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 6. A Framework for Large-Scale Experimentation at Reduced CPU
Voltage Margins

If the properties sdc_cmd and sdc_pattern are defined, after the application execu-
tion finishes, (XM)? invokes the shell commands of sdc_cmd and captures the stdout
of the process. If the regular expression pattern defined in sdc_pattern matches the
stdout, then (XM)? considers this undervolting level not safe and proceeds to evalu-
ating another undervolting level, according to the undervolt_search_method. To this
end, it is up to the programmer to supply an executable that can detect if a Silent Data
Corruption (SDC) occurred and there are any unexpected differences in the applica-
tion output. Another critical property, that (XM)? utilizes to classify an undervolting
level as safe or not, is the nominal_time property. Based on this property, (XM)? de-
termines if an application is taking significantly longer than it would have if the CPU
was operating at a nominal voltage point. If this property is not defined in the con-
figuration, then (XM)?, before initiating the application sub-campaigns, extracts and
saves this information by executing once the application at nominal CPU operating
voltage. Moreover, (XM)? monitors the message buffer of the kernel for Machine
Check Exception errors (MCE). In case there is an error reported, (XM)? will mark
this undervolting level as not safe and continue accordingly the characterization sub-
campaign.

Two important properties that (XM)? relies on and control the end of a sub-
campaign when none of the errors, such as SDCs, MCEs or exceeding of execution
time are detected, are run_times and run_fixed properties. The run_times property
represents the number of times, in a sub-campaign, that an application has to run
without any error so (XM)? can consider the corresponding undervolting level as
safe. The run_fixed property provides the same functionality but (XM)? considers
the undervolting level as safe when the duration of consecutive application executions
surpasses the time specified. When both properties are defined, (XM)? terminates the
campaign upon one of the two becoming true.

Moreover, since (XM)? also supports evaluation experimental campaigns, we in-
troduce two command line arguments used for this kind of experimental campaigns,
namely —repeat and —time. More specifically, —repeat argument represents the num-
ber of times that (XM)? will execute all the applications in the Application Configu-
ration to deem the campaign as completed. Similarly, —time represents the duration
in minutes of the campaign that (XM)? will keep executing all the applications in the
Application Configuration. In case both command line arguments are missing for an
evaluation experimental campaigns, (XM)? will finish the campaign when all appli-
cations in the Application Configuration are executed one time. Table 6.1 summarizes
the key configuration differences which control whether (XM)? will be instructed to

perform either a characterization or an evaluation experimental campaign.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 6. A Framework for Large-Scale Experimentation at Reduced CPU

79
Voltage Margins
Table 6.1: (XM)? configuration differences to perform a characteri-
zation or an evaluation experimental campaign.

Campaign Type Characterization Evaluation

Command Line -

Arguments —time 33120

Client campaign_mode = characterization | campaign_mode = evaluation

Configuration init = include BASH command to
invoke the mechanism under
evaluation

6.2.3 Database

A characterization campaign of CPU voltage margins or an evaluation of execution
correctness for a mechanism, that controls the CPU operating points, can take a sig-
nificant amount of time. As a consequence, for both cases, it must be able to recover
from errors that are not due to the reduction of voltage margins, such as network
or power outages. In this spirit, we designed (XM)? to be robust. More specifi-
cally, (XM)? utilizes the blitz-DB python package and keeps track of every step of
the experimental campaign. That said, (XM)? detects a network outage, through the
Server component, by pinging continuously the Cloudflare DNS 1.1.1.1, during an
experimental campaign. If the DNS is unreachable, (XM)? pauses the experimental
campaign until the reachability is restored. On the other hand, if the Server compo-
nent can reach the DNS but cannot communicate with the Client component this is
classified as an error due to operation at reduced voltage margins. Furthermore, for
the detection of a power outage, we assume that it will also affect the Server com-
ponent of (XM)? and the experimental campaign will resume, from the last recorded

step in the database, when power is restored.

6.3 Node Resetting Controller

As already mentioned, the main objective of (XM)? is the evaluation of systems op-
erating outside their nominal configuration envelope, hence, it needs a way of recov-
ering the target platform in case of a crash caused by an aggressive voltage margins
reduction. To satisfy this requirement we designed a circuit, shown in Figure 6.2, that
can be used to restart the target platform, when a Baseboard Management Controller
(BMC) is missing. More specifically, the circuit acts as a switch that controls two
optocouplers. We choose to use optocouplers, as they offer an extra layer of protec-
tion, in terms of galvanic circuit isolation, since they do not require a common ground
connection with the target platform. When it is powered on, the optocouplers allow
current to flow simulating a closed circuit. In this way, the optocouplers can replace
the actual physical switch that powers on or off the target platform. Although using

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 6. A Framework for Large-Scale Experimentation at Reduced CPU 80
Voltage Margins

vCcC

PC_RST1

Q
PC_RST2

ESW o
(ENABLE_SWITCH) 1 ko

Isolation

GSW GND
(GLOBAL_SWITCH)

Figure 6.2: Complementary circuit for resetting the target platform.

VCC PC_RST1
PC1

ESW PC_RST2
GSW___GND

[
o

5 O

VCC PC_RST1

— PC2
— ESW PC_RST2
GSW__ GND

N .

VCC PC_RST1
PC3

ESW PC_RST2
GSW__ GND

o

VCC PC_RST1

asn
asn

pca

ESW PC_RST2
GSW__ GND

S
Figure 6.3: Controlling the state of multiple platforms with a Rasp-
berry Pi SoC.

only one optocoupler could achieve the same results, we opt to use two to prevent
any damage to the target platform in case the physical switch requires a particular
polarity. The aforementioned design is combined with an SoC that allows the pro-
gramming of I/O pins (in our case a Raspberry Pi board (Figure 6.3)). Therefore,
(XM)? can connect to the SoC and command a power-cycling, thus recovering the
target platform. This is the deployment scheme we used in both the characterization
and the evaluation campaigns, presented in Chapter 3 and Chapter 4.

6.4 Related Work

Several approaches target to analyze and exploit hardware operation under faults. In
particular, [100] presents a new class of fault attacks that target the software-exposed
energy management mechanisms present in modern commodity devices, such as in
ARM/Android devices. They exploit the voltage and frequency scaling capabilities

of modern processors to compromise system security, by injecting faults during code

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 6. A Framework for Large-Scale Experimentation at Reduced CPU a1
Voltage Margins

execution and extracting cryptographic keys from the ARM TrustZone. In contrast to
our work, which focus on analyzing and understanding how and under what circum-
stances modern CPU microarchitectures fail when executing code at unsafe configu-
rations, this work focuses on the security risks raised by modern energy management
techniques.

Several research efforts focus on introducing different fault-injection techniques.
As an example, [106, 107] introduce deterministic and reproducible fault injection
techniques at the pin-level of a processor to validate and propose hardware fault-
tolerance mechanisms. Moreover, [108, 109] implement a software-level fault injec-
tion, which models complex systems with great accuracy, however, ensuring that the
simulated models are realistic and , at the same time, controlling simulation time are
significant challenges. The authors in [110, 111, 112] introduce fault injection simu-
lators that provide high accuracy in both the location and the timing of the fault, how-
ever they introduce significant overhead. [113] enables fault injection in the back-end
of the LLVM compiler. Furthermore, [114] presents LLFI, a fault injector that, also,
works at the LLVM compiler’s intermediate representation (IR) level of the applica-
tion and studies the effect of different injection choices on their resilience, namely
instruction type, register target and number of bits flipped. In contrast to these works,
(XM)? can execute software natively on the targeted system, at subnominal operat-
ing points, therefore it provides native execution time and does not rely on any fault
models and assumptions.

Finally, the authors in [115] present an automated framework to support system-
level voltage and frequency scaling characterization that supports the APM X-Gene 2
platform. Even though (XM)? can be used to extract the same results, our work sup-
ports various processor platforms, different execution modes, such as OS-controlled
and bare-metal execution, evaluation of mechanisms that control CPU operating points
and the collection of profiling data, based on which the behavior of the target platform

can be further analyzed.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

82

Chapter 7

The Individual and Combined Energy
Efficiency Effects of Approximate &

Heterogeneous Computing

In this Chapter, we answer the questions “Can approximate and heterogeneous com-
puting be combined?” and “What is the effect in the energy efficiency vs. quality of
results tradeoff?”. As we discussed earlier, it is pretty common for programmers to
treat all parts of the code as equally important, without considering the contribution of
each part to the quality of output, and the Quality of Service (QoS) requirements of the
application. Programmers can, however, introduce approximations in less significant
parts of their code in an educated manner, in order to improve the energy efficiency
of code execution. As a result, approximate computing opens up new possibilities
for power/energy management and energy footprint minimization of applications.

Another software specialization approach, that yields energy savings of code ex-
ecution, is heterogeneous computing. Heterogeneous computing combines different
architectures, each appropriate for specific computational patterns, within the same
system. Consequently, programmers can selectively execute parts of their code on
the appropriate compute units, such as a GPU that performs embarrassingly paral-
lel computations efficiently, and significantly improve the energy efficiency of the
application.

Motivated by the energy savings of approximate and heterogeneous computing,
we investigate whether their combination can yield favorable solutions in the energy
efficiency vs. quality of results trade-off. We developed 7 applications, that are part
of AcHEe (Approximate Computing and Heterogeneity for Energy efficiency) bench-
mark suite [116], using mainly OpenCL nomenclature (further details are provided
in Section 7.1.2). Therefore they can target any architecture and accelerator device
supporting OpenCL. Also, for each application, we provide both accurate and ap-

proximate implementations of its computationally intensive parts. The latter exploit

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 7. The Individual and Combined Energy Efficiency Effects of Approximaée:z)j

& Heterogeneous Computing

different types of approximations, carefully chosen to balance between energy effi-
ciency and quality degradation of results. We evaluate the behavior of the applications
on two different platforms (CPU and GPU), under different degrees of approximation
and we quantify both the isolated and the cumulative effect of heterogeneity and ap-
proximations to energy footprint and quality of results. Our set of applications can be
used to assess the combined effect of approximations and heterogeneity on different,
existing and emerging accelerators, as well as, act as a test-bed for evaluating and
comparing different approximation techniques.

The main contributions and outcomes of our work are the following:

1. To the best of our knowledge, this is the first work that investigates the combi-
nation of Heterogeneous and Approximate computing and evaluates the trade-

off between quality of results and energy efficiency.

2. We experiment with both large-scale and kernel-scale applications that allow
us to evaluate more realistically the impact of heterogeneity and approximate

computing on the energy footprint of applications.

7.1 Platform Assumptions

7.1.1 Hardware assumptions

The applications we experiment with assume a heterogeneous system: apart from
one or more CPUs in the host, accelerators may also be available for executing com-
putational kernels. To this end, we have experimented using GPUs as accelerators.
Moreover, we assume different address spaces between the host and accelerators.
Our methodology is not based on the capability to dynamically set voltage and
frequency of compute devices (DVFS) and the experimental evaluation, presented in
Section 7.3 does not exploit DVFS . DVFS is rather orthogonal to approximate and
heterogeneous computing from the perspective of hardware, therefore the evaluation
explicitly focuses on quantifying the energy gains that one can achieve with hetero-
geneity and approximation and the quality/energy trade-offs enabled by the latter.

7.1.2 Software assumptions

Applications are written using OpenCL as the main programming model. More specif-
ically, we express computational kernels —both accurate and approximate —in OpenCL,
as this facilitates code reuse and portability among the different execution devices of
a heterogeneous system. Therefore, we assume the OpenCL compiler and runtime

support for all target architectures.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 7. The Individual and Combined Energy Efficiency Effects of Approxima?t)iz1

& Heterogeneous Computing

We use a set of OpenMP-like extensions, presented in Section 2.2, on top of
OpenCL to eliminate common OpenCL development overheads (such as queues cre-
ation and manipulation, kernel compilation and enqueue, data management, schedul-
ing, etc) and to allow the controlled execution of either the accurate or the approx-
imate version of each kernel'. More specifically, for each computational task, the
programmer, using #pragma directives, may provide an approximate OpenCL imple-
mentation (in addition to the accurate one). The degree of approximation (approx-
imation level) is controlled using a ratio, a single “analog” knob that specifies the
minimum percentage of tasks that will be executed accurately. A compiler, based on
LLVM [117] lowers #pragma directives to calls to an underlying runtime system. The
end-user can specify the desired level of approximation by setting the ratio parameter
in the [0-100] range. The ratio corresponds to the minimum percentage of tasks that
will be executed accurately. Therefore, with limited programmer effort and no intru-
sion to the rest of the code, multiple approximation techniques can be implemented
and evaluated.

Finally, we assume that hardware monitors power consumption and performance,
and offers an API to programmatically access this information from the runtime. This

is true for most modern computational devices.

7.2 Applications

In this Section, we provide an overview of the 7 applications and we briefly discuss
the essence of the approximation techniques we applied. The reader can access the
code of the benchmarks for additional implementation details [116].

Table 7.1 summarizes the applications and the respective application domains.
For each application, the first two columns provide information on algorithmic char-

acteristics, namely whether the application is iterative — in the sense of performing

Tn any case, all benchmarks can be expressed in vanilla OpenCL with some additional programmer

effort
Table 7.1: List of target applications and their characteristics.

. . Input Approximation . .
Program Domain Iterative DepeIr)l dent PP Type Quality Metric
LULESH Physics simulation X X Drop Relative error
MD Physics simulation X X Drop Relative error
Monte Carlo | PDE solver X X Drop Relative error
K-Means Vector quantization v v Lower accuracy Relative error
Fisheye Image Processing X X Drop PSNR
DCT MV Video transcoding X v Drop PSNR
SPS-Stereo Computer vision X v Sync. relaxation PSNR

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 7. The Individual and Combined Energy Efficiency Effects of Approximaéeé
& Heterogeneous Computing

steps to converge to a solution, not including applications which perform time steps
— and whether its behavior is input — instead of input size-dependent. The last two
columns provide the approximation technique(s) and the quality metric used for the

evaluation of results.

7.2.1 LULESH

LULESH [118] is a hydrodynamics physics simulation. It solves the Sedov blast
wave problem for a liquid in the 3D space, exploiting Lagrangian hydrocodes. Lig-
uids in hydrodynamics exhibit boundary conditions [119] allowing the partitioning of
the original problem domain into further sub-domains. Due to symmetry, LULESH
solves the problem in one sub-domain which is the one octant of the initial domain.
This sub-domain is defined as the computational region and the problem is solved
using staggered mesh approximation [120]. Therefore the mesh is defined as a struc-
ture of cubes where the edges are known as nodes and their centroids as elements.
The thermodynamic variables such as energy and pressure are calculated at the ele-
ments, while kinematic variables such as position and velocity are calculated at nodes.
LULESH initializes all the variables to zero, except for the position of the nodes and
the volume of the elements. Also, the blast takes place at the center of the initial
domain, so it sets an initial value to the energy of the element that lies closest to the
blast.

As it is common in hydrodynamics simulations, the problem is solved in discrete
time steps (Lagrange steps). Each step calculates, at first, the time increment At,,
needed in order to advance the values of the variables at the new time ¢,,, corre-
sponding to ¢,y = t,, + At,. Then it constructs a force at each mesh node, taking
into consideration the hourglass filter contribution and calculates the acceleration,
velocity and the new position of the nodes. These variables are needed to update the
element variables and to calculate the artificial viscosity, pressure, and energy, ac-
cording to the material model properties. Finally, it recalculates the time constraints
that are needed for the given At,, of the next time step.

Approximation: We introduce an approximate version where we eliminate the cal-
culation of the hourglass force for some elements. The contribution of this force is
needed for the elements that are close to the blast, but we can drop this calculation
for those that are further away. More specifically, for the fully approximate execu-
tion (ratio=0.0) we calculate the corresponding contribution of each particle to the
hourglass force with such a cut-off distance. On the other hand, for a fully accurate
execution (ratio=1.0) every particle contributes to the hourglass force. For the in-

between approximation ratios, the cut-off distance is used partially for some particles.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 7. The Individual and Combined Energy Efficiency Effects of Approximaé%

& Heterogeneous Computing

Moreover, we move simulation faster in time compared with the accurate version, by
increasing the At,, more rapidly at each time step. This is a valid approximation,
because LULESH exhibits energy conservation. More specifically, we observe that
the energy conservation law (the total energy of an isolated system remains constant)
is not affected by this kind of approximation and the relative error of results remains

low, compared with the accurate execution.

7.2.2 Molecular Dynamics

Molecular Dynamics (MD) methods are widely used to simulate particle/atoms sys-
tems ranging from solids, liquids to the motion of stars and galaxies. For our bench-
marking needs, we simulate a system of N liquid Argon atoms, which interact un-
der inter-atoms force and in the absence of external forces. The governing law of
such a system is the equation of motion for particles, which is the numerically inte-
grated Newton’s equation of motion. The interacting forces among atoms stem from
Lennard-Jones potential [121]. Although this is not the most faithful representation
of the potential energy surface, it is widely used due to its computational simplicity.
Lennard-Jones encapsulates a mildly attractive force for large distances and a strongly
repulsive for very short distances. The constant motion of particles in liquids causes
particles to collide with the bounding box and with each other. This results in a short
deformation of their electron clouds, known as dipole moment [122] and particles
attracted to each other in the form of dipoles. The repulsive force originates from the
inability of any atom to diffuse through another. Lennard-Jones force is described by

the following equation:

Py -0 2y oy
dr o r r

where V' is the intermolecular potential between the two atoms or molecules, € is

the well depth (material dependent), o is the distance at which the intermolecular

potential between the two particles is zero (material dependent), r is the distance

between both particles.

In the absence of external forces, the system is in equilibrium state and its energy
is conserved. In this state, static properties such as temperature and pressure are mea-
sured as averages over time, and energy conservation can be monitored by measuring
the total energy of the system periodically throughout the simulation.
Approximation: We approximate the simulation by setting a cut-off distance. This
distance defines a surrounding region of a particle; interactions are computed only

among particles within the region. This approximation is realistic, as the dominant

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 7. The Individual and Combined Energy Efficiency Effects of Approximaée%
& Heterogeneous Computing

term in Equation 7.1 is negligible for large distances. After experimentation, we

found that an acceptable distance, enabling energy conservation is 40 A.

7.2.3 Monte Carlo PDE solver

Monte Carlo methods are widely used in statistical simulations. Here, we focus on
stochastic numerical solvers for deterministic elliptic Partial Differential Equation
(PDE) problems. As previous work has shown [123, 124], Monte Carlo methods are
the only realistic choice for solving several difficult non-linear problems and remain
a good choice for linear problems such as particle diffusion.

This Monte Carlo implementation [125] allows the solution of a PDE into a sub-
domain D of the original domain 2. To do that, one needs to calculate the values at
the interface I' of D and {2, obviously without solving the PDE in 2. The method
performs a, potentially large, number of random walks on spheres for each point of
I'. A random walk starts from a point of I" and stops when reaching the external
boundary of (2. Each walk produces an estimation of the value at the respective start
point. The method combines the estimations from all random walks for each point
and then calculates an interpolant. This can be done in parallel for all points of I.
Then the PDE can be solved inside D only. The aforementioned approach can lead
to less costly solutions for specific regions of interest of large PDE problems.
Approximation: An approximation methodology to all Monte Carlo methods is
to drop a percentage of the random experiments (random walks in our case) and
their corresponding computations. An approximate, lightweight methodology is also
used to decide how far from the current location the next step of a random walk
should move. More specifically, we substitute double-precision variables with single-
precision ones and we utilize the native, fast math implementation of trigonometric
formulas (such as cosine and sine) provided by each accelerator vendor. Fast math
versions of mathematic operations are more performant, approximate (non IEEE 754

compliant) implementations of the corresponding accurate but costly computations.

7.2.4 K-Means

K-means is an iterative algorithm for grouping data points in a multi-dimensional
space into k clusters. It is used extensively in data-mining and machine learning.
The number of dimensions contained within the aforementioned space is the length
of features of input points. K-Means comprises two phases. In the first phase, points
are assigned to OpenCL threads, which independently: (a) first identify the nearest
cluster using Euclidean distance as a metric, and then (b) assign the point to the se-

lected cluster. In the second phase, K-means computes the centroid of the points in

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 7. The Individual and Combined Energy Efficiency Effects of Approximaégz3
& Heterogeneous Computing

each cluster to serve as the new cluster center. This process is repeated until no points
migrate between clusters during an iteration (convergence), or after a user-specified
number of iterations.

Approximation: In K-Means, computing the cluster centroid correctly is important,
as it is much harder to recover from a wrong cluster centroid, which will erroneously
attract new data points in the cluster in the following iterations. Consequently, cen-
troid calculations are always executed accurately. However, the assignment of in-
dividual points to clusters is error-tolerant. Even if a point is misclassified into the
wrong cluster, it typically does not significantly affect the centroid. Moreover, it will
usually be classified into the correct cluster during a subsequent iteration of the algo-
rithm. To this end, we use a simpler version of the Euclidean distance and we consider

only half of the total dimensions, to assign the points to the appropriate clusters.

7.2.5 Fisheye

Fisheye [126] is an image or video processing application, which transforms images
captured through an ultra-wide-angle (fisheye) lens to the perspective space. Fisheye
got its name after Snell’s window, which is how a fish sees from beneath the water.
Specifically, as a fish vision has hemispherical geometry, so does the captured image.
This means there is a deviation from rectilinear projection, which is called barrel
distortion. This radial distortion allows scenes —to be captured— to map around a
sphere, facilitating the capturing of an ultra-wide scene into a finite image area.

The code first associates pixels of a rectilinear projection, perspective space im-

age, to points (potentially between captured pixels) in the original distorted image
(inverse mapping). The value of each output pixel is calculated by performing bi-
cubic interpolation on the values of a 4 x 4 window of neighboring pixels around the
corresponding point in the distorted image. Finally, a low pass filter can be applied
to the output image to remove potential artifacts.
Approximation: The approximate version performs the inverse mapping step accu-
rately. Although this step is computationally intensive, it is executed only once for
each lens and requested field of view. Approximation focuses on bi-cubic interpo-
lation, which has to be performed for each image frame. Instead of calculating the
value of output pixels by interpolating the 4 x 4 neighborhood of the corresponding
point in the input, the approximate algorithm simply uses the value of the nearest
neighboring pixel.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 7. The Individual and Combined Energy Efficiency Effects of Approximaée(:’9
& Heterogeneous Computing

7.2.6 DCT MV

DCT MV is an abstract skeleton of a video encoder. More specifically it combines
two of the most essential steps of a video encoding, Discrete Cosine Transform (DCT)
[127] and residual Motion Vector (MV) [128] extraction. Sophisticated video com-
pression is necessary to meet the requirements of network bandwidth, quality, and
performance. In video sequences, usually, the only difference between several adja-
cent frames is the relative motion of some areas, produced either by a moving camera
or object. This means that the majority of information that represents a new frame re-
mains the same. Video encoders identify the differences between frames and express
them as motion vectors of frame-blocks. Afterward, they apply DCT compression.
Therefore, the decoder can reconstruct multiple frames using a single reference frame
and limited additional information.

DCT MV first partitions the frames of a video into batches of sequential frames.
The first frame of each batch is considered as the reference frame for the remaining
frames in the batch. The residual motion vectors are extracted for blocks of 8 x
8 pixels. Afterwards, a difference image is produced between each frame and the
reference frame, based on the corresponding motion vector information. Finally, a
quantized DCT is applied to each difference image. For quality checking purposes,
after the above process, a decoding phase reconstructs the encoded frames.
Approximation: The approximate version performs motion vector extraction within
a reduced search window down to 8 x 8 pixels from 128 x 128 of accurate execution.
Even if the motion recognition fails for a few blocks, the quality and compression
loss will be minimal due to the small block size. Another approximation has been
applied in the calculation of quantized DCT coefficients. Particularly, we exclude
the calculation of the half downright DCT coefficients of each block, corresponding
to high spatial frequencies. Such frequencies carry, in most images, very low energy.

Moreover, the human eye is less sensitive to high frequencies.

7.2.7 SPS-Stereo

SPS-Stereo (SPS) is a stereo vision application producing a dense disparity map of a
static scene captured with a stereo pair camera. It combines a Stereo Global Matching
(SGM) algorithm [129] and a slanted plane algorithm which assumes that the 3D
scene is piece-wise planar and the motion is rigid or piece-wise rigid [130, 131].
Robust and dense computation of depth information is necessary for many machine
vision applications, such as driver assistance systems and robotics, and is a cheap,

yet effective alternative to pricey RGB-D cameras.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 7. The Individual and Combined Energy Efficiency Effects of Approximaé%
& Heterogeneous Computing

SGM is the most compute-intensive and time-consuming part. It considers pairs
of images with known intrinsic and extrinsic orientation (stereo-camera characteris-
tics) and is responsible for an initial disparity image estimation. Disparity estimation
is the task of identifying the projection point of the same 3D real-world point in two
or more images taken from distinct viewpoints. The most challenging task of a dis-
parity estimation algorithm is to identify correctly a point and its different references
from different viewpoints in the same 3D world, despite the high level of ambiguity.

SGM first emphasizes edges (capped sobel) and maps the intensity values of the
pixels within a square window to a bit string (census transform) for both base and
match images. These bit strings are then used to produce an initial estimation of
pixel costs for each image pair. Pixel costs quantify the similarity of pixel regions
between base and match images. Later on, the final pixel costs are calculated by
aggregating different pixel costs from different scanlines and redistributing the new
pixel costs appropriately, by a predefined penalty factor. Finally, SGM multiplexes
different scanlines then extracts the global minimum pixel cost and matches it with
the corresponding disparity reference for each pixel. This step consists of a forward
and backward analysis of image pairs. The results of the two passes are added and
produce the final disparity estimation.

Approximation: Finding the global minimum of pixel costs suffers from sequential
dependencies across consecutive rows of the image. The original implementation ex-
ploits SIMD instructions but the level of parallelism of SIMD prohibits an efficient
OpenCL implementation. For the accurate execution, we settle for a CPU-friendly
implementation that uses the OpenCL vectorization extensions. The approximate
version deliberately relaxes these synchronization constraints (barriers). We expect
a loss of quality of objects disparity in the captured scene in exchange for extra par-
allelism. Consequently, in the final disparity dense estimation, one local minimum

emerges for each scanline.

7.3 Evaluation

The experimental evaluation was carried out on a dual-socket system equipped with
two Intel Xeon E5 2695 processors, clocked at 2.3 GHz, with 128 GB DRAM and
an NVIDIA Tesla K80 GPU. The operating system is Ubuntu 14.04 server, using
the 3.16 Linux kernel. All applications (Table 7.1) utilize one GPU chip of the K80,
therefore the combination of two CPUs results in more power consumption. To cal-
culate energy consumption on GPU, we measure the power drain with the interval of
2 ms using NVML [132] and multiply the average by the execution time. On CPU,

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 7. The Individual and Combined Energy Efficiency Effects of Approximaéei

& Heterogeneous Computing

we utilize the Running Average Power Limit (RAPL [133]) counters to measure the
energy consumption on each socket.

For each application, we provide a spider plot with 5 axes. Applications are exe-
cuted on CPU and GPU at different degrees of approximation (corresponding to dif-
ferent lines in the plot). We report the impact of approximations on energy efficiency
for CPU and GPU w.r.t. the accurate execution on the same device (Energy Improv
% (CPU) and Energy Improv % (GPU) axis respectively) and on quality w.r.t. the
accurate execution (Quality % (w.r.t. accur.) axis). Moreover, for each approxima-
tion level, we report the energy gain on the GPU w.r.t. the CPU version at the same
approximation level (Energy Gain % (GPU w.r.t. CPU)), to identify cases where
there are device-specific variations in the energy efficiency between the accurate vs.
the approximate version. The last axis (Energy Gain % (GPU w.r.t. CPU accur.))
reports the energy gain of the GPU approximate execution (again at different degrees
of approximation) w.r.t. the accurate execution of the CPU. This metric quantifies
the combined energy gains of both heterogeneity and approximate computing over a
conventional execution.

As a general observation, we find that in most applications it is possible to im-
prove the energy efficiency both by exploiting heterogeneity, and by using approx-
imate computing at the expense of a controlled reduction in the quality of results.
Particularly, in the following spider plots, we expect a gradual quality loss analogous

to the energy efficiency gain.

7.3.1 LULESH

We evaluate LULESH for a staggered mesh of 1, 000, 000 cubes. As a quality metric,
we use the relative error of total system energy between accurate and approximate
executions.

Initially, as shown in Figure 7.1, we observe that the accurate execution on GPU,
exploiting only heterogeneity of hardware, results to 86.4 % less energy consumption
than the accurate execution on CPU. LULESH exhibits a high degree of parallelism
and fully utilizes the computational power of the GPU. Moving to a fully approximate
execution (ratio = 0.00), the relative error is 1.3 %. Elements that are far from the
Sedov blast do not significantly affect the spread of the blast wave, hence ignoring
them does not introduce significant error. Also, the energy conservation property of
the system minimizes the error when we increase At,,, thus forwarding the simulation
more rapidly. The total energy gains from the approximations reach up to 43.6 %
and 41.6 % on the GPU and CPU, for the fully approximate execution, respectively.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 7. The Individual and Combined Energy Efficiency Effects of Approximaé%
& Heterogeneous Computing

Energy Improv. % Ratio

(CPU) ©=00.000-00.75
62 V=1 0.25 [li=ll1.00
©=@0.50

Figure 7.1: LULESH evaluation

These energy savings can be mainly attributed to the the increased simulation time-
step approximation. Furthermore, when we combine heterogeneous computing with
approximations (execution on GPU with ratio = 0.00) we observe a significant 93.7%

improvement in energy efficiency w.r.t. the fully accurate execution on CPU.

7.3.2 Molecular Dynamics

We evaluated MD for 32768 particles confined to a 600 x 600 x 600 box (A3), for
a total of 1000 time steps, corresponding to 1 fs each. For quality quantification we
used the relative error of average total energy of the system —sampled every 100 time-
steps— between the accurate and approximate execution.

Figure 7.2 shows that exploiting heterogeneous computing (executing on GPU)
for MD, results in 89.1 % energy efficiency improvement w.r.t. fully accurate exe-
cution on CPU. For the approximate version, quality is virtually unaffected (0.2 %
rel. error). Because of the high number of particles, the cut-off distance for interac-
tions respects homogeneity of particle distribution, resulting in the negligible error of
the kinematic properties of the system and thereby of its energy. More specifically,
Figure 7.3 shows that despite applying a cut-off distance, the spatial distribution of
the particles between the approximate (particles with red color) and the accurate ex-
ecution (particles with blue color) remains similar. Another important observation
is that approximations result in higher energy gains on CPU than GPU (e.g. for ra-
tio = 0.00: 72.8 % and 39.2 % for CPU and GPU respectively). The main reason
leading to this behavior is the better energy efficiency of the GPU due to its higher

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 7. The Individual and Combined Energy Efficiency Effects of Approximaées

& Heterogeneous Computing

Energy Improv. % Ratio
(CPU) ©-90.000-¢0.75
92 V= 0.25 li=ll1.00

©0=20.50

Figure 7.2: MD evaluation

Position Vector 1024 Particles

Z axis

Figure 7.3: Positions of particles for a fully approximate (red) and
accurate (blue) execution).

level of parallelism compared with the CPU. When combining approximate with het-
erogeneous computing, energy consumption is further reduced by 92.1% w.r.t. fully

accurate execution on CPU.

7.3.3 Monte Carlo PDE solver

For the Monte Carlo PDE solver, we estimated the interface values of a 150 x 50
points subdomain within a larger 2D PDE domain. For each point, we perform 50

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 7. The Individual and Combined Energy Efficiency Effects of Approximaéiz1
& Heterogeneous Computing

random walks. Quality is quantified by the relative error of estimated interface values
by the approximate vs the accurate Monte Carlo execution.

As shown in Figure 7.4, fully accurate execution on GPU, for Monte Carlo, results
in 84.3% reduction of energy consumption w.r.t. fully accurate execution on CPU.
Moreover, the fully approximate version improves energy efficiency by 79.6 % and
47.3 % for GPU and CPU, respectively, at the expense of 0.01% relative error. The
very limited extent of quality loss is expected because of the stochastic and redundant
nature of Monte Carlo methods in general. Finally, we observe that fully approximate
execution on the GPU (ratio 0.00) reduces the energy footprint of Monte Carlo by

96.8%.
Energy Improv. % Ratio
(CPY) ©-0.000-00.75
68 V= 0.25 li=ll1.00
©=@0.50

Figure 7.4: Monte Carlo PDE solver evaluation

7.3.4 K-Means

In K-Means we use a 59 MB subset of the KDD Cup 1999 Data input set [134] and try
to classify data objects in 35 discrete clusters. We measure the quality using the Rel-
ative Mean Square Error (RMSE) between the points of the cluster and its centroid.
We report the relative error of RMSE between accurate and approximate executions.

Figure 7.5 shows that accurate execution on GPU results in 75.5% reduction of
energy consumption w.r.t. accurate execution on CPU. Moving to approximate com-
puting, classifying data objects taking into account only part of their features yields
similar results, in terms of quality, with accurate execution. More specifically, the
relative error of the misclassified points for the fully approximate execution (ratio =

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 7. The Individual and Combined Energy Efficiency Effects of Approximaé%
& Heterogeneous Computing

0.00) is 0.01 %. However, K-Means has an interesting behavior not visible in Fig-
ure 7.5. Approximating the classification of points to clusters results in points moving
across clusters more frequently than in the accurate versions. This, in turn, tends to
increase the workload of the (always accurate) computation of new cluster centroids.
Still, the energy consumption is reduced by 38.1% and 45.6% for CPU and GPU fully
approximate executions, respectively. Furthermore, the fully approximate execution

on GPU reduces the energy consumption by 84.6% w.r.t. fully accurate execution on

CPU.
Energy Improv. % Ratio
(CPU) ©-00.000-¢0.75
57 W= 0.25 Hi=l1.00
©=20.50

Figure 7.5: K-Means evaluation

7.3.5 Fisheye

For Fisheye we used high-resolution images (2592 x 1944) and had the application
repeat the visual distortion correction procedure 10 times to artificially increase ex-
ecution time. Although the accurate execution result has an infinite PSNR, for illus-
tration purposes, we limit PSNR to 58 dB.

As shown in Figure 7.6, execution on GPU benefits from the implemented level
of parallelism of Fisheye. Energy consumption is 92.8 % lower compared to CPU
accurate execution. For CPU and GPU the energy gain between approximate and
accurate execution is 12.3 % and 23.1 %, respectively, even though we approximate
only one (bi-cubic interpolation) out of three kernels in the application (the other two
being inverse mapping and the final low pass filter). The approximate version results
to a very high PSNR, at 48 dB. An image with a PSNR of 48 dB is excellent for

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 7. The Individual and Combined Energy Efficiency Effects of Approximaé%
& Heterogeneous Computing

most applications. Combining execution on GPU with approximations, the energy

footprint of Fisheye is reduced by 94.1% w.r.t. fully accurate execution on CPU.

Energy Improv. % Ratio
(CPU) ©-00.000-80.75
19 V= 0.25 =l 1.00
©=@0.50

Figure 7.6: Fisheye evaluation

7.3.6 DCT MV

In DCT MV we used as input 10 frames of video, containing footage of road traffic,
with pixel resolution 1352 x 512. The video contains fast-moving objects, therefore
it is appropriate for evaluating the effect of approximations on output quality. For
each frame, we calculated the PSNR of the reconstructed frame, using the original
one as golden input. The quality metric is the PSNR of the worst quality frame in the
sequence (the lowest PSNR of the sequence). Quantized DCT is a lossy compression
algorithm, therefore even during accurate execution reconstructed frames do not have
infinite PSNR. The PSNR of the accurate version is 38 dB which corresponds to
100 % of the spider plot.

Figure 7.7 shows that execution on the GPU results in higher energy efficiency
by 61.6 % for the accurate version compared with the execution on CPU, because
of the high level of exploitable parallelism of the application. Moreover, DCT MV
quality reaches a minimum PSNR of 33 dB in fully approximate execution. The fully
approximate execution has ~ 95 % less energy consumption, w.r.t. fully accurate ex-
ecution, on both CPU and GPU. This is expected, as half of the DCT coefficients are
not calculated and the motion detection window is only 8 x 8 (resulting in ~ 99.6 %
fewer computations). The quality is still very high, as shown in Figure 7.8; the PSNR

is ~ 5 dB lower than that of the fully accurate execution. The compression rate is

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 7. The Individual and Combined Energy Efficiency Effects of Approximaée7
& Heterogeneous Computing

Energy Improv. % Ratio
(CPU) €-00.000-00.75
100 V=7 0.25 I=l1.00
©=@0.50

Figure 7.7: DCT MV evaluation

3.58x and 2.97x for the fully accurate and fully approximate versions respectively.
Once again, this is expected because fully accurate execution introduces more zeros
and smaller numbers in motion vector residuals, and by extension to DCT coeffi-

cients, which in turn that leads to better compression rate for fully accurate execution

(b)

Figure 7.8: (a) DCT MYV fully accurate output, (b) DCT MV fully
approximate output

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 7. The Individual and Combined Energy Efficiency Effects of Approximaé?z3
& Heterogeneous Computing

in contrast with fully approximate. Another observation is that different levels of ap-
proximate execution result to almost the same energy efficiency gains on both CPU
and GPU (e.g. for fully approximate execution gains of 92.5 % and 99.1 % for CPU
and GPU respectively). However, combining execution on GPU with approximations
reduces the energy consumption of DCT MV by 98.7% w.r.t. to the fully accurate
execution on CPU.

7.3.7 SPS-Stereo

We evaluated SPS using the KITTI Vision dataset [135] and Peak Signal to Noise
Ratio (PSNR) to quantify quality. In reality, the PSNR of the accurate execution is
infinite, however for illustration purposes, we limit it to 50 dB. As the implemented
approximation prohibits execution on CPU, the approximate version runs entirely on
GPU. On the contrary, the accurate version combines both CPU and GPU. Therefore,
we supply a spider plot with differentiated axes from the rest of the applications.
One axis corresponds the energy improvement for the combined energy consumption
of GPU and CPU, for different approximation levels. A second one corresponds to
output quality, similarly to other applications. The remaining three axes of the spider
plot are not used.

As we observe in Figure 7.9, the fully approximate execution (ratio = 0.00) re-
sults in a PSNR of 37.269 dB, which is excellent for most applications. Figure 7.10e
depicts the different between the output of fully accurate execution (Figure 7.10c) vs

the one of fully approximate execution (Figure 7.10d). Calculating local minimums

Energy Improv. % Ratio

(CPU & GPU) ©=00.00 ©-@0.75
61 W=7 0.25 Ii=1.00
©=20.50
46
—
3 £
7%
Z
15 > © %‘c‘a‘&
g o
=

Figure 7.9: SPS-Stereo evaluation

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 7. The Individual and Combined Energy Efficiency Effects of Approximaé%

& Heterogeneous Computing

(a) (b)

© (d)

(e)

Figure 7.10: (a) (b) Respectively, left and right images of the captured

scene (c) SPS-Stereo fully accurate output, (d) SPS-Stereo fully ap-

proximate output, (e) Heatmap of pixel intensity differences of fully
accurate vs fully approximate output.

of pixel costs in each scanline instead of the global minimum leads to the manifes-
tation of small artifacts. It also reduces the fidelity of the outlines of objects in the
scene. However, we observe that object positioning and disparity in the scene (which
are the main outputs of the algorithm) are still correct. In terms of energy efficiency,
the fully approximate execution results in 44.8% less energy consumption compared

with the fully accurate execution.

7.4 Related Work

To the best of our knowledge, this work is the first that investigates the impact of
combining heterogeneous and approximate computing, at configurable levels of ap-
proximation, on the trade-off between energy efficiency and quality of output. Our

work differentiates from existing studies and benchmark suites in several ways.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 7. The Individual and Combined Energy Efficiency Effects of Approximf(t)%
& Heterogeneous Computing

AxBench [136] offers separate CUDA and C/C++ applications to study, in isola-
tion, the impact of approximations on CPU and GPU. It exploits two generic approx-
imation techniques, Neural Processing Units [137] and loop perforation [138]. Both
techniques are application-agnostic and require extensive profiling/training. In con-
trast, we target multiple architectures from a single OpenCL implementation and we
exploit programmer wisdom to employ application-specific approximations. There-
fore, our quantification is not affected by the effectiveness of generic approximation
techniques.

ApproxIt [139] is an approximate computing framework, which adjusts approxi-
mation modes dynamically to minimize computational intensity. In contrast with our
work, ApproxIt can only be applied to iterative applications and does not consider
heterogeneity.

EnerJ [140] defines a data-centric approximate type system. It uses type quali-
fiers to distinguish between precise and approximate computations statically, letting
explicit control of the approximate data flow to the programmer. Approximate com-
putations are mapped to low-power operations and storage, isolated from the precise
components. Our task-centric approach, given a quality constraint (ratio), can decide
the approximation level dynamically at task granularity, without isolating accurate
and approximate data. Also, we consider the heterogeneity features of the underly-
ing system.

OpenDwarfs [141] is a heterogeneous benchmark suite written in OpenCL. Its
code is architecture-agnostic. Shoc [142], also written in OpenCL, focuses on com-
paring the features and performance of modern parallel architectures using micro-
kernels. Moreover, it compares OpenCL and CUDA implementations. The Ro-
dinia [134] benchmark suite, in its latest version (3.1), offers an OpenCL imple-
mentation alongside CUDA and OpenMP, for most of the applications. It covers
a variety of patterns, common among parallel applications. It aims to facilitate the
study of heterogeneous systems. In contrast to those three benchmark suites, which
are performance-oriented, we evaluate our applications in terms of energy efficiency.
Furthermore, we also evaluate the cumulative potential of approximate- on top of
heterogeneous computing.

Contrary to all aforementioned benchmark suites, we experiment with both large-
scale and kernel-scale applications that allow us to evaluate more realistically the
impact of heterogeneity and approximate computing on the energy footprint of ap-
plications. Such a level of realism is not possible with small-scale software modules

and kernels only.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

101

Chapter 8

Concluding Remarks

8.1 Summary

In the previous Chapters, we presented our work on exploiting intrinsic pessimistic
hardware guardbands, hardware- and software-heterogeneity to improve the energy
efficiency of computing systems. We began by identifying the core challenges of
exploiting intrinsic hardware guardbands and software heterogeneity and afterwards,
we introduced our solutions to minimize the energy footprint of computing systems.

The very first challenge is to address the question “How to exploit the voltage
margins reduction?”. To this end, we presented the characterization results of the
voltage margins for four different, commercially available, processors. Based on
our findings, we observed that the reduction of voltage margins can be distinguished
into a static and a — non-negligible on certain architectures — dynamic, workload-
dependent, part. More specifically, for processors that exhibit wide voltage margins,
the extent the CPU operating voltage can be reduced without leading to imminent
system crashes, depends on the executing workload. On the other hand, for processors
with significantly lower margins, the degree of voltage reduction is almost constant,
especially for scenarios where all CPU cores are utilized.

To turn these opportunities into actual energy savings we designed, developed
and evaluated — on real, commercially available ARM- and Intel-based systems —
two mechanisms that exploit the CPU voltage margins. The first mechanism, Re-
duced Voltage Scaling power Capping (RVSCap), exploits the reduction of the static
CPU voltage margins to minimize frequency throttling when executing on power-
constrained environments. The second mechanism, Extended Dynamic Voltage Scal-
ing (xDVS) which is an online voltage scaling governor, exploits the
workload-dependent CPU voltage margins and reduces, according to the computa-
tional characteristics of the executing workload, the supply voltage of modern multi-
core Intel x86-64 CPUs.

Given that CPU operation at reduced voltage margins may potentially limit the

effectiveness of a reliability safeguard introduced by manufacturers, we validated the

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 8. Concluding Remarks 102

robustness of these mechanisms with a set of long-running experiments, on multi-
ple systems, under the control of RVSCap and xDVS, without observing any erratic
behavior. Moreover, we showed that significant energy gains can be achieved even
when taking into account the extra cost (due to the potentially lower MTBF) of check-
pointing and recovery in large-scale systems.

Furthermore, we designed and implemented eXtended Margins eXperiment Man-
ager ((XM)?), a framework that deals with the complexity of the experimental cam-
paigns and, thus, largely simplifies and automates the experimental setup to identify
CPU voltage margins, to extract data used to train models, to evaluate RVSCap and
xDVS and to validate the aforementioned mechanisms. (XM)? supports multiple
systems, multiple configurations, and numerous different workloads.

Finally, we investigated whether the combination of heterogeneous and approx-
imate computing can yield favorable solutions in the energy efficiency vs. quality
of results tradeoff. More specifically, under the premise that not all parts or exe-
cution phases of a program affect the quality of its output equally, we modified 7
applications to exploit both heterogeneity and approximations. To this end, we pro-
grammed the applications using mainly OpenCL nomenclature, so they can target any
architecture and accelerator device supporting OpenCL, and for each application, we
provide both accurate and approximate implementations of its computationally in-
tensive parts. Also, we evaluate them on heterogeneous platforms (comprising CPUs
and GPUs) and quantify the isolated and combined effect of heterogeneous and ap-

proximate computing.

8.2 Conclusions

In the context of this Dissertation, we show that exploiting intrinsic hardware guard-
bands is both possible and can result in significant energy savings for four different
commercial CPUs, the Intel x86-64 Xeon E3 and Haswell i7 x86-64, as well as the
ARMV8 64-bit AppliedMicro X-Gene 2 and X-Gene 3.

Initially, we experimentally show that CPU voltage margins reduction has a sig-
nificant impact on the performance during power-constrained execution. We ob-
serve that for restrictive power caps, CPU power capping with reduced voltage mar-
gins (RVSCap) can improve the performance by 64% for Xeon E3 (RAPL), 30% for
X-Gene 2 (DFSCap) and 34% for X-Gene 3 (DFSCap), on average. Also for less
restrictive power caps, it is possible to meet the same performance with the conven-
tional capping mechanisms, however with reduced node power footprint, on average
by 24%, 4% and 5% lower for Xeon E3 (RAPL), X-Gene 2 (DFSCap) and X-Gene 3

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 8. Concluding Remarks 103

(DFSCap), respectively. Also, CPU voltage margins reduction leads to greater per-
formance gains even when compared with the state-of-the-art solution in CPU power
capping (PUPIL) by 24%, 22% and 5% on average for Xeon E3, X-Gene 2 and X-
Gene 3, respectively. Noticeably, we show that the synergy between these is not only
possible but also outperforms every other approach, in terms of performance.

Furthermore, we found that the extent of voltage margins varies across differ-
ent CPU microarchitectures, different parts of the same microarchitecture, different
levels of CPU core utilization and — most importantly — on some architectures (Intel-
based) can be wide and workload-dependent. In this context, we showed the impor-
tance of using a diverse set of single- and multi-instance/threaded benchmarks for
CPU voltage margins characterization. We also found — and experimentally proved
for Intel’s Skylake and Haswell microarchitectures — that it is possible to train models
that predict V,,,;,,, at execution time, for the workload at hand. Those models are based
on information from hardware performance counters which quantify characteristics
of software/hardware interaction. We show — by designing and implementing xDV'S
— that those model predictions are exploitable to dynamically vary CPU voltage at
runtime. The experimental evaluation of xDVS on real hardware, executing a wide
range of benchmarks and larger-scale applications, showed that significant energy
savings are possible, by up to 42.68% and 34.37% over the standard Intel P-state
DVFS governor for parts of the Skylake and Haswell families, respectively.

CPU operation at reduced voltage margins may be beneficial, in terms of energy
efficiency, however, it might potentially result to lower system reliability. A long
experimental validation indicates that our mechanisms can be used to operate sys-
tems in sub-nominal CPU voltages, without compromising system reliability. Still,
we statistically (and pessimistically) estimate the potential effect on the MTBF of
Xeon E3 CPUs, when operating with reduced voltage margins. Our exercise proved
that the exploitation of CPU voltage margins can result in energy gains, even at larger
scales, and even when considering the increased checkpointing overhead, assuming
a potentially reduced system MTBF.

However, we claim that hardware support for the detection and mitigation of volt-
age emergencies is useful to safeguard against aggressive (and potentially malicious)
codes, such as voltage droop viruses. Voltage emergencies should not be treated dif-
ferently from other emergencies (such as memory access bound violations, execution
of illegal instructions, use of illegal operands, etc.) which can undermine the safe
operation of a computing system, and are traditionally expected to be identified by
hardware.

Finally, in the context of this dissertation, we exploit hardware and software het-

erogeneity to improve the energy efficiency of computing systems. To this end, we

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Chapter 8. Concluding Remarks 104

introduced a set of 7 non-trivial applications written to exploit both heterogeneity
and approximations for energy footprint minimization and we find that it is possi-
ble to combine heterogeneity and approximations to aggressively improve the energy
efficiency of applications. Also, we show that taking into account domain expert wis-
dom allows these savings to occur, in most cases, without uncontrolled degradation

of output quality.

8.3 Future Work

Our work on exploiting the intrinsic CPU voltage guardbands opens several research
opportunities for future work.

All the mechanisms, presented in the context of this Dissertation, as well as, prior
works that exploit the CPU voltage margins for the same platforms as the ones we use,
rely on an excessive characterization process. It would be worthwhile to investigate
whether there are proxies (symptoms) that signify that CPU voltage reduction enters
a critical zone in terms of CPU operation reliability. Identifying such proxies would
be highly beneficial for online mechanisms that exploit CPU voltage margins reduc-
tion. Such mechanisms would become more responsive and safe, without having to
potentially sacrifice opportunities for greater energy savings or to rely on complex
prediction models for the appropriate voltage margins reduction.

Another interesting direction for future work would be to study the synergy of
operation at reduced voltage margins with approximate and heterogeneous comput-
ing. Such a combination presents an ideal opportunity to drastically minimize the
energy footprint of an application. On the one hand, as we discussed earlier, different
microarchitectures have different extents of exploitable voltage guardbands. Hetero-
geneous systems integrate multiple architectures within a single computing system.
In the context of this Dissertation we studied the voltage margins of CPUs and fo-
cused on their exploitation. Accelerator devices, such as GPUs, FPGAs and NPUs
could be the focus of future work. On the other hand, as we already discussed in this
dissertation, in many cases the exploitable extent of voltage margins is workload-
dependent. Since approximate computing results in changes to the instruction-mix of
an application, a further investigation of how these changes affect the voltage margins
reduction is necessary. Such work would add another dimension (that of operating
voltage reduction) to the problem of mapping computations to components of a het-
erogeneous system, and the already complex and interesting tradeoff among power,

performance, and quality of results.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

105

Appendix A

Related Publications

[1] Panos Koutsovasilis, Konstantinos Parasyris, Christos D Antonopoulos, Niko-
laos Bellas, Spyros Lalis. Dynamic Undervolting to Improve Energy Efficiency
on Multicore X86 CPUs. IEEE Transactions on Parallel and Distributed Sys-
tems, TPDS, (Under review. Submitted August 2nd 2018, major revision re-
quested May 5th 2019, revised version submitted July 14th 2019.)

[2] Panos Koutsovasilis, Christos D Antonopoulos, Nikolaos Bellas, Spyros Lalis,
George Papadimitriou, Athanasios Chatzidimitriou, Dimitris Gizopoulos. Im-
pact of CPU Voltage Margins on Power-Constrained Execution. IEEE Transac-
tions on Sustainable Computing , TS-USC, (Under revision. Submitted Decem-
ber 5th 2019, major revision requested February 17th 2020.)

[3] Christos Kalogirou, Panos Koutsovasilis, Christos D Antonopoulos, Nikolaos
Bellas, Spyros Lalis. Exploiting CPU Voltage Margins to Increase the Profit
of Cloud Infrastructure Providers. In Proceedings of the 2019 19th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing, (CCGRID)

[4] Konstantinos Parasyris, Panos Koutsovasilis, Christos D Antonopoulos, Niko-
laos Bellas, Spyros Lalis. A framework for evaluating software on reduced mar-
gins hardware. In Proceedings of 48th Annual IEEE/IFIP International Confer-
ence on Dependable Systems and Networks , (DSN)

[5] Georgios Karakonstantis, Konstantinos Tovletoglou, Lev Mukhanov, Hans Van-
dierendonck, Dimitrios S Nikolopoulos, Peter Lawthers, Panos Koutsovasilis,
Manolis Maroudas, Christos D Antonopoulos, Christos Kalogirou, Nikos Bel-
las, Spyros Lalis, Srikumar Venugopal, Arnau Prat-Perez, Alejandro Lampropou-
los, Marios Kleanthous, Andreas Diavastos, Zacharias Hadjidimitriou, Pangiota
Nikolaou, Yannakis Sazeides, Pedro Trancoso, George Papadimitriou, Mano-
lis Kaliorakis, Athanasios Chatzidimitriou, Dimitris Gizopoulos, Shidharta Das.

An energy-efficient and error-resilient server ecosystem exceeding conservative

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Appendix A. Related Publications 106

scaling limits. In 2018 Design, Automation & Test in Europe Conference &
Exhibition, (DATE)

[6] Christos Kalogirou, Panos Koutsovasilis, Manolis Maroudas, Christos D Anto-
nopoulos, Spyros Lalis, Nikolaos Bellas. Edge and Cloud Provider Cost Mini-
mization by Exploiting Extended Voltage and Frequency Margins. In Proceed-
ings of 2017 International Conference on Parallel Computing (PARCO), “Ad-
vances in Parallel Computing”, Vol.32, pp. 814-823, 9/2017, ISBN 978-1-61499-
842-6 (print). IOS Press

[7] Panos Koutsovasilis, Christos Kalogirou, Christos Konstantas, Manolis Maroudas,
Michalis Spyrou, Christos D Antonopoulos. AcHEe: Evaluating approximate
computing and heterogeneity for energy efficiency. In Parallel Computing 73
(2018) (pp. 52-67)

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

107

Appendix B

Contribution to Joint Publications

This appendix discusses my contribution to each of the publications, presented in
Appendix A.

In [1], T designed a methodology to exploit the CPU voltage margins reduction
depending on the computational characteristics of the executing workload. Initially,
to suit the needs of voltage margins quantification, I reverse engineered the API to un-
derscale the operating voltage for Intel CPUs, since at the time this was only available
for the Windows operating system, through Intel’s XTU application. Afterwards, for
six Intel-based systems, I extracted the characterization results of the CPU voltage
margins, for multiple applications. Motivated by the variability, of the characteriza-
tion results, I investigated with Dr. Parasyris Konstantinos the feasibility of monitor-
ing performance counters and predicting the minimum CPU supply voltage at which
the reliability of CPU operation is not compromised. To this end, I introduced support
of several extra counters for Intel-based systems to the Linux perf tools (CPU Volt-
age ID, CPU thermal counters, etc.). I profiled all applications, under investigation,
collecting all performance counters available on Intel-based systems. Dr. Parasyris
Konstantinos created a script that tested all the available fitting models, provided in
the sklearn python library, that took as input my profiling data and predicted the ap-
propriate voltage margins reduction. However, the transition from just a prediction
model to an online governor that manipulates the CPU operating points is not trivial.
More specifically, such an online governor has to be robust, detect changes in the
CPU utilization topology and adjust the CPU operating points without compromis-
ing the reliability of system operation. Having these attributes in mind, I designed,
deployed and evaluated, on the six systems under investigation, the xXDVS governor
which utilizes the resulting prediction model with the highest predictive value, con-
tinuously adjusts the supply voltage and drives the CPU to a more energy-efficient,
yet safe, zone of operation.

In [2], T investigated the impact of CPU voltage margins reduction on power-

constrained execution. More specifically, motivated by prior research in CPU power

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Appendix B. Contribution to Joint Publications 108

capping, which minimizes the performance penalty induced in power-constrained ex-
ecution, but lacks the exploiting of intrinsic hardware guardbands, I evaluated opera-
tion at reduced voltage margins for various existing power capping mechanisms, such
as RAPL. That said, to enable a comparison for X-Gene processors, which lack a CPU
power capping mechanism, I developed DFSCap, a software-based CPU power cap-
ping mechanism that controls only the CPU frequency. Moreover, I produced the
characterization results for the Intel-based systems. The respective characterization
for the the X-Gene processors was performed by Dr. Papadimitriou George. Also,
Dr. Papadimitriou George provided the micro-viruses benchmarks used — among
other benchmarks — during the characterization process of the systems. Motivated by
the findings of this investigation, I designed, implemented and evaluated RVSCap, a
power capping mechanism, that supports multiple platforms and exploits CPU volt-
age margins reduction to minimize the performance penalty induced under power-
constrained execution. Noticeably, my mechanism leads to greater performance gains
even when compared with the state-of-the-art solution but, most importantly, the syn-
ergy between these is not only possible but also outperforms every other approach.

Additionally, for both [1] and [2], I conducted a long-running (23 days) experi-
mental evaluation of both xDVS and RVSCap, on 16 Skylake systems, and I provided
a pessimistic lower-bound of the systems MTBF, due to operation at reduced voltage
margins. Based on this MTBF and the findings of prior work that quantifies the over-
head of fault-tolerant mechanisms, I performed a statistical analysis that estimates the
respective energy gains of xDVS and RVSCap for larger-scale deployments where a
fault-tolerance mechanism, such as checkpointing and restore, is necessary, even for
operation at nominal points.

In [3] we exploit CPU voltage margins to increase the profit of cloud infras-
tructure providers. More specifically, we introduce data center execution coordi-
nation and node configuration policies that optimize the profit of the cloud infras-
tructure provider taking into account SLAs and energy consumption. Since this is a
simulation-based study, I contributed models are realistic and based on measurements
on actual off-the-shelf systems. To this end, I developed two prediction models, one
for the node power consumption and, another, for the expected performance degra-
dation w.r.t. frequency underscaling. The power consumption model can predict the
consumption at the plug of the node for CPU operation at both reduced margins and
nominal points. Also, the performance degradation model estimates the impact of
frequency underscaling based on the profiling data of multiple applications on actual
hardware.

In [4], we introduce (XM)? a framework, co-designed by Dr. Parasyris Kon-

stantinos and myself, that automates the experimental campaigns for the evaluation

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Appendix B. Contribution to Joint Publications 109

of software on systems operating outside their nominal configuration envelope. I im-
plemented the OS-controlled execution mode of (XM)?, which is compatible with
multiple platforms, reactive to errors potentially induced due to overly aggressive re-
duction of voltage margins, able to recover and continue the experimental campaign,
and resilient to issues external to the experiments (such as power or network outages).

In [7], I modified 6 real-world applications to exploit heterogeneous systems (ex-
ecution on GPUs). Moreover, for all 6 applications, I designed and implemented
approximations that further minimize the energy footprint of the execution, without
significantly impacting the quality of results. For LULESH, I contributed to the de-
sign and evaluation of approximations. The actual implementation of LULESH was
performed by Mr. Kalogirou Christos.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

110

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

OECD. https : / /www . oecd . org/ sti/ ieconomy / data - driven -
innovation.htm. Accessed: 2020-1-27.

Georgios Karakonstantis et al. “An Energy-Efficient and Error-Resilient Server
Ecosystem Exceeding Conservative Scaling Limits”. In: 2018 Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE). IEEE. 2018,
pp. 1099-1104.

Jonathan Koomey. “Growth in Data Center Electricity Use 2005 to 2010”. In:
A report by Analytical Press, completed at the request of The New York Times
9 (2011).

Miyuru Dayarathna, Yonggang Wen, and Rui Fan. “Data Center Energy Con-
sumption Modeling: A Survey”. In: IEEE Communications Surveys & Tuto-
rials 18.1 (2016), pp. 732-794.

Shidhartha Das et al. “A Self-Tuning DV'S Processor Using Delay-Error De-
tection and Correction”. In: Solid-State Circuits, IEEE Journal of 41.4 (2006).

John L Henning. “SPEC CPU2006 Benchmark Descriptions”. In: ACM SIGARCH
Computer Architecture News 34.4 (2006), pp. 1-17.

Cloyce D Spradling. “SPEC CPU2006 Benchmark Tools”. In: ACM SIGARCH
Computer Architecture News 35.1 (2007), pp. 130-134.

Jack Doweck et al. “Inside 6th-Generation Intel Core: New Microarchitecture
Code-Named Skylake”. In: IEEE Micro 37.2 (2017), pp. 52-62.

Edward A Burton et al. “FIVR—Fully Integrated Voltage Regulators on 4th
Generation Intel® Core ™ SoCs”. In: In Proceedings of Twenty-Ninth An-
nual international conference on Applied Power Electronics Conference and
Exposition (APEC). IEEE. 2014, pp. 432—-439.

Howard David et al. “RAPL: Memory Power Estimation and Capping”. In:
Proceedings of the 16th ACM/IEEE international symposium on Low power
electronics and design. ACM. 2010, pp. 189-194.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

https://www.oecd.org/sti/ieconomy/data-driven-innovation.htm
https://www.oecd.org/sti/ieconomy/data-driven-innovation.htm

Bibliography 111

[11] Huazhe Zhang and Henry Hoffmann. “Maximizing Performance Under a
Power Cap: A Comparison of Hardware, Software, and Hybrid techniques”.
In: ACM SIGARCH Computer Architecture News 44.2 (2016), pp. 545-559.

[12] AppliedMicro (APM). APM883832-X3 | X-Gene 3° Multi-Core 64-bit Pro-
cessor. https://en.wikichip.org/w/images/2/22/832-X3_PB.pdf.
2016.

[13] Michalis Spyrou et al. “Energy Minimization on Heterogeneous Systems through
Approximate Computing”. In: Mini-Symposium on Energy and Resilience in
Parallel Programming. Edinburgh, Scotland, 2015.

[14] Aaftab Munshi et al. “The OpenCL Specification”. In: Khronos OpenCL Work-
ing Group 1 (2009), pp. 11-15.

[15] Michael Ferdman et al. “Clearing the Clouds: a Study of Emerging Scale-out
Workloads on Modern Hardware”. In: ACM SIGPLAN Notices. Vol. 47. 4.
ACM. 2012, pp. 37-48.

[16] Christian Bienia et al. “The PARSEC Benchmark Suite: Characterization and
Architectural Implications”. In: Proceedings of the 17th international con-
ference on Parallel architectures and compilation techniques (PACT). ACM.
2008, pp. 72-81.

[17] JackJDongarra, Piotr Luszczek, and Antoine Petitet. “The LINPACK Bench-
mark: Past, Present and Future”. In: Concurrency and Computation: practice
and experience 15.9 (2003), pp. 803-820.

[18] George Woltman. Prime95. 2012. url: https : / / www . mersenne . org/
download/.

[19] Daniel Hackenberg et al. “Introducing FIRESTARTER: A Processor Stress
Test Utility”. In: 2013 International Green Computing Conference Proceed-
ings. IEEE. 2013, pp. 1-9.

[20] Konstantinos Parasyris et al. “A Framework for Evaluating Software on Re-
duced Margins Hardware”. In: 2018 48th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). IEEE. 2018, pp. 330—
337.

[21] George Papadimitriou, Athanasios Chatzidimitriou, and Dimitris Gizopou-
los. “Adaptive Voltage/Frequency Scaling and Core Allocation for Balanced
Energy and Performance on Multicore CPUs”. In: 2019 IEEE International
Symposium on High Performance Computer Architecture (HPCA). IEEE.
2019, pp. 133-146.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

https://en.wikichip.org/w/images/2/22/832-X3_PB.pdf
https://www.mersenne.org/download/
https://www.mersenne.org/download/

Bibliography 112

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

G. Papadimitriou et al. “Harnessing Voltage Margins for Energy Efficiency
in Multicore CPUs”. In: Proceedings of the 50th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, (MICRO). 2017, pp. 503-516.

Konstantinos Tovletoglou et al. “Measuring and Exploiting Guardbands of
Server-Grade ARMv8 CPU Cores and DRAMs”. In: 2018 48th Annual IEEE/I-
FIP International Conference on Dependable Systems and Networks Work-
shops (DSN-W). IEEE, 2018. doi: 10.1109/dsn-w.2018.00013.

G. Papadimitriou et al. “Micro-Viruses for Fast System-Level Voltage Mar-
gins Characterization in Multicore CPUs”. In: 2018 IEEE International Sym-
posium on Performance Analysis of Systems and Software (ISPASS). 2018,
pp. 54-63. doi: 10.1109/ISPASS.2018.00014.

E. Cai and D. Marculescu. “TEI-Turbo: Temperature Effect Inversion-Aware
Turbo Boost for Finfet-Based Multi-Core Systems”. In: 2015 IEEE/ACM In-
ternational Conference on Computer-Aided Design (ICCAD). 2015, pp. 500—
507. doi: 10.1109/ICCAD.2015.7372611.

W. Lee et al. “Dynamic Thermal Management for FinFET-Based Circuits Ex-
ploiting the Temperature Effect Inversion Phenomenon”. In: 2014 IEEE/ACM
International Symposium on Low Power Electronics and Design (ISLPED).
2014, pp. 105-110.

Sriram Sankar et al. “Datacenter Scale Evaluation of the Impact of Tempera-
ture on Hard Disk Drive Failures”. In: ACM Transactions on Storage (TOS)
9.2 (2013), p. 6.

Minesh Patel et al. “Understanding and Modeling On-Die Error Correction
in Modern DRAM: An Experimental Study Using Real Devices”. In: 2019
49th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN). IEEE. 2019, pp. 13-25.

A. T. Committee. Data Center Power Equipment Thermal Guidelines and
Best Practices Whitepaper.https://tc0909.ashraetcs.org/documents/
ASHRAE TC0909 Power White Paper_ 22 June_ 2016 _REVISED. pdf.
2016.

Charles Lefurgy, Xiaorui Wang, and Malcolm Ware. “Power Capping: A Pre-
lude to Power Shifting”. In: Cluster Computing 11.2 (June 2008), pp. 183—
195. issn: 1386-7857. doi: 10.1007/s10586-007-0045-4.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

https://doi.org/10.1109/dsn-w.2018.00013
https://doi.org/10.1109/ISPASS.2018.00014
https://doi.org/10.1109/ICCAD.2015.7372611
https://tc0909.ashraetcs.org/documents/ASHRAE_TC0909_Power_White_Paper_22_June_2016_REVISED.pdf
https://tc0909.ashraetcs.org/documents/ASHRAE_TC0909_Power_White_Paper_22_June_2016_REVISED.pdf
https://doi.org/10.1007/s10586-007-0045-4

Bibliography 113

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

X. Wang and M. Chen. “Cluster-level Feedback Power Control for Perfor-
mance Optimization”. In: 2008 IEEE 14th International Symposium on High
Performance Computer Architecture. 2008, pp. 101-110. doi: 10 . 1109/
HPCA.2008.4658631.

R. Cochran et al. “Pack & Cap: Adaptive DVFS and Thread Packing Under
Power Caps”. In: 2011 44th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). 2011, pp. 175-185.

Hiroshi Sasaki et al. “Characterization and Mitigation of Power Contention
Across Multiprogrammed Workloads™. In: 2016 IEEE International Sympo-
sium on Workload Characterization (IISWC). 1EEE, 2016. doi: 10. 1109/
iiswc.2016.7581266.

Henry Hoffmann et al. “Application Heartbeats: a Generic Interface for Spec-
ifying Program Performance and Goals in Autonomous Computing Environ-
ments”. In: Proceedings of the 7th international conference on Autonomic
computing. ACM. 2010, pp. 79-88.

Jackson Marusarz, Shannon Cepeda, and Ahmad Yasin. “How to Tune Ap-
plications Using a Top-Down Characterization of Microarchitectural Issues”.

In: Technical report. Intel, 2013.

Christos Kalogirou et al. “Exploiting CPU Voltage Margins to Increase the
Profit of Cloud Infrastructure Providers”. In: 2019 19th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing (CCGRID). IEEE.
2019, pp. 302-311.

Abdellah Ouammou et al. “Modeling and Analysis of Quality of Service and

Energy Consumption in Cloud Environment”. In: (2018).

Abdellah Ouammou et al. “Energy Consumption and Cost Analysis for Data
Centers with Workload Control”. In: International Conference on Innova-
tions in Bio-Inspired Computing and Applications. Springer. 2017, pp. 92—
101.

Mohammad Wardat et al. “Cloud Data Centers Revenue Maximization Us-
ing Server Consolidation: Modeling and Evaluation”. In: IEEE INFOCOM
2018-IEEE Conference on Computer Communications Workshops (INFO-
COM WKSHPS). IEEE. 2018, pp. 172-177.

Sukhpal Singh Gill and Rajkumar Buyya. “A Taxonomy and Future Direc-
tions for Sustainable Cloud Computing: 360 Degree View”. In: arXiv preprint
arXiv:1712.02899 (2017).

Anys Bacha and Radu Teodorescu. “Using ECC Feedback to Guide Voltage

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

https://doi.org/10.1109/HPCA.2008.4658631
https://doi.org/10.1109/HPCA.2008.4658631
https://doi.org/10.1109/iiswc.2016.7581266
https://doi.org/10.1109/iiswc.2016.7581266

Bibliography 114

Speculation in Low-Voltage Processors”. In: Proceedings of the 47th Annual
IEEE/ACM International Symposium on Microarchitecture. IEEE Computer
Society. 2014, pp. 306-318.

[42] Anys Bacha and Radu Teodorescu. “Dynamic Reduction of Voltage Margins
by Leveraging on-chip ECC in Itanium II Processors”. In: ACM SIGARCH
Computer Architecture News. Vol. 41. 3. ACM. 2013, pp. 297-307.

[43] Yazhou Zu et al. “Adaptive Guardband Scheduling to Improve System-level
Efficiency of the POWER7+”. In: Microarchitecture (MICRO), 2015 48th
Annual IEEE/ACM International Symposium on. IEEE. 2015, pp. 308-321.

[44] George Papadimitriou et al. “Voltage Margins Identification on Commercial
x86-64 Multicore Microprocessors”. In: 2017 IEEE 23rd International Sym-
posium on On-Line Testing and Robust System Design (IOLTS). IEEE, 2017.
doi: 10.1109/i01ts.2017.8046198.

[45] Vlasia Anagnostopoulou et al. “Power-Aware Resource Allocation for CPU-
and Memory-Intense Internet Services”. In: International Workshop on En-
ergy Efficient Data Centers. Springer. 2012, pp. 69-80.

[46] Luiz André Barroso and Urs Holzle. “The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines”. In: Synthesis lec-

tures on computer architecture 4.1 (2009), pp. 1-108.

[47] Henry Hoffmann and Martina Maggio. “{PCP}: A Generalized Approach to
Optimizing Performance Under Power Constraints through Resource Man-
agement”. In: 11th International Conference on Autonomic Computing ({ICAC}
14). 2014, pp. 241-247.

[48] Martina Maggio et al. “Power Optimization in Embedded Systems via Feed-
back Control of Resource Allocation”. In: IEEE Transactions on Control Sys-
tems Technology 21.1 (2011), pp. 239-246.

[49] David Meisner et al. “Power Management of Online Data-Intensive Services”.
In: Proceedings of the 38th annual international symposium on Computer ar-
chitecture. 2011, pp. 319-330.

[50] Ripal Nathuji and Karsten Schwan. “Virtualpower: Coordinated Power Man-
agement in Virtualized Enterprise Systems”. In: ACM SIGOPS operating sys-
tems review 41.6 (2007), pp. 265-278.

[51] Pavlos Petoumenos et al. “Power Capping: What Works, What Does Not”.
In: ICPADS. IEEE Computer Society, 2015, pp. 525-534.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

https://doi.org/10.1109/iolts.2017.8046198

Bibliography 115

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]
[63]

Rong Ge et al. “The Case for Cross-Component Power Coordination on Power
Bounded Systems”. In: Parallel Processing (ICPP), 2016 45th International
Conference on. IEEE. 2016, pp. 516-525.

Jinsu Park, Seongbeom Park, and Woongki Baek. “RPPC: A Holistic Runtime
System for Maximizing Performance Under Power Capping”. In: 2018 18th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGRID). IEEE. 2018, pp. 41-50.

Henry Hoffmann et al. “A Generalized Software Framework for Accurate and
Efficient Management of Performance Goals”. In: 2013 Proceedings of the
International Conference on Embedded Software (EMSOFT). IEEE. 2013,
pp. 1-10.

Andreas Merkel, Jan Stoess, and Frank Bellosa. “Resource-Conscious Schedul-
ing for Energy Efficiency on Multicore Processors”. In: Proceedings of the

5th European conference on Computer systems. 2010, pp. 153—166.

Mark Weiser et al. “Scheduling for Reduced CPU Energy”. In: Mobile Com-
puting. Springer, 1994, pp. 449-471.

Sergey Zhuravlev et al. “Survey of Energy-Cognizant Scheduling Techniques”.
In: IEEE Transactions on Parallel and Distributed Systems 24.7 (2012), pp. 1447—
1464.

John L. Henning. “SPEC CPU2006 Benchmark Descriptions”. In: SIGARCH
Comput. Archit. News 34.4 (Sept. 2006), pp. 1-17. issn: 0163-5964. doi: 10.
1145/1186736.1186737. url: http://doi.acm.org/10.1145/1186736.
1186737.

Antoine Petitet Jack J. Dongarra Piotr Luszczek. “The LINPACK Bench-
mark: Past, Present and Future”. In: Concurrency and Computation Practice
and Experience 10 (9 2003).

G. Woltman and S Kurowski. GIMPS, The Great Internet Mersenne Prime
Search. 2008. url: https://www.mersenne.org/.

D. Hackenberg et al. “Introducing FIRESTARTER: A Processor Stress Test
Utility”. In: In Proceedings in the 4th Conference on International Green
Computing (IGC). 2013, pp. 1-9. doi: 10.1109/IGCC.2013.6604507.

Stress-NG. url: http://kernel.ubuntu.com/~cking/stress-ng/.

A. Bacha and R. Teodorescu. “Using ECC Feedback to Guide Voltage Specu-
lation in Low-Voltage Processors”. In: In Proceedings of 47th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). 2014, pp. 306—
318. doi: 10.1109/MICR0.2014.54.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

https://doi.org/10.1145/1186736.1186737
https://doi.org/10.1145/1186736.1186737
http://doi.acm.org/10.1145/1186736.1186737
http://doi.acm.org/10.1145/1186736.1186737
https://www.mersenne.org/
https://doi.org/10.1109/IGCC.2013.6604507
http://kernel.ubuntu.com/~cking/stress-ng/
https://doi.org/10.1109/MICRO.2014.54

Bibliography 116

[64] Vijay Janapa Reddi et al. “Voltage Emergency Prediction: Using Signatures
to Reduce Operating Margins”. In: In Proceedings of the 15th International
Symposium on High Performance Computer Architecture, (HPCA). 2009,
pp. 18-29.

[65] A. Liaw and M. Wiener. “Classification and Regression by RandomForest”.
In: R news 2.3 (2002), pp. 18-22.

[66] Perf: Linux Profiling with Performance Counters. 2017. url: https://perf.
wiki.kernel.org/index.php/Main_Page.

[67] Alexander Kraskov, Harald Stogbauer, and Peter Grassberger. “Estimating
Mutual Information”. In: Phys. Rev. E 69 (6 2004), p. 066138. doi: 10.1103/
PhysRevE.69.066138.

[68] Nathan Binkert et al. “The Gem5 Simulator”. In: SIGARCH Comput. Archit.
News 39.2 (Aug. 2011), pp. 1-7. issn: 0163-5964. doi: 10.1145/2024716.
2024718. url: http://doi.acm.org/10.1145/2024716.2024718.

[69] ArtForz. Jeff Garzik. CPU-Miner. url: https://github. com/tpruvot/

cpuminer-multi.
[70] Linux Kernel. 2017. url: https://www.kernel.org/.

[71] L-N Pouchet. PolyBench/C 3.2.url: https://sourceforge.net/projects/
polybench/.

[72] U. Mukhopadhyay et al. “A Brief Survey of Cryptocurrency Systems”. In: In
Proceedings of 14th Annual Conference on Privacy, Security and Trust (PST).
2016, pp. 745-752. doi: 10.1109/PST.2016.7906988.

[73] M. Kaliorakis et al. “Statistical Analysis of Multicore CPUs Operation in
Scaled Voltage Conditions”. In: IEEE Computer Architecture Letters 17.2
(2018), pp. 109-112. issn: 1556-6056. doi: 10.1109/LCA.2018.2798604.

[74] G. Papadimitriou et al. “Voltage Margins Identification on Commercial x86-
64 Multicore Microprocessors”. In: In Proceedings of the 23rd International
Symposium on On-Line Testing and Robust System Design (IOLTS). 2017,
pp. 51-56. doi: 10.1109/I0LTS.2017.8046198.

[75] Anys Bacha and Radu Teodorescu. “Dynamic Reduction of Voltage Mar-
gins by Leveraging On-chip ECC in Itanium II Processors”. In: SIGARCH
Comput. Archit. News 41.3 (June 2013), pp. 297-307. issn: 0163-5964. doi:
10.1145/2508148 . 2485948. url: http://doi.acm.org/10. 1145/
2508148.2485948.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://doi.org/10.1103/PhysRevE.69.066138
https://doi.org/10.1103/PhysRevE.69.066138
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/2024716.2024718
http://doi.acm.org/10.1145/2024716.2024718
https://github.com/tpruvot/cpuminer-multi
https://github.com/tpruvot/cpuminer-multi
https://www.kernel.org/
https://sourceforge.net/projects/polybench/
https://sourceforge.net/projects/polybench/
https://doi.org/10.1109/PST.2016.7906988
https://doi.org/10.1109/LCA.2018.2798604
https://doi.org/10.1109/IOLTS.2017.8046198
https://doi.org/10.1145/2508148.2485948
http://doi.acm.org/10.1145/2508148.2485948
http://doi.acm.org/10.1145/2508148.2485948

Bibliography 117

[76] Y. Zuetal. “Adaptive Guardband Scheduling to Improve System-Level Effi-
ciency of the POWER?7”. In: In Proceedings of the 48th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). 2015, pp. 308—
321.

[77] J.Lengetal. “Safe Limits on Voltage Reduction Efficiency in GPUs: A Direct
Measurement Approach”. In: In Proceedings of the 48th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). 2015, pp. 294—
307. doi: 10.1145/2830772.2830811.

[78] V.J.Reddi et al. “Voltage Smoothing: Characterizing and Mitigating Voltage
Noise in Production Processors via Software-Guided Thread Scheduling”.
In: In Proceedings of 43rd Annual IEEE/ACM International Symposium on
Microarchitecture. 2010, pp. 77-88. doi: 10.1109/MICR0.2010.35.

[79] Andrew B. Kahng et al. “Designing a Processor from the Ground up to Allow
Voltage/Reliability Tradeoffs”. In: In Proceedings of the 16th International
Conference on High-Performance Computer Architecture (HPCA). 2010, pp. 1—-
11.

[80] H. Duwe et al. “Rescuing Uncorrectable Fault Patterns in On-Chip Memories
through Error Pattern Transformation”. In: In Proceedings of the 43rd Annual
International Symposium on Computer Architecture (ISCA). 2016, pp. 634—
644. doi: 10.1109/ISCA.2016.61.

[81] Zeshan Chishti et al. “Improving Cache Lifetime Reliability at Ultra-low
Voltages”. In: In Proceedings of the 42nd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). 2009, pp. 89-99. isbn: 978-1-
60558-798-1.

[82] C. Wilkerson et al. “Trading off Cache Capacity for Reliability to Enable Low
Voltage Operation”. In: In Proceedings of the 35th International Symposium
on Computer Architecture (ISCA). 2008, pp. 203-214. doi: 10.1109/ISCA.
2008.22.

[83] D. Ernst et al. “Razor: a Low-Power Pipeline based on Circuit-Level Timing
Speculation”. In: In Proceedings of the 36th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). 2003.

[84] Smruti R. Sarangi et al. “EVAL: Utilizing Processors with Variation-induced
Timing Errors”. In: In Proceedings of the 41st Annual International Sympo-
sium on Microarchitecture (MICRO). 2008, pp. 423—434.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

https://doi.org/10.1145/2830772.2830811
https://doi.org/10.1109/MICRO.2010.35
https://doi.org/10.1109/ISCA.2016.61
https://doi.org/10.1109/ISCA.2008.22
https://doi.org/10.1109/ISCA.2008.22

Bibliography 118

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

Abhishek Tiwari, Smruti R. Sarangi, and Josep Torrellas. “ReCycle: Pipeline
Adaptation to Tolerate Process Variation”. In: In Proceedings of the 34th In-
ternational Symposium on Computer Architecture, (ISCA). 2007, pp. 323—
334.

Xiaoyao Liang and David M. Brooks. “Mitigating the Impact of Process Vari-
ations on Processor Register Files and Execution Units”. In: In Proceedings
of the 39th Annual International Symposium on Microarchitecture (MICRO).
2006.

N.S. Kim. Resource and Core Scaling for Improving Performance of Power-
Constrained Multicore Processors. US Patent 9,606,842. 2017. url: https:
//www.google.com/patents/US9606842.

P. J. Joseph, Kapil Vaswani, and M. J. Thazhuthaveetil. “Construction and
Use of Linear Regression Models for Processor Performance Analysis”. In:
In Proceedings of the 12th International Symposium on High-Performance
Computer Architecture (HPCA). 2006, pp. 99-108. doi: 10 . 1109 /HPCA .
2006.1598116.

W. Jia, K. A. Shaw, and M. Martonosi. “Stargazer: Automated Regression-
Based GPU Design Space Exploration”. In: In Proceedings of the Interna-
tional Symposium on Performance Analysis of Systems Software (ISPASS).
2012, pp. 2-13. doi: 10.1109/ISPASS.2012.6189201.

Benjamin C. Lee and David M. Brooks. “Accurate and Efficient Regres-
sion Modeling for Microarchitectural Performance and Power Prediction”.
In: SIGPLAN Not. 41.11 (Oct. 2006), pp. 185-194. issn: 0362-1340. doi:
10.1145/1168918 . 1168881. url: http://doi.acm.org/10.1145/
1168918.1168881.

Jangwoo Kim et al. “Modeling SRAM Failure Rates to enable Fast, Dense,
Low-Power Caches”. In: SELSE’09 (2009).

H. Cherupalli, R. Kumar, and J. Sartori. “Exploiting Dynamic Timing Slack
for Energy Efficiency in Ultra-Low-Power Embedded Systems”. In: 2016
ACM/IEEE 43rd Annual International Symposium on Computer Architecture
(ISCA). 2016, pp. 671-681. doi: 10.1109/ISCA.2016.64.

Jack Dongarra, Thomas Herault, and Yves Robert. “Fault Tolerance Tech-
niques for High-Performance Computing”. In: Fault-Tolerance Techniques
for High-Performance Computing. Springer, 2015, pp. 3—-85.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

https://www.google.com/patents/US9606842
https://www.google.com/patents/US9606842
https://doi.org/10.1109/HPCA.2006.1598116
https://doi.org/10.1109/HPCA.2006.1598116
https://doi.org/10.1109/ISPASS.2012.6189201
https://doi.org/10.1145/1168918.1168881
http://doi.acm.org/10.1145/1168918.1168881
http://doi.acm.org/10.1145/1168918.1168881
https://doi.org/10.1109/ISCA.2016.64

Bibliography 119

[94]

[95]

[96]

[97]

[98]
[99]

[100]

[101]

[102]

[103]

[104]

[105]

Thomas J Hacker, Fabian Romero, and Christopher D Carothers. “An Anal-
ysis of Clustered Failures on Large Supercomputing Systems”. In: Journal of
Parallel and Distributed Computing 69.7 (2009), pp. 652—665.

Yudan Liu et al. “An Optimal Checkpoint/Restart Model for a Large Scale
High Performance Computing System”. In: 2008 IEEE International Sympo-
sium on Parallel and Distributed Processing. IEEE. 2008, pp. 1-9.

B. Schroeder and G. A. Gibson. “A Large-Scale Study of Failures in High-
Performance Computing Systems”. In: International Conference on Depend-
able Systems and Networks (DSN’06). 2006, pp. 249-258. doi: 10.1109/
DSN.2006.5.

MIL-HDBK-338. Military Handbook. Electronic Reliability Design Hand-
book. 1998. url: https://www.weibull.com/knowledge/milhdbk.htm.

Igor Bazovsky. Reliability Theory and Practice. Courier Corporation, 2004.

Intel. Reliability Report. https://www.intel.com/content/dam/www/
programmable/us/en/pdfs/literature/rr/rr.pdf. 2017.

Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo. “CLKSCREW:
Exposing the Perils of Security-Oblivious Energy Management”. In: 26th
USENIX Security Symposium (USENIX Security 17). 2017.

Youngtaek Kim and Lizy Kurian John. “Automated Di/Dt Stressmark Gen-
eration for Microprocessor Power Delivery Networks”. In: In Proceedings of
the 17th IEEE/ACM International Symposium on Low-power Electronics and
Design (ISLPED). 2011, pp. 253-258. isbn: 978-1-61284-660-6.

Y. Kim et al. “AUDIT: Stress Testing the Automatic Way”. In: In Proceedings
of the 45th Annual IEEE/ACM International Symposium on Microarchitec-
ture (MICRO). 2012, pp. 212-223.

Zacharias Hadjilambrou et al. “Leveraging CPU Electromagnetic Emana-

tions for Voltage Noise Characterization”. In: (2018).

Teja Singh et al. “Zen: An Energy-Efficient High-Performance \x86 Core”.
In: IEEE Journal of Solid-State Circuits 53.1 (2018), pp. 102-114.

S. T. Kim et al. “Enabling Wide Autonomous DVEFS in a 22 nm Graphics
Execution Core Using a Digitally Controlled Fully Integrated Voltage Regu-
lator”. In: IEEE Journal of Solid-State Circuits 51.1 (2016), pp. 18-30. issn:
0018-9200. doi: 10.1109/JSSC.2015.2457920.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

https://doi.org/10.1109/DSN.2006.5
https://doi.org/10.1109/DSN.2006.5
https://www.weibull.com/knowledge/milhdbk.htm
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/rr/rr.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/rr/rr.pdf
https://doi.org/10.1109/JSSC.2015.2457920

Bibliography 120

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

Henrique Madeira et al. “RIFLE: A General Purpose Pin-Level Fault Injec-
tor”. In: Proc. of the European Dependable Computing Conference (EDCC).
1994.

Jean Arlat et al. “Fault Injection for Dependability Validation: A Method-

ology and Some Applications”. In: IEEE Trans. on Software Engineering
(1990).

J. H. Barton et al. “Fault Injection Experiments Using FIAT”. In: IEEE Trans.
on Computers (1990).

Ghani A. Kanawati, Nasser A. Kanawati, and Jacob A. Abraham. “FER-
RARI: A Flexible Software-Based Fault and Error Injection System”. In:
IEEE Trans. Comput. 44 (1995).

Volkmar Sieh, Oliver Tschiche, and Frank Balbach. “VERIFY: Evaluation
of Reliability Using VHDL-Models with Embedded Fault Descriptions”. In:
Proc. of the Symposium on Fault-Tolerant Computing (FTCS). 1997.

Eric Jenn et al. “Fault Injection into VHDL Models: The MEFISTO Tool”.
In: Proc. of the Symposium on Fault-Tolerant Computing (FTCS). 1994.

K. Parasyris et al. “GemFI: A Fault Injection Tool for Studying the Behav-
ior of Applications on Unreliable Substrates”. In: Dependable Systems and
Networks (DSN), 2014 44th Annual IEEE/IFIP Int. Conference on. 2014.

Giorgis Georgakoudis et al. “REFINE: Realistic Fault Injection via Compiler-
based Instrumentation for Accuracy, Portability and Speed”. In: Proc. of the
Int. Conference for High Performance Computing, Networking, Storage and
Analysis. 2017.

Qining Lu et al. “LLFI: An Intermediate Code-Level Fault Injection Tool
for Hardware Faults”. In: 2015 IEEE International Conference on Software
Quality, Reliability and Security. IEEE. 2015, pp. 11-16.

George Papadimitriou et al. “A System-Level Voltage/Frequency Scaling Char-
acterization Framework for Multicore CPUs”. In: 13th IEEE Workshop on
Silicon Errors in Logic-System Effects (SELSE ‘17). Boston, MA, USA. 2017.

Panos Koutsovasilis et al. “AcHEe: Evaluating Approximate Computing and
Heterogeneity for Energy Efficiency”. In: Parallel Computing 73 (2018),
pp. 52-67.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

Bibliography 121

[117] Chris Lattner and Vikram Adve. “LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation”. In: Proceedings of the In-
ternational Symposium on Code Generation and Optimization: Feedback-
directed and Runtime Optimization. CGO ’04. Palo Alto, California: IEEE
Computer Society, 2004, pp. 75—. isbn: 0-7695-2102-9. url: http://dl.
acm.org/citation.cfm?id=977395.977673.

[118] Hydrodynamics Challenge Problem, Lawrence Livermore National Labora-
tory. Tech. rep. LLNL-TR-490254. Livermore, CA, pp. 1-17.

[119] Henk Kaarle Versteeg and Weeratunge Malalasekera. An introduction to com-

putational fluid dynamics: the finite volume method. Pearson Education, 2007.

[120] Mark L Wilkins, B Adler, et al. “Methods in Computational Physics”. In:
Calculation of elastic—plastic flow (1964), pp. 211-263.

[121] Loup Verlet. “Computer ”Experiments” on Classical Fluids. I. Thermody-
namical Properties of Lennard-Jones Molecules”. In: Phys. Rev. 159 (1 1967),
pp. 98-103. doi: 10.1103/PhysRev.159.98. url: http://link.aps.org/
doi/10.1103/PhysRev.159.98.

[122] Lars Onsager. “Electric Moments of Molecules in Liquids”. In: Journal of
the American Chemical Society 58.8 (1936), pp. 1486—1493.

[123] Ivo Babuska, Raul Tempone, and Georgios E Zouraris. “Solving Elliptic Bound-
ary Value Problems with Uncertain Coefficients by the Finite Element Method:
the Stochastic Formulation”. In: Computer methods in applied mechanics and
engineering 194.12 (2005), pp. 1251-1294.

[124] Luis J Roman and Marcus Sarkis. “Stochastic Galerkin Method for Elliptic
SPDEs: A White Noise Approach”. In: Discrete and Continuous Dynamical
Systems-Series B 6.4 (2006), p. 941.

[125] George Sarailidis and Manolis Vavalis. “On the Stochastic/Deterministic Nu-
merical Solution of Composite Deterministic Elliptic PDE Problems”. In:
Proceedings of Mathematical Methods Computational Techniques in Science

Engineering. Bratislava, Slovakia, 2015.

[126] Nikolaos Bellas et al. “Real-time Fisheye Lens Distortion Correction Us-
ing Automatically Generated Streaming Accelerators”. In: Proceedings of
the 17th IEEE Symposium on Field Programmable Custom Computing Ma-
chines. FCCM ’09. Napa, CA: IEEE Press, 2009, pp. 149 —156. isbn: 978-0-
7695-3716-0. doi: 10.1109/FCCM. 2009 . 16. url: http://doi.org/10.
1109/FCCM.2009. 16.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

http://dl.acm.org/citation.cfm?id=977395.977673
http://dl.acm.org/citation.cfm?id=977395.977673
https://doi.org/10.1103/PhysRev.159.98
http://link.aps.org/doi/10.1103/PhysRev.159.98
http://link.aps.org/doi/10.1103/PhysRev.159.98
https://doi.org/10.1109/FCCM.2009.16
http://doi.org/10.1109/FCCM.2009.16
http://doi.org/10.1109/FCCM.2009.16

Bibliography 122

[127] Tain E. Richardson. The H.264 Advanced Video Compression Standard. 2nd.
Wiley Publishing, 2010. isbn: 0470516925, 9780470516928.

[128] Philip H. S. Torr and Andrew Zisserman. “Feature Based Methods for Struc-
ture and Motion Estimation”. In: Proceedings of the International Workshop
on Vision Algorithms: Theory and Practice. ICCV ’99. London, UK, UK:
Springer-Verlag, 2000, pp. 278-294. isbn: 3-540-67973-1. url: http://dl.
acm.org/citation.cfm?id=646271.685642.

[129] Heiko Hirschmiiller. “Stereo Processing by Semiglobal Matching and Mutual
Information”. In: Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on 30.2 (2008), pp. 328-341.

[130] Koichiro Yamaguchi et al. “Continuous Markov Random Fields for Robust
Stereo Estimation”. In: Computer Vision-ECCV 2012. Springer, 2012, pp. 45—
58.

[131] Kazuhiro Yamaguchi, David McAllester, and Raquel Urtasun. “Robust Monoc-
ular Epipolar Flow Estimation”. In: Computer Vision and Pattern Recogni-
tion (CVPR), 2013 IEEE Conference on. IEEE. 2013, pp. 1862—-1869.

[132] NVIDIA. NVML API Reference. http://docs.nvidia.com/deploy/nvml-api/index.html.
url: http://docs.nvidia.com/deploy/nvml-api/index.html.

[133] Intel. Intel 64 and IA-32 Architectures Software Developer Manual. Chapter
14.9.1. 2010.

[134] Shuai Che et al. “Rodinia: A Benchmark Suite for Heterogeneous Comput-
ing”. In: Workload Characterization, 2009. IISWC 2009. IEEE International
Symposium on. IEEE. 2009, pp. 44-54.

[135] Andreas Geiger, Philip Lenz, and Raquel Urtasun. “Are we ready for Au-
tonomous Driving? The KITTI Vision Benchmark Suite”. In: Conference on
Computer Vision and Pattern Recognition (CVPR). 2012.

[136] Hadi Esmaeilzadeh et al. “Neural Acceleration for General-Purpose Approx-
imate Programs”. In: Proceedings of the 2012 45th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture. IEEE Computer Society. 2012,
pp. 449-460.

[137] Amir Yazdanbakhsh et al. “Neural Acceleration for GPU Throughput Proces-
sors”. In: Proceedings of the 48th International Symposium on Microarchi-
tecture. MICRO-48. Waikiki, Hawaii: ACM, 2015, pp. 482—493. isbn: 978-
1-4503-4034-2. doi: 10.1145/2830772.2830810. url: http://doi.acm.
org/10.1145/2830772.2830810.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

http://dl.acm.org/citation.cfm?id=646271.685642
http://dl.acm.org/citation.cfm?id=646271.685642
http://docs.nvidia.com/deploy/nvml-api/index.html
https://doi.org/10.1145/2830772.2830810
http://doi.acm.org/10.1145/2830772.2830810
http://doi.acm.org/10.1145/2830772.2830810

Bibliography 123

[138] Stelios Sidiroglou-Douskos et al. “Managing Performance vs. Accuracy Trade-
offs with Loop Perforation”. In: Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of Software
Engineering. ESEC/FSE ’11. Szeged, Hungary: ACM, 2011, pp. 124-134.
isbn: 978-1-4503-0443-6. doi: 10 . 1145 /2025113 . 2025133. url: http:
//doi.acm.org/10.1145/2025113.2025133.

[139] Qian Zhang et al. “ApproxIt: An Approximate Computing Framework for
Iterative Methods”. In: Proceedings of the 51st Annual Design Automation
Conference. DAC ’14. San Francisco, CA, USA: ACM, 2014, 97:1-97:6.
isbn: 978-1-4503-2730-5. doi: 10 . 1145 /2593069 . 2593092. url: http :
//doi.acm.org/10.1145/2593069.2593092.

[140] Adrian Sampson et al. “EnerJ: Approximate Data Types for Safe and General
Low-Power Computation”. In: ACM SIGPLAN Notices. Vol. 46. 6. ACM.
2011, pp. 164-174.

[141] Konstantinos Krommydas et al. “On the Characterization of OpenCL Dwarfs
on Fixed and Reconfigurable Platforms”. In: Application-specific Systems,
Architectures and Processors (ASAP), 2014 IEEE 25th International Confer-
ence on. IEEE. 2014, pp. 153-160.

[142] Anthony Danalis et al. “The Scalable Heterogeneous Computing (SHOC)
Benchmark Suite”. In: Proceedings of the 3rd Workshop on General-Purpose
Computation on Graphics Processing Units. ACM. 2010, pp. 63-74.

Institutional Repository - Library & Information Centre - University of Thessaly
21/08/2024 03:59:53 EEST - 3.145.168.174

https://doi.org/10.1145/2025113.2025133
http://doi.acm.org/10.1145/2025113.2025133
http://doi.acm.org/10.1145/2025113.2025133
https://doi.org/10.1145/2593069.2593092
http://doi.acm.org/10.1145/2593069.2593092
http://doi.acm.org/10.1145/2593069.2593092

	Abstract
	Περίληψη
	Acknowledgements
	Introduction
	Problem
	Motivation
	Contributions
	CPU operation at reduced voltage margins
	Combining approximate & heterogeneous computing

	Outline

	Background
	Platforms Overview
	Intel-Based systems
	Frequency adjustment
	Supply voltage adjustment
	Power and performance monitoring mechanisms

	ARM-based platforms
	Frequency adjustment
	Supply voltage adjustment
	Power and performance monitoring mechanisms

	Centaurus Runtime & Programming Model
	Platform model
	Execution Model
	Directives

	The Impact of CPU Voltage Margins on Power-Constrained Execution
	Characterization of Voltage Margins
	Power Capping Approaches
	Existing techniques
	RAPL-RM
	RVSCap

	Experimental Study
	Benchmarks
	Effects of CPU voltage margins on power capping
	Combining RVSCap with hybrid power capping mechanisms

	Platforms Comparison
	Power Modeling to Mitigate Hardware Limitations
	Related Work

	Dynamic Reduction of Workload-Dependant CPU Voltage Margins
	Offline Quantification of Voltage Margins
	Voltage Margins Modeling and Estimation
	Profiling
	Model type
	Model training

	Extended Dynamic Voltage Scaling
	Experimental Evaluation
	Related work

	System Reliability when Operating at Reduced Voltage Margins
	The Tradeoff of Operating CPUs at Reduced Voltage Margins
	Validation of Reduced Voltage Scaling power Capping (RVSCap) and Extended Dynamic Voltage Scaling (xDVS)
	Effect of Operation at Reduced Voltage Margins on MTBF
	Effects of Operation at Reduced Voltage Margins in Large, Scale-out Deployments

	Hardware Mechanisms

	A Framework for Large-Scale Experimentation at Reduced CPU Voltage Margins
	Framework Objectives
	(XM)2 for OS-controlled Execution
	Client configuration
	Applications configuration
	Database

	Node Resetting Controller
	Related Work

	The Individual and Combined Energy Efficiency Effects of Approximate & Heterogeneous Computing
	Platform Assumptions
	Hardware assumptions
	Software assumptions

	Applications
	LULESH
	Molecular Dynamics
	Monte Carlo PDE solver
	K-Means
	Fisheye
	DCT MV
	SPS-Stereo

	Evaluation
	LULESH
	Molecular Dynamics
	Monte Carlo PDE solver
	K-Means
	Fisheye
	DCT MV
	SPS-Stereo

	Related Work

	Concluding Remarks
	Summary
	Conclusions
	Future Work

	Related Publications
	Contribution to Joint Publications
	Bibliography

