Time series analysis based on multiscale
Recurrence Quantification Analysis,

Horizontal Visibility Graph and its
applications on biological sequences

Author
TIoannis Sfakianakis

Supervisor
Dimitrios Katsaros

Co-supervisor
Pavlos Pavlidis

Department of Electrical and Computer Engineering
University of Thessaly
February 2020

Avdhuon yeovooelp®y Buclouevn o
TOAVETLTEDT ETAVUANTTINY AVEAUOT)
TOCOTIXOTOMNOTC, 0PLLOVTIUC 0PAUTOTNTAC
YOOUPTILOTOL X0 Ol EQPUPUOYES TNS OE
Brohoyixég axohovdiee.

Yuyypapeac
Iwdvvng Xgpoxiavdxng

Emufiénwy Kadnyntic
Koatooapdg Anunterog

Emufienwy Kadnyntic
IMTawAidng ITadAog

Tufua Hiextpordywv Mnyovixoyv xan Mnyovixoy
Trohoyiotwy, Havemothuo Oecoaiioc
PefBpoudptoc 2020

Abstract

Y BiBhoypapld et mpotadel o tAndopa pedddwy yio Ty tedBiedn tng Sournc
e mpwtelvng. Xty mopoloo SIMAUATIXY epyactd Yo emteuyvel 1 avdiuon
YPOVOCELRMYV, UG amtd TNV ETAVOANTTIXT AvdAUGT) TOCOTIXOTOMONG ot Tat opLlOv-
TG opaToTNTAC Yeophuata. Apyixd, 1 Jewpld avarnapdotaone Tou xdoue yenot-
pomotelton yiow var yoptoyeapioel Ty ahknhouyio tng mpwteivinic dounc oe B0
XEOVOOELEC. LNV cUVEYELN, GLVOLALOVTAS TNV ENUVUANTTIXY AvEAUGT) TOGOTIXO-
noinong xou Ta optlOVTING 0pATOTNTIC YeuphuaTo Topdyetal éva Sidvuouo pe 30
yopoxtnenowxd. O oxonde tne nopolous SITAWUNTIXAC ERYUOLIS Vol Vo SNULOUEY T
Vel o epapuoyy, n onola Yo cuunepAaufBdvel TIC TEOAVAPEPOUEVES UEVOBOUS Xal
7 omola VYo elvan Slaxpltd o Yehyopen ano Tig 1T UTdey oUsES.

Aggeig KAedid: Avdhuon Xpovooeiptv, Oewpetd Avanopdotacng tou Xdoug,
Enoveinntixr) Avédhuon ITocotxonoinong, Optldvtiog Opatotnroc IMeagpruara
IMdooa Ipoypoppatiopot Julia

Abstract

In the literature, a variety of methods are suggested for predicting protein stru-
cture. In this thesis, time series analysis is achieved, through recurrence quan-
tification analysis and horizontal visibility graph. First, the chaos game represe-
ntation is used to map the protein structure sequence into two time series. Then
a 30 dimensional feature vector is acquired by combining recurrence quantifica-
tion analysis and horizontal visibility graph. The main objective of this thesis,
is to create an application, that combines the aforementioned methods and is
notably faster than the existing ones.

Keywords: Time Series Analysis, Chaos Game Representation, Rerecurrence
Quantification Analysis, Horizontal Visibility Graphs, Julia Programming Lan-
guage

Contents

1 Introduction
1.1 Time series analysis
1.2 Protein overview
1.2.1 Protein Structure . .

1.2.2 Protein Folding Problem

2 Methods
2.1 Chaos Game Representation

2.2 Recurrence Quantification Analysis

2.3 Horizontal Visibility Graph
3 Implementation
4 Experimental Results

5 Future Work

10
10
12
17

20

25

27

Chapter 1

Introduction

1.1 Time series analysis

Time series ideas appear virtually to all activities. Time series are used by
humans for communication, description, and visualization. Because time is a
physical concept, parameters and other characteristics of mathematical models
for time series can have real-world interpretations. This is beneficial for the
analysis and synthesis of time series. Time series are basic to scientific inves-
tigations. Basic questions of scientific concern are formulated in terms of time
series concepts such as predicting values, describing models and introducing new
models. Because of the tremendous variety of possibilities, substantial simpli-
fications are needed in many time series analyses. The subject of time series
analysis would be important if for no other reason than that it provides means
of examining the basic assumption of statistical independence invariably made
in ordinary statistics Brillinger (2000).

Data in business, economics, engineering, environment, medicine, and other
fields of scientific investigations are often collected in regular time intervals. For
example, many familiar time series occur in the field of economics, where we are
continually exposed to daily stock market quotations or monthly unemployment
figures. Social scientists follow population series, such as birthrates or school
enrollments. In medicine, blood pressure measurements traced over time could
be useful for evaluating drugs used in treating hypertension. Time series data
tend to exhibit patterns such as trends, seasonal fluctuations, irregular cycles,
and occasional shifts in level or variability. The data are, therefore, dynamically
or serially correlated. In practice, the main objectives of analyzing time series
are:

(a) to ascertain and extrapolate the dynamic pattern in the data for forecast-
ing future observations

(b) to assess the effect of exogenous interventions known to have occurred at
given time points

(c) to detect unknown and unsuspected interventions.

The first step in the analysis of a time series is usually to plot the series and
look for features that indicate a specific pattern. These are 4 different types of
time series patterns Brillinger (1981):

1. Trend: reflects the long-term progression of the series. A trend exists
when there is a persistent increasing or decreasing direction in the data.
The trend component does not have to be linear.

2. Cyclic: reflects repeated but non-periodic fluctuations.

3. Seasonal: reflects seasonality present in the time series data, like demand
for flip flops, will be highest during the summer season. Seasonality occurs
at a fixed period of time could be weekly, monthly, quarterly, etc.

4. Random: reflects random or irregular influences. This is residual after we
have removed all other components from time-series data.

In this work, we focus on processing of biological sequences such as (i) se-
quence alignment and assembly and (ii) gene and protein prediction, using time
series analysis methods.

1.2 Protein overview

Proteins are large biomolecules, or macromolecules, consisting of one or more
long chains of amino acid residues. Proteins perform a vast array of functions
within organisms, including catalysing metabolic reactions, DNA replication,
responding to stimuli, providing structure to cells, and organisms, and trans-
porting molecules from one location to another. Proteins differ from one another
primarily in their sequence of amino acids, which is dictated by the nucleotide
sequence of their genes, and which usually results in protein folding into a spe-
cific three-dimensional structure that determines its activity.

A polypeptide is a linear chain of amino acid residues and at least one long
polypeptide is contained in a protein. Short polypeptides, containing less than
20-30 residues, are rarely considered to be proteins. The individual amino acid
residues are bonded together by peptide bonds and adjacent amino acid residues.
The sequence of amino acid residues in a protein is defined by the sequence of a
gene, which is encoded in the genetic code. In general, the genetic code specifies
20 standard amino acids. Shortly after or even during synthesis, the residues in a
protein are often chemically modified by post-translational modifications, which
may alter the physical and chemical properties, folding, stability, activity, and
ultimately, the function of the proteins. Sometimes proteins have non-peptide
groups attached, which can be called prosthetic groups or cofactors. Proteins
can also work together to achieve a particular function, and they often associate
to form stable protein complexes.

Once formed, proteins only exist for a certain period and are then degraded
and recycled by the cell’s machinery through the process of protein turnover. A

protein’s lifespan is measured in terms of its half-life and covers a wide range.
They can exist for minutes or years with an average lifespan of 1-2 days in
mammalian cells. Abnormal or misfolded proteins are degraded more rapidly
either due to being targeted for destruction or due to being unstable Nelson
et al. (2008).

1.2.1 Protein Structure

The majority of proteins fold into unique 3-dimensional structures. The shape
into which a protein naturally folds is known as its native conformation. Al-
though many proteins can fold unassisted, simply through the chemical prop-
erties of their amino acids, others require the aid of molecular chaperones to
fold into their native states. The functions of proteins are maintained because
of their ability to recognize and interact with a variety of molecules. The three-
dimensional structural conformation provides and maintains the functional char-
acteristics. The three-dimensional structure, in turn, is dependent on the pri-
mary structure. So, any difference in the primary structure may produce a
protein which cannot serve its function.

There are four distinct aspects of a protein’s structure (visually represented
at Figure 1.1):

e Primary structure: the amino acid sequence. A protein is a polyamide.

e Secondary structure: regularly repeating local structures stabilized by
hydrogen bonds. The most common examples are the a-helix, 5-sheet and
turns. Because secondary structures are local, many regions of different
secondary structure can be present in the same protein molecule.

e Tertiary structure: the overall shape of a single protein molecule; the
spatial relationship of the secondary structures to one another. Tertiary
structure is generally stabilized by nonlocal interactions, most commonly
the formation of a hydrophobic core, but also through salt bridges, hydro-
gen bonds, disulfide bonds, and even posttranslational modifications. The
term "tertiary structure” is often used as synonymous with the term fold.
The tertiary structure is what controls the basic function of the protein.

e Quaternary structure: the structure formed by several protein molecules
(polypeptide chains), usually called protein subunits in this context, which
function as a single protein complex.

e Quinary structure: the signatures of protein surface that organize the
crowded cellular interior. Quinary structure is dependent on transient,
yet essential, macromolecular interactions that occur inside living cells.

Proteins are not entirely rigid molecules. In addition to these levels of stru-
cture, proteins may shift between several related structures while they perform
their functions. In the context of these functional rearrangements, these ter-
tiary or quaternary structures are usually referred to as ”conformations”, and

transitions between them are called conformational changes. Such changes are
often induced by the binding of a substrate molecule to an enzyme’s active site,
or the physical region of the protein that participates in chemical catalysis. In
solution proteins also undergo variation in structure through thermal vibration
and the collision with other molecules.

Proteins can be informally divided into three main classes, which correlate
with typical tertiary structures: globular proteins, fibrous proteins, and mem-
brane proteins. Almost all globular proteins are soluble and most of them are
enzymes. Fibrous proteins are often structural, such as collagen, the major
component of connective tissue, or keratin, the protein component of hair and
nails. Membrane proteins often serve as receptors or provide channels for polar
or charged molecules to pass through the cell membrane.

Figure 1.1: Cartoon representation of the structural levels of proteins.

1.2.2 Protein Folding Problem

According to the Protein Folding Problem, scientists try to predict 3D structure
of proteins based on their amino acid sequence. Although it is known that a
given sequence of amino acids almost always folds into a 3D structure with
certain functions, it is impossible to predict, with high precision, the exact

folding pattern. Understanding the speed of proteins folding, which occurs
extremely quickly, has also become a challenge to scientists. To be able to
understand any type of biochemical reaction requires isolation and structure
determination of reactants, intermediates and products. In protein folding,
the isolation of reactants, intermediates and products is complicated because
most interactions in proteins are non-covalent and weak interactions which lead
to rapid rates of interconversion between each reaction state. Therefore, the
isolation of intermediates is not easily achieved Finkelstein (2018). Based on
the complexity of protein folding, there are 3 major problems of protein folding:

e What is the folding code?
e What is the folding mechanism?

e Can we predict the native structure of a protein from its amino acid se-
quence?

In the late 1980s, scientists discovered that there is a sequence of amino acid
code that folds proteins in a particular way. The starting point of protein folding
is indeed the primary structure (the sequence of amino acids), also known as de-
natured state of the protein. Even the smallest amount of the denatured state
can activate nucleation and proliferation carried out through protein folding
pathways. Characterization of these denatured states of proteins at physiolog-
ical conditions is very difficult because it is necessary to unfold the proteins to
their denatured states without the presence of denaturants. Recent research
has allowed the study of denatured states to reach new heights using the single-
molecule approach. Also there have been advancements to study intermediates
in protein folding. Nowadays, researchers predict the structure of a protein by
inputting the amino acid sequence into a computer. The advanced technology
and modeling software allow scientists and researchers to form a predicted stru-
cture. However, the structure is not accurate, as there is always a small degree
of errors present. Nevertheless, this can speed up discovery of new medications
since the digital structure can be manipulated.

In 1968, Levinthal (1968) pointed out that protein folding, with precision,
happens in microseconds, which seems unrealistic and impossible. This is also
known as the Levinthal’s paradox. Nowadays, we have advanced methods such
as mutational methods and hydrogen exchange methods, which allow us to see
structural folding events. However, the dynamics and mechanism of protein
folding still require additional research and understanding. There are two dif-
ferent classical mechanisms that have been used to describe folding of single do-
main proteins. The first of the mechanisms is called the Diffusion-Collision
Model. Proteins that follow this mechanism fold in a stepwise manner that
involves growing secondary structure elements. These elements then collide,
combine and strengthen. The second mechanism is known as the Nucleation-
Condensation Model. Proteins following this method have been seen to fold
from an unstructured denatured state with simultaneous formation of secondary
and tertiary structure. The inherent stability of individual protein segment is

a key factor in determining the folding mechanism of a given protein. Many
times, cell’s life relies on the ability of its constituent proteins to fold into 3D
structures that are crucial for their function. The amount of folded functional
protein in a cell depends on several factors such as, rate of protein biosynthesis
and degradation.

The interactions and bonds of side chains within a particular protein deter-
mine its tertiary structure. There are several types of bonds and forces that
hold a protein in its tertiary structure.

e Hydrophobic interactions greatly contribute to the folding and shaping of
a protein. The "R” group of the amino acid is either hydrophobic or hy-
drophilic. The amino acids with hydrophilic ?R” groups will seek contact
with their aqueous environment, while amino acids with hydrophobic "R”
groups will seek to avoid water and position themselves towards the center
of the protein.

e Hydrogen bonding in the polypeptide chain and between amino acid "R”
groups helps to stabilize protein structure by holding the protein in the
shape established by the hydrophobic interactions.

e Due to protein folding, ionic bonding can occur between the positively
and negatively charged "R” groups that come in close contact with one
another.

e Folding can also result in covalent bonding between the "R” groups of cys-
teine amino acids. This type of bonding forms what is called a disulfide
bridge. Interactions called van der Waals forces also assist in the stabi-
lization of protein structure. These interactions pertain to the attractive
and repulsive forces that occur between molecules that become polarized.

These forces contribute to the bonding that occurs between molecules Pauling
et al. (1951).

As protein types continue to increase, there are more and more methods for
predicting protein structure. Different types of proteins have different patterns
of existence and according to their patterns, proteins can be classified as all-
a, all-b, a/b, a+b. The all-a are to a large extent composed of a-helix, while
all-b have mainly b-strands Levitt and Chothia (1976). These methods are
implemented in various programming languages, but they are notably slow.
Our objective is to create a tool that is significantly faster.

Chapter 2

Methods

In the literature one could find several algorithms to analyse biological sequences
such as DNA, RNA or proteins. A pioneer in this scientific field was Jeffrey
(1990), who presented a new method for representing DNA sequences, the chaos
game representation. Several years later, Yang et al. (2009) intended to predict
protein structural classes employing recurrence quantification analysis based on
chaos game representation. Olyaee et al. (2016), expanded the work of Yang
et al. (2009) using complex networks along with the recurrence quantification
analysis. Motivated by the recently proposed work of Jiang et al. (2019) that
achieve efficient protein structure classification, we utilised the following algo-
rithms:

1. Chaos Game Representation
2. Recurrence Quantification Analysis
3. Horizontal Visibility Graph

for the analysis of protein tertiary structure. The classification of protein’s
structure is a time demanding process. Our goal is to create an application
that is notably faster than the existing implementations. RQA is already im-
plemented in Matlab, Python and Julia. CGR and HVG exist only in Matlab,
so we intend to implement them in Julia.

2.1 Chaos Game Representation

The Chaos Game Representation (CGR) is a graphical representation of a se-
quence. It is a method of converting a one-dimensional sequence into a graphical
form. This comprehensive approach provides a visual image of a sequence that
provides an insightful route for pattern recognition. The method was first pro-
posed for the DNA sequence by Jeffrey (1990). Afterwards due to the translation
of DNA into amino acids, CGR was also used for protein structure classification.

10

In 1999 Jones (1999) using PSIPRED was directly applied on the secondary pre-
diction of a protein structure. PSIPRED is a simple and accurate secondary
structure prediction method, incorporating two feed-forward neural networks
which perform an analysis on output obtained from PSI-BLAST (Position Spe-
cific Iterated - BLAST). PSI-BLAST is used to find related sequences and to
build a position-specific scoring matrix. The prediction method or algorithm is
split into three stages: generating a sequence profile, predicting initial secondary
structure, and filtering the predicted structure. PSIPRED works to normalize
the sequence profile generated by PSI-BLAST. Then, by using neural network-
ing, initial secondary structure is predicted. A second neural network is used
to filter the predicted structure of the first network. This network has one hid-
den layer and results in three output nodes (one for each secondary structure
element: helix, sheet, coil). The three final output nodes deliver a score for
each secondary structure element for the central position of the window. Using
the secondary structure with the highest score, PSIPRED generates the protein
prediction Jones (1999). In general, CGR can be extended in such a way that
it becomes practicable for the visualization and the analysis of the amino acid
sequence in a protein.

Mathematically, the chaos game is described by an iterated function system
(IFS). An IFS is a set of pairs of linear equations, each pair of the form

r=ar+by+e
y=cx+dy+f

Each pair of equations gives the formula for computing the new value of the x
and y coordinates.

From a given sequence S, one can define trajectories in a bounded set con-
serving all its statistical properties. There is a one to one mapping between
S and the points in the CGR, which means in particular that each point con-
tains the whole history of the sequence. Also the CGR exhibits a property of
self-similarity, a concept very important in the study of fractals and chaotic
dynamics.

A CGR of a DNA sequence is plotted in a unit square, the four vertices
of which are labelled by the nucleotides A = (0,0),C = (0,1),G = (1,1),T =
(1,0). The plotting procedure is as follows: the first nucleotide of the sequence is
plotted halfway between the centre of the square and the vertex representing this
nucleotide; successive nucleotides in the sequence are plotted halfway between
the previous plotted point and the vertex representing the nucleotide being
plotted Jeffrey (1990).

Our goal is to generalize the CGR method, so that can work for any arbitrary
sequence with different number of symbols and as a result a different graph shape
will be created.

11

2.2 Recurrence Quantification Analysis

Recurrence is a fundamental characteristic of many dynamical systems and was
introduced by Poincaré (1890). It has been recognised that in a larger context
recurrences are part of one of three broad classes of asymptotic invariants:

e growth of the number of orbits of various kinds and of the complexity of
orbit families;

e types of recurrences; and

e asymptotic distribution and statistical behaviour of orbits.

Recurrence Plot

A recurrence plot (RP) is a plot showing, for each moment 4 in time, the times
at which a phase space trajectory visits roughly the same area in the phase
space as at time j. It is a graph of Z(i) &~ Z(j), showing ¢ on a horizontal axis
and j on a vertical axis, where & is a phase space trajectory. Eckmann (1987)
introduced recurrence plots, which provide a way to visualize the periodic nature
of a trajectory through a phase space. Often, the phase space does not have a low
enough dimension (two or three) to be pictured, since higher-dimensional phase
spaces can only be visualized by projection into the two or three-dimensional
sub-spaces. However, making a recurrence plot enables us to investigate certain
aspects of the m-dimensional phase space trajectory through a two-dimensional
representation Marwan et al. (2007).

A recurrence is the time when the trajectory returns to a location it has
visited before. Let x(i) be the i-th point on the orbit describing a dynamical
system in d-dimensional space, for ¢ = 1,..., N. The recurrence plot is an ar-
ray of dots in a N x N square, where a dot is placed at (4, j) whenever X; is
sufficiently close to X;. In practice one proceeds as follows to obtain a recur-
rence plot from a time series u; with length N. First, choosing an embedding
dimension m, one constructs the m-dimensional orbit of X; by using the time
delay method:

Xi = (ui,ui+7,...,ui+(m_1)7.), (21)

fori=1,2,..., Ny, and N,,, = N—(m—1)7, where m is the embedding dimension
and 7 is the time delay. Next, one calculates the Euclidean distance between
all vector pairs in the reconstructed phase space. By selecting the appropriate
threshold ¢, the recurrence matrix can be expressed as follows:

R(l’j) = ®<E - ||f(l) - f(])”)? i,j=1,...,N, (2'2)

where N is the number of considered states z;, €; is a threshold distance, ||| a
norm, and O() the Heaviside function Marwan et al. (2007).

The RP has always a black main diagonal line, the line of identity (LOI),
since by definition R(4,7) = 1, (i = 1, ..., N). Additionally, the RP is symmetric
by definition with respect to the main diagonal, R(i,7) = R(j,1%)

12

In order to compute an RP, an appropriate norm has to be chosen. The
most frequently used norms are the Li-norm, the Lo-norm (Euclidean norm)
and the Ly-norm (Maximum or Supremum norm). Taking into account a fixed
€, the Ly-norm finds the most, the Li-norm the least and the Ls-norm an
intermediate amount of neighbours. To compute RPs, the L,-norm is often
applied, because it is computationally faster and allows to study some features
in RPs analytically.

A deciding parameter of an RP is the threshold . If we choose a pretty
small e, there may be almost no recurrence points and we can not learn any-
thing about the recurrence structure of the examined system. On the other
hand, if € is chosen too large, almost every point is a neighbour of every other
point, which leads to a lot of artefacts. A too large e includes also points into
the neighbourhood which are simple consecutive points on the trajectory. This
effect is called tangential motion and causes thicker and longer diagonal struc-
tures in the RP as they actually are. Hence, we have to find a compromise for
the value of . Furthermore, the influence of noise can require choosing a larger
threshold, because noise would distort any existing structure in the RP.
Different ”rules of thumb” was recommended for the choice of threshold &, for
example a few per cent of the maximum phase space diameter was proposed.
Another possibility is to choose € according to the recurrence point density of
the RP by seeking a scaling region in the recurrence point density.

Another standard for the choice of € takes into consideration that a measure-
ment of a process is a composition of the real signal and some observational noise
with standard deviation o. In order to get similar results as for the noise-free
situation, € has to be chosen such that it is five times larger than the standard
deviation of the observational noise, i.e. € > 50 .

For periodic processes, the diagonal structures within the RP can be used in
order to determine an optimal threshold. For this purpose, the density distri-
bution of recurrence points along the diagonals parallel to the line of identity is
considered.

Recurrence Plot Structures

The initial purpose of RPs was to visualise trajectories in phase space, which
is particularly beneficial in the case of high dimensional systems. RPs generate
important insights into the time evolution of these trajectories, because typical
patterns in RPs are related to a specific behaviour of the system. Recurrence
Plots determined by their typology, can be classified as homogeneous, periodic,
drift and disrupted:

e Homogeneous RPs are typical of stationary systems in which the relaxa-
tion times are short in comparison with the time spanned by the RP. An
example of such an RP is that of a stationary random time series.

e Periodic and quasi-periodic systems have RPs with diagonal oriented, pe-
riodic or quasi-periodic recurrent structures (diagonal lines, checkerboard

13

structures). Irrational frequency ratios cause more complex quasi-periodic
recurrent structures (the distances between the diagonal lines are differ-
ent).

e A drift is caused by systems with slowly varying parameters, i.e. non-
stationary systems. The RP pales away from the line of identity.

e Abrupt changes in the dynamics as well as extreme events cause white
areas or bands in the RP. RPs allow finding and assessing extreme and
rare events easily by using the frequency of their recurrences.

Although these plots can provide a qualitative assessment of systems, as
recurrence and short line segments increase, the visual inspection becomes com-
plicated. To overcome the subjectivity of the recurrence plot, definitions and
procedures to quantify recurrence plot structures was introduced by Zbilut and
Webber Jr (1992).

Figure 2.1: Recurrence Plots with different thresholds € for a random time series

(left: € = 0.01, middle: ¢ = 0.1, right: € = 0.5)

Quantification Analysis

In order to go beyond the visual impression derived by RPs, several measures
of complexity which quantify the small-scale structures in RPs, have been in-
troduced and are known as recurrence quantification analysis (RQA). These
measures are based on the recurrence point density and the diagonal and verti-
cal line structures of the RP. Computation of these measures in small windows
(sub-matrices) of the RP moving along the line of identity yields the time de-
pendent behaviour of these variables. Some studies based on RQA measures
show that they are able to identify bifurcation points, especially chaos—order
transitions. The vertical structures in the RP are related to intermittency and
laminar states. Those measures quantifying the vertical structures enable also
to detect chaos—chaos transitions.

14

Measures based on the recurrence density

e The simplest measure of the RQA is the recurrence rate or percent recur-
rences:

N
1 .
ij=1

which is a measure of the density of recurrence points in the RP. Note that
it corresponds to the definition of the correlation sum, except that the line
of identity is usually not included. Furthermore, in the limit N — oo, RR
is the probability that a state recurs to its e-neighbourhood in phase space.
The value

N
1 .
Nn = N Z R(Z,]) (24)
3,j=1
is simply the average number of neighbours that each point on the trajec-
tory has in its e-neighbourhood.

Measures based on diagonal lines

Processes with uncorrelated or weakly correlated, stochastic or chaotic be-
haviour cause none or very short diagonals (1), whereas deterministic processes
cause longer diagonals and less single, isolated recurrence points.

e The next measure is the percentage of recurrence points which form diag-
onal lines in the recurrence plot of minimal length [,,;,:

N
LP(¢
DET — Zé:}émin ()
2 =1 P ()

where P(¢) is the frequency distribution of the lengths ¢ of the diagonal
lines (i.e., it counts how many instances have length ¢).

(2.5)

This is introduced as a measure for determinism (or predictability) of the
system. The threshold ¢,,;, excludes the diagonal lines which are formed
by the tangential motion of the phase space trajectory. For /i, = 1 the
determinism is one.

e A diagonal line of length [means that a segment of the trajectory is rather
close during [time steps to another segment of the trajectory at a differ-
ent time; thus these lines are related to the divergence of the trajectory
segments. The average diagonal line length:

[Sty LPO)
Y. PO

15

is the average time that two segments of the trajectory are close to each
other, and can be interpreted as the mean prediction time.

e Another RQA measure considers the inverse of the length L. of the
longest diagonal line found in the RP and is called divergence or line-
max:

1

DIV =
Lmax

(2.7)

where L. = max(l;;i=1,..., Np).

These measures are related to the exponential divergence of the phase
space trajectory. The faster the trajectory segments diverge, the shorter
are the diagonal lines and the higher is the measure DIV. It was sometimes
stated that the reciprocal of the maximal length of the diagonal lines
would be an estimator for the positive maximal Lyapunov exponent of
the dynamical system, but the divergence can only have the trend of the
positive maximal Lyapunov exponent. As a result divergence can not
reflect the maximal Lyapunov exponent.

e The measure entropy refers to the Shannon entropy of the probability
p(l) = P(1)/N; to find a diagonal line of exactly length [in the RP:

N

ENT =— Y p(¢)Inp(0), (2.8)
0=Lnin

reflects the complexity of the deterministic structure in the system. How-
ever, this entropy depends sensitively on the bin number and, thus, may
differ for different realisations of the same process.

Measures based on vertical lines

In continuous time systems discretised with sufficiently high time resolution and
with an appropriate large threshold ¢, a large part of these vertical lines usually
correspond to the tangential motion of the phase space trajectory. However,
not all elements of these sets belong to the tangential motion. For example, in
systems with two different time scales, we might find vertical lines because of
the finite size of the threshold €, and not because of tangential motion.

e The amount of recurrence points which form vertical lines can be quanti-
fied in the same way as determinism:

N
_ P
LAM — Zv_vm;n v (’U)’

Sas1 0P (v)
where P(v) is the frequency distribution of the lengths v of the vertical
lines, which have at least a length of vy,i,. This measure is called lamina-
rity and represents the occurrence of laminar states in the system without

(2.9)

16

describing the length of these laminar phases.Laminarity will decrease if
the RP consists of more single recurrence points than vertical structures.

e Trapping time measures the average length of the vertical lines,

N
_ P
TT = M (2.10)

ot P()

is related with the laminarity time of the dynamical system, i.e. how long
the system remains in a specific state.

e Finally, the maximal length of the vertical lines in the RP

Vinax = max(v;; 0 =1,..., N,) (2.11)
can be regarded, analogously to the standard measure Lmazx.

In contrast to the RQA measures based on diagonal lines, these measures are
able to find chaos—chaos transitions. Hence, they allow for the investigation of
intermittency, even for rather short and non-stationary data series. Moreover,
since for periodic dynamics the measures quantifying vertical structures are zero,
chaos—order transitions can also be identified.

2.3 Horizontal Visibility Graph

The visibility algorithm has been introduced as a mapping between time series
and complex networks. This process offers the possibility to apply complex
networks procedures for time series characterization. It was first introduced
by Lacasa et al. (2008). In my implementation, the Horizontal Visibility Graph
algorithm was employed, an evolution of the initial visibility algorithm Luque
et al. (2009) .
Let x;, where i = 1,..., N, be a time series of length N. The algorithm assigns
each datum of the series to a node in the network. Two nodes ¢ and j in the
network are connected if one can draw a horizontal line in the time series joining
x; and x; that does not intersect any intermediate data height. Thus, ¢ and j
are two connected nodes if the following geometrical criterion is fulfilled within
the time series:

Ly Tj > Ln, (2.12)

for all n such that i < n < j (see Fig. 2.2).
The horizontal visibility graph associated to a time series is always:

1. Connected: each node sees at least its nearest neighbors (left-hand side
and right-hand side).

2. Invariant under affine transformations of the series data: the visibility
criterion is invariant under rescaling of both horizontal and vertical axis,
as well as under horizontal and vertical translations.

17

3. Reversible/Irreversible character of the mapping: some information re-
garding the time series is inevitably lost in the mapping from the fact
that the network structure is completely determined in the adjacency ma-
trix.

4. Undirected/directed character of the mapping: Although this algorithm
generates undirected graphs, note that one could also extract a directed
graph (related to the temporal axis direction) in such a way that for a
given node one should distinguish two different degrees: an ingoing degree
kin, related to how many nodes see a given node ¢, and an outgoing degree
kout, that is the number nodes that node i sees Luque et al. (2009).

Figure 2.2: Example of a time series (20 data values) and the associated graph
derived from the visibility algorithm. In the graph, every node corresponds, in
the same order, to series data Lacasa et al. (2008).

Suppose each each sample point of time series z; as a node n; of graph
G = (V,E). G is an unweighed and undirected graph, where N and M are the

number of nodes and the number of edges, respectively. Let A be the adjacency
matrix of the graph G. Based on graph GG, we can extract the following features:

e Degree (k) of any node i:

N
ki = Z Aij (2-13)
j=1

We choose the maximum value of degree k., as our feature.

18

Average shortest path (L) between the nodes:
L=——Ya, (2.14)
Con(n—1)4&~" '
i#]

Diameter (D): is defined as the largest value of all the shortest path
lengths in a network. Diameter is a measure of the compactness in a
network and is computed by:

D = max(di,j) (215)
Vi, j pairs of shortest paths Emerson and Gothandam (2012).

Clustering Coefficient (C): of any node ¢ is the ratio between the total
number of links actually connecting its neighbors and the total number of
all possible links between these neighbors. It is given by

€

Ci= lei(k; — 1)/2

(2.16)

where e; is the actual number of edges between the neighbors of node
j.The clustering coefficient of the network is the average of C; overall
nodes Chang et al. (2008).

1
C== Z C; (2.17)
Energy (F) of the graph is defined as:
E(@G) =) |nl, (2.18)
i=1

where); is the i*" eigenvalue of adjacency matrix A.

Laplacian Energy (LFE). Let us define the Laplacian matrix as L =
D — A | where D is a diagonal matrix containing the vertex degrees. It is
defined as:

LE(G) = Z i — 2m/n|, (2.19)

where p; is the i*? eigenvalue of the Laplacian.

19

Chapter 3

Implementation

All the algorithms mentioned in the previous chapter, have been already materi-
alized in a plethora of programming languages, more notably in Matlab, Python
and R. The problem with these implementations, especially for RQA which is
computationally heavy, is that are time consuming. Our goal is to create an
application that outperforms the existing ones and also be significantly faster.
Based on the research done by Rosario (2019), the Recurrence Analysis pack-
age for Julia programming language is compared with other packages that have
been developed for popular cross-platform programming languages, specifically:

e crqa version 1.0.7 for R
e CRP toolbox version 5.22 for Matlab
e pyunicorn version 0.5.1 for Python.

Figure 3.1 display a benchmark of the times taken by the four packages
that are compared to compute the RQA of a time series (the first coordinate
of a Rossler system with parameters a = 0.25,b = 0.25,andc = 4, starting
at (0,0,0) excluding the first 1000 points), taking samples of increasing length
from N = 250tolN = 3000. The x-coordinate of the trajectories was embedded
in three dimensions with a fixed delay of 6 samples; the recurrence matrix of
the embedded time series was calculated using a fixed threshold ¢ = 1.2, and
all RQA parameters were calculated. The first panel shows the times (millisec-
onds) in a natural scale, and the second in a logarithmic scale to see better the
differences between Julia and Python. Both packages are outperformed by Re-
currenceAnalysis and pyunicorn in Julia and Python, respectively, which show
a similar speed in a natural scale, although pyunicorn is significantly faster,
as clearly seen in the logarithmic scale: it is is about 5 times faster than Re-
currenceAnalysis, between 20 and 50 times faster than crqa, and hundreds of
times faster than the CRP Toolbox. An advantage of RecurrenceAnalysis with
respect to all the other packages is that is is entirely written in Julia (without
C or C++ code), so it is easy to inspect, extend and improve.

20

Figure 3.1: Median computation speeds of RQA by the different pack-
ages. Rosario (2019)

We choose Julia programming language for our implementation because it
surpasses the existing ones and it is also a relatively new language so there is
nothing similar already implemented. Julia is a high-level, high-performance,
dynamic programming language. Julia supports concurrent, parallel and dis-
tributed computing, and direct calling of C and Fortran libraries without glue
code. Julia shines is in its ability to balance speed and performance. It has the
efficiency of a language like C, a language that requires you to specify variables
and their corresponding actions, allowing the CPU to figure out what to do
quickly and efficiently.

For the CGR algorithm, we decided to expand from the classic approaches
that focuses only on protein and genome sequences and we adapted our ap-
proach, so it can work from the simplest approach of a triangle to higher poly-
gons depending on the number of different characters we need to process.

At first, we calculate how many different symbols are contained in the se-
quence, so that we can find the proper angle 6 to divide our polygon. If our
sequence contains 3 symbols (e.g. protein sequence), an equilateral triangle
with its centre at (0,0) will be created, if it has 4 symbols (e.g. DNA or RNA
sequence) a square, if it has 5 a pentagon and so on. Afterwards, starting from
(0,0) we locate the position of the first symbol by multiplying the rotation ma-
trix of # with the column vector (1,1). Then we locate the coordinates of the
remaining symbols by multiplying the rotation matrix of § with the previously
calculated vector each time. Now that we have acquired the initial coordinates of
all symbols, we are capable of calculating our timeseries x, y, using the following

21

commands:
Data: v= Dictionary with initial coordinates for each symbol in
sequence, keys = Array with the keys of sequence
for j < 1 to (length of sequence-1) do
for i + 1 to (count of symbols in sequence) do
point in timeseries = vl[il;
if sequencefi|==keys/i] then
if j==1 then
x[j] = 0.5 * (0 + point[1]);
y[il = 0.5 * (0 + point[2]);
end
x[j+1] = 0.5 * (x[j] + point[1]);
yli+1] = 0.5 (y[j] + point[2));
end

end
end
Algorithm 1: Calculating timeseries z,y with CGR

Now that we have converted our sequence to two different time series z, y, we
are capable of extracting the desired features using RQA and HVG algorithms.

In the 3.2 figure, we demonstrate some CGR examples of different symbols
count.

Carrying on with the RQA described in 2.2, our work for this part was a lot
easier, because the RecurrenceAnalysis package for Julia had all the required
features already implemented. Our focus was centered in finding the most ac-
curate time delay 7 and embedding dimension m for our time series. For the
time delay 7, we applied the uniform multivariate average mutual information
method. To obtain coordinates for time delayed phase-space embedding that
are as independent as possible, we are using the first minimum of mutual infor-
mation as the optimal value of 7. If we can not find a local minimum, but may,
e.g., be a monotonically decreasing function of 7, the lowest value of 7 for which
the AMI function drops below the value 1/¢ is employed Wallot and Mgnster
(2018).

Concerning the embedding dimension m estimation, the False Nearest Neigh-
bors (FNN) was utilised Kennel et al. (1992). FNN make the assumption that
if two data points in the one-dimensional time series are close together, then
they are neighbors. Their difference in magnitude provides us with the distance
of those neighbors. If we embed the time series once (i.e., into two dimensions)
using some time delay 7, then we can use the coordinates of those data points
to examine whether the distance between them has changed appreciably. In
particular, the optimal m is reached when i) FNN drops to 0, or ii) subsequent
embeddings have the same number of false neighbors, or iii) the point before
which the number of FNNs starts to increase again, or lastly iv) the point
where the difference between the number false neighbors is less than a threshold
Ttol = 3%.

Having settled with the appropriate 7 and m, we are able to reconstruct our

22

Figure 3.2: Chaos Game Representation for different sequences

initial time series x, y with julia’s function embed. Afterwards, with RecurrenceM atrix
function, we calculate the recurrences in our time embedded time series, with
threshold € = 0.1 and the euclidean as a metric.

Finally, from the Recurrence Matrix, we extract the 8 features that are
needed, namely: Recurrence Rate, Determinism, Laminarity, Trapping Time,
Maximal Length, Entropy, Average Diagonal Line Length and Line Max.

As explained in section 2.3, for the creation of a horizontal visibility graph,
we need to build the adjacency matrix that will contain the connections be-
tween the elements of the time series. This will be achieved, using the following

23

algorithm:
Data: sequence = the time series, mat = the adjacency matrix
for i < 1 to (length of sequence) do

for j < i to (length of sequence-1) do

if sequencefi] =>sequencefi+1] and i <length of sequence then
J=i+L
matlij]=1;
matlj,i]=1;

end

else
=i+
mat[i,j]=1;
mat[j,i]=1;
break;

end

end

end

Algorithm 2: Calculation of the adjacency matrix

Now that we have established the connections between the nodes, with the
function graph, the adjacency matrix is converted to a horizontal visibility
graph. Just as RQA, the features that we want to deduce from our network
is already implemented in julia, just like the majority of high level program-
ming languages. The six features are some of the most common metrics that
can describe a network. More specifically:

1.

2.

Degree: The maximum degree of the graph is retained.

Clustering Coefficient

. Diameter

. Average Shortest Path: That is calculated with the help of Bellman-Ford

algorithm for shortest paths in a network.

. Energy: Using the eigenvals function of the Linear Algebra Package for

julia.

. Laplacian Energy: Using the function laplacianspectrum that returns the

eigenvalues of the Laplacian matrix for a graph.

24

Chapter 4

Experimental Results

In this work, in order to compare with the existing methods, the 25PDB low
homologous protein was selected as benchmark dataset. The 25PDB dataset
consists of 1,673 proteins with a similarity of approximately 25%. This dataset
has 443 class all — a proteins, 443 class all — b proteins,346 class a/b proteins,
and 441 class a + b proteins.

Computation times

To test the performance of our implementation in Julia, another approach from a
different programming language was needed. Thankfully, all the algorithms that
we use was already utilised in Matlab, which was the answer to the aforemen-
tioned problem. Firstly, we tested the execution time of our implementation for
different delays 7, while keeping the same embedding dimension m. The results
are presented in the following matrix:

H

execution time(seconds) H

pa
2 96.068564
3 96.729757
4 95.389177
2 95.018416
3 99.112987
4
2
3
4

94.857073
95.913025
97.840857
94.261608

A | | wo| wo| o o] o] 3

We conclude that the execution time is remotely affected by the the embed-
ding of the time series, as there is only a deviation of a few seconds.

For the comparison between the two different implementations, we decided to
use m = 3 as embedding dimension while having a delay 7 = 5, for our two time
series. The recurrence matrix of the embedded time series was calculated using

25

a fixed threshold € = 0.1 and the euclidean as metric. The computations have
been done on a machine running 64-bit Windows 10 Home operating system
with system specifications: Intel(R) Core(TM) i5-8265U CPU @ 1.60GHz and
8GiB DDR4 Ram Memory. The software versions that we run the 2 different
implementation were: Julia 1.2.0 and Matlab R2018a.

Figure 4.1: Computation speeds for the 2 implementations.

The first panel in 4.1 shows the time (seconds) in a natural scale, and the
second in a logarithmic scale to see better the differences between Julia and
Matlab.

It is obvious that Julia outperforms Matlab, it is 3 times faster.

We also compared each algorithm’s execution time separately, where julia is
also significantly faster.

Julia Matlab

CGR 1.724406 18.779072
HVG 38.863741 71.188770

26

Chapter 5

Future Work

In this work, a biological sequence is mapped by CGR into two time series.
Then the feature extraction is based on RQA combined with complex networks.
As a result, a vector with 30 features is obtained. The objective to create a
faster implementation for analysing biological sequences, seems to have been
accomplished.

My suggestions for further experimental work are the following: The 30-D
vector can be used to predict the protein tertiary structure using the Sup-
port Vector Machine algorithm for the classification. Support Vector Machine
(SVM) is a supervised machine learning algorithm for classification and regres-
sion problems. It can solve linear and non-linear problems and work well for
many practical problems Cortes and Vapnik (1995). Furthermore, the optimal
time delay tau and embedding dimension m for each time series can be found,
using the AMI and FNN algorithms described in chapter 3. In this way, the fea-
tures extracted from the time series will be more accurate and a higher accuracy
can be achieved from SVM. The inclusion of these features that are currently
missing, and possible improvements in the performance of the code, can con-
tribute to a further computation speed gain and achieve the accuracy suggested
in the paper of Jiang et al. (2019).

27

Bibliography

D. R. Brillinger. Time series: data analysis and theory, volume 36. Siam, 1981.

D. R. Brillinger. Time series: general. Int. Encyc. Social and Behavioral Sci-
ences, 2000.

S. Chang, X. Jiao, C.-h. Li, X.-q. Gong, C.-x. Wang, et al. Amino acid network
and its scoring application in protein—protein docking. Biophysical chemistry,
134(3):111-118, 2008.

C. Cortes and V. Vapnik. Support vector machine. Machine learning, 20(3):
273-297, 1995.

J. Eckmann. Recurrence plots of dynamical systems. Furophysics Letters, 5:
973-977, 1987.

I. A. Emerson and K. Gothandam. Network analysis of transmembrane protein
structures. Physica A: Statistical Mechanics and its Applications, 391(3):
905-916, 2012.

A. Finkelstein. 50+ years of protein folding. Biochemistry (Moscow), 83(1):
S3-S18, 2018.

H. J. Jeffrey. Chaos game representation of gene structure. Nucleic acids re-
search, 18(8):2163-2170, 1990.

H. Jiang, A. Zhang, Z. Zhang, Q. Meng, and Y. Li. Protein tertiary structure
prediction based on multiscale recurrence quantification analysis and horizon-
tal visibility graph. In International Symposium on Neural Networks, pages
531-539. Springer, 2019.

D. T. Jones. Protein secondary structure prediction based on position-specific
scoring matrices. Journal of molecular biology, 292(2):195-202, 1999.

M. B. Kennel, R. Brown, and H. D. Abarbanel. Determining embedding dimen-
sion for phase-space reconstruction using a geometrical construction. Physical
review A, 45(6):3403, 1992.

28

L. Lacasa, B. Luque, F. Ballesteros, J. Luque, and J. C. Nuno. From time
series to complex networks: The visibility graph. Proceedings of the National
Academy of Sciences, 105(13):4972-4975, 2008.

C. Levinthal. Are there pathways for protein folding? Journal de chimie
physique, 65:44-45, 1968.

M. Levitt and C. Chothia. Structural patterns in globular proteins. Nature, 261
(5561):552-558, 1976.

B. Luque, L. Lacasa, F. Ballesteros, and J. Luque. Horizontal visibility graphs:
Exact results for random time series. Physical review. E, Statistical, nonlinear,
and soft matter physics, 80:046103, 10 2009. doi: 10.1103/PhysRevE.80.
046103.

N. Marwan, M. C. Romano, M. Thiel, and J. Kurths. Recurrence plots for the
analysis of complex systems. Physics reports, 438(5-6):237-329, 2007.

D. L. Nelson, M. M. Cox, and A. L. Lehninger. Principles of biochemistry.
Freeman New York:, 2008.

M. H. Olyaee, A. Yaghoubi, and M. Yaghoobi. Predicting protein structural
classes based on complex networks and recurrence analysis. Journal of theo-
retical biology, 404:375-382, 2016.

L. Pauling, R. B. Corey, and H. R. Branson. The structure of proteins: two
hydrogen-bonded helical configurations of the polypeptide chain. Proceedings
of the National Academy of Sciences, 37(4):205-211, 1951.

H. Poincaré. Sur le probleme des trois corps et les équations de la dynamique.
Acta mathematica, 13(1):A3-A270, 1890.

H. D. Rosario. Comparison of software packages for rqa. https:
//github.com/JuliaDynamics/RecurrenceAnalysis. j1/wiki/
Comparison-of-software-packages-for-RQA, 2019.

S. Wallot and D. Mgnster. Calculation of average mutual information (ami)
and false-nearest neighbors (fnn) for the estimation of embedding parameters
of multidimensional time series in matlab. Frontiers in psychology, 9:1679,
2018.

J.-Y. Yang, Z.-L. Peng, Z.-G. Yu, R.-J. Zhang, V. Anh, and D. Wang. Prediction
of protein structural classes by recurrence quantification analysis based on
chaos game representation. Journal of Theoretical Biology, 257(4):618-626,
2009.

J. P. Zbilut and C. L. Webber Jr. Embeddings and delays as derived from
quantification of recurrence plots. Physics letters A, 171(3-4):199-203, 1992.

29

https://github.com/JuliaDynamics/RecurrenceAnalysis.jl/wiki/Comparison-of-software-packages-for-RQA
https://github.com/JuliaDynamics/RecurrenceAnalysis.jl/wiki/Comparison-of-software-packages-for-RQA
https://github.com/JuliaDynamics/RecurrenceAnalysis.jl/wiki/Comparison-of-software-packages-for-RQA

	Introduction
	Time series analysis
	Protein overview
	Protein Structure
	Protein Folding Problem

	Methods
	Chaos Game Representation
	Recurrence Quantification Analysis
	Horizontal Visibility Graph

	Implementation
	Experimental Results
	Future Work

