
University of Thessaly
Greece, Winter 2020

Audio-Visual Speaker Diarization in Broadcast News

Οπτικο-Ακουστική Καταλογοποίηση Ομιλητή σε

Δελτία Ειδήσεων

Charalampos Vossos

Supervisor: Gerasimos Potamianos

Committee Members: Nikolaos Bellas, Georgios Stamoulis

Diploma Thesis

Department of Electrical and Computer Engineering

University of Thesssaly

Volos, Greece

This Thesis is submitted to the University of Thessaly as part of the requirements for the

Diploma of Electrical and Computer Engineering.

https://www.linkedin.com/in/charalampos-vossos-6bbb78185/
https://faculty.e-ce.uth.gr/gpotamianos/
https://faculty.e-ce.uth.gr/nbellas/
https://www.e-ce.uth.gr/department/faculty/georges/
https://www.e-ce.uth.gr/
http://www.uth.gr/

i

Περίληψη

΄Ενα πολύ διαδεδομένο πρόβλημα στον τομέα της Μηχανικής Μάθησης είναι η

καταλογόποιηση ομιλητή. Πρόκειται για τη διαδικασία κατά την οποία απαντάται το ερώτημα

του "ποιός μιλάει και πότε" σε δεδομένα ήχου ή βίντεο χωρίς να γνωρίζουμε εκ των προτέρων

τη διάρκεια ομιλίας και τον αριθμό των ομιλητών. Η συνήθης διαδικασία με την οποία αυτό

επιτυγχάνεται χωρίζεται σε τρία μέρη: στην εξαγωγή χρήσιμων χαρακτηριστικών απο τα

δεδομένα ήχου και εικόνας, στην κατηγοριοποίηση της ομιλίας και των ομιλητών και τέλος

στην αξιολόγηση του συστήματος.

Στην παρούσα εργασία αναπτύξαμε συστήματα καταλογοποίησης ομιλητή, στα οποία

χρησιμοποιούμε δεδομένα είτε μόνο ήχου, είτε μόνο εικόνας, είτε συνδυασμού αυτών. Για

την προσέγγιση με τα ηχητικά δεδομένα χρησιμοποίησαμε ενα εργαλείο καταλογοποίσης

ομιλητή που αναπτύχθηκε από την εργαστηριακή ομάδα του Πανεπιστημίου στο Le Mans

της Γαλλίας και λέγεται LIUM SpkDiarization toolkit [1]. Ως ηχητικά χαρακτηριστικά

χρησιμοποιήθηκαν 13 συντελεστές MFCC.

΄Οσον αφορά την οπτική προσέγγιση δημιουργήσαμε δύο διαφορετικά συστήματα

καταλογοποίησης ομιλητή. Και στα δύο συστήματα ως περιοχή ενδιαφέροντος επιλέχθηκε η

περιοχή γύρω από το στόμα. Για το πρώτο σύστημα εξετάσαμε καρέ-καρέ τις μετατοπίσεις

που σημειώνονται στα pixels της περιοχής ενδιαφέροντος εφαρμόζοντας τεχνική οπτικής

ροής (optical flow). Αυτές οι μεταβολές (μέτρο και γωνία) αποτελούν τα οπτικά

χαρακτηριστικά του συστήματος. Για την ταξινόμηση σε ομιλία ή μη χρησιμοποιήσαμε

Μηχανές Διανυσματικής Στήριξης (SVM). Για το δεύτερο σύστημα ενώσαμε τις περιοχές

του στόματος για κάθε ομιλητή, σε διαδοχικά στιγμιότυπα του βίντεο, σε μεγαλύτερες

εικόνες. Στη συνέχεια χρησιμοποιήσαμε αυτές τις εικόνες σαν είσοδο σε ένα Συνελικτικό

Νυρωνικό Δίκτυο για να ταξινομήσουμε τα δείγματα στις κλάσεις "ομιλία" ή "μη ομιλία".

Για τον συνδυασμό της οπτικής και της ακουστικής πληροφορίας αναπτύξαμε ένα σύστημα

καταλογοποίησης ομιλητή σε δύο στάδια. Στο πρώτο στάδιο κρατήσαμε σαν βάση την

ακουστική μέθοδο και προσθέσαμε πληροφορία για τον αριθμό των ομιλητών που φαίνονται

στο βίντεο εφαρμόζοντας αλγόριθμο ομαδοποίησης των προσώπων.

Στο δεύτερο στάδιο προσθέσαμε επιπλέον πληροφορία για τα διαστήματα επικαλυπτόμενης

ii

ομιλίας. Για να το επιτύχουμε αυτό όπως και στην οπτική προσέγγιση εντοπίσαμε την

περιοχή του στόματος και εφαρμόσαμε τεχνική οπτικής ροής. Αθροίζοντας τα μέτρα

των μετατοπίσεων των pixels καταλήξαμε σε 2 πιθανούς επικαλυπτόμενους ομιλητές

με τις μεγαλύτερες βαθμολογίες εντός παραθύρου διάρκειας 2 δευτερολέπτων. Οι

αντίστοιχες βαθμολογίες των ομιλητών αυτών αποτέλεσαν το δίανυσμα χαρακτηριστικών του

συστήματος. Για την ανίχνευση της επικαλυπτόμενης ομιλίας χρησιμοποιήθηκαν Μηχανές

Διανυσματικής Στήριξης. Στη συνέχεια τα αποτελέσματα του ταξινομητή φιλτραρίστηκαν

με εμπειρικά επιλεγμένο κατώφλι και με τον αλγόριθμο ομαδοποίησης Κ-μέσων.

Τέλος και τα πέντε συστήματα καταλογοποίησης αξιολογήθηκαν με βαση τη μέθοδο

μέτρησης του Ρυθμού Σφάλματος Καταλογοποίησης (DER) σε τηλεπαράθυρα δελτίων

ειδήσεων της Ελληνικής τηλεόρασης απο τη βάση δεδομένων Gridnews [2].

iii

Abstract

A very common problem in the field of Machine Learning is speaker diarization. This is

the process of answering the question of "who is talking and when" in audio or video data

without knowing in advance the duration of the speech and the number of speakers. The

usual process by which this is accomplished is divided into three parts: the extraction of

useful features from audio and video data, the classification of speech and speakers, and

finally the evaluation of the system.

In this Thesis we have developed speaker diarization systems in which we use either

audio-only data, video-only data, or their combination. In the audio-only approach we

used a speaker diarization toolkit developed by the Le Mans University Laboratory of

Informatics team in France, called LIUM SpkDiarization toolkit [1]. 13 MFCC coefficients

were used as audio features.

For the visual-only diarization we implemented two different systems. In both systems

the mouth area was chosen as the region-of-interest. For the first one, we examined

frame-by-frame the displacements in pixels in the region-of-interest using an optical flow

technique. These changes (magnitude and angle) are the visual features of the system.

We used Support Vector Machines (SVMs) in order to classify the speakers into "speech"

or "non speech" classes. For the second system, we concatenated the mouth areas for

each speaker, in consecutive frames, into larger concatenated images. Then, we used

these images as input to a Convolutional Neural Network to classify the samples into the

"speech" or "non-speech" classes.

To combine visual and audio information we developed a two-stage speaker diarization

system. In the first approach we kept the audio method as a basis and added information

about the number of speakers shown in the video by applying a face clustering algorithm.

In the second step we inserted additional information about overlapping speech intervals.

To achieve this, as in the visual approach, we located the mouth area and applied an

optical flow technique. Summing up the pixel displacement magnitudes resulted in 2

potentially overlapping speakers with the highest scores within a 2-second window. The

corresponding scores of these speakers constituted the system feature vectors. Support

iv

Vector Machine classifiers were used for speech overlap detection. Then, the classifier

results were filtered using an experimentally selected threshold and the k-means clustering

algorithm.

Finally, all five diarization systems were evaluated by measuring the Diarization Error

Rate (DER) in multi-speaker conversation panels in Greek Broadcast News from the

Gridnews database [2].

v

Acknowledgments

First of all, I would like to thank my thesis advisor Associate Professor Gerasimos

Potamianos for all his help, observations, and time spent developing this diploma thesis.

His guidance and support have helped me succeed in this task. I would also like to thank

my fellow student and friend Georgios Gkountouras for the great collaboration we had

during the past year. Last but not least, I would like to thank my family for all their

support throughout these years.

Contents

1 Introduction 1
1.1 The Speaker Diarization Task . 1
1.2 Thesis Contribution . 2
1.3 Related Work . 2
1.4 Thesis Overview . 4

2 Dataset 6
2.1 Dataset Description . 6
2.2 Transcription Files . 7
2.3 Ground Truth . 9
2.4 Reference Annotations . 10

3 Audio Speaker Diarization 13
3.1 Preliminaries . 13

3.1.1 Gaussian Mixture Models . 13
3.1.2 Expectation - Maximization Algorithm 16
3.1.3 Hidden Markov Models . 18
3.1.4 Viterbi Algorithm . 19

3.2 LIUM SpkDiarization . 19
3.3 Extraction of MFCC features . 20
3.4 Generalized Likelihood Ratio Segmentation 21
3.5 Segmentation Based on BIC . 22
3.6 Hierarchical Clustering . 23
3.7 Viterbi Decoding . 23
3.8 Speech/Music/Silence Segmentation and Filtering 23

3.8.1 Speech/Music/Silence Segmentation 23
3.8.2 Segmentation Filtering . 24

3.9 Gender and Bandwidth Detection . 24
3.10 Integer Linear Programming Clustering 25

3.10.1 Introduction . 25
3.10.2 I-Vectors Clustering Method . 25

4 Visual Speaker Diarization 27
4.1 Preliminaries . 27

4.1.1 Support Vector Machines . 27
4.1.2 Convolutional Neural Networks . 31

4.2 Dlib Library . 33
4.2.1 Overview . 33

vi

Contents vii

4.2.2 Dlib Face Detection . 33
4.2.3 Dlib Pose Estimation . 36

4.3 Centroid Tracking . 37
4.4 Optical Flow . 38
4.5 Optical Flow and SVM Visual Diarization Description 40

4.5.1 Speech Detection Features . 40
4.5.2 Speech Detection SVM Training 40
4.5.3 Speech Detection SVM Testing . 41

4.6 CNN Visual Diarization Description . 41
4.6.1 Training and Testing Dataset . 41
4.6.2 CNN Model Training . 42
4.6.3 CNN Model Testing . 43

5 Audio-Visual Speaker Diarization 45
5.1 Preliminaries . 45

5.1.1 K-Means Clustering . 45
5.2 Motivation for Audio-Visual Fusion . 46
5.3 Face Clustering . 46

5.3.1 Deep Residual Networks . 47
5.4 Speech Overlap Detection . 49

5.4.1 Overlap detection features . 49
5.4.2 Overlap Detection SVM Training 50
5.4.3 Overlap Detection SVM Testing 50

6 Evaluation 53
6.1 Diarization Error Rate . 53
6.2 Audio-Only Evaluation . 53
6.3 Visual-Only Evaluation . 54

6.3.1 Optical flow and SVM Method Evaluation 54
6.3.2 CNN Method Evaluation . 56

6.4 Audio-Visual Evaluation . 58

7 Conclusion and Future Work 60
References . 61

List of Figures

2.1 Two cases of video frames. In (a) there is a frame with the participants
and a highlight window and in (b) a frame where the camera zooms in at
the speaker. 7

2.2 3 face tracks in 8 consecutive frames. The 1st face track contains a speaker,
therefore all the target labels for it are 1. All other face target labels are 0. 10

2.3 A visualization of an annotation. 11

3.1 The complete audio diarization method of LIUM. 20

4.1 A typical Convolutional Neural Network architecture (Figure from [3]). . . 31
4.2 Convolution operation (Figure from [4]). 32
4.3 Pooling operation (Figure from [5]). 33
4.4 Face numbers change in consecutive frames. 37
4.5 Face numbers remain constant with centroid tracking. 38
4.6 The optical flow with SVM visual diarization method. 41
4.7 Example of concatenated images . 42
4.8 CNN model architecture. 43
4.9 Training and validation set CNN model accuracy over training epochs. . 44

5.1 Audio-visual fusion using face clustering information. 48
5.2 The complete audio-visual diarization method. 52

6.1 Comparison between DERs for each window size for different videos. . . . 56
6.2 Comparison between DERs for each concatenated image size for different

videos. 57
6.3 Comparison between audio and audio-visual approaches for different videos. 59

viii

List of Tables

6.1 Results of audio-only diarization. 54
6.2 Results of visual-only diarization. 55
6.3 Results of visual-only diarization. 56
6.4 Results of audio-visual diarization with face clustering. 58
6.5 Results of the complete audio-visual diarization method. 59

ix

Chapter 1

Introduction

1.1 The Speaker Diarization Task

The Speaker Diarization (SD) problem is a crucial problem in pattern recognition. Many

different approaches to this task have been implemented in the last decades. The main

goal of SD is to find out who speaks and when in an audio or video stream. The continually

increasing reach of technology, high tech cameras, and mobile phones, as well as the large

amount of multimedia data necessitates robust speaker diarizartion. The common steps

followed for building speaker diarization systems are the following:

• The audio signal is classified into speech and non speech segments.

• The segments that belong to the same speaker are grouped in the same cluster.

However, many studies have proven that the role of visual information is very important

in speaker diarization as well. So, in the last few years many approaches have been

implemented that combine both audio and visual information in several ways. When

only one modality is used, the speaker diarization task may face challenges that make

diarization quite difficult.

For the audio-only diarization task, there are several problems that make the diarization

harder. In particular, the acoustic signal may come from several speakers, or it may come

from other sources that exist in the background or have some noise or overlapping speech.

On the other hand, the video-only approach is very challenging as well, since it only

1

1.2. Thesis Contribution 2

focuses on the lips and facial motion detection. Hence, in cases where the face is not in a

frontal pose or the camera isn’t close enough to capture lip movements, speaker detection

becomes really hard.

As a way to address the challenges of the two individual modalities, new methods were

implemented that combine useful information from each modality to create an audio-visual

approach. Feature extraction is a very important part for every speaker diarization task.

Fusion can then occur at the feature extraction stage (called early fusion), or after the

separate decisions of each modality (called late fusion). In this thesis, we implemented a

late fusion method.

1.2 Thesis Contribution

The purpose of this thesis is to explore the idea of audio-visual fusion for speaker diarization

(“who speaks and when”). We study how to achieve better results in speaker diarization

by combining audio and visual cues. Then, we compare the resulting approach to single-

modality speaker diarization. In the audio case, an open-source toolkit that was developed

by Le Mans University (Laboratoire d’Informatique de l’Université du Mans) called LIUM

SpkDiarization toolkit [1] was used to find the speaker identities. In the visual part, the

motion of lips was employed as an indicator of speech. The audio-visual fusion method was

implemented in two stages. First, the audio-only approach was combined with information

about the number of speakers that is revovered from the video sequence. Additionally,

the key observation that this method cannot handle more than one speaker leads to an

extended version that detects speech overlaps through tracking concurrent multi-speaker

lip motion. Finally, all systems were evaluated in discussion panels of Greek broadcast

news from the Gridnews database [2].

1.3 Related Work

In the speaker diarization task the main purpose is to find speech segments and to cluster

segments that belong to the same speaker. In order to achieve that, we can use audio,

1.3. Related Work 3

visual, or a combination of audio and visual information. In the audio-only case, the

Mel Frequency Cepstral Coefficients (MFCCs) are a common choice of audio features

when each speech segment corresponds to a single speaker. One of these methods was

implemented in [6], where the authors extracted the MFCC feature vector for each frame

and employed agglomerative clustering, so that each generated cluster corresponds to

a different speaker. Subsequently, consecutive speech frames were grouped either into

segments of the same speaker, or into another speaker cluster by using a Hidden Markov

Model (HMM).

Among others, visual speech diarization was addressed in [7], where the authors focused on

lip activity detection. The solution introduced in this paper was to detect the movement of

the lips and then classify faces into the "speech" or "non speech" classes for TV data. For

facial feature detection they used a detector based on the Active Shape Model (ASM) [8].

For facial feature extraction, faces were detected by the OpenCV library implementation

of the Viola-Jones algorithm. After that, the pose of the faces was estimated by matching

them to a 68-landmark location model. Then, the authors used the lips region in order to

measure lip motion. By using optical flow techniques, they calculated pixel displacement

between the mouth regions of two consecutive frames. Afterwards, they computed the

entropy of pixel displacement of a mouth region and summed them. For classifying the

faces as speaking or not, they implemented one thresholding method and one method

with mean squared difference between pixels in consecutive mouth regions.

Another interesting approach of audio-visual diarization was implemented in [9]. There,

the authors implemented two methods in order to synchronize the audio and visual

features. Then, they compared the results of the two methods separately. One was mutual

information and the other was Canonical Correlation Analysis (CCA). For audio features,

they used MFCCs and for visual features they implemented the Kanade–Lucas–Tomasi

(KLT) Optical Flow algorithm with skin color detection techniques in order to find

the motion in the lips region. Because they collected some useful parts of the image,

like the lips region, and not the whole image, the computation of synchrony became

computationally tractable. Afterwards, they used vertical and horizontal movements and

they asserted that the audio features are more correlated with the vertical motion of lips.

Finally, their algorithm was evaluated by using mutual information and CCA.

1.4. Thesis Overview 4

Furthermore, a multimodal diarization system on talk-shows was proposed in [10]. The

system was divided into feature extraction both in the visual and audio domains, model

creation, and classification of the show speech segments. MFCCs were used as audio

features. In the visual approach, the authors considered features that characterize the

participants’ clothing. For the training patterns, the authors collected shots that are long

enough and contain faces in the foreground and performed lip activity detection. Then the

data were clustered, so that each cluster corresponds to a different speaker. Finally, for

the remaining video (parts of the talk show that weren’t selected in the previous stage),

an SVM classifier was used for the speaker classification.

An additional multimodal speaker diarization approach was proposed in [11]. There, the

authors used meeting videos for training and testing their system. In this dataset videos

of all the participants are seen in full body motion and with non-frontal face view. The

extracted features in the audio domain were MFCCs. On the other hand, the visual features

were extracted in grey-scale images by the image difference method. Subsequently, the

audio and visual features were concatenated. Then, the authors employed an agglomerative

clustering algorithm in order to group the different speakers. Finally, the system was

evaluated on 2-person meeting data.

1.4 Thesis Overview

This thesis is divided into 7 chapters. After this introductory chapter, the remainder has

the following structure:

• In chapter 2, we describe the Greek public broadcast news dataset in detail and

the form of its accompanying transcription files. Furthermore, we explain how we

created ground-truth annotations from these files.

• In chapter 3, we analyze the audio-only approach. We present the subsystems of

the SpkDiarization toolkit by LIUM and their interactions. We explain the steps

for audio feature extraction, the probabilistic models used, as well as the clustering

algorithms, along with their corresponding theoretical formulation.

• In chapter 4, we describe the two video-only approaches. We begin with

1.4. Thesis Overview 5

an introduction to Support Vector Machines (SVMs) and Convolutional Neural

Networks used as part of our methods. Afterwards, we offer a complete description

of the algorithms and libraries that we used (face detection through the dlib library,

centroid tracking, and optical flow). Lastly, we describe in detail our two implemented

diarization systems.

• In chapter 5, we introduce the combination of audio and visual modalities.

Specifically, we augment the audio-only approach with face clustering information

and the detection of overlapping speech segments.

• In chapter 6, we present the results of our implemented diarization systems (five

in total), comparing and commenting on the results, also providing characteristic

examples.

• In chapter 7, we conclude the thesis by summarizing our findings. Finally, we

provide some ideas for future work on the speaker diarization task.

Chapter 2

Dataset

2.1 Dataset Description

For developing and evaluating our speaker diarization systems we used part of a corpus of

videos with multi-speaker conversations in Broadcast News of Greek television [2]. The

dataset contains 14 clips with a total duration of 1 hour and 36 minutes. These clips

were extracted from 11 Broadcast News videos having a duration of about one hour per

Broadcast with a resolution of 288×352 pixels, 25 fps frame rate and encoded as MPEG-4.

The number of frames in each video ranges from 5200 to 19200, and the total number of

frames for the whole dataset is about 121570. Each clip contains a single discussion topic

and has a duration of 4-12 minutes. In order to cut the dataset videos we used the free,

open source avidemux video editing program [12].

In each video we see the main speaker that directs the conversation and the panel that

takes part in the discussion. Each of the participants (host and guests) is in a single

window and their number is typically between 2 and 5. All speak at least once during

the video and there are no silent segments. In each clip the number of participants is

constant, that means that no one enters or leaves. All the participants are visible in

frontal face pose and we can see only their upper body. The speakers don’t move during

the video, and the camera records from a constant position. Moreover, there are some

cases where the camera zooms in at the current speaker (see Figure 2.1), but that doesn’t

last a long time before the camera goes back to the entire panel. A crucial characteristic

6

2.2. Transcription Files 7

(a) (b)

Figure 2.1: Two cases of video frames. In (a) there is a frame with the participants and
a highlight window and in (b) a frame where the camera zooms in at the speaker.

of the dataset videos is that while the speakers talk to each other, there is sometimes a

different window featuring some highlights (see Figure 2.1) that are related to the subject

of discussion but doesn’t include any speakers. Note that highlight windows may contain

incidental (transient) people.

In this thesis, for the visual diarization system implementation we are only interested in

the mouth region of every speaker. One additional consideration which is very challenging

for the diarization system implementation is that there are some segments in the clips

where two or more speakers speak at the same time (overlapping speech). A significant

portion of this thesis is devoted to developing a method for detecting this special case.

For the audio part, we transformed the extracted clips into WAV format using the VLC

media player software. The audio files have 44100 samples per second (44.1 kHz) and 2

channels (stereo information).

2.2 Transcription Files

Each of the 11 Broadcast News videos is accompanied by one transcription file. These files

contain the words of the speakers from Broadcast News data in the Greek language. They

also include some other information about turns, speakers, sections, acoustic conditions,

and other events. The data are stored in an XML file. In particular, the transcription

2.2. Transcription Files 8

contains sections, which are divided into turns. The turns are divided into segments.

Changes in acoustic background conditions can occur independently from sections and

turns.

At the beginning of the file, there is a header that contains metadata information about the

file format, such as encoding and XML version. In our case the encoding is Windows-1253

(Greek). This is followed by a list with all the names of the speakers, their genders, their

dialect, and their ids (every speaker has a unique id). Furthermore, the file contains a list

of events. In our transcription files there are four different kinds of events:

• noise - Speech with noise in the background.

• music - Speech with music in the background.

• non Greek - Speech in a language other than Greek.

• advertisements

This is followed by the main part of the transcription with the speakers’ words and headers,

which contains the section and the turn. Each section includes the duration of speech

(start time, end time) and the section type. There are two section types:

• report - Clearly articulated speech in the studio without noise.

• non-trans - There is no speech.

Each turn contains the speaker id, the mode, the audio fidelity, the channel, as well as

the turn start-time and end-time. In this thesis we are only interested in the speaker ids

and the speech duration and not in the contents of speech (words). In case of overlapping

speech, the only change is that in the header there are two speaker ids and one time

period during which both speak. There aren’t any cases where more than two participants

speak in the transcription files. Of course, it is possible in a video to have more than 2

overlapping speakers. In this situation, the transcription file contains two different sections

with small, consecutive time periods of speech and two overlapping speakers each.

An example of a transcription file follows:

2.3. Ground Truth 9

<Episode>

</Turn>

</Section>

<Section type="report" startTime="21.012" endTime="82.711">

<Turn speaker="spk0" mode="planned" fidelity="high"

channel="studio" startTime="21.012" endTime="82.711">

<Sync time="21.012"/>

<Event desc="music" type="noise" extent="begin"/>

Κυρίες και κύριοι καλησπέρα σας, ας δούμε την επικαιρότητα

<Event desc="music" type="noise" extent="end"/>

με τίτλους.

<Sync time="24.222"/>

Από κόσκινο

<Event desc="music" type="noise" extent="begin"/>

όλες οι συναλλαγές

<Sync time="26.229"/>

χρηματιστηριακών εταιριών με ασφαλιστικά ταμεία, την τελευταία

εξαετία.

</Turn>

</Section>

</Episode>

2.3 Ground Truth

In order to get the ground truth for the dataset, we utilised a python script for parsing the

transcription files. It was very fortunate that the files were XML documents, because it

means that all the information was stored as text in a tree-based format. This parsing was

implemented only for the duration of the cropped video clip, not the entire transcription

file. To do that, we found the start and end-times of the clip and we parsed only between

those two boundaries. From this, we extracted for all speech sections the duration of

speech and the speaker ids. We ignored all other types of events that are included in the

transcription file such as music, noise, and advertisements.

2.4. Reference Annotations 10

Figure 2.2: 3 face tracks in 8 consecutive frames. The 1st face track contains a speaker,
therefore all the target labels for it are 1. All other face target labels are 0.

The purpose of a supervised learning algorithm is to find a function that maps the

relationships between input training samples and targets (ground truth). So it is crucial

to have well-defined target values. In this speaker diarization task, the target is a binary

label (speaking or not) for each participant in a frame. In order to create the target data,

we used the extracted values from the transcription (speech duration in frames, speaker

ids) in the following way:

• We set a numpy vector with size equal to the number of speakers multiplied by the

total number of video frames and initialized it with zeros.

• For every frame included in the extracted duration of speech, we set the speaker

targets for the current frame to 1 and we didn’t make any changes for any other

participant targets in the frame.

Obviously, in overlapping speech cases we set the target values to 1 for all overlapping

speakers in the frame.

2.4 Reference Annotations

In the next step, we inserted the parsed values (speech durations, speaker ids) into an

annotation (see Figure 2.3) by assigning the speaker id to the corresponding time of

speech. Note that the speech duration was converted from frames to time by dividing the

frame number by 25 (number of frames per second). In order to create the annotation, the

2.4. Reference Annotations 11

Figure 2.3: A visualization of an annotation.

python pyannote library was used [13]. In particular, the speech duration was converted

into an appropriate type in order to be inserted into the annotation. To achieve that,

we used the pyannote.core.Segment class, which functions as a description of temporal

fragments with the following form:

[00:00:00.000 – 00:01:30.425]

Above, the time is formatted as hours:minutes:seconds.milliseconds.

Afterwards, in order to create the reference annotations we used the

pyannote.core.Annotation class. Some characteristics of that class are the following:

• The inserted segments are sorted by start-time or, in cases of tie, by end-time.

• It’s not possible to add the same track twice.

• Only non-empty tracks can be inserted.

A track refers to a pair (support, name), where support is the speech segment duration

and name is the speaker id. Furthermore, in overlapping speech situations it is possible to

add multiple different names (speaker ids) to the same support (speech segment). This is

a part of a reference annotation file:

2.4. Reference Annotations 12

[00:00:00.000 – 00:00:41.847] - spk0

[00:00:41.847 – 00:01:05.100] - spk56

[00:01:05.100 – 00:01:13.041] - spk0

[00:01:13.041 – 00:02:09.172] - spk12

[00:02:09.172 – 00:02:24.267] - spk0

[00:02:24.267 – 00:03:54.692] - spk21

[00:03:54.692 – 00:03:57.578] 0 spk21

[00:03:54.692 – 00:03:57.578] 1 spk12

[00:03:57.578 – 00:04:25.656] - spk21

The reference annotation is used for system evaluation by comparing it to the hypothesis

annotation produced by our diarization system. Both the reference and the hypothesis

annotations were inserted into python metrics tools in order to measure system accuracy.

In this thesis, the Diarization Error Rate (DER) metric was computed by python library

"pyannote metrics" [14].

Chapter 3

Audio Speaker Diarization

In this chapter we present our audio-only approach using the LIUM speaker diarization

toolkit [1]. Specifically, we provide an overview of the toolkit and the possibilities it

provides for speaker diarization in Broadcast News. In addition, we describe the stages of

feature extraction (MFCC), segmentation, clustering, and the mathematical background

of the statistical models.

3.1 Preliminaries

3.1.1 Gaussian Mixture Models

A Gaussian Mixture is a probability function comprised of several Gaussian distributions,

each identified by k ∈ {1, ..., K}, where K is the number of mixtures. Each Gaussian k in

the mixture is fully determined by the following parameters:

• A mean µk that defines its center.

• A covariance Σk that defines its spread.

• A mixing probability πk that defines the contributions of the Gaussian function to

the mixture.

13

3.1. Preliminaries 14

The mixing coefficients satisfy:

K∑
k=1

πk = 1. (3.1)

The general equation of a single Gaussian density function is:

N (x|µ,Σ) =
1

(2π)D/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
, (3.2)

where x represents the data points, D is the number of dimensions of each data point, µ

is the mean vector and Σ is the covariance matrix. The natural logarithm of this equation

is:

lnN (x|µ,Σ) = −D
2

ln 2π − 1

2
ln |Σ| − 1

2
(x− µ)TΣ−1(x− µ). (3.3)

Let:

p(znk = 1|xn), (3.4)

be the probability that data point xn comes from Gaussian k, where z is a latent variable

with the value of one when xn comes from Gaussian k, and zero otherwise. Then:

πk = p(zk = 1). (3.5)

This means the probability of observing a point from Gaussian k is equivalent to that

Gaussian mixing coefficient. Let z be the set of all latent variables:

z = {z1, · · · , zK}. (3.6)

Each z is independent and can only have a value of one when the point comes from k.

3.1. Preliminaries 15

This implies:

p(z) = p(z1 = 1)z1p(z2 = 1)z2 · · · p(zK = 1)zK =
K∏
k=1

πzkk . (3.7)

The probability of observing xn conditioned on the event that it came from Gaussian k is

the Gaussian itself, so:

p(xn|z) =
K∏
k=1

N (xn|µk,Σk)
zk . (3.8)

The Bayesian rule states that:

p(xn, z) = p(xn|z)p(z). (3.9)

We marginalize by summing up the terms on z:

p(xn) =
K∑
k=1

p(xn|z)p(z) =
K∑
k=1

πkN (xn|µk,Σk). (3.10)

We need to find the maximum likelihood of the model in order to determine the best

values for the GMM parameters. The likelihood is the joint probability of all observations

xn:

p(X) =
N∏
n=1

p(xn) =
N∏
n=1

K∑
k=1

πkN (xn|µk,Σk). (3.11)

Taking the natural logarithm of each side:

ln p(X) =
N∑
n=1

ln
K∑
k=1

πkN (xn|µk,Σk). (3.12)

From Bayes rule (3.9):

p(zk = 1|xn) =
p(xn|zk = 1)p(zk = 1)∑K
j=1 p(xn|zj = 1)p(zj = 1)

. (3.13)

3.1. Preliminaries 16

From (3.5), (3.8), and (3.13):

p(zk = 1|xn) =
πkN (xn|µk,Σk)∑K
j=1 πjN (xn|µj,Σj)

= γ(znk). (3.14)

3.1.2 Expectation - Maximization Algorithm

Evaluating (3.12) directly is hard, so we use an iterative method to find the best parameters

for the Gaussians in the mixture. Those parameters are:

θ = {π, µ,Σ}, (3.15)

• Step 1: Initialize θ. We can use a different algorithm for this part.

• Step 2: Expectation. Evaluate:

p(Z|X, θ). (3.16)

The expectation of znk is:

p(znk|X, θ) = E[znk] =
K∑
j=1

znjγ(znj) = γ(znk), (3.17)

which is the same result we found in (3.14).

• Step 3: Maximization. Find the new parameters θ∗ using:

θ∗ = arg max
θ

Q(θ∗, θ), (3.18)

where:

Q(θ∗, θ) = E[ln p(X,Z|θ∗)] =
∑
Z

p(Z|X, θ) ln p(X,Z|θ∗), (3.19)

3.1. Preliminaries 17

where p(Z|X, θ) is known from the Expectation step. In (3.19), p(X,Z|θ∗) is the

complete likelihood of the model:

p(X,Z|θ∗) =
N∏
n=1

K∏
k=1

πznkN (xn|µk,Σk)
znk , (3.20)

which is derived from calculating the joint probability of all observations xn and

latent variables znk and an extension of (3.11).

Taking the natural logarithm of each side:

ln p(x, z|θ∗) =
N∑
n=1

K∑
k=1

znk[lnπk + lnN (xn|µk, σk)]. (3.21)

Replacing (3.17) and (3.21) in (3.19) and applying a Lagrangian multiplier for the

mixing coefficients π:

Q(θ∗, θ) =
N∑
n=1

K∑
k=1

γ(znk)[ln πk + lnN (xn|µk, σk)]− λ

(
K∑
k=1

πk − 1

)
. (3.22)

In order to find the parameters that maximize the likelihood, we take the derivative

of Q with respect to π and set it to zero:

∂Q(θ∗, θ)

∂πk
=

N∑
n=1

γ(znk)

πk
− λ = 0. (3.23)

Rearranging and summing over k:

N∑
n=1

γ(znk) = πkλ =⇒
K∑
k=1

N∑
n=1

γ(znk) =
K∑
k=1

πkλ. (3.24)

From (3.1), the sum of all mixing coefficients π is 1. We know that the sum of

probabilities γ over k is also 1. Thus, λ = N , and solving for π:

πk =

∑N
n=1 γ(znk)

N
. (3.25)

3.1. Preliminaries 18

In the same manner, we can differentiate Q with respect to µ and Σ, set the

derivative to zero and solve for the parameters using (3.3):

µ∗k =

∑N
n=1 γ(znk)xn∑N
n=1 γ(znk)

, (3.26)

Σ∗k =

∑N
n=1 γ(znk)(xn − µk)(xn − µk)T∑N

n=1 γ(znk)
. (3.27)

We can use these revised values to determine γ for the next EM iteration, until the

likelihood value converges. We are guaranteed to reach a local maximum of the

log-likelihood.

3.1.3 Hidden Markov Models

A Hidden Markov Model [15] is a statistical model in which the system is assumed to be

a Markov process with hidden states. Hidden Markov Models have many applications,

including temporal pattern recognition such as speech, handwriting, gesture recognition,

tagging, musical score following, and bioinformatics. They can be considered an extension

of Markov Chains where the states cannot be observed and only the system outputs are

visible. A brief introduction to Markov Chains follows.

Markov Chains are a type of a random process. The chain has a set of states {S1, . . . , Sk}.

The defining property of a Markov Chain is:

P(Xt = j|X1 = i1, . . . , Xt−1 = it−1) = P(Xt = j|Xt−1 = it−1). (3.28)

This means that the probability of being in a state j depends only on the immediately

previous state. A Markov Chain can be described by a transition matrix P whose element

pi,j is the probability of moving from state i to state j. The sum of each row of this matrix

is 1, since it’s the probability that any state will be next after state i.

Extending the above to a Hidden Markov Model means we assume the existence of an

invisible Markov Chain that we cannot observe, but each state can generate one of K

3.2. LIUM SpkDiarization 19

observations randomly, which can be measured.

3.1.4 Viterbi Algorithm

The Viterbi algorithm is a dynamic programming algorithm for the efficient calculation of

the most probable sequence of hidden states that corresponds to a series of known

observations. That sequence is the Viterbi path. Let o1, . . . , ot be a sequence of

observations. For each state i and t = 1, . . . , T we define:

nt(i) = max
i1,...,it−1

P{x1 = i1, . . . , xt−1 = it−1, xt = i, o1, . . . , ot}, (3.29)

as the maximum probability of a path which ends at time t at state i given those

observations. According to the Markov property, if the most likely path that ends with

state i at time t includes some state i∗ at time t− 1, then i∗ is the last state of the most

likely path which ends at time t− 1. This means the maximum probability at time t is

defined by the recursive function:

nt(i) = max
i
pi,jaj(ot)nt−1(i), (3.30)

where aj(ot) denotes the probability that the output is ot at hidden Markov state j.

3.2 LIUM SpkDiarization

LIUM SpkDiarization (originally [1], improved in [16]) is an open-source set of Java tools

for speaker diarization by the Laboratoire d’Informatique de l’Université du Mans. It

can be used to target multimedia applications in radio, TV shows, and Broadcast News

environments. It can find the speaker identity and gender, the channel type (narrow

bandwidth vs. wide bandwidth), and the nature of the background (quiet vs. music).

In its default settings, it is appropriate for speech recognition: short segments (less

than 20 seconds) featuring a single speaker in a single channel. Its modular design

(segmentation, classification, Viterbi decoder, GMM, etc.) facilitates the development

3.3. Extraction of MFCC features 20

Figure 3.1: The complete audio diarization method of LIUM.

of extended diarization systems. The toolkit has evolved from earlier research efforts by

LIUM for the ESTER 2 campaign [17]. In this thesis we employed LIUM SpkDiarization

in a configuration oriented for Broadcast News.

3.3 Extraction of MFCC features

Many speech recognition and diarization systems, including the LIUM SpkDiarization

toolkit, use MFCCs (Mel Frequency Cepstral Coeeficients) as features [18, 19]. The steps

for calculating the MFCC features are:

• Framing: The signal is split to small segments called frames. Each frame is a

window of 25ms with a step of 10ms and an overlap of 15ms. Shorter frames lead

to unreliable spectrum estimates, while longer frames change too much within the

window. The Java speech recognition library Sphinx4 in its 16kHz mode is used

for the extraction, which means each window has a length of 0.025 * 16000 = 400

samples.

• Discrete Fourier Transform (DFT): For each frame, the periodogram estimate

of the power spectrum is calculated. This is achieved by computing the DFT on the

windowed signal of that frame. The Fast Fourier Transform (FFT) is an O(Nlog2N)

algorithm that computes the DFT faster than the naive O(N2) approach.

• Mel filtering: The Mel filterbank is applied to the frequency spectra. Since closely

spaced frequencies are difficult for humans to discern, the frequency bins inside a

frequency region are summed to compute the energy inside that region. The filters

3.4. Generalized Likelihood Ratio Segmentation 21

are wider at higher frequencies and spaced according to the Mel scale.

• Logarithm of filterbank energies: Next, the logarithm of each filterbank energy

is taken. This transformation is also motivated by human hearing: loudness is

perceived in a logarithmic fashion. Therefore, large variations in energy may lead to

small changes in perception. Note that although using the logarithm allows us to

employ Cepstral Mean Subtraction (CMS) as a normalization technique, no such

step is included here.

• Discrete Cosine Transform (DCT): In the final step, the DCT of the log- -

filterbank energies is computed. Because the filterbanks are overlapping, their

energies are correlated. The DCT can help decorrelate the energies, which means

diagonal covariance matrices can be used to model the features in e.g. an HMM

classifier. The DCT can also be used to reduce the dimensionality of the features by

dropping the higher coefficients (fast changes), although this does not happen here.

• Deltas calculation: Deltas and delta-deltas are the first and second derivatives

of the MFCCs respectively. They are also known as velocity and acceleration

coefficients. It is reasonable to assume that information exists not just in the power

spectrum of a single frame but also in the change of the energies over time. The

computed deltas and delta-deltas are appended to the MFCCs to create the final

audio feature vector.

For the first three steps of the LIUM speaker diarization toolkit (BIC segmentation, BIC

clustering and Viterbi decoding segmentation), the features include 13 MFCCs (with

computed coefficient C0 as energy), without using any delta or delta-delta information.

3.4 Generalized Likelihood Ratio

Segmentation

Segmentation helps detect the speaker changes in the signal and uses them to create

segments. Each segment is assumed to contain exactly one speaker. Later, segments that

belong to the same speaker are grouped.

3.5. Segmentation Based on BIC 22

The first segmentation stage includes two passes. The first pass is based on the Generalized

Likelihood Ratio (GLR) [20] distance measure between adjacent speech segments.

The reasoning behind this step is that segments from different sources will have a greater

distance between segments than if they came from the same source. The algorithm finds

the instantaneous change points and splits the signal into segments. The GLR is computed

using Gaussians with full covariance matrices calculated over a sliding window of 5 seconds.

When the GLR peaks locally, a segment boundary is detected in the middle of the window.

3.5 Segmentation Based on BIC

The second pass is used to fuse consecutive segments that belong to the same speaker. It

is based on the ∆BIC [21] measure and uses full-covariance Gaussians. ∆BIC is defined

as:

∆BICi,j =
ni + nj

2
log |Σ| − ni

2
log |Σi| −

nj
2

log |Σj| − λP, (3.31)

where |Σi|, |Σj|, and |Σ| are the determinants of the Gaussians associated with the clusters

i, j and i ∪ j, λ is a parameter, and P is a penalty factor defined as:

P =
1

2

(
d+

d(d+ 1)

2

)
+ log(ni + nj). (3.32)

P is dependent on the number of dimensions d of the features and the length of cluster i

and cluster j, ni and nj respectively. Note that this penalty in speaker diarization doesn’t

take into account the length of the whole data as defined originally in [21]. Instead, only

the length of the candidate clusters to merge, i and j is used, since later experiments

[22, 23] show that better results are obtained that way.

3.6. Hierarchical Clustering 23

3.6 Hierarchical Clustering

The second segmentation stage involves a Hierarchical Agglomerative Clustering. It starts

with segments from the previous stage, assigning each segment to its own cluster. Each

cluster is modeled by a Gaussian with a full-covariance matrix. The ∆BICi,j of (3.31) is

used to choose which clusters to group, as well as a criterion for stopping the merging

process. At each iteration the two closest clusters, i and j, are merged, until the best

BIC distance is positive (∆BICi,j > 0).

3.7 Viterbi Decoding

At the next stage, 12 MFCCs with deltas are used as features. Note that the energy

(which is the first coefficient) is ignored here. A Viterbi decoding (section 3.1.4) is

employed to create a new segmentation. Each cluster is modeled by an HMM (section

3.1.3) with one hidden state which is modeled by a GMM (section 3.1.1). The GMM

has a diagonal covariance matrix and 8 components. It is trained via the EM algorithm

(section 3.1.2) on the segments of the previous stage (section 3.6). The HMM log-penalty

is set experimentally.

3.8 Speech/Music/Silence Segmentation and

Filtering

3.8.1 Speech/Music/Silence Segmentation

This stage also uses 12 MFCCs with deltas. Another Viterbi decoding using 8 HMMs with

one state each is applied to classify segments into speech/non-speech categories (PMS

segmentation). The 8 models feature 2 silence models (wideband and narrowband), 3

wideband speech models (clean, with noise, and with music), 1 model of narrowband

speech, 1 model of jingles, as well as 1 model of music. Each hidden state of these HMMs

3.9. Gender and Bandwidth Detection 24

is represented by a mixture of 64 Gaussians, and each Gaussian has a diagonal covariance

matrix.

Note that, unlike most other diarization systems, this stage comes after the segmentation

of section 3.7. This leads to better results. It is hypothesized that this is because the

speaker segmentation cannot make correct decisions when it comes to the boundaries

at the end of each segment. This problem becomes worse when the speech/non-speech

segmentation is done first, presumably because it generates many segments to cut.

3.8.2 Segmentation Filtering

At the end of this stage, the segments are filtered according to the PMS segmentation.

This utilises 12 MFCCs with deltas as well. The minimum length of a silence segment is

set to 1 MFCC window (25 ms) and the same applies for the segment padding. Meanwhile,

the minimum length of a speech segment is set to 6 MFCC windows (150 ms).

3.9 Gender and Bandwidth Detection

This is another stage that uses 12 MFCCs with delta coefficients and no energy as features.

There are 4 different combinations of gender and bandwidth:

• Male Narrowband

• Male Wideband

• Female Narrowband

• Female Wideband

Each combination is detected using a GMM with 128 components and a diagonal covariance

matrix. The GMM that maximizes the likelihood of the cluster features gives the cluster

its label.

These GMMs have been already trained with speech from the ESTER training dataset

[17]. This stage includes two additional steps:

3.10. Integer Linear Programming Clustering 25

• Feature warping: The features are warped with a 3-second window as in [24] to

deal with variabilities in the input.

• Normalizing: The features are centered and reduced.

At the end of this stage, each segment belongs to a single speaker and it has a bandwidth

and gender associated with it.

3.10 Integer Linear Programming Clustering

3.10.1 Introduction

The final stage combines 12 MFCCs with deltas, and the gender and bandwidth data of

the previous stage to produce a final hypothesis annotation for audio diarization. The

original LIUM SpkDiarization project [1] employed a Universal Background Model (UBM)

that resulted from the fusion of the 4 gender- and bandwidth-dependent GMMs from

ESTER, with mean normalization. The clustering criteria were the Cross Likelihood Ratio

(CLR) and the Cross Entropy in addition to Normalized CLR (CE/NCLR). However, we

decided to use the improved SpkDiarization from [16] that formulates clustering as an

Integer Linear Programming (ILP) problem and uses a generic solver.

3.10.2 I-Vectors Clustering Method

The new clustering method [25] uses i-vectors to both model the clusters and measure

their similarity. The i-vector algorithm reduces the dimensionality of the speaker’s audio

in order to keep only the input significant contribution.

This audio-only diarization solution doesn’t rely on knowing the number of speakers

beforehand. After a first segmentation of speakers, each cluster is mapped to an i-vector

using 12 MFCCs without energy or delta information and a GMM-UBM with 1024

components. In the next step, the N i-vectors are normalized [26]. Clustering needs to

minimize the number K of resulting clusters as well as the intra-cluster distribution. In

3.10. Integer Linear Programming Clustering 26

order to achieve that, clustering is formulated as an ILP problem where the goal is to

minimize:

N∑
k=1

xk,k +
1

D

N∑
k=1

N∑
j=1

d(k, j)xk,j, (3.33)

subject to the constraints:

xk,j ∈ {0, 1} ∀k, ∀j, (3.34)

N∑
k=1

xk,j = 1 ∀j, (3.35)

d(k, j)xk,j ≤ δ ∀k,∀j, (3.36)

xk,j − xk,k ≤ 0 ∀j, (3.37)

where xk,k (3.33) and xk,j (3.34) are binary labels (1 for true, 0 for false) indicating

whether i-vector k is the center of a cluster and whether i-vector j belongs to the cluster

with center k, respectively. Thus, the first term in (3.33) is equal to the number of clusters.

The Mahalanobis distance between 2 i-vectors, d(k, j), is used as a similarity measure.

The second term in (3.33) includes normalization by a factor D, the greatest distance

among all k, j pairs. It is evident that an i-vector can only be assigned to a single cluster

(3.35). The i-vector j that belongs in the cluster with center k must have a distance d(k, j)

that is less than an experimentally set threshold δ (3.36). Equation (3.37) handles the

assignment of i-vector j to cluster k, when the distance from the i-vector to the cluster’s

center is the shortest among all centers.

Chapter 4

Visual Speaker Diarization

In this chapter we present our visual speaker diarization approaches. At first, we introduce

the Support Vector Machines classifier and the Convolutional Neural Networks and their

theoretical background. Then, we describe the dlib library and how it achieves face and

mouth detection. In addition, we explain the centroid algorithm for face tracking as

well as the theoretical formulation of the optical flow technique. Finally, we describe in

detail all the steps that we made in order to implement our two visual speaker diarization

systems.

4.1 Preliminaries

4.1.1 Support Vector Machines

Support Vector Machines (SVMs) are a supervised learning model that can be used

for pattern classification and non-linear regression pioneered by Vapnik [27]. The main

idea of SVMs is to construct a hyperplane to separate the data points into two classes.

Obviously, there are many hyperplanes that can separate the data points, but the SVM

classifier manages to find the hyperplane that maximizes the margin between the separated

examples.

For the linearly separable patterns in 2 dimensions [28] the separation hyperplane is

just a line. In this case, a set of 2 dimensional features xi is used for training, each of

27

4.1. Preliminaries 28

them corresponding to an output target di = +1 for one class and di = −1 for the other,

i = 1, . . . , N , where N is the total number of training examples. This separating line has

the following form:

wTx + b = 0, (4.1)

where x is an input vector, w is the weight vector, and b is a bias factor.

Let ρ be the margin of separation, which is defined as the distance between the hyperplane

and its closest data point. The SVM algorithm finds the hyperplane in which the margin

ρ is maximized, with w0, b0 the optimum values of the weight vector and bias respectively.

The discriminant function:

g(x) = wT
0 x + b0, (4.2)

gives an algebraic measure of distance between x and the hyperplane. An easy way to

express it is:

x = xp + r
w0

||w0||
, (4.3)

where xp is the normal projection of x onto the optimal hyperplane and r is the algebraic

distance. If x is on the positive side of the hyperplane, then r > 0 and if it is on the

negative side of the hyperplane, then r < 0.

Because g(xp) = 0 by definition, we have:

g(x) = wT
0 + b0 = r||w0||, (4.4)

or

r =
g(x)

||w0||
. (4.5)

That is, the distance r between the optimal hyperplane and the origin (i.e. x = 0) is

4.1. Preliminaries 29

computed as follows:

r =
b0
||w0||

. (4.6)

When b0 > 0, x is on the positive side of hyperplane and when b0 < 0, x is on its negative

side.

The main idea of non linear SVMs [28] is to assume a mapping of an input vector x of

dimension m0 into a feature space of dimension m1 through a non linear transformation

{φj(x)}m1
j=1, defined a priori.

We may then define a hyperplane that acts as the decision surface:

m1∑
j=1

wjφj(x) + b = 0, (4.7)

where {wj}m1
j=1 are the linear weights that connect the feature space to the output space

and b is a bias factor. We simplify by writing:

m1∑
j=0

wjφj(x) = 0, (4.8)

and assuming that φ0(x) = 1 for all x, so that w0 denotes the bias b, where φj(x) represents

the input to the weight wj via the feature space. We then define the vector:

φ(x) = [φ0(x), φ1(x), . . . , φm1(x)]T , (4.9)

where, by definition:

φ0(x) = 1. (4.10)

In that case, φ(x) represents the image in the feature space due to input x. Therefore:

wTφ(x) = 0, (4.11)

4.1. Preliminaries 30

for all x. Applying the optimality condition to the Lagrangian function (the interested

reader can find the full derivations in the literature [28]):

w =
N∑
i=1

aidiφ(xi), (4.12)

where feature vector φ0(xi) corresponds to the input pattern xi in the ith data point.

Substituting (4.12) in (4.11) the decision surface in the feature space is:

N∑
i=1

aidiφ
T (xi)φ(x) = 0. (4.13)

We can define the inner-product kernel as:

K(x,xi) = φT (x)φ(xi) =

mi∑
j=0

φj(x)φj(xi), (4.14)

for i = 1, 2, . . . , N . The inner-product kernel is a symmetric function of its arguments,

since:

K(x,xi) = K(xi,x), (4.15)

for all i. The inner-product kernel can be used to construct the optimal hyperplane in the

feature space by substituting (4.14) in (4.13):

N∑
i=1

aidiK(x,xi) = 0. (4.16)

Three common types of SVM kernels are:

• Polynomial learning machine: Power p is specified a priori by the user.

(xTxi + 1)p. (4.17)

• Radial-basis function network: The width σ2 is shared among all kernels and

4.1. Preliminaries 31

specified a priori.

exp

(
− 1

2σ2
||x− xi||2

)
. (4.18)

• Two-layer perceptron: Only some β0, β1 satisfy Mercer’s theorem.

tanh(β0xTxi + β1), (4.19)

In this thesis, the Radial-Basis Function network (RBF) kernel was employed in the task

of visual speaker diarization.

4.1.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a branch of Deep Neural Networks (DNNs).

The purpose of DNNs is to model a high degree of abstraction in the input samples

using multiple-level non-linear transform architectures. A CNN is a feed forward neural

network. It is a state-of-the-art solution that is generally used in image, video, and sound

recognition tasks. The network consists of the following basic components:

1. Convolution layer.

2. Activation function.

3. Pooling-sub sampling.

4. Fully-connected (dense) layer.

Figure 4.1: A typical Convolutional Neural Network architecture (Figure from [3]).

In CNNs, a filter is represented by a convolutional kernel that is much smaller spatially than

the input. Each convolution layer consists of several filters, arranged in such a way that

4.1. Preliminaries 32

their output response corresponds to the same input area (which is also called receptive

field). The filters scan the input, so that the receptive fields consist of overlapping areas

of the input in order to extract a smoother representation of the inserted image-sample

(Figure 4.2). This method is called weight sharing.

Figure 4.2: Convolution operation (Figure from [4]).

Each convolution layer is followed by an activation function. Some of the most common

activation functions in neural networks are the following:

1. Binary step

y =

0 if x < 0

1 if x ≥ 0

(4.20)

2. Sigmoid

y =
1

1 + e−x
(4.21)

3. Identity

y = x (4.22)

4. ReLU

y =

0 if x < 0

x if x ≥ 0

(4.23)

The pooling layer is used to reduce the number of parameters and consequently the

4.2. Dlib Library 33

computations of the network. It also decreases the possibility of overfitting. The most

common functions of this layer are Max Pooling and Average Pooling (Figure 4.3).

Figure 4.3: Pooling operation (Figure from [5]).

Finally, the fully connected layers are used to classify the input samples to one of the

existing classes, by using the extracted features of the previous layers.

4.2 Dlib Library

4.2.1 Overview

Dlib is a C++ toolkit with machine learning algorithm implementations. It’s used in

industrial as well as academic applications. We’ve chosen to use it because of its performant

face detection algorithm, its permissive licensing, and its convenient python API.

4.2.2 Dlib Face Detection

The dlib face detector finds human faces and returns bounding boxes for each face in

an image. These include points on the eyes, mouth, nose, eyebrows, and along the face

edges. The face detector is pre-trained with the Histogram of Oriented Gradients (HOG)

algorithm [29], combined with a linear classifier, an image pyramid, and a sliding window

detection scheme.

4.2. Dlib Library 34

In particular, an image pyramid is a series of subdivisions of the original image into 22×l

subregions, with levels l ∈ [1...L]. A detector slides over each subregion and the results

are concatenated into a feature vector.

In the original HOG method, the image is divided into cells. The input is colour-normalized

in larger regions called blocks. The detector is initially trained with only a portion of

the negative examples. Then, false positives are used to re-train the algorithm, which

significantly improves performance.

Gradients are computed using a 1-D centered point derivative [−1, 0,+1] and its transpose,

without any smoothing. Then, each pixel within a cell votes depending on the orientation

of its gradient. The vote is the gradient magnitude, and nearby votes are bilinearly

interpolated. Orientation is provided via nine unsigned bins over [0°, 180°].

Better performance is achieved by normalizing in overlapping blocks, with each cell

contributing to many different blocks. A block can be rectangular with rectangular cells,

or circular with polar cells. In rectangular blocks, applying a Gaussian spatial window

helps by weighting more the pixels near the block center. Vertical blocks (1×2) outperform

horizontal blocks (2× 1) when it comes to human detection. In circular blocks, a central

cell is surrounded by one layer of four angular sectors. Normalization on the block level

can involve the L2-norm, the L2-norm followed by clipping, or the square root of the

L1-norm.

Context around the object helps in its detection, even more than increasing the image

resolution. The features are classified via a linear SVM. Note that the performance relies

on including information at different normalization levels.

Rather than the original HOG algorithm [29], dlib implements an improved variation

found in [30], where a convolutional kernel that computes gradients is applied at all

positions and scales of an image. The new algorithm includes a "root" filter that detects

the entire shape and additional "part" filters that detect parts of the shape (e.g. for

a human detector, each filter might detect a limb). Part detections are penalized for

deviating from the ideal locations relative to the root. Part filters operate at double

resolution (l levels down the pyramid) compared to the root filter. The algorithm finds the

root location by independently placing each part, then places the parts at their optimal

4.2. Dlib Library 35

locations relative to the fixed root.

The classifier is a latent SVM (LSVM) trained via gradient descent. Each example has a

set of possible latent values. A binary label for the example can be obtained by choosing

the set of latent values that maximize the classifier and thresholding the result. The

model parameters are trained by minimizing the standard hinge loss l(y) = max(0, 1− ty)

where t is the target output. Note that linear SVMs are a special case of latent SVMs

where there is one possible latent value for each example.

A complexity arises when considering the minimization of the loss function: in general

LSVMs the hinge loss is not convex for positive examples, since it is the maximum of a

convex and a concave function. The hinge loss is convex when considering only negative

examples. This property is called semi-convexity. For an LSVM with a single latent value

for each positive example, the classifier is linear and the loss is convex. Combined with

semi-convexity, the objective function is convex.

In practice, a round of LSVM training is split into two phases. In the first phase, the

positive example loss is minimized by selecting the highest scoring latent value for each

positive example. In the second phase, the entire model is optimized by solving a convex

optimization problem via gradient descent, implicitly considering latent values for negative

examples. This is repeated until convergence.

The object detection model is trained with "hard" rather than "easy" examples. The hard

examples are either incorrectly classified or inside the classifier’s margin. The method

starts with a cache of examples, then alternates between training a model and updating

the cache (removing easy examples and adding hard examples).

As in [29], HOG features are computed from centered 1-D finite difference kernels,

[−1, 0,+1] and its transpose. The feature map includes a sparse histogram of oriented

magnitudes, defined for each pixel. The orientation of the gradient magnitudes is discretized

with either a contrast-sensitive or a contrast-insensitive definition. Edges are expected to

have a higher magnitude. Pixel-level feature maps are aggregated into "cell"-level feature

maps, where each pixel map contributes to four nearby rectangular cells via interpolation,

as in [29]. Normalization helps make the gradients invariant to changes in gain. The

36-dimensional features of [29] are reduced to 13-dimensional (or 27-dimensional, including

4.2. Dlib Library 36

the contrast-sensitive orientations) features, corresponding to 9 (or 9 + 18) quantized

orientation features and 4 gradient energy features.

4.2.3 Dlib Pose Estimation

The pose estimator is created with the dlib implementation of an Ensemble of Regression

Trees [31] and trained on the iBUG 300 face landmark dataset [32]. Given an image and

a face bounding box, it matches the pose using 68 facial landmarks.

Pose estimation and alignment of facial landmarks can be achieved in milliseconds, using a

cascade of regression functions. A circular problem arises when matching pixel intensities

to shape estimates. We need reliable features in order to accurately find the shape, but

an accurate shape is needed in order to extract reliable features. An iterative approach

with two steps is used to solve this problem. At the first step, the image is transformed

into a normalized coordinate system based on the current shape estimate. At the second

step, new landmarks are computed in order to update the shape. The process is repeated

until convergence. Another problem is that the shape is a high-dimensional vector, and

optimizers can get stuck in local optima. This is solved by assuming that the global

solution lies in a linear subspace that can be discovered through Principal Component

Analysis (PCA) of the inputs and using regressors with solutions in that linear subspace.

Input features are selected via a combination of gradient boosting the regressors with a

squared loss function and a prior probability in the algorithm initialization that describes

the mean face pose. A learning rate lower than 1 helps prevent overfitting.

Each regression tree node decision is based on the difference of intensity between two

pixels. We need to use the same points in the current shape as the reference points in

the mean shape. Instead of warping the image to match the points, it’s more efficient to

change the point locations to fit the image shape. This is achieved by a global similarity

transform, once per cascade iteration. Each node threshold is chosen greedily from a set

of randomly generated splits. Note that comparisons at the pixel level are more robust

than comparing average intensities over a range, at the expense of more computational

cost. The number of pairwise comparisons is quadratic on the number of pixels, but using

an exponential prior over pixel distance encourages choosing closer pairs. An extension to

4.3. Centroid Tracking 37

Figure 4.4: Face numbers change in consecutive frames.

the objective function allows it to handle missing or incomplete labels.

The original Ensemble of Regression Trees [31] used the HELEN [33] face dataset for

training.

4.3 Centroid Tracking

After computing the bounding box ((x, y)-coordinates of faces in each frame) we faced

the problem that the id of the same detected participant changed frame by frame (Figure

4.4). To solve that we implemented the centroid tracking algorithm.

The centroid tracking algorithm is a multi-step process. In this section we will describe

every step of the algorithm:

• Step 1: Having all bounding boxes for each detected face in every single frame, we

compute the corresponding centroid, i.e. the center of the bounding box. In the first

frame we initialize the face ids as unique ids.

• Step 2: For every subsequent frame, we compute the Euclidean distance between

every detected face centroid in this frame and all the detected face centroids in the

previous frame.

• Step 3: We associate the faces that have the minimum Euclidean distance.

• Step 4: If there are more input faces than existing faces, we assign a new id for this

4.4. Optical Flow 38

Figure 4.5: Face numbers remain constant with centroid tracking.

face and we compute the centroid of its bounding box. Subsequently, we repeat the

algorithm from step 2.

• Step 5: At this step we consider the case in which one face disappears from the

frame. Here, the face deregisters from the object tracker, if it cannot match any

existing face for L subsequent frames.

After implementing centroid tracking, the face numbers remain constant in consecutive

frames (Figure 4.5).

For the problem of visual speaker diarization, the useful information about speaking or

not was extracted from the mouth of each face in every single frame. More specifically,

the dlib pose estimator was used in order to detect the mouth of each participant in each

frame. Then every mouth (ROI - region of interest) was rescaled and normalized into a

32× 32 image.

4.4 Optical Flow

Optical flow [34] is an algorithm with which the movement of an object in consecutive

frames can be estimated. For this problem, this technique was used in order to capture

the movement of the lips frame by frame, in order to make a binary decision about

speaking. The purpose of optical flow is to estimate the motion or displacement of pixels

between two consecutive frames. To do that, each of the consecutive frames has to be

4.4. Optical Flow 39

expressed as a polynomial expansion. In this approach quadratic polynomials were used.

Furthermore the optical flow technique is based on the assumption that neighboring pixels

have similar motion, therefore the whole image can be split into smaller neighborhoods,

each of which can be expressed as a polynomial quadratic function:

f(x) ∼ xTAx + bTx + c,

where A is a matrix, b is a vector, and c is scalar. The ideal scenario is that every

real signal has an exact translation to a quadratic polynomial, but in fact that is quite

unrealistic. To solve this problem and keep the error small enough the global polynomial

can be replaced with a local polynomial. Afterwards for each image the coefficient values

were estimated by performing polynomial expansion.

Because of the assumption that in every neighborhood the displacement field is slowly

varying, the information about each pixel is integrated over a neighborhood. Each pixel

of the neighborhood corresponds to a weight. The main pixel has the largest weight, and

the other pixels of the neighborhood have weight values that are radially decreased.

In order to improve robustness, the displacement field was parameterized according to the

eight-parameter model in two dimensions.

dx(x, y) = a1 + a2x+ a3y + a7x
2 + a8xy,

dy(x, y) = a4 + a5x+ a6y + a7xy + a8y
2.

(4.24)

More formally:

d = Sp, (4.25)

S =

1 x y 0 0 0 x2 xy

0 0 0 1 x y xy y2

 , (4.26)

p =
(
a1 a2 a3 a4 a5 a6 a7 a8

)T
. (4.27)

4.5. Optical Flow and SVM Visual Diarization Description 40

This is the weighted square error:

∑
i

wi

∥∥∥AiSip−∆bi
∥∥∥2, (4.28)

where i iterates over the neighborhood pixels. Its minimization leads to the solution:

p = (
∑
i

wiSTi A
T
i AiSi)−1

∑
i

wiSTi A
T
i ∆bi. (4.29)

4.5 Optical Flow and SVM Visual Diarization

Description

4.5.1 Speech Detection Features

First, the mouth of each participant is detected in every frame and compared with the

corresponding mouth of the same participant at the next frame. The mouth regions, as

mentioned before (section 4.5), have been resized and normalized into a 32×32 image. The

displacement of every pixel in the 32× 32 mouth region (ROI) is computed as magnitude

and orientation (optical flow features). Subsequently, the dimensionality of these features

is reduced by computing the average value of each four pixels in the same 2× 2 square

neighborhood. The new dimensionality of optical flow features is 16× 16 = 256.

4.5.2 Speech Detection SVM Training

These optical flow features were used as the training examples of an SVM classifier. In

total, nearly 25000 reduced feature vectors from videos with multi-speaker conversation

in Broadcast News of Greek television were used to train the algorithm.

For training, python’s sklearn library was used, with an RBF as the SVM kernel function.

4.6. CNN Visual Diarization Description 41

Figure 4.6: The optical flow with SVM visual diarization method.

4.5.3 Speech Detection SVM Testing

During testing, we used 5 new Broadcast videos from the dataset (section 2) with a total

duration of 35 minutes. For each participant (mouth region) in every frame we used the

SVM-trained model to predict whether that participant speaks or not. Afterwards, we

summed the predictions for each participant separately inside a window of N frames.

The participant with the maximum value in that window was considered the speaker of

the window. Subsequently, we created some hypothesis annotations using videos where

every speaker detected speaks. The hypothesis annotation was then used to measure the

diarization error rate (DER) (section 6.3).

4.6 CNN Visual Diarization Description

4.6.1 Training and Testing Dataset

As with the optical flow and SVM method (section 4.5), we begin by detecting the faces

and mouths of each participant in each frame using the dlib library. In this approach too,

we consider the mouth area as the region-of-interest (ROI). As before, these ROIs have

been resized and normalized to 32× 32× 3 (RGB) images. Then, inspired by the problem

of lip-reading discussed in [35], we concatenated the mouths of each speaker separately

for k continuous frames in one larger concatenated image. In this thesis we examined 3

4.6. CNN Visual Diarization Description 42

different values of k:

1. Concatenate k = 20 ROIs (Figure 4.7a).

2. Concatenate k = 30 ROIs (Figure 4.7b).

3. Concatenate k = 49 ROIs (Figure 4.7c).

(a) 20 Mouths (b) 30 Mouths (c) 49 Mouths

Figure 4.7: Example of concatenated images

In the first image we have concatenated 20 mouths in a 4 × 5 arrangement, so it has

128× 160× 3 pixels. In the second image, the arrangement is 5× 6 so its dimensions are

160× 192× 3, and in the last one, it is 7× 7, so the concatenated image has 224× 224× 3

pixels.

In this approach too, the data was collected from the 14 clips of the Gridnews dataset

(section 2.1), with 9 of them used as the training set, and the other 5 as the test set.

Finally, each sample was assigned a binary label (0 for "non-speech", 1 for "speech").

4.6.2 CNN Model Training

During network training we used 3 different input sizes, corresponding to the 3 concatenated

image arrangements. For each k (20, 30, 49) we used 7814, 5032, 3171 concatenated image

samples for training, and 1095, 715, 445 for validation respectively. There was no overlap

of mouths in consecutive concatenated images. All training and testing samples were

associated with a binary label. Our goal was to classify the concatenated images into

"speech" and "non speech" classes. A very important step before the model training was

data normalization. Since we were using image data, the maximum and minimum pixel

values were known (255 and 0, respectively). For that reason, we could normalize the

training and testing data by dividing all the pixel values by 255.

4.6. CNN Visual Diarization Description 43

After preparing the training and testing data, we built the Convolutional Neural Network

model (CNN). In order to achieve that, we employed the tensorflow open source platform

for machine learning (version 1.15.0) [36]. Our model consists of 5 convolutional layers,

each with 64, 128, 256, 256, and 256 filters respectively. Each filter has a size of 3× 3.

The convolution is performed using the "same" padding option and a stride of 1× 1 and

ReLU activation function . Each convolutional layer is followed by a max pooling layer

with a pool size of 2× 2 and dropout in 30% of the neurons. This is followed by a flatten

layer and 3 dense layers with 256, 512, and 1024 neurons respectively. Each dense layer

has ReLU activation. Finally, the output layer has one neuron with a sigmoid activation

function (binary decision). After experimental efforts, the Adam optimizer with a learning

rate of 0.001 and a batch size of 256 were selected. The network was trained on the free

tier of cloud service Google Colab [37] which provides a GPU.

Figure 4.8: CNN model architecture.

The model was trained for the 3 different arrangements of concatenated images. In Figure

4.9 we see the training and validation accuracies of the model over 50, 50, and 70 epochs

respectively. In the case of k = 49, the model was trained for more epochs because it

converged slower.

4.6.3 CNN Model Testing

For each sample (concatenated image) in the test set (section 4.6.1) and each speaker at

the same frame period, we predicted "speech" or "non speech" by using our trained model

(section 4.6.2). A frame period is the number of mouth regions in a concatenated image

(20, 30, or 49). The possible speaker with the highest "speech" probability result in a

frame period, is considered the speaker for that period. These predictions were converted

to hypothesis annotations using the pyannote python library. Finally, these annotations

were compared to the reference annotations in order to measure the diarization error rate

4.6. CNN Visual Diarization Description 44

(a) k = 20 (b) k = 30

(c) k = 49

Figure 4.9: Training and validation set CNN model accuracy over training epochs.

(section 6.3.2).

Chapter 5

Audio-Visual Speaker Diarization

Our audio-visual approach is based on the audio only method and using additional visual

information. The proposed system was implemented in two steps. At the first step, we

added information about the number of speakers by applying a face clustering algorithm

whose theoretical background is explained in detail. At the second step, we added extra

information about overlapping speech segments. In this chapter, we describe all the steps

of both proposed methods, such as feature extraction, training and testing the SVM

classifier. Finally, the results of the classifier were filtered by empirically selected thresholds

and K-means clustering, whose algorithmic implementation is described thoroughly.

5.1 Preliminaries

5.1.1 K-Means Clustering

K-means clustering is one of the most popular unsupervised clustering algorithms, i.e.

when the data points are unlabeled. The purpose of the algorithm is to cluster the data

points into k different groups. The features with the greatest similarity between them are

classified into the same cluster. The K-means algorithm has the following steps:

• Step 1: For each of the k clusters, its centroid is computed as the mean value of the

data points inside the cluster.

45

5.2. Motivation for Audio-Visual Fusion 46

• Step 2: Each new pattern is assigned to the cluster with the minimum Euclidean

distance (L2) from the equivalent centroid point:

arg min
ci∈C

dist(ci, x)2. (5.1)

Let the set of examples assigned to the ith centroid be Si.

• Step 3: The centroid of the cluster is recomputed as the mean value of all data

points assigned to it:
ci =

1

|Si|
∑
xi∈Si

xi. (5.2)

The algorithm iterates between these steps and stops in the following cases:

• No data points change cluster in an entire iteration.

• The sum of the distances reaches the minimum value.

• The iteration count has reached a maximum value that has been set at the algorithm

initialization.

5.2 Motivation for Audio-Visual Fusion

During our experiments with the dataset, we noticed that for each modality separately

we got some very useful information that could be used to achieve better results. The

audio-only solution was very good in general, but it had the disadvantage that it couldn’t

detect overlapping segments due to the way it was implemented. Furthermore, in many

cases it wasn’t able to find the correct number of speakers. In order to overcome these

problems, we added visual information.

5.3 Face Clustering

At first, we included a clustering algorithm from the python dlib library in order to find

the number of faces in the video. It was fortunate that all videos that we used had

conversation between multiple speakers in Broadcast News. In such videos, all people that

5.3. Face Clustering 47

appear speak at least once. Therefore, the number of face clusters is equal to the number

of speakers. In case that a cluster exists with less than 50 appearances in the whole

video, we ignored that face (it is considered incidental). Then, we use this information to

augment the LIUM SpkDiarization toolkit by setting the toolkit’s clustering thresholds

(sections 3.5 and 3.6) automatically (via an iterative search) in order to achieve the same

number of faces that was suggested by dlib clustering.

Speaker face clustering is achieved via a deep residual convolution network (ResNet) with

29 layers. A quick introduction to the theory of deep residual networks follows.

5.3.1 Deep Residual Networks

Deep residual networks [38] are an extension to deep neural networks that allows training

networks with many more layers than before without degradation in performance. They

achieve that by learning residual functions instead of arbitrary mappings. Residual

networks (ResNets) have achieved remarkable results in image detection and classification

tasks, even though their computational cost is comparable to regular convolutional deep

neural networks. This is due to their depth, a critical part of neural network performance.

There is a degradation of results when adding more layers, even as techniques such as

normalized initialization can combat the vanishing/exploding gradients issue of networks

with many layers (20+). This degradation cannot be explained by the overfitting problem,

because it also leads to higher training error.

It would be trivial to extend a shallow network with more layers that don’t do anything

(identity mappings). Such an experiment shows that a deep network should not have

more training error than the shallow equivalent. Indeed, the problem is likely not that a

solution doesn’t exist, but that the gradient descent solvers cannot find it in reasonable

time using reasonable computing power.

Deep residual neural networks solve this problem by using the layers to fit a residual

function rather than an arbitrary mapping. We denote the desired function as H(x).

5.3. Face Clustering 48

Figure 5.1: Audio-visual fusion using face clustering information.

Then the residual mapping is:

F(x) = H(x)− x. (5.3)

Then the initial function can be rewritten as:

H(x) = F(x) + x, (5.4)

which is easier to learn than H(x). Finally, if an identity mapping is actually optimal,

the network can make the residual function zero.

In this case, F(x) is approximated by two convolutional filter weight layers with a Rectified

Linear Unit (ReLU) activation function in between. An identity shortcut connects the

input directly to the output by skipping layers. The H(x) primary building block is

activated by an additional ReLU. The ResNet can be trained via Stochastic Gradient

Descent (SGD) and backpropagation. Note that the identity connections have no weights.

In other words, the ResNet has no additional parameters over a plain convolutional

network and can be trained without any overhead (other than a trivial vector addition).

The ResNet achieves remarkable results compared to regular convolutional networks,

taking advantage of up to 150 layers.

5.4. Speech Overlap Detection 49

5.4 Speech Overlap Detection

5.4.1 Overlap detection features

For extraction of features, 11 videos from the dataset were used. From these videos

all the overlapping and some non-overlapping speech segments were collected. Their

duration was 2-6 seconds. In these segments, the mouth of each participant is detected

in every frame and is compared with the corresponding mouth of the same participant

at the next frame. Then the displacement of every pixel in the 32 × 32 mouth region

(ROI) is computed as magnitude and orientation. For this area of displacements the

magnitudes are summed. Now each face in a frame corresponds to an intensity (sum

of pixel displacement magnitudes). Subsequently, for L = 50 consecutive frames (L/25

seconds), for each participant separately the intensities are summed. We normalize the

sum, dividing it by the number of dlib face detections for that window. Now each face in

a window of L frames corresponds to this normalized value. From the normalized scores

of a window, the 2 greatest values are assumed to be possible overlapping speakers and

are employed as features. Note that overlaps of more than 2 speakers don’t appear in the

reference annotations (e.g. a 2-second segment with 3 overlapping speakers appears as 2

1-second segments of 2 speakers each).

Let xi ∈ R2 be the x, y-coordinates of the ith pixel in an image I. Then di,j ∈ C denotes

the displacement of the ith pixel in ROI j. Assume Rf is a vector of ROI detections in

frame f , with each ROI having 32× 32 pixels. We use INf,j to denote the intensity of

ROI j in frame f . Note that ROI detections can be reliably indexed by j across frames

(see section 4.3).

INf,j =
∑
i∈Rf,j

∥∥∥di,j∥∥∥. (5.5)

Then the normalized intensity NIN for ROI detection j across windowW can be computed

5.4. Speech Overlap Detection 50

as:

NINW,j =

∑
f∈W INf,j

NW,j

. (5.6)

The length of W is L = 50 frames. ROI detection j need not appear in every frame of

W. Indeed, we assume the number of detections of ROI j in W is NW,j. The 2 greatest

NINW,j in a window W are considered to be possible overlapping speaker features.

5.4.2 Overlap Detection SVM Training

In total, 201 feature vectors (l = 2, for two possible overlapping speakers) were used

for training: 148 of those were labeled as overlapping and the rest were labeled as

non-overlapping.

For the SVM classifier, we used the python sklearn library, as before (section 4.5.2), but

we employed a linear kernel function this time.

5.4.3 Overlap Detection SVM Testing

In order to test the algorithm, we used 5 videos from the dataset. Each of those videos

contains at least one overlapping speech segment. As in the corresponding training stage

(section 5.4.2), the two speakers with the greatest scores are found and then these two

scores (of speaker1 and speaker2 respectively) are used as input for the SVM-trained

model in order to predict whether there is overlapping speech or not in a window of

L = 50 frames. After that, all the overlap-predicting scores are collected and filtered via

an experimentally determined threshold. The goals were:

• To keep the greatest scores.

• To keep the features where the score of the second speaker was at least equal to

85% of the first speaker score.

An extra filtering stage was applied in post-processing that employs the k-means clustering

algorithm in order to separate the largest from the smallest values. We consider all segments

5.4. Speech Overlap Detection 51

that exist in the k-means cluster with the largest values as segments of overlapping speech.

In the audio-visual fusion stage, we augmented the audio hypothesis annotations with

these overlapping segments hypothesis and improved the DER (section 6.4).

5.4. Speech Overlap Detection 52

Figure 5.2: The complete audio-visual diarization method.

Chapter 6

Evaluation

6.1 Diarization Error Rate

The Broadcast News dataset of chapter 2 was used for the evaluation of the visual speaker

diarization. In order to measure the error rate of our systems, we used the Diarization

Error Rate (DER) [13] metric, which is very common in diarization tasks and is defined

as follows:

DER =
false alarm + missed detection + confusion

total
, (6.1)

where a false alarm is the duration when a person was labeled as speaker, but wasn’t

speaking in these frames, a missed detection is the duration when speech exists but

the diarization system labeled it as non-speech, and confusion is the duration when the

diarization system labeled a speaker incorrectly.

6.2 Audio-Only Evaluation

For the audio evaluation we selected 5 audio files from the dataset. In order to measure

the audio-only algorithm accuracy, we computed the diarization error rate. The LIUM

toolkit results were converted to hypothesis annotations and compared to the reference

annotations using the python DiarizationErrorRate metric function to get the diarization

53

6.3. Visual-Only Evaluation 54

error rate. In the following table we can see the diarization error rate results for the

audio-only approach:

audio 1 7.63 %
audio 2 16.13 %
audio 3 4.56 %
audio 4 12.50 %
audio 5 3.85 %
average 8.93 %

Table 6.1: Results of audio-only diarization.

The error is affected by various factors. For example, the system cannot detect the number

of speakers in an audio clip. Consequently, the system may create more or less speaker

clusters than the real number of speakers in the audio. As we have seen in the diarization

error rate introduction (section 6.1) the error increases because of incorrect labeling of

speakers (confusion).

The DER can also be affected by overlapping speech in the audio. Our audio-only

approach is unable to detect overlapping segments. For this reason, audio clips without

many overlapping segments exhibit a lower error rate than audio files with more overlapping

segments. In particular, in audio files 1, 3 and 5, the system finds the correct number of

speakers. However, in audio file 1, there are more overlapping segments than in the other

two clips, so the algorithm achieves worse results. Note that the duration of overlapping

speech in these videos is relatively small (about 1 to 2 seconds per overlap), so this has

little effect on overall results.

6.3 Visual-Only Evaluation

6.3.1 Optical flow and SVM Method Evaluation

In order to evaluate the optical flow with SVM method we used the DER metric, computed

via the DiarizationErrorRate python function. The hypothesis annotation that was

extracted from the implemented system (section 4.5) and the reference annotation were

compared. For the evaluation we used 5 videos from the dataset (section 2.1).

6.3. Visual-Only Evaluation 55

In order to better measure the system accuracy, we computed the DER of each video for

five different windows. These windows had a size of 50, 100, 150, 200, and 250 frames (2,

4, 6, 8, and 10 seconds respectively). Then for each window we computed the average

DER.

In the following table we can see the diarization error rate results:

Window Length
DER (%) 50 100 150 200 250
video 1 18.20 19.50 20.54 19.12 21.29
video 2 9.02 8.96 10.35 7.29 8.73
video 3 22.13 20.04 14.57 17.80 18.44
video 4 16.95 15.89 16.56 18.17 17.63
video 5 20.59 17.80 18.08 18.76 19.92
average 17.38 16.44 16.02 16.23 17.20

Table 6.2: Results of visual-only diarization.

It appears that the 150-frame window achieves better results than the other four cases

(L=50, L=100, L=200, L=250). At first, we assume that the 150-frame window is better

than the 50 and 100-frame windows because it examines a larger region of speech and

that makes it more robust. On the other hand, the 200 and 250-frame windows are worse

than the 150-frame window because they examine a quite large region of speech and that

makes their estimations of speech duration less accurate when speakers change.

6.3. Visual-Only Evaluation 56

Figure 6.1: Comparison between DERs for each window size for different videos.

6.3.2 CNN Method Evaluation

As with the optical flow and SVM method, we measured the Diarization Error Rate (DER)

by comparing the hypothesis annotations to the reference annotations for the same 5

videos of the dataset (section 2.1). In table 6.3 we show the DER results for the 3 different

arrangements of concatenated image (k = 20, 30, 49).

k
DER (%) 20 30 49
video 1 21.74 22.35 18.76
video 2 8.10 6.67 4.55
video 3 16.53 18.92 12.70
video 4 11.11 9.75 12.00
video 5 23.93 18.37 20.73
average 16.28 15.21 13.75

Table 6.3: Results of visual-only diarization.

6.3. Visual-Only Evaluation 57

It appears that the concatenated image of 49 mouth regions had better results than the

other 2 cases (Figure 6.2). We assume this is because the longer the frame prediod (k), the

more lip movements are made. So the network is able to detect the "speech" concatenated

images more accurately.

Figure 6.2: Comparison between DERs for each concatenated image size for different
videos.

The comparison of this CNN model with the optical flow with SVM model is particularly

interesting. In 2 of 3 cases the CNN achieved better DER results on average than the

optical flow with SVM method in its most efficient 150-frame window. Only in case of k

= 20 the optical flow with SVM achieved lower DER on average.

6.4. Audio-Visual Evaluation 58

6.4 Audio-Visual Evaluation

For the audio-visual fusion approach, we measured the diarization error rate for each of

the two implemented methods (section 5). For comparison purposes, we used the same

five video clips as in the audio-only evaluation (section 6.2).

In the first method, we combined the information from the audio-only algorithm with

additional information about the number of speakers that we discovered through face

clustering. This method had the following results:

video 1 7.86 %
video 2 7.04 %
video 3 4.56 %
video 4 5.31 %
video 5 3.92 %
average 5.74 %

Table 6.4: Results of audio-visual diarization with face clustering.

We can see that the diarization error rate is overall better than in the audio-only evaluation.

In some cases, the DER is almost equal to the audio-only error. That happens because

the audio-only method was able to find the correct number of speakers without the extra

visual information from face clustering. Note that the error never gets significantly worse.

It might get trivially worse because the automatically discovered clustering thresholds

of this method are different than the audio-only method thresholds, even though both

indicate the same number of speakers.

On the other hand, in cases where the audio-only method didn’t find the correct number

of speakers and visual information was needed, a significant improvement was observed.

Such cases include videos 2 and 4.

In the final, complete system we add information about overlapping speech segments to

the previous method. In the following table 6.5 we see the DER results. It seems obvious

from the results that this method achieved an important improvement compared to the

previous audio-visual approach. As we have already mentioned, the overlap segments

have small durations and we don’t observe large changes between the two audio-visual

fusion methods but it seems clear that the results were improved. In particular, for all 5

test files the diarization error rate decreased.

6.4. Audio-Visual Evaluation 59

video 1 7.05 %
video 2 6.32 %
video 3 4.08 %
video 4 5.24 %
video 5 2.99 %
average 5.14 %

Table 6.5: Results of the complete audio-visual diarization method.

Figure 6.3: Comparison between audio and audio-visual approaches for different videos.

Chapter 7

Conclusion and Future Work

In this thesis we implemented an audio-visual speaker diarization system that is robust

against multi-speaker scenarios in Broadcast News environments. At first, we investigated

audio and visual information separately. As far as the audio modality is concerned, we

used the LIUM speaker diarization toolkit that is based on MFCC feature extraction and

GMM classification. In the visual approach we employed the dlib library for face and

mouth region detection. Subsequently, we developed two visual diarization systems. The

first was an optical flow technique for feature extraction with an SVM classifier and the

second was a Convolutional Neural Network approach. The audio-visual fusion evolved

from the audio approach in two steps. At the first step we combined the audio modality

with extra information about the number of speakers that was discovered through a face

clustering method. At the second step we added to the previous method overlapping

speech information. This final iteration is the complete audio visual speaker diarization

system. The accuracy of the system was measured by using the diarization error rate

(DER) metric, and the results of each method were compared. From this comparison

we concluded that the audio-visual fusion had better performance than the individual

modalities.

Some ideas for further investigation are associated with neural networks. In particular, a

combination of Convolutional Neural Networks (CNNs) and Recurrent Neural Networks

(RNNs) is an approach that has led to very good accuracy in speaker diarization in the

literature.

60

Bibliography

[1] S. Meignier and T. Merlin, “LIUM spkdiarization: an open source toolkit for

diarization,” in Proc. CMU SPUD Workshop, 2010.

[2] D. Dimitriadis, A. Metallinou, I. Konstantinou, G. Goumas, P. Maragos, and

N. Koziris, “Gridnews: A distributed automatic Greek broadcast transcription

system,” in Proc. 2009 IEEE International Conference on Acoustics, Speech and

Signal Processing, 2009, pp. 1917–1920.

[3] M. Peng, C. Wang, T. Chen, and G. Liu, “NIRFaceNet: A Convolutional Neural

Network for Near-Infrared Face Identification,” Information, vol. 7, no. 4, 2016.

[4] https://www.freecodecamp.org/news/an-intuitive-guide-to-convolutional-neural-

networks-260c2de0a050/.

[5] https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-

networks-the-eli5-way-3bd2b1164a53/.

[6] C. Wooters and M. Huijbregts, “The ICSI RT07s speaker diarization system,” in Proc.

Multimodal Technologies for Perception of Humans, 2008, pp. 509–519.

[7] M. Bendris, D. Charlet, and G. Chollet, “Lip activity detection for talking faces

classification in TV-content,” Proceedings of International Conference on Machine

Vision, pp. 187–190, 2010.

[8] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham, “Active shape models

- their training and application,” Comput. Vis. Image Underst., vol. 61, no. 1, pp.

38–59, 1995.

[9] G. Garau, A. Dielmann, and H. Bourlard, “Audio-visual synchronisation for speaker

diarisation,” in Proc. INTERSPEECH, 2010.

61

https://www.freecodecamp.org/news/an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050/
https://www.freecodecamp.org/news/an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050/
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53/
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53/

Bibliography 62

[10] F. Vallet, S. Essid, and J. Carrive, “A multimodal approach to speaker diarization on

TV talk-shows,” IEEE Transactions on Multimedia, vol. 15, no. 3, pp. 509–520, 2013.

[11] H. Vajaria, T. Islam, S. Sarkar, R. Sankar, and R. Kasturi, “Audio segmentation and

speaker localization in meeting videos,” in Proc. 18th International Conference on

Pattern Recognition, 2006, pp. 1150–1153.

[12] http://avidemux.sourceforge.net/.

[13] H. Bredin, “pyannote.metrics: a toolkit for reproducible evaluation, diagnostic, and

error analysis of speaker diarization systems,” in Proc. INTERSPEECH, 2017, pp.

3587–3591.

[14] https://github.com/pyannote/pyannote-metrics.

[15] L. E. Baum and T. Petrie, “Statistical inference for probabilistic functions of finite

state Markov chains,” Ann. Math. Statist., vol. 37, no. 6, pp. 1554–1563, 1966.

[16] M. Rouvier, G. Dupuy, P. Gay, E. el Khoury, T. Merlin, and S. Meignier,

“An open-source state-of-the-art toolbox for broadcast news diarization,” in Proc.

INTERSPEECH, 2013.

[17] S. Galliano, G. Gravier, and L. Chaubard, “The ESTER 2 evaluation campaign for

the rich transcription of French radio broadcasts,” in Proc. INTERSPEECH, 2009,

pp. 2583–2586.

[18] X. Huang, A. Acero, and H.-W. Hon, Spoken Language Processing: A Guide to

Theory, Algorithm, and System Development, 1st ed. Upper Saddle River, NJ, USA:

Prentice Hall PTR, 2001.

[19] S. Davis and P. Mermelstein, “Comparison of parametric representations for

monosyllabic word recognition in continuously spoken sentences,” IEEE Transactions

on Acoustics, Speech, and Signal Processing, vol. 28, no. 4, pp. 357–366, 1980.

[20] A. G. Adam, S. S. Kajarekar, and H. Hermansky, “A new speaker change detection

method for two-speaker segmentation,” in Proc. IEEE International Conference on

Acoustics, Speech, and Signal Processing, vol. 4, 2002, pp. 3908–3911.

[21] S. S. Chen and P. S. Gopalakrishnan, “Speaker, environment and channel change

http://avidemux.sourceforge.net/
https://github.com/pyannote/pyannote-metrics

Bibliography 63

detection and clustering via the Bayesian information criterion,” in Proc. DARPA

Broadcast News Transcription and Understanding Workshop, 1998, pp. 127–132.

[22] C. Barras, X. Zhu, S. Meignier, and J. L. Gauvain, “Multistage speaker diarization of

broadcast news,” Trans. Audio, Speech and Lang. Proc., vol. 14, no. 5, pp. 1505–1512,

2006.

[23] S. Tranter and D. A. Reynolds, “Speaker diarisation for broadcast news,” in Proc.

Odyssey Speaker and Language Recognition Workshop, 2004, pp. 337–344.

[24] J. Pelecanos and S. Sridharan, “Feature warping for robust speaker verification,” in

Proc. IEEE Odyssey: The Speaker and Language Recognition Workshop, 2001, pp.

213–218.

[25] M. Rouvier and S. Meignier, “A global optimization framework for speaker diarization,”

in Proc. Odyssey Workshop, 2012.

[26] P.-M. Bousquet, M. Driss, and J.-F. Bonastre, “Intersession compensation and scoring

methods in the i-vectors space for speaker recognition.” in Proc. INTERSPEECH,

2011, pp. 485–488.

[27] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20,

no. 3, pp. 273–297, 1995.

[28] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed. Upper Saddle

River, NJ, USA: Prentice Hall PTR, 1998.

[29] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,”

in Proc. IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, vol. 1, 2005, pp. 886–893.

[30] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, “Object detection

with discriminatively trained part-based models,” IEEE Trans. Pattern Anal. Mach.

Intell., vol. 32, no. 9, pp. 1627–1645, 2010.

[31] V. Kazemi and J. Sullivan, “One millisecond face alignment with an ensemble

of regression trees,” in Proc. IEEE Conference on Computer Vision and Pattern

Recognition, 2014, pp. 1867–1874.

Bibliography 64

[32] C. Sagonas, E. Antonakos, G. Tzimiropoulos, S. Zafeiriou, and M. Pantic, “300 faces

in-the-wild challenge: Database and results,” Image and Vision Computing (IMAVIS),

2016.

[33] V. Le, J. Brandt, Z. Lin, L. Bourdev, and T. S. Huang, “Interactive facial feature

localization,” in Proc. of the 12th European Conference on Computer Vision - Volume

Part III. Berlin, Heidelberg: Springer-Verlag, 2012, pp. 679–692.

[34] G. Farnebäck, “Two-frame motion estimation based on polynomial expansion,” in

Proc. Image Analysis, J. Bigun and T. Gustavsson, Eds. Berlin, Heidelberg: Springer,

2003, pp. 363–370.

[35] A. G. Amit, J. N. Jnoyola, and S. B. Sameepb, “Lip reading using CNN and LSTM,”

Stanford University, Tech. Rep., 2016.

[36] https://www.tensorflow.org/.

[37] https://colab.research.google.com/notebooks/intro.ipynb/.

[38] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”

in Proc. IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp.

770–778.

https://www.tensorflow.org/
https://colab.research.google.com/notebooks/intro.ipynb/

	Introduction
	The Speaker Diarization Task
	Thesis Contribution
	Related Work
	Thesis Overview

	Dataset
	Dataset Description
	Transcription Files
	Ground Truth
	Reference Annotations

	Audio Speaker Diarization
	Preliminaries
	Gaussian Mixture Models
	Expectation - Maximization Algorithm
	Hidden Markov Models
	Viterbi Algorithm

	LIUM SpkDiarization
	Extraction of MFCC features
	Generalized Likelihood Ratio Segmentation
	Segmentation Based on BIC
	Hierarchical Clustering
	Viterbi Decoding
	Speech/Music/Silence Segmentation and Filtering
	Speech/Music/Silence Segmentation
	Segmentation Filtering

	Gender and Bandwidth Detection
	Integer Linear Programming Clustering
	Introduction
	I-Vectors Clustering Method

	Visual Speaker Diarization
	Preliminaries
	Support Vector Machines
	Convolutional Neural Networks

	Dlib Library
	Overview
	Dlib Face Detection
	Dlib Pose Estimation

	Centroid Tracking
	Optical Flow
	Optical Flow and SVM Visual Diarization Description
	Speech Detection Features
	Speech Detection SVM Training
	Speech Detection SVM Testing

	CNN Visual Diarization Description
	Training and Testing Dataset
	CNN Model Training
	CNN Model Testing

	Audio-Visual Speaker Diarization
	Preliminaries
	K-Means Clustering

	Motivation for Audio-Visual Fusion
	Face Clustering
	Deep Residual Networks

	Speech Overlap Detection
	Overlap detection features
	Overlap Detection SVM Training
	Overlap Detection SVM Testing

	Evaluation
	Diarization Error Rate
	Audio-Only Evaluation
	Visual-Only Evaluation
	Optical flow and SVM Method Evaluation
	CNN Method Evaluation

	Audio-Visual Evaluation

	Conclusion and Future Work
	References

