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Abstract 

 

In this thesis, we attempt to define the steps needed in order to design a Demand Responsive 

Transportation system from scratch. The crucial factor that makes our proposed methodology 

differ from other approaches, is the fact that is fully based on historical data and not driven by 

extremely time consuming and expensive surveys. For this purpose, we collected and analyzed 

a huge historical data set concerning the requests for transportation in the city of Volos, Greece. 

Moreover, we focused on the Dial-a-Ride problem in its static version but also taking into 

account probabilistic information which became available through an extensive statistical data 

analysis. Probability was added to the dial-a-ride problem in three different ways, by 

considering probabilistic pickup and delivery points and probabilistic times in which each 

request occurs. Lat but not least, we constructed different test cases in accordance with our 

market’s characteristics. Our work has led us to capture all the critical elements that need to be 

taken under consideration in the designing phase and define some crucial steps in the phase of 

deploying an on-demand system in an urban area, by making use of the advantages of 

technology in a world of data development.   
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 INTRODUCTION 

 

The purpose of this thesis is the data driven design of a Demand Responsive 

Transportation system from scratch, which is based on probabilistic information that became 

available through an extensive statistical analysis of a huge historical data set.  

 

This thesis is organized as follows. A brief description about Demand Responsive 

Transportation systems is given in this section. A detailed description and literature review 

about the Vehicle Routing Problem and the Dial-a-Ride Problem is given in section 2. The 

algorithms that were implemented in order to find a solution for our problem are described in 

section 3. In section 4 we present our statistical analysis concerning a large sized data set 

obtained on the city of Volos, Greece. Furthermore, the construction of our experiments and 

their computational results are contained in section 5. Finally, some concluding remarks and 

directions for the data driven design of an On-Demand Transportation system are presented in 

section 6. 

 

1.1 Demand Responsive Transportation (DRT) systems 

 

The provision of qualitative public transportation can be extremely expensive in low, 

variable and unpredictable demand scenarios, as it is the case of dispersed rural areas or some 

periods of the day in urban areas. Demand Responsive Transportation (DRT) systems try to 

handle this problem by providing a hybrid approach between a taxi and a bus, with routes and 

frequencies that may vary according to the observed demand. In this way, operators offer a 

more efficient service because of this additional flexibility, with routes planned shortly before 

their start, better occupancy rates and vehicles’ characteristics better suited to users’ mobility 

requirements. However, in terms of financial sustainability and quality of the service, the design 

of this type of services may be difficult.  
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The problems of designing and operating DRT services are closely related to the Vehicle 

Routing Problem, and in particular to the Dial-A-Ride Problem. DRTs extend the “classical” 

Vehicle Routing Problems (VRP) in a number of ways. It is clear that in the DRT context, 

vehicles have a limited capacity, demands should be served within a certain time window, each 

stop along the route can be both a pickup and a delivery point and there is the uncertainty and 

variability associated with the number of stops along the route. In the Dial-A-Ride Problem 

(DARP) the goal is not only minimizing the operating costs or the distance travelled by the 

vehicles but also maximizing the quality of the service, based on indicators such as the average 

passenger waiting time or the on-board (ride) passenger time.  

DRT services can operate in a static or in a dynamic mode. In static mode, all requests 

are known before-hand (a priori or advanced requests), whereas in dynamic mode transportation 

requests are gradually revealed along the service operating time, with routes and schedules 

having to be adjusted to meet the demand. In practice, however, “pure” dynamic services are 

not common since some requests are usually known a priori.  

Given the complexity of these problems, optimal solutions can take an enormous 

amount of time to be found, ruling out their usefulness in the context at hand. Besides, in a 

multiple criteria decision analysis the “optimal” solution is in general meaningless because it is 

impossible to satisfy all (usually contradictory) objectives simultaneously. So, we are interested 

in finding a set of efficient solutions.  

In this thesis, we attempt to design a DRT system for an urban area from scratch. The 

crucial factor that makes our proposed methodology differ from other methodologies, is the fact 

that is fully based on historical data regarding the city of our research. A deliberate study on 

this data set revealed significant elements for the design of the on-demand transportation 

system. Moreover, in contrast with other approaches regarding the design of a DRT system, our 

methodology is not driven by surveys which are extremely time consuming and expensive. 

Thus, instead of questioning people, we made a request for a historical data set to the only taxi 

company in the city of our research. A huge historical data set has been provided to us, which 

included 959780 requests for transport in our region of research for the last 4 years (2016 - 

2019). In this way, we have been able to know the demand for transportation in this city 

including its time and spatial characteristics, without trying to discover the requirements for 

such a transportation system through costly questionnaires. In conclusion, we achieved to 

capture all the critical elements that need to be taken under consideration in the designing phase 

and define some crucial steps in the phase of deploying an on-demand system in an urban area, 

by making use of the advantages of technology in a world of data development.   
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 LITERATURE REVIEW  

 

A detailed description and literature review about the Vehicle Routing Problem and the 

Dial-a-Ride Problem is given in this section.  

 

2.1 Vehicle Routing Problem (VRP) 

 

Stochastic and dynamic point of view 

 

Over the years, the VRP is studied widely but it is still a challenging research theme. 

One should categorize the VRPs based on the information availability and uncertainty as it is 

introduced in Schorpp (2010) and utilized in Pillac et al. (2013). This leads to static, dynamic, 

stochastic, and dynamic and stochastic VRPs. For the static VRP, the reader is referred to an 

overview of different VRP formulations in Toth andVigo (2001) and other reviews in Cordeau 

et al. (2007), Laporte (2007, 2009).  

In stochastic optimization, the aim is to find, given a VRP where some data are 

stochastic, an a priori routing plan that minimizes the expected objective function. These 

approaches often have a recourse function to correct the plan when constraints are violated. In 

dynamic optimization, customer requests are not known beforehand and become available over 

time. Usually, optimization is carried out on the known parameters until an event (e.g. a 

customer request) happens. The plan is then adapted to service the new request if it is possible. 

Generally, stochastic information is also available for the dynamic version of VRP, either 

through historical data (as suggested in Gendreau et al. 1998, 1999 and Kilby et al. 1999) or 

through some available probabilistic models (as mentioned in Gendreau et al. 1996b and Yang 

et al. 2000). However, the exploitation of the stochastic information in order to service as many 

customer requests as possible is a crucial open research problem.  

 

 

1. Dynamic vehicle routing problems 

 

Sometimes, not all information concerning the problem is known beforehand. In the 

dynamic VRP (DVRP), also mentioned as real-time or online VRP, some data are available 

Institutional Repository - Library & Information Centre - University of Thessaly
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only during the execution. The arrival of new customer demands, service times and travel times 

are the most frequent dynamic events in VRPs. The DVRP is extensively studied in the 

literature, starting with the work of Psaraftis (1988) which shows the differences between static 

and dynamic VRPs. Larsen and Madsen (2000) present a classification of DVRPs according to 

the dynamism of the system, while Pillac et al. (2013) classify DVRPs concerning the type of 

dynamic events. A variety of algorithms coping with DVRPs are suggested in the literature and 

superior reviews are given in Psaraftis (1995), Larsen and Madsen (2000), Larsen, Madsen, and 

Solomon (2008), Jaillet and Wagner (2008), Schorpp (2010), Pillac et al. (2013) and Visentini 

et al. (2014). Including dynamic information leads to the increase of the complexity of the 

problem and new issues occur. The decision whether a new request is accepted or rejected is 

introduced as service guarantee in Van Hentenryck and Bent (2009) and discussed in Ichoua, 

Gendreau, and Potvin (2000) and Li, Mirchandani, and Borenstein (2009). Karsten Lund and 

Rygaard (1996) define the degree of dynamism (DOD) which shows how dynamic a system is 

concerning the number of dynamic request and the number of total requests (the ratio dynamic 

customers/total customers (Larsen et al. 2002)). Larsen and Madsen (2000) introduced further 

measurements which additionally consider the time aspect. Furthermore, a significant issue is 

to determine a suitable objective function, since attributes such as service level, number of 

serviced requests, minimization of response times or profit maximization are concerned in 

contrast to simply considering travel times or distances. Due to the fact that DVRPs require 

online decisions, a compromise between reactiveness and decision quality must be found. A 

highly accepted performance measure for online algorithms is the competitive analysis 

introduced by Sleator and Tarjan (1985) and further research on this topic is presented in 

Krumke (2002), Angelelli, Speranza, and Savelsbergh (2007), Jaillet and Wagner (2008). The 

adjustment of the planned solution according to the plan in execution is another crucial element 

and can be performed with different updating strategies.  

 

 

2. Stochastic vehicle routing problems 

 

The majority of real-world problems suffer from an initial level of uncertainty. 

Commonly, information concerning upcoming events is available through historical data, 

which can be adapted to information models. The processes of data collection, analysis and 

provision are widely discussed in Ehmke, Steinert, and Mattfeld (2012). The uncertainty in 

problem descriptions can be captured in various ways, mainly distinguishing between different 
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formalization variants, as discussed in Bianchi et al. (2009). One could generally classify 

stochastic combinatorial optimization problems (SCOP) according to the time where uncertain 

information is revealed. This results in static SCOPs, where decisions are taken before the 

random variables are realized and dynamic SCOPs, where decisions are made after some 

random events have occurred. The stochastic VRP (SVRP) is basically any VRP where one or 

more parameters are stochastic, meaning that some future events are random variables with a 

known probability distribution. A classification according to the stochastic parameters is 

proposed in Gendreau, Laporte, and Sguin (1996) and various optimization problems with 

uncertainty are summarized in Sahinidis (2004). In general, pure SVRPs have a probability 

distribution of the random variables available and the optimization process is performed before 

they are realized. The planned routes are not changed or updated after the realization, thus, it is 

often referred to as a-priori optimization. One of the most commonly applied approaches to 

SVRPs is stochastic programming (SP) where a general introduction is given in Birge and 

Louveaux (1997) and SP in the context of transportation and logistics are discussed in Powell 

and Topaloglu (2003), Powell and Topaloglu (2005). 

 

 

3. Dynamic and stochastic vehicle routing problems 

 

In the last years, researchers have focused on the dynamic and stochastic VRPs 

(DSVRP). The term stochastic means that the information concerning upcoming events can be 

described by a random variable with a known probability distribution. Moreover, the term 

dynamic means that the available information evolves over time – occurs over the problem 

horizon – with accuracy at its worst during initial planning and at its best during operations. 

Because of the rapid technological progress concerning information and communication, it is 

now allowed to cope with real-world applications more accurately. In conjunction with 

efficiently handling dynamic events, stochastic knowledge about the revealed data is 

considered. The literature provides several approaches to deal with this evolution of 

information: through the incorporation of stochastic information during planning (Dror et al. 

1989), through update methods, where a static problem is solved repeatedly (Berbeglia et al. 

2010, Pillac et al. 2012a), through online algorithms where a specific action is taken when new 

information arriving (Jaillet and Wagner 2006), or through stochastic, dynamic strategies that 

combine the first two approaches (Goodson et al. 2013). When incorporating stochastic 

information in the planning phase, the aim is to develop a robust plan – one that remains relevant 
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despite changes in information. Both dynamic and online algorithms are similar in that new 

routes or actions are only undertaken when the uncertain information becomes certain. Even 

after the vehicles are en route, stochastic, dynamic strategies that accommodate job location 

information on unknown future jobs demonstrate improvements (see for example Thomas and 

White (2004), Hyyti¨a et al. (2012), Cortes et al. (2009)). Other authors use probabilistic or 

advance information to make decisions about which jobs to serve (Jaillet and Lu 2011, Kim et 

al. 2004). Considering the problem from the decision-making point of view, Approximate 

Dynamic Programming (ADP) provides a tool to decompose the problem into a series of 

decisions over time. The key to use ADP effectively is to have a clear relationship on the 

transition from one system state to the next and to have a mechanism by which to evaluate the 

different decision policies. Powell et al. (1988) utilized ADP to study a problem of truckload 

pickup and delivery when the job requests are uncertain. Goodson et al. (2013) used a roll-out 

algorithm along the lines of ADP in order to serve loads when the size of the loads was 

uncertain. Flatberg et al. (2005) and Pillac et al. (2013) provide an overview on DSVRPs but 

with a strong focus on pure DVRPs, whereas Ritzinger and Puchinger (2013) give a review of 

DSVRPs but with an exclusive focus on various hybrid methods applied to this field. In recent 

years, the field of anticipatory optimization, dealing with the future realization of relevant 

parameters, has also been connected to dynamic decision-making. A summary of successful 

methodologies for anticipatory optimization and dynamic decision-making, categorized 

regarding different degrees of anticipation, is given in Meisel (2011). As already mentioned, 

the broad classification is based on the nature of the uncertain information as defined in 

Gendreau, Laporte, and Sguin (1996). However, the focus is on a further characterization based 

on the point in time where substantial computational effort for determining decisions or 

decision policies actually occurs. This results in two groups: 

• The first group, preprocessed decisions, is about approaches where policies or 

solutions are computed before the execution of the plan. 

• The second group, online decisions, consists of approaches where solutions are 

computed as soon as a dynamic event occurs. 

Both groups consider dynamic systems and are based on some stochastic information. 

In order to tackle such systems properly, state-dependent decisions must be made, which is 

often named policy in the literature. The problem settings for both groups are usually modelled 

as Markov decision process (MDP) or formulated as multi-stage stochastic models. In Figure 

1, the difference between the groups is illustrated. Solution approaches which belong to the first 

group (preprocessed decisions) determine the values for decision-making, respectively, 
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policies, before the execution of the solution plan. Therefore, possible states need to be 

constructed in advance and evaluated based on possible dynamic events and stochastic 

information along a considered time horizon. The first variant is to analyze general policies 

based on the arising states and decisions beforehand and apply them during the operational 

process, e.g. always dispatch the nearest available vehicle. The second variant is to value 

possible states and their decisions before plan execution and use these preprocessed values in 

the dynamic planning process. Thus, during plan execution, these methods only exploit the 

precomputed values to make accurate decisions for the current system state. The second group 

(online decisions) differs in so far as a major part of the computation is made when a dynamic 

event occurs. Here, a current solution plan is followed during execution and whenever a new 

event occurs, a decision is calculated online with respect to the current system state and the 

available stochastic information. This procedure is also referred to as rolling horizon procedure 

or as look-ahead strategy. The solution of such an approach is either a single decision for the 

current situation or a re-optimized plan. Another possibility is to provide a greedy single 

decision requiring less computational effort first and run a more intensive re-optimization later 

in the background. The choice of the most adequate method to be used for reacting on dynamic 

events is strongly connected to the DOD and the given reaction time. 
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DVRP with stochastic travel times 

 

Travel times are essential data in VRPs because of their paramount importance for the 

considered network. Static deterministic travel times often differ from real-world, since 

variation in traffic density, mostly in urban areas, is not considered. In order to overcome this 

problem, there are the three ways to model travel times as time-dependent, stochastic, or 

stochastic and time-dependent. The latter variant is the combination of stochastic and time-

dependent travel times and results in stochastic time-dependent networks, where link travel 

times are random variables with time-dependent distributions. Hall (1986) first studies the 

stochastic time dependent shortest path problem, also called the least expected shortest path or 

least expected time path where a shortest path, based on estimation of mean and variance travel 

times, is constructed. The solutions are called a-priori or non-adaptive, since no decisions are 

updated once the vehicle is en route. Work on this can be found in Hall (1986), Fu and Rilett 

(1998) and Miller-Hooks and Mahmassani (2000). VRPs applying stochastic and time-

dependent travel time are presented, for example, in Fu (2002), Chen, Hsueh, and Chang 

(2006),Woensel et al. (2008), Nahum and Hadas (2009), Lecluyse, VanWoensel, and Peremans 

(2009) and Ta¸s et al. (2014). On the other hand, dynamic or adaptive solution approaches 

recognize the benefits of an adaptive decision-making process.  

 

 

1. Preprocessed decision support 

 

In order to handle uncertainty and real-time information about travel times efficiently, 

travel times are analyzed and modelled appropriately and incorporated into the algorithms. 

Usually, this is modelled as a MDP and it is popular to model the stochastic information about 

travel times via probabilities of congestion on links. The purpose is to calculate an optimal 

routing policy beforehand which can then be applied to the vehicle en route. Note that all the 

possible decisions are calculated and evaluated before the vehicle starts its route. One flaw is 

the dimension of the problems. Thus, for every possible state concerning time, location and 

traffic information, an optimal routing policy must be decided and stored. The computational 

effort can be demonstrated by the rather small test networks used in the literature. Interesting 

work which considers stochastic time-dependent travel times and which performs (optimal) 

routing decisions in advance is presented in Fu (2001), Miller-Hooks (2001), Kim, Lewis, and 
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White (2005), Gao and Chabini (2006), Gao and Huang (2012) and Güner, Murat, and Chinnam 

(2012). Also, Toriello, Haskell, and Poremba (2014) propose an approximated linear 

programming (ALP) approach for the dynamic TSP with stochastic arc costs. They also 

investigate a rollout policy, where the expected costs at any state biased by the optimal value 

of the LP relaxation of a shortest Hamiltonian path are considered. 

 

 

2. Online decision making 

 

Here, the focus is on DVRPs with stochastic and time-dependent travel times where the 

decisions for adapting the route are not preprocessed but calculated online. In Taniguchi and 

Shimamoto (2004) and Potvin, Xu, and Benyahia (2006), the routes are updated according to 

estimated travel times whenever a vehicle arrives a customer location. In the former work, the 

travel times are obtained by a dynamic traffic simulation based on a macroscopic approach and 

the results show the benefit of using the reactive algorithm compared to the static counterpart 

for test scenarios where a link is blocked for an hour at different times. In the latter case, travel 

times are obtained by a short-term forecast and dynamic perturbation model and a tolerance 

level, which is an allowed waiting time in the case of lateness, before a reassignment action, is 

initiated. Results show that a good strategy is to accept lateness in the case of small deviations 

in travel times, but react on events of a large magnitude. Yan, Lin, and Lai (2013) deal with the 

planning of courier routes and introduce a time–space network including several arcs associated 

with travel times and a probability. A stochastic planning model, incorporating unanticipated 

lateness penalty costs and a stochastic real-time adjustment model, which handles dynamic 

requests and aims for little route adjustment, are introduced. The results show that the model 

with route adjustment yields better results. Another fundamental work is presented by Schilde, 

Doerner, and Hartl (2014), using stochastic deviations from time-dependent travel speeds which 

are deduced from historical accident data. The positive effect of using such data instead of 

average time-dependent travel speeds is tested on different stochastic metaheuristic concepts: 

dynamic stochastic variable neighborhood search (DSVNS) which is based on Gutjahr, 

Katzensteiner, and Reiter (2007) and multiple scenario approach (MSA) introduced in Bent and 

Van Hentenryck (2004). The results are compared to the corresponding myopic approaches: a 

dynamic VNS (DVNS) and a multiple plan approach (MPA). In contrast to the work above, the 

true travel speed is revealed in each iteration of the algorithm. In general, the DSVNS performs 

best, but the solution quality highly depends on the DOD in so far as for highly and non-
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dynamic instances, the DVNS works better. However, the MSA turns out to be unsuitable for 

this problem setting and, on average, obtains no improvements. 

 

 

3. Conclusion  

 

The algorithms cannot be fairly compared to each other because of the problem-specific 

constraints and the use of different test instances. However, each work shows that even though 

the reduction of operational costs is not wide, the reliability (i.e. level of customer service) 

increases considerably when uncertainty in travel times is considered in the solution approach.  

 

 

 

DVRP with stochastic demand 

 

Another extensively studied problem class is the VRP with stochastic demand 

(VRPSD), where there is uncertainty in the customer demands. The location of the customer is 

known beforehand, but the actual demand is revealed when arriving at the customer location. 

It occurs that the required demand cannot be met and the vehicle has to return to the depot for 

replenishment before serving the customer. Therefore, the objective of VRPSD is to minimize 

the total expected travel costs needed to serve all customer demands. Typical applications for 

the VRPSD are the supply of gas stations or garbage collection. Mainly, an a-priori solution 

which incorporates stochastic demand information is constructed and the customers are visited 

according to the plan without any route updates during the operation. Whenever the customer 

demand is not met, a so-called route failure occurs and a defined recourse actions (e.g. 

replenishment at the depot) must be applied. Typically, a two-stage approach is applied as 

proposed in Bertsimas (1992) and Gendreau, Laporte, and Sguin (1996). The most common 

concepts are chance constraint programming and stochastic programming with recourse. A 

great review on VRPSD is given in Campbell and Thomas (2008) and in Mendoza et al. (2010), 

Erera, Morales, and Savelsbergh (2010) and Juan et al. (2011, 2013). Anticipatory insertion 

(AI), discussed in Thomas and White III (2004), is another concept for exploiting future 

information about customer demand. While a-priori solution approaches are widely studied, 

advanced planning technology has also facilitated another approach where routing or 
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replenishment decisions are made dynamically, often called re-optimization approach. This 

different problem class is called DVRP with stochastic demand (DVRPSD). In other words, 

VRPSDs are extended with the possibility of route adaption during the plan execution phase 

whenever new data are revealed.  

 

 

1. Preprocessed decision support 

 

In order to solve a DVRPSD, a widely known way is to consider all states (e.g. all 

possible demand realizations) beforehand and the value of each state according to its 

performance. Such an approach performs the evaluation of the states before the vehicle starts 

the tour and enables an accurate decision-making based on these values during the plan 

execution phase. From a computational point of view, it might be very expensive to determine 

all the predefined values, but it comes with the advantage that dynamic decisions can be 

provided quite fast. This is usually formulated as a multi-stage stochastic dynamic 

programming model and with the assumption that states and decisions are discrete and the value 

evaluation can be done by Bellman’s equation. To overcome the curse of dimensionality, the 

exact value function can be replaced by an approximation. This formulation can either be 

implemented as an ALP as in Toriello, Haskell, and Poremba (2014) or as an approximated 

dynamic programming (ADP) discussed in Powell (2007). An ADP algorithm is discussed in 

Zhang et al. (2013) for the single-vehicle DVRPSD based on value function approximation 

(VFA). An ADP algorithm based on VFA with lookup table representation is developed and 

then improved by a Q-learning algorithm with bounded lookup tables and efficient 

maintenance. The algorithms are tested on the instances of Secomandi (2001) and Solomon 

(1987) and results show that especially for larger instances (up to 60 customers), the 

computational time could be reduced with the improved algorithm with even slight 

improvements in solution quality. Another ADP-based approach is presented in Meisel, Suppa, 

and Mattfeld (2011) where the need of explicit anticipation of customer requests is discussed. 

The authors consider a single-vehicle approach, where the set of customers is divided into static 

and dynamic requests and for the latter, either a rejection or acceptance decision is made after 

its arising. The algorithm is tested on the instances in Solomon (1987) and the results are 

compared against the distribute waiting time strategy presented in Thomas (2007) and yield 

better results.  
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2. Partly online decisions  

 

For the DVRPSD, this additional category is identified consisting of approaches where 

some of the computational effort is done beforehand to guide the online decision-making 

process. This grows out of the fact that all locations are known beforehand and this information 

can be exploited for precalculations. A common sequential approach is the rollout algorithm 

(RA), which can be considered as a single iteration of policy iteration starting with a 

heuristically computed base policy. Based on its performance, an improved policy is obtained 

by an one-step look-ahead. Thus, decisions for the current state are determined by 

approximating the cost-to-go via the base policy looking one-step ahead. Bertsekas (2013) 

provides an extensive survey on RAs and Goodson, Thomas, and Ohlmann (2012) describes 

rollout policies for general stochastic dynamic programs. Secomandi (2000, 2001) provides the 

first computational results of a re-optimization policy for the DVRPSD by means of a RA. A 

one-step algorithm is developed where the cyclic-heuristic introduced in Bertsimas (1992) is 

used as base policy. Two versions (no-split and split delivery) are analyzed and compared to a 

static rollout approach. Secomandi and Margot (2009) develop an algorithm which determines 

re-optimization policies by computing the optimal policy for a restricted set of states (selected 

by a partitioning and sliding heuristic). Novoa and Storer (2009) extend the work in Secomandi 

(2001) by implementing different base policies. It is demonstrated that applying a two-step RA 

yields better results than the one-step RA. However, the best performing base policy is an 

adapted stochastic set-partitioning-based model (Novoa et al. 2006). Note that these works 

consider the single-vehicle DVRPSD, whereas Fan, Wang, and Ning (2006) solve the multi-

vehicle DVRPSD by decomposing it to single-vehicle problems first and applying the RA of 

Secomandi (2001) to each of them. 

 

 

3. Online decisions  

 

Online decisions for the DVRPSD are determined either by applying online algorithms 

or, if computational time allows it, by recomputing the base sequence at predefined states (e.g. 

an event occurs). Erera and Daganzo (2003) divided the service region into two parts and after 

serving all customers of the first part a single real decision is made to assign the unserved 

customers to vehicles considering their remaining capacities. Pillac, Guéret, and Medaglia 

(2012) propose an event-driven, sampling-based MSA where a pool of scenarios is maintained. 
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The scenarios are realizations of customer demands and are optimized by an adaptive VNS. 

The selection of the next customer is performed by a consensus function and results are 

compared to some large instances in Novoa and Storer (2009). Cheung, Hang, and Shi (2005) 

present a dynamic stochastic drayage problem where the duration of a task (transportation from 

origin to destination location combined with some intermediary activities) is considered to be 

uncertain. An adaptive labelling approach within a rolling horizon procedure is developed 

where virtual routes and labels are used and adapted to approximate the expected future costs. 

In Thomas (2007), intermediate requests at known locations may arise while the vehicle is en 

route and waiting positions for serving these requests best possible are determined by a real-

time heuristic, called center-of-gravity heuristic. A somehow surprising result is presented in 

Ghiani, Manni, and Thomas (2012) where an AI heuristic is compared to a sample-scenario 

planning approach (MSA) in the context of a dynamic stochastic TSP. The main contribution 

is to emphasize that AIs, thus a-priori solutions, generate comparable solutions while needing 

less computational effort. Even though the MSA shows poor performance, it has to be noted 

that the MSA is sensitive to the problem structure (e.g. no time windows are given) and to 

instance data. As for Thomas (2007), it can be deduced that an increase in the DOD has greater 

impact than an increase in the likelihood of requesting customers. In Goodson, Ohlmann, and 

Thomas (2013), besides different a-priori-based policies, a dynamic decomposition-based 

rollout policy is presented to effectively tackle the multi-vehicle case. The customers are re-

partitioned at each decision point by executing the fixed-route heuristic from the current state. 

In a further work, Goodson, Thomas, and Ohlmann (2013) consider preemptive replenishment 

and present a RA in combination with a sampling-based approach, where a sample average 

approximation is applied to estimate the expected value of a restocking policy along a fixed 

route to a set of scenarios. Recently, Zhu et al. (2014) introduce the paired cooperative re-

optimization strategy formulated as a bilevel MDP, which makes use of partial re-optimization 

(Secomandi and Margot 2009) and paired-vehicle cooperation (Ak and Erera 2007). 

 

 

4. Conclusion  

 

Research demonstrates the success of adaptive methods for the VRPSD (DVRPSD) 

compared to non-adaptive approaches. Research on partly/preprocessed decision procedures is 

a little bit more explored, but results on online decision methods show slightly better results. 

However, because different instances and recourse actions are applied, no fair comparison can 
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be done among the algorithms. A variety of papers on DVRPSD is available in the literature 

with a strong focus on single-vehicle problems but the challenge is to investigate methods which 

are able to cope with more realistic problems, like larger sizes of instances as well as multi-

vehicle VRPs. 

 

 

 

DVRP with stochastic customers 

 

Another widely studied problem class is the DVRP with stochastic information about 

customers (DVRPSC). This problem class mainly occurs when some customer requests are 

known at planning time, but others are revealed during the day of operation. In contrast to the 

previous section, combined stochastic information about customer locations and the time of 

request occurrence are considered. In many real-life routing problems, there is more uncertainty 

with respect to the required timing of the service than with respect to the service locations. The 

stochastic information is either available for each customer or it is aggregated geographically 

and/or temporally. For example, in the context of truckload, vehicle routing problems, this 

uncertainty can be classified along two dimensions – spatial and temporal. Spatial uncertainty 

is about situations in which the exact location of a job is not known (or known inaccurately) 

during planning, but becomes known at some point in operations. Temporal uncertainty, on the 

other hand, is about situations in which the exact service time or time window of a job is not 

known (or known inaccurately) until operations are underway. These two dimensions are so 

intertwined that focusing on one of them separately is typically difficult. Concerning truckload, 

pickup and delivery problems, researchers tend to focus on scenarios in which both the service 

time and the location of future jobs are unknown. For such problems, multiple solution 

techniques exist varying from reactive, online/dynamic, rolling horizon strategies to stochastic 

strategies (Berbeglia et al. 2010). However, the isolated study of temporal uncertainty is less 

present in the literature. Srour, Agatz, and Oppen (2016) tried to fill this gap by studying a 

pickup and delivery problem with time windows in which the pickup and drop-off locations of 

the service requests are fully known beforehand, but the time at which these jobs will require 

service is only fully revealed during operations. They developed a sample-scenario routing 

strategy to accommodate a variety of potential time realizations while designing and updating 

the routes. The results showed that advance time related information (by having customers 
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preannounce their need for service), even if uncertain, can provide benefits in conjunction with 

having information on the service locations. The stochastic mechanism that they introduced, 

the MTS strategy with the sequence-based consensus function, was robust, even if they did not 

know the true probability distribution that characterized the uncertainty. The strength of MTS-

seq was its extension of the original consensus function of Bent and Van Hentenryck (2004) by 

not only scoring the similarity in terms of the job to vehicle assignments but also in terms of 

the route sequence. This additional component was beneficial in handling the uncertainty in 

their problem setting.  

 

 

1. Preprocessed decision support 

 

Besides myopic and look-ahead policies (also known as rolling horizon planning) and 

policy function approximation (PFA), a successful policy in operations research and the context 

of dynamic stochastic problems is VFA. In this context, ADP is a powerful framework for 

calculating the future impact of a decision and using an approximated value to improve it. This 

is demonstrated in an excellent tutorial on ADP in the field of transportation and logistics in 

Powell, Simao, and Bouzaiene-Ayari (2012) and illustrated on different problem classes in 

Powell (2007). Godfrey and Powell (2002a, 2002b) present an ADP algorithm for a stochastic 

dynamic resource allocation problem with randomly arising tasks, whereas Spivey and Powell 

(2004) applied the ADP concept to dynamic assignment problems and Simão et al. (2009) 

present an ADP for dealing with a large-scale fleet management. Maxwell et al. (2010) and 

Schmid (2012) demonstrate the successful use of ADP algorithms for the dynamic ambulance 

relocation and dispatching problem under uncertainty. Other approaches using policies based 

on VFA are studied in Mes, van der Heijden, and Schuur (2013), Mes, van der Heijden, and 

Schuur (2010) where a decentralized auction-based approach is considered and the exploit of 

incorporating historical job information and auction results into the planning process is 

investigated. Ulmer, Brinkmann, and Mattfeld (2015) investigate an anticipatory cost-benefit 

heuristic and an ADP approach for decision-making for courier, express and parcel services 

yielding better results than the myopic approach. Another research group studies the problem 

of designing motion strategies for mobile agents, where new customers arise randomly and 

remain active for a certain amount of time and the objective is to meet as many customers as 

possible within their active time window. The problem at hand is formulated as a DVRPSC and 
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discussed in Pavone and Frazzoli (2010) and Pavone et al. (2009), Pavone, Frazzoli, and Bullo 

(2011). 

 

 

2. Online decisions  

 

As the main goal is to handle real-world problems efficiently, research efforts on 

approaches considering online decisions for the DVRPSC have increased in recent years. The 

aim is to appropriately react to new events by introducing rules that can be easily computed in 

real-time. These rules consider future events in the decision-making process by generating 

scenarios of potential outcomes. A common concept, called sample scenario approach (SSA), 

is to generate multiple scenarios of future customer requests and include them into the planning 

process. After selecting the most appropriate solution for the future, the sampled customers are 

removed, but with the effect that the new solution is well prepared for possible future requests. 

Bent and Van Hentenryck (2004) introduce the MSA, an event-driven sampling-based 

algorithm, where new solutions are generated regarding to a set of scenarios and maintained in 

the solution pool. The key idea behind MSA is to continuously generate and solve scenarios 

which include both static and dynamic requests. The way of deciding which customer has to be 

visited next is fundamental for the MSA. Decisions use a distinguished plan selected by a 

consensus function. From among these scenarios, they select and enact the plan with the most 

similarity to all of the other scenarios in terms of vehicle to job assignments. Experimental 

results indicate that MSA produces dramatic improvements over approaches not using 

stochastic information. They also indicate a strong synergy between MSA and the consensus 

function, especially for problems with many stochastic customers. Therefore, Van Hentenryck, 

Bent, and Upfal (2010) present three algorithms sharing the same offline optimization algorithm 

and sampling procedure but differing in the way of selecting the next customer at each decision 

step: the online expectation algorithm, the consensus algorithm and the regret algorithm. 

Further work is discussed in Bent and Van Hentenryck (2005), where approaches without 

distribution are presented: a machine learning approach to learn the distribution about requests 

during execution of the algorithm and a historical data approach, exploiting information about 

past instances and in Bent and Van Hentenryck (2007) where waiting and relocation strategies 

are investigated. Schilde, Doerner, and Hartl (2011) investigate the potential of using stochastic 

information about future return trips for the dynamic stochastic DARP applying two SSAs: a 

DSVNS and a MSA algorithm. It is shown that the incorporation of very near future information 
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in the planning process (short-term sampling) is most beneficial. Another finding is that the 

DOD has a strong impact on the DSVNS, but the MSA is not affected as strongly. Another 

short-term SSA is presented in Ghiani et al. (2009), where near future requests are anticipated 

for a dynamic stochastic pickup-and-delivery problem (PDP). Instead of using a scenario pool, 

an individual number of samples is determined and applied to the best alternative solutions. Out 

of them, a distinguished solution is selected based on its expected penalty. Van Hemert and 

Poutré (2004) propose an evolutionary algorithm for the DVRPSC, where the samples consist 

of request occurring in fruitful regions, which are clusters of known customer locations that are 

likely to require service in near future. Flatberg et al. (2007) introduce an approach similar to 

the MSA but using a simple similarity score as consensus function. Additionally, the authors 

show how statistical knowledge of events can be learned automatically from the past, but no 

results are presented. Hvattum, Løkketangen, and Laporte (2006) formulate a multi-stage 

stochastic model and implement a dynamic stochastic hedging heuristic because of the problem 

size which is a time-driven SSA solving each sample scenario with a static algorithm and 

determining a plan based on common aspects of the generated solutions. Zhang, Smilowitz, and 

Erera (2011) present a SSA and a capacity reservation approach, both designed as two-stage 

models within a rolling horizon framework for a multi-resource routing problem. In order to 

reduce computational effort, a small set of decision epochs is defined and instead of using 

probabilistic models in the two-stage approach, the sample average over a set of scenarios is 

optimized. Besides sampling-based approaches, other concepts like stochastic modelling or 

stochastic strategies (e.g. waiting strategies) are investigated for the DVRPSC. Yang, Jaillet, 

and Mahmassani (2004) introduce a rolling horizon-based real-time multi-vehicle truckload 

PDP and present a MIP formulation for the offline problem which is applied at every decision 

epoch in the online strategy. They demonstrate that a rolling horizon strategy that also includes, 

via opportunity costs, probabilistic information on future job pickup and drop-off locations 

outperforms the simple reactive strategies. Another MIP-based RH approach is presented in 

Kim, Mahmassani, and Jaillet (2004) where dynamic decisions about the acceptance or 

rejection of requests are made based on an approximation of future vehicle utilization regarding 

spatial and temporal information about future requests. Others use probabilistic spatial 

information in order to choose where the vehicles should idle in anticipation of future requests 

(Larsen et al. 2004, Thomas 2007). Larsen, Madsen, and Solomon (2004) present a rolling 

horizon approach where geographical and temporal aspects about customer requests are 

exploited in different strategies to reposition vehicles during idle times. In Ichoua, Gendreau, 

and Potvin (2006), a PFA algorithm utilizes a threshold-based waiting strategy which decides 
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how long a vehicle should wait at its last customer location according to the probability of 

future requests in this area. Sáez, Cortés, and Núñez (2008) present a hybrid adaptive predictive 

control approach based on a genetic algorithm where the demand pattern is obtained by a zoning 

method based on a fuzzy clustering model. Huth and Mattfeld (2011) present an algorithm 

which allows dynamic truck allocation for the stochastic swap container problem and 

investigate strategies for anticipating future demand realization. Results show that the use of a 

probability distribution is more beneficial than using expected values for anticipating future 

demands. Ferrucci, Bock, and Gendreau (2013) present a rolling horizon approach for the 

0delivery of newspapers and apply a temporal and spatial clustering of future requests which 

guides vehicles into request-likely areas (cf. Van Hemert and Poutré 2004). It is claimed that 

according to the comprised stochastic information of the clustering, solving only one scenario 

is adequate. Vonolfen and Affenzeller (2014) present a waiting heuristic which utilizes 

historical request information based on an intensity measure and Albareda-Sambola, Fernndez, 

and Laporte (2014) introduce an adaptive service policy for a multi-period DVRPSC, where an 

auxiliary prize collecting VRP is solved at each time period. Additionally, a VNS-based 

adaptive policy is applied to solve larger instances. 

 

 

3. Conclusion  

 

Most research has been done on the DVRPSC based on VFA and ADP algorithms for 

various problem structures on different real-world instances, which makes an objective 

comparison of the results difficult. The research on online decision procedures distinguishes 

between non-sampling and sampling-based approaches. Both methodologies demonstrate the 

benefit with improvement of incorporating stochastic information about future customer 

requests into the solution. According to the advance of information and communication 

technologies, future research for both groups will be performed. However, it is assumed that 

sampling-based approaches obtain more attention because of the advantage of not depending 

on an accurate probability distribution. 

 

 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 20:05:35 EEST - 3.144.111.108



19 

DVRP with multiple stochastic aspects 

 

The vast majority of research on DSVRPs considers not more than one stochastic aspect. 

Only few works investigate the impact of incorporating multiple stochastic aspects, e.g. 

consideration of stochastic travel times and customers. Nowadays, the availability of data is 

increasing rapidly and better data analyses and probability models are coming into view. As a 

result, knowledge about the impact and benefit of using more stochastic information in DSVRPs 

is essential. Furthermore, the impact of various stochastic aspects and the benefit of 

combinations of stochastic information have to be examined. Chang,Wan, and OOI (2009) 

propose a heuristic solution approach for a just-in-time trucking service with stochastic travel 

times and service times which belongs to the group of preprocessed decision support. Cortés, 

Núñez, and Sáez (2008) extend the approach in Sáez, Cortés, and Núñez (2008) which considers 

stochastic customers, by additionally incorporating expected traffic conditions. The strategy 

approach is analyzed on scenarios with predictable and unpredictable congestion and results 

show an improvement of 2.1% compared to the myopic approach. In Bent and Van Hentenryck 

(2003), stochastic information about customers’ service times is considered and the MSA 

algorithm is applied. The aim is to investigate the behavior of the MSA algorithm on a less 

constrained but more stochastic problem. Results show that travel times are reduced while not 

degrading the service level and it is shown that the MSA is robust when stochastic information 

is not entirely accurate. Attanasio et al. (2007) present an approach with zoning technology for 

a same day courier service and introduce a forecast and an allocation module, where reliable 

near future predictions of travel times and demand are generated and handed to the allocation 

module which assigns customer requests and relocates idle couriers. Based on Hvattum, 

Løkketangen, and Laporte (2006), Hvattum, Løkketangen, and Laporte (2007) present a 

branch-and-regret heuristic (BRH) for the DVRPSC which finds better results regarding the 

number of vehicles used but not regarding the travelled distance. Furthermore, the performance 

is investigated when the demand of known customers is uncertain as well. The additional 

difficulty does not affect the performance of the myopic approach (MDH), while the BRH 

performs worse when demands are stochastic, but performs better than the MDH but with a 

smaller gap. The algorithms are also compared to the best results in Bent and Van Hentenryck 

(2004), and it is shown that the MSA performs better than the BRH. Note that the comparison 

is not completely fair because the MSA is a event-based algorithm, which means that it is 

responded immediately to new requests, which is not the case in the time-driven BRH. Schilde 
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(2012) did extensive research on the impact of using stochastic information during the planning 

process and demonstrates the effect of incorporating the combination of stochastic aspects 

(future transports and travel times) into the DSVNS and MSA algorithm. Results show that in 

contrast to the better performing DSVNS for approaches with a single stochastic aspect, the 

MSA outperforms the DSVNS when multiple stochastic aspects are considered. It is also shown 

that the combination leads to a more stable approach, indicating that increasing the amount of 

stochastic information has a positive effect on the robustness of the results. 

 

 

 

Overall conclusion 

 

To sum up, as it seems through literature, the appropriate handling of dynamic events 

in conjunction with stochastic information about possible future events usually produces better 

results than the myopic or pure a-priori approaches. However, these approaches are 

computationally expensive which limits, e.g. the number of scenarios that can be considered. 

On the other hand, nowadays through advanced computers, satisfactory results can be obtained 

within reasonable time and it is a fact that technological progress will increase the potential of 

advanced methods even more. As a result, more qualitative data will occur and provide more 

reliable and robust information to optimization systems. Not only information from stochastic 

models using historical data, but also real-time information about traffic, requests, weather, etc. 

can be considered. This will allow treating more complex fleet management problems. 

However, problem size can increase and on the other hand, more complex data can be gathered, 

thus allowing for the combination of multiple stochastic aspects. The difficult task is to 

determine the influence each individual aspect can have and how the interaction between these 

parameters will look like. Furthermore, nowadays, because of the development of parallel 

algorithms, we can handle huge data and time-consuming methods, such as parameter 

estimation, sampling methods or background optimization procedures. Also, the impact and the 

limits of using complex stochastic information about multiple types of future events will be 

investigated more widely and the already developed methods for more classical dynamic and 

stochastic vehicle routing variants will be extended. Finally, a progress should be done about 

the comparability of results of several approaches, as each of them deals with its own real-world 
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application and its own data which is usually private, and as a result it is hard to draw clear 

conclusions about the best approach.  

 

 

 

2.2 Dial-a-Ride Problem (DARP) 

 

The Dial-A-Ride Problem 

 

A dial-a-ride system is an application of demand-dependent, collective people 

transportation (Cordeau and Laporte 2007). Each customer requests a trip between an origin 

and a destination, to which a number of service level requirements are linked. The service 

provider attempts to develop efficient vehicle routes and time schedules, respecting these 

requirements and the technical constraints of a pickup and delivery problem (Parragh et al. 

2008). 

Dial-a-ride systems offer efficient door-to-door transportation, especially for people 

with mobility difficulties (elderly or disabled). Furthermore, there is a variety of advantages not 

only for drivers because of their stress and driving cost reduction, but also for non-drivers due 

to the improvement of their mobility. Also, dial-a-ride systems contribute to decrease traffic as 

well as to reduce energy use and pollution. 

The dial-a-ride problem with time windows (DARPTW) features the satisfaction of a 

set of travel requests, with predetermined pick-up and drop-off locations and desired pick-up 

and delivery time by the customer, by a fleet of vehicles from one or more depots. Each vehicle 

has a given capacity and the time each customer spends in the vehicle is bounded by a threshold. 

Most studies on the DARP assume a fleet of homogeneous vehicles based at a single depot. 

However, there may be several depots, especially in wide geographical areas, and the fleet 

might be sometimes heterogeneous. For example, some vehicles are designed to carry 

wheelchairs only, while others may only cater to ambulatory passengers and some are capable 

of accommodating both types of passenger. 

Planning of these transport systems is difficult due to all the constraints that need to be 

considered. As mentioned before, all persons that need to be transported have their own pickup 

and drop-off location, a time window at pickup and/or at arrival and a maximum ride time, 

which is usually about an hour. Also, in many cases the passenger may also have a wheelchair 
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or may need a special driver or an attendant. If a person needs to be transported to a school, day 

center or sheltered workshop, the time window is defined by the opening hours of this 

destination. On the other hand, if a person is using a less regular type of transport, there is 

usually a time window at the pickup location of 15 minutes before and 15 minutes after the 

desired pickup time, to give some planning flexibility.  

All these constraints in conjunction with the rising demand make more and more 

difficult to design vehicle routes and time schedules manually and more constraints lead to a 

more inefficient solution. One can imagine that if all customers can express all their wishes, 

making a good planning becomes really difficult. Thus, algorithms are needed to assure cost 

efficiency and service quality. Optimization of dial-a-ride systems involves solving a class of 

complex vehicle routing problems with pickup and delivery with time windows (VRPPDTW). 

What makes the DARP different from most routing problems is the human perspective. When 

transporting passengers, reducing user inconvenience must be balanced against minimizing 

operating costs. In addition, vehicle capacity is normally constraining in the DARP whereas it 

is often redundant in PDVRP applications, particularly those related to the collection and 

delivery of letters and small parcels (Molenbrunch et al, 2017). The most common cost elements 

are connected with regular fleet size and operation, occasional use of extra vehicles, and drivers’ 

wages. Moreover, quality service criteria include route duration, route length, customer waiting 

time, customer ride time (i.e. total time spent in vehicles), and difference between actual and 

desired delivery times. Some of these criteria may be treated as constraints or as part of the 

objective function. Therefore, it is essential to find the right balance between user satisfaction 

and reducing costs by optimizing the planning. 

Healy and Moll (1995) showed that the DARP is NP-hard. As a result, much effort has 

been spent, over the years, in finding efficient and effective solution methods for this problem 

class. The static deterministic variants of the DARP are extensively studied and a variety of 

sophisticated solution approaches have been presented by the research community. 

Over the years, literature has also provided purely dynamic or stochastic approaches 

and a combination of them. The increasing interest in this area results in a fast-growing body 

of research and multiple applications and settings arising from real-world problems, where not 

all requests are known in advance and the travel times are somewhat uncertain. Vehicles 

breakdowns, traffic, weather conditions and roadwork are factors that can influence the travel 

time between two locations. As a result, stochastics is included to deal with these uncertainties. 

If the travel time is modelled as a random variable with a mean and a variance, the model makes 

sure that both the arrival within the time window as well as the maximum ride time, are satisfied 
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with a minimum reliability. In this variance several uncertain factors can be included, making 

the arrival time at a location vary each time. Also, uncertainties like rush hour can be modelled 

with time dependent travel times, which vary for each time of the day. Moreover, a combination 

of both, where the stochastic travel times are also time-dependent, could be useful. Another 

uncertainty is the arrival of the requests. Part of the requests are static, which means that they 

are known before the schedule is made. For example, regular requests that can be the same 

every day or week, as passengers going to their work or school. The other part consists of 

dynamic requests that arrive during the time horizon and need to be integrated into the static 

schedule. Because these requests arrive during the time horizon, their exact details are not 

known while making the static schedule. Sometimes a dynamic request cannot be integrated in 

the current schedule anymore. In this case the operator adds a new vehicle to the schedule, 

otherwise the dynamic request has to be rejected. Of course, both of these options are not 

desirable. 

In the last years, researchers have focused on dynamic and stochastic points of view. 

When solving sophisticated vehicle routing problems (VRP), the goal is to offer reliable, 

flexible and robust solutions. The term robust means that the solution is minimally disturbed 

by unforeseen events. It may be disturbed, but it is wanted this disturbance to be as small as 

possible. 

The advance of information, communication technologies and the available data allows 

to gather related information for advanced vehicle routing. Nowadays, real-time information 

about vehicles and their positions, vehicle breakdowns, traffic information, and up-to-date 

information about customer requests and respective demand is also available due to innovative 

technologies. These technologies offer great opportunities to transportation companies 

operating in a dynamic environment. As a result, an extensive data collection and real-time 

decision support in vehicle routing are now offered and companies can modify their operations, 

whenever necessary. The data can be captured, stored and then be processed and analyzed using 

modern statistics in order to provide useful stochastic information to the optimization 

algorithms. Thus, routing algorithms provide real-time solutions by incorporating online 

information and considering possible future events. One could categorize such events as events 

that introduce new elements to the problem like a new order, a new vehicle, or a failing vehicle. 

Other events do not introduce new elements, but they change existing parameters. A congestion 

event changes the travel times between locations, loading or unloading delays change the 

service times required by orders. Receiving an almost continuous flow of information, 

companies always try to find ways to use it appropriately in order to improve their decisions. 
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All these advances offer the opportunity to improve solution quality in real-time systems, but 

they need to be leveraged by efficient optimization algorithms for solving dynamic and 

stochastic vehicle routing problems (DSVRP). 

 

 

Static and Deterministic dial-a-ride problem 

 

The dial-a-ride problem was first introduced by Wilson et al. (1971). Since then a variety 

of papers was written about this problem. The majority of them deal with the static case of the 

problem, where all requests are known in advance. An often-used heuristic for the static dial-a-

ride problem is a tabu search. This algorithm searches for the best solution in the neighborhood 

at each iteration. To avoid cycling, solutions can be declared ’tabu’ for a number of iterations. 

In Cordeau and Laporte (2003a) a tabu search heuristic is used with the neighborhood defined 

as all solutions that can be obtained by removing a request from one route and transferring it to 

another route. A combination of a mixed-integer program and a tabu search heuristic is used by 

Melachrinoudis et al. (2007). Other algorithms that are used for the static problem are an 

insertion heuristic (Jaw et al. (1986), Diana and Dessouky (2004), Luo and Schonfeld (2007)), 

a sacrificing algorithm (Healy and Moll (1995)), a grouping genetic algorithm (Rekiek et al. 

(2006)) and an adaptive large neighborhood search (Pisinger and Ropke (2007)). Although most 

of these papers take into account time windows and maximum riding time constraints, the 

authors often ignore other realistic constraints. Most papers use homogeneous vehicles and do 

not consider customers with wheelchair. One of the papers that assumes heterogeneous vehicles 

and more realistic constraints is Xiang et al. (2006). Similar realistic constraints are formulated 

in Parragh et al. (2012). In this paper a column generation algorithm is combined with variable 

neighborhood search to solve the static heterogeneous dial-a-ride problem with driver-related 

constraints. An overview of additional research on the static dial-a-ride problem is given by 

Berbeglia et al. (2007). 
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Standard DARP 

 

Definition 

 

A classic definition of the Dial-a-Ride Problem (DARP) has been established by 

Cordeau and Laporte (2003). The problem is about the design of a set of minimum-cost vehicle 

routes and time schedules in a graph of nodes and arcs, under a set of constraints, ensured that 

all customer requests are satisfied. Nodes refer to the pickup and delivery locations of 

customers, included the vehicle depot. Each directed link between two nodes is an arc, 

characterized by a travel time and an associated cost which is included if the arc is part of the 

solution. Furthermore, each route begins and ends at the depot within specific time intervals 

and it does not violate a maximum route duration. Additionally, the service for the customers 

at each location starts within a time window. The maximum customer ride time cannot be 

violated and so does the vehicle capacity. In order to have a right route design, priority and 

pairing of a customer’s origin and destination should be respected by visiting them in the correct 

order with the same vehicle. Also, the term service time refers to the time required for loading 

and unloading customers. As indicated in the classification scheme of Parragh et al. (2008), this 

definition distinguishes the DARP from other problems in vehicle routing. Most closely 

connected is the pickup and delivery problem with time windows (PDPTW), which is also 

characterized by demand-dependent transportation between paired pickup and delivery 

locations. Nevertheless, the definition of the PDPTW is based on the transportation of goods 

and as a result, fewer quality constraints need to be met. Especially, the maximum customer 

ride time constraint is the basic characteristic of the DARP and the reason that makes the 

scheduling problem more complex. Sometimes, it might be required to delay the start of service 

in pickup nodes in order to decrease the ride time of the customer involved. 

 

 

Mathematical formulations 

 

Cordeau (2006) proposes an arc-based mixed-binary linear program, shown by Eqs. 1–

14. The three-index binary decision variable xij
k  indicates whether vehicle k traverses the arc 

between nodes i and j. Each vehicle route starts at an origin depot and ends at a destination 

depot (Eqs. 4, 6). One and the same vehicle should visit and leave matched pickup and delivery 
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locations i and n +i (Eqs. 2, 3, 5), ensuring flow conservation and pairing. Decision variable Li
k 

refers to the ride time of customer i (Eq. 9) and cannot exceed the maximum customer ride time 

L (Eq. 12). Decision variables Bi
k and Qi

k express the service start in node i (Eq. 7) and the load 

upon leaving node i (Eq. 8), respectively. They should respect the time window of node i (Eq. 

11) and the capacity Qk of vehicle k (Eq. 13), respectively. The time span between the time a 

vehicle leaves the origin depot and the time it returns to the destination depot cannot exceed the 

maximum route duration Tk (Eq. 10). A minimum-cost set of arcs is made (Eq. 1), subject to all 

constraints and full demand satisfaction. 

 

 

 

 

P = set of pickup nodes, D = set of delivery nodes, N = set of all nodes (including the 

depot nodes), K = set of vehicles, cij = cost associated with arc (i,j), tij = direct travel 

time associated with arc (i,j), di = service duration in node i , qi = net number of customers 

boarding in node i. 
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Stochastic and dynamic point of view 

 

The standard DARP makes two assumptions concerning the nature of the information 

available to the service provider. Firstly, information is assumed to be static, which means that 

all relevant data (e.g. requests, travel times, …) is known before the route planning process and 

remains unchanged during the entire time horizon. Secondly, the data is assumed to be 

deterministic, meaning that it is not subject to variability or uncertainty. However, both 

assumptions rarely hold in real-life systems. Most service providers face dynamic changes in 

inputs and external conditions tend to induce stochasticity into the system. This section presents 

different causes that complicate the availability of information and explains how the subject 

has been addressed in the literature. 

 

 

1. Travel times 

 

Mainly in urban areas, logistic transportation operations often face problems due to 

travel speeds change, depending on the current traffic situation and as a result it leads to missed 

time windows and poorer service quality. Especially in the case of passenger transportation, it 

often leads to excessive passenger ride times as well, which is more important when the 

transported passengers are medical patients or elderly people. As a consequence, time-

dependent and stochastic influences on travel speeds are relevant for finding feasible and 

reliable solutions. Thus, travel speeds should be treated as stochastic if we want to represent 

reality more precisely. The majority of published articles concerning vehicle routing problems 

assume travel speeds that are constant over time (e.g., Muelas, LaTorre, & Peρa, 2013;; 

Paquette, Cordeau, Laporte, & Pascoal, 2013; Parragh and Schmid, 2013). In real world, travel 

speeds are not constant but they are determined by factors such as traffic congestion caused by 

rush hours, accidents, temporary construction sites, large one-time events or bad weather 

conditions. Thus, assuming that travel speeds are non-stochastic or even time-independent often 

leads planned schedules to fail with respect to time windows or ride time limitations. Some 

authors treat travel speeds as time dependent, by dividing each day into discrete time intervals, 

each of which provides a characteristic travel speed for each road within a network (Ehmke, 

Steinert, & Mattfeld, 2012; Fleischmann, Gietz, & Gnutzmann, 2004; Ichoua, Gendreau, & 

Potvin, 2003; Kok, Hans, Schutten, & Zijm, 2010; Lorini, Potvin, & Zufferey, 2011; Potvin, 
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Xu, & Benyahia, 2006; Schmid & Doerner, 2010; Xiang, Chu, & Chen, 2008). Even these 

approaches assume travel speeds to be deterministic though, with the statement that travel 

speed, in terms of average values for each interval, is known a priori and not influenced by any 

stochastic effects. Also, others (Eglese, Maden, & Slater, 2006; Fleischmann, Gnutzmann, & 

Sandvoί, 2004; Maden, Eglese, & Black, 2010) use a different approach and incorporate time-

dependent travel speeds in the process of calculating shortest paths. In Kok et al. (2010) the 

vehicle routing problem with time windows is extended with time-dependent travel times as 

well as driving hours regulations. However, these algorithms do not consider stochastic 

information about future travel speeds in order to get better solutions but they treat travel times 

as deterministic, so they are limited to react to changes in travel speeds by recalculating the 

shortest paths. In the case of stochastic travel times the travel times follow a certain distribution 

with known mean and variance. In this way unexpected changes because of for example 

weather conditions or accidents can be modelled. This is done by Li et al. (2010), where the 

stochastic constraints resulting from the stochastic travel times are transformed into 

deterministic constraints by using an approximation function of the normal distribution. After 

this, a tabu search-based heuristic is used to solve the problem. These two could also be 

combined in a stochastic dial-a-ride or vehicle routing problem with time-dependent travel 

times. In this case the mean and variance of the travel times are time-dependent. Fu (2002a), in 

one of the first papers on the stochastic dial-a-ride problem, argues that in an urban 

environment, a system’s reliability can be increased considering stochastic and time-dependent 

travel times. They allow to account for traffic congestion and avoid that delays are accumulated. 

A normal distribution is assumed for the travel times on each arc. The average travel time varies 

with the precise departure time, whereas the corresponding standard deviation is assumed 

constant. A route is considered as a sequence of schedule blocks (Jaw et al. 1986) with zero 

variance at the start of each block. The expected start of service in a node can be computed 

recursively and should respect the time constraints with a given probability. Routes being 

feasible in a deterministic context may be rejected if they exhibit a large variance, which 

increases fleet requirements. To estimate the travel times, Fu and Teply (1999) suggest three 

approaches, based on zones, distance and an artificial neural network. Xiang et al. (2008) 

include stochastic travel and service times in a dynamic problem context. Moreover, their model 

is able to deal with unexpected changes, such as vehicle breakdowns and cancelations of 

requests. A paper using time-dependent stochastic travel times on the dynamic side is Schilde 

et al. (2014). They consider the effect of exploiting statistical information available about 

historical real world accidents, using stochastic solution approaches for the dynamic dial-a-ride 
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problem (dynamic DARP). They propose two pairs of metaheuristic solution approaches, each 

consisting of a deterministic method (average time-dependent travel speeds for planning) and 

its corresponding stochastic version (exploiting stochastic information while planning). The 

accidents are modeled as gradually expanding and shrinking circles, causing congestion on the 

arcs they cover. Travel time consists of an average and a stochastic influence of accidents, both 

being time-dependent. Vehicles always use the shortest-distance path. The results show that in 

certain conditions, exploiting stochastic information about travel speeds leads to significant 

improvements over deterministic approaches. 

 

 

2. Requests 

 

Most authors assume that all requests are known in advance and as a result, static routes 

and schedules can be constructed. In the dynamic point of view, additional information may 

occur during the planning or the execution phase. The most studied case includes part of 

requests being received in real time. These customers either follow the usual reservation 

principle or ask for immediate service, in which case a maximum position shift may be imposed 

to respect the order of booking (Psaraftis 1980). The service provider should be able to decide 

immediately whether an additional request can be inserted (Attanasio et al. 2004). For this 

purpose, Berbeglia et al. (2012) present a constraint satisfaction problem formulation which 

can be used to prove the infeasibility of a problem. Hyytiä et al. (2010) point out the risk of 

congestive collapse when the capacity of the control policy is exceeded, which suddenly causes 

an unacceptably high rejection rate. Specific problem contexts involving additional requests 

may be considered. For example, Hanne et al. (2009), Beaudry et al. (2010) study transportation 

systems in a hospital context, where emergency requests should be serviced within a very 

limited time frame. Coslovich et al. (2006) focus on unexpected users asking for service during 

the stop of a vehicle. Cremers et al. (2009) consider subcontracting requests to taxi services 

during peak moments. The taxis are cheaper when booked one day in advance, but some 

requests are only revealed at the beginning of the operation day. For the dynamic version it is 

also possible to use an insertion heuristic, which is done by Madsen et al. (1995) and by 

Coslovich et al. (2006). Another approach was chosen by Teodorovic and Radivojevic (2000), 

who used fuzzy logic to formulate and solve the problem. An overview of additional research 

on the dynamic version of the problem is given by Berbeglia et al. (2010) and Pillac et al. 

(2013). Horn (2002) describes a software system to bridge the gap between static and dynamic 
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approaches. Also, in Cordeau and Laporte (2007) several models for the static as well as the 

dynamic dial-a-ride problem are presented. An overview of both the static and dynamic version 

is given by Cordeau and Laporte (2003b). Except for additional requests, other unexpected 

events related to customers or vehicles may be taken into account, such as user no-shows, 

cancelations of requests, changes of requests, vehicle breakdowns and traffic jams (Donoso et 

al. 2009, Häme 2011). Especially the latter two may have a considerable operational impact 

(Xiang et al. 2008).  

The response to new information remains crucial, in spite of technological advances, 

such as vehicle localization systems or increased processing power. As a consequence, most 

authors focus on fixing existing solutions, rather than repeatedly applying static solution 

methods. Generally, such repair heuristics first look for a feasible solution once new 

information is available. Afterwards, continuous optimization is performed until the next event 

occurs. Parallel computation may be applied (Attanasio et al. 2004). Parallelization strategies 

differ in whether control is executed by a single processor or distributed, whether new best 

solutions are communicated to other processors or not, and whether search parameters and 

initial solutions differ or not. Nevertheless, a problem’s real-time nature may heavily affect the 

efficiency with which it can be solved. This is reflected in the competitive ratio, being the worst-

case proportion between an algorithmic result and the corresponding static optimum. 

Minimizing the time interval needed to complete all available requests, Feuerstein and 

Stougie (2001), Ascheuer et al. (2000) compute lower bounds on this competitive ratio. 

Lipmann et al. (2004) include incomplete ride information, meaning that destinations only 

become known when their corresponding origin is visited. Feuerstein and Stougie (2001) also 

find lower bounds on the competitive ratio for a minimization of the average completion time. 

Minimizing the maximum flow time, Krumke et al. (2006) show that a solution method for a 

single vehicle with unit capacity cannot be competitive. Yi and Tian (2005) maximize the 

number of requests for which service starts within a fixed time period after their release. They 

provide lower bounds for the single-vehicle case with either unit capacity or infinite capacity. 

Yi et al. (2006) add restricted information and a finite capacity to the work of Yi and Tian 

(2005). 

Apart from the dynamic DARP, problem variants with a limited availability of 

information may involve known requests with a stochastic or probabilistic nature. Schilde et al. 

(2011) observe that some users, such as patients in a hospital, may be unable to specify their 

return time in advance. Rather than considering such inbound trips as dynamic requests, a 

statistical distribution can be used to anticipate possible inbound trips at various times. Ho and 
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Haugland (2011) consider requests that are served with a given probability. In real-life cases, 

such a problem arises when fixed routes are executed on a regular basis, but users are absent 

with a known probability. For example, elderly people may not feel fit enough to go to the 

daycare center on a particular day. In this case, the order of the remaining nodes in the route 

remains unchanged. The authors construct routes such that expected costs are minimized, using 

a recourse function that takes into account the skipping probabilities. 

 

 

3. Customer behavior 

 

Stochastic customer behavior may also have an impact to reliability. Heilporn et al. 

(2011) consider customers showing up late at their pickup location. In this case, the on-demand 

vehicle leaves at the scheduled time and a taxi is called in, causing a cost which exceeds the 

savings of skipping the corresponding delivery node. An arc-based mixed-binary linear 

program for this problem variant includes an expected delay cost. The probability of being late 

decreases as a customer is visited later in his pickup time window and thus also depends on the 

probability of skipping preceding nodes. Some customers may be scheduled early in their time 

window in order to serve the majority of users as late as possible. This may generate 

considerable savings over a deterministic optimum with expected delay costs, even if the 

scheduling procedure is adapted. Deflorio et al. (2002) discuss lateness of both customers and 

drivers, the latter due to time-dependent variability of travel times and unforeseen waiting 

times. Decreasing the variance on how long drivers decide to wait for late customers increases 

the number of requests met. 
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 ALGORITHMS 

 

Our algorithm set up is based on the one proposed by Lois (2016), “On the Online Dial-

a-Ride Problem. LAP LAMBERT Academic Publishing”. This section gives a brief overview of 

the algorithms used, but more details can be found in his dissertation. The proposed algorithms 

were implemented in C++.  

 

3.1 Static Dial-a-Ride Algorithms | The Insertion Algorithm InsertionH 

 

 

1. Basic concept 

 

The insertion algorithm that has been developed is a variation of the one presented by 

Jaw (1986). The basic function of this insertion algorithm is to make an initial assignment for 

each trip. This solution can be refined later by other optimization heuristics. 

 

 

2. Nomenclature  
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3. Algorithm description 

 

In a preprocessing step the algorithm creates an empty route for every vehicle. Then for 

every trip request the algorithm finds the best position -in terms of cost- to insert the trip by 

searching all vehicle routes. If this position is found, then the trip request is inserted; otherwise, 

if it is not possible to find at least one position where the request could be inserted, the trip 

request is rejected. At the end of the execution, specific trips have been assigned to specific 

vehicles. The main drawback of this algorithm is that it always tends to load the first vehicle 

with more demands. That is why we implemented a variation where the search for each demand 

starts with a different vehicle each time. A pseudo code description of InsertionH algorithm 

follows: 

 

Step0: for every v in V build an empty Rv  

Step1: Sort Rv in descending order according to RCv 

Step2: Sort TRi in ascending order according to demands EPTi  

Step3: for every TRi {i=1,2,..,N}  

    Step3.1: Sort Rv in ascending order according to RCv  

   Step3.2:for every Rv {v=1,2,,,,|V|} do  

      find the BIPiv  

     Calculate MinCostBIPiv  

  Step3.3: If no BIPiv {v=1,2,,,,|V|} found go to step 3.6  

 Step3.4: From all MinCostBIPiv select the minimum one  

Step3.5: Assign that TRi to the appropriate Rv and go to step3  

Step3.6: Reject that trip request and repeat step3 

end for 

 

 

4. Algorithm computational effort  

 

Computational effort of the InsertionH algorithm can be simply calculated by the 

number of possible insertions that the algorithm should check in order to find the best position 

in terms of solution cost (given that this is the objective). The worst scenario is the case that 

only one vehicle is available. The best scenario is the case that the number of vehicles is equal 

to the number of trip requests and each vehicle has one trip request assigned. 
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Given a number of n demands – not including the first demand - and one available 

vehicle, the total number of possible searches for the insertion algorithm can be calculated as 

the following sum: 

. 

The closed form of this expression is  

. 

The algorithm complexity is O(n3). For a total number of 1000 demands the worst 

scenario (one vehicle) gives a total number of 669,169,501 possible trip combinations. 

 

 

 

3.2 Static Dial-a-Ride Algorithms | The Static Regret based heuristic 

algorithm RegretH 

 

1. Basic concept 

 

The Regret based Heuristic algorithm aims to reduce the chances to get trapped in a 

severely suboptimal solution. It does this by considering the opportunity which is defined as 

the difference between the cost actually calculated by the algorithm (total distance in our case) 

and the cost calculated for a better position that could be obtained if a “different” course of 

action had been chosen. In our case the term “different” course can be defined as the calculation 

of the best position to which an already assigned demand can be reassigned to produce a better 

solution in terms of cost. This reassignment could be intra-route or inter-route. The basic idea 

is to use a fast algorithm in order to quickly get a feasible suboptimal solution. Usually this is 

an insertion algorithm. The insertion algorithm gives us a myopic sub-optimal solution based 

on the positions of the previously assigned demands. Then, based on the existing solution, we 

try to find a better solution by reassigning the most expensive demands. The reallocation which 

provides the largest gain in the system is chosen. Unlike the tabu-search algorithm, regret 

algorithm never explores non-feasible solutions. The advantage of the regret algorithm is that 

it has much less computational burden. However, this algorithm, like any heuristic algorithm, 

is prone to getting trapped in local minima. 
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2. Nomenclature  

 

 

   

 

 

3. Algorithm description 

 

The main objective is the minimization of the total cost for all vehicles. Our regret 

algorithm uses the original regret concept where the absolute difference between the “best” 

lower cost and the second “best” lower cost alternative is used as a metric for guiding problem 

solving. 

Our regret algorithm uses a fast heuristic in order to produce an initial solution. The fast 

heuristic we use is the InsertionH heuristic mentioned before. Then we start the regret process. 

We build the regret matrix. 

Each row represents the route produced by the initial heuristic. 

Each diagonal item in the 2-d matrix represents the cost of the most expensive demand 

of the route described by the corresponding row. 
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Each element of a column (except the one on the diagonal) represents the cost that will 

be produced if we insert the aforementioned most expensive demand to the route represented 

by the corresponding row. 

If the insertion is not feasible, then we set the insertion cost to an arbitrarily large 

number. 

By using this matrix, we define the “profit” we gain if we move demands from one route 

to another. This can be done by using the following rule: for every column calculate the 

differences of diagonal element minus every other element. If at least one difference is positive 

select the greatest one. Then move the corresponding demand to the appropriate row (route in 

our case). 

 

 

The Algorithm pseudo code follows: 

 

Step0: Run the InsertionH Algorithm  

   Calculate TRC  

   NewTRC= TRC  

Step 1:While (TRC-NewTRC>0)  

   TRC= NewTRC  

  Step 1.1: for every v in V  

               for every DRkv {k=1,2,…|RV|}  

                             find DMaxRv  

                           CostMatrix[v,v] = DMaxRv  

 Step 1.2: for every DMaxRv {v=1,2,…|V|}  

               for every m in V  

                        Find RCostDMaxRv,m{v=1,2,,,,|V|},{m=1,2,…|V|}, v<>m  

                       CostMatrix[v,m]= RCostDMaxRvm  

 Step 1.3: for every v in V  

               RegretCostMatrix[v]= positive Max(DMaxRv - CostMatrix[v,m]){m=1,2,…|V|}   

             the greatest positive difference.  

            Move demand DMaxRv from route v to route m  

Step 1.4: Calculate new TRC 
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4. Algorithm computational effort  

 

Computational effort of the RegretH, given n demands, is the sum of the computational 

effort of: 

1. InsertionH algorithm used in the initial phase. This computational effort has already 

been calculated as O(n3). 

2. The procedure that gives the most expensive demand of any route. This computational 

effort is obviously O(n). This procedure removes temporarily one by one every demand and 

then calculates the solution cost produced in the absence of this demand. The difference 

between the previous solution cost and current solution cost is the cost of every demand in the 

solution. 

3. The procedure that gives the additional cost that will be produced if we insert the 

most expensive demand of a route to another route. Consider a feasible solution produced by 

the InsertionH algorithm for n trip demands and m vehicle routes. The computational effort for 

this solution is the sum of all possible searches for the best point to insert the most expensive 

trip demand of every vehicle route to another vehicle routes. The number of possible searches 

is given by formula  

 . For all m vehicle routes the number of possible searches – 

the worst case - is  m(2n2 – n). Consequently, the computational effort is O(mn2). 

The two aforementioned procedures are executed repetitively while the solution is 

optimized. The number of repetitions is unknown but larger than one. Taking r, the number of 

repetitions, the final computational load is O(n3)+rO(mn2). The order of r as a function of m,n 

wasn’t calculated and is therefore considered unknown. The total computational effort is a 

function of number of repetitions and number of demands. The main factor affecting the 

computational effort is the number of demands. 
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 STATISTICAL DATA ANALYSIS 

 

In this section we present our statistical analysis concerning a large sized data set 

obtained on the city of Volos, Greece. 

 

4.1 Data Set – Data Provider 

 

In order to test the proposed model, contacts with the only taxi company in the city of 

Volos, Greece, have taken place. The VOLOSTAXI company has a fleet of 200 taxis out of 

250 taxis that drive around in the city of Volos. In consequence of our contacts, a big set of data 

is available for use. This set consists of 959780 requests for transport in the region of Volos for 

the last 4 years (2016 - 2019). Moreover, the geographically related data has been displayed on 

Google maps in order to be clearer and more intuitive. In this way, the distribution of data in 

each different region is visual (see Figure 1).  

 

 

 

 Figure 1. Distribution of data in each different region of Volos 
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More precisely, for the purposes of our research, we selected a region to study based on 

where most requests occurred (see Figure 2). 

 

 

 

 

Figure 2. Selected region of Volos where most requests occurred. 

 

 

After that, we divided the selected region into 4x4=16 equal and discrete subregions. 

Each subregion’s longitude and latitude coordinates (diagonal coordinates – topleft, 

bottomright) and its centroid’s coordinates are given in Table 1. Furthermore, the centroids 

have been displayed on Google maps for the sake of convenience (see Figure 3).  
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Table 1. Longitude and latitude coordinates for each different subregion and its centroid 

 

 

 

Figure 3. The centroid of each discrete subregion  

 

Region Lon(top_left) Lat(top_left) Lon*(bottom_right) Lat*(bottom_right) Diagonal Lon_Centroid Lat_Centroid

1 22.908294 39.392861 22.929046 39.380934 22.91867 39.386898

2 22.908294 39.380934 22.929046 39.369007 22.91867 39.374971

3 22.908294 39.369007 22.929046 39.35708 22.91867 39.363044

4 22.908294 39.35708 22.929046 39.345153 22.91867 39.351117

5 22.929046 39.392861 22.949798 39.380934 22.939422 39.386898

6 22.929046 39.380934 22.949798 39.369007 22.939422 39.374971

7 22.929046 39.369007 22.949798 39.35708 22.939422 39.363044

8 22.929046 39.35708 22.949798 39.345153 22.939422 39.351117

9 22.949798 39.392861 22.970551 39.380934 22.960175 39.386898

10 22.949798 39.380934 22.970551 39.369007 22.960175 39.374971

11 22.949798 39.369007 22.970551 39.35708 22.960175 39.363044

12 22.949798 39.35708 22.970551 39.345153 22.960175 39.351117

13 22.970551 39.392861 22.991303 39.380934 22.980927 39.386898

14 22.970551 39.380934 22.991303 39.369007 22.980927 39.374971

15 22.970551 39.369007 22.991303 39.35708 22.980927 39.363044

16 22.970551 39.35708 22.991303 39.345153 22.980927 39.351117
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4.2 Statistical Analysis  

 

 

1. Subregion based analysis concerning the total amount of requests 

 

We stored our data in an Access database in order to manage and analyze all the 

available information. Additionally, we wanted to know how many requests occurred in each 

different subregion.  

One can see that concerning the total amount of requests (959780 requests over the last 

4 years), only a small proportion (2.71%) is not included in any of the 16 subregions (see Table 

2). Also, it can be obviously seen that the vast majority of the total requests occurred in 

subregion 7 and 11 – 20.57% and 22.70% respectively. Last but not least, subregions 2, 6 and 

10 have attained considerable proportions – 9.72%, 14.23% and 9.41% respectively (see Table 

2 in conjunction with Figure 3 and 4). 
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 area counter 
 Area- 
 Summary for 'area' =  Area->01_22.908294_39.392861_22.929046_39.380934 (11189 detail records) 
 Sum 11189 
 Standard 1.17% 
 Area- 
 Summary for 'area' =  Area->02_22.908294_39.380934_22.929046_39.369007 (93319 detail records) 
 Sum 93319 
 Standard 9.72% 
 Area- 
 Summary for 'area' =  Area->03_22.908294_39.369007_22.929046_39.35708 (45136 detail records) 
 Sum 45136 
 Standard 4.70% 
 Area- 
 Summary for 'area' =  Area->04_22.908294_39.35708_22.929046_39.345153 (12948 detail records) 
 Sum 12948 
 Standard 1.35% 
 Area- 
 Summary for 'area' =  Area->05_22.929046_39.392861_22.949798_39.380934 (27977 detail records) 
 Sum 27977 
 Standard 2.91% 
 Area- 
 Summary for 'area' =  Area->06_22.929046_39.380934_22.949798_39.369007 (136551 detail records) 
 Sum 136551 
 Standard 14.23% 
 Area- 
 Summary for 'area' =  Area->07_22.929046_39.369007_22.949798_39.35708 (197390 detail records) 
 Sum 197390 
 Standard 20.57% 
 Area- 
 Summary for 'area' =  Area->08_22.929046_39.35708_22.949798_39.345153 (1768 detail records) 
 Sum 1768 
 Standard 0.18% 
 Area- 
 Summary for 'area' =  Area->09_22.949798_39.392861_22.970551_39.380934 (12832 detail records) 
 Sum 12832 
 Standard 1.34% 
 Area- 
 Summary for 'area' =  Area->10_22.949798_39.380934_22.970551_39.369007 (90274 detail records) 
 Sum 90274 
 Standard 9.41% 
 Area- 
 area counter 
 Summary for 'area' =  Area->11_22.949798_39.369007_22.970551_39.35708 (217907 detail records) 
 Sum 217907 
 Standard 22.70% 
 Area- 
 Summary for 'area' =  Area->12_22.949798_39.35708_22.970551_39.345153 (62866 detail records) 
 Sum 62866 
 Standard 6.55% 
 Area- 
 Summary for 'area' =  Area->13_22.970551_39.392861_22.991303_39.380934 (4360 detail records) 
 Sum 4360 
 Standard 0.45% 
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Table 2. The proportion of the total amount of requests in each different subregion 

 

 

 

 

 

Figure 4. The percentage of the total amount of requests per subregion 

 

 

 

 

 

   Area- 
 Summary for 'area' =  Area->14_22.970551_39.380934_22.991303_39.369007 (6329 detail records) 
 Sum 6329 
 Standard 0.66% 
 Area- 
 Summary for 'area' =  Area->15_22.970551_39.369007_22.991303_39.35708 (8734 detail records) 
 Sum 8734 
 Standard 0.91% 
 Area- 
 Summary for 'area' =  Area->16_22.970551_39.35708_22.991303_39.345153 (4163 detail records) 
 Sum 4163 
 Standard 0.43% 
 N/A 
 Summary for 'area' =  N/A (26037 detail records) 
 Sum 26037 
 Standard 2.71% 
 Grand Total 959780 
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2. Subregion based analysis concerning the weekday  

 

Another interesting point of view is to examine the distribution of data in each different 

subregion regarding the weekday. Detailed information about each different day is as follows:  

 

a) Sundays  (see Table 3, Figure 5) 

Total amount of requests: 115234 

Subregions with the largest proportions: 7 (20.64%), 11 (21.29%) 

Following up: 2 (9.74%), 6 (14.13%), 10 (9.31%) 
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 area counter 
 Area- 
 Summary for 'area' =  Area->01_22.908294_39.392861_22.929046_39.380934 (1022 detail records) 
 Sum 1022 
 Standard 0.89% 
 Area- 
 Summary for 'area' =  Area->02_22.908294_39.380934_22.929046_39.369007 (11227 detail records) 
 Sum 11227 
 Standard 9.74% 
 Area- 
 Summary for 'area' =  Area->03_22.908294_39.369007_22.929046_39.35708 (5190 detail records) 
 Sum 5190 
 Standard 4.50% 
 Area- 
 Summary for 'area' =  Area->04_22.908294_39.35708_22.929046_39.345153 (1101 detail records) 
 Sum 1101 
 Standard 0.96% 
 Area- 
 Summary for 'area' =  Area->05_22.929046_39.392861_22.949798_39.380934 (3249 detail records) 
 Sum 3249 
 Standard 2.82% 
 Area- 
 Summary for 'area' =  Area->06_22.929046_39.380934_22.949798_39.369007 (16284 detail records) 
 Sum 16284 
 Standard 14.13% 
 Area- 
 Summary for 'area' =  Area->07_22.929046_39.369007_22.949798_39.35708 (23787 detail records) 
 Sum 23787 
 Standard 20.64% 
 Area- 
 Summary for 'area' =  Area->08_22.929046_39.35708_22.949798_39.345153 (451 detail records) 
 Sum 451 
 Standard 0.39% 
 Area- 
 Summary for 'area' =  Area->09_22.949798_39.392861_22.970551_39.380934 (1599 detail records) 
 Sum 1599 
 Standard 1.39% 
 Area- 
 Summary for 'area' =  Area->10_22.949798_39.380934_22.970551_39.369007 (10732 detail records) 
 Sum 10732 
 Standard 9.31% 
 Area- 
 Summary for 'area' =  Area->11_22.949798_39.369007_22.970551_39.35708 (24537 detail records) 
 Sum 24537 
 Standard 21.29% 
 Area- 
 Summary for 'area' =  Area->12_22.949798_39.35708_22.970551_39.345153 (8827 detail records) 
 Sum 8827 
 Standard 7.66% 
 Area- 
 Summary for 'area' =  Area->13_22.970551_39.392861_22.991303_39.380934 (676 detail records) 
 Sum 676 
 Standard 0.59% 
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Table 3. The proportion of the total amount of requests that occurred on Sundays in 

each different subregion  

 

 

 

 

Figure 5. The percentage of the total amount of requests on Sundays per subregion 

 

 

 

b) Mondays  (see Table 4, Figure 6) 

Total amount of requests: 137143 

Subregions with the largest proportions: 7 (20.64%), 11 (22.56%) 

Following up: 2 (9.57%), 6 (13.94%), 10 (9.47%) 
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 area counter 
 Area- 
 Summary for 'area' =  Area->01_22.908294_39.392861_22.929046_39.380934 (1736 detail records) 
 Sum 1736 
 Standard 1.27% 
 Area- 
 Summary for 'area' =  Area->02_22.908294_39.380934_22.929046_39.369007 (13131 detail records) 
 Sum 13131 
 Standard 9.57% 
 Area- 
 Summary for 'area' =  Area->03_22.908294_39.369007_22.929046_39.35708 (7021 detail records) 
 Sum 7021 
 Standard 5.12% 
 Area- 
 Summary for 'area' =  Area->04_22.908294_39.35708_22.929046_39.345153 (2190 detail records) 
 Sum 2190 
 Standard 1.60% 
 Area- 
 Summary for 'area' =  Area->05_22.929046_39.392861_22.949798_39.380934 (4231 detail records) 
 Sum 4231 
 Standard 3.09% 
 Area- 
 Summary for 'area' =  Area->06_22.929046_39.380934_22.949798_39.369007 (19113 detail records) 
 Sum 19113 
 Standard 13.94% 
 Area- 
 Summary for 'area' =  Area->07_22.929046_39.369007_22.949798_39.35708 (28302 detail records) 
 Sum 28302 
 Standard 20.64% 
 Area- 
 Summary for 'area' =  Area->08_22.929046_39.35708_22.949798_39.345153 (261 detail records) 
 Sum 261 
 Standard 0.19% 
 Area- 
 Summary for 'area' =  Area->09_22.949798_39.392861_22.970551_39.380934 (1813 detail records) 
 Sum 1813 
 Standard 1.32% 
 Area- 
 Summary for 'area' =  Area->10_22.949798_39.380934_22.970551_39.369007 (12988 detail records) 
 Sum 12988 
 Standard 9.47% 
 Area- 
 Summary for 'area' =  Area->11_22.949798_39.369007_22.970551_39.35708 (30944 detail records) 
 Sum 30944 
 Standard 22.56% 
 Area- 
 Summary for 'area' =  Area->12_22.949798_39.35708_22.970551_39.345153 (8377 detail records) 
 Sum 8377 
 Standard 6.11% 
 Area- 
 Summary for 'area' =  Area->13_22.970551_39.392861_22.991303_39.380934 (631 detail records) 
 Sum 631 
 Standard 0.46% 
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Table 4. The proportion of the total amount of requests that occurred on Mondays in 

each different subregion  

 

 

 

 

Figure 6. The percentage of the total amount of requests on Mondays per subregion 

 

 

 

c) Tuesdays  (see Table 5, Figure 7) 

Total amount of requests: 138399 

Subregions with the largest proportions: 7 (20.16%), 11 (23.03%) 

Following up: 2 (9.99%), 6 (14.25%), 10 (9.48%) 
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 area counter 
 Area- 
 Summary for 'area' =  Area->01_22.908294_39.392861_22.929046_39.380934 (1715 detail records) 
 Sum 1715 
 Standard 1.24% 
 Area- 
 Summary for 'area' =  Area->02_22.908294_39.380934_22.929046_39.369007 (13824 detail records) 
 Sum 13824 
 Standard 9.99% 
 Area- 
 Summary for 'area' =  Area->03_22.908294_39.369007_22.929046_39.35708 (6794 detail records) 
 Sum 6794 
 Standard 4.91% 
 Area- 
 Summary for 'area' =  Area->04_22.908294_39.35708_22.929046_39.345153 (2087 detail records) 
 Sum 2087 
 Standard 1.51% 
 Area- 
 Summary for 'area' =  Area->05_22.929046_39.392861_22.949798_39.380934 (4045 detail records) 
 Sum 4045 
 Standard 2.92% 
 Area- 
 Summary for 'area' =  Area->06_22.929046_39.380934_22.949798_39.369007 (19718 detail records) 
 Sum 19718 
 Standard 14.25% 
 Area- 
 Summary for 'area' =  Area->07_22.929046_39.369007_22.949798_39.35708 (27908 detail records) 
 Sum 27908 
 Standard 20.16% 
 Area- 
 Summary for 'area' =  Area->08_22.929046_39.35708_22.949798_39.345153 (176 detail records) 
 Sum 176 
 Standard 0.13% 
 Area- 
 Summary for 'area' =  Area->09_22.949798_39.392861_22.970551_39.380934 (1824 detail records) 
 Sum 1824 
 Standard 1.32% 
 Area- 
 Summary for 'area' =  Area->10_22.949798_39.380934_22.970551_39.369007 (13122 detail records) 
 Sum 13122 
 Standard 9.48% 
 Area- 
 area counter 
 Summary for 'area' =  Area->11_22.949798_39.369007_22.970551_39.35708 (31876 detail records) 
 Sum 31876 
 Standard 23.03% 
 Area- 
 Summary for 'area' =  Area->12_22.949798_39.35708_22.970551_39.345153 (8442 detail records) 
 Sum 8442 
 Standard 6.10% 
 Area- 
 Summary for 'area' =  Area->13_22.970551_39.392861_22.991303_39.380934 (581 detail records) 
 Sum 581 
 Standard 0.42% 
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Table 5. The proportion of the total amount of requests that occurred on Tuesdays in 

each different subregion  

 

 

 

 

Figure 7. The percentage of the total amount of requests on Tuesdays per subregion 

 

 

 

d) Wednesdays  (see Table 6, Figure 8) 

Total amount of requests: 135813 

Subregions with the largest proportions: 7 (20.19%), 11 (23.06%) 

Following up: 2 (9.50%), 6 (14.24%), 10 (9.52%) 
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 area counter 
 Area- 
 Summary for 'area' =  Area->01_22.908294_39.392861_22.929046_39.380934 (1681 detail records) 
 Sum 1681 
 Standard 1.24% 
 Area- 
 Summary for 'area' =  Area->02_22.908294_39.380934_22.929046_39.369007 (12909 detail records) 
 Sum 12909 
 Standard 9.50% 
 Area- 
 Summary for 'area' =  Area->03_22.908294_39.369007_22.929046_39.35708 (6545 detail records) 
 Sum 6545 
 Standard 4.82% 
 Area- 
 Summary for 'area' =  Area->04_22.908294_39.35708_22.929046_39.345153 (1989 detail records) 
 Sum 1989 
 Standard 1.46% 
 Area- 
 Summary for 'area' =  Area->05_22.929046_39.392861_22.949798_39.380934 (4088 detail records) 
 Sum 4088 
 Standard 3.01% 
 Area- 
 Summary for 'area' =  Area->06_22.929046_39.380934_22.949798_39.369007 (19339 detail records) 
 Sum 19339 
 Standard 14.24% 
 Area- 
 Summary for 'area' =  Area->07_22.929046_39.369007_22.949798_39.35708 (27419 detail records) 
 Sum 27419 
 Standard 20.19% 
 Area- 
 Summary for 'area' =  Area->08_22.929046_39.35708_22.949798_39.345153 (224 detail records) 
 Sum 224 
 Standard 0.16% 
 Area- 
 Summary for 'area' =  Area->09_22.949798_39.392861_22.970551_39.380934 (1810 detail records) 
 Sum 1810 
 Standard 1.33% 
 Area- 
 Summary for 'area' =  Area->10_22.949798_39.380934_22.970551_39.369007 (12936 detail records) 
 Sum 12936 
 Standard 9.52% 
 Area- 
 area counter 
 Summary for 'area' =  Area->11_22.949798_39.369007_22.970551_39.35708 (31316 detail records) 
 Sum 31316 
 Standard 23.06% 
 Area- 
 Summary for 'area' =  Area->12_22.949798_39.35708_22.970551_39.345153 (8661 detail records) 
 Sum 8661 
 Standard 6.38% 
 Area- 
 Summary for 'area' =  Area->13_22.970551_39.392861_22.991303_39.380934 (600 detail records) 
 Sum 600 
 Standard 0.44% 
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Table 6. The proportion of the total amount of requests that occurred on Wednesdays 

in each different subregion  

 

 

 

 

Figure 8. The percentage of the total amount of requests on Wednesdays per subregion 

 

 

e) Thursdays  (see Table 7, Figure 9) 

Total amount of requests: 145761 

Subregions with the largest proportions: 7 (20.86%), 11 (23.37%) 

Following up: 2 (9.55%), 6 (14.16%), 10 (9.29%) 
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 area counter 
 Area- 
 Summary for 'area' =  Area->01_22.908294_39.392861_22.929046_39.380934 (1768 detail records) 
 Sum 1768 
 Standard 1.21% 
 Area- 
 Summary for 'area' =  Area->02_22.908294_39.380934_22.929046_39.369007 (13923 detail records) 
 Sum 13923 
 Standard 9.55% 
 Area- 
 Summary for 'area' =  Area->03_22.908294_39.369007_22.929046_39.35708 (6948 detail records) 
 Sum 6948 
 Standard 4.77% 
 Area- 
 Summary for 'area' =  Area->04_22.908294_39.35708_22.929046_39.345153 (2227 detail records) 
 Sum 2227 
 Standard 1.53% 
 Area- 
 Summary for 'area' =  Area->05_22.929046_39.392861_22.949798_39.380934 (4141 detail records) 
 Sum 4141 
 Standard 2.84% 
 Area- 
 Summary for 'area' =  Area->06_22.929046_39.380934_22.949798_39.369007 (20644 detail records) 
 Sum 20644 
 Standard 14.16% 
 Area- 
 Summary for 'area' =  Area->07_22.929046_39.369007_22.949798_39.35708 (30400 detail records) 
 Sum 30400 
 Standard 20.86% 
 Area- 
 Summary for 'area' =  Area->08_22.929046_39.35708_22.949798_39.345153 (161 detail records) 
 Sum 161 
 Standard 0.11% 
 Area- 
 Summary for 'area' =  Area->09_22.949798_39.392861_22.970551_39.380934 (1822 detail records) 
 Sum 1822 
 Standard 1.25% 
 Area- 
 Summary for 'area' =  Area->10_22.949798_39.380934_22.970551_39.369007 (13548 detail records) 
 Sum 13548 
 Standard 9.29% 
   Area- 
 Summary for 'area' =  Area->11_22.949798_39.369007_22.970551_39.35708 (34060 detail records) 
 Sum 34060 
 Standard 23.37% 
 Area- 
 Summary for 'area' =  Area->12_22.949798_39.35708_22.970551_39.345153 (9172 detail records) 
 Sum 9172 
 Standard 6.29% 
 Area- 
 Summary for 'area' =  Area->13_22.970551_39.392861_22.991303_39.380934 (595 detail records) 
 Sum 595 
 Standard 0.41% 
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Table 7. The proportion of the total amount of requests that occurred on Thursdays in 

each different subregion  

 

 

 

 

Figure 9. The percentage of the total amount of requests on Thursdays per subregion 

 

 

f) Fridays  (see Table 8, Figure 10) 

Total amount of requests: 157278 

Subregions with the largest proportions: 7 (20.34%), 11 (23.55%) 

Following up: 2 (9.77%), 6 (14.42%), 10 (9.27%) 

 

   Area- 
 Summary for 'area' =  Area->14_22.970551_39.380934_22.991303_39.369007 (950 detail records) 
 Sum 950 
 Standard 0.65% 
 Area- 
 Summary for 'area' =  Area->15_22.970551_39.369007_22.991303_39.35708 (1330 detail records) 
 Sum 1330 
 Standard 0.91% 
 Area- 
 Summary for 'area' =  Area->16_22.970551_39.35708_22.991303_39.345153 (638 detail records) 
 Sum 638 
 Standard 0.44% 
 N/A 
 Summary for 'area' =  N/A (3434 detail records) 
 Sum 3434 
 Standard 2.36% 
 Grand Total 145761 
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 area counter 
 Area- 
 Summary for 'area' =  Area->01_22.908294_39.392861_22.929046_39.380934 (1957 detail records) 
 Sum 1957 
 Standard 1.24% 
 Area- 
 Summary for 'area' =  Area->02_22.908294_39.380934_22.929046_39.369007 (15367 detail records) 
 Sum 15367 
 Standard 9.77% 
 Area- 
 Summary for 'area' =  Area->03_22.908294_39.369007_22.929046_39.35708 (7092 detail records) 
 Sum 7092 
 Standard 4.51% 
 Area- 
 Summary for 'area' =  Area->04_22.908294_39.35708_22.929046_39.345153 (2009 detail records) 
 Sum 2009 
 Standard 1.28% 
 Area- 
 Summary for 'area' =  Area->05_22.929046_39.392861_22.949798_39.380934 (4511 detail records) 
 Sum 4511 
 Standard 2.87% 
 Area- 
 Summary for 'area' =  Area->06_22.929046_39.380934_22.949798_39.369007 (22678 detail records) 
 Sum 22678 
 Standard 14.42% 
 Area- 
 Summary for 'area' =  Area->07_22.929046_39.369007_22.949798_39.35708 (31992 detail records) 
 Sum 31992 
 Standard 20.34% 
 Area- 
 Summary for 'area' =  Area->08_22.929046_39.35708_22.949798_39.345153 (226 detail records) 
 Sum 226 
 Standard 0.14% 
 Area- 
 Summary for 'area' =  Area->09_22.949798_39.392861_22.970551_39.380934 (2068 detail records) 
 Sum 2068 
 Standard 1.31% 
 Area- 
 Summary for 'area' =  Area->10_22.949798_39.380934_22.970551_39.369007 (14574 detail records) 
 Sum 14574 
 Standard 9.27% 
 Area- 
 Summary for 'area' =  Area->11_22.949798_39.369007_22.970551_39.35708 (37032 detail records) 
 Sum 37032 
 Standard 23.55% 
 Area- 
 Summary for 'area' =  Area->12_22.949798_39.35708_22.970551_39.345153 (10180 detail records) 
 Sum 10180 
 Standard 6.47% 
 Area- 
 Summary for 'area' =  Area->13_22.970551_39.392861_22.991303_39.380934 (664 detail records) 
 Sum 664 
 Standard 0.42% 
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Table 8. The proportion of the total amount of requests that occurred on Fridays in each 

different subregion  

 

 

 

 

Figure 10. The percentage of the total amount of requests on Fridays per subregion 

 

 

g) Saturdays  (see Table 9, Figure 11) 

Total amount of requests: 130152 

Subregions with the largest proportions: 7 (21.19%), 11 (21.62%) 

Following up: 2 (9.94%), 6 (14.43%), 10 (9.51%) 

 

   Area- 
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 area counter 
 Area- 
 Summary for 'area' =  Area->01_22.908294_39.392861_22.929046_39.380934 (1310 detail records) 
 Sum 1310 
 Standard 1.01% 
 Area- 
 Summary for 'area' =  Area->02_22.908294_39.380934_22.929046_39.369007 (12938 detail records) 
 Sum 12938 
 Standard 9.94% 
 Area- 
 Summary for 'area' =  Area->03_22.908294_39.369007_22.929046_39.35708 (5546 detail records) 
 Sum 5546 
 Standard 4.26% 
 Area- 
 Summary for 'area' =  Area->04_22.908294_39.35708_22.929046_39.345153 (1345 detail records) 
 Sum 1345 
 Standard 1.03% 
 Area- 
 Summary for 'area' =  Area->05_22.929046_39.392861_22.949798_39.380934 (3712 detail records) 
 Sum 3712 
 Standard 2.85% 
 Area- 
 Summary for 'area' =  Area->06_22.929046_39.380934_22.949798_39.369007 (18775 detail records) 
 Sum 18775 
 Standard 14.43% 
 Area- 
 Summary for 'area' =  Area->07_22.929046_39.369007_22.949798_39.35708 (27582 detail records) 
 Sum 27582 
 Standard 21.19% 
 Area- 
 Summary for 'area' =  Area->08_22.929046_39.35708_22.949798_39.345153 (269 detail records) 
 Sum 269 
 Standard 0.21% 
 Area- 
 Summary for 'area' =  Area->09_22.949798_39.392861_22.970551_39.380934 (1896 detail records) 
 Sum 1896 
 Standard 1.46% 
 Area- 
 Summary for 'area' =  Area->10_22.949798_39.380934_22.970551_39.369007 (12374 detail records) 
 Sum 12374 
 Standard 9.51% 
 Area- 
 Summary for 'area' =  Area->11_22.949798_39.369007_22.970551_39.35708 (28142 detail records) 
 Sum 28142 
 Standard 21.62% 
 Area- 
 Summary for 'area' =  Area->12_22.949798_39.35708_22.970551_39.345153 (9207 detail records) 
 Sum 9207 
 Standard 7.07% 
 Area- 
 Summary for 'area' =  Area->13_22.970551_39.392861_22.991303_39.380934 (613 detail records) 
 Sum 613 
 Standard 0.47% 
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Table 9. The proportion of the total amount of requests that occurred on Saturdays in 

each different subregion  

 

 

 

 

Figure 11. The percentage of the total amount of requests on Saturdays per subregion 

 

 

Taking an overall look at the previous results, it follows that subregions 7 and 11 have 

the largest proportions on any weekday. Moreover, subregions 2, 6 and 10 maintain the next 

highest proportions on any weekday.  
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In addition, in regard to each subregion’s percentages, we conclude that there is no large 

deviation among them in each different weekday. Taking this fact into account, we could say 

that each subregion’s need for transportation does not vary too much from day to day. For 

example, concerning subregions 6 and 7, in Figure 12 and 13 respectively, one could see how 

their percentages vary from day to day. 

 

 

 

Figure 12. Percentages of the total amount of requests per day for subregion 6 

 

 

 

Figure 13. Percentages of the total amount of requests per day for subregion 7 
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3. Weekday based analysis concerning the total amount of requests  

 

Further to the previous analysis, we can also compare the total amount of requests that 

occurred during different days in order to estimate which day of the week is busiest.  

In Figure 14 we see a bar chart concerning the percentage of the total amount of requests 

per day.  

It is obviously seen that there is no large difference among the percentages. This fact 

means that the total requests that occur per day do not depend much on the weekday. More 

precisely, Friday seems to be the busiest day of the week which is indicated by the highest 

percentage of total requests (16.4% - 157278 out of 959780 requests). Moreover, the smallest 

percentage of total requests is found on Sunday (12% - 115234 out of 959780 requests). Finally, 

regarding the other days of the week, they seem to be quite similar.  

 

 

 

 

Figure 14. The percentage of the total amount of requests per day  
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4. Hour based analysis concerning the total amount of requests  

 

Apart from the spatial information about each different subregion and the weekday 

statistics, we also analyzed the total amount of requests regarding the time that each request 

occurred.  

Taking a look at the percentages of Table 10, it can be obviously seen that the vast 

majority of the total requests occurred between 8.00 and 12.00 (7.10%, 7.98%, 8.00%, 7.62% 

respectively). Additionally, considerable proportions have been attained between 7.00 and 8.00 

(5.15%), 12.00 and 13.00 (5.98%), 13.00 and 14.00 (5.69%), 17.00 and 18.00 (5.20%), 18.00 

and 19.00 (5.23%).  

For the sake of convenience, in Figure 15 there is a bar chart about the percentage of 

the total amount of requests per hour. 
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 byhour 

 hournum counter 
 Summary for 'hournum' =  1 (19487 detail records) 
 Sum 19487 
 Standard 2.03% 
 Summary for 'hournum' =  2 (17310 detail records) 
 Sum 17310 
 Standard 1.80% 
 Summary for 'hournum' =  3 (11674 detail records) 
 Sum 11674 
 Standard 1.22% 
 Summary for 'hournum' =  4 (11402 detail records) 
 Sum 11402 
 Standard 1.19% 
 Summary for 'hournum' =  5 (13204 detail records) 
 Sum 13204 
 Standard 1.38% 
 Summary for 'hournum' =  6 (20896 detail records) 
 Sum 20896 
 Standard 2.18% 
 Summary for 'hournum' =  7 (28334 detail records) 
 Sum 28334 
 Standard 2.95% 
 Summary for 'hournum' =  8 (49444 detail records) 
 Sum 49444 
 Standard 5.15% 
 Summary for 'hournum' =  9 (68187 detail records) 
 Sum 68187 
 Standard 7.10% 
 Summary for 'hournum' =  10 (76626 detail records) 
 Sum 76626 
 Standard 7.98% 
 Summary for 'hournum' =  11 (76736 detail records) 
 Sum 76736 
 Standard 8.00% 
 Summary for 'hournum' =  12 (73089 detail records) 
 Sum 73089 
 Standard 7.62% 
 Summary for 'hournum' =  13 (57432 detail records) 
 Sum 57432 
 Standard 5.98% 
 Summary for 'hournum' =  14 (54626 detail records) 
 Sum 54626 
 Standard 5.69% 
 Summary for 'hournum' =  15 (46899 detail records) 
 Sum 46899 
 Standard 4.89% 
 Summary for 'hournum' =  16 (36411 detail records) 
 Sum 36411 
 Standard 3.79% 
 Summary for 'hournum' =  17 (37910 detail records) 
 Sum 37910 
 Standard 3.95% 
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Table 10. The proportion of the total amount of requests for each hour of the day  

 

 

 

 

 

Figure 15. The percentage of the total amount of requests per hour  
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 COMPUTATIONAL TESTS 

 

In this section we present the construction of our experiments and how we have taken 

into account probabilistic information. Their computational results are also contained in this 

section. 

 

5.1 How to insert probabilistic information 

 

In the previous sections we have described in detail the structure of our algorithms. 

Also, we have provided an extensive statistical analysis regarding our data set. Now, based on 

the statistical results and the taxi expert’s opinion, we effort to insert probabilistic information 

to our system. More precisely, we have attempted to place probability in three levels. First of 

all, in accordance with the proportions given on the statistical reports we have constructed the 

cumulative probabilities concerning the subregion’s centroid (pick up point) and the hour in 

which a request occurs. Moreover, we asked the taxi expert to estimate the delivery points in 

the city of Volos and each proportion of the total requests for transportation that goes to them. 

Then, we calculated the cumulative probability for the delivery points. In the following Tables 

(11, 12, 13), one can see the proportions and the cumulative probabilities regarding each 

subregion’s centroid (pick up point), hour and delivery point.  
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Table 11. The proportion and the cumulative probability regarding each subregion’s 

centroid – pick up point.  

 

FROM_CENTROID %_stat_report Pr(cumulative) [ ] 

1 0.0117 0.0117 0.0000 0.0116

2 0.0972              0.1089 0.0117 0.1088

3 0.0470 0.1559 0.1089 0.1558

4 0.0135 0.1694 0.1559 0.1693

5 0.0291 0.1985 0.1694 0.1984

6 0.1423 0.3408 0.1985 0.3407

7 0.2057 0.5465 0.3408 0.5464

8 0.0018 0.5483 0.5465 0.5482

9 0.0134 0.5617 0.5483 0.5616

10 0.0941 0.6558 0.5617 0.6557

11 0.2270 0.8828 0.6558 0.8827

12 0.0655 0.9483 0.8828 0.9482

13 0.0045 0.9528 0.9483 0.9527

14 0.0066 0.9594 0.9528 0.9593

15 0.0091 0.9685 0.9594 0.9684

16 0.0043 0.9728 0.9685 0.9727

N/A 0.9728 1.0000
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Table 12. The proportion and the cumulative probability regarding each hour.  

 

HOUR %_stat_report Pr(cumulative) [ ]

1 0.0203 0.0203 0.0000 0.0202

2 0.0180 0.0383 0.0203 0.0382

3 0.0122 0.0505 0.0383 0.0504

4 0.0119 0.0624 0.0505 0.0623

5 0.0138 0.0762 0.0624 0.0761

6 0.0218 0.0980 0.0762 0.0979

7 0.0295 0.1275 0.0980 0.1274

8 0.0515 0.1790 0.1275 0.1789

9 0.0710 0.2500 0.1790 0.2499

10 0.0798 0.3298 0.2500 0.3297

11 0.0800 0.4098 0.3298 0.4097

12 0.0762 0.4860 0.4098 0.4859

13 0.0598 0.5458 0.4860 0.5457

14 0.0569 0.6027 0.5458 0.6026

15 0.0489 0.6516 0.6027 0.6515

16 0.0379 0.6895 0.6516 0.6894

17 0.0395 0.7290 0.6895 0.7289

18 0.0520 0.7810 0.7290 0.7809

19 0.0523 0.8333 0.7810 0.8332

20 0.0452 0.8785 0.8333 0.8784

21 0.0383 0.9168 0.8785 0.9167

22 0.0334 0.9502 0.9168 0.9501

23 0.0267 0.9769 0.9502 0.9768

24 0.0231 1.0000 0.9769 0.9999

1.0000
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Table 13. The proportion and the cumulative probability regarding each delivery point.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TO_DELIVERY_POINT %_taxi_expert Pr(cumulative) [ ]

1 0.0300 0.0300 0.0000 0.0299

2 0.0700 0.1000 0.0300 0.0999

3 0.1500 0.2500 0.1000 0.2499

4 0.0500 0.3000 0.2500 0.2999

5 0.2500 0.5500 0.3000 0.5499

6 0.0300 0.5800 0.5500 0.5799

7 0.2000 0.7800 0.5800 0.7799

8 0.0300 0.8100 0.7800 0.8099

9 0.0200 0.8300 0.8100 0.8299

10 0.1000 0.9300 0.8300 0.9299

11 0.0100 0.9400 0.9300 0.9399

12 0.0100 0.9500 0.9400 0.9499

13 0.0500 1.0000 0.9500 0.9999

1.0000
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5.2 Experiments construction   

 

The cumulative probabilities mentioned before enabled us to develop a code that 

constructs our experiments. More precisely, a random generator picks a choice from our lists 

of centroids-pickup points, hour and delivery points respectively, in accordance with the 

cumulative probabilities. In this way, we create demands for transportation by one person at a 

time, based on probabilistic information about pickup and delivery points and the hour that they 

occur. In this context, it has to be mentioned that our demands may be static, which means that 

they are known beforehand, but they are completely based on probabilistic information, which 

is available through the previous extensive statistical analysis for our data set.  

Our code was implemented in C++. At first, we constructed 3 sets of experiments. Each 

set consists of 500 experiments, as it is a good number in order to achieve reliable enough 

results. Each experiment consists of 500 demands for transportation. We ended up to this 

number because the average daily demand for the VOLOSTAXI company is about 1000 

demands per day. We excluded the rest 500 demands from our on-demand cab-sharing 

transportation system because of the company’s need to operate as a pure taxi company. 

Additionally, for the same reason we exclude 110 out of 200 company’s taxis in order to serve 

the rest requests and the rejected requests that may occur during the run of our algorithm. 

Furthermore, the fleet of 90 taxis is equally distributed among the taxi stations – depots that 

already exist in various places around the city of Volos. In order to be more specific, there are 

15 different taxi stations in the city and as a result, each of them has a capacity of 6 taxis. In the 

1st set of experiments, the 6 taxis of each taxi station – depot are available during the whole 

day. On the other hand, regarding the 2nd and the 3rd set of experiments, we divided the 24hour 

period into three 8hour shifts for the vehicles-drivers: 00:00-08:00, 08:00-16:00 and 16:00-

24:00. About the 2nd set of experiments, the 6 taxis are equally available in each 8hour period 

(2 taxis per 8hour period). In contrast, concerning the 3rd set of experiments, the 6 taxis follow 

the demand distribution in each 8hour period (1 taxi the 1st, 3 taxis the 2nd, 2 taxis the 3rd – 

see the demand distribution in Figure 15 on statistical analysis section).  

To sum up, each set consists of 500 experiments and each experiment contains 500 

demands for transportation. Each demand is described by its pick up point (1 out of 16 

subregions’ centroids), its timestamp (in day minutes) and its delivery point (1 out of 13 

delivery points). We have excluded from our experiments the small proportion (2.72%) of the 

demands that did not occur in any of the 16 subregions. Also, based on the taxi expert’s 
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experience and the size of the city of Volos, we believe that the 13 delivery points are 

satisfactory. Additionally, for these 44 points (16 pick-up points, 13 delivery points, 15 taxi 

stations - depots) that constitute our network, we calculated our cost matrix (shortest path 

distance and shortest path time units). Moreover, the maximum number of passengers was 4 

persons and the time window 15 minutes. The maximum ride time was 1.6 times the absolute 

shortest path time for that specific distance or the absolute shortest path time + 10 minutes for 

shortest path time less than 15 minutes. For the sake of reader’s convenience, in the following 

Figures (16, 17, 18) we have displayed on Google maps the pickup and delivery points of our 

network and the existing taxi stations – depots, too.  

Moreover, we also constructed an experiment which consists of 5000 requests for 

transportation (10 times bigger than the previous requests), using the same fleet of 90 taxis that 

is equally distributed among the taxi stations – depots (6 per taxi depot) and in accordance with 

the demand distribution in each 8hour period (1 taxi the 1st, 3 taxis the 2nd, 2 taxis the 3rd). 

The maximum number of passengers, the maximum ride time and the time window remained 

the same.  

Last but not least, we tried to further investigate concepts with different parameters. For 

this purpose, we ran 3 more sets of experiments by changing a parameter at a time or a 

combination of them. Thus, each of the 5th and 6th set of tests consists of 10 experiments. Each 

experiment contains 500 demands for transportation using the same fleet of 90 taxis that is 

equally distributed among the taxi stations – depots (6 per taxi depot) and in accordance with 

the demand distribution in each 8hour period (1 taxi the 1st, 3 taxis the 2nd, 2 taxis the 3rd). 

The maximum number of passengers remained the same (4 persons). Concerning the 5th set of 

experiments we changed the maximum ride time from 1.6 times the absolute shortest path time 

to 2 times the absolute shortest path time for that specific distance or the absolute shortest path 

time + 10 minutes for shortest path time less than 15 minutes. The time window remained the 

same (15 minutes). In contrast, regarding the 6th set, the maximum ride time remained 1.6 times 

the absolute shortest path time, but we changed the time window from 15 minutes to 30 minutes. 

Moreover, the 7th set consists of 4 experiments which use the same fleet of 90 taxis that is 

equally distributed among the taxi stations – depots (6 per taxi depot) and in accordance with 

the demand distribution in each 8hour period (1 taxi the 1st, 3 taxis the 2nd, 2 taxis the 3rd). 

The difference among the 7th set and the other sets is the fact that we changed at the same time 

the time window (30 minutes), the max ride time (2 times the absolute shortest path time) and 

the demands for transportation (1500 demands - 3 times bigger than the previous requests). At 

last, we also constructed 4 more experiments in order to have a clear understanding of how time 
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windows and maximum ride time (in terms of absolute shortest path) affect our results. Thus, 

concerning the 8th and 9th experiment we changed time windows to 45 and 60 minutes, 

respectively. Finally, regarding the 10th and 11th experiment maximum ride time was set as 

2.5 times and 3 times the absolute shortest path time for that specific distance or the absolute 

shortest path time + 10 minutes for shortest path time less than 15 minutes, respectively. All 

the other parameters remained the same. 

 

 

 

 

 

 

Figure 16. The pickup points of our network (subregions’ centroids)  
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Figure 17. The delivery points of our network  
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Figure 18. The existing taxi stations – depots  
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5.3 Experiments results   

 

Following up the implementation of our sets of experiments, in this section we provide 

significant measurements about major components of our problem regarding each different set 

of tests.   

 

➢ 1st set of experiments (500 experiments) 

Each experiment’s components: 500 demands for transportation, maximum number of 

passengers: 4 persons, time window: 15 minutes, maximum ride time: 1.6 times the absolute 

shortest path time for that specific distance or the absolute shortest path time + 10 minutes for 

shortest path time less than 15 minutes, fleet: 90 taxis equally distributed among 15 taxi 

depots - 6 taxis per taxi depot - available during the whole day 00:00-24:00 

 

Amount of transportation requests: 500 

Not allocated requests: avg: 0.886, min: 0, max: 5 

% of not allocated requests: avg: 0.18% 

Needed taxis: avg: 28.798, min: 22, max: 37 

Average passengers / distance(km): avg: 0.788, min: 0.742, max: 0.835 

Total distance units (m): avg: 2090685.36, min: 1900040, max: 2312280 

  

➢ 2nd set of experiments (500 experiments) 

Each experiment’s components: 500 demands for transportation, maximum number of 

passengers: 4 persons, time window: 15 minutes, maximum ride time: 1.6 times the absolute 

shortest path time for that specific distance or the absolute shortest path time + 10 minutes for 

shortest path time less than 15 minutes, fleet: 90 taxis equally distributed among 15 taxi 

depots - 6 taxis per taxi depot - equally available in each 8hour period (2 taxis per 8hour 

period) 

 

Amount of transportation requests: 500 

Not allocated requests: avg: 3.78, min: 0, max: 10 

% of not allocated requests: avg: 0.76% 

Needed taxis: avg: 47.354, min: 41, max: 55 

Average passengers / distance(km): avg: 0.793, min: 0.750, max: 0.845 

Total distance units (m): avg: 2121223.48, min: 1950520, max: 2280310  
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➢ 3rd set of experiments (500 experiments) 

Each experiment’s components: 500 demands for transportation, maximum number of 

passengers: 4 persons, time window: 15 minutes, maximum ride time: 1.6 times the absolute 

shortest path time for that specific distance or the absolute shortest path time + 10 minutes for 

shortest path time less than 15 minutes, fleet: 90 taxis equally distributed among 15 taxi 

depots - 6 taxis per taxi depot – following the demand distribution in each 8hour period 

(00:00-08:00_1 taxi, 08:00-16:00_3 taxis, 16:00-24:00_2 taxis) 

 

Amount of transportation requests: 500 

Not allocated requests: avg: 3.806, min: 0, max: 11 

% of not allocated requests: avg: 0.76% 

Needed taxis: avg: 47.87, min: 41, max: 55 

Average passengers / distance(km): avg: 0.794, min: 0.756, max: 0.836 

Total distance units (m): avg: 2114251.88, min: 1935360, max: 2319140  

 

 

➢ 4th experiment  

Experiment’s components: 5000 demands for transportation, maximum number of 

passengers: 4 persons, time window: 15 minutes, maximum ride time: 1.6 times the absolute 

shortest path time for that specific distance or the absolute shortest path time + 10 minutes for 

shortest path time less than 15 minutes, fleet: 90 taxis equally distributed among 15 taxi 

depots - 6 taxis per taxi depot – following the demand distribution in each 8hour period 

(00:00-08:00_1 taxi, 08:00-16:00_3 taxis, 16:00-24:00_2 taxis) 

 

Amount of transportation requests: 5000 

Not allocated requests: 1580 

% of not allocated requests: 31.6% 

Needed taxis: 90 

Average passengers / distance(km): 1.182 

Total distance units (m): 8880430 
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➢ 5th set of experiments (10 experiments) 

Each experiment’s components: 500 demands for transportation, maximum number of 

passengers: 4 persons, time window: 15 minutes, maximum ride time: 2 times the absolute 

shortest path time for that specific distance or the absolute shortest path time + 10 minutes for 

shortest path time less than 15 minutes, fleet: 90 taxis equally distributed among 15 taxi 

depots - 6 taxis per taxi depot – following the demand distribution in each 8hour period 

(00:00-08:00_1 taxi, 08:00-16:00_3 taxis, 16:00-24:00_2 taxis) 

 

Amount of transportation requests: 500 

Not allocated requests: avg: 3.1, min: 1, max: 7 

% of not allocated requests: avg: 0.62% 

Needed taxis: avg: 48.4, min: 44, max: 53 

Average passengers / distance(km): avg: 0.82, min: 0.804, max: 0.839 

Total distance units (m): avg: 2066591, min: 1981000, max: 2154060  

 

 

➢ 6th set of experiments (10 experiments) 

Each experiment’s components: 500 demands for transportation, maximum number of 

passengers: 4 persons, time window: 30 minutes, maximum ride time: 1.6 times the absolute 

shortest path time for that specific distance or the absolute shortest path time + 10 minutes for 

shortest path time less than 15 minutes, fleet: 90 taxis equally distributed among 15 taxi 

depots - 6 taxis per taxi depot – following the demand distribution in each 8hour period 

(00:00-08:00_1 taxi, 08:00-16:00_3 taxis, 16:00-24:00_2 taxis) 

 

Amount of transportation requests: 500 

Not allocated requests: avg: 0.3, min: 0, max: 2 

% of not allocated requests: avg: 0.06% 

Needed taxis: avg: 42.9, min: 39, max: 46 

Average passengers / distance(km): avg: 0.849, min: 0.831, max: 0.862 

Total distance units (m): avg: 1999087, min: 1933920, max: 2102370  
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➢ 7th set of experiments (4 experiments) 

Each experiment’s components: 1500 demands for transportation, maximum number 

of passengers: 4 persons, time window: 30 minutes, maximum ride time: 2 times the absolute 

shortest path time for that specific distance or the absolute shortest path time + 10 minutes for 

shortest path time less than 15 minutes, fleet: 90 taxis equally distributed among 15 taxi 

depots - 6 taxis per taxi depot – following the demand distribution in each 8hour period 

(00:00-08:00_1 taxi, 08:00-16:00_3 taxis, 16:00-24:00_2 taxis) 

 

Amount of transportation requests: 1500 

Not allocated requests: avg: 2.5, min: 0, max:4 

% of not allocated requests: avg: 0.16% 

Needed taxis: avg: 75, min: 71, max: 77 

Average passengers / distance(km): avg: 1.02, min: 1.002, max: 1.04 

Total distance units (m): avg: 4972077.5, min: 4900440, max: 5082760 

 

 

➢ 8th experiment  

Experiment’s components: 500 demands for transportation, maximum number of 

passengers: 4 persons, time window: 45 minutes, maximum ride time: 1.6 times the absolute 

shortest path time for that specific distance or the absolute shortest path time + 10 minutes for 

shortest path time less than 15 minutes, fleet: 90 taxis equally distributed among 15 taxi 

depots - 6 taxis per taxi depot – following the demand distribution in each 8hour period 

(00:00-08:00_1 taxi, 08:00-16:00_3 taxis, 16:00-24:00_2 taxis) 

 

Amount of transportation requests: 500 

Not allocated requests: 0 

% of not allocated requests: 0% 

Needed taxis: 41 

Average passengers / distance(km): 0.865 

Total distance units (m): 2045080 
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➢ 9th experiment  

Experiment’s components: 500 demands for transportation, maximum number of 

passengers: 4 persons, time window: 60 minutes, maximum ride time: 1.6 times the absolute 

shortest path time for that specific distance or the absolute shortest path time + 10 minutes for 

shortest path time less than 15 minutes, fleet: 90 taxis equally distributed among 15 taxi 

depots - 6 taxis per taxi depot – following the demand distribution in each 8hour period 

(00:00-08:00_1 taxi, 08:00-16:00_3 taxis, 16:00-24:00_2 taxis) 

 

Amount of transportation requests: 500 

Not allocated requests: 0 

% of not allocated requests: 0% 

Needed taxis: 34 

Average passengers / distance(km): 0.924 

Total distance units (m): 1820440 

  

 

➢ 10th experiment  

Experiment’s components: 500 demands for transportation, maximum number of 

passengers: 4 persons, time window: 15 minutes, maximum ride time: 2.5 times the absolute 

shortest path time for that specific distance or the absolute shortest path time + 10 minutes for 

shortest path time less than 15 minutes, fleet: 90 taxis equally distributed among 15 taxi 

depots - 6 taxis per taxi depot – following the demand distribution in each 8hour period 

(00:00-08:00_1 taxi, 08:00-16:00_3 taxis, 16:00-24:00_2 taxis) 

 

Amount of transportation requests: 500 

Not allocated requests: 0 

% of not allocated requests: 0% 

Needed taxis: 44 

Average passengers / distance(km): 0.85 

Total distance units (m): 2091670 
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➢ 11th experiment  

Experiment’s components: 500 demands for transportation, maximum number of 

passengers: 4 persons, time window: 15 minutes, maximum ride time: 3 times the absolute 

shortest path time for that specific distance or the absolute shortest path time + 10 minutes for 

shortest path time less than 15 minutes, fleet: 90 taxis equally distributed among 15 taxi 

depots - 6 taxis per taxi depot – following the demand distribution in each 8hour period 

(00:00-08:00_1 taxi, 08:00-16:00_3 taxis, 16:00-24:00_2 taxis) 

 

Amount of transportation requests: 500 

Not allocated requests: 3 

% of not allocated requests: 0.6% 

Needed taxis: 52 

Average passengers / distance(km): 0.839 

Total distance units (m): 2066590 

 

 

 

Taking an overall look at the previous results, it follows that the percentage of not 

allocated requests is not significant in any set of experiments except for the 4th experiment, 

where the demand was 10 times bigger (5000 requests) and the fleet of 90 taxis managed to 

service only 68.4% of the total requests. (see Figure 19). However, the rejected requests can be 

serviced by the rest -not in use- taxis.  

Also, concerning the taxis needed in order to meet demand, in Figure 20 one can see the 

fleet needed for each set of experiments. Regarding the sets that contain 500 requests for 

transportation, it is worth noting that there is a need of less taxis for less strict time windows. 

In Figures 23 and 24 it can be seen how time windows and maximum ride time (in terms of 

shortest path) affect the fleet needed. Moreover, about the 7th set of experiments which consists 

of 1500 requests with less strict maximum ride time and time windows at the same time, a fleet 

of 75 taxis achieved to meet demand.  

In addition, the average passengers/distance(km) for each different set of tests is 

presented in Figure 21. For the sets that contain 500 requests, it goes up for less strict maximum 

ride time and time windows (see Figures 25, 26). Also, there is a more significant increase for 

the sets with higher demand. Therefore, in any set of experiments the average 

passengers/distance(km) is more than 0.5 that applies for a pure taxi transportation. 
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Last but not least, in Figure 22 one can see the total distance units(km) for each different 

set of experiments. It is noteworthy that concerning the sets which consist of 500 demands, in 

Figures 27 and 28 it is shown how different values of maximum ride time (in terms of shortest 

path) and time windows have an effect on the total distance units(km). 

In conclusion, the measurements about major KPIs of our problem look very promising. 

However, further experimental investigations by changing different parameters and market 

characteristics are also suggested.   

 

 

 

 

 

 

 

Figure 19. The percentage of rejected requests for each set of experiments  
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Figure 20. Taxis needed to meet demand for each set of experiments  

 

 

 

 

 

Figure 21. Average passengers / distance (km) for each set of experiments  
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Figure 22. Total distance units (km) for each set of experiments  

 

 

 

 

 

Figure 23. Taxis needed as a function of time windows  
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Figure 24. Taxis needed as a function of shortest path  

 

 

 

 

 

Figure 25. Average passengers/distance(km) as a function of time windows  
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Figure 26. Average passengers/distance(km) as a function of shortest path 

 

 

 

 

 

Figure 27. Total distance units (km) as a function of time windows  
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Figure 28. Total distance units (km) as a function of shortest path  
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 CONCLUSIONS – DIRECTIONS  

 

In this thesis we focused on the Dial-a-Ride problem in its static version but also taking 

into account probabilistic information. Probability was added to the dial-a-ride problem in three 

different ways, by considering probabilistic pickup and delivery points and probabilistic times 

in which each request occurs. Probabilistic information became available through an extensive 

statistical analysis on historical data concerning the city of Volos, Greece. We constructed 

different test cases in accordance with our market’s characteristics and then we used an insertion 

algorithm at first and a Regret based Heuristic algorithm at second (both proposed by Lois 

(2016)), in order to solve the Dial-a-Ride problem.  

Our basic aim was to define the steps needed to design a data driven on-demand 

transportation system from scratch. Our work has led us to conclude that the required steps are 

the following: 

 

 

Required steps for a data driven design of a DRT system  

 

1. Collect data regarding your market  

In our case: city of Volos, Greece 

Data provider: VOLOSTAXI company  

Company’s fleet: 200 taxis 

Data set: 959780 requests for transportation in the region of Volos for the last 4 years 

(2016 - 2019) 

 

2. Display data on map 

In our case: distribution of data in each different region of Volos 

 

3. Select area for research  

In our case: selected region of Volos where the most requests occurred 

 

4. Divide into subregions 

In our case: we defined the centroids of each of the 16 discrete subregions 
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5. Move to statistical data analysis  

In our case: a) Subregion based analysis concerning the total amount of requests, b) 

Subregion based analysis concerning the weekday, c) Weekday based analysis concerning the 

total amount of requests, d) Hour based analysis concerning the total amount of requests 

 

6. Run tests in accordance with your market’s characteristics  

 

➢ Based on your previous statistical analysis and taxi expert’s opinion, insert 

probabilistic information through cumulative probabilities  

➢ Construct your experiments: create demands for transportation by one person at a 

time, based on probabilistic information about pickup and delivery points and the 

hour that they occur  

➢ Construct your network (in our case: 44 points: 16 pick-up points, 13 delivery 

points, 15 taxi stations – depots)  

➢ Calculate your cost matrix for your network (shortest path distance and shortest path 

time units). 

➢ Set your parameters for each set of tests, for example: tw:15min, capacity: 4 

passengers etc. 

➢ Select your algorithms to solve the dial-a-ride problem and then run different set of 

experiments (e.g. change demand, fleet, distribution of the fleet in each time period 

in accordance with demand distribution, etc.)  

 

7. Analyze your results – Define strategies  

 

➢ Examine closely the experiments’ results and state what these findings revealed 

about crucial factors of your problem (in our case: not allocated requests for 

transportation, needed taxis, average passengers / distance(km), etc.) 

➢ Define strategies based on your results. For example, describe the fleet needed in 

order to meet your market’s demand. Also, outline the benefits of a DRT service 

and a pricing policy. Furthermore, make a comparison with public transport and a 

potential redesign of bus routes or taxi stations, as it is described as follows. 
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Benefits of a DRT service for different stakeholders 

 

• For Users (with different age, financial situation, mobility needs, trip purpose, 

ownership of private means of transport, etc.): 

✓ Improves mobility for all travelers including elderly, disabled, students, retired 

and commuters 

✓ Increases the level of service in terms of quality and cost 

✓ Transportation solution in a lower cost than a taxi or a private mean of transport 

and quite similar to a bus (especially when the fare is distributed among 

passengers) 

✓ Lower waiting time than bus pick-up points and less stress than driving and 

searching for a parking spot 

 

• For Operators and Drivers: 

✓ Improved communications and dispatch system 

✓ Reduced operating cost  

✓ Higher demand and as a consequence higher profits based on the pricing policy  

 

• For Society:  

✓ Better people’s mobility especially for the old and disadvantaged that have 

mobility problems 

✓ Less cars and traffic and consequently less pollution 

✓ Eco-friendly especially using electric cars  

✓ Demand satisfaction for transportation where the existing infrastructure cannot 

satisfy the requests 
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Pricing policy – Could an on-demand transportation system be profitable?  

 

At this point, it is interesting to examine the profits of an on-demand transportation 

system. Concerning Greece, taxis determine the final price for the passenger by calculating the 

cost of the distance units (0.74€/km) plus a fixed cost of 1.29€ regardless the route distance. By 

taking a look at the previous results and taking into account the cost parameters, we could show 

that an on-demand transportation system could be profitable. For example, regarding the 7th set 

of experiments, the average total distance units that required for the allocated demands is 

4972.0775 km. Also, the average for the average passengers/distance(km) is 1.02 in contrast 

with the 0.5 passengers/distance(km) that applies for a pure taxi transportation. In other words, 

if a new on demand transportation system prices only the distance units (e.g. 0.74€/km as a pure 

taxi) without the fixed cost gains more than operating as a pure taxi without the fixed cost. (e.g. 

4972.0775km*0.74€/km*1.02 ≈ 3752.93€ > 4972.0775km*0.74€/km*0.5 ≈ 1839.67€) 

 

 

 

Could a demand responsive transportation system answer to insufficient public 

transport? 

 

From another point of view, it is of paramount importance to investigate if the existing 

routes of public transport are efficient. For example, in our case concerning the city of Volos 

let us take a look at subregions 2 and 6, which attain together a considerable proportion of the 

total demand for transportation (24%). These subregions are about the wider area of the city of 

N.Ionia. Concerning this surrounding area, the bus provider of the city (ASTIKOVOLOU) 

offers two routes (of the 13 available) from different starting points and the same destination 

point. Although the starting and the intermediate stations may differ, it seems for the routes to 

be inconvenient as it is indicated by the percentage of 24% of the total requests for 

transportation from this area to the taxi provider of the city. On the other hand, a demand 

responsive transportation system could fill the gap that now exists in a lower cost than a taxi 

and quite similar to a bus. Moreover, this issue could be also taken into account by the bus 

provider in order to redesign the existing routes based on the people’s needs. In a city of the 

future, transport systems should adapt to the people’s needs for transportation not people adapt 

to existing routes which in many cases have been designed a long time ago.  
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A potential redesign of the existing taxi stations - depots  

 

Another issue arises regarding the redesign of the existing taxi stations – depots in the 

city of Volos. These spots have been established many years before and since then the demand 

for transportation in the area has been utterly changed. For example, as mentioned above, in 

subregion 2 which attains approximately 10% of the total requests for transportation (see Figure 

29), there is no taxi station – depot and it is served by nearby taxi – stations (see Figure 30). As 

a result, a new taxi station – depot in subregion 2 should be considered. For this purpose, we 

investigated the 1-median problem of the facilities location problems. Thus, 4 potential taxi 

stations – depots in subregion 2 were spotted, in accordance with subregion’s spatial 

characteristics and taxi expert’s opinion (in main roads and close to parks, schools, cafes, bus 

stops, etc.) (see Figure 31). The goal was to find where the new taxi station – depot should be 

located in subregion 2, in order to minimize the average travel distance to and from it for all 

passengers (800 points in subregion 2 were considered). The results shown that among the 4 

potential taxi stations, the minimum average travel distance was found in point 2 – about 0.5km. 

Point 3 came next with 0.59km approximately. Moreover, each of the existing nearby taxi 

stations has an average travel distance of 1.94km, 1.32km and 1.13km. By putting in place the 

new taxi station there will be a saving of distance about 1.4km, 0.8km and 0.6km respectively 

for a one-way trip. It is noteworthy that as subregion 2 attains approximately 10% of the total 

requests for transportation, which means about 100 requests per day, there will be at least a 

saving of 140km, 80km and 60km respectively per day. The establishment of the new taxi 

station – depot in subregion 2 depends on an agreement between the authorities and the taxi 

company. One could further investigate new potential taxi station – depots all over the city. 

 

 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 20:05:35 EEST - 3.144.111.108



90 

 

Figure 29. Requests for transportation in subregion 2 

 

 

 

Figure 30. Nearby taxi stations – depots for subregion 2 
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Figure 31. Potential taxi stations – depots for subregion 2 

 

 

 

 

In conclusion, our computational results on randomly generated instances (mentioned 

in previous sections) look very promising, both in terms of meeting demand and in terms of 

computational efficiency. The running time for each experiment was quite similar and not more 

than 10 minutes for 500 requests in any case, about 1 hour for 1500 requests and 15 hours for 

5000 requests. Planners can use the proposed methodology to design DRT services that meet 

demand and quality of service and promise plenty of benefits for all the stakeholders as 

mentioned above. 
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