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Αποδοτικές τεχνικές χειρισμού και αραιοποίησης 
πυκνών πινάκων κατά την προσομοίωση 

κυκλωμάτων πολύ μεγάλης κλίμακας. 
Χαράλαμπος Αντωνιάδης 

Περίληψη 

Η τοποθέτηση περισσότερου υλικού σε ένα μοντέρνο SoC (System-on-Chip) εξαιτίας της ολοένα 
και μειούμενης τεχνολογίας ολοκλήρωσης έχει οδηγήσει σε πολύ μεγάλα παρασιτικά RLC δίκτυα 
αποτελούμενα από εκατομμύρια κόμβους, τα οποία πρέπει να προσομοιωθούν σε πολλές 
χρονικές στιγμές και συχνότητες έτσι ώστε να επαληθευτεί η σωστή λειτουργία του 
ολοκληρωμένου κυκλώματος. Επίσης, ο έλεγχος αξιοπιστίας ενός ολοκληρωμένου, εξαιτίας και 
πάλι της μειούμενης τεχνολογίας ολοκλήρωσης, απαιτεί να ληφθεί υπόψιν η επίδραση εκτός της 
παρασιτικής αυτεπαγωγής των υποσυστημάτων σε ένα SoC,  που επαρκούσε σε παλαιότερες 
τεχνολογίες,  αλλά και όλων των αμοιβαία επαγωγικών συζεύξεων μεταξύ αυτών. Ωστόσο η 
συμπερίληψη όλων των αμοιβαία επαγωγικών συζεύξεων καταλήγει σε ένα πλήρως πυκνό πίνακα 
επαγωγών που καθιστά την προσομοίωση κυκλώματος δύσκολα διαχειρίσιμη τόσο από 
αποθηκευτικής όσο και από υπολογιστικής πλευράς. Τεχνικές Μείωση Τάξης Μοντέλου (ΜΤΜ) 
έχουν χρησιμοποιηθεί συστηματικά για να αντικαταστήσουν το πολύ μεγάλης κλίμακας 
παρασιτικό RLC μοντέλο με ένα πολύ μικρότερης τάξης μοντέλο με παρόμοια απόκριση στις 
θύρες εισόδου/εξόδου. Ωστόσο, όλες οι τεχνικές ΜΤΜ καταλήγουν σε ένα μοντέλο με πυκνούς 
πίνακες που καθιστούν την προσομοίωση, και σε αυτήν την περίπτωση, μη πρακτική. 

Έτσι, σε αυτή την διδακτορική διατριβή παρουσιάζουμε αποδοτικές τεχνικές για την επίλυση των 
γραμμικών συστημάτων που προκύπτουν κατά την μεταβατική ανάλυση πολύ μεγάλων αμοιβαία 
επαγωγικών κυκλωμάτων, όπως επίσης και μια μεθοδολογία για την αραιοποίηση των πυκνών 
πινάκων που προκύπτουν μετά την ΜΤΜ. Οι προτεινόμενες τεχνικές για την επίλυση των 
γραμμικών συστημάτων στην μεταβατική ανάλυση περιλαμβάνουν την συμπίεση του πυκνού 
πίνακα επαγωγών προσεγγίζοντας κατάλληλα υπό-μπλοκ του αρχικού πίνακα με low-rank 
γινόμενα, όπως επίσης και την ανάπτυξη ενός προρυθμιστή γενικού σκοπού για την 
επαναληπτική επίλυση του γραμμικού συστήματος που πρέπει να λύσουμε κατά την μεταβατική 
ανάλυση (το οποίο συνίσταται από αραιά μπλοκ μαζί με το πυκνό μπλοκ των επαγωγών). Από την 
άλλη μεριά, η προτεινόμενη μεθοδολογία για την αραιοποίηση των πυκνών πινάκων μετά την 
ΜΤΜ  χρησιμοποιεί μια ακολουθία αλγορίθμων βασισμένη στον υπολογισμό του κοντινότερου 
διαγώνια υπερισχύων πίνακα, που έχει μια ένα-προς-ένα αντιστοιχία με γράφο, και την εν-
συνεχεία αραιοποίηση αυτού του γράφου. Τα πειραματικά μας αποτελέσματα υποδεικνύουν ότι 
μπορεί να επιτευχθεί ένα αρκετά αραιό σύστημα ελαττωμένων πινάκων, μετά την ΜΤΜ, με πολύ 
μικρή μείωση της ακρίβειας προσομοίωσης ενώ οι προτεινόμενες τεχνικές στην επίλυση των 
γραμμικών συστημάτων κατά την μεταβατική ανάλυση υποδεικνύουν ουσιώδη συμπίεση του 
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πίνακα επαγωγών χωρίς να θυσιάζεται η ακρίβεια προσομοίωσης, σε συνδυασμό με μια 
αξιοπρόσεχτη μείωση στον αριθμό των επαναλήψεων και τον συνολικό χρόνο εκτέλεσης των 
επαναληπτικών μεθόδων επίλυσης. 
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Abstract

The integration of more components into modern Systems-on-Chip (SoCs) due to the
ever increasing technology scaling has led to very large parasitic networks consisting
of million of nodes, which have to be simulated in many times or frequencies to
verify the proper operation of chip. Moreover, because of the aggressive technology
scaling, the reliability analysis of a SoC requires to take into account, except for
the self-inductance which was sufficient in older technologies, but also the mutual
inductance between the different subsystems in SoC. However, the inclusion of all
mutual inductive couplings results in a fully dense inductance matrix that renders
the circuit simulation computationally expensive. Model Order Reduction (MOR)
techniques have been employed routinely to substitute the large scale parasitic model
by a model of lower order with similar response at the input/output ports. However,
all established MOR techniques result in dense system matrices that render their
simulation impractical.

To this end, in this dissertation we present efficient techniques for the solution of
the linear systems arising in transient analysis of large mutually inductive circuits, as
well as a methodology for the sparsification of the dense matrices resulting from MOR.
The proposed techniques for solving the linear systems in transient analysis involve
the compression of the dense inductance matrix, approximating suitably sub-blocks
of it by low-rank products and the development of a general purpose preconditioner
for the iterative solution of the transient linear system (which comprises sparse blocks
alongside the dense inductance block). On the other hand, our proposed methodology
for the sparsification of the dense MOR matrices employs a sequence of algorithms
based on the computation of the nearest diagonally dominant matrix, which has
a direct correspondence to graph and the subsequent sparsification of that graph.
Experimental results for the sparsification of the dense MOR matrices indicate that
high sparsity ratio of the reduced system matrices can be achieved with very small loss
of accuracy, while the proposed techniques for solving the linear systems in transient
analysis of large mutually inductive circuits indicate substantial compression rates of
the dense inductance matrix without compromising accuracy, along with considerable
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reduction in iteration count and execution time of iterative solution methods.

Thesis Supervisor: Nestor Evmorfopoulos
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Chapter 1

Introduction

1.1 Motivation and Related Work

The motivation behind our research in this dissertation is to provide sparsification

solutions and methods for handling dense matrices that arise in circuit simulation. In

particular, we deal with the dense inductance matrix, when all mutual inductances are

taken into consideration, as well as the dense matrices resulting from the application

of MOR techniques.

1.1.1 Simulation of large dense mutually inductive circuits

In the past, it has been sufficient to include only self inductance in the RLC simu-

lation, resulting in linear systems with sparse coefficient matrices. For such systems,

iterative solvers are the methods of choice as they offer small memory requirements

and excellent scaling against problem size. However, in modern high-frequency SoCs

there is an increasing demand for modeling all mutual inductive couplings between

the different blocks of the chip [1], leading to a fully dense inductance matrix that

offsets the scaling properties and storage requirements of iterative solvers.

As direct sparsification (by truncation) of the dense inductance matrix is well-

known to lead to loss of circuit passivity and simulation stability [2], most previous

attempts in the literature have focused on sparsifying the inverse matrix (called the

15
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Figure 1-1: Voltage response at the far end of the second wire (by applying a ramp
voltage source at the first wire) in a bus of two-parallel wires, for different sparsity
ratios of the sparse approximation of the reluctance matrix by direct truncation.

reluctance matrix), which is especially amenable to sparsification due to its diagonal

dominance [3][4]. Taking advantage of the diagonal dominance of the reluctance

matrix, one can obtain a naive sparse approximation of it by directly truncating all

its off-diagonal entries that are smaller than a predefined threshold. By doing so,

the diagonal dominance property and consequently the positive definiteness of the

reluctance matrix is not violated, making the sparse approximation of the reluctance

matrix suitable to be integrated into a circuit simulation framework. However, the

direct truncation approach introduces unacceptable error in transient analysis for

the high sparsity ratios that we are typically interested in. We demonstrate that

observation in Fig. 1-1.

Other approaches proposed in the literature for the sparsification of the reluctance

matrix focus on the avoidance of the expensive (both from a computational as well

as a memory storage perspective) inversion of the inductance matrix. In [5] authors

predict initially the locations of the non-zero entries of matrix the reluctance matrix,

exploiting a graph colouring technique, and then they compute only those entries for a

prescribed sparsity ratio. Window-based approaches which work either directly on the

matrix [6] or the physical geometry [7][8] result in local inversion of smaller matrices,

where each one corresponds to a window around a conductor segment. However, all

these approaches only aim at accelerating the sparsification procedure, and do not

16
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improve on the accuracy obtained by direct truncation. In [9] a more sophisticated

sparsification, which is based on the equivalence of the reluctance matrix with a

graph, leads to better results in simulation accuracy compared to direct truncation

but requires like direct truncation the prior inversion of the large dense matrix which

is a very expensive computational procedure, making that kind of approaches feasible

only for problems of moderate size.

1.1.2 Dense MOR matrices

Sign-off analysis of a SoC entails the simulation of RLC parasitics extracted from

various components in an integrated circuit, in order to verify the proper operation of

the circuit. However, due to the ever increasing technology scaling and the subsequent

integration of even more components into a chip the parasitic network can be gigantic.

The simulation of such parasitic networks can be extremely time- consuming or, in

some cases, even infeasible due to their sheer size.

Model Order Reduction (MOR) techniques are typically employed to substitute

the large scale models by lower dimensional ones with similar response at the in-

put/output ports. MOR techniques are generally classified into two classes, namely

moment-matching or Krylov-subspace techniques [10][11][12][13][14] and balancing

type or Gramian-based techniques [15][16]. The application of both classes of MOR

techniques leads to reduced order models with dense matrices, whose cost of em-

ploying in simulation can easily overshadow the benefits obtained from dimension

reduction.

Specifically, [17] firstly divides the nodes into a group of nodes corresponding to

ports that have to be preserved and a group of internal nodes that can be eliminated,

and then finds the Schur complement of the system, and performs sparse matrix

manipulations on top of it. The approach in [18] partitions the circuit into subcircuits

and then substitutes each subcircuit with suitable RLC macromodels that catch the

low-order moments of the admittance matrix in each partition. Furthermore, [19] after

deriving a description of the circuit with respect to node voltages and magnetic flux,

reorders system matrices to Boarder Block Diagonal (BBD) form and finally applies
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MOR. The problem with all the above methods is that they either do not produce

very sparse and accurate models, or they rely on heuristics and circuit specific criteria.

None of them provides a rigorous mathematical framework to address sparsification

problem of the dense matrices resulting from the application of MOR procedures.

1.2 Contribution

In order to address the problems arising in circuit simulation after the modeling of

all mutual inductive couplings between the different components in an IC, as well

as the dense matrices resulting after the application of MOR, in this dissertation

we present two approaches that provide a solution to each problem separately, as

described below:

∙ We propose an approach for the sparsification of dense MOR circuit matri-

ces, which employs a sequence of algorithms based on the computation of the

nearest diagonally dominant matrix and the subsequent sparsification of the

corresponding graph. Our main contribution is that we transform the problem

of the sparsification of the reduced model matrices to the sparsification of the

nearest matrices corresponding to a graph, in order to exploit efficient graph

sparsification techniques. In addition, since the sparsified matrices are of the

Laplacian kind with direct correspondence to weighted graphs, the sparsified re-

duced order model has a straightforward realization to an equivalent RC circuit

with positive elements.

∙ We propose the compression (instead of sparsification) of the actual inductance

matrix via the approximation of large off-diagonal blocks by low-rank products,

in a scheme known as hierarchical matrix (or ℋ-matrix) format. This format

conserves memory by storing only the low-rank factors of the blocks, while en-

abling the execution of basic matrix-vector operations of iterative solvers in near

optimal complexity. Moreover, we propose a block preconditioner based on an

efficient approximation of the Schur complement, which improves considerably
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the convergence rate of iterative methods and has inexpensive application inside

every iteration.

1.3 Outline

The rest of the PhD dissertation is organized as follows. Firstly, Chapter 2 presents

a rigorous methodology for the sparsification of dense matrices resulting from MOR.

Chapter 3 explains the compression of the dense inductance matrix by low-rank rank

products in ℋ-matrix format and presents a genreal purpose preconditioner for the

iterative solution of the transient linear system (which comprises sparse blocks along-

side the dense inductance block). Finally, Chapter 4 concludes the dissertation and

proposes ideas for future work.
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Chapter 2

Efficient Sparsification of Dense

Circuit Matrices in Model Order

Reduction

2.1 Background

Consider an RLC circuit with 𝑛 nodes (excluding ground), ℓ inductive branches with

mutual coupling between them, 𝑔 conductive branches, 𝑐 capacitive branches, 𝑝 inputs

and 𝑞 outputs which is described according to the Modified Nodal Analysis (MNA)

formulation [20] in the time domain as follows:

⎡⎣A𝑐𝑟C𝑑A
𝑇
𝑐𝑟 0

0 L

⎤⎦⎡⎣v′(𝑡)

i′(𝑡)

⎤⎦ +

⎡⎣A𝑔𝑟G𝑑A
𝑇
𝑔𝑟 A𝐿

−A𝑇
𝐿 0

⎤⎦⎡⎣v(𝑡)

i(𝑡)

⎤⎦ =

⎡⎣ B𝑢

0ℓ×𝑝

⎤⎦u(𝑡)

y(𝑡) =
[︁
E𝑢 0𝑞×ℓ

]︁⎡⎣v(𝑡)

i(𝑡)

⎤⎦ (2.1)

where v ∈ ℜ𝑛, i ∈ ℜℓ, u ∈ ℜ𝑝, y ∈ ℜ𝑞 are the vectors of node voltages, branch cur-

rents, input excitations from independent sources at the nodes (with voltage sources

being transformed into Norton-equivalent current sources) and output measurements
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respectively, B𝑢 ∈ ℜ𝑛×𝑝 and E𝑢 ∈ ℜ𝑞×𝑛 are the input-to-node and node-to-output

connectivity matrices, A𝑔𝑟 ∈ ℜ𝑛×𝑔 and A𝑐𝑟 ∈ ℜ𝑛×𝑐 are the node-to-branch reduced

incidence matrices (with respect to ground), G𝑑 ∈ ℜ𝑔×𝑔, C𝑑 ∈ ℜ𝑐×𝑐 are positive

diagonal matrices containing the branch conductances and branch capacitances re-

spectively, L ∈ ℜℓ×ℓ is dense inductance matrix (with self-inductances as diagonal

entries and mutual inductances as off-diagonal entries), and A𝐿 ∈ ℜ𝑛×ℓ is the corre-

sponding node-to-inductive branch incidence matrix. It is well-known [21] that the

products

G𝑛 ≡ A𝑔𝑟G𝑑A
𝑇
𝑔𝑟, C𝑛 ≡ A𝑐𝑟C𝑑A

𝑇
𝑐𝑟 (2.2)

are symmetric and diagonally dominant (SDD) matrices with positive diagonal ele-

ments and non-positive off-diagonal elements, i.e. 𝑔𝑖𝑖 > 0, 𝑐𝑖𝑖 > 0 (sum of conduc-

tances or capacitances connected to node 𝑖), 𝑔𝑖𝑗 = 𝑔𝑗𝑖 6 0, 𝑐𝑖𝑗 = 𝑐𝑗𝑖 6 0 (opposite of

conductance or capacitance between nodes 𝑖 and 𝑗), and 𝑔𝑖𝑖 ≥ −
𝑛∑︀

𝑗=1
𝑗 ̸=𝑖

𝑔𝑖𝑗, 𝑐𝑖𝑖 ≥ −
𝑛∑︀

𝑗=1
𝑗 ̸=𝑖

𝑐𝑖𝑗

, ∀𝑖 = 1, . . . 𝑛. These types of matrices are subsets of the broader class of M-matrices

[23], and we are going to refer to them as "circuit-type" M-matrices. However, the

inductance matrix L is not diagonally dominant but its inverse L−1 (called the reluc-

tance matrix) is known to be SDD with positive diagonal elements and non-positive

off-diagonal elements [3], i.e a circuit-type M-matrix.

The fact that A𝑔𝑟 and A𝑐𝑟 are reduced incidence matrices (not containing the

row corresponding to the ground node) means that both G𝑛 = A𝑔𝑟G𝑑A
𝑇
𝑔𝑟 and

C𝑛 = A𝑐𝑟C𝑑A
𝑇
𝑐𝑟 will have at least one row sum greater than zero, i.e. 𝑔𝑖𝑖 >

−
∑︀𝑛

𝑗=1,𝑗 ̸=𝑖 𝑔𝑖𝑗 and 𝑐𝑖𝑖 > −
∑︀𝑛

𝑗=1,𝑗 ̸=𝑖 𝑐𝑖𝑗 for the nodes 𝑖 where a conductance or ca-

pacitance is connected to ground. These can be written as G𝑛 = D𝐺 + A𝑔GA𝑇
𝑔 and

C𝑛 = D𝐶 +A𝑐CA𝑇
𝑐 , where D𝐺 and D𝐶 are diagonal matrices with the conductances

and capacitances to ground, A𝑔 and A𝑐 are normal (not reduced) incidence matrices

for the branches not being connected to ground, and G, C are diagonal matrices with

the conductances and capacitances of these branches. The products:
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L𝐺 ≡ A𝑔GA𝑇
𝑔 , L𝐶 ≡ A𝑐CA𝑇

𝑐 (2.3)

are known as the Laplacian matrices [24] of the weighted graphs consisting of the

conductive branches and the capacitive branches not connected to ground, and having

as weights the conductances and capacitances of these branches. Thus, any circuit-

type M-matrix can be written as the sum of a diagonal matrix and the Laplacian

matrix of a weighted graph.

Formally, given a weighted graph 𝐺 = (𝑉,𝐸,𝑤) with set of vertices (nodes) 𝑉 =

{1, 2, . . . , 𝑛}, set of edges (branches) 𝐸 = {(𝑖, 𝑗)| 𝑖, 𝑗 ∈ 𝑉 }, and weight function

𝑤(𝑖, 𝑗), the Laplacian matrix of 𝐺 is defined as follows:

L𝐺 = A𝐺WA𝑇
𝐺 =

∑︁
(𝑖,𝑗)∈𝐸

𝑤(𝑖, 𝑗)(e𝑖 − e𝑗)(e𝑖 − e𝑗)
𝑇 (2.4)

where W is a diagonal matrix with the edge weights and A𝐺 is the vertex-to-edge

incidence matrix with columns for every edge (𝑖, 𝑗) that equal e𝑖 − e𝑗, where e𝑖 is the

elementary unit vector with 1 at the position 𝑖 and 0’s everywhere else. Because each

row and column sum of L𝐺 equals zero, a Laplacian matrix is always rank-deficient

and there does not exist a regular inverse of L𝐺. However, the algorithms presented

in this paper employ L𝐺 only on vectors existing in its column space ℛ(L𝐺) (i.e. not

in its nullspace 𝒩 (L𝐺) = ℛ⊥(L𝐺)), where the Moore-Penrose pseudoinverse L+
𝐺 acts

as a normal inverse, i.e. for each y ∈ ℛ(L𝐺), L+
𝐺y is the unique x ∈ ℛ(L𝐺) such that

L𝐺x = y.

Model Order Reduction (MOR) techniques aim at approximating the model of

(2.1) by another model of reduced order 𝑟 < (𝑛 + ℓ), through a process of project-

ing the model matrices onto lower-dimensional subspaces of dimension 𝑟. Instead of

projecting the original block model matrices ̃︀G, and ̃︀C, structure-preserving MOR

techniques like [25] and [19] work on the individual blocks G𝑛, C𝑛, L and A𝐿. The

difference between them is that [25] involves the inductance matrix L while [19] in-

volves the reluctance matrix L−1. However, they both have to work with the incidence

block A𝐿 which is not SDD.
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A different approach is to solve for the unknown currents from the lower ℓ equa-

tions in (2.1) and substitute to the upper 𝑛 equations, in order to obtain the second-

order expression of (2.1):

C𝑛v
′(𝑡) + G𝑛v(𝑡) + Γ

∫︁ 𝑡

0

v(𝑡) = B𝑢u(𝑡)

y(𝑡) = Euv(𝑡)

(2.5)

where Γ = A𝐿L
−1A𝑇

𝐿. MOR techniques that work on the above second-order formu-

lation, like [26][27][28][29], obtain a reduced-order model through the following matrix

transformations:

̂︀G𝑛 = U𝑇G𝑛V, ̂︀C𝑛 = U𝑇C𝑛V, ̂︀Γ = U𝑇A𝐿L
−1A𝑇

𝐿V̂︀B𝑢 = U𝑇B𝑢, ̂︀E𝑢 = E𝑢V
(2.6)

where U, V are projection matrices onto a lower dimensional subspace.

The above projections (and, generally, the projections of any MOR technique)

do not generally preserve the properties of circuit-type M-matrices, i.e. diagonal

dominance and non-positive off-diagonal elements, which allow them to have a di-

rect correspondence to circuits. The biggest problem however, from the projections

inherent in MOR is that sparsity is lost, which can render impractical any time or

frequency domain simulation involving the solution of linear systems in the model

matrices, and offsets the benefits from the reduction of order. We will address these

problems in the remainder of the chapter.
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2.2 Approximation of Projected MOR Matrices by

Circuit-type M-matrices

2.2.1 Back projection to the nearest SDD matrix

The matrices ̂︀G𝑛, ̂︀C𝑛 and ̂︀Γ resulting from the MOR projections (2.6) are not di-

agonally dominant, but they are expected to be close to a DD matrix (in a suitable

matrix norm) since they are obtained through the projections U𝑇G𝑛V, U𝑇C𝑛V, and

(A𝑇
𝐿U)𝑇L−1(A𝑇

𝐿V) which, being good approximations, preserve the dominant eigen-

values (modes) of the initial DD matrices G𝑛, C𝑛, and L−1 (we present experimental

evidence of the proximity of ̂︀G𝑛, ̂︀C𝑛 and ̂︀Γ to DD matrices in section 2.6) and there-

fore, in this section we consider the problem of finding the nearest SDD matrix to a

given 𝑛× 𝑛 matrix A with positive diagonal elements, in some suitable matrix norm

which is chosen to be the Frobenius norm, i.e. the following least-squares problem:

min
X

‖A−X‖𝐹 =

⎯⎸⎸⎷ 𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

(𝑎𝑖𝑗 − 𝑥𝑖𝑗)2

s.t. X ∈ SDD

(2.7)

This constrained optimization problem can be solved by Algorithm [30] which (after

initializing X = A) alternatingly projects X onto the set of symmetric matrices

by X+X𝑇

2
, and the set of diagonally dominant matrices by Algorithm 2 (whose non-

empty intersection determines the feasible set of solutions), until the distance between

two consecutive projections reaches a pre-specified tolerance (see Fig. 2-1). The

DD-projection Algorithm 2 computes for each non-DD row an "average" of the off-

diagonal elements which then adds to the diagonal element while subtracting it from

the rest of the elements for this particular row.

The Algorithm 1 can be proven to converge to the nearest SDD matrix [31] while

its rate of convergence depends upon the angle between the active faces at the solution.

Criteria for the selection of the supporting hyperplanes of the active faces have been

proposed in [32] to improve the convergence rate. As for the computational complexity
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Figure 2-1: The sequence of projections between the set of symmetric and the set
of diagonally dominant matrices in Algorithm 1. X0 is equal to the matrix we are
interested in projecting to the set of symmetric and diagonally dominant matrices.
The solution X* lies in the intersection of the set of DD matrices and the set of
Symmetric matrices, while its Frobenius distance from X0 is the smallest one (there
may be more than one X𝑖 in the intersection of the two sets).

of every iteration itself, both the symmetric projection X+X𝑇

2
and the DD projection

entail 𝑂(𝑛2) flops (the "while" loop in Algorithm 3 only takes a few iterations in

practice [31]), and also exhibit significant degree of parallelism (since each row is

treated independently of the others in Algorithm 2).

Algorithm 1 Find the nearest SDD matrix to an 𝑛×𝑛 matrix A under the Frobenius
norm
1: function X = prjSDD(A, 𝑡𝑜𝑙)
2: Z = 0 ; X = A
3: repeat
4: S = X+X𝑇

2

5: X𝑝𝑟𝑣 = X
6: X = 𝑝𝑟𝑗𝐷𝐷(S− Z)
7: Z = X− S + Z
8: until ‖X−X𝑝𝑟𝑣‖𝐹 ≤ 𝑡𝑜𝑙
9: end function
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Algorithm 2 Project an 𝑛 × 𝑛 matrix A with positive diagonal elements onto the
set of DD matrices
1: function X = prjDD(A)
2: for 𝑖 =1 to 𝑛 do
3: a = A(𝑖, :)
4: 𝑠 =

∑︀𝑛
𝑗=1,𝑗 ̸=𝑖 |a(𝑗)|

5: if a(𝑖) ≥ 𝑠 then
6: x = a
7: end if
8: if a(𝑖) ≥ 0 && a(𝑖) < 𝑠 then
9: x = 𝑝𝑟𝑗𝐷𝐷𝑟𝑜𝑤(a, 𝑖)

10: end if
11: X(𝑖,:) = x
12: end for
13: end function

2.2.2 Improvement in case of RC circuits

In the case of RC circuit we can apply appropriate congruence transformations like

those first appeared in the PACT method [33], so that the ̂︀G𝑛 needs not be approxi-

mated by its nearest diagonally dominant.

Before applying the congruence transformations, we have to rearrange the equa-

tions of (2.5) (of course without the term Γ
∫︀ 𝑡

0
v(𝑡) because we consider RC circuits)

so that the first 𝑜 = 𝑝+ 𝑞 equations correspond to port nodes, while the rest of them

(𝑖 = 𝑛− 𝑜) correspond to internal nodes. Thus, (2.5) can be re-written as:

⎡⎣G𝑜 G𝑇
𝑐

G𝑐 G𝑖

⎤⎦⎡⎣x𝑜(𝑡)

x𝑖(𝑡)

⎤⎦ +

⎡⎣C𝑜 C𝑇
𝑐

C𝑐 C𝑖

⎤⎦⎡⎣𝑑x𝑜(𝑡)
𝑑𝑡

𝑑x𝑖(𝑡)
𝑑𝑡

⎤⎦ =

⎡⎣ B𝑜

0𝑖×𝑝

⎤⎦u(𝑡)

y(𝑡) =
[︁
E𝑜 0𝑞×𝑖

]︁⎡⎣x𝑜(𝑡)

x𝑖(𝑡)

⎤⎦ (2.8)

where x𝑜 and x𝑖 represent the 𝑜 port and the 𝑖 internal unknown node voltages respec-

tively, G𝑜 and C𝑜 ∈ ℜ𝑜×𝑜 represent the conductive and the capacitive interconnections

among the port nodes, G𝑖 and C𝑖 ∈ ℜ𝑖×𝑜 describe the conductive and the capacitive

interconnections among the internal nodes, G𝑐 and C𝑐 ∈ ℜ𝑜×𝑖 represent the con-
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Algorithm 3 Compute the row of the projection of an 𝑛× 𝑛 matrix A onto the set
of DD matrices
1: function x = prjDDrow(a, 𝑖)
2: 𝑑 =

∑︀𝑛
𝑗=1,𝑗 ̸=𝑖 |a(𝑗)|

3: 𝑑 = 𝑑− a(𝑖)
4: a𝑜𝑓𝑓 = [a(1), . . . , a(𝑖), a(𝑖 + 1), . . . , a(𝑛)]
5: 𝑐 = #nonzeros(a𝑜𝑓𝑓 ) + 1
6: 𝑏 = 𝑑/𝑐
7: 𝑠 = 1
8: while 𝑠 == 1 do
9: 𝑠 = 0

10: for 𝑗 =1 to 𝑛 do
11: if a(𝑗) ̸= 0 && 𝑗 ̸= 𝑖 then
12: 𝑎𝑢𝑥 = a(𝑗)− sign(a(𝑗))·𝑏
13: if sign(𝑎𝑢𝑥)·sign(a(𝑗)) < 0 then
14: 𝑑 = 𝑑− |a(𝑗)|
15: 𝑐 = 𝑐− 1
16: a(𝑗) = 0
17: 𝑠 = 1
18: end if
19: end if
20: end for
21: 𝑏 = 𝑑/𝑐
22: end while
23: for 𝑗 =1 to 𝑛 do
24: if 𝑗 ̸= 𝑖 then
25: if a(𝑗) == 0 then
26: x(𝑗) = 0
27: else if a(𝑗) > 0 then
28: x(𝑗) = a(𝑗) − 𝑏
29: else
30: x(𝑗) = a(𝑗) + 𝑏
31: end if
32: else
33: x(𝑖) = a(𝑖) + 𝑏
34: end if
35: end for
36: end function
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ductive and the capacitive interconnections between the port nodes and the internal

nodes, while B𝑜 ∈ ℜ𝑜×𝑝 and E𝑜 ∈ ℜ𝑞×𝑜 are the upper 𝑜 × 𝑝 and 𝑞 × 𝑜 submatrices

of the input-to-node connectivity matrix B𝑢 and node-to-output connectivity matrix

E𝑢 respectively after the rearrangement of equations. Then, we transform G𝑛, C𝑛 in

(2.8) as follows:

G
′

𝑛 = X𝑇G𝑛X =

⎡⎣G𝑜 −G𝑇
𝑐 A 0

0 I𝑖

⎤⎦

C
′

𝑛 = X𝑇C𝑛X =

⎡⎣C𝑜 −B𝑇A−A𝑇C𝑐 B𝑇L−𝑇U

U𝑇L−1B C
′
𝑖

⎤⎦ (2.9)

with

X =

⎡⎣ I𝑜 0

−A L𝑇

⎤⎦

where A = G−1G𝑐, B = C𝑐−C𝑖A, L is the lower triangular matrix from the Cholesky

factorization of G𝑖 (G𝑖 = LL𝑇 ). The above transformations do not alter the transfer

function of the system (2.8) and MOR techiques, like PACT and TurboMOR [34]

focus on reducing the (𝑛− 𝑜) × (𝑛− 𝑜) submatrix C
′
𝑖 (since the 𝑜× 𝑜 submatrix G𝑜

is small if the ports are few).

Looking at the model in (2.9), it can be proven that matrix G
′
𝑛 is circuit-type M-

matrix because it consists of the Schur complement of matrix G𝑛, which is circuit-type

M matrix itself, and the identity matrix. Therefore, it is not required to approximate

G
′
𝑛 with its nearest circuit-type M matrix and as result the error induced due to this

approximation can be avoided.
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2.2.3 Conversion of a general SDD matrix to a circuit-type

M-matrix

The back projection procedure to the nearest SDD matrix leaves the sign of the off-

diagonal elements unchanged, and thus does not generally lead to a circuit type M-

matrix where the off-diagonal elements are all non-positive. However, if we decompose

a matrix A into A = A1 + A2 then Ax = b is equal to A1x + A2x = b (or A1x −

A2(−x) = b) and also −A1x − A2x = −b (or −A2x + A1(−x) = −b). Now, if

A is SDD and A1 = A𝑑𝑛, A2 = A𝑝, where A𝑑𝑛 contains the diagonal and negative

off-diagonal elements and A𝑝 contains the positive off-diagonal elements of A (and

zeros everywhere else) then we can write the previous systems as A𝑑𝑛x−A𝑝(−x) = b

and −A𝑝x + A𝑑𝑛(−x) = −b. This, can be put in the form of the augmented sytem:

⎡⎣A𝑑𝑛 −A𝑝

−A𝑝 A𝑑𝑛

⎤⎦⎡⎣ x

−x

⎤⎦ =

⎡⎣ b

−b

⎤⎦ (2.10)

which will be SDD with non-positive off-diagonal elements. Thus, for all simulation

purposes, an SDD matrix can be substituted by a circuit-type M-matrix with equiv-

alent solution and twice the size (which is hardly an issue for reduced order models

whose dimension is at most a few thousand and where matrix density is the major

problem).

2.3 Sparsification of Circuit-type M-matrices

The matrices resulting from the nearest projection and conversion procedures of the

previous section are dense circuit-type M-matrices, and thus they can be decomposed

into the sum of a diagonal matrix and a dense Laplacian matrix. In this section

we focus on sparsifying those dense Laplacian matrices. Because a Laplacian matrix

L𝐺 has a direct correspondence to a weighed graph, by considering every non-zero

off-diagonal element 𝑙𝑖𝑗 (𝑖 ̸= 𝑗) as an edge (𝑖, 𝑗) between vertices 𝑖 and 𝑗 with weight

𝑤(𝑖, 𝑗) = −𝑙𝑖𝑗, we can cast the problem of sparsifying L𝐺 to sparsifying its corre-
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Figure 2-2: Electrical circuit analogy of graph, where each edge has resistance the
inverse of its weight. The "effective resistance" of edge (3, 5) is the voltage drop across
the vertices 3 and 5 when we apply a current source of 1A between them.

sponding graph. An efficient graph sparsification method should not naively truncate

edges with weight below a certain threshold, but should instead aim at preserving

the graph "energy" or equivalently the eigenvalues of its Laplacian matrix. Such a

method that for a given dense graph 𝐺 = (𝑉,𝐸,𝑤) with 𝑂(𝑛2) edges (where 𝑛 is the

number of vertices) constructs a sparse subgraph 𝐻 = (𝑉, 𝐸̃, 𝑤̃) of 𝐺 with 𝑂(𝑛𝑙𝑜𝑔𝑛)

edges, in a way that the energy of 𝐺 is preserved in 𝐻 to the largest extent possible, is

given in [35]. The proposed algorithm is based on the concept of "effective resistance"

of an edge (𝑖, 𝑗) which is defined as follows:

𝑅𝑒𝑓𝑓
(𝑖,𝑗) = (e𝑖 − e𝑗)

𝑇L+
𝐺(e𝑖 − e𝑗) (2.11)

where L+
𝐺 is the pseudoinverse of L𝐺 and e𝑖, e𝑗 are elementary unit vectors with 1

at positions 𝑖 and 𝑗 respectively, and zeros everywhere else. In electrical network

analogy the effective resistance of edge (𝑖, 𝑗) represents the voltage drop across (𝑖, 𝑗)

when we apply a unit current source between its endpoint vertices 𝑖 and 𝑗 (see Fig.

2-2).

It is proven in [35], for a given 𝜖 ∈ [ 1√
𝑛
, 1] representing a tradeoff between sparsity

and accuracy, a random sampling (with replacement) of 0.09𝑛𝑙𝑜𝑔𝑛
𝜖2

edges of 𝐺 with

probability mass function (PMF) 𝑝(𝑖, 𝑗) =
𝑤(𝑖,𝑗)𝑅𝑒𝑓𝑓

(𝑖,𝑗)

𝑛−1
to include in 𝐻, will preserve the
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eigenvalues of Laplacian L𝐺 in Laplacian L𝐻 (and the corresponding graph energy)

as:

(1 − 𝜖)𝜆𝐺
𝑖 ≤ 𝜆𝐻

𝑖 ≤ (1 + 𝜖)𝜆𝐺
𝑖 , ∀𝑖 = 1, . . . , 𝑛

Below, we have modified the algorithm of [35] to initialize 𝐻 by the "Maximum

likelihood" Spanning Tree (MST), so as to include the (𝑛 − 1) most probable edges

(and avoid the possibility of 𝐻 being disjoint), as well as instead of adding 𝑞 =

(0.09𝑛𝑙𝑜𝑔𝑛
𝜖2

−(𝑛−1)) edges to the MST by analogous random trials, which would require

more computations and memory, we compute the expected times an edge would have

been selected if we had performed a random sampling of 𝑞 trials (by multiplying the

probability to select an edge 𝑝𝑒𝑖 with the total number of trials 𝑞 and round their

product to the nearest integer) and then add those edges, that the expected times to

be selected is greater than 0, to the MST (lines 8-10). By doing so, we also remove

the randomness from the algorithm of [35] and thus, the modified algorithm, shown

in Algorithm 4, results always into the same sparse graph.

Algorithm 4 For a dense graph 𝐺 = (𝑉,𝐸,𝑤) with Laplacian matrix L𝐺, construct
a sparse subgraph 𝐻 = (𝑉, 𝐸̃, 𝑤̃) with Laplacian matrix L𝐻

1: function 𝐻 = SparLap(𝐺, 𝜖)
2: Calculate effective resistance 𝑅𝑒𝑓𝑓

(𝑖,𝑗) for each edge (𝑖, 𝑗) ∈ 𝐸 (either exactly by
(2.11) or approximately by Algorithm 5)

3: Set 𝑝(𝑖, 𝑗) =
𝑤(𝑖,𝑗)𝑅

𝑒𝑓𝑓
(𝑖,𝑗)

𝑛−1
, ∀(𝑖, 𝑗) ∈ 𝐸

4: 𝐻 = MST (𝐺′) where 𝐺′ = (𝑉,𝐸, 𝑝)
5: Set 𝑞 = 0.09𝑛𝑙𝑜𝑔𝑛

𝜖2
− (𝑛− 1)

6: for 𝑖 = 1 to |𝐸| do
7: 𝑤̃𝑒𝑖 = round(𝑝𝑒𝑖 * 𝑞)

𝑤𝑒𝑖

𝑞*𝑝𝑒𝑖
8: if 𝑤̃𝑒𝑖 ̸= 0 then
9: add 𝑒𝑖 in 𝐻 with weight 𝑤̃𝑒𝑖

10: end if
11: end for
12: end function

The most expensive operation in Algorithm 4 is the computation of effective re-

sistances, which involves the pseudoinverse L+
𝐺 of L𝐺. To alleviate the computational

cost, we also describe a procedure given in [35] for the approximate calculation of
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effective resistances. Firstly, notice that the effective resistance (2.11) can be written

as:

𝑅𝑒𝑓𝑓
(𝑖,𝑗) = (e𝑖 − e𝑗)

𝑇L+
𝐺(e𝑖 − e𝑗)

= (e𝑖 − e𝑗)
𝑇L+

𝐺L𝐺L
+
𝐺(e𝑖 − e𝑗)

= ((e𝑖 − e𝑗)
𝑇L+

𝐺A𝐺W
1/2)(W1/2A𝑇

𝐺L
+
𝐺(e𝑖 − e𝑗))

=
⃦⃦
W1/2A𝑇

𝐺L
+
𝐺(e𝑖 − e𝑗)

⃦⃦2

2

Thus, the effective resistance of edge (𝑖, 𝑗) equals the squared Euclidean distance

between the 𝑑×1 vectors W1/2A𝑇
𝐺L

+
𝐺e𝑖 and W1/2A𝑇

𝐺L
+
𝐺e𝑗 where 𝑑 is the total number

of edges (these are effectively the columns 𝑖 and 𝑗 of the 𝑑× 𝑛 matrix W1/2A𝑇
𝐺L

+
𝐺).

Now, a result proven in [36] states that if we project a set of 𝑛 vectors 𝑑 × 1 (like

the columns of matrix W1/2A𝑇
𝐺L

+
𝐺) onto the 𝑘-dimensional subspace spanned by

the columns of a random matrix Q ∈ ℜ𝑘×𝑑 with entries either + 1√
𝑘

or − 1√
𝑘
, where

𝑘 = ⌈24 log 𝑛/𝛿2⌉ for given 𝛿, then the distances between the vectors in the set are

preserved with tolerance 1±𝛿, providing analogous bounds for the effective resistance,

i.e.

(1 − 𝛿)
⃦⃦
W1/2A𝑇

𝐺L
+
𝐺(e𝑖 − e𝑗)

⃦⃦2

2
≤

⃦⃦
QW1/2A𝑇

𝐺L
+
𝐺(e𝑖 − e𝑗)

⃦⃦2

2

≤ (1 + 𝛿)
⃦⃦
W1/2A𝑇

𝐺L
+
𝐺(e𝑖 − e𝑗)

⃦⃦2

2
, ∀𝑖, 𝑗 = 1 . . . 𝑛

⇒ (1 − 𝛿)𝑅𝑒𝑓𝑓
(𝑖,𝑗) ≤

⃦⃦
QW1/2A𝑇

𝐺L
+
𝐺(e𝑖 − e𝑗)

⃦⃦2

2
≤ (1 + 𝛿)𝑅𝑒𝑓𝑓

(𝑖,𝑗)

The product QW1/2A𝑇
𝐺L

+
𝐺 can be computed as the matrix Z such that ZL𝐺 =

QW1/2A𝑇
𝐺. This entails solving only 𝑘 = 𝑂(𝑙𝑜𝑔𝑛) linear systems L𝐺z𝑖 = y𝑖 where z𝑖

and y𝑖 are the 𝑖-th rows of Z and Y = QW1/2A𝑇
𝐺 respectively (instead of 𝑛 systems

that are required for computing L+
𝐺). The solution of these linear systems in the

Laplacian L𝐺 can be performed efficiently by Laplacian iterative solvers (LapSolve)

such as [37] and [38], which rely on Preconditioned Conjugate Gradients (PCG) to

give the unique solution z𝑖 = L+
𝐺y𝑖 that lies in the column space ℛ(L𝐺). The whole

algorithm for approximate computation of effective resistances is given in Algorithm

33

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 17:09:39 EEST - 18.216.116.11



5.

Algorithm 5 Approximate computation of effective resistances for edges of graph
𝐺 = (𝑉,𝐸,𝑤) with Laplacian L𝐺

1: function 𝑅𝑒𝑓𝑓
(𝑖,𝑗) = approxReff(L𝐺, 𝛿)

2: 𝑘 = ⌈24 log 𝑛/𝛿2⌉
3: Construct a 𝑘 × 𝑑 random matrix Q whose entries are either + 1√

𝑘
or − 1√

𝑘

4: Y = QW1/2A𝑇
𝐺

5: z̃(𝑖, :) = 𝐿𝑎𝑝𝑆𝑜𝑙𝑣𝑒(L𝐺, y(𝑖, :)), ∀𝑖 = 1 . . . 𝑘

6: 𝑅𝑒𝑓𝑓
(𝑖,𝑗) =

⃦⃦⃦
Z̃(e𝑖 − e𝑗)

⃦⃦⃦2

2
, ∀(𝑖, 𝑗) ∈ 𝐸

7: end function

2.4 Proposed Methodology for Sparsification of Dense

MOR Models

Combining all the algorithms presented in the previous sections, the complete method-

ology for sparsifying dense MOR models is given in Algorithm 6. The sparsity-

accuracy tradeoff 𝜖 is usually set at its smallest possible value 𝜖 = 1√
𝑟

(where 𝑟 is the

order of the reduced model).

Algorithm 6 Sparsification of dense models resulting from MOR

1: function ̂︀G𝑠𝑝, ̂︀C𝑠𝑝, ̂︀Γ𝑠𝑝 = MORSparse(̂︀G𝑛, ̂︀C𝑛, ̂︀Γ, 𝜖)
2: G𝐷𝐷 = 𝑝𝑟𝑗𝑆𝐷𝐷(̂︀G𝑛, 1e-6)
3: C𝐷𝐷 = 𝑝𝑟𝑗𝑆𝐷𝐷(̂︀C𝑛, 1e-6)
4: Γ𝐷𝐷 = 𝑝𝑟𝑗𝑆𝐷𝐷(̂︀Γ, 1e-6)
5: Apply conversion (2.10) to G𝐷𝐷, C𝐷𝐷 and Γ𝐷𝐷, to obtain the matrices G𝑀 ,

C𝑀 and Γ𝑀 respectively
6: Extract Laplacian part of G𝑀 , C𝑀 and Γ𝑀 in matrices L𝐺, L𝐶 and LΓ, and

store diagonal remainder of strictly diagonally dominant rows in matrices D𝐺,
D𝐶 and DΓ

7: ̂︀G𝑠𝑝 = 𝑆𝑝𝑎𝑟𝐿𝑎𝑝(L𝐺, 𝜖) + D𝐺

8: ̂︀C𝑠𝑝 = 𝑆𝑝𝑎𝑟𝐿𝑎𝑝(L𝐶 , 𝜖) + D𝐶

9: ̂︀Γ𝑠𝑝 = 𝑆𝑝𝑎𝑟𝐿𝑎𝑝(LΓ, 𝜖) + DΓ

10: end function
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Gp, Cp, p
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Figure 2-3: Two copies of circuit corresponding to C𝑑𝑛, G𝑑𝑛 and Γ𝑑𝑛 connected by
circuit branches corresponding to C𝑝, G𝑝 and Γ𝑝. The inputs to the reduced-order
model are not the original inputs, but the inputs from the projection U𝑇Bu(𝑡).

2.5 Synthesis of MORSparse Models

An additional benefit of the matrices resulting from the application of Algorithm 6

(beyond sparsity) is that they are in standard MNA second order form, and thus can

be readily synthesized into RLC circuit with only positive elements.

The approximation of the projected MOR matrices by circuit-type M-matrices

can be considered as a procedure of finding the nearest (in numerical value sense)

realizable circuit to the MOR model matrices which do not have necessarily a physical

correspondence to a circuit (as they just result from an algebraic projection of the

original model matrices (see 2.6)). Moreover, the sparsification algorithm 𝑆𝑝𝑎𝑟𝐿𝑎𝑝

does not violate the circuit-type M-matrix property (diagonally dominant matrix with

negative off-diagonal) of the given matrix for sparsification. Therefore, the resulting

sparse model matrices can be still realized into a circuit by following the inverse MNA

procedure [39] (see Fig. 2-4).

Below we demonstrate how any model of SDD matrices as those resulting from

steps 2, 3, 4 in Algorithm 6 can be synthesized into a circuit with only positive

elements. Let
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G𝐷𝐷 =

⎡⎢⎢⎢⎢⎢⎢⎣
0.92 0.11 −0.71 0

0.11 1 −0.3 0.59

−0.71 −0.3 1.21 0

0 0.59 0 1.59

⎤⎥⎥⎥⎥⎥⎥⎦ ,

C𝐷𝐷 =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0.72 0 0

0.72 1.63 0 −0.91

0 0 1 0

0 −0.91 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ ,

Γ𝐷𝐷 =

⎡⎢⎢⎢⎢⎢⎢⎣
0.12 0 0 0.12

0 0.3 0 −0.2

0 0 0.5 0

0.12 −0.2 0 0.32

⎤⎥⎥⎥⎥⎥⎥⎦

Now, by applying conversion (2.10) to G𝐷𝐷, C𝐷𝐷 and Γ𝐷𝐷 we obtain

G𝑀 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.92 0 −0.71 0 0 −0.11 0 0

0 1 −0.3 0 −0.11 0 0 −0.59

−0.71 −0.3 1.21 0 0 0 0 0

0 0 0 1.59 0 −0.59 0 0

0 −0.11 0 0 0.92 0 −0.71 0

−0.11 0 0 −0.59 0 1 −0.3 0

0 0 0 0 −0.71 −0.3 1.21 0

0 −0.59 0 0 0 0 0 1.59

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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C𝑀 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 −0.72 0 0

0 1.63 0 −0.91 −0.72 0 0 0

0 0 1 0 0 0 0 0

0 −0.91 0 1 0 0 0 0

0 −0.72 0 0 1 0 0 0

−0.72 0 0 0 0 1.63 0 −0.91

0 0 0 0 0 0 1 0

0 0 0 0 0 −0.91 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Γ𝑀 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.12 0 0 0 0 0 0 −0.12

0 0.3 0 −0.2 0 0 0 0

0 0 0.5 0 0 0 0 0

0 −0.2 0 0.32 −0.12 0 0 0

0 0 0 −0.12 0.12 0 0 0

0 0 0 0 0 0.3 0 −0.2

0 0 0 0 0 0 0.5 0

−0.12 0 0 0 0 −0.2 0 0.32

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The above model is in standard MNA form and thus the non-zero off-diagonal

elements from the upper-diagonal (or lower-diagonal, because they are symmetric

matrices) parts of G𝑀 , C𝑀 and Γ𝑀 , let 𝑔𝑖𝑗, 𝑐𝑖𝑗 and 𝛾𝑖𝑗, can be interpreted into a

resistor, a capacitor and an inductor with resistance −1
𝑔𝑖𝑗

, capacitance −𝑐𝑖𝑗 and induc-

tance −1
𝛾𝑖𝑗

respectively between nodes i and j, while the diagonal entries of G𝑀 , C𝑀 and

Γ𝑀 , let 𝑔𝑖𝑖, 𝑐𝑖𝑖 and 𝛾𝑖𝑖, can be interpreted into a resistor, a capacitor and an inductor

with resistance 1

𝑔𝑖𝑖−
8∑︀

𝑗=1,
𝑗 ̸=𝑖

|𝑔𝑖𝑗 |
, capacitance 𝑐𝑖𝑖 −

8∑︀
𝑗=1,
𝑗 ̸=𝑖

|𝑐𝑖𝑗| and inductance 1

𝛾𝑖𝑖−
8∑︀

𝑗=1,
𝑗 ̸=𝑖

|𝛾𝑖𝑗 |
re-

spectively between node i and ground. Therefore, the circuit synthesis of our example

leads into the circuit shown in Figure 2-4.
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Figure 2-4: The synthesized circuit of the example. The enumeration of the nodes
in the above circuit has been performed so that node 𝑖 corresponds to the 𝑖-th col-
umn/row of G𝑀 , C𝑀 and Γ𝑀 .

2.6 Experimental Evaluation

For the experimental evaluation of MORSparse presented in Algorithm 6 we consider a

set of synthetic RLC interconnects in a 3d grid topology extracted from FastHenry[46].

The RLC grids in one dimension are consisted of RL branches and in the other two

are consisted of resistive only branches, while we assume a capacitive branch to the

ground at their intersection points (see Fig. 2-5). Moreover, we assume a set of RC

netlists extracted from real designs [40] namely a Transmission Line (TL), a Low

Noise Amplifier (LNA), an RF mixer (MX3) and an RC interconnect (RCintc). We

provide in Table 2.1 all the structural details of each benchmark.

Firstly, in all experiments we formulate the system of equations as in (2.5) (of

course without the term Γ
∫︀ 𝑡

0
v(𝑡) in case of RC benchmarks), seeking for the unknown

node voltages, and then obtain a reduced order model (ROM) using SAPOR [29], for

RLC benchmarks and PACT for RC benchmarks. We implemented SAPOR, PACT
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Figure 2-5: Structure of our synthetic RLC benchmarks

Table 2.1: Structural details of benchmarks under test

Bench. num. of
RL branches

num. of
ports

num. of
nodes

interc1 256 32 544
interc2 768 96 1632
interc3 2048 256 4352
interc4 4096 512 8704
TL NA 22 3253
LNA NA 79 29885
MX3 NA 110 867
RCintc NA 646 16862

(see Appendix A) and the proposed MORSparse algorithm in MATLAB 2017a,

and ran all our experiments on a system equipped with a 3.60 GHz Intel Core i7

CPU and 16 GB memory. In Table 2.2 we report the relative distance between

the reduced and the DD-projected matrices in the spectral and the Frobenius norm(︁
||G𝐷𝐷− ̂︀G𝑛||

|| ̂︀G𝑛||
, ||C𝐷𝐷−̂︀C𝑛||

||̂︀C𝑛||
, ||Γ𝐷𝐷−̂︀Γ||

||̂︀Γ||
)︁

for all the benchmarks we tested. It is apparent

that the matrices resulting from the projection of MOR matrices to the nearest SDD

ones constitute very good approximations, especially when the ROM comes from

PACT (Notice the 0 distance of ̂︀G𝑛 from G𝐷𝐷 in case of RC benchmarks, as we

avoid to project it to the set of DD matrices because it is DD in the first place).
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Table 2.2: Relative distance between the reduced order and the DD-projected matri-
ces in the spectral and the Frobenius norm

Bench Spectral distance Frobenius distance
G𝑛 C𝑛 Γ G𝑛 C𝑛 Γ

interc1 0.26 0.34 0.08 0.26 0.26 0.05
interc2 0.3 0.35 0.16 0.27 0.26 0.08
interc3 0.24 0.4 0.08 0.23 0.27 0.04
interc4 0.21 0.47 0.13 0.2 0.28 0.04

TL 0 1.02e-4 NA 0 1.12e-4 NA
LNA 0 0.021 NA 0 0,029 NA
MX3 0 0.038 NA 0 0,046 NA

RCintc 0 0.55 NA 0 0.54 NA

Table 2.3: Comparison of sparse ROMs obtained with MORSparse against dense
ROMs from SAPOR and PACT

Bench
Order

of
ROM

Sparsity of
SAPOR/PACT

ROM

Sparsity of
MORSparse

ROM
Sparsif.
time

Sim.
time
dense
ROM

Sim.
time

sparse
ROM

Speedup

𝜂G𝑛 𝜂C𝑛 𝜂Γ 𝜂G𝑠𝑝 𝜂C𝑠𝑝 𝜂Γ𝑠𝑝

interc1 64 0% 0% 0% 95.4% 89% 94% 3.5s 12s 41s 1.5×
interc2 192 0% 0% 0% 98.4% 89.5% 97.4% 22.5s 55s 42s x1.48×
interc3 512 0% 0% 0% 99.3% 95.3% 98.4% 83s 1300s 43s x5.6×
interc4 1024 0% 0% 0% 99.7% 94.2% 98.3% 657s 4901s 44s x4.6×

TL 22 78.9% 0% NA 95.9% 78.3% NA 0.89s 1.82s 3.3s x0.55×
LNA 79 95.2% 66.7% NA 98.7% 94.0% NA 0.32s 3.1s 2.4s x1.3×
MX3 110 97.3% 80.6% NA 99.1% 94.2% NA 0.41s 5.3s 3.2s x1.65×

RCintc 663 96.7% 69.7% NA 99.4% 97.0% NA 4.5s 129s 31.9s x4.0×

After the sparsification of the dense SAPOR and PACT ROMs, we examined

the resulting MORSparse ROMs in terms of sparsity ratio (𝜂 = #𝑧𝑒𝑟𝑜𝑠
#𝑟𝑜𝑤𝑠×#𝑐𝑜𝑙𝑠

) and

simulation accuracy. In all our experiments we applied at all ports a 1A step current

source, executed the simulation for 106 timepoints and acquired the response at a

randomly chosen port. Fig. 2-6 and Fig. 2-7 compare the voltage responses at a port

of benchmarks interc1, interc3, when we assess the accuracy of RLC benchmarks

and LNA, TL when we assess the accuracy of RC benchmarks, acquired from the

simulation of SAPOR ROM and PACT ROM respectively and the simulation of

MORSparse ROM for the smallest acceptable value of 𝜖. It can be verified that the

responses of MORSparse ROMs approximate the responses of SAPOR and PACT

ROMs very well. Again see that the spare model when the ROM has been obtained

from PACT achieves to match the waveform of the initial dense ROM almost perfectly,

due to the avoidance of projecting ̂︀G𝑛 to the space of DD matrices.

Table 2.3 compares the SAPOR and the PACT ROMs with the MORSparse ROMs
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(a) Voltage response at a port of benchmark interc1. The rms value of the error between the two
waveform is 5.55e-17.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time [sec] 10
-14

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

V
o

lt
a
g

e
 [

V
]

10
-15

SAPOR ROM

MORSparse ROM

(b) Voltage response at a port of benchmark interc3. The rms value of the error between the two
waveform is 2.64e-17.

Figure 2-6: Voltage response from simulation of the dense ROMs obtained from
SAPOR and their sparse counterparts obtained with MORSparse.

in terms of sparsity and simulation time. We can observe that a sparsity ratio of over

89% for the resulting sparse ROMs was attained that led to speedups from x1.48 to

x5.6 in simulation, (which are expected to increase for ROMs in the order of a few
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(a) Voltage response at a port of benchmark TL. The rms value of the error between the two waveform
is 7.9e-7.
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(b) Voltage response at a port of benchmark LNA. The rms value of the error between the two
waveform is 1.18e-7.

Figure 2-7: Voltage response from simulation of the dense ROMs obtained from PACT
and their sparse counterparts obtained with MORSparse.

thousand encountered in practice. Actually, in case of TL we had a slowdown because

it is too small in size), while the sparsification time is an one-time cost that does not

constitute significant fraction of the total simulation time in practical scenarios.

42

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 17:09:39 EEST - 18.216.116.11



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time [sec] 10
-14

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

V
o

lt
a
g

e
 [

V
]

G
 = 82.8%

C
 = 77.5%

G
 = 97.1%

C
 = 97.3%

G
 = 98.6%

C
 = 98.5%

G
 = 99.3%

C
 = 99.1%

G
 = 99.3%

C
 = 99.5%

Figure 2-8: Voltage responses from simulation of the sparse MX3 ROM obtained with
different 𝜖 values.

MORSparse offers simulation accuracy versus sparsity ratio trade-offs through the

parameter 𝜖. In an additional experiment we sparsified the ROM of the MX3 with

different 𝜖 values. Fig. 2-8 shows that smaller values of 𝜖 lead to more accurate

simulation but denser ROMs, as was naturally expected.
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Chapter 3

Efficient Manipulation of Dense

Inductance Matrix in Simulation of

Large Mutually Inductive Circuits

3.1 Background

3.1.1 Transient analysis overview

Consider an RLC circuit composed of 𝑛 nodes and 𝑚 inductive branches with mutual

inductive coupling between them (see Fig. 3-1), as well as its Modified Nodal Analysis

(MNA) description [20]:

̃︀Gx(𝑡) + ̃︀Cẋ(𝑡) = ̃︀e(𝑡), (3.1)

where

̃︀G =

⎡⎣ G𝑛 A𝐿

−A𝑇
𝐿 0

⎤⎦ , ̃︀C =

⎡⎣C𝑛 0

0 L

⎤⎦ ,x(𝑡) =

⎡⎣v(𝑡)

i(𝑡)

⎤⎦ ,̃︀e(𝑡) =
⎡⎣e(𝑡)

0

⎤⎦ .

In the above, G𝑛 ∈ ℜ𝑛×𝑛 and C𝑛 ∈ ℜ𝑛×𝑛 are the node conductance and node ca-

pacitance matrices respectively, L ∈ ℜ𝑚×𝑚 is the dense inductance matrix (with
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Figure 3-1: Example of an RLC circuit with 6 nodes (red) and 2 inductive branches
(blue). The coupling between the two inductances is indicated in green.

self-inductances as diagonal entries and mutual inductances as off-diagonal entries),

A𝐿 ∈ ℜ𝑛×𝑚 is the corresponding node-to-branch incidence matrix, v(𝑡) ∈ ℜ𝑛 and

i(𝑡) ∈ ℜ𝑚 are the vectors of the unknown node voltages and branch currents, and

e(𝑡) ∈ ℜ𝑛 is the vector of excitations from independent sources at the nodes (as-

suming, without loss of generality, that voltage sources have been transformed to

Norton-equivalent current sources). Applying the Backward-Euler numerical integra-

tion method in (3.1), we arrive at the problem of solving a system of 𝑛 + 𝑚 linear

algebraic equations at each discrete time 𝑡𝑘, 𝑘 = 1, 2, . . . (starting from initial values

x(𝑡0) =
[︁
v(0) i(0)

]︁𝑇
of the unknown variables):

J𝑘x(𝑡𝑘) = b(𝑡𝑘), (3.2)

where

J𝑘 =

⎡⎣ 1
ℎ𝑘
C𝑛 + G𝑛 A𝐿

−A𝑇
𝐿

1
ℎ𝑘
L

⎤⎦ , b(𝑡𝑘) = ̃︀e(𝑡𝑘) +
̃︀C
ℎ𝑘

x(𝑡𝑘−1)

and ℎ𝑘 = 𝑡𝑘− 𝑡𝑘−1, 𝑘 = 1, 2, . . . is the chosen time-step size (which can be either fixed

or variable during the analysis). The above is a linear system of the form Ax = b

that has to be solved at every discrete time 𝑡𝑘, 𝑘 = 1, 2, . . ..
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3.1.2 Iterative linear solvers

Direct methods (based on matrix factorization) are not practically feasible for solving

large dense systems or systems with a large dense block (like 1
ℎ𝑘
L in (3.2)), due to their

excessive runtime and memory requirements. The only viable option for such systems

is the use of iterative methods, and particularly Krylov-subspace iterative methods

like GMRES (which is suitable for general unsymmetric systems like (3.2)) [41]. The

operation with the dominant cost inside the iteration loop of Krylov-subspace meth-

ods (and GMRES in particular) is the matrix-vector multiplication, which for the

system (3.2) can be dealt efficiently by the hierarchical matrix framework that is

introduced in the next subsection and applied to the inductance matrix L in Sec-

tion 3.2. Other operations of Krylov-subspace iterative methods like inner products,

scalar-vector products and vector additions are not expensive computationally.

The convergence rate of Krylov-subspace methods is determined by the spread of

the eigenvalues of the system matrix and their distance form 1 [42]. In particular,

convergence is fast when the eigenvalues are tightly clustered together and slow when

they are spread apart. A slow convergence rate can be alleviated by using a precon-

ditioner matrix M and the equivalent solution of the system M−1Ax = M−1b. The

application of M can be embedded inside the iterative method as the computation

of the preconditioned residual z𝑗, via the solution of the system Mz𝑗 = r𝑗 in every

iteration 𝑗 (see Fig. 3-2). An effective preconditioner needs to satisfy the following

two prerequisites:

∙ Preconditioning should deliver a much tighter clustering of the eigenvalues of

M−1A than those of the original matrix A, leading to a significant reduction

in iteration count and acceleration of the convergence rate.

∙ The reduction in the number of iterations should offset the computational over-

head introduced by the solution of Mz𝑗 = r𝑗 in every iteration.
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1 

   

Inputs:  System matrix A, preconditioner M, and RHS  

    vector b 

Output: Solution x of bAx =  

1:  Set 
)0(

: xx =  (initial guess);  
)0(

: Axbr −=  (initial 

 residual) 

2:    rp =:  or rMp
1

:
−

=  (initial search direction) 

3:    while  not_converged 

4:   … 

5:   Apq =:  

6:   Update x and r (using p and q) 

7:   … 

8:   Solve rMz =  

9:   Update p (using z) 

10:  … 

11: end while 

Figure 3-2: The general structure of Krylov-subspace iterative methods.

3.1.3 Low-rank products and hierarchical matrices

If A ∈ ℜ𝑛×𝑛 is a square matrix or matrix block with Singular Value Decomposi-

tion (SVD) A = UΣV𝑇 , where Σ = 𝑑𝑖𝑎𝑔(𝜎1, . . . , 𝜎𝑛) and 𝜎1 > · · · > 𝜎𝑛, then by

introducing the following partition:

U = [U1 U2], Σ =

⎡⎣Σ1 0

0 Σ2

⎤⎦ , V𝑇 =

⎡⎣V𝑇
1

V𝑇
2

⎤⎦
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with U1 ∈ ℜ𝑛×𝑟, Σ1 ∈ ℜ𝑟×𝑟 and V𝑇
1 ∈ ℜ𝑟×𝑛, the optimal low-rank product approx-

imation of rank-𝑟 of A is defined as ̃︀A = (U1Σ
1/2
1 )(V1Σ

1/2
1 )𝑇 ≡ ZY𝑇 . It has been

proven in [43] that this approximation satisfies the following optimization problem:

miñ︀A ‖A− ̃︀A‖ s.t. rank(̃︀A) = 𝑟

for any common matrix norm. The benefit of the factorization ̃︀A = ZY𝑇 with

Z = U1Σ
1/2
1 and Y = V1Σ

1/2
1 is that only the factors Z and Y have to be kept

in memory instead of the whole 𝑛 × 𝑛 matrix A (see Fig. 3-3). The above low-

rank product approximation can be straightforwardly extended to rectangular matrix

blocks.

Figure 3-3: Approximation of a 𝑛 × 𝑛 dense block with a low rank product. Only
𝒪(2𝑟𝑛) storage is required, while parameter 𝑟 controls the accuracy of the approxi-
mation.

Hierarchical matrices or ℋ-matrices [44] are a lossy compressed matrix format

which relies on the partitioning of a dense matrix into a number of sub-matrix blocks

that can be approximated efficiently and accurately by low-rank products. The special

structure of ℋ-matrices allows the development of algorithms for the basic operations

of matrix-vector multiplication and matrix factorization with near optimal asymptotic

complexity.
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3.2 Approximation of the Inductance Matrix with

Hierarchical Matrices

Because of the natural fact that interconnect segments which are farther apart exhibit

weaker mutual inductive interactions, the inductance matrix L will be characterized

by progressively smaller off-diagonal elements while moving away from the diagonal

(assuming that segments in close physical proximity are enumerated consecutively

- otherwise suitable permutation matrices can be applied). Then the matrix blocks

that are away from the diagonal can be efficiently approximated by low-rank products

and the whole inductance matrix by an appropriate ℋ-matrix (see Fig. 3-4). The

size and the number of blocks, as well as the order of the low-rank approximation of

each block, constitute trade-off parameters between the degree of compression and

the quality of approximation.

Figure 3-4: Example of 256×256 inductance matrix in ℋ-matrix format. Blocks
around diagonal (red-colored blocks) correspond to mutual inductances in close phys-
ical proximity to each other. Blocks away form the diagonal (green-colored blocks)
have progressively smaller numerical values and can be approximated by low-rank
products (the rank of each block is indicated inside the block).

It is noted that the usage of ℋ-matrix format does not require the a-priori knowl-

edge of the whole inductance matrix. Instead, only the spatial arrangement of the

interconnects, which is available before the assembly of the inductance matrix, is re-
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quired to perform the matrix blocking. Thus, provided that we integrate the ℋ-matrix

library with the inductance extraction tool, we can approximate a matrix block by

a low-rank product immediately after its computation, and next store it directly in

ℋ-matrix format rather than as part of a dense inductance matrix.

3.3 Solution and Preconditioning of the Transient

Linear System

3.3.1 Multiplication of transient system matrix with vector

The matrix J𝑘 is composed of different storage formats, with G𝑛+ 1
ℎ𝑘
C𝑛 and A𝐿 being

in sparse format (compressed row or column form) and L in ℋ-matrix format. Thus,

the multiplication of J𝑘 with a vector inside the iteration loop of a Krylov-subspace

method like GMRES, can be performed in a block fashion by calling the appropriate

sparse and ℋ-matrix subroutines (see Appendix B).

3.3.2 Preconditioner formulation

Consider the block LU factorization of J𝑘 of (3.2):

J𝑘 = LJUJ =

⎡⎣ I 0

−A𝑇
𝐿(G𝑛 + 1

ℎ𝑘
C𝑛)−1 I

⎤⎦⎡⎣G𝑛 + 1
ℎ𝑘
C𝑛 A𝐿

0 S

⎤⎦ ,

where

S =
1

ℎ𝑘

L + A𝑇
𝐿(G𝑛 +

1

ℎ𝑘

C𝑛)−1A𝐿

is the Schur complement of J𝑘. Because LJ is a block lower triangular matrix with

identity blocks on the main diagonal, and thus has all eigenvalues equal to 1, the

block upper triangular matrix
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UJ =

⎡⎣G𝑛 + 1
ℎ𝑘
C𝑛 A𝐿

0 S

⎤⎦ (3.3)

constitutes an ideal preconditioner for J𝑘 (meaning that GMRES will converge in

only one iteration).

3.3.3 Preconditioner application

The preconditioning step of Fig. 3-2 involves the solution of the following linear

system:

UJz = r ⇒

⎡⎣G𝑛 + 1
ℎ𝑘
C𝑛 A𝐿

0 S

⎤⎦⎡⎣z1
z2

⎤⎦ =

⎡⎣r1
r2

⎤⎦ . (3.4)

The system (3.4) has a block upper triangular coefficient matrix and its solution can

be achieved by block back substitution. Specifically, we first solve Sz2 = r2 (details

are given in the next paragraph), then update the right hand side as r1 = r1 −A𝐿z2,

and finally solve (G𝑛 + 1
ℎ𝑘
C𝑛)z1 = r1. The latter is a 𝑛 × 𝑛 sparse linear system

which can be solved by any direct or iterative sparse linear solver. Since it can be

demonstrated that G𝑛 + 1
ℎ𝑘
C𝑛 is a symmetric diagonally dominant matrix with non-

positive off-diagonal elements [21], it is recommended to use iterative methods for

which very efficient preconditioners have been developed [38] [37].

The Schur complement 𝑚 × 𝑚 system Sz2 = r2 has coefficient matrix with two

additive terms, S1 ≡ 1
ℎ𝑘
L and S2 ≡ A𝑇

𝐿(G𝑛 + 1
ℎ𝑘
C𝑛)−1A𝐿, both of which are dense

and in different matrix formats (S1 is stored as an ℋ-matrix). However, since the

relative contributions of S1 and S2 depend on the time step size ℎ𝑘, we can choose one

term over the other for the typical range of step sizes in a variable-step simulation.

Specifically, for small step sizes the term S1 = 1
ℎ𝑘
L dominates and the system 1

ℎ𝑘
Lz2 =

r2 can be solved by LU factorization of L in ℋ-matrix format. For larger step sizes the

term S2 = A𝑇
𝐿(G𝑛 + 1

ℎ𝑘
C𝑛)−1A𝐿 is dominant and the block preconditioner becomes
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⎡⎣G𝑛 + 1
ℎ𝑘
C𝑛 A𝐿

0 A𝑇
𝐿(G𝑛 + 1

ℎ𝑘
C𝑛)−1A𝐿

⎤⎦⎡⎣z1
z2

⎤⎦ =

⎡⎣r1
r2

⎤⎦
which can be straightforwardly derived to be equivalent to the system

⎡⎣G𝑛 + 1
ℎ𝑘
C𝑛 A𝐿

−A𝑇
𝐿 0

⎤⎦⎡⎣z1
z2

⎤⎦ =

⎡⎣r1
r2

⎤⎦ . (3.5)

The latter is an (𝑛 + 𝑚) × (𝑛 + 𝑚) sparse linear system which can be solved by any

direct or iterative linear solver.

3.3.4 Selection of the dominant term of Schur complement

The choice of the approximation of S as S1 or S2, for a given timestep, can be guided

by quantifying the relative magnitude of each term in its spectral norm (see Algorithm

7). While there exist efficient routines to compute the spectral norm of 1
ℎ𝑘
L in ℋ-

matrix format, the spectral norm of A𝑇
𝐿(G𝑛 + 1

ℎ𝑘
C𝑛)−1A𝐿 can only be estimated by

the inequality

Algorithm 7 Choice of suitable approximation of S for a given timestep ℎ𝑘

1: function S = approx( 1
ℎ𝑘
L, A𝑇

𝐿(G𝑛 + 1
ℎ𝑘
C𝑛)−1A𝐿)

2: if
⃦⃦⃦

1
ℎ𝑘
L
⃦⃦⃦
𝑠𝑝

>
⃦⃦⃦
A𝑇

𝐿(G𝑛 + 1
ℎ𝑘
C𝑛)−1A𝐿

⃦⃦⃦
𝑠𝑝

then

3: S ≃ 1
ℎ𝑘
L

4: else
5: S ≃ A𝑇

𝐿(G𝑛 + 1
ℎ𝑘
C𝑛)−1A𝐿

6: end if
7: end function

||A𝑇
𝐿(G𝑛 +

1

ℎ𝑘

C𝑛)−1A𝐿||𝑠𝑝 ≤ ||A𝐿||2||(G𝑛 +
1

ℎ𝑘

C𝑛)−1||𝑠𝑝||A𝑇
𝐿||2. (3.6)

Due to the specific structure of the interpolation matrix A𝐿 the inequality (3.6) is

fairly sharp and the estimate is getting better as ℎ𝑘 increases. With ||A𝐿||2 =
√

2 we

have
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||A𝑇
𝐿(G𝑛 +

1

ℎ𝑘

C𝑛)−1A𝐿||𝑠𝑝 ≤ 2||(G𝑛 +
1

ℎ𝑘

C𝑛)−1
ℎ ||𝑠𝑝

=
2

𝜆𝑚𝑖𝑛(G𝑛 + 1
ℎ𝑘
C𝑛)

,
(3.7)

where 𝜆𝑚𝑖𝑛(G𝑛 + 1
ℎ𝑘
C𝑛) is the minimum eigenvalue of the matrix G𝑛 + 1

ℎ𝑘
C𝑛. Its

estimate can be obtained efficiently by the inverse power iteration [45] where the

matrix-vector product from the normal power method is replaced by the solution of

a linear system.

3.4 Experimental Results

3.4.1 Experimental setup

For the experimental evaluation of the compression rates obtained by storing the in-

ductance matrix L as a ℋ-matrix and the efficiency of the proposed preconditioning

method we consider a set of parallel interconnect RLC models with inductive and

capacitive coupling. The inductance matrix, with all mutual inductances, was assem-

bled with FastHenry [46], while we assume that there is a capacitive path from all

nodes to the ground and a capacitive coupling between adjacent nodes. Structural

details of the benchmarks are summarized in Table 3.1. The simulation of the RLC

interconnect models was performed with a driver resistance of 30Ω, load capacitance

of 20fF, total wire self-capacitance of 40fF and total coupling capacitance between

adjacent wires of 20fF. A 1V 20ps ramp voltage source was applied to one of the wires

while the remaining were kept inactive. Our experimental framework was developed

in C/C++ and all our experiments were performed on a system with a 3.60GHz Intel

Core i7 CPU and 16GB memory. It is noted that since we used an off-the-shelf RLC

extractor like FastHenry (rather than develop a custom extraction tool), we were

forced to store the whole dense inductance matrix in memory before converting it to

ℋ-matrix format, and thus were restricted in the largest circuit that could be handled
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by the memory of the target machine.

Table 3.1: Structural details of the test problem.

Bench number of
RL branches 𝑚

number of
nodes 𝑛

Resistance (Ω) of each
RL seg.

bus1 256 544 3.3156
bus2 1024 2080 0.8289
bus3 4096 8208 0.1036
bus4 8192 16416 0.1036
bus5 16384 32832 0.1036

3.4.2 Efficiency of the compression of inductance matrix by

ℋ-matrices

The ℋ-matrix approximation requires information on the geometrical coordinates of

the interconnect branches, but it is pointed out that the physical structure of the

circuit model can be arbitrary and is not restricted to specific configurations like

parallel buses of conductors. In order to compress the dense inductance matrix by

ℋ-matrices we adopt in this work the HLIBpro library [47][48][49]. HLIBpro offers

the approximation routines to store a dense matrix in the ℋ-matrix format and

perform a set of matrix operations with ℋ-matrices. The inputs to HLIBpro are the

geometrical coordinates of the nodes of the physical structure. HLIBpro identifies the

node indices that correspond to closer interconnects and performs a segmentation of

L into blocks. For the clustering process of the coordinates into groups and, in turn,

the segmentation of L into a number of blocks of certain size we used the default set

of parameters of HLIBpro (as suggested in HLIBpro’s manual [50]). Each block A𝑖

was approximated by low rank product ̃︀A𝑖 = Z𝑖Y
𝑇
𝑖 such that ‖A𝑖− ̃︀A𝑖‖𝐹 6 10−4. We

tested the quality of matrix compression of L with hierarchical matrices (denoted as

Lℋ) by solving a linear system Lz2 = y2 for multiple random right hand sides y2 by

Krylov-iterative method, preconditioned by Lℋ. In all our tests the Krylov-iterative

method converged in 1-2 iterations meaning that Lℋ is a close approximation of L

and can be used instead of it in all subsequent calculations without a significant loss
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of accuracy. Table 3.2 shows the memory savings, the speedups of matrix-vector

multiplication required in the Krylov loop, as well as the time required to perform

ℋ-matrix compression of L. It is apparent that the larger the benchmark, the more

memory savings is recorded because increasingly larger blocks can be approximated

by low rank products. Moreover, the time to sparsify the dense inductance matrix

in each benchmark with ℋ-matrices is sub-linear with respect to the total number of

elements in L, e.g the sparsification of inductance matrix for bus4 that has 7 times

more elements than the inductance matrix in bus3 is only 2.55 times longer.

Table 3.2: Computational impact of the approximation of dense inductance matrix
L with ℋ-matrix Lℋ.

Bench.

Compr.
Time
to ℋ

matrix

Storage Mat-vec Product Time

Dense
L

ℋ
matrix

Mem.
save

Dense
L

ℋ
matrix

Speed
up

bus1 20ms 512.17kB 144.26kB 71.8% 0.04ms 0.03ms 1.33×
bus2 30ms 8MB 746.65kB 90.8% 0.65ms 0.6ms 10.8×
bus3 180ms 128MB 4.89MB 96.1% 11ms 0.32ms 34.4×
bus4 470ms 512MB 15.96MB 96.8% 50ms 1.7ms 29.5×
bus5 520ms 2GB 50.64MB 97.5% 225ms 8ms 28.1×

3.4.3 Preconditioner efficiency analysis

The efficiency of the proposed preconditioner depends on the timestep ℎ𝑘 used in the

simulation. Table 3.3 reports the iteration count to solve (3.2) with the proposed

preconditioner, which uses two different approximations of the Schur complement

(S = S1 and S = S2), and with no preconditioner for the range of time step sizes that

is of practical interest. Also, Table 3.4 reports the spectral norm of S1 and S2 used to

approximate S in (3.4) for a given timestep, as in Algorithm 7. We adopt ℎ𝑘 ∈ {10fs,

1ps, 100ps}, where the lower range is used to compute detailed waveforms and the

upper range is used to either examine the general trend in waveforms or to compute

steady state. From the iteration count we can observe that the for small steps sizes

ℎ𝑘 ∼ 10 fs the choice S = S1 is superior, and for ℎ𝑘 ∼ [1,100]ps the choice S = S2
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leads to smaller iteration count. This is in agreement with the discussion in Subsection

3.3.3 on different weightings of the two terms S1 and S2 to the Schur complement of

S. The cross-over point between the two preconditioners occurs approximately in the

interval [10fs 1ps]. In the case with no preconditioning, the Krylov-iterative method

failed to converge for larger step sizes.

Table 3.3: Iteration count to solve the transient system (3.2) with the proposed
preconditioner and without preconditioner for timesteps 10fs, 1ps, 100ps at one time
instant.

Bench.

# iter with
prec. UJ

# iter w/o
prec.

ℎ𝑘 = 10fs ℎ𝑘 = 1ps ℎ𝑘 = 100ps ℎ𝑘 = 10fs ℎ𝑘 = 1ps ℎ𝑘 = 100ps

bus1 2 21 3 2021 2043 NA
bus2 2 16 3 1848 3961 NA
bus3 7 13 4 1326 4476 NA
bus4 7 18 4 2427 5563 NA
bus5 7 17 4 1876 6158 NA

Table 3.4: The spectral norms of the Schur complement terms for timesteps 10fs, 1ps,
100ps.

Bench. ℎ𝑘=10fs ℎ𝑘=1ps ℎ𝑘=100ps
||S1||𝑠𝑝 ||S2||𝑠𝑝 ||S1||𝑠𝑝 ||S2||𝑠𝑝 ||S1||𝑠𝑝 ||S2||𝑠𝑝

bus1 3.7e+5 20 3.7e+3 1.6e+3 37.4 1.6e+5
bus2 1e+5 64.6 1e+3 6.3e+3 10.4 6.3e+5
bus3 7.1e+3 494.8 71.5 4.9e+4 0.7 4.9e+6
bus4 1.3e+4 505.8 129.9 5e+4 1.3 5e+6
bus5 2.5e+4 509 250 5.1e+4 2.5 5.1e+6

3.4.4 Transient analysis results

Combining the benefits of the storage of the dense inductance matrix as an ℋ-matrix

and the reduced number of Krylov iterations through the proposed preconditioner,

Table 3.5 reports the speedups of the simulation of RLC benchmarks for ℎ𝑘=10ps and

30 time points, in comparison to standard SPICE simulation (dense L) and simulation

with ℋ-matrix L but without preconditioner. For this simulation scenario, the pro-

posed methodology leads to speedups up to 2139× for the largest circuit. Regarding
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Figure 3-5: Voltage response at randomly chosen nodes of bus1 (a) and bus3 (b)
with ℎ𝑘 =1ps (the choice of ℎ𝑘 = 1ps shows all the details in the response waveform)
obtained by full SPICE, ℋ-matrix approximation with preconditioning, and sparse
reluctance simulation with same memory as ℋ-matrix. The proposed approach is
indistinguishable from SPICE, while reluctance-based simulation exhibits significant
deviation.
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Table 3.5: Runtime results of the whole simulation of benchmark RLC circuits with
timestep 1ps.

Bench.
Size of
Matrix

J𝑘

SPICE
Time

Simulation
with ℋ-matrix

w/o preconditioner

Simulation
with ℋ-matrix

with preconditioner

Time Speedup Time Speedup

bus1 800 1.1s 1s 3.75× 0.28s 3.9×
bus2 3104 61s 9.75s 6.21× 1.57s 38.8×
bus3 12304 4989s 110s 19.19× 5.72s 872×
bus4 24608 31917s 515s 22.4× 23s 1388.3×
bus5 49216 194694s 2545s 76.5× 91s 2139×

the accuracy of the ℋ-matrix approximation, the relative rms error of the simulation

compared to exact SPICE was less than 0.01 in all nodes of every benchmark. Simula-

tion waveforms for random nodes of two benchmark circuits are graphically displayed

in Fig. 3-5, where it can be observed that the waveforms for ℋ-matrix with the

proposed preconditioner are indistinguishable from exact SPICE. Superimposed in

the same figures are waveforms from sparse reluctance-based simulation, obtained by

inversion and truncation of L (with sparsity ratio leading to same memory footprint

as the H-matrix approximation), which can be observed to exhibit a clear deviation

from both exact SPICE and the proposed methodology. Note that for the largest

benchmark circuit, the inversion of the dense L (with size 16.3K) took an additional

111s.
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Chapter 4

Conclusion and Future Work

4.1 Conclusion

In this dissertation we present effective techniques for the sparsification and handling

dense matrices in circuit simulation. We firstly present a rigorous mathematical ap-

proach for the sparsification of the dense matrices resulting in MOR. In the proposed

methodology, we derive a second-order formulation of the original model, so that the

resulting MOR matrices are close to DD matrices, and then exploit a rigorous sparsifi-

cation methodology, which entails the computation of the nearest Laplacian matrices

of the reduced model matrices under the Frobenius norm and a graph sparsification

algorithm, to sparsify these matrices. Moreover, we propose the hierarchical matrices

as a suitable compression mechanism for the dense inductance matrix, that arises

after modelling all mutual inductive couplings between the interconnects in SoCs,

and we present an efficient preconditioner for the system to be solved during the time

integration. The contributions of our work in this dissertation can be summarized in

the following two results:

∙ The sparsification of the dense MOR matrices leads to faster simulation times

with negligible degradation in accuracy, that is introduced due to the approxi-

mations of the ROM matrices with their nearest circuit-type matrices. Actually,

we end up with an even stronger result in the sense that the sparsified ROMs
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can be synthesized straightforwardly with only positive RLC elements.

∙ By compressing the fully dense inductance matrix with hierarchical matrices

and applying the proposed preconditioner we can tackle much larger problems

than previously possible on a given computing platform, both in terms of stor-

age and wall clock time. Our experimental results indicate that a very good

compression ratio of inductance matrix can be attained without compromis-

ing accuracy, while the proposed preconditioner reduces the iterations count of

Krylov iterative method in simulation effectively leading to a significant speedup

of the simulation.

4.2 Future Directions

Our future plans on the research presented in this dissertation is to extend it towards

the following two directions:

∙ The approximation of the ROM matrices with the nearest SDD matrices in-

troduces error in simulation. In order to avoid that approximation we suggest

to re-think the MOR problem, instead of as a projection problem, but as an

optimization problem. The objective of the optimization would be the min-

imization of the infinite norm (𝐻∞) of the difference between initial model’s

transfer function and the corresponding reduced model’s transfer function un-

der the constraints that the ROM matrices belong in the class of SDD matrices.

∙ The proposed preconditioner in Chapter 4 for the simulation of general RLC

circuits deviates from the optimal preconditioner, which is the Schur comple-

ment of the system to be solved in transient analysis. Recall that we made

the appropriate simplifications, on top of the Schur complement preconditioner,

in order to solve the preconditioner solve step efficiently. Therefore, a better

approach would be to build an application-specific preconditioner that exploits

the special structure of the individual problem, such as the structure of a Power

Grid, and arrive in a more efficient solution of the preconditioner solve step.
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Appendix A

Model Order Reduction Algorithms

In this section we provide "near-to-implementation" (MATLAB-like) pseudocodes

of SAPOR and PACT model order reduction algorithms that we use in chapter 2.

Beginning with SAPOR (see Algorithm 8), its list of input parameters contains the

initial model matrices, as they are shown in (2.5), the frequency (𝑠0) around which we

are interested in approximating the initial model with a ROM, the size of the initial

model (𝑛), the desired size of the ROM (𝑟) and the number of input ports (𝑝).

Algorithm 8 SAPOR

1: function ̂︀C𝑛, ̂︀G𝑛, ̂︀Γ, ̂︀B𝑢, ̂︀E𝑢 = SAPOR(C𝑛, G𝑛, Γ, B𝑢, E𝑢, 𝑠0, 𝑛, 𝑟, 𝑝)
2: F = 2 * 𝑠0 *C𝑛 + G𝑛

3: K = 𝑠20 *C𝑛 + 𝑠0 *G𝑛 + Γ
4: B0 = 𝑠0 *B1

5: B1 = B

6: A =
[︂
−K−1 * F K−1

−C𝑛 0

]︂
7: Q0 = K−1 *B0

8: P0 = B1

9: Q = blkSOAR(A, Q0, P0, 𝑛, 𝑟, 𝑝)
10: ̂︀C𝑛 = Q𝑇C𝑛Q, ̂︀G𝑛 = Q𝑇G𝑛Q, ̂︀Γ = Q𝑇ΓQ
11: ̂︀B𝑢 = Q𝑇B𝑢, ̂︀E𝑢 = Q𝑇E𝑢

12: end function

On the other hand, the list of input parameters of PACT (see Algorithm 9) consist

of the initial model matrices (but now because PACT is a MOR algorithm specifically

for RC circuits, the matrix Γ is absent), the number of ports (𝑁), the frequency
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band of operation (𝜔𝑐) and an error control parameter (𝜖𝑐), that both determine the

extra columns and rows, except for the first 𝑁 , that have to be added to the ROM

after the transformation (2.9). Recall that before applying PACT the equations of

Kirchhoff’s Current Law (KCL) for every node have to be rearranged so that the first

𝑁 correspond to port nodes while the rest of them to internal nodes.

Algorithm 9 PACT

1: function ̂︀C𝑛, ̂︀G𝑛, ̂︀B𝑢, ̂︀E𝑢 = PACT(C𝑛, G𝑛, B𝑢, E𝑢, 𝑁 , 𝜔𝑐, 𝜖𝑐)
2: 𝑛 = B𝑢.cols
3: 𝑛𝑖 = 𝑛−𝑁
4: G𝑖 = G𝑛(𝑁 + 1 : 𝑒𝑛𝑑,𝑁 + 1 : 𝑒𝑛𝑑)
5: G𝑐 = G𝑛(𝑁 + 1 : 𝑒𝑛𝑑, 1 : 𝑁)
6: L = chol(G𝑖)

7: X =
[︂

I𝑁×𝑁 0𝑁×𝑛𝑖

−G−1
𝑖 G𝑐 L−𝑇

]︂
8: ̂︀C𝑛 = X𝑇C𝑛X, ̂︀G𝑛 = X𝑇G𝑛X, ̂︀B𝑢 = X𝑇B𝑢, ̂︀E𝑢 = X𝑇E𝑢

9: ̂︀C𝑖 = ̂︀C𝑛(𝑁 + 1 : 𝑒𝑛𝑑,𝑁 + 1 : 𝑒𝑛𝑑)

10: [U,S] = eig(̂︀C𝑖)
11: Sort the diagonal of S in descending order and perfrom the column swaps in

U so as to preserve the initial eigenvalue/eigenvector correspondence
12: Solve the equation 𝜔𝑐 * 𝜆𝑐 + (𝜔𝑐 * 𝜆𝑐)

3 − 𝜖𝑐 = 0 for 𝜆𝑐

13: 𝑘 = 0
14: for 𝑠𝑖 = 1 to 𝑛𝑖 do
15: if S(𝑠𝑖, 𝑠𝑖) > 𝜆𝑐 then
16: 𝑘 = 𝑘 + 1
17: else
18: break
19: end if
20: end for
21: ̂︀G𝑛 = ̂︀G𝑛(1 : 𝑁 + 𝑘, 1 : 𝑁 + 𝑘)

22: ̂︀C𝑛 = ̂︀C𝑛(1 : 𝑁 + 𝑘, 1 : 𝑁 + 𝑘)

23: ̂︀B𝑢 = ̂︀B𝑢(1 : 𝑁 + 𝑘, :)

24: ̂︀E𝑢 = ̂︀E𝑢(1 : 𝑁 + 𝑘, :)
25: end function
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Algorithm 10 Block Arnoldi for Second Order Systems
1: function Q = blkSOAR(A, Q0, P0, 𝑛, 𝑝, 𝑟)
2: 𝑘 = 𝑟

𝑝

3: Q = P = 0𝑛×𝑟

4: [Q1, P1] = SOrth(Q0, P0, 𝑝)
5: Q(:, 1 : 𝑝) = Q1, P(:, 1 : 𝑝) = P1

6: A1 = A(1 : 𝑛, 1 : 𝑛), A2 = A(1 : 𝑛, 𝑛+1 : 𝑒𝑛𝑑), A3 = A(𝑛+1 : 𝑒𝑛𝑑, 1 : 𝑛)
7: for 𝑖 = 1 to 𝑘 − 1 do
8: Qi = Q(:, (𝑖-1)*𝑝+1:𝑖 * 𝑝), Pi = P(:, (𝑖-1)*𝑝+1:𝑖 * 𝑝)
9: Q𝑖 = A1 *Qi + A2 *Pi, P𝑖 = A3 *Qi

10: for 𝑗 = 1 to 𝑖 do
11: Qj = Q(:, (𝑗-1)*𝑝+1:𝑗 * 𝑝), Pj = P(:, (𝑗-1)*𝑝+1:𝑗 * 𝑝)
12: H𝑗𝑖 = Q𝑇

𝑗 *Q𝑖

13: Q𝑖 = Q𝑖 - Qj *H𝑗𝑖, P𝑖 = P𝑖 - Pj *H𝑗𝑖

14: end for
15: [Q(:, 𝑖 * 𝑝 + 1 : (𝑖 + 1) * 𝑝),P(:, 𝑖 * 𝑝 + 1 : (𝑖 + 1) * 𝑝)] = SOrth(Q𝑖,P𝑖, 𝑝);
16: end for
17: end function

Algorithm 11 Matrix Orthonormalization
1: function Q,P = SOrth(Q𝑚, P𝑚, 𝑝)
2: Q = 0𝑠𝑖𝑧𝑒(Q𝑚), P = 0𝑠𝑖𝑧𝑒(P𝑚)

3: for 𝑖 = 1 to 𝑝 do
4: q𝑖 = Q𝑚(:, 𝑖), p𝑖 = P𝑚(:, 𝑖)
5: for 𝑗 = 1 to 𝑖− 1 do
6: R𝑗𝑖 = Q(:, 𝑗)𝑇 * q𝑖

7: q𝑖 = q𝑖 −R𝑗𝑖 *Q(:, 𝑗), p𝑖 = p𝑖 −R𝑗𝑖 *P(:, 𝑗)
8: end for
9: 𝑅𝑖𝑖 = ||q𝑖||2

10: if 𝑅𝑖𝑖 == 0 then
11: print("deflation")
12: break
13: else
14: q𝑖 = 1

𝑅𝑖𝑖
* q𝑖, p𝑖 = 1

𝑅𝑖𝑖
* p𝑖

15: end if
16: Q(:, 𝑖) = q𝑖, P(:, 𝑖) = p𝑖

17: end for
18: end function
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Appendix B

Compression and Routines with

ℋ-matrices

In this section, we offer a pseudocode (see Algorithm 12) of how to use HLIBpro

library, which is rather straightforward, in order to compress a dense matrix. More-

over, we provide an algorithm (see Algorithm 13) for the multiplication of the system

matrix in (3.2), that consists of different matrix formats, with C𝑛, G𝑛 and A𝐿 being

in sparse matrix format and L being in ℋ-matrix format, with a vector.

Algorithm 12 Compression of a dense matrix with HLIBpro
1: function Aℋ = HLIBpro(A)
2: Associate every 𝑖, 𝑗 entry of dense matrix A with a (𝑥,𝑦,𝑧) coordinate in

Euclidean space.
3: Provide the above relation between matrix entries and coordinates, the mini-

mum size of matrix blocks to be approximated by low-rank products, the accuracy
of approximation of matrix blocks by low-rank products and a distance criterion
between the coordinates, to HLIBpro library.

4: end function

Algorithm 13 Matrix multiplication of system matrix in (3.2) with a vector
1: function q = beMatrixMul(J𝑘, p)
2: p1 = p(1 : 𝑛), p2 = p(𝑛 + 1 : 𝑒𝑛𝑑)
3: q1 = ( 1

ℎ𝑘
C𝑛 + G𝑛) * p1 + A𝐿 * p2, q2 = −A𝑇

𝐿 * p1 + 1
ℎ𝑘
L * p2

4: q =
[︀
q1 q2

]︀𝑇
5: end function
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