
UNIVERSITY OF THESSALY

DIPLOMA

Indoor localization of smartphone devices
by monitoring WiFi packets

Author:
Ioannis Goulias

Supervisor:
Athanasios Korakis
Associate Professor

Examiners:
Fotios Plessas

Associate Professor
Eleftherios Tsoukalas

Professor

A thesis submitted in fulfillment of the requirements
for the degree of Diploma

in the

Network Implementation Testbed Laboratory
Department of Electrical and Computer Engineering

Volos, September 2019

http://www.uth.gr/en/index.php
http://www.johnsmith.com
https://goulias.com
https://www.e-ce.uth.gr/department/faculty/korakis/
https://www.e-ce.uth.gr/department/faculty/korakis/
https://www.e-ce.uth.gr/department/faculty/fplessas/
https://www.e-ce.uth.gr/department/faculty/fplessas/
https://www.e-ce.uth.gr/department/faculty/lht/
https://www.e-ce.uth.gr/department/faculty/lht/
https://nitlab.inf.uth.gr/
https://www.e-ce.uth.gr/?lang=en

i

“I have been impressed with the urgency of doing. Knowing is not enough; we must apply.
Being willing is not enough; we must do.”

Leonardo da Vinci

ii

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

Περίληψη

Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Διπλωματική Εργασία

Εντοπισμός smartphone συσκευών σε εσωτερικό χώρο με την
παρακολούθηση WiFi πακέτων

Γούλιας Ιωάννης

Η διαδεδομένη χρήση των συσκευών που χρησιμοποιούν Wifi, έχει αποτελέσει σημείο
ενδιαφέροντος για τον τομέα της έρευνας. Παρόλο που τα Παγκόσμια Συστήματα Θεσι-

θεσίας (GPS) είναι εξαιρετικά αποτελεσματικά σε εξωτερικούς χώρους, τέτοια συστήματα
συναντούν δυσκολίες στην εφαρμογή τους σε εσωτερικούς χώρους. Για τον λόγο αυτό,

τα συστήματα εντοπισμού εσωτερικού χώρου, χρειάζονται επιπλέον ανάλογες υποδομές.

Σε αυτήν τη διπλωματική εργασία, θα αναπτύξουμε ένα Zigbee σύστημα εντοπισμού εσω-
τερικού χώρου. Αρχικά, θα υλοποιήσουμε έξι ESP sniffers που θα παρακολουθούν και θα
καταλαμβάνουν τα Wifi πακέτα που μεταδίδονται στο εσωτερικό του εργαστηρίου. Στη
συνέχεια, θα εγαταστήσουμε ένα Zigbee δίκτυο μέσω του οποίου τα ESP θα μεταδίδουν
τη χρήσιμη πληροφορία από τα πακέτα που κατέλαβαν, στο gateway του συστήματος
το οποίο είναι ένα beaglebone device. Σκοπός του beaglebone είναι να επεξεργάζεται
τα δεδομένα που λαμβάνει και να ανεβάζει σε μια influx βάση δεδομένων τα σημαντικά
στοιχεία όπως διευθύνσεις MAC, Received signal strength indication (RSSI) τιμές και
το όνομα του κατόχου της συσκευής που εντοπίστηκε. Τελικώς, τα δεδομένα της βάσης

δεδομένων θα μπορούν εύκολα από κάποιον υπολογιστή να επεξεργαστούν. Ελέγχοντας

τις τιμές RSSI το σύστημα θα είναι ικανό να γνωρίζει την συσκευή ESP στην οποία
βρίσκεται πιο κοντά η εντοπιζόμενη συσκευή. Το σύστημα θα αναπαριστά τις θέσεις των

ενεργών και εντοπισμένων συσκευών μέσω ενός Web GUI.

HTTP://WWW.UTH.GR/
https://www.e-ce.uth.gr/

iii

UNIVERSITY OF THESSALY

Abstract

Department of Electrical and Computer Engineering

Diploma

Indoor localization of smartphone devices by monitoring
WiFi packets

by Ioannis Goulias

The widespread use of WiFi-enabled devices has made indoor localization tech-
niques a point of interest in the research field. Although global positioning systems
are very efficient outdoors, such systems have difficulties in indoor localization ap-
plications. Therefore, indoor localization systems require additional indoor infras-
tructure. In this thesis, we deploy a ZigBee indoor localization system. Initially, we
implement six ESP-based sniffers that capture the WiFi packets being transmitted
by several devices in the interior of the laboratory. Afterwards we setup the Zig-
Bee network through which the ESPs will transmit the useful information from the
captured packets to a Beaglebone Device which acts as a gateway. The purpose of
the Beaglebone device is to parse the data received and upload the important fields
(such as the MAC address, the RSSI value and the name of each client) to an influx
database. Ultimately, the data available in the database will be parsed by a computer
deployed in the building. By checking the RSSI values, the computer will be able to
point out the ESP device to which the device to be localized is closer. The system
will demonstrate the localized clients with the use of a Web GUI.

HTTP://WWW.UTH.GR/EN/INDEX.PHP
https://www.e-ce.uth.gr/?lang=en
https://goulias.com

iv

Acknowledgements
Firstly I would like to thank my thesis advisor Prof. Athanasios Korakis for provid-
ing me with such an opportunity of getting involved into interesting projects that
require special equipment not easily available to a student. This opportunity was
really important for me.

Afterwards, I would like to thank the members of Nitlab, Polixronis Symeonidis,
Nikos Sidiropoulos and Ioannis Kazdaridis for their valuable advice and hardware
support.

Finally, I would like to express my gratitude to my parents and to my friends who
truly cared for me and supported me constantly throughout my academic years.
Without my parents my whole life would not exist, without my friends life would
be tedious.

v

Contents

Περίληψη ii

Abstract iii

Acknowledgements iv

1 Introduction 1
1.1 Background . 1
1.2 System Architecture . 1
1.3 Thesis Structure . 5

2 WiFi 802.11 Frames 6
2.1 Overview . 6
2.2 Frame Control Field . 7
2.3 Management Frames . 8

2.3.1 Frame Control . 8
2.3.2 Addressing Fields . 9
2.3.3 Frame Body . 9
2.3.4 Subtypes of Management Frames 9

2.4 Data Frames . 10
2.4.1 Frame Control . 10
2.4.2 Addressing Fields . 10

2.5 Control Frames . 10
2.6 Summary . 11

3 ESP Devices - Sniffers 12
3.1 Overview . 12
3.2 ESP32 Devkit V1 Specifications . 12
3.3 ESP32 Modules as Packet Sniffers . 14

3.3.1 Activation Phase . 14
3.3.2 Operational Phase . 16

3.4 Summary . 19

4 XBEE Network 20
4.1 Overview . 20
4.2 Zigbee Technology . 20
4.3 XBee Devices . 20
4.4 Configuring the XBees . 22

4.4.1 Operating Mode Configuration 22
4.4.2 XBEE API Frames . 22
4.4.3 End Device Configuration . 23
4.4.4 Coordinator Configuration . 24

4.5 XBee Network in the Implementation 25

vi

4.6 Summary . 25

5 BeagleBone Black Device - Gateway 27
5.1 Overview . 27
5.2 Beaglebone Black Specifications . 27
5.3 BeagleBone Black Setup . 28

5.3.1 Flashing the Image . 28
5.3.2 Establishing Internet Connection 29
5.3.3 Creating a Service for Internet Connection 29
5.3.4 Enable Beaglebone’s UART Port 30

5.4 Beaglebone Black as a Gateway . 31
5.4.1 Activation Phase . 31
5.4.2 Operational Phase . 31
5.4.3 Influx Database Use in Gateway 32

5.5 Summary . 33

6 Data Inspector - Web GUI 34
6.1 Overview . 34
6.2 Database Parser . 34
6.3 Web GUI . 36
6.4 Summary . 37

7 Spherical System Architecture Description 38
7.1 Overview . 38
7.2 The Devices . 38
7.3 Activation Phase . 40
7.4 Operational Phase . 40

8 Testing 41
8.1 Overview . 41
8.2 Factors that Affect RSSI . 41
8.3 Test Results . 41
8.4 Summary . 60

9 Conclusion 62

Bibliography 63

vii

List of Figures

1.1 System Architecture Diagram. 3
1.2 System Architecture Diagram. 4

2.1 Frame Control Field[9]. 7
2.2 Subtype Field[9]. 8
2.3 Management Frame[9]. 8
2.4 Generic Data Frame[9]. 10

3.1 ESP32 Devkit V1. 13
3.2 ESP32 Devkit Pinout. 13
3.3 ESP32 Clients Struct. 15
3.4 File Data Parser. 16
3.5 ESP Wifi Setup Commands. 16
3.6 Capture Packets Structs. 17
3.7 Probe Request Handling. 18
3.8 Data Packets Handling. 18
3.9 Send Clients Packet Preparation. 19
3.10 Update Clients Known Function. 19

4.1 XBee S2C. 21
4.2 End Device Module. 23
4.3 End Device Firmware. 23
4.4 End Device Settings. 24
4.5 Coordinator Module . 24
4.6 Coordinator Firmware. 24
4.7 Coordinator Settings. 25
4.8 Coordinator Enable. 25

5.1 BeagleBone Black. 28
5.2 BeagleBone Cape. 30
5.3 InfluxDB Posting. 32

6.1 get users rssis Function. 35
6.2 get users index Function. 36
6.3 Web GUI. 36

7.1 Sniffer Node. 38
7.2 Gateway. 39

8.1 Third Flood of Nitlab. 42
8.2 Room1. 43
8.3 Room2. 46
8.4 Room3. 49
8.5 Room4. 52

viii

8.6 Room5. 55
8.7 Room6. 58

1

Chapter 1

Introduction

1.1 Background

The tremendous advance in the Internet of Things (IoT) applications and the exten-
sive use of smartphones, has raised interest in indoor localization techniques. Since
GPS signals are not efficient indoors[1], several approaches have been proposed to
fulfill the task of indoor localization. Among these approaches, WiFi-based localiza-
tion appears to be the most practical due to the fact that most buildings are equipped
with WiFi access points[20]. Individually, WiFi localization implementations by ex-
ploiting the received signal strength indicator (RSSI) values appear to be much prac-
tical. In such systems, precision is the most crucial factor because indoor places are
divided into various rooms and the localization has to be room-based in order to be
efficient. The research in order to improve the accuracy of such systems will help
individuals because of the many possible applications mentioned below.

Modern people tend to spend most of their time indoors. They also spend a sig-
nificant amount of time using their smartphones and being connected to the inter-
net through a Wifi network. Taking into consideration the facts mentioned above,
indoor localization techniques could improve life quality. For example, in public
places such as shopping malls, office buildings, and airports, precise indoor local-
ization could be used for space management[19]. Moreover, in emergency events
such techniques could help firefighters, police officers and medical staff to evacuate
rooms and rescue people in congested buildings. In the medical field, indoor local-
ization could provide medical staff with additional information about their patients.
Through localization, they could monitor if a patient has not moved throughout the
day, which is an indicator that the patient may not be feeling well.

1.2 System Architecture

In this thesis, we will implement a WiFi indoor localization system which utilizes the
low-power 802.15.4 ZigBee wireless interface as a mediator[13]. Our implementation
operates on ESP-32 system on a chip microcontrollers with modules of WiFi and
Bluetooth. Those ESP-32 modules will be used as sniffers. Each time an ESP sniffer
gets activated, it will transmit a packet to the gateway, requesting for the clients
MAC addresses and MAC IDs registered in the building. The clients registered, are
recorded in a text file located in the BeagleBone Black device which is used as a
gateway. In this file the format is: (MAC AddressMAC IDClient Name). Hence, no
commas or spaces are used. MAC IDs are matched to MAC addresses with ultimate

Chapter 1. Introduction 2

goal to reduce the overhead of the transmitted packets in the system. As soon as
the ESP modules receive all information about the registered clients, they will be
collecting packets from inside the building. They will be checking if any of those
packets are transmitted by any of the registered clients. If that is the case, then from
those packets, the ESP modules will gather the MAC addresses and the Received
Signal Strength Indication (RSSI) of the clients based on their location. Accurately,
the RSSI values will be computed by the ESP-32 modules and not by the access point
that the client is connected to. Each minute, the ESP-32 modules will be sending the
data gathered to a ZigBee end device through a serial port. Specifically, they will
be transmitting packets with the format (MAC ID RSSI Value). In that way, instead
of transmitting the whole MAC address which is six bytes long, only one byte is
transmitted which is the MAC ID. The ZigBee end devices, configured to run on the
same network, will be sending those data to the ZigBee coordinator. The ZigBee
coordinator is connected to a BeagleBone Black device through a serial port. The
data that the coordinator receives will be sent to the BeagleBone device. Afterwards,
the BeagleBone device will connect to an Influx Database, set up on a laptop and will
upload data corresponding to the data received by the ESP modules to the database.
Such data are: MAC addresses, names and RSSI values of the active clients. Lastly,
the laptop will be executing a script, that depending on the latest RSSI values posted
on the database by the ESPs for each client, will point out the location of each client.
Two sketches of the system architecture are shown in the following figures. The first
one shows the procedure followed in order for an ESP module to obtain the MAC
IDs and the MAC addresses of the registered clients. This procedure begins when an
ESP module gets activated and ends when all client data are obtained. The second
one shows the operational phase of the system during which, the registered clients
get localized.

Chapter 1. Introduction 3

FIGURE 1.1: System Architecture Diagram.

Chapter 1. Introduction 4

FIGURE 1.2: System Architecture Diagram.

Chapter 1. Introduction 5

1.3 Thesis Structure

Chapter 2 shows an in-depth analysis of the different WiFi frame types. It also points
out which frames we found carrying valuable information for a successful client
tracking implementation.

Chapter 3 introduces the ESP-32 Devkit V1 modules used in the system as packet
sniffers. It also explains the meaning of a packet sniffer. Moreover, it demonstrates
the code functions that are responsible for the localization of the clients.

Chapter 4 presents the Zigbee technology. Moreover, it demonstrates the XBee de-
vices, their specifications and their usage in our system.

Chapter 5 provides information about the Beaglebone Black device. This device is
used as a gateway in our system. Additionally, the chapter analyzes the functionali-
ties and the program logic of the gateway in the system we implemented.

Chapter 6 aims to describe the way in which the data are extracted from the database,
and edited in order to become the input of the web graphical user interface we de-
veloped. The chapter also, demonstrates the graphical user interface.

Chapter 7 describes the functionality of our implementation in its complete form.

Chapter 8 cites the results of the localization experiments we executed on the third
floor of the laboratory.

Chapter 9 concludes with a summary of our implementation.

6

Chapter 2

WiFi 802.11 Frames

2.1 Overview

As already mentioned, our system will utilize ESP-32 modules as packet sniffers.
These packets that the modules will be sniffing are 802.11 packets transmitted wire-
lessly between access points and clients. By capturing those packets, our system will
be able to detect devices connected to an access point of the building. Afterwards,
the system will be able to keep track of the devices, if those devices keep sending
data to the network. The system will keep capturing the data and will be able to
show the location changes of each device. Current IEEE 802.11 protocol, integrates
data transmitted in a WiFi network into datagrams called frames. Datagrams are
the basic transfer unit of data. They are structured in header and payload sections,
whereas the header section contains additional information about the packet and
the payload section contains the actual data to be transmitted. Frames are separated
into three major types[9]: Management Frames, Data Frames and Control Frames.
Each type will be analyzed subsequently along with the frame control field.

Chapter 2. WiFi 802.11 Frames 7

2.2 Frame Control Field

Frame control field is a header field present in all types of frames. It consists of two
bytes and its details are shown in the following figure.

FIGURE 2.1: Frame Control Field[9].

Now we will decompose the frame control segments that we found useful in this
thesis, in accordance with the figure above.

Protocol Version: This field is simply used to indicate which protocol version of
802.11 is used.
Type: Management frames use the 00 type identifier. Data frames use type field 10.
Control frames use the type identifier 01.
Subtype: Due to the variety of frames, subtype field is used to differentiate even
frames of the same type. Below is a figure that demonstrates different subtypes.

Chapter 2. WiFi 802.11 Frames 8

FIGURE 2.2: Subtype Field[9].

2.3 Management Frames

Various types of management frames are used to provide services that on a wired
network are simple. Features like identity establishment that in wired networks are
easily implemented just by dragging wires are not so simple to implement in wire-
less networks. 802.11 protocol utilizes management features to handle such tasks.
Services like searching for access points by clients, client authentication by the net-
work and client to access point association are provided by management frames.

The structure of a management frame is shown in the following figure. The MAC
header is the same in all management frames.

FIGURE 2.3: Management Frame[9].

2.3.1 Frame Control

In the system we catch and inspect only management packets with subtype 0100
(Probe Requests). The rest subtypes are not useful for client identification.

Chapter 2. WiFi 802.11 Frames 9

2.3.2 Addressing Fields

In this thesis, we found the addressing fields much useful in order to distinguish
packets that clients are transmitting to the network, from other packets caught by
the sniffers. Specifically:
Address 1: Address 1 is the receiver of the frame. The receiver is not always the
destination of the frame. The destination is the station that will process the network-
layer packet contained in the frame.
Address 2: Address 2 is the transmitter address. Transmitters are not always senders.
The sender is the station originally generated the network-layer protocol packet in
the frame.
Address 3: The Address 3 field is used for filtering by access points.

2.3.3 Frame Body

Management frames contain both fixed-length and variable-length fields in their
body. From the numerous information provided by those fields, we found useful
the Service Set Identity (SSID) field. SSID is used by the network managers to as-
sign a letter-like identity to the basic service set (BSSID) of an access point. SSID is
a string of bytes with maximum length 32 bytes, while BSSID is a 48 bit identifier of
an access point. For an infrastructure BSS, BSSID is the MAC of the access point.

2.3.4 Subtypes of Management Frames

Beacon: Beacon frames show the existence of a network in the area. They are trans-
mitted at regular intervals. Through their transmission access points can be identi-
fied by clients.
Probe Request: Mobile stations send probe request frames to scan an area for ex-
isting wireless networks. Clients keep sending those frames until they connect to
a wireless network. Through those packets, our implementation can keep track of
registered clients.
Probe Response: When a probe request reaches a network with compatible param-
eters, the network answers with a probe response frame. This frame enables clients
to join the network.
Disassociation and Deauthentication: Disassociation frames are sent in order to
finish an association relationship, while deauthentication frames are used for end-
ing an authentication relationship.
Association Request: Through those frames the clients can join the network which
enabled them to join with the probe response.
Association Response: When clients attempt to associate with an access point, they
get an association response as a reply.

Summarily, our system takes advantage of management packets, specifically probe
requests.

Chapter 2. WiFi 802.11 Frames 10

2.4 Data Frames

Data frames carry higher-level protocol data in their body. The following figure
shows a generic data frame. In this section, we will inspect the fields of the data
frames that we found useful for the implementation[9].

FIGURE 2.4: Generic Data Frame[9].

2.4.1 Frame Control

In the system we exploit data packets with subtypes 0000 (Data) and 1000 (QoS
Data). The rest data subtypes (Null and QoS null) are used for power-saving sta-
tus changes in the network and are not a valuable resource for tracking clients.

2.4.2 Addressing Fields

Addressing fields are identical to the ones of the management frames.

We utilized addressing fields of data packets to keep track of the clients in the build-
ing. As already mentioned, probe requests are only sent by the client device until the
device connects to an available network. Through probe requests, we can only find
the location of the registered client device when it initially connected to one of the
networks. In order to keep track of the device, we constantly check the sniffed data
packets. Precisely, while sniffing the packets, we search for data packets that their
Address 2 field matches the MAC of a registered client. If such a packet is caught,
then we know that this data packet was sent by one of the clients and we use that
packet as an indication that the client is still present in the building. Then according
to the calculated RSSI values of each sniffer, we update the location of the client. To
conclude, data frames are the resource on which our system depends for keeping
track of the registered clients.

2.5 Control Frames

Control frames assist in the delivery of data frames[9]. These packets handle the
transmission medium. They all use the same control field, the one mentioned in the
frame control field section. They are divided into the following subtypes:

Request to Send (RTS): Those control frames are used to gain control of the medium
for the transmission of "large" frames. No data is transmitted in their body[9]. Clear
to Send (CTS): Those frames are used to answer request to send frames[9]. Ac-
knowledgment (ACK): ACK frames are used to send positive acknowledgments re-
quired for handshakes and successful transmissions[9]. Power-Save Poll (PS-Poll):
When a mobile station wakes from a power-saving mode, it transmits a PS-Poll

Chapter 2. WiFi 802.11 Frames 11

frame to the access point to retrieve any frames buffered while it was in power-
saving mode[9].

It is essential to mention that we did not reclaim any control frames for client track-
ing in our implementation. None of the mentioned subtypes could assist us since
those frames are not sent within a pattern but only on special events. They mostly
assist the controlled communication between access points and clients in the net-
work.

2.6 Summary

In this section, we saw the various types of Wifi frames. We analyzed the vari-
ous types and subtypes. We speculated their content and we pointed out which
frames introduced useful information about present clients in a Wifi network. We
also stated the frames that our implementation exploits in order to provide localiza-
tion of clients.

12

Chapter 3

ESP Devices - Sniffers

3.1 Overview

For the development of our system, six ESP32 development boards V1 were used.
Those boards use the ESP32 WROOM 32[8]. Those boards form the nodes of the sys-
tem. They keep watch of the WiFi packets that are exchanged through the network,
they catch the useful data for the registered clients and they provide the measure-
ments necessary for the localization of the users in the building. In the following
sections, we will present the specifications of the boards used. Moreover, we will
explain the programming logic we used on those boards, in order to be configured
as sniffing-nodes. Finally, we will inspect some important details about the synchro-
nization of those devices.

3.2 ESP32 Devkit V1 Specifications

The ESP32 Devkit V1 is a development board created by DOIT. It uses the ESP32
WROOM 32 microcontroller. It features WiFi and Bluetooth technologies. Below we
demonstrate the specifications of the devkit[7]:

• Microcontroller: Dual-core CPU Xtensa LX6

• Operating Voltage: 3.3V

• Input Voltage: 7-12V

• UARTs: 3

• WiFi: IEEE 802.11 b/g/n/e/i:

Chapter 3. ESP Devices - Sniffers 13

An image of the devkit is show below:

FIGURE 3.1: ESP32 Devkit V1.

For the power supply and the communication with the XBee end devices (the role
of the XBee devices will be analyzed in chapter 4) we used the Vin, Gnd, Rx and Tx
pins of the devkit. Below there is a picture demonstrating the pinout of the devkit:

FIGURE 3.2: ESP32 Devkit Pinout.

Consequently, we used pins 1,2,12 and 13.
It is essential to state that the use of an ESP module is one of the most suitable op-
tions for the development of sniffer-nodes since their Wifi module can make use of

Chapter 3. ESP Devices - Sniffers 14

promiscuous mode. We will inspect this mode further on.

3.3 ESP32 Modules as Packet Sniffers

A packet sniffer can be a program or a hardware device that monitors the traffic of
a network. A Wifi packet sniffer monitors the traffic of the Wifi networks in which
the sniffer is deployed. In order to configure the ESP32 modules as Wifi sniffers,
they have to be placed in promiscuous mode. Afterwards, they will be analyzing
the packets exchanged in the network and extracting the useful information for the
localization of the clients. In the following sections, we will demonstrate the pro-
gramming logic and the functionalities of our packet sniffers.

3.3.1 Activation Phase

Clients present in the network can only be identified by their MAC addresses. The
packet sniffers in our system, send data to the gateway regularly. Those data are en-
capsulated into frames. So in a simplistic case, we would be sending at least seven
bytes of data for each active client. That is, six bytes for the MAC address and one
byte for the RSSI value. In order to reduce that overhead, we introduced MAC IDs.
Each clients’ MAC address will be matched manually with a MAC ID. This is man-
aged with the creation of a text file in the beaglebone device. This file, includes the
MAC addresses, the MAC IDs and the names of the registered clients. With the use
of MAC IDs, each time the packet sniffers will be sending only two bytes of infor-
mation per active client. That is one byte for the MAC ID and one byte for the RSSI
value.
Before entering the operational mode, the sniffers have to get information about
which MAC addresses are registered for tracking and which MAC IDs are matched
to those addresses. Thus, in the activation phase (the phase when a sniffer just got
activated) the ESPs will firstly send a packet containing the data bytes 0xAA 0xCC.
At this point, we should state that the communication between the XBee devices is
carried out with the use of frames. So the data sent to the gateway by the ESPs are
encapsulated into frames. Subsequently, the data received from the gateway are ex-
tracted from the frames received. This feature will be explained in chapter 4.
For the communication between the ESP and the XBee device, we used the library
XBee.h. This library handles the connection of the serial port of the ESP. That is
accomplished with the following commands:

XBee xbee = XBee();
xbee.setSerial(Serial);

The library is also responsible for creating the frames to be sent and extracting data
from frames to be received.In order to create a transmit request, namely encapsulate
the packet to be transmitted the library uses the command

ZBTxRequest zbTx_file=ZBTxRequest(addr64,payload_file,sizeof(payload_file));

It sends the packet with the command:

xbee.send(zbTx_file);

Chapter 3. ESP Devices - Sniffers 15

While, waiting for a received packet is accomplished with the following command:

xbee.readPacket(400);

The above command states that the serial will be waiting for 400 milliseconds in or-
der to receive a packet.

Once the packet requesting the information of the file that contains the registered
clients is sent, the ESP will be waiting for the packets that contain the requested in-
formation. The data field of the packets that the beaglebone device will send, have
the following format: First byte is the byte 0xDD, second byte is the number of pack-
ets that consist the information of the file, rest of data bytes are the information about
the clients. The ESP will be receiving those packets; it will check the second byte of
those packets. If the number of packets received in the time interval of ten seconds,
reaches the value of the second byte of the packets received, then all the information
about the file will have been received. If more than ten seconds pass without the
ESP receiving the announced number of packets, it will resend the frame requesting
the file information. It will also set the counter of received packets to zero.
At this point, it is essential to mention that each ESP has a node ID. A value that rep-
resents the identity of each ESP. Starting from 0x01 and ending to 0x06. Depending
on that value, initially the ESP will wait for a time interval of five seconds multi-
plied by the node ID. This feature is developed in order to avoid congestion in a
case where all the ESPs get activated at the exact same time, for example, a come-
back after a power outage.
While receiving the packets that form the file of the beaglebone, the ESPs will save
that information to the following struct:

FIGURE 3.3: ESP32 Clients Struct.

In the field clients known, the MAC address of each registered client is stored. The
field time passed is used afterwards in order to point out which clients are active in
the network. The client rssi field is used for storing the RSSI values of each client.
Finally, the mac hash field is used for storing the MAC ID corresponding to the MAC
address of the current client. Currently, the ESPs are developed to support up to
one hundred clients. A received packet with information about the clients contains
multiple clients, so the data are parsed accordingly by each ESP. Accurately, for each
seven incoming bytes, the ESP will store the first six as the MAC address of the client
and the seventh one as the MAC ID. This is demonstrated in the following segment
of code:

Chapter 3. ESP Devices - Sniffers 16

FIGURE 3.4: File Data Parser.

If all packets that include the file data are received, the ESP will proceed with the
Wifi setup. It will initialize the Wifi module and then activate the promiscuous
mode, which enables the ESP to monitor Wifi traffic. Another important feature
is that before entering in promiscuous mode, each ESP will wait for a time interval
of one minute minus the time that the node waited before transmitting the packet
requesting for the file information. This feature was developed for synchronization
reasons. We wanted all the ESPs of the system to get into promiscuous mode at
the same time. After setting the Wifi module up, the ESPs will be ready for mon-
itoring the network, gathering data and sending them to our gateway. That is the
operational phase which is described in-depth in the following section. Below, are
depicted the commands that enable the Wifi module and the promiscuous mode:

FIGURE 3.5: ESP Wifi Setup Commands.

3.3.2 Operational Phase

As soon as the Wifi module and the promiscuous mode of an ESP get activated, the
ESP begins capturing the transmitted packets. The command:

esp_wifi_set_promiscuous_rx_cb(&wifi_sniffer_packet_handler);

Chapter 3. ESP Devices - Sniffers 17

sets the function inside the parenthesis as a callback. That means that whenever a
packet is captured this function is called.
Now, it is critical to refer to the libraries used on our code for the inspection of
Wifi packets. Those libraries are natively developed for the ESP 32. We used those
commands to include the libraries.

#include "esp_wifi.h"
#include "esp_wifi_types.h"

By enabling those clients, we were able to save the information of the captured pack-
ets in the following structs:

FIGURE 3.6: Capture Packets Structs.

In the first struct, the header information is saved. The important fields are the
source and the destination address of a packet. We can also extract the payload
from the second struct. From that struct, we can inspect a packet and clarify its
type. In our implementation, for the tracking of clients, we inspect only the probe
requests and the data packets with source address the MAC address of a registered
client. The ESPs capture all kinds of packets but the code inspects and parses only
the packets just mentioned. We can recognize a probe request if a received packet
is a management packet and if the first byte of its payload is the byte 0x40. If that
is the case, then the ESP will look for the source address of the packet. Then, the
ESP will search in the struct of the registered clients for that address. If a match is
found, then that means that the probe request just captured is sent by a registered
client. The ESP will update the time passed value to two. This means that the client
will be considered as active for the next two minutes if no other data are received by
that client for the next two minutes. In the case data from that client are received,
the time passed field will be updated again to two. Moreover, the ESP will update
the RSSI measurement of the client. So, each time we capture a probe request of a
registered client, we get a new RSSI measurement which is essential for the regular
localization. It is essential to state that we capture the absolute value of the RSSI
and not the signed value of it. This is due to overhead reduction reasons. The code
responsible for the features just described is depicted below:

Chapter 3. ESP Devices - Sniffers 18

FIGURE 3.7: Probe Request Handling.

In case of data packets, the exact same operation is executed. The only difference is
that the ESP will check if the packet received is of type data instead of management.
There is no need to check the payload of a data packet. The procedure is depicted
below:

FIGURE 3.8: Data Packets Handling.

Besides the promiscuous callback function, there are two more crucial functions to
be inspected. The first one is named send clients. This function is executed every
ten seconds. It is responsible for creating and sending the frames that contain the
MAC IDs and the RSSI measurements of active clients. A client is considered as
active if a packet with its MAC address as source was captured in the time interval
of the past two minutes. The function firstly looks in the clients struct for the active
clients. Afterwards, it prepares the packet data. First byte of data is the node ID
of the ESP. The rest data have the following format: MAC ID RSSI. This format is
used for each active client. A packet can contain up to forty-five clients. If more than
forty-five clients are active then more packets will be sent. The code enabling that
functionality is depicted below:

Chapter 3. ESP Devices - Sniffers 19

FIGURE 3.9: Send Clients Packet Preparation.

Once the payload of each packet is prepared, a transmit request will be created.
Then, each packet will be sent to the XBee device connected to the ESP.

The second function of importance is called update clients known. This function is
called every minute. For each active client, the function decreases the time passed
value by one. So, if a client with the time passed value equal to two will not send any
packets in the time interval of one minute, its time passed value will be decreased by
one. If the same situation occurs in the next minute too, then the time passed value
will be decreased again. Then the client will be considered as inactive. The crucial
code of the function is depicted below:

FIGURE 3.10: Update Clients Known Function.

3.4 Summary

In this chapter, we introduced the ESP-32 Devkit V1. We inspected its features and
its pinout. We defined its role as a sniffer-node in our implementation. Finally, we
explained and cited the code that those devkits execute in our system.

20

Chapter 4

XBEE Network

4.1 Overview

Our implementation is based on XBee devices for the transmission of captured pack-
ets by the ESP devices to the gateway. XBee devices use Zigbee technology. Firstly,
we will explain what is the Zigbee technology and an XBee device. Afterwards, we
will demonstrate how we configured the devices and what kind of information they
transmit through their network in our implementation.

4.2 Zigbee Technology

Zigbee is a wireless technology developed as an open global standard. It is devel-
oped in order to be used in low-power IoT networks. Zigbee technology operates on
the IEEE 802.15.4 physical radio specification, in unlicensed bands such as 2.4GHz,
900MHz and 868MHz. 802.15.4 specification is a packet-based protocol designed for
low-cost networks. It allows devices to communicate through various topologies
and have a longer battery life[6]. An important fact is that Zigbee protocol is able to
support mesh networking. In such a network, nodes are interconnected and multi-
ple pathways lead to each node. Compared to WiFi protocol, Zigbee has a signifi-
cantly lower power consumption (25% of standard WiFi) and a lower data transfer
(250kbit/s whereas WiFi has 54MBit/s)[4]. Zigbee systems could consist of three
types of devices. Zigbee coordinator, router and end device. Each Zigbee network
must have at least one coordinator. Coordinators are used for handling the data.
Routers act as mediators that allow data to pass through them to other devices. End
devices connect immediately to the devices that provide the data (measurements)
to be transmitted. Such devices in our case are the ESPs. Our implementation uses
only end devices and a coordinator.

4.3 XBee Devices

XBee devices, are a family of devices manufactured by Digi[5]. They can operate on
a group of protocols. Zigbee is one of those protocols. Our system uses XBee end
devices, each end device is connected serially with an ESP sniffer. It also uses an
XBee coordinator that is connected serially to a Beaglebone black device. Each end
device collects the data sent from the ESP sniffers. Then, all end devices send that
data to the coordinator.

Chapter 4. XBEE Network 21

The XBee model that we used is the XBee S2C. It features[18]:

• Supply: 3.3V @ 33mA

• UART: 250kbps Max data rate

• Indoor Range: Up to 60m

• Outdoor Range: Up to 1200m

FIGURE 4.1: XBee S2C.

Chapter 4. XBEE Network 22

4.4 Configuring the XBees

In order to setup a mesh network composed of XBee devices, we used the XCTU
program. A Digi configuration platform for XBee devices. This platform allows
users to select through a variety of settings, in order to set up the XBee network. It
can also be used for data monitoring or even sending data to XBees.

4.4.1 Operating Mode Configuration

An essential feature of the XBee configuration is the operating mode. This feature
defines how data are transmitted between XBee devices. There are three operating
modes:

Transparent (AT): In this mode, data are transmitted serially. Frames are not used;
only pure data are transmitted in the network. Hence, there is no extra information
such as headers during the transmission.

API 1: This mode uses a frame-based API. This means that the data to be trans-
mitted are encapsulated into frames before their transmission. This mode is helpful
for the safe transfer of data. Although there is more information to be transmitted
because of the headers, this mode is more useful in cases where reliability and syn-
chronization are significant.

API 2 Escaped Operating Mode: This mode is similar to API 1. The only differ-
ence is that API 1 relies only on the start delimiter and the bytes that show the frame
length in order to differentiate between frames. If some bytes of a frame are lost, the
length bytes will be showing false count. In that way, not only the current packet
will be lost but also the next one. API 2, on the other hand, uses escaping character
sequences. This feature can be useful in noisy environments since specific data val-
ues are escaped and not interfered with the actual data. In order to escape a byte,
0x7D byte value has to be used followed by the byte to be escaped and XOR’d with
0x20. This attribute provides additional reliability because if an unescaped 0x7E
byte is found, the system considers it as the start of a new frame and the data pre-
viously received will be discarded. The escaped characters are converted again to
their original sequence on the receiver.

4.4.2 XBEE API Frames

Both API operating modes use the following frame skeleton[5]:
Start Delimiter: Byte 0x7E constitutes the start delimiter of the frame. New frames
received can be detected by reading that byte.
Length: This field consists of two bytes. The first is the most significant byte, the
second one is the least significant. This field shows the total number of bytes present
in the frame.
Frame Data: This field contains the byte that shows the kind of frame and the infor-
mation bytes to be transmitted through the XBee network. XBees use several kinds
of frames. The kinds that we used are mentioned below.
Checksum: Checksum is the last byte and contributes in transmission reliability. It
is calculated by the hash sum of the previous frame bytes except of the fields start

Chapter 4. XBEE Network 23

delimiter and length. Frames with incorrect checksum will be ignored by the XBee
device.

It is critical to mention that our system uses only the following types of frames:
During each transmission, the sender will create a transmit request (data frame byte
0x10). The receiver of the transmit request, will send the data received through the
serial port by creating a receive packet (data frame byte 0x90). The receiver will
also send an acknowledgment packet to the sender. Afterwards, the sender will
create a transmit status frame (data frame byte 0x8B). This frame will be transmitted
through its serial port, demonstrating to the device that the XBee sender is connected
to, whether the transmission was successful or not[5].

4.4.3 End Device Configuration

Now we will demonstrate the settings of the end devices.

The following figure shows the end module in the XCTU menu. We can notice that
it uses 115200 baud rate, no parity bit, one stop bit and its operating mode is the API
2 mode.

FIGURE 4.2: End Device Module.

The firmware used on the end devices is the newest Zigbee TH Reg 4060.

FIGURE 4.3: End Device Firmware.

Chapter 4. XBEE Network 24

Below we demonstrate the settings with which we configured the XBee end devices.
PAN ID used is DAAA. In order for the XBees to belong to the same network, they
must all have the same PAN ID.

FIGURE 4.4: End Device Settings.

4.4.4 Coordinator Configuration

Subsequently, we will show the settings of the coordinator.

End devices and coordinator must have the same transmission settings, so again a
baud rate of 115200 is selected. There is no parity bit, there is one stop bit and the
mode is application transparent (AT).

FIGURE 4.5: Coordinator Module

The firmware used on the coordinator is the newest Zigbee TH Reg 4060.

FIGURE 4.6: Coordinator Firmware.

For the establishment of communication, coordinator must also have the same PAN
ID as the end devices. That is DAAA in our case.

Chapter 4. XBEE Network 25

FIGURE 4.7: Coordinator Settings.

We shall point out that in order for a module to act as a coordinator, the selection
below has to be activated:

FIGURE 4.8: Coordinator Enable.

4.5 XBee Network in the Implementation

Our system uses seven XBee devices. One coordinator and six end devices. The co-
ordinator is connected through UART port ttyO5 to a Beaglebone Black device. The
role of the Beaglebone Black will be decomposed in the following chapter. Each of
the six end devices is connected through a serial port to an ESP device. The func-
tions that the XBee network serves are two. During the activation phase of the sys-
tem, each end device will receive from an ESP a frame that requests the information
of the file in which the clients are registered. This file is located in the Beaglebone
Black device. Each end device will be responsible for transmitting that frame to the
coordinator. Once this frame reaches the coordinator, it will be decomposed. The
Beaglebone device will receive the frame data and the sender address and it will
respond with the information of the file. The beaglebone device will prepare the
frames with the information of the file and the coordinator will be responsible for
transmitting those frames to the end device that sent the request for the file informa-
tion.
During the operational phase, the end devices regularly receive frames from the
ESPs that they are connected to. Those frames include the MAC IDs of the active
clients and the RSSI value for each MAC ID. The end devices are responsible for
transmitting that data to the coordinator. Coordinator XBee will disintegrate the re-
ceived frames so that the Beaglebone will be able to process the data.

4.6 Summary

In this chapter, we showed what Zigbee technology is. We demonstrated the XBee
devices we used and their capabilities. We also saw the mechanism through which

Chapter 4. XBEE Network 26

data are transmitted through XBee devices. Finally, we mentioned the role of the
XBee network in our system.

27

Chapter 5

BeagleBone Black Device -
Gateway

5.1 Overview

A gateway in an internet of things system, is the device that provides the connection
between nodes that send the data and the database or cloud. The gateway receives
data from nodes and preprocesses them in order to finally upload them to a database
or a cloud. In our system, we used the beaglebone black device as a gateway. In the
sections below, we will inspect the capabilities of the device. We will also demon-
strate the functionalities of the gateway in our system and the technical details that
enable the gateway with such functionalities.

5.2 Beaglebone Black Specifications

Beaglebone Black is a low-cost development board. It features[3]:

• Proccessor: AM335x 1GHz ARM Cortex-A8

• RAM: 512MB DDR3

• Storage: 4GB 8-bit eMMC on-board flash storage

• Graphics: 3D graphics accelerator

• USB client

• USB host

• Ethernet

• HDMI

• 2x 46 pin headers

Chapter 5. BeagleBone Black Device - Gateway 28

Below is a picture of the Beaglebone Black:

FIGURE 5.1: BeagleBone Black.

5.3 BeagleBone Black Setup

In this section we will mention the steps followed in order to flash an image to the
beaglebone device and also make sure that the device will be able to access the in-
ternet every time we power it on. Additionally, we will configure the UART port
responsible for communicating with the XBee coordinator device.

5.3.1 Flashing the Image

In order for the beaglebone device to be functional and programmable, we have
to flash an image of a compatible operating system in it. In order to do that, we
consulted the getting started guide of beagleboard.org[14] and browsed the latest
firmware images of beagleboard.org[10]. We downloaded image Debian 9.5 2018-
10-07 4GB eMMC IoT Flasher. Then, we loaded the image to an SD card. In order
to do so we used the recommended program balena[2]. Afterwards, we inserted
the SD card to the beaglebone device. We connected the beaglebone device to a
laptop while pressing the boot button on the beaglebone device. After this step,
the beaglebone started flashing the image. During this procedure the LEDs of the
device were flashing sequentially. After 10 minutes the image had been flashed. We
removed the SD card. We disconnected and then reconnected the beaglebone device
to the laptop. The device was ready for use.

Chapter 5. BeagleBone Black Device - Gateway 29

5.3.2 Establishing Internet Connection

In order to establish internet connection through USB for the beaglebone black, we
had to route the device correctly through the network interface of the laptop we con-
nected to it. We also managed to make those settings permanent by writing a new
service for the operating system of the beaglebone. In order to access the beagle-
bone device through a terminal opened in our laptop, we used the command: "ssh
debian@192.168.7.2". Debian is the default user created by the image we flashed. In
laptop, we created a script with the following commands[15]:

#!bin/sh
iptables -A POSTROUTING -t nat -j MASQUERADE
echo 1 | sudo tee /proc/sys/net/ipv4/ip_forward > /dev/null

While on Beaglebone device, we wrote the following script named

perm_internet.sh:

#!/bin/sh
/sbin/route add default gw 192.168.7.1
echo "nameserver 8.8.8.8" >> /etc/resolv.conf

The execution of those two scripts enables the beaglebone black to use the laptop
that is connected to as a router to access the internet.

5.3.3 Creating a Service for Internet Connection

Aiming to avoid the execution of the beaglebone script mentioned above every time
we reboot the device, we created a service that executes that script on startup. Firstly,
we moved the beaglebone script to folder /usr/bin of beaglebone. Then we exe-
cuted:

chmod u+x perm_internet.sh

in order to make the script executable. We created the service by executing:

nano /lib/systemd/perm_internet.service

Pasting inside that service:

[Unit]
Description=Autostart Scripts
After=network.target

[Service]
Type=idle
ExecStart=/usr/bin/perm_internet.sh

[Install]
WantedBy=multi-user.target

Then we created the symlink and we enabled the service.

cd /etc/systemd/system/
ln /lib/systemd/perm_internet.service perm_internet.service

Chapter 5. BeagleBone Black Device - Gateway 30

systemctl daemon-reload
systemctl start perm_internet.service
systemctl enable perm_internet.service

Beaglebone would now be able to access the internet through our laptop every time
we booted on it, given the fact that we also executed the laptop’s routing script. In
order to reassure that, we executed ping google.com on beaglebone and saw that
packets are exchanged.

5.3.4 Enable Beaglebone’s UART Port

In the previous chapter, we stated that the XBee coordinator is connected to the
beaglebone black gateway through a serial port. Beaglebone disposes UART serial
ports. UART is a universal asynchronous receiver-transmitter, a computer hardware
device for asynchronous serial communication[16]. By using UART, transmission
speed can be configured. The beaglebone we used, uses a UART cape, it is depicted
below. On that cape, the XBee coordinator can be placed. The cape uses UART
5 to communicate with the XBee. We enabled the UART 5 port by executing the
following steps:

• Logging in to Beaglebone Black

• cd /boot

• sudo nano uEnv.txt

• Adding:

##Enable UART5
cape_enable=bone_capemgr.enable_partno=BB-UART5
##Overide capes with eeprom
uboot_overlay_addr3=/lib/firmware/BB-UART5-00A0.dtbo

• Saving the file

• Rebooting

FIGURE 5.2: BeagleBone Cape.

Chapter 5. BeagleBone Black Device - Gateway 31

5.4 Beaglebone Black as a Gateway

As we mentioned above, the beaglebone device is used as a gateway in our sys-
tem. During the activation phase, beaglebone is responsible for transmitting a file
with the registered clients to the ESPs. While during the operational phase, bea-
glebone acts as the gateway of the system, parsing data received from the ESPs
and uploading them to a time-series database. Our gateway is programmed in
python 3.5.3. In order to fulfill the functionalities of a gateway, beaglebone uses
the digi.xbee.devices[17] and the influxdb[11] python modules. In the following
paragraphs, we will inspect the functions mentioned above.

5.4.1 Activation Phase

In the beaglebone device, we have created a text file named macs.txt. Each line of the
file represents a single client and has the following format: MAC MAC ID CLIENT
NAME. No spaces are used in this format; also the MAC ID is the incrementing
hexadecimal number for each line. For example, the first client has 00 as MAC ID,
the second client has 01 as MAC ID and so forth. As we mentioned in chapter 3,
MAC IDs were introduced to the implementation in order to reduce the overhead of
the transmitted data. Without the use of MAC IDs, the frames that ESPs would be
sending, would contain the whole MAC of each active client. That is six bytes. With
the use of MAC IDs, only one byte per active client is transmitted from each ESP.
As soon as the python script located in the beaglebone device is executed, the device
will read the file with the clients’ information. For each line, it will append the MAC
address and the MAC ID of the line to a string. Moreover, it will append the name
to an array. Also, it will append the MAC to an array.
Once the file is read, the device will calculate how many packets will be sent once
the ESP asks for the file information. Each packet can contain up to twelve clients,
that is eighty-four bytes. Those packet use as a start delimiter the byte dd. As a
second byte, they use the total number of packets that compose the file. In total, a
full packet containing all twelve clients will consist of eighty-six data bytes. The data
of each packet is saved to an array with the help of the string in which we previously
appended MAC addresses and MAC IDs. Each row of that array represents the data
of a packet to be transmitted with file information. Afterwards, the beaglebone will
connect to the influx database that we set up in order to store the tracking data. It
will also open the connection with the XBee coordinator through UART5 serial port.
Finally, a callback function is called. This function is activated asynchronously, each
time a frame reaches the coordinator. During the activation phase, the first frame to
reach the coordinator by the ESPs will be the frame with data 0xAA 0xCC. As soon
as this frame is received, the callback function will start sending the packets that
correspond to the information of the file to the coordinator. The destination address
of the frame will be the source address of the XBee that sent the 0xAA 0xCC frame.

5.4.2 Operational Phase

During this phase, the beaglebone device waits for data by the ESP sniffers. Each
time that a frame with first data byte being 0x00 to 0x06 (the first data byte of those
frames represents the sniffer node ID) is received, the callback function gets acti-
vated. It is important at this point to recall from chapter 3 that each data frame sent

Chapter 5. BeagleBone Black Device - Gateway 32

by the ESP sniffers can contain up to forty-five clients. Each client uses two bytes of
data. First one for the MAC ID and second one for the absolute RSSI value. Then, the
data of the frame will be read character by character. For each client, which means
every two incoming bytes, the script saves the MAC ID to a variable and the RSSI
value to another variable. Due to the fact that for each client, the MAC ID is in-
cremental, the script can easily access the corresponding MAC address in the array
where all MAC addresses have been stored. In that case, the MAC of the first client
registered in the file will be at the first row of the array and so forth. By accessing
that array, the device will be able to retract the MAC address corresponding to the
MAC ID received. After both the MAC gets retracted and the RSSI gets collected,
the data for the current user will be posted to an influx database. We will analyze
this kind of database in the following section.

5.4.3 Influx Database Use in Gateway

InfluxDB is an open source time-series database[12]. A time-series database stores
time-series in pairs of timestamps and values. InfluxDB is created by InfluxData and
it is used in various Internet of Things applications. There is interest in the way that
data are posted to the database by the beaglebone. The part of the code responsible
for the database posting is depicted below.

FIGURE 5.3: InfluxDB Posting.

As mentioned above, once the MAC address is found and the RSSI value is stored
for each client of the incoming data frame, the beaglebone will post that data to the
database. This is possible by creating a json body including the measurement of the
database that the data belong to, the tag which is the MAC address of the client and
the fields which are RSSI value and client name. In our implementation, the database

Chapter 5. BeagleBone Black Device - Gateway 33

consists of six measurements. Measurements are the containers of the data. We used
six since we use six sniffers. Each sniffer posts to a specific measurement.

5.5 Summary

In this chapter, we inspected the Beaglebone Black device, its capabilities and specifi-
cations. We defined the role of the gateway in our implementation. We also provided
information about the configuration of the beaglebone device. Finally, we demon-
strated the functionalities of the device in our system.

34

Chapter 6

Data Inspector - Web GUI

6.1 Overview

In the previous section, we explained that the gateway of the system posts the data
gathered to an influx database. It is critical for every application that handles data
to have a means of presenting those data. In our implementation, we used a parser
for the influx database written in python. We also developed a web graphical user
interface using html, javascript and python. We developed those tools in order to be
able to allocate the clients into the rooms of the building. Each room has a sniffer-
node. Hence, the node that reports the minimum RSSI absolute value for a specific
registered client is closer to the client. That means that the registered client probably
is located in the room that the sniffer-node belongs to. In the following sections, we
will demonstrate the way that our parser handles the data. We will also demonstrate
the web GUI.

6.2 Database Parser

The parser consists of two functions. Before executing those functions, it connects to
the influx database we set up. The first function is named get users rssis. Every time
this function is called, it will fetch data from the database for the time interval of
twenty seconds before the call, until the exact time of the function call. The function
fetches the data for all six measurements of the database, that is for all six sniffers.
It fetches the name and the rssi of each client out of each measurement. If there are
multiple entries for a client in a measurement for the last twenty seconds, only the
latest one will be taken into consideration. The function stores the data into a python
dictionary. The dictionary has key the name of the client and values the RSSI value
from each measurement of the database. That is, at a typical case six RSSI values per
fetched client name. In case that there is no RSSI entry from some measurements for
a fetched name, then the value of the specified measurement will be assigned as "ff"
which in terms of RSSI values is a maximum value and it is impossible to exist as a
reasonable value in our system. The code of the function is depicted below:

Chapter 6. Data Inspector - Web GUI 35

FIGURE 6.1: get users rssis Function.

The second function of the parser is named get users index. This function calls the
get users rssis function and gets the returned dictionary. Then it accesses that dic-
tionary and for each key, finds the minimum value of the RSSI values. We use the
minimum value of the RSSI measurements in order to find the sniffer-node that the
client is closer to. We can use the minimum value of the RSSI since we transmit the
absolute value of the actual RSSI in the data. In another case, we would have to find
the maximum value since the RSSI values would all be negatively signed. Once the
minimum value is found, the function calculates the index of that value in the list of
the six values per key. This means that for a client in the dictionary, the function will
calculate the minimum RSSI value from the values of the specific client, if that value
for example is the second in the list then the index result will be one (counting the
index from zero). This happens for all the clients who are stored in the dictionary.
Afterwards, the function will create a new dictionary named rooms dict representing
the six rooms of the sector. As we mentioned before, in each room we have placed
a sniffer-node. Afterwards, the function will assign the client names with common
index to the according key-room of the dictionary. That means: If two clients have
RSSI index zero, then they are probably located in the first room, if they have RSSI
index one, then they are located in the second room and so forth. This will happen
for all rooms. The names of each key-room are the values of the new dictionary.
They will be sorted alphabetically and the function will return the dictionary. We
cited the code of the function below:

Chapter 6. Data Inspector - Web GUI 36

FIGURE 6.2: get users index Function.

It is essential to state that the data parser we just reviewed, is used by the web GUI.
The web GUI regularly calls the get users index function. In the next section, we will
demonstrate the web GUI and its development.

6.3 Web GUI

The web graphical user interface we developed, uses python flask, javascript and
html. It constitutes a very practical way of demonstrating the live localization our
system can provide. It is depicted in the following image:

FIGURE 6.3: Web GUI.

In order to develop it, we used two routes for GET methods in flask. The first GET
method renders the bootstrap template we used. The second route is responsible
for calling the functions of the parser. The second route returns a json object that

Chapter 6. Data Inspector - Web GUI 37

contains the rooms dict dictionary we mentioned before. Afterwards, the javascript
that the GUI executes, will be calling the route that returns the json object every three
seconds. With the data extracted from the json object, the javascript code will add
content to the html body of the GUI. This content includes a column with the room
name and the catalog of the clients located in that room. This content is added for
each of the six rooms. We can see that also on the picture of the GUI cited above.

6.4 Summary

In this chapter, we inspected the database parser and its functions. We also clarified
that the localization is based on the minimum measurement of the RSSI values for
each client. Then, we demonstrated the GUI and the way it is updating its content.

38

Chapter 7

Spherical System Architecture
Description

7.1 Overview

In the previous chapters, we described in depth, each component of our system. We
demonstrated the role of each device and reviewed the code they execute. In this
section, we are aiming to put those pieces together by describing the system as a
whole.

7.2 The Devices

In this section, we will cite pictures of the devices used in the implementation:
Below, we depict the ESP-32 Devkit V1 connected to an XBee end device.

FIGURE 7.1: Sniffer Node.

Chapter 7. Spherical System Architecture Description 39

This configuration, forms a sniffer node of the system. The ESP-32 is powered by
a USB cable. The ESP-32 powers the XBee by two cables, one for 3.3V output and
another for ground. The other two cables are responsible for the communication be-
tween the XBee and the ESP. The one is connected to the transmitting pin of the ESP
and to the receiving pin of the XBee. The other one is connected to the receiving pin
of the ESP and to the transmitting pin of the XBee. Our system disposes six sniffer
nodes.

Below, there is a depiction of the beaglebone black device used as a gateway:

FIGURE 7.2: Gateway.

The gateway in our system is responsible for distributing the necessary information

Chapter 7. Spherical System Architecture Description 40

about the registered clients. It can be connected to a personal computer by USB ca-
ble in order to upload the data to the influx database. The connection can also be
managed by ethernet cable.

An example of the file that contains the information about the registered clients is
depicted below:

7.3 Activation Phase

This phase occurs in the activation of a sniffer node and is continued until the node
owns all the necessary information about the registered clients. Once a node gets
activated, it waits for an amount of time of seven seconds multiplied by its node ID.
This feature is used in order to avoid congestion while transmitting the information
of the clients. Then, the node sends a packet with data bytes 0xAA 0xCC to the XBee
end device that is connected to. Afterwards, the end device transmits that packet
to the XBee coordinator, the beaglebone gets the packet from the XBee coordinator.
Then, the beaglebone starts transmitting the packets containing the information of
the clients. The information includes the MAC address and the MAC ID of each
client. The ESP will receive those packets through the Zigbee network. If all packets
are not received in the time interval of ten seconds, then the ESP will send a 0xAA
0xCC packet again. Once all information has been gathered, the ESP will wait for an
interval of one minute minus the time they initially waited. This feature is developed
in order to synchronize the nodes. Then, the ESP will enter in promiscuous mode.
The operational phase begins.

7.4 Operational Phase

The ESP will now start sniffing packets of the Wifi network. If a packet with sender
MAC address matches a registered MAC address, then the ESP will measure the
RSSI of the packet. It will register the value to a variable and it will consider that
MAC address as active. A client will be considered active for two minutes. If two
minutes pass without any other packet being sniffed by the client, the client will be
considered as inactive. Every ten seconds, the ESP will transmit packets that include
the MAC IDs and the latest RSSI values of the active clients. The beaglebone will get
those packets by the Zigbee network. Based on each MAC ID, it will access the array
with the MAC addresses. Then it will post the MAC address, the name and the RSSI
value to the influx database for each received MAC ID. Then, the web graphical user
interface will update, activating functions that access the database and parse the
data searching for the minimum RSSI value of each client. For each active client, the
minimum RSSI value indicates the node that the client is closer to. Thus, the room
that the client is in. The graphical user interface will then distribute alphabetically
the names of active clients to columns. Each column represents a room

41

Chapter 8

Testing

8.1 Overview

In this chapter, we will demonstrate our implementation in practice. We tested the
implementation with two devices and checked the localization ratio in several cases.
The test was conducted on the third floor of network implementation testbed labo-
ratory. We used six nodes. Each node was installed in one of the six big rooms that
the third floor disposes. In the following paragraphs, we will present the results of
the test.

8.2 Factors that Affect RSSI

It is critical to state that the results and the measurements that our system depends
on, come from received signal strength indications. Thus, the results will be affected
by the factors that impact the RSSI values. Such factors are:

• Transmitter Power

• Receiver Power

• Orientation of Antennas

• Physical Objects

• Radio Interference from the Wifi networks

• Radio Interference from non Wifi networks

• Distance between Transmitter and Receiver

8.3 Test Results

In the following figure, the third floor of the lab is depicted. The numbered black
circles show the number of the room. Respectively, that number is also the node ID
of the sniffer deployed in that room. The blue circles represent the position that the
sniffers were placed during the test.

Chapter 8. Testing 42

FIGURE 8.1: Third Flood of Nitlab.

At this point, we will represent the measurements for each room. We took an in-
stant RSSI measurement for each spot. We also took an RSSI measurement after one
minute of idleness of each device. The measurements are in hexadecimal form. The
green marks in the following figures, depict the spots in which we took the mea-
surements. For each picture of a room two tables will be also depicted showing
the measurements. The red lines of the tables show the measurements in which the
system classified the device in wrong room. We took the measurements with two
devices. A Xiaomi Redmi Note 4 and a Samsung Galaxy Tab 2.0.

Chapter 8. Testing 43

FIGURE 8.2: Room1.

Chapter 8. Testing 44

For the Xiaomi Redmi Note 4 the measurements are:

Spot Node1 Node2 Node3 Node4 Node5 Node6

Spot 1 Measurement 1 2e 3f 3c >45 >45 43
Spot 1 Measurement 2 2d 3f 3d >45 >45 41
Spot 2 Measurement 1 23 3f 41 44 3b 3b
Spot 2 Measurement 2 21 3f 42 45 3c 3b
Spot 3 Measurement 1 2b 3e 41 3d 42 43

Spot 3 Measurement 2 2a 3e 40 3d 44 43

Spot 4 Measurement 1 32 34 42 45 41 44

Spot 4 Measurement 2 30 34 42 45 41 >45

Spot 5 Measurement 1 33 34 42 44 44 >45

Spot 5 Measurement 2 31 35 42 >45 41 >45

Spot 6 Measurement 1 35 38 41 >45 3c 43

Spot 6 Measurement 2 35 38 41 >45 3e 44

Spot 7 Measurement 1 37 39 3c >45 >45 >45

Spot 7 Measurement 2 38 40 3e >45 >45 >45

Spot 8 Measurement 1 36 43 >45 >45 >45 >45

Spot 8 Measurement 2 35 43 >45 >45 >45 >45

Spot 9 Measurement 1 3a 41 41 44 >45 >45

Spot 9 Measurement 2 3a 42 41 43 >45 >45

Spot 10 Measurement 1 2b 3e 45 42 3e 42

Spot 10 Measurement 2 2c 3e 44 42 3e 41

Spot 11 Measurement 1 31 43 >45 >45 >45 >45

Spot 11 Measurement 2 31 42 >45 >45 >45 >45

Spot 12 Measurement 1 2e 3c 42 >45 45 41

Spot 12 Measurement 2 2c 3c 43 >45 44 41

Spot 13 Measurement 1 32 3a 3b 43 42 >45

Spot 13 Measurement 2 34 3a 3c 44 43 >45

Spot 14 Measurement 1 36 3d 40 45 >45 >45

Spot 14 Measurement 2 37 3e 43 45 >45 >45

Chapter 8. Testing 45

For the Samsung Galaxy Tab 2.0 the measurements are:

Spot Node1 Node2 Node3 Node4 Node5 Node6

Spot 1 Measurement 1 3e 43 3f >45 >45 >45
Spot 1 Measurement 2 3c 41 3f >45 >45 >45
Spot 2 Measurement 1 2e 3e 40 >45 >45 >45
Spot 2 Measurement 2 2e 3d 41 >45 >45 >45
Spot 3 Measurement 1 37 42 >45 >45 43 44

Spot 3 Measurement 2 3a 42 >45 >45 44 >45

Spot 4 Measurement 1 39 3b 44 >45 42 41

Spot 4 Measurement 2 3f 3b 43 >45 41 <45

Spot 5 Measurement 1 35 40 >45 >45 44 >45

Spot 5 Measurement 2 38 40 >45 >45 45 >45

Spot 6 Measurement 1 34 41 >45 >45 45 >45

Spot 6 Measurement 2 35 41 >45 >45 >45 >45

Spot 7 Measurement 1 3d 40 >45 >45 43 44

Spot 7 Measurement 2 3c 38 >45 >45 43 44

Spot 8 Measurement 1 2e >45 >45 >45 >45 3e

Spot 8 Measurement 2 2e >45 >45 >45 >45 42

Spot 9 Measurement 1 2d 40 45 >45 >45 >45

Spot 9 Measurement 2 2f 40 >45 >45 >45 >45

Spot 10 Measurement 1 2b 43 >45 >45 >45 40

Spot 10 Measurement 2 2b 41 >45 >45 >45 41

Spot 11 Measurement 1 2a 42 >45 >45 43 44

Spot 11 Measurement 2 2b 40 >45 >45 43 43

Spot 12 Measurement 1 2d 39 >45 >45 44 43

Spot 12 Measurement 2 2d 38 >45 >45 43 43

Spot 13 Measurement 1 35 3d >45 >45 >45 >45

Spot 13 Measurement 2 35 3d >45 >45 >45 >45

Spot 14 Measurement 1 36 41 42 >45 >45 >45

Spot 14 Measurement 2 37 41 43 >45 >45 >45

Chapter 8. Testing 46

FIGURE 8.3: Room2.

Chapter 8. Testing 47

For the Xiaomi Redmi Note 4 the measurements are:

Spot Node1 Node2 Node3 Node4 Node5 Node6

Spot 1 Measurement 1 2d 2e 35 >45 3c 41

Spot 1 Measurement 2 2f 3a 3d >45 3d 40
Spot 2 Measurement 1 3b 2f 36 44 42 45
Spot 2 Measurement 2 3e 2c 3a 44 >45 >45
Spot 3 Measurement 1 3a 37 38 >45 41 >45

Spot 3 Measurement 2 3a 38 35 >45 44 >45

Spot 4 Measurement 1 42 2b 39 3e 44 44

Spot 4 Measurement 2 42 2c 39 3e 45 >45

Spot 5 Measurement 1 3b 35 3a >45 >45 >45

Spot 5 Measurement 2 3b 3d 35 >45 3f 43

Spot 6 Measurement 1 44 2b 40 3e >45 >45

Spot 6 Measurement 2 44 2e 43 3f >45 >45

Spot 7 Measurement 1 39 2d 32 3d 43 42

Spot 7 Measurement 2 38 2e 35 3f 43 44

Spot 8 Measurement 1 3d 31 3f >45 >45 43

Spot 8 Measurement 2 3e 41 36 >45 >45 43

Spot 9 Measurement 1 33 29 36 44 >45 45

Spot 9 Measurement 2 37 30 39 45 >45 >45

Spot 10 Measurement 1 34 30 37 45 >45 >45

Spot 10 Measurement 2 37 31 38 42 >45 >45

Spot 11 Measurement 1 33 2c 37 42 43 40

Spot 11 Measurement 2 31 2d 35 >45 >45 41

Spot 12 Measurement 1 2f 2d 38 40 40 44

Spot 12 Measurement 2 2f 30 38 44 >45 43

Spot 13 Measurement 1 34 27 39 3a 43 3c

Spot 13 Measurement 2 34 29 44 3d 43 3f

Spot 14 Measurement 1 36 3a 43 3c 42 44

Spot 14 Measurement 2 38 28 44 3b 41 >45

Spot 15 Measurement 1 3d 34 35 43 43 43

Spot 15 Measurement 2 3d 35 36 44 43 43

Spot 16 Measurement 1 34 27 39 3a 43 3c

Spot 16 Measurement 2 35 28 39 29 45 3e

Chapter 8. Testing 48

For the Samsung Galaxy Tab 2.0 the measurements are:

Spot Node1 Node2 Node3 Node4 Node5 Node6

Spot 1 Measurement 1 3c 36 3f 45 >45 >45
Spot 1 Measurement 2 3c 34 3f >45 >45 >45
Spot 2 Measurement 1 3b 35 3f 43 45 >45
Spot 2 Measurement 2 3b 33 36 >45 >45 >45
Spot 3 Measurement 1 3b 30 33 41 45 >45

Spot 3 Measurement 2 3c 31 33 40 44 >45

Spot 4 Measurement 1 38 35 39 42 >45 >45

Spot 4 Measurement 2 40 33 38 41 >45 >45

Spot 5 Measurement 1 41 34 37 41 44 >45

Spot 5 Measurement 2 42 34 33 41 40 >45

Spot 6 Measurement 1 3a 35 3f 3d 45 >45

Spot 6 Measurement 2 3a 34 3d 41 >45 >45

Spot 7 Measurement 1 3c 3b 3f 3c 44 >45

Spot 7 Measurement 2 3e 39 3d 40 43 >45

Spot 8 Measurement 1 32 2b 42 >45 >45 >45

Spot 8 Measurement 2 33 2c 44 >45 >45 >45

Spot 9 Measurement 1 38 37 3a >45 44 >45

Spot 9 Measurement 2 36 38 3b >45 >45 >45

Spot 10 Measurement 1 38 36 3c >45 >45 >45

Spot 10 Measurement 2 38 36 3f >45 >45 >45

Spot 11 Measurement 1 35 3b 41 40 >45 >45

Spot 11 Measurement 2 38 3b 41 42 >45 >45

Spot 12 Measurement 1 36 3e 3c 40 >45 >45

Spot 12 Measurement 2 38 3b 3d 42 >45 >45

Spot 13 Measurement 1 36 37 3e 43 40 >45

Spot 13 Measurement 2 38 38 3d 42 44 >45

Spot 14 Measurement 1 39 2f 42 41 >45 >45

Spot 14 Measurement 2 37 2f 43 44 >45 >45

Spot 15 Measurement 1 >45 34 41 >45 44 >45

Spot 15 Measurement 2 43 32 43 >45 >45 >45

Spot 16 Measurement 1 40 30 45 >45 >45 >45

Spot 16 Measurement 2 37 30 43 >45 >45 >45

Chapter 8. Testing 49

FIGURE 8.4: Room3.

Chapter 8. Testing 50

For the Xiaomi Redmi Note 4 the measurements are:

Spot Node1 Node2 Node3 Node4 Node5 Node6

Spot 1 Measurement 1 3c 32 35 >45 >45 43

Spot 1 Measurement 2 3e 3d 32 >45 >45 >45
Spot 2 Measurement 1 40 37 38 >45 >45 >45

Spot 2 Measurement 2 37 36 33 >45 >45 >45
Spot 3 Measurement 1 41 3c 37 >45 >45 >45

Spot 3 Measurement 1 43 3b 39 >45 >45 >45

Spot 4 Measurement 1 43 44 2d 3f >45 >45

Spot 4 Measurement 2 43 44 2e 3d >45 >45

Spot 5 Measurement 1 >45 44 30 3f >45 >45

Spot 5 Measurement 2 >45 44 30 3e >45 >45

Spot 6 Measurement 1 42 40 32 >45 43 >45

Spot 6 Measurement 2 44 43 34 >45 >45 >45

Spot 7 Measurement 1 42 41 37 44 43 >45

Spot 7 Measurement 2 42 41 36 42 43 >45

Spot 8 Measurement 1 43 41 32 44 41 >45

Spot 8 Measurement 2 44 41 33 >45 44 >45

Spot 9 Measurement 1 43 44 30 43 >45 >45

Spot 9 Measurement 2 43 44 33 44 >45 >45

Spot 10 Measurement 1 3e 40 38 >45 42 >45

Spot 10 Measurement 2 3f 41 37 >45 >45 >45

Spot 11 Measurement 1 3f 37 2e >45 >45 >45

Spot 11 Measurement 2 3e 37 2f >45 >45 >45

Spot 12 Measurement 1 3a 34 30 >45 >45 44

Spot 12 Measurement 2 3a 32 31 >45 >45 >45

Spot 13 Measurement 1 >45 34 2e 44 >45 >45

Spot 13 Measurement 2 >45 34 2f 43 >45 >45

Spot 14 Measurement 1 >45 3e 26 >45 >45 >45

Spot 14 Measurement 2 >45 3d 28 >45 >45 >45

Chapter 8. Testing 51

For the Samsung Galaxy Tab 2.0 the measurements are:

Spot Node1 Node2 Node3 Node4 Node5 Node6

Spot 1 Measurement 1 3b 41 31 45 >45 >45
Spot 1 Measurement 2 3c 3f 30 >45 >45 >45
Spot 2 Measurement 1 41 3e 31 >45 >45 >45
Spot 2 Measurement 2 41 3d 30 >45 >45 >45
Spot 3 Measurement 1 >45 3e 3c 43 >45 >45

Spot 3 Measurement 2 >45 3f 3a 43 >45 >45

Spot 4 Measurement 1 3d 42 2d >45 >45 >45

Spot 4 Measurement 2 3f 42 2d >45 >45 >45

Spot 5 Measurement 1 41 3f 30 >45 >45 >45

Spot 5 Measurement 2 41 3f 34 >45 >45 >45

Spot 6 Measurement 1 41 41 2d >45 >45 >45

Spot 6 Measurement 2 44 41 2e >45 >45 >45

Spot 7 Measurement 1 3d 3f 33 >45 >45 >45

Spot 7 Measurement 2 3d 3c 34 >45 >45 >45

Spot 8 Measurement 1 43 3d 2f >45 >45 >45

Spot 8 Measurement 2 43 3f 2d >45 >45 >45

Spot 9 Measurement 1 42 3c 2b >45 >45 >45

Spot 9 Measurement 2 44 3b 2c >45 >45 >45

Spot 10 Measurement 1 43 43 2f >45 >45 >45

Spot 10 Measurement 2 44 43 2f >45 >45 >45

Spot 11 Measurement 1 3b 3c 34 >45 >45 >45

Spot 11 Measurement 2 3a 3d 36 >45 >45 >45

Spot 12 Measurement 1 3d 42 33 42 >45 >45

Spot 12 Measurement 2 3f 40 35 40 >45 >45

Spot 13 Measurement 1 >45 44 3f >45 >45 >45

Spot 13 Measurement 2 >45 44 3c >45 >45 >45

Spot 14 Measurement 1 3b 40 36 44 44 >45

Spot 14 Measurement 2 3f 41 33 42 >45 >45

Chapter 8. Testing 52

FIGURE 8.5: Room4.

Chapter 8. Testing 53

For the Xiaomi Redmi Note 4 the measurements are:

Spot Node1 Node2 Node3 Node4 Node5 Node6

Spot 1 Measurement 1 >45 41 44 2f 45 >45
Spot 1 Measurement 2 >45 43 40 2e 45 >45
Spot 2 Measurement 1 >45 >45 42 2d >45 >45
Spot 2 Measurement 2 >45 >45 43 2f >45 >45
Spot 3 Measurement 1 43 43 >45 30 43 >45

Spot 3 Measurement 1 >45 43 >45 2e 40 >45

Spot 4 Measurement 1 42 42 3c 35 3c 42

Spot 4 Measurement 2 >45 44 3d 33 3f >45

Spot 5 Measurement 1 >45 41 45 30 45 >45

Spot 5 Measurement 2 >45 43 44 2f >45 >45

Spot 6 Measurement 1 >45 3c >45 38 36 3f

Spot 6 Measurement 2 >45 3d >45 39 35 41

Spot 7 Measurement 1 >45 3a >45 36 33 42

Spot 7 Measurement 2 >45 3c >45 36 32 42

Spot 8 Measurement 1 43 44 >45 32 38 3f

Spot 8 Measurement 2 44 44 >45 33 32 41

Spot 9 Measurement 1 42 43 >45 31 37 41

Spot 9 Measurement 2 42 44 >45 31 35 42

Spot 10 Measurement 1 >45 >45 >45 34 2f >45

Spot 10 Measurement 2 >45 >45 >45 35 2c >45

Spot 11 Measurement 1 43 44 42 31 >45 >45

Spot 11 Measurement 2 >45 45 42 33 >45 >45

Spot 12 Measurement 1 >45 >45 >45 2d 3f >45

Spot 12 Measurement 2 >45 >45 >45 2f 41 >45

Spot 13 Measurement 1 41 38 3c 2e 3b 3e

Spot 13 Measurement 2 41 41 3f 2f 3b 3f

Spot 14 Measurement 1 >45 43 3d 34 45 >45

Spot 14 Measurement 2 >45 43 3c 35 >45 >45

Chapter 8. Testing 54

For the Samsung Galaxy Tab 2.0 the measurements are:

Spot Node1 Node2 Node3 Node4 Node5 Node6

Spot 1 Measurement 1 >45 43 >45 31 40 >45
Spot 1 Measurement 2 >45 44 >45 33 40 >45
Spot 2 Measurement 1 >45 >45 >45 30 43 >45
Spot 2 Measurement 2 >45 >45 >45 30 >45 >45
Spot 3 Measurement 1 >45 41 44 2f 45 >45

Spot 3 Measurement 2 >45 42 42 2d >45 >45

Spot 4 Measurement 1 43 45 41 3d >45 >45

Spot 4 Measurement 2 >45 44 40 3d >45 >45

Spot 5 Measurement 1 45 40 >45 30 3d >45

Spot 5 Measurement 2 >45 41 >45 33 3f >45

Spot 6 Measurement 1 44 38 >45 35 3c >45

Spot 6 Measurement 2 >45 39 >45 35 3e >45

Spot 7 Measurement 1 45 3f >45 38 3a >45

Spot 7 Measurement 2 44 41 >45 36 3a >45

Spot 8 Measurement 1 44 >45 45 31 39 >45

Spot 8 Measurement 2 43 >45 >45 34 39 >45

Spot 9 Measurement 1 >45 >45 >45 32 37 >45

Spot 9 Measurement 2 >45 >45 >45 33 35 >45

Spot 10 Measurement 1 >45 >45 >45 2f 34 >45

Spot 10 Measurement 2 >45 >45 >45 31 36 >45

Spot 11 Measurement 1 43 45 >45 3d >45 >45

Spot 11 Measurement 2 >45 44 >45 3b >45 >45

Spot 12 Measurement 1 >45 >45 >45 38 41 >45

Spot 12 Measurement 2 >45 >45 >45 38 43 >45

Spot 13 Measurement 1 43 44 41 3b 44 >45

Spot 13 Measurement 2 >45 >45 42 3b >45 >45

Spot 14 Measurement 1 >45 >45 44 3d >45 >45

Spot 14 Measurement 2 >45 >45 45 3c >45 >45

Chapter 8. Testing 55

FIGURE 8.6: Room5.

Chapter 8. Testing 56

For the Xiaomi Redmi Note 4 the measurements are:

Spot Node1 Node2 Node3 Node4 Node5 Node6

Spot 1 Measurement 1 >45 >45 >45 43 2e 3f
Spot 1 Measurement 2 >45 >45 >45 44 2f 3d
Spot 2 Measurement 1 >45 44 >45 45 25 44
Spot 2 Measurement 2 >45 >45 >45 44 23 >45
Spot 3 Measurement 1 >45 >45 >45 38 3a >45

Spot 3 Measurement 2 >45 >45 >45 39 3a >45

Spot 4 Measurement 1 >45 41 44 3f 38 42

Spot 4 Measurement 2 >45 44 >45 3e 3a 44

Spot 5 Measurement 1 40 41 >45 3d 3f >45

Spot 5 Measurement 2 43 44 >45 3c 3f >45

Spot 6 Measurement 1 44 43 >45 >45 36 3f

Spot 6 Measurement 2 >45 44 >45 >45 37 41

Spot 7 Measurement 1 3f 3d >45 44 3c 40

Spot 7 Measurement 2 40 40 >45 43 3f 42

Spot 8 Measurement 1 3b 3a >45 3e 39 34

Spot 8 Measurement 2 3a 42 >45 43 37 3b

Spot 9 Measurement 1 3f 3d >45 40 37 35

Spot 9 Measurement 2 43 42 >45 3e 38 37

Spot 10 Measurement 1 40 3a >45 45 29 42

Spot 10 Measurement 2 41 3c >45 44 2c 43

Spot 11 Measurement 1 3e 3d >45 43 36 3c

Spot 11 Measurement 2 41 3c >45 44 36 3b

Spot 12 Measurement 1 40 3a >45 45 29 42

Spot 12 Measurement 2 41 3d >45 42 2b >45

Chapter 8. Testing 57

For the Samsung Galaxy Tab 2.0 the measurements are:

Spot Node1 Node2 Node3 Node4 Node5 Node6

Spot 1 Measurement 1 >45 >45 >45 44 31 40
Spot 1 Measurement 2 >45 >45 >45 41 33 43
Spot 2 Measurement 1 >45 >45 >45 42 28 >45
Spot 2 Measurement 2 >45 >45 >45 41 2a >45
Spot 3 Measurement 1 >45 >45 >45 3b 3d >45

Spot 3 Measurement 2 >45 >45 >45 39 3a >45

Spot 4 Measurement 1 43 45 41 3d 3a >45

Spot 4 Measurement 2 >45 44 40 3d 39 >45

Spot 5 Measurement 1 43 42 >45 3e 40 >45

Spot 5 Measurement 2 44 41 >45 3e 3d >45

Spot 6 Measurement 1 44 42 44 43 3c >45

Spot 6 Measurement 2 >45 39 42 44 3e >45

Spot 7 Measurement 1 40 3f >45 44 3d 41

Spot 7 Measurement 2 44 41 >45 42 3d 43

Spot 8 Measurement 1 39 3f 43 3d 40 >45

Spot 8 Measurement 2 40 3e 41 3d 40 >45

Spot 9 Measurement 1 43 3f 44 3c 3e >45

Spot 9 Measurement 2 40 3c 41 3c 3f >45

Spot 10 Measurement 1 40 3c 41 3c 3f >45

Spot 10 Measurement 2 3e 40 >45 3c 3d 40

Spot 11 Measurement 1 3f 42 >45 3c 3c 3d

Spot 11 Measurement 2 >45 >45 >45 34 39 >45

Spot 12 Measurement 1 3e >45 >45 3d 3d 42

Spot 12 Measurement 2 3f >45 >45 3f 3c 44

Chapter 8. Testing 58

FIGURE 8.7: Room6.

Chapter 8. Testing 59

For the Xiaomi Redmi Note 4 the measurements are:

Spot Node1 Node2 Node3 Node4 Node5 Node6

Spot 1 Measurement 1 >45 >45 42 >45 >45 3a
Spot 1 Measurement 2 >45 >45 >45 >45 >45 2f
Spot 2 Measurement 1 44 >45 >45 44 >45 32
Spot 2 Measurement 2 >45 >45 >45 44 >45 30
Spot 3 Measurement 1 44 >45 >45 >45 42 3b
Spot 3 Measurement 2 >45 >45 >45 >45 42 3d
Spot 4 Measurement 1 43 >45 >45 >45 3f 3b

Spot 4 Measurement 2 44 44 >45 >45 3d 3b

Spot 5 Measurement 1 >45 >45 >45 >45 39 35

Spot 5 Measurement 2 43 >45 >45 >45 3c 34

Spot 6 Measurement 1 >45 >45 >45 >45 42 37

Spot 6 Measurement 2 >45 >45 >45 >45 44 38

Spot 7 Measurement 1 40 45 >45 >45 >45 36

Spot 7 Measurement 2 3f 45 >45 44 >45 36

Spot 8 Measurement 1 >45 >45 >45 >45 44 39

Spot 8 Measurement 2 44 45 >45 >45 43 36

Spot 9 Measurement 1 3c 3c >45 >45 41 2b

Spot 9 Measurement 2 3d 40 >45 >45 44 2e

Spot 10 Measurement 1 >45 >45 >45 >45 >45 36

Spot 10 Measurement 2 41 44 >45 >45 >45 35

Chapter 8. Testing 60

For the Samsung Galaxy Tab 2.0 the measurements are:

Spot Node1 Node2 Node3 Node4 Node5 Node6

Spot 1 Measurement 1 >45 >45 >45 >45 >45 3b
Spot 1 Measurement 2 >45 >45 >45 >45 >45 2e
Spot 2 Measurement 1 >45 >45 >45 >45 >45 32
Spot 2 Measurement 2 >45 >45 >45 >45 >45 32
Spot 3 Measurement 1 >45 >45 >45 >45 >45 3b
Spot 3 Measurement 2 >45 >45 >45 >45 45 3e
Spot 4 Measurement 1 >45 >45 >45 >45 41 3e

Spot 4 Measurement 2 >45 >45 >45 >45 40 3c

Spot 5 Measurement 1 >45 >45 >45 >45 38 35

Spot 5 Measurement 2 >45 >45 >45 >45 3f 33

Spot 6 Measurement 1 >45 >45 >45 >45 43 38

Spot 6 Measurement 2 >45 >45 >45 >45 44 3a

Spot 7 Measurement 1 42 >45 >45 >45 >45 3c

Spot 7 Measurement 2 43 >45 >45 >45 >45 3a

Spot 8 Measurement 1 >45 >45 >45 >45 44 3c

Spot 8 Measurement 2 >45 >45 >45 >45 43 3a

Spot 9 Measurement 1 40 3e >45 >45 44 2d

Spot 9 Measurement 2 41 40 >45 >45 43 2e

Spot 10 Measurement 1 41 >45 >45 >45 >45 35

Spot 10 Measurement 2 44 44 >45 >45 >45 38

8.4 Summary

After inspecting the test results, we can note that the system is not one hundred
percent successful. There are false localization results especially in room two and
five. This is due to the placement of the sniffer nodes. The sniffer nodes were placed
at the height of the desks, prone to many obstacles such as computers, people and
furniture. In order for the system to be functioning in a more optimal way, the sniffer
nodes should be placed more strategically and at a bigger height that guarantees
minimum interference with physical obstacles. The system could also be optimized
with algorithms such as the k nearest neighbour algorithm instead of just localizing
based on the minimum absolute rssi value.

Analytically the percentage of localization success per room:

• Room1 Xiaomi Redmi Note 4: 100% localization success

• Room1 Samsung Galaxy Tab 2.0: 96% localization success

• Room2 Xiaomi Redmi Note 4: 84% localization success

• Room2 Samsung Galaxy Tab 2.0: 75% localization success

• Room3 Xiaomi Redmi Note 4: 92% localization success

Chapter 8. Testing 61

• Room3 Samsung Galaxy Tab 2.0: 100% localization success

• Room4 Xiaomi Redmi Note 4: 96% localization success

• Room4 Samsung Galaxy Tab 2.0: 100% localization success

• Room5 Xiaomi Redmi Note 4: 70% localization success

• Room5 Samsung Galaxy Tab 2.0: 50% localization success

• Room6 Xiaomi Redmi Note 4: 100% localization success

• Room6 Samsung Galaxy Tab 2.0: 100% localization success

62

Chapter 9

Conclusion

In this thesis, we aimed to implement a WiFi localization system. Firstly, we pre-
sented the various types and subtypes of WiFi packets. We stated which ones we
found useful for the implementation and we analyzed their role in a WiFi network.

Thereafter, we introduced the ESP-32 Devkits, the devices we used as sniffer-nodes.
We also demonstrated the role of a sniffer in a WiFi network. We inspected the criti-
cal functionalities of the code that the ESPs use.

In the next chapter, we inspected the mediator of our implementation. The XBee
devices. We defined what a Zigbee network is and we introduced the features and
the configuration that the XBee devices use in our network.

Afterwards, we showed the Beaglebone Black device. We inspected its features and
its role as a gateway in our implemenation. We analyzed step by step the way we
set it up. We also demonstrated its features through the code that it executes.

Then, we introduced the tool that parses the database where all the useful data for
the localization are uploaded. We also demonstrated the Web GUI tool we used in
order to show the position of each registered localized client.

Lastly, we deployed the nodes in the third floor of the laboratory. We cited the results
of the localization measurements we took. We also demonstrated the percentage of
successful localization cases in each room. We conclude that the system can be op-
timized with a more strategical placement of the sniffer nodes. It can also combine
more algorithms instead of exploiting only the minimum absolute RSSI value.

63

Bibliography

[1] Timea Bagosi and Zoltan Baruch. “Indoor Localization by WiFi”. In: (2011).
[2] Balena. https://www.balena.io/etcher/.
[3] BeagleboardOrg. https://beagleboard.org/black.
[4] Core-Electronics. What are xbee modules. https://core-electronics.com.au/

tutorials/what-are-xbee-modules.html.
[5] DIGI. https://www.digi.com/.
[6] DIGI. Standards and Technologies. https://www.digi.com/resources/standards-

and-technologies/zigbee-wireless-mesh-networking.
[7] Esp32 Devkit V1 Documentation. https://docs.zerynth.com/latest/official/

board.zerynth.doit_esp32/docs/index.html.
[8] Esp32 WROOM 32 Documentation. https : / / www . espressif . com / sites /

default/files/documentation/esp32-wroom-32_datasheet_en.pdf.
[9] Matthew S. Gast. 802.11 Wireless Networks: The Definitive Guide, 2nd Edition.

[10] Beagleboard Latest Images. https://beagleboard.org/latest-images.
[11] Influxdb Module. https://pypi.org/project/influxdb/.
[12] Influxdb Wiki. https://en.wikipedia.org/wiki/InfluxDB.
[13] Lei Shu Trung Q. Duong Yuanfang Chen Jianwei Niu Bowei Wang. “ZIL: An

Energy-Efficient Indoor Localization System Using ZigBee Radio to Detect
WiFi Fingerprints”. In: IEEE Journal on Selected Areas in Communications (2015),
pp. 1431–1442.

[14] Beagleboard Getting Started. https://beagleboard.org/getting-started.
[15] Talking To Beaglebone. http://shallowsky.com/blog/hardware/talking-to-

beaglebone.html.
[16] UART Definition. https://en.wikipedia.org/wiki/Universal_asynchronous_

receiver-transmitter.
[17] Xbee Devices Module. https://xbplib.readthedocs.io/en/latest/api/

digi.xbee.devices.html.
[18] XBee S2C Documentation. https://www.digi.com/resources/documentation/

digidocs/pdfs/90002002.pdf.
[19] Yuan Feng Xiuyan Zhu. “RSSI-based Algorithm for Indoor Localization”. In:

(May 2013).
[20] Rosdiadee Nordin Zahid Farid and Mahamod Ismail. “Recent Advances in

Wireless Indoor Localization Techniques and System”. In: Journal of Computer
Networks and Communications (2013).

https://www.balena.io/etcher/
https://beagleboard.org/black
https://core-electronics.com.au/tutorials/what-are-xbee-modules.html
https://core-electronics.com.au/tutorials/what-are-xbee-modules.html
https://www.digi.com/
https://www.digi.com/resources/standards-and-technologies/zigbee-wireless-mesh-networking
https://www.digi.com/resources/standards-and-technologies/zigbee-wireless-mesh-networking
https://docs.zerynth.com/latest/official/board.zerynth.doit_esp32/docs/index.html
https://docs.zerynth.com/latest/official/board.zerynth.doit_esp32/docs/index.html
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32_datasheet_en.pdf
https://beagleboard.org/latest-images
https://pypi.org/project/influxdb/
https://en.wikipedia.org/wiki/InfluxDB
https://beagleboard.org/getting-started
http://shallowsky.com/blog/hardware/talking-to-beaglebone.html
http://shallowsky.com/blog/hardware/talking-to-beaglebone.html
https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter
https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter
https://xbplib.readthedocs.io/en/latest/api/digi.xbee.devices.html
https://xbplib.readthedocs.io/en/latest/api/digi.xbee.devices.html
https://www.digi.com/resources/documentation/digidocs/pdfs/90002002.pdf
https://www.digi.com/resources/documentation/digidocs/pdfs/90002002.pdf

	Περιληψη
	Abstract
	Acknowledgements
	Introduction
	Background
	System Architecture
	Thesis Structure

	WiFi 802.11 Frames
	Overview
	Frame Control Field
	Management Frames
	Frame Control
	Addressing Fields
	Frame Body
	Subtypes of Management Frames

	Data Frames
	Frame Control
	Addressing Fields

	Control Frames
	Summary

	ESP Devices - Sniffers
	Overview
	ESP32 Devkit V1 Specifications
	ESP32 Modules as Packet Sniffers
	Activation Phase
	Operational Phase

	Summary

	XBEE Network
	Overview
	Zigbee Technology
	XBee Devices
	Configuring the XBees
	Operating Mode Configuration
	XBEE API Frames
	End Device Configuration
	Coordinator Configuration

	XBee Network in the Implementation
	Summary

	BeagleBone Black Device - Gateway
	Overview
	Beaglebone Black Specifications
	BeagleBone Black Setup
	Flashing the Image
	Establishing Internet Connection
	Creating a Service for Internet Connection
	Enable Beaglebone's UART Port

	Beaglebone Black as a Gateway
	Activation Phase
	Operational Phase
	Influx Database Use in Gateway

	Summary

	Data Inspector - Web GUI
	Overview
	Database Parser
	Web GUI
	Summary

	Spherical System Architecture Description
	Overview
	The Devices
	Activation Phase
	Operational Phase

	Testing
	Overview
	Factors that Affect RSSI
	Test Results
	Summary

	Conclusion
	Bibliography

