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Analysis of data placement techniques in heterogeneous memories 

By Dimitrios VOULGARIS 

 

Heterogeneous memory systems have been recently introduced as a consequence of the 

continuously growing demand for fast accessible data. Simply assigning random data to the 

various memory subsystems of a memory system is not working as expected; on the contrary 

it might prove performance limiting. In this work we employ software profiling techniques 

using Valgrind (i.e. EVOP) in order to identify the memory access behavior of specific 

scientific applications and optimally distribute their data in a hybrid memory system with the 

ultimate scope of achieving a performance improvement. Doing so, we provide a detailed 

description of Valgrind’s source code which reveals a potential bug but also acts in an 

explanatory way for future users and developers. 

We also facilitated sampled memory access profiling by extending the basic tool’s source 

code. In that aspect we provide a comprehensive report of our development stages as well as 

the available accumulated features. Profiling, in that case, enabled a comparative research 

between sampled and non-sampled results which eventually allowed us to draw conclusions 

that connect the application-characteristic memory access pattern and sampling periods that 

generate optimal performance speedup. 
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ΠΑΝΔΠΙ΢ΣΗΜΙΟ ΘΔ΢΢ΑΛΙΑ΢ 

Πεξίιεςε 

Σκήκα Ηιεθηξνιόγσλ Μεραληθώλ θαη Μεραληθώλ Τπνινγηζηώλ 

Γηπισκαηηθή Δξγαζία 

Ανάλσζη Σετνικών Σοποθέηηζης Δεδομένων ζε Εηερογενείς Μνήμες 

από ηνλ Γεκήηξην ΒΟΤΛΓΑΡΗ 

 

Σα εηεξνγελή ζπζηήκαηα κλήκεο παξνπζηάζηεθαλ σο απάληεζε ζηελ ζπλερώο απμαλόκελε 

αλάγθε γξήγνξεο πξόζβαζεο ζε δεδνκέλα. Μηα απιή θαηαλνκή ησλ δεδνκέλσλ εθαξκνγήο 

ζηα δηάθνξα ππνζπζηήκαηα ελόο ζπζηήκαηνο κλήκεο, σζηόζν, δελ εγγπάηαη ηελ βειηίσζε 

ηεο απόδνζεο από άπνςε ρξόλνπ. Αληίζεηα, κπνξεί λα ηελ επηδεηλώζεη πεξαηηέξσ. ΢ε απηή 

ηελ εξγαζία θάλνπκε ρξήζε software profiling κεζόδσλ επηζηξαηεύνληαο ην εξγαιείν 

Valgrind κε ζθνπό λα θαζνξίζνπκε ηελ αιιειεπίδξαζε κε ηελ κλήκε πνπ παξνπζηάδνπλ 

ζπγθεθξηκέλεο επηζηεκνληθέο εθαξκνγέο. ΢ηελ ζπλέρεηα, θαηαλέκνπκε ηα δεδνκέλα απηώλ 

ζην πβξηδηθό ζύζηεκα κλήκεο κε ηειηθό ζθνπό ηελ αύμεζε ηεο απόδνζεο. ΢ηα πεξηερόκελα 

ηεο εξγαζίαο παξέρεηαη κηα ιεπηνκεξήο πεξηγξαθή ηνπ πεγαίνπ θώδηθα (source code) ηνπ 

Valgrind ε νπνία αθελόο θέξλεη ζηελ επηθάλεηα έλα πηζαλό bug ηνπ θώδηθα θαη αθεηέξνπ 

ρξεζηκεύεη σο ζεκείν αλαθνξάο γηα δπλεηηθνύο ρξήζηεο θαη πξνγξακκαηηζηέο. 

Δπίζεο, επεθηείλνληαο ην Valgrind θαηαζηήζακε δπλαηή ηελ δεηγκαηνιεπηηθή θαηαγξαθή 

πξνζβάζεσλ ζηελ κλήκε παξαζέηνληαο κηα εθηελή θαηαγξαθή ησλ βεκάησλ πνπ 

αθνινπζήζεθαλ αιιά θαη ησλ επηινγώλ ρξήζηε πνπ πξνζηέζεθαλ. Οη πξνζζήθεο απηέο 

επέηξεςαλ κηα ζπγθξηηηθή κειέηε κεηαμύ απνηειεζκάησλ πνπ πξνήιζαλ από δεηγκαηνιεςία 

θαη απηώλ πνπ ιήθζεθαλ από ην θιαζηθό profiling. Σα απνηειέζκαηα ζπλδένπλ ην 

ραξαθηεξηζηηθό αλά εθαξκνγή κνηίβν πξνζπέιαζεο κλήκεο κε ηελ επηηξεπηή ζπρλόηεηα 

δεηγκαηνιεςίαο πνπ επηθέξεη κέγηζηε βειηίσζε απόδνζεο. 
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no reason to believe it will not remain nearly constant for at least 10 years.” 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

1.1.1 General 

It was more than 50 years ago when Moore noticed this technological tendency of 

concentrating more “complex electronic functions in limited space”, and indeed for the last 

few decades the scientific and industrial community has been making a huge effort to live up 

to these expectations, elevating Moore’s saying to a globally accepted law. Computer 

components have gained complexity; have become compact and effective in order to cover the 

continuously increasing computational needs. So far, a CPU-oriented approach has been in the 

foreground: pipelined CPUs have targeted instruction throughput by assigning time intervals 

to different operations, whereas superscalar CPUs are exploiting instruction level parallelism. 

On the other hand, multicore systems combined computational power of several cores in order 

to achieve higher performance. 

On the contrary, memory systems are still mainly based on DRAM technology which, 

although “it maintains the best balance among capacity, bandwidth and cost” [2], it presents a 

few drawbacks: various technological constraints as well as a linear cost relationship to 

overcome these hurdles have not permitted a large bandwidth increase, while the slow scale 

rate of interconnect capacitance of on- and off-chip has only worsen the situation. What is 

more, accessing main memory incurs high latency. Therefore, CPU improvements outpaced 



| 2 

 

the DRAM ones resulting in the so-called “memory wall” or “memory gap”. At a bandwidth-

bound case, a significant part of the computational potential remains idle due to memory 

controller’s incapability of keeping up with its requests’ frequency. 

Cache memories have been proposed to bridge the memory wall.  Caches are highly 

sophisticated pieces of hardware usually arranged in increasing size and latency levels. An 

access to the first cache level (L1) presents unimportant CPU stall cycles; to the second cache 

level (L2) are required around 10 cycles and they keep increasing with the cache level [3]. 

Although cache access latency is negligible compared to the main memory, caches are 

transparent to compilers and programmers, i.e. they are explicitly hardware managed not 

allowing direct external control in data placement and replacement. Following the same 

algorithms to interchange their data, in extreme cases, cache behavior might affect software 

performance negatively. In the common case, we can say that software is restricted by the way 

cache memories handle their data, therefore demanding a full profiling process in order to 

avoid misuse. Cores working in parallel can only exacerbate the situation as they usually 

compete for accesses in shared caches. A program’s performance can be significantly 

degraded by contention such as wrongly evicted shared data: data is evicted from a shared 

cache due to capacity restrictions after having been utilized by core P1 but not yet by core P2, 

creating the need to bring it back as soon as P2 accesses it.  As mentioned in [4] there are few, 

yet complex workarounds that permit indirect cache control: non-temporal instructions [5], 

cache partitioning based on page coloring [6] and memory footprint reduction via loop tiling 

[7]. 

With scarcely any optimization opportunities, a further optimization addressing the memory 

performance issue came from Heterogeneous memory systems (or Hybrid memory systems - 

HM). Such systems accommodate memories featuring different intrinsic characteristics. 

Namely, latency capacity, bandwidth, energy consumption or volatility can vary depending on 

the different architecture. Examples of commercially available HM systems are the following: 

A. KeyStone II [8] which is a server-class ARM and DSP heterogeneous architecture 

combining three HM levels: L2 scratchpad memory, L3 MSMC and DDR. It also 

provides the API to place the data in each layer. 
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B. Intel® Xeon Phi
TM

 [9] which contains both DDR and MCMDRAM, a 3D stacked 

memory. The API for data placement is also offered by the vendor, while 3 

combinations of the memory subsystems can be found: cache mode, flat mode, hybrid 

mode. 

1.1.2 Memory architectures 

During this technological shift, many memory architectures have appeared both in scientific 

papers and in industry. What follows is a short review of the different commercially available 

memory system architecture. Some of them are considered key factors for this paper: 

A. Scratchpad memory [10] (or SPM) is an explicitly software managed, cache-like 

memory, placed as close to the ALU as a L1 cache. It offers rapid data retrieval and is 

ideal for storing small data objects. Its superiority lies in the high level of control 

which allows it to work without memory contention and faulty data eviction. On the 

other hand, the control in such small granularity that is required has restricted its 

integration solely to embedded systems not permitting general purpose processors to 

take advantage of it.  

B. On-chip 3D-Stacked Memory [11] is based on the traditional DRAM benefitting from 

the technology’s advantages. What is different is the 3D organization which implies it 

is physically stacked among the layers of the processor die, therefore making better use 

of the die-to-die bandwidth and presenting lower access latencies in comparison to its 

external DRAM counterpart. According to [11] and [12] an overall 30% reduction in 

access latency can be achieved. 

C. DRAM (dynamic RAM) [13] which is to be found in the form of an integrated circuit 

uses capacitors to store one bit of information and presents the best balance between 

low-cost and high-capacity computer memory. The differentiating factor is the need of 

an external refresh circuit that recharges the capacitors (i.e. rewrites the data) even if it 

has not been accessed. This non-volatility intrinsic characteristic introduces a non-

negligible energy consumption as well as additional access delay. 

D. NVRAM [14] (or non-volatile RAM) offers data storage without energy consumption. 

Data that is directly stored in NVRAM does not need be copied to the main memory 
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           (a) Hierarchical memory view         (b) Explicitly managed memory 
 

FIGURE 1.1: Hierarchical versus equally managed memory view. 

further decreasing memory traffic. On the contrary, this technology limits the number 

of data renewal (write-erase cycles) and favors loads versus stores by demanding more 

machine cycles for the latter rather than the prime. Moreover, NVRAM is solely block 

addressable thus may be obstructive for some access patterns. A workaround which 

provides with a byte-addressable view of the memory space can be found in libraries 

such as NVMalloc [15] however it may suffer from high overhead. 

E. SRAM (static RAM) uses a transistor rather than a capacitor to store each bit while 

during read and write operations another 2 access transistors are used to manage the 

availability to a memory cell. The term static refers to the fact that bits do not need be 

periodically refreshed. Cache memories, register file and other popular memory 

systems are based on this technology. 

Although commercially available products deploy the aforementioned memory architectures 

only independently or in combinations, and despite we do not anticipate a future HM system 

that consists of a mosaic of the complete list, we will simulate such a system as an effort to 

depict the several types of memory existing at a cluster computing unit.  

What is important is the logical relationship of the memory subsystems. Their structure has to 

allow an equal treatment rather than following a hierarchical concept so as the benefits of each 

subsystem can be exposed and optimally utilized. In FIGURE 1.1 we juxtapose a hierarchical 

(a) against an equal (b) memory view. It can be easily concluded that the second solution 

permits an explicitly managed memory. That is, each data can be hosted by any subsystem 
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regardless of the order of access, instead depending on programmer-defined specifications 

such as its size, access frequency or any other characteristic considered of importance. 

1.2 Problem Statement and Contributions 

It is often the case that when it comes to application profiling a question has to be answered: 

Hardware or software approach? In order for the answer to be well-founded both approaches 

have to be based on similar concepts and respect equivalent principles. Since hardware 

modifications range from extremely difficult to impossible due to the lack of freedom of 

modifying silicon, we studied Valgrind in order to familiarize with its internal structure and 

consequently to extend it with additional functionalities. In particular, in the rest of this paper: 

o There is a thorough explanation of Valgrind’s function as well as a short introduction 

to some of its available tools. 

o An insight to the internal structure of the tool that simulates cache. 

o Instructions on how you can efficiently use the tool depending on the final scope 

Hardware counters supplied the means for a rather precise and quick method of profiling. The 

latter relies largely on a specified sampling frequency or on certain events, both of which 

trigger the HW counters increment. Although different architectures are equipped with 

different set of counters, monitoring the cache behavior is generally one of their most 

important objectives. However, performing a sampled event collection might give only the 

partial image of a program’s memory interaction. In contrast, software methods exploiting the 

merits of a simulated cache system are allowed to account for every single memory access. In 

order to perform a comparison between the two aforementioned profiling techniques it is of 

essence to compel HW’s limitation to SW approach. For this scope we: 

o Extend Valgrind’s source code in order to perform sampled memory access detection 

Finally, after having acquired a deeper understanding of the means to profile an application, 

we define two heterogeneous memory systems on which the data of our test cases are 
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optimally placed driving to a performance speedup. The detailed walkthrough of this thesis’ 

contributions involve: 

o Differentiate between total access sampling and access-type sampling 

o Determine a performance speedup based on sampled application profiling of two 

distinct test cases 

o Determine the optimal sampling period that permits a similar performance speedup 

o Suggest future research 

 

1.3 Thesis structure 

CHAPTER 2 describes the functionality of Valgrind along with some of its tools and options. 

Moreover, an example as well as a thorough source code analysis reveals a bug that can cause 

doubts to potential users. 

CHAPTER 3 presents EVOP, an already implemented tool based on Valgrind. It also serves the 

scope of analyzing the extensions that we added on this latter tool in order to support sampled 

profiling options. 

CHAPTER 4 includes our experimentation method and analysis process. It introduces the 

sampling notion as well as defines the simulated memory system and the way we addressed it. 

It also offers a short description of the test cases used to realize our experiments. 

CHAPTER 5 interprets the obtained results by comparing sampled and non-sampled profiling. It 

defines an optimal sampling rate for each test case and makes connections between memory 

access patterns and the aforementioned rate. General conclusions are presented in this chapter, 

too. 

CHAPTER 6 makes a short summary of this paper’s findings and proposes future work in two 

different directions. 
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CHAPTER 2 

VALGRIND 

2.1  Overview 

“Valgrind is an instrumentation framework for 

building dynamic analysis tools” [17], It aids 

memory management and multi-threaded bug 

detection as well as offers profiling options. An 

entire set of tools which frame Valgrind by 

making use of its core functions enable the 

above and thus form its ecosystem. 

Valgrind core can be considered as a virtual 

machine that takes control of the application-

under-test before it starts executing. The 

application code is translated into a processor-

agnostic intermediate representation that enables its execution on a synthetic CPU provided by 

the core. At the first code execution, control is handed to the selected tool which enhances it. 

Although each tool has its own implementation details, all of them share the basic principle of 

instrumenting the source code by inserting hooks (instrumentation directives) in order to 

perform different monitoring tasks at run time. The augmented code is then handed back to the 

core where is executed in superblocks (chunks consisting of single entry and multiple exit 

points) [17] [18]. The above process can be seen in FIGURE 2.1.  

FIGURE 2.1: Simplified high-level view of the 

interaction between Valgrind and its tools [18]. 
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The added instrumentation poses the main drawback of this process due to the overhead it 

brings. Every tool is more or less intense in terms of instrumentation; nevertheless the 

minimum incurred time delay caused just by enabling the Valgrind core is x4. Let it be 

emphasized that certain tools can make the execution 10 – 100 times slower.  

Valgrind enriches its tools with an API as well as a client-request mechanism that enables the 

tools to interact with the core by getting debug information, manage stack memory traces and 

intercept different memory allocation calls so as to provide specific wrappers for them. 

Among its other uses, the client-request mechanism enables on-demand instrumentation 

initialization and ceasing in order to minimize the aforementioned extra time overhead. 

In the following we provide a description of Callgrind, the tool used in our research as well as 

the details of how to perform code-specific profiling saving execution time. We expose a 

potential tricky point that accompanies LL cache simulation provided by Callgrind and finally 

we present a thorough walkthrough of our development process as well as explain the added 

features and how to deploy them. 

2.2 Callgrind 

Callgrind is a pure application profiler that combines its own features along with the 

functionality of Cachegrind, another tool of the ecosystem. Cachegrind simulates virtual I1, 

D1 and L2 (or LL) caches getting their characteristics either by default from the native CPU or 

explicitly by the user. It offers per instruction, per function or entire-program information 

regarding the number of cache misses (per cache level), memory references and issued 

instructions. Although it limits the available cache levels to two, causing the measurements to 

differentiate themselves from other profiling methods, it serves the crucial scope of providing 

memory insight. Regardless the exact cache configuration it helps in identifying performance 

limiting memory patterns and fix unfriendly memory accesses.  

On top of these features, Callgrind collects the number of instructions and functions calls, 

extracts the caller-callee relationship among them, relates them to the source code and finally 

gives the opportunity of a branch predictor simulation. This data is then processed by other 

tools (such as KCachegrind, a graphic visualizer) in order to result in a call-graph. 



| 9 

 

2.2.1 Source code 

instrumentation 

Valgrind (and thus Callgrind) uses 

internal event counters in order to account 

for the actual number data was accessed. 

Under normal circumstances these 

counters are initialized at the beginning 

of the execution and are printed at the 

end of it or upon request. However, it is 

feasible to focus profiling only to a 

specific part of the code by disabling 

event aggregation for the uninteresting 

part and allow Callgrind to progress at 

much higher speed. 

For this aim, the tool offers the set of 

macros provided in LISTING 2.1. The first 

two are self-descriptive since they 

commence and terminate simulation and 

profiling. The third macro signals the 

beginning and the end of a region of 

interest i.e. it acts interchangeably as a start / end point enabling or disabling the event 

collection, respectively. It can be used to monitor nonconsecutive regions of source code or to 

terminate, dump and zero the counters multiple times in a run. Event counters can be set to 

zero using the fourth flag or, alternatively, can be printed and set to zero using the fifth one. In 

LISTING 2.2 we present a loop in which we wish to start the cache simulation at iteration 1, 

while account for the access statistics starting from iteration 2. For this scope, both 

instrumentation and event collection are initialized along with the loop in lines 2 and 3, yet the 

counters are zeroed just before the second iteration, in line 6. They are printed by default as 

soon as the loop completes its execution, in line 8. 

LISTING 2.2: Code-specific instrumentation and data 

collection example. 

LISTING 2.1: Code-specific instrumentation and 

data collection macros. 
 

LISTING 2.3: Instrumentation and data collection 

flags. 
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2.2.2 Callgrind options 

In order for the previous macros to be effective, Callgrind has to be initialized with the 

appropriate flags. The tool API provides the flags seen in LISTING 2.3 in order to handle 

instrumentation, profiling and collection regions. When the first flag is set to “no”, simulation 

and profiling should be programmatically enabled by the directive, as shown in LISTING 2.2. 

The un-instrumented code region results in a slowdown to solely 4 times. When the second 

flag is deactivated, the counters shall remain zero until it is instructed otherwise by the source 

code. 

2.3 Last level cache simulation 

In order to account for the validity of the experiments and subsequently interpret the results it 

is crucial to have an exact image of the simulated caching system. Nevertheless, Callgrind has 

a gray point when it comes to simulating the last level cache: a warning is printed informing 

that the user-specified LL cache shall be disregarded since a native one has been detected. In 

our understanding, the particular warning, which is to be seen in FIGURE 2.2, is wrongly 

printed. 

2.3.1 The matrix multiplication example 

In an initial effort of examining its validity we set a trivial example. We created the code 

shown in LISTING 2.4 which is a plain implementation of the matrix multiplication algorithm. 

We used 3 dynamically allocated matrices of size 1024 x 1024 elements which, under the 

system’s architecture translate to 4 MB each. This choice serves the scope of not allowing the 

data to completely reside in the cache memory of any level. The experiments that followed are 

similar to one another with the sole difference of the last level cache size. Specifically, in the 

first experiment LL cache was not specified so that Valgrind take the default hardware 

specification from the detected cache (4 MB of L3 cache) while in the second one, LL cache 

was manually set to 128 KB. The size of the other caches was identical in both cases. 

FIGURE 2.2: Warning informing about the LL cache configuration. 
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Assuming the warning is correct, if 

we observe the LL cache misses we 

anticipate no divergence in the final 

results. On the contrary, as shown 

in TABLE 2.1, the number of 

memory accesses that missed LL 

cache in the second experiment is 

significantly larger than the 

respective number in the first one 

while the number of memory 

accesses that missed the other cache 

levels is exactly the same. This fact 

can be justified if we disregard the 

printed warning and thus consider 

that the LL cache size actually 

follows the user specification. 

Using a cache with smaller capacity 

directly affects the frequency of 

data substitution by increasing it 

since the amount of data that can be 

stored is less. Given the 

repeatability of data usage that is 

imposed by the algorithm, this effect is to be reflected in the total number of accesses that 

have to access the main memory as they cannot be served in cache.  

The above observation however is solely an indication that suggests a probable explanation 

and a faulty warning. Further investigation is needed in order to obtain a concrete argument 

and verify the hypothesis. For this scope we examined the source code of Valgrind and its 

tools in order to locate the lines responsible for printing the warning as well as to extract an 

overview of the cache memory internal implementation and the mechanisms that regard this 

particular feature. We consider this short research useful for future developers and researchers 

that wish to deploy or extend Valgrind and its tools in this direction. Therefore we proceed in 

LISTING 2.4: Matrix multiplication implementation. 

Experiment 1 2 

LL cache size 4 MB 128 KB 

I1 misses 992 992 

D1 misses 1,277,495,238 1,277,495,232 

LL misses 21,419,460 575,742,112 
 

TABLE 2.1: Cache misses depending on the cache size 
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a walkthrough of the internal function interconnection that handle the parameters of the virtual 

cache. 

2.3.2 Source code inspection 

To begin with, since the cache simulator is provided by Cachegrind and shared with Callgrind, 

as noted in section 2.2, we have to focus on the prime. Also, in order to ease the description 

we avoid the details of the specific function naming and representation. For further 

information refer to [16]. 

 In Cachegrind’s source code directory resides cg_arch.c folder which is of particular 

interest for our purpose. As pictured in FIGURE 2.3, a first Boolean function detects the 

existence or not of the appropriate cache-describing flags. In case of success the flags are 

parsed by an additional function and their values are stored in special variables. In the 

meantime, a validity check is implemented to ascertain that the given values are acceptable. A 

third function is defined with aim of: 

o Detecting the caches existing in the hardware of the native machine, 

o Checking the compliance with the tool’s standards and  

o Setting their values to the virtual cache.  

In these lines of code a warning informing about the superiority of auto-detected caches over 

the user-specified ones is printed. What follows is a comparison between these two cache 

types. In case the user-specified ones are valid they actually override the default (hardware) 

ones. This is done by an independent function.  

Analyzing the tool’s source code we have shown that user specifications always prevail the 

default configuration regardless the cache level, therefore we can now verify our hypothesis 

and prove the warning false. It can be taken for granted that when a cache level configuration 

is specified by user, then the actual characteristics are simulated by the tool.  
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FIGURE 2.3: cg_arch.c function flow chart. 
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CHAPTER 3 

VALGRIND TOOL EXTENSION 

After a closer look to the means with which cache is represented and simulated by Callgrind, 

we proceeded with implementing some additional features that enable sampling memory 

accesses. We decided to begin this chapter by introducing some important prior information 

regarding the granularity of memory accesses. 

3.1 Overview 

Our extensions are based on the already extended Valgrind profiler known by the name EVOP 

[18] [19] [20] which is an enhanced version of the development branch of Valgrind 3.10.0. For 

our purpose we consider critical to clarify the notion of “memory object” that has been 

introduced by [19]. 

Based on [18] and [19] a “memory object” can be defined as memory data the semantics of 

which allow them be referenced as an entity. In other words, as “memory object” is referred 

every memory entity that can be seen as such from the code level. Examples include structs, 

arrays etc. that can be either statically or dynamically allocated. Depending on the latter, 

Valgrind employs different interception and system call wrapping mechanisms by using debug 

information to track their characteristics. Address, size and trace are saved in a sorted structure 

that offers efficient (logarithmic) searches. 

From now on, this research makes extensive reference to “memory objects” or “memory items” 

interchangeably, characterizing them as the main interaction unit between the profiled 
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application and the memory system. In this chapter we apprise of a feature that we added in 

the tool functionality. Our modifications are focused on making sampled data collection 

feasible by integrating extra functionality to keep track of the memory access number. We 

distinguish between two diverse tastes of sampling: one that refers to the total number of 

memory accesses and one that discriminates between loads and stores and subsequently 

performs sampling. 

3.2 Callgrind extension 

We start our explanatory description by introducing the extra functionalities provided in our 

tool version. 

3.2.1 API options 

In order to launch Callgrind, except for the standard edition flags that are described in the 

official manual and those added in the EVOP version, we have accumulated another set of 

three flags. The options presented in TABLE 3.1 have the following functionalities: 

o “--sampling-period=<integer>”: by setting this value equal to an integer value 

we instruct the tool to perform a sampled collection of memory accesses. As sampled 

value is considered the total amount of memory accesses, regardless if they write or 

read data. If the integer value is set to 0 then the execution proceeds by default without 

performing sampling. 

o “--sample-loads=no|yes”: this flag indicates the sampled value by setting it to 

“loads”. In combination with the previous one it indicates that only one out of 

<integer> loads will be accounted for. On the contrary, all store accesses will be 

monitored. 

o “--sample-stores=no|yes”: in analogy to the previous flag, this one changes the 

sampled variable to “stores”. Again, all loads will be monitored. 

While the first flag is optional on its own, as long as one of the two following flags is active 

then it becomes mandatory. Also, the default behavior of the two last flags is to be 

deactivated. This means that, for example, in case of sampling in loads, there is no need to 
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explicitly deactivate the store sampling. The case where both flags are active is supported; it 

results yet in the same behavior as if both were deactivated, i.e. total memory access sampling. 

3.2.2 Sampling implementation 

Having explained the user-options we can now proceed to the source code modifications that 

made these features possible. 

Our code alteration is generally focused on sim.c file which is under Callgrind directory in 

Valgrind’s source code package. Some minor interventions are to be noticed in files global.h 

and clo.c, nonetheless they are trivial since they serve in complying with the tools existing 

variable declaration hierarchy and in providing with user information, respectively. No 

mention of these changes shall be made. 

In LISTING 3.1 we present the function from sim.c which is responsible for tracking and 

recording an access to cache memory, determining if it is a cache hit or cache miss. By 

default, the function correlates the access to a referenced object, determines if the object is 

statically or dynamically allocated and, depending on that, follows different paths in order to 

store the details of the access.  

Our intervention is to be located mainly in the beginning of the function as presented in 

LISTING 3.2. In case a sampling period has been set by the user, the value is stored in an 

internal variable. An internal counter is used in order to control which memory accesses are to 

 

1.  --sampling-period=<integer> 

2.  --sample-loads=no|yes 

3.  --sample-stores=no|yes 
 

TABLE 3.1: Flags for the extended Callgrind 

version. 

Case A B C 

--sampling-period integer integer integer 

--sample-loads= - yes no 

--sample-stores= - no yes 
 

TABLE 3.2: Possible sampling cases. 
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be monitored. In particular, in case “A”, as pictured in TABLE 3.2, the counter is incremented 

every time memory is accessed. All these accesses that result in a counter value smaller than 

the sampling period are disregarded while the one that equates the two variables is the one 

which will be accounted for.  

Cases “B” and “C” are complementary. In case “B” the user has defined loads as the sampled 

access type. For every memory access we have to identify its type and increase the counter 

only when a load is encountered. All loads that keep the counter’s value smaller than the 

period are disregarded while the one that results in equalizing them is monitored. On the 

contrary, every store is accounted for since it does not interact with the sampling mechanism. 

An analog concept is followed for case “C” in which loads are replaces by stores and vice 

versa. 
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LISTING 3.1: Main object record algorithm. 

LISTING 3.2: Sampled object record algorithm. 
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CHAPTER 4 

EXPERIMENTATION 

The fundamental experimentation step is to discover these objects that present the biggest 

number of LL cache misses, i.e. to define the objects the access to which demands accessing 

the main memory rather than the cache. This is done by profiling the application-under-test 

and monitoring the memory objects it leverages. LL cache misses are of interest since they are 

essentially the ones that access main memory and thus cause excessive time overhead. By 

explicitly choosing the memory subsystem from which a LL cache miss shall be served we 

can minimize the extra access latency. Next, we appraise their optimal distribution to the 

subsystems of the suggested heterogeneous memory system with the aim of minimizing the 

total stall CPU stall cycles caused by accessing each of them. 

In this chapter we firstly describe the profiling methodology that has been followed; we 

illustrate the analysis procedure that was chosen; we specify the emulated heterogeneous 

memory system on which our experiments run and finally we lay a summary of the 

applications used as test-cases. Our work let be characterized as a revision of the experiments 

reported in [20] augmented by the sampling mechanism that was implemented by us. 

4.1 Profiling 

In order to associate accesses that missed LL cache to the memory objects that they refer we 

deployed the Valgrind framework and specifically its tool Callgrind. The way cache misses 

are correlated to a memory object is an automated method of the tool and generally relies on 

the debug information provided with the executable (usually controlled by –g option when 
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compiling) as well as on the allocation type of the particular memory object. For further 

information please refer to [20].  

Running the application under Callgrind tool while simulating a virtual cache adds a 

significant timing overhead that reduces profiling performance. Hence, we opted for the 

optimization techniques described in section 2.2.1 in order to start and terminate Callgrind’s 

instrumentation under user request. In particular, LISTING 2.2, that has already been presented, 

depicts the main computational part of one of our test cases which is controlled by the specific 

Callgrind macros. On top of that, we tried to achieve more accurate cache miss statistics by 

performing a warm-up round. This is feasible by commencing instrumentation at the 

beginning of the computational part of the code and zeroing all counters after the end of the 

first loop. This way cold misses are not accounted for in the final results while caches are 

already filled with contents and the profiling can proceed. Counters will start fresh to count the 

memory traffic at the beginning of the second loop until the end of the application. 

Initially, we performed the classic profiling process of monitoring every single memory 

access. The obtained results refer to the exact number of LL cache misses per memory object. 

Objects with big LL cache miss rate were the performance limiting ones, so they were 

optimally distributed into the subsystems and an initial speedup was computed. This speedup 

was considered the maximum achievable one given the subsystem architecture and the 

application. 

Regarding the sampled memory access profiling, we made use of the functionality that we 

developed in order to monitor memory accesses based on different sampling periods. 

Sampling refers to the total memory access number (case A as described in TABLE 3.2). The 

output is the sampled per-object number of cache misses and the aim is to define the optimal 

sampling period which leads to identical (or similar) speedup as the non-sampled results. Note 

that in case of large sampling periods a big number of accesses are discarded. Should a 

particular object be referenced solely by these accesses, this memory object will never be 

identified and thus remain hidden from the final results. As a consequence it is estimated that 

the final distribution has fewer objects to choose from, hence diverting the final performance 

optimization. 
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4.1.1 Sampling period 

One of the most crucial points is defining the optimal sampling period. To that end, we 

developed automated processes written in bash language in order to choose from a set of 

numbers, perform profiling, data distribution and speedup calculation. Depending on the latter, 

a smaller or bigger period was selected in order to advance the simulation until the optimal 

one was discovered. 

While a first glance would approve any number to be adopted as sampling period, a more 

meticulous inspection of the facts would advocate against it. The memory behavior of an 

application which is under question here is a function of the application’s source code. This 

source code can consist of loops, indirect references to the same basic memory objects or other 

access patterns. Selecting to monitor a random memory access out of a set of memory 

accesses is susceptible of discovering an unwilling access pattern. Therefore, in case of a loop 

for example, the result would be to monitor the same access (or accesses) in every code 

iteration. The outcome of such a profiling process is considered biased since it was generated 

by a problematic sampling rate, accounts for a limited number of objects and eventually leads 

to a non-optimal performance improvement. 

We foresee that a case similar to the one outlined before is rather rare to encounter. 

Nevertheless, in order to eliminate every possibility, in our experiments we used exclusively 

prime numbers as sampling periods. Prime numbers are characterized by all these properties 

that disallow a memory pattern discovery. Especially, by setting a prime number as sampling 

period we can guarantee that in every iteration (if the examined source code is iterative) 

different memory accesses are monitored. In general, we anticipate a better distribution of 

intercepted memory accesses.  

4.2 Analysis 

The profiled data analysis is conducted with the ultimate target of producing an object 

distribution among the memory subsystems. To address this issue we use EVOP’s 

dmem_advisor. As reported in [19] and [20] this tool implements a relaxation of the classical 

textbook 0/1 knapsack problem [21]: Different knapsacks are the various memory subsystems, 
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their capacity is the memory size while the items to pack are the memory objects with their 

size to represent their weight. Every knapsack modifies the value of its items by multiplying it 

by the CPU stall cycles (each knapsack, i.e. each memory subsystem demonstrates different 

load latency). This situation is addressed effectively by targeting each subsystem 

independently in a latency-ascending order and by placing objects with more cache misses to 

the “fastest” memories, provided they fulfill the subsystem’s size requirements. 

To perform data distribution based on the sampled data we modified the dmem_advisor 

source code in order to calculate appropriately the CPU saved stall cycles. 

It is important to note that memory objects are prioritized depending on their load cache 

misses. We consider zero stall cycles when a store is issued by assuming a buffered write-

through cache with infinite buffer bandwidth. In practice we expect this simplification not 

alter the final results since the CPU stall cycles caused by loads are notably more than the ones 

caused by stores. 

4.3 Technical characteristics 

In the following subsection we define the simulated heterogeneous memory system that was 

used as the basis of our experiments, as well as the test cases which produced the final results. 

4.3.1 Heterogeneous memory system 

Our memory system can be divided into two distinct subsystem entities: (a) a baseline 

standard one which consists of caches and (b) a modifiable one which is a hodgepodge of 

various memory types. The simulated cache characteristics for every cache level such as size, 

associativity and line size are presented in TABLE 4.1. Regarding cache latency, we consider 

zero stall cycles when L1 cache is accessed and 20 CPU stall cycles when L2 (or LL) cache is 

accessed. L2 latency is set to a relatively large number in order to compensate for the absence 

of an L3 level cache which typically has higher latency, yet it cannot be simulated by 

Callgrind. 

 We then distinguish among a Baseline scenario, Scenario 1 and Scenario 2. The first one is 

our point of reference: it consists solely of a DRAM memory (this system represents a trivial 



| 23 

 

DESCRIPTION SIZE ASSOCIATIVITY LINE SIZE 
L1 INSTRUCTION 32 KB 8 64 B 

L1 DATA 32 KB 8 64 B 
L2 UNIFIED 8 MB 16 64 B 

 

TABLE 4.1: Cache configuration for our experiments. 

 

MEMORY SCENARIO 
DESCRIPTION LATENCY BASELINE SCENARIO 1 SCENARIO 2 

L1  0 C 32 KB + 32 KB 
L2 20 C 8 MB 
SP 20 C 0 B 8 MB 8 MB 
3D 135 C 0 B 8 GB 1 GB 

DRAM 200 C 32 GB 32 GB 4 GB 
NVRAM 20,000 C 0 B 0 B 32 GB 

 

TABLE 4.2: Memory configuration for our experiments. 

 
computing system). In Scenario 1 we maintain the same DRAM memory while adding a 

Scratchpad and a 3D stacked memory. Scenario 2, which manifests a more energy-friendly 

approach, consists of the same mosaic of memory subsystems as the previous one, plus a 

NVRAM component. In TABLE 4.2 we list the characteristics of each memory subsystem in 

function to the Scenario they belong. 

 Let it be emphasized that we do not actually simulate the memory subsystems; on the contrary 

we deploy average latency estimations. 

4.3.2 Test cases 

In our research we have opted for two miniapplications from the Mantevo application 

performance project [22]: MiniMD and HPCCG. They combine some or all of the dominant 

numerical kernels contained in an actual stand-alone application. Thus, they can model the 

behavior of more complex applications. 

o MiniMD is a parallel molecular dynamics (MD) simulation package following many of 

the LAMMPS MD simulator [23]. It simulates the movement of atoms in a box area 

according to Newtonian laws. Users are given the freedom to control a variety of 

simulation parameters such as the simulated size, atom density, timestep size, number 

of timesteps etc. Velocities, positions and forces of the atoms are computed iteratively 
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on every timestep while every n timesteps a re-neighboring is performed so that each 

atom’s new neighbors are computed. In our experiments we use MiniMD version 1.2 

that leverages a Lennard-Jones (LJ) interaction among 2.9*10
6
 atoms. The flags used 

are (-t 8 –n 2 –s 90). 

o HPCCG is a simple conjugate gradient benchmark mimicking the behavior of 

applications deploying this method as their main computational kernel. The problem 

results in the solution of a sparse symmetric matrix that requires high memory 

interaction. We use HPCCG reference version 1.0 to run a 400*400*400 problem 

which uses roughly 23 GB of memory. Due to the long simulation time we have 

reduced the upper limit of the allowed iterations therefore amplifying the achieved 

accuracy. 
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CHAPTER 5 

RESULTS 

In this chapter we are analyze the experimental results. First we profile the miniapplications 

monitoring all memory accesses. From the obtained data we distribute the memory objects 

optimally in our emulated memory subsystems and compute the performance speedup. This is 

defined as the maximum possible speedup. 

We repeat the same process imposing sampled memory access profiling and compare the 

achieved performance gain among the various sampling periods. This results in determining 

an optimal sampling period for each test-case. We define as optimal sampling period the 

biggest prime number that when used as sampling period produces similar speedup (or in 

general execution performance) as in the non-sampled profiling case. We also interpret the 

correlation between sampling period, access patterns and discovered memory objects. 

Our results include an estimation of the saved CPU cycles per application due to the effective 

data placement given the latency parameters introduced in 4.3.1. MiniMD results are followed 

by HPCCG ones while at the end we draw some overall conclusions 
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FIGURE 5.1: Object distribution for MiniMD – Scenario 1 – Sampling period: 

none 
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5.1 MiniMD 

Our results for MiniMD initially include 28 identified objects that cause LL cache misses. 

These objects tend to decrease in number as the sampling period increases. 

5.1.1 Complete memory access profiling 

SCENARIO 1: TABLE 5.1(a) summarizes our results for MiniMD in Scenario 1. Only 19 out of 

the 28 memory objects are small enough in order to leverage of the low-latency SP memory 

leaving 47% unoccupied space. The rest of them are stored in 3D memory by occupying less 

than the half of its capacity. The performance improvement is 10.21% comparing to the 

baseline execution and it is interestingly due to the objects placed in 3D memory. These 

objects, although fewer than those placed in SP memory system are responsible for more data 

accesses. Indeed, in FIGURE 5.1 we present the partial output of dmem_advisor in which 

objects are related to their memory accesses and their size. SP memory hosts more than the 3D 

memory’s objects, yet CPU does not interact significantly with them. 

SCENARIO 2: TABLE 5.1(b) presents the results obtained by simulating the architecture of 

Scenario 2. The object distribution is identical to the last one with the exception that one 

object is moved from 3D memory to DRAM. Although this might seem as a minor change, in 

fact it influences the final speed up greatly. The number of memory accesses to this object 

FIGURE 5.2: Object distribution for MiniMD – Scenario 1 – Sampling period: 

52,177. 
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proves to be the main contributing factor to the Scenario 1 speedup in a manner that its 

transition to DRAM causes the performance improvement to lessen to one third of the initial. 

5.1.2 Sampled memory access profiling 

After having defined the maximum possible speedup, which is obtained by accounting for 

every memory access we initiated the sampling experimentation. The sampling period 

spectrum was set from 199 to 4,037,729. Both values however are in the extremes resulting in 

non-optimal results: the first one has identical behavior to the non-sampled profiling in terms 

of data discovery; the only difference lays on the fact that objects with insignificant number of 

read accesses, such as the first objects of FIGURE 5.1, are omitted from the final distribution as 

they are not discovered. The second sampling period value, on the other hand, has exactly the 

opposite outcome. Sparse sampling results in the discovery of only one memory object which 

does not improve the speedup significantly. 

We continued following a relaxed binary search among the sampling period values and 

concluded that the maximum acceptable period is 52,177. In that case only 8 objects are 

discovered. In FIGURE 5.2 we present the partial output of dmem_advisor for this dataset. 

The per-object memory references are rather fewer than their counterparts in FIGURE 5.1 since 

they refer to the sampled memory accesses, yet in both scenarios the final performance is very 

close to the initial one. 

SCENARIO 1: TABLE 5.2(a) summarizes our results for MiniMD in Scenario 1 when memory 

accesses are intercepted every 52,177. Only one object fits in the fast SP memory covering ¼ 

of its available storage capacity; however its accesses are not enough to contribute in the final 

speedup. The rest of the discovered objects are stored in 3D memory and offer a performance 

improvement of 10.15%. 

SCENARIO 2: TABLE 5.2(b) summarizes our results for MiniMD in Scenario 2. Only 1 object is 

small enough to fit in SP memory but similarly to the previous outcome it does not offer 

additional speedup. This is also the case for the object that is stored in DRAM memory. On 

the contrary, 3D memory hosts 6 objects which are entirely responsible for the total 

performance speedup that rises to 5.08% 
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5.1.3 Sampling period comparison – Conclusions  

In our experimentation we aimed in modifying the sampling period in order to define the one 

that preserves the highest possible speedup. In FIGURE 5.3 we have depicted graphically the 

correlation between sampling period and the final speedup for Scenario 1. We can observe that 

for the chosen prime numbers the speedup remains generally stable until the threshold of 

52,177. After that it drops significantly and remains low, oscillating between two uninteresting 

values.  

 

 

 

 

 

 

 

 
FIGURE 5.3: Correlation between final speedup and sampling period for miniMD test 

case in Scenario 1. 

FIGURE 5.4: Correlation between final speedup and sampling period for HPCCG test 

case in Scenario 1 
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FIGURE 5.5: Object distribution for HPCCG in Scenario 1 for zero sampling period. The 

objects in bold, placed in SP memory are discarded when performing sampled memory 

access profiling. 
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This behavior can be explained by gaining an insight to the source code and the memory 

access pattern it imposes. Firstly we remind that the main computational code which is 

profiled is run iteratively for every timestep, nevertheless we only execute two timesteps, from 

which only the second one is taken into consideration (as stated before, the first one acts as a 

cache warm-up stage). Therefore, the access pattern can be considered serial in the sense that 

memory objects are accessed (and thus have the chance to be discovered) only during this one 

iteration. Should the sampling period be too wide in comparison to the total memory accesses 

of an object, this particular object has more possibilities to be discarded, compromising, this 

way, the ultimate speedup.  

5.2 HPCCG 

Our results for MiniMD initially include 19 identified objects that cause LL cache misses. 

These objects tend to decrease in number as the sampling period increases 

5.2.1 Complete memory access profiling 

SCENARIO 1: In TABLE 5.3(a) we present the object distribution for the Scenario 1 architecture. 

10 objects are small enough in order to fit in SP memory, though leaving it almost empty. 3D 

memory utilizes almost 100% of its capacity by storing 4 objects; these are the unique factor 

that results in performance a speedup of 12.11%. Finally, 5 objects are too big to be stored 

anywhere but in DRAM. 

SCENARIO 2: TABLE 5.3(b) shows the memory object distribution in Scenario 2. This case 

diverges from the previous ones since we obtain a final slowdown rather than a speedup: 

although 10 objects can be stored in SP memory (as in the previous case), 2 in 3D memory 

and 5 in DRAM, this time NVRAM is being utilized by 2 memory objects. The long latency 

of this memory architecture in combination to the high memory access frequency of the 

particular objects results in a tremendous slowdown of ~5990%. 

5.2.2 Sampled memory access profiling 

Similarly as before, we set two prime numbers as lower and upper limit for the examined 

sampling periods. Our experiments range from 20,441 to 1,909,095,829. Profiling using the 
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LISTING 5.1: The main computational part of HPCCG is enclosed in a for-loop. The 

source code is enhanced with macros that handle the interaction with Callgrind. 

 

first period behaves exactly as the non-sampled case discovering the same objects apart from 

the “obviously unimportant” ones that are shown in the beginning of FIGURE 5.5 and that do 

not play any role in the final speedup. The second sampling period identifies only one memory 

object that is placed in 3D memory thus achieving a very limited speedup. After the relaxed 

binary search the optimal sampling period for HPCCG was defined as 37,012,243. Up until 

this sampling period it is guaranteed that the final calculated speedup is close to the maximum 

possible one.  

SCENARIO 1: In TABLE 5.4(a) we lay data distribution for Scenario 1 when profiling monitored 

one out of 37,012,243 memory accesses. There are no small enough objects to fit in SP 

memory, therefore it remains empty. On the contrary, 3D memory is almost fully occupied by 

the same objects as in the non-sampled profiling. Once again speedup rises up to 12.16% and 

is exclusively achieved because of these memory objects. Due to size limitations 3 memory 

objects are obliged to be stored in DRAM memory. 

SCENARIO 2: TABLE 5.4(b) presents the data distribution for Scenario 2 when using the same 

sampling period. No objects are stored in SP memory while 3D and NVRAM are occupied by 

the same objects as before. DRAM in this case is the hosting memory of only 3 objects, 2 

fewer than before. As it was anticipated memory architecture in combination with the memory 

object distribution result in a slowdown of ~5990%, instead of a speedup. NVRAM is again 

the prime reason for this compromise.  
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5.2.3 Sampling period comparison – Conclusions 

The correlation between sampling periods and final speedup is slightly different from the 

previous case. The difference can be seen initially from the sampling period limits that were 

chosen for profiling. Intuitively, the absolute memory access number is to account for that, i.e. 

the more the accesses to memory, the wider sampling period can be. There is a proportional 

relationship between these two values that allows us to generalize. 

On the other hand, there is an additional intrinsic characteristic of the application that allows 

such big sampling periods be effective: its memory access pattern. HPCCG, being a purely 

iterative method, places its main computational code in a loop. As seen in LISTING 5.1 this 

loop executes until the algorithm converges and the predicted lower limit is reached (in line 1). 

Computations refer to the same variables, to the same structures and eventually to the same 

memory locations, therefore obliging a repetitive memory access scheme. This can be 

interpreted as follows: memory objects that represent computation variables are accessed in 

every iteration; sampled profiling forces some memory accesses be discarded; prime numbers 

that are used as sampling periods exclude discovery of memory access patterns; sampling 

period can widen in reasonable frames (compared to the absolute access number) and still 

produce effective speedup. Indeed, the special way that memory interaction is formed enables 

lower sampling frequencies be implemented.  

In FIGURE 5.4 we present the experimentation process for various sampling periods. We can 

pinpoint the period threshold that was defined above; nonetheless there is another interesting 

characteristic worth mentioning. Although we set 37,012,243 as the optimal sampling period, 

in fact there are even bigger periods that result in the same maximum speedup. For instance, 

periods 111,005,099, 111,008,371 and 111,013,051 all provide the same optimal performance 

improvement; yet in between these numbers can be found other periods that have a 

compromising behavior. In our understanding, there is a correlation between (a) the source 

code iteration number, and subsequently how many times each object access is repeated, and 

(b) the sampling period. In other words, when sampling period approaches the order of 

magnitude of the absolute access number per object, then small variations at the first might 
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result in discovering or omitting objects that play a definitive role in the final performance. In 

Figure 5.6 we emphasize that fact. 

5.3 General conclusions 

5.3.1 Performance 

Regarding data distribution, in all cases SP memory presents either low or medium occupancy 

rates, thus not contributing to the final speedup. This is due to the low LL cache miss rate of 

the small objects that are placed in this memory subsystem. We observe an idle NVRAM in 

MiniMD case, meaning that the optimal performance can be achieved without its usage. In 

HPCCG case, two objects are placed in NVRAM because of size limitations causing a 

tremendous slowdown. Special attention should be paid in the combination between memory 

subsystem capacity and memory object size since performance undermining is possible. 3D 

memory with its specific characteristics is the architecture that proves beneficial in all cases. 

Despite the performance drop in one case, in general the varying memory latencies and sizes 

that are provided by the different subsystems of the heterogeneous memory system are proven 

beneficial and confirm that many applications can merit from a cautious data distribution. 

5.3.2 Sampling 

Sampled profiling that aims in detecting memory objects and distributing them can offer both 

advantages if used correctly and present a memory image that diverges greatly from the real 

one, if used improperly. In both cases, sampling periods up to the one that was defined as the 

optimal had similar effect on the detected objects: they mimicked a filtering function of 

discarding objects that have low access rate and kept the ones that are accessed frequently. 

The low access rate objects are allowed to be discarded since they cannot be beneficial in 

performance improvement while the others must be taken into consideration for the final 

distribution. Depending on the sampling period, the same or slightly different objects are 

discovered, however this should pose no threat as long as the latter is set carefully. In case of 

HPCCG, when the sampling period is set too large in Scenario 2 we foresee a potential 

speedup which is far from what is actually happening. This should emphasize on the 

importance of setting an application-specific (or application type-specific) sampling period. 
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We also discovered a close relationship between the memory access behavior and the rate in 

which accesses should be monitored which, in our understanding, can be applied on every 

application that exhibits similar access pattern.  
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CHAPTER 6 

SUMMARY 

This work commenced by introducing the notion of heterogeneous memory systems as an 

answer to the saturated CPU performance. Systems that deploy such memory organization 

have already established their place both in academic / scientific field and in market. Every 

component of such system presents distinct characteristics, thus, in order for an application to 

benefit the most from it, it is mandatory that the data it leverages be carefully distributed in the 

various subsystems. 

To address this issue we proposed application profiling techniques distinguishing between 

software and hardware approach. For software, we chose Valgrind and in particular EVOP, an 

extension of it. Our interaction with the tool drove us in clarifying a potentially misleading 

point regarding the cache simulator employed by the tool. In the process of doing so we 

introduced Callgrind, a complete software profiler, and analyzed various parts of Valgrind’s 

(i.e. EVOP’s) source code that is used in cache simulation, easing future developers and 

technology enthusiasts to gain a more user-friendly insight to the tool’s internal organization. 

In the same spirit, we presented a full set of choices provided by Callgrind in order to control 

the profiled execution and achieve more time efficient profiling execution. 

On the other hand, we presented some hardware profiling principles such as the need for 

sampling. To address this problem we implemented a sampling mechanism by extending 

EVOP’s source code and integrating our changes to the tool’s API. Our experiments advanced 

by defining two similar, yet diverse heterogeneous memory architectures, profiling two test 
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cases with characteristic memory behavior in order to monitor LL cache misses, extracting the 

memory objects they interact with and distributing them to the different memory subsystems. 

Profiling was performed both by intercepting every single memory access and in a sampled 

manner in order to define the optimal sampling period that allows maximum performance 

speedup. 

Our results can be divided in two categories. The first one regards the maximum speedup 

achieved by the combination of hybrid memory system and cautious data distribution; in both 

test cases we observe that applications merit from it. The second one reflects how different 

sampling periods are related to diverse memory access patterns. Our conclusions can be used 

in order to eliminate the sampling rate margins when opting for hardware profiling. 

6.1 Future research 

In this subsection we propose future research activities that can be triggered by our research. 

They can be divided in two groups, those aiming in assessing the application-specific 

sampling periods in hardware profiling mechanisms and those defining the optimal memory 

subsystem mosaic. 

ASSESS SAMPLING ON HARDWARE 

Software profiling, as the one described in this work, although accurate, poses the threat of 

extreme timing overhead that can be a forbidding factor when the application size is too big. 

On the contrary, hardware profiling eliminates this drawback by intercepting actual CPU 

events. These events however have to sampled, and depending on the sampling period, a 

different sort of timing overhead can be added. If sampling frequency is too high, then 

profiling performance is damaged, while in case of too low sampling frequency, the 

effectiveness and the accuracy of the results might be doubted.  

The sampling period thresholds that we defined are effective when used in software. We also 

foresee that they can be applied in hardware-aided profiling, in order to save execution time; 

however this needs to be examined and verified. In case the results are similar, and given that 

the tested miniapplications (test cases) have characteristic access patterns of more complex 
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applications, generalizations and assumptions about the sampling rates of other applications 

are safe to be made in order to maximize profiling performance. 

MEMORY SUBSYSTEM ARCHITECTURE 

In this work we assess the optimal distribution of application data among different memory 

subsystems. The methodology that is followed is based on a form of data oriented profiling, 

emphasizes the importance of cautious data placement while implying the influence of the 

subsystem combination and object sizes to the final performance. In two cases, a particular 

subsystem either remains unutilized or diminishes performance. Following our analysis we 

consider feasible to determine prototype heterogeneous memory system architectures for 

different applications depending on the size of the problem they are addressing to the end of 

achieving improved performance. 
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