

ANALYSIS OF DATA PLACEMENT

TECHNIQUES IN HETEROGENEOUS

MEMORIES

DIPLOMA THESIS

Author:

Dimitrios VOULGARIS

Supervisor:

Nikolaos BELLAS

Examiners:

Dimitrios KSATSAROS

Spyros LALIS

A thesis submitted in fulfillment of the requirements for

the degree of Diploma

Volos, October 2019

| ii

ΑΝΑΛΤ΢Η ΣΕΥΝΙΚΩΝ ΣΟΠΟΘΕΣΗ΢Η΢

ΔΕΔΟΜΕΝΩΝ ΢Ε ΕΣΕΡΟΓΕΝΕΙ΢ ΜΝΗΜΕ΢

Βόινο, Οθηώβξηνο 2019

ΓΙΠΛΩΜΑΣΙΚΗ ΔΡΓΑ΢ΙΑ

Σςγγπαυέαρ:

Γεκήηξηνο ΒΟΤΛΓΑΡΗ΢

Επιβλέπων:

Νηθόιανο ΜΠΔΛΛΑ΢

Εξεταστική επιτποπή:

Γεκήηξηνο ΚΑΣ΢ΑΡΟ΢

΢πύξνο ΛΑΛΗ΢

| iii

Acknowledgements

My greatest “Thank You” to my supervisor, Prof. Nikolaos Bellas. Once the experimental

process was completed, writing of this thesis would be impossible without his assistance. His

door was always open for valuable advice and continuous steering.

This work was partly completed in Barcelona Supercomputing Center (BSC) in the frames of

“PRACE SoHPC” program. I am therefore grateful for sharing their tools and source code

with me. In particular I consider myself greatly indebted to researchers Mr. Antonio Peña and

Mr. Marc Jorda, as well as to all members of “Accelerators and Communications for HPC”

team of the “Programming Models” group at the “Computer Sciences” department of

Barcelona Supercomputing Center (BSC). They offered immense help in clarifying the

experimentation process and demonstrating the tools to be used while tided me over every

time a trouble was encountered.

Finally I couldn’t omit my beloved friends and family for their unconditional support and

patience all these years. Their motivational words and encouragement was crucial.

 Thank you all!

| iv

UNIVERSITY OF THESSALY

Abstract

Department of Electrical and Computer Engineering

Diploma

Analysis of data placement techniques in heterogeneous memories

By Dimitrios VOULGARIS

Heterogeneous memory systems have been recently introduced as a consequence of the

continuously growing demand for fast accessible data. Simply assigning random data to the

various memory subsystems of a memory system is not working as expected; on the contrary

it might prove performance limiting. In this work we employ software profiling techniques

using Valgrind (i.e. EVOP) in order to identify the memory access behavior of specific

scientific applications and optimally distribute their data in a hybrid memory system with the

ultimate scope of achieving a performance improvement. Doing so, we provide a detailed

description of Valgrind’s source code which reveals a potential bug but also acts in an

explanatory way for future users and developers.

We also facilitated sampled memory access profiling by extending the basic tool’s source

code. In that aspect we provide a comprehensive report of our development stages as well as

the available accumulated features. Profiling, in that case, enabled a comparative research

between sampled and non-sampled results which eventually allowed us to draw conclusions

that connect the application-characteristic memory access pattern and sampling periods that

generate optimal performance speedup.

| v

ΠΑΝΔΠΙ΢ΣΗΜΙΟ ΘΔ΢΢ΑΛΙΑ΢

Πεξίιεςε

Σκήκα Ηιεθηξνιόγσλ Μεραληθώλ θαη Μεραληθώλ Τπνινγηζηώλ

Γηπισκαηηθή Δξγαζία

Ανάλσζη Σετνικών Σοποθέηηζης Δεδομένων ζε Εηερογενείς Μνήμες

από ηνλ Γεκήηξην ΒΟΤΛΓΑΡΗ

Σα εηεξνγελή ζπζηήκαηα κλήκεο παξνπζηάζηεθαλ σο απάληεζε ζηελ ζπλερώο απμαλόκελε

αλάγθε γξήγνξεο πξόζβαζεο ζε δεδνκέλα. Μηα απιή θαηαλνκή ησλ δεδνκέλσλ εθαξκνγήο

ζηα δηάθνξα ππνζπζηήκαηα ελόο ζπζηήκαηνο κλήκεο, σζηόζν, δελ εγγπάηαη ηελ βειηίσζε

ηεο απόδνζεο από άπνςε ρξόλνπ. Αληίζεηα, κπνξεί λα ηελ επηδεηλώζεη πεξαηηέξσ. ΢ε απηή

ηελ εξγαζία θάλνπκε ρξήζε software profiling κεζόδσλ επηζηξαηεύνληαο ην εξγαιείν

Valgrind κε ζθνπό λα θαζνξίζνπκε ηελ αιιειεπίδξαζε κε ηελ κλήκε πνπ παξνπζηάδνπλ

ζπγθεθξηκέλεο επηζηεκνληθέο εθαξκνγέο. ΢ηελ ζπλέρεηα, θαηαλέκνπκε ηα δεδνκέλα απηώλ

ζην πβξηδηθό ζύζηεκα κλήκεο κε ηειηθό ζθνπό ηελ αύμεζε ηεο απόδνζεο. ΢ηα πεξηερόκελα

ηεο εξγαζίαο παξέρεηαη κηα ιεπηνκεξήο πεξηγξαθή ηνπ πεγαίνπ θώδηθα (source code) ηνπ

Valgrind ε νπνία αθελόο θέξλεη ζηελ επηθάλεηα έλα πηζαλό bug ηνπ θώδηθα θαη αθεηέξνπ

ρξεζηκεύεη σο ζεκείν αλαθνξάο γηα δπλεηηθνύο ρξήζηεο θαη πξνγξακκαηηζηέο.

Δπίζεο, επεθηείλνληαο ην Valgrind θαηαζηήζακε δπλαηή ηελ δεηγκαηνιεπηηθή θαηαγξαθή

πξνζβάζεσλ ζηελ κλήκε παξαζέηνληαο κηα εθηελή θαηαγξαθή ησλ βεκάησλ πνπ

αθνινπζήζεθαλ αιιά θαη ησλ επηινγώλ ρξήζηε πνπ πξνζηέζεθαλ. Οη πξνζζήθεο απηέο

επέηξεςαλ κηα ζπγθξηηηθή κειέηε κεηαμύ απνηειεζκάησλ πνπ πξνήιζαλ από δεηγκαηνιεςία

θαη απηώλ πνπ ιήθζεθαλ από ην θιαζηθό profiling. Σα απνηειέζκαηα ζπλδένπλ ην

ραξαθηεξηζηηθό αλά εθαξκνγή κνηίβν πξνζπέιαζεο κλήκεο κε ηελ επηηξεπηή ζπρλόηεηα

δεηγκαηνιεςίαο πνπ επηθέξεη κέγηζηε βειηίσζε απόδνζεο.

| vi

Copyright © 2019 by Dimitrios Voulgaris

“The copyright of this thesis rests with the authors. No quotations from it should be published

without the authors’ prior written consent and information derived from it should be

acknowledged”.

| vii

Contents

Acknowledgements…………………………………………………………………...…iii

Abstract…………………………………………………………………………….……iv

1. Introduction 1

1.1 Background…………………………………………………………………………....1

1.1.1 General………………………………………………………………………...1

1.1.2 Memory architectures…………………………………………………………3

1.2 Problem Statement and Contributions…………………………………………..…….5

1.3 Thesis structure………………………………………………………..………………6

2. Valgrind 7

2.1 Overview………………………………………………………………………...…….7

2.2 Callgrind………………………………………………………………………...…….8

2.2.1 Source code instrumentation…………………………………………….…….9

2.2.2 Callgrind options……………………………………………………………..10

2.3 Last level cache simulation…………………………………………………………..10

2.3.1 The matrix multiplication example…………………………………………..10

2.3.2 Source code inspection………………………………………………………12

3. Valgrind Tool Extension 14

3.1 Overview……………………………………………………………………………..14

3.2 Callgrind extension…………………………………………………………………..15

3.2.1 API options…………………………………………………………………..15

3.2.2 Sampling implementation……………………………………………………16

3.2.3

| viii

4. Experimentation 19

4.1 Profiling……………………………………………………………………………...19

4.1.1 Sampling period……………………………………………………………...21

4.2 Analysis……………………………………………………………………………...21

4.3 Technical characteristics……………………………………………….…………….22

4.3.1 Heterogeneous memory system…………………………………………...…22

4.3.2 Test cases…………………………………………………………………….22

5. Results 25

5.1 MiniMD…………………………………………………………………………..….27

5.1.1 Complete memory access profiling…………………………………….……27

5.1.2 Sampled memory access profiling…………………………………………..28

5.1.3 Sampling period comparison – Conclusions ………………………………..29

5.2 HPCCG…………………………………………………………………..………….31

5.2.1 Complete memory access profiling…………………………………….……31

5.2.2 Sampled memory access profiling………………………………………...…31

5.2.3 Sampling period comparison – Conclusions…………………………………33

5.3 General conclusions………………………………………………………………….34

5.3.1 Performance………………………………………………………………….34

5.3.2 Sampling………………………………………………………………….….34

6. Summary 36

6.1 Future research……………………………………………………………………….37

Bibliography 39

| ix

List of FIGURES

1.1 Hierarchical versus equally managed memory view………………………………….4

2.1 Simplified high-level view of the interaction between Valgrind and its tools. ………7

2.2 Warning informing about the LL cache configuration. ……………………………..10

2.3 cg_arch.c function flow chart. ………………………………………………….13

5.1 Object distribution for miniMD in Scenario 1 for zero sampling period. The objects in

bold, placed in SP memory are discarded when performing sampled memory access

profiling. …………………………………………………………………….………26

5.2 Object distribution for MiniMD – Scenario 1 – Sampling period: 52,177…………..27

5.3 Correlation between final speedup and sampling period for miniMD test case in

Scenario 1. ………………………………………………………………………..…29

5.4 Correlation between final speedup and sampling period for HPCCG test case in

Scenario 1. …………………………………………………………………………..29

5.5 Object distribution for HPCCG in Scenario 1 for zero sampling period. The objects in

bold, placed in SP memory are discarded when performing sampled memory access

profiling. …………………………………………………………………………….30

| x

List of Tables

2.1 Cache misses depending on the cache size……………………………..……………11

3.1 Flags for the extended Callgrind version. …………………………………………..16

3.2 Possible sampling cases. …………………………………………………………….16

4.1 Cache configuration for our experiments. ……………..…………………………....23

4.2 Memory configuration for our experiments. ……………………..………………....23

5.1.a Object distribution for MiniMD – Scenario 1 – Sampling period: none…………….26

5.1.b Object distribution for MiniMD – Scenario 2 – Sampling period: none. …………...26

5.2.a Object distribution for MiniMD – Scenario 1 – Sampling period: 52,177. …………26

5.2.b Object distribution for MiniMD – Scenario 2 – Sampling period: 52,177. …………26

5.3.a Object distribution for HPCCG – Scenario 1 – Sampling period: none. .…………...30

5.3.b Object distribution for HPCCG – Scenario 1 – Sampling period: none. .…………...30

5.4.a Object distribution for HPCCG – Scenario 1 – Sampling period: 37,012,243. . ……30

5.4.b Object distribution for HPCCG – Scenario 1 – Sampling period: 37,012,243. . ……30

| xi

List of LISTINGS

2.1 Code-specific instrumentation and data collection macros. ………………………….9

2.2 Code-specific instrumentation and data collection example. ………………………...9

2.3 Instrumentation and data collection flags. ……………………………………………9

2.4 Matrix multiplication implementation. ……………………………………………...11

3.1 Main object record algorithm. ………………………………………………………18

3.2 Sampled object record algorithm. …………………………………………………...18

5.1 The main computational part of HPCCG is enclosed in a for-loop. The source code is

enhanced with macros that handle the interaction with Callgrind. …………………32

| xii

| xiii

The complexity for minimum component costs has increased at a rate of roughly a factor of

two per year […]. Certainly over the short term this rate can be expected to continue, if not to

increase. Over the longer term, the rate of increase is a bit more uncertain, although there is

no reason to believe it will not remain nearly constant for at least 10 years.”

Gordon. E. Moore in [1]

| 1

CHAPTER 1

INTRODUCTION

1.1 Background

1.1.1 General

It was more than 50 years ago when Moore noticed this technological tendency of

concentrating more “complex electronic functions in limited space”, and indeed for the last

few decades the scientific and industrial community has been making a huge effort to live up

to these expectations, elevating Moore’s saying to a globally accepted law. Computer

components have gained complexity; have become compact and effective in order to cover the

continuously increasing computational needs. So far, a CPU-oriented approach has been in the

foreground: pipelined CPUs have targeted instruction throughput by assigning time intervals

to different operations, whereas superscalar CPUs are exploiting instruction level parallelism.

On the other hand, multicore systems combined computational power of several cores in order

to achieve higher performance.

On the contrary, memory systems are still mainly based on DRAM technology which,

although “it maintains the best balance among capacity, bandwidth and cost” [2], it presents a

few drawbacks: various technological constraints as well as a linear cost relationship to

overcome these hurdles have not permitted a large bandwidth increase, while the slow scale

rate of interconnect capacitance of on- and off-chip has only worsen the situation. What is

more, accessing main memory incurs high latency. Therefore, CPU improvements outpaced

| 2

the DRAM ones resulting in the so-called “memory wall” or “memory gap”. At a bandwidth-

bound case, a significant part of the computational potential remains idle due to memory

controller’s incapability of keeping up with its requests’ frequency.

Cache memories have been proposed to bridge the memory wall. Caches are highly

sophisticated pieces of hardware usually arranged in increasing size and latency levels. An

access to the first cache level (L1) presents unimportant CPU stall cycles; to the second cache

level (L2) are required around 10 cycles and they keep increasing with the cache level [3].

Although cache access latency is negligible compared to the main memory, caches are

transparent to compilers and programmers, i.e. they are explicitly hardware managed not

allowing direct external control in data placement and replacement. Following the same

algorithms to interchange their data, in extreme cases, cache behavior might affect software

performance negatively. In the common case, we can say that software is restricted by the way

cache memories handle their data, therefore demanding a full profiling process in order to

avoid misuse. Cores working in parallel can only exacerbate the situation as they usually

compete for accesses in shared caches. A program’s performance can be significantly

degraded by contention such as wrongly evicted shared data: data is evicted from a shared

cache due to capacity restrictions after having been utilized by core P1 but not yet by core P2,

creating the need to bring it back as soon as P2 accesses it. As mentioned in [4] there are few,

yet complex workarounds that permit indirect cache control: non-temporal instructions [5],

cache partitioning based on page coloring [6] and memory footprint reduction via loop tiling

[7].

With scarcely any optimization opportunities, a further optimization addressing the memory

performance issue came from Heterogeneous memory systems (or Hybrid memory systems -

HM). Such systems accommodate memories featuring different intrinsic characteristics.

Namely, latency capacity, bandwidth, energy consumption or volatility can vary depending on

the different architecture. Examples of commercially available HM systems are the following:

A. KeyStone II [8] which is a server-class ARM and DSP heterogeneous architecture

combining three HM levels: L2 scratchpad memory, L3 MSMC and DDR. It also

provides the API to place the data in each layer.

| 3

B. Intel® Xeon Phi
TM

 [9] which contains both DDR and MCMDRAM, a 3D stacked

memory. The API for data placement is also offered by the vendor, while 3

combinations of the memory subsystems can be found: cache mode, flat mode, hybrid

mode.

1.1.2 Memory architectures

During this technological shift, many memory architectures have appeared both in scientific

papers and in industry. What follows is a short review of the different commercially available

memory system architecture. Some of them are considered key factors for this paper:

A. Scratchpad memory [10] (or SPM) is an explicitly software managed, cache-like

memory, placed as close to the ALU as a L1 cache. It offers rapid data retrieval and is

ideal for storing small data objects. Its superiority lies in the high level of control

which allows it to work without memory contention and faulty data eviction. On the

other hand, the control in such small granularity that is required has restricted its

integration solely to embedded systems not permitting general purpose processors to

take advantage of it.

B. On-chip 3D-Stacked Memory [11] is based on the traditional DRAM benefitting from

the technology’s advantages. What is different is the 3D organization which implies it

is physically stacked among the layers of the processor die, therefore making better use

of the die-to-die bandwidth and presenting lower access latencies in comparison to its

external DRAM counterpart. According to [11] and [12] an overall 30% reduction in

access latency can be achieved.

C. DRAM (dynamic RAM) [13] which is to be found in the form of an integrated circuit

uses capacitors to store one bit of information and presents the best balance between

low-cost and high-capacity computer memory. The differentiating factor is the need of

an external refresh circuit that recharges the capacitors (i.e. rewrites the data) even if it

has not been accessed. This non-volatility intrinsic characteristic introduces a non-

negligible energy consumption as well as additional access delay.

D. NVRAM [14] (or non-volatile RAM) offers data storage without energy consumption.

Data that is directly stored in NVRAM does not need be copied to the main memory

| 4

 (a) Hierarchical memory view (b) Explicitly managed memory

FIGURE 1.1: Hierarchical versus equally managed memory view.

further decreasing memory traffic. On the contrary, this technology limits the number

of data renewal (write-erase cycles) and favors loads versus stores by demanding more

machine cycles for the latter rather than the prime. Moreover, NVRAM is solely block

addressable thus may be obstructive for some access patterns. A workaround which

provides with a byte-addressable view of the memory space can be found in libraries

such as NVMalloc [15] however it may suffer from high overhead.

E. SRAM (static RAM) uses a transistor rather than a capacitor to store each bit while

during read and write operations another 2 access transistors are used to manage the

availability to a memory cell. The term static refers to the fact that bits do not need be

periodically refreshed. Cache memories, register file and other popular memory

systems are based on this technology.

Although commercially available products deploy the aforementioned memory architectures

only independently or in combinations, and despite we do not anticipate a future HM system

that consists of a mosaic of the complete list, we will simulate such a system as an effort to

depict the several types of memory existing at a cluster computing unit.

What is important is the logical relationship of the memory subsystems. Their structure has to

allow an equal treatment rather than following a hierarchical concept so as the benefits of each

subsystem can be exposed and optimally utilized. In FIGURE 1.1 we juxtapose a hierarchical

(a) against an equal (b) memory view. It can be easily concluded that the second solution

permits an explicitly managed memory. That is, each data can be hosted by any subsystem

| 5

regardless of the order of access, instead depending on programmer-defined specifications

such as its size, access frequency or any other characteristic considered of importance.

1.2 Problem Statement and Contributions

It is often the case that when it comes to application profiling a question has to be answered:

Hardware or software approach? In order for the answer to be well-founded both approaches

have to be based on similar concepts and respect equivalent principles. Since hardware

modifications range from extremely difficult to impossible due to the lack of freedom of

modifying silicon, we studied Valgrind in order to familiarize with its internal structure and

consequently to extend it with additional functionalities. In particular, in the rest of this paper:

o There is a thorough explanation of Valgrind’s function as well as a short introduction

to some of its available tools.

o An insight to the internal structure of the tool that simulates cache.

o Instructions on how you can efficiently use the tool depending on the final scope

Hardware counters supplied the means for a rather precise and quick method of profiling. The

latter relies largely on a specified sampling frequency or on certain events, both of which

trigger the HW counters increment. Although different architectures are equipped with

different set of counters, monitoring the cache behavior is generally one of their most

important objectives. However, performing a sampled event collection might give only the

partial image of a program’s memory interaction. In contrast, software methods exploiting the

merits of a simulated cache system are allowed to account for every single memory access. In

order to perform a comparison between the two aforementioned profiling techniques it is of

essence to compel HW’s limitation to SW approach. For this scope we:

o Extend Valgrind’s source code in order to perform sampled memory access detection

Finally, after having acquired a deeper understanding of the means to profile an application,

we define two heterogeneous memory systems on which the data of our test cases are

| 6

optimally placed driving to a performance speedup. The detailed walkthrough of this thesis’

contributions involve:

o Differentiate between total access sampling and access-type sampling

o Determine a performance speedup based on sampled application profiling of two

distinct test cases

o Determine the optimal sampling period that permits a similar performance speedup

o Suggest future research

1.3 Thesis structure

CHAPTER 2 describes the functionality of Valgrind along with some of its tools and options.

Moreover, an example as well as a thorough source code analysis reveals a bug that can cause

doubts to potential users.

CHAPTER 3 presents EVOP, an already implemented tool based on Valgrind. It also serves the

scope of analyzing the extensions that we added on this latter tool in order to support sampled

profiling options.

CHAPTER 4 includes our experimentation method and analysis process. It introduces the

sampling notion as well as defines the simulated memory system and the way we addressed it.

It also offers a short description of the test cases used to realize our experiments.

CHAPTER 5 interprets the obtained results by comparing sampled and non-sampled profiling. It

defines an optimal sampling rate for each test case and makes connections between memory

access patterns and the aforementioned rate. General conclusions are presented in this chapter,

too.

CHAPTER 6 makes a short summary of this paper’s findings and proposes future work in two

different directions.

| 7

CHAPTER 2

VALGRIND

2.1 Overview

“Valgrind is an instrumentation framework for

building dynamic analysis tools” [17], It aids

memory management and multi-threaded bug

detection as well as offers profiling options. An

entire set of tools which frame Valgrind by

making use of its core functions enable the

above and thus form its ecosystem.

Valgrind core can be considered as a virtual

machine that takes control of the application-

under-test before it starts executing. The

application code is translated into a processor-

agnostic intermediate representation that enables its execution on a synthetic CPU provided by

the core. At the first code execution, control is handed to the selected tool which enhances it.

Although each tool has its own implementation details, all of them share the basic principle of

instrumenting the source code by inserting hooks (instrumentation directives) in order to

perform different monitoring tasks at run time. The augmented code is then handed back to the

core where is executed in superblocks (chunks consisting of single entry and multiple exit

points) [17] [18]. The above process can be seen in FIGURE 2.1.

FIGURE 2.1: Simplified high-level view of the

interaction between Valgrind and its tools [18].

| 8

The added instrumentation poses the main drawback of this process due to the overhead it

brings. Every tool is more or less intense in terms of instrumentation; nevertheless the

minimum incurred time delay caused just by enabling the Valgrind core is x4. Let it be

emphasized that certain tools can make the execution 10 – 100 times slower.

Valgrind enriches its tools with an API as well as a client-request mechanism that enables the

tools to interact with the core by getting debug information, manage stack memory traces and

intercept different memory allocation calls so as to provide specific wrappers for them.

Among its other uses, the client-request mechanism enables on-demand instrumentation

initialization and ceasing in order to minimize the aforementioned extra time overhead.

In the following we provide a description of Callgrind, the tool used in our research as well as

the details of how to perform code-specific profiling saving execution time. We expose a

potential tricky point that accompanies LL cache simulation provided by Callgrind and finally

we present a thorough walkthrough of our development process as well as explain the added

features and how to deploy them.

2.2 Callgrind

Callgrind is a pure application profiler that combines its own features along with the

functionality of Cachegrind, another tool of the ecosystem. Cachegrind simulates virtual I1,

D1 and L2 (or LL) caches getting their characteristics either by default from the native CPU or

explicitly by the user. It offers per instruction, per function or entire-program information

regarding the number of cache misses (per cache level), memory references and issued

instructions. Although it limits the available cache levels to two, causing the measurements to

differentiate themselves from other profiling methods, it serves the crucial scope of providing

memory insight. Regardless the exact cache configuration it helps in identifying performance

limiting memory patterns and fix unfriendly memory accesses.

On top of these features, Callgrind collects the number of instructions and functions calls,

extracts the caller-callee relationship among them, relates them to the source code and finally

gives the opportunity of a branch predictor simulation. This data is then processed by other

tools (such as KCachegrind, a graphic visualizer) in order to result in a call-graph.

| 9

2.2.1 Source code

instrumentation

Valgrind (and thus Callgrind) uses

internal event counters in order to account

for the actual number data was accessed.

Under normal circumstances these

counters are initialized at the beginning

of the execution and are printed at the

end of it or upon request. However, it is

feasible to focus profiling only to a

specific part of the code by disabling

event aggregation for the uninteresting

part and allow Callgrind to progress at

much higher speed.

For this aim, the tool offers the set of

macros provided in LISTING 2.1. The first

two are self-descriptive since they

commence and terminate simulation and

profiling. The third macro signals the

beginning and the end of a region of

interest i.e. it acts interchangeably as a start / end point enabling or disabling the event

collection, respectively. It can be used to monitor nonconsecutive regions of source code or to

terminate, dump and zero the counters multiple times in a run. Event counters can be set to

zero using the fourth flag or, alternatively, can be printed and set to zero using the fifth one. In

LISTING 2.2 we present a loop in which we wish to start the cache simulation at iteration 1,

while account for the access statistics starting from iteration 2. For this scope, both

instrumentation and event collection are initialized along with the loop in lines 2 and 3, yet the

counters are zeroed just before the second iteration, in line 6. They are printed by default as

soon as the loop completes its execution, in line 8.

LISTING 2.2: Code-specific instrumentation and data

collection example.

LISTING 2.1: Code-specific instrumentation and

data collection macros.

LISTING 2.3: Instrumentation and data collection

flags.

| 10

2.2.2 Callgrind options

In order for the previous macros to be effective, Callgrind has to be initialized with the

appropriate flags. The tool API provides the flags seen in LISTING 2.3 in order to handle

instrumentation, profiling and collection regions. When the first flag is set to “no”, simulation

and profiling should be programmatically enabled by the directive, as shown in LISTING 2.2.

The un-instrumented code region results in a slowdown to solely 4 times. When the second

flag is deactivated, the counters shall remain zero until it is instructed otherwise by the source

code.

2.3 Last level cache simulation

In order to account for the validity of the experiments and subsequently interpret the results it

is crucial to have an exact image of the simulated caching system. Nevertheless, Callgrind has

a gray point when it comes to simulating the last level cache: a warning is printed informing

that the user-specified LL cache shall be disregarded since a native one has been detected. In

our understanding, the particular warning, which is to be seen in FIGURE 2.2, is wrongly

printed.

2.3.1 The matrix multiplication example

In an initial effort of examining its validity we set a trivial example. We created the code

shown in LISTING 2.4 which is a plain implementation of the matrix multiplication algorithm.

We used 3 dynamically allocated matrices of size 1024 x 1024 elements which, under the

system’s architecture translate to 4 MB each. This choice serves the scope of not allowing the

data to completely reside in the cache memory of any level. The experiments that followed are

similar to one another with the sole difference of the last level cache size. Specifically, in the

first experiment LL cache was not specified so that Valgrind take the default hardware

specification from the detected cache (4 MB of L3 cache) while in the second one, LL cache

was manually set to 128 KB. The size of the other caches was identical in both cases.

FIGURE 2.2: Warning informing about the LL cache configuration.

| 11

Assuming the warning is correct, if

we observe the LL cache misses we

anticipate no divergence in the final

results. On the contrary, as shown

in TABLE 2.1, the number of

memory accesses that missed LL

cache in the second experiment is

significantly larger than the

respective number in the first one

while the number of memory

accesses that missed the other cache

levels is exactly the same. This fact

can be justified if we disregard the

printed warning and thus consider

that the LL cache size actually

follows the user specification.

Using a cache with smaller capacity

directly affects the frequency of

data substitution by increasing it

since the amount of data that can be

stored is less. Given the

repeatability of data usage that is

imposed by the algorithm, this effect is to be reflected in the total number of accesses that

have to access the main memory as they cannot be served in cache.

The above observation however is solely an indication that suggests a probable explanation

and a faulty warning. Further investigation is needed in order to obtain a concrete argument

and verify the hypothesis. For this scope we examined the source code of Valgrind and its

tools in order to locate the lines responsible for printing the warning as well as to extract an

overview of the cache memory internal implementation and the mechanisms that regard this

particular feature. We consider this short research useful for future developers and researchers

that wish to deploy or extend Valgrind and its tools in this direction. Therefore we proceed in

LISTING 2.4: Matrix multiplication implementation.

Experiment 1 2

LL cache size 4 MB 128 KB

I1 misses 992 992

D1 misses 1,277,495,238 1,277,495,232

LL misses 21,419,460 575,742,112

TABLE 2.1: Cache misses depending on the cache size

| 12

a walkthrough of the internal function interconnection that handle the parameters of the virtual

cache.

2.3.2 Source code inspection

To begin with, since the cache simulator is provided by Cachegrind and shared with Callgrind,

as noted in section 2.2, we have to focus on the prime. Also, in order to ease the description

we avoid the details of the specific function naming and representation. For further

information refer to [16].

 In Cachegrind’s source code directory resides cg_arch.c folder which is of particular

interest for our purpose. As pictured in FIGURE 2.3, a first Boolean function detects the

existence or not of the appropriate cache-describing flags. In case of success the flags are

parsed by an additional function and their values are stored in special variables. In the

meantime, a validity check is implemented to ascertain that the given values are acceptable. A

third function is defined with aim of:

o Detecting the caches existing in the hardware of the native machine,

o Checking the compliance with the tool’s standards and

o Setting their values to the virtual cache.

In these lines of code a warning informing about the superiority of auto-detected caches over

the user-specified ones is printed. What follows is a comparison between these two cache

types. In case the user-specified ones are valid they actually override the default (hardware)

ones. This is done by an independent function.

Analyzing the tool’s source code we have shown that user specifications always prevail the

default configuration regardless the cache level, therefore we can now verify our hypothesis

and prove the warning false. It can be taken for granted that when a cache level configuration

is specified by user, then the actual characteristics are simulated by the tool.

| 13

FIGURE 2.3: cg_arch.c function flow chart.

| 14

CHAPTER 3

VALGRIND TOOL EXTENSION

After a closer look to the means with which cache is represented and simulated by Callgrind,

we proceeded with implementing some additional features that enable sampling memory

accesses. We decided to begin this chapter by introducing some important prior information

regarding the granularity of memory accesses.

3.1 Overview

Our extensions are based on the already extended Valgrind profiler known by the name EVOP

[18] [19] [20] which is an enhanced version of the development branch of Valgrind 3.10.0. For

our purpose we consider critical to clarify the notion of “memory object” that has been

introduced by [19].

Based on [18] and [19] a “memory object” can be defined as memory data the semantics of

which allow them be referenced as an entity. In other words, as “memory object” is referred

every memory entity that can be seen as such from the code level. Examples include structs,

arrays etc. that can be either statically or dynamically allocated. Depending on the latter,

Valgrind employs different interception and system call wrapping mechanisms by using debug

information to track their characteristics. Address, size and trace are saved in a sorted structure

that offers efficient (logarithmic) searches.

From now on, this research makes extensive reference to “memory objects” or “memory items”

interchangeably, characterizing them as the main interaction unit between the profiled

| 15

application and the memory system. In this chapter we apprise of a feature that we added in

the tool functionality. Our modifications are focused on making sampled data collection

feasible by integrating extra functionality to keep track of the memory access number. We

distinguish between two diverse tastes of sampling: one that refers to the total number of

memory accesses and one that discriminates between loads and stores and subsequently

performs sampling.

3.2 Callgrind extension

We start our explanatory description by introducing the extra functionalities provided in our

tool version.

3.2.1 API options

In order to launch Callgrind, except for the standard edition flags that are described in the

official manual and those added in the EVOP version, we have accumulated another set of

three flags. The options presented in TABLE 3.1 have the following functionalities:

o “--sampling-period=<integer>”: by setting this value equal to an integer value

we instruct the tool to perform a sampled collection of memory accesses. As sampled

value is considered the total amount of memory accesses, regardless if they write or

read data. If the integer value is set to 0 then the execution proceeds by default without

performing sampling.

o “--sample-loads=no|yes”: this flag indicates the sampled value by setting it to

“loads”. In combination with the previous one it indicates that only one out of

<integer> loads will be accounted for. On the contrary, all store accesses will be

monitored.

o “--sample-stores=no|yes”: in analogy to the previous flag, this one changes the

sampled variable to “stores”. Again, all loads will be monitored.

While the first flag is optional on its own, as long as one of the two following flags is active

then it becomes mandatory. Also, the default behavior of the two last flags is to be

deactivated. This means that, for example, in case of sampling in loads, there is no need to

| 16

explicitly deactivate the store sampling. The case where both flags are active is supported; it

results yet in the same behavior as if both were deactivated, i.e. total memory access sampling.

3.2.2 Sampling implementation

Having explained the user-options we can now proceed to the source code modifications that

made these features possible.

Our code alteration is generally focused on sim.c file which is under Callgrind directory in

Valgrind’s source code package. Some minor interventions are to be noticed in files global.h

and clo.c, nonetheless they are trivial since they serve in complying with the tools existing

variable declaration hierarchy and in providing with user information, respectively. No

mention of these changes shall be made.

In LISTING 3.1 we present the function from sim.c which is responsible for tracking and

recording an access to cache memory, determining if it is a cache hit or cache miss. By

default, the function correlates the access to a referenced object, determines if the object is

statically or dynamically allocated and, depending on that, follows different paths in order to

store the details of the access.

Our intervention is to be located mainly in the beginning of the function as presented in

LISTING 3.2. In case a sampling period has been set by the user, the value is stored in an

internal variable. An internal counter is used in order to control which memory accesses are to

1. --sampling-period=<integer>

2. --sample-loads=no|yes

3. --sample-stores=no|yes

TABLE 3.1: Flags for the extended Callgrind

version.

Case A B C

--sampling-period integer integer integer

--sample-loads= - yes no

--sample-stores= - no yes

TABLE 3.2: Possible sampling cases.

| 17

be monitored. In particular, in case “A”, as pictured in TABLE 3.2, the counter is incremented

every time memory is accessed. All these accesses that result in a counter value smaller than

the sampling period are disregarded while the one that equates the two variables is the one

which will be accounted for.

Cases “B” and “C” are complementary. In case “B” the user has defined loads as the sampled

access type. For every memory access we have to identify its type and increase the counter

only when a load is encountered. All loads that keep the counter’s value smaller than the

period are disregarded while the one that results in equalizing them is monitored. On the

contrary, every store is accounted for since it does not interact with the sampling mechanism.

An analog concept is followed for case “C” in which loads are replaces by stores and vice

versa.

| 18

LISTING 3.1: Main object record algorithm.

LISTING 3.2: Sampled object record algorithm.

| 19

CHAPTER 4

EXPERIMENTATION

The fundamental experimentation step is to discover these objects that present the biggest

number of LL cache misses, i.e. to define the objects the access to which demands accessing

the main memory rather than the cache. This is done by profiling the application-under-test

and monitoring the memory objects it leverages. LL cache misses are of interest since they are

essentially the ones that access main memory and thus cause excessive time overhead. By

explicitly choosing the memory subsystem from which a LL cache miss shall be served we

can minimize the extra access latency. Next, we appraise their optimal distribution to the

subsystems of the suggested heterogeneous memory system with the aim of minimizing the

total stall CPU stall cycles caused by accessing each of them.

In this chapter we firstly describe the profiling methodology that has been followed; we

illustrate the analysis procedure that was chosen; we specify the emulated heterogeneous

memory system on which our experiments run and finally we lay a summary of the

applications used as test-cases. Our work let be characterized as a revision of the experiments

reported in [20] augmented by the sampling mechanism that was implemented by us.

4.1 Profiling

In order to associate accesses that missed LL cache to the memory objects that they refer we

deployed the Valgrind framework and specifically its tool Callgrind. The way cache misses

are correlated to a memory object is an automated method of the tool and generally relies on

the debug information provided with the executable (usually controlled by –g option when

| 20

compiling) as well as on the allocation type of the particular memory object. For further

information please refer to [20].

Running the application under Callgrind tool while simulating a virtual cache adds a

significant timing overhead that reduces profiling performance. Hence, we opted for the

optimization techniques described in section 2.2.1 in order to start and terminate Callgrind’s

instrumentation under user request. In particular, LISTING 2.2, that has already been presented,

depicts the main computational part of one of our test cases which is controlled by the specific

Callgrind macros. On top of that, we tried to achieve more accurate cache miss statistics by

performing a warm-up round. This is feasible by commencing instrumentation at the

beginning of the computational part of the code and zeroing all counters after the end of the

first loop. This way cold misses are not accounted for in the final results while caches are

already filled with contents and the profiling can proceed. Counters will start fresh to count the

memory traffic at the beginning of the second loop until the end of the application.

Initially, we performed the classic profiling process of monitoring every single memory

access. The obtained results refer to the exact number of LL cache misses per memory object.

Objects with big LL cache miss rate were the performance limiting ones, so they were

optimally distributed into the subsystems and an initial speedup was computed. This speedup

was considered the maximum achievable one given the subsystem architecture and the

application.

Regarding the sampled memory access profiling, we made use of the functionality that we

developed in order to monitor memory accesses based on different sampling periods.

Sampling refers to the total memory access number (case A as described in TABLE 3.2). The

output is the sampled per-object number of cache misses and the aim is to define the optimal

sampling period which leads to identical (or similar) speedup as the non-sampled results. Note

that in case of large sampling periods a big number of accesses are discarded. Should a

particular object be referenced solely by these accesses, this memory object will never be

identified and thus remain hidden from the final results. As a consequence it is estimated that

the final distribution has fewer objects to choose from, hence diverting the final performance

optimization.

| 21

4.1.1 Sampling period

One of the most crucial points is defining the optimal sampling period. To that end, we

developed automated processes written in bash language in order to choose from a set of

numbers, perform profiling, data distribution and speedup calculation. Depending on the latter,

a smaller or bigger period was selected in order to advance the simulation until the optimal

one was discovered.

While a first glance would approve any number to be adopted as sampling period, a more

meticulous inspection of the facts would advocate against it. The memory behavior of an

application which is under question here is a function of the application’s source code. This

source code can consist of loops, indirect references to the same basic memory objects or other

access patterns. Selecting to monitor a random memory access out of a set of memory

accesses is susceptible of discovering an unwilling access pattern. Therefore, in case of a loop

for example, the result would be to monitor the same access (or accesses) in every code

iteration. The outcome of such a profiling process is considered biased since it was generated

by a problematic sampling rate, accounts for a limited number of objects and eventually leads

to a non-optimal performance improvement.

We foresee that a case similar to the one outlined before is rather rare to encounter.

Nevertheless, in order to eliminate every possibility, in our experiments we used exclusively

prime numbers as sampling periods. Prime numbers are characterized by all these properties

that disallow a memory pattern discovery. Especially, by setting a prime number as sampling

period we can guarantee that in every iteration (if the examined source code is iterative)

different memory accesses are monitored. In general, we anticipate a better distribution of

intercepted memory accesses.

4.2 Analysis

The profiled data analysis is conducted with the ultimate target of producing an object

distribution among the memory subsystems. To address this issue we use EVOP’s

dmem_advisor. As reported in [19] and [20] this tool implements a relaxation of the classical

textbook 0/1 knapsack problem [21]: Different knapsacks are the various memory subsystems,

| 22

their capacity is the memory size while the items to pack are the memory objects with their

size to represent their weight. Every knapsack modifies the value of its items by multiplying it

by the CPU stall cycles (each knapsack, i.e. each memory subsystem demonstrates different

load latency). This situation is addressed effectively by targeting each subsystem

independently in a latency-ascending order and by placing objects with more cache misses to

the “fastest” memories, provided they fulfill the subsystem’s size requirements.

To perform data distribution based on the sampled data we modified the dmem_advisor

source code in order to calculate appropriately the CPU saved stall cycles.

It is important to note that memory objects are prioritized depending on their load cache

misses. We consider zero stall cycles when a store is issued by assuming a buffered write-

through cache with infinite buffer bandwidth. In practice we expect this simplification not

alter the final results since the CPU stall cycles caused by loads are notably more than the ones

caused by stores.

4.3 Technical characteristics

In the following subsection we define the simulated heterogeneous memory system that was

used as the basis of our experiments, as well as the test cases which produced the final results.

4.3.1 Heterogeneous memory system

Our memory system can be divided into two distinct subsystem entities: (a) a baseline

standard one which consists of caches and (b) a modifiable one which is a hodgepodge of

various memory types. The simulated cache characteristics for every cache level such as size,

associativity and line size are presented in TABLE 4.1. Regarding cache latency, we consider

zero stall cycles when L1 cache is accessed and 20 CPU stall cycles when L2 (or LL) cache is

accessed. L2 latency is set to a relatively large number in order to compensate for the absence

of an L3 level cache which typically has higher latency, yet it cannot be simulated by

Callgrind.

 We then distinguish among a Baseline scenario, Scenario 1 and Scenario 2. The first one is

our point of reference: it consists solely of a DRAM memory (this system represents a trivial

| 23

DESCRIPTION SIZE ASSOCIATIVITY LINE SIZE
L1 INSTRUCTION 32 KB 8 64 B

L1 DATA 32 KB 8 64 B
L2 UNIFIED 8 MB 16 64 B

TABLE 4.1: Cache configuration for our experiments.

MEMORY SCENARIO
DESCRIPTION LATENCY BASELINE SCENARIO 1 SCENARIO 2

L1 0 C 32 KB + 32 KB
L2 20 C 8 MB
SP 20 C 0 B 8 MB 8 MB
3D 135 C 0 B 8 GB 1 GB

DRAM 200 C 32 GB 32 GB 4 GB
NVRAM 20,000 C 0 B 0 B 32 GB

TABLE 4.2: Memory configuration for our experiments.

computing system). In Scenario 1 we maintain the same DRAM memory while adding a

Scratchpad and a 3D stacked memory. Scenario 2, which manifests a more energy-friendly

approach, consists of the same mosaic of memory subsystems as the previous one, plus a

NVRAM component. In TABLE 4.2 we list the characteristics of each memory subsystem in

function to the Scenario they belong.

 Let it be emphasized that we do not actually simulate the memory subsystems; on the contrary

we deploy average latency estimations.

4.3.2 Test cases

In our research we have opted for two miniapplications from the Mantevo application

performance project [22]: MiniMD and HPCCG. They combine some or all of the dominant

numerical kernels contained in an actual stand-alone application. Thus, they can model the

behavior of more complex applications.

o MiniMD is a parallel molecular dynamics (MD) simulation package following many of

the LAMMPS MD simulator [23]. It simulates the movement of atoms in a box area

according to Newtonian laws. Users are given the freedom to control a variety of

simulation parameters such as the simulated size, atom density, timestep size, number

of timesteps etc. Velocities, positions and forces of the atoms are computed iteratively

| 24

on every timestep while every n timesteps a re-neighboring is performed so that each

atom’s new neighbors are computed. In our experiments we use MiniMD version 1.2

that leverages a Lennard-Jones (LJ) interaction among 2.9*10
6
 atoms. The flags used

are (-t 8 –n 2 –s 90).

o HPCCG is a simple conjugate gradient benchmark mimicking the behavior of

applications deploying this method as their main computational kernel. The problem

results in the solution of a sparse symmetric matrix that requires high memory

interaction. We use HPCCG reference version 1.0 to run a 400*400*400 problem

which uses roughly 23 GB of memory. Due to the long simulation time we have

reduced the upper limit of the allowed iterations therefore amplifying the achieved

accuracy.

| 25

CHAPTER 5

RESULTS

In this chapter we are analyze the experimental results. First we profile the miniapplications

monitoring all memory accesses. From the obtained data we distribute the memory objects

optimally in our emulated memory subsystems and compute the performance speedup. This is

defined as the maximum possible speedup.

We repeat the same process imposing sampled memory access profiling and compare the

achieved performance gain among the various sampling periods. This results in determining

an optimal sampling period for each test-case. We define as optimal sampling period the

biggest prime number that when used as sampling period produces similar speedup (or in

general execution performance) as in the non-sampled profiling case. We also interpret the

correlation between sampling period, access patterns and discovered memory objects.

Our results include an estimation of the saved CPU cycles per application due to the effective

data placement given the latency parameters introduced in 4.3.1. MiniMD results are followed

by HPCCG ones while at the end we draw some overall conclusions

| 26

FIGURE 5.1: Object distribution for MiniMD – Scenario 1 – Sampling period:

none

| 27

5.1 MiniMD

Our results for MiniMD initially include 28 identified objects that cause LL cache misses.

These objects tend to decrease in number as the sampling period increases.

5.1.1 Complete memory access profiling

SCENARIO 1: TABLE 5.1(a) summarizes our results for MiniMD in Scenario 1. Only 19 out of

the 28 memory objects are small enough in order to leverage of the low-latency SP memory

leaving 47% unoccupied space. The rest of them are stored in 3D memory by occupying less

than the half of its capacity. The performance improvement is 10.21% comparing to the

baseline execution and it is interestingly due to the objects placed in 3D memory. These

objects, although fewer than those placed in SP memory system are responsible for more data

accesses. Indeed, in FIGURE 5.1 we present the partial output of dmem_advisor in which

objects are related to their memory accesses and their size. SP memory hosts more than the 3D

memory’s objects, yet CPU does not interact significantly with them.

SCENARIO 2: TABLE 5.1(b) presents the results obtained by simulating the architecture of

Scenario 2. The object distribution is identical to the last one with the exception that one

object is moved from 3D memory to DRAM. Although this might seem as a minor change, in

fact it influences the final speed up greatly. The number of memory accesses to this object

FIGURE 5.2: Object distribution for MiniMD – Scenario 1 – Sampling period:

52,177.

| 28

proves to be the main contributing factor to the Scenario 1 speedup in a manner that its

transition to DRAM causes the performance improvement to lessen to one third of the initial.

5.1.2 Sampled memory access profiling

After having defined the maximum possible speedup, which is obtained by accounting for

every memory access we initiated the sampling experimentation. The sampling period

spectrum was set from 199 to 4,037,729. Both values however are in the extremes resulting in

non-optimal results: the first one has identical behavior to the non-sampled profiling in terms

of data discovery; the only difference lays on the fact that objects with insignificant number of

read accesses, such as the first objects of FIGURE 5.1, are omitted from the final distribution as

they are not discovered. The second sampling period value, on the other hand, has exactly the

opposite outcome. Sparse sampling results in the discovery of only one memory object which

does not improve the speedup significantly.

We continued following a relaxed binary search among the sampling period values and

concluded that the maximum acceptable period is 52,177. In that case only 8 objects are

discovered. In FIGURE 5.2 we present the partial output of dmem_advisor for this dataset.

The per-object memory references are rather fewer than their counterparts in FIGURE 5.1 since

they refer to the sampled memory accesses, yet in both scenarios the final performance is very

close to the initial one.

SCENARIO 1: TABLE 5.2(a) summarizes our results for MiniMD in Scenario 1 when memory

accesses are intercepted every 52,177. Only one object fits in the fast SP memory covering ¼

of its available storage capacity; however its accesses are not enough to contribute in the final

speedup. The rest of the discovered objects are stored in 3D memory and offer a performance

improvement of 10.15%.

SCENARIO 2: TABLE 5.2(b) summarizes our results for MiniMD in Scenario 2. Only 1 object is

small enough to fit in SP memory but similarly to the previous outcome it does not offer

additional speedup. This is also the case for the object that is stored in DRAM memory. On

the contrary, 3D memory hosts 6 objects which are entirely responsible for the total

performance speedup that rises to 5.08%

| 29

5.1.3 Sampling period comparison – Conclusions

In our experimentation we aimed in modifying the sampling period in order to define the one

that preserves the highest possible speedup. In FIGURE 5.3 we have depicted graphically the

correlation between sampling period and the final speedup for Scenario 1. We can observe that

for the chosen prime numbers the speedup remains generally stable until the threshold of

52,177. After that it drops significantly and remains low, oscillating between two uninteresting

values.

FIGURE 5.3: Correlation between final speedup and sampling period for miniMD test

case in Scenario 1.

FIGURE 5.4: Correlation between final speedup and sampling period for HPCCG test

case in Scenario 1

| 30

FIGURE 5.5: Object distribution for HPCCG in Scenario 1 for zero sampling period. The

objects in bold, placed in SP memory are discarded when performing sampled memory

access profiling.

| 31

This behavior can be explained by gaining an insight to the source code and the memory

access pattern it imposes. Firstly we remind that the main computational code which is

profiled is run iteratively for every timestep, nevertheless we only execute two timesteps, from

which only the second one is taken into consideration (as stated before, the first one acts as a

cache warm-up stage). Therefore, the access pattern can be considered serial in the sense that

memory objects are accessed (and thus have the chance to be discovered) only during this one

iteration. Should the sampling period be too wide in comparison to the total memory accesses

of an object, this particular object has more possibilities to be discarded, compromising, this

way, the ultimate speedup.

5.2 HPCCG

Our results for MiniMD initially include 19 identified objects that cause LL cache misses.

These objects tend to decrease in number as the sampling period increases

5.2.1 Complete memory access profiling

SCENARIO 1: In TABLE 5.3(a) we present the object distribution for the Scenario 1 architecture.

10 objects are small enough in order to fit in SP memory, though leaving it almost empty. 3D

memory utilizes almost 100% of its capacity by storing 4 objects; these are the unique factor

that results in performance a speedup of 12.11%. Finally, 5 objects are too big to be stored

anywhere but in DRAM.

SCENARIO 2: TABLE 5.3(b) shows the memory object distribution in Scenario 2. This case

diverges from the previous ones since we obtain a final slowdown rather than a speedup:

although 10 objects can be stored in SP memory (as in the previous case), 2 in 3D memory

and 5 in DRAM, this time NVRAM is being utilized by 2 memory objects. The long latency

of this memory architecture in combination to the high memory access frequency of the

particular objects results in a tremendous slowdown of ~5990%.

5.2.2 Sampled memory access profiling

Similarly as before, we set two prime numbers as lower and upper limit for the examined

sampling periods. Our experiments range from 20,441 to 1,909,095,829. Profiling using the

| 32

LISTING 5.1: The main computational part of HPCCG is enclosed in a for-loop. The

source code is enhanced with macros that handle the interaction with Callgrind.

first period behaves exactly as the non-sampled case discovering the same objects apart from

the “obviously unimportant” ones that are shown in the beginning of FIGURE 5.5 and that do

not play any role in the final speedup. The second sampling period identifies only one memory

object that is placed in 3D memory thus achieving a very limited speedup. After the relaxed

binary search the optimal sampling period for HPCCG was defined as 37,012,243. Up until

this sampling period it is guaranteed that the final calculated speedup is close to the maximum

possible one.

SCENARIO 1: In TABLE 5.4(a) we lay data distribution for Scenario 1 when profiling monitored

one out of 37,012,243 memory accesses. There are no small enough objects to fit in SP

memory, therefore it remains empty. On the contrary, 3D memory is almost fully occupied by

the same objects as in the non-sampled profiling. Once again speedup rises up to 12.16% and

is exclusively achieved because of these memory objects. Due to size limitations 3 memory

objects are obliged to be stored in DRAM memory.

SCENARIO 2: TABLE 5.4(b) presents the data distribution for Scenario 2 when using the same

sampling period. No objects are stored in SP memory while 3D and NVRAM are occupied by

the same objects as before. DRAM in this case is the hosting memory of only 3 objects, 2

fewer than before. As it was anticipated memory architecture in combination with the memory

object distribution result in a slowdown of ~5990%, instead of a speedup. NVRAM is again

the prime reason for this compromise.

| 33

5.2.3 Sampling period comparison – Conclusions

The correlation between sampling periods and final speedup is slightly different from the

previous case. The difference can be seen initially from the sampling period limits that were

chosen for profiling. Intuitively, the absolute memory access number is to account for that, i.e.

the more the accesses to memory, the wider sampling period can be. There is a proportional

relationship between these two values that allows us to generalize.

On the other hand, there is an additional intrinsic characteristic of the application that allows

such big sampling periods be effective: its memory access pattern. HPCCG, being a purely

iterative method, places its main computational code in a loop. As seen in LISTING 5.1 this

loop executes until the algorithm converges and the predicted lower limit is reached (in line 1).

Computations refer to the same variables, to the same structures and eventually to the same

memory locations, therefore obliging a repetitive memory access scheme. This can be

interpreted as follows: memory objects that represent computation variables are accessed in

every iteration; sampled profiling forces some memory accesses be discarded; prime numbers

that are used as sampling periods exclude discovery of memory access patterns; sampling

period can widen in reasonable frames (compared to the absolute access number) and still

produce effective speedup. Indeed, the special way that memory interaction is formed enables

lower sampling frequencies be implemented.

In FIGURE 5.4 we present the experimentation process for various sampling periods. We can

pinpoint the period threshold that was defined above; nonetheless there is another interesting

characteristic worth mentioning. Although we set 37,012,243 as the optimal sampling period,

in fact there are even bigger periods that result in the same maximum speedup. For instance,

periods 111,005,099, 111,008,371 and 111,013,051 all provide the same optimal performance

improvement; yet in between these numbers can be found other periods that have a

compromising behavior. In our understanding, there is a correlation between (a) the source

code iteration number, and subsequently how many times each object access is repeated, and

(b) the sampling period. In other words, when sampling period approaches the order of

magnitude of the absolute access number per object, then small variations at the first might

| 34

result in discovering or omitting objects that play a definitive role in the final performance. In

Figure 5.6 we emphasize that fact.

5.3 General conclusions

5.3.1 Performance

Regarding data distribution, in all cases SP memory presents either low or medium occupancy

rates, thus not contributing to the final speedup. This is due to the low LL cache miss rate of

the small objects that are placed in this memory subsystem. We observe an idle NVRAM in

MiniMD case, meaning that the optimal performance can be achieved without its usage. In

HPCCG case, two objects are placed in NVRAM because of size limitations causing a

tremendous slowdown. Special attention should be paid in the combination between memory

subsystem capacity and memory object size since performance undermining is possible. 3D

memory with its specific characteristics is the architecture that proves beneficial in all cases.

Despite the performance drop in one case, in general the varying memory latencies and sizes

that are provided by the different subsystems of the heterogeneous memory system are proven

beneficial and confirm that many applications can merit from a cautious data distribution.

5.3.2 Sampling

Sampled profiling that aims in detecting memory objects and distributing them can offer both

advantages if used correctly and present a memory image that diverges greatly from the real

one, if used improperly. In both cases, sampling periods up to the one that was defined as the

optimal had similar effect on the detected objects: they mimicked a filtering function of

discarding objects that have low access rate and kept the ones that are accessed frequently.

The low access rate objects are allowed to be discarded since they cannot be beneficial in

performance improvement while the others must be taken into consideration for the final

distribution. Depending on the sampling period, the same or slightly different objects are

discovered, however this should pose no threat as long as the latter is set carefully. In case of

HPCCG, when the sampling period is set too large in Scenario 2 we foresee a potential

speedup which is far from what is actually happening. This should emphasize on the

importance of setting an application-specific (or application type-specific) sampling period.

| 35

We also discovered a close relationship between the memory access behavior and the rate in

which accesses should be monitored which, in our understanding, can be applied on every

application that exhibits similar access pattern.

| 36

CHAPTER 6

SUMMARY

This work commenced by introducing the notion of heterogeneous memory systems as an

answer to the saturated CPU performance. Systems that deploy such memory organization

have already established their place both in academic / scientific field and in market. Every

component of such system presents distinct characteristics, thus, in order for an application to

benefit the most from it, it is mandatory that the data it leverages be carefully distributed in the

various subsystems.

To address this issue we proposed application profiling techniques distinguishing between

software and hardware approach. For software, we chose Valgrind and in particular EVOP, an

extension of it. Our interaction with the tool drove us in clarifying a potentially misleading

point regarding the cache simulator employed by the tool. In the process of doing so we

introduced Callgrind, a complete software profiler, and analyzed various parts of Valgrind’s

(i.e. EVOP’s) source code that is used in cache simulation, easing future developers and

technology enthusiasts to gain a more user-friendly insight to the tool’s internal organization.

In the same spirit, we presented a full set of choices provided by Callgrind in order to control

the profiled execution and achieve more time efficient profiling execution.

On the other hand, we presented some hardware profiling principles such as the need for

sampling. To address this problem we implemented a sampling mechanism by extending

EVOP’s source code and integrating our changes to the tool’s API. Our experiments advanced

by defining two similar, yet diverse heterogeneous memory architectures, profiling two test

| 37

cases with characteristic memory behavior in order to monitor LL cache misses, extracting the

memory objects they interact with and distributing them to the different memory subsystems.

Profiling was performed both by intercepting every single memory access and in a sampled

manner in order to define the optimal sampling period that allows maximum performance

speedup.

Our results can be divided in two categories. The first one regards the maximum speedup

achieved by the combination of hybrid memory system and cautious data distribution; in both

test cases we observe that applications merit from it. The second one reflects how different

sampling periods are related to diverse memory access patterns. Our conclusions can be used

in order to eliminate the sampling rate margins when opting for hardware profiling.

6.1 Future research

In this subsection we propose future research activities that can be triggered by our research.

They can be divided in two groups, those aiming in assessing the application-specific

sampling periods in hardware profiling mechanisms and those defining the optimal memory

subsystem mosaic.

ASSESS SAMPLING ON HARDWARE

Software profiling, as the one described in this work, although accurate, poses the threat of

extreme timing overhead that can be a forbidding factor when the application size is too big.

On the contrary, hardware profiling eliminates this drawback by intercepting actual CPU

events. These events however have to sampled, and depending on the sampling period, a

different sort of timing overhead can be added. If sampling frequency is too high, then

profiling performance is damaged, while in case of too low sampling frequency, the

effectiveness and the accuracy of the results might be doubted.

The sampling period thresholds that we defined are effective when used in software. We also

foresee that they can be applied in hardware-aided profiling, in order to save execution time;

however this needs to be examined and verified. In case the results are similar, and given that

the tested miniapplications (test cases) have characteristic access patterns of more complex

| 38

applications, generalizations and assumptions about the sampling rates of other applications

are safe to be made in order to maximize profiling performance.

MEMORY SUBSYSTEM ARCHITECTURE

In this work we assess the optimal distribution of application data among different memory

subsystems. The methodology that is followed is based on a form of data oriented profiling,

emphasizes the importance of cautious data placement while implying the influence of the

subsystem combination and object sizes to the final performance. In two cases, a particular

subsystem either remains unutilized or diminishes performance. Following our analysis we

consider feasible to determine prototype heterogeneous memory system architectures for

different applications depending on the size of the problem they are addressing to the end of

achieving improved performance.

| 39

Bibliography

[1] Moore, Gordon E., “Cramming more components onto integrated circuits”.

Electronics, Volume 38, Number 8, April 19, 1965

[2] Wen-mei W. Hwu, Izzat El Hajj, Simon Garcia de Gonzalo, Carl Pearson, Nam Sung

Kim, Deming Chen, Jinjun Xiong, Zehra Sura, "Rebooting the Data Access Hierarchy

of Computing Systems", Rebooting Computing (ICRC) 2017 IEEE International

Conference on, pp. 1-4, 2017

[3] D. Levinthal, “Perfornamce Analysis Guide for Intel Core
TM

 i7 Processor and Intel®

Xeon
TM

 5500 processors”, Intel® Corporation, 2009. http://software.intel.com/sites/

products/collateral/hpc/vtune/performance_analysis_guide.pdf

[4] Shen, Du & Liu, Xu & Lin, Felix. (2016). “Characterizing emerging heterogeneous

memory”. 13-23. 10.1145/2926697.2926702

[5] A. Sandberg, D. Eklov, and E. Hagersten. “Reducing cache pollution through detection

and elimination of non-temporal memory accesses”. In Proceedings of the 2010

ACM/IEEE International Conference for High Performance Computing, Networking,

Storage and Analysis, SC ’10, pages 1–11, Washington, DC, USA, 2010. IEEE

Computer Society. ISBN 978-1-4244-7559-9

[6] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sadayappan. “Gaining insights into

multicore cache partitioning: Bridging the gap between simulation and real systems”.

In Proceedings of IEEE 14th International Symposium on High Performance Computer

Architecture, pages 367–378, Feb 2008. doi: 10.1109/HPCA.2008.4658653

[7] B. Bao and C. Ding. “Defensive loop tiling for shared cache”. In Proceedings of the

2013 IEEE/ACM International Symposium on Code Generation and Optimization

(CGO), CGO ’13, pages 1–11, Washington, DC, USA, 2013. IEEE Computer Society

[8] Texas Instruments. DSP products website. http://www.ti.com/lsds/ti/dsp/overview.

page. Last accessed: Dec. 08, 2014

[9] A. Sodani, “Knights Landing (KNL): 2
nd

 Generation Intel® Xeon Phi
TM

 Processor”.

https://www.alcf.anl.gov/files/HC27.25.710-Knights-Landing-Sodani-Intel.pdf. Last

accessed: Sep. 10, 2019

http://www.ti.com/lsds/ti/dsp/overview.%20page
http://www.ti.com/lsds/ti/dsp/overview.%20page
https://www.alcf.anl.gov/files/HC27.25.710-Knights-Landing-Sodani-Intel.pdf

| 40

[10] Banakar, Rajeshwari & Steinke, Stefan & Lee, Bo-sik & Balakrishnan, M. &

Marwedel, Peter. (2002). “Scratchpad Memory: A Design Alternative for Cache On-

chip memory in Embedded Systems”. 10.1145/774789.774805

[11] 3D stack memory: G. H. Loh. “3d-stacked memory architectures for multi-core

processors”. In Proceedings of the 35th Annual International Symposium on Computer

Architecture, ISCA ’08, pages 453–464, 2008

[12] D. H. Woo, N. H. Seong, D. L. Lewis, and H.-H. Lee. “An optimized 3D-stacked

memory architecture by exploiting excessive, high-density TSV bandwidth”. In IEEE

16th International Symposium on High Performance Computer Architecture (HPCA).

IEEE, Jan. 2010.

[13] “Dynamic random-access memory”. https://en.wikipedia.org/wiki/Dynamic_random-

access_memory. Last accessed: Sep. 10, 2019

[14] M. Baker, S. Asami, E. Deprit, J. Ouseterhout, and M. Seltzer. “Nonvolatile memory

for fast, reliable file systems”. In Proceedings of the Fifth International Conference on

Architectural Support for Programming Languages and Operating Systems, ASPLOS

V, pages 10–22, 1992

[15] C. Wang, S. S. Vazhkudai, X. Ma, F. Meng, Y. Kim, and C. Engelmann. “NVMalloc:

Exposing an aggregate SSD store as a memory partition in extreme-scale machines”.

In 26th International Parallel & Distributed Processing Symposium (IPDPS). IEEE,

2012, pp. 957–968

[16] Valgrind repository. http://www.valgrind.org/downloads/repository.html. Last

accessed: Sep. 14, 2019

[17] Valgrind official webpage. http://www.valgrind.org. Last accessed: Sep.15, 2019

[18] A. J. Peña and P. Balaji, “A framework for tracking memory accesses in scientific

applications”. In 43nd International Conference on Parallel Processing Workshops

(ICPP Workshops), Minneapolis, MN, 2014.

[19] Servat, Harald & Peña, Antonio & Llort, Germán & Mercadal, Estanislao & Hoppe,

Hans-Christian & Labarta, Jesús. (2017). “Automating the Application Data Placement

in Hybrid Memory Systems”. 126-136. 10.1109/CLUSTER.2017.50.

https://en.wikipedia.org/wiki/Dynamic_random-access_memory
https://en.wikipedia.org/wiki/Dynamic_random-access_memory
http://www.valgrind.org/downloads/repository.html
http://www.valgrind.org/

| 41

[20] A. J. Peña and P. Balaji. “Toward the efficient use of multiple explicitly managed

memory subsystems”. In IEEE International Conference on Cluster Computing

(CLUSTER), 2014, pp. 123–131.

[21] G. Mathews, “On the partition of numbers”. Proceedings of the London Mathematical

Society, vol. 1, no. 1, pp. 486–490, 1896.

[22] Mantevo project official webpage. https://mantevo.github.io/index.html. Last accessed:

Sep.18, 2019

[23] Sandia National Laboratories, “LAMMPS molecular dynamics simulator.” Official

webpage: http://lammps.sandia.gov. Last accessed: Sep.18, 2019

https://mantevo.github.io/index.html
http://lammps.sandia.gov/

