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Chapter 1

Introduction

1.1 Scope of the present work

The scope of the present work is to develop a constitutive model for the mechanical behaviour

of TRIP (Transformation Induced Plasticity) steels. TRIP steels are basically composite

materials with evolving volume fractions of the constituent phases. Specifically we consider

three-phase TRIP steels that consist of a ferritic matrix with dispersed austenite, which

transforms gradually into martensite as the material deforms plastically. The constitutive

model is used for the calculation of “forming limit diagrams” for sheets made of TRIP steels.

Calculations are also conducted for a non-transforming steel for comparison purposes.

It is well known that the microstructure and the properties of a steel are determined by the

chemical composition and the thermal processing. TRIP steels is a category of steels, where,

plastic deformation results in the transformation of the austenitic phase into martensite.

Previous works on TRIP steels, such as the work of Papadioti [12] and Papatriantafillou

[13], have shown that TRIP phenomena affect the mechanical response of the material, and

thus, they have to be considered in the development of the constitutive models.

Difficulties in the development of a model like this arise from two main factors. The first

is the fact that TRIP steels are composite materials and the second is the constant evolution

of the volume fractions of the constituent phases due to the plastic-induced martensitic

transformation.

In the works referred previously, the model of Olson and Cohen [7] has been used to

describe the kinetics of the evolution of martensite volume fraction. In this thesis, we use

the model developed by Haidemenopoulos et. al [5]. This model predicts the evolution

of martensite during strain-induced transformation taking into account the effects of the

chemical composition of austenite, temperature, average size of austenite particles and stress

triaxiality.

The constitutive equations are developed by using the non-linear homogenization meth-

ods developed by Ponte Castañeda and co-workers ([15],[17],[18]). The crucial advantage

of the aforementioned non-linear homogenization methods lies in the fact that besides their

ability to deliver accurate estimates for the macroscopic behavior of nonlinear composites,

they also provide additional information about the average stress and strain fields in each

of the individual phases. The knowledge of these fields, in turn, allows the estimation of

5



CHAPTER 1. INTRODUCTION 6

the evolution of microstructure at finite deformations, which leads to anisotropic hardening

or softening of the composite material and finally to failure ([2],[3],[4],[6],[22]). A very in-

teresting application of these non-linear homogenization theories was presented recently by

Papadioti, Danas, Aravas [11], who developed a methodology for the analytical estimation of

the effective yield function of isotropic composites; this methodology is used in the current

work to define the plastic behavior and the microstructure evolution in TRIP steels.

1.2 TRIP steels

As the name TRIP (Transformation Induced Plasticity) implies, plastic deformation denotes

martensitic transformation of retained austenite. Martensitic transformation results in a

different hardening curve, with a greater strain until failure. This change results in higher

ductility, fracture toughness and formability for this material.

There are two types of TRIP steels, the austenitic TRIP steels and multiphase low-

alloy TRIP steels. The second type is a composite material, consisting of multiple phases as

ferrite, retained austenite, martensite and bainite. They are typically used in the automotive

industry, in applications where high formability is required.

In this thesis, we are dealing with a low-alloy Transformation-Induced Plasticity steels

consisting of ferrite, retained austenite with a volume fraction of 10−15%, which transforms

gradually into martensite as the material deforms plastically. The microstructure of the

material consists of a ferritic matrix with randomly distributed spherical inclusions of the

other phases.

An important aspect of the martensitic transformation is the strain softening which oc-

curs due to the strain associated with the transformation process. This strain softening is

accounted for by introducing in the constitutive model an additional deformation rate that

is proportional to the rate of increase of the volume fraction of martensite. The total defor-

mation rate can be split into elastic, plastic and transformation parts. Standard isotropic

linear hypoelasticity of homogeneous solids is used in order to describe the elastic behavior

of the TRIP steels since the elastic properties of all phases are fundamentally the same. The

constitutive equation of the plastic part is determined by using the homogenization theory.

The transformation part has both deviatoric and volumetric parts and is proportional to the

rate of change of the volume fraction of martensite due to martensitic transformation, which

is described by the transformation kinetics model proposed by Haidemenopoulos et al [5].

This model describes the fraction of the martensite formed as a function of the plastic strain,

where the austenite is present in the form of dispersed particles. The model also predicts

the effects of austenite particle size, the chemical composition of the austenite, temperature

and the stress triaxiality.

1.3 The Homogenization method

The homogenization method is used to estimate the macroscopic response and the average

response of the phases of a composite material with N-phases. This work uses the non-linear
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variational homogenization method (Ponte Castañeda, [15]), or the modified secant method

(Suquet, [20]), which makes use of a linear comparison composite (LCC) material, to estimate

the effective response of an N-phase non-linear composite material. This approach leads to

an optimization problem, for N-1 variables, which has to be solved numerically, except of

the 2-phase case. A very interesting application of these non-linear homogenization theories

was presented recently by Papadioti, Danas, Aravas [11].

At this point, we will present a brief description of this method. First of all, we consider

that all the phases are incompressible and viscoplastic. Each phase is characterized by a

power law stress potential of the form:

U (r)
(
σ(r)
e

)
=

σ
(r)
0 ε̇0

n(r) + 1

(
σ(r)
e

σ
(r)
0

)n(r)+1

, (1.1)

where σ
(r)
0 , ε̇0 and n(r) are constants.

The macroscopic behaviour of the composite material is determined as:

D = D(σ) =
∂Ũ

∂σ
, (1.2)

where σ and D are the macroscopic stress and deformation rate of the composite material,

while Ũ = Ũ(σ) is the effective viscoplastic stress potential.

For the estimation of Ũ the following form has been proposed by Ponte Castañeda [16]:

Ũ = sup
µ(r)≥0

[
ŨL

(
σe, µ̃

(
µ(r)

))
−

N∑
r=1

c(r)v(r)
(
µ(r)

)]
, (1.3)

ŨL =
σ2
e

6µ̃ (µ(r))
, (1.4)

v(r)
(
µ(r)

)
= sup

σ
(r)
e ≥0

[
U

(r)
L

(
σ(r)
e , µ(r)

)
− U (r)

(
σ(r)
e

)]
, (1.5)

U
(r)
L =

σ(r)
e

2

6µ(r)
(1.6)

and

µ̃
(
µ(r)

)
=

(
N∑
s=1

c(s)µ(s)

3µ0 + 2µ(s)

)(
N∑
r=1

c(r)

3µ0 + 2µ(r)

)−1

, (1.7)

where µ0 is a ”reference viscosity” to be chosen appropriately.

Also, it is proven that the average deformation rate field in the phases D(r), for an

isotropic matrix and a uniform distribution of spherical inclusions, takes the form:

D(r) = a(r)D, (1.8)

a(r) =
1

3µ0 + 2µ̂(r)

(
N∑
s=1

c(s)

3µ0 + 2µ̂(s)

)−1

(1.9)

where µ̂(r) are the optimal values of µ(r) derived from the optimisation problem (1.3).
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We set all the creep exponents of the phases equal (n(1) = n(2) = ··· = n(N) = n) and then

assume that all the phases are perfectly plastic (n→∞), so, we prove that the macroscopic

response of composite material is also perfectly plastic. In addition, the yield stress of the

composite material is given by the following expression:

σ̃0

(
c(i), σ

(i)
0

)
=

√√√√√√ inf
y(1)=1

y(i)≥0, i=2,3

(
3∑
r=1

c(r)σ
(r)
0

2
y(r)

) 3∑
p=1

c(p)

3y(p) + 2y0

 3∑
(s=1)

c(s)y(s)

3y(s) + 2y0

−1

,

(1.10)

where y(r) =
µ(1)

µ(r)
and y0 =

µ(1)

µ0

.

In this case, we have a 3-phase material, so we have to solve an optimization problem

of two variables, numerically. For this purpose, CONMAX software will be used. The

composite is assumed to behave as “incrementally perfectly plastic” with a flow stress σ̃0,

which is updated at every increment. The value of σ̃0 is calculated by the solution of the

corresponding optimization problem (1.10) using the values σ
(i)
0 at each increment. The

solution of the optimization problem (1.10) defines also the optimal values ŷ(i) , which

determine the corresponding strain concentration factors in (1.9) for the increment.

1.4 Thesis overview

In Chapter 2, we develop the constitutive model for three-phase TRIP steels. The homoge-

nization techniques for non-linear composites, described in Chapter 1, are used to determine

the effective properties and overall behavior of TRIP steels. Standard isotropic linear hy-

poelasticity of homogeneous solids is used in order to describe the elastic behavior of the

TRIP steels and the martensitic transformation is described by the transformation kinetics

model proposed by Haidemenopoulos et al [5].

In Chapter 3, we develop a methodology for the numerical integration of the resulting

elastoplastic constitutive equations and the model is implemented into the ABAQUS [1]. We

also provide an expression for the Linearization moduli, which is required in a finite element

analysis.

In Chapter 4, we develop a method for the numerical integration of the constitutive model

under plane stress conditions. In these problems the out-of-plane component of the defor-

mation gradient is not defined kinematically and the general method needs to be modified.

Chapter 5 is concerned with the calculation of the Forming Limit Diagrams for sheets

made of TRIP steels. Calculations are also conducted for a non-transforming steel for com-

parison purposes.

Finally, Chapter 6 provides a brief summary of the contribution of this work together

with some prospects for future work.
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1.5 Notations

In this thesis, all tensors will be indicated by bold letters. Every component of a tensor will

be written with respect to a coordinate system with base vectors ei for i = 1, 2, 3. The sum

convention will be used also, for repeated indices in the same term. If a and b are vectors,

A and B are second order tensors and K and M, then the following products are defined:

a · b = aibi,

A : B = AijBij,

(ab)ij = aibj,

(A ·B)ij = AikBkj,

(K : A)ij = KijklAkl,
(K : M)ijkl = KijpqMpqkl.

We will use the Lagrangian description of motion. In the undeformed configuration,

or at time t = 0, the position of any material point is denoted by X. At any deformed

configuration, at time t, the position of the material point that where on X at t = 0, is

represented by x = x (X, t), where X and t are the independent variables.

For this description we will use the following definitions:

The deformation gradient: F (X, t) = ∂x
∂X

,

The velocity of a particle: u (X, t) = ∂x
∂t

,

The velocity gradient: L (x, t) = ∂u
∂x

.



Chapter 2

Constitutive Modeling of TRIP steels

In this chapter we present the constitutive equations which describe the mechanical behaviour

of a three-phase low-alloy TRIP steel, consisting of ferrite, austenite and martensite. The

following labels are used for the constituent phases: (1) for ferrite, (2) or (a) for austenite

and (3) or (m) for martensite. The constitutive equations are developed for the case of finite

geometry changes.

2.1 Constitutive formulation

As we have already mentioned, an important aspect of the martensitic transformation is the

strain softening which occurs due to the strain associated with the transformation process.

This strain softening is accounted for by introducing in the constitutive model an addi-

tional deformation rate that is proportional to the rate of increase of the volume fraction of

martensite. The total deformation rate can be split into elastic, plastic and transformation

parts:

D = De + Dp + DTRIP (2.1)

2.1.1 The elastic part

Standard isotropic linear hypoelasticity of homogeneous solids is used in order to describe the

elastic behavior of the TRIP steels since the elastic properties of all phases are fundamentally

the same. The constitutive equation for De is written as

σ
5

= Le : De (2.2)

or

De = Me : σ
5

(2.3)

where σ
5

= σ̇ −W · σ + σ ·W is the Jaumann derivative of the stress tensor and W =
1
2

(
L− LT

)
is the antisymmetric part of the velocity gradient L.

Le and Me are the elastic and elastic compliance tensors respectively:

10
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Le = 2µK + 3κJ

and

Me = Le−1 =
1

2µ
K +

1

3κ
J

µ and κ are the elastic constants of steel. K and J are the deviatoric and the spherical part

of the fourth-order identity tensor Iijkl = 1
2

(δikδjl + δilδjk), so:

J =
1

3
δδ

and

K = I + J

2.1.2 The plastic part

The plastic part Dp of the deformation rate is determined in terms of the plastic properties

of the constituent phases by using the homogenization theory described in Chapter 1. As it

is mentioned in [11], the flow rule can be written as:

Dp =
∂Ũ

∂σ
= ˙̄εN, N ≡ 3

2σe
s, (2.4)

where s is the deviatoric part of the Cauchy stress tensor σ. The rate of the equivalent

plastic strain ˙̄ε is by definition ˙̄ε =

√
2

3
Dp : Dp. The following relation for the rate of the

equivalent plastic strain can be proved:

˙̄ε =
σe
3µ̃
, (2.5)

where σe =
√

3
2
s : s is the von Mises equivalent stress and µ̃ = µ̃

(
c(r), σ

(r)
(0)(ε̄

(r))
)

is obtained

through Homogenization theory.

Also, we can find the plastic deformation for each phase:

Dp(i) = α(i)Dp (2.6)

where α(i) = α(i)
(
c(r), σ

(r)
(0)(ε̄

(r))
)

are also determined by Homogenization theory. Finally we

can derive the following relation between the average rate of the equivalent strain of each

phase and the rate of the equivalent plastic strain of the material:

˙̄ε
(i)

=

√
2

3
Dp(i) : Dp(i) = a(i) ˙̄ε (2.7)

More details about this formulation of the plastic part can be found in Papadioti [12].
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2.1.3 The Transformation Part

The transformation part is inelastic and has both a deviatoric and a spherical part. For this

part, Stringfellow [19] proposed the following form:

DTRIP = A(σe)ḟN +
1

3
ε̇pvδ (2.8)

where A (σe) is a function of von Mises equivalent stress, f is the volume fraction of marten-

site, N is a second order tensor derived from the deviatoric part of the stress tensor, which

has been already defined in (2.4), δ is the second-order identity tensor and ε̇pv is the trans-

formation dilatation rate and A(σe) is a dimensionless quantity:

ε̇pv = ∆vḟ , (2.9)

A(σe) = A0 + A1
σe
s∗a

(2.10)

where ∆v is the relative volume change caused by martensetic transformation, A0 and A1

are dimensionless constants ans s∗a is a reference austenite stress.

2.1.4 The evolution of the Martensitic phase

Haidemenopoulos et al [5] developed a model that describes the kinetics of the evolution of

martensite volume fraction during the strain-induced transformation of dispersed austenite

in low-alloy TRIP steels. The model is based on the Olson–Cohen theory of heterogeneous

martensitic nucleation ([8],[9],[10]).

Martensitic transformation is dominated by two different mechanisms, the stress assisted

and the strain inducted nucleation. In the first mechanism, martensite nucleates on pre-

existing nucleation sites. In the second mechanism, new nucleation sites are created due to

the plastic deformation of the austenite.

The model presented below predicts the evolution of martensite during strain-induced

transformation taking into account the effects of the chemical composition of austenite,

temperature, average size of austenite particles and stress triaxiality. The evolution equation

for the volume fraction of martensite f derived by Haidemenopoulos et al [5] is of the form:

ḟ = ċ(3) = c(2)Af ˙̄ε
(2)

(2.11)

where c(2) and ˙̄ε
(2)

are the volume fraction and the equivalent plastic strain of the austenitic

phase. Af is a function of the equivalent plastic strain of the austenite and the stress

triaxiality defined as :

Af = Af (ε̄
(2),Σ) = vpkm

[
N −N ε0

v

(
ε̄(2)

)] (
ε̄(2)

)m−1
exp (−aεn∗) (2.12)

where vp is the average volume of austenite particles, aε is a shape factor of strain-modified

potency distribution, N is the maximum number of nucleation sites per unit austenite volume

and N ε0
v is the number of additional sites produced from plastic stain. k and m are also
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constants. N and N ε0
v are dimensionless quantities. N is given as a constant and N ε0

v is a

function of ε̄(2):

N ε0
v

(
ε̄(2)

)
= N

[
1− exp

(
−k

(
ε̄(2)

)m)]
(2.13)

It should be noted that n∗ is temperature-dependent through the chemical driving force

∆Gch and stress-dependent through the mechanical driving force ∆Gσ. The critical value

of n also depends on the chemical composition of the austenite through the compositional

dependence of ∆Gch and the frictional work of interface motion Wf [5]:

n∗(σe) = −2γs
ρ

1

∆Gch + ∆Gσ(σe) + Estr +Wf

(2.14)

where γs is the fault interfacial energy (J/m2), ρ is the density of atoms in fault plane

(mol/m2) and ∆Gch ∆Gσ, Estr, Wf are the chemical driving force for martensitic trans-

formation, the mechanical contribution to driving force, the elastic strain energy and the

frictional work of interface motion, respectively. Estr, Wf and ∆Gch are constants, while

∆Gch is a function of equivalent stress σe and stress triaxiality Σ, given by:

∆Gσ(σe,Σ) = σe
∂∆G

∂σe
(Σ) (2.15)

where

∂∆G

∂σe
(Σ) = −0.715− 0.3206Σ (J/mol ·MPa) (2.16)

The following relations for ∆Gch and Wf are proposed in the model:

Wf = 1.893× 103XMn
2/3 + 1.310× 104XC

2/3, (2.17)

for Fe-C-Mn alloys, and

∆Gchemical = ∆Gchemical(T )(J/mol). (2.18)

where ∆Gchemical(T ) is a linear function and it depends on the chemical composition of the

alloy.

In the following the evolution equations for c(1) and c(2) are presented. Starting with the

definition of the volume fraction:

c(i) =
V (i)

V
(2.19)

we derive ċ(1) = −c(1)V̇
/
V . As we have mentioned previously, the martensitic transfor-

mation results in volumetric inelastic deformation. This phenomenon is described by the

following relation:

ε̇pv =
V̇

V
' ∆vḟ , (2.20)

where ∆v is a constant. As a result the evolution rate of ferritic phase is related with ḟ as:
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ċ(1) = −c(1) V̇

V
= −c(1)∆vḟ . (2.21)

and since c(1) + c(2) + f = 1 we find :

ċ(2) = −
(
ċ(1) + ḟ

)
. (2.22)

2.1.5 Summary of the constitutive equations

In this chapter we developed the constitutive equations for a 3-phase TRIP steel. These

equations can be summarized as:

D = De + Dp + DTRIP , (2.23)

σ
5

= Le : De, (2.24)

Dp = ˙̄εN, ˙̄ε =
σe
3µ̃
, (2.25)

DTRIP = A (σe) ḟN +
1

3
ε̇pvδ, (2.26)

where:

N =
3

2σe
s, σe =

√
3

2
s : s, ε̇pv = ∆vḟ . (2.27)

and the evolution equations of the volume fractions are given by:

ċ(1) = ∆vḟ , (2.28)

ċ(3) = ḟ = c(2)Af ˙̄ε
(2)
, (2.29)

ċ(2) = −
(
ċ(1) + ḟ

)
, (2.30)

where

Af = Af
(
ε̄(2),Σ

)
. (2.31)

2.2 Numerical Integration

In this section, we present a method for the numerical integration of the resulting constitutive

equations of TRIP steels in the context of a displacement driven finite element formulation.

In a finite element analysis, the solution of the problem is developed incrementally. We con-

sider t as a time-like loading parameter, where tn corresponds to the start of the increment

and tn+1 to the end. Also, we assume that ∆t = tn+1–tn is small. For any quantity A(t), we

use the notation A (tn) = An and A (tn+1) = An+1 to represent the value of this quantity at

the start and at the end of the increment, respectively. Finally, we set ∆A = An+1 − An.

During an increment, or for tn < t < tn+1, we assume that the material is perfectly plastic

in order to use the homogenization theory.
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At the beginning of an increment, all the quantities needed to define the solution
(
Fn,σn, c

(r)
n , ε̄(i)

n

)
,

are considered as known. In addition, as we are dealing with displacement driven analysis,

the deformation gradient in the end of the increment, Fn+1, is also given and the problem is

to define
(
σn+1, c

(r)
n+1, ε̄

(i)
n+1

)
at the end of each increment.

The time variation of the deformation gradient F during the time increment [tn, tn+1] can

be written as:

F(t) = ∆F(t) · Fn = R(t) ·U(t) · Fn (2.32)

where R(t) and U(t) are the rotation and right stretch tensors derived from Polar Decom-

position of ∆F(t).

The deformation gradient tensor L = ∂u/∂x is written in terms of F(t) as:

L(t) = ∆Ḟ(t) ·∆F−1(t). (2.33)

The deformation rate D(t) and spin W(t) tensors are the symmetric and anti-symmetric

parts of L(t), so they are expressed as:

D(t) =
1

2

(
L(t) + LT (t)

)
=
[
∆Ḟ(t) ·∆F−1(t)

]
s
, (2.34)

W(t) =
1

2

(
L(t)− LT (t)

)
=
[
∆Ḟ(t) ·∆F−1(t)

]
a
. (2.35)

We assume that the eigenvectors of U(t) remain constant during the increment thus:

D(t) = R(t) · Ė(t) ·RT (t), (2.36)

W(t) = Ṙ(t) ·RT (t) (2.37)

and

σ
5

(t) = R(t) · ˙̂σ ·RT (t), (2.38)

where E(t) is the logarithmic strain tensor and:

σ̂(t) = RT · σ(t) ·R. (2.39)

We should mention that at the start of the increment, or at t = tn:

Rn = Un = δ, En = 0, σ̂n = σn (2.40)

whereas at the end of the increment t = tn+1:

∆Fn+1 = Fn+1 · Fn
−1 = Rn+1 ·Un+1 = known, (2.41)

and

En+1 = ln Un+1 = known. (2.42)

Therefore, the constitutive equations (2.1), (2.2), (2.4), and (2.8) can be written in the

following form:
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D = De + Dp + DTRIP ⇒ Ė = Ėe + Ėin (2.43)

σ
5

= Le : De ⇒ ˙̂σ = Le : Ėe (2.44)

Dp = ˙̄εN

DTRIP = A(σe)ḟN + 1
3
ε̇pvδ

}
⇒ Ėin =

(
˙̄ε+ A(σe)ḟ

)
N̂ +

1

3
ε̇pvδ (2.45)

From equation (2.6) and the definition of the equivalent plastic stain ˙̄ε =
√

3
2
Dp : Dp, we

can derive the following relation between the rate of the macroscopic equivalent strain and

the average rate of the equivalent strain of each phase:

˙̄ε
(i)

=

√
2

3
Dp(i) : Dp(i) = a(i)

√
2

3
Dp : Dp ⇒

˙̄ε
(i)

= a(i) ˙̄ε (2.46)

In addition, we assume that during an increment, or over time tn < t < tn+1, all the

phases are perfectly plastic, thus, the flow stresses σ
(i)
0 are constant. The value of the flow

stress of each phase is given by the following expression:

σ
(i)
0 = (1− β)σ

(i)
0 |n + βσ

(i)
0 |n+1, 0 ≤ β ≤ 1, (2.47)

where σ
(i)
0 |n = σ(i)

y

(
ε̄

(i)
0 |n

)
and σ

(i)
0 |n+1 = σ(i)

y

(
ε̄

(i)
0 |n+1

)
Therefore, it can be proven through the Homogenisation theory that, as all phases are

perfectly plastic, the material is macroscopically perfectly plastic, too, during the increment.

The macroscopic flow stress of the material is acquired by solving the optimisation problem,

for certain values of the volume fractions c(i). As a result, the macroscopic flow stress of

the composite material is given as σ̃0 = σ̃0

(
c(i), σ

(i)
0

)
. The equation of the yield condition is

written as:

Φ
(
s, c(r), σ

(r)
0

)
= σe (s)− σ̃0

(
c(r), σ

(r)
0

)
= 0 (2.48)

In conclusion, for finite displacements, the problem problem is summarized as the system

of the following differential equations, for tn ≤ t ≤ tn+1:

Constitutive equations:

Ė = Ėe + Ėin (2.49)

Ėin =
(

˙̄ε+ A(σe)ḟ
)

N̂ +
1

3
ε̇pvδ (2.50)

˙̂σ = Le : Ėe (2.51)

˙̄ε
(i)

= a(i) ˙̄ε (2.52)

where

A(σe) = A1 + A0
σe
s∗a
, ε̇pv = ∆vḟ , a(i) = a(i)

(
c(r), ε̄(i)

)
. (2.53)

Equations of the evolution of the volume fractions:
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ċ(3) = ḟ = c(2)Af ˙̄ε
(2)

(2.54)

ċ(1) = −c(1)∆vḟ = c(2)Af ˙̄ε
(2)

(2.55)

ċ(2) = −
(
ċ(1) + ḟ

)
(2.56)

where

Af = Af (ε̄
(2),Σ) = vp(f)km

[
N −N ε0

v

(
ε̄(2)

)] (
ε̄(2)

)m−1
exp (−aεn∗) (2.57)

and

N ε0
v = N ε0

v

(
ε̄(2)

)
, n∗ = n∗(σe). (2.58)

As we have already mentioned, at any Gauss point, Fn, σn, c(i)
n , ε̄(i)

n and Fn+1 are known,

and σn+1, c
(i)
n+1 and ε̄

(i)
n+1 have to be determined. For this purpose, we use a combination of

Backward and Forward Euler integration methods.

At this point it should be noted that equation (2.50) that determines the inelastic de-

formation rate Ėin and equation (2.54) that defines the evolution of the volume fraction

of martensite f , as well as equation (2.52) require numerical integration. The rest of the

equations are integrated exactly:

∆E = ∆Ee + ∆Ein ⇒ ∆Ee = ∆E−∆Ein (2.59)

σ̂n+1 = σn + Le : ∆Ee = σn + Le :
(
∆E−∆Ein

)
= σ̂e −Le : ∆Ein (2.60)

c
(1)
n+1 = c(1)

n exp(−∆v∆f) (2.61)

c
(a)
n+1 = −

(
c

(1)
n+1 + c

(m)
n+1

)
(2.62)

where σ̂e = σ̂n + Le : ∆E is the elastic predictor.

The remaining equations are

Ėin =
(

˙̄ε+ A(σe)ḟ
)

N̂ +
1

3
ε̇pvδ (2.63)

˙̄ε
(i)

= a(i) ˙̄ε (2.64)

and

ḟ = c(2)Af ˙̄ε
(2)

(2.65)

For the integration of the aforementioned constitutive equations we use the backward

Euler method for the numerical integration of the “plastic flow” equation (2.63), and the

forward Euler method for (2.65):

∆Ein = (∆ε̄+ An+1∆f) N̂n+1 +
1

3
∆εpvδ, (2.66)

where An+1(σe|n+1) = A0 + A1
σe|n+1

s∗a
.

The evolution of the equivalent plastic strain in the phases (2.64) and of the volume

fraction of the martensite (2.65) using the forward Euler scheme are written also as:
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∆ε̄(i) = a(i)
n ∆ε̄ (2.67)

∆f = c(2)
n Af |n∆ε̄(i) = c(2)

n Af |na
(i)
n ∆ε̄ (2.68)

where Af |n = vp(fn)km
[
N −N ε0

v

(
ε̄(2)
n

)] (
ε̄(2)
n

)m−1
exp (−aεn∗).

By substituting the expression for ∆Ein from (3.17) in the elasticity equation:

σ̂|n+1 = σ̂e − (2µ K + 3κ J ) :
[
(∆ε̄+ An+1 ∆f) N̂n+1 +

1

3
∆ εpv δ

]
=

= σ̂e − 2µ (∆ε̄+ An+1 ∆f) N̂n+1 − κ∆εpv δ. (2.69)

From the previous equation, we split the stress tensor in two parts, the deviatoric and

the spherical part:

ŝ|n+1 = ŝ|e − 2µ (∆ε̄+ An+1∆f) N̂n+1 (2.70)

p̂|n+1δ = (p̂e − κ∆εpv) δ (2.71)

We use the relation ∆f = ∆εpv/∆v to express ŝ|n+1 in terms of ∆ε̄ and ∆εpv:

ŝ|n+1 = ŝe − 2µ
(

∆ε̄+ An+1
∆εpv
∆v

)
N̂n+1. (2.72)

We can prove that N̂n+1 is known as N̂n+1 = N̂e, as they are both derived from tensors

that have the same direction. We can show that ŝ|n+1 and ŝe are co-linear using the definition

of N̂n+1 ≡ 3
2σe|n+1

ŝn+1 in equation (2.72), and solve for ŝn+1:

ŝn+1 =
ŝe

1 + µ
(
∆ε̄+ An+1

∆εpv
∆v

)
3

σe|n+1

. (2.73)

Now we use the definition of equivalent stress σe ≡
√

3
2
s : s and we substitute ŝn+1, using

the previous equation, in the first equation:

N̂n+1 ≡ 3

2
√

3
2
ŝn+1:ŝn+1

ŝn+1

N̂e ≡ 3

2
√

3
2
ŝe:ŝe

ŝe

⇒ N̂n+1 = N̂e. (2.74)

The von Mises equivalent stress σe of a stress tensor σ is acquired by projecting this

tensor to its corresponding N tensor:

σe
2 =

3

2
s : s = σeN : s ⇒ σe = s : N (2.75)

As N is a deviatoric tensor and s is the deviatoric part of σ, we write that:

σe = s : N = σ : N. (2.76)

Therefore, we find σe|n+1 by projecting ŝn+1 to N̂n+1:
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σe|n+1 = ŝn+1 : N̂n+1 = ŝe : N̂n+1 − 2µ
(

∆ε̄+ An+1
∆εpv
∆v

)
N̂n+1 : N̂n+1. (2.77)

Also, from equation (2.74) we know that N̂n+1 = N̂e, so:

ŝe : N̂n+1 = ŝe : N̂e = σee. (2.78)

Considering the equation above, equation (2.77) and the definition of An+1 = A0 +

A1
σe|n+1

s∗a
we derive the following expression for σe|n+1:

σe|n+1 = σee − 3µ

[
∆ε̄+

(
A0 + A1

σe|n+1

s∗a

)
∆εpv
∆v

]
⇒

σe|n+1 =
σee − 3µ

(
∆ε̄+ A0

∆εpv
∆v

)
1 + 3µA1

s∗a

∆εpv
∆v

. (2.79)

At this point, we write the equations (2.48) and (2.68) in terms of ∆ε̄ and ∆εpv:

σe|n+1 − σ̃0|n+1 =
σee − 3µ

(
∆ε̄+ A0

∆εpv
∆v

)
1 + 3µA1

s∗a

∆εpv
∆v

− σ̃0|n+1 = 0 ⇒

σee − 3µ
(

∆ε̄+ A0
∆εpv
∆v

)
−
(

1 + 3µ
A1

s∗a

∆εpv
∆v

)
σ̃0|n+1 = 0, (2.80)

∆εpv −∆vc
(2)
n Af |na

(2)
n ∆ε̄ = 0. (2.81)

Equations (2.80) and (2.81) consist a non-linear system of two equation, which has to be

solved for ∆ε̄ and ∆εpv:

F1 (∆ε̄,∆εpv) = σee − 3µ
(

∆ε̄+ A0
∆εpv
∆v

)
−
(

1 + 3µ
A1

s∗a

∆εpv
∆v

)
σ̃0|n+1 = 0 (2.82)

F2 (∆ε̄,∆εpv) = ∆εpv −∆vc
(2)
n Af |na

(2)
n ∆ε̄ = 0. (2.83)

We use the Newton Method to solve this system. The first estimates for ∆ε̄ and ∆εpv are

given in the next section. So, the values of ∆ε̄ and ∆εpv in the first iteration of the newton

loop will be:

∆ε̄ = a1N̂ : ∆E, (2.84)

where a1 =
2

3D
, D = 1 +

Hn

3µ
+ µ

(
An
∆v

+
Hv|n
3µ

)
, Hn =

3∑
i=1

 ∂σ̃0

∂σ
(i)
0

∣∣∣∣∣
n

h(i)
n a

(i)
n

 and Hv|n =

3∑
i=1

(
∂σ̃0

∂c(i)

∣∣∣∣∣
n

g(i)
n

)
,

and

∆εpv = mdε̄ = ma1N̂ : ∆E, (2.85)
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where m = ∆vc
(2)
n a(2)

n An and a(i) are known from the previous increment. More details on

these quantities will be given in the following section.

Within each iteration in the Newton loop, for given ∆ε̄ and ∆εpv, we calculate the following:

c
(1)
n+1 = c(1)

n exp (−∆εpv)

c
(3)
n+1 = c(3)

n +
∆εpv
∆v

c
(2)
n+1 = 1−

(
c

(1)
n+1 + c

(3)
n+1

)
∆ε̄(i) = a(i)

n ∆ε̄,

where a(i)
n are known from the solution of the optimization problem of the previous incre-

ment. As c
(i)
n+1 and ε̄

(i)
n+1 = ε̄(i)

n + ∆ε̄(i) are known, we are able through the Homogenization

theory to determine:

σ̃0|n+1 = σ̃0

(
c

(i)
n+1, ε̄

(i)
n+1

)
.

Finally, we can compute σee, using the definition of von Mises equivalent stress, and

Af |n = Af
(
ε̄(2)
n ,Σn

)
from (2.57):

σee =

√
3

2
ŝn+1 : ŝn+1 ,

Af |n = Af (ε̄n,Σn) = vp(fn)km
[
N −N ε0

v

(
ε̄(2)
n

)] (
ε̄(2)
n

)m−1
exp (−aεn∗) ,

where Σn = pn
σe|n

.

As we have found all the quantities involved in the system of equations (2.82) and (2.83),

we can now calculate the Jacobian matrix for the Newton Loop:

J =

[
J11J12

J21J22

]
,

where:

J11 =
∂F1

∂∆ε̄
= −3µ−

(
1 +

3G

s∗a

A1

∆v

∆εpv

)
3∑
1

∂σ̃0

∂σ
(i)
0

h(i)a(i)
n (2.86)

J12 =
∂F1

∂∆εpv
= −3µ

(
A0

∆v

+
A1

∆v

σ̄0|n+1

s∗a

)
−
(

1 + 3µ
A1

s∗a∆v

∆εpv

)
3∑
i=1

∂σ̃0

∂c(i)

∂c(i)

∂∆εpv
(2.87)

J21 =
∂F2

∂∆ε̄
= −∆vc

(2)
n Af |na

(2)
n (2.88)

J22 =
∂F2

∂∆εpv
= 1 (2.89)

The derivatives ∂σ̃0
∂σ

(i)
0

and ∂σ̃0
∂c(i)

are obtained from the Homogenisation Theory.

The definitions of h(i) and a(i)
n are:

h(i) =
∂σ

(i)
0

∂ε̄(i)
,
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a(i)
n =

∂∆ε̄(i)

∂∆ε̄
=
∂ε̄(i)

∂ε̄
,

We also need the following derivatives :

∂c
(1)
n+1

∂∆εpv
= −c(1)

n+1 (2.90)

∂c
(3)
n+1

∂∆εpv
=

1

∆v

(2.91)

∂c
(2)
n+1

∂∆εpv
= c

(1)
n+1 −

1

∆v

(2.92)

Details on the Jacobian matrix and these derivatives are presented explicitly in the ap-

pendices.

2.3 The Linearization moduli

When the finite element method is used for the solution to the problem, we need to calculate

the linearization moduli:

C =
∂σ

∂E

Ĉ =
∂σ̂n+1

∂En+1

Cijkl ' Rim|n+1Rjn|n+1Rkp|n+1Rlq|n+1Ĉmnpq

Generally, C depends not only on the constitutive model but also on the algorithm used

for the numerical integration of the constitutive equations. The equation that defines σ̂n+1

is:

σ̂n+1 = σ̂n + Le : ∆Ee = σ̂n + Le :
(
∆E−∆Ein

)
By differentiating this equation and using equation (2.45) for dEin:

dσ̂n+1 = Le : dEe = Le : dE−Le : dEin =

= Le : dE−Le :

[(
dε̄+ An+1

dεpv
∆v

)
N̂n+1 +

1

3
dεpvδ

]
=

= Le : dE− 2µ

(
dε̄+ An+1

dεpv
∆v

)
N̂n+1 − κdεpvδ (2.93)

In order to find the linearization moduli we have to express dε̄ and dεpv in terms of dE.

We begin with the calculation of dεpv. Equation (2.83) suggests that:
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dεpv = ∆vc
(2)a(2)Af |ndε̄

or

dεpv = mdε̄, (2.94)

with m = ∆vc
(2)a(2)Af |n.

The consistency condition suggests that:

dΦ
(

ŝ, ε̄(i), c(i)
)

= 0⇒

N̂ : dŝ−
3∑
i=1

(
∂σ̃0

∂ε̄(i)
dε̄(i) +

∂σ̃0

∂c(i)
dc(i)

)
= 0 ⇒

2µN̂ : dE− 3µ
(
dε̄+

A

∆v

dεpv

)
− dε̄

3∑
i=1

(
∂σ̃0

∂σ
(i)
0

h(i)a(i)

)
− dεpv

3∑
i=1

(
∂σ̃0

∂c(i)
g(i)

)
= 0, (2.95)

where we tok into consideration that N̂ : dŝ = N̂ : dσ̂ and N̂ : δ = 0. We have also used the

expression (2.93) for dσ̂.

Next, we substitute dεpv in the previous equation:

dε̄ =
2µ

3µ+H +m
(
3µ A

∆v
+Hv

)N̂ : dE

or

dε̄ = a1N̂ : dE, (2.96)

with a1 =
2

3D
, D = 1+

H

3µ
+µ

(
A

∆v

+
Hv

3µ

)
, H =

3∑
i=1

(
∂σ̃0

∂σ
(i)
0

h(i)a(i)

)
andHv =

3∑
i=1

(
∂σ̃0

∂c(i)
g(i)

)
.

Therefore dEin can be written in the following form:

dEin =
(
dε̄+

A

∆v

dεpv

)
N̂ +

1

3
dεpv δ = a1

(
1 +

A

∆v

m
)

N̂ N̂ : dE +
1

3
a1mδN : dE (2.97)

Finally, we substitute dEin from (2.97) into (2.93) to derive

dσ̂ = Le : dE− 2µ

(
a1N̂ : dE + A

ma1N̂ : dE

∆v

)
N̂ + κma1(N̂ : dE)δ =

=
(
2µK + 3κJ − f1N̂N̂− f2δN̂

)
: dE (2.98)

so

Ĉ = 2µK + 3κJ − f1N̂N̂− f2δN̂ (2.99)

where f1 = 2µa1

(
1 + A

∆v
m
)
, f2 = κma1.
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2.4 Implementation in UMAT subroutine

The constitutive model described above is implemented into the ABAQUS general purpose

finite element code via the UMAT (User-MATerial) subroutine. UMAT can be called by

the user to define the mechanical behavior of a material. UMAT is called at any material

calculation point of elements for which the material definition includes a user-defined material

behavior. For each increment, the user is provided with the deformation gradient (Fn), the

stresses (σn) and all state dependent variables
(
ε̄n, c

(i)
n , ε̄

(i)
n , yin = yin(a(r)

n )
)
, at the start of the

increment, as well as the deformation gradient at the end of the increment, (Fn+1). Given all

those quantities, the user has to return the stresses (σn+1) and all state dependent variables(
ε̄n+1, c

(i)
n+1, ε̄

(i)
n+1, yin = yin+1(a

(r)
n+1)

)
at the end of the increment. A UMAT subroutine must

also provide the material Jacobian matrix (∂∆σ/∂∆E) corresponding to the mechanical

constitutive model under consideration.

The basic variables predefined in a general UMAT subroutine are summarized in table

3.1. When developing a UMAT subroutine the user is also free to define solution-dependent

state variables (STATEV) and ABAQUS will store their values at the end of every increment,

making them available for future calculations on subsequent increments. Solution dependent

variables need to be updated to their values at the end of every increment.

Table 2.1: Interpretation of the predefined variables in a UMAT subroutine
NDI Number of direct stress components

NSHR Number of shear stress components
NTENS Number of total stress components

(NDI + NSHR)
NPROPS Number of material constants associated with this material

(defined by user)
NSTATEV Number of extra solution-depended state variables associate

with this material (defined by user)
PROPS(NPROPS) Array of material constants

(user defined)
STRESS(NTENS) Array containing the true or Cauchy stress components

STATEV(NSTATEV) Array containing the solution-depended state variables
STRAN(NTENS) Array containing the total strains

DSTRAN(NTENS) Array containing the strain increments
DDSDDE(NTENS,NTENS) Jacobian matrix of the constitutive model

DROT(3,3) Rotation increment matrix
DFGRD0(3,3) Deformation gradient at the beginning of the increment
DFGRD1(3,3) Deformation gradient at the end of the increment

CMNAME Name of the user-defined material

We have 18 constant quantities associated with the properties of the material, so NPROPS

= 18. These quantities are contained in the array PROPS(18). The array of the properties

is presented in table 2.4, below:
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Table 2.2: Constants used in the model
E Young’s modulus
v Poisson’s ratio

Nphases Number of phases
A0 Constant
A1 Constant
s∗a Reference austenite stress
∆v Relative volume change caused by martensitic transformation
vp average volume of austenite particles
k Constant
m Constant
N Maximum number of nucleation sites can be produced by plastic strain
aε Shape factor of strain modified potency distribution
Estr Elastic strain energy
γs Fault/matrix inter-facial energy
ρ Density of atoms
T Temperature

XMn Mole fraction of Mn
XC Mole fraction of C

Also, we have 12 state dependent variables, contained in the array STATEV(12), as pre-

sented in the table 2.4.

Table 2.3: State depended variables
ε̄ Equivalent plastic strain
a Elastic flag (0 for elasticity, 1 for plasticity)
Σ Stress triaxility

c(i), i = 1, 2, 3 Volume fractions of ferrite, austenite and martensite, respactively

ε̄(i), i = 1, 2, 3 Average equivalent plastic strains of each phase

y(i) Optimisation parameters



Chapter 3

Computational model for Plane Stress

In this chapter, we develop a model for a plane stress analysis. In a general deformation

driven analysis, displacement is considered as known and we have to compute the stress

tensor. In contrast, in plane stress, we consider a thin plate with its center lying on plane,

where the out of plane strain components are not defined kinematically and the out of plain

stress components are zero. The concept is fundamentally the same, but the deformation

gradient component F33 is unknown and the stress component σ33 is zero, so it is considered

to be known. The deformation gradient, in matrix form is:

F =

 F11 F12 0
F21 F22 0
0 0 F33

 ,
where F33 is unknown, while the stress tensor has the form:

σ =

 σ11 σ12 0
σ21 σ22 0
0 0 0

 .
So, in this problem, F33 is an unknown variable, and σ33 is known. As a result, during an

increment, one part of Fn+1 is not defined kinematically. Thus, we will adopt the following

implementation for ∆F = Fn+1 − Fn:

∆F =

 ∆F̄11 ∆F̄12 0
∆F̄21 ∆F̄22 0

0 0 ∆F33

 ,
where ∆F̄αβ, α, β = (1, 2) are the known in-plane components and ∆F33 is the unknown out-

of-plane component. For this deformation gradient tensor ∆F, we have its corresponding

right stretch and orthogonal rotation tensors and the logarithmic stretch tensor:

∆U =

 ∆Ū11 ∆Ū12 0
∆Ū21 ∆Ū22 0

0 0 ∆U33

 , (3.1)

∆R =

 ∆R̄11 ∆R̄12 0
∆R̄21 ∆R̄22 0

0 0 1

 (3.2)

25
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and

∆E =

 ∆Ē11 ∆Ē12 0
∆Ē21 ∆Ē22 0

0 0 ∆E33

 , (3.3)

where ∆Ū and ∆R̄ can be computed through Polar Decomposition of the known part of

∆F tensor:

∆F̄ =

 ∆F̄11 ∆F̄12 0
∆F̄21 ∆F̄22 0

0 0 0

 ,
so, the known part of the logarithmic strain tensor ∆Ē is:

∆Ē =

 ∆Ē11 ∆Ē12 0
∆Ē21 ∆Ē22 0

0 0 0

 = ln Ū.

For convenience, we adopt the following expression for ∆E:

∆E = ∆Ē + ∆E33a, (3.4)

where a = e3e3. As a result, the deviatoric part of a′ is:

a′ = e3e3 −
1

3
δ = −1

3
(e1e3 + e1e1 − 2e3e3) (3.5)

The component ∆E33, which is unknown is determined from the plane stress condition:

σ33 = e3 · σ · e3 = 0. (3.6)

3.1 Numerical Integration of the Constitutive Equa-

tions

As we are dealing with the same material, we are using the constitutive equations developed

in Chapter 2.

Constitutive equations:

Ė = Ėe + Ėin (3.7)

˙̂σ = Le : Ėe (3.8)

Ėin =
(

˙̄ε+
A

∆v

ε̇pv

)
N̂ +

1

3
ε̇pvδ (3.9)

˙̄ε
(i)

= a(i) ˙̄ε (3.10)

The yield condition:

Φ
(
s, c(i), ε̄(i)

)
= σe(s)− σ̃0

(
c(i), ε̄(i)

)
= 0 (3.11)
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The evolution equations of the volume fractions of the constituent phases are defined by

the following equations:

ċ(1) = −c(1)ε̇pv ≡ ε̇pvg
(1) (3.12)

ċ(3) = ḟ = c(2)Af ˙̄ε
(2)

(3.13)

ċ(2) = −
(
ċ(1) + ċ(3)

)
=
(
c(1) − 1

∆v

)
ε̇pv ≡ ε̇pvg

(2) (3.14)

ε̇pv = ∆vḟ = ∆vc
(2)Af ˙̄ε

(2)
(3.15)

Af = Af (ε̄
(2),Σ) (3.16)

The Backward Euler integration scheme is used for the plastic flow equation (3.9):

∆Ein = (∆ε̄+ An+1∆f) N̂n+1 +
1

3
∆εpvδ (3.17)

where An+1 = A0 + A1
σe|n+1

s∗a
.

Exact integration for (3.12), (3.13), (3.14) and (3.15):

∆εpv = ∆v∆f (3.18)

c
(1)
n+1 = c(1)

n exp (−∆εpv) (3.19)

c
(3)
n+1 = c(3)

n +
∆εpv
∆v

(3.20)

c
(2)
n+1 = 1−

(
c

(1)
n+1 + c

(3)
n+1

)
(3.21)

The Forward Euler integration scheme is used for equations (3.13) and (3.10):

∆f = c(3)
n Af |na

(2)
n ∆ε̄ (3.22)

where Af |n = vp (fn) km [N −N e0
v ( ε̄(2)

n )]
(
ε̄(2)
n

)m−1
exp (−aεn∗)

∆ε̄(i) = a(i)
n ∆ε̄ (3.23)

The elasticity equation, using (3.4) expression for ∆E, becomes:

σ̂n+1 = σ̂n + Le : ∆Ee = σ̂n + Le :
(
∆E−∆Ein

)
= σ̂n + Le :

(
∆Ē + ∆E33a−∆Ein

)
= σ̄e + Le :

(
∆E33a−∆Ein

)
. (3.24)

In addition, we substitute ∆Ein using equations (3.17) and (3.22), and the definition of the

elastic moduli, Le = 2µK + 3κJ :

σ̂n+1 = σ̄e + Le :
[
∆E33a− (∆ε̄+ An+1∆f) N̂n+1 −

1

3
∆εpvδ

]
=
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= σ̄e + (2µK + 3κJ ) :
[
∆E33a−

(
∆ε̄+

An+1

∆v

∆εpv

)
N̂n+1 −

1

3
∆εpvδ

]

= σ̄e − 2µ
[(

∆ε̄+
An+1

∆v

∆εpv

)
N̂n+1 −∆E33a

′
]
− κ (∆εpv −∆E33) δ (3.25)

Having the the stress tensor written in this form , we calculate the deviatoric and the

spherical parts of σ̂n+1:

ŝn+1 = s̄e − 2µ
[(

∆ε̄+
An+1

∆v

)
N̂n+1 −∆E33a

′
]

(3.26)

and

p̂n+1 = p̄e − κ (∆εpv −∆E33) . (3.27)

It has to be mentioned that σ̄e = σ̂n + Le : ∆Ē is the elastic predictor corresponding to the

”known” part of ∆E.

In equation (3.26) we use the definition of N̂n+1 =
3

2σe|n+1

ŝn+1 and solve for ŝn+1:

ŝn+1 = s̄e − 2µ
[(

∆ε̄+
An+1

∆v

)
N̂n+1 −∆E33a

′
]
⇒

ŝn+1 =
s̄e + 2µ∆E33a

′

1 + 3µ
σe|n+1

(
∆ε̄+ An+1

∆v
∆εpv

) . (3.28)

We should mention that in this case, in contrast with the previous model, ŝn+1 and s̄n+1 do

not have the same direction. As a result, in general, N̂n+1 6= N̄e, where N̂n+1 and N̄e are

corresponding to ŝn+1 and s̄e tensors, respectively.

At this point, we will derive an expression for the von Mises equivalent stress, as we have

done in the previous model. We will use the definition of the equivalent stress
(
σe|n+1

)2
=

3
2
ŝn+1 : ŝn+1 and (3.28), so:

(
σe|n+1

)2
=

3

2

s̄e : s̄e + 4µ∆E33s̄
e : a′ + (2µ∆E33)2a′ : a′[

1 + 3µ
σe|n+1

(
∆ε̄+ An+1

∆v
∆εpv

)]2

=
(σ̄ee)

2 + 6µ∆E33s̄
e
33 + (2µ∆E33)2[

1 + 3µ
σe|n+1

(
∆ε̄+ An+1

∆v
∆εpv

)]2 (3.29)

Finally, by using An+1 = A0 + A1
σe|n+1

s∗a
in the previous equation and solving for σe|n+1 we

obtain:

(
σe|n+1

)2
=

(σ̄ee)
2 + 6µ∆E33s̄

e
33 + (2µ∆E33)2[

1 + 3µ
σe|n+1

(
∆ε̄+

A0+A1
σe|n+1
s∗a

∆v
∆εpv

)]2 ⇒

σe|n+1 =
µ
[√

σ̄ee
µ2

+
6∆E33s̄e33

µ
+ 4(∆E33)2 −

(
∆ε̄+ A0

∆v
∆εpv

)]
1 + A1

∆v

3µ
s∗a

. (3.30)
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We acquire in the following form for σe|n+1, that can be substituted in the yield condition:

σe|n+1 =
µ
[
F (∆E33)−

(
∆ε̄+ A0

∆v
∆εpv

)]
1 + A1

∆v

3µ
s∗a

, (3.31)

where F (∆E33) =

√
σ̄ee
µ2

+
6∆E33s̄e33

µ
+ 4(∆E33)2.

In this model, we have to solve a system of three equations, as we have an additional

unknown quantity, ∆E33. The third equation is the Plane stress condition, or:

σ33|n+1 = 0 (3.32)

Using equation (3.2) we find that:

σ̂33|n+1 = e3 ·∆R · σn+1 ·∆R · e3 = 0 (3.33)

This equation has to be expressed in terms that can be computed for given values of the

unknowns, ∆ε̄, ∆εpv and ∆E33. Firstly, we will write this equation as:

σ̂33|n+1 = ŝ33|n+1 + p̂n+1

and we use equation (3.28), so:

s̄e33 +
4

3
µ∆E33 +

[
1 +

3µ

σe|n+1

(
∆ε̄+

An+1

∆v

∆εpv

)]
p̂33|n+1 = 0 (3.34)

Finally, we get the following non-linear system of three equations,(3.11), (3.22) and (3.34),

where we used (3.31) expression for σe|n+1 in the first equation and (3.18) expression for ∆εpv
in the second equation. This system has to be solved for (∆ε̄), (∆εpv) and (∆E33):

F1 = σe|n+1 − σ̃0

(
c

(i)
n+1, ε̄

(i)
n+1

)
= µ

F (∆E33)− 3
(
∆ε̄+ A0

∆v
∆εpv

)
1 + A1

∆v

3µ
s∗a

− σ̃0

(
c

(i)
n+1, ε̄

(i)
n+1

)
(3.35)

F2 = ∆εpv −∆vc
(2)
n Af |na(2)∆ε̄ (3.36)

F3 = s̄e33 +
4

3
µ∆E33 +

[
1 +

3µ

σe|n+1

(
∆ε̄+

An+1

∆v

∆εpv

)]
p̂33|n+1 = 0 (3.37)

where F (∆E33) =

√
σ̄ee
µ2

+
6∆E33s̄e33

µ
+ 4(∆E33)2 and equation (3.31) is used for the substitu-

tion of in the first equation.

Newton’s method is used for the solution of the system. The first estimates for this

method are given in (3.42).
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3.2 First Estimates

We can acquire the initial values of ∆ε̄, ∆εpv and ∆E33 in a similar way aw we did in the

previous model. By differentiating the consistency condition, we already have the following

expression (2.96) for dε̄:

dε̄ = a1N : dE, (3.38)

where a1 = 2
3D

, D = 1 + H
3µ

+ µ
(
A

∆v
+ Hv

3µ

)
, and from (3.36) for dεpv:

dεpv = mdε̄ = ma1N : dE (3.39)

In this case, as only the dĒ part of dE is known, we will create a system of equations with

dĒ on the right-hand side. In addition, as dE33 is unknown, we have a system of three

equations with three unknowns.

As dE = dĒ + dE33a, (3.38) equation is written as:

3

2

[
1 +

H

3µ
+ µ

(
A

∆v

+
Hv

3µ

)]
= N :

(
dĒ + dE33a

)
⇒

3

2

[
1 +

H

3µ
+ µ

(
A

∆v

+
Hv

3µ

)]
−N : a dE33 = N : dĒ (3.40)

Next, we use the plane stress condition:

σ̇33 = 0

together with equations (3.26) and (3.27):

σ̇33 = 2µ
[
ė33 −

(
˙̄ε+

A

∆v

ε̇pv

)
N33

]
+ κ (ε̇kk − ε̇pv) = 0⇒

2µ
[
dε̄33 + dE33a

′
33 −

(
dε̄+

A

∆v

dεpv

)
N33

]
+ κ

(
dĒkk + dE33 − dεpv

)
= 0⇒

2µN33dε̄+
(

2µ
A

∆v

N33 + κ
)
dεpv −

(
κ+

4

3
µ
)
dE33 = 2µa : dē + κdĒkk ⇒[

2µN33 +m
(

2µ
A

∆v

N33 + κ
)]
dε̄−

(
κ+

4

3
µ
)
dE33 = (κδ + 2µa′) : dĒ (3.41)

Equations (3.40) and (3.41) are presented in matrix form as:

 3
2

[
1 + H

3G
+ µ

(
A

∆v
+ Hv

3G

)]
−µN33

2µN33 +m
(
2µ A

∆v
N33 + κ

)
−
(
κ+ 4

3
µ
) { dε̄

dE33

}
=

{
N : dĒ

(κδ + 2µa′) : dĒ

}
(3.42)
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3.3 The Linearization moduli

In the previous chapter, in (2.99) equation, we have acquired the following expression for

the linearization moduli:

Ĉ = (2µK + 3κJ − f1NN− f2δN)

where f1 = 2µa1

(
1 + A

∆v
m
)

and f2 = κma1.

In plane strain problems, we can write the equation dσ = C : dE in matrix form


dσ11

dσ22

dσ33

dσ12

 =


C11 C12 C13 C14

C21 C22 C23 C24

C31 C32 C33 C34

C41 C42 C43 C44



dE11

dE22

dE33

dE12

 . (3.43)

but in plane stress problems, the linearization moduli C̄ used in ABAQUS needs to be of

the form: 
dσ11

dσ22

dσ12

 =

 C̄11 C̄12 C̄13

C̄21 C̄22 C̄23

C̄31 C̄32 C̄33



dE11

dE22

dE12

 , (3.44)

This form can be derived from equation (3.43) using the plane stress condition dσ33 = 0

or

dσ33 = C13dE11 + C32dE22 + C33dE33 + 2C34dE12 = 0⇒

dE33 = −C13dE11 + C32dE22 + 2C34dE12

C33

, (3.45)

Thus, combining the last equation and equation (3.43) after some calculations we derive:

C̄11 = C11 −
C13

C33

C31, C̄12 = C12 −
C13

C33

C32, C̄13 = C14 −
C13

C33

C34,

C̄21 = C21 −
C23

C33

C31, C̄22 = C22 −
C23

C33

C32, C̄23 = C24 −
C23

C33

C34,

C̄31 = C41 −
C43

C33

C31, C̄32 = C42 −
C43

C33

C32, C̄33 = C44 −
C43

C33

C34.

For instance,

dσ11 = C11 dE11 + C12 dE22 + C13 dE33 + 2C14 dE12

= C11 dE11 + C12 dE22 − C13

C33
(C31dE11 + C32dE22 + 2C34dE12) + 2C14 dE12

=
(
C11 − C13

C33
C31

)
dE11 +

(
C12 − C13

C33
C32

)
dE22 +

(
C14 − C13

C33
C34

)
2 dE12

(3.46)



Chapter 4

Forming Limit Diagrams

In this chapter the constitutive model developed for the three-phase TRIP steel is used to

calculate “forming limit diagrams” for sheets of TRIP steels with a standard initial values of

volume fractions of the phases. A forming limit diagram shows the maximum deformation

which can be applied in a sheet, subjected in plane stress, until failure. We will assume

that each sheet has an imperfection in the form of a narrow straight band with a reduced

thickness. Across this band, the deformation gradient will be discontinuous, and, as a result,

instabilities may be observed in this band which lead to failure. For comparison purposes,

we will also calculate forming limit diagrams for a perfect sheet and sheets without the TRIP

effect and we will compare those results.

4.1 Problem formulation

The discontinuities of the deformation gradient between the band and the other part of the

sheet are expressed as:

F b
αβ = Fαβ +

[
∂uα
∂Xβ

]
, (4.1)

where [∂uα/∂Xβ] is the jump of the deformation gradient and Fb is the deformation gradient

inside the band. The Greek letters α, β take values in range (1,2). The deformation gradient

is constant in the direction parallel to the band and the jump appears in the vertical to the

band direction, and, consequently, the jump is written in the following form:[
∂uα
∂Xβ

]
= GαNβ, (4.2)

where N = N1e1 + N2e2 is the unit vector normal to the band, in the undeformed configu-

ration and G is the jump in the normal derivative of u. So, the deformation gradient inside

the band is constant and has the form:

F b
αβ = Fαβ +GαNβ. (4.3)

So, for the determination of the deformation gradient inside the band we have to find G.

32
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The deformation gradient outside the band, in matrix form is:

[Fij] =

 λ1 0 0
0 λ2 0
0 0 λ3

 (4.4)

and inside the band:

[
F b
ij

]
=

 λ1 +G1N1 G1N2 0
G2N1 λ2 +G2N2 0

0 0 λb3

 (4.5)

where λ1 and λ2 are considered to be known.

In this part we use the 1st Piola-Kirchhoff tensor, t, for convenience. The 1st Piola-

Kirchhoff tensor can be related with the Cauchy stress tensor through the relation:

t = JF−1 · σ, (4.6)

where J = det F. It can be proven that:

ṫ = R : ḞT (4.7)

where

Rijkl = JF−1
im F

−1
kn (Lmjnl + Vmjnl)

and

Vijkl =
1

2
(σikδjl − δikσjl − σilδjk − δilσjk) + σijδkl.

Equation (4.7) is written as:

ṫαβ = RαβlkḞlk = RαβγδḞdeltaγ +Rαβ33Ḟ33 (4.8)

and

ṫ33 = R33klḞlk = R33δγ +R3333Ḟ33 (4.9)

The Plane Stress condition implies that:

σ̇33 = 0⇒ ṫ33 = R33γδḞδγ +R3333Ḟ33 = 0⇒

Ḟ33 = −R33γδḞδγ
R3333

(4.10)

By substituting Ḟ33 in (4.8) equation, using the expression above, we have:

ṫαβ = RαβδγḞγδ +Rαβ33

(
−R33γδḞδγ

R3333

)
=
(
RαβδγḞγδ −Rαβ33

R33γδ

R3333

)
Ḟδγ. (4.11)

So, the constitutive equation which we will use for this analysis has the form:

ṫαβ = CαβγδḞδγ, (4.12)
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where Cαβγδ =
(
Rαβγδ −Rαβ33

R33γδ

R3333

)
.

In a similar way, we can derive the constitutive equation inside the band:

ṫbαβ = Cb
αβγδḞ

b
γδ, (4.13)

where Cb
αβγδ =

(
Rb
αβγδ −Rb

αβ33

Rb
33γδ

Rb
3333

)
.

The equilibrium across the band indicates that:

Tα = T bα ⇒

HNβtβα = HbNβt
b
βα. (4.14)

the rate form of which is:

HNβ ṫβα = HbNβ ṫ
b
βα. (4.15)

Now, combining equations (4.12), (4.13) and (4.18) we find:

A · Ġ = B · ḃ (4.16)

where Aαβ = NγC
b
γαδβNγ, Bαβ = Nγ

(
H
Hb
Cγαββ − Cb

γαββ

)
and bα = λα.

In the case of a perfect sheet, or H = Hb, C = Cb. As a result, it is obvious from (4.16),

Bαβ = 0 and Ġαβ = 0. Therefore, along a perfect sheet the deformation is homogenous, or

F = Fb. The local necking bifurcation condition is met when det[A] = 0.

In a sheet with a straight narrow band of thickness Hb < H, B does not vanish, so

equation (4.16) can be solved for Ġ. The localization condition is met when d|G|/ dλ1 =∞,

or when det[A] = 0.

For given ∆F in plane X1 − X2 we can compute ∆G and ∆F b using equation (4.16).

Thus, we will use the equilibrium across the band itself, in order to get a higher accuracy.

The equilibrium suggests that:

Tn+1 = Tb
n+1 (4.17)

If we set:

Tn+1 = Tn + Ṫn∆t

and

Tb
n+1 = Tb

n + Ṫb
n∆t

we derive:

Aαβ|n∆Gβ = Bαβbα|n∆t+
1

Hb

(
Tα|n − T bα|n

)
(4.18)

In this analysis the tensor of the logarithmic strains out of the band has the form:

E =

 E11 0 0
0 E22 0
0 0 E33

 (4.19)
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where E11 and E22 are considered known, as well as, λ1 and λ2 while λ33 will be calculated

using the plane stress condition. As we have mentioned previously, in this analysis, the rates

of change of the strains E1 and E2 must be proportional to each other:

dE2

dE1

= ρ⇒

E1

E2

= ρ (4.20)

where ρ is constant during an analysis.

Last equation implies:

λ2 = λρ1 (4.21)

Every set of calculations is carried out for a certain value ρ and Hb/H . At the start of

each increment we have a standard ∆λ1, so we define the following quantities at the end of

the increment:

λ1|n+1 = λ1|n + ∆λ1 (4.22)

λ2|n+1 = (λ1|n+1)ρ (4.23)

So, at the start of each increment we assume that the values of σn, Fn, εpv|n, ε̄n, ε̄(i)
n , c(i)

n and

F̄n+1 are known, where F̄n+1 is defined as :

[F̄ij] =

 λ1|n+1 0 0
0 (λ1|n+1)ρ 0
0 0 0

 = known (4.24)

Then, we determine the uniform solution outside the band by using the plane stress

algorithm presented in the previous chapter. Next, we calculate ∆G and subsequently Fb

and finally, we determine the uniform solution inside the band using the same plane stress

algorithm. In each increment, λ1 is increased by a small quantity ∆λ1, until the instability

condition det A is met. So, we will acquire the minimum value of E11 until failure, for a

certain value of Ψ.

4.2 Results

The initial volume fractions of the three phases in the TRIP steel are assumed to be c1 = 0.84

for ferrite, c2 = 0.072 for austenite and c3 = 0.88 for martensite. The hardening curve of

each phase has the following form:

σ(i)
y = A(i)

(
1 +

ε̄(i)

b(i)

) 1

η(i)

The values of A(i), b(i), η(i) determine the form of the hardening curve. A(i) is measured in

MPa, while b(i) and η(i) are dimensionless quantities. The hardening curves of ferrite and

martensite were acquired from experimental data from the Technical steel research [21]. In
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particular, for the ferritic phase we used the data of the annealed ferritic steel DOCOL

600 and for the martensitic phase we used the data of the partly martensitic steel DOCOL

1400 (volume fraction of martensite 95%). Regarding the retained austenite, we used the

hardening curved used by Papadioti [12]. The values of the constants for each phase are

presented in tables 4.1, 4.2 and 4.3:

Table 4.1: Hardening parameters of ferrite
A(1) 260(MPa)

b(1) 0.0042

η(1) 4.25

Table 4.2: Hardening parameters of austenite
A(2) 550(MPa)

b(2) 0.01

η(2) 4.2

Table 4.3: Hardening parameters of martensite
A(3) 1132(MPa)

b(3) 0.0042893

η(3) 16.6567

In the calculations we use the values E = 210 GPa and v = 0.3 for the elastic Young’s

modulus and Poisson’s ratio and the relative volume change associated with the martensitic

transformation is taken to be ∆v = 0.02. The values of the parameters that enter the

transformation kinetics model are shown in Table 4.4.

We set N = cos Ψe1 + sin Ψe2 , where Ψ is the angle of inclination of the band relative

to the X1 axis in the undeformed configuration, and for every value of ρ = dE11/dE22,

we carry out calculations to determine the minimum localization strain by scanning the

range 0o < Ψ < 90o. So, each point in the diagram corresponds to a certain value of

ρ = dE11/dE22. The coordinate Ecrit
11 of this point in the diagram represents the minimum

deformation until failure, of all possible orientations of the imperfection (for a standard ρ).

The other coordinate is Ecrit
22 = ρEcrit

11 . The value of Ψ where Ecrit
11 is minimum is Ψcrit for a

certain ρ. For every different value of ρ we acquire a different point.

Figure 4.1 illustrates forming limit curves obtained for imposed proportional straining ρ

for two different values of the initial thickness imperfection, namely Hb/H = 0.999 and

Hb/H = 0.99 and for the case without imperfection i.e. Hb/H = 1. The three solid curves

correspond to the TRIP steel, whereas the dashed curves are for the non-transforming steel.

As we can see, the TRIP effect increases the necking localization strains. This result was

also presented by Papatriantafillou et al. [14] and Papadioti [12], who developed constitutive

models for four-phase TRIP steels.

Figure 4.2 shows the values of Ψcrit for different values of ρ.
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Table 4.4: Costants of the kinetic model used in the calculations
E 210(GPa)
v 0.3

Nphases 3
A0 0.012
A1 0.057
s∗a 496(MPa)
∆v 0.02
vp 4.18× 10−18 (m3)
k 46
m 3.45
N 2× 1019 (m−3)
aε 0.03
Estr 500 (J/mol)
γs 0.15 (J/m2)
ρ 3× 10−5

T 283.15K = 10oC
XMn 1.5898× 10−2

XC 3.61326× 10−2
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Figure 4.1: Forming limit curves for two different values of initial thickness inhomogeneities
Hb/H = 0.999 and Hb/H = 0.99. The solid lines correspond to the TRIP steel, whereas the
dashed lines are for a non-transforming steel.
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Figure 4.2: Ψcrit with respect to ρ for sheets made of TRIP steels



Chapter 5

Closure

5.1 Comments on the results and conclusions

We use homogenisation theory to develop a constitutive model for TRIP steels. In particular,

we consider three-phase TRIP steels that consist of a ferritic matrix with dispersed austen-

ite, which transforms gradually into martensite as the material deforms plastically. The

total strain can be split into elastic, plastic, and transformation parts. Standard isotropic

linear hypoelasticity of homogeneous solids is used in order to describe the elastic behavior

of the TRIP steels since the elastic properties of all phases are fundamentally the same.

The homogenization techniques for non-linear composites are used to determine the effective

properties and overall behavior of TRIP steels. The transformation part is proportional to

the rate of change of the volume fraction of martensite due to martensitic transformation,

which is described by the transformation kinetics model proposed by Haidemenopoulos, Ar-

avas, Bellas [5].

A method for the numerical integration of the resulting constitutive equations in the con-

text of a displacement driven finite element formulation was developed and the model was

implemented into the ABAQUS. We also developed a method for the numerical integration

of the constitutive model under plane stress conditions.

In the final part, we used the plane stress model for the calculation of the forming limit

diagrams of a three-phase low-alloy TRIP steel with certain initial volume fractions of the

phases. The form of the diagrams shows that the TRIP effect has a serious impact on the

results, and thus, it has to be considered. Also, the results are consistent with those in the

works of Papadioti[12] and Papatriantafillou[14].

5.2 Suggestions for future research

It is known that materials which can afford a high plastic deformation until failure are more

resistant to cracking. As we have already seen, TRIP steels have this property, so they can

be used in applications where fracture resistance is required. As a result, we could propose

the development of a constitutive model for the cyclic response of composite materials, using

a more sophisticated homogenisation method.

39
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Finally, in chapter 4 we derived the hardening curves of the constituent phases from a

detailed bibliographic search. So in order to further improve the simulation of the mechanical

behavior of TRIP steels, we could develop an experimental method in order to measure the

hardening of the constituent phases. This way we would have more precise data.



Chapter 6

Appendices

6.1 Details of the calculations

The Jacobian matrix of the system of equations (3.35), (3.36) and (3.37):

F1 = σe|n+1 − σ̃0

(
c

(i)
n+1, ε̄

(i)
n+1

)
= µ

F (∆E33)− 3
(
∆ε̄+ A0

∆v
∆εpv

)
1 + A1

∆v

3µ
s∗a

− σ̃0

(
c

(i)
n+1, ε̄

(i)
n+1

)
(6.1)

F2 = ∆εpv −∆vc
(2)
n Af |na(2)∆ε̄ (6.2)

F3 = s̄e33 +
4

3
µ∆E33 +

[
1 +

3µ

σe|n+1

(
∆ε̄+

An+1

∆v

∆εpv

)]
p̂n+1 = 0 (6.3)

where F (∆E33) =

√
σ̄ee
µ2

+
6∆E33s̄e33

µ
+ 4(∆E33)2,

J11 =
∂F1 (∆ε̄,∆εpv,∆E33)

∂∆ε̄
=
∂σe|n+1

∂∆ε̄
− ∂σ̃0

∂∆ε̄
=

=
∂σe|n+1

∂∆ε̄
−

3∑
i=1

∂σ̃0

∂σ
(i)
0

∂σ
(i)
0

∂ε̄(i)

∂ε̄(i)

∂ε̄
=
∂σe|n+1

∂∆ε̄
−

3∑
i=1

∂σ̃0

∂σ
(i)
0

h(i)a(i)
n ,

J12 =
∂F1 (∆ε̄,∆εpv,∆E33)

∂∆εpv
=
∂σe|n+1

∂∆εpv
− ∂σ̃0

∂∆εpv
=
∂σe|n+1

∂εpv
−

3∑
i=1

∂σ̃0

∂c(i)

∂c(i)

∂∆εpv
,

J13 =
∂F1 (∆ε̄,∆εpv,∆E33)

∂∆E33

=
∂σe|n+1

∂∆E33

,

J21 =
∂F2 (∆ε̄,∆εpv,∆E33)

∂∆ε̄
= −∆vc

(2)
n Af |na(2)

n ,

J22 =
∂F2 (∆ε̄,∆εpv,∆E33)

∂∆εpv
= 1,

J23 =
∂F2 (∆ε̄,∆εpv,∆E33)

∂∆E33

= 0,
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J31 =
∂F3 (∆ε̄,∆εpv,∆E33)

∂∆ε̄
=
∂F3

∆ε̄
+

∂F3

∂σe|n+1

∂σe|n+1

∂∆ε̄
+

∂F3

∂p̂n+1

∂p̂n+1

∆ε̄
= 3µ

p̂n+1

σe|n+1

+
∂F3

∂σe|n+1

∂σe|n+1

∂∆ε̄
,

J32 =
∂F3 (∆ε̄,∆εpv,∆E33)

∂∆εpv
=

∂F3

∂∆εpv
+

∂F3

∂σe|n+1

∂σe|n+1

∂∆εpv
+

∂F3

∂p̂n+1

∂p̂n+1

∂∆εpv
=

=
3µ

σe|n+1

An+1

∆v

p̂n+1 +
∂F3

∂σe|n+1

∂σe|n+1

∂∆εpv
+

∂F3

∂p̂n+1

∂p̂n+1

∂∆εpv
,

J33 =
∂F3 (∆ε̄,∆εpv,∆E33)

∂∆E33

=
∂F3

∂∆E33

+
∂F3

∂σe|n+1

∂σe|n+1

∂∆E33

+
∂F3

∂p̂n+1

∂p̂n+1

∂∆E33

=

=
4

3
µ+

∂F3

∂σe|n+1

∂σe|n+1

∂∆E33

+
∂F3

∂p̂n+1

∂p̂n+1

∂∆E33

.

The derivatives appeared in the calculations of the Jacobian are:

∂c
(1)
n+1

∂∆εpv
= −c(1)

n+1,
∂c

(3)
n+1

∂∆εpv
=

1

∆v

,

∂c
(2)
n+1

∂∆εpv
= −

∂c(1)
n+1

∆εpv
+
∂c

(3)
n+1

∂∆εpv

 = c
(1)
n+1 −

1

∆v

,

∂σe|n+1

∂∆ε̄
=

−3µ

1 + 3µ
s∗a

A1

∆v
∆εpv

,

∂σe|n+1

∂εpv
=

−3µ

∆v + 3µ
s∗a
A1∆εpv

(
A0 + A1

σe|n+1

s∗a

)
,

∂σe|n+1

∂∆E33

=
µ

1 + 3µ
s∗a

A1

∆v
∆εpv

∂F (∆E33)

∂∆E33

,

∂F3

∂σ3|n+1

=
−3µ

σe|n+1

(
∆ε̄+

A0

∆v

)
p̂n+1

σe|n+1

,

∂F3

∂p̂n+1

= 1 + 3µ

(
∆ε̄

σe|n+1

(
A0

σ3|n+1

+
A1

s∗a

)
∆εpv
∆v

)
,

∂F (∆E33)

∂∆E33

=
1

F

(
3
s̄e33

µ
+ 4∆E33

)
,

∂p̂n+1

∂∆εpv
= −κ,

∂p̂n+1

∂∆E33

= κ .

Also, the following quantities
∂σ̃0

∂σ
(i)
0

∣∣∣∣∣
n+1

,
∂σ̃0

∂c(i)

∣∣∣∣∣
n+1

= known, for i = 1, 2, 3,

can been acquired by the solution of the optimization problem, while

h(i) =
∂σ

(i)
0

∂ε̄(i)
, for i = 1, 2, 3,

are known form the hardening curves of each phase.
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