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Abstract 
 

A Bayesian framework for solving two Optimal Sensor Placement problems is the cornerstone 

of the current thesis. Firstly, the question of detecting a disturbance source in a continuous 

medium using arrival times of the disturbance at the sensor locations when travelling through 

the medium is posed. Next, the spread of an infection over the population of a number of 

highly interacting communities is illustrated by an epidemiology network and an abstract 

mathematical model is displayed to simulate its behavior. Having discussed both systems 

dynamics a common Bayesian approach for finding the optimal sensor placement to identify 

the origins of the irregularities is presented. The approach is based on minimizing an 

information entropy of the posterior distribution of the model parameters derived from a 

Bayesian learning methodology. For the continuous optimization problem of locating sensors 

on an elastic medium a stochastic algorithm, CMA-ES is used. For the discrete optimization 

problem concerning the epidemiology network heuristic forward and backward Sequential 

Sensor Placement algorithms are implemented.  The optimal sensor locations given a fixed 

number of sensors are derived for both cases. In addition, by monitoring the information 

entropy as a function of the number of sensors placed at their optimal locations, one can 

estimate the optimal number of sensors to be used, since additional sensors do not provide 

any gain in information. The demonstrated results, which are sufficiently discussed, claim the 

validity of our methodologies.   



Table of Contents  
CHAPTER 1: Introduction .................................................................................................. 1 

1.1 Problem Definition and Motivation ....................................................................... 1 

1.2 Literature review ................................................................................................... 2 

1.3 Organization of the thesis ..................................................................................... 3 

CHAPTER 2: Source identification in a continuous medium ................................................ 5 

2.1 System Presentation .............................................................................................. 5 

2.2 Implementation of Bayesian Theory in Disturbance Source Identification .......... 6 

2.3 Applications ......................................................................................................... 13 

CHAPTER 3: Simulation of Infection Spread in an Epidemiology Network ......................... 16 

3.1 SIR Model Presentation ....................................................................................... 16 

3.2 Network description ............................................................................................ 18 

CHAPTER 4: Bayesian Optimal Sensor Placement Methodology ....................................... 23 

4.1 Method Presentation .......................................................................................... 23 

4.1.1 Optimal Sensor Placement for Estimation of Model Parameters ............... 23 

4.1.2 Bayesian Analysis ......................................................................................... 24 

4.1.3 Information Entropy Quantification ............................................................ 25 

4.1.4 Optimal Sensor Location Methodology ....................................................... 26 

4.2 Implementation for Source Identification in a Continuous Medium .................. 27 

4.2.1 Sensitivities .................................................................................................. 28 

4.2.2 Identification of disturbance origin ............................................................. 28 

4.3 Implementation for Parameter Estimation and Infection Origin Identification in 

Epidemiology Networks .................................................................................................... 32 

4.3.1 Sensitivities .................................................................................................. 32 

4.3.2 Estimation of parameters β and γ ............................................................... 34 

4.3.3 Origin Identification assuming constant parameters .................................. 36 

4.3.4 Origin Identification for uncertain parameters β, γ .................................... 36 

4.3.5 Origin Identification for uncertain transition rates ..................................... 37 

4.3.6 Optimization procedure - FSSP and BSSP algorithms .................................. 38 

4.3.7 Sample methods .......................................................................................... 39 

CHAPTER 5: Results ........................................................................................................ 41 

5.1 Optimal Sensor Placement for Disturbance Identification in a Continuous 

Medium ............................................................................................................................. 41 

5.2 Optimal Sensor Placement for Parameter Estimation and Infection Origin 

Identification in an Epidemiology Network ...................................................................... 45 

5.2.1 Sensitivities .................................................................................................. 45 



5.2.2 Optimal Sensor Placement for Estimation of Parameters β and γ .............. 47 

5.2.3 Optimal Sensor Placement for Origin Identification assuming constant 

parameters ......................................................................................................... 50 

5.2.4 Optimal Sensor Placement for Origin Identification for uncertain 

parameters β, γ   ................................................................................................. 52 

5.2.5 Optimal Sensor Placement for Origin Identification for uncertain transition 

rates .................................................................................................................... 55 

5.2.6 Optimal Sensor Placement for Origin Identification for uncertain transition 

rates in an asymmetric Network ........................................................................ 68 

CHAPTER 6: Conclusions ................................................................................................. 74 

References ..................................................................................................................... 76 

 

 

 

 

 

 

 

 

 



1 
 

 

CHAPTER 1 

Introduction 
 

1.1 Problem Definition and Motivation 
The issue of irregularity detection has received much attention over the recent years. When 

it comes to fault detection in a construction an efficient and timely localization of the fault 

origin can play a significant role both for safety and economic reasons. Early fault 

identification reduces damage potential and decreases maintenance costs. Especially, dealing 

with such a general problem as the one of crack identification in a continuous medium a first 

contact with the subject is obtained and foundations for further study are built. 

When the concerned issue is related to human health things get even more serious. While 

epidemics eradication is one of the most vital issues of contemporary world, as it is directly 

linked to human health and quality of life, numerous interdisciplinary studies are being carried 

out in this attempt. In this sense, the factor that information about the spread of a disease 

would greatly assist targeted intervention strategies and disease forecasting can play a 

significant role. Thus modern epidemics studies are trying to introduce real-world, noisy data 

into abstract mathematical models in order to derive reliable estimations about the epidemic 

characteristics. Such data can be the number of symptomatic patients admitted to hospital by 

location and date. 

In practice, the data are used to estimate model parameters and their uncertainties. For 

instance, predicting next week’s state of an epidemic requires accurate knowledge of how 

quickly the disease spreads, which can be inferred processing real data. 

At the same time, the problem of making robust predictions for parameter values and disease 

spread can become computationally very expensive depending on the complexity of the 

mathematical model which is used. To deal with this challenge we apply a Bayesian inference 

framework to an epidemic network designed in a manner to simulate a real-world problem 

and to make as simple as possible the computational procedure.  

In general, a network can be defined as a graph that represents relations between discrete 

objects. These objects consist its nodes and they communicate through edges. In our case, 

the utilized network is a mathematical construct which models a collection of N distinct 
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communities. Each node is a distinct population and edges, that is the connections between 

communities, are a convenient framework to dictate transfer between populations. 

As the most important part of the current thesis discusses the behavior of a graph consisted 

from nodes and edges one can say that this study lies in the broader field of Network Science 

and could be related with a wide range of scientific investigations into structures that can be 

illustrated with a similar layout. Consequently, although an epidemiology network is 

considered, the developed methodologies can be applied to other engineering and science 

networks. 

The profound importance of network analysis can be clearly denoted from the variety of the 

disciplines in which it has application. To cite few instances, engineering networks include 

transportation networks, water and gas distribution networks and electricity networks. 

Furthermore science networks include epidemiology, biological such as blood flow network 

and respiratory networks, and Social Networks. To be more specific, characteristic 

applications of network theory include logistical networks, the World Wide Web, Internet, 

gene regulatory networks, metabolic networks and epistemological networks. So nodes and 

edges can depict relationships between social entities, that is, persons or organizations when 

we have to do with a social network analysis, while they can readily represent the interactions 

between physiological systems like brain, heart or eyes when we talk about a physiological 

network. 

 

1.2 Literature review 
As far as the problem of placing sensors in a continuous medium in order to detect the fault 

source is concerned the utilized methodologies have been already applied in previous works. 

The implementation of Bayesian approach in estimating acoustic emission sources has been 

discussed in Sen et al. work [1]. A Bayesian framework that takes into account the uncertainty 

of system parameters caused from measurement noise and model error is applied to estimate 

the origin of acoustic waves. The simplicity and efficiency of their techniques encouraged us 

to adopt some of their methodologies. 

Another Bayesian framework have been implemented to find the optimal sensor location for 

detecting a crack origin in a structure using strain measurements [2]. The finite elements 

methodology applied at the current thesis have been previously proposed in the work by 

Papadimitriou and Papadimitriou [3]. The work is dealing with the problem of deriving the 
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optimal way of sensor placement for the estimation of turbulence model parameters in 

Computational Fluid Dynamics.    

Furthermore, several studies have been carried out in the field of epidemics’ spread 

forecasting. In particular, mathematical models have been proposed for predicting the spread 

of epidemics in real-world populations allowing for the development of policies for effectively 

managing disease spread through organized intervention. As for the extracted results that 

represent the parameters’ estimation and the epidemic’s spread prediction, robustness and 

reliability are of great essence, especially if we consider their clinical and societal impact. 

These two factors are highly depended on the mathematical model which is utilized. Two 

important related approaches are detailed bellow.  

In the first place, the most popular approach is the one of Kermack and McKendrick's 

compartmental SIR model and its extensions, such as SIRS and SEIR [4],[5]. This is a 

mathematical model which decomposes the population into groups considering their relation 

to the disease. For example the susceptible people consist one group, while the recovered are 

another. It’s a differential equation model which represents the interaction of these groups 

over time evolution. This model’s simplicity and efficiency for some common diseases have 

been the reasons of its wide use. 

Another work has considered topological factors as well, such as demography, land use and 

climate change [6]. Such mathematical models, incorporating in their frameworks a more 

holistic approach of diseases dynamics, have marked a wide range of applications. Specifically, 

they have been used in the research for the confrontation of several historical and modern 

epidemics, including HIV [7],[8] and malaria [9], [10], [11].  

 

1.3 Organization of the thesis  
The first part of this thesis deals with a continuous medium in which a fault starts to occur. 

The initial objective is the localization of the disturbance source. The applied methodology 

includes the placement of sensors in the examined area in order to record informative 

measurements. The measured quantity is the time in which an emitted signal travels from the 

fault source to the sensors. In the second place a methodology is developed for the optimal 

sensor placement over the medium for identification of the disturbance origin. A grid of points 

is used to divide the area of the initial fault and the stochastic optimization method of CMA-

ES is used.   
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The problem is positioned in such a general way that it can depict a wide variety of physical 

systems. In particular the developed layout can readily illustrate a thin plate with a crack. 

Moreover a geographic area where an earthquake is recorded can also be considered. In that 

case the location of the seismic source is to be figured out. The proportion between the two 

cases can get clear if earthquakes physics is taken into consideration. In addition to that we 

have to remark the suitability of the utilization of the measurements described above in both 

problems. On the one hand, ultrasonic guided-waves are used to detect cracks in continuous 

materials. On the other hand, records made of seismic waves created when an earthquake 

occurs are used for the estimation of its epicenter.  

Furthermore, in the current approach an epidemic model is simulated. Interactions between 

two distinct populations and the communities included in each of them are simulated via 

appropriate adjacent matrices. A system of differential equations which relates the time 

evolution of the number of healthy and infected people in each community is solved 

numerically through a software. In that way we extract the number of infected people in each 

community at every time point. We also develop the formulation to describe analytically the 

gradients of the healthy and infected people with respect to model parameters. Such 

gradients are needed in Bayesian inference and Optimal Sensor Placement process. 

As far as our Bayesian Analysis is concerned, Optimal Sensor Placement is occurred through 

an appropriately constructed function which quantifies the information gained from the data. 

Inputs of this function consist of our uncertain parameters and the location of utilized sensors. 

The minimization of the aforementioned function takes place through two alternative 

heuristic methods. These are the Forward Sequential Sensor Placement and the Backward 

Sequential Sensor Placement. The derived results are compared in order to state the reliability 

of our approach.  

The fluctuation of the uncertain parameters is simulated by two sample methods. Firstly, a 

sparse grid point method is implemented. Furthermore, a Markov Chain Monte Carlo 

algorithm is applied to generate a larger number of samples which are utilized on multiples 

program’s runs to extract reliable averages of the values of our interest. 
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CHAPTER 2 

Source identification in a continuous medium 

  

2.1 System Presentation 
In the current chapter a methodology developed for detecting the origin of a disturbance is 

presented. A continuous homogeneous elastic medium is considered. At a time t0 a structural 

disturbance occurs at a specific point of its domain. We presume that the disorder starts at a 

point ( )0 0 0, ,x x y z=  of its area. The objective is to identify the disturbance location and its 

initial time using measured data.  

In order to extract this data, sensors are placed at specific points ( ), ,k k k ks x y z=  of the three 

dimensional domain. The measured quantity is the time at which the disturbance arrives at 

each of the placed sensors. Let’s call this time kt . Additionally we assume the speed of signal’s 

distribution to be v. Because of the assumption of material’s homogeneity the distribution 

speed appears to have the same value in all directions.  

It is clear that a signal that travels with a constant and even speed through all directions having 

started at time 0t  at the point  ( )0 0 0, ,x x y z=  arrives at a point ( ), ,k k k ks x y z= at the time 

given by the following equation. 

 ( ) ( ) ( )
22 2

0 0 0 0

1
ss s

t t x x y y z z
v

= + − + − + −   (1) 

which is the expected time at which the signal reaches the placed sensors. 

Let’s define a vector   of the parameters that describe the disturbance location, namely, the 

( )0 0 0, ,x x y z=  coordinates of the disturbance and the time 0t that the disturbance started 

to take place. Therefore the number of parameters is equal to four and the problem of 

disturbance identification is equivalent to the problem of estimating  0 0 0 0, , ,
T

x y z t = . One 

could also include the speed v  in the parameter set. 

It can be thought that the parameters of our interest can be computed by solving the system 

of the nonlinear equations given by the relation (1) for multiple sensor points. Concerning the 

2 dimensional space and that the time 0t  is known the problem can be visually illustrated as 

shown in Figure 1. It can be seen that one requires at least 3 sensors in order to identify the 

location of the disturbance. 
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Figure 1: Three sensors used to detect a fault source 

The disadvantage of this deterministic approach is that it doesn’t take into account the 

uncertainties caused by measurements’ error and the inadequacy of our model to accurately 

depict the real problem. Specifically, in the problem of the signal which travels throw a 

material, the speed cannot be determined by a specific value, while it has a fluctuation over 

its space and according to the direction of movement. Moreover regarding seismic waves 

transportation, different speeds occur in a rocky area and in a sandy one. To incorporate this 

effect a Bayesian approach is implemented.  

 

 

2.2 Implementation of Bayesian Theory in Disturbance Source 

Identification 

A Bayesian parameter estimation framework is used to estimate the values in   and their 

associated uncertainties, using information from the data set 

( ) ( )  ( )  ( ) ˆ ˆ , 1, , , 1, ,k kkD d g d g d k N t s k N= = = = =  that consists of N 

measurements inferred as described above. d  is a matrix consisted of the coordinates of the 

located sensors. Specifically d  is taken in the form 

1 1 1 1

2 2 22

 

  

N N N
N

s x y z

x y zs
d

x y zs







   
   
   = =   
   
    

  

Let M represent a model parametrized by  , simulating the behavior of the propagation of 

the disturbance in the medium. This model predicts the times ( ),g d   at the locations 

( ), ,k k k ks x y z=  for given value of the parameter set  , according to the equation (1). In 

attempt to proceed with the Bayesian formulation for parameter estimation, one introduces 

the prediction error equation: 
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 ( ) ( ) ( )ˆ ,g d g d e d= +   (2)                                                                                             

or equivalently,  

 ( ) ( ) ( ),t d t d e d= +   (3)                                                                                          

where ( )e d  is the prediction error vector that describes the discrepancy between the model 

predictions and experimental data. The prediction error is due to modeling errors and 

measurement noise and is commonly treated as a Gaussian zero-mean random vector with 

covariance matrix  . Herein   is assumed to be a diagonal covariance matrix given as 

 

2

2

2

2

0 0

0

0

0 0








 
 
  = = 
 
 
 

  (4) 

Thus   is a N by N matrix, where N is the number of measurements. 

According to the Bayesian system identification methodology, the values of   are modeled 

by a Probability Density Function (PDF) that quantifies the plausibility of each possible value, 

given the data set ( )ĝ d . From the Bayesian theorem, this PDF is the posterior PDF given by 

the following: 

 ( )( )
( )( ) ( )

( )( )

ˆ ,
ˆ

ˆ

p g d d
p g d

p g d

  
 =   (5)                                                                                

 

where ( )( )ˆ ,p g d d   is the likelihood and ( )   is the prior PDF of the parameter set  . 

The evidence term ( )( )ˆp g d  is a constant, independent of  . Therefore, the posterior PDF 

can be written as follows: 

( )( ) ( )( ) ( ) ( ) ( )( ) ( )2ˆ ˆ ˆ, , ,p g d cp g d d cN g d g d I       = =                                      (6) 

( ) ( )( ) ( ) ( ) ( )( ) ( )11
ˆ ˆ                  exp , ,

2

T

c g d g d g d g d    − 
= − −  − 

 
                       (7)                                      

where  c  is a constant selected such that the posterior PDF integrates to 1 and the notation 

( ),N x    denotes that the random vector x  follows the multivariate normal distribution 

with mean vector   and covariance matrix  . We see that the model evaluation enters the 

formulation through the likelihood function. It is clear that we can reach our objective to 
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estimate   by finding the value 0  that maximizes the posterior PDF or, equivalently, 

minimizes the minus log of the posterior PDF given by 

 ( )( ) ( ) ( )( ) ln ln lnL p g d c J    = − = − + −   (8) 

where ( )J   is the discrepancy between experimental data and model prediction, given by 

 ( ) ( )( ) ( ) ( )( )11
ˆ ˆ, ,

2

T

J g d g d g d g d −= −  −   (9) 

Thus finding the most probable value that maximizes the posterior PDF is equivalent to 

minimizing the measure of fit ( )J  . 

Specifically in our case we have to minimize the function 

 ( ) ( )11

2

T

J t t t t−= −  −   (10) 

For large number of data, the posterior PDF can be approximated by a Gaussian PDF with 

mean the most probable value and covariance matrix equal to the inverse of the Hessian of 

the function ( )L   evaluated at the most probable value. 

The model predictions which correspond to arrival times at the sensor point due to a 

disturbance at location ( )0 0 0, ,x x y z=  are evaluated as follows. The arrival time ( )t   has 

to be calculated at the k -th sensor point as follows 

 ( ) ( ) ( )
2 2 2

0 0 0 0

1
k sk sk skt t x x y y z z

v
= + − + − + −   (11) 

where 1, , sk N=  and sN  is the number of sensors. 

 

Elaborating the function (10) using the diagonal covariance matrix we get: 

 ( ) ( ) ( )
2

2 2 2

0 0 0 02
1

1 1

2

sN

k sk sk sk

k

J t t x x y y z z
v =

  
= − + − + − + −  

  
   (12) 

 

As mentioned above, an optimization process is occurred. Gradient-based methods are 

used. The gradients of the objective function are needed to be calculated. 

The gradient of J  which is a 4 by 1 matrix 

 
0 0 0 0

T

J J J J
G

x y z t

    
=  

    
  (13) 
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Let’s move forward by elaborating each element of G  

( ) ( ) ( ) ( )

( ) ( ) ( )

( )

2 2 2

0 0 0 0 0

2 2 2210
0 0 0

0 02
1

1
2 2

2

1 1
      

s

s

kN sk sk sk sk

k
sk sk sk

N

k
ksk

k k

x x t t x x y y z z
J v

x x x y y z z

s
x x t t

s v

 

 

=

=

 
− − + − + − + −   = −

 − + − + −

 
= − − − + 

 





 

where ( ) ( ) ( )
2 2 2

0 0 0k sk sk sks x x y y z z= − + − + −  

 

Because of the symmetry of function J , the gradient of  J  with respect of 0y  and 0z  is given 

by replacing 0x , skx  by  0y , sky  and 0z , skz , respectively. 

( ) ( ) ( ) ( )

( ) ( ) ( )

( )

2 2 2

0 0 0 0 0

2 2 2210
0 0 0

0 02
1

1
2 2

2

1 1
      =

s

s

kN sk sk sk sk

k
sk sk sk

N

k
ksk

k k

y y t t x x y y z z
J v

y x x y y z z

s
y y t t

s v

 

 

=

=

 
− − + − + − + −   = −

 − + − + −

 
− − − + 

 





 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

( )

2 2 2

0 0 0 0 0

2 2 2210
0 0 0

0 02
1

1
2 2

2

1 1
      =

s

s

kN sk sk sk sk

k
sk sk sk

N

k
ksk

k k

z z t t x x y y z z
J v

z x x y y z z

s
z z t t

s v

 

 

=

=

 
− − + − + − + −   = −

 − + − + −

 
− − − + 

 





 

 

Finally, the gradient of  J  with respect to time 0t  can be written as follows 

( ) ( ) ( )
2 2 2

0 0 0 0

02 2
10

1
s

kN sk sk sk

s

k

t t x x y y z z
NJ sv

t t
t v   =

 
− + − + − + −     = = − + 

  
  

where 
1

1 sN

k

ks

t t
N =

=   and 
1

1 sN

k

ks

s s
N =

=  . 

The covariance of our parameters   0 0 0 0, , ,
T

x y z t =  can be computed as the square root 

of the inverse of the Hessian matrix. So the calculation of Hessian is necessary.    

The Hessian of the function J  is a 4 by 4 symmetric matrix given by 
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2 2 2 2

2

0 0 0 0 0 0 0

2 2 2 2

2

0 0 0 0 0 0 0

2 2 2 2

2

0 0 0 0 0 0 0

2 2 2 2

2

0 0 0 0 0 0 0

J J J J

x x y x z x t

J J J J

y x y y z y t
H

J J J J

z x z y z z t

J J J J

t x t y t z t

    
 
      

 
    
 
       

=
    
 
       
 
    

        

 

 

Let’s continue by elaborating its terms. 

 

( ) ( ) ( )

( ) ( ) ( )( )
( )( )

( ) ( ) ( )( )

( )( ) ( ) ( ) ( )

( ) ( ) ( )( )

2 2 2

0 0 0 0

2 2 22

0 0 0

2
0 0

2 2 2 22 2
0 0 0 0

2 2 2

0 0 0 0 0 0

3
2 2 2 22

0 0 0

1

2 2

2

1
2 2

k sk sk sk

sk sk sk

sk sk

sk sk sk

ksk sk sk sk sk

sk sk sk

t t x x y y z z
v

x x y y z z

x x x xJ

x x x y y z z

x x x x t t x x y y z z
v

x x y y z z

 

 

 


  − + − + − + −   +

− + − + −

− −
= +

 − + − + −

 
− − − + − + − + − 

 

− + − + −


( )
( )

1

2
2 0 00

0

2 2 3
1

1

1
         =

s

s

N

k

k kkN sk k
sk

k k k k

s x x t t st t x x vv

s s s  

=

=





 
 
 
 
 
 
 
 
 
 
 



  
− − +− +   −   + +

 
  





 

 

Evidently the second derivative of the objective function with respect to 0y  and 0z  results 

from the relation above if we replace 0x , skx  by  0y , sky  and 0z , skz  respectively. 
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



 

 

The second derivative of the objective function with respect to 0t  appears to have a constant 

value independent of variables  0 0 0 0, , ,
T

x y z t = . 

 

2

2 2 2
10

1sN

s

k

NJ

t    =


= =


  
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2.3 Applications 

We assume that we have a plane elastic medium. A disturbance starts at ( )4,1x =  at time 

0 3t = . To begin with, we generate a sample of measurements. Taking into account the initial 

point and time, we calculate the time at which the signal arrives at the sensor locations 

assuming that the signal’s velocity has a fluctuation around its mean. That takes place by 

adding at the mean value a random number generated by a normal distribution, with zero 

mean and standard deviation equal to one, multiplied by a quantity a  times the mean value 

of spread. That is 

k kv v vae= +  

where, ( )0,1ke N   and a  quantifies the size of the uncertainty. It’s value can vary from 

0,001 to 0,03. 

This procedure is occurred for each sensor location. Given the sensor coordinates we calculate 

the time at which the signal arrives at each sensor. These values consist our sample, 
kt . 

The generation of our sample can be illustrated schematically as follows: 

 

                                                            system’s equations, noise 

                                                                  x,y coordinates 

 

After that, considering as data the measurements and the coordinates of our sensors and 

assuming the spread to have a constant value, we compute the time at which the signal is 

expected to reach the sensors, t . 

Finally, we minimize the objected function elaborated at the previous chapter to extract the 

initial characteristics of the disturbance  0 0 0, ,
T

x y t = . 

 Initial values    
0

0 0

   

,

t

x y
 Measurements  

  at

,s s

t

x y
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                                                        error function minimization 

                                                                      estimate                                             

 

We have three parameters 0 0 0, ,x y t  to be estimated from the data. So we begin with placing 

three sensors on the plane medium. The sensors’ coordinates are given as 

( )

( )

( )

1

2

3

2,3

3, 4

1,5

s

s

s

=

=

=

 

The result that we take through the procedure described above are 

3.1656

2.3335

4.4914



 
 

=
 
  

 

and the covariance matrix appears to be 

0.0633

covariance 0.0997

0.1083

 
 

=
 
  

 

It is clear that the inferred results are not sufficiently precise. So we add one extra sensor on 

the plane mean with spatial coordinates given bellow 

( )4 6,8s =  

The updated results are 

3.7884

1.3607

3.3699



 
 

=
 
  

 

which are much closer to the actual values. 

This fact is also defined from the covariance of the parameters, which appear to have smaller 

values. The new covariance matrix is 

Measurements  
  at

,s s

t

x y
  Initial values    

0

0 0

   

,

t

x y
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0.0210

covariance 0.0726

0.0672

 
 

=
 
  

 

Finally we place the sensors along a straight line that can be illustrated by the function 

2x = . 

( )

( )

( )

( )

1

2

3

4

2,3

2,4

2,5

2,8

s

s

s

s

=

=

=

=

 

Applying the same methodology the inferred results are 

4.0423

1.0575

2.9920



 
 

=
 
  

 

which are very close to the actual values. However the covariance matrix has similar values 

to the previous case. 

0.0244

covariance 0.0837

0.0783

 
 

=
 
  

 

In conclusion we can point out that 4 sets of measurements are adequate to elicit reliable 

results. 
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CHAPTER 3  

Simulation of Infection Spread in an Epidemiology Network 

 
 

3.1 SIR Model Presentation  
A Bayesian framework is applied to an epidemiology network in order to infer robust 

estimations about parameters of the system and to identify the origin of the infection. To deal 

with this complex and difficult task a mathematical model that illustrates the system’s 

dynamics is used. This is the SIR model. Its workableness is due to the fact that it divides the 

population into three groups. These are the people who are susceptible to the disease, people 

who are infected and contagious, the infective group, and those who are neither susceptible 

nor infected, either because they gained immunity from recovery or due to a vaccine, 

quarantine policies, or disease-related death, the removed group. 

Let us use the notations ( )S t , ( )I t , and ( )R t  to denote the size of the susceptible, 

infective, and removed groups, respectively, as functions of a continuous time t . The SIR 

model is based on three main assumptions. Firstly since the timescale on which the disease 

evolves is assumed to be much shorter than the timescale on which the population may evolve 

via, e.g., births or natural deaths, the population Y  is assumed constant, and so 

 ( ) ( ) ( )  S t I t R t Y+ + =   (14)                                                                                               

over time t . It must be marked here that individuals killed by the disease are considered part 

of the removed group. Secondly, members of the population are assumed to come into 

contact uniformly at random and at a constant rate   which is the parameter that governs 

the rate at which an infection can spread. It is assumed that when a susceptible individual 

come into contact with an infective the former is immediately infected.  If this assumption is 

not desired, the chance of disease transfer can be incorporated in  . Finally, infective people 

recover, or are otherwise removed from the infective population because of death for 

example, at a constant rate  . These assumptions can be visualized as 

          S I R
 

→ →   

It can be said that at a particular time t , ( )S t  susceptible individuals and ( )I t  infective come 

into contact at a rate  , resulting in IS  transitions from susceptible to infective. At the 

same time, ( )I t  infective people are removed at a rate  . It follows that I  transitions from 
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infective to removed are taking place. Α set of ordinary differential equations can be derived 

from the assumptions above: 

( )
 
dS t

IS
dt

= −  

 
( )dI t

IS I
dt

 = −   (15) 

( )dR t
I

dt
=  

 

The SIR model is readily generalized to a graph with N vertices, a mathematical construct 

which can be thought of as modeling a collection of N distinct communities. In particular, each 

node is assumed to be a distinct unit of population, community, whose dynamics evolve 

according to equation (15). Communities are connected through edges. That structure 

consists a convenient framework to dictate transfer between populations. 

Additionally each population itself has three groups the susceptible, the infective and the 

removed, which implies that three quantities are needed to describe movement. We define 

the quantities  ij , ij , ijg  to describe the rates of movement from node i  to node j  on the 

susceptible, infective, and removed groups, respectively. In that way each transition rate is 

identified as the weight of the edge connecting i  to j . These quantities can be written as 

weighted adjacency matrices, where each element depicts the corresponding transition rate. 

Let’s define the three transition matrices as ,  Η  and G . The SIR model for a network, 

namely a system of N nodes that communicate to each other can be written as [12] 

( )
,   ,

1 1

       
N N

i

i i j i j i j i

j j

dS t
I S S S

dt
  

= =

=− + −   

( )
, ,

1 1

     
N N

i

i i i j i j i j i

j j

dI t
I S I I I

dt
   

= =

= − + −   

( )
, ,

1 1

     
N N

i

i j i j i j i

j j

dR t
I g R g R

dt


= =

= + −   

 

or equivalently in matrix form: 

( )
dS

I S S F S
dt

 = −  +  −    

 ( )
dI

I S I H I HF I
dt

  =  − + −    (16)           
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( )
dR

I G R GF R
dt

 = + −   

where, ( )1,1,  ,1 
T

F =   is a vector of ones which simplifies the notation. The notation I S  

represents a multiplication element by element, while S  is a matrix multiplication.  

It should be noticed here that ,  S I  and R  are 1N  vectors whose 
thi  element corresponds 

to the  thi  population. It is obvious that in case that there is no movement between 

populations, namely 0ij ij ijg = = =  for every ,i j , each model reduces to the single 

population model as featured in the system of equations (15). 

 

 

3.2 Network description  
After having illustrated the system dynamics for a general network consisted by N nodes 

interacting each other, we have to examine the behavior of a specified graph. In that sense 

two distinct populations, each with many highly interacting sub-communities, are modeled. 

The two populations communicate through a route, modeled by a connecting edge. This 

constitutes a “barbell graph”, that is two complete 𝑚 2⁄ -node graphs connected by an edge, 

where m is the total number of nodes. The transition matrices ,  Η, G  that dictate the 

communication between nodes are written in the following form  

2
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2 2
2 2

2 2 2
2 2

2 2 2

1,2 1,
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 
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 
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2 2
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+ +

 
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 
 
 
 
 
 
 
 
 
 
 
  
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 
 
 
 
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  

 

 

Elements of the diagonal denoting the transition from the each node to itself, are equal to 

zero. The elements with indicators 
2 2

1,m m+  and 
2 2

, 1m m +  depict the transitions between the 

two populations. 

To specify further our problem uniform transition rates between adjacent vertices are 

assumed. Namely, 0,02ij = , 0,3ij = and 0,05ijg =  for every ,  i j . 

Moreover, we consider two 20-node graphs connected by a single edge. An illustration of our 

network is given in Figure 2. 
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Figure 2: A barbell graph of two populations consisted of 20 nodes 

We assume that at the starting point all nodes are fully susceptible with configuration 

( ) ( ) ( )0 100,  0 0 0i i iS I R= = =  apart from one node where the infection begins. We assume 

that at this node, let’s call it a , we have: ( ) ( ) ( )0 5,  0 95,  0 0a a aS I R= = = . 

After having captured our network, the objective is to find out the time evolution of the 

susceptible, infective and recovered population. In order to deal with it, the set of ordinary 

equations stated above is solved through an appropriate software which calculates 

numerically the values of ( ) ( ) ( ),  ,  S t I t R t  for every time step. This software integrates the 

system of differential equations ( ),i
i

dy
f t y

dt
=  from an initial time 0t  to a final ft  with initial 

conditions ( )0iy . 

We assume that the infection begins at node 8 which implies that 

( ) ( ) ( )8 8 80 5,  0 95,  0 0S I R= = =  and ( ) ( ) ( )0 100,  0 0 0i i iS I R= = =  for every other 

node. It appears that 10 time units is an adequate period of time to observe our system’s 

response after introducing the initial disorder.  

Consequently we derive the quantities of susceptible, infective and removed group as a 

function of time evolution. Related plots are displayed in Figures 3 to 5 for four nodes of our 

network. 
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Figure 3: Time evolution of susceptible population for nodes 3, 20, 21 and 27 

 

Figure 4: Time evolution of infective population for nodes 3, 20, 21 and 27 
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Figure 5: Time evolution of removed population for nodes 3, 20, 21 and 27 
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CHAPTER 4 

Bayesian Optimal Sensor Placement Methodology 
 

 

4.1 Method Presentation  

4.1.1 Optimal Sensor Placement for Estimation of Model Parameters 
The optimal sensor placing for the estimation of a problem parameters, for instance  and 

for the epidemiology network or the place of an irregularity source (parameters 0 0 0, ,x y t ), is 

a part of wider field of research the one of optimal experimental design. In general, when an 

experiment for a system is designed, it is of primary essence that the measured data provide 

sufficient information about the condition of the system.  In that purpose it is important to 

optimize certain characteristics of the experimental set up. 

Having defined system’s characteristics and formed a mathematical model to represent its 

behavior an optimal experimental design allows us to opt for appropriate control parameters 

of the experiment. Appropriate experimental design is the one that provide us with the most 

informative data for estimating our mathematical model parameters with the least 

uncertainty.  The control parameters of an experiment that are to be optimized can include 

the excitation characteristics, e.g. frequency content, amplitude and sampling frequency, the 

type of the outputs of sensors, e.g. displacement, acceleration and force, the location and 

number of  sensors and the characteristics of the executed measurements, e.g. monitoring 

period and sampling frequency. 

Especially, in the context of the network epidemic model, this subject is of considerable 

practical interest while the mathematical model that describes the system dynamics leans on 

logical assumptions and not on proved physical laws. In addition to that, observations, 

specifically the number of infected patients at a particular set of community health centers, 

are inherently noisy due to sampling effects. Optimal experimental design should compensate 

for that issues.  

In this chapter we are particularly interested in obtaining the following objective. Given a 

system and its parameterized mathematical model, select the optimal sensor configuration, 

namely the number and location of sensors, so that the measured data obtained from the 

sensor system are most informative for estimating the parameters of a mathematical model 

of the system. In model parameter estimation, most informative measurements are those 
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that result in the least uncertainty in the parameters’ estimations. This uncertainty is 

quantified by information entropy. Using information entropy as a unique scalar measure of 

the uncertainty in a parameter set  , the problem of optimizing the number and location of 

sensors can be mathematically expressed as a problem of minimization of the information 

entropy of the posterior distribution of the model parameters.  

The theoretical background of the described procedure is demonstrated next.   

 

4.1.2 Bayesian Analysis 
A Bayesian framework was developed in section 2.2 of the current thesis for the identification 

of the source of a disturbance started in a continuous mean. Similarly, the applied 

methodology can be used in any mathematical model in order to estimate the parameters of 

our interest based on experimental data. To give an abstract illustration of Bayesian Theory 

on which optimal sensor placement methodology is based, we will next outline the theory.  

The parameters to be estimated are written in a vector  
R . Measurements which take 

place at locations  , producing a set of measured data ( ) Nd d  R . The location vector 

𝛿 contains the coordinates of the sensors with respect to a coordinate system. Let 

( ); Ng   R  be the vector of the values of the same output quantities predicted by a model 

for specific values of the parameter set 𝜃. The following prediction error equation is 

introduced  

 ( ),  d g e = +   (17) 

where 𝑒 is the additive prediction error term due to model and measurement error. The 

prediction error is modeled as a Gaussian vector, whose mean value is equal to zero and its 

covariance is equal to ( ) N N  R , where 𝜎 contains the parameters that define the 

correlation structure of Σ. Applying the Bayesian theorem, the posterior probability density 

function (PDF) of 𝜃, given the measured data 𝑑, is given by 

 ( )
( ) ( )

( ) ( )
1

| , , ; , ,  

2

p d c exp J d

det

       
 


= −  



  (18) 

where 

 ( ) ( ) ( ) ( )11
   ; , , ; ;

2
J d d g d g       


−   = −  −      (19) 
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expresses the deviation between the measured and model predicted quantities. The PDF  

𝜋(𝜃) is the prior distribution for 𝜃, and c is a normalization constant guaranteeing that the 

posterior PDF  𝑝(𝜃|𝜎, 𝑑, 𝛿) integrates to one. 

  

4.1.3 Information Entropy Quantification  
The PDF 𝑝(𝜃|𝜎, 𝑑, 𝛿) given by (18) quantifies the posterior uncertainty in the parameter 

values   based on the information contained in the measured data. The information entropy 

given by the expression 

( ) ( ); ,   ln | , ,h d E p d     = −    

 ( ) ( )                                      ln | , ,   | , ,    p d p d d      = −   (20) 

is a scalar measure of the uncertainty of the model parameters 𝜃. It depends on the location 

vector 𝛿  of the sensors, the correlation structure of the prediction error and the details in the 

data 𝑑. The multi-dimensional integral in equation (20) is a Laplace-type integral that can be 

asymptotically approximated, for large number of data, by the expression: 

( ) ( )0; , ~ ; ,                h d H       

 ( ) ( ) ( )0 0

1 1
                                                            ln 2 ln ; ,

2 2
det Q Q     =  − +    

 (21) 

where 𝜃0 are the values of 𝜃 that minimize  𝐽(𝜃; 𝜎, 𝑑, 𝛿),  𝑄(𝛿; 𝜃, 𝜎) is the Fisher information 

matrix, a semi-positive definite matrix asymptotically given by  

 ( ) ( ) ( ) ( )1   ; , ; ;Q g g        
 −=      (22) 

computed at the N locations where the sensors are placed, and ( ) ( )0 lnQ    = −   

evaluated at the value 0  , with
1

 , ,  


  

   =    
,  represents the negative of the 

Hessian of the natural logarithm of the prior distribution of the model parameters. For 

uniform prior distribution the term ( )0 0Q  =   and the optimal sensor placement is based 

only on the Fisher information matrix. There must be noticed that for small number of sensors, 

the matrix ( ); ,Q     can be ill-conditioned and the determinant could tend to zero 

independent of the location of sensor. Such cases arise from unidentifiability issues due to the 
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insufficient information provided by the data to estimate the number of model parameters 

involved. Non-informative uniform prior distribution do not provide any information to 

correct this problem. A solution could be to use non-uniform distributions to remove the ill-

conditioning in ( ); ,Q     due to the extra information provided by the prior distribution 

about the uncertainty in the model parameters.  

In addition, from equation (22) it can be concluded that the information entropy depends on 

the derivatives of the output quantities predicted by the model at the sensor locations with 

respect to the model parameters. The higher the derivatives, the higher the information 

entropy value. The computation of these derivatives is based on the differentiation of the 

model with respect to the parameters. 

 

4.1.4 Optimal Sensor Location Methodology 
The sensor configuration should be designed in such a way that the measured data are as 

much informative as possible about the model parameters to be estimated. The information 

entropy, defined by (21), measuring the uncertainty in these parameters, gives the amount of 

useful information contained in the measured data. The most informative test data are the 

ones that give the least uncertainty in the parameter estimates or the ones that minimize the 

information entropy or the change of information entropy. In other words, the sensors should 

be located at the places that minimize the information entropy. The problem of finding the 

optimal sensor configuration is formulated as an optimization problem where the objective 

function is the information entropy or the change of information entropy in the robust case 

and the design variables are the locations of sensors. Specifically, the optimal sensor location 

best  is given by 

 ( )argminHbest =   (23) 

The minimization of (21) is equivalent to the minimization of 

 ( ) ( ) ( )( )0 0 0

1
; , ln ; ,

2
U det Q Q      = − +     (24) 

Given that the quantity ( )0; ,Q     defined in (22) depends on the sensitivity of output 

quantities, computed from the model at the measured locations, with respect to the 

parameters, the sensors tend to be placed at locations where the output quantities are most 

sensitive to parameter changes. This is consistent with intuition since sensors places at 
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locations where the quantities are insensitive to parameter changes do not provide 

information to estimate the values of the parameters. 

 

 

4.2 Implementation for Source Identification in a Continuous Medium 
A continuous elastic mean is considered. In a region of its area a disturbance starts to occur. 

The exact location of disorder source is unknown. The initial time of disturbance is unknown 

as well. Our objective is to place sensors in the area which extends beyond the area of the 

initial disorder, the purple region in the scheme below. The sensors have to be placed in the 

more efficient way in order to extract the maximum information about the initial point of the 

disturbance. 

The optimum sensor placement methodology presented at the previous chapter is applied on 

the continuous mean.  

It is obvious that two uncertain parameters is the exact location of fault origin and the starting 

time. Moreover the speed at which the signal is transmitted cannot be sufficiently pre-

defined. In reality there are no perfectly isotropic materials, so that a signal can be transmitted 

at the same speed in all direction. Especially as far as the case of earth is examined this speed 

has an important fluctuation according to the soil morphology.  

 
Figure 6: Continuous material with an initial disturbance 
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4.2.1 Sensitivities 
As previously described information entropy is highly dependent on the gradient of the 

quantity of our interest, in the current section the derivatives of the time that the signal 

arrives at the sensor location with respect to the uncertain parameters are calculated. These 

derivatives are called sensitivities. It is clear that the larger values the sensitivities have the 

biggest information entropy we get.  

The uncertain parameters of the present layout are the specific coordinates of the initial point 

of the disturbance, the initial time and the speed. That leads us on the calculation of the 

derivative of function given by ( ; )st    with respect to initial time 0t  as follows 

 
0

( ; )
1st

t

 
=


  (25) 

We are moving forward by computing the derivatives with respect to spatial coordinates 

0 0,x y . 

 
( )

( ) ( )

( )0 0

2 2
0

0 0

2 2( ; ) s ss

s
s s

x x x xt

x vdv x x y y

  − − − −
= =

 − + −
  (26) 

 
( )

( ) ( )

( )0 0

2 2
0

0 0

2 2( ; ) s ss

s
s s

y y y yt

y vdv x x y y

  − − − −
= =

 − + −
  (27) 

Finally the derivative with regard to speed can be written as: 

 
2

( ; ) 1s
s

t
d

v v

 
= −


  (28) 

where 

 ( ) ( )
2 2

0 0s s sd x x y y= − + −   (29) 

 

 

 

4.2.2 Identification of disturbance origin 
 

4.2.2.1 Objective Function Formulation 
In order to obtain the optimization of our experimental design the minimization of 

information entropy is necessary. Its quantification occurs as fully described in section 4.1. In 



29 
 

this way the problem is shifted to the minimization of the Utility function given by the 

expression (24). Consequently, we have to compute the equation bellow: 

( ) ( ) ( ) ( ) ( )1

0; , ln det ; ;U g g Q          
 − = −    +

 
 

where ( ; ) ( ; )g t     =   

Taking into account the sensitivities derided previously we can state that 

 0 0

2

1
( ; ) 1 s s

s s

s s

x x y y
t d

vd vd v
  



 − −
 = − 

 
  (30) 

  

4.2.2.2 Discretization of Disturbance Area Using Finite Elements 

For  the formulation of Utility  function (24), ( )  ; ,U     must be evaluated  at 0 , namely 

the values of   that minimize function (19). In the case that the experiment we are designing 

aims to identify the starting point of the disturbance we have that ( )0 0 0,x y = . In the 

examined layout we know the broad area LxL where the fault starts to occur but not the 

specific coordinates. As a result, ( )  ; ,U     must be calculated at every potential starting 

point and then the average must be computed in order to infer a reliable result. The issue that 

we have to deal with in this point is how to consider every point of this continue area. In this 

attempt the area is divided into a grid of NxN points as the one that is depicted in Figure 7. 

We consider that the parameters 0 0,  x y  fluctuate into a range given as follows 

 0a x a−     (31) 

 0b y b−     (32) 

The integral of the function ( )  ; ,U     must be calculated over 0 0,  x y   

 

( ) ( ) ( ) ( ) ( )
0 0

0 0 0 00; ln det ; , ln det ; ,,

a b

x y a b

U Q Q dx dy Q Q dx dy          
− −

= − + = − +           

 (33) 

To estimate the integral above the area of our interest is divided creating grid of points. It is 

known that when this grid of points is used the accuracy is dependent to the number of grid 

points used. For an adequate number of grid points the integral can be estimated sufficiently. 
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Figure 7: The examined material after discretizing the disturbance area 

 

Thus the double integral in (33) can de written as: 

( )
( )

( )( ) ( )( )
( )

( )
( )( ) ( ) ( )( ) ( )( )

( )

2

2

1

0 00 2
1

1

1

0 0 02
1

1
; ln det ; ,

1

1
                      ln det ; ;

1

,
N

k k

k

N
k k k

k

t t

U Q Q
N

Q
N



  

     

   



 

+

=

+


−

=

 = − +
 +

 −    +
  +




 

where, N  in the number of finite elements used on each coordinate. Thus, our calculation 

is repeated for 
( )

2
1N +

 points.  

 

4.2.2.3 Unidentifiability Problem - Prediction Error Correlated Model 
In order to estimate the number of uncertain parameters involved we need to use an 

adequate number of sensors. Otherwise, unidentifiability issues are performed, as already 

described in the theory bellow. The objective function cannot be calculated and it is not 

possible for us to infer results about the optimal sensor placement. 

Similar problems are provoked when the sensors are placed at approximately the same 

location. This effect is thoroughly documented at a work of Papadimitriou et al. [2] and a 

solution is proposed.  
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To begin with, we have to consider the covariance matrix ( ) of the prediction error. 

Assuming uncorrelated prediction errors the covariance matrix can be defined as follows  

 

2

1

2

2

2

0 0

0

0

0 0
sN







 
 
  =
 
 
  

  (34) 

However  it has been shown in a previous work [13] that the upper assumption is not 

convenient when we implement optimal sensor placement framework on the continuous 

space. That can be captured if we take into account that when the framework places the 

sensors at the same points or at neighboring ones we do not extract adequate information. 

To address that issue correlated prediction error is considered as follows 

 

2

1 1 2 12 1 1

2

2 1 21 2

2

1 1

N N

N N N

      

   

   

 
 
  =
 
 
  

  (35) 

where ij  indicates the spatial correlation structure, which in our case depends on distance 

of the location of the corresponding pair of sensors ,  i js s . Spatial correlation structure is 

given by the expression 

 exp
ij

ij

d




 
= − 

 
  (36) 

where   is a measure of spatial correlation length. It can be shown that the correlation length 

of the prediction error controls the minimum distance between the sensors. Thus, correlation 

length must be selected conveniently as very small values are not adequate while too big 

values related to the layout dimension lead to unreliable results.   

 

4.2.2.4 CMA Optimization Technique   
In this work a stochastic optimization technique is employed, the covariance matrix 

adaptation evolution strategy (CMA-ES) [14]. An evolution strategy samples new candidate 

solutions according to a multivariate normal distribution in n
R . A recombination takes place 

in order for a new mean value for the distribution to be selected. Then, a random vector is 

added which is a perturbation with zero mean. A covariance matrix depicts the pairwise 
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dependencies between the variables in the distribution. CMA method updates the covariance 

matrix of this distribution to generate better and better values for the objective function. The 

CMA-ES has been empirically successful in numerous applications and is thought to be 

particularly useful on non-linear, ill-conditioned objective functions. 

The advantage of this method is that it doesn’t use gradients and consequently entrapments 

to local minima are avoided. A previous optimal sensor placement study applied in continuous 

space opted for the implementation of the specific method [3], a fact that encouraged us to 

use this technique.  

 

 

4.3 Implementation for Parameter Estimation and Infection Origin 

Identification in Epidemiology Networks  
When we are referred to optimal sensor placement in an Epidemiology Network consisted of 

populations each one including a number of interacting communities we mean the best way 

to extract information about the state of the disease. For example, from which communities 

to derive daily information about the number of symptomatic patients admitted to hospitals. 

Specifically, the measured quantity on which the following computations are based is the 

infective population ( )I t , where t  is a time unit that in real world can represent a week.  

4.3.1 Sensitivities 

In order to accomplish the optimization procedure we have to quantify the information 

entropy of the PDF. This is the quantity that has to be minimized to infer our results. The first 

step is to extract the derivatives of susceptible, infective and removed populations with 

respect to the parameters that we want to optimize, β, γ and I0. This occurs by solving the 

relevant system of differential equation that can be derived from the initial set of equations 

(16). 

To be more specific derivatives with respect to β can be calculated by solving computationally 

the following system: 

( )
dS

I S I S I S S F S
dt



     = −  − −  + −    

 ( )
dI

I S I S I S I H I HF I
dt



       =  + +  − + −    (37) 
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( )  

dR
I G R GF R

dt



   = + −   

The notations S , I  , R  represent the derivatives we are interested to extract. Having 

computed the quantities of susceptible, infective and removed populations ( ),  ( ),  ( )S t I t R t  

through the procedure discussed in section 3.2 it is simple to continue by solving the system 

above through numerical integration. What is left is to define the initial condition. At 0t =  

the quantities ,  ,  S I R  have a specific value independent of parameter   so it is easy to 

understand that their derivatives at the initial time are equal to zero. That is,

( ) ( ) ( )0 0,  0 0 0i i iS I R  = = =  for every node. 

Accordingly derivatives with respect to γ will be extracted by solving the system of equations 

that follows: 

( )
dS

I S I S S F S
dt



     = − −  + −    

 ( )
dI

I S I S I I H I HF I
dt



       = +  − − + −    (38) 

( )  

dR
I I G R GF R

dt



   = + + −   

With initial conditions ( ) ( ) ( )0 0,  0 0 0i i iS I R  = = =  for every node. 

Finally, as far as derivatives with respect to 0I  are concerned, the system of equation to be 

solved is: 

( )0

0 0 0 0

I

I I I I

dS
I S I S S F S

dt
  = − −  + −    

 ( )0

0 0 0 0 0

I

I I II I

dI
I S I S I H HF

d
I I

t
   = −  − + −    (39) 

( )0

0 0 0

I

I II

dR
I G R GF R

dt
 = + −   

With initial conditions ( ) ( ) ( )
0 0

0 0,  0 0 0
oI i I i I iS I R= = =  for every node except for the nodes 

where the infection begins where the derivative of 0I  with respect to 0I  is equal to one. 

Namely, ( ) ( ) ( )
0 0 0

   0 0,  0 1,  0 0I a I a I aS I R= = = .  
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Interpolation Scheme 

It must be reminded here that the quantities ( ),  ( ),  ( )S t I t R t  have been computed 

numerically for sufficiently small time step and stored in ( )tm N  matrices. Where m  

denotes the number of nodes and  tN  represents the number of time steps. To carry out the 

calculation of gradients with regard to the parameters 0,   and I  an interpolation scheme 

is used to compute the values at the points between the given ones. In specific linear 

interpolation is implemented to approximate these values. 

 

4.3.2 Estimation of parameters β and γ 
The first problem that we have to deal with is where to place sensors in order to measure the 

infective population in each node, kI  and how many sensors are needed so that to estimate 

the parameters   and   more efficiently. 

In order to formulate the utility function we have to take into consideration the sensitivities 

that have been developed in the previous unit. As utility function we define the function that 

quantifies the information entropy and is given by the general form cited in the section 4.1 as  

 ( ) ( ) ( )( )0 0 0

1
; , ln ; ,

2
U det Q Q      = − +     (40) 

where, 

 ( ) ( ) ( ) ( )1; , ; ;Q g g        
 −=      (41) 

The term ( )0Q   can be ignored as it doesn’t play a significant role in the optimization 

procedure. The notation Tgθ
 represent the sensitivity matrix which is consisted by the 

derivatives computed at the N locations where sensors are placed. 

 ( )

1 2

1 2

   

    

 

m

T

t

m

II I

g
II I

I

  

  

  
   

  =  =
  

    

θ   (42) 

  denotes the parameters. In this case, ( ),  = . 
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In this point we have to take into account that the infective population I  is a function of time. 

We assume that measurements take place periodically. We consider a period T. So the 

number of time steps is totalt
T

 = . As a result, the utility function can be inferred from the 

general form of ( );U    if we sum the quantity in the det over the time points  . 

Since the parameters ,  γ  are presumed to be uncertain parameters, the utility function can 

be computed as the integral of the information entropy conditioned on the nominal values of 

the parameters. 

( ) ( ) ( ) ( ) ( )0 0

1

1

1
; l ; ; ,

2
, nU det g g Q p d d



  

 

          
 − 

=

 
 = −    +  

 
   

 (43) 

where ( ),p    is the prior PDF of   and  . Herein a uniform PDF is assumed. 

This double integral can be estimated using a sparse grid point technic [15, 16]. In particular, 

there is created a sum over the values of information entropy at specific points of our 

parameter space weighed by the appropriate contributors. Consequently, it appears that the 

utility function which is to be optimized is  

( ) ( )( ) ( )( ) ( )1

0 0 00

1 1

1
; ln ;, ;

2

N

j

j

j j
U w det g g Q
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where, 𝛿 is a vector that denotes sensors’ locations. 

N is the number of sparse grid points that are used and wj  are the corresponding weights. 
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where, ν is the number of sensors that are used. 

It is assumed that 1 2 0.1  = == = . 
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4.3.3 Origin Identification assuming constant parameters  

A second task we have to deal with is to detect where to place sensors and measure Ik and 

how many sensors are needed so that to estimate where the infection starts if we know that 

it starts in a region of nodes. 

In this case the parameter set to be inferred is 
0I = . 

As for the sensitivities’ matrix it is given by:  
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  (46) 

The objective is again to minimize the utility function. We know the region of nodes where 

the infection started, but not the specific node. In this case it is needed to compute the sum 

over the potential places of infection origin weighted by appropriate contributor which are 

assumed to be equal to 1
N

 for each point, where N is the number of the potential starting 

points.  
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4.3.4 Origin Identification for uncertain parameters β, γ 

In an attempt to make our information entropy more robust we assume our parameters   

and   to be uncertain parameters. While   and   represent two physical quantities those 

of the rate at which the members of the population come into contact and the rate at which 

the infective people recover respectively, assuming that they have a specific constant value is 

not very realistic. In order to elicit more reliable results, in this point of our analysis, we 

assume that   and   are uncertain. The uncertainty is quantified using normal distribution 

with 0.02 =  and 0.3 =  and diagonal covariance matrix 
2 2[ , ]diag    .   

It goes without saying that we are introducing uncertainties in parameters that concern our 

model and are not included in the parameters to be optimized. Let’s consider that the vector 

𝜑0  is augmented to also include these model related quantities. Papadimitriou et al. [17] have 

related the divergence of model parameters from their presumed values with the robustness 



37 
 

of the quantification of information entropy. The change of information entropy initially 

defined by the expression (21) is given by 

( ) ( ) ( )
0 0, 0 0ln , | lnh p p          =  − − −
     

( )0 0 0                                        ; ( )H d    =   

 ( ) ( ) ( ) ( )0 0 0 0

1 1
                               ln 2 ln ;

2 2
det Q Q d        =  − +

   (48) 

To approximate the integral above one can use sampling techniques. Two such method have 

been proposed from related existing works [15], [16]. These are Monte Carlo Integration or 

Sparse Grid points methods. Consequently, the integral in (48) can be written as: 
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where the vector  𝜑0
(𝑖) , 𝑖 = 1, ⋯ , 𝑛, is consisted from values for the model related 

parameters generated by the already referred sample techniques. The notation iw  represents 

the sample’s weight.  In the case of sparse grid points’ approach they are defined 

appropriately with respect to the number of model parameters and the level of accuracy 

someone wants to obtain. For the Monte Carlo method they are equal to 1
iw

M
= , where 

M  is the number of samples. It should be noted that expression (49) requires the sensitivities 

of the output quantities to be computed for all samples 
( )
0

i
 , 1, ,i M= . 

Thus our utility function can be formulated as: 

( ) ( )( ) ( )( ) ( )( ), 1

1 1

, ,

0 0 0 0
1

1 1 1
; ln ; ;

2

M N

i j

j i j i j

i

i
U det g g Q

w N



  



     


− 

= = =

   = −    +       

    

 (50) 

Having to deal with two uncertain parameters,   and  , sparse grid points method is 

implemented. 

 

4.3.5 Origin Identification for uncertain transition rates  

In this point we introduce uncertainty in the transition rates ,  Η, G . The elements of the 

three matrices express the rate of movement from one node to another for the susceptible, 

infective and removed group. We assume that the transition rates ,  H, G  follow a normal 
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distribution with means their previous values and standard deviation 0.2 . Same methodology 

as in the previous section is followed to extract robust predictions for the parameters of our 

interest including the uncertainty of these model parameters in the quantification of 

information entropy.  

Transition rates are initially thought to be equal for all movements between nodes that can 

occur in our network. When introducing in these quantities a fluctuation one option is to 

consider that all the elements of each transition matrix change uniformly. This assumption 

implies that we have three changing quantities. The integral of our utility function over these 

quantities can be sufficiently approximated numerically through sparse grid points’ method. 
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 (51) 

The other case that we examine makes our approach more realistic as we take into account 

that transition rates can change independently. This fact results in having 2
2

m m
m


− +  

changing quantities to deal with, where m  is the number of our nodes. Let us presume that 

the elements of ,  H, G  matrices fluctuate within a normal distribution with means their 

previous values and standard deviation 0, 2 .  

Sparse grid method cannot be implemented and infer reliable results in a problem of that high 

dimension. Consequently we are led to Monte Carlo Integration. Utility function in this case 

has the same form as in relation (51).  

 

4.3.6        Optimization procedure - FSSP and BSSP algorithms  

Having created an appropriate software that calculates the value of the utility function for 

each sensors’ placement we have to deal with the optimization problem. That is, we have to 

find the sequence of sensor places that minimize the utility function. This will be the more 

efficient way to use our sensors and realize our measurements. One option would be to 

calculate the value of Utility function for all the potential sequences of sensor placements and 

opt for the sequence which resulted in the minimum value. However, this process which is 

basically the exhaustive search is extremely computationally expensive. We are led on 

accomplishing that task using two heuristic methods. In specific the Forward Sequential 
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Sensor Placement (FSSP) and Backward Sequential Sensor Placement (BSSP) are both 

implemented and their obtained results are compared to validate their correctness. 

FSSP is a simple algorithm which places one sensor at a time at the location with the highest 

reduction in information entropy. In particular, it initially considers all the potential sensor 

locations and computing the Utility Function for one sensor at node of our network. The first 

sensor is placed at the node with the lowest value of Utility. Then it follows the same process 

considering as known the place of the first sensor. In the same way it continues by placing the 

third sensors given the places of the first and second sensor and so on. 

On the other hand, BSSP appears to realize the inverse procedure. BSSP initializes by placing 

sensors at every node. After this it removes one sensor at a time from the position that results 

in the maximum Utility Function which is equivalent to removing a sensor from the location 

that produces the lowest increase in the information entropy.  That occurs by omitting each 

time one node and identifying the omission one that leads to the Maximum Utility function. 

The corresponding node is removed. The procedure is repeated until we find the most 

“informative” nodes. 

Sequential Sensor Placement algorithms do not guarantee that the global minimum is found. 

However, they consist a very good approach and they decrease importantly the 

computational effort in comparison with exhaustive search. Previous studies lying on the field 

of Optimal Sensor Placement proposed the employment of these two methods [18], [19], [20].     

 

4.3.7 Sample methods 

4.3.7.1 Sparse Grid Points 
Sparse Grid Points Technique is used multiples times in our approach. In general, this method 

is a numerical discretization technique for multivariate problems. It constructs a 

multidimensional multilevel basis by a special truncation of the tensor product expansion of 

a one-dimensional multilevel basis. Discretizations on sparse grids involve only 

𝑂(𝑁(log 𝑁𝑑−1)) degrees of freedom, where d is the problem dimension and N denotes the 

number of degrees of freedom in one coordinate direction. However, the number of basis 

functions or nodes (grid points) that have to be stored and processed depend 

exponentially on the number of dimensions. Even with today's computational power it is not 

possible to process functions with more than 4 or 5 dimensions. 

https://en.wikipedia.org/wiki/Exponential_function
https://en.wikipedia.org/wiki/Exponential_function
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Taking into account the methodology of the specific technique, its functional range and its 

inadequacies we utilize it to approximate integrals of 2 ( ),   and 3 ( ), ,G   dimensions.  

This procedure is realized through software programming. An appropriate code that 

generates sparse grid points is widely accessible in the Internet. 

 

4.3.7.2 Monte Carlo Integration 
Monte Carlo Integration methods is based on the Law of Large Numbers according to which 

the average of the results obtained from a large number of trials is close to the expected value 

and tends to become closer as more trials are performed. 

The need of implementing this method derives from the fact that we want to insert 

uncertainties in each element of the transition matrices and make them change 

independently. To deal with this an adequate number of samples is demanded. Let’s give an 

illustration of the applied framework. Firstly the non-zero elements of the transition matrices 

are detected. At each of them a random value from a normal distribution with zero mean and 

appropriately defined covariance is given. This procedure is repeated for a number of 

iterations equal to the number of samples we will to generate. For each sample the value of 

utility function is computed. Finally the average of these values is calculated.  
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CHAPTER 5 

Results 
 

 

5.1 Optimal Sensor Placement for Disturbance Identification in a 

Continuous Medium 
The objective function thoroughly described in chapter 4 is initially constructed considering a 

grid of 20x20 points for the region of disturbance origin. The area that sensors can be placed 

ranges from 15 to 30 in x-coordinate and from -30 to 30 in y-coordinate.  

To give a visual illustration of the objective function that we want to minimize we assume that 

the x coordinates of sensors’ locations have fixed values both equal to 15 and we derive the 

dependence of the objective function, U , on the y vector.  That occurs dividing the y area 

into finite elements of 1 unit length and computing the function at each point of grid. A 3-

dimensional figure is generated to depict the dependence of U  on the location of two sensors 

on the line x=15.  

 

Figure 8: The objective function over y1 , y2 , considering x1 ,x2  fixed 

The discontinuity that can be observed on the figure arises when the coordinates of the two 

sensors coincide. Given that we assumed the x-coordinates to be equal, when the 1y , 2y  take 

the same value the objective function tends to infinity. We have considered that particularity 

by a methodology described in section 4.2.2 which controls the minimum distance at which 

the two sensor can approach each other. We initially define the spatial correlation length to 

be equal to 1.  
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The results in Figure 9 are derived from the CMA implementation on the minimization 

problem. 

 

Figure 9: CMA results for 2 sensor placements 

Figure 9 is generated from a CMA-ES optimization software and claims that the system 

converges. This is denoted by the upper right diagram where the curves that depict the 

variables ,x y  end up to straight lines. The cyan line in the upper left figure denotes the 

divergence between the value of objective function and its minimum value. This quantity have 

to decrease over function evaluations. That occurs with some fluctuation which can be 

considered normal. In addition, the standard deviations of our variables are represented in 

the lower right figure after being divided by sigma whose value is given to be close to 2 (green 

line on the upper left figure). Thus, standard deviations are decreasing to get very low values.    

The optimal sensor places appears to be ( ) ( )1 230,29.97 , 30, 29.97s s= = − . In figure 9, x(1) 

and x(2) account for the x-coordinates, while x(3) and x(4) go for the y-coordinates. We can 

state that the optimization process proposes the placement of the sensors at the most 

remoted points of the examined region.  

Changes in the initial values of the parameters or in the population size CMA-ES uses do not 

result in any discrepancies for the final results both for the parameters values and the 

objective function. Shifting the value of spatial correlation length from 1 to 5 we get identical 
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results. However it takes more function evaluations for the system to converge. Furthermore 

it appears that even if we run the software considering a diagonal covariance matrix, the 

problem converges to the same values.   

In a purpose to examine the accuracy of our results we divide the distribution space into a 

larger number of elements. A dense grid of 200x200 is created. However, the elicited results 

do not differ to an important extend.  

 

Figure 10: CMA results considering a dense grid for the initial disturbance area 

The results appear to be very close to the previous ones. 

Table 1: Two cases’ solutions comparison 

 Sparse Grid 
(20x20) 

Dense Grid 
(200x200) 

Percentage 
Change 

1x  30 30 0 

1y  29,9699 29,9747 0,016% 

2x  30 30 0 

2y  -29,9699 -29,9748 0,016% 

U  -5,9708 -5,9725 0,028% 

 

We move forward to detect the optimal location of a third sensor. Given the coordinates of 

the first two sensor we repeat the procedure to locate an additional one.  
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Figure 11: CMA results for a third sensor placement 

It is clear that the system converges. The selected place is cited in the farthermost point of x-

coordinate and in the middle of the two already placed sensors in the y- coordinate.  We can 

note that the value of the Objective Function decreases after the placement of the 3rd sensor. 

That means that the utilization of three sensors provide us with more information for the 

identification of disturbance origin. The results for the sensors’ coordinates and the Objective 

Function for the three sensor placements are given in Table 2.  

Table 2: Sensor Placements 

Procedure Sensors added Objective 
Function 

1 (30, 29.97) 
(30, -29.97) 

-5,9708 

2 (30, 0) -6,3245 

 

The tendency of the applied optimization methodology to opt for places removed from the 

region of initial disorder triggers our curiosity. A figure similar to figure 8 is produced to 

demonstrate the objective function for an ample area of 1 2,y y  presuming again that 

1 2 15x x= = .  
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It appears that the objective function is being reduced for increasing 1 2,y y  until they reach a 

critical value and then it is getting larger. However, on the examined region of our problem y-

coordinates get lower values than the critical ones. That can explain why the farthermost 

points of the available space are selected first.   

 

 

5.2 Optimal Sensor Placement for Parameter Estimation and Infection 

Origin Identification in an Epidemiology Network 
 

5.2.1 Sensitivities 
Derivatives of Infection Population with respect to uncertain parameters appear to have the 

form demonstrated bellow in figure 13. Let’s clarify here that the network is consisted of 2 

communities, each of them composed by 4 nodes. The initial conditions can be stated as 

( )0 0,  2mI m=   and ( )2 0 95I = . A graph of the studied network is given in Figure 12. 

Node 2 is marked with red color to dictate that an infection starts there.  
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Figure 12: Examined Graph 

The time evolution of gradients of infective population are displayed for each node. On the 

left, figures that concern the nodes of the first community are displayed, while on the right, 

figures for the second community are presented. 
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Figure 13: Sensitivities of I in regard to uncertain parameters, Ι0, β and γ 

As long as sensitivities were numerically computed, it is important to mark that they are 

continuous and smooth which indicates that the time step we used was small enough to 

approximate the analytical solution. Moreover their forms are consistent with intuition while 

curves of symmetrically placed nodes coincide. Specifically, observing the graph one can 

notice that while the infection starts at node 2 and transition rates are uniform, places of 

nodes 1 and 3 are equivalent as well as those of nodes 6, 7, 8. 

 

5.2.2 Optimal Sensor Placement for Estimation of Parameters β and γ 
Initially results concerning optimal sensor placement for the estimation of parameters  and 

  are carried out. Since we have 2 uncertain parameters  ,   we use the Sparse Grid Points 

method. The accuracy level of this sparse grid method is defined by a parameter k which can 
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vary from 1 to 4. To take an adequate number of samples we apply k=3 which means that 13 

points are used on the parameter space. Details of the points with the weights are given in 

Table 3.  

Table 3: Sparse Grid Points for β and γ 

 

 

 

 

 

 

 

 

 

 

In Figures 14 and 15 the inferred sequence of optimal and worst sensor placements, 

respectively, is presented. Results are obtained from both the FSSP and BSSP and are 

presented in these figures. In Figure 16, the utility function (robust information entropy) as a 

function of the number of sensors placed at the optimal and worst sensor locations is 

presented. Results are also tabulated in Table 4. 

 
Figure 14: Best sensor placements 

    weights 

0,0027 0,3000 0,1667 

0,0100 0,1500 0,2500 

0,0100 0,3000 -0,5000 

0,0100 0,4500 0,2500 

0,0200 0,0402 0,1667 

0,0200 0,1500 -0,5000 

0,0200 0,3000 1,3333 

0,0200 0,4500 -0,5000 

0,0200 0,5598 0,1667 

0,0300 0,1500 0,2500 

0,0300 0,3000 -0,5000 

0,0300 0,4500 0,2500 

0,0373 0,3000 0,1667 
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Figure 15: Worst sensor placements 

 
Figure 16: Maximum and Minimum Utility Function for each sensor placement  

 

Table 4: Utility function results derived from the two methods 

Umin - FSSP Umin - BSSP Umax - FSSP Umax - BSSP 

-17,2917 -17,2917 -17,1141 -17,1141 

-18,4944 -18,4944 -17,9324 -17,9324 

-18,9632 -18,9632 -18,3539 -18,3540 

-19,2674 -19,2674 -18,8361 -18,8361 

-19,4870 -19,4870 -19,2081 -19,2081 

-19,6403 -19,6403 -19,4933 -19,4933 

-19,7644 -19,7644 -19,6999 -19,6999 

-19,8643 -19,8643 -19,8643 -19,8643 
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• We can observe that FSSP and BSSP analysis result to identical values for the expected 

Utility function.  

• However as far as the sensor placements preferences are concerned there exist some 

discrepancies. That indicates that there exist equivalent sequences of sensor 

placements. This effect can be explained if we consider the symmetries that appear 

in the examined network. The two inferred sequences differ because FSSP prefers to 

place a sensor at node 6 while BSSP selects the node 8, also FSSP appears to opt the 

node 1 while BSSP the node 3 and the opposites. It has been already stated that these 

specific places are equivalent. 

• Finally, one can notice that for the last sensor placement the values of maximum and 

minimum Utility function are identical. This fact could be expected as only one place 

is remained, so the optimizing function can get only a unique value. 

 

5.2.3 Optimal Sensor Placement for Origin Identification assuming constant 

parameters 

Here it is assumed that the infection starting point is uncertain. That means that it can take 

any value from a certain region of nodes, which are nodes 1 and 2 as marked on Figure 17. On 

the other hand, parameters   and   are assumed to have constant values equal to their 

means 0.02 and 0.3 accordingly.  

 
Figure 17: Examined Graph 



51 
 

 
Figure 18: Best sensor placements for constant parameters β, γ 

 

 
Figure 19: Worst sensor placements for constant parameters β, γ 



52 
 

 
Figure 20: Maximum and Minimum Utility function for constant parameters β, γ 

 

• Observing the diagrams one can see that the values of the expected utility function 

are identical for the two optimization sequential methods. 

• As for the best and worst sensor location at each sensor placement we can state that 

in some cases they are the same while in other they differ. Specifically, both methods 

indicate the node 2 as the first place preferred. However for the placement of the 

second sensor FSSP recommends node 1, while BSSP recommends node 3. Since the 

values of the minimum expected utility functions are equals the two placements are 

equivalent. 

• We also have to notice that the first node to be preferred is the one of the potential 

starting points. FSSP places the second sensor at the other potential starting point, 

whereas BSSP places there the third sensor. 

 

5.2.4 Optimal Sensor Placement for Origin Identification for uncertain 

parameters β, γ 

In this process   and   are assumed to be uncertain. Sparse grid point method is used. The 

accuracy level is the one used in the section 5.2 (k=3).  
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Figure 21: Examined graph 

 

Figure 22: Best sensor placements for constant parameters β, γ 
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Figure 23: Worst sensor placements for constant parameters β, γ 

 

 

Figure 24: Maximum and Minimum Utility function for constant parameters β, γ 

Table 5: Utility function results derived from the two methods 

Umin - FSSP Umin - BSSP Umax - FSSP Umax - BSSP 

-1,8256 -1,8256 -0,3217 -0,3217 

-2,4531 -2,4531 -0,6683 -0,6683 

-2,5009 -2,5009 -0,8710 -0,8710 

-2,5363 -2,5363 -1,1012 -1,1012 

-2,5469 -2,5469 -1,4891 -1,4891 

-2,5548 -2,5548 -1,7348 -1,7348 

-2,5624 -2,5624 -2,2136 -2,2136 

-2,5699 -2,5699 -2,5699 -2,5699 
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• Implementing this methodology the two sequential algorithms propose the potential 

sources of infection for the first two sensor placements. Following they prefer their 

neighboring nodes and finally the farther ones.  

• Discrepancies between the two methods’ preferences are performed again because 

of the system symmetries. 

• Figures of best and worst sensor placements appear to be antisymmetric. 

• Moreover, it must be pointed out that the value of minimum expected utility function 

decreases considerably during the placement of the second sensor. Oppositely, 

afterward it appears to be approximately constant. This implies that the use of more 

than three sensors is senseless as it doesn’t provide us with further information.  

 

5.2.5 Optimal Sensor Placement for Origin Identification for uncertain 

transition rates 

We consider uncertainty in the transition rates between communities, namely in the elements 

of ,     and G  matrices. In this section we assume that all the elements of each matrix are 

perfectly correlated yielding three uncertain parameters. We implement Sparse Grid Points’ 

method. We use accuracy level k=3. 25 sets of transition rates are produced. 

 
Figure 25: Examined graph 
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Figure 26: Best sensor placements for uncertain transition rates 

 

 
Figure 27: Best sensor placements for uncertain transition rates 
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Figure 28: Maximum and Minimum Utility function for uncertain transition rates 

 

Table 6: Utility function results derived from the two methods 

 

 

 

 

 

 

 

• Maximum and minimum values for the Utility function inferred from the two 

sequential methods coincide. 

• The places preferred from both methods are in accordance apart from 2 cases, which 

can easily be explicated regarding problem’s symmetries. 

• Both methods select firstly the potential starting points and following the neighboring 

ones. 

• The evolution of minimum Utility according to the number of sensors used indicates 

that two or three are enough to elicit information about the state of the system. Let’s 

remind here that the Utility quantifies the information entropy. When its minimum 

value stays approximately constant after a sensor placement it is implied that the 

usage of that sensor is meaningless.  

 

To validate our results a complementary process takes place. Transition rates are concerned 

to change independently. Monte Carlo Integration method is applied. Covariance is chosen to 

Umin - FSSP Umin - BSSP Umax - FSSP Umax - BSSP 

-1,9940 -1,9940 -0,6776 -0,6776 

-2,5782 -2,5782 -1,0241 -1,0241 

-2,6675 -2,6675 -1,2269 -1,2269 

-2,7220 -2,7220 -1,3817 -1,3817 

-2,7322 -2,7322 -1,8541 -1,8541 

-2,7417 -2,7417 -2,0947 -2,0947 

-2,7511 -2,7511 -2,4732 -2,4732 

-2,7603 -2,7603 -2,7603 -2,7603 
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be 0,2. To elicit reliable results 10000 sets of transition rates are generated. Two of them are 

displayed below to give an illustration to of parameters’ fluctuation: 

1st set 

ijG  1 2 3 4 5 6 7 8 

1 0 0,0512 0,0506 0,0506 0 0 0 0 

2 0,0493 0 0,0512 0,0511 0 0 0 0 

3 0,0474 0,0445 0 0,0511 0 0 0 0 

4 0,0470 0,0515 0,0498 0 0,0508 0 0 0 

5 0 0 0 0,0495 0 0,0500 0,0547 0,0513 

6 0 0 0 0 0,0510 0 0,0500 0,0508 

7 0 0 0 0 0,0466 0,0485 0 0,0508 

8 0 0 0 0 0,0492 0,0515 0,0497 0 

 

ijH  1 2 3 4 5 6 7 8 

1 0 0,2977 0,2840 0,3087 0 0 0 0 

2 0,2870 0 0,2911 0,2877 0 0 0 0 

3 0,2940 0,2920 0 0,2986 0 0 0 0 

4 0,2943 0,3078 0,2906 0 0,2915 0 0 0 

5 0 0 0 0,3043 0 0,3098 0,3068 0,3031 

6 0 0 0 0 0,2991 0 0,2918 0,2961 

7 0 0 0 0 0,2934 0,3063 0 0,2992 

8 0 0 0 0 0,2833 0,2894 0,2874 0 

 

ij  1 2 3 4 5 6 7 8 

1 0 0,0192 0,0211 0,0201 0 0 0 0 

2 0,0195 0 0,0199 0,0206 0 0 0 0 

3 0,0221 0,0194 0 0,0214 0 0 0 0 

4 0,0194 0,0201 0,0200 0 0,0201 0 0 0 

5 0 0 0 0,0213 0 0,0193 0,0206 0,0187 

6 0 0 0 0 0,0192 0 0,0193 0,0203 

7 0 0 0 0 0,0200 0,0214 0 0,0191 

8 0 0 0 0 0,0181 0,0193 0,0196 0 

 

2nd set 

ijG  1 2 3 4 5 6 7 8 

1 0 0,0499 0,0514 0,0492 0 0 0 0 

2 0,0502 0 0,0474 0,0473 0 0 0 0 

3 0,0498 0,0489 0 0,05136 0 0 0 0 

4 0,0479 0,0519 0,0524 0 0,0514 0 0 0 

5 0 0 0 0,0495 0 0,0513 0,0495 0,0510 

6 0 0 0 0 0,0457 0 0,0486 0,0488 

7 0 0 0 0 0,0501 0,0504 0 0,0513 

8 0 0 0 0 0,0490 0,0514 0,0471 0 
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ijH  1 2 3 4 5 6 7 8 

1 0 0,3135 0,2999 0,3025 0 0 0 0 

2 0,2869 0 0,2912 0,3212 0 0 0 0 

3 0,2948 0,3131 0 0,2874 0 0 0 0 

4 0,2978 0,2981 0,3122 0 0,2964 0 0 0 

5 0 0 0 0,2971 0 0,2914 0,2933 0,3157 

6 0 0 0 0 0,3011 0 0,2831 0,3057 

7 0 0 0 0 0,2919 0,3021 0 0,3134 

8 0 0 0 0 0,3226 0,2978 0,3049 0 

 

ij  1 2 3 4 5 6 7 8 

1 0 0,0199 0,0203 0,0196 0 0 0 0 

2 0,0187 0 0,0207 0,0187 0 0 0 0 

3 0,0186 0,0185 0 0,0196 0 0 0 0 

4 0,0208 0,0202 0,0190 0 0,02024 0 0 0 

5 0 0 0 0,0218 0 0,0202 0,0213 0,020 

6 0 0 0 0 0,0191 0 0,0194 0,0206 

7 0 0 0 0 0,0200 0,0198 0 0,0195 

8 0 0 0 0 0,0208 0,0196 0,0203 0 

 

 

 
Figure 29: Examined graph 

 



60 
 

 
Figure 30: Best sensor placements for uncertain transition rates 

 

 
Figure 31: Worst sensor placements for uncertain transition rates 
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Figure 32: Maximum and Minimum Utility function for uncertain transition rates 

 

Table 7: Utility function results derived from the two method 

Umin - FSSP Umin - BSSP Umax - FSSP Umax - BSSP 

-1,8553 -1,8553 -0,6389 -0,6389 

-2,4437 -2,4437 -0,9857 -0,9857 

-2,4942 -2,4942 -1,1886 -1,1886 

-2,5326 -2,5326 -1,3361 -1,3361 

-2,5442 -2,5442 -1,6325 -1,6325 

-2,5551 -2,5551 -1,8480 -1,8480 

-2,5659 -2,5659 -2,2659 -2,2659 

-2,5764 -2,5764 -2,5764 -2,5764 
 

• Results derived from BSSP and FSSP are identical. 

• Contrasting the two sequential procedures one can point out that identical results are 

inferred.  

• The results appears to be very reasonable. The potential starting points are opted 

first, then the adjacent nodes and finally the most remoted ones.  

• The Utility does not significantly decrease after the second sensor placement, which 

implies that 2 sensors are adequate to infer sufficient information. 

• Comparing Sparse Grid method and Monte Carlo Integration, one can noticed that 

equivalent sensor placement sequences are resulted. Discrepancies like the fact that 

the first technique selected firstly the node 1, while the second technic the node 2 

can be attributed to system symmetries. 
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Following we consider the case that the infection can have started at any node of the two 

populations. Moreover we presume that there is uncertainty about the transition rates only 

in the first community. The point of this experiment is to observe how the preference for 

sensor places is dependent on parameters’ uncertainty. Independent transition rates are 

assumed. Monte Carlo Integration is implemented. We use 10000 samples. 

1st set 

ijG  1 2 3 4 5 6 7 8 

1 0 0,0495 0,0538 0,0451 0 0 0 0 

2 0,0476 0 0,0505 0,0474 0 0 0 0 

3 0,0524 0,0506 0 0,0459 0 0 0 0 

4 0,05090 0,0489 0,0516 0 0,0500 0 0 0 

5 0 0 0 0,0500 0 0,0500 0,0500 0,0500 

6 0 0 0 0 0,0500 0 0,0500 0,0500 

7 0 0 0 0 0,0500 0,0500 0 0,0500 

8 0 0 0 0 0,0500 0,0500 0,0500 0 

 

ijH  1 2 3 4 5 6 7 8 

1 0 0,3119 0,3100 0,2870 0 0 0 0 

2 0,2805 0 0,2977 0,2987 0 0 0 0 

3 0,2911 0,2937 0 0,2809 0 0 0 0 

4 0,2979 0,3042 0,2928 0 0,3000 0 0 0 

5 0 0 0 0,3000 0 0,3000 0,3000 0,3000 

6 0 0 0 0 0,3000 0 0,3000 0,3000 

7 0 0 0 0 0,3000 0,3000 0 0,3000 

8 0 0 0 0 0,3000 0,3000 0,3000 0 

 

ij  1 2 3 4 5 6 7 8 

1 0 0,0197 0,0196 0,0194 0 0 0 0 

2 0,0185 0 0,0203 0,0197 0 0 0 0 

3 0,0202 0,0192 0 0,0200 0 0 0 0 

4 0,0181 0,0210 0,0196 0 0,0200 0 0 0 

5 0 0 0 0,0200 0 0,0200 0,0200 0,0200 

6 0 0 0 0 0,0200 0 0,0200 0,0200 

7 0 0 0 0 0,0200 0,0200 0 0,0200 

8 0 0 0 0 0,0200 0,0200 0,0200 0 

 

2nd  set 

ijG  1 2 3 4 5 6 7 8 

1 0 0,0517 0,0459 0,0502 0 0 0 0 

2 0,0475 0 0,0483 0,0507 0 0 0 0 

3 0,0461 0,0515 0 0,0503 0 0 0 0 

4 0,0503 0,0486 0,0508 0 0,0500 0 0 0 
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5 0 0 0 0,0500 0 0,0500 0,0500 0,0500 

6 0 0 0 0 0,0500 0 0,0500 0,0500 

7 0 0 0 0 0,0500 0,0500 0 0,0500 

8 0 0 0 0 0,0500 0,0500 0,0500 0 

 

ijH  1 2 3 4 5 6 7 8 

1 0 0,2888 0,2907 0,2894 0 0 0 0 

2 0,2831 0 0,3012 0,3104 0 0 0 0 

3 0,2953 0,2897 0 0,3049 0 0 0 0 

4 0,3079 0,3010 0,2979 0 0,3000 0 0 0 

5 0 0 0 0,3000 0 0,3000 0,3000 0,3000 

6 0 0 0 0 0,3000 0 0,3000 0,3000 

7 0 0 0 0 0,3000 0,3000 0 0,3000 

8 0 0 0 0 0,3000 0,3000 0,3000 0 

 

ij  1 2 3 4 5 6 7 8 

1 0 0,0200 0,0195 0,0193 0 0 0 0 

2 0,0188 0 0,0189 0,0190 0 0 0 0 

3 0,0201 0,0210 0 0,0196 0 0 0 0 

4 0,0207 0,0188 0,0201 0 0,0200 0 0 0 

5 0 0 0 0,0200 0 0,0200 0,0200 0,0200 

6 0 0 0 0 0,0200 0 0,0200 0,0200 

7 0 0 0 0 0,0200 0,0200 0 0,0200 

8 0 0 0 0 0,0200 0,0200 0,0200 0 

 

 
Figure 33: Examined graph 
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Figure 34: Best sensor placements 

 

 
Figure 35: Worst sensor placements 
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Figure 36: Maximum and Minimum Utility 

 

Table 8: Utility function results derived from the two methods 

Umin - FSSP Umin - BSSP Umax - FSSP Umax - BSSP 

-1,1373 -1,1373 -1,1274 -1,1373 

-1,6841 -1,6841 -1,5463 -1,5443 

-1,9296 -1,9296 -1,7913 -1,7867 

-2,1326 -2,1326 -1,9646 -1,9647 

-2,2732 -2,2732 -2,1911 -2,1912 

-2,3997 -2,3997 -2,3638 -2,3638 

-2,4948 -2,4948 -2,4853 -2,4853 

-2,5790 -2,5790 -2,5790 -2,5790 

 

• Sensors are placed once in the second and once in the first population. Results of both 

sequential sensor placement methods coincide when sensor are placed both at the 

first population, while they differ when the second population is preferred. 

• Minimum Utility function is constantly decreasing which implies that the more 

sensors we are using the more information we infer. 

• From the results in Figure 36 (compare with Figure 32), the difference between best 

and worst utility function is small, indicating that the optimizing the location of a given 

number of sensors does not significantly improve results in this case. However, adding 

more sensors is important since the improvement in the utility function is significant.   

We continue by repeating the same example, but this time with the assumption that the 

values of the elements of each matrix are perfectly correlated. We assume again that 

uncertainty related to the transition rates exists only in the first community. As long as the 



66 
 

values of the elements of transition matrices are perfectly correlated, we have uncertainties 

at three parameters regarding to our model characteristics. We apply the sparse grid points’ 

method to create our samples. The utilized accuracy level is k=3.   

 
Figure 37: Examined graph 

 

 
Figure 38: Best sensor placement 
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Figure 39: Worst sensor placement 

 
Figure 40: Maximum and Minimum Utility function 

 

Table 9: Utility function results derived from the two methods 

Umin - FSSP Umin - BSSP Umax - FSSP Umax - BSSP 

-1,2284 -1,2250 -1,1463 -1,2250 

-1,7553 -1,7678 -1,5533 -1,6308 

-2,0106 -2,0148 -1,7957 -1,8706 

-2,2079 -2,2157 -1,9890 -2,0486 

-2,3524 -2,3554 -2,2760 -2,2740 

-2,4757 -2,4806 -2,4463 -2,4457 

-2,5758 -2,5758 -2,5666 -2,5664 

-2,6593 -2,6593 -2,6593 -2,6593 
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• Best sensor locations are cited once in the first population and once in the second.  

• One can notice that FSSP and BSSP are in accordance on choosing each time nodes 

from the same population, either from the one where we assumed uncertainty or 

from the other. 

• Concerning the fact that supposing all the nodes to be potentially the infection source, 

we understand that the only factor of asymmetry is that not all transition rates are 

assumed to be uncertainty. Inconsistencies between best and worst sensor location 

figures as well as between Monte Carlo Integrations’ and Sparse Grid Points Methods’ 

results can be attributed to this effect.  

• It is also important that the results of both methods, Monte Carlo Integration and 

Sparse Grid Points Method, do not perform any preference to one of the two 

populations. Neither to the one with the uncertain transition rates nor to the other 

one.  

• One can notice that Figures 28 and 32 are completely different from Figure 36 or 40. 

This fact can be easily explained if we take into account that in the first two cases we 

assume that the region where the infection has started consists of two nodes, while 

in the last two cases we assume that the infection can have started in any node. 

Figures 28 and 32 suggest that for given number of sensors it is important to find the 

optimal sensor configuration. They also both suggest that two sensors placed at their 

optimal location are enough to get most of the information. In contrast, figures 36 

and 40 suggest that for given number of sensors it is not important to find the optimal 

sensor location because the difference between the best and the worst utility value 

is small. However it is important to use more and more sensors. 

 

5.2.6 Optimal Sensor Placement for Origin Identification for uncertain 

transition rates in an asymmetric Network 

Having observed that the two methods, FSSP and BSSP, tend to prefer nodes that are 

symmetrically placed in the network we consider to break that symmetry. To address that 

issue we assume that the transition rates given from the values of the elements of matrices 

Λ, H, G differ. Moreover we assume that they fluctuate independently around theirs means. 

Monte Carlo Integration is applied and 10000 samples are generated. The modified set of 

transition rates is given by the matrices bellow: 
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0 0,0500 0,1000 0,0200 0      0         0          0

0,0500 0 0,0250 0,0500 0      0         0          0
  

0,1000 0,0250 0 0,1000 0      0         0          0

0,0200 0,0500 0,1000 0 0,0050      0         0          0

0      

     

G =
   0          0      0,0050 0 0,0300 0,0600 0, 0150

0         0          0      0 0,0300 0 0,1000 0,0600
  

0         0          0      0 0,0600 0,1000 0 0,0750

0         0          0      0 0,0150 0,0600 0, 0750 0

 
 
 
 
 






 

  

           









 

0 0,3000 0,6000 0,1200 0      0         0          0

0,3000 0 0,1500 0,3000 0      0         0          0
  

0,6000 0,1500 0 0,6000 0      0         0          0

0,1200 0,3000 0,6000 0 0,0300      0         0          0

0      

     

H =
   0          0      0,0300 0 0,1800 0,3600 0,0900

0         0          0      0 0,1800 0 0,6000 0,3600
  

0         0          0      0 0,3600 0,6000 0 0,4500

0         0          0      0 0,9000 0,3600 0, 4500 0

 
 
 
 
 






 

  

           









 

0 0,0200 0,0400 0,0080 0      0         0          0

0,0200 0 0,0100 0,0200 0      0         0          0
  

0,0400 0,0100 0 0,0400 0      0         0          0

0,0080 0,0200 0,0400 0 0,0020      0         0          0

0      

     

 =
   0          0      0,0020 0 0,0120 0,0240 0, 0060

0         0          0      0 0,0120 0 0,0400 0,0240
  

0         0          0      0 0,0240 0,0400 0 0,0300

0         0          0      0 0,0060 0,0240 0, 0300 0

 
 
 
 
 






 

  

           









 

The transition rates from one node to another and the opposite are assumed to be equals. 

1st set 

ijG  1 2 3 4 5 6 7 8 

1 0 0,0530 0,1005 0,0195 0 0 0 0 

2 0,0498 0 0,0258 0,0522 0 0 0 0 

3 0,0987 0,0242 0 0,0982 0 0 0 0 

4 0,02045 0,05054 0,1066 0 0,0049 0 0 0 

5 0 0 0 0,0052 0 0,0301 0,0584 0,0143 

6 0 0 0 0 0,0283 0 0,1020 0,0636 

7 0 0 0 0 0,0595 0,0992 0 0,0783 
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8 0 0 0 0 0,0147 0,0586 0,0697 0 

 

ijH  1 2 3 4 5 6 7 8 

1 0 0,2300 0,6104 0,1270 0 0 0 0 

2 0,2992 0 0,1437 0,2956 0 0 0 0 

3 0,5819 0,1411 0 0,6509 0 0 0 0 

4 0,12711 0,3074 0,6300 0 0,0290 0 0 0 

5 0 0 0 0,0299 0 0,1866 0,3624 0,0944 

6 0 0 0 0 0,1675 0 0,6196 0,3828 

7 0 0 0 0 0,3391 0,579 0 0,4247 

8 0 0 0 0 0,0950 0,3626 0,4562 0 

 

ijL  1 2 3 4 5 6 7 8 

1 0 0,0214 0,0396 0,0073 0 0 0 0 

2 0,0194 0 0,0099 0,0197 0 0 0 0 

3 0,0398 0,0094 0 0,0387 0 0 0 0 

4 0,0079 0,021 0,0386 0 0,0020 0 0 0 

5 0 0 0 0,0019 0 0,0123 0,0242 0,0063 

6 0 0 0 0 0,0115 0 0,0377 0,0244 

7 0 0 0 0 0,0228 0,0390 0 0,0297 

8 0 0 0 0 0,0059 0,0231 0,0299 0 

 

2nd  set 

ijG  1 2 3 4 5 6 7 8 

1 0 0,0498 0,1024 0,0192 0 0 0 0 

2 0,0462 0 0,0259 0,0486 0 0 0 0 

3 0,0971 0,0265 0 0,1036 0 0 0 0 

4 0,0205 0,0488 0,1036 0 0,0053 0 0 0 

5 0 0 0 0,0045 0 0,0290 0,0593 0,0134 

6 0 0 0 0 0,0306 0 0,1005 0,0616 

7 0 0 0 0 0,0595 0,1026 0 0,0732 

8 0 0 0 0 0,0153 0,0576 0,0709 0 

 

ijH  1 2 3 4 5 6 7 8 

1 0 0,3099 0,58729 0,1137 0 0 0 0 

2 0,3028 0 0,1436 0,3114 0 0 0 0 

3 0,6000 0,1486 0 0,6074 0 0 0 0 

4 0,1158 0,2864 0,6301 0 0,0304 0 0 0 

5 0 0 0 0,0291 0 0,1770 0,3493 0,0921 

6 0 0 0 0 0,1735 0 0,5990 0,3733 

7 0 0 0 0 0,3664 0,5481 0 0,4611 

8 0 0 0 0 0,0869 0,3634 0,4490 0 

 

ij  1 2 3 4 5 6 7 8 
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1 0 0,0209 0,0405 0,0080 0 0 0 0 

2 0,0208 0 0,0102 0,0202 0 0 0 0 

3 0,0399 0,0098 0 0,0385 0 0 0 0 

4 0,0082 0,0199 0,0387 0 0,0021 0 0 0 

5 0 0 0 0,0021 0 0,0116 0,0244 0,0056 

6 0 0 0 0 0,0125 0 0,0403 0,0246 

7 0 0 0 0 0,0224 0,0411 0 0,0273 

8 0 0 0 0 0,0060 0,0259 0,0288 0 

 

 
Figure 41: Examined graph 

 

 
Figure 42: Best sensor placements 
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Figure 43: Worst sensor placements 

 

 
Figure 44: Maximum and Minimum Utility function 

 

Table 10: Utility function results derived from the two methods 

Umin - FSSP Umin - BSSP Umax - FSSP Umax - BSSP 

-1,8638 -1,8638 -0,4042 -0,4042 

-2,4497 -2,4497 -0.7950 -0.7950 

-2,5006 -2,5006 -1,0161 -1,0161 

-2,5439 -2,5439 -1,1710 -1,1710 

-2,5524 -2,5524 -1,5859 -1,5859 

-2,5606 -2,5606 -1,8219 -1,8219 

-2,5685 -2,5685 -2,2511 -2,2511 
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-2,5751 -2,5751 -2,5751 -2,5751 

 

• It is obvious that FSSP and BSSP results coincide. 

• The figures that illustrate the best and worst sensor location are antisymmetric. 

• The results are particularly reasonable. The fact that no discrepancies between the 

results of the sequential algorithms certifies our assumption that it was caused by the 

existence of equivalent placements. 

• Finally the evolution of minimum Utility values over extra sensor placements indicates 

that at least 2 sensor should be used. 
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CHAPTER 6 

Conclusions 
Two different dynamical systems where an irregularity initiates were studied throughout this 

thesis. Both layouts were examined from the common scope of Bayesian Analysis. However, 

different methods and computational tools were implemented for each case. 

Firstly, a continuous medium was considered. A Bayesian methodology was applied for the 

detection of a fault using simulated sets of measurements.  Next, the more perplex layout of 

an infection spread over two communities was studied. After the consideration of some logical 

assumptions a mathematical model was proposed to simulate its behavior.  

After having presented both systems and extracted the mathematical models that describe 

their dynamics, a Bayesian Optimal Sensor Placement Methodology for the identification of 

the irregularities’ origins was performed. The uncertainty which characterizes the models was 

quantified via the construction of an appropriate function called as Utility Function. In this 

point, the utility function depends in terms of the sensitivities of response quantities at the 

measured locations with respect to the parameters to be inferred. The sensitivities of the 

examined quantities were derived for the two systems. Analytical expressions for the 

sensitivities were derived for both systems examined.  A numerical solution was taken place 

for the calculation of sensitivities for the second layout. In this case, a graphical illustration of 

inferred derivatives indicated that we approximated very well the analytical solution.  

As for the implementation of Optimal Sensor Placement methodology on the problem of the 

continuous material, a stochastic optimization strategy, CMA-ES, was effectually applied to 

estimate the spatial coordinates for the optimal locations of two and three sensors. The values 

of the Utility function, that is the objective function formulated on the basis of Bayes Theory, 

appeared to decrease after the placement of the third sensor. 

Furthermore, two Sequential Sensor Placement Techniques, the FSSP and BSSP, were 

implemented for the problem of an infection spread. Optimal sensor locations were derived. 

In addition to the optimal sensor locations, the computation of the Utility function indicated 

the optimal number of sensors that are meaningful to be placed on the system. It was clear 

that both FSSP and BSSP techniques gave equivalent results. The locations which were firstly 

preferred for the sensor placement were those in the region where the infection had started. 

In addition, the indicated number of sensors was in accordance with the number of the 

potential starting points of the infection. It should be underlined here that the inferred results 
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are particularly consistent to intuition, a fact that provides us with confidence for the 

reliability of our methodologies. 

We have to note as well that through the study of two relatively simple systems we set the 

foundations for further investigation. Specifically, for the problem of an infection spread over 

a Network representing a system of interacting communities, a general software was 

constructed, capable to adjust easily on bigger and more perplex Networks. Moreover the 

applied methodologies can be readily used on a large class of dynamical systems which can 

be illustrated with a similar layout, namely a Network consisted of interacting elements.  

Last but not least, we have to remark that the successful employment of a common approach 

on two altogether different layouts made clear the adaptability and usefulness of Bayesian 

Optimal Sensor Placement implementation on numerous real-world scenarios. 
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