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Chapter 1: Abstract 

(EN) In this master’s thesis we will discuss about a software in Python 

which performs three different clustering models: Single linkage, Furthest 

neighbor and Centroid. In Chapter 2 (Introduction), we will discuss the meaning 

of cluster analysis. In Chapter 3 (Methods), we will analyze the three clustering 

models and also, we will present the algorithm used. At the end of this chapter 

there is the software’s code and the explanation of it, by its creator. In Chapter 4 

(Results), I will give an example of how the software operates and we’ll discuss 

the results. Finally, in Chapter 5 (Conclusion) we have a summary of the whole 

project. 

(GR) Στη παρούσα μεταπτυχιακή διπλωματική εργασία θα συζητήσουμε 

τη λειτουργία ενός προγράμματος, στη γλώσσα προγραμματισμού Python, το 

οποίο θα εκτελεί τρεις διαφορετικές μεθόδους συσταδοποίησης, οι οποίες 

αναφέρονται στον τίτλο. Στο Κεφάλαιο 2 (Εισαγωγή) συζητάμε τον ορισμό της 

Ανάλυσης σε Συστάδες. Στο Κεφάλαιο 3 (Μέθοδοι) γίνεται ανάλυση των τριών 

μεθόδων και επίσης αναλύεται η διαδικασία που θα βασιστεί ο αλγόριθμος. Στο 

τέλος αυτού το κεφαλαίου υπάρχει ο κώδικας του προγράμματος και η 

επεξήγηση της λειτουργίας του, όπως μας έχει δοθεί. Στο Κεφάλαιο 4 

(Αποτελέσματα) έχουμε ένα παράδειγμα για το πως λειτουργεί το πρόγραμμα 

και αναλύουμε τα αποτελέσματα που επιστρέφει. Τέλος, στο Κεφάλαιο 5 

(Επίλογος) κάνουμε μία σύνοψη όλων όσων διατυπώθηκαν. 

 

Chapter 2: Cluster Analysis 

The purpose of cluster analysis is to partition a set of experimental data 

into groups in such a way that the data points within the same group, also known 

as a “cluster”, are highly similar while data points in different clusters are very 

different. There is no simple recipe for choosing one particular approach over 

another for a particular clustering problem, just as there is no universal notion of 

what constitutes a “good cluster.” 

In order to analyze the software, we have to understand what cluster 

analysis is. So, cluster analysis is a multivariate method which aims to classify a 

sample of subjects (or objects) on the basis of a set of measured variables into a 

number of different groups such that similar subjects are placed in the same 

group. Something important is that cluster analysis has no mechanism for 

differentiating between relevant and irrelevant variables. Therefore, the choice 

of variables included in a cluster analysis must be underpinned by conceptual 

considerations. This is very important because the clusters formed can be very 

dependent on the variables included. 
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Chapter 3: Clustering Methods and Software 

A)  There are a number of different methods that can be used to carry out a 

cluster analysis; these methods can be classified as follows: 

Hierarchical methods 

 Agglomerative methods, in which subjects start in their own separate 

cluster. The two ‘closest’ (most similar) clusters are then combined and this is 

done repeatedly until all subjects are in one cluster. At the end, the optimum 

number of clusters is then chosen out of all cluster solutions. 

 Divisive methods, in which all subjects start in the same cluster and 

the above strategy is applied in reverse until every subject is in a separate cluster. 

Agglomerative methods are used more often than divisive methods, so this 

handout will concentrate on the former rather than the latter. 

Non-hierarchical methods (often known as k-means clustering methods) 

k-means clustering aims to partition n observations into k clusters in 

which each observation belongs to the cluster with the nearest mean, serving as 

a prototype of the cluster. 

Only agglomerative methods are going to be used in the software. 

 

B)  The definition of ‘distance’ is what differentiates between the different 

agglomerative clustering methods. A number of different measures have been 

proposed to measure ’distance’ for binary and categorical data, but for interval 

data the most common distance measure used is the Euclidean distance. 

Euclidean distance 

In general, if you have n variables X1, X2, . . . , Xn measured on a sample 

of p subjects, the observed data for subject i can be denoted by xi1, xi2, . . . , xin 

and the observed data for subject j by xj1, xj2, . . . , xjn. The Euclidean distance 

between these two subjects is given by 

𝑑𝑖,𝑗 = √(𝑥𝑖1 − 𝑥𝑗1)
2
+ (𝑥𝑖2 − 𝑥𝑗2)

2
+ ⋯ + (𝑥𝑖𝑛 − 𝑥𝑗𝑛)

2
 

 

C)  The three models that are going to be executed by the developed software 

summarized below. 

Single linkage method (Nearest neighbor method) 

In single-linkage clustering, the distance between two clusters is 

determined by a single element pair, namely those two elements (one in each 
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cluster) that are closest to each other. The shortest of these links that remains at 

any step causes the fusion of the two clusters whose elements are involved. The 

method is also known as nearest neighbor clustering. The result of the clustering 

can be visualized as a dendrogram, which shows the sequence of cluster fusion 

and the distance at which each fusion took place. 

Mathematically, the linkage function – the distance D(X,Y) between clusters X 

and Y – is described by the expression 

𝐷(𝑋, 𝑌) = min
𝑥∈𝑋,𝑦∈𝑌

𝑑(𝑥, 𝑦) 

where X and Y are any two sets of elements considered as clusters, and d(x,y) 

denotes the distance between the two elements x and y. 

 

Furthest neighbor method (complete linkage method) 

Opposite to the single linkage approach is the complete linkage, also 

called furthest neighbor sorting. In this method, first proposed by Sørensen 

(1948), the fusion of two clusters depends on the most distant pair of objects 

instead of the closest. In this case, the distance between two clusters is defined 

to be the maximum distance between members — i.e. the distance between the 

two subjects that are furthest apart. 

Mathematically, the complete linkage function – the distance D(X,Y) between 

the clusters X and Y – is described by the following expression: 

𝐷(𝑋, 𝑌) = max
𝑥∈𝑋,𝑦∈𝑌

𝑑(𝑥, 𝑦) 

where X and Y are any two sets of elements considered as clusters, and d(x,y) 

denotes the distance between the two elements x and y. 

 

Centroid method 

Here the centroid (mean value for each variable) of each cluster is 

calculated and the distance between centroids is used. Clusters whose centroids 

are closest together are merged.  

Mathematically, the centroid function – the distance D(X,Y) between the clusters 

X and Y – is described by the following expression: 

𝐷(𝑋, 𝑌) =  ‖𝑐𝑋 −𝑐𝑌‖ = 𝑑(𝑐𝑋, 𝑐𝑌) 

Where cX and cY are the centroids of clusters X and Y, respectively.  
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Program and description of the code 

The module contributed below contains two major classes: Point and 

Cluster, which allow model points and clusters of points. Once our data have 

transformed into a list of my generic Point objects, pass it into agglo function, 

which performs agglomerative clustering. The output is a list of Cluster objects, 

which we may then process as we see fit. 

The agglomerative algorithm can be used even if we have no idea how 

many clusters we should end up with. It takes two parameters: the linkage type 

(currently either 's' for single linkage, 'c' for complete linkage, or 't' for centroid 

linkage) and the cutoff. In each iteration, the algorithm computes the pair of 

clusters with the “smallest” distance between them and fuses them, either until 

all the clusters have been fused into one mega-cluster or until the smallest 

distance is bigger than your "cutoff" input parameter. The distances between 

clusters are computed by linkage type: single linkage means "the distance 

between the closest pair of points, one from each cluster"; complete linkage 

means "the distance between the farthest pair of points, one from each cluster"; 

and centroid linkage is simply the distance between the cluster centroids. 

The main function takes as input our data in a “.csv” file and then passes 

them through the clustering algorithms and prints the output clusters. 

 Finally, the python IDE that we used is PyDev and the code editor is 

Eclipse - Neon (http://www.eclipse.org/neon/), with python 2.7 version. Also, 

we used the libraries math, sys and pandas for any subsidiary function.  

 

 

  

 
import sys, math, pandas 
 
# -- The Point class represents points in n-dimensional space 
class Point: 
     
    # Instance variables 
    # self.coords is a list of coordinates for this Point 
    # self.n is the number of dimensions this Point lives in  
    # (i.e. its   space) 
    # self.reference is an object bound to this Point 
    # Initialize new Points 
    def __init__(self, coords, reference=None): 
         self.coords = coords 
         self.n = len(coords) 
         self.reference = reference 
         
    # Return a string representation of this Point 
    def __repr__(self): 
        return str(self.coords) 
      
      
         
 

 

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 18:49:10 EEST - 3.139.69.54



5 
 

 

  

# -- The Cluster class represents clusters of points in n-dimensional 
space 
class Cluster: 
     
    # Instance variables 
    # self.points is a list of Points associated with this Cluster 
    # self.n is the number of dimensions this Cluster's Points live in 
    # self.centroid is the sample mean Point of this Cluster 
    # Initialize new Clusters 
     
    def __init__(self, points): 
 
        # We forbid empty Clusters (they don't make mathematical 
        # sense!) 
        if len(points) == 0: raise Exception("ILLEGAL: EMPTY CLUSTER") 
        self.points = points 
        self.n = points[0].n 
 
        # We also forbid Clusters containing Points in different spaces 
        # Ie, no Clusters with 2D Points and 3D Points 
        for p in points: 
           if p.n != self.n: raise Exception("ILLEGAL: MULTISPACE 
                                                        CLUSTER") 
        # Figure out what the centroid of this Cluster should be 
        self.centroid = self.calculateCentroid() 

    # Return a string representation of this Cluster 
    def __repr__(self): 
        return str(self.points) 

    # Calculates the centroid Point - the centroid is  
    # the sample mean Point 
    # (the average of all the Points in the Cluster) 
    def calculateCentroid(self): 
        centroid_coords = [] 
 
        # For each coordinate: 
        for i in range(self.n): 

            # Take the average across all Points 
            centroid_coords.append(0.0) 
            for p in self.points: 
                centroid_coords[i] = centroid_coords[i]+p.coords[i] 

      centroid_coords[i] = centroid_coords[i]/len(self.points) 

        # Return a Point object using the average coordinates 
        return Point(centroid_coords) 

# Return the single-linkage distance between this and another 
# Cluster 

    def getSingleDistance(self, cluster): 
        ret = getDistance(self.points[0], cluster.points[0]) 
        for p in self.points: 
            for q in cluster.points: 
                distance = getDistance(p, q) 
                if distance < ret: ret = distance 
        return ret 
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      # Return the complete-linkage distance between this and another 
    # Cluster 
    def getCompleteDistance(self, cluster): 
        ret = getDistance(self.points[0], cluster.points[0]) 
        for p in self.points: 
            for q in cluster.points: 
                distance = getDistance(p, q) 
                if distance > ret: ret = distance 
        return ret 
     
    # Return the centroid-linkage distance between this and another 
    # Cluster 
    def getCentroidDistance(self, cluster): 
        return getDistance(self.centroid, cluster.centroid) 
     
    # Return the fusion of this and another Cluster 
    def fuse(self, cluster): 
        # Forbid fusion of Clusters in different spaces 
        if self.n != cluster.n: raise Exception("ILLEGAL FUSION") 
        points = self.points 
        points.extend(cluster.points) 
        return Cluster(points)  
 
# -- Return a distance matrix which captures distances between all 
Clusters 
def makeDistanceMatrix(clusters, linkage): 
    ret = dict() 
    for i in range(len(clusters)): 
        for j in range(len(clusters)): 
            if j == i: break 
            if linkage == 's': 
                ret[(i,j)] = clusters[i].getSingleDistance(clusters[j]) 
            elif linkage == 'c': 
                ret[(i,j)] =clusters[i].getCompleteDistance(clusters[j]) 
            elif linkage == 't': 
                ret[(i,j)] =clusters[i].getCentroidDistance(clusters[j]) 
            else: raise Exception("INVALID LINKAGE") 
    return ret 
 
     
# -- Return Clusters of Points formed by agglomerative clustering 
def agglo(points, linkage, cutoff): 
     
    # We only allow single, complete, or average linkage 
    if not linkage in [ 's', 'c', 't' ]: raise Exception("INVALID 
                                                         LINKAGE") 
    
    # Create single Clusters, one for each Point 
    clusters = [] 
    for p in points: clusters.append(Cluster([p])) 
     
    # Set the min_distance between Clusters to zero 
    min_distance = 0 

    # Loop until the break statement is made 
    while (True): 
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        # Compute a distance matrix for all Clusters 
        distances = makeDistanceMatrix(clusters, linkage) 
         
        # Find the key for the Clusters which are closest together 
        min_key = distances.keys()[0] 
        min_distance = distances[min_key] 
        for key in distances.keys(): 
            if distances[key] < min_distance: 
                min_key = key 
                min_distance = distances[key] 
         
        # If the min_distance is bigger than the cutoff, terminate the 
        # loop 
        # Otherwise, agglomerate the closest clusters 
        if min_distance > cutoff or len(clusters) == 1: break 
        else: 
            c1, c2 = clusters[min_key[0]], clusters[min_key[1]] 
            clusters.remove(c1) 
            clusters.remove(c2) 
            clusters.append(c1.fuse(c2)) 
     
    # Return the list of Clusters 
    return clusters 
 
# -- Get the Euclidean distance between two Points 
def getDistance(a, b): 
    
    # Forbid measurements between Points in different spaces 
    if a.n != b.n: raise Exception("ILLEGAL: NON-COMPARABLE POINTS") 
     
    # Euclidean distance between a and b is sqrt(sum((a[i]-b[i])^2) for 
    # all i) 
    ret = 0.0 
    for i in range(a.n): 
        ret = ret+pow((a.coords[i]-b.coords[i]), 2) 
    return math.sqrt(ret) 
 
# -- Create a n-dimensional Point from our input 
def DataInput(data,n): 
 
    return Point(df[n]) 

# -- Main function 
def main(args): 
    # Open and read the data file which is in excel format 
    # Header = -1 so the function will not ignore the first row 
    df = pandas.read_csv(‘File_path.csv’,'rb', header=-1, delimiter=';') 
 
    # Set linkage and cutoff point 
    # (s=Single, c=Complete, t=Centroid) 
    linkage, agglo_cutoff = ‘Our Choice’ 
     
     
    # Convert our data to list and create our data array 
    Temp = df.values.tolist() 

    points=[] 
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(Code source: https://www.daniweb.com/programming/software- 

development/code/216641/statistical-learning-with-python-clustering) 

As we see, the above code creates a distance matrix, in order to 

store the distances created in each step, and then continues to the merging 

of the clusters. A distance matrix is a square matrix (two-dimensional 

array) containing the distances, taken pairwise, between the elements of a 

set. In this program, because we use the Euclidean metric, we have an 

Euclidean distance matrix is an n×n matrix representing the spacing of a 

set of n points in Euclidean space. If A is an Euclidean distance matrix 

and the points x1,x2,…,xn are defined on m-dimensional space, then the 

elements of A are given by 

A=(aij); aij=dij, where dij is the appropriate metric for each method, so: 

[
 
 
 
 

0 𝑑12 𝑑13 ⋯ 𝑑1𝑛

𝑑21 0 𝑑23 ⋯ 𝑑2𝑛

𝑑31 𝑑32 0 ⋯ 𝑑3𝑛

⋮ ⋮ ⋮ ⋱ ⋮
𝑑𝑛1 𝑑𝑛2 𝑑𝑛3 ⋯ 0 ]

 
 
 
 

 

 

 

 

 
    for n in range(len(temp)): 
        p=DataInput(temp,n) 
        points.append(p) 
        #Print the points array 
        print "P(",n,"):", p 
 
    # Cluster the points using the agglomerative algorithm, print the 
    # results 
    print "\nAGGLOMERATIVE" 
    if linkage == 's': 
        print "SINGLE LINKAGE CLUSTERING\nCLUSTERS:" 
    elif linkage == 'c': 
        print "COMPLETE LINKAGE CLUSTERING\nCLUSTERS:" 
    elif linkage == 't': 
        print "CENTROID CLUSTERING\CLUSTERS:" 
    
    clusters = agglo(points, linkage, agglo_cutoff) 
    for c in clusters: print "C:", c 
     
# -- The following code executes upon command-line invocation 
if __name__ == "__main__": main(sys.argv) 
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Chapter 4: Example using the software  

Here I am going to demonstrate, with a simple example, how this software 

works and we will discuss the results. In this example, we use 4 -dimensional 

data points, but there isn’t any restriction on the number of dimensions.  

In a group of 10 patients with cystic fibrosis we recorded several variables 

Body Mass Percentage (BMP), Forced Expiratory Volume (FEV1), Residual 

Volume (RV) and Maximum Expiratory Pressure (PEmax). We want to 

investigate the relationship between them and categorize the patients with 

similarities. (Source: Elias Zintzaras, 2017, MSc Biomathematics) 

The data points are in an excel sheet (csv file) so they are accessible to the 

software. 

The dataset is the following: 

 

Patient BMP FEV1 RV PEmax 

1 68.0 32.0 258.0 95.0 

2 65.0 19.0 449.0 85.0 

3 64.0 22.0 441.0 100.0 

4 67.0 41.0 234.0 85.0 

5 93.0 52.0 202.0 95.0 

6 70.0 29.0 204.0 134.0 

7 70.0 49.0 187.0 165.0 

8 92.0 29.0 188.0 120. 

9 69.0 38.0 172.0 130.0 

10 72.0 21.0 216.0 85.0 

     

At the beginning, we have to pass our data in an excel sheet. 
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Then, we import the file’s path (i.e. C:\Users\User \Eclipse\Example.csv), 

choose the type of linkage (i.e. ‘s’, ‘c’, ‘t’) and define the cut-off point = 40.0. 

Here it is necessary to mention that there isn’t any correct or wrong method to 

choose the cut-off point, we just choose based in our experience and by testing 

it. 

We are going to run the software three times, one for each clustering 

method. We begin with single linkage clustering method, also known as nearest 

neighbor, so we choose linkage = ‘s’ and press Run. 

 

We see the results at the Console of Eclipse and they are below: 

 

Our data are printed for each patient separately and then the single linkage 

algorithm returns the clusters containing the patients who are more similar, 

according to the distance used. We see that the first cluster contains Patients #3 

and #2, the second cluster contains Patients #10, #4, #1 and the last cluster 

contains the remaining five patients. 

If the clusters aren’t satisfying, we can change the cut-off point and see if our 

new results are satisfying enough. For example, if we set the cut off = 30.0, the 

results are: 
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 As it is obvious, this cut-off point doesn’t generate a worthy set of 

clusters. So, we will keep as cut-off = 40.0 

We move to the second method and we choose linkage = ‘c’ for complete 

linkage clustering method, also known as farthest neighbor, and press Run. 

This time the results are the following: 

 

 

 

As we see there are dissimilarities in comparison with the previous method. With 

the same cut off point, now we have six clusters whereas before we had three. 

This is something that we expected to happen because the metric we used to 

group our patients is very different. Thus, here we have three clusters with one 

patient each, something like cluster of themselves, two clusters with two patients 

each and one cluster with three patients.  

But we observe that this cut-off point isn’t satisfying enough for this method 

because it generates many clusters. So, we can change it to cut-off = 70.0 and 

now we have a set of three more compact clusters. 

 

   

 

And finally, in order to run the Centroid clustering method, we set as 

linkage = ‘t’, cut-off = 40.0 and then press Run. 
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The results are below: 

 

With a quick view to the cluster, we observe that two of them contain only one 

patient each, so this is a good reason to change the cut-off point. By changing it 

only to cut-off = 50.0 the results change a lot and now we have three clusters, 

as we observe below: 

 

 

Chapter 5: Conclusion 

In this thesis, we discussed what cluster analysis is, in an effort to 

understand the three methods analyzed. Then, an example is given, using the 

software, where I presented the results that we received and a way to adjust them 

to our advantage. Through the whole process the most important thing to 

understand is that there is no better or worse method to use, but everything 

depends on the problem at hand, because, as it was obvious before, every method 

generates different results and it is in our consideration how we’ll interpret them. 

From all the above, we can draw the conclusion that we have to find the most 

suitable clustering method for each problem. 
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