

SCHOOL OF MEDICINE

UNIVERSITY OF THESSALY

POSTGRADUATE PROGRAMME (MSC)

“RESEARCH METHOLOGY IN BIOMEDICINE, BIOSTATISTICS

AND CLINICAL BIOINFORMATICS AT UNIVERSITY OF

THESSALY”

Master’s Thesis

“Discuss about a software in Python which performs single linkage

clustering, furthest neighboring clustering and centroid clustering”

“Ανάλυση ενός προγράμματος σε Python το οποίο εκτελεί

συσταδοποιήσεις απλού συνδέσμου, πλήρους συνδέσμου και με βάση το

κέντρο βάρους”

by

RENTAS DIMITRIOS

Supervisors: Kowald Axel, Δοξάνη Χρυσούλα, Ζιντζαράς Ηλίας

Larisa, 2017

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 18:49:10 EEST - 3.139.69.54

Contents

1. Abstract 1

2. Cluster Analysis 1

3. Clustering Methods & Software 2

4. Example using the software 9

5. Conclusion 12

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 18:49:10 EEST - 3.139.69.54

1

Chapter 1: Abstract

(EN) In this master’s thesis we will discuss about a software in Python

which performs three different clustering models: Single linkage, Furthest

neighbor and Centroid. In Chapter 2 (Introduction), we will discuss the meaning

of cluster analysis. In Chapter 3 (Methods), we will analyze the three clustering

models and also, we will present the algorithm used. At the end of this chapter

there is the software’s code and the explanation of it, by its creator. In Chapter 4

(Results), I will give an example of how the software operates and we’ll discuss

the results. Finally, in Chapter 5 (Conclusion) we have a summary of the whole

project.

(GR) Στη παρούσα μεταπτυχιακή διπλωματική εργασία θα συζητήσουμε

τη λειτουργία ενός προγράμματος, στη γλώσσα προγραμματισμού Python, το

οποίο θα εκτελεί τρεις διαφορετικές μεθόδους συσταδοποίησης, οι οποίες

αναφέρονται στον τίτλο. Στο Κεφάλαιο 2 (Εισαγωγή) συζητάμε τον ορισμό της

Ανάλυσης σε Συστάδες. Στο Κεφάλαιο 3 (Μέθοδοι) γίνεται ανάλυση των τριών

μεθόδων και επίσης αναλύεται η διαδικασία που θα βασιστεί ο αλγόριθμος. Στο

τέλος αυτού το κεφαλαίου υπάρχει ο κώδικας του προγράμματος και η

επεξήγηση της λειτουργίας του, όπως μας έχει δοθεί. Στο Κεφάλαιο 4

(Αποτελέσματα) έχουμε ένα παράδειγμα για το πως λειτουργεί το πρόγραμμα

και αναλύουμε τα αποτελέσματα που επιστρέφει. Τέλος, στο Κεφάλαιο 5

(Επίλογος) κάνουμε μία σύνοψη όλων όσων διατυπώθηκαν.

Chapter 2: Cluster Analysis

The purpose of cluster analysis is to partition a set of experimental data

into groups in such a way that the data points within the same group, also known

as a “cluster”, are highly similar while data points in different clusters are very

different. There is no simple recipe for choosing one particular approach over

another for a particular clustering problem, just as there is no universal notion of

what constitutes a “good cluster.”

In order to analyze the software, we have to understand what cluster

analysis is. So, cluster analysis is a multivariate method which aims to classify a

sample of subjects (or objects) on the basis of a set of measured variables into a

number of different groups such that similar subjects are placed in the same

group. Something important is that cluster analysis has no mechanism for

differentiating between relevant and irrelevant variables. Therefore, the choice

of variables included in a cluster analysis must be underpinned by conceptual

considerations. This is very important because the clusters formed can be very

dependent on the variables included.

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 18:49:10 EEST - 3.139.69.54

2

Chapter 3: Clustering Methods and Software

A) There are a number of different methods that can be used to carry out a

cluster analysis; these methods can be classified as follows:

Hierarchical methods

 Agglomerative methods, in which subjects start in their own separate

cluster. The two ‘closest’ (most similar) clusters are then combined and this is

done repeatedly until all subjects are in one cluster. At the end, the optimum

number of clusters is then chosen out of all cluster solutions.

 Divisive methods, in which all subjects start in the same cluster and

the above strategy is applied in reverse until every subject is in a separate cluster.

Agglomerative methods are used more often than divisive methods, so this

handout will concentrate on the former rather than the latter.

Non-hierarchical methods (often known as k-means clustering methods)

k-means clustering aims to partition n observations into k clusters in

which each observation belongs to the cluster with the nearest mean, serving as

a prototype of the cluster.

Only agglomerative methods are going to be used in the software.

B) The definition of ‘distance’ is what differentiates between the different

agglomerative clustering methods. A number of different measures have been

proposed to measure ’distance’ for binary and categorical data, but for interval

data the most common distance measure used is the Euclidean distance.

Euclidean distance

In general, if you have n variables X1, X2, . . . , Xn measured on a sample

of p subjects, the observed data for subject i can be denoted by xi1, xi2, . . . , xin

and the observed data for subject j by xj1, xj2, . . . , xjn. The Euclidean distance

between these two subjects is given by

𝑑𝑖,𝑗 = √(𝑥𝑖1 − 𝑥𝑗1)
2
+ (𝑥𝑖2 − 𝑥𝑗2)

2
+ ⋯ + (𝑥𝑖𝑛 − 𝑥𝑗𝑛)

2

C) The three models that are going to be executed by the developed software

summarized below.

Single linkage method (Nearest neighbor method)

In single-linkage clustering, the distance between two clusters is

determined by a single element pair, namely those two elements (one in each

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 18:49:10 EEST - 3.139.69.54

3

cluster) that are closest to each other. The shortest of these links that remains at

any step causes the fusion of the two clusters whose elements are involved. The

method is also known as nearest neighbor clustering. The result of the clustering

can be visualized as a dendrogram, which shows the sequence of cluster fusion

and the distance at which each fusion took place.

Mathematically, the linkage function – the distance D(X,Y) between clusters X

and Y – is described by the expression

𝐷(𝑋, 𝑌) = min
𝑥∈𝑋,𝑦∈𝑌

𝑑(𝑥, 𝑦)

where X and Y are any two sets of elements considered as clusters, and d(x,y)

denotes the distance between the two elements x and y.

Furthest neighbor method (complete linkage method)

Opposite to the single linkage approach is the complete linkage, also

called furthest neighbor sorting. In this method, first proposed by Sørensen

(1948), the fusion of two clusters depends on the most distant pair of objects

instead of the closest. In this case, the distance between two clusters is defined

to be the maximum distance between members — i.e. the distance between the

two subjects that are furthest apart.

Mathematically, the complete linkage function – the distance D(X,Y) between

the clusters X and Y – is described by the following expression:

𝐷(𝑋, 𝑌) = max
𝑥∈𝑋,𝑦∈𝑌

𝑑(𝑥, 𝑦)

where X and Y are any two sets of elements considered as clusters, and d(x,y)

denotes the distance between the two elements x and y.

Centroid method

Here the centroid (mean value for each variable) of each cluster is

calculated and the distance between centroids is used. Clusters whose centroids

are closest together are merged.

Mathematically, the centroid function – the distance D(X,Y) between the clusters

X and Y – is described by the following expression:

𝐷(𝑋, 𝑌) = ‖𝑐𝑋 −𝑐𝑌‖ = 𝑑(𝑐𝑋, 𝑐𝑌)

Where cX and cY are the centroids of clusters X and Y, respectively.

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 18:49:10 EEST - 3.139.69.54

4

Program and description of the code

The module contributed below contains two major classes: Point and

Cluster, which allow model points and clusters of points. Once our data have

transformed into a list of my generic Point objects, pass it into agglo function,

which performs agglomerative clustering. The output is a list of Cluster objects,

which we may then process as we see fit.

The agglomerative algorithm can be used even if we have no idea how

many clusters we should end up with. It takes two parameters: the linkage type

(currently either 's' for single linkage, 'c' for complete linkage, or 't' for centroid

linkage) and the cutoff. In each iteration, the algorithm computes the pair of

clusters with the “smallest” distance between them and fuses them, either until

all the clusters have been fused into one mega-cluster or until the smallest

distance is bigger than your "cutoff" input parameter. The distances between

clusters are computed by linkage type: single linkage means "the distance

between the closest pair of points, one from each cluster"; complete linkage

means "the distance between the farthest pair of points, one from each cluster";

and centroid linkage is simply the distance between the cluster centroids.

The main function takes as input our data in a “.csv” file and then passes

them through the clustering algorithms and prints the output clusters.

 Finally, the python IDE that we used is PyDev and the code editor is

Eclipse - Neon (http://www.eclipse.org/neon/), with python 2.7 version. Also,

we used the libraries math, sys and pandas for any subsidiary function.

import sys, math, pandas

-- The Point class represents points in n-dimensional space
class Point:

 # Instance variables
 # self.coords is a list of coordinates for this Point
 # self.n is the number of dimensions this Point lives in
 # (i.e. its space)
 # self.reference is an object bound to this Point
 # Initialize new Points
 def __init__(self, coords, reference=None):
 self.coords = coords
 self.n = len(coords)
 self.reference = reference

 # Return a string representation of this Point
 def __repr__(self):
 return str(self.coords)

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 18:49:10 EEST - 3.139.69.54

5

-- The Cluster class represents clusters of points in n-dimensional
space
class Cluster:

 # Instance variables
 # self.points is a list of Points associated with this Cluster
 # self.n is the number of dimensions this Cluster's Points live in
 # self.centroid is the sample mean Point of this Cluster
 # Initialize new Clusters

 def __init__(self, points):

 # We forbid empty Clusters (they don't make mathematical
 # sense!)
 if len(points) == 0: raise Exception("ILLEGAL: EMPTY CLUSTER")
 self.points = points
 self.n = points[0].n

 # We also forbid Clusters containing Points in different spaces
 # Ie, no Clusters with 2D Points and 3D Points
 for p in points:
 if p.n != self.n: raise Exception("ILLEGAL: MULTISPACE
 CLUSTER")
 # Figure out what the centroid of this Cluster should be
 self.centroid = self.calculateCentroid()

 # Return a string representation of this Cluster
 def __repr__(self):
 return str(self.points)

 # Calculates the centroid Point - the centroid is
 # the sample mean Point
 # (the average of all the Points in the Cluster)
 def calculateCentroid(self):
 centroid_coords = []

 # For each coordinate:
 for i in range(self.n):

 # Take the average across all Points
 centroid_coords.append(0.0)
 for p in self.points:
 centroid_coords[i] = centroid_coords[i]+p.coords[i]

 centroid_coords[i] = centroid_coords[i]/len(self.points)

 # Return a Point object using the average coordinates
 return Point(centroid_coords)

Return the single-linkage distance between this and another
Cluster

 def getSingleDistance(self, cluster):
 ret = getDistance(self.points[0], cluster.points[0])
 for p in self.points:
 for q in cluster.points:
 distance = getDistance(p, q)
 if distance < ret: ret = distance
 return ret

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 18:49:10 EEST - 3.139.69.54

6

 # Return the complete-linkage distance between this and another
 # Cluster
 def getCompleteDistance(self, cluster):
 ret = getDistance(self.points[0], cluster.points[0])
 for p in self.points:
 for q in cluster.points:
 distance = getDistance(p, q)
 if distance > ret: ret = distance
 return ret

 # Return the centroid-linkage distance between this and another
 # Cluster
 def getCentroidDistance(self, cluster):
 return getDistance(self.centroid, cluster.centroid)

 # Return the fusion of this and another Cluster
 def fuse(self, cluster):
 # Forbid fusion of Clusters in different spaces
 if self.n != cluster.n: raise Exception("ILLEGAL FUSION")
 points = self.points
 points.extend(cluster.points)
 return Cluster(points)

-- Return a distance matrix which captures distances between all
Clusters
def makeDistanceMatrix(clusters, linkage):
 ret = dict()
 for i in range(len(clusters)):
 for j in range(len(clusters)):
 if j == i: break
 if linkage == 's':
 ret[(i,j)] = clusters[i].getSingleDistance(clusters[j])
 elif linkage == 'c':
 ret[(i,j)] =clusters[i].getCompleteDistance(clusters[j])
 elif linkage == 't':
 ret[(i,j)] =clusters[i].getCentroidDistance(clusters[j])
 else: raise Exception("INVALID LINKAGE")
 return ret

-- Return Clusters of Points formed by agglomerative clustering
def agglo(points, linkage, cutoff):

 # We only allow single, complete, or average linkage
 if not linkage in ['s', 'c', 't']: raise Exception("INVALID
 LINKAGE")

 # Create single Clusters, one for each Point
 clusters = []
 for p in points: clusters.append(Cluster([p]))

 # Set the min_distance between Clusters to zero
 min_distance = 0

 # Loop until the break statement is made
 while (True):

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 18:49:10 EEST - 3.139.69.54

7

 # Compute a distance matrix for all Clusters
 distances = makeDistanceMatrix(clusters, linkage)

 # Find the key for the Clusters which are closest together
 min_key = distances.keys()[0]
 min_distance = distances[min_key]
 for key in distances.keys():
 if distances[key] < min_distance:
 min_key = key
 min_distance = distances[key]

 # If the min_distance is bigger than the cutoff, terminate the
 # loop
 # Otherwise, agglomerate the closest clusters
 if min_distance > cutoff or len(clusters) == 1: break
 else:
 c1, c2 = clusters[min_key[0]], clusters[min_key[1]]
 clusters.remove(c1)
 clusters.remove(c2)
 clusters.append(c1.fuse(c2))

 # Return the list of Clusters
 return clusters

-- Get the Euclidean distance between two Points
def getDistance(a, b):

 # Forbid measurements between Points in different spaces
 if a.n != b.n: raise Exception("ILLEGAL: NON-COMPARABLE POINTS")

 # Euclidean distance between a and b is sqrt(sum((a[i]-b[i])^2) for
 # all i)
 ret = 0.0
 for i in range(a.n):
 ret = ret+pow((a.coords[i]-b.coords[i]), 2)
 return math.sqrt(ret)

-- Create a n-dimensional Point from our input
def DataInput(data,n):

 return Point(df[n])

-- Main function
def main(args):
 # Open and read the data file which is in excel format
 # Header = -1 so the function will not ignore the first row
 df = pandas.read_csv(‘File_path.csv’,'rb', header=-1, delimiter=';')

 # Set linkage and cutoff point
 # (s=Single, c=Complete, t=Centroid)
 linkage, agglo_cutoff = ‘Our Choice’

 # Convert our data to list and create our data array
 Temp = df.values.tolist()

 points=[]

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 18:49:10 EEST - 3.139.69.54

8

(Code source: https://www.daniweb.com/programming/software-

development/code/216641/statistical-learning-with-python-clustering)

As we see, the above code creates a distance matrix, in order to

store the distances created in each step, and then continues to the merging

of the clusters. A distance matrix is a square matrix (two-dimensional

array) containing the distances, taken pairwise, between the elements of a

set. In this program, because we use the Euclidean metric, we have an

Euclidean distance matrix is an n×n matrix representing the spacing of a

set of n points in Euclidean space. If A is an Euclidean distance matrix

and the points x1,x2,…,xn are defined on m-dimensional space, then the

elements of A are given by

A=(aij); aij=dij, where dij is the appropriate metric for each method, so:

[

0 𝑑12 𝑑13 ⋯ 𝑑1𝑛

𝑑21 0 𝑑23 ⋯ 𝑑2𝑛

𝑑31 𝑑32 0 ⋯ 𝑑3𝑛

⋮ ⋮ ⋮ ⋱ ⋮
𝑑𝑛1 𝑑𝑛2 𝑑𝑛3 ⋯ 0]

 for n in range(len(temp)):
 p=DataInput(temp,n)
 points.append(p)
 #Print the points array
 print "P(",n,"):", p

 # Cluster the points using the agglomerative algorithm, print the
 # results
 print "\nAGGLOMERATIVE"
 if linkage == 's':
 print "SINGLE LINKAGE CLUSTERING\nCLUSTERS:"
 elif linkage == 'c':
 print "COMPLETE LINKAGE CLUSTERING\nCLUSTERS:"
 elif linkage == 't':
 print "CENTROID CLUSTERING\CLUSTERS:"

 clusters = agglo(points, linkage, agglo_cutoff)
 for c in clusters: print "C:", c

-- The following code executes upon command-line invocation
if __name__ == "__main__": main(sys.argv)

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 18:49:10 EEST - 3.139.69.54

9

Chapter 4: Example using the software

Here I am going to demonstrate, with a simple example, how this software

works and we will discuss the results. In this example, we use 4 -dimensional

data points, but there isn’t any restriction on the number of dimensions.

In a group of 10 patients with cystic fibrosis we recorded several variables

Body Mass Percentage (BMP), Forced Expiratory Volume (FEV1), Residual

Volume (RV) and Maximum Expiratory Pressure (PEmax). We want to

investigate the relationship between them and categorize the patients with

similarities. (Source: Elias Zintzaras, 2017, MSc Biomathematics)

The data points are in an excel sheet (csv file) so they are accessible to the

software.

The dataset is the following:

Patient BMP FEV1 RV PEmax

1 68.0 32.0 258.0 95.0

2 65.0 19.0 449.0 85.0

3 64.0 22.0 441.0 100.0

4 67.0 41.0 234.0 85.0

5 93.0 52.0 202.0 95.0

6 70.0 29.0 204.0 134.0

7 70.0 49.0 187.0 165.0

8 92.0 29.0 188.0 120.

9 69.0 38.0 172.0 130.0

10 72.0 21.0 216.0 85.0

At the beginning, we have to pass our data in an excel sheet.

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 18:49:10 EEST - 3.139.69.54

10

Then, we import the file’s path (i.e. C:\Users\User \Eclipse\Example.csv),

choose the type of linkage (i.e. ‘s’, ‘c’, ‘t’) and define the cut-off point = 40.0.

Here it is necessary to mention that there isn’t any correct or wrong method to

choose the cut-off point, we just choose based in our experience and by testing

it.

We are going to run the software three times, one for each clustering

method. We begin with single linkage clustering method, also known as nearest

neighbor, so we choose linkage = ‘s’ and press Run.

We see the results at the Console of Eclipse and they are below:

Our data are printed for each patient separately and then the single linkage

algorithm returns the clusters containing the patients who are more similar,

according to the distance used. We see that the first cluster contains Patients #3

and #2, the second cluster contains Patients #10, #4, #1 and the last cluster

contains the remaining five patients.

If the clusters aren’t satisfying, we can change the cut-off point and see if our

new results are satisfying enough. For example, if we set the cut off = 30.0, the

results are:

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 18:49:10 EEST - 3.139.69.54

11

 As it is obvious, this cut-off point doesn’t generate a worthy set of

clusters. So, we will keep as cut-off = 40.0

We move to the second method and we choose linkage = ‘c’ for complete

linkage clustering method, also known as farthest neighbor, and press Run.

This time the results are the following:

As we see there are dissimilarities in comparison with the previous method. With

the same cut off point, now we have six clusters whereas before we had three.

This is something that we expected to happen because the metric we used to

group our patients is very different. Thus, here we have three clusters with one

patient each, something like cluster of themselves, two clusters with two patients

each and one cluster with three patients.

But we observe that this cut-off point isn’t satisfying enough for this method

because it generates many clusters. So, we can change it to cut-off = 70.0 and

now we have a set of three more compact clusters.

And finally, in order to run the Centroid clustering method, we set as

linkage = ‘t’, cut-off = 40.0 and then press Run.

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 18:49:10 EEST - 3.139.69.54

12

The results are below:

With a quick view to the cluster, we observe that two of them contain only one

patient each, so this is a good reason to change the cut-off point. By changing it

only to cut-off = 50.0 the results change a lot and now we have three clusters,

as we observe below:

Chapter 5: Conclusion

In this thesis, we discussed what cluster analysis is, in an effort to

understand the three methods analyzed. Then, an example is given, using the

software, where I presented the results that we received and a way to adjust them

to our advantage. Through the whole process the most important thing to

understand is that there is no better or worse method to use, but everything

depends on the problem at hand, because, as it was obvious before, every method

generates different results and it is in our consideration how we’ll interpret them.

From all the above, we can draw the conclusion that we have to find the most

suitable clustering method for each problem.

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 18:49:10 EEST - 3.139.69.54

13

Chapter 6: References

1. Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze,

Introduction to Information Retrieval, Cambridge University Press.

2008. (https://nlp.stanford.edu/IR-book/html/htmledition/irbook.html)

2. Daniel Borcard (2006), Multivariate analysis, Chapter 3. Cluster

analysis

(http://ubio.bioinfo.cnio.es/Cursos/CEU_MDA07_practicals/Further%2

0reading/Multivariate%20analysis%20Borcard%202006/Chap_3.pdf)

3. Dr. Alexander Schonhuth, Lecture Notes, CMPT441: Algorithms in

Bioinformatics, pg. 75-82

(http://www.cs.sfu.ca/CourseCentral/441/asa86/LectureNotes_11_05.pdf)

4. General information about programming in python

https://stackoverflow.com/

5. Norusis (2016), IBM SPSS STATISTICS 19 Guide to Data analysis

(http://www.norusis.com/pdf/SPC_v13.pdf)

6. Pavel A. Pevzner, Neil C. Jones, An Introduction to Bioinformatics

Algorithms (2004), Chapter 10. Clustering and Trees, pg.339-386

(http://bioinformaticsinstitute.ru/sites/default/files/an_introduction_to_bi

oinformatics_algorithms_-_jones_pevzner.pdf)

7. Pierre and Louis Legendre, Numerical Ecology, Elsevier Scientific

Publishing Company, Amsterdam, 1983, pg.303-386

8. Rosie Cornish (2007), Learning Support Center, Chapter 3 Cluster

Analysis

(http://www.statstutor.ac.uk/resources/uploaded/clusteranalysis.pdf)

9. https://www.daniweb.com/programming/software-

development/code/216641/statistical-learning-with-python-clustering

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 18:49:10 EEST - 3.139.69.54

