UNIVERSITY OF THESSALY DEPARTMENT OF BIOCHEMISTRY & BIOTECHNOLOGY

PhD Thesis

GENOMIC AND TRANSCRIPTOMIC ANALYSIS OF THE OLIVE FLY REPRODUCTIVE SYSTEM, AIMING AT NOVEL CONTROL METHODS

GREGORIOU MARIA-ELENI

BIOCHEMIST-BIOTECHNOLOGIST

LARISSA 2018

PhD Thesis

GENOMIC AND TRANSCRIPTOMIC ANALYSIS OF THE OLIVE FLY REPRODUCTIVE SYSTEM, AIMING AT NOVEL CONTROL METHODS

GREGORIOU MARIA-ELENI

BIOCHEMIST-BIOTECHNOLOGIST

The project was implemented under the "ARISTEIA" Action of the "OPERATIONAL PROGRAMME EDUCATION AND LIFELONG LEARNING" and is co-funded by the European Social Fund (ESF) and National Resources.

GENOMIC AND TRANSCRIPTOMIC ANALYSIS OF THE OLIVE FLY REPRODUCTIVE SYSTEM, AIMING AT NOVEL CONTROL METHODS

ΓΟΝΙΔΙΩΜΑΤΙΚΗ ΚΑΙ ΜΕΤΑΓΡΑΦΟΜΙΚΗ ΑΝΑΛΥΣΗ ΤΟΥ ΑΝΑΠΑΡΑΓΩΓΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΤΟΥ ΔΑΚΟΥ ΤΗΣ ΕΛΙΑΣ, ΜΕ ΣΤΟΧΟ ΚΑΙΝΟΤΟΜΟΥΣ ΜΕΘΟΔΟΥΣ ΕΛΕΓΧΟΥ ΤΟΥ ΕΝΤΟΜΟΥ

Committee

• Mathiopoulos Kostas

Professor, Molecular Biology (Supervisor) Department of Biochemistry and Biotechnology, University of Thessaly

• Karpouzas Dimitrios

Associate Professor, Environmental Microbiology & Biotechnology Department of Biochemistry-Biotechnology, University of Thessaly

• Sarafidou Theologia

Assistant Professor, Animal Molecular Genetics Department of Biochemistry and Biotechnology, University of Thessaly

• Papadopoulou Kalliope

Associate Professor, Plant Biotechnology Department of Biochemistry and Biotechnology, University of Thessaly

• Papathanos Filippos Aris

Associate Professor, Genetics Department of Experimental Medicine, University of Perugia

• Vontas John

Associate Professor, Entomology Agricultural Univesity of Athens

Giakountis Antonios

Assistant Professor, Molecular Biology – Genomics Department of Biochemistry and Biotechnology, University of Thessaly

Επταμέλης εξεταστική επιτροπή

• Ματθιόπουλος Κώστας

Καθηγητής Μοριακής Βιολογίας (Επιβλέπων) Τμήμα Βιοχημείας και Βιοτεχνολογίας, Πανεπιστήμιο Θεσσαλίας

Καρπούζας Δημήτριος

Αναπληρωτής Καθηγητής Περιβαλλοντικής Μικροβιολογίας και Βιοτεχνολογίας Τμήμα Βιοχημείας και Βιοτεχνολογίας, Πανεπιστήμιο Θεσσαλίας

• Σαραφίδου Θεολογία

Επίκουρος Καθηγήτρια Μοριακής Γενετικής Ζωικών Οργανισμών Τμήμα Βιοχημείας και Βιοτεχνολογίας, Πανεπιστημιο Θεσσαλίας

Παπαδοπούλου Καλλιόπη

Αναπληρώτρια Καθηγήτρια Βιοτεχνολογίας Φυτών Τμήμα Βιοχημείας και Βιοτεχνολογίας, Πανεπιστήμιο Θεσσαλίας

Παπαθάνος Φίλιππος- Άρης

Αναπληρωτής Καθηγητής Γενετικής Τμήμα Πειραματικής Ιατρικής, Πανεπιστήμιο της Περούτζια

Βόντας Ιωάννης

Αναπληρωτής Καθηγητής Εντομολογίας Γεωπονικό Πανεπιστήμιο Αθηνών

• Γιακουντής Αντώνιος

Επίκουρος Καθηγητής Μοριακής Βιολογίας-Γονιδιωματικής Τμήμα Βιοχημείας και Βιοτεχνολογίας, Πανεπιστήμιο Θεσσαλίας

Στην ανηψούλα μου......

<u>Abstract</u>

The olive fruit fly, *Bactrocera oleae*, is the most important pest of cultivated olives causing significant production losses and olive fruit impoverishment. After mating, the female insect, deposits its eggs in the olive fruit where the developing larvae feed and grow. In most insects, mating is a prerequisite for reproduction and, thus, critical to the maintenance of their population and the continuation of their species.

Currently, olive fly control mostly relies on insecticide spraying. However, the use of insecticides has led to resistance development and environmental damages, rendering the design of new alternative methods of control a necessity. Targeting the reproductive success of the olive fly is a promising method for pest control as manipulation of the could reproductive system affect the destructive activity of the fly. At present, genomic and transcriptomic data of the fly's reproductive system is practically nonexistent.

Based on the above, a comprehensive analysis of the reproductive system was performed focusing on the identification of genes related to post-mating response. Specifically, RNAseq was performed for: 1. testes and accessory glands with ejaculatory bulb from virgin (7th day old insects) and mated male insects and 2. lower reproductive tract from virgin (7th day old insects) and mated female insects. Comparison of the transcriptomes between virgin and mated insects resulted in the identification of genes that are differentially expressed after mating. In testes 107 genes were up-regulated and 345 genes were down-regulated, while in male accessory glands with ejaculatory bulb 1,608 genes were up-regulated and 383 genes were down-regulated in mated insects. In females 1,705 genes were up-regulated and 120 genes were down-regulated in mated insects.

The top 100 most highly differentially expressed genes from each comparison were further annotated to the newly sequenced olive fly genome and functionally annotated through the Gene Ontology database. Annotations showed an alteration in metabolic, catalytic and cellular processes in the mated tissues. The identified genes encoded proteins implicated in immune antigen 5 response, mucins, proteins, proteases inhibitors and proteins with putative secretory activity.

Several genes were further selected for validation through qRT-PCR. For testes nine reproductive loci were considered. Results showed significant overexpression in mated flies of genes c58283, c37552, hemolectin, mucin and cation transporter, while significant downregulation was detected for scribbler. qRT-PCR did not confirm the expression profile of c15699 and c52071 genes obtained from RNAseq and c42528 showed very low expression. For male accessory glands six reproductive loci were analyzed and confirmed their overexpressin in mated flies through qRT-PCR: timeless, c52416, c57257, c52655, yellow-g and c53574. Furthermore, we determined the expression profile of the selected genes from the first day of the insect eclosion to DAY 7. If a gene codes for a protein in the seminal fluid that is important for mating, it should be expressed earlier so that the protein will be present at the time of mating.

For the female lower reproductive tract six loci were analyzed. The results of the qRT-PCR confirmed the upregulation for *lingerer, bestrophin-2, ornithine decarboxylase* genes but did not confirm the RNAseq results for troponin C and glutathione S-transferase epsilon class genes. Yolk protein-2 had low expression. The expression profile of the selected genes was determined in 7-day old virgin females and at five time points (0, 3, 6, 9, 12, 24 h) after mating. Expression profiles of the 6 genes were different. For example, ornithine decarboxylase antizyme showed an increasing expression with the highest expression 24 hours after mating, while *bestrophin-2* and *lingerer* expression peaked after 12 hours and fell afterwards.

Functional analysis through RNAi silencing was performed through RNAi injections or RNAi feeding. For *yellow-g* (from the male accessory glands) and *troponin C* (from the lower female reproductive tract) transfer of the dsRNA to insects was achieved through injections. Transient silencing through feeding was used for silencing of the *sex peptide receptor* (*spr*) based on its known involvement in reproduction in other insects.

For RNAi silencing through injections, results indicated high percentage of silencing in the insect, reaching 81% for *yellow-g* and 70% for *troponin-C*. Furthermore, mating experiments showed that transient silencing of the two genes had an impact on reproduction, since the oviposition rate of injected females was significantly reduced. For RNAi silencing through feeding, there was 90% and 40% downregulation of the *spr* gene on the female reproductive tract and head, respectively, resulting in significantly lower oviposition rate and reduced longevity compared to controlled flies.

This thesis constitutes the first comprehensive analysis of the reproductive system of *B. oleae*, identifying genes that could be target for the development of new intervention methods. Moreover, it demonstrated the first successful application of RNAi-feeding in *B. oleae*, giving new prospects to the use of this molecular tool.

<u>Περίληψη</u>

Ο δάκος της ελιάς, Bactrocera oleae, είναι σημαντικότερος εχθρός ο των ελαιοκαλλιεργειών προκαλώντας την ποσοτική και ποιοτική υποβάθμιση της παραγωγής. Τα συζευγμένα θηλυκά έντομα, ωαποθέτουν στους καρπούς, εντός των οποίων εκκολάπτονται οι προνύμφες και αναπτύσσονται τρεφόμενες από το εσωτερικό του. Η σύζευξη επομένως, στα περισσότερα έντομα, είναι απαραίτητη προϋπόθεση για την αναπαραγωγή και κατ' επέκταση για τη διατήρηση του πληθυσμού τους.

Σήμερα, η καταπολέμησή του εντόμου γίνεται κυρίως με τη χρήση εντομοκτόνων. Η αλόγιστη χρήση όμως των εντομοκτόνων έχει οδηγήσει στην ανάπτυξη φαινομένων ανθεκτικότητας των εντόμων αλλά και σε περιβαλλοντικές συνέπειες καθιστώντας απαραίτητη την ανάγκη για την εύρεση αποτελεσματικότερων και φιλικότερων προς περιβάλλον μεθόδων ελέγχου. το То αναπαραγωγικό σύστημα του εντόμου θα μπορούσε να είναι ένας πολλά υποσχόμενος στόχος για την ανάπτυξη τέτοιων μεθόδων. Εμποδίζοντας είτε τη διαδικασία της σύζευξης είτε μειώνοντας την αναπαραγωγική ικανότητα των εντόμων, αναπόφευκτα θα υπάρξει και ελάττωση του πληθυσμού. Ωστόσο, μέχρι σήμερα, ελάχιστες είναι οι πληροφορίες για το αναπαραγωγικό σύστημα του δάκου της ελιάς σε γονιδιωματικό και μεταγραφικό επίπεδο.

Στα πλαίσια της παρούσας διατριβής, πραγματοποιήθηκε ανάλυση του αναπαραγωγικού συστήματος με έμφαση στην ταυτοποίηση γονιδίων που εμπλέκονται στη μετα-συζευκτική δραστηριότητα του εντόμου. Συγκεκριμένα, πραγματοποιήθηκε μεταγραφομική ανάλυση των ακόλουθων ιστών: 1. όρχεις και βοηθητικοί αδένες μαζί με εκσπερματική βαλβίδα από παρθένα (7 ημερών) και συζευγμένα αρσενικά έντομα αντίστοιχα και 2. αναπαραγωγικό σύστημα των θηλυκών (εκτός από ωοθήκες) από παρθένα και συζευγμένα θηλυκά έντομα αντίστοιχα. Η σύγκριση του μεταφραφώματος των ιστών μεταξύ παρθένων και συζευγμένων εντόμων ανέδειξε γονίδια που παρουσίασαν διαφορική έκφραση μετά τη σύζευξη. Για ότι αφορά τον ιστό των όρχεων εντοπίστηκαν 107 γονίδια να υπερ-εκφράζονται και 345 να υποεκφράζονται στα συζευγμένα έντομα. Αντίστοιχα, στους ιστούς των βοηθητικών αδένων με εκσπερματική βαλβίδα εντοπίστηκαν 1,608 γονίδια να υπερεκφράζονται και 383 να υποεκφράζονται, ενώ στο θηλυκό αναπαραγωγικό σύστημα 1,705 γονίδια να υπερεκφράζονται και 120 γονίδια να υποεκφράζονται στα συζευγμένα έντομα.

Τα 100 πρώτα υπερεκφραζόμενα γονίδια από κάθε σύγκριση επισημειώθηκαν στο πρόσφατα αλληλουχημένο γονιδίωμα του δάκου της ελιάς και πραγματοποιήθηκε κατηγοριοποίηση τους με βάση τους όρους γονιδιακής οντολογίας (Go annotation). Από τη διαδικασία αυτή εντοπίστηκε μια αύξηση βιολογικών διαδικασιών των που συμμετέχουν σε μεταβολικά, κυτταρικά και καταλυτικά μονοπάτια. Η πλειοψηφία των γονιδίων κωδικοποιεί πρωτεΐνες που συμμετέχουν στην ανοσοαπόκριση, αναστολείς πρωτεασών, εκκριτικές πρωτεΐνες και μουκίνες.

Στη συνέχεια επαληθεύτηκαν τα αποτελέσματα της μεταγραφομικής ανάλυσης μέσω πραγματοποίησης ποσοτικής qRT-PCR σε ομάδα γονιδίων από κάθε ιστό. Για τον ιστό των όρχεων αναλύθηκαν 9 γονίδια από τα οποία επαληθεύτηκε η c58283. с37552. υπερέκφραση των hemolectin, mucin και cation transporter και η υποέκφραση του scribbler. Δεν επαληθεύτηκε η έκφραση για τα c15699, c52071 ενώ το c42528 έδωσε πολύ χαμηλή έκφραση. Για τον ιστό των βοηθητικών αδένων με βαλβίδα επαληθεύτηκε η εκσπερματική υπερέκφραση και των 6 γονιδίων που επιλέχθηκαν (timeless, c52416, c57257, c52655, yellow-g και c53574). Επιπλέον καθορίστηκε το προφίλ έκφρασης των επιλεγμένων γονιδίων από την πρώτη μέρα έκδυσης των ενήλικων εντόμων μέχρι και την έβδομη μέρα ζωής τους (σεξουαλικώς ώριμα έντομα). Αν ένα γονίδιο κωδικοποιεί μια πρωτεΐνη που συμμετέχει στην αναπαραγωγή θα πρέπει να εκφράζεται κατά τη σεξουαλική ωρίμανση του εντόμου ώστε αυτή να είναι διαθέσιμη κατά τη διάρκεια της σύζευξης. Σε συμφωνία με την παραπάνω υπόθεση, τα περισσότερα γονίδια παρουσίασαν μέγιστη έκφραση πριν από την ημέρα που πραγματοποιήθηκε η συλλογή ιστών για τη μεταγραφομική ανάλυση.

Για το θηλυκό αναπαραγωγικό σύστημα αναλυθήκαν 6 γονιδιακοί τόποι. Τα αποτελέσματα της qRT-PCR επιβεβαίωσαν την υπερέκφραση των lingerer, bestrophin-2, ornithine decarboxylase genes ενώ δεν επιβεβαίωσαν την υπερέκφραση των γονιδίων troponin C και glutathione Stransferase epsilon class. Η yolk protein-2 είχε ελάχιστη έκφραση. Για τα επιλεγμένα αυτά γονίδια καθορίστηκαν επιπλέον τα επίπεδα έκφρασής τους μέσω ποσοτικής qRT-PCR σε αναπαραγωγικούς ιστούς παρθένων θηλυκών εντόμων ηλικίας 7 ημερών και σε διάφορες χρονικές στιγμές μετά τη σύζευξη (0, 3, 6, 9, 12, 24 h). Τα προφίλ έκφρασής τους ωστόσο παρουσίασαν διαφοροποιήσεις. Για

παράδειγμα το γονίδιο ornithine decarboxylase antizyme έδειξε αυξημένη έκφραση 24 ώρες μετά τη σύζευξη ενώ τα γονίδια bestrophin-2 και lingerer 12 ώρες μετά.

Επιπλέον πραγματοποιήθηκε λειτουργική ανάλυση με παροδική σίγηση των γονιδίων είτε μέσω της έγχυσης δίκλωνων μορίων RNA στην αιμολέμφο είτε μέσω της τροφής. Παράλληλα καταγράφηκε η φαινοτυπική επίδραση της σίγησης στην αναπαραγωγική δραστηριότητα των εντόμων (καταγραφή σύζευξης και ωαπόθεσης). Για τα γονίδια yellow-g (από τους αρσενικούς βοηθητικούς αδένες) και troponin C (από το κατώτερο θηλυκό αναπαραγωγικό σύστημα) η έγχυση του dsRNA στα έντομα έγινε μέσω μικροενέσεων. Η παροδική σίγηση μέσω χρησιμοποιήθηκε τροφής για την αποσιώπηση του υποδοχέα του συζευκτικού πεπτιδίου (spr) λόγω της γνωστής συμμετοχής του στην αναπαραγωγή άλλων εντόμων.

Για τα γονίδια yellow-g και troponin-C καταγράφηκε 81% και 70% σίγηση αντίστοιχα. Επίσης παρατηρήθηκε μείωση ωαπόθεσης των εντόμων ρυθμού του υποδηλώνοντας την πιθανή συμμετοχή των συγκεκριμένων γονιδίων στην αναπαραγωγή. Το ποσοστό σίγησης του υποδοχέα του συζευκτικού πεπτιδίου (spr) μέσω τροφής καθορίστηκε στο 90% στο αναπαραγωγικό σύστημα και 40% στο κεφάλι του εντόμου. Επίσης παρατηρήθηκε μείωση της ωαπόθεσης των εντόμων σε σύγκριση με τα έντομα ελέγχου.

Συνολικά, μέσω της παρούσας διδακτορικής διατριβής πραγματοποιήθηκε η πρώτη ανάλυση του αναπαραγωγικού συστήματος του δάκου της ελιάς, ταυτοποιώντας γονίδια που θα μπορούσαν να αποτελέσουν στόχους για την ανάπτυξη καινοτόμων μεθόδων καταπολέμησης του εντόμου. Παράλληλα, καταγράφηκε και η πρώτη επιτυχημένη εφαρμογή της παροδικής αποσιώπησης γονιδίων μέσω της τροφής σε ενήλικα έντομα *B. oleae*, δίνοντας μια καινούρια προοπτική για τη χρήση της μεθόδου ως μοριακό εργαλείο.

AKNOWLEDGMENTS

I would like to thank my supervisor, Professor Kostas Mathiopoulos for his advice and encouragement throughout this process. I am really grateful that he accepted me at his laboratory and helped me to develop this project. We may have never danced to the rhythm of "argentine tango" but we danced to the "rhythm of science" and it was as good. He gave me the "push" I needed at the right moments to think and act as a scientist but most importantly to evaluate important ethical values such as responsibility, justice and solidarity.

I would also like to thank the associate Professor Karpouzas Dimitrios, the assistant Professor Sarafidou Theologia and all the other members of the committee for accepting the invitation to be in my committee and spending time to read and evaluate my work.

Όσο μοναχικός κι αν φαίνεται ο δρόμος για την ολοκλήρωση μιας διδακτορικής διατριβής, δε μπορώ να πω παρά ένα μεγάλο ευχαριστώ....

Σε όλα τα άτομα που πέρασαν από το εργαστήριο και συμβιώσαμε έστω και για μικρό χρονικό διάστημα μαζί. Μαζί τους έμαθα να εκτιμώ και να σέβομαι τη λέξη «συνεργασία». Ιδιαίτερο ευχαριστώ στην Μαρία Αδαμοπούλου, την Στέλλα Γαλατίδου και την Άννα Αγγελοπούλου για την τέλεια συνεργασία που είχαμε στις πιο δύσκολες χρονικά περιόδους που πέρασα στο διδακτορικό. Η πρακτική αλλά και ψυχολογική τους βοήθεια ήταν πολύτιμη.

Στις «συντρόφισσες» μου στο εργαστήριο, την δρ Σαγρή Έφη (η οποία είναι τώρα μια υπέροχη μανούλα) και την υποψήφια διδάκτορα Κοσκινιώτη Γιώτα (την «επαναστάτρια» του εργαστηρίου) για την αλληλοστήριξη και τις ατελείωτες ώρες γέλιου και συζητήσεων, εντός και εκτός εργαστηρίου. Χωρίς εσάς το «εργαστήριο» για μένα θα ήταν απλά ένας χώρος εργασίας, εσείς το κάνατε κάτι πολύ περισσότερο και ελπίζω η επαφή μας να συνεχιστεί, ανεξαρτήτου διαφορετικής διαδρομής στη ζωή.

Στην δρ Τσουμάνη Κωνσταντίνα, η οποία είχα την τύχη να είναι από τα πρώτα άτομα που γνώρισα στα πλάισια του ερευνητικού χώρου και μπορώ να πω ότι έβαλε κι αυτή τα πρώτα «λιθαράκια» για να αγαπήσω την έρευνα. Χαίρομαι να τη βλέπω να εξελίσσεται και να προοδεύει στον ακαδημαικό τομέα που τόσο αγαπά και υπηρετά με ζήλο και επαγγελματισμό. Η θετικότητά της και η ικανότητά της να αντιμετωπίζει οποιοδήποτε εμπόδιο ως ένα μέσο για να εξελιχθεί, αποτελεί πηγή έμπνευσης. Φυσικά, δε θα μπορούσα να μην αναφερθώ στα υπέροχα μας ταξίδια που παρόλο που γίνονταν στα πλαίσια εργαστηριακών υποχρεώσεων, κατέληγαν πάντα να είναι μια «ζηλευτή» ιστορία για τους εργαστηριακούς και μη φίλους μας. Ευχαριστώ για την ένεση «θετικής ενέργειας» στην τελική ευθεία.

Φυσικά, δε θα μπορούσα να παραδώσω αυτή τη διατριβή χωρίς να ευχαριστήσω τα άτομα που με στήριξαν και πίστεψαν σε μένα, κάποιες φορές, περισσότερο από όσο πίστευα εγώ στον εαυτό μου. Τους γονείς μου, Γιαννάκη και Δέσποινα, για όλη την αγάπη και τις αξίες που μου έδωσαν. Ο αλληλοσεβασμός τους και η δύναμή τους στην αντιμετώπιση όλων των δυσκολιών της ζωής ως «ένα σώμα» είναι υποδείγμα ζωής και αγάπης για μένα. Φυσικά, τους «μεταλλάδες» της οικογένειας, την αδελφή μου Ραφαέλα και τον σύντροφό της Σπύρο, για την στήριξη και την αγάπη τους. Νιώθω τυχερή που τους αποκαλώ όλους «οικογένεια» και ακόμη πιο τυχερή που σύντομα θα αποκτήσουμε ακόμη ένα μέλος, την ανηψούλα μου. Μπορεί να μην έχει γεννηθεί ακόμη, αλλά ήδη η χαρά είναι ζωγραφισμένη στα πρόσωπα όλων μας. Το λιγότερο που θα μπορούσα να κάνω είναι να της αφιερώσω αυτή τη διατριβή. Ελπίζω να σας κάνω συνέχεια όλους περήφανους.

Για το τέλος, κράτησα δυο άτομα για τα οποία τα λόγια είναι λίγα για να εκφράσω την χαρά που μπορώ να τους αποκαλώ κι αυτούς «οικογένεια». Τον Γιώργο, τον «τζεπέτο» της καρδιάς μου, ο οποίος αποτέλεσε ένα από τους παράγοντες που αυτή η διατριβή έφτασε στο τέλος της και κυρίως που η συγγραφέας της διατριβής αυτής είναι χαρούμενη και ευτυχισμένη. Το ευχαριστώ είναι λίγο για όλα αυτά που μου πρόσφερε, ελπίζω μόνο, η ζωή να μου δώσει την ευκαιρία να του τα επιστρέψω όλα και με το παραπάνω.

Κλείνω με το άτομο που πραγματικά με «γαλούχησε» στον τομέα της έρευνας, την δρ Κακάνη Εύη. Ένα αξιοθαύμαστο άτομο, το οποίο ήταν πάντα πρόθυμο να με βοηθήσει και να με καθοδηγήσει από τα πρώτα μου βήματα ως προ- πτυχιακή φοιτήτρια. Η οξυδέρκεια της και η ερευνητική της ικανότητα είναι προσόντα που θαύμασα από την πρώτη στιγμή και η επαγγελματική της πορεία με κάνει να νιώθω μόνο περηφάνια. Πιο πολύ, όμως, χαίρομαι που η σχέση μας ξεπέρασε τα εργαστηριακά δρώμενα. Μαζί καταφέραμε να μας ενώνουν πολύ περισσότερα πράγματα στη ζωή, καθιστώντας την σήμερα, μια από τους πιο κοντινούς μου ανθρώπους. Περιμένω σύντομα να ανταμώσουμε και πάλι.

Είναι όμορφο να κλείνει αυτός ο κύκλος.... Ένας κύκλος γεμάτο ωραίες αναμνήσεις όπου ακόμη και οι πιο δύσκολες στιγμές να φαίνονται μικρές, μπροστά στο τέλος. Όμως, κάθε τέλος είναι και μια καινούρια αρχή γι΄ αυτό και θα κλείσω με μια ευχή: ότι και να έρθει στη ζωή να είναι αληθινό, ουσιαστικό, έντονο, γεμάτο όμορφα συναισθήματα και να είμαστε τυχεροί να έχουμε αληθινούς ανθρώπους δίπλα μας να τα μοιραζόμαστε.

> Γρηγορίου Μαρία-Ελένη Λάρισα, 2018

Contents

2.1.2 Egg collection	35
2.1.3 Larval rearing	35
2.1.4 Pupal collection	35
2.2 Nucleic acid isolation	35
2.2.1 DNA isolation	35
2.2.2 RNA isolation	36
2.2.3 Plasmid isolation	38
2.3. Phenol: chloroform extraction	39
2.4 Ethanol precipitation	39
2.5 Cloning into Plasmid Vector	40
2.5.1 Preparation of the cloning vector	40
2.5.1.1 Digestion of the cloning vector	41
2.5.1.2 Dephosphorylation of the digested cloning vector	41
2.5.1.3 Addition of deoxythymidine (T) residues to the vector	42
2.5.2 Ligation	42
2.5.3 Preparation and transformation of competent E. coli	43
2.5.3.1 Electro-competent cells	43
2.5.3.2 Chemically competent cells	44
2.5.4 Screening and identification of recombinant clone	45
2.5.4.1 Blue-white screening	45
2.5.4.2 Colony PCR	46
2.6 Polymerase Chain Reaction (PCR)	46
2.6.1 Standard PCR reaction	46
2.6.2 Real time PCR	47
2.6.3 Reverse transcription	47
2.7 In vitro transcription	48
2.8 DNase treatment	49
2.9 Gel electrophoresis	49
2.9.1 Preparation of the gel	50
2.9.2 Run the gel	50
2.9.3 Gel extraction	51
2.10 Microinjection technique	51
2.11 Feeding assay	52
2.12 Next-generation sequencing	53
2.12.1 Illumina library preparation and sequencing	53

2.12.2 Ion proton library preparation and sequencing	54
2. 13 Bioinformatics	55
2.13.1 BLAST	55
2.13.2 BLAST2GO	55
2.13.3. GraphPad Prism	55
2.13.4 E-RNAi3	55
2.14 Peptidomic analysis	55
2.14.1 Sample Preparation for LC/MS	55
2.14.2 Mass Spectrometry analysis	56
2.15 Fertility assays	56
2.16 Adult survival experiment	56
3.Results	61
3.1 Transcriptome sequencing analysis of the reproductive system	61
3.1.1 Differentially expressed genes	64
3.2 Genomic analysis of the reproductive genes	67
3.3 Expression analysis of selected genes	69
3.3.1 Validation of the RNAseq and expression profile of selected loci	69
3.3.1.1 Testes	69
3.3.1.2 Male accessory glands with ejaculatory bulb	70
3.3.1.3 Female lower reproductive tract	73
3.4 Gene silencing through RNAi	75
3.4.1 Gene silencing through injections	75
3.4.1.1 Silencing of <i>yellow-g</i> gene	76
3.4.1.2 Silencing of <i>troponin C</i> gene	79
3.4.2 RNAi silencing through feeding	81
3.4.2.1 Cloning of partial CDS of the potential B. oleae sex peptide receptor (spr) gene	81
3.4.2.2 Ingestion of dsRNA-expressing bacteria induced RNAi	83
3.4.2.3 Expression profile of the Bo_SPR	83
3.4.2.4 RNAi silencing of the Bo_SPR	85
3.4.2.5 Phenotype of the RNAi silencing	85
3.5 Validation of olfactory differential expression in reproductive system	86
3.6 Peptidomics	89
4. Discussion	96
4.1 Transcriptomic analysis of reproductive tissues	96
4.2 Transcriptional Profiles of Mating-Responsive Genes	

4.2.1 Testes	
4.2.2 Male accessory glands with ejaculatory bulb	
4.3.2.1 Expression profile of selected genes in males	
4.2.3 Female lower reproductive tract	
4.3.3.1 Expression profile of selected genes in females	
4.3 Functional analysis of mating regulated genes through RNAi	
4.3.1 RNAi silencing through injection	
4.3.2 Gene silencing through dsRNA feeding	
4.4 Concluding remarks	
4.4.1 The reproductive system of <i>B. oleae</i>	
4.4.2. Transient silencing of selected reproductive genes	
4.4.3. Implementation in control methods	
5. References	
6.Supplementary	
6.1 Summary of the results from the Nanodrop and Bioanalyser for Torrent system	
6.2 The results from the RNAseq analysis of the testes tissue (Table	6.1)146
6.3 The results from the RNAseq analysis of the male accessory glar6.2)	5 5
6.4 The results from the RNAseq analysis of the lower female reprod	luctive tract tissue (Table 6.3168
6.5 The annotated genes from the transcriptomic analysis of testes	(Table 6.4)184
6.6 The annotated list of genes from the transcriptomic analysis of r bulb (Table 6.5)	
6.7 The annotated list of genes from the transcriptomic analysis of f 6.6)	
6.8 Housekeeping genes	
7. Publications	

List of Tables, Charts and Figures

Chart 1.2: Per capita Olive oil consumption in EU countries (kg). Greece remains the first country of olive oil consumption for the years 2012/2013 and 2013/2014......4

Figure 1.1: Bronze relief presenting Poseidon and Athena with their gifts to Ancient Greeks. This museum piece is exhibited at the National museum of Renaissance in Paris, France.......4

Figure 1.3: Co-distribution of olive and olive fly. The distribution of non-invasive olive lineages is shaded. Light grey: Oleae europea subsp. europea; Mid grey: *O. europea* subsp. cuspidata, tropical African group; Dark grey: *O. europea* subsp. cuspidata, North-Eastern African/Asian group (based on Besnard et al., 2007a). Circles represent olive fly genomes sampled, color coded according to their genetic group (see text). Blue: Pakistani group; Green: African Group; Red: Central/Western Mediterranean group; Orange: Eastern Mediterranean group (Nardi et al.,2010).......6

Figure 1.4: The life cycle of *B. oleae* consists of four stages: a) egg, b) larva, c) pupa, d) adult insect (male and female)7

Figure 1.6: Diagram of the Sterile Insect Technique (SIT) method (New Scientist ©)....11

Figure 1.7: Diagrammatic representation of the OX3097 transposon. OX3097 comprises a fluorescent marker (hr5-IE1-DsRed2), and the female specific tTAV expression system (tetO-Dmhsp70 minimal promoter-Cctra: tTAV Sexspecific alternative splicing of the Cctra intron leads to production of tTAV and the initiation of a lethal tTAV positive-feedback loop in females only (Thomas et al., 2012)......12

Figure 1.8: Naturally occurring and engineered CRISPR-Cas systems. (a) Naturally occurring CRISPR systems incorporate foreign DNA sequences into CRISPR arrays, which then produce crRNAs bearing "protospacer" regions that are complementary to the foreign DNA site. crRNAs hybridize to tracrRNAs (also encoded by the CRISPR system) and this pair of RNAs can associate with the Cas9 nuclease. crRNA-tracrRNA: Cas9 complexes recognize and cleave foreign DNAs bearing the protospacer sequences. (b) The most widely used engineered CRISPR-Cas system utilizes a fusion between a crRNA and part of the tracrRNA sequence. This single gRNA

Figure 1.10: Male reproductive system of *B. oleae*......21

Table 3.2: Assembly statistics of the Illuminaand Ion proton sequencing.......62

Table 3.4: List of the analyzed for the
validation of the differential expressed genes
from the RNAseq result. The name used is
based on their homologue in *D. melanogaster*.Genes that have no hits are presented with

Table 3.5: List of the genes analyzed from the tissue of male accessory glands with the ejaculatory bulb. The name used is based on their homologue in D. melanogaster. Genes that have no hits are presented with their transcript name. Positive logFC value presents overexpression of the gene in mated flies while negative logFC value presents overexpression of the gene in virgin flies. The primers used for the qRT-PCR experiments and their product sizes are also shown......71

Figure 3.1: Electrophoresis Run Summary of the samples for RNAseq......62

Figure 3.3: Multidimensional plots for all the samples sequenced by Ion Proton. Colored circles indicate groups of biological replicates. Yellow for mated female flies and red for male flies. A. The samples V FEMALE 1 and V MALE 2 are grouped with the mated flies and not with their biological replicates V FEMALE 2 and V MALE 1, respectively. B. Multidimensional plot analysis after omission of the V_FEMALE_1 and V_MALE_2 samples. The different groups are better distinguished......64

Figure 3.5: Total genes up- and down-regulated in the reproductive tissues of mated *B. oleae* insects......65

Figure 3.7: Validation of the expression difference between mated and virgin insects.

Mean values ± standard error of data from three biological replicates is shown......70

Figure 3.13: Electrophoresis of the yellow dsRNA......77

Figure 3.15: The mean daily egg count for the females mated with males injected with ds yellow (yellow line) and males injected with ds-GFP (grey line). The * indicates statistical significant difference for p value < 0.05.......78

Figure 3.20: The blue line shows the oviposition rate of the females I injected with ds- troponin C and the grey line shows the oviposition of the control group.......81

Figure 3.23: PCR amplification of sex peptide receptor (SPR) of *Bactrocera oleae.....*83

Figure 3.24: Pigmentation of the olive fly midgut. The abdomen of the fly turned blue (A), confirming the ingestion of bacteria. The dissected midgut is shown in (B)......83

Figure 3.25: Expression profile of the *spr* gene in the head (A) and the reproductive tract of female *B. oleae* (B)......84

Figure 3.27: Oviposition rate of ds-GFP and ds-SPR fed flies daily. The * indicates statistical significance for p<0.05, ** for p<0.01, *** for p<0.001, **** for p<0.001......85

Figure 3.29: Functional annotation of differentially expressed olfactory genes in olive fly reproductive tissues. At the left part of the figure, the expression levels of the differentially expressed olfactory genes (Log2, fold change) are shown, as resulted from the RNA-seq analysis. The up-regulated genes in males are depicted in blue bars and the upregulated genes in females in red bars. At the right part of the figure, the Gene Ontology (GO) classification of the same genes for the ontologies: Biological Process (BP), Molecular Function (MF) and Interpro (IP) protein domains is listed. Gene names are based on

the nomenclature of the Drosophila melanogaster homologues......90

Figure 3.30: Relative expression profiles of differentially expressed olfactory genes in the olive fly reproduction system. Expression profiles of five olfactory genes [odorant binding proteins obp83a, obp19a, obp8a, chemosensory protein, osd, and odorant receptor 10, or10] as determined by qRT-PCR in three different tissues: Testes (a), MAGs (b) and FAGs/spermatheca (c) before (BM) and after (AM) mating. Standard error of the mean of five biological replicates is depicted in bars. No significant difference (for P < 0.05) was detected. Rpl19 and 14-3-3z genes were used as a reference in MAGs and testes while actin3 and a-tubulin in FAGs/

1.INTRODUCTION

1.Introduction

1.1 The olive tree

The olive tree, scientifically known as *"Oleae europea"*, is an evergreen tree and belongs to the family *Oleaceae*. The indigenous olive tree (wild olive tree) first appeared in the eastern Mediterranean and its cultivation started more than 7000 years ago in the Mediterranean basin. Nowadays, olive trees can be found all over the world (Fares et al., 2011).

Over the centuries, the olive tree has a central role in many aspects of people's everyday life and habits. The fruit, the oil and the branches of olives trees have been used in trade, nourished generation after generation helping people grow healthily, providing longevity and protection from several illnesses (Trichopoulou and Dilis, 2007).

Today, the olive tree remains one of the most important crops, especially in the Mediterranean countries. More than eight million hectares of olive trees are cultivated worldwide among which the Mediterranean basin presents around 98% of them (Peralbo-Molina and de Castro, 2013) (Chart 1.1). Led

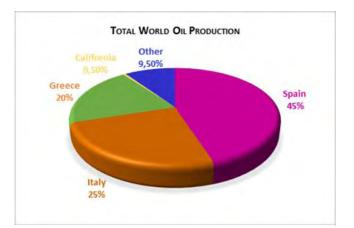


Chart 1.1: Percentage production of the total world olive oil production. First country is Spain 45%, followed by Italy 25%, Greece 20%, California 0,05% and Other countries 9,5%. Because of its olive production California is thought to be the Mediterranean of the United States.

by Spain producing 5,276,899 metric tons of olive oil annually, the world's top olive producers form а ring around the Mediterranean Sea. Italy is the second largest olive producing country with 3,220,674 metric tons annually followed by Greece with 2,232,412 metric tons of olive production annually. Other countries that cultivate olive trees ranked according to their production of olive oil are Tunisia, Turkey, Syria, Morocco, Portugal, Algeria, Argentina, Jordan, Lebanon, Libya, Israel and the United States ((Food and Agriculture Organization (FAO)).

Based on the International Olive oil council (IOC), the world olive oil production for the year 2016/2017 is assessed at 2,539,000 tonnes, down 20% compared with the previous crop year. Fortunately, this is not the case for current years' production. According to the IOC Statistics, world olive oil production in 2017/2018 is expected to increase by 14% to around 2,894,000 tones (IOC newsletter November 2017).

1.1.1 The olive tree and the Greeks

To Greeks, the olive tree is a blessed, valuable gift of nature, connected with their history and culture. In Greek mythology, the olive tree was the sacred tree of the city of Athens. During the dispute of the Gods as to who will be the patron of Athens, people had to choose between the gifts from two Olympic Gods: the olive tree from Athena, the Goddess of wisdom and the horse from Poseidon, the God of the sea. Ancient Greeks considered the olive tree more valuable than the horse, chose Athena and renamed their city to honor the goddess (Figure 1.1).

Figure 1.1: Bronze relief presenting Poseidon and Athena with their gifts to Ancient Greeks. This museum piece is exhibited at the National museum of Renaissance in Paris, France.

This gift to the people of Athens may be a myth but even in modern times, the olive tree has a relation to Greek culture and habits. To honor the olive and its symbolism,

in 2017, the 15th of November was called "The World Olive Day in Crete" recognized by the International Olive Council.

Olive trees fruit and extract, olives and olive oil respectively, are cornerstones of the Mediterranean diet with numerous proven health benefits (Faig et al., 2011; Servili et al., 2004). Nearly half of greek olive oil production is exported to other countries, while the rest

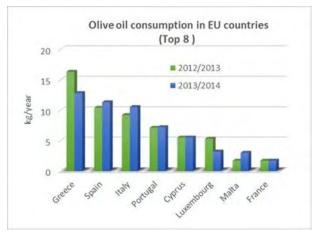


Chart 1.2: Per capita Olive oil consumption in EU countries (kg). Greece remains the first country of olive oil consumption for the years 2012/2013 and 2013/2014.

is domestically used, mainly for cooking purposes. Indeed, Greeks consume more olive oil per capita than anyone else in the world. Chart 1.2 represents the top eight countries of the olive oil consumption in Europe (EU) for the years 2012/2013, 2013/ 2014.

In respect to olive cultivation and according to the Hellenic Statistical Authority 11.111,3 hectares of the 32.825,2 hectares of the round up cultivated land in 2015 of Greece was devoted to olive growing. Peloponnese produces 65% of the Greek olive production, followed by Crete and the Aegean and Ionian Islands. Greece is the world's top producer of black olives and has more varieties of olives than any other country. Moreover, Greece is famous not only for the olives varieties but for the quality of the olive oil, too. About 80% of olive oil is extra virgin.

1.1.2 Olive tree pests and diseases

As with any other part of the environment, olive trees have pests and diseases. The creatures that we call pests and the organisms that cause disease only become "pest and diseases" when their activities start to damage crops and affect yields (Stoll 1986).

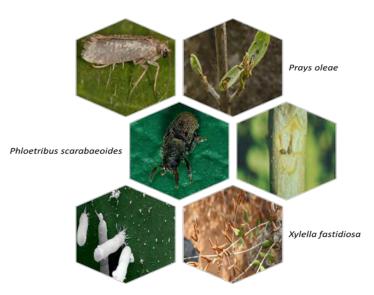


Figure 1.2: Pests and diseases of olive trees. On the left side are pictures of the adults *Prays oleae*, *Phloetribus scarabaecoides* and the bacterium *Xvlella fastidiosa*. On the right side are pictures of infested olive trees.

A well-known olive tree pest is *Prays* oleae. *Prays* oleae is a moth with three generations per year. From each generation, larvae develop in a separate body of the olive tree. The females lay the eggs on the flower buds and the first generation larvae feed on the buds and flowers. The second generation larvae live and bore into the kernel of olive fruit and the third generation larvae make mines in the olive leaves (Figure 1.2). *Prays* oleae can reduce the olive production by 49 to 63% (Ramos et al., 1998; Patanita et al., 2004; Ait Mansour et al., 2017).

Another olive pest is Phloetribus scarabaeoides, a beetle that has 2-4 Phloetribus generations per year. scarabaeoides hosts are Oleae europea and other Oleaceae, like Fraxinus, Ligustrum, Syringa, and Phyllirea. Adult females bore through the bark of the tree and excavate a transverse tunnel on either side of the entry point (Figure 1.2). Inside the branch, each female can lay up to 60 eggs. As larvae hatch, they bore up or down from the entrance tunnel underneath the bark. This feeding causes partial to complete girdling of the branch; thereby structurally weakening it as well as damaging vasculature. Larvae pupate inside the feeding galleries (Ruiz et al., 1993).

A newly introduced in Europe pathogen that causes the Olive Quick Decline Syndrome (OQDS) disease is *Xylella fastidiosa*. Olive Quick Decline Syndrome causes withering and desiccation (extreme dryness) of terminal shoots, which then expands to the rest of the canopy, causing the tree to collapse and die (Figure 1.2). In Europe, *Xylella fastidiosa* was first spotted in Puglia, Italy, in 2013, while in America *Xylella* is endemic and has a broad range of vectors and host plants (Baldi et al., 2017).

However, the most important insect pest of the olive tree is the olive fruit fly, *B. oleae*.

1.2 Olive fruit fly

1.2.1 The origins of fruit fly

The olive fruit fly, *B. oleae*, belongs to the *Tephritidae* family and the genus Bactrocera (detailed scientific classification is shown in Table 1.1).

The family *Tephritidae* constitutes a group of agricultural pests of worldwide

Scientific classification	
Kingdom	Animalia
Phylum	Arthropoda
Class	Insecta
Order	Diptera
Family	Tephritidae
Genus	Bactrocera
Subgenus	Daculus
Species	Bactrocera oleae

Table 1.1: Scientific classification of *B. oleae*, the major insect pest of olive trees.

importance that attack a wide range of fruits and vegetables (White and Elson-Harris, 1992). The genus Bactrocera comprises 651 described species. It is the most economically significant fruit fly genus with at least 50 species considered to be important pests including *B. oleae* (Vargas et al., 2015). The majority of these flies are highly polyphagous like *B. dorsalis* (Hendel), *B. tryoni* (Froggatt) and *B. zonata* (Saunders). In contrast, the olive fly is strictly monophagous, closely associated with the olive tree. Therefore, distribution of the fly is linked to the olive tree cultivation.

The olive fly is mainly spread in the Mediterranean basin. However, there are reports of the fly from various parts of the world, including South and Central Africa, Near and the Middle East, California and Central America (Augustinos et al., 2002; Rice et al., 2003; Nardi et al., 2005).

Analyses of natural olive fly populations support its subdivision into three groups: Pakistan, Africa and Mediterranean plus America (Nardi et al., 2005). Based on genetic data, Pakistani *B. oleae* may constitute a separate evolutionary entity. With regard to Africa, it has been suggested that sub-Saharan

Africa is the local center of diversification (Nardi Within the et al., 2010). Mediterranean population, three geographically distinct genetic groups have been described: eastern (Cypriot/Israeli), central (Greek/Italian) and western (Iberian) groups by Augustinos et al., (2005) and Zygourides et al., (2009), albeit with very high overall gene flow. Similarly, Nardi et al., (2010) described the occurrence of at least two groups, with a third weakly supported subdivision, with medium levels of gene flow (Figure 1.3).

1.2.2 Biological cycle and morphology

B. oleae is a holometabolous insect, undergoing complete metamorphosis. The life cycle of the insect includes four stages: egg, larva, pupa, and adult (Figure 1.4).

At the first stage, the egg is small (around 0.7 to 1.2 mm long), white and elongated (Figure 1.4a).

At the second stage, the larva has a conical-cylindrical and narrow front (Figure 1.4b). The larva undergoes three

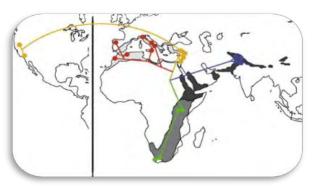


Figure 1.3: Co-distribution of olive and olive fly. The distribution of non-invasive olive lineages is shaded. Light grey: Oleae europea subsp. europea; Mid grey: *O. europea* subsp. cuspidata, tropical African group; Dark grey: *O. europea* subsp. cuspidata, North-Eastern African/Asian group (based on Besnard et al., 2007a). Circles represent olive fly genomes sampled, color coded according to their genetic group (see text). Blue: Pakistani group; Green: African Group; Red: Central/Western Mediterranean group; Orange: Eastern Mediterranean group (Nardi et al., 2010)

developmental stages (first, second and third instar stage). The different shapes of the frontal stigmas allow determination of the larvae of the second and third stages. The mature larva (third stage) is 7-8mm long, white-yellowish in color, elongated and subconical. In all stages, larva lacks a

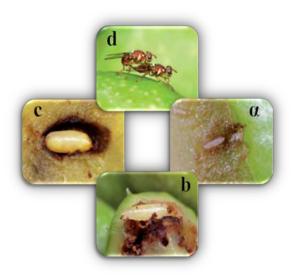


Figure 1.4: The life cycle of *B. oleae* consists of four stages: a) egg, b) larva, c) pupa, d) adult insect (male and female)

subhypostomal skeleton, is wingless and its form and habits are suited for growth and development rather than reproduction.

The pupal stage takes place inside the puparium, an elliptical shell formed by the last exuvial transformation of the larva. Depending on the age of the pupa the color of the puparium varies from creamy-white to yellow-brown (Figure 1.4c).

At the fourth stage, the adult insect is about 5mm long. It has wings that are transparent, with a brown spot at the tip of each wing. The thorax and abdomen of the adult fly are mostly dark-brown to black, with yellow-brown markings and short, silvery hairs (Weems and Nation, 1999). The head is blonde-yellow with two black spots under the small pair of antennas. (Figure 1.4d and 1.5). The visible sex diversity is based on the serrated ovipositor that is used by the females to pierce the skin of fruits during oviposition (Figure 1.5) (Tzanakakis, 2005).

B. oleae is a multivoltine species based on different environmental conditions, such as climatic factors and host availability (Yokoyama et al., 2012). In Greece, there have been reports of 3-4 generations per year (Kapatos and Fletcher, 1984; Tzanakakis, 1989). In other areas with abundant host plants, like California, the olive fruit fly may produce up to six generations per year (Rice, 2000).

In the Mediterranean basin, the first generation of the insect appears at the end of May (end of spring). At this point, female insects oviposit on the "leftover" olives from the previous year or wait until the new olive

Figure 1.5: The female (left) and the male (right) *B. oleae* insects. The visible ovipositor of the female insect is used to lay eggs on the olive fruit.

fruit is ideal for the development of the larva (pit hardening).

The second generation of the insect appears in the summer (June-July). Given suitable seasonal temperatures (25°C), the olive fly can complete its biological cycle within 30 days (Tzanakakis, 1989). After oviposition, the first instar larvae enclose in 3-7 days. The larval stage lasts 10 to 15 days while the pupal stage lasts 8-10 days. In summer till mid-fall, eggs complete their development until the adult stage in the olive fruit; while later in fall, larvae leave the fruit and pupate in the soil (Tsitsipis and Kontos 1983).

Factors that are critical for olive infestation are the ideal temperature (20-25°C), high humidity (60-80%) (Tsitsipis 1980; Fletcher and Kapatos 1983) and the type of olive cultivar. Different cultivars show different susceptibilities to the insect, with some cultivars having systematically low infestation levels, while others, within the same agro-ecosystem, are usually more heavily affected (Latinovic et al., 2013). Several physical and chemical factors, such as the size and the color of the fruit (Burrack et al., 2008; Genc, 2016), and the fatty acid composition (Gonçalves et al., 2012), respectively, interact for this olive fly/olive tree relation.

1.2.3 Impact on Crop

The olive fruit flies reduce the olive production in several ways. The female olive flies lay eggs into the olive fruits leaving an oviposition "sting" on the fruit surface. This may easily become a point of entry of secondary bacteria and fungi, leading to the appearance and development of other olives diseases (Latinovic et al., 2013; Malheiro et al., 2015).

As the larvae consume the olive pulp, they cause reduction of oil yield because of the increase of olive oil acidity and peroxide value (Pereira et al., 2004). Olive oil quality decreases as levels of acid increase (Gomez et al., 2008). Moreover, when the immature fruit is stung it may be aborted prior to harvest (Tzanakakis, 2006).

From all of the above, the olive production can be decreased by 80% in areas of the world where the olive fruit fly is established and not controlled. In Greece, the damage is estimated to 40-50% of the olive crop every year (Mazomenos et al., 2002; Haniotakis, 2005).

The damage of the olive fly therefore has a serious economic impact. Olives affected by the fly lose their market value for table consumption and oil production as the economic thresholds in table olives are extremely low (less than 1%) (Rice, 2000). The economic thresholds is the density of a pest at which a control treatment will provide an economic return. The economic impact of the damage can be as high as 800 million dollars per year worldwide (Montiel Bueno and Jones 2002).

1.3 Management of the olive fly

As olive fly is intimately linked to olive tree cultivation, countries producing olive oil developed methods to minimize the impact of the insect's infestation. A broad-based approach that integrates practices for the control of pests is called Integrated Pest Management or IPM.

IPM considers all available pest control techniques and other measures that discourage the development of pest populations while minimizing the risks to human health and the environment (Food and Agriculture Organization (FAO)). IPM requires competences in three areas: prevention, monitoring, and intervention.

Prevention regards the selection of the appropriate variety and location for the crop (depending on the climate, soil, and topography of the field). However, regarding olive trees, prevention is limited as they are evergreen trees with no limitation in the locations. For this reason, more attention is given to monitoring and intervention.

Monitoring refers to the observation of the field in order to locate, identify and rank the severity of pest infestation. The goal is to determine when and what action should be taken to maximize crop production and quality and minimize the loss of the production due to pests and diseases. This way of monitoring decreases the possibility of using the wrong pesticide, or a pesticide that is not really needed (Pontikakos et al., 2012).

Tools like pheromone traps, diagnostics, and forecasting systems can assist with such monitoring in a timely and accurate way. Traps used for monitoring olive fly populations are the yellow sticky traps or McPhail-type trap glass or plastic (Haniotakis, 2005). Yellow sticky traps are baited with spirochetal sex-pheromone lures (attractive to male flies) or ammonium carbonate. ammonium bicarbonate, or the diammonium phosphate (attractive to both sexes). McPhailtype trap glass or plastic are baited with torula yeast lures. Torula yeast lures attract more female than male olive flies (McPhail, 1939).

Intervention aims at the reduction of the economic damage of a pest to acceptable levels by decreasing pest population and involves biological, chemical and genetic control methods.

1.3.1 Biological control

Biological control of the olive fly is based on natural enemies of the insect such as ectoparasitoids. A well-known highly polyphagous ectoparasitoid is *Eupelmus urozonus DALM* which attacks late instar larvae and pupae (Bigler et al., 1986; Kapatos and Fletcher, 1986). A number of pteromalids have also been associated with olive fruit fly like *Cyrtoptyx latipes* which attacks the larval stage of the olive fruit fly (Silvestri, 1914).

However, biological control is efficient when crops are grown in controlled environments like greenhouses and plastic tunnels or in the open field conditions at very low pest intensities. For this reason, other interventions are often required such as chemical control.

1.3.2 Chemical control

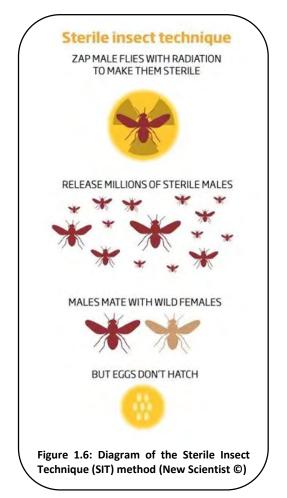
Chemical control involves the use of insecticides. Insecticides used for olive fly control are organophosphate (OP) like dimethoate and fenthion (Skouras et al., 2007), pyrethroids like lamba-cyhalothrin, alphacypermethrin (Margaritopoulos et al., 2008) and the naturalyte spinosad (Thomas et al., 2005).

Traditionally, control of the olive fly is based on the cover or bait sprays with chemical insecticides. The main difference between cover and bait spray is their application; cover sprays should cover all the trees while bait sprays should be applied at a rate of 1 to 3 fluid ounces per tree in a coarse spray or stream to a small portion of foliage. With bait spray there is no need to cover the whole tree, because the adult flies are attracted, feed on it, and die. In this way, the reproductive activity is interrupted minimizing the infestation of the trees (Tzanakakis, 1989).

The extensive use of insecticides, however, is posing a serious threat to the environment. Chemical insecticides are not species-specific (Aktar et al., 2009) having a direct impact on a human with potentially serious health effects for the high-risk group in each country (WHO, 1990). The world-wide deaths and chronic diseases due to pesticide poisoning number about 1 million per year (Environews Forum, 1999). Moreover, they impose a serious negative impact on the environment leading to the destruction of biodiversity. Many birds, aquatic organisms, and animals are under the threat of harmful pesticides for their survival (Denholm and Rowland 1992).

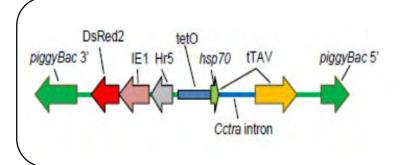
More importantly, though, the intensive application of insecticides over many years has led to the development and selection of insecticide resistance. Insecticide resistance can occur if a small proportion of the insect population is able to survive treatment with insecticide. These rare individuals can reproduce and pass on their resistance to the offspring. If an insecticide with the same mode of action is repeatedly used, then an even greater proportion will survive (Vontas et al., 2011) leading to decreased effectiveness of the control method. Insecticide resistance of the olive fly has been detected to organophosphates (Skouras et al., 2007) and pyrethroids (Margaritopoulos et al., 2008).

The mechanism of resistance to organophosphates (OPs) in B. oleae has been extensively studied and has been attributed to target site mutations in the acetylcholinesterase gene (AChE). Two of these are point mutations that reside in the catalytic gorge of the enzyme (Vontas et al., 2002) while the third one is a small deletion located in the carboxyl-terminal of the enzyme (Kakani et al., 2008; Kakani et al. 2010). The mechanism for resistance in pyrethroids implicates enhanced MFO activities in association with α cypermethrin resistance (Margaritopoulos et al., 2008). For spinosad resistance, whole transcriptome analysis of spinosad susceptible and resistant olive flies indicated that several immune system loci, as well as elevated energy requirements of the resistant flies, are implicated in the detoxification process (Sagri et al., 2014).


1.3.3 Genetic control

In 1964, the WHO defined genetic control as "the use of any condition or treatment that can reduce the reproductive potential of noxious forms (of the insect) by altering or replacing the hereditary material" (World Health organization, 1964). This definition includes two types of genetic control methods: 1. ones aiming at "population suppression", reducing the numerical size of the pest population and 2. the control methods that aim at "population replacement" that is to change the pest population to a less harmful form.

The first genetic control technique that has been used widely as a pest control method is the Sterile Insect Technique or SIT. The principles of SIT have been the base for the development of different other methods such as Release of Insects carrying a Dominant-Lethal" (RIDL) and Incompatible Insect Technique (IIT).


1.3.3.1 Sterile Insect Technique (SIT)

Sterile Insect Technique or SIT is an alternative, environmentally friendly and

species-specific method of pest control that aims at the suppression of insect population. SIT is based on the mass rearing of a targetspecies, the sterilization of these mass-reared insects and the release of sterilized, preferably male-only insects in specific areas (Figure 1.6). The sterilization of the male insects is based on irradiation. Competition for mating between wild and sterile males results in a decrease in the number of fertile matings and a decline in the overall population size (Knipling et al., 1955). In theory, if continued releases are performed over several consecutive generations, the population will progressively be reduced and, eventually, a total eradication could occur. The sterile insect technique was first applied on an areawide basis to eradicate the New World screwworm Cochliomyia hominivorax in the USA, Mexico, and Central America, after World War II (Knipling, 1955). Since then, it has been successfully implemented against several different insect pests including Tephritidae: B. curcubitae (Iwahasi 1977), B. tryoni (Fisher 1994) and C. capitata (Hendricks et al., 1983).

For B. oleae, there were two SIT unsuccessful attempts. The first one was in the early '70s where 150,000 insects (both sexes) were sterilized by gamma-irradiation and released in specific areas. However, at the end of the season olives were as highly infested as in the two nearby control plantations. The second attempt was in the late 70's in a small Greek island but with the same results (Economopoulos 1972: Economopoulos et al. 1977; Economopoulos and Zervas., 1982). After these unsuccessful efforts, the SIT program for olive fly was abandoned.

There were specific problems that led to the failure of the projects. First, the nonstandardized procedure for the mass rearing of the insects (Economopoulos and Zervas., 1982; Estes et al., 2011). B. oleae could be reared on an artificial diet under laboratory conditions, however, its large-scale mass rearing, needed for SIT, was difficult to be accomplished. The problem was based on the larval stage as *B. oleae* larvae are very sensitive to dietary changes such as pH and preservatives (Tzanakakis, 1989; Cohen, 2003; Lance and McInnis, 2005). Second, the different mating times of the released and wild population. Specifically, the laboratoryreared flies mated several hours before scotophase whereas wild flies mated the last two hours of the photophase. Third, even though radiation was quite effective, it caused somatic damage to the insect reducing the competitive hen of male flies to mate with wild females (Economopoulos and Zervas, 1982). Finally, the release of both sexes in the field led to the opposite results as laboratoryreared females also infested olive trees. Indeed, in the closely related species C. capitata (Medfly), a release of male-only insects gave a three- to five-fold improvement in the performance of released radiationsterilized males (Rendon et al., 2004).

Nonetheless, over the years, there have been improvements in olive fly mass-rearing (Ras et al., 2017). Together with the

Figure 1.7: Diagrammatic representation of the OX3097 transposon. OX3097 comprises a fluorescent marker (hr5-IE1-DsRed2), and the female specific tTAV expression system (tetO-Dmhsp70 minimal promoter-Cctra: tTAV Sex-specific alternative splicing of the Cctra intron leads to production of tTAV and the initiation of a lethal tTAV positive-feedback loop in females only Thomas et al., 2012

progress in the molecular biology of the insect, there has been a renewed interest of SIT application in the olive fly (Estes et al., 2011). Moreover, the development of new genetic tools gave the opportunity to update the classic method of SIT in a modern and more efficient way enhancing it at three levels: genetic sexing, sterilization and monitoring.

As it was mentioned above, two strategies that are based on the SIT are the "Release of Insects carrying a Dominant-Lethal" (RIDL) and the Incompatible insect technique (IIT).

1.3.3.2 Release of Insects carrying a Dominant-Lethal (RIDL)

RIDL is a strategy related to SIT but with a dominant lethal transgene inserted into the insect genome, thus replacing the need for radiation exposure. In this method, "sterilization" of the released insects is induced not bv irradiation but bv homozygosity for a dominant lethal gene. One version of RIDL system involves the mass release of insects carrying a female-specific lethal transgene (fsRIDL). Successful application of this method was carried out in Ceratitis capitata (Fu et al., 2007) and Aedes aegypti (Carvalho et al., 2015).

The construct used for RIDL system in the Medfly was based on the sex-specific

alternative splicing of the transformer (tra) gene. Specifically, the two sex-determination genes of insects are tra and the doublesex (dsx). The tra gene is regulated by alternative splicing in females producing a functional TRA protein while in the male is interrupted by additional exons that contain early stop codons. Based on this feature, they isolated the female-specific sequence that induces the alternative splicing into a tTAV coding region which was previously shown that induces dominant lethality in the insects (Gong et al., 2005) and developed two constructs, LA3077, and LA3097. These constructs carry also, a fluorescent marker (DsRed2) to allow detection of transgenic individuals and a selflimiting genetic trait that is repressed by tetracycline (tetO). In the absence of tetracycline (for example in nature), the tetracycline transactivator (tTAV) accumulates and results in female lethality at pupal stage.

In 2012, using the same construct as in Medfly, the first fsRIDL olive fly strain was developed (Ant et al., 2012). The insect strain, OX3097D-Bol, (Figure 1.7) resulted in female death at larval and early pupal stages in the absence of tetracycline. The potential release OX3097D-Bol of males can give the opportunity to mate with wild females and produce progeny that would die at the larval/pupal stages. On one hand, this technique is species-specific. On the other hand, it also seems environmentally safe since the engineered strain OX3097D-Bol does not have any impact on non-target organisms that either predate or parasitize olive flies (Marubbi et al., 2017). Until today, this technique has not been tested in the field for B. oleae.

While transgenic approaches have renewed interest in SIT, the use of genetically-

modified (GM) insects will require addressing public concerns about the possible impacts in nature. Such concerns led to the development of alternative non-GM methods.

1.3.3.3 Incompatible Insect Technique (IIT)

A control method that suppresses the pest population and does not use transgenic approaches is the Incompatible Insect Technique (IIT) (Boller and Bush 1976; Bourtzis and Robinson 2006). This technique relies on bacterial endosymbionts named Wolbachia. Wolbachia is an obligatory, intracellular. maternally transmitted αproteobacterium of the Rickettsiaceae family, infecting many arthropod and nematode species. Wolbachia symbionts act as reproductive parasite inducing cytoplasmic incompatibility (CI), male killing, feminization or parthenogenesis of the host (Stouthamer et al. 1990; Hoffmann and Turelli 1997; Rigaud 1997; Hurst et al. 1999). Cytoplasmic incompatibility is a type of conditional sterility. Specifically, sperm from Wolbachiainfected males is incompatible with eggs from females that do not harbor the same Wolbachia type resulting to embryonic lethality (Wenner and O'Neill et al. 1997; Werren 1997; Charlat et al. 2002; Bourtzis et al. 2003).

IIT method can be used as suppression method since *Wolbachia* is not paternally transmitted. When there is only male insect release, the infection type present in the released strain does not become established in the field. As the size of the field population decreases due to incompatible matings, the proportion of males of the released strain increases. Similar to conventional SIT, the increasing ratio of incompatible matings over time can lead to population suppression. IIT method can be used as a replacement technique, too. Specifically, in mosquitoes, releasing males and females carrying *Wolbachia* will both mate with wildtype mosquitoes leading to all infected offspring. It has been shown that vector-borne diseases like Dengue, Zika, and malaria that are transmitted to human through mosquito cannot develop in *Wolbachia*-infected adult mosquitoes and so these viral diseases cannot be transmitted to humans (Callaway 2016).

This strategy was first introduced by Boller and colleagues who performed a study of the incompatible races of European cherry fruit fly *R. cerasi* (Boller and Bush 1974; Boller et al. 1976), followed by a small field trial by Russ and Faber (1978). Nowadays, it is widely used to reduce *Aedes aegypti* mosquito populations and the viruses they transmit such as Zika, dengue and chikungunya (World Mosquito Program). In *B. oleae*, lines were transinfected with the Wolbachia strain wCer2 in 2011 (Apostolaki et al., 2011) but no field trials were performed.

With the emergence of the gene disruption technology two new techniques have been discovered. The CRISPR-gene drive system and the RNA interference (RNAi) are rapidly expanding in many facets of biological research. Moreover, agriculture researchers are developing ways to include these technologies in the integrated pest management (IPM) (Baum et al., 2007; Huvenne et al., 2010; Noh et al., 2012).

1.4 Gene drive systems

Gene drive systems have the power to push the desired trait through an entire population of animals. In 2003, Austin Burt noticed some selfish genetic elements that are naturally present in organisms and enhance their own transmission relative to the rest genes, in a non-Mendelian way (Burt, 2003). This phenomenon is called homing and he proposed that these elements, called homing endonucleases genes (HEGs), could be used to spread into a population trait that can manipulate an organism's fitness and reproduction. He believed that the release of just a few individuals within a population could lead to complete invasion of the gene drive cassette within 15–20 generations.

Eight years later, the first successful engineering of a HEG-based gene drive in *An. gambiae* was reported (Windbichler et al., 2011). The major disadvantage at this stage was that the locations in the genome where the gene drive could move were preestablished in transgenic lines by random transposon-mediated integration, so specific genes could not be targeted for modification (Labbe et al., 2010; Isaacs et al., 2012).

In 2002, an alternative type of nucleases was identified, the zinc-finger nucleases (ZFNs) (Beerli et al., 2002). ZFNs modular seemed to be and morestraightforward than the HEGs. Zinc-finger domains could recognize the shapes of nucleotide triplets in the major groove of a DNA double-helix and could be engineered to recognize an 18 nucleotide sequence such that a whole array of protein effectors could be recruited to a very specific site in the genome (Liu et al., 1997; Berli et al., 2002; Miller et al., 2007). However, the cost of a ZFN and the low success rate was still prohibitive to the wider use of the technology.

In 2010, transcription activator-like effector nucleases (TALENs) were identified. These nucleases were affordable and could be easily engineered. Moreover, they were modular and they could be encoded on a plasmid by cloning in relatively more efficient way in comparison to ZFNs (Christian et al., 2010). The recognition of each nucleotide on a DNA target was encoded in the 12th and 13th amino acid of each 34 amino-acid repeat; a peptide stretch of 18 or 19 repeats could be engineered to recognize any nucleotide sequence (Boch et al., 2009, Moscou et al., 2009). Gene-editing in Ae. aegypti and An. stephensi using ZFNs and TALENs were reported in 2013 (Aryan et al., 2013; Smidler et al., 2013).

However, the breakthrough of the gene-drive technology came in 2012 when CRISPR-based gene drive was identified (Zetsche et al., 2015). The word CRISPR means "Clustered Regularly Interspersed Palindromic Repeats" and refers to the widespread loci in bacterial and archaeal genomes that store sequences of parasitic nucleic acid to which they were previously exposed (Deveau et al., 2010). These are co-located on the bacterial genome with Cas (CRISPR associated) genes which are expressed and used to target and destroy incoming parasites with homology to small RNAs derived from the CRISPR loci. Cas9 was borrowed from the bacteria Streptococcus pyogenes (Jinek et al., 2012) and can target any region of a genome by

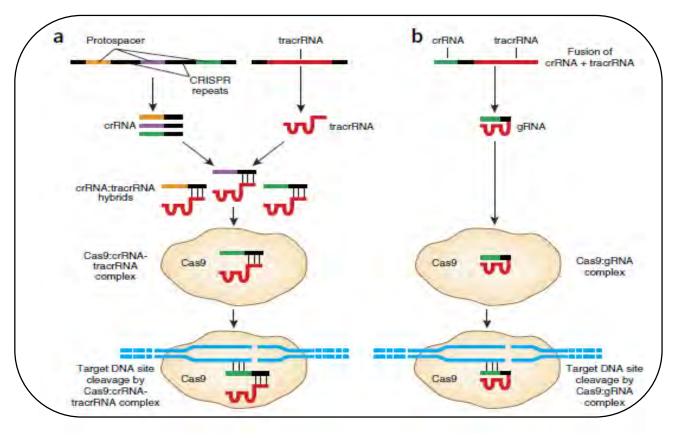


Figure 1.8 Naturally occurring and engineered CRISPR-Cas systems. (a) Naturally occurring CRISPR systems incorporate foreign DNA sequences into CRISPR arrays, which then produce crRNAs bearing "protospacer" regions that are complementary to the foreign DNA site. crRNAs hybridize to tracrRNAs (also encoded by the CRISPR system) and this pair of RNAs can associate with the Cas9 nuclease. crRNA-tracrRNA: Cas9 complexes recognize and cleave foreign DNAs bearing the protospacer sequences. (b) The most widely used engineered CRISPR-Cas system utilizes a fusion between a crRNA and part of the tracrRNA sequence. This single gRNA complexes with Cas9 to mediate cleavage of target DNA sites that are complementary to the 5' 20 nucleotides of the gRNA and that lie next to a PAM sequence (Sanders and Jound, 2014).

encoding a homologous ~20 nucleotides on a modified single guide RNA (sgRNA). This sgRNA will localize Cas9 to the target site for double-stranded cleavage of the DNA (Jinek et al., 2012).

CRISPR-based gene drive spreads a specific DNA cassette into the target species and it contains three elements: a gene encoding the bacterial Cas-9 protein, a gene coding a guide RNA that targets a particular site in the genome and flanking sequences which allow the cassette to insert at a given target site. The gene drive cassette can transport a payload gene into the target genome or it can be integrated to a specific position within the genome to knock out a gene. If the targeted position is a gene essential for reproduction, it can disrupt its physiology and behavior leading theoretically to the extinction of the species (Burt, 2003) (Figure 1.8).

Shortly after CRISPR-based the technology was released, there have been several reports of successfully engineered insects, from D. melanogaster with a remarkable 96% homing efficiency (Gantz and Bier 2015) to various mosquitoes (Gantz et al., 2015; Hammond et al., 2016). In A. stephensi, for example, the ability of a homing modification drive system to spread a large payload containing an antimalarial singlechain antibody was demonstrated (Gantz et al., 2015). In another study in A. gambiae, researchers created a suppression drive targeting female fertility genes (Hammond et 2016). This drive was successfully al., transmitted to offspring, although its population suppression capability was limited because heterozygous disruption of the target genes greatly reduced female fertility. In 2017, there was the first report of successfully engineered *C. capitata* using the CRISP-Cas9 technology (Meccariello et al., 2017).

As it comes to the targeted DNA sequence, there is no limitation. This gives the technology a broad range of applications, for example, holding invasive species at bay, ensuring plants remain sensitive to hermicides and as a control method for pest species (Gantz et al., 2015). Compared to other pest management techniques, it is cheaper, more precise and less controversial as the use of pesticides. These characteristics make gene drive-mediated pest control attractive for agribusiness because it allows direct manipulation of pest species (Courtier-Orgogonzo et al., 2017).

However, The National Academies of Sciences, Engineering and Medicine released a report outlining the hazards to be considered when thinking about gene drives (NASEM, 2016). Based on the report, not all pest species seem to be suitable for control using gene drives. In order for gene drives to work, pests need to reproduce sexually and have short generation times. The effectiveness of gene drives deployed for pest control will also depend on the breeding structure of the target pest as well as on its geographic distribution and degree of gene flow (NASEM, 2016).

While there is no permission to release genetically modified organisms with a gene drive in the field, the US National Academy of Sciences, Engineering and Medicine recently approved research on gene drive and called for carefully controlled field trials (NASEM, 2016). Moreover, the Gates Foundation and the Indian Tata Group invested more than US\$140 million in gene drive research for controlling disease vectors and improving crop productivity. Recently, the US Defense Advanced Research Projects Agency (DARPA) announced US\$65 million in funding to scientists studying gene-drive technologies (Callaway, 2017). Besides research programs, companies such as Bayer, Dupont, and Monsanto have signed license agreements with biotech companies to use the CRISPR/Cas-9 technology (Begley et al., 2016).

European commission proposes changes on the Directive 2001/18/EC for the GMOs release to alow the freedom of restrict or prohibit use of Authorized GMOs. Their opinion regards that unlike transgenesis, mutagenesis (including CRISP-Cas9 technology) does not entail the insertion of foreign DNA into a living organism but alterates the genome of a living species. However, the Advocate General Bobek recently released his opinion that organisms obtained by mutagenesis can be a GMO as the alteration of the genome is not occur naturally. (Press release No 04/18). The case is still pending on the Court of Justice of the European Union.

1.5 RNAi

RNA interference (RNAi) is a term used to describe a number of gene silencing phenomena characterized by the specific binding of short RNAs (20-30 nucleotides in length) to target sequences (Fire et al., 1998). The first report of an RNAi-like gene silencing was in the late 1980s when researchers tried to overexpress the *chalcone synthase* in the violet petunia flowers for a deeper violet color. *Chalcone synthase* is a component of the pathway responsible for violet coloration in petunia flowers. However, they unexpectedly obtained white flowers (Napoli et al., 1990) with 50 times lower expression of *chalcone synthase* in contrast with the wildtype flowers. Their explanation was that this effect was caused by the exogenous transgene suppressing the endogenous gene giving this process the name "co-suppression".

In animals, the first report about RNAi was obtained by Guo and Kemphues in a series of experiments conducted with RNA antisense on the nematode C. elegans (Guo and Kemphues., 1995). They attempted to knock down gene expression by introducing antisense RNA for the *partition 1* (PAR-1) gene. As a control, they used RNA sense of *par-1* gene. Surprisingly, they noticed that sense RNA was also impaired with par-1 and induced silencing. However, only in 1998, Andrew Fire and Craig Mello explained the by studying phenomenon interference towards the C. elegans unc-22 gene. They carefully purified the RNA antisense, RNA sense, and double-stranded RNA (ds-RNA) for the unc-22 gene and compared their ability to interfere with the endogenous gene expression. Their results showed that gene interference single-stranded RNAs (either sense or antisense) were between 10 and 100 times less effective than dsRNA. They named this silencing phenomenon RNA interference (RNAi) (Fire et al., 1998). The two researchers were awarded the 2006 Nobel Prize in Physiology or Medicine for their discovery.

The mechanism of RNAi in insects was extensively studied in *D. melanogaster*. The double-stranded RNA (dsRNA) is cleaved into fragments of ~21 nucleotides (the small interfering RNAs, or siRNAs) by the enzyme Dicer. The siRNAs are unwinding and loaded on to RNA-induced silencing complex (RISC) via an RLC (RISC-loading complex), which contains Dicer-2 (Dcr-2) and a partner protein R2D2 (Tomari and Zamore, 2005).

RNAi in insects allowed the analysis of gene function in non-model insects (Mito et al., 2011). Prior to the advent of RNAi technologies, it was difficult to perform any analysis of gene function outside of the few genetic model insects such as D. melanogaster and T. castaneum (Hughes and Kaufman, 2000). Furthermore, genome data has become more readily available revealing a large array of genes with unknown functions, leading to the problem of how to unveil the functions of these new genes (Belles, 2010). With RNAi, the expression of a given gene can be disrupted, and the phenotypic effects shed light on its function; thus, a phenotype is automatically linked to a precise DNA

sequence (Belles., 2010).

As it comes to RNAi delivery in insects there are two types. First, the endogenous RNAi, which it is generated within cells. Second, the exogenous RNAi, where short RNAs of exogenous origin bind specifically to endogenous target RNA sequences leading to cleavage of the targeted endogenous RNA. The delivery of the exogenous RNAi can be achieved either by injections or by feeding.

In RNAi studies of gene function in insects the trigger is typically introduced by injection for example in larvae and adults (Rajagopal et al., 2002; Arakane et al., 2005; Tsao et al., 2009) and in embryos (Liu et al., 2008; Lemke and Schmidt-Ott, 2009; Pan et al., 2009). Injections, however, are not always easy to administer and may induce mortality in the test insects (Bucher et al., 2002). There has, therefore, been interest in achieving RNAi

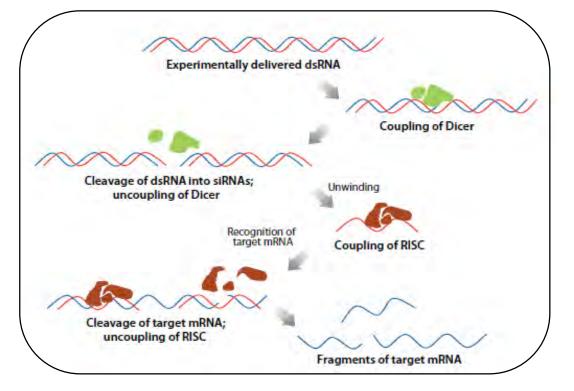


Figure 1.9: Basic mechanisms of RNA interference (RNAi). The double-stranded RNA (dsRNA) is cleaved into fragments of ~21 nucleotides (the small interference or siRNAs) by the enzyme Dicer. The siRNAs unwind, and the antisense strand couples to the RNA-induced silencing complex (RISC) and conveys it to the target mRNA. Then RISC couples to the target mRNA, blocking and degrading it (Belles., 2010).

by oral delivery of the RNAi trigger, since this is a less invasive technique. Successful oral RNAi was first demonstrated by Turner et al. (2006), who fed larvae of the light brown apple moth, *E. postvittana*, dsRNA for a larval gut *carboxylesterase* gene and found a substantial reduction in *carboxylesterase* transcript levels after two days.

The RNAi approach to control insect pests had been considered for many years, but the application of this technology was just realized after it was shown that ingestion of dsRNA would trigger RNAi. Recent studies demonstrated the feasibility of using RNAibased strategies to reduce insect pests. In 2007, an RNAi-plant mediated pest control developed for was transgenic plants producing dsRNAs against specific insect genes, with the consequent effect on the target species (Baum et al., 2007; Mao et al., 2007). The main requirements to generate successful RNAi insect-resistant transgenic plants are: 1. identification of a specific gene with an essential function in the insect to be knocked down or knocked out; and 2. dsRNA delivery by oral ingestion that must be uptaken by the insect cells, and spread systemically. Moreover, a 90% sterilized male mosquito population was produced through RNAi feeding using sex-sorting genes and genes involved in male reproduction (Whyard et al., 2015) while sperm less Bactrocera dorsalis males were developed by feeding dsRNA to target genes important for the germ cell differentiation or genes related to azoospermia (Wagar et al., 2017).

In conclusion, almost all intervention methods, from typical traps to genetic control methods have the same goal: to interfere with the reproductive capacity of the insect and suppress their population. The main biological system that is responsible for reproduction is the reproductive system (Gilmore 1989).

1.6 Reproductive system

B. oleae species is bisexual and biparental, meaning that one egg from a female and one sperm from a male fuse to produce a diploid zygote.

1.6.1 Mating system and behavior

The term "mating system" is used to describe how mating and fertilization are achieved. The most fundamental categorization of the mating system uses the number of mates that each sex has within a defined time period. Female olive flies are oligogamous and mate 1-3 times during their lifetime (Tzanakakis et al., 1968; Cavalloro and Delrio, 1970; Zouros and Krimbas, 1970). Male olive fruit flies are polygamous and can mate daily if receptive females are available (Zervas, 1982).

Courtship displays are similar among Tephritid species. Including olive fly, both male and female display seven behaviors during courtship besides walking, staying still and preening: enation, supination, twirl, swaying, sidestepping, approach and touching. The male also performs wing buzzing, alternating legs, and mounting, and the female may extrude her ovipositor during courtship. Females do not display obvious receptivity behaviors.

However, there is apparently at least one behavioral element unique to each Tephritid species (Headricks and Goeden., 1994), Benelli et al., (2012) divided the courting sequence of the olive fly insect into three main phases: (1) Initial phase: ends with the male's arrestment (visual and olfactory cues play an important role); (2) Close-range phase: includes male wing vibrations, and (3) Final contact phase: copulation attempts (tactile cues probably dominate). Olive flies share the common courting behaviors such as wing buzzing, swaying, supination, enation, etc., with other Tephritid, but they have also unique behaviors. For example, the alternating legs behavior performed just before, during, and/or after buzzing its wings appears to be characteristic. Another characteristic of B. oleae is that both male and female secrete sexual pheromones (Canale et al., 2013).

The interplay between males and females is also due to bimolecular interactions. As behavior is a very flexible phenotype, the various aspects of -omics techniques, including genomic, transcriptomic, and proteomic, have been selected to identify genes or gene networks involved in the control of mating. Mating interactions represent the major arena within which many aspects of sexually antagonistic gene action may play out (Chapman et al., 1995). However, the first step is the acknowledgment of the physiology of the reproductive system of the insect of interest (both sexes).

1.6.2 Male reproductive system

In general, the male reproductive system contains a pair of testes and accessory

glands which connect into a common large chamber. From this chamber starts a long ejaculatory duct which ends in the erecting and pumping organ (Hanna 1938).

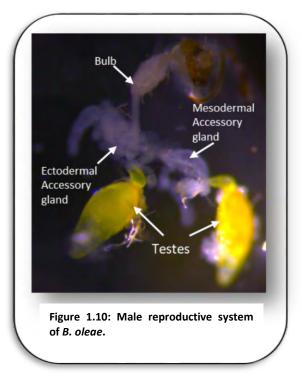
1.6.2.1 Testes:

In insects, testes are the organs where sperm is produced. Each testis is subdivided into hundreds of follicles, the sperm productive cells. At the end of each follicle, there is a group of germ cells called spermatogonia that are divided by mitosis and increased in size to form spermatocytes.

Each spermatocyte undergoes meiosis: this yields four haploid spermatids which develop into mature spermatozoa as they progress further along through the follicle. A thin long duct leads the mature sperm away from each testis. Ducts are joined near the midline of the body. There, they form a single ejaculatory duct that leads out of the body through the male's copulatory organ, the aedeagus.

Sperm is of vital importance for fertilization of the egg. The presence of the sperm in the female reproductive system causes several post-mating effects on female flies. This function is called "sperm effect". The sperm effect is mediated by the binding of male accessory gland peptides (more details below) to the sperm cell flagella; sperm tails carry seminal proteins into the female sperm storage organs, where the gradual release of peptides from the sperm tails maintains the post-mating response. Among insects, the testis transcriptome has been studied in detail in *D. melanogaster* (Andrews et al., 2000; Parisi et al., 2003; Mikhaylova et al., 2008), *B. mori* (Arunkumar et al., 2009), *A. gambiae* (Baker et al., 2011) and *C. capitata* (Scolari et al., 2012).

More recently, the first dataset on testis transcriptome for *B. oleae* was published (Sagri et al., 2014). Specifically, the growth arrest-specific protein 8 (gas8), sexdetermining protein (fem-1) and lost boy (lobo) genes have been identified that are implicated in spermatogenesis and sperm motility.


1.6.2.2 Male Accessory Glands (MAGs):

1.6.2.2.1 Morphology

Male accessory glands are the secretory organs of the male reproductive system.

Specifically, B. oleae has two types of glands: the ectoderm- and the mesodermderived. The ectodermic glands have a spongy appearance and they are further distributed to one dorsal and two ventral pairs. They measure about 50 mm in diameter and 0.3-1.5 mm in length. The glands of the dorsal pair are long (1–1.5 mm) and generally branched at different levels along their length. On the ventral side, a pair of glands, 0.3-0.6 mm in length, usually branched, can be sometimes asymmetrically substituted on one side by a single 50 mm long lobation. The third pair of ectodermic glands is constituted of single or distally branched units, of variable length but generally longer with respect to the glands of the previous pair. The mesodermal glands are two sac-like structures 600-800 mm long and 80 mm in diameter. They enter the common chamber of the ejaculatory duct between the dorsal and the ventral pairs of ectodermic glands (Figure 1.10) (Marchini et al., 2006).

Male accessory glands produce and

secrete an organic fluid that is transferred to females along with sperm, during mating. Male accessory gland secretions together with sperm are called seminal fluid or semen.

1.6.2.2.2 Secretions of male accessory glands

In general, the secretions of male accessory glands represent numerous protein classes (Poiani et al., 2006) and they are multifunction, affecting both male and female insects.

In respect to the male insect, they have two major functions: 1. production of a liquid medium that sustains and nourishes mature sperm while they are in the male's genital system and 2. production of proteins that encase sperm and protect them as they are delivered to the female's body.

Through mating, they are transferred to females they induce where different behavioral and physiological effects on the female insect. Effects that have been identified in several insect species are: repression of sexual receptivity to further mating (Craig et al., 1967; Radhakrishnan and Taylor, 2007; Shutt et al., 2010; Abraham et al., 2011), egg-laying stimulation, increased feeding and sleeping activity, induction of immune responses and decreased longevity (Cavalloro and Delrio 1970; Delrio and Cavalloro 1979; Chen 1984; Jang 1995; Miyatake et al., 1999).

Due to their multifunction role, the secretions of the accessory glands are a matter of great interest and discussion. In recent years, with the aid of new technologies in sequencing and proteomic approaches, different proteins have been identified and analyzed. Generally, functional categories that are present in high levels in male accessory gland proteins are proteases, peptidases, serpins and protease inhibitors. Although the functional classes are conserved across species, the male accessory gland-expression of individual genes rarely is. Genes expressed in the accessory glands exhibit rapid evolutionary change and gene expansion (Begun et al., 2006) showing their critical role in encoding products that underlie striking, fitness-related phenotypes.

A various number of seminal fluid proteins have been identified in different *Drosophilidae*: 146 proteins for *D. melanogaster*, 125 proteins for *D. simulans* and 115 proteins for *D.* yakuba (Findlay et al., 2008; Findlay et al., 2009). The molecular and physiological functions of these substances have been most extensively investigated in *D*. *melanogaster* (McGraw et al., 2004; Ravi and Wolfner, 2007).

The *D. melanogaster's* male accessory glands are composed of proteins, carbohydrates, lipids and peptides with putative hormonal function (Gillot et al., 2003). From this category, a 36-amino-acid peptide, sex peptide or Acp70 has been well studied. This peptide is showed to be responsible for the inhibition of remating and increased egg production (Liu and Kubli, 2003; Chapman et al., 2003), decreased longevity, alteration of locomotion and feeding behaviors and stimulation of the immune system (Isaac et al., 2010).

Sex peptide is bound to the tails of sperm and transferred to females. After mating, it is detectable in the female's hemolymph (Pilpel et al., 2008) and reproductive tract. There, the active region of sperm-bound sex peptide is gradually cleaved from sperm, presumably freeing it to induce its long-term effects on the post-mating response (Peng et al., 2005). Specifically, sex peptide is detected by sensory neurons where it binds to a specific G-protein coupled receptor, called sex peptide receptor, leading to the alteration of female physiology and behavior (Yapici et al., 2008).

The female *D. melanogaster* flies that did not receive sex peptide during mating failed to release sperm efficiently (Avila et al., 2010). However, the removal of four other accessory gland proteins CG9997, CG1652, CG1656, G17575 that encode a serine protease, two C-type lectins and a cysteinerich secretory protein respectively seemed to be required for the localization of the sex peptide to sperm showing the interaction between the molecules of the secretions (Ram et al., 2009). Another well studied accessory gland protein from *D. melanogaster* is Acp26Aa or ovulin. Acp26Aa is a regulator of ovulation and oviposition and it is transferred to females as a prohormone where it is processed by a seminal attacin-like protease (Chapman et al., 2008).

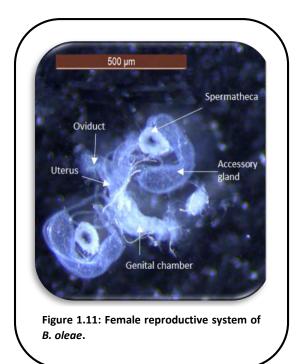
In the major malaria vector A. gambiae, 46 male accessory gland proteins have been identified. Twenty-five of them were orthologues of D. melanogaster accessory gland proteins with very low homology, ranging from 19-29% confirming the rapid evolution of reproductive genes (Dottorini et al., 2007). In spermless males, it has been shown that sperm is not required to induce oviposition or refractoriness to further mating (Thailayil et al., 2011). Interestingly, the switch for the post-mating effects on the female A. gambiae seems to be a steroid hormone named 20-hydroxyecdysone. The hormone 20- hydroxyecdysone is sexually transferred from the males and interacts with a female protein regulating oogenesis (Pondeville et al., 2008; Baldini et al., 2013) and loss of the female's susceptibility to further mating (Gabrieli et al.,2014; Mitchell et al 2015). Specifically, 20-hydroxyecdysone activates the transcription of vitellogenin (Vg) in the female fat body, an important ingredient of the growing oocytes.

In the major vector of dengue fever, *A*. *aegypti*, 63 putative proteins have been identified (Sirot et al., 2009). Most of the proteins identified fall into similar biochemical protein classes as male-derived reproductive proteins in other insects (Sirot et al., 2009). A partially purified protein, named matrone (Craig 1967) had a variety of effects on female reproductive and feeding behavior (Lee and Klowden 1999). Matrone seems to be the switch for a variety of effects on female reproductive and feeding behavior (Lee and Klowden 1999; Gillot, 2003.) Matrone is a 7.6 kDa peptide that apparently reduces female host-seeking behavior (Lee and Klowden, 1999).

Respectively, in *Tephritid* fruit flies, male accessory gland fluids (AGFs) have been shown to play a role in inhibiting remating, such as in *C. capitata, B. cucurbitae* and *B. tryoni* (Jang et al., 1999; Kuba and Itô 1993; Miyatake et al., 1999; Radhakrishnan and Taylor, 2007). A substance of sex peptide is strongly suggested to be responsible for suppression of female receptivity in *C. capitata* and *B. oleae* (Kuba and Itô 1993). However, isolation and electrophoresis of low molecular proteins from these insects did not detect any peptide with a mass compatible with that of the sex peptide from Drosophila (about 3 kDa) (Marchini et al., 2016).

The male accessory glands of *C. capitata* were previously studied by Hanna (1938) and Cavalloro and Delrio (1979). The secretions of these glands, when injected into virgin females, appear to influence their behavior and to increase the number of eggs laid as compared to typically mated females (Jang, 1995).

In *C. capitata,* two studies have identified genes expressed in the male accessory glands (Davies et al., 2006; Scolari et al., 2012). The identified transcripts were not homologs of genes encoding known accessory gland proteins in *D. melanogaster*, but they encoded proteins that fall into known functional categories (Davies et al., 2006).


More recently, through the whole genome sequencing of C. capitata, 459 genes were annotated and grouped into 17 functional classes based on Drosophila seminal fluids for both sexes (Papanikolaou et al., 2016). These accessory gland proteins consisted mainly of putative proteolysis regulators (proteases and protease inhibitors), lipid modifiers (lipases), sperm-binding candidates (Cysteine-RIch Secretory Proteins, CRISPs), antioxidants, carbohydrate-binding proteins (lectins), and many other small peptides and prohormones.

Another role of accessory gland proteins of C. capitata is to stimulate the recognition of the host fruit. During an experiment, unmated, laboratory-reared, virgin females chose the odor of male-produced pheromone over host fruit odor in a dual-choice flight tunnel bioassay. Mated females, on the other hand, chose the host fruit odor over the maleand produced pheromone deposited significantly greater amounts of fertile eggs if given the opportunity. However, virgin females injected with accessory gland fluid (AGF) from sexually mature males "switched" their response from choosing the pheromone odor to choosing host fruit odor in the flight tunnel bioassay and exhibited egg-laying behavior typical of mated females (Jang et al., 1995; Jang et al., 2002).

Despite the crucial role of male accessory gland components in regulating aspects of reproduction, elucidation of the seminal proteome of *Bactrocera* species has only been established in the last few years. Wei and his collaborators (2015) published the first proteome analysis of male accessory gland secretion in oriental fruit flies, *B. dorsalis*. Moreover, the detection of immunerelated genes in male accessory gland was detected and studied (Lung et al., 2001; Belardinelli et al., 2005; Wong et al. 2008). In 2017, through comparative transcriptome analysis of three *B. dorsalis* (Diptera: Tephritidae) organs, functional genes in the male accessory glands and ejaculatory duct were identified (Tian et al. 2017).

1.6.3 Female reproductive system

The female reproductive system consists of a pair of ovaries. Each ovary empties the mature oocytes to the lateral oviduct which unite to form the uterus. The opening of the uterus is called gonopore and opens into the genital chamber. Two types of ectodermal glands open into the genital chamber. The first is the spermathecal and the second is the accessory glands of the female system (Figure 1.11).

1.6.3.1 Ovaries

The ovaries are the organs that produce egg cells. Each ovary is composed of a cluster of egg or ovarian tubes, the ovarioles. Each ovariole consists of a terminal filament, a germarium, a vitellarium and a pedicel. Germarium is the counterpart of spermatogonia in the male reproductive system. Through mitosis, they give rise to oocytes. Oocytes grow by deposition of yolk, in a process known as vitellogenesis, as they go through the vitellarium to the pedicel. The youngest oocytes occur near the germarium and the most mature near the pedicel. The six-stage ovarian development of *B. oleae* was well reported by Fletcher et al (1978) and includes previtellogenesis (1-2 stages), vitellogenesis (3-4 stages), gravid (5 stage) and parous (6 stage).

1.6.3.2 Spermathecae

Spermathecae are tubes or sacs in which sperm can be stored between the time of mating and the time of egg fertilization. The number of spermathecae varies among insects. *Anopheles* mosquitoes have a single spermatheca while Drosophila, Aedes, and Culex have three spermathecae (Clements et al., 1992). Female *B. oleae* has two spermathecae (Figure 1.11). In general, each spermatheca is composed of the duct, reservoir, muscular pump and spermathecal gland.

After copulation, sperm migrates from the genital chamber of the female reproductive tract, through the spermathecal duct, and into the reservoir (Tombes and Roppel., 1972; Bailey and Nuhardiyati., 2005; Oppelt and Heinze, 2007). When an egg is released, the sperm retraces this route and fertilize it (Lefevre and Jonsson., 1962; Tombes and Roppel., 1972; reviewed by Chapman., 2013).

Spermatheca plays the role of the "bodyguard" for the sperm. Inside it, the sperm is protected from mechanical damage, contact with the female hemolymph, and putatively from free radicals such as reactive oxygen species (Collins et al., 2004; Al-Lawati et al., 2009; King et al., 2011).

The sperm constantly moves inside the spermatheca, swirling within the spermathecal lumen, which organizes and stores them for release at the appropriate time during fertilization (Jones, 1973; Werner et al., 2007; Dallai et al., 2014). Sperm cells are nourished and preferentially selected, beginning when the sperm cells migrate to the spermathecal reservoir and continuing until fertilization occurs (Ward, 2000; Franck et al., 2002; Bloch et al., 2003). Thus, the storage of sperm creates an opportunity for postcopulatory sperm competition and female cryptic choice of specific sperm cells for fertilization, altering the genetic background of offspring (Klowden and Chambers, 2004).

Spermathecae have been extensively analyzed in *Drosophilidae* family. The male accessory gland proteins of *D. melanogaster* that are transferred to female after mating have a short lifespan, they are degraded 7 hours after mating (Wolfner et al., 2011). Thereafter, spermatheca appears to sustain the sperm with its own glandular secretions (Schnakenberg et al., 2012). The genes expressed in the spermatheca of mated *D. simulans* illustrate the intricate structure and function of the spermatheca. Eleven genes have been shown to encode serine proteases, protein carriers, or antimicrobial and energy metabolism-related proteins. These genes are associated with processes that establish an environment suitable for the allocation and nutrition of sperm within the spermatheca (Prokupec al., 2008).

In *A. gambiae,* surgical removal of the spermatheca from mated females resulted in inhibition of oviposition while implantation of a mated spermatheca into virgin females did not stimulate egg laying or loss of sexual receptivity (Klowden et al., 2001; Klowden et al., 2006).

1.6.3.3 Secretions of female accessory glands

The female accessory glands produce a secretory material that serves a number of functions: acting as a lubricant for egg passage, as protective oothecal coverings, or as glues to attach eggs to various substrates (Soltani et al., 1987). In addition, they also produce the gelatinous sheaths around the eggs and nutrition (Adiyodi and Adiyodi, 1988; Romoser and Stoffolano, 1988). The female accessory glands of the sandfly P. papatasi secrete a protein with lipase and antibacterial activities (Rosetto et al., 2003). Female accessory glands of the house fly M. domestica produce secretions that induce contraction of the oviducts during oviposition (Wagner et al., 1993) and contribute to the fertilization process, modifying the micropyle cap of the eggs and taking part in the acrosomal reaction (Degrugillier, 1985).

In *Ceratitis* genus, immunity genes have been identified to be present in the female accessory glands. Specifically, the antimicrobial ceratotoxin peptide family (seven genes) was found to protect the

reproductive tract from the bacterial infection during mating. These peptides have also been found on the surface of oviposited eggs where they may create a microbiologically controlled that favors environment early larval development (Marchini et al., 1991; Marchini et al., 1997; Marchini et al., 2002). Unlike antibacterial most insect peptides, ceratotoxins are not induced by bacterial infection, but they are expressed in the female reproductive accessory glands of adult insects (Marchini et al., 1995; Rosetto et al., 1996) in response to juvenile hormone stimulation (Manetti et al., 1997). Expression of immunity genes was also found in the transcriptomic analysis of the female accessory glands and spermathecae of virgin B. oleae, too. (Sagri et al., 2014).

1.6.3.4 Post mating response in female fly

Genome-wide research into the postmating response in females has been performed in model species such as *D. melanogaster* (Lawniczak et al., 2004; Mack et al., 2006), the honeybee queen *A. mellifera* (Kocher et al., 2008; Kocher et al., 2009; Manfredini et al., 2015), *C. capitata* (Gomulski et al., 2012), *A. gambiae* (Rogers et al., 2009) and *A. aegypti* (Alfonso- Parra et al., 2016) which have revealed that the post-mating response differs among species as well as the time following mating.

To obtain a full coverage of the transcriptome changes during mating for *D. melanogaster,* McGraw et al., (2004) compared virgin females to females mated with 1. Wild-type males, 2. Mutant males who lack sperm and 3. Mutant males who lack accessory gland proteins (McGraw et al.,

Introduction

2004). About 13% of the genome (1500 genes) changed expression in response to mating. Only 160 loci were influenced by male accessory gland proteins, 500 genes by sperm and the rest (~1000 genes) by other aspects like courtship and copulation. This possibly suggests that female counter responses were detected rather than male manipulation effects. For this reason, McGraw et al examined the time course of these changes over 24 hours. They noticed that as the time increases, the number of genes showing changes decrease.

In 2006, Mack et al., focused on gene and proteomic changes in the lower female reproductive tract of *D. melanogaster*, where gene expression associated with sperm storage and sperm competition might be expected to be concentrated. For this reason, they compared virgin females to females after specific time points after mating: immediately after mating and 3, 6 and 24 hours after mating. At around 6 hours after mating, there was a pronounced peak (539 genes) in the number of differentially expressed RNAs after mating. After that time point, most of the seminal fluid proteins had a low or undetectable level of expression (Peng et al., 2005; Ravi et al., 2005). These results suggest that there is a two-stage response to mating, from early male-induced changes to longerterm sperm storage and female reproduction effects.

In *D. melanogaster*, post-copulatory effects in gene expression are generally of small-scale (<2fold) (Lawniczak et al., 2004; Mack et al., 2006; McGraw et al., 2008) except one functional class that shows a consistently strong response to mating. This functional class is the immune genes, in particular, antimicrobial peptides that are highly induced (McGraw et al., 2008; McGraw et al., 2004; Domanitskaya et al., 2007; Peng et al., 2005). Unlike Drosophila, A. gambiae females undergo prominent transcriptional changes after mating (Rogers et al., 2008). The number of genes differentially expressed in mated females increased in time between 2 hours, 6 hours and 24 hours after mating. The majority of the genes were found to be expressed exclusively in a single tissue, mostly on the lower reproductive system (reproductive tract and spermatheca) of the female insect with no expression on the ovaries (Rogers et al., 2008). Surprisingly, some of the mating response genes were expressed primarily or exclusively in the gut. The gut is an important endocrine tissue, releasing peptides similar to the gut-brain hormones of vertebrates that are crucial modulators of reproductive physiology (Zitnan et al., 1993).

Moreover, a comparison between mated and virgin female *A. gambiae* insects at 3, 12, and 24 hours after mating identified 708 genes induced and 412 genes repressed by mating across the different time points. Most of these genes are involved in metabolic processes (Gabrielli et al., 2014).

Recently, the post-mating response of *A. aegypti* was investigated (Parra et al., 2016). Investigators found that 280 genes in the female reproductive tract are affected by mating. The nature of the predicted products of many of these genes suggested roles in priming the reproductive tract for egg development, protecting the female against bacterial infections or processing the blood meal.

Transcriptional changes in several genes that may be involved in female sexual

maturity and mating were also identified in *C. capitata based* on microarray data (Gomulski et al., 2012). However, the cDNA library of *C. capitata* was limited to the head of the female.

In B. dorsalis differentially expressed genes between mated and mature virgin females were identified by Zheng et al., (2016). Out of 83 transcripts that displayed significant transcriptional changes between virgin mature and mated females 24 hours post-mating, 65 (78%) were more abundant in mated females, while only 18 (22 %) were more abundant in virgin mature females. statistically significant During mating, differences among enriched biological process GO terms included those involved in the response to a stimulus, as well as immune system, developmental, cellular, biological regulation, and metabolic processes. Of these transcripts, those that are related to the response to stimulus and immune system process were the largest group (Zheng et al., 2016).

1.7 Scope

The most important insect pest of the olive tree is the olive fruit fly, *B. oleae*. Currently control methods of the insect rely on chemical insecticides. However, the development of insecticide resistance and the negative impact of chemical control in nature are calling for the development of novel tools.

Alternative methods of pest control may be based on the manipulation of the reproductive system of an insect, since this system is responsible for its reproductive success. The identification and functional characterization of the molecular pathways regulating the female post-mating biology could help the identification of target-genes. To accomplish this, a good knowledge of the olive fly's reproductive system is required. Until today, this information is limited. To fill this gap of knowledge the goal of this thesis was to perform genomic and transcriptomic analysis of the male and female reproductive system of the olive fly in virgin and mated flies, focusing on the identification of genes implicated in the reproductive activity of the insect. We further analyzed selected genes and performed functional analysis through RNAi silencing. To distinguish whether transient silencing of the selected genes had an impact on reproduction we performed mating experiments and recorded their oviposition rate and longevity.

Apart from advancing the knowledge on insect reproduction, we also opted for generating new tools that could ultimately be used to interfere with the fly's reproductive capacity and thus help at its population control.

2.MATERIALS-METHODS

2. Materials and methods

2.1 Fly culture and stock

The laboratory strain of the olive fly is part of the original stock from the Department of Biology, "Democritus" Nuclear Research Centre, Athens, Greece, and has been reared in our laboratory for over 20 years. The flies are reared at 25°C with a 12h light/12h dark photoperiod and humidity 65% as described by Tzanakakis 1989.

2.1.1 Adult rearing

The adult flies are reared in laboratory cages with diameter 30*30*30cm³ with wax cones inside for oviposition. Three sides of the cages are covered with netting to allow air flow. The top parts have one hole (diameter of 8 cm) to put the wax cones (8 cm diameter × 30 cm height) in the cages. Each cone is covered with a plexi glass lid, on which a piece of sponge is placed glued to maintain humidity. Inside the cage there is a petri-plate for the adult food which contains sugar, hydrolyzed yeast, and egg yolk in a ratio of 8:2:0.6 (Economopoulos and Tzanakakis, 1967; Tsitsipis and Kontos, 1983) and a water supplier, a small plastic bottle of water with a sponge on the edge (Tzanakakis 1989).

2.1.2 Egg collection

Adult insects are sexually mature five days after their emergence. However, high rate of oviposition is observed after the first week. To collect the eggs, the cones are rinsed interiorly with distilled water (dH₂O) and collected in a petri dish at the bottom part of the oviposition cones.

The collected eggs are placed on a white filter paper soaked in 0.3% propionic acid (Manoukas and Mazomenos 1977) for 48-

72 hours in a high humidity rate (90%). Propionic acid is important for the preservation of the eggs.

2.1.3 Larval rearing

After the egg hatching, larvae are transferred to small plastic trays with food until their pupation (Tzanakakis., 1989). The larval diet is based on a diet described by (Tsitsipis, 1975). For 1 kg of larval diet the following ingredients are used: tap water (550 mL), extra virgin olive oil (20 mL), Tween[®] 80 emulsifier (7.5 mL), potassium sorbate (0.5 g), Nipagin[®] (2 g), sugar (20 g), brewer's yeast (75 g), soy hydrolysate (30 g), hydrochloric acid 2N (30 mL) and cellulose powder (275 g). The critical issue in this stage is the overcrowding of the larvae in the food trays. No more than 20 larvae should be placed in each tray as overcrowding can cause competition phenomenon. This stage lasts 8-10 days.

2.1.4 Pupal collection

Pupae are collected from the small plastic trays in a Petri plate and placed in an adult holding cages for adult emergence (Tzanakakis 1989). The newly emerge flies flag the new generation of the laboratory strain. Each generation lasts one month.

2.2 Nucleic acid isolation

2.2.1 DNA isolation

The DNA isolation is accomplished with The Wizard[®] Genomic DNA Purification Kit according to the manufacture's guideline.

The procedure is based on a threestep process (Chomczynski et al., 1992). The first step is the lyses of the cells and the nuclei from the Nuclei Lysis Solution. The second step is the remove of the cellular proteins by salt precipitation, which precipitates the proteins but leaves the high molecular weight genomic DNA in solution. Finally, the genomic DNA is concentrated and desalted by 2propanol precipitation.

DNA purified with this system is suitable for a variety of applications, including amplification, digestion with restriction endonucleases and membrane hybridizations (e.g., Southern and dot/slot blots).

Method:

- Homogenize the tissue using a pestle in 600µl of Nuclei Lysis Solution, and vortex 1–3 seconds to wet the tissue.
- 2. Incubate at 65°C for 15 minutes.
- Add 3µl of RNase Solution to the cell lysate, and mix the sample by inverting the tube 2–5 times. Incubate the mixture at 37°C for 15 minutes. Allow the sample to cool to room temperature for 5 minutes before proceeding.
- Add 200µl of Protein Precipitation Solution, and vortex vigorously at high speed for 20 seconds.
- 5. Centrifuge for 3 minutes at 13,000–16,000
 × g. The precipitated proteins will form a tight pellet.
- Carefully remove the supernatant containing the DNA (leaving the protein pellet behind) and transfer it to a clean 1.5ml micro centrifuge tube containing 600µl of room temperature 2-propanol.

** Some supernatant may remain in the original tube containing the protein pellet. Leave this residual liquid in the tube to avoid contaminating the DNA solution with the precipitated protein***

- 7. Gently mix the solution by inversion until thread-like strands of DNA form a visible mass.
- 8. Centrifuge at $13,000-16,000 \times g$ for 1 minute at room temperature.
- Carefully decant the supernatant. Add 600µl of room temperature 70% ethanol and gently invert the tube several times to wash the DNA. Centrifuge at 13,000–16,000 × g for 1 minute at room temperature.
- 10. Carefully aspirate the ethanol using a pipette. The DNA pellet is very loose at this point and care must be used to avoid aspirating the pellet into the pipette.
- 11. Invert the tube onto clean absorbent paper and air-dry the pellet for 15 minutes.
- 12. Add 100µl of DNA Rehydration Solution and rehydrate the DNA by incubating at 65°C for 1 hour. Periodically mix the solution by gently tapping the tube. Alternatively, rehydrate the DNA by incubating the solution overnight at room temperature or at 4°C.
- 13. Store the DNA at 2–8°C.

Materials:

1.5ml micro centrifuge tubes • micro centrifuge tube pestle or mortar and pestle • RNase solution • water bath, 65°C • water bath, 37°C • 2-propanol, room temperature • 70% ethanol, room temperature • Nuclei Lysis Solution • Protein Precipitation Solution • DNA Rehydration Solution

2.2.2 RNA isolation

For the isolation of RNA, a quick and convenient method is used, based on the TRI Reagent[®] material (Sigma- Aldrich) following

the instructions of the manufacturer with minor modifications.

This procedure is an improvement of the single-step method reported by Chomczynski and Sacchi (1987) for total RNA isolation. TRI Reagent[®] performs well with large or small amounts of tissue.

The reagent is a mixture of guanidine thiocyanate and phenol in a monophasic solution that can dissolve DNA, RNA, and protein from a homogenized sample of tissue. After adding chloroform or 1-bromo 3chloropropane (BCP) and centrifuging, the mixture separates into 3 phases: an aqueous phase containing the RNA, the interphase containing DNA, and an organic phase containing proteins. Each component can then be isolated after separating the phases. One ml of TRI Reagent[®] is sufficient to isolate RNA, DNA, and protein from 50–100 mg of tissue. The resulting RNA is intact with little or no contaminating DNA and protein.

Method:

- 1. Homogenize the tissue samples in TRI Reagent[®] (1 ml per 50–100 mg of tissue).
- Allow samples to stand for 5 minutes at room temperature for complete dissociation of nucleoprotein complexes. Centrifuge the resulting mixture at 12,000x g for 15 minutes at 4 °C and transfer aqueous phase.
- Add 0.1 ml of 1-bromo-3-chloropropane (BCP) or 0.2 ml of chloroform per ml of TRI Reagent[®] used. Cover the sample tightly, shake vigorously for 15 seconds, and allow to stand for 2–15 minutes at room temperature.

- Centrifuge the resulting mixture at 12,000x g for 15 minutes at 4°C. Centrifugation separates the mixture into 3 phases: a red organic phase (containing protein), an interphase (containing DNA), and a colorless upper aqueous phase (containing RNA).
- Transfer the aqueous phase to a fresh tube and add 0.5 ml of 2-propanol per ml of TRI Reagent used in Sample Preparation (step 1) and mix. Allow the sample to stand for 5–10 minutes at room temperature.
- Centrifuge at 12,000x g for 10 minutes at 4
 °C. The RNA precipitate will form a pellet on the side and bottom of the tube.

Store the interphase and organic phase at 4 °C for subsequent isolation of the DNA and proteins

- Remove the supernatant and wash the RNA pellet by adding a minimum of 1 ml of 75% ethanol per 1 ml of TRI Reagent[®] used in Sample Preparation, step 1. Vortex the sample and then centrifuge at 7,500x g for 5 minutes at 4 °C.
- 8. Briefly dry the RNA pellet for 5–10 minutes by air drying or under a vacuum.
- 9. Add an appropriate volume of ddH₂0 solution to the RNA pellet.

To facilitate dissolution, mix by repeated pipetting with a micropipette at 55–60 °C for 10–15 minutes

Materials:

• TRI Reagent[®] •1-bromo-3-chloropropane (BCP) • chloroform •1.5ml micro centrifuge tubes • micro centrifuge tube pestle • water bath, 65°C • water bath, 37°C • 2-propanol, room temperature • 70% ethanol, room temperature • chloroform or 1-Bromo-3chloropropane • 2-Propanol • 75% Ethanol • 1 mM sodium phosphate, pH 8.2 • 0.5% SDS solution • ddH₂O

2.2.3 Plasmid isolation

The plasmid isolation is performed through alkaline lysis in combination with the detergent SDS (Birnhoim and Doly, 1979).

Exposure of bacteria suspension to the strongly anionic detergent at high pH opens the cell wall, denatures chromosomal DNA and proteins, and releases plasmid DNA into the supernatant. Although the alkaline solution completely disrupts base pairing, the strands of close circular plasmid DNA are unable to separate from each other because they are topologically intertwined. During lysis, bacteria proteins, broken cell wells and denatured chromosomal DNA become enmeshed in large complexes that are efficiently precipitated from solution when sodium ions are replaces by potassium ions (Ish-Horowicz and Burke, 1981). The native plasmid DNA can be recovered from the supernatant after the remove of the denatured material by centrifugation.

Method:

- Inoculate 2ml of LB Broth containing the appropriate antibiotic with a single colony of transformed bacteria. Incubate the culture overnight at 37°C with vigorous shaking.
- Pour 1.5 ml of the culture into a micro centrifuge tubes. Centrifuge at 12,000x g for 30 seconds at 4 °C.
- 3. Remove the medium by aspiration, leaving the bacterial pellet as dry as possible.

- Resuspend the bacterial pellet in 100µl of ice-cold GET (Solution I) by vigorous vortexing. Tore the tube in room temperature for 5 minutes.
- Add 200µl of freshly prepared Alkali (Solution II) to the bacteria suspension. Close the tube tightly, and mix the contents by inverting the tube rapidly five times. Store the tube in ice for 7-8 minutes.
- Add 150µl of ice-cold CH₃COOK (Solution III). Close the tube and invert it several times so that the lysis from the previous step will stop. Store the tube in ice for 3-5 minutes.
- Centrifuge the bacteria lysate at 12,000x g for 5 minutes at 4°C in a microfuge. Transfer the supernatant to a fresh tube.
- Precipitate nucleic acids from the supernatant by adding 1 volume of 2propanol 100%. Mix the solution by vortexing and then allow the mixture to stand for 15 minutes in room temperature.
- Collect the precipitated nucleic acids by centrifugation at 12,000x g for 5 minutes at 4°C in a microfuge.
- 10. Remove the supernatant by gentle aspiration.
- 11. Add 0.5 volume of 70% ethanol to the pellet and invert the closed tube several times. Recover the DNA by centrifugation at 12,000x g for 2 minutes at 4°C in a microfuge.
- Again remove all the supernatant by gentle aspiration as the pellet sometimes does not adhere tightly to the tube.
- Remove any beads of ethanol that form on the sides of the tube. Store the open tube at room temperature until the ethanol has

evaporated and no fluid is visible in the tube.

14. Dissolve the nucleic acids in 50µl of TE (pH 8.0) containing 20µg/ml DNAse-free RNase A (pancreatic RNase). Vortex the solution gently for a few seconds. Store the DNA solution at -20°C.

Materials:

 GET (Solution I): 1.5ml glucose 50mM, 25mM TrisCl (pH 8.0), 10mM EDTA (pH 8.0) • Alkali (solution II): 0,2N NaOH, 1% SDS • CH3COOK (solution III): 5M potassium acetate, glacial acetic acid• water bath, 65°C • micro centrifuge tubes • 2-propanol, room temperature ٠ 70% ethanol. room temperature • RNase A (pancreatic RNase) • LB Broth •0.5% SDS solution • TE buffer (Tis HCl pH 8.0, EDTA pH 8.0)

2.3. Phenol: chloroform extraction

A widely used method to isolate RNA, DNA or proteins is the phenol-chloroform extraction. It is a method that separates mixtures of molecules based on the differential solubilities of the individual molecules in two different immiscible liquids (Stenesh et al., 1979).

The extraction of nucleic acids involves adding an equal volume of phenol-chloroform to an aqueous solution of lysed cells or homogenized tissue, mixing the two phases, and allowing the phases to separate by centrifugation. Chloroform mixed with phenol is more efficient at denaturing proteins than either reagent is alone. The phenolchloroform combination reduces the partitioning of poly(A)+ mRNA into the organic phase and reduces the formation of insoluble RNA protein complexes at the interphase.

Method:

- Add one volume of phenol: chloroform (1:1) to your sample, and vortex or shake by hand thoroughly for approximately 20 seconds.
- 2. Centrifuge at room temperature for 5 minutes at 16,000x g. Carefully remove the upper aqueous phase to a fresh tube.
- Add one volume of chloroform, vortex and centrifuge at room temperature for 5 minutes at 16,000× g.
- 4. Repeat the step 3.
- 5. Transfer the aqueous phase in a fresh tube and perform ethanol precipitation.

2.4 Ethanol precipitation

Ethanol precipitation is a widely used technique to purify or concentrate nucleic acids. This is accomplished by adding salt and ethanol to a solution containing DNA or RNA (Sambrook et al., 1989). In the presence of salt (in particular, monovalent cations such as sodium ions (Na⁺)), ethanol efficiently precipitates nucleic acids. The purified precipitate can be collected by centrifugation, and then suspended in a volume of choice.

Method:

- Add 1X volume of 2-propanol and 3M of CH₃COONa in the DNA sample and mix well.
- 2. Incubate at room temperature for 15 minutes.
- 3. Centrifuge for 20 minutes at 14,000x g.

- 4. Decant supernatant carefully without disturbing the pellet.
- 5. Wash by adding 0,5X volume of 70% ethanol and vortex 3 times.
- 6. Centrifuge for 5 minutes at 14,000x g.
- Remove the residual ethanol and air dry the pellet. Re-suspend in appropriate volume of ddH₂O or TE buffer.

Materials:

• 2- propanol • CH₃COONa (pH 5.2, 3.0 M) • Ethanol 70% • ddH₂O or TE buffer

2.5 Cloning into Plasmid Vector

Cloning of double-stranded DNA molecules into plasmid vector is one of the most commonly employed techniques in molecular biology. The procedure is used for sequencing, building libraries of DNA molecules, expressing coding and non-coding RNA, and many other applications.

The procedure involves ligating dsDNA into a plasmid. If both the insert and linearized plasmid have no overhanging bases at their termini, then then it is called "bluntend". If the insert and the plasmid have complementary ends its called "cohesive".

There are three critical steps for the successful cloning. First, the preparation of the selected vector. Second, the designing of the insert. The blunt-ended insert needs to be phosphorylated. When the ends of the insert are not blunt, a polishing or filling reaction is required. Third, the ligation conditions. In blunt-end ligations, the association of 5' phosphate groups and 3' hydroxyl groups are more transient than in cohesive-end ligations. Because they lack the hydrogen bond stabilization of cohesive ends, blunt-end

ligations are more sensitive to reaction conditions, especially to the concentrations of the reaction components. T4 ligase quality and concentration are also important. Bluntend ligations typically take place in the presence of higher concentrations of ligase than cohesive-end ligations.

2.5.1 Preparation of the cloning vector

Cloning vectors have three common properties: 1. A selectable marker, which is almost always antibiotic resistant; 2. An origin of DNA replication to allow vector propagation and 3. A MCS or polylinker that contains a number of restriction sites to clone foreign DNA.

The first step of the preparation of the cloning vector includes the digestion of the vector by the restriction enzymes. Restriction enzymes are proteins that cut DNA at specific recognition sites. There are two types of restriction enzymes based on the way they cut the target DNA: the blunt-end cutters which cut both strand of the target DNA at the same spot creating blunt ends and the sticky end cutters that cut both strand of the target DNA at different spots creating 3'- or 5'- overhangs of 1 to 4 nucleotides (sticky-ends).

The second step is the dephosphorylation of the ends using alkaline phosphatase. The third step is the purification of the digested vector by agarose electrophoresis to remove residual nicked and supercoiled vector DNA and the small piece of DNA that was cut out by the digestions. This usually reduces strongly the background of non-recombinants due to the very efficient transformation of undigested vector.

2.5.1.1 Digestion of the cloning vector

Method:

- Mix the following ingredients in an eppendorf tube: the appropriate amount of DNA plasmid, 1x restriction enzyme buffer, ddH₂O until the final volume of the reaction. Last step is to add the appropriate units of enzyme.
- *** One unit is defined as the amount of enzyme required to digest 1 μ g of λ DNA in 1 hour at 25°C in a total reaction volume of 50 μ l.***
 - Mix gently by tapping the tube or pipetting the solution up and down and incubate the reaction at the suitable temperature for the activity of the enzyme.
- *** Different enzyme have different temperatures and incubation times. Information is given by the manufacturer. ***
 - 3. To terminate the reaction, add 0.5µl EDTA that deactivates the enzyme.
 - For complete deactivation of the enzyme, incubate the reaction to high temperatures based on the manufactures of the enzyme guidelines.
 - 5. To separate the digested vector from the small DNA fragment that was removed by the digestion, the entire sample is purified using preparative agarose gel electrophoresis (see 2.9).

Materials:

- 10x restriction enzyme buffer DNA plasmid
- water bath, 65°C water bath, 37°C 2propanol, room temperature • 70% ethanol, room temperature • Restriction enzyme • EDTA (0.5M)

2.5.1.2 Dephosphorylation of the digested cloning vector

If the vector is cut with a single restriction enzyme, chances are much higher that the vector relegates back on itself rather than on an added DNA fragment. This results in a high fraction of "empty clones", or background. This is characteristic for the blunt end ligations.

For this reason, a step of dephosphorylation is achieved with the use of alkaline phosphatase. These enzymes dephosphorylate the DNA termini of the digested vectors so they cannot be ligated by DNA ligase.

Method:

- Mix gently the digested plasmids with 1X CIAP buffer, 1-unit alkaline phosphatase and add ddH₂O to final volume of the reaction.
- Incubate the mixture for 20 minutes at 37°C.
- Add 1 unit of alkaline phosphatase and incubate the mixture for another 20 minutes.
- Extract the dephosphorylated plasmid through phenol: chloroform (see 2.3) and precipitate it with ethanol precipitation (see 2.4).
- Dissolve the nucleic acids in the appropriate amount of ddH₂O for concentration of 50 ng/μl.

Materials:

CIAP buffer • water bath, 65°C • water bath,
37°C • 2-propanol, room temperature • 70%
ethanol, room temperature •phenol
•chloroform

2.5.1.3 Addition of deoxythymidine (T) residues to the vector

PCR products are usually amplified using a Taq DNA polymerase which adds a single deoxyadenosine to the 3' end of the product. If you add deoxythymidine (T) residues to the linearized vectors, the insert will ligate into the vector efficiently as they have complementary ends.

Method:

- To a linear plasmid vector (20ul) add: 2mM dTTPs, 1x Taq Buffer, 1.5mM MgCl₂, 2 units Taq polymerase and ddH₂O until the final volume of the reaction (50µl).
- 2. Incubate the mixture at 72°C for 2.5hours.
- 3. Extract the dephosphorylated plasmid through phenol: chloroform (see 2.3) and precipitate it with ethanol precipitation (see 2.4).
- Dissolve the nucleic acids in the appropriate amount of ddH₂O for concentration of 50 ng/μl.

Materials:

linear plasmid vector • dTTPs • 10x Taq
Buffer • MgCl₂ • Taq polymerase • water bath,
37°C • 2-propanol, room temperature • 70%
ethanol, room temperature •phenol
•chloroform

2.5.2 Ligation

On this step the insert DNA (gene or fragment of interest) is connected to the compatibly digested plasmid vector. This is performed by the T4 DNA ligase enzyme. The DNA ligase catalyzes the formation of covalent phosphodiester linkages which permanently joins the nucleotides together. After ligation, the insert DNA is physically attached to the vector and the complete plasmid can be transformed into bacterial cells for propagation.

Before setting up the ligation reaction itself, it is important to determine the amount of insert and plasmid vector to use for the ligation reaction. The volume of vector DNA and insert DNA used in the ligation vary depending on the size of each and their concentration. For most standard cloning (where the insert is smaller than the vector) a 3 insert: 1 vector ratio is used.

The formula to calculate the appropriate amount of the ingredients is:

ng plasmid x bp DNA x ratio bp plasmid

Method:

 Add in an eppendorf type tube the following ingredients: 50ng of the plasmid vector, 1x ligase buffer, 1 unit of T4 ligase and ddH₂O until the final volume (20μl).

Add 5units of enzyme and 2μ l of 50% PEG if the reaction is for blunt-end ligation

- 2. Gently mix the reaction by pipetting up and down and microfuge briefly.
- 3. Incubate at 16°C overnight and 1 hour at 22°C.
- 4. To inactivate the reaction, incubate for 10 minutes at 65°C.
- 5. Save the recombinant plasmin in -20°C.

Materials:

- plasmid vector 10x T4 Ligase Buffer MgCl₂
- T4 Ligase enzyme

2.5.3 Preparation and transformation of competent E. coli

The recombinant vector gets into *E. coli* cells by a process called transformation. The *E. coli* cells have to be made competent to take up the circular vector. The method for the preparation of competent cells depends on the transformation method used.

2.5.3.1 Electro-competent cells

Electro-competent cells are used for when the transformation is achieved through the exposure to electrical charge. The change of the electrical charge destabilizes the membranes of E. coli and forms transient membrane pores through which DNA molecules can pass (Neumann et al., 1982).

This method is called electroporation and it is the easiest, fastest, most efficient and most reproducible method for transformation of bacteria cells with DNA. Various parameters can be optimized like strength of the electrical field, the length of the electrical pulse and the concentration of DNA to achieve а transformation efficiencv of 1010 transformant/µg of DNA.

2.5.3.1.1 Preparation of electro-competent cells

Method:

- Inoculate 1 colony from a fresh plate of the strain to be made electro competent into 10 ml of LB-Broth in a 125 ml flask and incubate for 16-18 hours at 37°C and 250x rpm.
- ***For the LB Broth Medium stir to suspend 20g powder in 1L water. Autoclave for 15 minutes at 121C to sterilize. Allow to cool before making additions, such as antibiotics***

- Have ready 2, 1 L flasks containing 250 ml each of LB-Broth pre-warmed to 37°C. Add two drops of the overnight culture to each of the flasks.
- Shake at 37°C and 250x rpm until the cultures reach an OD600 of 0.5-0.7. Be sure to turn on centrifuge and cool rotor to 4°C well in advance of harvesting cells. Be sure to place 1 L of 10% glycerol on ice well in advance of harvesting cells.
- Place cultures on ice for 15 minutes. From this point on the cultures must be kept ice cold. Pour each 250 ml culture into chilled 500 ml (or 1000 ml) centrifuge bottles.
- 5. Centrifuge at 5000x rpm for 10 min. Pour off the supernatant and aspirate any residual broth.
- 6. Add 250 ml of glycerol to each of the centrifuge bottles and completely suspend the cells by pipetting up and down.
- Centrifuge at 5000x rpm for 10 min. Pour off the supernatant, it is not necessary to aspirate. Completely suspend the cells in 250 ml glycerol and re-centrifuge.
- Pour off the supernatant and suspend the cells in the residual glycerol by pipetting up and down.
- 9. At this point you can electroporate or freeze the cells away. To freeze, add 100 microliters of the culture to micro centrifuge tubes on ice. Once you have used all of the culture, transfer the tubes to dry ice for 10 minutes. Once the cultures are frozen, transfer them to a -80°C freezer.

2.5.3.1.2 Electroporation

The electroporation method was first used for the introduction of DNA in eukaryotic cells (Neuman et al., 1982).

Method:

- 1. Thaw amount of the competent *E. coli* cells on ice for 10 minutes.
- 2. Turn on electroporator and set to 13.8 kv for 5-6m second.
- 3. Place recovery SOC in 37°C water bath.
- 4. Pre-warm LB-antibiotic plates at 37°C.
- 5. Place appropriate number of micro centrifuge tubes and 1 mm-electroporation cuvettes on ice.
- Add 1 μl of a 10 pg/μl DNA solution to the cells in the micro centrifuge tube. Incubate for 1 minute.
- Transfer the DNA-cell mixture to the cold cuvette, wipe water from exterior of cuvette and place in the electroporation module and press pulse.
- Immediately add 1000 μl of 37°C SOC, mix by pipetting up and down once and transfer to a 15 ml-falcon tube.
- 9. Rotate in the 37°C incubator for 1 h.
- Make appropriate dilutions and overlay petri plates (90mm) that contain LB agar with the appropriate antibiotics that the recombinant plasmid has resistance (e.g. ampicillin). Incubate the plates overnight at 37°C.

Materials:

• S.O.C medium (2% tryptone, 0.5% yeast extract, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl2, 10 mM MgSO4, and 20 mM glucose • LB Broth (10 g/L Tryptone, 5 g/L Yeast Extract 5 g/L NaCl) • 10% glycerol • DNA solution • antibiotic

2.5.3.2 Chemically competent cells

The entrance of nucleic acids to the bacteria cells is also accomplished by chemical method. The chemical method includes the wash of the E. coli cell in cocktails of simple salt solutions to achieve a state of competence during which DNA molecules may be admitted to the cell. Most of the chemical methods currently used for bacteria transformation are based on the observations of Mendel and Higa (1970), who showed that bacteria treated with ice-cold solutions of CaCl₂, and then briefly heated to 37°C or 42°C could be transfected with bacteriophage λ DNA.

The method described is a transformation protocol described by Cohen et al., 1972 and yields competent cells that generate 10^6 to 10^7 transformed colonies/µg of supercoiled plasmid DNA.

2.5.3.2.1 Preparation of chemical competent cells

Method:

Inoculate 3 ml LB medium with the appropriate *E. coli* strain and incubate the culture overnight at 37°C at 210x rpm.

^{***} If you will perform blue-white selection add 30 μ l X-gal and 3 μ l IPTG before the overlay of the cells. ***

^{***} For the RNAi feeding assay we used the *E. coli* HT115 (DH3) strain. ***

- Add the overnight culture to 500 ml LB-Broth medium and incubate the culture at until the absorbance at 600 nm was approx. 0.5 (between 0.4 and 0.6).
- 3. Chill the culture for at least 10 min on ice.
- Centrifuge the cell suspension for 10 min at 4,500 rpm at 4°C.
- 5. Gently resuspend the pellet in 0.5x volume of the started material in CaCl₂ 50Mm.
- 6. Incubate the cell suspension on ice for 30 min.
- 7. Centrifuge for 10 min at 4000 rpm at 4°C.
- Gently resuspend the pellet in 0.1x volume of the started material in CaCl₂ and add 1.4 ml glycerol 10%.
- 9. Incubate the cell suspension on wet ice for at least 10 min.
- 10. Aliquot the cell suspension at 600 μl per tube glycerol 10% and store the tubes at 80°C.

2.5.3.2.2. Chemical transformation

Method:

- 1. Thaw amount of the competent *E. coli* cells on ice.
- 2. Add 1 μ l of a 10 pg/ μ l DNA solution (in DI water) to the cells in the micro centrifuge tube. Incubate for 30 minutes.
- 3. Transfer the mixture in a water bath at 42 °C for 2 minutes.
- 4. Transfer again on ice and add 1ml of SOC medium.
- 5. Rotate in the 37°C incubator for 1 h.
- 6. Centrifuge at 4000x rpm for 2 minutes.
- 7. Resuspend the pellet in 200μ l SOC.
- Make appropriate dilutions and overlay petri plates (90mm) that contain LB agar with the appropriate antibiotics that the

recombinant plasmid has resistance (e.g. ampicillin). Incubate the plates overnight at 37°C.

Materials:

• S.O.C medium (2% tryptone, 0.5% yeast extract, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl2, 10 mM MgSO4, and 20 mM glucose • LB Broth (10 g/L Tryptone, 5 g/L Yeast Extract 5 g/L NaCl) • 10% glycerol • DNA solution • antibiotic • CaCl₂ 50Mm

2.5.4 Screening and identification of recombinant clone

Based on the cloning plasmid vector you choose the screening and identification of the recombinant cells differs.

2.5.4.1 Blue-white screening

Blue-white screening is a widely used technique to examine successful cloning. In this method the insert is cloned into a vector containing a $lacZ\alpha$ sequence encoding the α -peptide, a functional subunit of the β -galactosidase enzyme in the multiple cloning site.

The competent cells used for the transformation of this plasmids should have the lacZAM15 mutation. An empty vector will produce blue colonies since the activity of the β-galactosidase remains intact. The colorless X-gal (lactose analog) provided in the screening plates is hydrolyzed bv ßgalactosidase to form a blue pigment (5,5'dibromo-4,4'-dichloro-indigo). If the vector the DNA disrupting contains insert the *lacZa* sequence, then the α -peptide will not be expressed and X-gal will not be hydrolyzed and the colonies that have the DNA insert will be white.

2.5.4.2 Colony PCR

Another way of screening the colonies for the presence of the DNA insert is by using PCR. The primers may be insert-specific, vector-specific, or both to detect the insert. Colony screening by PCR is suitable for inserts shorter than 3 kb. Amount of the individual colony can be directly subjected to the PCR mix and perform PCR (see 2.6). The remaining portion of the colony may be used to inoculate a culture plate or liquid LB media with appropriate antibiotic for downstream applications.

2.6 Polymerase Chain Reaction (PCR)2.6.1 Standard PCR reaction

A standard Polymerase Chain Reaction (PCR) is an *in vitro* method that allows a single, short region of a DNA molecule (single gene perhaps) to be copied multiple times (Saiki et al. 1985).

A typical PCR reaction requires the DNA template, a pair of DNA oligonucleotide (oligo) primers, free nucleotides (dNTPs), enzyme Taq DNA polymerase and the reaction Buffer.

The template DNA could be a fragment of specific sequence or genomic DNA and cDNA. Based on the DNA segment to be amplified, two unique single stranded DNA oligonucleotide (oligo) primers are required. The primers anneal to the regions upstream (5') and downstream (3') of the sequence. For the efficiency of the primer is essential, that the 3' end of the primer corresponds completely to the template DNA strand so elongation can proceed. Usually a guanine or cytosine is used at the 3' end, and the 5' end of the primer usually has stretches of several nucleotides. Also, both of the 3' ends of the hybridized primers must point toward one another.

Another important aspect is the size of the primer. Short primers are mainly used for amplifying a small, simple fragment of DNA. On the other hand, a long primer is used to amplify a eukaryotic genomic DNA sample. The size of the primer should be between 18-24 bases. Moreover, the sequence of the primer should have 40-60% G/C and the melting temperature (Tm) at 50-60°C. The structure of the primer should be relatively simple and contain no internal secondary structure to avoid internal folding.

The basic enzyme for the reaction is a DNA polymerase isolated from the thermophilic bacterium, *T. aquaticus (Taq)*. *Taq* polymerase can withstand many heating and cooling cycles, which would denature DNA polymerases from other species.

The free nucleotides (dNTPs) are the building blocks added one at a time to the new DNA strand by the DNA polymerase.

The reaction buffer contains MgCl₂ which provides an optimal and stable chemical environment for the DNA polymerase to work adequately. Divalent cations such as Mg²⁺ and Mn²⁺ stabilize the buffer solution. The buffers usually come to a concentration of 10X based on the provided guidelines.

Method:

- 1. Place all the reagents on ice.
- In a PCR tube (200µl) add: the DNA template, Buffer (1x), dNTPs (10Mm each), (0,4- 0,6 µM ο καθένας), the enzyme Taq DNA polymerase (1 unit) and ddH₂O until the final volume of the reaction (25ul).

3. The PCR tube is placed in a PCR machine.

A basic PCR program has six steps:

- Initial Denaturation for 2 minutes at 94°C: This initiation step heats the double stranded DNA template strand to the point where the strands start denaturing and the hydrogen bonds are broken between the nucleotide base pairs.
- 2. Denature 30 seconds at 94°C: Continued denaturation of double stranded DNA.
- Anneal primers for 30 seconds at annealing temperature (Ta): The Ta is calculated as the melting temperature (Tm) minus 5 (Ta=Tm-5).
- 4. Extend DNA for 1 minute at 74°C: The Taq polymerase has an optimal temperature around 70-75°C so this step enables the DNA polymerase to synthesize and elongate the new target DNA strand accurately and rapidly.
- 5. Repeat steps 2-5 for 25-30 times.
- Final extension for 5 minutes at 74°C: A final extension to fill-in any protruding ends of the newly synthesized strands.

Materials:

DNA template (20-40ng)
 Primers (10pmol/µl each)
 dNTPs (10mM each)
 Enzyme Taq DNA polymerase (5units/µl)
 Reaction Buffer (10x)
 ddH₂O

2.6.2 Real time PCR

Real-time PCR (also known as quantitative or qRT-PCR) allows accurate quantification of starting amounts of DNA, cDNA, and RNA targets. During each cycle of the qRT-PCR a fluorescence is measured giving you the opportunity to measure the amount of your PCR product as it is proportional to the amount of the dye. PCR products can be detected using either fluorescent dyes that bind to double-stranded DNA or fluorescently labeled sequence-specific probes.

The most common fluorescent dye is called SYBR Green. This dye binds all doublestranded DNA molecules, emitting a fluorescent signal of a defined wavelength on binding. Detection takes place in the extension step of real-time PCR. Signal intensity increases with increasing cycle number due to the accumulation of PCR product.

Method:

- 1. In transparent low profile strips add the desired amount of DNA (1 μ l), the specific pair of primers for the amplified region and the master-mix mixture as it is provided by the manufacturer. The master mix contains buffer, dNTPs, the DNA polymerase, and the SYBR Green dye. Add ddH₂O until the final volume of the reaction.
- 2. Place the strips in the PCR real-time machine.

2.6.3 Reverse transcription

The synthesis of DNA from an RNA template, via reverse transcription, produces complementary DNA (cDNA). The enzyme used for the reaction is MMLV RT with reduced RNase H activity and increased thermal stability. The enzyme is purified to near homogeneity from E. coli containing the modified pol gene of Moloney Murine Leukemia Virus (Kotewicz et al., 1985).

Method:

- In a nuclease-free microcentrifuge tube add the following components for a 20-μl reaction volume: Oligo(dT)12-18 (500 μg/mL) or 1 μl 50–250 ng random primers or 2 pmole gene-specific primer (GSP), 1 ng to 5 μg total RNA or x μl, 1–500 ng of mRNA, 1 μl dNTP Mix (10 mM each), 1 μl ddH₂O to 12 μl.
- Heat the mixture to 65°C for 5 min and quick chill on ice. Collect the contents of the tube by brief centrifugation.
- Add 5X First-Strand Buffer 4 μl, 0.1 M DTT 2 μl, RNaseOUT[™] (40 units/μl)
- 4. Mix the contents of the tube gently.
- 5. Incubate at 42°C for 2 min.
- Add 1 µl (200 units) of SuperScript[™] II RT and mix by pipetting gently up and down.
- 7. Incubate tube at 25°C for 10 min.
- 8. Incubate at 42°C for 50 min.
- Inactivate the reaction by heating at 70°C for 15 min.

Materials:

Oligo(dT) (500 µg/mL) or 50–250 ng random primers or 2 pmole gene-specific primer (GSP)
RNA template (1 ng to 5 µg total RNA or x µl, 1–500 ng of mRNA)
Primers (10pmol/µl each) • dNTPs (10mM each) • SuperScript[™] II Reverse transcriptase (5units/µl) • 5x Reaction Buffer (250 mM Tris-HCl, pH 8.3 at room temperature; 375 mM KCl; 15 mM MgCl₂) • ddH₂O

2.7 In vitro transcription

In vitro transcription is a procedure that allows the template-directed synthesis of RNA molecules of any sequence from short oligonucleotides to those of several kb in μ g

to mg quantities. It is based on the engineering of a template that includes a bacteriophage promoter sequence (e.g. T7 promoter) upstream of the sequence of interest followed by transcription using the corresponding RNA polymerase. The protocol followed in this thesis was based on the MEGAscript[®] Kit from Invitrogen.

In vitro transcription is used for the synthesis of large amounts of unlabeled or low specific activity RNA for a variety of uses including in vitro translation, antisense/ microinjection studies, and isolation of RNA binding proteins.

Method:

- Thaw the frozen reagents in ice. Only the 10X Reaction Buffer should be at room temperature as it contains spermidine that can coprecipitate the template DNA.
- For 20μl final volume of reaction add in the specific order the: PCR-product template, 2 μl ATP solution, 2 μl CTP solution, 2 μL GTP solution, 2 μL UTP solution, ddH₂O, 2 μL 10X Reaction Buffer (1 μl) and 2 μL Enzyme Mix.

*** Add the 10X Reaction Buffer after the water and the ribonucleotides are already in the tube. ***

- 3. Mix thoroughly by gently flicking the tube or pipette the mixture up and down gently.
- 4. Centrifuge the tube briefly to collect the reaction mixture at the bottom of the tube.
- 5. Incubate at 37°C for 2–4 hours.
- To stop the reaction, add 115 μl Nucleasefree Water and 15 μl Ammonium Acetate Stop Solution and mix thoroughly.
- 7. Extract with an equal volume of phenol/chloroform and then with an equal

volume of chloroform. Recover aqueous phase and transfer to new tube.

- Precipitate the RNA by adding 1 volume of 2-propanol and mixing well.
- Chill the mixture for at least 15 min at 20°C. centrifuge at 4°C for 15 min at maximum speed to pellet the RNA.
- 10. Carefully remove the supernatant solution and resuspend the RNA in a solution appropriate for your application. Store frozen at -20° C or -70° C.

Materials:

• Enzyme Mix • DNA template that has the correct RNA polymerase promoter site upstream of the sequence to be transcribed • 10X Reaction Buffer • dNTPs (10mM each) • Enzyme Taq DNA polymerase (5units/µl) • Ammonium Acetate Stop Solution (5 M ammonium acetate, 100mM EDTA) • ddH₂O • 2-propanol • Phenol • Chloroform

2.8 DNase treatment

The presence of contaminating genomic DNA (gDNA) in RNA preparations is a frequent cause of false positives in RT-PCRbased assays aimed at gene expression analysis. two alternative methods for RNA treatment with DNase are described. The choice of the most suitable method is largely dependent on the availability of starting RNA.

The conventional DNase treatment requires a step of phenol/chloroform. However, this treatment causes 50% RNA loss so it is suitable only when an RNA solution is not pure and large RNA amounts are available. For this reason, the DNase digestion followed by enzyme heat inactivation is more suitable, especially when an RNA starting quantity is very low. This method may be very useful when an RNA has been extracted from small biopsies or cytologic specimens. Here, we use the TURBO DNA-free[™] Kit Ambion-Invitrogen for the DNAse treatment.

Method:

- Add 0.1 volume 10x TURBO DNase Buffer and 1 μl TURBO DNase to the RNA, and mix gently.
- 2. Incubate at 37°C for 20–30 min.
- Add resuspended DNase Inactivation Reagent (typically 0.1 volume) and mix well.

***Always resuspend the DNase Inactivation Reagent by flicking or vortexing the tube before dispensing it. ***

- **4.** Incubate for 5 minutes at room temperature while mixing occasionally.
- Centrifuge at 10,000× g for 1.5minutes and transfer the RNA to a fresh tube.

Materials:

10x TURBO DNase Buffer
 DNase Inactivation Reagent
 RNA
 TURBO DNase (2 Units/μl)

2.9 Gel electrophoresis

Agarose gel electrophoresis is a routinely used method for separating proteins, DNA or RNA. (Kryndushkin et al., 2003). Nucleic acid molecules are size separated by the aid of an electric field where negatively charged molecules migrate toward positive pole. The migration flow is determined by the molecular weight where small weight molecules migrate faster than larger ones (Sambrook & Russel 2001). In addition to size separation, nucleic acid fractionation using agarose gel electrophoresis can be an initial step for further purification of a band of interest. Extension of the technique includes excising the desired "band" from a stained gel viewed with a UV transilluminator.

To view the gel with UV a fluorescent dye, named Ethidium bromide, is currently used. Ethidium bromide intercalates between nucleic acids bases and provides easily detection of nucleic acid fragments in gels (Sharp et al. 1973). The gel subsequently is being illuminated with an ultraviolet lamp usually by placing it on a light box.

2.9.1 Preparation of the gel

- Prepare a solution of agarose in electrophoresis buffer at a concentration appropriate for separating the particular size fragments expected in the DNA sample.
- 2. If using a glass bottle, loose the cap. Heat the mixture in a microwave oven until the agarose dissolves.
- When the melted gel has cooled at 55°C, add ethidium bromide to a final concentration of 0.5 μg/ml. Mix the gel solution thoroughly by gentle swirling.
- 4. While the agarose solution is cooling, choose an appropriate comb for forming the sample slots in the gel. Position the comb 0.5-1.0 mm above the plate so that a complete well is formed when the agarose is added to the mold.
- 5. Pour the warm agarose solution into the mold.
- Allow the gel to polymerize completely (20-45 minutes at room temperature), then pour a small amount of electrophoresis

buffer on the top of the gel, and carefully remove the comb. Pour off the electrophoresis buffer and carefully remove the tape. Mount the gel in the electrophoresis tank.

2.9.2 Run the gel

- Place the gel into the electrophoresis device and enough electrophoresis buffers to cover the gel.
- Mix the sample by loading dye with a ration 1:5 or 1:10. Slowly load the sample mixture into the slots of the submerged gel. Add also a size standard into slot.
- 3. Close the lid of the gel tank and attach the electrical leads so that the DNA will migrate toward the positive anode (red lead).

If the leads have been attached correctly, bubbles should be generated at the anode and cathode, and within a few minutes, the bromophenol blue should migrate from the wells into the body of the gel

- Run the gel until the bromophenol blue and xylene cyanol FF have migrated for distance through the often to the last third of the gel.
- 5. When the DNA samples or dyes have migrated for a sufficient distance through the gel, turn off the electric current and remove the leads and lid from the gel tank. Otherwise, stain the gel by immersing it in electrophoresis buffer or H₂O containing ethidium bromide (0.5 µg/ml) for 20-45 minutes at room temperature.

Materials:

TBE (10x stock solution in 1 liter of H2O: 48.4 g Tris base, 5g of boric acid, 40 ml of 0.5
M EDTA (pH 8.0)
6x Gel-loading Buffer (0.25% (w/v) bromophenol blue 0.25% (w/v) xylene cyanol FF 40% (w/v) sucrose in H_2O) • Ethidium Bromide (1 g of ethidium bromide to 100 ml of H2O. Stir on a magnetic stirrer for several hours to ensure that the dye has dissolved. Wrap the container in aluminum foil or transfer the 1% (10 mg/ml) solution to a dark bottle and store at room temperature).

2.9.3 Gel extraction

The GF-1 Gel DNA Recovery (extraction) Kit is a system designed for rapid purification of DNA bands ranging from 100bp to 10kb from all grades of agarose gel in TAE (Tris-acetate/ EDTA) or TBE (Tris-borate/ EDTA). The method includes the solubilization of the agarose gel in the Buffer GB and the transfer of the DNA solution on a filter membrane for efficient recovery of highly pure material.

Method:

- Determine the net weight of gel slice and add 1 volume of Buffer GB to 1 volume of gel (A gel slice of mass 0.1g will have a volume of 100µl).
- 2. Centrifuge the tube briefly to make sure the gel slice stays at the bottom of the tube.
- Incubate at 50°C until gel has melted completely. Mix occasionally to ensure complete solubilization.
- 4. Transfer the sample into a column assembled in a clean collection tube.
- 5. Centrifuge at 10,000x g for 1 min. Discard flow through.
- Repeat for any remaining sample from step
 4.
- 7. Add 650µl Wash Buffer into the column.
- 8. Centrifuge at 10,000x g for 1 min. Discard flow through.

Ensure that ethanol has been added into the Wash Buffer before

- 9. Column drying Centrifuge the column at 10,000 x g for 1 min to remove residual ethanol. This step has to be carried out to remove all traces of ethanol as residual ethanol can affect the quality of DNA and may subsequently inhibit enzymatic reactions.
- 10. Place the column into a clean microcentrifuge tube. Add 30 50µl Elution Buffer, TE buffer or sterile water directly onto column membrane and stand for 2 min. For DNA fragments larger than 8kb, use preheated elution buffer at 65°C 70°C for better elution efficiency.
- 11. Centrifuge at 10,000x g for 1 min to elute DNA. Store DNA at 4°C or -20°C.

For higher yield, elute DNA in 50μl and for higher concentration, elute DNA in smaller volume. Ensure that the elution buffer is dispensed directly onto the center of the membrane for complete elution

12. Store DNA at -20°C.

2.10 Microinjection technique

The use of microinjection as a biological procedure began in the early twentieth century. By the 1990s, its use had escalated significantly and it is now considered a common laboratory technique introducing a small amount of a substance into a small target (Lacal et al., 1999). The insect microinjection has three steps. First, the preparation of the injector which includes wash of all the components with ethanol and preparation of the needle. Second, filling the needle with the substance you want to introduce to third injecting the insects

Method:

Preparation of the injector

- 1. Clean injection area with 70% ethanol.
- 2. Plug power cord into mains.
- 3. Plug power source into top of Nanoject II Module.
- 4. Plug injector into top of Nanoject II Module.
- Unscrew black collet on injector and carefully tap out 2 black O-rings and 1 white spacer.
- 6. Wash all components with ethanol.
- 7. Fully extend plunger by holding EMPTY and pressing FILL once to increase speed.
- 8. Place small black O-ring on plunger and carefully push to Base.
- 9. Place white spacer on plunger with indentation towards tip.
- 10. Choose glass needle and break off tip using forceps under microscope.
- 11. Backfill glass needle with mineral oil using a syringe with yellow needle, VERY slowly to avoid bubbles until a drop comes out of the tip.
- 12. Continue backfilling as needle is removed to avoid air pocket.
- 13. Insert glass needle through BLACK collet.
- 14. Place LARGE BLACK O-ring on end of glass needle such that the domed side faces tip.
- 15. Insert injector plunger into back of needle and pull all the way down to base Tighten collet onto injector.

Filling the needle with the injected materials

- 16. Cut a square of parafilm and place under microscope.
- 17. Pipette 3-4 μ l drop of liquid material onto parafilm.
- 18. Clean oil carefully from tip of needle.
- 19. Position point of needle in the liquid drop (hold injector vertically).
- 20. Suck up dsRNA by holding FILL (press EMPTY once to increase speed). Stop before complete to avoid air bubbles. <u>Injecting the insects</u>
- 21. Fill petri dishes with water and freeze them in -80°C.
- 22. Place one cup (10-15 insects) for 1-2 minutes in a box full of ice to anaesthetize insects.
- 23. Place whatman filter paper on a frozen petri dish.
- 24. Place insects on the petri dish.
- 25. Inject insect in one of two sites (Between the thorax and first abdominal segment or Unpigmented area below the mesonotum) by piercing cuticle and pressing foot pedal.

2.11 Feeding assay

The protocol used for the RNAi feeding was based on the protocol described by Li et al. (2011).

Method:

Preparation of the plasmid

- Amplify part of the coding region from your target gene by RT-PCR using specific primers. Most of the RNAi experiments use 300-520bp fragment.
- 2. Clone the PCR products into MCS of L4440 plasmid (see 2.5). The L4440 plasmid has

two T7 promoters in inverted orientation flanking the multiple cloning site.

3. Prepare HT115 (DE3) competent cells lacking RNase III using standard CaCl₂ methodology and transform them with recombinant plasmid L4440 (see 2.5.3.2).

Bacterial culture

- Culture 2ml of the transformed bacteria at 37°C with shaking at 210x rpm overnight
- Transfer the culture in 100ml YT buffer supplemented with 75 mg/ml ampicillin plus 12.5 mg/ml tetracycline and culture at 37°C, 250x rpm until OD₆₀₀ = 0.5 (3.5-4 hours)
- Add IPTG to 0.4mM (final concentration) for 4hours (IPTG induces the synthesis of T7 polymerase)

Bacterial feeding experiments

- 1. Centrifuge for 10 minutes at 5000x g and dilute the pellet in 200μ l H₂O.
- 2. Mix the dilution with 2gr of artificial diet and feed the insects.

RNAi experiments should be performed in two different groups. Group 1 will be fed for the gene of interest and group 2 will be fed for GFP (a sequence with no homology on insects' genomes). Use the control group to determine your silencing percentage and phenotype

2.12 Next-generation sequencing

Next-generation sequencing (NGS) involves all the described number of different modern sequencing technologies. Here, are analyzed two of them: Illumina and Ion Proton sequencing.

2.12.1 Illumina library preparation and sequencing

The RNAseq for the testes was performed by the Illumina Hi-Seq 2000 using the Illumina TruSeq RNA Sequencing protocol at the Genome Quebec in Canada.

To perform Illumina sequencing the first step is to prepare the cDNA libraries (Kozarewa et al., 2009). An isolation of total RNA (>200ng) is performed for the analyzed samples using the TRI Reagent[®] material (see 2.2.2). Then, an RNA extraction is followed by an additional DNase treatment using the TURBO DNA-free Kit (see 2.8). Polyadenylated RNA (polyA-RNA) is isolated through Dynabeads Oligo(dT) kit (Ambion, Life Technologies Corporation) and randomly fragment by chemical hydrolysis at 94°C for 5 minutes. Then a removal of phosphatase groups from the fragments' ends is required with antarctic phosphatase followed by treatment with T4 polynucleotide kinase to add a Pi at the 5' end of each fragment.

The resulting RNA fragments are hybridized and ligated to the P1 and P2 adaptor sequences and the RNA produced is reverse transcribed to cDNA which then is amplified in a 15-cycle PCR. At this step, the use of different barcoded 3' PCR primers from the selection included in the SOLiD barcoding kit allows the preparation of cDNA libraries for multiplex sequencing. PCR is carried out to amplify each read, creating a spot with many copies of the same read.

From the cDNA produced, the preferable fragments are selected (in this thesis 200-300bp) with two rounds of magnetic bead purification (Agencourt AMPure XP Reagent, Beckman Coulter).

The quality and size of the purified cDNA library is assessed on the Agilent Bioanalyzer 2100 (Agilent Technologies Inc.) and with quantitative PCR using the Library Quant Kit ABI Solid (KAPA Biosystems). A multiplex library mix (500pM) is used to prepare a full-slide for analysis on the SOliD 4 Sequencing System (Applied Biosystems. The library sequencing is performed on the SOLiD 4 Sequencing System using the SOLiD Total RNA-Seq Kit, Life Technologies Corporation.

The logic of the sequencing is simple. The prepared slice is flooded with nucleotides and DNA polymerase. Each nucleotide is labeled with different a fluorescence dve and a terminator so that one nucleotide will be added at each cycle. An image is taken of the slide. In each read location, there will be a fluorescent signal indicating the base that has been added. Before each cycle the terminators are removed allowing the next base to be added, and the fluorescent signal is removed. preventing the signal from contaminating the next image. Computers are then used to detect the base at each site in each image and these are used to construct a sequence. All of the sequence reads will be the same length, as the read length depends on the number of cycles carried out.

2.12.2 Ion proton library preparation and sequencing

The RNAseq for the male (male accessory gland with ejaculatory bulb) and female reproductive tissues (lower reproductive tract) was sequenced on the Ion Proton[™] system for Next-Generation Sequencing at the Fleming Institute (Greece) using the Ion Torrent[™] Ion Chef[™] automated.

The method for the library preparation for Ion proton is not too different from the above. An isolation of total RNA is performed for the analyzed samples using the TRI Reagent[®] material (see 2.2.2). Then, an RNA extraction is followed by an additional DNase treatment using the TURBO DNA-free Kit (see 2.8). Polyadenylated RNA (polyA-RNA) is isolated through Dynabeads Oligo(dT) kit (Ambion, Life Technologies Corporation) and the fragmentation is performed (chemical or mechanical) using a sonicator (Covaris S2). As in other kinds of next-generation sequencing, the input DNA or RNA is fragmented, this time ~200bp. Adaptors are added and one molecule is placed onto a bead. The molecules are amplified on the bead by emulsion PCR (One Touch 2 emulsion) and each bead is placed into a single well of a slide. The quality and size of the purified cDNA library is assessed on the Agilent Bioanalyzer 2100 (Agilent Technologies Inc.) and Nanodrop. The library sequencing is performed on the Ion Torrent PROTON Sequencing System.

The logic of the sequencing in Ion proton has specific differences compared to Illumina. The Ion proton does not make use of optical signals (Rothberg et al., 2011). It is based on the fact that each addition of dNTP by DNA polymerase releases an H⁺ ion. The prepares slides is flooded with a single species of dNTP along with buffers and polymerase. The pH is detected in each of the wells, as each H⁺ ion released will decrease the pH. The addition of one or more bases to the sequence is mirrorize on the pH changes allowing to determine if that base, and how many thereof, is added to the sequence read. Before each PCR cycle the dNTPs are washed away. All of the sequence reads from Ion proton are different lengths, because different numbers of bases are added with each cycle.

2.13 Bioinformatics

2.13.1 BLAST

The comparisons of the sequences were performed using the BLAST (The Basic Local Alignment Search) program (Altschul et al., 1990). BLAST finds a suite of programs provided by NCBI for aligning query sequences against those present in a selected target database.

The program finds region of local similarity between sequences through comparison of nucleotide to sequence databases of nucleotides (BLASTn), or protein sequences to databases of proteins (BLASTp) and calculates the statistical significance of matches. Moreover, it gives you the opportunity to use BLASTx for identifying potential protein products encoded by a nucleotide query, tBLASTn, for identifying database sequences encoding protein similar to query or tBLASTx for identifying nucleotide sequences similar to query based on the coding potential.

Moreover, the program Primer-Blast gives you the opportunity to design pair of primers for your amplifications through PCR or qRT-PCR (see 2.6.1).

2.13.2 BLAST2GO

BLAST2GO is a bioinformatic platform for high-quality functional annotation and analysis of genomic datasets It is user friendly and gives you the opportunity to annotate thousands of sequences, in multiple projects and interrogate the biological meaning with different graphical and statistical functions.

2.13.3. GraphPad Prism

GraphPad Prism is a scientific 2D software for graphing and statistics. Data of this thesis were analyzed using the Student's t-test in this program. Results were expressed as mean ± standard error and a p value of < 0.05 was considered statistically significant.

2.13.4 E-RNAi3

E-RNAi is a tool for the design and evaluation of RNAi reagents for a variety of species. It can be used to design and evaluate long dsRNAs (including esiRNAs) as well as siRNAs. (http://www.dkfz.de/signaling/ernai3/idseq.php). Typically, RNAi experiments are done with dsRNA 400bp and larger, 200bp is the minimum size for dsRNA recommended. (Horn et al., 2010).

2.14 Peptidomic analysis

2.14.1 Sample Preparation for LC/MS

The reproductive system of virgin and mated flies was dissected and directly transferred into 30-40 µl ice-cold 90% methanol/ 9% water/ 1% trifluoroacetic acid (TFA) (v/v/v) in an eppendorf microtube. Each sample was consisted of tissues from 40 insects performed in two biological replicates. The isolation of the peptides was performed using the ZipTip pipette according to the manufacture's guideline. The eluted supernatant was transferred to a new tube, centrifuged and dried in a Speed-Vac and stored at -20°C.

2.14.2 Mass Spectrometry analysis

Re-suspended peptides in 0.1% TFA were vortexed and sonicated, each for 5 minutes followed by 10-minute centrifugation at 13,000x rpm. After centrifugation the supernatant was transferred to a new tube injected for and reverse phase chromatography separation. The peptide samples were spotted on the MALDI plate with the use of a robot-based target spotting (Proteineer fc II; Bruker Dalton- ics), samples were then analyzed with a matrix-assisted laser deionization-tandem time of flight (MALDI-TOF/TOF) mass spectrometer (Ultraflex- treme; Bruker Daltonics). Tandem mass spectrometry (MS/MS) spectra containing precursor masses corresponding to possible cross-linked peptides were analyzed using a combination of Biotools and Flex-Analysis software (Bruker Daltonics). For peptide identification, MS/MS spectra were analyzed with the use of MASCOT software 2.4.1. and followed by manual validation which includes a thorough manual analysis of each spectrum, accurate identification of series of b- and y- ions and ammonium ions confirming sequences.

2.15 Fertility assays

On the 7th day after eclosion males were allowed to mate with virgin females. Mating that lasts >1 hour is considered successful (Zervas et al., 1982). When the insects separate from each other, males are discarded and females are allowed to lay eggs for twelve days in separate cages. Oviposition rate is calculated based on the daily egg count for each female fly. Experiments are repeated three times. Experiments were repeated three times.

2.16 Adult survival experiment

Insects fed with ds-SPR and ds-GFP are placed in different cages with the change to fresh food at the interval of 24h. Mortality is monitored every 24 hours and dead insects are counted and removed from the cages.

3. RESULTS

3.Results

3.1 Transcriptome sequencing analysis of the reproductive system

In order to identify genes that may play a role in mating, a comprehensive analysis of the transcriptome of male and female reproductive tissues from sexually mature virgin and mated olive flies was performed. The tissues selected for the analysis were: 1. the male accessory glands and testes that produce the seminal fluid transferred to females during mating and 2. the lower female reproductive tract. comprising from the spermathecae, where sperm is stored until the time of fertilization, the uterus and the female accessory glands that produce a multi-function material for protection and nutrition of the zygote after fertilization.

In order to obtain tissues from sexually mature virgin flies, dissections were performed at the 7th day after eclosion. The sexual maturation of the insects was determined by their ability to mate and give offspring. The laboratory strain of the olive flies used for the experiments was sexually mature and could mate successfully giving offspring on the selected day.

The dissection of the tissues from mated olive flies was performed 12 hours after mating. Specifically, on the 7th day after eclosion we mixed virgin male and female flies to mate. To consider a mating successful, it should last >1hour (Zervas et al., 1982). When the insects separated from each other, we kept them in different cages for 12 hours before we perform dissections. In *D. melanogaster* the highest post-mating gene expression occurs after 6 hours (Mack et al., 2006) and in *C. capitata* there is a general increase in the transcriptional activity only after three repeated matings (Scolari et al., 2012). As there is no such evidence for the reproductive tissues of *B. oleae*, two pieces of information guided our decision. Firstly, male olive flies can remate at least 24 hours after previous mating (Tsiropoulos 1970) and, secondly, oviposition of the mated females also starts 24 hours after mating. Given that, we considered that the most appropriate time to collect the tissues would be 12 hours after mating, since we hypothesized that at that point there should be high transcription rate of reproductive genes.

The collected tissues per sample included:

- Female lower reproductive tract tissues from sexually mature virgin females (two biological samples).
- Female lower reproductive tract tissues from mated females at 12h post mating (two biological samples).
- 3. Male reproductive tissues from male accessory glands with ejaculatory bulb (two biological samples).
- Male reproductive tissues from mated males 12h post mating (two biological samples) and testes (one biological sample).
- Gut tissues from virgin males to be used as a control. Gut is a tissue from the digestive system of the insect (one biological sample) that should not be affected by mating.

The analyzed tissues are shown in Table 3.1. Total RNA of $\sim 1\mu g$ (50 insects) from each sample was isolated followed by subsequent DNA removal. The integrity of RNA was assessed by 1% agarose gel

System	Tissues	Virgin	Mated
	testes	-	M_TESTES
Male reproductive	accessory gland with	V_MALE_1	M_MALE_1
	ejaculatory bulb	V_MALE_2	M_MALE_2
Formala nonnaduativa	lower reproductive tract	V_FEMALE_1	M_FEMALE_1
Female reproductive		V_FEMALE_2	M_FEMALE_2
Gustatory	gut	GUT-1 (male)	-

Table 3.1: Samples used for the RNAseq of *B. oleae*. Numbers (1 and 2) indicate the different biological replicates of the tissues.

electrophoresis and the purity of all RNA samples was evaluated at Fleming Institute (Greece) with the use of Agilent 2100 Bioanalyzer and NanoDrop[™] 2000 (S6.1). Electrophoresis of the samples is presented in Figure 3.1.

mRNA transcripts from the samples were used to construct cDNA libraries for sequencing analysis. The cDNA libraries of accessory glands and ejaculatory bulb from virgin and mated male flies, the lower reproductive tract from virgin and mated female flies and the gut tissue from virgin male flies were sequenced on the lon ProtonTM system for Next-Generation

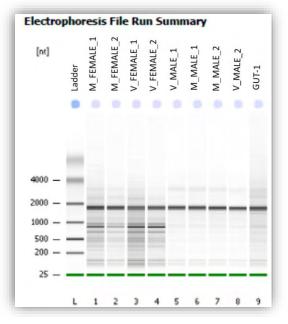


Figure 3.1: Electrophoresis Run Summary of the samples for RNAseq.

Sequencing at the Fleming Institute (Greece) using the Ion Torrent[™] Ion Chef[™] automated platform. The cDNA library obtained from the testes of mated male insect (M_TESTES) was sequenced by Illumina Hi-Seq 2000 using the Illumina TruSeq RNA Sequencing protocol at the Genome Quebec in Canada.

RNAseq read mapping was performed in collaboration with Dr. Martin Rezsco. A single representative *de novo* transcriptome assembly was generated from a concatenation of the libraries obtained with the Illumina platform using the Trinity pipeline (Haas et al. 2013). After assembly, transcript and unigene level expression values were calculated using RSEM (Li et al 2011) for the libraries sequenced with the Ion Proton. The average length of read was 669,78 bp and the sequenced 203,690,146 bp gave 255,077 genes. From the libraries V_MALE and M_MALE we obtained 11,452 transcripts and

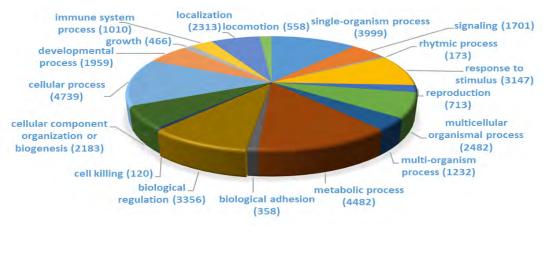

Summary of the total B. oleae transcriptome				
Total base pairs	203,690,146			
Total trinity "genes"	255,077			
Average read length	669,78			
Percent GC	37,47			
median contig length	340			

Table 3.2: Assembly statistics of the Illumina and Ion proton sequencing.

from the libraries V_FEMALE and M_FEMALE

we obtained 10,478 transcripts. The assembly statistics of the Illumina and Ion proton

Specifically, the transcriptome from both sexes is distributed to the same GO terms indicating a similar biological profile of

A. Male accessory glands/ ejaculatory bulb

B. Lower female reproductive

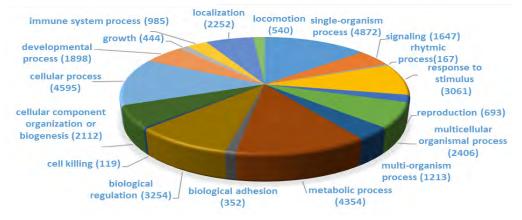


Figure 3.2: Distribution of the olive fly transcriptome sequences in Gene Ontology Biological Process Categories Level II. Unknown sequences were excluded from the analysis. GO categories with less hits in less than three genes are not indicated.

transcriptome are presented in Table 3.2.

Moreover, we performed functional annotation of the assembled transcripts for the Ion ProtonTM transcriptomes based on the gene ontology (GO) categorization and using BLAST2GO. The GO analysis performed for the category of biological process level II is shown in Figure 3.2 and represents all the transcriptome sequences obtained for the male and female reproductive system.

the genes expressed in both reproductive systems. Within the GO Biological Process, the metabolic, cellular and single-organism processes were the most representative terms. Interestingly, only 713 out of 11,452 transcripts from the male tissues and 693 out of 10,478 transcripts from the female tissues have the GO term of reproduction.

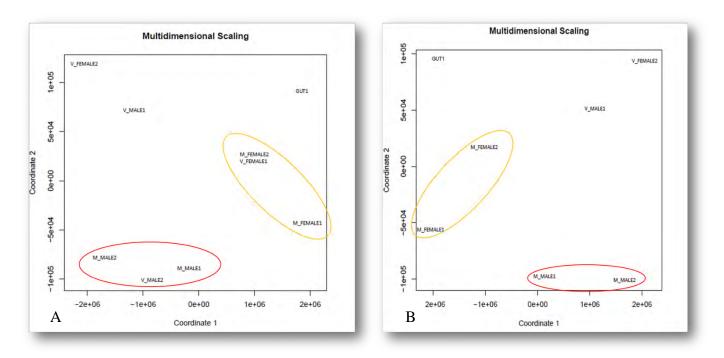


Figure 3.3: Multidimensional plots for all the samples sequenced by Ion Proton. Colored circles indicate groups of biological replicates. Yellow for mated female flies and red for male flies. A. The samples V_FEMALE_1 and V_MALE_2 are grouped with the mated flies and not with their biological replicates V_FEMALE_2 and V_MALE_1, respectively. B. Multidimensional plot analysis after omission of the V_FEMALE_1 and V_MALE_2 samples. The different groups are better distinguished.

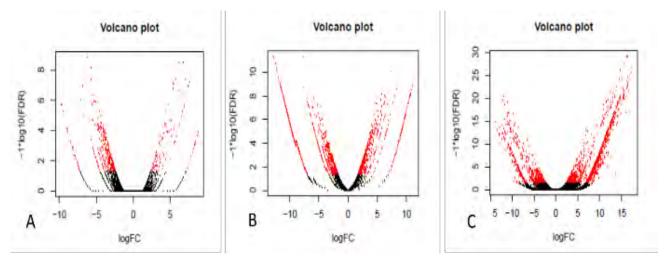


Figure 3.4: Volcano plots represent the differentially expressed genes between virgin and mated flies in the three dissected tissues: a. testes, b. male accessory glands with ejaculatory bulb, c. lower female reproductive tract. The Y axis represents significance and the X axis represents logarithmic fold change. The red dots represent differentially expressed genes (p value < 0.05).

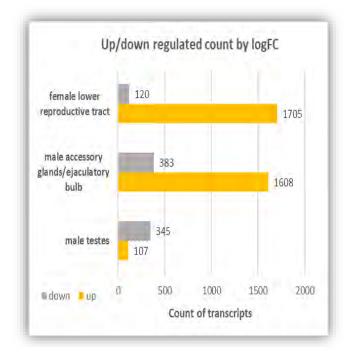
3.1.1 Differentially expressed genes

Prior to the identification of the differentially expressed genes, we performed multidimensional-scaling plots to ensure the similarities between the biological replicates (Figure 3.3A). The plot showed that the

samples of V_MALE_2 and V_FEMALE_1 were closer to the samples of mated flies than to their replicates. For this reason, and even though we lost statistical power, we decided to omit these two samples from the subsequent analysis. The new dimensional plot showed better results as only the

Results

remaining biological replicates were grouped together (Figure 3.3B).


To identify the differentially expressed genes, transcripts obtained from the analysis above were ranked based on their differential expression between virgin and mated insects. The M_TESTES transcriptome was compared to a previously annotated transcriptomic analysis of testes from three-day old virgin male olive flies (Sagri et al., 2016).

Differential expression between samples was assessed using the edgeR algorithm (Robinson et al. 2010) with a stringed cutoff (p value < 0.05). Distribution of transcripts can be seen in the Volcano plots with p value < 0.05 (Figure 3.4). The red dots indicate differentially expressed genes.

Further examination of the fold change differences revealed that 1,608 genes were up-regulated in male accessory glands with ejaculatory bulb, while 383 genes were downregulated. In testes 107 genes were upregulated and 345 genes were downregulated. In females 1,705 genes were upregulated in female mated insects while 120 genes were down-regulated (Figure 3.5). The entire lists of all significantly (p<0.05) upregulated and down-regulated genes in the reproductive tissues are listed for male tissues in S6.2 and S6.3 and for the female tissues in S6.4.

In addition, we performed functional annotation of the top 100 most highly differentially expressed transcripts in the three different tissues based on the Gene Ontology (GO) categorization level II using BLAST2GO. The GO categorization is presented in Figure 3.6 and involves biological process (BP) and molecular function (MF).

The tissue of testes gave the fewest terms hits of the GO annotation. This may be

Figure 3.5: Total genes up- and down- regulated in the reproductive tissues of mated *B. oleae* insects

due to the fact that testes are dedicated to sperm production, a significant function that allows very little variety for other roles (i.e., biological processes or molecular functions) for the genes expressed in this tissue.

For the 100 differentially top expressed transcripts the three most abundant GO terms were the same for male accessory glands with ejaculatory bulb and female tissues. Cellular and metabolic processes along with the biological regulation were the most abundant GO terms. These findings can be related to the fact that the dissected tissues were from mated insects. For males, this is a time point when these tissues are transcriptionally active in order to replenish the seminal fluid. For females, it is the beginning of post mating responses, including oviposition. This can be also concluded from the different GO terms. Specifically, in male accessory glands with bulb the ejaculatory GO terms cell proliferation and biological adhesion may reflect the reproduction of cell tissues. While

in female tissues the GO terms growth and rhythmic process may indicate the

biosynthetic production and the preparation of the female insect to oviposit.

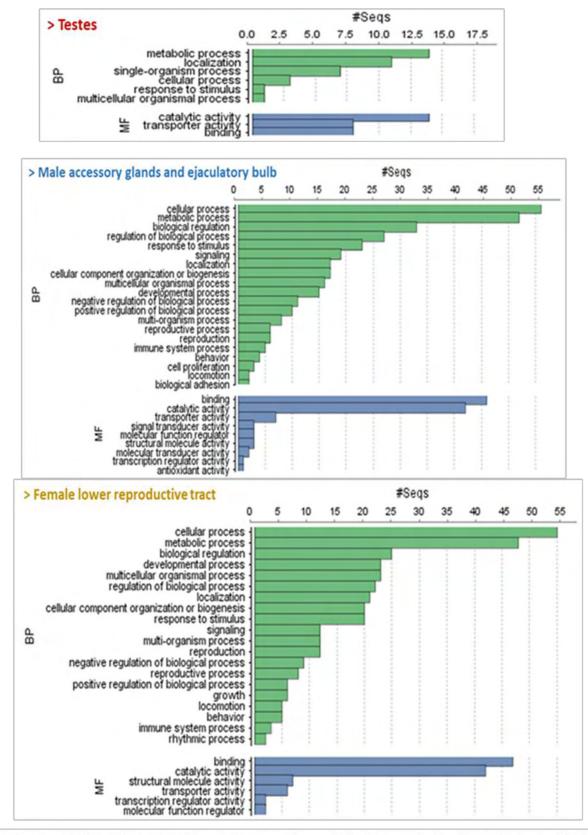


Figure 3.6: Functional annotation of the top 100 differentially expressed genes in *B. oleae* reproductive tissues showing top 20 hits of different category. BP, biological process; MF, molecular function.

Furthermore, in the Molecular Function annotation, all three tissues share the same GO terms except 3 that only the male accessory glands with ejaculatory bulb have. The antioxidant activity in male accessory glands and ejaculatory bulb may indicate that reproductive process causes oxidative stress to the male fly, a negative impact that has been documented previously in A. gambiae (DeJong et al., 2007) and D. melanogaster (Williams al., et 2005). Moreover, the signal and molecular transducer activity terms show that genes in male tissues may encode molecules in order to trigger the post-mating response to the female fly.

3.2 Genomic analysis of the reproductive genes

The top 100 differentially expressed genes were also annotated in the recently sequenced genome of the olive fly (https://i5k.nal.usda.gov/Bactrocera oleae). We queried (BLASTn, e-value $<10^{-10}$) the genome scaffolds using the gene transcripts. The predicted amino acid sequences of the identified gene models were considered for annotation, if they gave significant reciprocal BLASTp (e-value <10⁻¹⁰) hits in the NCBI database to known sequences. The gene names for the annotated sequences were given based on the nomenclature of the D. melanogaster homologues. The annotated genes are present in the supplementary file S6.5 for the tissue of testes, S6.6 for the male accessory glands with ejaculatory bulb and S6.7 for the female lower reproductive tract.

Interestingly, only 40 genes gave hit to the GO categories Level II for Biological process and Molecular function from the testes transcriptome. This may indicate that the function of several genes in testes is still unknown.

Many of the proteins fall into functional categories known to be present in reproductive systems of other insects like proteases, proteases inhibitors, mediators of immune response, and proteins involved in lipid metabolism. For example, in male accessory glands three genes attacin-A, ryanodine receptor and heixuedian are implicated in the immune response while in female tissues seprin42Da and CG9676-like genes, that encode a protease and a protease inhibitor, have been identified. In testes, genes that encode proteins implicated in metabolism processes were identified like CG34189-like, a trypsin Inhibitor-like enzyme, black gene, a pyridoxal phosphate-dependent decarboxylase and CG8303-like which belongs to the fatty Acyl-CoA reductase family.

Moreover, we queried (tBLASTn, evalue $<10^{-10}$) the genome scaffolds using the amino acid sequences of the 139 characterized D. melanogaster SFPs (Findlay et al., 2008). Only 43 of the Drosophila genes gave significant hits to the olive fly genome. The predicted amino acid sequences of the identified olive fly models were considered for annotation if they gave significant reciprocal BLASTp (e-value <10⁻¹⁰) hits in the NCBI database. All the homologous genes were grouped into 17 functional classes based on the categories defined for *D. melanogaster* (Findlay et al., 2009) and C. capitata (Papanikolaou et al., 2016) seminal fluid proteins (Table 3.3). None of the annotated genes belong to the top 100 significantly expressed genes annotated above. This may indicate the rapid evolution of the

	Во	Scaffold	Functional Class
1	alphaTub84B	NW_013581225.1.2	sperm protein
2	betaTub85D	NW_013581217.1.128	sperm protein
3	Ccp84Ad	NW_013583085.1.13	chitin binding
4	Cdlc2	NW_013581488.1.1	sperm protein
5	CG10407-like	NW_013581506.1.10	unknown function
6	CG10433-like	NW_013581250.1.1	defense/immunity
7	CG10730-like	NW_013581262.1.37	unknown function
8	CG11598-PB-like	NW_013581987.1.8	lipid metabolism
9	CG11864-like	NW_013581224.1.5	protease
10	CG13340-like	NW_013581355.1.7	protease
11	CG15031-like	NW_013581935.1.1	unknown function
12	CG15116-like	NW_013581511.1.8	defense/immunity
13	CG15117-like	NW_013582880.1.1	carbohydrate metabolism
14	CG17843-like	NW_013581762.1.2	oxidative stress response
15	CG17919-like	NW_013581353.1.17	signal transduction
16	CG18135-like	NW_013581267.1.22	unknown function
17	CG18284-like	NW_013581453.1.14	lipid metabolism
18	CG18628-like	NW_013581453.1.14	unknown function
19	CG2852-like	NW_013581924.1.1	protein modification
20	CG3153-like	NW_013581262.1.25	unknown function
21	CG31704-like	NW_013582946.1.1	protease inhibitor
22	CG31758-like	NW_013599804.1.1	protease inhibitor
23	CG4847-like	NW_013581323.1.30	protease
24	CG5162-like	NW_013586638.1.2	lipid metabolism
25	CG6426-like	NW_013581234.1.7	defense/immunity
26	CG6461-like	NW_013581236.1.27	protease
27	CG8102-like	NW_013582722.1.1	sperm protein
28	CG9168-like	NW_013581262.1.39	unknown function
29	CG9975-like	NW_013582087.1.1	unknown function
30	Cpr51A	NW_013581314.1.29	chitin binding
31	Cpr67Fb	NW_013584326.1.1	chitin binding
32	Egm	NW_013581265.1.12	oxidative stress response
33	Est-6	NW_013581551.1.20	lipid metabolism
34	Hexo2	NW_013581256.1.14	carbohydrate metabolism
35	mfas-PB	NW_013581231.1.21	signal transduction
36	NUCB1	NW_013581534.1.9	calcium binding
37	Peb	NW_013581247.1.21	post-mating behavior
38	Peritrophin-A	NW_013581236.1.13	chitin binding
39	Phm	NW_013583124.1.1	protein modification
40	regucalcin	NW_013581216.1.74	defense/immunity
41	Spn1	NW_013581585.1.8	protease inhibitor
42	trx	NW_013581231.1.1	DNA interactions
43	Or82a	NW_013581351.1.3	odorant binding

Table 3.3: Annotated genes of *B. oleae* based on the homology of known seminal fluid proteins in *D. melanogaster* (Mueller et al., 2004).

reproductive proteins compared to other protein classes and the divergence between different organisms (Begun et al., 2006).

The annotated genes obtained from this procedure encode proteins that belong to the conserved functional classes such as proteases and proteases inhibitors, lipases, sperm-binding proteins and antioxidants (Mueller et al., 2004). Four sperm proteins were annotated including the testes-specific protein betaTub85D. Interestingly, an odorant binding receptor, or82a, seemed to be annotated, indicating the involvement of the olfactory system in reproduction.

3.3 Expression analysis of selected genes3.3.1 Validation of the RNAseq and expression profile of selected loci

In order to validate the differential gene expression between virgin and mated insects that was determined by RNAseq analysis, qRT-PCR was performed for selected genes. The genes were selected based on their differential expression data from RNAseq.

3.3.1.1 Testes

Testes						
Gene	LogFC	Primers	product size			
c15699	8,750	5'-CGAGAATATAAACGAACCTG-3'	150			
015055	8,750	5'-ATCACTTCAACTCTCTCTGTC-3'	130			
c58283	8,639	5'-AGTGAGTGATCCTGTACTGTC-3'	- 98			
00205	8,035	5'-TCGGTATACTCTACCTATCCAC-3'	50			
mucin	8,167	5'-CCAACCGACACAACGAAAGG-3'	125			
macm	8,107	5'-TGGCAAAGCCGCCAAAATAC-3'	125			
hemolectin	7,629	5'-CCAAATGCACAATTCACCAC-3;	140			
nemolecum	7,029	5'-GCATCGTTCAGCACATATCC-3'	140			
c37552	7,480	5'-AGCGAAATAGTCCAGTTAGGTG-3'	82			
637332	7,400	5'-CCACACCAAACGATTACGGC-3'	02			
cation transporter	6,597	5'-ACTAAGTTTGGGTGTAACCG-3'				
	0,397	5'-GTGATACTTTCCGTAGTTTG-3'	120			
c42518	5,468	5'-GGCACCACATAAACTCTAAC-3'	100			
042310	5,408	5'-TGCACTCCGCTAATTGCC-3'	100			
scribbler isoform J	-3,327	5'-GGTTTACTCCTTGCGTTGCC-3'				
	-3,327	5'-CGGACCTCAAAACGATGCAC-3'	83			
c52071	-4,764	5'-GCGCTTCATCATCCACAGAC-3'	135			
052071	-4,704	5'-CGCTGTTAATACGCCACGC-3'	135			

Table 3.4: List of the analyzed for the validation of the differential expressed genes from the RNAseq result. The name used is based on their homologue in *D. melanogaster*. Genes that have no hits are presented with their transcript name. Positive value of logFC represents the overexpression of the genes in mated flies while negative value of logFC represents the overexpression of the genes in virgin flies. The primers used for the qRT-PCR experiments and their product size are presented.

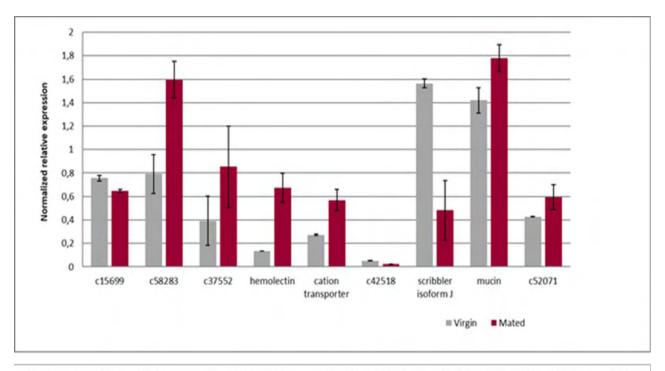


Figure 3.7: Validation of the expression difference between mated and virgin insects. Mean values ± standard error of data from three biological replicates is shown.

For the validation of the RNAseq we isolated testes from 3 day-old virgin males (virgin) and from males 12 hours after one mating (mated). Each sample used for qRT-PCR validation consisted of pooled tissues from ten insects and three biological replicates. Total RNA was extracted and gRT-PCR was performed for each sample. The appropriate housekeeping gene that was used for the normalization of the results was rpl19 (S6.8) for male tissues, as it was demonstrated in Sagri et al., 2017. Differential gene expression between virgin and mated insects was determined by comparing the expression of the gene of interest in virgin insect on DAY 7 with its expression in the mated insect. For testes, primers were designed for the analysis of nine genes (Table 3.4).

In Table 3.4, positive logFC values correspond to overexpression in mated insects, whereas negative values correspond to down regulation. qRT-PCR results were consistent with those of RNAseq in 7 out of 9 genes in mated insects. The genes *c58283*, *c37552*, *hemolectin*, *mucin* and *cation transporter* showed overexpression in mated insects while the *scribbler* showed downregulation (Figure 3.7). Instead, qRT-PCR results for *c15699* and *52071* were not consistent with RNAseq results, whereas *c42528* showed very low expression.

3.3.1.2 Male accessory glands with ejaculatory bulb

We isolated male accessory glands including the ejaculatory bulb from 7-day old virgin males and from mated insects twelve hours after one mating. Each sample used for qRT-PCR validation consisted of pooled tissues of ten insects and three biological replicates. Total RNA was extracted and qRT-PCR was performed for each sample. Primers were designed for the analysis of six genes (Table 3.5). On Table 3.5 negative logFC values present overexpression in mated flies while positive logFC values represent overexpression in virgin flies. Validation of the RNAseq results through qRT-PCR confirmed the overexpression of all 6 genes: *timeless*, *c52416*, *CG2254-like*, *brunelleschi*, *yellow-g* and *c53574* (Figure 3.8). *rpl19* (S6.8) was used as a housekeeping gene for the normalization

Male accessory glands and ejaculatory bulb					
Gene	LogFC	Primers	product size		
brunelleschi	-9,529	5'-AAGCGAGGTAACACTACGGC-3'	75		
Druneneschi	-9,529	5'-GATTACCGTTTGTGGCAGCG-3'	75		
CG2254-like	-12,304	5'-TATGCACATATGTATGCACATGAAA-3'	70		
CGZZ54-IIKE	-12,504	5'-ATGTTGCGCGCGTCTTTAG-3'	73		
timeless	-11,708	5'-TGGCGGCGGACGTATAATAG-3'	87		
unieless		5'-AAGTGCTCCCGTAGTTGGTG-3'	0/		
c52416	-9,696	5'-CGCTGTCACCACTGACTATGGC-3'	111		
LJ2410		5'-TCCTCTGTCACCAGCTCAGAAAC-3'	111		
c53574	-11,667	5'-GCATTTGCTGGCGCTTATCA-3'	112		
		5'-GCACAAACGGAAAGATGGCA-3'	112		
yellow-q	-10,490	5'-TTGCGTGTTGGACAGGGTGC-3'	- 97		
yenow-y	-10,490	5'-AATTCGTGCCACCATCGGCG-3'			

Table 3.5: List of the genes analyzed from the tissue of male accessory glands with the ejaculatory bulb. The name used is based on their homologue in *D. melanogaster*. Genes that have no hits are presented with their transcript name. Positive logFC value presents overexpression of the gene in mated flies while negative logFC value presents overexpression of the gene in wirgin flies. The primers used for the qRT-PCR experiments and their product size are also shown.

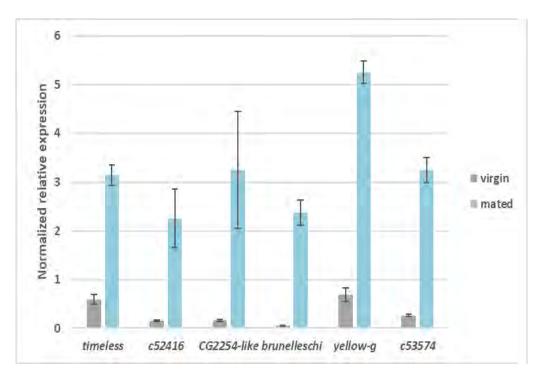


Figure 3.8: Validation of the expression difference in the male accessory glands with ejaculatory bulb between virgin and mated insects. Mean values ± standard error of triplicate data from three biological replicates are shown.

of the results.

Furthermore, we determined the expression profile of the selected genes in the reproductive tissue from the first day of the insect eclosion (DAY 0) to the 7th day (DAY 7). If a gene codes for a protein in the seminal fluid that is important for mating, it should be expressed earlier so that the protein will be present at the time of mating.

In Figure 3.9 the expression profiles of the selected genes are presented. Interestingly, the highest expression of most of the genes was detected in different days before the selected day for dissection. The genes timeless, c52416 and c53574 show high expression on the DAY 0 while the rest days expression is stable. The the genes brunelleschi and yellow-q showed their highest expression in virgin males on DAY 5 and the gene CG2254-like on DAY 6.

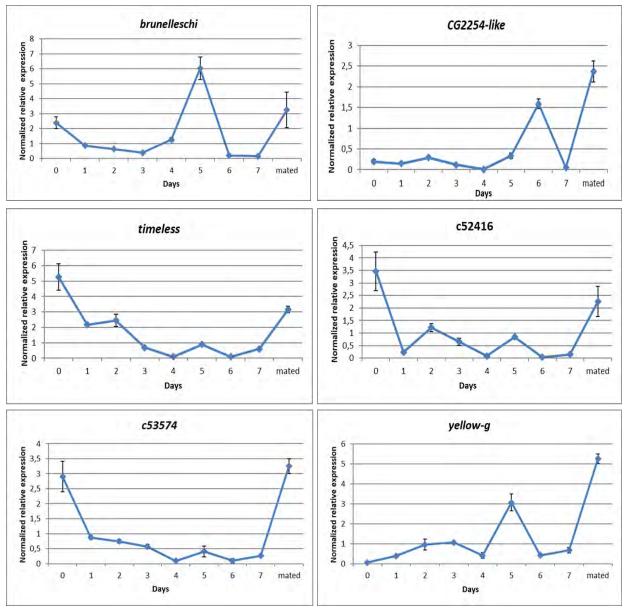


Figure 3.9: Expression profiles of the selected genes from the first day of the eclosion (DAY 0) until DAY 7. Mean values ± standard error of triplicate data from three biological replicates are shown

3.3.1.3 Female lower reproductive tract

For the validation of the RNAseq results of the lower female reproductive tract, we isolated tissues from 7-day old virgin females and from mated females, twelve hours after one mating. Primers were designed for the analysis of 6 genes in the female lower reproductive tract and gRT-PCR was performed for each sample (Table 3.6). Each sample used for gRT-PCR validation consisted of pooled tissues from ten insects and three biological replicates (Figure 3.10). The housekeeping gene used for the normalization of the results was GAPDH (S6.8) for the female tissues (Sagri et al., 2017). The results of the qRT-PCR showed that troponin C had high expression (18 fold) in virgin flies in contrast to the RNAseq results. The glutathione S-transferase epsilon class gene showed very low expression. The other four genes, lingerer, yolk prote in-2, bestrophin-2 and ornithine decarboxylase antizyme were confirmed as they showed overexpression in qRT-PCR.Moreover, the expression profile of the selected genes was determined in 7-day old virgin females and at five time points (0, 3, 6, 9, 12, 24 h) after mating (Figure 3.11).

Expression profiles of the 6 genes differ. The gene troponin C showed limited expression after mating. The ornithine decarboxylase antizyme showed an increasing expression with the highest at 24 hours after mating, while bestrophin-2 (10-fold) and lingerer (10fold) showed highest expression at 12 hours. The yolk protein-2 showed 2-fold overexpression 9 hours after mating and glutathione S-transferase showed highest expression immediately after mating (0 Hours). This may indicate the different roles each gene could demonstrate in the female reproductive system.

The next step was to investigate the functional role of selected genes to identify if they play a role in the mating procedure or the post-mating response of the female. To this end, we performed silencing through RNA interference (RNAi) and we recorded: 1. their behavior during mating and 2. the female post mating responses that may include oviposition rate, sex ratio of the progeny, longevity, and total number of eggs laid.

Lower female reproductive tract						
Gene	LogFC	Primers	Product size			
troponin C	-14,991	5'-AAAACCAAGCCCATCCACC-3'	98			
a oponin e	-14,991	5'-GCGATTTGTTCGGGAGTCAG-3'	50			
yolk protein-2	-14,608	5'-CGCGTATAGCCTAAAACCCAC-3'	80			
your process	-14,000	5'-TGCAGGGTGATATCCTCCAC-3'				
lingerer	-11,727	5'-CGCGTATAACTCGAGCGACTCC-3'	124			
mgerer	-11,727	5'-GCGGCAGCTAATCGTCAATGC-3'	124			
alutathione 5-transferase epsilon class	8,820	5'-ATGGCTTACCTGTCTAAATG-3'	114			
giutumore 3 transferuse epsiton cluss	0,010	5'-GTTTATTCCTCACTTTCACC-3"				
bestrophin 2	-11,717	5'-AGGACATCCGACAACAACGGC-3'	105			
bestrophin 2	-11,/1/	5'-ATATTTGTGGTGACGGGCGCAG-3				
and the set of a set of a set of a set	-14,298	5'-ACG TTG CAATGCCTGACAAG-3'	101			
omithine decarboxylase antizyme	-14,298	5'-AACAACTGCGTCGACATCCA-3'	101			

Table 3.6: List of the genes analyzed from the lower female reproductive tract. The name used is based on their homologue in *D. melanogaster*. Positive logFC value represents overexpression of the genes in mated flies while negative logFC value represents overexpression of the genes in virgin flies. The primers used for the qPCR experiments and their product size are also shown.

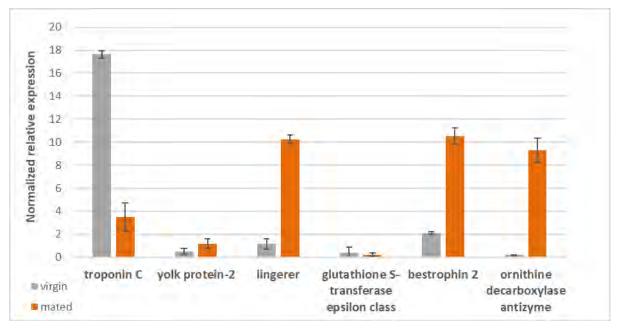


Figure 3.10: Validation of the expression difference between virgin and mated insects. Mean values ± standard error of triplicate data from three biological replicates are shown.

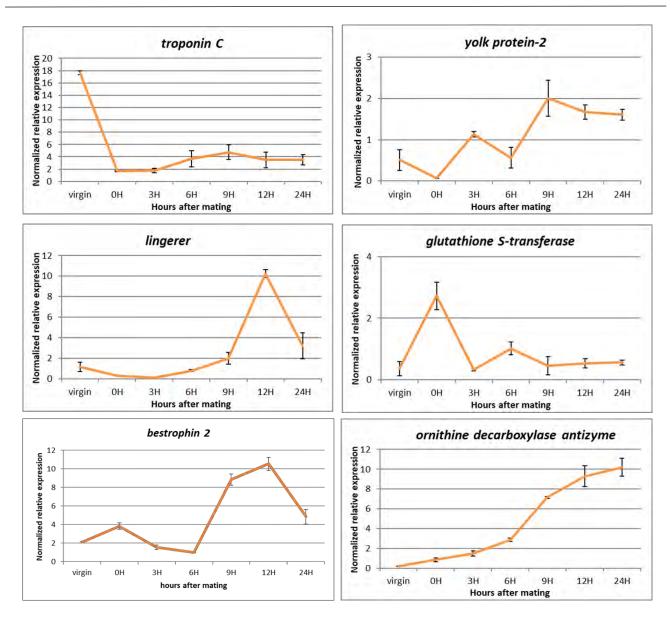


Figure 3.11: Expression profile of the selected genes from the virgin flies and several time-points after mating (0,3,6 9, 12, 24hours). The error bars show the standard error of the mean between the three biological samples.

3.4 Gene silencing through RNAi

RNAi technology was used to induce gene silencing. This was done with two different ways: through injections to the insects of dsRNA and through feeding the insects with dsRNA producing bacteria.

3.4.1 Gene silencing through injections

For the RNAi silencing we chose two genes based on the logFC value from the RNAseq, the *yellow-g* for the tissue of male accessory glands with ejaculatory bulb and the *troponin-C* for the female lower reproductive tract. Even though *troponin-C* was not confirmed by the qRT-PCR, the high expression of the gene made it a good candidate for the silencing experiments. The first step for the RNAi was to produce the dsRNA through in vitro transcription using T7 polymerase. Primers were designed using the E-RNAi web application (Horn et al., 2010) that contained the recognition site for T7 RNA polymerase.

3.4.1.1 Silencing of *yellow-g* gene

For the yellow dsRNA synthesis, we isolated a 498 bp clone of *yellow-g* cDNA through PCR amplification. The primers with the respective recognition site for T7 RNA polymerase (small letters) were: ds_yellow_F 5'-taatacgactcactataggg-

CATTTACGTCCAATCCGGTC and ds_yellow_R 5'-taatacgactcactataggg-TCGCCGGCTATACGTAGA (Figure 3.12). A green fluorescent protein (GFP) gene clone was used as template to synthesize the respective dsRNA used as a non-target control. The control gene was a GFP fragment that is not present in the *B. oleae* genome. The sequence was amplified using GFP-forward 5'-taatacgactcactataggg-CCGCCAGTGTGCTGGAA-3' and GFP-reverse 5'taatacgactcactataggg-GATATCTGCAGAATTCGCC-3' through PCR reaction and isolated for *in vitro* transcription.

ATGCAACTGCAGCTGCACCAACCTACAACAACAACAACACCACACTACTCTTTGCTGCCACACCTTGCCACCCTACTCCG GCCCACACCGGCTAGCGCCGCCTACTCCGCTGATTTGCACGATGACCCTGCTGACGTAGCCGACACCGCTGCTGAC TATGACAGCTACGGCCACCACAGCAACAAGTATGTGAGTAAGTGCGATAAAAATCCATTGGCTGCACTCACCTTCCAGC ATGTGATCGTGACGCGCGCCCAACTGCGACGTGATGACGCCTTTGTGGCACTACCGCGCTATAAACAGGGTGTGCCATT TACATTGGGTCGCGTGCAATTGAAGCGGGGTCAGTGTGGGCCAAGATTGCGCCATATCCGTGCTGGGCCATACAGGA GGAGGGCAATTGTCAGGCGTTGCAGTCCGTCGTCGACATCGCTGTGGATCCCCAATGGTCTCCTCTGGGCTTTGGACGTG GGACTTGTGAACACATTGGAACAACCGATACGCCGTTGTGGACCAAAAATTGTAGCAATCAACACGGCTGACAACAAA GTAGTAAAGATCATCGACCTGAGTGATCTCGTAACGGCTGAGTCCCGCTTGCAGTTCATAGTGGTGGACTACTCCAAGG ACAACAAGCCGTTCGTATATGTTGCTGACGCCGGAGCACGCAGCATACTCGTCTACGATATAGCCGGCGACAAATCGTA TCGCATCGTTTTACCTAAAGCCACTGCACCTACTACCACCGATGTGCTTTATATGGCGCTCACCGCCACACCGGATGGCA CATCGACACTGTACTTCACGTATCTTAGCTCACCGCGTCTGTACTCCATACGTGGACAGTATTTGCGTGTTGGACAGGGT Bo_yellow_R TTGTTCTTCCGTTACAAGGGTGAAAACGACATATATATGTGGAACTCGGAGACTTGCTTCAAATCAGCCAATTTAAAAGA TGTACAACATGGCGGTGATTGTCGGCTGTCGACACAGGTGCTGCCCGGCCATAGGCGCTTCATGTGGGGCTTTGGAGAG CAATTTCCATGATTTCATATCGGAACGAACGGGTTGCAATGGTGCATCGATTGTTCTGCATCCCGTAGTGCGCGAATGTA ΤΤΑCΑΑΑΤΤΑΤGTTCGTCT

Figure 3.12: Partial sequence of the potential yellow-g gene of *B. oleae*. Green sequences and arrows: the primers used for qRT-PCR, Yellow sequences and arrows: the primers used for the ds-RNA.

The amplified products were visualized and retrieved after agarose gel electrophoresis. *In vitro* transcription reactions were performed using the Ambion MEGAscript Kit. The resulting dsRNA was isolated and diluted to a final concentration of 10 μ g/ μ l. The dsRNA quality was assessed by agarose gel electrophoresis (Figure 3.13).

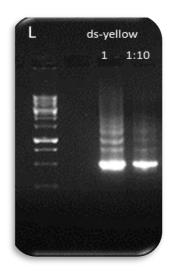


Figure 3.13: Electrophoresis of the yellow dsRNA

After the preparation of the dsRNA and according to the expression profile of the *yellow-g* gene, we injected male insects based on the following principles:

After the eclosion of the flies, we separated males from females to different cages.

- On DAY 0 we injected male flies with dsyellow-g.
- In order to detect the effect of silencing, samples were collected on the day of the highest expression (DAY 5) and on the day of the mating experiments (DAY 7).
- The experiments were repeated for the control GFP ds-RNA.

Each biological sample consisted of pooled tissues from ten insects and three biological replicates were performed. Yellow knockdown efficiency was assessed by RT-PCR using the Bo yellow F and Bo yellow R specific primers (Figure 3.12). Specifically, we dissected male accessory glands with ejaculatory bulb from ten insects of two biological replicates. Maximum reduction occurred on DAY 7 at 81% while on DAY 5 the expression of the gene was reduced at 46% compared to ds-GFP control flies (Figure 3.14).

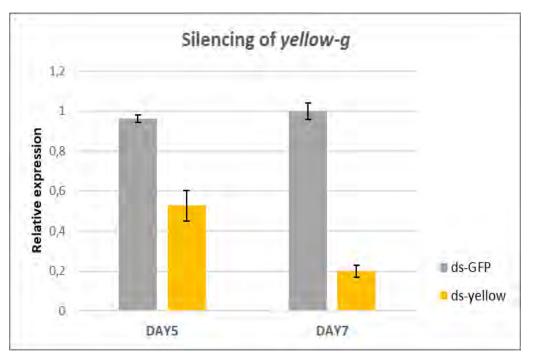


Figure 3.14: The yellow bars show the silencing of the *yellow-g* gene. The grey bars show the expression of the gene in the control group. Mean values \pm standard error of triplicate data from three biological replicates is shown.

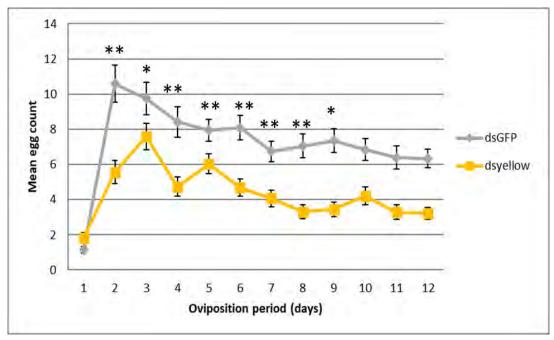


Figure 3.15: The mean daily egg count for the females mated with males injected with ds yellow (yellow line) and males injected with ds-GFP (grey line). The * indicates statistical significant difference for p value < 0.05.

The silencing percentages show the successful silencing of the gene of interest. However, to distinguish whether the transient silencing of *yellow-g* had an impact on the reproduction we performed mating experiments with virgin female flies.

Specifically, two groups of 30 male insects were injected with ds-yellow and ds-GFP, respectively, were mixed with virgin female flies of the same age and were allowed to mate. Successful mating should last >1hour (Zervas et al., 1982). Each one of the mated female flies was placed in an isolated cage where we recorded the oviposition rate of the insect. The mean daily egg count is presented in Figure 3.15.

The egg laying rate for the group of females which mated with ds-*yellow-g* injected males is characterized by a peak egg laying on day 3 followed by a regressive phase, with the lowest counts recorded on day 12. In addition, the number of eggs laid

from the same group was significantly lower for the second day until day 9 compared to control females. The lower oviposition rate of the females may indicate that *yellow-g* gene may encode a protein that is part of the seminal fluid and triggers the mated female to start oviposition.

Moreover, we recorded the sex ratio of the offspring in an attempt to distinguish if the transient silencing of the gene may influence the sex differentiation cascade of the progenies. However, no significant difference was detected (Figure 3.16). The offspring of the male insects injected with ds*yellow* had similar sex ratio compared to the control group.

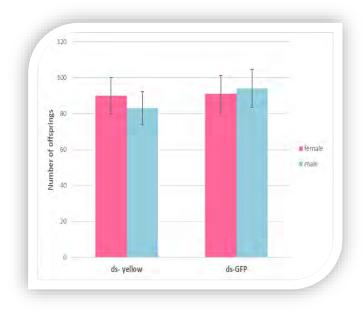


Figure 3.16: Sex ratio of the offspring. The pink bar represents the number of female insects and the grey bar represents the number of male insects. There is no significant difference for p value < 0.05.

3.4.1.2 Silencing of troponin C gene

For the troponin C dsRNA synthesis, we isolated a 454bp clone of troponin C cDNA

through PCR amplification. The primers used amplification for the ds-RNA were: T7 troponinC F 5'-taatacgactcactataggg-GATGAGGATCTGACTCCCGA and T7 troponinC R 5'-taatacgactcactataggg-ATTCGCCAGTCATCATTTCC (Figure 3.17). The non-target control was the same as above. Following the *in vitro* transcription, we isolated the ds-RNA and diluted it to a final concentration of $10\mu g/\mu l$.

To define the most appropriate day to perform the injections of the female flies we determined the expression profile of the gene of interest from the first day after eclosion (DAY 0) until DAY 7. Each biological sample consisted of pooled tissues from ten insects and three biological replicates were performed The dissected tissues were the lower female reproductive tract. The qRT-PCR was performed using the pair of primers used

AGTATCGCCCGCTGAAGAGCCCAATTGTCCGTCTGTGAGGCAAAGTAAAAGTCAGTTTTGAA Bo troponinC AAATCAAATCAAAAACCAAGCCCATCCACCGGACATCACCGCAAACACAAACCAAGCCAAT ATGAGTGATACATTTATT<u>GATGAGGATCTGACTCCCGAACAAATCGCCGTGTTGCAAAAGGC</u> T7 troponinC | CTTCAACAGTTTCGATCACCAAAAATGCGGCAGCATCTCAACTGAAATGGTCGCTGATATTTT GCGCCTCATGGGTCAGCCCTTTGACAAGAAGATCTTGGAGGAGCTCATCGATGAAGTTGATG AAGACAAGTCTGGTCGCTTGGAATTCGAGGAATTCGTTCAACTTGCCGCCAAATTCATCGTTG AGGAGGATGACGAAGCCATGCAAAAGGAATTGCGTGAAGCCTTCCGTCTGTACGACAAACA AGGCAATGGCTACATTCCTACCTCTTGCTTGCGTGAAATCTTGCGTGAATTGGACGATCAGCT GACCAATGAAGAGTTGGACATCATGATTGAGGAAATCGATTCTGATGGTTCCGGCACCGTCG troponinC GAAAGTTTTTCATCTTGTATATATACACCTAAATACAATTGTAGCTAAATACCTAATACACTCA CACACAAATACACATGTAAATACCAGAACATCGAATGGCGGTATATTAACACCGCAATGGCA GTAACAGAGCTTTGGCAAATAAATTTGTTTTATCTTCTTTTTGTAAAAA

Figure 3.17: Partial sequence of the potential *troponin C* gene of *B. oleae*. Blue sequences and arrows: the primers used for qRT-PCR, Red sequences and arrows: the primers used for the ds-RNA. The green sequence is common for the primers Bo_troponinC_R and T7_troponinC_F.

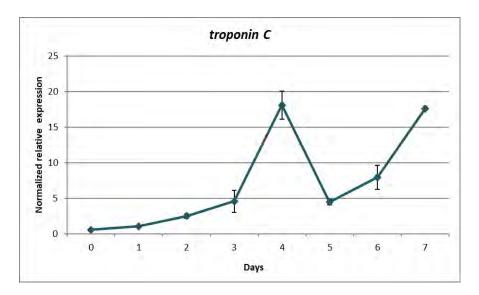


Figure 3.18: Expression profile of the *troponin C* gene from the first day of eclosion (DAY O) until the DAY 7. The error bars show the standard error of the mean between the three biological samples.

for the expression profile from mated female insects Bo_troponinC_F and Bo_troponinC_R.

Based on the expression profile, the highest day of expression for *troponin C* gene was the DAY 4 (18-fold) (Figure 3.18). As the expression of the gene starts from the first day of the insect, we injected the female flies on DAY 0.

For the injection experiment we set

the following principles:

- After the eclosion of the flies, we separated males from females to different cages.
- On DAY 0 we injected female flies with troponin C ds-RNA.
- In order to detect the effect of silencing, samples were collected on DAY 4 (highest expression) and DAY 7 (mating experiments).

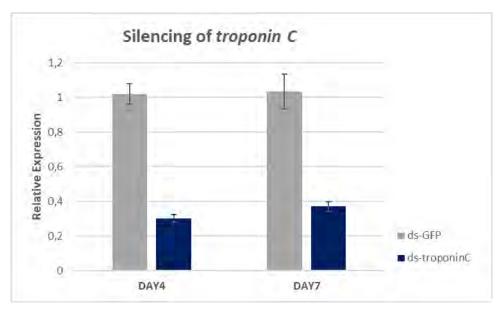


Figure 3.19: The blue bars demonstrate the silencing of the *troponin C* gene. The grey bars represent the expression of the gene in the control group. Mean values \pm standard error of triplicate data from three biological replicates is shown.

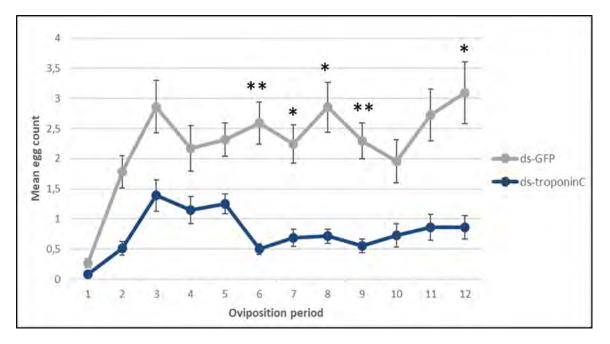


Figure 3.20: The blue line shows the oviposition rate of the females I injected with ds- troponin C and the grey line shows the oviposition of the control group.

On DAY 7 injected females were mixed with male insects of the same age and were allowed to mate.

The efficiency of the gene silencing by RNAi was evaluated by qRT-PCR. Maximum reduction was assessed on DAY 4 (70%) and it was maintained till at least DAY 7 (64%) (Figure 3.19). To determine if this degree of silencing is sufficient to affect the post mating response, we recorded the oviposition rate of 36 females injected with ds-yellow compared to 36 females injected with ds-GFP (control group).

Based on the results of the oviposition rate, the females injected with ds-troponin C laid statistically significant fewer eggs compared to the control group from DAY 6 until DAY 11 (Figure 3.20). Specifically, the total oviposition of the females injected with ds-troponin C was 279 eggs in contrast to the control flies where the total number of eggs was 795. This may indicate that troponin C may contribute to the post mating response of female insects by muscle constructions that could help egg laying.

3.4.2 RNAi silencing through feeding

To perform RNAi silencing through feeding in *B. oleae* we selected a gene target, the *sex peptide receptor* (*spr*), that has a well demonstrated role in the reproduction of other insects such as *D. melanogaster* (Avila et al., 2015) and *B. dorsalis* (Zheng et al., 2015). The *sex peptide receptor* and the *sex peptide* are the regulators of the post-mating behavioral switch in *D. melanogaster* (Yapici et al., 2008).

3.4.2.1 Cloning of partial CDS of the potential B. oleae sex peptide receptor (spr) gene

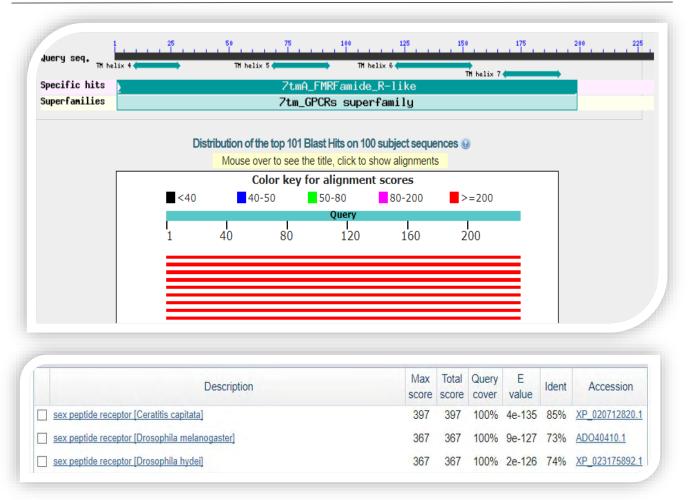


Figure 3.21: BLAST results of the *B. oleae sex peptide receptor* sequence. The sequence shows 85% similarity to the sex peptide receptor of *C. capitata*, and 73% of *D. melanogaster*.

In order to identify the *spr* sequence of *B. oleae*, the genomic scaffolds of the olive fly were queried with the protein sequence of the *D. melanogaster* SPR and gave hits in specific scaffolds. The final sequence was obtained after the confirmation through reciprocal BLASTp (e value $<10^{-10}$) hits in NCBI nr database to sequences belonging to known *spr* genes (Figure 3.21).

Based on the obtained sequence, primers were designed (Bo_SPR_F1/R1) to amplify a partial sequence of the target gene (Figure 3.22) through RT-PCR reaction using as template cDNA from female insects. The 666 bp PCR product was electrophoresed in an agarose gel (1%) and the product (Figure 3.23) was isolated and cloned into the MCS of the plasmid vector L4440. The L4440 plasmid has two T7 promoters, in inverted orientation, flanking the multiple cloning site. The same procedure was followed for the construction of the control plasmid for the experiments, using a GFP fragment that is not present in *B. oleae*. The constructs L4440-SPR and L4440-GFP containing the *spr* and *GFP* inserts, respectively, were verified by sequencing

Based on the sequencing results, the 666bp PCR product of the potential *spr* of *B. oleae* showed 75% identity with Dm_SPR. Using the UniProt database, it was shown that transmembrane helices TM 4-5-6-7 and the Bo_SPR sequence codes for the extracellular parts.

Bo SPR F2 Bo SPR F1 GTACATCTACGTGTGTCACGCTCCCATGGCACGTACATGGTGCACCATGCCACGGGTCAGACGATCAACAATCT Bo SPR R2 ACATCGCCATCGCCGCTTTCTTGCATCAGCTGACCCGGTTTTTCGATCGCACCTACTTCCCGATCACAATCGAGTG GAACGGCCAGCAAACTGAGGTGTGCCATGTGGAAACCTCCGCATGGGTATTCAATTACATCGGGGAAGACCTCT ACTITICCATATACTTICTATTTCGAGTAGTGTTTGTGCATGTGGTACCGTGCATCTTACTCGTCACGCTGAATGT GCTGCTCTGGCAAGCAATGGAAGAAGCTAAGGAACGACGCAAAGCGCTCTTCCGCGATAATAAGAAAGTAGAG AGCCGCAAGGTGCGCGACAGCAATTGCACCACATACATGTTGATTACGGTCGTCTCGGTCTTTTAGCTGTTGAG ATACCCATAGCCGTGGTGACGGTACTGCACATCTTCTCCCTCGTTAATGGGCGAATTTCTAAATTATCGCATGGCC AATATATCCATTATGTTTACGAACTTCTTTCTTGTAGTCAGTTATCCGATCAACTTCGGCATTTACTGCGGCATGTC GCGCCAATTTCGTGAAACCTTCAAGCATATATTTTTCGAACGTTTTCTCACTAAAAAGGATGCTTCATCGAAATAT Bo SPR R1 TCCATTGTCAATGGACCACGCACCTGCACCAGCACTAATGAGACTGTGCTCTAG

Figure 3.22: Partial sequence of the potential *B. oleae spr* gene. Blue sequences and arrows: the primers used for qRT-PCR, Red sequences and arrows: the primers used for amplification of the *spr* sequence.

Figure 3.23: PCR amplification of sex peptide receptor (SPR) of *Bactrocera* oleae

Subsequently, we transformed HT115(DE3) competent cells with the feeding constructs. HT115(DE3) cells have IPTG inducible expression of the phage T7 polymerase and lack RNAse III, therefore dsRNA is protected from degradation. However, as it was the first time that this procedure was applied in B. oleae, we had to verify that the flies did, in fact, consume the given bacterial strain.

3.4.2.2 Ingestion of dsRNA-expressing bacteria induced RNAi

In order to verify that the bacteria are consumed by the adult olive flies, HT115(DE3) bacteria were colored by Coomassie Brilliant Blue Dye and fed to the insects. After 24 hours, the abdomen of the insect was turned blue and midgut dissections showed the blue color clearly, demonstrating that bacteria introduced in adult food are ingested by the olive fly (Figure 3.24).

3.4.2.3 Expression profile of the Bo_SPR

Given that RNAi feeding should start before the expression of the *spr* gene, it was important to determine the expression profile of the *spr* gene. We analyzed the expression profile of the Bo_SPR in the female insects and lower reproductive tract including spermathecae, uterus and accessory glands. We chose these tissues based on the experiments performed by Yapici et al., 2008

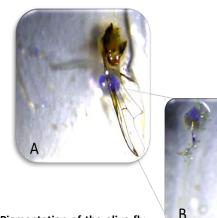


Figure 3.24: Pigmentation of the olive fly midgut. The abdomen of the fly turned blue (A), confirming the ingestion of bacteria. The dissected midgut is shown in (B).

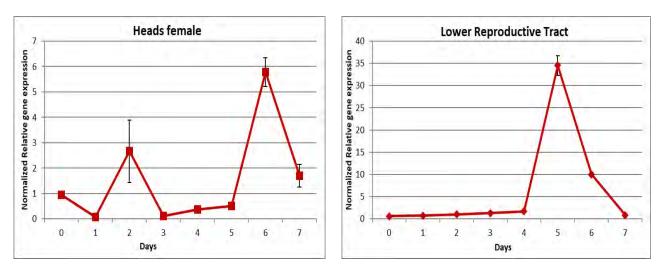


Figure 3.25: Expression profile of the spr gene in the head (A) and the reproductive tract of female B. oleae (B)

in *D. melanogaster* that revealed high levels of SPR expression in the female reproductive organs, in particular in the spermathecae, and the lower oviduct and in the female heads while SPR could not be detected in the male re productive organs.

Each biological sample consisted of pooled tissues from ten insects and three biological replicates were performed. Tissues from virgin females were isolated from their first day as adult insects (DAY 0) until the day the mating experiments occurred (DAY 7). DAY 7 was chosen as preliminary experiments showed that our laboratory strain is sexually mature one week after the emergence as adult. Total RNA was extracted and qRT-PCR was performed using the primers Bo_SPR_F2/R2. The housekeeping genes used for normalization were *rpl19* (S6.8) for the female heads and *GAPDH* (S6.8) for the female reproductive system based on the publication of Sagri et al., 2017.

The expression profile of the *spr* gene over a 7-day period in the reproductive system and in the female heads is shown in Figure 3.25. The two samples showed different expression profiles of the gene. In female heads, there is a 2.5x expression spike of the *spr* gene on DAY 2, while the highest expression (~6x) is on DAY 6. In the female

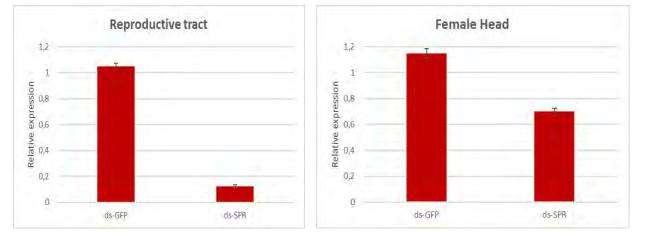
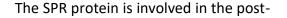


Figure 3.26: Left panel presents the silencing of the *spr* gene in the reproductive tract and right panel presents the *spr* silencing in the female heads. Samples were collected at DAY 5 of RNAi feeding. All experiments were performed in duplicate.

reproductive tract *spr* expression reaches a much higher level (~35x) on DAY 5. The expression profile of *spr* in the female reproductive system follows the pattern of the sexual maturation of the insect.

3.4.2.4 RNAi silencing of the Bo_SPR


Since our interest was on the post-mating response of the female flies, it was important that females remained virgin until the day of the mating experiment. For this reason, upon emergence females were separated from males and were kept to individual cages until the mating experiments. In order to achieve the maximum *spr* silencing effect, the ds-RNA containing food was changed daily (Li et al., 2015).

To guarantee suppression of any *spr* expression that could occur either before or after mating (and could consequently elicit the post-mating behavior), ds-RNA containing food was provided throughout the life of the insect (both before and after mating). Mating experiments were performed on DAY 7.

Female flies fed with ds-RNA were allowed to mate once with virgin males and after the end of copulation each female was kept in a separate cage where oviposition could be followed. Control experiments using ds_GFP were performed in parallel.

To validate the percentage of spr silencing, samples were collected on DAY 5 (day of the highest spr expression in the reproductive female tract). Specifically, reproductive tract and head were dissected from ten insects, RNA was extracted, cDNA was synthesized and gRT-PCR was performed with the Bo SPR F2/R2 primers in two biological replicates. Maximum reduction occurred in the female reproductive tract at 90%, while on the female head *spr* expression was reduced at 40% compared to ds-GFP control flies (Figure 3.26). This indicates the successful inhibition of the spr gene through the method of RNAi feeding.

3.4.2.5 Phenotype of the RNAi silencing

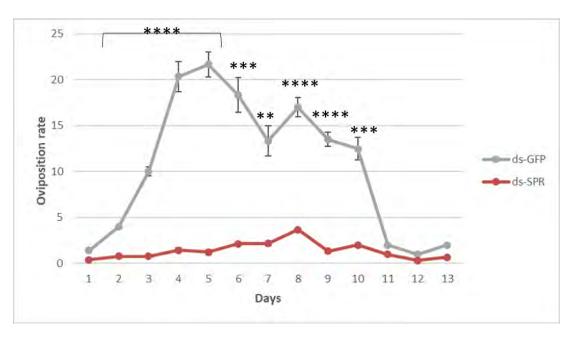


Figure 3.27: Oviposition rate of ds-GFP and ds-SPR fed flies daily. The * indicates statistical significance for p<0.05, ** for p<0.01, *** for p<0.001, **** for p<0.001.

mating response of *D. melanogaster* flies, including increase in oviposition and decrease of female longevity (Avila et al., 2010; Wigby et al., 2005). To investigate if the silencing of the *spr* gene has a similar impact in olive fly, we tested the oviposition rate and the survival rate between the ds-SPR group and the ds-GFP group (control). Ten insects from each group were tested.

The oviposition rate of the insects fed with ds-SPR was lower than that of the insects fed with ds-GFP. Figure 3.27 shows that ds-SPR females oviposited significantly fewer eggs compared to control females from DAY2 until DAY11. This shows that sex peptide receptor plays a significant role in the oviposition rate of the insect females. Increased egg production is one of the postmating responses that sex peptide induces to the females (Liu et al., 2003; Chapman et al., 2003). This may indicate that sex peptide (SP) has a similar role in reproduction for olive fly. changes (Figure 3.27).

Moreover, RNA silencing of the *spr* gene seemed to increase longevity of female insects (Figure 3.28). More than 50% of the females of ds-SPR were alive at the end of the experiment, while all ds-GFP females died by DAY 20. This observation comes to agreement with experiments in *D. melanogaster* (Chapman et al., 2003). They indicated that females continuously exposed to SP-deficient males had significantly higher lifetime span.

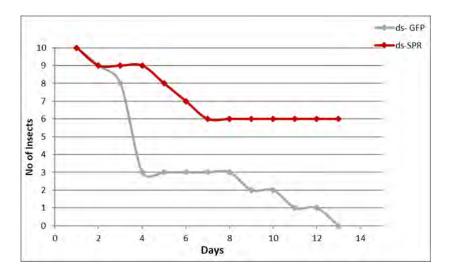


Figure 3.28: Survival of ds-SPR (red line) and ds-GFP (grey line) fed female insects. Female insects fed with ds-SPR lived longer than control insects.

3.5 Validation of olfactory differential expression in reproductive system

Odor recognition is a coordinated process requiring the combined specificities contributed by odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) as well as odorant receptors (ORs). Insect odorant-binding proteins (OBPs) are soluble proteins surrounding the extracellular lymph of olfactory neurons (Pelosi et al., 1995). OBPs are capable of binding and solubilizing small hydrophobic molecules from the environment and therefore transport them to the underlying ORs, which are expressed on peripheral olfactory receptor neurons. Insect ORs are either ionotropic receptors (IRs) or seven-transmembrane proteins (ORs) with an inverse topology compared to GPCRs, that form heterodimers of a ligand-binding OR and a ubiquitous highly conserved co-receptor named Orco (Vosshall et al., 2011). While OR expression in olfactory tissues is wellestablished, the distribution of ORs beyond olfactory system the has also been documented in different mammalian species (Vanderhaeghen et al., 1993; Vanderhaeghen et al., 1997), suggesting that ORs may play an important role in the ectopic expression of nonchemosensory tissues.

This comes to an agreement with several studies reporting the expression of such genes in the male accessory glands and testes of multiple species. OR expression has been documented in human and mouse germ cells (Spehr et al., 2003; Spehr et al., 2004; Spehr et al., 2006; Fukuda et al., 2004; Veitinger et al., 2011) and recently in mosquitoes (Pitts et al., 2014). Similarly, other non-olfactory functions have been reported for OBP-like proteins including the B proteins of Tenebrio molitor accessory glands (Paesen et al., 1995), the male-specific serum proteins of Ceratitis capitata (Thymianou et al., 1998), and the heme-binding protein of Rhodnius prolixus (Paiva-Silva et al., 2002). These studies demonstrate that OBPs are not restricted to olfaction and are likely to be involved in wide-ranging physiological functions having general carrier capabilities with broad specificity for lipophilic compounds (Foret et al., 2006).

With that in mind, we opted to explore the expression of various olfactory-related genes in the reproductive systems of *B. oleae*. In order to get a deeper insight into the involvement of olfactory genes in olive fly reproduction, the relative expression of five olfactory genes was further analyzed in female FAGs/spermathecae, male testes and male accessory glands (MAGs), before and twelve hours after mating. The primers used for the qRT-PCR are presented in Table 3.7. The classification of the genes under investigation is presented in Figure 3.29.

Primers	Sequences	Tm	Product size	
	5'-AAGGCGAATACGGAAGTGC-3'	55	113	
obp8a	5'-CTGACCCACCTGACTGTTTAGC-3'		115	
aba02a	5'-ACAGAGGAGGCAATTAAG-3'	55	114	
obp83a	5'-ATCACCGTTATCATCCAC-3'		114	
	5'-AAGGAGGATTATCGCAAC-3'	55	89	
obp19a	5'-AATTAGAAGGGCATAAGACG-3'		89	
as d	5'-CCTGGACGAGGTTTTGAGC-3'	55	121	
os-d	5'-TTGATATAGCGTCGGGGAGTATC-3'		121	
or10	5'-AGCTCTTCAATTTCTTGTTGCTGT-3'	55	100	
0110	5'-CATCGCTTGAGCCATTCTTCG-3'		100	
110	5'-AACAAACGTGTACTGATGG-3'		100	
rpl19	5'-CACGTACTTTATGTCGTCTG-3'	55	138	
1100	5'-GGTCTAGCACTAAACTTTTC-3'		122	
1433z	5'-TGAGTCTTTGTATGAGTCC-3'	55	103	

Table 3.7: The primers used for the qRT-PCR of the olfactory genes.

Based on the gRT-PCR results, the obp83a, obp8a and obp19a genes are overexpressed in MALE tissue (Figure 3.30). The obp83a and obp8a are over-expressed before mating in testes while obp83a and obp19a are over-expressed after mating in FAGs/spermathecae (Figure 3.30). All three genes are characterized by a GOBP (general odorant binding protein) domain that is also found in their orthologues in Drosophila melanogaster. This structural domain is found in pheromone binding proteins, which exist in fluid surrounding extracellular odorant receptors (Vogt et al., 1991). The presence of these OBPs in the reproductive tissues interaction with other implicates their substrates except the olfactory system as transporters in the post-mating events in the male reproductive system. In fact, D. melanogaster's .obp8a shows the highest levels of expression in male accessory glands (Arya et al 2010; Zhou et al., 2009) and has been associated with non-olfactory functions such as RNA transcription (Kodik et al., 1995). os-d is over-expressed in MALE tissue (Figure 3.29) while qRT-PCR showed similar expression patterns in mature FAGs/spermathecae, MAGs and testes, but no

		Log	2					40.00	
-1	a	1	2	3	4	Gene name	GO analysis (Biological Process)	GO analysis (Molecular Function)	InterPro (IP)
						obp19a	Olfactory behavior	Odorant binding	GOBP domain
						jump6	Chemosensory jump behavior	Odorant binding	POU-specific domain
						os-d	Sensory perception of chemical stimulus	Odorant binding	Ejaculatory bulb-specific protein 3
						obp56g	Sensory perception of chemical stimulus	Odorant binding	GOBP domain
				J		or10	Sensory perception of smell	Odorant binding	-
						obp83g	Sensory perception of chemical stimulus	Odorant binding	GOBP domain
						obp99a	Sensory perception of smell	Odorant binding	GOBP domain
						obp8a	sensory perception of chemical stimulus	Odorant binding	GOBP domain
-						obp83a	Sensory perception of chemical stimulus	Pheromone binding	GOBP domain
						obp83ef	sensory perception of chemical stimulus	Odorant biding	GOBP domain
_						gir1k	lon transport	Kainate selective receptor activity	NMDA receptor; inotropi glutamate receptor
						glr2k	lon transport	Kainate selective receptor activity	NMDA receptor; inotropi glutamate receptor

Figure 3.29: Functional annotation of differentially expressed olfactory genes in olive fly reproductive tissues. At the left part of the figure, the expression levels of the differentially expressed olfactory genes (Log2, fold change) are shown, as resulted from the RNA-seq analysis. The up-regulated genes in males are depicted in blue bars and the up-regulated genes in females in red bars. At the right part of the figure, the Gene Ontology (GO) classification of the same genes for the ontologies: Biological Process (BP), Molecular Function (MF) and Interpro (IP) protein domains is listed. Gene names are based on the nomenclature of the Drosophila melanogaster homologues.

expression in MAGs before mating (Figure 3.30). Os-D is a chemosensory protein (CSP) that encodes the antennal protein 10 in D. melanogaster. CSPs are secreted in the sensillum lymph of insect chemosensory sensilla and some OS-D like proteins bind short to medium chain length fatty acid derivatives with low specificity (Nagnag-Le et al., 2000; Jacquin-Joly et al., 2001). Their specific function remains uncertain (Wanner et al., 2004) suggesting a more general physiological function relating to the transport/solubility of hydrophobic ligands in various tissues. or10 showed expression in male tissues (Figure 3.29) while qRT-PCR detected same transcriptional profiles in all three tissues before and after mating (Figure 3.30). or10 encodes an olfactory receptor protein and has a G-protein coupled receptor activity. The expression of ORs in testes has been reported for a number of species Fukuda et al, 2004; Walensky et al., 1998). ORs' function in mammalian sperm is thought to regulate motility in response to exogenous signals derived from the existence of spermegg chemotaxis in invertebrates. The small peptides, speract and resact, are secreted by sea urchin eggs and attract spermatozoa in a species-specific manner by stimulating sperm motility and respiration (Suzuki et al., 1984; Parmentier et al, 1992). The presence of a similar chemoreceptor may be essential in female spermatheca in order to establish a concentration gradient of a putative chemoattractant. Since female accessory glands and spermatheca were dissected together, we are not able at this point to establish which exact tissue is the source of the observed expression of or10.

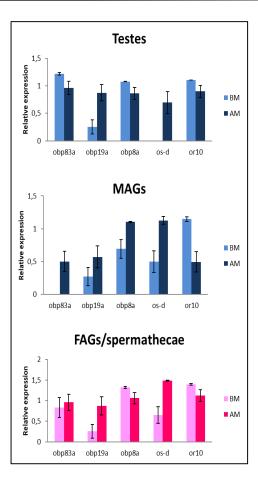


Figure 3.30: Relative expression profiles of differentially expressed olfactory genes in the olive fly reproduction system. Expression profiles of five olfactory genes [odorant binding proteins *obp83a*, *obp19a*, *obp8a*, chemosensory protein, *osd*, and odorant receptor 10, *or10*] as determined by qRT-PCR in three different tissues: Testes (a), MAGs (b) and FAGs/spermatheca (c) before (BM) and after (AM) mating. Standard error of the mean of five biological replicates is depicted in bars. No significant difference (for P < 0.05) was detected. *Rp119* and *14-3-3z* genes were used as a reference in MAGs and testes while actin3 and a-tubulin in FAGs/spermathecae.

3.6 Peptidomics

Using transcriptomics technology, we adopted a holistic view of the genes expressed in the reproductive system of *B. oleae* in virgin and mated insects. A combination of this generated transcriptomic data with different – omic technologies will help the clarification of this complex system.

Such systems biology approaches have offered insights in several physiological processes in insects. A characteristic example is the combination of genetics and peptidomics to characterize the role of amidating enzyme in peptide processing in Drosophila (Pauls et al., 2014). Peptidomics targets the comprehensive qualitative and quantitative analysis of all peptides that are derived endogenously in a biological sample (Schulte et al., 2005).

The first insect peptidomics analysis was published in 2002 where the first neuropeptides were identified from an extract of the central nervous system of Drosophila larvae (Baggerman et al., 2002). In 2009, the first peptidome from adult insect brain was published (Yew et al., 2009). The peptide signaling through G-protein-coupled receptors is widely used in insects.

As it comes to reproduction, an example of the modulation of behavior by peptides, is the regulation of female reproductive behavior in D. melanogaster by sex peptide (SP). As mentioned previously, SP is a small peptide present in the male seminal fluid. Upon mating, SP is transferred to the female, where it triggers dramatic changes in reproduction (Carvalho et al., 2006; Baggerman et al., 2002). Within females, SP activates a specific G protein-coupled receptor (SPR) (Yapici et al., 2008) in a small set of internal sensory neurons of the female reproductive tract (Häsemeyer et al., 2009; Yang et al., 2009).

In an attempt to identify peptides that are involved in olive fly mating we performed peptidomic analysis of the reproductive system of *B. oleae*. Specifically, we dissected the testes and male accessory glands with ejaculatory bulb from virgin and mated insects and the lower female reproductive tract from virgin and mated female insects. Each sample consisted of tissues from 25 insects and they were duplicate biological.

In table 3.8 the results from the peptidomic analysis of virgin and mated female flies are presented. From the peptidome of the lower female reproductive tract, we have identified 49 peptides from the virgin insects and 23 peptides from the mated female insects. The proteins MCM5_DROME (DNA replication licensing factor Mcm5), SPNE_DROAN (Probable ATP-dependent RNA helicase Spindle-E), THR_DROVI (Protein three rows) and OR35A_DROME (Odorant receptor 35a) were identified in both virgin and mated flies.

The MCM5 DROME is the putative replicative helicase essential for 'once per cell cvcle' DNA replication initiation and elongation in eukaryotic cells (Su et al., 1997). The SPNE DROAN plays a central role during oogenesis by repressing transposable elements and preventing their mobilization, which is essential for the germline integrity (Specchia et al., 2017). The THR DROVI is a maternally derived protein (Jaeger et al., 2004) that is involved in the formation and maintenance of epithelial structures for the zygotes. The presence of the Odorant receptor 35a is not surprising as the odorant receptor repertoire encodes a large collection of odor stimuli that vary widely in identity, intensity, and duration.

The peptidomics analysis of the other tissues is in progress. Future work will be focused on the analysis of the peptidomic data that will be obtained from the different tissues focusing on the identification of molecules that are involved in the reproductive system.

		Virgin	Mated		
N	Protein code	Peptide	Protein code	Peptide	
1	OR35A_DROME	QAGLKILQ	OR35A_DROME	QAGLKILQ	
2	THR_DROVI	NAAKLIQV	THR_DROVI	NAAKLIQV	
3	SPNE_DROAN	KAAVKII	SPNE_DROAN	KAAVKII	
4	NAA25_DROME	QAVALQL	BRM_DROME	VGARQRITAA	
5	FBRL_DROER	KLAAAVLGGV	Y7065_DROME	SASAGGGGGVVGA	
6	RS3A_DROSE	SEGAVIDRPEGYEPPVQE	TRX_DROVI	QLGLAQIAR	
7	RS3A_DROSE	DIDPERSF	TRX_DROME	ACALVSPGGSSQG	
8	C28A5_DROME	QLLVINP	TRX_DROME	POPTATP	
9	C28A5_DROME	KPTPIMS	MCM5_DROME	VVGVRAP	
10	ACT3_DROME	ISKEEYDESGPGIVHRK	HEAT1_DROME	KPTAQQLI	
11	MCM5_DROME	VVGVRAP	DAAF1_DROPE	EAASGDVDSIVK	
12	MCM5_DROME	ITAPRPEH	MCTS1_DROME	DLILPKK	
13	SIF1_DROME	VVVGGLGVAKP	FACR2_DROME	KVVPVV	
14 15	Y3800_DROME	GGGGGPGGVGG GG GG GG GGM RG N DG GGM RR NLAKVPVNPALPK	DSCL_DROME	LLQVKVP	
	AIMP2_DROME		DSCL_DROME	LTHTLIVQVP	
16	BCD_DROME	ASACRVLVK	TITIN_DROME	KVREKVVKT	
17	ROP_DROME	RNIVPILL	TITIN_DROME	IDNVGGIH	
18	PUR4_DROME	KPAPKDLEQ	WHITE_DROME	QVLAVVP	
19	DOT1L_DROME	KQLKNLPE	KLP68_DROP5	MPNVRNI	
20	DOT1L_DROME	IIEVPPP	MMS22_DROME	KLVARP	
21	DOT1L_DROME	LRGPRL	ATPA_DROME	KGIRPAINV	
22	ANKHM_DROME	KVQVPVNAI	BX42_DROME	RRLVARGAP	
23 24	WNT4_DROME GAWKY_DROME	KLGIIVPGGQGLP QPTSQQQQP	EIF3C_DROAN	TIELVLQY	
24	CP9F2_DROME	LKGLNKILKV			
26	WDR48_DROGR	IRGGAAIK			
20	RTBS_DROME	LKVNPQK			
28	MONZ DROME	KVARAKPQ			
29	MON2_DROME	QVLFPLLDNVRALSS			
30	CLH_DROME	AALAPKAIL			
31	SUCA_DROME	KLVGGISPKKGGTQHLGL			
32	CAZ DROME	GGGGGGGRYDRG GG GG GG GG GG NVOPR			
33	PDFR_DROME	VRAAIVLLPL			
34	SUV39_DROME	KDVPKP			
35	RBGPR DROME	PLOAAAKLIOKVGR			
36	MSH6 DROME	VRTVLGGILKEPVP			
37	C5210 DROME	AKELPNK			
38	2AAA_DROME	KLLLPTVLL			
39	BOP1_DROPE	KVVPVV			
40	MED15 DROME	PTQRVPL			
41	MED15 DROME	APVPGGPGTA			
42	MED15 DROME	TLQSPVANHTL			
43	AP3D_DROME	GRLIAEQLLDVAIRVPV			
44	GBB2_DROME	NKVQIIPL			
45	RL7A DROME	QLFEKRPK			
46	PCAT1_DROME	VQPVLLK			
47	GBB2_DROME	NKVQIIPL			
48	RL7A_DROME	QLFEKRPK			
49	PCAT1_DROME	VQPVLLK			

Table 3.8: List of the peptides identified in the virgin and mated female insects.

4. DISCUSSION

4. Discussion

The olive fruit fly, *B. oleae*, is the major arthropod pest of commercial olive production, causing extensive damage to olive crops worldwide. As it was analyzed in the Introduction, olive fly control mostly relies on insecticide spraying. However, extensive insecticide resistance in olive fly populations is jeopardizing chemical control efforts and calls for the development of novel tools.

Targeting the reproductive success of the olive fly is a promising method for pest control as a possible manipulation of the reproductive system could affect the destructive activity of the fly.

For B. oleae, several transcriptome datasets have analyzed genes involved in detoxification (Pavlidi et al., 2013), insecticide resistance (Sagri et al., 2014), digestion or food recognition (Pavlidi et al., 2017). In 2014, the first transcriptomic analysis of the reproductive system of the olive fly was presented (Sagri et al., 2014). The analyzed tissues were limited in the testes for the male reproductive system and in the female accessory glands and spermathecae for the female reproductive system. The insects used in that analysis were immature virgin flies and the focus was on the identification of sex differentiation genes (Sagri et al., 2014). However, there was no information on the molecular factors and mechanisms that shape the reproductive success on the olive fly.

In the present thesis, our aim was to shed light on the processes that trigger female post-mating responses. Apart from the fundamental knowledge that this would offer, such understanding could be potentially transformed into novel tools for the control of *B. oleae* field populations.

4.1 Transcriptomic analysis of reproductive tissues

We initially performed а transcriptomic analysis of the reproductive tissues focusing on the identification of genes that may play a role in the post-mating response of the insect. Sequencing was performed in the reproductive tissues of the olive fly from virgin and mated insects. Specifically, testes and male accessory glands with ejaculatory bulb of male insects and the lower reproductive tract (uterus, accessory glands and spermathecae) of female insects constituted our samples. Since we were specifically interested in the male's potential to prime the female reproductive system, we examined changes that occurred in the female reproductive tract (ovaries excluded) as this is the primary site of interaction between the male ejaculate and the female. Ovaries were chosen for the developmental analysis as it is described for D. melanogaster (Graveley et al., 2010), A. aegypti (Akbari et al., 2013) and B. dorsalis (Geib et al., 2014).

The transcriptomic analysis yielded 11,452 male and 10,478 female transcripts. More transcripts were obtained from the tissues of mated insects (~5000 transcripts from each library) compared to virgin. This was not surprising as mated insects were regulated for the post-mating response including changes in insect behavior, physiology and gene expression.

Functional annotation was performed for all the transcripts from male and female tissues based on gene ontology (GO) categorization for biological process level II. The transcriptome profile obtained from this analysis showed a homogenization in the GO term hits between the two sexes. One explanation is that the samples were collected from already sexually mature insects. Genes that are sex-biased and responsible for the morphological difference or the maturation of the tissues are not represented in this transcriptomic analysis as they may be expressed in other developmental or adult maturation stages e.g. egg and larvae.

The most representative GO terms in both sexes were the metabolic, cellular and single-organism processes. Interestingly, only 713 out of 11,452 transcripts from the male tissues and 693 out of 10,478 transcripts from the female tissues have the GO term of reproduction indicating the limited information that is available for the genes expressed in the reproductive tissues of the insects resulting in reduced GO hits of the term "reproduction".

The presence of the "metabolic process" term reflects the high amount of energy that reproduction demands. In insects, when energy reserves have to be mobilized, hormonal activation of catabolic enzymes causes the breakdown of lipid and glycogen stores (Lorenz et al., 2009).

4.2 Transcriptional Profiles of Mating-Responsive Genes

The transcriptomes obtained by the virgin insects were compared to the transcriptome collected from the mated insects in order to identify genes that change their transcript abundance in response to mating and encode crucial proteins for the

male and female reproductive success. Multidimensional-scaling plots ensured the similarity of the biological samples to one another, as biological replicates clustered together. However, two replicates of the virgin tissues, one from each sex, were grouped with the tissues obtained by the mated insects. This could be attributed to a variety of technical and biological factors for example differences in the amount of RNA, preparation, library operators, and procedures for sample extraction, preservation, or storage (Peixoto et al., 2015). Proper normalization, the transformation of values that allows comparisons between samples, has been shown to critically impact the analysis of high-throughput data (Dillies et al., 2013). However, the use of RNA-seq to study gene expression can be also influenced by a variety of biological factors such as time of day, differences in responsiveness between individuals and cell-type heterogeneity. Given this, we decided to omit these two samples from the following analysis even at the expense of statistical power.

4.2.1 Testes

Transcriptomic analysis of the *B. oleae* testes from three-day old virgin flies has been analyzed previously (Sagri et al., 2016). The transcriptomic data from that analysis were used for the comparison of the obtained data from mated insects.

Comparison of the transcriptomes revealed that 107 genes were up-regulated and 345 genes were down-regulated in the testes of mated males. This number of regulated genes is smaller compared to the other reproductive tissues. As it was demonstrated in *D. melanogaster,* the spermatozoa are generally metabolically quiescent and transcriptionally silent in the adult insects (Olivieri et al., 1965) and therefore the derived transcriptional information is limited (Wasbrough et al., 2010).

From the functional annotation based on Gene Ontology (GO) categorization level II the tissue of testes gave the smallest terms hits demonstrating homogeneity of the genes with regard to their biological process and molecular function. The GO terms with the most abundant hits were similar to those obtained for the B. dorsalis testes (Wei et al., 2015). Comparing the results from both insects, in B. dorsalis the most abundant GO term was "cellular process" while in B. oleae "metabolic process". This difference obviously reflects the difference in the analyzed samples. In B. dorsalis the authors followed spermatogenesis in adult male flies at different ages, whereas in B. oleae we focused on differential expression of genes before and after mating of the flies.

Regarding the "molecular function" classification, the main groups involved "binding" and "catalytic activity". These groups were also identified as the most abundant in *B. dorsalis* (Wei et al., 2015) and *C. capitata* (Scolari et al., 2012) showing a conservation of the functions that are altered during mating in the insects.

Moreover, we annotated the genes on the recently sequenced genome of the olive fly. Also, 13 genes were annotated as unknown function genes. There was no homology with known sequences from other insects. Studies in numerous other insects have shown that the genes expressed in the reproductive tissues are among the most rapidly evolving genes, especially in males (Panhuis et al., 2006; Clark et al., 2006; Haerty et al., 2007; Scolari et al., 2012). These genes could be novel or fast-evolving sequences and may have a potential role in sexual selection and speciation and, therefore, represent ideal subjects for future evolutionary genetic studies for this species.

Two genes, antigen 5-related 2 and mucin, are involved in immune response, both in testis and in sperm development. Antigen 5-related 2 belongs to the large CAP family. Several members of this family in Drosophila are preferentially expressed in males and some within primary spermatocytes (Haynes et al., 1997). Antigen 5-related 2 has also been detected in the accessory glands of *C. capitata* (Davies et al., 2006). It has been proposed that the proteins of this family may act either mediating interactions between germ-line and somatic cells within the male or between the sperm and egg (Kovalick et al., 2005).

Mucin belongs to a family of large glycosylated macromolecules capable of forming enormous networks that act as selective barriers (Syed et al., 2008). Mucins have been shown to participate, together with other proteins and lipids, in the formation of mating plugs, often produced within the female reproductive tract during or shortly after mating (Avila et al., 2011). Mating plugs induce the post-mating response in several insects by preventing remating and helping sperm storage (Lung et al., 2001; Rogers et al., 2009). The olive fly does not produce a mating plug but mucins may have a sperm protection function, or may have a role in the differentiation and renewal of the epithelium and modulation of cell adhesion, immune response, and cell signaling (Wesseling et al., 1995; Chaturvedi e al., 2008).

Two cytochrome P450 genes (Cyp6a16 and Cyp313a4) were upregulated in the testes of mated insects. Insect cytochrome P450s comprise a diverse class of enzymes involved detoxification and biosynthesis in of ecdysteroids and juvenile hormones (JHs) (Feyereisen et al., 1999; Wilson et al., 2003). JHs and ecdysteroids control insect development during larval and pupal stages and have gonadotropic function in the adult stages (Hardie, 1995). Yu and Terriere suggested that insect P450s were involved in reproduction via control of hormone titers (Hodgson, 1985). Thus, one possible role for these P450 is the regulation of the ecdysteroids in testes.

4.2.2 Male accessory glands with ejaculatory bulb

In the order of Diptera that *B. oleae* belongs, male accessory glands secretions are transferred to the female during mating along with the sperm produced in the testes, affecting the female fly in two main behavioral and physiological characteristics: repression of sexual receptivity to further mating and egg laying stimulation (Delrio and Cavalloro 1979; Chen 1984; Jang 1995; Miyatake et al., 1999). Even though the morphology and ultrastructure of the male accessory glands with ejaculatory bulb of *B. oleae* has been analyzed by Marchini et al (2006), up to date there is no molecular information.

In the present thesis, we identified 11,452 new transcripts that are expressed in the male accessory glands of the olive fly.

From the 11,452 genes, 1,608 genes were upregulated while 383 genes were downregulated in mated insects.

Moreover, we annotated the genes on the recently sequenced genome of the olive fly and analyzed their distribution to a functional annotation using GO analysis level II. All the genes showed high similarity with homology sequences in *D. melanogaster*.

The GO analysis of the top 100 genes in response to biological processes and molecular function showed enrichment of the terms of "metabolic processes" and "biological regulation". As sexually mature males are actively involved in pheromone emission and female courting, it is of no surprise that they show significant enrichment of these GO terms. These processes indicate the high energy investment required in mating, as it was also observed in C. capitata (Gomulski et al., 2012).

An increased expression of immunity related genes, attacin-A and catalase was detected in these tissues. Attacin-A encodes an antimicrobial peptide (AMP) that has been involved in insect immunity (Yi et al., 2014). encodes Moreover, catalase for а detoxification enzyme that detoxifies the insects from reactive oxygen species. In A. gambiae, a systemic reduction in catalase activity by dsRNA-mediated knockdown resulted in significant reduction of oviposition, indicating that catalase plays a central role in protecting oocytes and early embryos from reactive oxygen species (ROS) damage (Magalhaes et al., 2008). The presence of the gene in the male tissues indicates a similar role for the gene in *B. oleae*.

Interestingly, three genes that may be implicated in the foraging behavior have been identified. Foraging behavior involves memory/learning, olfactory visual and functions (Drew et al., 2000). The genes of gustatory receptors 32a and 21a and scribbler gene were upregulated in the reproductive tissues. This is in agreement with several studies reporting the expression of such genes in male accessory glands and testes of multiple species (Allen et al., 2008; Chapman et al., 2008; Zhou et al., 2009; Edwards et al., 2009). Scribbler was also identified in testes. However, while in male accessory glands with ejaculatory bulb it was upregulated, in testes it was downregulated. Scribbler encodes two transcripts widely expressed in the sensory nervous system and it was found to play a role in the food search behavior (Suster et al., 2004). Further examination of its role in the olive fly is necessary.

receptor Finally, ryanodine was upregulated in the male tissues. Ryanodine receptor belongs to a distinct class of ligandgated calcium channels controlling the release of calcium from intracellular stores. They are located on the sarcoplasmic reticulum of muscle and the endoplasmic reticulum of neurons and many other cell types. Ejaculatory bulb is a muscle tissue whose contraction helps the transfer of the seminal fluid to the female insect (Guiraudie et al., 2007). The presence of a ryanodine receptor indicates that contraction maybe depended on ligand-gated calcium channels.

4.3.2.1 Expression profile of selected genes in males

Our transcriptional analysis showed that the male response to mating in *B. oleae*

translates into substantial transcriptional changes. А more detailed follow-up expression profile analysis from insects during sexual maturation and mated was performed for 6 mating-responsive genes (brunelleschi, CG2254-like, timeless, c52416, c53574 and *yellow-q*). Our working hypothesis was that a gene that encodes a protein in the seminal fluid that is important for mating, should be expressed earlier so that the protein will be present at the time of mating. In fact, most of the aforementioned genes showed highest expression before mating, thus confirming our hypothesis.

Brunelleschi and yellow-g showed highest expression on DAY-5 after adult emergence, while CG2254-like showed highest expression on DAY-6. Brunelleschi belongs to the TRAPII complex which is involved in vesicle trafficking in the secretory pathway (Robinett et al., 2009). As the male accessory glands are the secretory tissues for the reproductive system, brunelleschi is involved in the maturation of the accessory gland tissue to produce the secretory proteins of the seminal fluid.

Yellow-g belongs to the MRJP/YELLOW family that includes the major royal jelly proteins and the yellow proteins. The *yellow* gene family has been associated with behavior (Dow 1976; Wilson et al., 1976; Burnet and Wilson 1980; Drapeau et al., 2003; Drapeau et al., 2006; Prud'homme et al., 2006), pigmentation (Han et al. 2002; Wittkopp, True, et al., 2002; Wittkopp, Vaccaro, et al., 2002; Prud'homme et al., 2006), and sexspecific reproductive maturation (Drapeau et al., 2006) in *D. melanogaster* and *A. mellifera*.

CG2254-like encodes for a dehydrogenase that is localized in the lipid

Discussion

droplets, organelles that store lipids and have a significant role in metabolism and membrane synthesis (Thul et al., 2013). The ejaculatory bulb is a muscle tissue and its contractions help to transfer the seminal fluid to the female flies during mating. During mating, the tissue has high energy demands and the presence of lipid droplets give them an alternative source of energy. Moreover, these lipid organelles could serve as a source of substrate for steroid hormone synthesis such as ecdysteroid hormone that play a significant role in reproduction.

Timeless showed an increase in its expression after mating, indicating possibly a role in the rhythmic cycle. *Timeless* along with *per* (period) regulate the circadian cycle of insects. Knockout of *timeless* in male *D*. *melanogaster* showed a change in mating time (Beaver, 2003). In *S. litorralis* it has been demonstrated that the sperm release rhythm is controlled by an intrinsic circadian mechanism located in the reproductive system (Gvakharia et al., 2013).

4.2.3 Female lower reproductive tract

The female reproductive tract is constituted by the spermathecae (where sperm is stored), the uterus (where the seminal fluid is transferred) and the accessory glands (the secretory tissue of the reproductive system). Although, the reproductive tract of the female insect contains secretory tissue, to date female reproductive genes have been comprehensively studied in very few taxa compared to the male reproductive tissues (Lawniczak et al., 2004; Mack et al., 2006; Rogers et al., 2008).

A transcriptomic analysis of female accessory glands and spermathecae in virgin olive flies has been analyzed previously (Sagri et al., 2014). However, the approach was focused on the identification of genes differentially expressed between the sexes. Here, we obtained 10,478 new transcripts from which 1,705 genes were up-regulated while 120 genes were down-regulated in mated flies. This is similar with the results in analysis after D. melanogaster of transcriptome the lower reproductive system in several time points after mating (Mack et al. 2006). Other works in B. dorsalis and C. capitata, however, showed significantly lower transcriptional changes after mating. Only 65 and 32 transcripts were altered in abundance in *B. dorsalis* and *C. capitata*, respectively (McGraw et al., 2004; Zheng et al., 2016).

Two possible explanations may account for this difference. The first one regards the analyzed tissues. In B. oleae and D. melanogaster the lower reproductive tract was analyzed, whereas in B. dorsalis and C. capitata the whole body was analyzed. The second reason regards the time when tissues were collected. In B. oleae tissues were collected 12 hours after one mating, in D. *melanogaster* tissues were collected at several time points (0, 3, 6 and 24 hour) after mating, while in *B. dorsalis* and *C. capitata* the analyzed time point was 24 hours after mating. This shows the variability of the postmating transcriptional changes in different insect species and time points.

As it was extensively analyzed in many Drosophila species, the female reproductive genes encode proteases, proteases inhibitors and genes related to immune response and energy metabolism (Mack et al. 2006; Lawniczak et al., 2004; McGraw et al., 2008; Prokupek et al., 2008). Unsurprisingly, these genes were also observed in the GO annotation of the upregulated genes in the lower female reproductive tract of *B. oleae*.

A protease, *serpin42Da* and a protease inhibitor *CG9676-like* were identified. In *D. melanogaster* proteases and protease inhibitors have been shown to be required for activation of ovulation-inducing seminal fluid proteins (McGraw et al., 2004).

Four genes encoding ATPase and NADH dehydrogenases that play a role in energy metabolism were found upregulated in mated females. Energy metabolism genes were highly expressed in the spermatheca of the ant queen, suggesting high energy costs of spermatheca function (Gotoh et al., 2017). This indicates that *B. oleae* spermatheca has high energy demands.

A gene related to immune response had an overexpression in the mated female tissues. The *defensin* gene, encodes an antibacterial peptide (AMP). Genes encoding AMPs have been observed in the male accessory gland with ejaculatory bulb, too, indicating that the AMPs play a significant role in the immune response of the olive fly. Interestingly, in *C. capitata*, the *defensin* gene was upregulated in the abdomen of mature virgin females compared to mature mated insects (Gomulski et al., 2012). Moreover, Gomulski et al (2012) showed that the medfly does not appear to activate any immune gene expression after mating displaying a greater similarity to its more distant evolutionary relatives, A. gambiae and A. mellifera (Kocher et al., 2008; Rogers et al., 2008). This is not the case for the olive fly. Even though *B. oleae* and *C. capitata* are closely related they show different post-mating immunity response. Olive fly shows more similarity with Drosophila species. In mated *D. melanogaster* females, the immune response is activated by the sperm and seminal fluid components. It has been suggested that this immune response is part of a sexually antagonistic arms race in which the male produces increasingly potent signal molecules that modify the behavior and physiology of the female away from reproductive receptivity towards fecundity (Chapman et al., 1995).

4.3.3.1 Expression profile of selected genes in females

The transcriptional analysis of the post-mating response in female olive flies showed extensive transcriptional changes. A follow-up expression profile analysis during time-points after mating was performed for 6 mating-responsive genes (troponin C, yolkprotein 2, lingerer, glutathione S-transferase bestrophin 2, epsilon class, ornithine decarboxylase antizyme). The analysis showed that most genes presented an increasing expression after mating, while two genes, troponin C and glutathione S-transferase epsilon class, showed overexpression in virgin female flies.

Troponin C pays a significant role in muscle contractions. In Pieris rapae, the small cabbage white butterfly, it was identified as a component of the bursa copulatrix female reproductive tissue that is responsible for the digestion of the nutrient-rich spermatophore produced by the male accessory glands (Meslin et al., 2015). The identification of this protein indicates its involvement as a muscle protein in the contraction of the female reproductive system of the olive fly, probably aiding the digestion of the seminal fluid proteins that are transferred to the female during mating. The overexpression in virgin flies may indicate that the protein should be present in the reproductive tract of the female insect to digest the seminal fluid when the mating occurs.

Glutathione S-transferase epsilon class is a predicted intracellular or membranebound protein (Bloch et al., 2011). Predicted intracellular proteins have been reported in the reproductive system of *D. melanogaster* (Walker et al., 2006), *A. mellifera* (Baer et al., 2009) and *A. aegypti* (Jones et al., 1965). For *A. mellifera* and *A. aegypti* it has been suggested that these proteins may be secreted through non-standard secretion routes such as apocrine and holocrine secretion (Dapples et al., 1974; Ramalingam et al., 1983). Macro apocrine secretion has been reported in the *B. oleae* male reproductive system (Marchini et al., 2006).

Yolk protein-2 showed overexpression 9 hours after mating indicating its supporting role in embryonic development. The homologue of this gene in D. melanogaster is expressed almost exclusively in females and it was associated with a female-sterile mutation (Williams et al., 2005; Goldman et al., 2007). The yolk protein-2 gene encodes for a precursor of the major egg storage protein, the vitelline. There are three main factors that regulate vitellogenesis in D. melanogaster: a brain factor, an ovarian factor that stimulates fat bodies vitelline synthesis and a thoracic factor that is involved in the uptake of the vitelline by the ovaries (Handler et al., 1977; Postlethwait et al., 1979). Vitellogenins have also been implicated with the transport of various molecules including sugars, lipids and hormones in insects (Sappington and Raidhel, 1998).

The *lingerer* gene showed upregulation 12 hours after mating. Mutations of *lingerer* in male *D. melanogaster* result in abnormal matings and the "stuck" phenotype where males could not be separated from the females after the end of mating. It has been also identified as a maternal gene expressed in *D. melanogaster* early embryos (Kuniyoshi et al., 2002).

A similar expression profile has been demonstrated for the *bestrophin 2* gene. In *D. melanogaster* it encodes for an oligomeric transmembrane protein that is thought to act as chloride channel (Tavsanli et al., 2001). It helps in the transportation of small molecules that are transferred in the female flies as part of the seminal fluid during mating.

An upregulation of an Ornithine decarboxylase antizyme (ODC-AZ) was observed in mated females. ODC-AZ binds and destabilizes the ornithine decarboxylase (ODC), a key enzyme in polyamine synthesis (Cayre et al., 1996). Correlative changes between hormone levels and polyamine metabolism were described in several insects. For example, 20-hydroxyecdysone increases ODC activity in silk moth pupal tissues (Wyatt et al., 1973) and juvenile hormone stimulates ODC activity during vitellogenesis in D. melanogaster (Birnhaum and Gilbert, 1990). Ornithine decarboxylase antizyme is an inhibitor of ODC. Inhibition of ODC activity causes impaired vitellogenesis in A. aegypti (Kogan et al., 2000) and oviposition delay in A. domesticus (Wyatt et al., 1973). The observed upregulation of their inhibitor indicates that ODC-AZ is probably involved in the control of ODCs levels in mated female olive flies.

4.3 Functional analysis of mating regulated genes through RNAi

4.3.1 RNAi silencing through injection

Two genes, *yellow-g* and *troponin-C*, that were identified as important for mating through transcriptomic analysis of the reproductive system and were selected for further validation of their role in the mating response, using RNA interference through injection. The results indicated high percentage of silencing in the insect, reaching 81% for *yellow-g* and 70% for *troponin-C*.

The successful response of the fly to the RNAi process should not be taken for granted, as RNAi response differs between different insects and different genes. In Drosophila, RNAi-mediated gene knockdown through microinjection was only localized to the site of dsRNA delivery and effects were temporally limited (Daniel et al., 2008). On the contrary, injection of dsRNA into adult abdomen of *B. dorsalis* successfully inhibited the expression of *doublesex* gene in ovaries (Chen et al., 2008). Our RNAi experiments demonstrated a more generalized inhibition in the olive fly, more like that observed in *B. dorsalis* than that in *D. melanogaster*.

Additionally, the phenotypic impact of the silencing of these genes was remarkable as they reduced the fertility of the insects showing that they play a significant role in the post-mating response.

The *yellow-g* gene as it was reported earlier, belongs to the MRJP/YELLOW family that includes the major royal jelly proteins and the yellow proteins. In *D. melanogaster* it was

demonstrated that *yellow-q* is needed for proper egg formation, possibly for the production of a structurally sound vitelline membrane, or to catalyze the crosslinking of eggshell layers for the rigidity of the egg (Claycomb et al., 2004). An orthologue of Drosophila yellow-g gene in A. gambiae was targeted through CRISPR-Cas9 technology and female-sterility resulted in phenotype (Hammond et al., 2016). In our study we present the first report of the upregulation of the yellow-g gene in mated male insects. To distinguish whether the transient silencing of *yellow-q* had an impact on the reproduction we performed mating experiments with virgin female flies. The results showed that the mated females had a significant lower reproductive rate compared to the control flies. This report shows that *yellow-g* could be a good candidate for effective B. oleae pest control target.

Troponin-C is the major component of the tropomyosin-troponin complex (Tm-Tn) on the actin of the striated muscles of insects. Troponin-C gene along with other classical muscle-related genes (Troponin T, myosin, tropomyosin and myofilin) is highly expressed in the female lower reproductive tract and the bursa copulatrix of Lepidoptera. The bursa copulatrix provides unique and specific functionality female digestive in the reproductive tract of Lepidoptera as it digests the spermatophore that is produced by the male accessory glands (Karlson et al., 1996; Meslin et al., 2015). The evolutionary distance between the olive fly and Lepidoptera allows us to speculate that digestion of the seminal fluid might be completed by the lower reproductive system in the olive fly as well. The presence of *troponin* C in the female

reproductive tract shows that it is used for the contraction of the female reproductive system helping the movement of the sperm to the spermathecae.

The transient silencing of the *troponin-C* in the female insects caused lower oviposition rate compared to control. This finding validates the previous speculation on the important role of the gene in the reproductive system of the olive fly.

4.3.2 Gene silencing through dsRNA feeding

The gene selected for RNAi silencing through feeding was the *sex peptide receptor* or *spr* gene. Sex peptide receptor is a Gprotein-coupled receptor (GPCR) required in the nervous system for the post-mating behavioral switch triggered by the sex peptide in *D. melanogaster* (Yapici et al., 2008). This behavioral switch includes an increase in feeding, a change in food choice and sleep, stimulation of the immune system (Peng et al., 2005; Carvalho et al., 2006; Domanitskaya et al., 2007; Ribeiro et al., 2010; Isaac et al., 2010; Haussmann et al., 2015) increase in oviposition and decrease of female longevity (Avila et al., 2010; Wigby et al., 2005).

Sex peptide or SP is a 36-amino-acid peptide produced in the male accessory gland in all Drosophilidae (Chen et al., 1988; Chapman et al., 2003; Liu et al., 2003). Even though orthologue SP genes are difficult to identify outside the Drosophilidae mainly because of their small size, this is not the case for the sex peptide receptor.

Putative sex peptide receptor orthologues have been identified in most insect genomes including the mosquitoes *A*. *aegypti* and *A. gambiae*, the moth *B. mori*, the beetle *T. castaneum* (Yapici et al., 2008) and the fruit fly *B. dorsalis* (Zheng et al., 2012). In the transcriptomic analysis demonstrated in this thesis there was no identification of the *sex peptide* gene.

Gene silencing through RNAi feeding is mediated through feeding with specific E. coli bacterial strain engineered to produce specifically designed dsRNA. RNAi feeding has been successfully reported in C. elegans (Timmons et al., 2000), E. histolytica (Solis et al., 2009) and S. exiqua (Tian et al., 2009). However, in D. melanogaster, feeding yeast cells engineered to express double-stranded RNA to the flies failed to work (Gura et al., 2000). These facts made people believe that in Diptera, feeding dsRNA cannot induce RNAi. However, in 2011 RNAi feeding was achieved in B. dorsalis indicating that feeding dsRNAexpressing bacteria can achieve RNAi silencing in different species. Here, we report the first dsRNA-feeding assay for *B. oleae* adults.

Feeding adult olive fly females dsRNA targeting the sex peptide receptor induced 90% and 40% downregulation of the gene on the female reproductive tract and head, respectively. In B. dorsalis feeding ds-RNA of the sex peptide receptor induced only 52% downregulation (Zheng et al., 2015). The difference in the silencing results may be due to the different examined tissues. Zheng and co-workers (2015) used the whole insect body to determine silencing efficiency, instead we determined silencing effect at the target tissue (female head and reproductive tract). Our findings indicate that silencing efficiency maybe different at different tissues of the same insect.

Feeding insects with dsRNA of the sex peptide receptor produced female flies with

greatly reduced fertility. The number of eggs laid by female flies decreased significantly after *spr* gene silencing. This result is consistent with research in *D. melanogaster* where females lacking the SPR failed to respond to SP and continued to show virgin behaviors laying very few eggs after mating (Yapici et al., 2008). RNAi of the sex peptide receptor of the *H. armigera* (Haspr) induced suppression of sex pheromone production and reduced the egg-laying response of mated females compared with virgin females (Hanin et al., 2012). These results suggested that SPR has an important function in postmating and general reproductive behavior of insects.

RNAi by continuous feeding dsRNA can significantly impact target gene expression and its functions in the olive fly.

4.4 Concluding remarks

4.4.1 The reproductive system of B. oleae

This thesis was focused on some facets of the reproductive processes in the olive fly. The underlying premise is that elucidation of such processes would not only shed light on fundamental questions of the fly's reproductive biology but also provide new tools for its control.

Until today, molecular and functional information on the proteins secreted in the olive fly reproductive apparatus was limited. Within the transcriptome dataset generated in the present thesis, a subset of transcripts was identified that, on the basis of their tissue-specificity, may encode olive fly reproductive proteins. Comparison of mated and virgin fly transcriptomes identified a change in transcriptional activity of 452 loci in testes, 1,991 loci in male accessory glands with ejaculatory bulb and 1,825 loci in female lower reproductive system. This transcriptional activity of mated olive flies is characterized by rapid cell proliferation and secretory activity, as supported by the categorization of the transcripts in functional classes related to biological regulation, metabolic and cellular processes.

In general, through comparative structural modeling it was shown that the major functional classes of the reproductive proteins are conserved even between mammalian and Drosophila despite the differences in reproductive strategies (Mueller et al., 2004). As it comes to olive fly, indeed the general transcriptomic profile of the analyzed tissues was similar to other diptera reproductive systems such as C. capitata (Gomulski et al., 2012; Scolari et al., 2012). However, a more detailed analysis of the transcripts showed that there is diversity in the mating response among species. Specifically, comparing to C. capitata, an insect that belongs to the same family with olive fly, there were two distinct differences. Firstly, there was a profound alteration in transcripts in one time mated B. oleae insects while a similar alteration was detected in three times mated C. capitata insects. Secondly, in *B. oleae* there was a modification of the immunity response of the reproductive tissues while in C. capitata there was not (Gomulski et al., 2012). Similarly, comparison of D. simulans male accessory gland proteins with their orthologues in its close relative D. melanogaster demonstrated rapid divergence of many of these reproductive genes (Swanson et al., 2002). The divergence of the reproductive genes is based on the important role that they play in ensuring the successful mating and fertilization (Braswell et al. 2006; Tian et al., 2017).

The extensive transcriptome resources we gained through this research will improve the on-going annotation of the olive fly genome. The obtained data will help genomic data from other Tephritid species of agricultural importance, opening new ways for comparative genomics and barcoding for species identification (Schultz et al., 1998; Pearson et al., 1997; Nielsen et al., 1997).

The transcriptional profiles of a group of genes identified in the reproductive tissues of B. oleae were analyzed further and showed mating-induced changes most probably related to replenishment of their protein products after mating for the males and inducing several post-mating processes for the females. However, the very complex transcriptional profile of several of these genes necessitates further characterization. A key focus for future studies is a better understanding of the molecules and the processes that are derived in the reproduction of olive fly.

Systems biology approaches can contribute to the clarification of the seminal fluid components and their regulations. Combining data from different -omic technologies, such as transcriptomic, proteomic, peptidomic and metabolomic analyses, will help to establish a more comprehensive picture. The integrative nature of systems biology approaches provides more power in prediction of key targets for functional testing. The advances in the -omic technologies can bridge the gap between reproductive phenotypes and their molecular mechanisms (Findlay et al., 2010). In

Heliconius butterfly 52 different accessory gland proteins have been identified by a combination of EST and proteome analyses, including the identification of chymotrypsin, proteinase inhibitor and hormone binding proteins (Walters et al., 2010). Similar work is in progress in our laboratory, in an effort to combine our present transcriptomic data with proteomic or peptidomic analyses of the reproductive tissues.

4.4.2. Transient silencing of selected reproductive genes

An interesting outcome of the research is the significant phenotypes that were observed through the RNAi experiments. Transient silencing was performed on three genes (yellow-q, troponin C and spr) and the results showed a statistically significant modification on the behavior of the female insects. Our observations were focused on oviposition rate and longevity of female flies. Transient silencing of the aforementioned genes resulted in lower oviposition rate and longevity compared to the control flies.

Reproductive genes encode several proteins that have roles in modulating many female behavioral and physiological processes across a wide range of insect species including transcriptional and reproductive tract structural changes, upregulation of antimicrobial peptide genes, altered receptivity to remating, sperm storage, mating plug formation, postmating feeding and female activity levels (Avila et al., 2011). These post-mating behavioral changes are the result of the alteration of a cascade of genes. The phenotypic observations that were recorded in this thesis, show that the studied

genes may have a key role in the alteration of oviposition or longevity of the olive fly.

However, to better demonstrate and verify their role, future direction of the project could be the generation of knock out lines for the genes of interest. Since RNAi technology knocks down but not out the targeted transcript, it produces phenotypes which not necessarily mirror the complete loss-offunction of the targeted gene. In A. gambiae, the antiparasitic role of TEP1 was discovered and characterized using RNA interference assays (Blandin et al., 2004). To confirm the pivotal role of TEP1, they produced knock out lines using TALENS technology where they observed that all mutations in a homozygous state resulted in a similar phenotype (Smidler et al., 2013). On this account, complete knock out of the genes under study, for instance by CRISPR technology, will demonstrate whether these genes are responsible for the resulting phenotype, or they are involved in a cascade of genes associated with the phenotype.

Such knowledge of the key components in the reproduction and their behavior during the mating response will give the power to identify beneficial targets for pest management techniques. The destructive success of the insect is based on its high reproductive rate. Interfering with the outcome of mating would have a strong impact on the size of natural fly populations.

4.4.3. Implementation in control methods

Sterile insect technique (SIT) is an established method of insect population control for several insect species including fruit flies, tsetse fly, screwworm, moths and mosquitoes. In olive fly, there were two unsuccessful SIT efforts with specific key problems (Economopoulos and Zervas, 1982). One of them was that sterilization was mainly caused through radiation, a procedure that causes somatic damages to the insects reducing the competitive ability of male flies to mate with wild females (Proverbs et al., 1969). Alternative methods for sterilization of the insects can enhance the efficiency of the SIT programs.

RNAi technology could prove а powerful molecular tool to induce sterilization for SIT purposes. RNAi technology could be more effective and species-specific due to its target specificity that would preserve male fitness (Wagar et al., 2017). Moreover, it could be applied to both mass-reared and recently captured field insects, avoiding the need to use highly inbred mass-reared colonies with known competitiveness problems (Lance et al., 2005). A promising result for this application was published recently for *B. dorsalis*, where spermless males were developed by interfering with germ cell differentiation and azoospermia related genes (boul, zpq, dsx^{M} , fzo and qas8). Knock down of target genes significantly affected the reproductive ability of males and reduced egg-hatching while different combinations of the selected genes resulted in 85.4% male sterility (Wagar Ali et al., 2017). In this thesis, RNA inhibition through dsRNA feeding was successfully implemented to the olive fly reducing the expression of the spr gene showing that this method could be used in B. oleae, too. Implementation of bacteria producing dsRNA for specific reproductive genes in the artificial diet of the insects could be an alternative sterilization method. However, in order for this approach to be commercially used, many barriers have to be conquered. For example, the selected gene should confer nearly 100% sterilization, the species-specificity of the selected gene should be confirmed and off-target effects should be tested (Wei et al., 2015).

Another application of the RNAi technology that is under rapid development recently is the dsRNA insecticides. In 2017, EPA (United states Environmental Protection Agency) approved the first plant-incorporated protectant (PIP) of its kind based on RNA interference technology. Specifically, EPA approved four SmartStax Pro seed products with the RNAi-based PIP production. PIPs are pesticides that plants are able to produce themselves, thanks to modifications to plants genes that can incorporate DvSnf7 dsRNA. This dsRNA is specific to the western corn rootworm Snf7 gene. When a DvSnf7 dsRNAcontaining plant is consumed by a corn rootworm, the dsRNA will initiate RNAi within the worm, leading to the suppression of this critical gene and, eventually, rootworm's demise (EPA 2017).

The delivery of dsRNA to pests through transgenic plants is not possible for the control of the olive fly, as olive tree is a centenarian tree. However, if the insecticidal dsRNA could be delivered as a spray or powder, this approach could be conceivable. The foliar application of Colorado potato beetle actin dsRNA was highly effective against the beetle, since potato plants were protected for at least 28 days under greenhouse conditions (Miguel et al., 2015). Nonetheless, several important issues should be considered for this new type of pest control. First dsRNA is a fragile biological molecule, so a formulation should be developed to pack the molecule until it is delivered to its target gene. Second, issues such as persistence in the environment and impact at non-target organisms need to be researched thoroughly.

The high specificity of dsRNA (having the potential to be species specific) makes RNAi an extremely promising pest management technology. In this research, we proved that this technology could be used for the control of olive fly as we successfully reduced the expression of specific genes.

Gene-drive technologies can also be recruited for pest management control, using as targets reproductive genes identified in this research. One possible gene drive approach is to use selfish genes like CRISPR/Cas9 nucleases that will spread а single characteristic in the genome through non-Mendelian inheritance. If the introduced driving gene disrupts a fertility gene, it could suppress the population or even collapse it (Burt et al., 2003). Such a synthetic gene drive was generated for A. gambiae mosquitoes editing using the gene technology CRISPR/Cas9 to target genes involved in egg production to reduce the number of offspring (Hammond et al., 2016). CRISPC/Cas9 nuclease copied the gene drive onto both chromosomes during sperm and egg formation and in just four generations the new genes spread through the mosquito population. However, as the gene drive continued, mutations gradually arose and blocked the engineered genes restoring females' fertility. However, as it was analyzed in the Introduction, gene drive systems have still many obstacles to overcome before they could be used in the field.

Alternatively, reproductive genes identified in this project could be the base for design of chemosterilants. the These compounds would mimic the function of these proteins resulting to inhibition of their role in the cell. For example, it was shown that when a compound that encodes an agonist of the steroid hormone 20-hydroxyecdysone was applied to A. gambiae females, it disrupted multiple biological processes such as lifespan, insemination and egg production, that are key to the ability of mosquitoes to transmit malaria (Childs et al., 2016).

In conclusion, the wealth of data generated here including the categorization of a large number of reproductive genes, the elucidation of the role of several of them and the application of techniques like dsRNA feeding will provide targets for genetic sterility and novel means for chemical sterilization in mass rearing facilities and will pave the way of developing novel tools for the control of the insect.

5.REFERENCES

5. References

- Abraham, S, Goane L., Cladera J, Vera MT (2011) Effects of male nutrition on sperm storage and remating behavior in wild and laboratory *Anastrepha fraterculus* (Diptera: Tephritidae) females. J. Insect Physiol. 57: 1501–1507.
- Adiyodi K.G. and. Adiyodi R.G (1988) Accessory sex glands. In: Reproductive Biology of Invertebrates. Vol. III. John Wiley & Sons, 356-471
- Ait M, Abdellaziz, Ouanaimi, Fouad, Chemseddine, Mohamed, Boumezzough, Ali (2017) Study of the flight dynamics of *Prays oleae* (Lepidoptera: Yponomeutidae) using sexual trapping in olive orchards of Essaouira region, Morocco. 943: 943-952.
- Akbari OS, Antoshechkin I, Amrhein H, Williams B, Diloreto R, Sandler J, Hay B (2013) The developmental transcriptome of the mosquito Aedes aegypti, an invasive species and major arbovirus vector. G3: Genes|Genomes|Genetics.; 3(9):1493– 1509.
- Aktar, W, Sengupta, D and Chowdhury A(2009) Impact of Pesticides Use inAgriculture Their Benefits and Hazards.Interdisciplinary Toxicology, 2, 1-12.
- Alfonso P, Ahmed-Braimah YH, Ethan C, Degner EC, Avila WF, Villarreal SM, Pleiss JA, Wolfner MF, Harrington LC (2016) Mating-induced transcriptome changes in the reproductive tract of female *Aedes aegypti*. PLoS Negl. Trop.Dis 10, e0004451.
- Al-Lawati H., Kamp G., Bienefeld K., (2009) Characteristics of the spermathecal

contents of old and young honeybee queens. J. Insect Physiol. 55: 117–122.

- Allen AK, Spradling AC (2008) The Sf1-related nuclear hormone receptor Hr39 regulates Drosophila female reproductive tract development and function. Development 135: 311–321.
- Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic Local Alignment Search Tool. Journal of Molecular Biology 215: 403–410.
- Andrews J, Bouffard GG, Cheadle C, Lü, J, Becker KG and Oliver B (2000) Gene discovery using computational and microarray analysis of transcription in the *Drosophila melanogaster* testis. Genome Res 10: 2030–2043.
- Ant T, Koukidou M, Rempoulakis P, Gong HF, Economopoulos A, Vontas J and Alphey L (2012) Control of the olive fruit fly using genetics-enhanced sterile insect technique. BMC Biology 10:51.
- Apostolaki A, Livadaras I, Saridaki A, Chrysargyris A, Savakis C et al (2011) Transinfection of the olive fruit fly *Bactrocera oleae* with *Wolbachia*: towards a symbiont-based population control strategy. J Appl Entomol 135: 546-553.
- Arakane Y, Muthukrishnan S, Beeman RW, Kanost MR and Kramer KJ (2005) Laccase 2 is the phenoloxidase gene required for beetle cuticle tanning. Proc Natl Acad Sci USA 102: 11337–11342.
- Arunkumar KP, Mita K, Nagaraju J (2009) The silkworm Z chromosome is enriched in testis-specific genes. Genetics 182: 493– 501.

- Arya GH, Weber AL, Wang P, Magwire MM, Negron YL, Mackay TF, Anholt RR (2010) Natural variation, functional pleiotropy and transcriptional contexts of odorant binding protein genes in *Drosophila melanogaster*. Genetics, 186:1475-85.
- Aryan, A, Anderson MAE, Myles, KM AdelmanZN (2013) Germline excision of transgenesin *Aedes aegypti* by homing endonucleases.Sci. Rep., 3, 1603.
- Arziman Z, Horn T and Boutros, M. (2005) E-RNAi: a web application to design optimized RNAi constructs. Nucleic acids research, 33 (suppl 2), W582-W588.
- Avila FW, Ravi Ram K, Bloch Qazi MC, Wolfner MF (2010) Sex peptide is required for the efficient release of stored sperm in mated Drosophila females. Genetics 186, 595– 600. (doi:10.1534/genetics.110.119735)
- Avila FW, Sirot LK, La Flamme BA, Rubinstein CD, Wolfner MF (2011) Insect seminal fluid proteins: identification and function. Entomol. 56:21-40.
- Avila FW, Mattei AL, Wolfner MF (2015) Sex peptide receptor is required for the release of stored sperm by mated *Drosophila melanogaster* females. J Insect Physiol 76:1-6. doi: 10.1016/j.jinsphys.2015.03.006.
- Bach-Faig A, Berry, EM, Lairon D, Reguant J, Trichopoulou A., Dernini S, Medina FX, Battino M, Belahsen R, Miranda G, et al. (2011) Mediterranean diet pyramid today. Science and cultural updates. Public Health Nutr. 14, 2274–2284.
- Bailey WJ, Nuhardiyati M (2005) Copulation, the dynamics of sperm transfer andfemale refractoriness in the leafhopper *Balclutcha*

incisa (Hemiptera: Cicadellidae: Deltocephalinae). Physiol. Entomol. 30, 343–352.

- Baer B, Heazlewood JL, Taylor NL, Eubel H, Millar AH (2009) The seminal fluid proteome of the honeybee *Apis mellifera*. Proteomics 9: 2085–2097.
- Baggerman G, Cerstiaens A, De Loof A, Schoofs L, Cerstiaens A (2002) Peptidomics of the larval *Drosophila melanogaster* central nervous system. J. Biol. Chem. 277: 40368–40374.
- Baker DA, Nolan T, Fischer B, Pinder A, Crisanti A et al. (2011) A comprehensive gene expression atlas of sex- and tissuespecificity in the malaria vector, *Anopheles gambiae*. BMC Genomics 12: 296.
- Baldini F, Gabrieli P, South A, Valim C, Mancini F, Catteruccia F (2013) The interaction between a sexually transferred steroid hormone and a female protein regulates oogenesis in the malaria mosquito PLoS Biol 11(10): e1001695.
- Baldi P and La Porta N (2017) Xylella fastidiosa: Host Range and Advance in Molecular Identification Techniques. Front. Plant Sci. 8:944.
- Balogh, L. M and Atkins WM (2011) Interactions of glutathione transferases with 4-hydroxynonenal. Drug Metabolism Reviews, 43(2): 165–178. http://doi.org/10.3109/03602532.2011.55 8092.
- Bautista MAM, Miyata T, Miura K, Tanaka T (2009) RNA interference mediated knockdown of a cytochrome P450, CYP6BG1, from the diamondback moth, Plutella xylostella, reduces larva resistance

to permethrin. Insect Biochemistry and Molecular Biology 39: 38–46.

- Beaver L.M, Rush BL, Gvakharia BO,
 Giebultowicz JM (2003) Noncircadian
 Regulation and Function of Clock Genes
 period and timeless in Oogenesis of
 Drosophila melanogaster J Biol Rhythms
 Vol. 18 No. 6, 463-472.
- Bellés X (2010) Beyond Drosophila: RNAi inVivo and Functional Genomics in Insects.Annu Rev Entomol 55, 111–128.
- Baum JA, Bogaert T, Clinton W, Heck GR, Feldmann P, Ilagan O, et al. (2007) Control of coleopteran insect pests through RNA interference. Natur Biotechnol. 25:1322-6.
- Belardinelli M, Fausto AM, Guerra L,
 Buonocore F, Bongiorno G, Maroli M,
 Mazzini M. (2005) Lipase and antibacterial
 activities of a recombinant protein from
 the accessory glands of female *Phlebotomus papatasi* (Diptera:
 Psychodidae). Annals of Tropical Medicine
 and Parasitology 99: 673–682.
- Beerli RR, Barbas CF (2002) 3rd. Engineering polydactyl zinc-finger transcription factors, Review. Nat Biotechnol. Feb; 20(2): 135-141.
- Beller (2017) Targeting of the Drosophila protein CG2254/Ldsdh1 to a subset of lipid droplets J Cell Sci 130: 3141-3157.
- Begley S (2016) Monsanto licenses CRISPR technology to modify crops — with key restrictions, (https://www.statnews.com /2016/09/22/monsanto-licenses-crispr/ http://labiotech.eu/bayer-claims-crisprpatents-for-gene-editing-agreements/)
- Begun DJ, Lindfors HA, Thompson ME, Holloway AK (2006) Recently evolved genes

identified from *D. yakuba* and *D. erecta* accessory gland expressed sequence tags. Genetics. 172: 1675–81.

- Benelli G, Canale A, Bonsignori G, Ragni G,
 Stefanini C, Raspi A (2012) Male wing vibration in the mating behavior of the olive fruit fly, *Bactrocera oleae* (Rossi) (Diptera: Tephritidae). Journal of Insect Behavior 25: 590–603.
- Bigler F, Neuenschwander P, Delucchi V,
 Michelakis SE (1986) Natural enemies of preimaginal stages of *Dacus oleae* Gmel.
 (Dipt., Tephritidae) in Western Crete II: impact on olive fruit fly populations. Boll.
 Lab. Entomol. Agrar. Filippo Silvestri 43: 79–96.
- Birnbaum MJ, Gilbert LI. Juvenile hormone stimulation of ornithine decarboxylase activity during vitellogenesis in *Drosophila melanogaster*. J Comp Physiol B. 1990;160(2):145-51.
- Birnboim HC and Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7: 1513-1523.
- Blandin S, Shiao SH, Moita LF, Janse CJ, Waters AP et al. (2004) Complement-like protein TEP1 is a determinant of vectorial capacity in the malaria vector *Anopheles gambiae*. Cell Mar 5;116(5): 661-70.
- Bloch QMC, Heifetz Y and Wolfner MF (2003) The developments between gametogenesis and fertilization: ovulation and female sperm storage in *Drosophila melanogaster*. Dev. Biol. 256: 195–211.
- Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding

specificity of TAL-type III effectors. Science, 326: 1509–1512.

- Boller EF, Bush GL (1974) Evidence for genetic variationin populations of the European cherry fruit fly *Rhagoletis cerasi* (Diptera: Tephrididae) based on physiologicalparameters and hybridization experiments. Entomol.Exp. Appl. 17: 279– 293.
- Boller EF, Russ K, Vallo V, Bush GL (1976) Incompatible races of European cherry fruit fly *Rhagoletis cerasi* (Diptera: Tephrididae): their origin and potential use in biological control. Entomol. Exp. Appl. 20: 237–247.
- Boller EF (1985) *Rhagoletis cerasi* and *Ceratitis capitata*. In Handbook of insect rearing (eds Sing, P. & Moore, R.). 135–144 (The Netherlands: Elsevier).
- Bourtzis K and Robinson AS (2006) Insect pest control using *Wolbachia* and/or radiation. Insect Symbiosis 2 CRC Press.
- Braswell WE, Andres JA, Maroja LS, Harrison RG, Howard DJ, Swanson WJ (2006) Identification and comparative analysis of accessory gland proteins in Orthoptera. Genome 49: 1069–1080.
- Bucher G, Scholten J and Klingler M (2002) Parental RNAi in Tribolium (Coleoptera). Curr Biol 12, R85–R86.
- Burrack HJ, Zalom FG (2008) Olive fruit fly (Diptera: Tephritidae) ovipositional preference and larval performance in several commercial important olive varieties in California. J Econ Entomol. 101: 750–758. PMID: 18613575.
- Burnet B, Wilson R (1980) Pattern mosaicism for behavior controlled by the yellow locus

in *Drosophila melanogaster*, Genet Res 36: 235-247.

- Burt A (2003) Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proceedings of the Royal Society Biological Sciences, 270 (1518): 921–928.
- Callaway E (2016) Rio fights Zika with biggest release yet of bacteria-infected mosquitoes. Nature. Nov 3;539 (7627): 17-18.
- Callaway E (2017) US defence agencies grapple with gene drives. Nature 547: 388– 389
- Canale SG, Germinara A, Carpita G, Benelli G, Bonsignoro C Stefanin (2013). Behavioural and electrophysiological responses of the olive fruit fly, *Bactrocera oleae* (Rossi) (Diptera: Tephritidae), to male- and female-borne sex attractants. Chemoecology 23(3): 155-164.
- Carvalho DO, McKemey AR, Garziera L, Lacroix R, Donnelly CA, Alphey L, et al. (2015) Suppression of a Field Population of Aedes aegypti in Brazil by Sustained Release of Transgenic Male Mosquitoes. PLoS Negl Trop Dis 9(7): e0003864.
- Carvalho GB, Kapahi P, Anderson DJ, Benzer S. Allocrine (2006) Modulation of feeding behavior by the Sex Peptide of Drosophila. Curr Biol. 16:692–696.
- Cavalloro R and Delrio G (1970) Rilievi sul comportamento sessuale di *Dacus oleae* (Gmelin) (Diptera, Tripetidae) in laboratorio. Redia LII: 201–230.
- Cayre M, Strambi C, Charpin P, Augier R, Renucci M, Strambi A. (1996) Inhibition of polyamine biosynthesis alters oviposition

behavior in female crickets. Behav Neurosci 110(5):1117–1125.

- Chapman T, Liddle LF, Kalb JM, Wolfner MF, Partridge L (1995) Cost of mating in Drosophila melanogaster females by male accessory gland products. Nature 373:241– 244
- Chapman T (2008) The soup in my fly: evolution, form and function of seminal fluid proteins. PLoS Biol 6: e179.
- Chapman RF (2013) The Insects: Structure and Function, 5th ed. Cambridge University Press, Cambridge.
- Chan YS, Huen DS, Glauert R, Whiteway E and Russell S (2013) Optimising homing endonuclease gene drive performance in a semi-refractory species: the *Drosophila melanogaster* experience. PLoS ONE 8, e54130.
- Chapman T, Bangham J, Vinti G, Seifried B, Lung O, Wolfner MF, Smith HK, Partridge L (2003) The sex peptide of *Drosophila melanogaster*: female post-mating responses analyzed 726 by using RNA interference. Proc. Natl. Acad. Sci. U. S. A. 100: 9923-9928.
- Chaturvedi P, Singh AP, Batra SK (2008) Structure, evolution, and biology of the MUC4 mucin. FASEB J 22: 966–981.
- Chen SL, Dai SM, Liu Kh, Chang C (2008) Female-specific doublesex dsRNA interrupts yolk protein gene expression and reproductive ability in oriental fruit fly, *Bactrocera dorsalis* (Hendel). Insect Biochemistry and Molecular Biology 38: 155–165.
- Chen P (1984) The functional morphology and biochemistry of insect male accessory

glands and their secretions. Annu Rev Entomol 29: 233–255.

- Chen PS, Stumm-Zollinger E, Aigaki T, Balmer J, Bienz M, Bohlen P. 1988 A male accessory gland peptide that regulates reproductive behavior of female D. *melanogaster*. Cell 54, 291–298.
- Childs LM, Cai FY, Kakani EG, Mitchell SN, Paton D, Gabrieli P, et al. (2016) Disrupting Mosquito Reproduction and Parasite Development for Malaria Control. PLoS Pathog 12(12): e1006060.
- Chomczynski P (1992) Solubilization of formamide protects RNA from degradation. Nucleic Acids Res 20: 3791-3792.
- Chomczynski P and Sacchi N (2006) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenolchloroform extraction. Nat Protoc. 2006;1(2):581-5 Anal. Biochem. 162:156-9, 1987.
- Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186: 757–761
- Civetta A (2003) Positive selection within sperm-egg adhesion domains of fertilin: an ADAM gene with a potential role in fertilization. Mol Biol Evol 20: 21–29.
- Clark NL, Aagaard JE, Swanson WJ (2006) Evolution of reproductive proteins from animals and plants. Reproduction 131: 11– 22.
- Claycomb, J.M., Benasutti, M., Bosco, G., Fenger, D.D., and Orr-Weaver, T.L. (2004) Gene amplification as a developmental strategy: Isolation of two developmental

amplicons in Drosophila. Dev. Cell 6: 145–155.

- Clements AN (1992) The biology of mosquitoes 1st ed. London, New York, Wallingford, Oxfordshire, UK. Chapman & Hall, Cambridge, MA CABI v. 1, 3.
- Cohen AC (2003) Insect Diets: Science and Technology, 2nd edn. CRC Press, Boca Raton, FL, USA.
- Collins, A.M., Wiliams, V., Evans, J.D., 2004. Sperm storage and antioxidative enzyme expression in the honey bee, *Apis mellifera*. Insect Mol. Biol. 13,141–146.
- Courtier-Orgogozo V, Morizot B, Boëte, C (2017) Agricultural pest control with CRISPR-based gene drive: time for public debate: Should we use gene drive for pest control? EMBO Reports, 18(6), 878–880.
- Craig GB and Hickey WA (1967) Current status of the formal genetics of *Aedes aegypti*. Bull. World Health Organ. 36: 559–562
- Craig GB (1967) Mosquitoes: female monogamy induced by male accessory gland substance. Science. 156(3781):1499.
- Dallai R, Gottardo M, Mercati D, Machida R, Mashimo Y, Matsumura Y, Beutel RG (2014) Giant spermatozoa and a huge spermatheca: a case of coevolution of male and female reproductive organs in the ground louse *Zorotypus impolitus* (Insecta, Zoraptera). Arthropod Struct. Dev. 43, 135– 151.
- Daniel RGP and John AG (2008) RNAimediated crop protection against insects. Trends Biotechnol 26:393-400.
- Dapples CC, Foster WA, Lea AO (1974) Ultrastructure of the accessory gland of the male mosquito, *Aedes aegypti* (L.) (Diptera:

Culicidae). Int J Insect Morphol Embryol 3: 279–291.

- Davies SJ and Chapman T (2006) Identification of genes expressed in the accessory glands of male Mediterranean Fruit Flies (*Ceratitis capitata*). Insect Biochem Mol Biol 36(11):846-856.
- Dennis Pauls, Jiangtian Chen, Wencke Reiher, Jens T. Vanselow, Andreas Schlosser, Jörg Kahnt, Christian Wegener (2014) Peptidomics and processing of regulatory peptides in the fruit fly Drosophila. EuPA Open Proteomics 3, 114-127.
- Degrugillier ME (1985) In vitro release of a house fly, *Musca domestica* L. (Diptera: Muscidae), the acrosomal material after treatment with the secretion of female accessory glands and micropyle cap substance. Int. J. Insect Morphol. Embryol.14: 381-391
- DeJong RJ, Miller LM, Molina-Cruz A, Gupta L, Kumar S, et al. (2007) Reactive oxygen species detoxification by catalase is a major determinant of fecundity in the mosquito *Anopheles gambiae*. Proc Natl Acad Sci USA 104:2121–2126.
- Delrio G and Cavalloro R (1979) Influenza dell'accoppiamento sulla recettivita` sessuale e sull'ovideposizione in femmine di Ceratitis capitata Wiedemann. Entomologica XV: 127–143.
- Denholm I and Rowland MW (1992) Tactics for managing pesticide resistance in arthropods: theory and practice. Annu Rev Entomol 37: 91-112
- Deveau, H, Garneau JE, Moineau S (2010) CRISPR/Cas System and Its Role in Phage-

Bacteria Interactions. Annu. Rev. Microbiol. 64, 475–493.

- Denholm I and Rowland MW (1992) Tactics for managing pesticide resistance in arthropods: theory and practice. Annu Rev Entomol 37: 91-112.
- DiCarlo JE, Chavez A, Dietz SL, Esvelt KM and Church GM (2015) Safeguarding CRISPR– Cas9 gene drives in yeast. Nat. Biotechnol. 33 1250–1255.
- Dillies MA, Rau A, Aubert J, Hennequet-Antier C, Jeanmougin M, Servant N, Keime C, Marot G, Castel D, Estelle J et al. (2013) A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Brief. Bioinformatics, 14, 671–683.
- Domanitskaya EV, Liu H, Chen S, Kubli E (2007) The hydroxyproline motif of male sex peptide elicits the innate immune response in Drosophila females. FEBS J 274:5659– 5668.
- Dottorini T, Nicolaides L, Ranson H, Rogers DW, Crisanti A, Catteruccia F (2007) A genome-wide analysis in *Anopheles gambiae* mosquitoes reveals 46 male accessory gland genes, possible modulators of female behavior. Proc Natl Acad Sci USA 104:16215-1620.
- Dow MA. (1976) The genetic basis of receptivity of yellow mutant Drosophila melanogaster females, Behav Genet, vol. 6: 141-143.
- Drapeau MD, Radovic A, Wittkopp PJ, Long AD. A gene necessary for normal male courtship, yellow, acts downstream of fruitless in the *Drosophila melanogaster*

larval brain, J Neurobiol, 2003, vol. 55: 53-72.

- Drapeau MD, Cyran SA, Viering MM, Geyer PK, Long AD (2006) A cis-regulatory sequence within the yellow locus of *Drosophila melanogaster* required for normal male mating success, Genetics vol. 172: 1009-1030
- Drew RAI and Yuval B (2000) The evolution of fruit fly feeding behaviour in Fruit flies (Tephritidae): phylogeny and evolution of behavior. Boca Raton, Florida: CRC Press: Aluja M, Norrbom AL :731-749.
- Economopoulos AP and Tzanakakis ME (1967) Egg yolk and olive juice as supplements to the yeast hydrolysate-sucrose diet for adults of Dacus oleae. Life Sci 6: 2409-2416.
- Economopoulos A. (1972) Sexual competitiveness of gamma-ray sterilized males of Dacus oleae. Mating frequency of artificially reared and wild females. Env Entomol. 490-497.
- Economopoulos AP, Avtzis N, Zervas G, Tsitsipis J, Haniotakis G, Tsiropoulos G, Manoukas A (1977) Experiments on control of olive Xy, Dacus oleae (Gmelin), by combined eVect of insecticides and releases of gamma-ray sterilized insects. J Appl Entomol 83:201–215.
- Economopoulos AP and Zervas GA (1982) Sterile insect technique and radiation in insect control. IAEA-SM-255/39 357–368.
- Economopoulos AP and Zervas GA (1982) The Quality Problem in Olive Flies Produced for SIT Experiments. Report to IAEA, Vienna, Austria.
- Edwards AC, Zwarts L, Yamamoto A, Callaerts P, Mackay TFC (2009) Mutations in many

genes affect aggressive behavior in Drosophila melanogaster. BMC Biol 7: 29.

- EnviroNews Forum (1999) Killer environment. Environmental Health Perspectives 107(2): A62.
- EPA (2017) Registers Innovative Tool to Control Corn Rootworm Press Release (https://www.epa.gov/newsreleases/eparegisters-innovative-tool-control-cornrootworm)
- Estes AM, Nestel D, Belcari A, Jessup A, Rempoulakis P, Economopoulos AP (2011) A basis for the renewal of sterile insect technique for the olive fly, Bactrocera oleae (Rossi). J Appl Entomol, 136:1-16.
- Fares R, Bazzi S, Baydoun S, Roula M and Massih A (2011) The antioxidant and antiproliferative activity of the Lebanese Olea europaea extract. Plant Foods Hum. Nutr. 66, 58–63.
- Ferguson LC, Green J, Surridge A, Jiggins CD (2011) Evolution of the insect yellow gene family. Mol Biol Evol. Jan;28(1):257-72.
- Feyereisen R (1999): Insect P450 enzymes. Annu Rev Entomol, 44:507–533.
- Findlay GD, Yi X, Maccoss MJ, Swanson WJ (2008) Proteomics reveals novel Drosophila seminal fluid proteins transferred at mating. PLoS Biol. 6: e178.
- Findlay, G. D., M. J. MacCoss, and W. J. Swanson (2009) Proteomic discovery of previously unannotated, rapidly evolving seminal fluid genes in Drosophila. Genome Res. 19(5): 886–896.
- Fire A, Xu S, Montgomery M K, Kostas S A, Driver SE and Mello CC (1998) Potent and specific genetic interference by double-

stranded RNA in *Caenorhabditis elegans*. Nature 391: 806–811.

- Fisher KT (1994) Eradication of the Queennsland fruit fly Bactrocera tryoni from Western Australia, In: Calkins CO, Klassen W & Liedo P (eds) Fruit Flies and the Sterile Insect Technique, CRC Press, Boca Raton, Florida :172-187.
- Fletcher BS, Pappas S, Kapatos E (1978) Changes in ovaries of olive flies (*Dacus oleae* (Gmelin)) during summer, and their relationship to temperature, humidity and fruit availability. Ecol. Entomol. 3:99–107.
- Fletcher BS and Kapatos ET (1983) The influence of temperature, diet and olive fruits on the maturation rates of female olive flies at different times of the year. Entomol Exp Appl 33: 244-52.
- Forêt S and Maleszka R (2006) Function and evolution of a gene family encoding odorant binding-like proteins in a social insect, the honey bee (*Apis mellifera*). Genome Res16:1404-13.
- Franck P, Solignac M, Vautrin D, Cornuet J, Koeniger G, Koeniger N (2002) Sperm competition and last-male precedence in the honeybee. Anim. Behav.64: 503–509.
- Fu G, Condon KC, Epton MJ, Gong P, Jin L, Condon GC, Morrison NI, Dafa'alla TH, Alphey L (2007) Female-specific insect lethality engineered using alternative splicing. Nat Biotechnol 25: 353–357.
- Fukuda N, Yomogida K, Okabe M, Touhara K (2004) Functional characterization of a mouse testicular olfactory receptor and its role in chemosensing and in regulation of sperm motility. J Cell Sci 117(Pt 24):5835-45.

- Gabrieli P, Kakani EG, MitchelL SN, Mameli E, Want EJ, Mariezcurrena Anton A, Serrao A, Baldini F, Catteruccia F (2014) Sexual transfer of the steroid hormone, 20E induces the post-mating switch in *Anopheles gambiae*. PNAS November, 111 (46) 16353-16358.
- Gantz VM, Jasinskiene N, Tatarenkova O, Fazekas A, Macias VM, Bier E, James AA (2015) Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito *Anopheles stephensi*. Proc. Natl. Acad. Sci. U.S.A. 112 (49): E6736–E6743.
- Gantz VM and Bier (2015) Genome editing. The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations. E. Science 348: 442–444
- Genç H, Schetelig MF, Nirmala X, Handler AM (2016) Germline transformation of the olive fruit fly, *Bactrocera oleae* (Rossi) (Diptera: Tephritidae), with a piggyBac transposon vector. Turkish Journal of Biology, 40(4), 845-855.
- Geib SM, Calla B, Hall B, Hou S, Manoukis NC (2014) Characterizing the developmental transcriptome of the oriental fruit fly, *Bactrocera dorsalis* (Diptera: Tephritidae) through comparative genomic analysis with *Drosophila melanogaster* utilizing modENCODE datasets. BMC Genomics 2014 15:942.
- Gene Family, Molecular Biology and Evolution, Volume 28 (2011) Issue 1 Pages 257–272, https://doi.org/10.1093/molbev/msq192.
- Giglioli ME (1963) The female reproductive system of *Anopheles gambiae*. The structure and function of the genital ducts

and associated organs. Riv Malariol 42: 149–176.

- Gilmore JE. (1989) Sterile insect technique. In: Robinson AS, Hooper G, editors. Fruit flies. Their biology, natural enemies and control, vol. 3B. Amsterdam: Elsevier: 353–364.
- Gillot C (2003) Male accessory gland secretions: modulators of female reproductive physiology and behaviour. Annu Rev Entomol 2003, 48:163–184.
- Goldman TD and Arbeitman MN (2007) Genomic and functional studies of Drosophila sex hierarchy regulated gene expression in adult head and nervous system tissues. PLoS Genet 3: e216.
- Gomez-Caravaca AMC, Cerretani L, Bendini A, Carretero AS, Gutiérrez AR, Del Carlo M, Compagnone D, Cichelli A (2008) Effects of fly attack (*Bactrocera oleae*) on the phenolic profile and selected chemical parameters of olive oil. J. Agr. Food Chem. 56:4577–4583.
- Gomulski LM, Dimopoulos G, Xi Z, Scolari F, Gabrieli P, Siciliano P, Clarke AR, Malacrida AR, Gasperi G (2012) Transcriptome profiling of sexual maturation and mating in the Mediterranean fruit fly, *Ceratitis capitata*. PLoS One. 7(1): e30857.
- Gonçalves, M. F., Santos, S. A. P., Torres, L. M. (2012). Efficacy of spinosad bait sprays to control Bactrocera oleae and impact on non-target arthropods. *Phytoparasitica*, 40(1), 17-28.
- Gong P, Epton MJ, Fu G, Scaife S, Hiscox A, Condon KC, Condon GC, Morrison NI, Kelly DW, Dafa'alla T, Coleman PG, Alphey L.A (2005) A dominant lethal genetic system

for autocidal control of the Mediterranean fruitfly. Nat. Biotechnol. 23: 453–456.

- González-Ruiz R (1993) Spatial distribution of attacks by *Phloeotribus scarabaeoides* (Coleoptera: Scolytidae) in two olive groves in south of Spain. Bulletin de la Société entomologique Suisse: 323-335.
- Gotoh A, Shigenobu S, Yamaguchi K, Satoru Kobayashi S, Ito F and Tsuji K (2017) Transcriptome profiling of the spermatheca identifies genes potentially involved in the longterm sperm storage of ant queens Sci Rep. Jul 20;7(1):5972.
- Graveley BR, Brooks AN, Carlson JW, Duff MO, Landolin JM, Yang L, Artieri CG, van Baren MJ... Celniker SE. (2010) The developmental transcriptome of *Drosophila melanogaster*. Nature. 2011 Mar 24;471(7339):473-9.
- Griebler M, Westerlund SA, Hoffmann KH, Meyerring-Vos M (2008) RNA interference with the alla to regulating neuropeptide genes from the fallarmyworm *Spodoptera frugiperda* and its effects on the JH titer in the hemolymph.
- Guiraudie-Carpaz G, Pho DB and Jallon JM (2007) Role of the ejaculatory bulb in biosynthesis of the male pheromone cisvaccenyl acetate in *Drosophila melanogaster*. Integrative Zoology, 2: 89– 99.
- Gura T (2000) A silence that speaks volumes. Nature 404: 804–808.
- Guo S and Kemphues KJ (1995) *par-1*, a gene required for establishing polarity in *C. elegans* embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 81: 611–620.

- Gvakharia BO, Bebas P, Cymborowski B, Glebultowicz JM (2003) Disruption of sperm release from insect testes by cytochalasin and b-actin mRNA mediated ineterference. CMLS, 1744-1751.
- Haas BJ, Papanicolaou A, Yassour M, Grabherr
 M, Blood PD, Bowden J, Couger MB, Eccles
 D, Li B, Lieber M et al (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protocols, 8(8):1494-1512.
- Haerty W, Jagadeeshan S, Kulathinal RJ, Wong A, Ravi Ram K, et al. (2007) Evolution in the fast lane: rapidly evolving sex-related genes in Drosophila. Genetics 177: 1321–1335.
- Hammond, A., Galizi, R., Kyrou, K., Simoni, A., Siniscalchi, C. et al., (2016) A CRISPR–Cas9 gene drive system targeting female reproduction in the malaria mosquito vector *Anopheles gambiae*. Nat. Biotechnol. 34, 78–83.
- Han Q, Fang J, Ding H, Johnson JK, Christensen BM, Li J. (2002) Identification of Drosophila melanogaster yellow-f and yellow-f2 proteins as dopachrome-conversion enzymes, Biochem J vol. 368: 333-340.
- Handler AM and Postlethwait JH (1977) Endocrine control of vitellogenesis in *Drosophila melanogaster*: effects of the brain and corpus allatum Journal Exp. Zool., 202: 389-402.
- Hanin, O., Azrielli, A., Applebaum, S.W., Rafaeli, A., 2012. Functional impact of silencing the *Helicoverpa armigera* sexpeptide receptor on female reproductive behaviour. Insect Mol. Biol. 21, 161–167.

- Haniotakis GE (2005) Olive pest control: present status and prospects. IOBC/WPRS Bulletin 28: 1–9.
- Hanna AD (1938) Studies on the Mediterranean fruit-fly: *Ceratitis capitata* Wied. I. The structure and operation of the reproductive organs. Bulletin de la Societe´ Entomologique de France 22:39–59.
- Hannon, G. J., ed. (2003) RNAi: a guide to gene silencing. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. ISBN 978-087969704-4.
- Häsemeyer M, Yapici N, Heberlein U, Dickson
 BJ (2009) Sensory neurons in the
 Drosophila genital tract regulate female
 reproductive behavior. Neuron. 61:511–
 518.
- Haussmann IU, Hemani Y, Wijesekera T, Dauwalder B, Soller M. (2013) Multiple pathways mediate the sex peptideregulated switch in female Drosophila reproductive behaviours. Proc R Soc B 280:20131938.
- Haynes SR, Cooper MT, Pype S, Stolow DT (1997) Involvement of a tissue specific RNA recognition motif protein in Drosophila spermatogenesis. Mol Cell Biol 17: 2708– 2715.
- Headricks DH, Goeden RD 1(994) Reproductive behavior of California fruit flies and the classification and evolution of Tephritidae (Diptera) mating systems. Studia dipterologica 1, 195–252.
- Hendricks J, Ortiz G, Liedo P, Schvarz A (1983)
 Six years of successful medfly program in
 Mexico Guatemala. pp 353–365 in R.
 Cavalloro (ed.) Proceedings, Sympoium:
 Fruit Flies of Economic Importance.

CEC/IOBX International Symposium, 16-19 November, Athens, Greece.

- Higgins DG, Sharp PM (1988) "CLUSTAL: a package for performing multiple sequence alignment on a microcomputer". Gene. 73 (1): 237–44.
- Hodgson E. (1985) Microsomal monooxygenases. // Kerkut, G.A., and L.I. Gilbert (eds.). Comprehensive insect physiology, biochemistry, and pharmacology. New York: Pergamon.
- Hoffman, AA, Turelli, M (1997) Cytoplasic incompatibility in insects. In: O'Neill SL, Hoffman AA, Werren JH (eds) Influential Passengers, Oxford University Press: New York pp 42–80.
- Horn T, Boutros M (2010) Nucleic Acids Res Jul 1; 38(Web Server issue): W332–W339. doi: 10.1093/nar/gkq317 PMCID: PMC2896145
- Hughes CL and Kaufman TC (2000). RNAi analysis of Deformed, proboscipedia and Sex combs reduced in the milkweed bug Oncopeltus fasciatus: novel roles for Hox genes in the hemipteran head. Development 127, 3683–3694.
- Hurst, GDD, Jiggins, FM, Von Der Schulenburg, JHG, Bertrand, D, West, SA, Goriacheva, Ilet al (1999) Male-killing *Wolbachia* in two species of insects. Proc R Soc Lond B, 266: 735–740.
- Huvenne H, Smagghe G (2010) Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review. J Insect Physiol. Mar; 56(3):227-35.
- IOC (2017) Market Newsletter-November http://www.internationaloliveoil.org/estati cos/view/134-approvedbalances?lang=es_ES

- Isaac RE, Li C, Leedale AE, Shirras AD (1678) Drosophila male sex peptide inhibits siesta sleep and promotes locomotor activity in the post-mated female. Proceedings of the Royal Society B: Biological Sciences.277:65.
- Isaac RE, Li C, Leedale AE, Shirras AD. (2010) Drosophila male sex peptide inhibits siesta sleep and promotes locomotor activity in the post-mated female. Proc. R. Soc. B 277, 65–70.
- Isaacs AT, Jasinskiene N, Tretiakov M, Thiery,
 I, Zettor A, Bourgouin C, James AA,
 Transgenic (2012) Anopheles stephensi coexpressing single-chain antibodies resist
 Plasmodium falciparum development.
 Proc. Natl. Acad. Sci. USA 109: E1922– E1930
- Ish-Horowicz D and Burke JF (1981) Rapid and efficient cosmid cloning. Nucleic Acids Res 9: 2989-2998
- Iwahasi O (1977) Eradication of the melon fly, Dacus cucurbitae Res Popul Ecol 19: 87-98.
- Jacquin-Joly E, Vogt RG, François MC, Nagnan-Le Meillour P (2001) Functional and expression pattern analysis of chemosensory proteins expressed in antennae and pheromonal gland of *Mamestra brassicae*. Chem Senses 26:833-44.
- Jaeger H, Herzig B, Herzig A, Sticht H, Lehner CF, Heidmann S. (2004) Structure predictions and interaction studies indicate homology of separase N-terminal regulatory domains and Drosophila THR. Cell Cycle 3:182-188
- Jang EB (1995) Effects of mating and accessory gland injections on olfactory-mediated behavior in the female Mediterranean fruit

fly, *Ceratitis capitata* J. Insect Physiol. 41: 705–710.

- Jang EB, McInnis DO, Kurashima R, Carvalho LA (1999) The behavioral switch of the female Mediterranean fruit fly, *Ceratitis capitata*: mating and oviposition activity in outdoor field cages in Hawaii. Agric. For. Entomol. 1: 179–184.
- Jang EB (2002) Physiology of mating behavior in the Mediterranean fruit fly (Diptera: Tephritidae): chemoreception and male accessory gland fluids in female postmating behavior. Fla. Entomol. 85: 89–93.
- Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337: 816-821
- Jones JC, Wheeler RE (1965) Studies on spermathecal filling in *Aedes aegypti* (Linnaeus). I. Description. Biol Bull 129: 134–150.
- Jones JC (1973) A study on the fecundity of male *Aedes aegypti*. J. Insect Physiol. 19: 435–439.
- Kakani EG., Ioannides IM, Margaritopoulos JT, Seraphides NA, Skouras PJ, Tsitsipis JA and Mathiopoulos KD (2008) A small deletion in the olive fly acetylcholinesterase gene associated with high levels of organophosphate resistance. Insect Biochem. Mol. Biol. 38: 781–787.
- Kakani EG, Zygouridis NE, Tsoumani KT, Seraphides N, Zalom FG, Mathiopoulos KD, (2010) Spinosad resistance development in wild olive fruit fly *Bactrocera oleae* (Diptera: Tephritidae) populations in California. Pest Manag Sci 66:447–453.

- Kang N, Koo J: Olfactory receptors in nonchemosensory tissues. BMB Rep2012, 45:612-22.
- Kapatos ET and Fletcher BS (1984) The phenology of the olive fruit fly, *Dacus oleae* (Gmel) (Diptera, Tephritidae), in Corfu Greece. J Appl Entomol 97: 360-70.
- Kapatos ET and Fletcher BS (1986) Mortality factors and life-budgets for immature stages of the olive fruit fly, *Dacus oleae* (Gmel.) (Diptera, Tephritidae), in Corfu. J. Appl. Entomol. 102:326–42.
- Kapelnikov A, Zelinger E, Gottlieb Υ. Rhrissorrakrai K, Gunsalus KC, Heifetz Y Mating induces an (2008)immune response and developmental switch in the Drosophila oviduct. Proceedings of the National Academy of Sciences of the States of United America. Sep; 105(37):13912-13917.
- Karlsson B. (1955) Resource allocation and mating systems in butterflies. Evolution. 955–961.
- Karlsson B. (1996) Male reproductive reserves in relation to mating system in butterflies: a comparative study. Proc R Soc Lond B Biol Sci. 263:187–192.
- King M, Eubel H, Millar AH, Baer B (2011) Proteins within the seminal fluid are crucial to keep sperm viable in the honeybee *Apis mellifera*. J. Insect Physiol. 57: 409–414.
- Klowden MJ (2001) Sexual receptivity in Anopheles gambiae mosquitoes: absence of control by male accessory gland substances. Journal of Insect Physiology. 47(7):661-6.
- Klowden MJ and Chambers GM (2004) Production of polymorphic sperm by

anopheline mosquitoes and their fate within the female genital tract. J. Insect Physiol. 50: 1163–1170.

- Klowden MJ (2006) Switchover to the mated state by spermathecal activation in female *Anopheles gambiae* mosquitoes. Journal of insect physiology. 52(7):679-84.
- Knipling EF (1955) Possibilities of insect control or eradication through use of sexually sterile males. J Econ Entomol 48:459/62.
- Kocher SD, Richard FJ, Tarpy DR, Grozinger CM. (2008) Genomic analysis of postmating changes in the honey bee queen (*Apis mellifera*). BMC Genomics 9:232.
- Kocher SD, Tarpy DR, Grozinger CM (2009) The effects of mating and instrumental insemination on queen honey bee flight behaviour and gene expression. Insect Mol. Biol. 19:153–62.
- Kodrík D, Filippov VA, Sehnal F, Filippova MA (1995)
 Sericotropin: an insect neurohormonal factor affecting RNA transcription. Netherlands J Zool 45 (1), 68-70.
- Kogan PH, Hagedorn HH (2000) Polyamines, and effects from reducing their synthesis during egg development in the yellow fever mosquito, Aedes aegypti. J Insect Physiol 46(7):1079–1095.
- Kovalick GE and Griffin DL (2005) Characterization of the SCP/TAPS gene family in *Drosophila melanogaster*. Insect Biochem Mol Biol 35: 825–835.
- Kozarewa I, Ning Z, Quail MA, Sanders MJ, Berriman M, Turner DJ, America N (2009) Amplification-free Illumina sequencinglibrary preparation facilitates improved

mapping and assembly of (G + C) -biased genomes. 6:291–295.

- Kotewicz ML, D'Alessio JM, Driftmier KM, Blodgett KP, Gerard GF. Cloning and overexpression of Moloney murine leukemia virus reverse transcriptase in Escherichia coli. Gene. 1985;35(3):249– 258.
- Kryndushkin DS, Alexandrov IM, Ter-Avanesyan MD and Kushnirov VV (2003) Yeast [PSI+] prion aggregates are formed by small Sup35 polymers fragmented byHsp10. Journal of Biological Chemistry.278 (49): 49636.
- Kuba H and Itô Y (1993) Remating inhibition in the melon fly, *Bactrocera* (= Dacus) *cucurbitae* (Diptera: Tephritidae): copulation with spermless males inhibits female remating. J Ethol. 11(1):23–8.
- Kubli E. (2003) Sex-peptides: Seminal peptides of the Drosophila male. Cell Mol Life Sci 60:1689–1704.
- Kuniyoshi H, Baba K, Ueda R, Kondo S, Awano W, Juni N, Yamamoto D (2002) *lingerer*, a Drosophila Gene Involved in Initiation and Termination of Copulation Encodes a Set of Novel Cytoplasmic Proteins Genetics 162:1775–1789
- Labbé GMC, Nimmo, DD, Alphey L (2010) piggybac- and *PhiC31*-mediated genetic transformation of the Asian tiger mosquito, *Aedes albopictus* (Skuse). PLoS Negl. Trop. Dis. 4, e788.
- Lacal JC, Rosario P, James F (1999) Microinjections Birkhäuser Basel, Springer Basel AG DOI 10.1007/978-3-0348-8705-2
- Lance D and McInnis D (2005) Biological basis of the sterile insect technique. Sterile

Insect Technique. Principles and Practice in Area-Wide Integrated Pest Management (ed. by V Dyck, J Hendrichs & A Robinson), pp. 69–94. Springer, Dordrecht, The Netherlands.

- Latinovic J, Mazzaglia A, Latinović N, Ivanović M, Gleason ML. (2013) Resistance of olive cultivars to *Botryosphaeria dothidea*, causal agent of olive fruit rot in Montenegro. Crop Prot. 48: 35–40.
- Lawniczak MK, Begun DJ (2004) A genomewide analysis of courting and mating responses in Drosophila melanogaster females. Genome 47:900–910.
- Leal WS (2013) Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annu Rev Entomol 58:373-91.
- Lee JJ, Klowden MJ. (1999) A male accessory gland protein that modulates female mosquito (Diptera: Culicidae) host-seeking behavior. Journal of the American Mosquito Control Association 15:4–7.
- Lefevre G, Jonsson UB (1962) Sperm transfer, storage, displacement, andutilization in *Drosophila melanogaster*. Genetics 47, 1719–1736.
- Lemke S and Schmidt-Ott U (2009) Evidence for a composite anterior determinant in the hover fly *Episyrphus balteatus* (Syrphidae), a cyclorrhaphan fly with an anterodorsal serosa anlage. Development 136, 117–127.
- Li X, Zhang M and Zhang H (2011) RNA interference of four genes in adult *Bactrocera dorsalis* by feeding their dsRNAs. PLoS ONE 6, e17788.

- Li B, Dewey C (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12(1):323.
- Liu H, Kubli E (2003) Sex-peptide is the molecular basis of the sperm effect in *Drosophila melanogaster*. Proceedings of the National Academy of Sciences of the United States of America 100: 9929–9933
- Liu Q, Segal DJ, Ghiara JB, Barbas CF (1997) Design of polydactyl zinc-finger proteins for unique addressing within complex genomes. Proc. Natl. Acad. Sci. USA 94: 5525–5530.
- Liu W, Yang F, Jia S, Miao X and Huang Y (2008) Cloning and characterization of Bmrunt from the silkworm *Bombyx mori* during embryonic development. Arch Insect Biochem Physiol 69: 47–59.
- Lorenz MW and Gäde G (2009) Hormonal regulation of energy metabolism in insects as a driving force for performance. Integr. Comp. Biol. 49: 380- 392.
- Lung O, Wolfner MF (2001) Identification and characterization of the major *Drosophila melanogaster* mating plug protein. Insect Biochem Mol Biol 32:109–109.
- Mack PD, Kapelnikov A, Heifetz Y, Bender M.
 (2006) Mating-responsive genes in reproductive tissues of female *Drosophila melanogaster*. Proc Natl Acad Sci U S A. 2
- Magalhães LM, Segundo MA, Reis S, Lima JL (2008) Methodological aspects about in vitro evaluation of antioxidant properties Anal Chim Acta. Apr 14;613(1):1-19.
- Malheiro R, Casal S, Cunha SC, Baptista P, Pereira JA (2015) Olive Volatiles from Portuguese Cultivars Cobrançosa, Madural

and Verdeal Transmontana: Role in Oviposition Preference of *Bactrocera oleae* (Rossi) (Diptera: Tephritidae). PLoS ONE 10(5): e0125070.

- Manetti AGO, Rosetto M, De Filippis T, Marchini D, Baldari CT, Dallai R (1997) Juvenile hormone regulates the expression of the gene encoding ceratotoxin A, an antibacterial peptide from the female reproductive accessory glands of the medfly *Ceratitis capitata*. J. Insect Physiol. 43, 1161e1167.
- Manfredini F, Brown MJ, Vergoz V, Oldroyd BP (2015) RNA-sequencing elucidates the regulation of behavioural transitions associated with the mating process in honey bee queens. BMC Genomics 16:563.
- Manoukas AG and Mazomenos B (1977) Effect of antimicrobials upon eggs and larvae of Dacus oleae (Diptera, Tephritidae) and the use of propionates for larval diet preservation. Ann Zool Ecol Anim 9: 277-285
- Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY, Wang LJ, et al. (2007) Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Natur Biotechnol. 2007; 25:1307-13.
- Marubbi T, Cassidy C, Miller E, Koukidou M, Martin-Rendon E, Warner S, Loni A, Beech Camilla (2017) Exposure to genetically engineered olive fly (*Bactrocera oleae*) has no negative impact on three non-target organisms Scientific Reportsvolume 7, 11478
- Marchini, D, Bernini LF, Marri L, Giordano PC, Dallai R (1991) The female reproductive accessory glands of the medfly *Ceratitis*

capitata: antibacterial activity of the secretion fluid. Insect Biochem. Mol. Biol. 21, 597e605

- Marchini D, Giordano PC, Amons R, Bernini LF, Dallai R (1993) Purification and primary structure of ceratotoxin A and B, two antibacterial peptides from the female reproductive accessory glands of the medfly *Ceratitis capitata* (Insecta: Diptera). Insect Biochem. Mol. Biol. 23, 591e598
- Marchini D, Manetti AGO, Rosetto M, Bernini LF, Telford JL, Baldari CTet al (1995) cDNA sequence and expression of the ceratotoxin gene encoding an antibacterial sex-specific peptide from the medfly *Ceratitis capitata* (Diptera). J Biol Chem 270: 6199–6204.
- Marchini D, Marri L, Rosetto M, Manetti AGO, Dallai R (1997). Presence of antibacterial peptides on the laid egg chorion of the medfly *Ceratitis capitata*. Biochem Biophys Res Commun 240: 657–663.
- Marchini D, Rosetto M, Dallai R, Marri L (2002) Bacteria associated with the oesophageal bulb of the medfly *Ceratitis capitata* (Diptera: Tephritidae). Curr Microbiol 44: 120–124.
- Marchini D and Del Bene G (2006) Comparative fine structural analysis of the male reproductive accessory glands in *Bactrocera oleae* and *Ceratitis capitata* (Diptera, Tephritidae). Ital J Zool 73: 15–25.
- Margaritopoulos JT, Skavdis G, Kalogiannis N, Nikou D, Morou E, Skouras PJ, Tsitsipis JA, Vontas J (2008) Efficacy of the pyrethroid alpha-cypermethrin against *Bactrocera oleae* populations from Greece and improved diagnostic foran iAChE mutation, Pest Manag Sci. 64 900–908.

- Mazomenos BE, Pantazi- Mazomenou A, Stefanou D (2002) - Attract and kill of the olive fruit fly *Bactrocera oleae* in Greece as a part of an integrated control system. -IOBC/wprs Bulletin, 25: 137-146.
- McGraw LA, Gibson G, Clark AG, Wolfner MF (2004) Genes regulated by mating, sperm, or 836 seminal proteins in mated female *Drosophila melanogaster*. Curr. Biol. 14: 1509-1514.
- McGraw LA, Clark AG, Wolfner MF (2008) Post-mating gene expression profiles of female *Drosophila melanogaster* in response to time and to four male accessory gland proteins. Genetics 179:1395–1408.
- Mcphail M (1939) Protein lures for fruit flies. -Journal of Economic Entomology, 32: 758-761.
- Meccariello A, Monti SM, Romanelli A, Colonna R, Primo P, Inghilterra MG, Del Corsano G, Ramaglia A, lazzetti G, Chiarore A, Patti F, Heinze SD, Salvemini M, Lindsay H, Chiavacci E, Burger A, Robinson MD, Mosimann C, Bopp D, Saccone G (2017) Highly efficient DNA-free gene disruption in the agricultural pest Ceratitis capitata by CRISPR-Cas9 ribonucleoprotein complexes. Sci Rep Aug 30; 7(1): 10061-10061.
- Meslin C, Plakke MS, Deutsch AB, Small BS, Morehouse NI, Clark NL (2015) Digestive organ in the female reproductive tract borrows genes from multiple organ systems to adopt critical functions Mol.Biol. Evol. 10.1093/molbev/msv048
- Mikhaylova LM, Nguyen K, Nurminsky DI (2008) Analysis of the *Drosophila melanogaster* testes transcriptome reveals

coordinate regulation of paralogous genes. Genetics 179: 305–315.

- Miquel KS, Scott JG (2015) The next generation of insecticides: dsRNA is stable as a foliar-applied insecticide Pest Manag Sci 2016; 72: 801–809
- Miller JC, Holmes MC, Wang J, Guschin DY, Lee YL, Rupniewski I, Beausejour CM, Waite AJ, Wang NS, Kim KA, Gregory PD, Pabo CO, Rebar EJ (2007) An improved zinc-finger nuclease architecture for highly specific genome cleavage. Nat. Biotechnol. 25: 778–785.
- Mitchell SN, Kakani EG, South A, Howell PI, Waterhouse RM, Catteruccia F (2015)
 Mosquito biology. Evolution of sexual traits influencing vectorial capacity in anopheline mosquitoes. Science. 2015; 347 (6225):985±8.
- Mito T, Nakamura T, Bando T, Ohuchi H and Noji S (2011). The advent of RNA interference in Entomology. Entomological Science 14, 1–8.
- Miyatake T, Chapman T, Partridge L (1999) Mating-induced inhibition of remating in female Mediterranean fruit flies *Ceratitis capitata*. J Insect Physiol 45: 1021–1028.
- Moehle K, Freund A, Kubli E, Robinson JA (2011) NMR studies of the solution conformation of the sex peptide from *Drosophila melanogaster*. FEBS J. 585,1197–1202.
- Montiel Bueno A, Jones O (2002) Alternative methods for controlling the olive Xy, *Bactrocera oleae*, involving semiochemicals. IOBC wprs Bull 25:1–11.

- Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326(5959): 1501.
- Mueller JL, Ripoll DR, Aquadro CF, Wolfner MF. (2004) Comparative structural modeling and inference of conserved protein classes in Drosophila seminal fluid. Proc Natl Acad Sci U S A. 101:13542–7.
- Nagnan LMP, Cain AH, Jacquin-Joly E, François MC, Ramachandran S, Maida R, Steinbrecht RA (2000) Chemosensory proteins from the proboscis of mamestra brassicae. Chem Senses 25:541-53.
- Napoli C, Lemieux C and Jorgensen R (1990) Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans. Plant Cell 2: 279–289.
- Nardi F, Carapelli A, Dallai R, Roderick GK, Frati F (2005) Population structure and colonization history of the olive fly, *Bactrocera oleae* (Diptera, Tephritidae). Mol Ecol 14: 2729-2738
- Nardi F, Carapelli AJ, Boore L, Roderick GK, Dallai R and Frati F (2010) Domestication of olive fly through a multi-regional host shift to cultivated olives: Comparative dating using complete mitochondrial genomes. Mol. Phylogenet. Evol. 57: 678–686
- NASEM (National Academies of Sciences, Engineering, and Medicine) (2016) Accounting for social risk factors in Medicare payment: Identifying social risk factors. Washington, DC: The National Academies Press
- NASEM (National Academies of Sciences, Engineering, and Medicine; Division on Earth and Life Studies; Board on Life

Sciences) Committee on Gene Drive Research in Non-Human Organisms: Recommendations for Responsible Conduct (2016) Gene drives on the horizon: advancing science, navigating uncertainty, and aligning research with public values. Washington, DC: National Academies Press

- Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J. 1(7):841-5.
- Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10: 1–6.
- Nimmo DD, Alphey L, Meredith JM, Eggleston P (2006) High efficiency site-specific genetic engineering of the mosquito genome. Insect Mol. Biol. 15: 129–136.
- Noh MY, Beeman RW, Arakane Y (2012) RNAibased functional genomics in Tribolium castaneum and possible application for controlling insect pests. Entomol. Res. 42:1–10.
- Nusbaum MP, Blitz DM, Swensen AM, Wood D, Marder E (2001) The roles of cotransmission in neural network modulation. Trends Neurosci. 24:146–154.
- Olivieri G, Olivieri A. (1965) Autoradiographic study of nucleic acidsynthesis during spermatogenesis in *Drosophila melanogaster*. Mutat Res 965, 2:366–80.
- Oppelt A, Heinze J, (2007) Dynamics of sperm transfer in the ant *Leptothoraxgredleri*. *Naturwissenschaften* 94, 781–786.
- Paesen GC, Happ GM (1995) The B proteins secreted by the tubular accessory sex glands of the male mealworm beetle,

Tenebrio molitor, have sequence similarity to moth pheromone-binding proteins. Insect Biochem Mol Biol 25:401-8.

- Paiva-Silva GO, Sorgine MHF, Benedetti CE, Meneghini R, Almeida IC, Machado EA, Dansa-Petretski M, Yepiz-Plascencia G, Law JH, Oliveira PL, Masuda H (2002) On the biosynthesis of *Rhodnius prolixus* hemebinding protein. Insect Biochem Mol Biol 32:1533-41.
- Pan M., Wang X, Chai C, Zhang C, Lu C & Xiang Z (2009). Identification and function of Abdominal-A in the silkworm, *Bombyx mori*. Insect Molecular Biology 18, 155– 160.
- Panhuis TM, Clark NL, Swanson WJ (2006) Rapid evolution of reproductive proteins in abalone and Drosophila. Philos Trans R Soc Lond B Biol Sci 361: 261–268.
- Papanicolaou A., Schetelig M., Arensburger P, Atkinson P.W., Benoit J. B., Bourtzis K......
 Handler A.M (2016) The whole genome sequence of the Mediterranean fruit fly, *Ceratitis capitata* (Wiedemann), reveals insights into the biology and adaptive evolution of a highly invasive pest species. Genome Biol. Sep 22;17(1):192. doi: 10.1186/s13059-016-1049-2.
- Parisi, M., R. Nuttall, D. Naiman, G. Bouffard,
 J. Malley Andrews J, Eastman S and Oliver B
 (2003) Paucity of genes on the Drosophila X
 chromosome showing male-biased
 expression. Science 299: 697–700.
- Parmentier M, Libert F, Schurmans S, Schiffmann S, Lefort A, Eggerickx D, Ledent C, Mollereau C, Gérard C, Perret J, et al (1992) Expression of members of the putative olfactory receptor gene family in mammalian germ cells. Nature, 355:453-5.

Patanita M and Mexia A (2004) Loss assessment due to *Prays oleae* Bern. and *Bactrocera oleae* Gmelin in Moura's region Portugal

http://pubol.ipbeja.pt/Artigos/Italia.htm.

- Pavlidi N, Dermauw W, Rombauts S, Chrysargyris A, Van Leeuwen T, Vontas J (2013) Analysis of the Olive Fruit Fly Bactrocera oleae Transcriptome and Phylogenetic Classification of the Major Detoxification Gene Families. PloS one 8, doi: ARTN.
- Pavlidi N, Gioti A, Wybouw N, Dermauw W, Ben-Yosef M, Yuval B, Jurkevich E, Kampouraki A, Van Leeuwen T, Vontas J (2017) Transcriptomic responses of the olive fruit fly *Bactrocera oleae* and its symbiont *Candidatus Erwinia dacicola* to olive feeding. Sci. Rep. 7: 42633
- Pearson WR, Wood T, Zhang Z, Miller W (1997) Comparison of DNA sequences with protein sequences. Genomics 46: 24–36.
- Peixoto L, Risso D, Poplawski SG, Wimmer ME, Speed TP, Wood MA, Abel T (2015) How data analysis affects power, reproducibility and biological insight of RNA-seq studies in complex datasets. Nucleic Acids Research. 18:43(16): 7664-74. PMCID PMC4652761Pelosi P, Maida R (1995) Odorant-binding proteins in insects. Comp Biochem Physiol B Biochem Mol Biol 111:503-14.
- Peng J, Zipperlen P, Kubli E (2005) Drosophila sex-peptide stimulates female innate immune system after mating via the Toll and Imd pathways. Curr Biol 15:1690–1694.
- Peralbo-Molina Á and de Castro MD (2013). Potential of residues from the Mediterranean agriculture and agrifood

industry. Trends Food Sci. Technol., 32, 16–24.

- Pereira JA, Alves MR, Casal S, Oliveira MBPP. (2004) Effect of olive fruit fly infestation on the quality of olive oil from cultivars Cobrançosa, Madural, and Verdeal Transmontana. Ital J Food Sci. 16: 355– 365.
- Pilpel N, Nezer I, Applebaum SW, Heifetz Y.2008. Mating increases trypsin in femaleDrosophila hemolymph. Insect Biochem.Mol. Biol. 38:320–30.
- Pitts RJ, Liu C, Zhou X, Malpartida JC, Zwiebel LJ (2014) Odorant receptor mediated sperm activation in disease vector mosquitoes. Proc Natl Acad Sci USA 111:2566-71.
- Poiani A (2006) Complexity of seminal fluid: a review. Behav Ecol Sociobiol 60: 289–310.
- Pondeville E, Maria A, Jacques JC, Bourgouin C, Dauphin-Villemant C. (2008) *Anopheles gambiae* males produce and transfer the vitellogenic steroid hormone 20hydroxyecdysone to females during mating. Proceedings of the National Academy of Sciences of the United States of America. 105(50):19631± 6. Epub
- Pontikakos C.M., Tsiligiridis T.A., Yialouris C.P., Kontodimas D.C. (2012), Pest management control of olive fruit fly (*Bactrocera oleae*) based on a location-aware agroenvironmental system, Computers and Electronics in Agriculture (COMPAG), Vol. 87, pp.39-50, Sept. 2012.
- Postlethwait JH and Handler AM (1979) The roles of juvenile hormone and 20hydroxyecdysone during vitellogenesis in isolated abdomens od *Drosophila*

melanogaster. J. Insect Physiol., 25: 455-460

- Prokupek A, Hoffmann F, Eyun SI, Moriyama E,
 Zhou M, Harshman L. (2008) An
 evolutionary expressed sequence tag
 analysis of Drosophila spermatheca genes.
 Evolution. Nov;62(11):2936-47.
- Proverbs MD (1969) Induced sterilization and control of insects. Ann. Rev. Entomol. 14: 81–102.
- Prud'homme B, Gompel N, Rokas A, Kassner VA, Williams TM, Yeh SD, True JR, Carroll SB (2006) Repeated morphological evolution through cis-regulatory changes in a pleiotropic gene, Nature vol. 440: 1050-1053.
- Radhakrishnan P and Taylor PW (2007) Seminal fluids mediate sexual receptivity and copula duration in Queensland fruit flies. J. Insect Physiol. 53, 741–745.
- Ram KR, Wolfner MF. (2009) A network of interactions among seminal proteins underlies the long-term postmating response in Drosophila. Proc. Natl. Acad. Sci. USA 106:15384–89
- Ramalingam S (1983) Secretion in the male accessory-glands of *Aedes aegypti* (L.) (Diptera, Culicidae). Int J Insect Morphol Embryol 12: 87–96.
- Ramos P, Campos M, Ramos JM (1998) Longterm study on the evaluation of yield and economic losses caused by *Prays oleae* Bern. In the olive crop of Granada (southern Spain). *Crop Prot.*; 17:645-647.
- Rajagopal R, Sivakumar S, Agrawal N, Malhotra P and Bhatnagar RK (2002) Silencing of midgut aminopeptidase N of Spodoptera litura by double-stranded RNA

establishes its role as *Bacillus thuringiensis* toxin receptor. J Biol Chem 277: 46849–46851.

- Ravi RK and Wolfner MF (2007) Seminal influences: drosophila Acps and the molecular interplay between males and females during reproduction. Integr Comp Biol 47:427–445.
- Ras, E., Beukeboom, L. W., Cáceres, C. and Bourtzis, K. (2017) Review of the role of gut microbiota in mass rearing of the olive fruit fly, *Bactrocera oleae*, and its parasitoids. Entomol Exp Appl, 164: 237–256. doi:10.1111/eea.12609.
- Ravi Ram K, Ji S, Wolfner MF (2005) Fates and targets of male accessory gland proteins in mated female *Drosophila melanogaster*. Insect Biochemistry and Molecular Biology. 2005 Sep; 35(9):1059–1071.
- Rendon P, McInnis D, Lance D, Stewart J (2004): Medfly (Diptera: Tephritidae) genetic sexing: large-scale field comparison of males-only and bisexual sterile fly releases in Guatemala. J Econ Entomol, 97:1547-1553.
- Ribeiro C, Dickson BJ (2010) Sex peptide receptor and neuronal TOR/S6 K signaling modulate nutrient balancing in Drosophila. Curr. Biol. 20, 1000–1005.
- Rice RE (2000) Bionomics of the olive fruit fly Bactrocera (Dacus) oleae. UC Plant Protection Quarterly 10: 1-5.
- Rice RE, Phillips PA, Stewart-Leslie J, Sibbett GS (2003) Olive fruit fly populations measured in central and southern California. California Agriculture, 57, 122– 127.

- Rigaud T (1997) Inherited microorganisms and sex determination of arthropod hosts. In: O'Neill SL, Hoffmann AA, Werren JH (eds) Influential Passengers, Oxford University Press: New York 81–101.
- Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics Jan 1;26(1):139-40.
- Robinett C.C., Giansanti M.G., Gatti M., Fuller M.T, (2009): TRAPPII is required for cleavage furrow ingression and localization of Rab11 in dividing male meiotic cells of Drosophila Journal of Cell Science 122, 4256-4534
- Rogers DW, Whitten MM, Thailayil J, Soichot J, Levashina EA, Catteruccia F (2008) Molecular and cellular components of the mating machinery in *Anopheles gambiae* females. Proc Natl Acad Sci USA 105:19390-19395.
- Rogers DW, Baldini F, Battaglia F, Panico M, Dell A, et al. (2009) Transglutaminasemediated semen coagulation controls sperm storage in the malaria mosquito.
 PLoS Biol 7: e1000272. doi: 10.1371/journal.pbio.1000272
- Romoser WS and JG Stoffolano Jr (1998) The Science of Entomology. 4th ed. McGraw-Hill Co., pp. 137-149.
- Rosetto M, Belardinelli M, Fausto AM, Marchini D, Bongiorno G, Maroli M, Mazzini M. (2003) A mammalian-like lipase gene is expressed in the female reproductive accessory glands of the sand fly *Phlebotomus papatasi* (Diptera, Psychodidae). Insect Mol Biol 12: 501–508.

- Rothberg JM, Hinz W, Rearick TM, Schultz J, Mileski W, Davey M, Leamon JH, Johnson K, Milgrew MJ, Edwards M.... Bustillo H (2011) An integrated semiconductor device enabling non-optical genome sequencing. Nature. 475:348–352.
- Roy S, Saha TT, Johnson L, Zhao B, Ha J, White
 KP, Girke T, Zou Z, Rainkhel AS. (2015)
 Regulation of gene expression patterns in
 mosquito reproduction. PLoS genetics.
 11(8)
- Russ K and Faber B (1978) The possible use of IIT to control *Rhagoletis cerasi* L., the European cherry fruit fly in Austria. In: Proceedings of the OILB Meeting, Sassari, Italy 15–20: 38–39.
- Sagri E., Reczko M., Tsoumani K.T., Gregoriou M-E., Harokopos V., Mavridou A-M., Tastsoglou S., Athanasiadis K., Ragoussis J., Mathiopoulos K.D., 2014: The molecular biology of the olive fly comes of age. BMC Genetics, 15 (Suppl 2): S8
- Sagri E, Koskinioti P, Gregoriou ME, Tsoumani KT, Bassiakos YC, Mathiopoulos KD (2017) Housekeeping in Tephritid insects: the best gene choice for expression analyses in the medfly and the olive fly. Sci Rep. 3;7:45634.
- Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT et al(1985) Enzymatic amplification of beta-glob in genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350-1354.
- Sambrook J and Russell DW (2001) Molecular cloning a laboratory manual. Vol. 2, 3rd edn. Cold Spring Harbor Laboratory Press, New York.

- Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory.
- Sander JD and Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32, 347–355.
- Sappington TW, Raikhel AS (1998) Molecular characteristics of insect vitellogenins and vitellogenin receptors Insect Biochemistry and Molecular Biology Volume 28, Issues 5–6, May Pages 277-300
- Schnakenberg, S.L., Siegal, M.L., Bloch Qazi, M.C., (2012) Oh, the places they'll go: female sperm storage and sperm precedence in *Drosophila melanogaster*. Spermatogenesis 2, 224–235.
- Schulte I, Tammen H, Selle H, Schulz-Knappe
 P. (2005) Peptides in body fluids and tissues as markers of disease. Expert Rev Mol Diagn. Mar;5(2):145-57.
- Schultz J, Milpetz F, Bork P, Ponting CP (1998) SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci U S A 95: 5857–5864.
- Scolari, F., Gomulski, L.M., Ribeiro, J.M.C., Siciliano, P., Meraldi, A., Falchetto, M. et al. (2012) Transcriptional profiles of matingresponsive genes from testes and male accessory glands of the Mediterranean fruit fly, *Ceratitis capitata*. PLoS ONE 7: e46812.
- Servili, M. Selvaggini, R. Esposto, S. Taticchi, A. Montedoro, G.F., Morozzi, G. (2004) Health and sensory properties of virgin olive oil hydrophilic phenols: Agronomic and technological aspect of production that

affect their occurrence in the oil. *J. Chromatgr. 1054,* 113–127.

- Sharp PA, Sugden B, Sambrook J. (1973)
 Biochemistry 12, 3055–3063. Springer. p. 9.
 ISBN 978-3-7643-6019-1. Retrieved 13 July 2013. microinjection technique.
- Shutt, B., Stables, L., Aboagye-Antwi, F., Moran, J., Tripet, F (2010) Male accessory gland proteins induce female monogamy in anopheline mosquitoes. Med. Vet. Entomol. 24, 91–94.
- Silvestri F (1914) Report on an expedition to Africa in search of natural enemies of fruit flies (Trupaneidae) with descriptions, observations and biological notes. Hawaii Board Agric. For. Div. Entomol. Bull. 3:1– 146
- Sirot LK, Buehner NA, Fiumera AC, Wolfner MF (2009) Seminal fluid protein depletion and replenishment in the fruit fly, *Drosophila melanogaster*: an ELISA based method for tracking individual ejaculates. Behav. Ecol. Soc. 63, 1505–1513
- Skouras PJ, Margaritopoulos JT, Seraphides
 NA, Ioannides IM, Kakani EG, Mathiopoulos
 KD and Tsitsipis JA (2007)
 Organophosphate resistance in olive fruit
 fly, *Bactrocera oleae*, populations in Greece
 and Cyprus. Society of Chemical Industry.
 Pest Manag Sci 63(1):42-8
- Smidler AL, Terenzi O, Soichot J, Levashina EA, Marois E (2013) Targeted Mutagenesis in the Malaria Mosquito Using TALE Nucleases. PLoS ONE 8(8): e74511.
- Solis CF, Santi-Rocca J, Perdomo D, Weber C, Guille'n N (2009) Use of bacterially expressed dsRNA to downregulate

Entamoeba histolytica gene expression. PLoS ONE 4(12): e8424.

- Soltani-Mazouni, N. and C. Bordereau (1987) Changes in the cuticle, ovaries and collecterial glands during the pseudergate and neotenic molt in *Kalotermes flavicollis Fabr*. (Isoptera: Kalotermitidae). Int. J. Insect Morphol. & Embryol. 16: 221-235.
- Specchia V, D'Attis S, Puricella A, Bozzetti MP. (2017). dFmr1 Plays Roles in Small RNA Pathways of *Drosophila melanogaster*. Int. J. Mol. Sci. 18(5): E1066.
- Spehr M, Gisselmann G, Poplawski A, Riffell JA, Wetzel CH, Zimmer RK, Hatt H (2003) Identification of a testicular odorant receptor mediating human sperm chemotaxis. Science 299:2054-8.
- Spehr M, Schwane K, Heilmann S, Gisselmann G, Hummel T, Hatt H (2004) Dual capacity of a human olfactory receptor. Curr Biol 14: R832-3.
- Spehr M, Schwane K, Riffell JA, Zimmer RK, Hatt H (2006) Odorant receptors and olfactory-like signaling mechanisms in mammalian sperm. Mol Cell Endocrinol 250:128-36.
- Stenesh J and Stenesh J (1989). Dictionary of biochemistry and molecular biology (2nd ed.). New York: Wiley.
- Stoll Gaby (1996), Natural Pest and Disease Control published by Magraf. Verlag, PO Box 105 97985 Weikersheim, Germany.
- Stouthamer R, Luck RF, Hamilton WD (1990) Antibiotics cause parthenogenetic Trichogramma (Hymenoptera, Trichogrammatidae) to revert to sex. Proceedings of the National Academy of

Sciences of the United States of America. 87:2424–2427.

- Su TT, Yakubovich N, O'Farrell PH (1997) Cloning of Drosophila MCM homologs and analysis of their requirement during embryogenesis Gene 192:283-289.
- Suster ML, Karunanithi S, Atwood HL, Sokolowski MB (2004). Turning behavior in Drosophila larvae: a role for the small scribbler transcript. Genes Brain Behav. 3(5): 273-86. 15344921.
- Suzuki N, Garbers DL (1984) Stimulation of sperm respiration rates by speract and resact at alkaline extracellular pH. Biol Reprod 30:1167-74.
- Swanson WJ, Vacquier VD (2002) The rapid evolution of reproductive proteins. Nat Rev Genet 3: 137–144.
- Syed ZA, Ha["] rd T, Uv A, van Dijk-Ha["] rd IF (2008) A potential role for Drosophila mucins in development and physiology. PLoS One 3: e3041.
- Tavsanli BC, Pappu KS, Mehta SQ, Mardon G (2001) *dbest1*, a Drosophila Homolog of Human Bestrophin, Is Not Required for Viability or Photoreceptor Integrity Genesis. Nov;31(3):130-6.
- Thailayil J, Magnusson K, Godfray HC, Crisanti A, Catteruccia F (2011) Spermless males elicit large-scale female responses to mating in the malaria mosquito *Anopheles gambiae*. Proc. Natl. Acad. Sci. USA 108, 13677–13681.
- Thomas DB, Mangan RL (2005) Non target impact of spinosad GF-120 bait sprays for control of the Mexican fruit fly (Diptera: Tephritidae) in Texas citrus. J. Econ. Entomol. 98:1950–56

- Thymianou S, Mavroidis M, Kokolakis G, Komitopoulou K, Zacharopoulou A, Mintzas AC (1998) Cloning and characterization of a cDNA encoding a male specific serum protein of the Mediterranean fruit fly, *Ceratitis capitata*, with sequence similarity to odorant-binding proteins. Insect Mol Biol, 7:345-53.
- Tian H, Peng H, Yao Q, Chen H, Xie Q, Tang B, Zhang W (2009) Developmental control of a Lepidopteran pest *Spodoptera exigua* by ingestion of bacteria expressingof a Non-Midgut Gene. PLoS ONE 4(7): e6225.
- Tian C, Wei D, Xiao L-F, Dou W, Liu H, Wang JJ (2017) Comparative transcriptome analysis of three *Bactrocera dorsalis* (Diptera: Tephritidae) organs to identify functional genes in the male accessory glands and ejaculatory duct Florida Entomologist 100(1):42-51.
- Timmons L, Court DL, Fire A (2000) Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in *Caenorhabditis elegans*. Gene 263: 103–112.
- Tomari Y and Zamore PD (2005) Perspective: machines for RNAi. Genes Dev 19, 517–529
- Tombes AS, Roppel RM (1972) Ultrastructure of the spermatheca of the granarywe evil, *Sitophilus granarius* (L.) (Coleoptera: Curculionidae). Int. J. InsectMorphol. Embryol. 1, 141–152.
- Trichopoulou A and Dilis V (2007) Olive oil and longevity. Mol. Nutrition and Food Research 51:10
- Tsao IY, Lin US, Christensen BM & Chen CC (2009) Armigeres subalbatus prophenoloxidase III: Cloning,

characterization and potential role in morphogenesis. Insect Biochem Mol Biol 39, 96–104.

- Tsiropoulos GJ and Tzanakakis ME (1970) Mating frequency and inseminating capacity of radiation-sterilized and normal males of the olive fruit fly. Annals of the Entomological Society of America 63(4): 1007-1010.
- Tsitsipis JA (1975) Mass rearing of the olive fruit fly, Dacus oleae (Gmelin), at "Demokritos". In Controlling Fruit Flies by the Sterile-Insect Technique. Int. At. En. Agency, Vienna, STWUBI 392, p. 93-100
- Tsitsipis JA (1980) Effect of constant temperatures on larval and pupal development of olive fruit flies reared on artificial diet. Environ Entomol 9: 764-68.
- Tsitsipis JA and Kontos A (1983) Improved solid adult diet for the olive fruit fly *Dacus oleae*. Entomol Hellenica 1: 24-29.
- Turner CT, Davy MW, MacDiarmid RM, Plummer KM, Birch NP and Newcomb RD (2006) RNA interference in the light brown apple moth, Epiphyas postvittana (Walker) induced by double-stranded RNA feeding. Insect Mol Biol 15, 383–391.
- Tzanakakis ME, Tsitsipis JA, Economopoulos AP (1968) Frequency of mating in females of the olive fruit fly under laboratory conditions. J Econ Entomol 61:1309–1312
- Tzanakakis ME (1989) Small-scale rearing Dacus oleae. In: World Crop Pests: Fruit flies: their biology, natural enemies, and control. Vol. 3B.Ed. by Robinson AS, Hooper G, Elsevier, Amsterdam, 105-118.
- Tzanakakis, M. E. (2006) Insects and mites feeding on olive: Distribution, importance,

habits, seasonal development, and dormancy, 182 pp. Applied entomology library, vol. 1. Brill Academic Publishers, Leiden, the Netherlands.

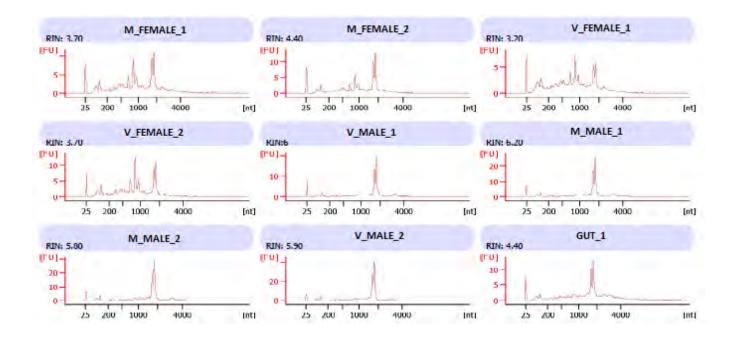
- Vanderhaeghen P, Schurmans S, Vassart G, Parmentier M (1993) Olfactory receptors are displayed on dog mature sperm cells. J Cell Biol 123(6 Pt 1):1441-52.
- Vanderhaeghen P, Schurmans S, Vassart G, Parmentier M (1997) Specific repertoire of olfactory receptor genes in the male germ cells of several mammalian species. Genomics 1997, 39:239-46.
- Vargas RI, Piñero JC, Leblanc L (2015) An overview of pest species of Bactrocera fruit flies (Diptera: Tephritidae) and the integration of biopesticides with other biological approaches for their management with a focus on the pacific region. Insects 6:297–318
- Veitinger T, Riffell JR, Veitinger S, Nascimento JM, Triller A, Chandsawangbhuwana C, Schwane K, Geerts A, Wunder F, Berns MW, Neuhaus EM, Zimmer RK, Spehr M, Hatt H (2011) Chemosensory Ca²⁺ dynamics correlate with diverse behavioral phenotypes in human sperm. J Biol Chem 286:17311-25.
- Vogt RG, Prestwich GD, Lerner MR (1991) Odorant-binding-protein subfamilies associate with distinct classes of olfactory receptor neurons in insects. J Neurobiol 22:74-84.
- Vontas J, Hernandez-Crespo P, Margaritopoulos JT, Ortego F, Feng HT, Mathiopoulos KD, Hsu JS (2011) Insecticide resistance in Tephritid flies. Pesticide Biochemistry and Physiology 100: 199-205.

- Vontas JG, Hejazi MJ, Hawkes NJ, Cosmidis N, Loukas M, Hemingway J, (2002) Resistanceassociated point mutations of organophosphate insensitive acetylcholinesterase, in the olive fruit fly *Bactrocera oleae*. Insect Molecular Biology 11, 329–336.
- Vosshall LB and Hansson BS (2011) A unified nomenclature system for the insect olfactory coreceptor. Chem Senses 36:497-8.
- Wagner RM, Woods CW, Hayes JA, Kochansky JP, Hill JC, Fraser BA (1993) Isolation and identification of a novel peptide from the accessory sex gland of the female house fly, *Musca domestica*. Biochem. Biophys. Res. Commun. 194, 1336e1343.
- Walensky LD, Ruat M, Bakin RE, Blackshaw S, Ronnett G V, Snyder SH (1998) Two novel odorant receptor families expressed in spermatids undergo 5'- splicing. J Biol Chem 273:9378-87.
- Walker MJ, Rylett CM, Keen JN, Audsley N, Sajid M, et al. (2006) Proteomic identification of *Drosophila melanogaster* male accessory gland proteins, including a pro-cathepsin and a soluble gammaglutamyl transpeptidase. Proteome Sci 4: 9.
- Walters JR, Harrison RG (2010) Combined EST and proteomic analysis identifies rapidly evolving seminal fluid proteins in Heliconius butterflies. Mol Biol Evol 27: 2000–2013.
- Wanner KW, Willis LG, Theilmann DA, Isman MB, Feng Q, Plettner E (2004) Analysis of the insect os-d-like gene family. J Chem Ecol 30:889-911.

- Waqar AM, Zheng W, Sohail S, Li Q, Zheng W,
 Zhang H (2017) A genetically enhanced sterile insect technique against the fruit fly, *Bactrocera dorsalis* (Hendel) by feeding adult double-stranded RNAs Scientific Reports volume 7, Article number: 4063 (2017)
- Ward PI (2000) Cryptic female choice in the yellow dung fly *Scathophagaster coraria* (L.). Evolution 54, 1680–1686.
- Wasbrough ER, S Dorus, S Hester, J Howard-Murkin, K Lilley, E Wilkin, A Polpitiya, K Petritis, TL Karr (2010) The *Drosophila melanogaster* sperm proteome-II (DmSP-II). J Proteomics 73: 2171-2185.
- Weems HV and Nation JL (1999) Olives Fruit Fly, *Bactrocera oleae* (Rossi) (Insecta: Diptera: Tephritidae). Series of the Entomology and Nematology Department, University of Florida, Gainesville, FL, USA.
- Wei D, Li HM, Yang WJ, Wei DD, Dou W, Huang Y, Wang JJ (2015) Transcriptome profiling of the testis reveals genes involved in spermatogenesis and marker discovery in the oriental fruit fly, *Bactrocera dorsalis*. Insect Mol Biol. 2015 Feb; 24(1): 41–57
- Werren JH, O'Neill SL (1997) The evolution of heritable symbionts. In: O'Neill SL, Hoffmann AA, Werren JH (eds) Influential Passengers, Oxford University Press: New York, pp 1–41.
- Werner M, Gack C, Speck T, Peschke K (2007) Queue up, please! Spermathecal filling in the rove beetle *Drusilla canaliculata* (Coleoptera: Staphylinidae). Naturwissenschaften 94, 837–841.

- Wesseling J, van der Valk SW, Vos HL, Sonnenberg A, Hilkens J (1995) Episialin (MUC1) overexpression inhibits integrinmediated cell adhesion to extracellular matrix components. J Cell Biol 129: 255– 265.
- White IM and Elson-Harris MM (1992) Fruit flies of economic significance: their identification and bionomics. CAB International, Wallingford, UK.
- Whyard S, Erdelyan CN, Partridge AL, Singh AD, Beebe NW & Capina R (2015) Silencing the buzz: a new approach to population suppression of mosquitoes by feeding larvae double-stranded RNAs. Parasites and Vectors 8: 716.
- Wilson TG, DeMoor S, Lei J (2003) Juvenile hormone involvement in Drosophila melanogaster male reproduction as suggested by the Methoprene-tolerant (27) mutant phenotype Insect Biochem Mol Biol 33: 1167–1175.
- Williams TD (2005) Mechanisms underlying the costs of egg production. Bioscience 55: 39–48.
- Windbichler N, Menichelli M, Papathanos PA Thyme SB, Li H, Ulge UY, Blake T.H, Baker D, Monnat RJ, Burt A, Crisanti A (2011) A synthetic homing endonuclease-based gene drive system in the human malaria mosquito Nature. 2011 May 12; 473(7346): 212–215.
- Wittkopp PJ, True JR, Carroll SB (2002) Reciprocal functions of the Drosophila yellow and ebony proteins in the development and evolution of pigment patterns, Development vol. 129: 1849-1858.

- Wittkopp PJ, Vaccaro K, Carroll SB (2002) Evolution of yellow gene regulation and pigmentation in Drosophila, Curr Biol, vol. 12 :1547-1556.
- WHO (1990) Public Health Impact of Pesticides Used in Agriculture. World Health Organization, Geneva: 88.
- WHO (1964) The work of WHO annual report of the Director- General to the World Health Assembly and to the United Nations World Health Organization.
- WHO Scientific Group on the Genetics of Vectors and Insecticide Resistance. WHO Technical Report Series No. 268; Genetics of Vectors and Insecticide Resistance. Available online: http://apps.who.int/iris/ bitstream/10665/40573/1/WHO_TRS_268. pdf (accessed on 3 August 2017).
- Wigby S, Chapman T (2005) Sex peptide causes mating costs in female *Drosophila melanogaster*. Curr. Biol. 15, 316–321.
- Wilson R, Burnet B, Eastwood L, Connolly K (1976) Behavioural pleiotropy of the yellow gene in *Drosophila melanogaster*, Genet Res vol. 28: 75-88
- Wolfner MF (2011) Precious essences: female secretions promote sperm storage in Drosophila. PLoS Biol. 9, e1001191.
- Wong A, Albright SN, Giebel JD, Ram KR, Ji S, Fiumera AC, Wolfner MF. (2008) A rolefor Acp29AB, a predicted seminal fluid lectin, in female sperm storage in *Drosophila melanogaster*. Genetics 180: 921–931.
- Wong A, Turchin M, Wolfner MF, Aquadro CF (2012) Temporally variable selection on proteolysis-related reproductive tract proteins in Drosophila. Mol Biol Evol 29: 229–238.


- Wyatt GR, Rothaus K, Lawler D, Herbst EJ (1973) Ornithine decarboxylase and polyamines in silkmoth pupal tissues: Effects of ecdysone and injury. Biochim Biophys Acta304(2):482–494.
- Yang CH, Rumpf S, Xiang Y, Gordon MD, Song W, Jan LY, Jan YN. (2009) Control of the postmating behavioral switch in Drosophila females by internal sensory neurons. Neuron.61:519–526.
- Yapici N, Kim YJ, Ribeiro C, Dickson BJ. (2008) A receptor that mediates the post-mating switch in Drosophila reproductive behaviour. Nature. 451:33–37
- Yew JY, Wang Y, Barteneva N, Dikler S, Kutz-Naber KK, Li L, Kravitz EA (2009) Analysis of Neuropeptide Expression and Localization in Adult *Drosophila melanogaster* Central Nervous System by Affinity Cell-Capture Mass Spectrometry. Journal of Proteome Research, 8(3), 1271–1284.
- Yi HY, Chowdhury M, Huang YD, Yu XQ (2014) Insect Antimicrobial Peptides and Their Applications. Applied Microbiology and Biotechnology, 98(13), 5807–5822.
- Yokoyama VY, Wang XG, Aldana A, Cáceres CE, Yokoyama-Hatch HA, Rendón PA, Johnson MW, Daane KM. (2012) Performance of *Psyttalia humilis* (Hymenoptera: Braconidae) reared from irradiated host on olive fruit fly (Diptera: Tephritidae) in California. Environmental Entomology 41: 497–507.
- Zervas GA (1982) Reproductive physiology of *Dacus oleae* (Gmel.) (Diptera: Trypetidae). Comparison of a wild and artificially reared flies. Geoponica (in Greek) 282:10–14

- Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759–771.
- Zheng W, Peng T, He W, Zhang H (2012) Highthroughput sequencing to reveal genes involved in reproduction and development in *Bactrocera dorsalis* (Diptera: Tephritidae). PLoS One 7, e36463.
- Zheng WP, Liu YR, Zheng WW, Xiao YL, Zhang HY (2015) Influence of the silencing sexpeptide receptor on *Bactrocera dorsalis* adults and offspring by feeding with ds-spr. J Asia-Pac Entomol. 18(3):477–81.
- Zheng W, Luo D, Wu F, Wang J, Zhang H (2016) RNA sequencing to characterize transcriptional changes of sexual maturation and mating in the female oriental fruit fly *Bactrocera dorsalis*. BMC Genomics 17. doi:10.1186/s12864-12016-12532-12866
- Zhou S, Stone EA, Mackay TF, Anholt RR (2009) Plasticity of the chemoreceptor repertoire in *Drosophila melanogaster*. PLoS Genet 5: e1000681.
- Zitnan D, Sauman I, Sehnal F (1993) Peptidergic innervation and endocrine cells of insect midgut. Arch Insect Biochem Physiol 22:113–132.
- Zouros E, Krimbas CB (1970) Frequency of male bigamy in natural population of the olive fruit fly *Dacus oleae* as found by using enzyme polymorphism. Entomol Exp Appl 13:1–9
- Zygouridis NE, Augustinos AA, Zalom FG, Mathiopoulos KD (2009) Analysis of olive

fly invasion in California based on microsatellite markers. Heredity 102: 402-412.

6.SUPPLEMENTARY

6.1 Summary of the results from the Nanodrop and Bioanalyser for the sequenced samples from Ion Torrent system

Sample Name	Sample Comment	Statu Result Label	Result Color
	Comment	s	
M_FEMALE_1		RIN: 3.70	
M_FEMALE_2		RIN: 4.40	
V_FEMALE_1		RIN: 3.20	
V_FEMALE_2		RIN: 3.70	
V_MALE_1		V RIN:6	
M_MALE_1		RIN: 6.20	
M_MALE_2		RIN: 5.80	
V_MALE_2		RIN: 5.90	
GUT_1		RIN: 4.40	

Reagent Kit Lot #

Chip Lot #

Chip Comments :

Electrophoresis Assay Details

General Analysis Settings	Integrator Settings	Ladder	
Number of Available Sample and Ladder Wells (Max Minimum Visible Range [s] : 17	x.) : 13 Integration Start Time [s] : 19 Integration End Time [s] : 69	Ladder Peak	Size
Maximum Visible Range [s] : 70	Slope Threshold : 0.6	1	25
Start Analysis Time Range [s] : 19	Height Threshold [FU] : 0.5	2	200
End Analysis Time Range [s] : 69	Area Threshold : 0.2	3	500
Ladder Concentration [ng/µl] : 150	Width Threshold [s] : 0.5	4	1000
Lower Marker Concentration [ng/µl] : 0	Baseline Plateau [s] : 6	5	2000
Upper Marker Concentration [ng/µl] : 0		6	4000
Used Lower Marker for Quantitation	Filter Settings		
Standard Curve Fit is Logarithmic	Filter Width [s] : 0.5		
Show Data Aligned to Lower Marker	Polynomial Order : 4		

385

18

3,97E-08

6.2 The results from the RNAseq analysis of the testes tissue (Table 6.1)

N	gene_id	logFC	V_TESTES	M_Testes	PValue
1	c15699_g1	8,750	0	54	2,97E-07
2	c58283_g1	8,639	0	50	5,43E-07
3	c11986_g1	8,422	0	43	1,72E-06
4	c38051_g1	8,354	0	41	2,45E-06
5	c52158_g4	8,318	0	40	2,94E-06
6	c97454_g1	8,167	0	36	6,32E-06
7	c57629_g2	8,041	0	33	1,17E-05
8	c128061_g1	7,856	0	29	2,82E-05
9	c52274_g1	7,699	0	26	5,79E-05
10	c123143_g1	7,699	0	26	5,79E-05
11	c44387_g1	7,629	1	225	1,15E-11
12	c37552_g1	7,480	1	203	3,00E-11
13	c56753_g2	7,323	0	20	0,00029
14	c14215_g1	7,323	0	20	0,00029
15	c13478_g1	7,172	0	18	0,00053
16	 c38273_g1	7,057	2	286	6,97E-12
17	 c32508_g1	6,903	1	136	1,17E-09
18	 c47470_g1	6,849	1	131	1,64E-09
19	 c24782_g1	6,776	6	679	1,89E-13
20	 c50402_g1	6,698	1	118	4,15E-09
21	 c36907_g1	6,597	2	208	1,32E-10
22	 c45607_g1	6,544	1	106	1,06E-08
23	 c84195_g1	6,544	1	106	1,06E-08
24	 c44747_g1	6,323	3	253	8,63E-11
25	 c51337_g1	6,308	1	90	4,37E-08
26	 c97069_g1	6,191	1	83	7,86E-08
27	 c39724_g1	<i>6</i> ,104	35	2445	2,16E-13
28	c35561_g1	5,839	1	65	5,79E-07
29	c25108 g1	5,745	21	1146	5,13E-12
30	c122821_g1	5,650	1	57	1,63E-06
31	c34116 g1	5,603	16	793	2,24E-11
32	c123047_g1	5,599	10	55	2,14E-06
33	c34524_g1	5,584	2	103	6,99E-08
33 34			2	95	
34 35	c42518_g1 c122834 g1	5,468 5,395	2	899	1,39E-07 5,12E-11
36	c15819_g1	5,348	79	3261	1,64E-11
30 37	c55481_g1	5,202	2	79	5,82E-07
	c72383_g1	5,202	3	109	
38 30					1,60E-07
39 40	c58415_g1	5,094	5	177	1,98E-08
40	c34152_g1	5,070	5	174	2,30E-08
41	c15924_g1	4,989	1	36	4,69E-05
42	c48988_g3	4,926	7	219	1,63E-08
43	c54167_g1	4,811	4	117	2,66E-07
44	c39853_g1	4,709	66	1750	1,18E-09
45	c33022_g1	4,682	5	133	2,37E-07
46	c52085_g2	4,661	5	131	2,69E-07
47	c48380_g1	4,589	6	149	2,13E-07
48	c49725_g1	4,572	2	51	1,71E-05
49	c123043_g1	4,477	416	9376	3,08E-09
50	c48988_g1	4,468	11	249	7,14E-08

51	C55436_g1	4,392	18	385	3,97E-08
52	c96078_g1	4,360	2	44	4,92E-05
53	c53162_g1	4,327	2	43	5,78E-05
54	c13906_g1	4,258	30	583	4,19E-08
55	c97206_g1	4,247	31	598	4,29E-08
56	c84109_g1	4,201	3	58	2,20E-05
57	c49026_g1	4,140	13	234	3,46E-07
58	c22765_g1	4,110	2	37	0,0002
59	c33506_g1	4,091	4	71	1,35E-05
60	c45977_g1	4,086	11	191	7,01E-07
61	c42936_g2	3,983	253	4049	7,56E-08
62	c123354_g1	3,946	2	33	0,0003
63	c36293_g1	3,945	14	220	9,32E-07
64	c48988_g2	3,911	15	230	9,93E-07
65	c112992_g1	3,740	22	299	1,44E-06
66	c55736_g1	3,724	4	55	8,71E-05
67	 c109541_g1	3,698	81	1065	5,64E-07
68	c50185_g1	3,694	5	67	5,01E-05
69	c31533_g1	3,694	16	211	3,07E-06
70	c21199_g1	3,606	8	100	2,30E-05
71	 c43247_g1	3,559	5	61	9,81E-05
72	c32887_g1	3,528	4	48	0,0002
73	c46266_g1	3,502	51	586	2,34E-06
74	c110791_g1	3,497	4	47	0,0003
75	c49500_g1	3,482	9	103	3,33E-05
76	c39986_g1	3,468	129	1446	1,94E-06
77	c48959_g1	3,369	4	43	0,0005
78	c55551_g1	3,318	10	102	6,17E-05
79	c44647_g1	3,240	7	68	0,0002
80	c111644_g1	3,217	17	161	3,86E-05
81	c44955_g1	3,189	31	287	2,12E-05
82 82	c27147_g1	3,171	27	247 790	2,65E-05
83	c49730_g1	3,164	87		1,32E-05
84 85	c54159_g1	3,153	9	82	0,0002
85 86	c41732_g1	3,144	174	1557	1,14E-05
86 87	c48496_g1	3,130	14	125	8,41E-05
87	c43362_g1	3,127	6	54	0,0005
88	c56485_g2	3,100	6	53	0,0005
89 00	c55628_g1	3,095	283	2448	1,39E-05
90	c26491_g1	3,062	67	567	2,38E-05
91 02	c42352_g1	3,043	12	101	0,0002
92	c59379_g1	3,043	12	101	0,0002
93	c52144_g1	3,024	35	289	4,60E-05
94	c57220_g4	2,965	28	222	7,64E-05
95	c51861_g2	2,956	33	260	6,98E-05
96	c41816_g1	2,924	15	116	0,0002
97	c84264_g1	2,885	11	83	0,0004
98	c34087_g1	2,852	17	125	0,0003
99	c13969_g1	2,791	70	491	9,98E-05
100	c39639_g1	2,757	36	247	0,0002

101	c26571_g1	2,734	25	169	0,0003
102	c29083_g1	2,688	360	2348	0,0001
103	c52914_g1	2,646	40	254	0,0003
104	c58240_g1	2,589	38	232	0,0004
105	c122942_g1	2,575	227	1369	0,0002
106	c19100_g1	2,474	160	900	0,0004
107	c122679_g1	2,415	221	1193	0,0005
108	c50538_g1	-2,387	2787	539	0,0005
109	c55344_g2	-2,417	935	177	0,0005
110	c57765_g3	-2,436	2696	504	0,0004
111	c47407_g1	-2,445	2083	387	0,0004
112	c56265_g1	-2,457	1753	323	0,0004
113	c43732_g1	-2,457	641	118	0,0005
114	c51276_g1	-2,479	954	173	0,0004
115	c46996_g1	-2,501	549	98	0,0004
116	c55344_g1	-2,520	1520	268	0,0003
117	c56371_g1	-2,526	251	44	0,0005
118	c44092_g1	-2,553	627	108	0,0003
119	c57759_g4	-2,554	1504	259	0,0002
120	c55206_g1		519	89	0,0003
121	c57355_g1		779	132	0,0002
122			603	101	0,0002
123			1075	180	0,0002
124			152	25	0,0005
125			981	161	0,0002
126			2900	476	0,0002
127	c47427_g1		154	25	0,0005
128			388	63	0,0003
129			253	41	0,0003
130			186	30	0,0004
131	c58068 g1		2191	353	0,0001
132			150	24	0,0005
133	c49218 g1	-2,655	231	37	0,0003
134		-2,656	468	75	0,0002
135	c55193_g1	-2,661	207	33	0,0003
136	c43987_g1	-2,667	145	23	0,0005
137	c53267_g1	-2,670	246	39	0,0003
138	c52375_g1	-2,673	1702	270	0,0001
139	c48857_g2	-2,673	650	103	0,0002
140	c56986 g1	-2,686	236	37	0,0003
140	c53096 g1	-2,696	236	43	0,0002
141		-2,699	129	20	0,0002
	c84182_g1				-
143	c57475_g1	-2,699	1156	180	0,0001
144	c49934_g1	-2,716	228	35	0,0002
145	c52618_g1	-2,721	294	45	0,0002
146	c56982_g1	-2,730	617	94	0,0001
147	c58058_g1	-2,730	1463	223	0,0001
148	c53383_g1	-2,733	395	60	0,0002
149	c30480_g1	-2,740	146	22	0,0003
150	c26571_g2	-3,940	546,4209	-125,508	0,0002

151	c50698_g3	-2,746	299	45	0,0002
152	c57476_g1	-2,758	101	15	0,0005
153	c57488_g2	-2,764	880	131	9,55E-05
154	c41118_g1	-2,764	276	41	0,0002
155	c46296_g1	-2,770	149	22	0,0003
156	c55370_g2	-2,771	574	85	0,0001
157	c58044_g1	-2,778	8328	1228	6,96E-05
158	c54470_g1	-2,786	2339	343	7,27E-05
159	c55938_g1	-2,792	822	120	8,37E-05
160	c97629_g1	-2,794	227	33	0,0002
161	c52929_g2	-2,797	516	75	0,0001
162	c52011_g1	-2,809	167	24	0,0002
163	c40049_g1	-2,831	268	38	0,0001
164	c47671_g1	-2,840	291	41	0,0001
165	c57095_g3	-2,842	1000	141	6,20E-05
166	c33415_g1	-2,844	164	23	0,0002
167	c49275_g1	-2,859	180	25	0,0002
168	c46960_g1	-2,860	948	132	5,69E-05
169	c49571_g1	-2,872	869	120	5,48E-05
170	c40254_g1	-2,884	1022	140	4,97E-05
171	c29046_g1	-2,885	1198	164	4,80E-05
172	c57465_g1	-2,887	688	94	5,38E-05
173	c52535_g1	-2,891	2442	333	4,16E-05
174	 c85185_g1	-2,900	3779	512	3,80E-05
175	 c50803_g1	-2,904	2331	315	3,88E-05
176	 c55911_g2	-2,904	97	13	0,0003
177	 c23092_g1	-2,943	434	57	5,39E-05
178	c74646_g1	-2,963	101	13	0,0002
179	 c46348_g1	-2,978	507	65	4,19E-05
180	 c57289_g3	-2,996	127	16	0,0001
181	 c40895_g1	-2,996	127	16	0,0001
182	 c54701_g1	-2,997	482	61	,91E-05
183	c51200_g1	-2,997	277	35	5,71E-05
184	 c48389_g2	-3,012	6602	828	2,00E-05
185	c56712_g2	-3,018	305	38	4,80E-05
186	c50003_g1	-3,018	113	14	0,0002
187	c41212 g1	-3,019	73	9	0,0004
188	c27294 g1	-3,040	1440	177	2,03E-05
189	c57161_g1	-3,041	839	103	2,26E-05
190	c53386_g2	-3,074	367	44	3,20E-05
191	c62696_g1	-3,077	101	12	0,0001
191	c55202_g1	-3,081	327	39	3,36E-05
192	c51547_g1	-3,081	496	59	2,46E-05
194	c57780_g1	-3,106	69	8	0,0003
194	c55013_g1	-3,100	241	28	3,83E-05
195				7	0,0004
	c56822_g1	-3,118	61		
197	c42551_g1	-3,129	3640	421	1,10E-05
198	c57275_g2	-3,141	245	28	3,37E-05
199	c48497_g1	-3,155	617	70	1,53E-05
200	c10274_g1	-3,155	133	15	7,01E-05

201	c52211_g3	-3,157	583	66	1,57E-05	25:	l c52329_g1	-3,561	83	7	4,53E-05
202	c54336_g3	-3,160	107	12	9,91E-05	252	2 c48371_g1	-3,564	165	14	8,97E-06
203	c54965_g1	-3,164	249	28	2,97E-05	253	3 c48474_g1	-3,573	119	10	1,68E-05
204	c64784_g1	-3,187	55	6	0,0004	254	4 c37881_g1	-3,578	320	27	3,05E-06
205	c52365_g1	-3,187	136	15	5,94E-05	25	5 c27193_g1	-3,578	84	7	4,15E-05
206	c122852_g1	-3,187	226	25	2,97E-05	25	5 c46734_g1	-3,587	37	3	0,0005
207	c34646_g1	-3,195	182	20	3,75E-05	25	7 c48397_g1	-3,591	49	4	0,0002
208	c39315_g1	-3,200	219	24	2,90E-05	258	3 c44557_g1	-3,594	1159	97	9,80E-07
209	c10933_g1	-3,203	92	10	0,0001	259	e57187_g5	-3,603	758	63	1,26E-06
210	c39172_g1	-3,216	1232	134	8,00E-06	260) c40503_g1	-3,608	146	12	9,48E-06
211	c57699_g1	-3,221	84	9	0,0001	26:	L c57459_g1	-3,609	122	10	1,38E-05
212	c97168_g1	-3,229	279	30	1,90E-05	26	2 c57429_g1	-3,626	160	13	7,35E-06
213	c41861_g1	-3,233	94	10	9,67E-05	263	3 c48199_g1	-3,643	594	48	1,20E-06
214	c40163_g1	-3,238	57	6	0,0003	264	t c48656_g1	-3,644	162	13	6,66E-06
215	c52020_g1	-3,243	104	11	7,65E-05	26	5 c55380_g1	-3,648	51	4	0,0001
216	 c53271_g1	-3,257	9694	1026	4,90E-06	26		-3,648	51	4	0,0001
217	 c45672_g1	-3,257	105	11	7,13E-05	26		-3,654	188	15	4,83E-06
218	c28791_g1	-3,263	58	6	0,0003	268		-3,654	188	15	4,83E-06
219	c54949_g3	-3,264	134	14	4,46E-05	269		-3,661	939	75	8,06E-07
220	c54630_g1	-3,289	146	15	3,49E-05	270		-3,661	189	15	4,63E-06
221	c37731_g1	-3,292	921	95	5,71E-06	27:		-3,699	40	3	0,0003
222	c57149_g1	-3,297	516	53	8,14E-06	272		-3,699	40	3	0,0003
223	c42373_g1	-3,321	90	9	7,76E-05	273		-3,708	79	6	3,24E-05
224	c52287_g1	-3,323	100	10	6,17E-05	27		-3,721	197	15	3,31E-06
225	c47613_g1	-3,324	387	39	8,90E-06	27		-3,732	645	49	6,94E-07
226	c52991_g1	-3,327	1806	182	4,00E-06	27		-3,734	396	30	1,10E-06
220	c56631_g1	-3,345	1136	113	3,99E-06	27		-3,734	41	3	0,0002
228	c44673_g1	-3,349	263	26	1,14E-05	27		-3,749	2526	190	3,29E-07
229	c48961_g1	-3,349	122	12	3,77E-05	275		-3,759	122	9	
230	c44690_g1	-3,351	102	12	5,34E-05	27		-3,759	1057	78	7,85E-06
230	c40912_g1	-3,361	102	10	3,54E-05						4,02E-07
231			42	4		28:		-3,783	56	4	7,67E-05
232	c52088_g1 c51738_g2	-3,369	2594	252	0,0005 2,81E-06	282		-3,787	288	21	1,27E-06
						283		-3,792	207	15	2,21E-06
234	c57460_g1	-3,385	889	86	3,47E-06	284		-3,803	43	3	0,0002
235	c45148_g1	-3,389	84	8	7,81E-05	28			393	28	7,12E-07
236		-3,396	230	22	1,12E-05	280		-3,833	58	4	5,98E-05
237	c19115_g1	-3,396	74	7	0,0001	28		-3,837	2953	209	1,91E-07
238	c50248_g1	-3,405	64	6	0,0001	288		-3,862	246	17	1,19E-06
239	c49755_g1	-3,407	1448	138	2,65E-06	289		-3,866	117	8	5,88E-06
240	c47531_g1	-3,412	138	13	2,33E-05	290		-3,869	45	3	0,0001
241	c46178_g1	-3,417	54	5	0,0002	29:		-3,871	638	44	3,30E-07
242	c40189_g1		160	15	1,73E-05	292		-3,875	1075	74	2,26E-07
243	c53900_g1	-3,434	76	7	8,62E-05	293			150	10	2,70E-06
244	c44081_g1	-3,436	44	4	0,0004	294		-3,911	418	28	4,21E-07
245	c57523_g2	-3,440	205	19	1,08E-05	29	5 c51614_g1	-3,931	47	3	9,86E-05
246	c57335_g3	-3,443	227	21	9,15E-06	29	5 c53737_g1	-3,964	264	17	6,35E-07
247	c57768_g1	-3,448	2407	223	1,92E-06	29	7 c44883_g1	-3,979	33	2	0,0003
248	c33133_g1	-3,468	756	69	2,63E-06	298	3 c22879_g1	-3,979	33	2	0,0003
249	c56821_g1	-3,469	1938	177	1,77E-06	299	e46130_g1	-3,997	65	4	2,61E-05
250	c56302_g1	-3,493	235	21	6,94E-06	300) c84227_g1	-4,003	192	12	1,04E-06

6,66E-06

5,95E-06 7,18E-08

3,63E-09 0,0004

0,0004

1,13E-07

2,69E-07

1,98E-05

9,87E-07

1,48E-05 1,48E-05

1,06E-07 1,70E-07

6,35E-08

0,0002

0,0002

1,29E-05

0,0002

4,17E-08

1,26E-08

1,73E-07 1,73E-07

0,0002 0,0002

6,98E-10

6,56E-06 0,0001

0,0001

5,58E-08 8,44E-05

1,63E-07 6,91E-05

3,89E-05

5,85E-10 3,23E-05

3,23E-05

5,84E-10

5,06E-08 1,89E-05

1,14E-05 9,66E-06

9,66E-06

4,94E-10

7,02E-06 7,02E-06

1,69E-10

2,09E-08

5,15E-06

3 3

10 70

1

1

8

6

2

4 2

2 7

6

8 1

1

2

1

1 8

12

5

5 1

1

92 2

> 1 1

> 6

1 4

1 1

19

1

17

4

1 1

1

1 9

1

1

12

3 1

301	c55216_g1	-4,014	449	28	2,23E-07	[351	c57630_g3	-4,463	68
302	c29685_g1	-4,019	66	4	2,33E-05		352	c39905_g1	-4,484	69
303	c57856_g2	-4,020	50	3	6,41E-05		353	c55854_g1	-4,530	231
304	c40300_g1	-4,022	34	2	0,0003		354	c58085_g1	-4,544	1617
305	c43713_g1	-4,022	34	2	0,0003		355	c54804_g1	-4,553	26
306	c56612_g1	-4,022	34	2	0,0003		356	c57630_g5	-4,553	26
307	c52848_g1	-4,033	196	12	8,73E-07		357	c25218_g1	-4,558	189
308	c51509_g2	-4,041	67	4	2,08E-05		358	c52207_g1	-4,563	143
309	c52465_g2	-4,043	116	7	3,20E-06		359	c55977_g2	-4,576	50
310	c55977_g3	-4,053	166	10	1,18E-06		360	c47541_g1	-4,589	98
311	c32079_g1	-4,054	560	34	1,42E-07		361	c79516_g1	-4,633	52
312	c28809_g1	-4,056	117	7	2,99E-06		362	c55430_g1	-4,633	52
313	c34934_g1	-4,063	35	2	0,0002		363	c57146_g2	-4,636	175
314	c58025_g1	-4,076	152	9	1,35E-06		364	c54930_g1	-4,642	151
315	c44543_g1	-4,083	203	12	6,51E-07		365	c23816_g1	-4,654	202
316	c51015_g1	-4,088	86	5	7,66E-06		366	c22300_g1	-4,660	28
317	c54053_g2	-4,092	238	14	4,45E-07		367	c53649_g1	-4,660	28
318	c51721_g1	-4,104	36	2	0,0002		368	c39523_g1	-4,660	53
319	c51754_g1	-4,104	53	3	4,23E-05		369	c49786_g1	-4,710	29
320	c56210_g2	-4,104	53	3	4,23E-05		370	c51664_g1	-4,710	29
321	c45019_g1	-4,104	53	3	4,23E-05		371	c57146_g1	-4,723	212
322	c56234_g1	-4,107	513	30	1,18E-07		372	c46693_g1	-4,735	319
323	c57830_g1	-4,124	226	13	4,32E-07		373	c51676_g1	-4,748	136
324	c57952_g1	-4,128	1125	65	5,19E-08		374	c56696_g1	-4,748	136
325	c28857_g1	-4,143	264	15	2,79E-07		375	c43721_g2	-4,759	30
326	c51224_g1	-4,143	526	30	9,46E-08		376	c41006_g1	-4,759	30
327	c52025_g1	-4,153	90	5	4,93E-06		377	c52071_g1	-4,764	2473
328	c56528_g1	-4,155	407	23	1,27E-07		378	c57080_g3	-4,790	58
329	c52729_g1	-4,182	38	2	0,0001		379	c46897_g1	-4,806	31
330	c53747_g1	-4,183	56	3	2,84E-05		380	c36988_g1	-4,806	31
331	c56928_g1	-4,183	56	3	2,84E-05		381	c55953_g1	-4,829	172
332	c71597_g1	-4,185	92	5	4,15E-06		382	c52350_g1	-4,896	33
333	c46777_g1	-4,209	57	3	2,50E-05		383	c56933_g1	-4,905	122
334	c52966_g1	-4,274	117	6	1,41E-06		384	c50418_g1	-4,939	34
335	c53631_g1	-4,279	175	9	4,18E-07		385	c16849_g1	-5,060	37
336	c20346_g1	-4,283	60	3	1,71E-05		386	c56745_g4	-5,064	632
337	c42212_g1	-4,296	177	9	3,80E-07		387	c41322_g1	-5,099	38
338	c54800_g1	-4,308	159	8	4,88E-07		388	c36354_g1	-5,099	38
339	c53638_g1	-4,314	81	4	4,90E-06		389	c44172_g1	-5,099	580
340	c42132_g1	-4,316	278	14	1,14E-07		390	c49931_g1	-5,103	140
341	c51579_g1	-4,328	578	29	3,19E-08		391	c53943_g1	-5,208	41
342	c109590_g1	-4,359	43	2	5,78E-05		392	c51110_g1	-5,310	44
343	c44734_g1	-4,370	309	15	7,17E-08		393	c27665_g1	-5,342	45
344	c56412_g1	-4,375	474	23	3,27E-08		394	c22339_g1	-5,342	45
345	c56056_g6	-4,378	2406	117	7,58E-09		395	c57729_g1	-5,374	374
346	c33376_g1	-4,398	65	3	9,39E-06		396	c36680_g1	-5,404	47
347	c36801_g1	-4,406	212	10	1,51E-07		397	c52158_g5	-5,404	47
348	c44337_g1	-4,425	45	2	4,20E-05		398	c58077_g1	-5,414	511
349	c57307_g1	-4,429	407	19	3,24E-08		399	c54336_g2	-5,462	136
350	c54748_g1	-4,431	237	11	1,02E-07		400	c53791_g1	-5,464	49

401	c57138_g1	-5,483	138	3	1,84E-08
402	c51609_g1	-5,543	236	5	1,38E-09
403	c122664_g1	-5,614	248	5	8,82E-10
404	c97540_g1	-5,732	59	1	1,24E-06
405	c35555_g1	-5,751	1039271	19529	6,46E-13
406	c49566_g1	-5,752	965	18	7,32E-12
407	c96830_g1	-6,182	568535	7923	3,55E-14
408	c53744_g1	-6,603	108	1	7,70E-09
409	c55702_g3	-6,837	240	2	3,23E-11
410	c56529_g2	-7,095	152	1	3,80E-10
411	c56969_g1	-7,188	18	0	0,0005
412	c50940_g1	-7,188	18	0	0,0005
413	c39646_g1	-7,266	19	0	0,0004
414	c54754_g1	-7,266	19	0	0,0004
415	c37426_g1	-7,266	19	0	0,0004
416	c50234_g1	-7,266	19	0	0,0004
417		-7,266	19	0	0,0004
417	c127908_g1		20	0	0,0004
418	c57032_g1	-7,409	20	0	0,0003
419	c45809_g1	-7,409	21	0	0,0002
				0	
421	c87715_g1	-7,409	21		0,0002
422	c25757_g1	-7,476	22	0	0,0002
423	c36221_g1	-7,476	22	0	0,0002
424	c56239_g1	-7,476	22	0	0,0002
425	c43357_g1	-7,476	22	0	0,0002
426	c23167_g1	-7,540	23	0	0,0001
427	c30197_g1	-7,540	23	0	0,0001
428	c54896_g1	-7,601	24	0	9,64E-05
429	c58091_g1	-7,770	27	0	4,53E-05
430	c14610_g1	-7,770	27	0	4,53E-05
431	c61895_g1	-7,822	28	0	3,57E-05
432	c129997_g1	-7,822	28	0	3,57E-05
433	c11533_g1	-7,822	28	0	3,57E-05
434	c44875_g1	-7,873	29	0	2,82E-05
435	c47892_g7	-7,873	29	0	2,82E-05
436	c26015_g1	-7,921	30	0	2,25E-05
437	c46922_g1	-7,921	30	0	2,25E-05
438	c15769_g1	-7,921	30	0	2,25E-05
439	c48096_g1	-8,143	35	0	7,72E-06
440	c47807_g1	-8,183	36	0	6,32E-06
441	c32888_g1	-8,223	37	0	5,19E-06
442	c55216_g2	-8,261	38	0	4,28E-06
443	c43606_g1	-8,405	42	0	2,05E-06
444	c53237_g1	-8,472	44	0	1,45E-06
_	c37751_g1	-8,793	55	0	2,57E-07
445		-8,870	58	0	1,68E-07
445 446	c39173_g1	0,070			-
	c39173_g1 c56973_g2	-8,918	60	0	1,28E-07
446			60 62	0	1,28E-07 9,84E-08
446 447	c56973_g2	-8,918			
446 447 448	c56973_g2 c61964_g1	-8,918 -8,966	62	0	9,84E-08

6.3 The results from the RNAseq analysis of the male accessory gland with ejaculatory bulb tissue (Table 6.2)

Ν	gene_id	logFC	M_MALE_1	M_MALE_2	V_MALE_1	PValue	60	c57747_g1	-10,353	314,62	131	0	5,07E-09
1	c31616_g1	-13,051	916,98	1499	0	1,03E-16	61	c56234_g1	-10,352	378	93,97	0	5,24E-09
2	c52655_g1	-12,304	111	1144	0	1,58E-14	62	c53020_g1	-10,341	196	198	0	5,41E-09
3	c51710_g1	-12,110	1264,95	329,99	0	5,89E-14	63	c56726_g1	-10,275	183,99	190,97	0,35	8,33E-09
4	c47341_g2	-11,860	1021,93	301	0	3,11E-13	64	c57660_g1	-10,269	368	82	0	8,62E-09
5	c47596_g1	-11,831	964,99	316	0	3,79E-13	65	c50703_g1	-10,253	301	118	0	9,55E-09
6	c52892_g1	-11,801	1389	54	0	4,63E-13	66	c50574_g1	-10,229	286	122	0	1,10E-08
7	c57023_g2	-11,708	664	418,42	0	8,58E-13	67	c54908_g1	-10,222	321	100	0	1,13E-08
8	c23397_g1		625	439,98	0	8,58E-13	68	c55183_g1	-10,211	302	109	0	1,22E-08
9	c47442_g1	-11,700	687,96	399,98	0	8,94E-13	69	c55990_g1	-10,197	246	138,72	0	1,35E-08
10	c53574 g1	-11,667	623	419	0	1,11E-12	70	c56768_g6	-10,193	259,99	130	0	1,35E-08
11	c40374_g1	-11,645	668,89	381	0	1,30E-12	71	c46700_g1	-10,187	183	174,27	0	1,40E-08
12	c47533_g1	· ·	775	284,98	0	2.03E-12	72	c34700_g1	-10,171	313,87	94,1	0	1,56E-08
13	c55275_g2		587,16	245,93	0	1,68E-11	73	c56128_g2	-10,162	185	167,7	0	1,62E-08
14	c41928_g1	-11,230	453	314	0	1,94E-11	74	c54701_g1	-10,148	383	48,98	0	1,81E-08
15	c45555 g1	-11,191	25	545,7	0	2,43E-11	75	c47569_g1	-10,135	206,94	150	0	1,94E-08
							76	c55175_g1	-10,133	237	131,62	0	1,94E-08
16	c57217_g1	-11,185	578	223,99	0	2,62E-11	77	c52369 g1	-10,114	202,21	149	0	2,17E-08
17	c84745_g1		523,75	253	0	2,72E-11	78	c48551_g1	-10,098	231	149	0	2,43E-08
18	c57024_g2		687,93	148	0	3,24E-11	79	c71420_g1	-10,082	242,97	119	0	7,02E-09
19	c53204_g1	-11,101	432,95	276,3	0	4,53E-11	80	c53306_g2	-10,082	242,37	134,95	0	7,02E-09
20	c53812_g1	-11,098	578	191	0	4,63E-11	80	c51656 g1	-10,079	30	242	0	7,02E-09
21	c57131_g1	-11,024	567	171	0	7,44E-11	81	c37891_g1	-10,069	206	138,03	0	7,58E-09
22	c39257_g2	-11,006	334	299,98	0	8,27E-11							
23	c10660_g1	-10,976	477	207	0	1,00E-10	83	c55308_g1	-10,065	231	123	0	7,58E-09
24	c47311_g1	-10,965	366,88	266,85	0	1,07E-10	84	c54308_g1	-10,054	294	84,03	0	8,20E-09
25	c72530_g1	-10,960	321	291,9	0	1,12E-10	85	c46027_g1	-10,047	238,69	114,56	0	8,52E-09
26	c53055_g1	-10,948	478	197	0	1,22E-10	86	c53094_g7	-10,046	186,15	146	0	8,52E-09
27	c55859_g1	-10,922	365,31	254	0	1,43E-10	87	c56461_g1	-10,013	258	98	0	1,04E-08
28	c39648_g1	-10,914	346,68	261,99	0	1,50E-10	88	c47034_g1	-10,009	203,93	128,99	0	1,08E-08
29	c57875_g1	-10,907	338	264,94	0	1,57E-10	89	c56555_g3	-10,008	174,57	145,68	0	1,08E-08
30	c53746_g1	-10,849	377	223,97	0	2,27E-10	90	c56397_g3	-10,007	195	134	0	1,08E-08
31	c58086_g1	-10,834	551,96	118	0	2,50E-10	91	c57800_g1	-10,002	201,98	128,97	0	1,13E-08
32	c54574_g1	-10,788	245,57	282	0	3,34E-10	92	c10628_g1	-9,996	190	134,67	0	1,17E-08
33	c43349_g1	-10,772	434	168	0	3,69E-10	93	c36907_g1	-9,994	18	235,99	0	1,08E-08
34	c55965_g3	-10,762	379	197	0	3,97E-10	94	c49121_g2	-9,994	203	126,84	0	1,17E-08
35	c54053_g5	-10,746	418,95	168,98	0	4,39E-10	95	c55037_g1	-9,987	268,93	87	0	1,22E-08
36	c52465_g1	-10,683	358	187,03	0	6,46E-10	96	c43052_g1	-9,972	195	128	0	1,33E-08
37	c55810_g1	-10,667	334,99	195,87	0	7,18E-10	97	c51676_g1	-9,972	178	138	0	1,33E-08
38	c33324_g1	-10,650	322	198,87	0	7,99E-10	98	c46198_g1	-9,971	222	111,74	0	1,33E-08
39	c54844 g2	-10,645	354	178,89	0	8,21E-10	99	c23655_g1	-9,968	169,97	142	0	1,38E-08
40	c26099 g1		387,99	159	0	8,43E-10	100	c55935_g1	-9,959	205	119,71	0	1,44E-08
41	c58149_g1		274,98	221	0	9,14E-10	101	c47358_g2	-9,947	275,98	76	0	1,56E-08
42	c51872_g1		372	161,93	0	9,66E-10	102	c57740_g4	-9,936	207	115	0	1,70E-08
42	c30784_g2		242,96	229,74	0	1,14E-09	103	c84178_g1	-9,911	77,98	187	0	1,85E-08
43	c10274_g1		242,96	229,74	0	1,14E-09	104	c24730_g1	-9,895	265,32	74	0	2,20E-08
						1,31E-09	105	c49709_g1	-9,893	172,98	128,37	0	2,20E-08
45	c56997_g1		405	128	0		106	c54174_g1	-9,889	298,99	52,99	0	2,30E-08
46	c32538_g1		263	206	0	1,55E-09	107	c47367_g1	-9,888	81,83	181	0	2,20E-08
47	c54799_g1		245,81	212,95	0	1,69E-09	108	c36529_g1	-9,884	196,36	112,98	0	2,30E-08
48	c57176_g2		314	171,83	0	1,74E-09	109	c109723_g1	-9,883	233	91	0	2,30E-08
49	c43839_g1		236	216,93	0	1,74E-09	110	c39363_g1	-9,879	176	124	0	2,40E-08
50	c52007_g1		400	119,78	0	1,85E-09	111	c44810_g1	-9,871	201	108	0	2,50E-08
51	c57583_g1		252,94	204,54	0	1,85E-09	112	c48513_g1	-9,868	48	198	0	2,40E-08
52	c54018_g2		293,99	176,73	0	2,08E-09	113	c53513_g1	-9,864	245	81	0	2,62E-08
53	c54728_g1	-10,490	201	229	0	2,14E-09	114	c53176_g1	-9,845	134,86	142,99	0	2,86E-08
54	c49066_g1	-10,481	293	173	0	2,34E-09	114	c57054_g1	-9,842	207	100	0	2,99E-08
55	c45487_g1	-10,480	245	200,93	0	2,34E-09	115	c42361_g1	-9,838	260	68	0	2,99E-08
56	c47712_g1	-10,475	270	184,99	0	2,41E-09	110	c57559_g1	-9,822	168	119,79	0	3,27E-08
57	c52931_g1	-10,454	353,98	130,93	0	2,80E-09							
58	c49237_g1	-10,379	342	121	0	4,33E-09	118	c42395_g1	-9,819	211,04	93,99	0	3,42E-08
59	c34297_g1		329	126,93	0	4,61E-09	119	c56756_g1	-9,818	216	91	0	3,42E-08
							120	c36028_g1	-9,817	116	150	0	3,27E-0

								1					
121	c43148_g1	-9,812	156,99	125	0	3,42E-08	181	c25284_g1	-9,519	140	95,41	0	1,91E-07
122	c47769_g1	-9,812	265	61	0	3,58E-08	182	c57571_g4	-9,517	168	77,95	0	2,01E-07
123	c56109_g1	-9,807	212,65	91	0	3,58E-08	183	c51418_g1	-9,511	192	63	0	2,12E-07
124	c57289_g3	-9,800	181	108,94	0	3,74E-08	184	c49047_g1	-9,510	184,98	66,88	0	2,12E-07
125	c55614_g1	-9,798	128	140	0	3,74E-08	185	c24597_g1	-9,509	111	110,99	0	2,01E-07
126	c23039_g1	-9,794	158,95	121	0	3,92E-08	186	c57828_g1	-9,508	178	71	0	2,12E-07
127	c58429_g1	-9,785	150	124,96	0	4,10E-08	187	c55077_g1	-9,507	156	84	0	2,12E-07
128	c55049_g1	-9,784	159,99	118,98	0	4,10E-08	188	c49465_g1	-9,500	141	92	0	2,12E-07
129	c54905_g1	-9,781	220	82,9	0	4,30E-08	189	c10586_g1	-9,492	74	131	0	2,24E-07
130	c56979_g1	-9,770	197	94,76	0	4,50E-08	190	c52312_g1	-9,488	199	56	0	2,37E-07
131	c46230_g1	-9,766	186	101	0	4,71E-08	191	c57338_g3	-9,487	162	78,32	0	2,37E-07
132	c57287_g3	-9,756	223,94	77	0	4,94E-08	192	c54951_g2	-9,482	176	69	0	2,50E-07
133	c57544_g1	-9,751	156,99	116	0	4,94E-08	193	c54954_g1	-9,478	207	50	0	2,50E-07
134	c54779_g3	-9,751	211	84	0	5,18E-08	194	c56282_g1	-9,475	150,93	83	0	2,50E-07
135	c50340_g1	-9,746	191	94,94	0	5,18E-08	195	c52101_g1	-9,470	182	64	0	2,65E-07
136	c54327_g1	-9,745	174	104,99	0	5,18E-08	196	c34968_g1	-9,468	148	84	0	2,65E-07
137	c49506_g1	-9,743	204,28	87	0	5,43E-08	197	c56584_g5	-9,451	133	91	0	2,80E-07
138	c55988_g1	-9,737	198,83	89,03	0	5,43E-08	198	c55513_g3	-9,445	124,61	95	0	2,96E-07
138	c43974_g1	-9,735	158	112,98	0	5,43E-08	198				80	0	
			102		0			c54036_g1	-9,444	150		0	2,96E-07
140	c122920_g1	-9,733		145,82		5,43E-08	200	c32455_g1	-9,441	161	72,99		3,13E-07
141	c53769_g1	-9,722	187	94	0	5,97E-08	201	c46987_g1	-9,439	144	82,59	0	3,13E-07
142	c49458_g1	-9,715	219	74	0	6,26E-08	202	c45548_g1	-9,435	127,98	92	0	3,13E-07
143	c56560_g1	-9,710	174	100	0	6,57E-08	203	c39884_g1	-9,419	48	138	0	3,31E-07
144	c46120_g1	-9,709	157	110	0	6,57E-08	204	c54070_g1	-9,418	93	111,45	0	3,50E-07
145	c51692_g1	-9,709	199	85	0	6,57E-08	205	c51292_g1	-9,410	72,9	122	0	3,50E-07
146	c56087_g1	-9,703	132	123,98	0	6,57E-08	206	c57127_g1	-9,408	153	73,98	0	3,71E-07
147	c56786_g4	-9,700	256	50	0	6,89E-08	207	c49531_g1	-9,405	144	79	0	3,71E-07
148	c36776_g1	-9,699	195	86	0	6,89E-08	208	c39796_g1	-9,404	188,99	52	0	3,93E-07
149	c52416_g1	-9,696	191	88,24	0	6,89E-08	209	c44934_g1	-9,398	121	92	0	3,93E-07
150	c49617_g1	-9,691	210	76	0	7,23E-08	210	c52661_g1	-9,398	160,71	68	0	3,93E-07
151	c53862_g1	-9,688	135	120	0	7,23E-08	211	c53337_g1	-9,396	134	84	0	3,93E-07
152	c47841_g1	-9,679	137,94	116,97	0	7,60E-08	212	c55043_g1	-9,394	151,87	73	0	3,93E-07
153	c49752_g1	-9,674	247,76	51	0	7,98E-08	213	c54597_g1	-9,390	111,19	97	0	4,16E-07
154	c72383_g1	-9,669	6	194	0	7,23E-08	214	c45909_g1	-9,387	174	59	0	4,16E-07
155	c54746_g5	-9,668	271,97	36	0	8,38E-08	215	c10568_g1	-9,386	142	78	0	4,16E-07
156	c38329_g1	-9,662	178	91,36	0	8,38E-08	216	c52914_g1	-9,384	8	157,99	0	3,71E-07
157	c36507_g1	-9,659	162	100,11	0	8,81E-08	217	c58030_g1	-9,378	169	61	0	4,41E-07
158	c53032_g1	-9,653	132	117	0	8,81E-08	218	c56800_g1	-9,372	76	116	0	4,41E-07
159	c47521_g1	-9,647	60	158,95	0	8,81E-08	219	c34576_g1	-9,372	86	110	0	4,41E-07
160	c58154_g3	-9,640	215	66,43	0	9,73E-08	220	c50975_g1	-9,366	130	83	0	4,67E-07
161	c53847 g1	-9,626	227	56,99	0	1,08E-07	221	c53043_g1	-9,352	154	67	0	5,26E-07
162	c54326_g1	-9,598	150	99	0	1,25E-07	222	c55223_g1	-9,350	141,65	74	0	5,26E-07
163	c57202_g1	-9,595	210	62,51	0	1,25E-07	223	c51209_g1	-9,348	115	90	0	5,26E-07
164	c54309_g1	-9,592	122	114,98	0	1,25E-07	224	c58938_g1	-9,345	116,01	89	0	5,26E-07
165	c55372_g1	-9,591	125	113	0	1,25E-07	225	c48323_g1	-9,344	170,97	56	0	5,26E-07
		-9,590	214		0					170,97	50	0	
166	c56198_g1			59,94		1,32E-07	226	c45033_g1					5,58E-07
167	c57339_g1	-9,583	203,99 206,99	65	0	1,39E-07	227	c32761_g1	-9,337 -9,335	113	89,98	0	5,58E-07
168	c55488_g1	-9,581	,	63	0	1,39E-07	228	c41198_g1		131	79,18	0	5,58E-07
169	c29799_g1	-9,581	143	101	0	1,39E-07	229	c55117_g1	-9,333	144	71	0	5,58E-07
170	c37516_g1	-9,573	132,98	105,96	0	1,39E-07	230	c53527_g1	-9,333	148,52	68	0	5,58E-07
171	c54688_g2	-9,568	141,96	99,98	0	1,46E-07	231	c50085_g1	-9,332	102	95,82	0	5,58E-07
172	c50533_g1	-9,555	161	87	0	1,63E-07	232	c53840_g1	-9,328	123	83	0	5,92E-07
173	c56117_g3	-9,547	161	86	0	1,63E-07	233	c44418_g1	-9,324	134	75,96	0	5,92E-07
174	c27746_g1	-9,546	144	95,99	0	1,63E-07	234	c57220_g4	-9,323	17	146	0	5,58E-07
175	c71442_g1	-9,542	165	82,97	0	1,71E-07	235	c51512_g1	-9,321	140	72	0	5,92E-07
176	c32929_g1	-9,542	227	46	0	1,71E-07	236	c51138_g1	-9,317	171	53	0	6,29E-07
177	c57257_g1	-9,529	174	76,08	0	1,81E-07	237	c48978_g1	-9,309	153	63	0,45	6,68E-07
178	c52857_g1	-9,526	179,94	72,18	0	1,91E-07	238	c43752_g1	-9,306	129	77	0	6,68E-07
179	c71604_g1	-9,525	205	56,58	0	1,91E-07	239	c53370_g1	-9,304	172	51	0	6,68E-07
180	c55825_g1	-9,523	171,01	77,18	0	1,91E-07	240	c50866_g1	-9,304	91,98	99,43	0	6,68E-07

1,74E-06 1,74E-06 1,74E-06 1,62E-06 1,86E-06 1,99E-06 1,99E-06 1,99E-06 1,99E-06 2,12E-06 2,12E-06 2,12E-06 2,28E-06 2,28E-06 2,44E-06 2,44E-06 2,44E-06 2,44E-06 2,61E-06 2,61E-06 2,61E-06 2,61E-06 2,80E-06 2,80E-06 2,80E-06 2,61E-06 2,80E-06 3,00E-06 3,00E-06 3,00E-06 3,00E-06 3,22E-06 3,22E-06 3,46E-06 3,46E-06 3,46E-06 3,46E-06 3,46E-06 3,72E-06 3,72E-06 3,72E-06 3,72E-06 3,72E-06 4,00E-06 4,00E-06 3,72E-06 3,72E-06 4,00E-06 4,00E-06 4,30E-06 4,30E-06 4,30E-06 4,30E-06 4,30E-06 4,30E-06 4,30E-06 4,63E-06 4,63E-06 4,98E-06 4,98E-06

12.14 4889 4 4.226 139 58 0 7.06 7.06 7.01 7.338 1 7.12 8 0 0.00 6.566 7.06 7.01													
124 64493_g2 9.28 112 66 0 7.06 (7) 244 6449_g2 9.28 112 76 0 7.16 (7) 246 67422_g2 9.28 112 76.44 0 7.55 (7) 9.118 5 133 0 246 67422_g2 9.28 100 92 0.755 (7) 3.118 111 0 3.05 (7472_g1, 1) 9.05 1.11 0 5.56 (7) 1.01 4.118 0.14 7.9 0 260 67701_g1 9.275 1.32 7.1 0.46 0.556 (7) 1.11 0 5.56 (7) 1.11 0.66 0 0.12 6.7765_g1 9.203 1.12 0.20 1.00 1.00 1.11 1.11 1.11 0.206 1.14 0 0 0 0.00 0.00 0.00 0.00 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11	241	c48591_g1	-9,296	159	58	0	7,10E-07	301	c53384_g1	-9,122	80	88	0
124 6400 1 227 17.4 76.4 0 7.057.7 126 62702.2 2.205 1.21 76.44 0 7.556.07 305 62400.21 -9.118 5 1.30 0 127 6538.2 1.315 1.558.7 7.03 0.7 7.566.07 307 62439.2 -9.118 7.10 0.7 7.566.07 307 62439.2 -9.118 7.0 0.7 7.566.07 307 62439.2 -9.118 7.0 0.7 7.667.01 1.00 7.556.07 306 6575.6.1 -9.00 1.00 7.00 0.00 7.00 1.00 6.00 0.00 7.00 1.00 6.00 0.00 7.00 1.00 7.00 1.00 7.00 1.00 7.00 1.00 7.00 1.00 7.00 1.00 7.00 1.00 7.00 1.00 7.00 1.00 7.00 1.00 7.00 1.00 7.00 1.00 7.00 1.00 1.00	242	c46050_g1	-9,296	89	100	0	6,68E-07	302	c50336_g1	-9,121	55	103	0
126 C2733 g1 2.9 (2.8) 100 92 0 7.554 c7 326 C4703 g1 9.28 100 92 0 7.554 c7 328 64703 g1 9.275 65.55 111 0 7.554 c7 328 64703 g1 9.275 65.55 111 0 7.554 c7 328 64703 g1 9.275 65.55 111 0 5.556 c7 328 64703 g1 9.242 138 61 0 5.556 c7 328 64704 g1 9.242 148 61 0 5.556 c7 323 67745 g1 9.242 148 61 0 5.556 c7 326 67426 g1 9.242 148 61 0 5.556 c7 326 67426 g1 9.242 148 61 0 5.556 c7 326 67426 g1 9.264 167 0 5.556 c7 313 65426 g1 9.071 d10 0.071 526 64208 g1 9.264 17 70 0 5.556 c7 313 6	243	c54493_g2	-9,294	112	86	0	7,10E-07	303	c54144_g1	-9,121	55	103	0
1246 47739.2 4.28 100 92 0 7.554 07 247 65348.g1 4.261 118 57.03 0 7.554 07 248 6673.8.g1 4.276 132 7.2 0.19 5.854 07 249 65394.g1 4.272 163.5 111 0 7.554 07 240 6573.g.1 4.227 163.5 110 0 5.854 07 251 64049.g.1 4.227 133 10 6.555 07 0 5.554 07 252 67048.g1 4.226 148 61 0 5.554 07 253 64054.g1 4.262 148 0 5.554 07 254 64054.g1 4.262 148 0 136 64471.g1 4.068 14.4 40 255 61363.g1 4.254 101 0 5.554 07 316 65362.g1 4.074 10.4 4.7 4.0 256 61363.6 1.254 1.0<	244	c54940_g1	-9,287	124	78	0	7,10E-07	304	c52447_g2	-9,118	5	133	0
1246 64338 g.3 6.14 159.99 39 0 248 64670 g.1 9.275 66.55 111 0 7.55 0 308 65394 g.1 9.175 0 0 250 67701 g.1 9.227 133 71 0 0.380 6733 g.1 9.10 9.478 0 250 67701 g.1 9.224 134 61.0 0 5.55 71 0 0.380 6733 g.1 9.10 0 9.226 600 0.0 253 67744 g.1 9.260 10 0 5.55 71 3.55 0 5.55 71 3.36 6142 g.1 9.00 10.0 9.01 3.36 6142 g.1 9.00 10.0 9.01	245	c27232_g1	-9,285	127	76,44	0	7,55E-07	305	c32480_g1	-9,118	101	75	0
288 65709_g1 9.276 132 72 0.19 8.084.07 289 65309_g1 4.275 6.655 111 0 7.554-07 280 65378_g1 4.275 133 71 0 0.06 0 251 64409_g1 -9.26 140 65.77 0 8.554-07 311 6336.1 100 17.02 19.06 10.4 0.01 256 67756_g1 -9.26 111 0.325 0 8.554-07 316 6348.1 0.08 13.4 0.00 13.6 6348.1 0.08 13.4 0.00 13.6 6348.1 0.00 13.6 6348.1 0.00 13.6 0.00 13.6 0.00 13.6 0.00 13.6 0.00 13.6 0.00 13.6 0.00 13.6 0.00 13.6 0.00 13.6 0.00 13.6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	246	c47829_g2	-9,283	100	92	0	7,55E-07	306	c49755_g1	-9,115	184,99	24	0
1286 65509.g1 9.275 132 7.2 0.19 5.01-67 300 5530-g1 9.105 944 7.9 0 240 55594.g1 9.275 6655 111 0 7.554.07 300 5573.5 g1 9.100 12.6 6409.g1 9.261 140 65.77 0 5.556.07 311 6384.3 g1 9.000 12.26 600 0.0 256 6409.g1 9.260 106 65.81 0 5.556.07 316 6548.g1 9.085 12.4 40.00 136 6748.g1 9.085 12.4 40.00 136 5.556.07 316 6548.g1 9.08 14.4 0 136 5556.07 316 6548.g1 9.08 14.5 40.00 136 5556.07 316 6548.g1 9.00 136 5556.07 316 6548.g1 9.00 136 558.07 316 558.07 136 558.07 136 558.07 136 558.07 136.05	247	c55348 g1	-9,281	158	57,03	0	7,55E-07	307	c54339 g3	-9,114	159,99	39	0
1298 63593 g1 9.726 65373 g1 9.105 9.4 7.8 0 250 65770 g1 9.272 133 7.1 0 0.876 7.9 1310 9.13 130 4406 g.1 9.105 131 0.336 2.4 9.105 131 0.336 2.4 9.105 131 0.336 2.4 9.060 0.0 253 67584 g.1 9.261 131 1.352.5 0.555 0.7 131 6.356 2.4 0.065 1.4 0.06 0.0 254 64052 g1 9.260 10.6 65.81 0 6.556 0.7 131 6.356 0.7 131 6.358 0.7 131 6.358 0.7 131 6.358 0.7 131 6.358 0.7 131 6.358 0.7 131 6.358 0.7 131 6.358 0.7 131 6.358 0.7 131 6.358 0.7 131 6.358 0.7 131 6.358 0.7 131 6.358 0.7 131 6.358 0.7 131 6.358 0.7 131 6.358 0.7 131 6.358 0.7 131 6.358 0.7	248		-9.276	132		0.19	8.03E-07	308		-9.105	104	71.99	0
250 67701_11 9.272 133 71 0 6.036-07 251 64409 g1 9.272 133 71 0 6.036-07 251 64409 g1 9.272 133 67761_g1 9.200 122,95 60 0 253 67745_g1 9.260 165 551-07 131 63764 g1 9.060 12,95 61 0 656 0 12,95 13 64408 g1 9.060 12,4 58 0 256 6153.6 g1 9.256 117 79 0 8.58-07 131 63767 g1 9.060 131 63767 g1 9.061 131 64767 g1 9.061 131 64787 g1 9.061											94		0
25164009.g19.26414065.970 $8.58.07$ 311 $(3.394.g1)$ -9.00 122.96 6.0025267784.g19.26116152.2506.58.07313 $(3.474.g1)$ -9.08 121.99 002546478.g19.256177906.55.07313 $(3.44.42,g1)$ -9.06 154 40025564280.g19.25692940 $6.558.07$ 316 $(5.561.g2)$ -9.07 130 157 0.071 130 157 0.071 130 135 $0.0751.g2$ -9.071 130 135 $0.0721.g1$ $0.071.g1$ 0.0741 6.77 $0.071.g1$ $0.0741.g1$ 6.77 $0.071.g1$ $0.0741.g1$ 6.77 $0.071.g1$ $0.0741.g1$ 6.77 $0.072.g1$ $0.062.g1$ $0.023.g1$													
253 $67745_{\pm1}$ -9.261 161 53.25 0 $8.554.07$ 313 $61441_{\pm1}$ -9.066 154 400254 $60564_{\pm1}$ -9.256 117 79 0 55.677 316 676.0 9166.47 316 675.122 9.070 130 57.0 257 $c49462_{\pm1}$ -9.256 92.9 94 0 $8.556.07$ 316 $c5362_{\pm1}$ -9.071 107.44 67 0258 $c54686_{\pm1}$ -9.248 79 1010 $9.066.07$ 316 $c5764_{\pm2}$ -9.071 130 53 0260 $c5230_{\pm1}$ -9.248 59 113 0 $6.566.07$ 320 $c7574_{\pm1}$ -9.66 14.15 46.24 0261 $c5230_{\pm1}$ -9.231 177 45 0 $9.666.07$ 322 $c5734_{\pm1}$ -9.065 112.8 50.99 0261 $c52946_{\pm1}$ -9.233 92.28 91 0 $9.666.07$ 322 $c5734_{\pm1}$ -9.04 81.8 80 0276 $c5690_{\pm1}$ -9.223 112.7 7.0 $0.167.66$ 322 $c5734_{\pm1}$ -9.04 81.8 80 0276 $c5630_{\pm1}$ -9.221 12.67 7.0 $0.167.66$ 332 $c6564_{\pm1}$ -9.02 146 80 0276 $c5734_{\pm1}$ -9.20 14.56 $0.107.66$ 332 $c6564_{\pm1}$ -9.02 14.94 7.0													
254 (40654_g1 -9.20 106 85.81 0 8.556-07 255 (51136_g1 -9.256 117 79 0 8.556-07 255 (4286_g1 -9.258 9.256 92 94 0 8.556-07 257 (4462_g1 -9.248 79 101 0 9.106-07 258 (54688_g1 -9.248 79 101 0 9.106-07 258 (54688_g1 -9.248 79 101 0 9.106-07 250 (7144_g1 -9.248 59 113 0 6.556-07 260 (5320_g1 -9.247 134 0 9.067 732 1.0505 11.300 11.3 0 261 (4177_g1 -9.238 113 0 9.067 732 10.517_g1 -9.005 11.8 59 0 265 (1390_g1 -9.227 12 72.7 0 1.056-07 232 (5407_g1 -9.06 <td></td>													
255c51136_g19.2561177908.558-07315c52888_g19.08019614025642808_g19.252929408.556-07316c5362_g19.07013063258c54688_g19.2487910109.106-07317(57651_g29.07013063258c54688_g19.2485911109.106-07316(5786_g19.066141.1546.240260c5323_g19.2311575309.696-07321c5178_g19.055130.8550.990261c5374_g19.2331436109.696-07322c5472_g19.049112620266c5302_g19.22712272.9701.036-66326c45007_g19.049102620266c5303_g19.221115_217601.036-66326c45007_g19.041418000276c5735_g19.221116_217601.036-66326c45973_g19.022116580271c5737_g19.20611753901.176-66336c4923_g19.002116580272c5737_g19.20310.978901.176-66336c4923_g19.010144760274c4844_g19.026117													
256 42808 ± 1 $9,256$ 92 94 0 $6,558.47$ 316 6536.2 ± 1 $9,071$ $107,41$ 67 0 257 49462 ± 1 $9,248$ 79 101 0 $9,106.47$ 317 67858 ± 1 $9,066$ $141,15$ 46.24 0 258 64823 ± 1 $9,248$ 59 113 0 $8,556.47$ 310 67826 ± 1 $9,066$ $141,15$ 46.24 0 260 62830 ± 1 $9,223$ 170 45 0 $9,666.47$ 321 65736 ± 1 $9,069$ 130.2 67734 ± 1 $9,049$ 11.21 62 0 265 $c13905 \pm 1$ $9,223$ 123 70 0 $1,087.66$ 322 $c5774 \pm 1$ $9,049$ 10.23 $67,99$ 0 266 $c6302 \pm 1$ $9,227$ 122 $72,97$ 0 $1,087.66$ 326 $c6307, \pm 1$ $9,041$ 41 00 276 $c6302 \pm 1$ $9,227$ $116,77$ $9,70$ 0 $1,087.66$ 326 $c6307, \pm 1$ $9,041$ 41 00 276 $c6375 \pm 1$ $9,227$ $116,77$ $9,70$ 0 $1,087.66$ 326 $c6377, \pm 1$ $9,001$ 116 68 0 276 $c6375 \pm 1$ $9,227$ $116,77$ $9,70$ 0 $1,087.66$ 336 $c6377, \pm 1$ $9,007$ $18,8$ 0 276 $c6375 \pm 1$ $9,227$ $116,77$ $9,77$ $9,77$ $10,37$ 10													
258 C54688_g1 -9.248 79 101 0 9.10E-07 259 C7440_g1 -9.248 59 113 0 8.55E-07 261 C42127_g1 -9.237 157 53 0 9.66E-07 261 C47127_g1 -9.237 157 53 0 9.66E-07 264 C5778_g1 -9.236 170 45 0 9.66E-07 264 C5778_g1 -9.237 4 144 0 9.66E-07 264 C5306_g1 -9.237 4 144 0 9.66E-07 266 C3006_g1 -9.227 0 1.08E-66 326 C4573_g1 9.040 1122 662 0 276 C4530_g1 -9.217 1.12 7.6 0 1.08E-66 330 C4373_g1 9.041 81 80 0 271 C4547_g1 -9.207 1.08E-66 330 C4327_g1 9.028 1.17E-66 332 C4													
259 C71410_g1 9.248 59 113 0 8,554-07 260 C5233_0_1 9.241 161 50.61 0 9,666-07 261 6212_7 1.323 1.43 0 9,666-07 262 C57764_g1 9.232 1.43 61 0 9,666-07 263 (41973_g1 9.233 1.43 61 0 9,666-07 264 C5396_g1 9.227 1.22 7.0 1.081-66 266 C6300_g1 9.227 1.22 7.0 1.081-66 270 C4785_g1 9.221 115.71 7.6 0 1.081-66 270 C4785_g1 9.221 115.71 7.6 0 1.081-66 271 C5771_g1 9.205 114.94 7.5 0 1.081-66 271 C5771_g1 9.205 114.94 7.5 0 1.076-66 272 C5771_g1 9.205 114.94 7.5 9													
260 C58230_g1 -9,241 161 50,61 0 9,696-67 261 (47127_g1 -9,237 157 53 0 9,696-67 262 (57784_g1 -9,238 170 45 0 9,696-67 264 (4739_g1 -9,233 143 61 0 9,696-67 265 (5309_g1 -9,227 122 7,277 0 1,038-66 266 (5409_g1 -9,227 122 7,277 0 1,038-66 276 (55909_g3 -9,227 122 7,277 0 1,038-66 276 (55909_g1 -9,227 122 7,277 0 1,038-66 276 (5590_g1 -9,211 126 70 0 1,038-66 276 (5471_g1 -9,207 95,99 85,86 0 1,176-66 271 (50571_g1 -9,207 19,99 1,176-66 331 (5647_g1 -9,113 34 6													
261 c42127_g1 -9,237 157 53 0 9,696-67 262 c57784_g1 -9,236 170 45 0 9,696-67 263 c41973_g1 -9,233 143 61 0 9,696-67 264 c5246_g1 -9,237 4 144 0 9,067-66 265 c13906_g1 -9,227 4 144 0 9,067-66 266 c5300_g1 -9,227 122 72,97 0 1038-66 276 c6530_g1 -9,221 116,21 76 0 1038-66 276 c6530_g1 -9,221 116,21 76 0 1038-66 270 c4718_g1 -9,216 77 98,7 0 1038-66 271 c5551_g1 -9,221 116,21 76 0 1038-66 271 c5551_g1 -9,212 116,21 76 0 1038-66 272 c5474_g1 -9,206 77 </td <td></td>													
262 c57784_g1 9,236 170 45 0 9,696-07 263 c41973_g1 9,233 143 61 0 9,696-07 264 c52946_g1 9,227 4 144 0 9,106-07 266 c5960_g1 9,227 4 144 0 9,106-07 266 c5960_g1 9,227 4 144 0 9,106-07 266 c5960_g1 9,227 122 72,97 0 1,038-06 267 c5690_g1 9,221 116,21 76 0 1,038-06 270 c6775_g1 9,221 116,21 76 0 1,038-06 271 c5574_g1 9,205 175 39 0 1,178-06 323 c5709_g1 9,016 84 76 0 272 c5741_g1 9,205 114,94 75,28 0 1,178-06 333 c5709_g1 9,013 144 4199 0 276 c5473_g1 9,107 117 73 0 1,178-06 333							+						
263 (4173) g1 9,233 143 61 0 9,696-07 264 (52946, g1 9,233 9,298 91 0 9,696-07 265 (53906, g1 9,227 4 144 0 9,106-07 265 (5409, g1 9,227 122 72,97 0 1,036-06 266 (5409, g1 9,221 126 70 0 1,036-06 266 (5409, g1 9,221 126 70 0 1,036-06 270 (7182, g1 9,204 116 58 0 271 c55307, g1 9,207 10,316-06 333 (56548, g1 9,026 102 66 0 272 c5741, g1 9,206 175 39 0 1,17E-06 333 c56548, g1 9,012 116 58 0 273 c5741, g1 9,209 149,43 0 1,17E-06 334 c46475, g1 9,013 134 60 274 c48948, g1 9,120 134,05 63 0 1,25E-06												1	
264 c52946_g1 9.233 92.98 91 0 9.656-07 265 c13906_g1 9.227 4 144 0 9.10E-07 266 c5404_g1 9.227 122 72.97 0 1.03E-06 266 c5404_g1 9.221 113 78 0 1.03E-06 268 c56302_g1 9.221 116.21 70 0 1.03E-06 270 c4718_g1 9.205 116.21 77 0 1.03E-06 271 c50571_g1 9.207 169.3 0 1.17E-06 272 c57411_g1 9.205 114.94 75.28 0 1.17E-06 273 c55732_g1 9.202 1140 108 76.98 0 1.17E-06 274 c4898_g1 9.000 1.28E-06 333 c5095_g1 9.012 133 46 274 c4934_g1 9.200 1.40E 0 1.28E-06 333 c50951_g1 9.013 </td <td></td>													
265 cl3906_g1 -9.227 4 144 0 9,10E-07 266 c54049_g1 -9.227 122 72,97 0 1,03E-06 267 c56909_g3 -9.223 113 78 0 1,03E-06 268 c56302_g1 -9.211 116,21 76 0 1,03E-06 269 c26755_g1 -9.216 77 98,7 0 1,03E-06 270 c47182_g1 -9.216 77 98,7 0 1,03E-06 271 c50571_g1 -9.205 114,94 75,28 0 1,17E-06 275 c55472_g1 -9.201 109,97 89 0 1,17E-06 276 c43914_g1 -9.001 134 76 0 276 c54372_g1 -9.107 117 73 0 1,27E-06 278 c54372_g1 -9.107 117 73 0 1,25E-06 278 c54392_g1 -9.187 122	263		-9,233	143	61	0	9,69E-07	323	c57070_g1	-9,049	112	62	0
266 C \$4049 g1 9,227 122 72,97 0 1,03E-06 267 C \$6000 g1 9,223 113 78 0 1,03E-06 268 C \$6302 g1 9,221 116,21 70 0 1,03E-06 269 C \$6755 g1 9,221 116,21 70 0 1,03E-06 270 C 47182 g1 9,207 98,99 85,86 0 1,03E-06 271 C 5571 g1 9,207 175 39 0 1,17E-06 272 C \$7411 g1 9,206 1175 39 0 1,17E-06 272 C \$6472 g1 9,203 108 78,98 0 1,17E-06 276 C 47914 g1 9,200 134,05 30 1,17E-06 336 C 5381 g1 9,011 131 47 0 277 C 8251 g1 9,197 117 73 0 1,17E-06 336 C 5391 g1 9,001 134 0 278	264	c52946_g1	-9,233	92,98	91	0	9,69E-07	324	c57734_g1	-9,049	102,31	67,99	0
267 c56909_B3 -9,223 113 78 0 1,03F-06 268 c56302_R1 -9,221 116,21 70 0 1,03F-06 269 c56307_R1 -9,221 116,21 76 0 1,03F-06 270 c47182_R1 -9,207 96,99 85,86 0 1,03F-06 271 c50571_R1 -9,007 16,99 85,86 0 1,17F-06 273 c55732_R1 -9,005 114,94 75,28 0 1,17F-06 274 c48394_R1 -9,003 130 476 0 275 c55472_R1 -9,01 310.8 78,98 0 1,17F-06 334 c5658_R2 -9,197 117 73 0 1,17F-06 278 c55805_R2 -9,197 117 73 0 1,25F-06 281 c5431_R1 -9,187 122 69 1,25F-06 282 c10802_R1 -9,187 122 69<	265	c13906_g1	-9,227	4	144	0	9,10E-07	325	c43968_g1	-9,046	90	75	0
268 c56302_g1 -9.21 126 70 0 1.03E-06 269 c6755_g1 -9.21 116,21 76 0 1.03E-06 270 c47182_g1 -9.216 77 98,7 0 1.03E-06 271 c50571_g1 -9.207 96,99 85,86 0 1.0Fe-06 272 c5741_g1 -9.205 114,94 75,28 0 1.17E-06 275 c55472_g1 -9.201 109.97 89 0 1.17E-06 276 c47914_g1 -9.201 144,99 56 0 1.25E-06 276 c55472_g1 -9.017 117 73 0 1.25E-06 277 c3825_g1 -9.19 1147 73 0 1.25E-06 278 c56986_g2 -9.19 144,99 56 0 1.25E-06 284 c56976_g1 -9.181 132 66 0 1.33E-06 284 c56486_g1 -9.181 <td>266</td> <td>c54049_g1</td> <td>-9,227</td> <td>122</td> <td>72,97</td> <td>0</td> <td>1,03E-06</td> <td>326</td> <td>c45007_g1</td> <td>-9,045</td> <td>42</td> <td>104</td> <td>0</td>	266	c54049_g1	-9,227	122	72,97	0	1,03E-06	326	c45007_g1	-9,045	42	104	0
269 c26755_B1 -9.21 116.21 76 0 1,03E-06 270 c47182_g1 -9.216 77 98,7 0 1,03E-06 271 c50571_g1 -9.207 96,99 85,86 0 1,10E-06 272 c5741_g1 -9.205 114,94 75,28 0 1,17E-06 373 c5537_g1 -9.205 114,94 75,28 0 1,17E-06 374 d48948_g1 -9.203 108 78,98 0 1,17E-06 375 c5547_g1 -9.201 9.013 1.38 c5705_g1 -9.013 133 46 0 276 c47914_g1 -9.201 9.032 1.17E-06 333 c6475_g1 -9.013 133 46 0 277 c5837_g1 -9.19 144,99 56 0 1,25E-06 381 c5495_g1 9.194 138 59,55 0 1,25E-06 280 c42832_g1 -9.181	267	c56909_g3	-9,223	113	78	0	1,03E-06	327	c35166_g1	-9,041	81	80	0
270 $(47182_{1}1 + 9,216$ 7798,701,03E-06271 $(50571_{1}21 + 9,207)$ 96,9985,8601,10E-06272 $(57411_{1}21 + 9,206)$ 1753901,17E-06273 $(55732_{1}21 + 9,205)$ 114,9475,2801,17E-06274 $(48488_{1}1 + 9,203)$ 10877,89801,17E-06275 $(55472_{1}21 + 9,203)$ 10878,9801,17E-06276 $(47914_{1}21 + 9,200)$ 134,056301,17E-06276 $(47914_{1}21 + 9,200)$ 134,056301,17E-06276 $(55472_{1}21 + 9,197)$ 1177301,17E-06278 $(56986_{1}22 + 9,196)$ 149,995601,25E-06280 $(25322_{1}21 + 9,187)$ 1028101,25E-06281 $(54951_{1}21 + 9,187)$ 1028101,25E-06283 $(47291_{1}21 + 9,183)$ 1326501,33E-06284 $(65676_{1}1 + 9,183)$ 1316301,33E-06286 $(52632_{1}21 + 9,183)$ 1316301,33E-06286 $(52636_{1}2 + 9,174)$ 1374001,42E-06286 $(55357_{1}1 + 9,155)$ 1346001,33E-06286 $(5436_{2}1 + 9,153)$ 1346001,33E-06286 $(5436_{2}1 + 9,153)$ 1436001,42E-06286 $(5436_{2}1 + 9,153)$ 143	268	c56302_g1	-9,221	126	70	0	1,03E-06	328	c51973_g1	-9,037	168	27,02	0
271 $(50571_{B}1 - 9,207)$ $96,99$ $85,86$ 0 $1,10E-06$ 331 $(56548_{B}1 - 9,026)$ 102 666 0272 $(57411_{B}1 - 9,206)$ 175 39 0 $1,17E-06$ 332 $(284119_{B}1 - 9,016)$ 84 76 0274 $(48948_{B}1 - 9,203)$ 1008 $78,98$ 0 $1,17E-06$ 333 $(57095_{B}1 - 9,013)$ 140 $41,99$ 0275 $(55472_{B}1 - 9,201)$ $90,97$ 89 0 $1,17E-06$ 336 $(59318_{B}1 - 9,013)$ 133 46 0276 $(77914_{B}1 - 9,200)$ $134,05$ 63 0 $1,17E-06$ 336 $(53918_{B}1 - 9,013)$ 123 $51,93$ 0276 $(73914_{B}1 - 9,197)$ 117 73 0 $1,17E-06$ 337 $(24719_{B}1 - 9,010)$ 123 $50,95$ 0278 $(56986_{B}2 - 9,196)$ $144,99$ 56 0 $1,25E-06$ 338 $(51021_{B}1 - 8,99)$ 117 54 0280 $(25322_{B}1 - 9,187)$ 1122 69 0 $1,25E-06$ 340 $(25617_{B}1 - 8,99)$ 1100 64 0282 $(109602_{B}1 - 9,18)$ 113 65 0 $1,33E-06$ 344 $(25201_{B}1 - 8,99)$ 1110 57 0286 $(55337_{B}1 - 9,18)$ 136 60 0 $1,33E-06$ 344 $(25201_{B}1 - 8,97)$ $18,996$ 111 57 0286 $(55347_{B}1 - 9,16)$ 134 60 0 $1,32E-0$	269	c26755_g1	-9,221	116,21	76	0	1,03E-06	329	c48797_g1	-9,032	116	58	0
272 c57411 g1 -9.206 175 39 0 1,17E-06 273 c55732 g1 -9.205 114,94 75,28 0 1,17E-06 274 c48948 g1 -9.203 108 78,98 0 1,17E-06 275 c55732 g1 -9.201 90.97 89 0 1,17E-06 275 c5472 g1 -9.200 134,05 63 0 1,17E-06 276 c47914 g1 -9.200 134,05 63 0 1,17E-06 276 c47914 g1 -9.200 134,05 63 0 1,17E-06 277 c8251 g1 -9.197 117 73 0 1,17E-06 336 c53918 g1 -9.010 131 47 0 280 c56986 g2 -9.196 144,99 56 0 1,25E-06 338 c51021 g1 -9.000 123 50,95 0 281 c4950 g1 -9.187 102 81 0 1,35E-06 341 c512 g1 -8.990 100 64 0 282<	270	c47182_g1	-9,216	77	98,7	0	1,03E-06	330	c49237_g2	-9,032	149	38	0
273 c55732 g1 -9.205 114.94 75.28 0 1.17E-06 274 c48948 g1 -9.203 108 78,98 0 1.17E-06 275 c55472 g1 -9.011 100,97 89 0 1.17E-06 276 c47914 g1 -9.000 134,05 63 0 1.17E-06 276 c47914 g1 -9.000 134 64 0 277 c38251 g1 -9.191 117 73 0 1.17E-06 380 c54932 g1 -9.194 138 59.55 0 1.25E-06 280 c25322 g1 -9.187 102 81 0 1.25E-06 281 c4951 g1 -9.183 136 60 0 1.33E-06 282 c109602 g1 -9.181 136 60 1.33E-06 284 c66676 g1 -9.181 136	271	c50571_g1	-9,207	96,99	85,86	0	1,10E-06	331	c56548_g1	-9,026	102	66	0
274 c48948 g1 -9.203 108 78,98 0 1,17E-06 275 c55472 g1 -9.201 90,97 89 0 1,17E-06 276 c47914 g1 -9.200 134,05 63 0 1,17E-06 276 c47914 g1 -9.200 134,05 63 0 1,17E-06 277 c38251 g1 -9.197 117 73 0 1,17E-06 279 c53439 g1 -9.194 138 59.55 0 1,25E-06 280 c25322 g1 -9.187 102 81 0 1,25E-06 281 c4951 g1 -9.185 95 85 0 1,25E-06 282 c109602 g1 -9.185 9.55 0 1,25E-06 284 c56676 g1 -9.181 131 63 0 1,33E-06 284 c56676 g1 -9.181 131 63 0 1,33E-06 286 c53357 g1 -9.170 91 86 0 1,32E-06 286 c5380 g2 -9.170 <td< td=""><td>272</td><td>c57411_g1</td><td>-9,206</td><td>175</td><td>39</td><td>0</td><td>1,17E-06</td><td>332</td><td>c84119_g1</td><td>-9,016</td><td>84</td><td>76</td><td>0</td></td<>	272	c57411_g1	-9,206	175	39	0	1,17E-06	332	c84119_g1	-9,016	84	76	0
275 c55472_g1 -9,201 90,97 89 0 1,17E-06 276 c47914_g1 -9,200 134,05 63 0 1,17E-06 277 c38251_g1 -9,197 117 73 0 1,17E-06 278 c56986_g2 -9,196 144,99 56 0 1,25E-06 279 c53439_g1 -9,187 122 699 0 1,25E-06 280 c25322_g1 -9,187 102 81 0 1,25E-06 281 c54951_g1 -9,187 102 81 0 1,25E-06 282 c19960_g1 -9,185 95 85 0 1,25E-06 284 c56676_g1 -9,181 136 60 1,33E-06 342 c339d_g1 8,990 100 64 0 284 c56676_g1 -9,181 131 63 0 1,33E-06 344 c5391g_1 -8,983 136,96 41 0	273	c55732_g1	-9,205	114,94	75,28	0	1,17E-06	333	c57095_g1	-9,015	140	41,99	0
276 c47914_g1 -9,200 134,05 63 0 1,17E-06 277 c38251_g1 -9,197 117 73 0 1,17E-06 278 c56986_g2 -9,196 144,99 56 0 1,25E-06 279 c53439_g1 -9,147 138 59,55 0 1,25E-06 280 c25322_g1 -9,187 122 69 0 1,25E-06 281 c54951_g1 -9,187 102 81 0 1,25E-06 282 c109602_g1 -9,183 127.78 655 0 1,33E-06 284 c5676_g1 -9,181 136 60 0 1,33E-06 284 c5357_g1 -9,177 105 77,99 0 1,33E-06 284 c122989_g1 -9,169 134 60 1,42E-06 284 c122989_g1 -9,169 182 31 0 1,42E-06 290 c55220_g3 -9,169 182 <td>274</td> <td>c48948_g1</td> <td>-9,203</td> <td>108</td> <td>78,98</td> <td>0</td> <td>1,17E-06</td> <td>334</td> <td>c36475_g1</td> <td>-9,013</td> <td>133</td> <td>46</td> <td>0</td>	274	c48948_g1	-9,203	108	78,98	0	1,17E-06	334	c36475_g1	-9,013	133	46	0
277 c38251_g1 -9.197 117 73 0 1,17E-06 278 c56986_g2 -9.196 144,99 56 0 1,25E-06 279 c53439_g1 -9.194 138 59,55 0 1,25E-06 280 c25322_g1 -9.187 122 69 0 1,25E-06 281 c54951_g1 -9.187 102 81 0 1,25E-06 282 c109602_g1 -9.185 95 85 0 1,25E-06 284 c56676_g1 -9.181 131 65 0 1,33E-06 284 c56676_g1 -9.181 131 63 0 1,33E-06 285 c54651_g1 -9.175 105 77,9 0 1,33E-06 285 c5357_g1 -9.175 105 77,9 0 1,33E-06 286 c5357_g1 -9.175 105 77,9 0 1,33E-06 286 c5357_g1 -9.170 91 86 0 1,33E-06 287 c53808_g2 -9.149<	275	c55472_g1	-9,201	90,97	89	0	1,17E-06	335	c49523_g1	-9,012	123	51,93	0
278 c56986_g2 -9.196 144.99 56 0 1,25E-06 279 c53439_g1 -9.194 138 59,55 0 1,25E-06 280 c25322_g1 -9.187 122 69 0 1,25E-06 281 c54951_g1 -9.187 102 81 0 1,25E-06 282 c109602_g1 -9.183 127,78 65 0 1,33E-06 284 c56676_g1 -9.181 136 60 0 1,33E-06 285 c34861_g1 -9.181 131 63 0 1,33E-06 286 c55575_g1 -9.175 105 77,99 0 1,33E-06 286 c52669_g1 -9.174 167,97 40 0 1,42E-06 290 c55220_g3 -9.166 102 79 0 1,42E-06 291 c47675g1 -9.165 134,98 59 0 1,52E-06 291 c47675g1 -9.165 134,98 59 0 1,62E-06 292 c48858g1	276	c47914_g1	-9,200	134,05	63	0	1,17E-06	336	c53918_g1	-9,010	131	47	0
279 c53439_g1 -9,194 138 59,55 0 1,25E-06 280 c25322_g1 -9,187 122 69 0 1,25E-06 281 c54951_g1 -9,187 102 81 0 1,25E-06 282 c109602_g1 -9,185 95 85 0 1,25E-06 283 c47291_g1 -9,183 127,78 655 0 1,33E-06 284 c56676_g1 -9,181 136 600 0 1,33E-06 284 c56676_g1 -9,181 131 63 0 1,33E-06 285 c34861_g1 -9,181 131 63 0 1,33E-06 286 c55357_g1 -9,175 105 77,99 0 1,33E-06 286 c52669_g1 -9,170 91 86 0 1,33E-06 289 c12289_g1 -9,169 1342 60 0 1,42E-06 290 c55220_g3 -9,165 134,98 59 0 1,42E-06 291 c44767_g1 -	277	c38251_g1	-9,197	117	73	0	1,17E-06	337	c47196_g1	-9,003	129,99	47	0
280c25322_g1-9,1871226901,25E-06281c54951_g1-9,1871028101,25E-06282c109602_g1-9,185958501,25E-06283c47291_g1-9,183127,786501,33E-06284c56676_g1-9,1811366001,33E-06285c34861_g1-9,1811316301,33E-06286c55357_g1-9,17510577,9901,33E-06286c55357_g1-9,17510577,9901,33E-06286c52669_g1-9,174167,974001,42E-06288c52669_g1-9,179918601,33E-06289c122989_g1-9,1691346001,42E-06290c55220_g3-9,1691823101,42E-06291c44767_g1-9,1661027901,42E-06292c48858_g1-9,155134,985901,42E-06293c57233_g1-9,15216640,1701,52E-06294c5683_g1-9,1371435301,52E-06295c56138_g2-9,147141,9752,9901,62E-06296c5430_g1-9,137108,987201,62E-06296c5613_g1-9,137108,987201,62E-06296c56136_g1<	278	c56986_g2	-9,196	144,99	56	0	1,25E-06	338	c51021_g1	-9,000	123	50,95	0
280c25322_g1-9,1871226901,25E-06281c54951_g1-9,1871028101,25E-06282c109602_g1-9,185958501,25E-06283c47291_g1-9,183127,786501,33E-06284c56676_g1-9,1811366001,33E-06285c34861_g1-9,1811316301,33E-06286c55357_g1-9,17510577,9901,33E-06286c55357_g1-9,17510577,9901,33E-06286c52669_g1-9,174167,974001,42E-06288c52669_g1-9,179918601,33E-06289c122989_g1-9,1691346001,42E-06290c55220_g3-9,1691823101,42E-06291c44767_g1-9,1661027901,42E-06292c48858_g1-9,155134,985901,42E-06293c57233_g1-9,15216640,1701,52E-06294c5683_g1-9,1371435301,52E-06295c56138_g2-9,147141,9752,9901,62E-06296c5430_g1-9,137108,987201,62E-06296c5613_g1-9,137108,987201,62E-06296c56136_g1<	279	c53439 g1	-9,194	138	59,55	0	1,25E-06	339	c20684 g1	-8,993	117	54	0
281 c54951_g1 -9,187 102 81 0 1,25E-06 282 c109602_g1 -9,185 95 85 0 1,25E-06 283 c47291_g1 -9,183 127,78 655 0 1,33E-06 284 c56676_g1 -9,181 136 60 0 1,33E-06 285 c34861_g1 -9,181 131 63 0 1,33E-06 286 c55357_g1 -9,175 105 77,99 0 1,33E-06 287 c53808_g2 -9,174 167,97 40 0 1,42E-06 288 c52669_g1 -9,170 91 86 0 1,33E-06 289 c122989_g1 -9,169 1344 60 1,33E-06 348 c42772_g1 -8,978 133 43 00 289 c122989_g1 -9,169 1342 60 1,42E-06 349 c57796_g2 -8,973 96 655 00 291	280		-9,187	122	69	0	1,25E-06	340		-8,991	119,63	51,99	0
282c10960_g1-9,185958501,25E-06283c47291_g1-9,183127,786501,33E-06284c56676_g1-9,1811366001,33E-06285c34861_g1-9,1811316301,33E-06286c55357_g1-9,17510577,9901,33E-06287c53808_g2-9,174167,974001,42E-06288c52669_g1-9,170918601,33E-06289c122989_g1-9,16913460001,42E-06290c55220_g3-9,1691823101,42E-06291c44767_g1-9,1661027901,42E-06292c48858_g1-9,1531435301,52E-06294c57633_g1-9,147141,9752,9901,62E-06295c5138_g2-9,147141,9752,9901,62E-06296c5430_g1-9,13310275,8801,74E-06299c48399_g1-9,137108,987201,62E-06299c48399_g1-9,137108,987201,62E-06299c48399_g1-9,137108,987201,62E-06299c48399_g1-9,137108,987201,62E-06299c48399_g1-9,137108,987201,62E-06299c4839												1	0
283c47291_g1-9,183127,7865501,33E-06284c56676_g1-9,1811366001,33E-06285c34861_g1-9,1811316301,33E-06286c55357_g1-9,17510577,9901,33E-06287c53808_g2-9,174167,974001,42E-06288c52669_g1-9,170918601,33E-06289c122989_g1-9,1691346001,42E-06290c55220_g3-9,1691823101,42E-06291c44767_g1-9,1661027901,42E-06292c48858_g1-9,165134,985901,42E-06293c57233_g1-9,165134,985901,42E-06294c57683_g1-9,1531435301,52E-06295c56138_g2-9,147141,9752,9901,62E-06296c54430_g1-9,13510275,8801,62E-06297c36286_g1-9,137108,987201,62E-06298c39441_g1-9,13510275,8801,74E-06299c48399_g1-9,13510275,8801,74E-06299c48399_g1-9,13510275,8801,74E-06299c48399_g1-9,13510275,8801,74E-06299c4										-			
284 C56676 [1] -9,181 136 60 0 1,33E-06 285 c34861 g1 -9,181 131 63 0 1,33E-06 286 c55357 g1 -9,175 105 77,99 0 1,33E-06 288 c52669 g1 -9,174 167,97 40 0 1,42E-06 289 c122989 g1 -9,169 134 60 0 1,42E-06 290 c55220 g3 -9,169 182 31 0 1,42E-06 291 c44767 g1 -9,166 102 79 0 1,52E-06 292 c4885 g1 -9,165 134,98 59 0 1,52E-06 293 c57233 g1 -9,162 166 40,17 0 1,52E-06 294 c57683 g1 -9,133 143 53 0 1,52E-06 295 c56138 g2 -9,147 141,97 52,99 0 1,62E-06 295 c56138 g2 -9,143 143,98 72 0 1,62E-06 296 c54430 g1													
285c34861_g1-9,1811316301,33E-06286c55357_g1-9,17510577,9901,33E-06287c53808_g2-9,174167,974001,42E-06288c52669_g1-9,170918601,33E-06289c122989_g1-9,1691346001,42E-06290c5520_g3-9,1691823101,42E-06291c44767_g1-9,1661027901,42E-06292c48858_g1-9,165134,985901,42E-06293c57233_g1-9,16216640,1701,52E-06294c57683_g1-9,1451435301,52E-06295c56138_g2-9,147141,9752,9901,62E-06296c54430_g1-9,1459282,9501,62E-06297c36286_g1-9,13510275,8801,74E-06298c39441_g1-9,13510275,8801,74E-06299c48399_g1-9,12711467,6501,74E-06299c48399_g1-9,12711467,6501,74E-06399c55907_g1-8,94012643,930												1	
286c55357_g1-9,17510577,9901,33E-06287c53808_g2-9,174167,974001,42E-06288c52669_g1-9,170918601,33E-06289c122989_g1-9,1691346001,42E-06290c55220_g3-9,1691823101,42E-06291c44767_g1-9,1661027901,42E-06292c48858_g1-9,165134,985901,42E-06293c57233_g1-9,16216640,1701,52E-06294c57683_g1-9,1531435301,52E-06295c56138_g2-9,147141,9752,9901,62E-06296c54430_g1-9,1459282,9501,62E-06297c36286_g1-9,13510275,8801,74E-06298c39441_g1-9,13510275,8801,74E-06299c48399_g1-9,12711467,6501,74E-06394c590_g1-9,12711467,6501,74E-06399c590_g1-9,12611464,6501,74E-06399c590_g1-9,13510275,8801,74E-06394c9,1345001,74E-06358c2619_g1-8,955394-9,13510275,8801,74E-06358c2619_g1-8,													
287 C53808_2 -9,174 167,97 40 0 1,42E-06 288 c52669_g1 -9,170 91 86 0 1,33E-06 289 c122989_g1 -9,169 134 60 0 1,42E-06 290 c55220_g3 -9,169 182 31 0 1,42E-06 291 c44767_g1 -9,166 102 79 0 1,42E-06 292 c48858_g1 -9,165 134,98 59 0 1,42E-06 293 c57233_g1 -9,162 166 40,17 0 1,52E-06 294 c57683_g1 -9,153 143 53 0 1,52E-06 295 c56138_g2 -9,147 141,97 52,99 0 1,62E-06 295 c56438_g1 -9,145 92 82,955 0 1,62E-06 296 c54430_g1 -9,137 108,98 72 0 1,62E-06 298 c39441_g1 -9,135 102 75,88 0 1,74E-06 299 c48399_g1												1	
288 c52669_g1 -9,170 91 86 0 1,33E-06 289 c122989_g1 -9,169 134 60 0 1,42E-06 290 c55220_g3 -9,169 182 31 0 1,42E-06 291 c44767_g1 -9,166 102 79 0 1,42E-06 292 c48858_g1 -9,165 134,98 59 0 1,42E-06 293 c57233_g1 -9,162 166 40,17 0 1,52E-06 294 c57683_g2 -9,147 141,97 52,99 0 1,62E-06 295 c56138_g2 -9,147 141,97 52,99 0 1,62E-06 296 c54430_g1 -9,137 108,98 72 0 1,62E-06 298 c39441_g1 -9,135 102 75,88 0 1,74E-06 299 c48399_g1 -9,127 114 67,65 0 1,74E-06 359 c55907_g1 -8,940 126 43,93 0													
289 c122989_g1 -9,169 134 60 0 1,42E-06 290 c55220_g3 -9,169 182 31 0 1,42E-06 291 c44767_g1 -9,166 102 79 0 1,42E-06 292 c48858_g1 -9,155 134,98 59 0 1,42E-06 293 c57233_g1 -9,162 166 40,17 0 1,52E-06 294 c57683_g2 -9,147 141,97 52,99 0 1,62E-06 295 c56138_g2 -9,147 141,97 52,99 0 1,62E-06 296 c54430_g1 -9,137 108,98 72 0 1,62E-06 296 c39441_g1 -9,135 102 75,88 0 1,74E-06 299 c48399_g1 -9,127 114 67,65 0 1,74E-06													
290 c55220_g3 -9,169 182 31 0 1,42E-06 291 c44767_g1 -9,166 102 79 0 1,42E-06 292 c48858_g1 -9,165 134,98 59 0 1,42E-06 293 c57233_g1 -9,162 166 40,17 0 1,52E-06 294 c57683_g1 -9,153 143 53 0 1,52E-06 295 c56138_g2 -9,147 141,97 52,99 0 1,62E-06 296 c54430_g1 -9,135 102 75,88 0 1,62E-06 298 c39441_g1 -9,135 102 75,88 0 1,74E-06 299 c48399_g1 -9,127 114 67,65 0 1,74E-06 299 c48399_g1 -9,127 114 67,65 0 1,74E-06													
291 c44767_g1 -9,166 102 79 0 1,42E-06 292 c48858_g1 -9,165 134,98 59 0 1,42E-06 293 c57233_g1 -9,162 166 40,17 0 1,52E-06 294 c57683_g1 -9,153 143 53 0 1,52E-06 295 c56138_g2 -9,147 141,97 52,99 0 1,62E-06 296 c54430_g1 -9,153 108,98 72 0 1,62E-06 298 c39441_g1 -9,135 102 75,88 0 1,74E-06 299 c48399_g1 -9,127 114 67,65 0 1,74E-06													
292 c48858 g1 -9,165 134,98 59 0 1,42E-06 293 c57233 g1 -9,162 166 40,17 0 1,52E-06 294 c57683 g1 -9,153 143 53 0 1,52E-06 295 c56138 g2 -9,147 141,97 52,99 0 1,62E-06 296 c54430 g1 -9,135 102,97 82,95 0 1,62E-06 298 c39441 g1 -9,135 102,75,88 0 1,74E-06 299 c48399 g1 -9,127 114 67,65 0 1,74E-06												1	
293 c57233_g1 -9,162 166 40,17 0 1,52E-06 353 c47378_g1 -8,965 113 54 0 294 c57683_g1 -9,153 143 53 0 1,52E-06 354 c46715_g1 -8,959 75,9 76 0 295 c56138_g2 -9,147 141,97 52,99 0 1,62E-06 355 c53163_g1 -8,958 666 82 0 296 c54430_g1 -9,145 92 82,95 0 1,62E-06 356 c5913_g6 -8,957 744 777 0 297 c36286_g1 -9,135 102 75,88 0 1,74E-06 358 c2691_g1 -8,955 115 52 0 298 c39441_g1 -9,125 114 67,65 0 1,74E-06 359 c55907_g1 -8,960 126 43,93 0													
294 c57683_g1 -9,153 143 53 0 1,52E-06 354 c46715_g1 -8,959 75,9 76 0 295 c56138_g2 -9,147 141,97 52,99 0 1,62E-06 355 c53163_g1 -8,959 76 0 296 c54430_g1 -9,145 92 82,95 0 1,62E-06 356 c56913_g6 -8,957 74 77 0 297 c36286_g1 -9,137 108,98 72 0 1,62E-06 357 c109657_g1 -8,958 115 52 0 298 c39441_g1 -9,135 102 75,88 0 1,74E-06 358 c2619_g1 -8,957 128 44 00 299 c48399_g1 -9,127 114 67,65 0 1,74E-06 359 c55907_g1 -8,940 126 43,93 0												1	
295 c56138_g2 -9,147 141,97 52,99 0 1,62E-06 355 c53163_g1 -8,958 666 82 0 296 c54430_g1 -9,145 92 82,95 0 1,62E-06 356 c56913_g6 -8,957 74 77 0 297 c36286_g1 -9,137 108,98 72 0 1,62E-06 357 c109657_g1 -8,956 115 52 0 298 c39441_g1 -9,135 102 75,88 0 1,74E-06 358 c2691_g1 -8,955 128 44 0 299 c48399_g1 -9,127 114 67,65 0 1,74E-06 359 c55907_g1 -8,940 126 43,93 0													
296 c54430_g1 -9,145 92 82,95 0 1,62E-06 356 c56913_g6 -8,957 74 77 0 297 c36286_g1 -9,137 108,98 72 0 1,62E-06 357 c109657_g1 -8,956 115 52 0 298 c39441_g1 -9,135 102 75,88 0 1,74E-06 358 c2619_g1 -8,955 128 44 0 299 c48399_g1 -9,127 114 67,65 0 1,74E-06 359 c5907_g1 -8,940 126 43,93 0						0		354			75,9	76	
297 c36286_g1 -9,137 108,98 72 0 1,62E-06 357 c109657_g1 -8,956 115 52 0 298 c39441_g1 -9,135 102 75,88 0 1,74E-06 358 c26619_g1 -8,955 128 44 0 299 c48399_g1 -9,127 114 67,65 0 1,74E-06 359 c55907_g1 -8,940 126 43,93 0	295	c56138_g2	-9,147	141,97	52,99	0	1,62E-06	355	c53163_g1	-8,958	66	82	0
298 c39441_g1 -9,135 102 75,88 0 1,74E-06 358 c26619_g1 -8,955 128 44 0 299 c48399_g1 -9,127 114 67,65 0 1,74E-06 359 c55907_g1 -8,940 126 43,93 0	296	c54430_g1	-9,145	92	82,95	0	1,62E-06	356	c56913_g6	-8,957	74	77	0
299 c48399_g1 -9,127 114 67,65 0 1,74E-06 359 c55907_g1 -8,940 126 43,93 0	297	c36286_g1	-9,137	108,98	72	0	1,62E-06	357	c109657_g1	-8,956	115	52	0
	298	c39441_g1	-9,135	102	75,88	0	1,74E-06	358	c26619_g1	-8,955	128	44	0
300 c51847_g1 -9,127 99 77 0 1,74E-06 360 c52088_g1 -8,939 93 63,94 0	299	c48399_g1	-9,127	114	67,65	0	1,74E-06	359	c55907_g1	-8,940	126	43,93	0
	300	c51847_g1	-9,127	99	77	0	1,74E-06	360	c52088_g1	-8,939	93	63,94	0

361	c56114 g2	-8,939	139	36	0	4,98E-06	421	c57885_g2	-8,744	112	37	0	1,37E-0
362	c50508 g1	-8,937	91	64,59	0	4,98E-06	421	c33259_g1	-8,741	112	35	0	1,37E-0
363	c42861_g1	-8,935	76	74	0	4,98E-06	423	c71328_g1	-8,740	79	57	0	1,37E-0
364	c97179_g1	-8,934	107	55	0	4,98E-06	424	c56692_g1	-8,740	104,99	41	0	1,37E-0
365	c56931_g1	-8,933	120	47	0	4,98E-06	425	c55837_g1	-8,738	95	47	0	1,37E-C
366	c53026_g1	-8,932	46	92	0	4,63E-06	426	c57362_g2	-8,733	114,09	35	0	1,49E-C
367	c49037_g1	-8,932	45,98	92	0	4,63E-06	420	c56063_g4	-8,732	78	57	0	1,49E-0
368	c28991_g1	-8,930	123	44,97	0	5,37E-06	428	c84143_g1	-8,731	103,99	40,96	0	1,49E-0
369	c55293_g1	-8,930	95	62	0	4,98E-06	429	c49492_g1	-8,731	86	52	0	1,49E-0
370	c52836_g2	-8,928	75	74	0	4,98E-06	430	c57034 g1	-8,727	141	18	0	1,49E-C
371	c36438_g1	-8,924	81	70	0	5,37E-06	430	c54643_g1	-8,727	79	56,01	0	1,49E-C
372	c48395 g1	-8,923	116,98	48	0	5,37E-06	431	c56291_g1	-8,726	118	32	0	1,49E-0
373	c72899_g1	-8,919	133	38	0	5,37E-06	433	c42178_g1	-8,722	67	63	0	1,49E-0
374	c55809_g5	-8,912	109	50	0	5,78E-06	434	c56371_g1	-8,720	101	41,99	0	1,62E-0
375	c47590_g1	-8,911	121,64	44	0	5,78E-06	435	c54813_g2	-8,719	82,98	53	0	1,49E-0
376	c57122_g1	-8,911	94	61	0	5,78E-06	436	c39708_g1	-8,716	81	54	0	1,45E-0
377	c50547_g1	-8,910	107	53	0	5,78E-06	430	c35604_g1	-8,715	76	57	0	1,62E-0
			23	103	0		437	c56498 g2				0	
378 379	c46900_g1 c52633_g2	-8,895 -8,887	103,99	53	0	5,78E-06 6,73E-06	438	c56498_g2	-8,709 -8,708	59 85	67 51	0	1,62E-0
380	c52033_g2	-8,885	60,85	79	0	6,24E-06	439	c40857_g1	-8,708	100,99	41	0	1,62E-0
381	c54468_g2	-8,883	156	21	0	6,73E-06	440	c57531_g2	-8,708	86	41	0	1,62E-0
382	c52127_g1	-8,879	98	56	0	6,73E-06	441	c39856_g1	-8,703	99	49,97	0	1,02E-0
383		-8,874	35	93,96	0	6,24E-06	442			94	42	0	1,76E-C
384	c36293_g1 c57032 g2	-8,873	106,99	50	0	7,27E-06	443	c45720_g1 c55962_g1	-8,702 -8,700	94 71	59	0	1,62E-0
385		-8,872		78	0	6,73E-06	444	c10085 g1	-8,698	48	73,08	0	1,62E-0
	c10553_g1		61 87				445					0	
386 387	c57501_g1	-8,870 -8,869	100	61,77 53,91	0,45 0	7,27E-06 7,27E-06	440	c27264_g1	-8,696 -8,694	64,5 28	62,99 85	0	1,76E-0
	c55764_g1				0	7,27E-06		c45387_g1				0	
388	c57386_g1	-8,869	99,99 160	53,82 17	0		448	c33638_g1	-8,694	111 104	34	0	1,76E-0
389 390	c52330_g1 c57484_g1	-8,864		43	0	7,85E-06 7,27E-06	449	c57969_g2	-8,690		38,46	0	1,76E-0
390	c57010_g1	-8,861 -8,857	116,95 122,99	39	0	7,27E-06	450	c54032_g1	-8,689	60 69	65 58,88	0	1,76E-0
392		-8,856	72	70	0	7,27E-06	452	c49141_g2	-8,682	64	62,28	0	1,76E-C
	c34677_g1 c49638_g1		101	52	0			c56659_g1 c54013_g4		85		0	
393 394	c57126_g1	-8,852 -8,851	95,89	55	0	7,85E-06 7,85E-06	453 454	c45595_g1	-8,680 -8,680	84,87	48,92	0	1,91E-0
395	c56727_g1	-8,850	149,98	22	0	7,85E-06	455	c55407_g3	-8,675	112	32	0	1,91E-0
395	c49394_g1	-8,841	57	78	0	7,85E-06	455	c54485_g1	-8,671	112	25	0	2,08E-0
397	c54606 g1	-8,840	52	80,69	0	7,85E-06	457		-8,665	80	51	0	2,08L-0
398	c49389_g1	-8,834	43	86	0	7,85E-06	457	c46714_g1	-8,664	114	30,48	0	2,08E-0
399	c12401_g1	-8,833	38	89	0	7,85E-06	459	c47404_g1 c56291_g2	-8,664	114	22	0	2,08L-0
	c36775_g1		105	48	0	8,48E-06		c109573_g1		96	41,28	0	2,08L-0
400	c55023 g1	-8,819	105	36	0	9,18E-06	461	c42201_g1		99	38,89	0	2,08L-0
401	c34513_g1	-8,818	118	38,81	0	9,18E-06	462	c31444_g1	-8,657	58	64	0	2,08L-0
402		-8,815		32				c57615 g2					2,08E-0
403	c24774_g1 c55121_g1	-8,815	128,96 125	32	0	9,93E-06 9,93E-06	463	c50815_g2	-8,656 -8,654	92 43	43 73	0	2,08E-0
404		-8,809	125	103							57	0	2,08E-0
405	c44747_g1 c29575_g1		12	46	0	8,48E-06 1,08E-05	465	c55150_g1 c39254_g1	-8,645	68 95	39,96	0	2,27E-0
406			82		0				-8,639 -8,633	130	1	0	
407	c58198_g3 c52057_g1	-8,792	94,75	58,77	0	1,08E-05 1,08E-05	467	c47446_g1 c34065_g1	-8,633	73	18 53	0	2,47E-0
		-8,792	94,75 87,99	51							1		2,47E-0
409	c25307_g1	-8,788		55	0	1,08E-05	469	c52804_g1	-8,629	114,92	26,98	0	
410	c52778_g1	-8,786	96 96	49,93	0		470	c54525_g1	-8,627	105	33	0	2,47E-0
411	c51163_g1	-8,786		49,99	0	1,08E-05	471	c40720_g1	-8,627	79	49	0	2,47E-0
412 413	c50698_g2		126,97 95	31 50	0	1,17E-05	472	c57589_g2	-8,624	69 99	55	0	2,47E-0
	c57547_g1	-8,778				1,17E-05		c54247_g1	-8,617		36		_
414	c57306_g8	-8,777	151,99	15	0	1,17E-05	474	c53551_g1	-8,616	73	52	0	2,47E-0
415	c26497_g1	-8,772	91	52	0	1,17E-05	475	c84264_g1	-8,616	0	97	0	2,08E-0
416	c55702_g2	-8,768	48	77,64	0	1,17E-05	476	c57879_g4	-8,613	84	45	0	2,70E-0
417	c56310_g1	-8,767	122,98	32	0	1,26E-05	477	c55294_g1	-8,610	82	45,78	0	2,70E-0
418	c45312_g1	-8,747	83	54,59	0	1,37E-05	478	c56077_g1	-8,604	96	37	0	2,70E-0
419	c55072_g1		109	38,63	0	1,37E-05	479	c57939_g1	-8,600	68	54,35	0	2,70E-0
420	c36246_g1	-8,744	55	72	0	1,26E-05	480	c50604_g1	-8,600	89	41	0	2,95E-0

481	c53292_g1	-8,594	69	52,57	0	2,95E-05	541	c51899_g1	-8,443	81	36	0	6,12E-05
482	c55509_g3	-8,594	56	61,41	0	2,95E-05	542	c46981_g1	-8,441	120,83	11	0	6,74E-05
483	c57935_g3	-8,589	83	44	0	2,95E-05	543	c36220_g1	-8,440	47	57	0	6,12E-05
484	c56342_g1	-8,588	91	39	0	2,95E-05	544	c57414_g1	-8,439	71	42	0	6,12E-05
485	c57938_g6	-8,585	81	45	0	2,95E-05	545	c53938_g1	-8,437	82	35	0	6,74E-05
486	c55796_g1	-8,584	76	48	0	2,95E-05	546	c52220_g1	-8,436	61	48	0	6,12E-05
487	c55035_g1	-8,574	62	55,99	0	3,22E-05	547	c57094_g2	-8,435	77	38	0	6,74E-05
488	c56510_g1	-8,573	69,99	51	0	3,22E-05	548	c56831_g2	-8,435	77	38	0	6,74E-05
489	c42321_g1	-8,571	73	49	0	3,22E-05	549	c57759_g4	-8,434	101	23	0	6,74E-05
490	c56623_g1	-8,557	2	92	0	2,95E-05	550	c57185_g6	-8,430	83	34	0	6,74E-05
491	c48854_g1	-8,553	63	54	0	3,52E-05	551	c57488_g9	-8,426	44	58	0	6,12E-05
492	c55941_g1	-8,551	100	31	0	3,85E-05	552	c55033_g1	-8,423	54,99	51	0	6,74E-05
493	c46894_g1	-8,547	85	40	0	3,85E-05	553	c57758_g1	-8,422	78,96	36	0	6,74E-05
494	c49117_g1	-8,544	87,9	38	0	3,85E-05	554	c51814_g1	-8,419	98	24	0	7,42E-05
495	c56051_g2	-8,542	112	23	0	3,85E-05	555	c47730_g1	-8,418	76,56	37	0	6,74E-05
496	c53508_g1	-8,542	57	57	0	3,52E-05	556	c56207_g1	-8,417	56	49,88	0	6,74E-05
497	c49092_g1	-8,541	85,98	39	0	3,85E-05	557	c57045_g1	-8,414	67	42,7	0	6,74E-05
498	c25207_g1	-8,538	76,5	45	0	3,85E-05	558	c9502_g1	-8,412	78	36	0	7,42E-05
499	c39355_g1	-8,534	53,39	59	0	3,85E-05	559	c44082_g1	-8,409	97	24	0	7,42E-05
500	c50357_g1	-8,533	82	41	0	3,85E-05	560	c52656_g2	-8,403	422	1553,83	1	3,35E-15
501	c55498_g2	-8,533	47,97	62	0	3,85E-05	561	c38257_g1	-8,399	72	39	0	7,42E-05
502	c42360_g1	-8,531	85	39	0	3,85E-05	562	c55715_g1	-8,399	80	34,09	0	7,42E-05
503	c54176_g1	-8,522	76,5	44	0	4,22E-05	563	c49432_g1	-8,397	59	46,9	0	7,42E-05
504	c30784_g1	-8,521	84	39	0	4,22E-05	564	c58241_g1	-8,397	74,82	37	0	7,42E-05
505	c56449_g1	-8,521	84	38,58	0	4,22E-05	565	c50445_g1	-8,388	63	44	0	8,17E-05
506	c46442_g1	-8,520	50	60	0	4,22E-05	566	c110061_g1	-8,388	63	44	0	8,17E-05
507	c56722_g3	-8,518	103	27	0	4,22E-05	567	c50994_g1	-8,388	63	44	0	8,17E-05
508	c58278_g1	-8,512	75	44	0	4,22E-05	568	c42413_g1	-8,388	79	34	0	8,17E-05
509	c56896_g1	-8,511	112,22	21	0	4,63E-05	569	c48581_g1	-8,387	50	52	0	7,42E-05
510	c23843_g1	-8,507	47	61	0	4,22E-05	570	c55680_g3	-8,386	58	47	0	8,17E-05
511	c53257_g2	-8,506	96,91	30	0	4,63E-05	571	c26764_g1	-8,384	77	35	0	8,17E-05
512	c48488_g1	-8,505	63	51	0	4,63E-05	572	c51056_g1	-8,380	43	56	0	8,17E-05
513	c41752_g1	-8,504	79	41	0	4,63E-05	573	c13970_g1	-8,380	59	45,99	0	8,17E-05
514	c57572_g2	-8,504	58	54	0,08	4,63E-05	574	c42618_g1	-8,376	57	47	0	8,17E-05
515	c55514_g1	-8,504	108	23	0	4,63E-05	575	c52509_g1	-8,371	62,95	43	0	9,02E-05
516	c26811_g1	-8,495	112	20	0	5,08E-05	576	c56042_g1	-8,364	80	32	0	9,02E-05
517	c53396_g1	-8,495	120	15	0	5,08E-05	577	c45690_g1	-8,362	59	44,58	0	9,02E-05
518	c40771_g2	-8,490	55	55	0	4,63E-05	578	c53569_g1	-8,362	74,99	35	0	9,02E-05
519	c55130_g2	-8,488	79	40	0	5,08E-05	579	c42623_g1	-8,360	46	53	0	9,02E-05
520		-8,488	108	22	0	5,08E-05	580		-8,358	57	46	0	9,02E-05
521	c10550 g1	-8,487	95	30	0	5,08E-05	581	c57459_g1	-8,353	87	26,65	0	9,95E-05
522	c23548_g1	-8,482	71,99	44,03	0	5,08E-05	582	c52378_g1	-8,349	69	38	0	9,95E-05
523	c53671_g2	-8,481	88	34	0	5,08E-05	583	c53291_g1	-8,342	78	32	0	9,95E-05
524	c42782_g1	-8,480	46,36	59,95	0	5,08E-05	584	c56991_g1	-8,338	83,99	28	0	9,95E-05
525	c55958 g5	-8,472	79	39	0	5,57E-05	585	c43295_g1	-8,333	34	59	0	9,95E-05
526	c52188 g1	-8,472	79	39	0	5,57E-05	586	c45656_g1	-8,329	48	50	0	9,95E-05
527	c56370_g1	-8,470	45	60	0	5,08E-05	587	c25138_g1	-8,329	48	50	0	9,95E-05
528	c49951_g1	-8,465	59,18	51	0	5,57E-05	588	c51253_g1	-8,327	75	33	0	1,10E-04
529	c34100_g1	-8,463	91	31	0	5,57E-05	589	c27180_g1	-8,325	102	16	0	1,10E-04
530	c26857_g1	-8,461	94	29	0	5,57E-05	590	c19595 g1	-8,325	86	26	0	1,10E-04
531	c46269_g1	-8,458	97	23	0	6,12E-05	591	c54015_g1	-8,323	78	31	0	1,10E-04
532	c56598_g1	-8,456	108	20	0	6,12E-05	591	c54013_g1	-8,324	97	19	0	1,10E-04
533	c15611_g1	-8,451	85	34	0	6,12E-05	593	c37542_g1	-8,322	49	49	0	1,10E-04
534	c50850_g1	-8,451	63,67	47,25	0	6,12E-05	595	c57561_g1	-8,322		37	0	1,10E-04
										68			
535	c41767_g1	-8,449	88	32	0	6,12E-05	595	c30098_g1	-8,319	12	72	0	9,95E-05
536	c51241_g1	-8,448	104	22	0	6,12E-05	596	c54042_g1	-8,318	63	40,03	0	1,10E-04
537	c51662_g1	-8,447	83	35	0	6,12E-05	597	c52004_g1	-8,313	61	40,85	0	1,10E-04
538	c50095_g1	-8,446	61,83	47,98	0	6,12E-05	598	c56942_g1	-8,311	72	34	0	1,22E-04
539	c57645_g1	-8,446	70	43	0	6,12E-05	599	c56341_g1	-8,306	70	35	0	1,22E-04
540	c44325_g1	-8,445	78	38	0	6,12E-05	600	c44849_g1	-8,304	57	43	0	1,22E-04

	1										1	1	_
601	c33624_g1	-8,301	52	46	0	1,22E-04	661	c27926_g1	-8,155	78	22	0	2,54E-04
602	c57737_g1	-8,297	74	32	0	1,22E-04	662	c36366_g1	-8,154	70	27	0	2,54E-04
603	c52651_g2	-8,297	73,99	32	0	1,22E-04	663	c45396_g1	-8,151	54	37	0	2,28E-04
604	c26639_g1	-8,296	34	57	0	1,10E-04	664	c42729_g1	-8,150	27	54	0	2,28E-04
605	c53109_g1	-8,295	69	35	0	1,22E-04	665	c23016_g1	-8,148	68	28	0	2,54E-04
606	c53970_g1	-8,289	86	24	0	1,35E-04	666	c50715_g2	-8,146	52	38	0	2,54E-04
607	c42588_g1	-8,287	38	54	0	1,22E-04	667	c47389_g1	-8,143	47	41	0	2,54E-04
608	c16657_g1	-8,281	71	32,94	0	1,35E-04	668	c11914_g1	-8,141	69	26,78	0	2,54E-04
609	c123090_g1	-8,280	97,66	16	0	1,35E-04	669	c57553_g1	-8,141	50	39	0	2,54E-04
610	c42248_g1	-8,279	66	36	0	1,35E-04	670	c41557_g1	-8,139	53	37	0	2,54E-04
611	c52215_g2	-8,275	96	17	0	1,49E-04	671	c54661_g2	-8,137	74,9	23	0	2,54E-04
612	c40773_g1	-8,274	55,98	42	0	1,35E-04	672	c34286_g1	-8,132	43	43	0	2,54E-04
613	c21944_g1	-8,269	113	6	0	1,49E-04	673	c52306_g2	-8,131	54	36	0	2,54E-04
614	c53555_g1	-8,267	73	31,28	0	1,49E-04	674	c55797_g1	-8,128	68	27	0	2,83E-04
615	c26480_g1	-8,267	65	36	0	1,49E-04	675	c54812_g1	-8,128	49	39	0	2,54E-04
616	c58121_g1	-8,265	76	29	0	1,49E-04	676	c53545_g3	-8,125	63	30	0	2,83E-04
617	c55655_g6	-8,261	82	25	0	1,49E-04	677	c40254_g1	-8,123	55	35	0	2,83E-04
618	c15369_g1	-8,261	82	25	0	1,49E-04	678	c47246_g1	-8,123	66	27,99	0	2,83E-04
619	c56605_g1	-8,259	58	40	0	1,49E-04	679	c23080_g1	-8,123	66	27,97	0	2,83E-04
620	c46275_g1	-8,259	42	50	0	1,35E-04	680	c52030_g1	-8,123	65,99	28	0	2,83E-04
621	c52773_g1	-8,258	69	33	0	1,49E-04	681	c55731_g1	-8,121	58	32,9	0	2,83E-04
622	c42815_g1	-8,253	32	56	0	1,35E-04	682	c57837_g1	-8,121	88	14	0	2,83E-04
623	c48363_g1	-8,246	76	28	0	1,66E-04	683	c52122_g1	-8,119	61	31	0	2,83E-04
624	c32215_g1	-8,245	52	43	0	1,49E-04	684	c39196_g1	-8,117	44,86	41,01	0	2,83E-04
625	c52367_g1	-8,244	79	26	0	1,66E-04	685	c54239_g1	-8,116	56	34,29	0	2,83E-04
626	c34663_g1	-8,239	34	54	0	1,49E-04	686	c55330_g2	-8,112	51	36,99	0	2,83E-04
627	c54027_g1	-8,235	74,97	28	0	1,66E-04	687	c27140_g1	-8,112	50,87	37	0	2,83E-04
628	c57638_g1	-8,231	62	36	0	1,66E-04	688	c42248_g2	-8,112	92	11	0	3,17E-04
629	c47163_g1	-8,225	78,98	25	0	1,84E-04	689	c51964_g1	-8,110	54	35	0	2,83E-04
630	c55465_g1	-8,224	90	18	0	1,84E-04	690	c50878_g1	-8,104	63	29	0	3,17E-04
631	c46214_g1	-8,220	69	31	0	1,84E-04	691	c53784_g3	-8,099	49,99	36,94	0	3,17E-04
632	c50344_g1	-8,217	37	51	0	1,66E-04	692	c56512_g1	-8,096	64	28	0	3,17E-04
633	c55632_g1	-8,214	85,95	20	0	1,84E-04	693	c57345_g1	-8,090	72,97	22	0	3,17E-04
634	c48431_g1	-8,213	70	30	0	1,84E-04	694	c50483_g1	-8,090	43	41	0	3,17E-04
635	c48899_g1	-8,212	35	52	0	1,66E-04	695	c56760_g1	-8,089	65	27	0	3,17E-04
636	c54235_g1	-8,207	60	36	0	1,84E-04	696	c54120_g1	-8,087	56,98	32	0	3,17E-04
637	c41888_g1	-8,204	81,96	22	0	2,05E-04	697	c57039_g2	-8,085	30	48,96	0	3,17E-04
638	c46095_g1	-8,204	55	38,96	0	1,84E-04	698	 c44282_g1	-8,081	66	26	0	3,54E-04
639	c39797_g1	-8,203	47	44	0	1,84E-04	699	c48720_g1	-8,081	77	19	0	3,54E-04
640	c53249_g1	-8,201	77	24,98	0	2,05E-04	700	c49223_g1	-8,080	47	38	0	3,17E-04
641	c40382 g1	-8,200	69	30	0	2,05E-04	701	c50539_g1	-8,068	65	26	0	3,54E-04
642	c52555_g2	-8,199	107	6	0	2,05E-04	702	c53003_g1	-8,068	65	26	0	3,54E-04
643	c46885_g1	-8,199	80	23	0	2,05E-04	703	c26695_g1	-8,065	79	17	0	3,54E-04
644	c51359_g1	-8,197	37	50	0	1,84E-04	704	c56232_g1	-8,063	40,91	41	0	3,54E-04
645	c46449_g1	-8,192	81	22	0	2,05E-04	705	c50163_g1	-8,062	52	34,12	0	3,54E-04
646	c13996_g1	-8,189	57	37	0	2,05E-04	706	c18743_g1	-8,059	47	37	0	3,54E-04
647	c56569_g1	-8,188	87	18	0	2,05E-04	707	c10879_g1	-8,055	42	40	0	3,54E-04
648	c37720_g1	-8,185	63,33	33	0	2,05E-04	708	c26365_g1	-8,054	53	33	0	3,54E-04
649	c31603 g1	-8,185	63	33	0	2,05E-04	709	c52602_g1	-8,051	37	43	0	3,54E-04
650	c29763_g1	-8,183	66	31	0	2,05E-04	710	c42923_g1	-8,047	43	39	0	3,54E-04
651	c37461_g1	-8,179	53	38,55	0	2,05E-04	710	c58083_g1	-8,046	75,99	18	0	3,97E-04
652	c51800_g1	-8,179	53	39	0	2,05E-04	712	c24147_g1	-8,042	71	21	0	3,97E-04
653	c57378_g1	-8,175	59	35,13	0	2,28E-04	712		-8,036	102	1	0	4,45E-04
654	c56930_g1	-8,174	78	23	0	2,28E-04	713	c49965_g4	-8,035	61	27	0	3,97E-04
655	c52839_g1	-8,172	53,98	38	0	2,28E-04	715	c24274_g1	-8,035	61	27	0	3,97E-04
656	c52878_g1	-8,169	76	24	0	2,28E-04	715	c43416_g1	-8,035	45	37	0	3,97E-04
657	c47836_g1	-8,167	98	10	0	2,28E-04	710	c57042_g1	-8,031	81	14	0	4,45E-04
658	c47836_g1	-8,167	63	32	0	2,28E-04	717	c55927_g3	-8,029	54	30,99	0	4,45E-04
659	c53726_g1	-8,159	91	14	0	2,28E-04	718	c45061_g1	-8,025	43	30,99	0	3,97E-04
<u> </u>	c122935_g1		67	29,26	0	2,34E-04	719	c24411_g1	-8,023	43 57	28,92	0	4,45E-04
000	CT55322_BT	-0,130	07	25,20	U	2,202-04	/20	CZ4411_81	-0,025	57	20,92	U	4,450-0

721	aEC282 a1	0.017	77	10	0	4 455 04	70	a45160 a1	7.042	21	20	0	0.085.04
721	c56382_g1 c56772_g1	-8,017 -8,015	77 47	16 35	0	4,45E-04 4,45E-04	781		-7,843	31 62	38 18	0	9,08E-04 9,08E-04
723	c56399_g1	-8,011	64	24	0	4,45E-04	783		-7,842	48	26,99	0	9,08E-04
723	c500555_g1	-8,007	48	34	0	4,45E-04	784		-7,837	57	20,55	0	1,03E-03
725	c52406_g1	-8,004	28,98	46	0	4,45E-04	785		-7,837	57	21	0	1,03E-03
726	c45516_g1	-7,999	60	26	0	4,99E-04	786		-7,835	46	28	0	9,08E-04
727	c57624_g6	-7,998	38	39,97	0	4,45E-04	787		-7,835	46	28	0	9,08E-04
728	c23672_g1	-7,989	64	23	0	4,99E-04	788		1	32	37	0	9,08E-04
729	c49256_g2	-7,984	59	25	0	4,99E-04	789		-7,833	49	26	0	1,03E-03
730	c49290_g2	-7,975	74	15,99	0	5,61E-04	78		-7,829	41	31	0	9,08E-04
731	c57800_g2	-7,975	74	16	0	5,61E-04	791		-7,826	47	27	0	1,03E-03
732	c57759_g2	-7,971	44	35	0	4,99E-04	792		-7,826	47	27	0	1,03E-03
733	c56216_g3	-7,971	80	12	0	5,61E-04	793		-7,825	2	56	0	8,03E-04
734	c50599_g1	-7,969	72	17	0	5,61E-04	794		-7,824	19	45	0	9,08E-04
735	c58213_g1	-7,968	86	8	0	5,61E-04	795		-7,824	19	45	0	9,08E-04
736	c57296_g1	-7,966	53	29	0	5,61E-04	796		-7,824	50	25	0	1,03E-03
737	c56287_g2	-7,965	78	13	0	5,61E-04	797		-7,822	39	32,11	0	1,03E-03
738	c51786_g1	-7,964	67	19,99	0	5,61E-04	798		1	45	28	0	1,03E-03
739	c40687_g1	-7,964	67	20	0	5,61E-04	799		-7,818	31	37	0	1,03E-03
740	c46491_g1	-7,964	56	27	0	5,61E-04	800		-7,817	47,99	26	0	1,03E-03
741	c49956_g1	-7,956	32	42	0	5,61E-04	801		-7,814	54	22	0	1,03E-03
742	c53600_g1	-7,952	63	22	0	6,32E-04	802		-7,813	40	31	0	1,03E-03
743	c43981_g3	-7,951	52	29	0	5,61E-04	803		-7,812	88	0	0	1,17E-03
744	c42555_g1	-7,948	69	18	0	6,32E-04	804		-7,809	46	27	0	1,03E-03
745	 c46325_g1	-7,947	58	25	0	6,32E-04	805		-7,809	32	36	0	1,03E-03
746	c56238_g1	-7,945	49,86	30	0	6,32E-04	806		-7,807	66	14	0	1,17E-03
747	c39309_g1	-7,944	63,99	21	0	6,32E-04	807		-7,807	66	14,49	0	1,17E-03
748	c57533_g1	-7,943	77,9	12	0	6,32E-04	808		-7,800	47,17	26	0	1,17E-03
749	c52997_g1	-7,942	42	35	0	5,61E-04	809		-7,797	22	42	0	2,61E-04
750	c54747_g1	-7,942	67	19	0	6,32E-04	810	c48299_g1	-7,796	56	20	0	1,17E-03
751	c50948_g1	-7,935	65	20	0	6,32E-04	811	c110033_g1	-7,791	48	25	0	2,98E-04
752	c54581_g1	-7,933	68	18	0	6,32E-04	812	c47193_g1	-7,791	48	25	0	2,98E-04
753	c41233_g1	-7,925	69	17	0	7,12E-04	813	c53765_g8	-7,785	43	28	0	2,98E-04
754	c56142_g2	-7,924	58	24	0	6,32E-04	814	c58179_g1	-7,779	38	30,92	0	2,98E-04
755	c49916_g1	-7,921	25	45	0	6,32E-04	815	c53794_g1	-7,779	55	20	0	2,98E-04
756	c45675_g1	-7,919	28	43	0	6,32E-04	816	c46238_g1	-7,776	61	15,99	0	3,41E-04
757	c43849_g1	-7,915	34	39	0	6,32E-04	817	c55009_g1	-7,775	47	25	0	2,98E-04
758	c43115_g1	-7,913	51	28	0	7,12E-04	818	c47666_g1	-7,773	16	45	0	2,61E-04
759	c84559_g1	-7,911	1	60	0	5,61E-04	819	c56977_g3	-7,769	42,21	28	0	3,41E-04
760	c54975_g2	-7,911	53,99	26,03	0,43	7,12E-04	820	c42518_g1	-7,769	42	28	0	3,41E-04
761	c58069_g1	-7,904	52	27	0	7,12E-04	821	c54167_g2	-7,767	28	37	0	2,98E-04
762	c31515_g1	-7,904	66	18	0	7,12E-04	822	c53843_g1	-7,766	48	24	0	3,41E-04
763	c57406_g1	-7,903	41	34	0	7,12E-04	823	c51967_g1	-7,765	30,99	35	0	2,98E-04
764	c57216_g1	-7,901	58	23	0	7,12E-04	824	c43025_g1	-7,758	46	25	0	3,41E-04
765	c52765_g1	-7,900	33	39	0	7,12E-04	825			46	25	0	3,41E-04
766	c40022_g1	-7,889	23	45	0	7,12E-04	826		-	29	36	0	2,98E-04
767	c56686_g3	-7,889	65	18	0	8,03E-04	827			66	12	0	3,41E-04
768	c44266_g1	-7,887	40	34	0	7,12E-04	828			52	21	0	3,41E-04
769	c53878_g2	-7,885	57	23	0	8,03E-04	829	c31520_g1	-7,755	51,98	21	0	3,41E-04
770	c43838_g1	-7,880	38	35	0	8,03E-04	830			44	26	0	3,41E-04
771	c43290_g1	-7,880	52	26	0	8,03E-04	831		-	64	13	0	3,90E-04
772	c55416_g1	-7,870	56	23	0	8,03E-04	832			56	18	0	3,90E-04
773	c53879_g1	-7,865	65	17	0	9,08E-04	833			59	16	0	3,90E-04
774	c55060_g1	-7,856	38	34	0	8,03E-04	834			54	19	0	3,90E-04
775	c52935_g1	-7,853	86	3	0	9,08E-04	835			57	16,73	0	3,90E-04
776	c53608_g1	-7,850	33	36,72	0	8,03E-04	836		-	46	24	0	3,90E-04
777	c52608_g1	-7,849	78	8	0	9,08E-04	837			66	11	0	3,90E-04
778	c56826_g1	-7,849	64	16,84	0	9,08E-04	838		-	35	31	0	3,90E-04
779	c49577_g2	-7,849	49,98	26	0	9,08E-04	839			47	23	0	3,90E-04
780	c54510_g3	-7,847	39	33	0	9,08E-04	840	c48887_g1	-7,721	30	34	0	3,90E-04

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

6,84E-04

6,84E-04

7,91E-04

7,91E-04

7,91E-04 5,93E-04

7,91E-04

7,91E-04

7,91E-04

7,91E-04

6,84E-04

9,17E-04

7,91E-04

7,91E-04

9,17E-04

9,17E-04

9,17E-04

9,17E-04

9,17E-04

9,17E-04

9,17E-04

1,06E-03

1,06E-03

1,06E-03

1,06E-03

1,06E-03

9,17E-04

1,06E-03

1,06E-03

1,06E-03

1,06E-03

1,06E-03

1,06E-03

1,06E-03

1,06E-03

1,24E-03

1,06E-03

1,06E-03

1,24E-03

1,06E-03

1,06E-03

1,24E-03

1,24E-03

1,24E-03

1,24E-03

1,24E-03

1,24E-03

1,06E-03

1,24E-03

1,44E-03

1,24E-03 1,24E-03

1,44E-03

1,44E-03

9,17E-04

1,44E-03

1,44E-03

1,44E-03

1,24E-03

1,44E-03

841	c58082_g1	-7,721	50	21	0	3,90E-04	901	c45761_g1	-7,568	31	28
842	c56194_g1	-7,719	52,53	19	0	3,90E-04	902	c55896 g1	-7,567	34	26
843	c56848_g3	-7,718	36	30	0	3,90E-04	903	c56155_g1	-7,566	37	24,44
44	c48943 g1	-7,718	36	30	0	3,90E-04	904	c47543_g1	-7,563	49	16
15	c44533 g1	-7,718	56	17	0	3,90E-04	905	c43300 g1	-7,560	58	10
- 6	c96869_g1	-7,717	39	28	0	3,90E-04	906	c46227_g1	-7,555	6	43,63
7	c58054_g10		34	31	0	3,90E-04	907	c25629_g2	-7,554	44	19
B	c52660_g1	-7,709	57	16	0	4,48E-04	908	c55446_g1	-7,553	47	17,03
	c50657_g1	-7,707	20	40	0	3,90E-04	909	c39368_g1	-7,553	50	17,03
	c39617 g1	-7,707	40	27	0	3,90E-04	910	c46456_g1	-7,552	53	13
	c39362 g1	-7,703	69	8	0	4,48E-04	911	c26901_g1	-7,552	18	36
	c55286_g1	-7,703	68,92	8	0	4,48E-04	912	c26006_g1	-7,551	56	11
	c48515_g2	-7,701	35	29,99	0	3,90E-04	913	c31091_g1	-7,548	30	28
	c50941_g1	-7,694	50	19,84	0	4,48E-04	914	c46859_g1	-7,544	45	18
	c56747_g1	-7,694	30	33	0	4,48E-04	915	c40055_g1	-7,531	55	10
	c57218_g2	-7,687	45,06	22,9	0	4,48E-04	916	c58114_g1	-7,531	55	9
_	c52831_g1	-7,684	43,00 31	32	0	4,48E-04	917	c57491_g1	-7,523	50	13,99
3	c33392_g1	-7,679	43	24	0	4,48E-04	918	c53931_g1	-7,523	50	13,99
-	c49610_g1	-7,679	43	24	0	5,15E-04	919	c56592 g1	-7,516	35,97	23
))		-7,669	21	38	0	4,48E-04	920	c55930_g1		33,97	23
-	c55759_g1								-7,515		
L	c53595_g1	-7,669	66,72	8	0	5,15E-04	921	c44867_g1	-7,514	45	17
2	c54516_g1	-7,665	52,74	17	0	5,15E-04	922	c49331_g1	-7,512	51	13
3	c56558_g1	-7,662	39	26	0	5,15E-04	923	c49374_g1	-7,512	51	13,39
4 5	c110791_g1	-7,661	65	9	0	5,15E-04	924	c25218_g2	-7,512	54	11
	c38225_g1	-7,659	45	22	0	5,15E-04	925	c54724_g1	-7,503	45,96	16
	c44573_g1	-7,659	45	22	0	5,15E-04	926	c58154_g4	-7,502	52	12
	c56807_g1	-7,649	0	51	0	3,90E-04	927	c48884_g1	-7,497	26	29
	c55743_g1	-7,646	54,92	15	0	5,93E-04	928	c54264_g1	-7,495	38	21
_	c34353_g1	-7,644	12	43	0	4,48E-04	929	c39222_g1	-7,495	38	21
	c34152_g1	-7,644	12	43	0	4,48E-04	930	c56337_g1	-7,486	30	25,93
F	c55195_g1	-7,641	44	22	0	5,93E-04	931	c56200_g1	-7,486	30	25,99
H	c53723_g2	-7,636	33	29	0	5,15E-04	932	c57956_g1	-7,484	39	20
F	c57270_g1	-7,634	39	25	0	5,93E-04	933	c98263_g1	-7,483	48	14
F	c38009_g2	-7,634	39	25	0	5,93E-04	934	c109750_g1	-7,482	51	12,35
ŀ	c49158_g1	-7,626	33,79	28	0	5,93E-04	935	c52230_g1	-7,481	54	10
H	c57887_g1	-7,626	60	11	0	5,93E-04	936	c56661_g2	-7,480	60	6
_	c50911_g1	-7,625	37	26	0	5,93E-04	937	c57632_g1	-7,474	37	21
	c46163_g1	-7,623	43	22	0	5,93E-04	938	c53453_g1	-7,474	40	19
9	c52996_g1	-7,623	43	22	0	5,93E-04	939	c56213_g1	-7,471	58	7
	c54036_g2		43	22	0	5,93E-04		c47758_g1		20	31,85
1	c53054_g1	-7,618	29	31	0	5,93E-04	941	c56209_g1	-7,465	29	26
2	c45279_g1	-7,615	38	25	0	5,93E-04	942	c55002_g1	-7,463	41	18
3	c18631_g1		44	21	0	5,93E-04	943	c57895_g1	-7,453	39	19
1	c56186_g1	-7,613	44	21	0	5,93E-04	944	c34922_g1	-7,453	38,95	19
5	c51015_g1	-7,612	47	19	0	6,84E-04	945	c52605_g1	-7,452	42	17,01
6	c122528_g1		46,93	19	0	6,84E-04	946	c47514_g1	-7,452	42	17
7	c43163_g1		56	12,93	0	6,84E-04	947	c57505_g2	-7,450	60	5
8	c50988_g1	-7,608	30	30	0	5,93E-04	948	c49501_g1	-7,445	16	34
9	c48444_g1		59	11	0	6,84E-04	949	c52168_g1	-7,443	28	26
0	c33914_g1	-7,605	39	24	0	6,84E-04	950	c51666_g19		64	2
1	c32837_g1	-7,604	42	22	0	6,84E-04	951	c50711_g1	-7,433	23	28,92
2	c40432_g1	-7,601	22	35	0	5,93E-04	952	c54515_g1	-7,431	38	19
93	c50412_g1		17,2	37,99	0	5,93E-04	953	c57011_g1	-7,431	44	15
94	c8866_g1	-7,592	49	17	0	6,84E-04	954	c58225_g1	-7,430	47	13
95	c57215_g1	-7,589	58	11	0	6,84E-04	955	c46117_g1	-7,425	0	43,98
96	c52618_g1	-7,586	38,31	24	0	6,84E-04	956	c51711_g1	-7,420	45	14
97	c35611_g1	-7,580	24	33	0	6,84E-04	957	c52212_g1	-7,419	51	10,13
98	c51600_g1	-7,575	42	21	0	7,91E-04	958	c34530_g1	-7,419	57	6
99	c52818_g5	-7,572	19	36	0	6,84E-04	959	c55990_g3	-7,411	22	29,23
900	c54971_g8	7 5 70	25	32	0	6,84E-04	960	c48798_g1	-7,410	30,99	23

001	-52421 -1	7 410	24	20.82	0	1 445 02	1021	-54269 -1	7 2 2 2 7	4.4	0	0	2 225 02
961 962	c53421_g1 c34582 g1	-7,410 -7,409	34 52	20,82 9	0	1,44E-03	1021 1022	c54268_g1 c57185 g4	-7,227 -7,211	44 33	9 16	0	3,23E-03 3,23E-03
963	c57204 g1	-7,400	14	33,99	0	1,24E-03	1022	c56031_g1	-7,210	30,05	18	0	2,74E-03
964	c44262_g1	-7,400	26	26	0	1,44E-03	1024	c30327_g1	-7,210	30	18	0	2,74E-03
965	c40209_g1	-7,399	29	24	0	1,44E-03	1025	c46695_g1	-7,210	26,62	19,96	0	2,74E-03
966	c40203_g1	-7,399	32	24	0	1,44E-03	1025	c43466_g1	-7,201	40	11	0	3,23E-03
967	c10610_g1	-7,399	35	20	0	1,44E-03	1027	c48592_g1	-7,201	0	38	0	1,98E-03
968	c37475 g2	-7,388	30	23	0	1,44E-03	1027	c45991_g2	-7,196	25	21	0	3,23E-03
969	c55840_g1	-7,387	44,99	13	0	1,69E-03	1020	c45551_g2	-7,196	25	21,13	0	3,23E-03
970	c84063_g1	-7,377	25	26	0	1,44E-03	1025	c57858_g2	-7,188	38,04	12	0	3,23E-03
971	c57159 g1	-7,377	31	20	0	1,44E-03	1030	c57878_g2	-7,188	38,04	12	0	3,23E-03
972	c57851_g1	-7,377	40	16	0	1,69E-03	1031	c43981_g1	-7,187	35	12	0	3,23E-03
973	c55605_g1	-7,365	32	21	0	1,69E-03	1032	c57285_g1	-7,187	35	14	0	3,23E-03
					0								
974	c15646_g1	-7,365	44	13		1,69E-03	1034	c57100_g2	-7,186	502,72	484,77	0,99	1,13E-11
975	c58520_g1	-7,365	56	5	0	1,69E-03	1035	c57948_g1	-7,185	29	17,9	0	3,23E-03
976	c32808_g1	-7,354	48	10	0	1,98E-03	1036	c50726_g1	-7,184	26	20	0	3,23E-03
977	c56024_g1	-7,354	42	14	0	1,69E-03	1037	c53018_g1	-7,184	26	20	0	3,23E-03
978	c57473_g1	-7,354	36	17,99	0	1,69E-03	1038	c50739_g1	-7,178	11	30	0	2,74E-03
979	c50211_g1	-7,354	33	20	0	1,69E-03	1039	c58206_g1	-7,177	42	9	0	3,83E-03
980	c56300_g1	-7,354	21	28	0	1,69E-03	1040	c58174_g2	-7,177	42	9	0	3,83E-03
981	c56742_g1	-7,343	48,96	9	0	1,98E-03	1041	c38314_g1	-7,175	36	13	0	3,23E-03
982	c41200_g1	-7,343	40	15	0	1,98E-03	1042	c56540_g1	-7,174	33	15	0	3,23E-03
983	c44608_g1	-7,343	34	19	0	1,69E-03	1043	c35853_g1	-7,171	27	19	0	3,23E-03
984	c46039_g1	-7,343	31	21	0	1,69E-03	1044	c50126_g1	-7,170	24	21	0	3,23E-03
985	c50148_g1	-7,343	28	23	0	1,69E-03	1045	c56845_g1	-7,163	37	12	0	3,83E-03
986	c46404_g1	-7,342	25	25	0	1,69E-03	1046	c57306_g5	-7,161	34	14	0	3,83E-03
987	c57087_g1	-7,332	47,1	10	0	1,98E-03	1047	c48175_g1	-7,160	31	16	0	3,83E-03
988	c50276_g1	-7,331	38	16	0	1,98E-03	1048	c55133_g1	-7,156	22	22	0	3,23E-03
989	c52207_g1	-7,331	29	22	0	1,98E-03	1049	c58018_g3	-7,155	19	24,2	0	3,23E-03
990	c56913_g4	-7,321	45	11	0	1,98E-03	1050	c56479_g1	-7,155	19	24	0	3,23E-03
991	c54212_g1	-7,308	34	18	0	1,98E-03	1051	c46469_g1	-7,146	767,97	310,85	1	1,47E-11
992	c54846_g3	-7,308	31	20	0	1,98E-03	1052	c44180_g1	-7,132	27	18	0	3,83E-03
993	c38895_g1	-7,296	32	19	0	2,32E-03	1053	c43895_g1	-7,131	24	20	0	3,83E-03
994	c57322_g2	-7,295	23	25	0	1,98E-03	1054	c49057_g1	-7,124	37	11	0	4,54E-03
995	c50967_g1	-7,294	20	27	0	1,98E-03	1055	c57271_g1	-7,124	37	11	0	4,54E-03
996	c54346_g1	-7,286	48	8	0	2,32E-03	1056	c40801_g1	-7,121	31	15	0	3,83E-03
997	c51703_g1	-7,286	48	8,01	0	2,32E-03	1057	c52586_g1	-7,119	28	17	0	3,83E-03
998	c49929_g1	-7,285	38,72	14	0	2,32E-03	1058	c54893_g1	-7,118	25	19	0	3,83E-03
999	c57398_g1	-7,284	30	20,07	0	2,32E-03	1059	c39599_g2	-7,116	22	20,98	0	3,83E-03
1000	c50923 g1	-7,283	27	21,99	0	2,32E-03	1060	c56181_g1	-7,112	38	10	0	4,54E-03
1001	c15585_g1	-7,282	18	28	0	1,98E-03	1061	c15308_g1	-7,111	13	26,99	0	3,83E-03
1002	c53623_g2	-7,274	43	11	0	2,32E-03	1062	 c47150_g1	-7,108	32	14	0	4,54E-03
1003	c57672_g2	-7,273	34	17	0	2,32E-03	1063	c48009_g2	-7,108	31,81	14	0	4,54E-03
1004	c19096_g1	-7,271	28	21	0	2,32E-03	1064	c46160_g1	-7,104	48	3	0	4,54E-03
1005	c36300_g1	-7,271	28	20,99	0	2,32E-03	1065	c47626_g1	-7,104	48	3	0	4,54E-03
1006	c51978_g1	-7,263	47	8	0	2,74E-03	1066		-7,097	36	11	0	4,54E-03
1000	c50645_g1	-7,258	22,92	24	0	2,32E-03	1067	c50027_g1	-7,094	30	15	0	4,54E-03
1007	c44491_g1		22,92	24	0	2,32E-03	1067	c32783_g1	-7,094	15	24,9	0	3,83E-03
1003	c52756_g1		17	28	0	2,32E-03	1069	c39644_g1	-7,083	34	12	0	4,54E-03
1009	c49571_g2		39		0	2,32E-03		c50399_g1	-7,085	44	5	0	4,54E-03
1010	c24327_g2	-7,250	39	13 19	0	2,74E-03	1070 1071	c50399_g1	-7,076	22	20	0	4,54E-03
	c109557_g1		24	23	0	2,32E-03	1072	c53404_g3	-7,075	22	19,99	0	4,54E-03
1013	c56226_g1	-7,246	24	23	0	2,32E-03	1073	c45750_g1	-7,067	10	28	0	3,83E-03
1014	c54445_g1	-7,245	21	24,85	0	2,32E-03	1074	c57321_g1	-7,065	48	2	0	5,41E-03
1015	c33096_g1	-7,245	21	25	0	2,32E-03	1075	c48904_g1	-7,061	42	6	0	5,41E-0
1016	c54218_g2	-7,244	15	29	0	2,32E-03	1076		-7,057	36	10	0	5,41E-03
1017	c53521_g1	-7,237	37	14	0	2,74E-03	1077	c56233_g1	-7,049	42,76	5	0,49	5,41E-03
1018		-7,235	28	20	0	2,74E-03	1078			37	9,15	0	5,41E-03
1019	c50942_g1		22	24	0	2,74E-03	1079	c52792_g1		17,78	22	0	4,54E-03
	c50942_g1 c56199_g2		22 16	24 28	0	2,74E-03 2,32E-03	1079 1080			17,78 50	22 0	0	

1081	c38003_g1	-7,040	31	13	0	5,41E-03	1141	c30118_g1	-6,852	32	8	0	1,12E-02
1082	c58057_g4	-7,038	28	14,96	0	5,41E-03	1142	c57046_g7	-6,851	9	24	0	9,28E-03
1083	c51169_g4	-7,038	28	15	0	5,41E-03	1143	c57771_g1	-6,849	19	17	0	9,28E-03
1084	c50185_g1	-7,030	0	33,93	0	3,83E-03	1144	c35816_g1	-6,845	16	19	0	9,28E-03
1085	c54664_g1	-7,027	32	12	0	5,41E-03	1145	c56750_g1	-6,843	26	12	0	1,12E-02
1086	c55919_g7	-7,025	29	14	0	5,41E-03	1146	c46899_g1	-6,843	26	12	0	1,12E-02
1087	c53614_g1	-7,025	28,98	14	0	5,41E-03	1147	c49449_g1	-6,837	33	7	0	1,12E-02
1088	c50214_g1	-7,022	26	16	0	5,41E-03	1148	c50364_g1	-6,836	10	23	0	9,28E-03
1089	c55170_g4	-7,020	23	18,2	0	5,41E-03	1149	c52817_g1	-6,835	20	16	0	1,12E-02
1090	c53939_g1	-7,004	21	19	0	5,41E-03	1150	c55589_g1	-6,835	20	16	0	1,12E-02
1091	c53092_g3	-7,001	34	10	0	6,45E-03	1151	c54262_g1	-6,833	30	9	0	1,12E-02
1092	c43078_g1	-6,993	41	4,95	0	6,45E-03	1152	c42008_g2	-6,832	40	2	0	1,12E-02
1093	c49643_g1	-6,987	35	9	0	6,45E-03	1153	c46478_g1	-6,830	17	18	0	9,28E-03
1094	c51249_g1	-6,985	32	11	0	6,45E-03	1154	c55746_g1	-6,825	24	13	0	1,12E-02
1095	c49517_g1	-6,985	16	22	0	6,45E-03	1155	c109999_g1	-6,820	21	15	0	1,12E-02
1096	c57735_g1	-6,985	16	22,49	0	6,45E-03	1156	c57718_g1	-6,816	8	24	0	9,28E-03
1097	c57008_g1	-6,982	29	13	0	6,45E-03	1157	c34557_g1	-6,815	18	17	0	1,12E-02
1098	c53092_g1	-6,982	29	13	0	6,45E-03	1158	c51753_g1	-6,810	25	12	0	1,12E-02
1099	c109529_g1	-6,979	26	15	0	6,45E-03	1159	 c45735_g1	-6,806	12	21	0	1,12E-02
1100	c45370_g1	-6,976	7	27,88	0	5,41E-03	1160	c53730_g1	-6,806	12	21	0	1,12E-02
1101	c55490_g1	-6,968	14	23	0	6,45E-03	1161	c50121_g1	-6,805	22	14	0	1,12E-02
1102	c55911_g4	-6,963	24	16	0	6,45E-03	1162	 c56434_g1	-6,801	19	16	0	1,12E-02
1103	 c57500_g1	-6,958	5,37	29	0	5,41E-03	1163	 c47490_g1	-6,800	29	9	0	1,35E-02
1104	c53999_g1	-6,957	18	20	0	6,45E-03	1164	 c56140_g1	-6,796	6	25	0	9,28E-03
	c124540_g1		47	0	0	7,73E-03	1165	c58172_g1	-6,795	26	10,85	0	1,35E-02
1106	c31075_g1	-6,952	28	13	0	7,73E-03	1166	c52389_g1	-6,791	23	13	0	1,12E-02
1107	c54105_g2	-6,949	24,98	15	0	7,73E-03	1167	c57110_g1	-6,771	31	7	0	1,35E-02
1108	c57426_g1	-6,947	9	26	0	6,45E-03	1168	c55582_g2	-6,771	21	14	0	1,35E-02
1109	c49215_g1	-6,939	16	21	0	6,45E-03	1169		-6,770	11	21	0	0,011
1110		-6,938	29	12	0	7,73E-03	1170		-6,761	25	11	0	0,014
1111		-6,938	28,87	12	0	7,73E-03	1171	c57750_g1	-6,761	25	11	0	0,014
1112	c43033_g1	-6,936	13	22,99	0	6,45E-03		c109742_g1		31,99	6	0	0,014
1113	c30979_g1	-6,936	12,92	23	0	6,45E-03	1173	c55186_g1	-6,756	554,35	255,96	1	0,000
1114	c54152_g1	-6,935	26	14	0	7,73E-03	1174		-6,756	22	13	0	0,014
1115	c29535 g1	-6,934	39	5	0	9,28E-03		c55170_g11	-6,756	22	12,85	0	0,014
1116	c31394_g2	-6,932	23	16	0	7,73E-03	1176	c52276_g1	-6,755	12	20	0	0,011
1117	c57331_g1	-6,921	27	13	0	7,73E-03	1177	c54011_g1	-6,749	9	22	0	0,011
	c36298_g1	-6,918	24	15	0	7,73E-03	1178		-6,745	16	17	0	0,011
	c57078_g1	-6,918	23,97	14,96	0	7,73E-03		c14192_g1		33,13	5	0	0,014
1120		-6,914	20,95	14,50	0	7,73E-03	1180		-6,739	13	19	0	0,010
1120	c51532_g1	-6,914	20,89	17	0	7,73E-03	1181	c49246_g1	-6,737	30	7	0	0,014
1121		-6,911	18	19	0	7,73E-03	1182		-6,730	17	16	0	0,010
1122		-6,911	31	19	0	9,28E-03	1182		-6,726	24	10,98	0	0,014
1123		-6,907	28	12,01	0	9,28E-03	1185		-6,722	30,99	6	0	0,010
1124		-6,904	28	12,01	0	9,28E-03	1184		-6,719	37,95	1	0	0,010
	c41580 g1	-6,904	23	14	0	9,28E-03		c54115_g1	-6,719	28	8	0	0,016
1120		-6,900	22	16	0	7,73E-03	1180		-6,716	28	8	0	0,016
	c44937_g1	-6,893	16	20	0	7,73E-03		c52467_g1	-6,711	27,98	10	0	0,016
						9,28E-03						0	0,016
1129		-6,886	23	15	0	9,28E-03 9,28E-03	1189		-6,705	22,16	12	0	0,016
1130		-6,883	33	8			1190		-6,705	22	12		
1131		-6,876	27	12	0	9,28E-03	1191		-6,705	22	12	0	0,016
1132		-6,874	13,99	21	0	7,73E-03	1192		-6,701	29	6,99	0	0,016
1133		-6,872	24	13,98	0	9,28E-03	1193		-6,701	29	7	0	0,016
1134		-6,869	34	7	0	1,12E-02	1194		-6,698	36	2	0	0,020
1135		-6,864	18	18	0	9,28E-03		c50490_g1	-6,695	26	9	0	0,016
1136	c41121_g1	-6,862	5	27	0	7,73E-03		c122431_g1		16	16	0	0,016
1137	c51475_g1	-6,862	28	11	0	9,28E-03	1197		-6,689	23	11	0	0,016
1138	c53052_g4	-6,858	25	13	0	9,28E-03	1198		-6,689	23	11	0	0,016
1139	c43089_g1	-6,856	35	6	0	1,12E-02	1199	c96846_g1	-6,678	34	3	0	0,020
1140	c53721_g1	-6,854	22,24	15	0	9,28E-03	1200	c30933_g1	-6,674	24	10	0	0,016

1201	c56785_g1	-6,674	24	10	0	0,016	1261	c52387_g1	-5,210	121	127,88	1	0,000
1202	c53050_g1	-6,668	21	12	0	0,016	1262	c57993_g1	-5,182	206,93	72,93	1	0,000
1203	c45667_g1	-6,665	28	7,13	0	0,020	1263	c49256_g3	-5,085	110	118	1	0,000
1204	c27311_g1	-6,659	1	26	0	0,014	1264	c56473_g1	-5,085	203,99	62	1	0,000
1205	c57908_g1	-6,659	25	9	0	0,020	1265	c30202_g1	-5,052	487	232,99	3	0,000
1206	c40499_g1	-6,659	25	9	0	0,020	1266	c52880_g2	-5,028	187	65	1	0,000
1207	c55056_g1	-6,657	8	21	0	0,016	1267	c71326_g1	-5,013	256,93	187,96	2	0,000
1208	c55765_g1	-6,657	8	20,99	0	0,016	1268	c51521_g1	-5,001	111	107,3	1	0,000
1209	c33840_g1	-6,654	15	16	0	0,016	1269	c52261_g1	-5,000	151	83	1	0,000
1210	c48127_g1	-6,652	22	10,95	0	0,020	1270	c43343_g2	-4,989	249	187	2	0,000
1211	c56372_g1	-6,652	22	11	0	0,020	1271	c57410_g2	-4,982	99	112	1	0,000
1212	c58160_g1	-6,650	29	6	0	0,020	1272	c50627_g1	-4,977	707,98	399,97	5	0,000
1213	c36439_g1	-6,649	5	23	0	0,014	1273	c54222_g1	-4,956	144	82	1	0,000
1214	c55542_g1	-6,647	12	18	0	0,016	1274	c56935_g1	-4,929	184	55	1	0,000
1215	c57445_g1	-6,643	26,43	8	0	0,020	1275	c53372_g1	-4,889	187,96	48	1	0,000
	c123047_g1		33	3	0	0,020		c56129_g1	-4,864	169,75	56	1	0,000
1217	c24374_g1	-6,638	16	15	0	0,020	1277	c35155_g1	-4,804	273	133	2	0,000
	c49375_g1		16	15	0				-4,789	145	63	0,74	0,000
1218		-6,638				0,020	1278						,
1219	c53439_g2	-6,635	30	5	0	0,020	1279		-4,785	146	62	1	0,000
1220	c42834_g2	-6,633	6	22	0	0,016	1280		-4,767	376	205	3	0,000
1221	c56783_g1	-6,631	13	17	0	0,016	1281		-4,735	134	64	1	0,000
1222	c44620_g1	-6,628	445	270	1	0,000	1282	c58237_g1	-4,709	346,98	205	3	0,000
1223	c23833_g1	-6,628	27	7	0	0,020	1283	c51542_g1	-4,675	1302	425	9	0,000
1224	c51967_g2	-6,624	10	19	0	0,016	1284	c48420_g1	-4,639	160	39	1	0,00
1225	c27671_g1	-6,621	24	9	0	0,020	1285	c52737_g1	-4,636	85	84	1	0,000
1226	c109598_g1	-6,615	14	16	0	0,020	1286	c10566_g1	-4,586	162	156,99	2	0,000
1227	c45259_g1	-6,614	21	11	0	0,020	1287	c53816_g3	-4,584	125	54,79	0,66	0,000
1228	c49084_g1	-6,606	18	13	0	0,020	1288	c56891_g1	-4,582	379	151,58	3	0,00
1229	c55628_g2	-6,605	339	322,93	1	0,000	1289	c53620_g1	-4,550	143	41	1	0,000
1230	c51814_g2	-6,599	8	19,97	0	0,020	1290	c57338_g4	-4,511	88	71	1	0,00
1231	c54953_g1	-6,599	15	15	0	0,020	1291	c43425_g1	-4,505	327	162,98	3	0,000
1232	c55149_g2	-6,599	15	15	0	0,020	1292	c49669_g1	-4,489	130,56	158,54	2,5	0,000
1233	c11450_g1	-6,557	7	20	0	0,020	1293	c57017_g1	-4,476	93	65	1	0,000
1234	c96899_g1	-6,540	1	24	0	0,016	1294	c51424_g1	-4,441	98	59,11	1,02	0,000
1235	c57944_g1	-6,522	463	221,95	1	0,000	1295	c54437_g1	-4,435	118	158	2	0,000
1236	c56469_g1	-6,463	417	229,01	1	0,000	1296	c57114_g1	-4,417	645	285	6	0,000
1237		-6,427	459	193	1	0,000	1297	c51265_g2	-4,406	94,93	58	1	0,000
1238	c57311_g1	-6,133	351	171,42	1	0,000		c54902_g1	-4,369	100	52	1	0,000
1239		-6,056	361,87	144,83	1	0,000		 c41895_g1	-4,332	161	117	2	0,000
1240	c55389 g3	-6,008	262,98	190,99	1	0,000		c54886 g1	-4,326	523	213	5	0,000
1241	c43382_g1	-5,988	3323	43	5,88	0,000	1301		-4,318	260,16	158,88	3	0,000
	c122426_g1		519	345,92	2	0,000	1302		-4,315	253	60	2	0,000
1243	c15658 g1	-5,917	239	183,99	1	0,000	1302		-4,287	62	69	1	0,000
1243			336,94									3	0,000
	c55101_g2	-5,887		120	1	0,000	1304		-4,263	210,98	176,12		
1245	c45950_g1	-5,854	270	152	1	0,000	1305		-4,261	85	53	0,99	0,000
1246	c55094_g2	-5,847	266	153	1	0,000		c57565_g3	-4,229	210,97	169	3	0,00
1247	c53824_g1	-5,835	275	145	0,84	0,000	1307		-4,214	275,93	128	3	0,000
1248	c57671_g1	-5,831	224	174	1	0,000		c47887_g1	-4,162	85	46	1	0,00
1249	c49173_g1	-5,747	217,01	161,04	1	0,000	1309		-4,131	80	46,96	0,72	0,00
1250	c49608_g1	-5,589	268	100,9	1	0,000		c47898_g1	-4,122	290	191	4,22	0,00
1251	c48875_g2	-5,587	230	123,46	1	0,000	1311	c10120_g1	-4,104	69	51,99	1	0,00
1252	c56350_g1	-5,553	218	124	1	0,000		c57583_g2	-3,995	695	170	7	0,00
1253	c48317_g1	-5,538	435,97	232	2	0,000	1313	c51752_g1	-3,983	302	150,84	4	0,000
1254	c47895_g1	-5,528	935,97	410	4	0,000	1314	c56222_g1	-3,942	269	161	4	0,00
1255	c49323_g1	-5,501	533,83	163	2	0,000	1315	c55022_g3	-3,940	96	25	1	0,00
1256	c38325_g1	-5,439	215,98	106	1	0,000	1316	c50481_g1	-3,934	30535,96	6634,93	311	0,00
1257	c52176_g1	-5,361	184,99	111,99	1	0,000		c55391_g1	-3,934	388	168,34	5	0,00
1258	c54151 g2	-5,317	485	337,86	3	0,000		c56319 g1	-3,889	391	230,09	6	0,00
1259	c56989_g1	-5,259	226,97	72,13	1,3	0,000		c47668 g1	-3,889	178,04	127	3	0,000
		_,	,,,,	, _3	1,5	2,000	1313	c47608_g1	-3,874	_, 0,04	/		5,00

					1							1 1	
1321		-3,869	1031	449	14	0,000	1381	c34184_g1	-3,163	313	139,87	7	0,000
1322	c48878_g2	-3,858	58	44,22	0,63	0,002	1382	c55628_g1	-3,152	301	2574,95	61	0,000
1323	c84052_g1	-3,822	535	269,99	8	0,000	1383	c46841_g1	-3,130	589	330,48	15	0,000
1324	c57516_g2	-3,818	1712	1309,86	32	0,000	1384	c52305_g1	-3,109	117	66,18	3	0,001
1325	c44183_g2	-3,816	211	96	3	0,000	1385	c42941_g2	-3,100	497,99	368,75	15	0,000
1326	c25398_g1	-3,815	59	40,8	1	0,001	1386	c56779_g2	-3,100	586	405	17	0,000
1327	c57918_g1	-3,803	50	46	1	0,001	1387	c45746_g1	-3,097	87	83	3	0,001
1328	c23731_g1	-3,778	267	127,97	4	0,000	1388	c58233_g1	-3,086	581	228,03	13	0,000
1329	c57728_g2	-3,778	202	165,74	4	0,000	1389	c57083_g1	-3,084	56,96	56	2	0,003
1330	c46499_g1	-3,763	152	123	3	0,000	1390	c57605_g1	-3,080	97	31	2	0,003
1331	c10794_g1	-3,750	9	68,98	1	0,001	1391	c56722_g2	-3,058	319	284,41	10,7	0,000
1332	c10169_g1	-3,692	122,99	130	3	0,000	1392	c44046_g1	-3,052	649	260	15	0,000
1333	c57972_g2	-3,685	80	21	1	0,002	1393	c57480_g1	-3,049	869,01	174	16	0,000
1334	c50100_g1	-3,680	100	76	2	0,000	1394	c52188_g2	-3,019	140	85,6	4	0,001
1335	c50506_g1	-3,679	128	59	2	0,000	1395	c52993_g1	-3,010	124,8	52	2,94	0,001
1336	c58285_g1	-3,679	257,96	180	4,98	0,000	1396	c48575_g2	-3,000	224,99	157	7	0,000
1337	c11557_g1	-3,640	211,99	70	3	0,000	1397	c54611_g1	-2,996	221,98	116,99	6	0,000
1338	c57208_g1	-3,622	106	67	2	0,000	1398	c55692_g1	-2,995	492	244,88	13	0,000
1339	c58162_g2	-3,602	140,88	43,98	2	0,000	1399	c58347_g1	-2,985	251	97,99	6	0,000
1340	c56996_g1	-3,599	55,99	32	1	0,003	1400	c49611_g1	-2,972	107,99	59	3	0,001
1341	c50665_g2	-3,596	150	38	2	0,000	1401	c57241_g1	-2,970	520,98	178,98	12	0,000
1342	c50153_g1	-3,579	98	68	2	0,000	1402	c45419_g1	-2,962	270	122,89	7	0,000
1343	c47466_g1	-3,556	45	37	1	0,003	1403	c35068_g1	-2,941	139,97	77	4	0,001
1344	c49648_g2	-3,536	414,07	294,98	9	0,000	1404	c49418_g2	-2,929	575,99	288,92	16	0,000
1345	c54237_g1	-3,514	75	16	1	0,004	1405	c48817_g1	-2,927	182	129	6	0,000
1346	c49895_g1	-3,503	424	103	6	0,000	1406	c55912_g1	-2,914	129,73	80	4	0,001
1347	c51159_g1	-3,498	154	86	3	0,000	1407	c58058_g1	-2,907	757,99	251,43	18	0,000
1348	c55076_g1	-3,489	56	26,99	1	0,004	1408	c49278_g1	-2,902	300	208,62	10	0,000
1349	c52950_g2	-3,486	126	43	2	0,001	1409	c57149_g1	-2,887	657	300	17,8	0,000
1350	c53447_g1	-3,483	268	132	5	0,000	1410	c54978_g1	-2,886	149,79	64,89	4	0,001
1351	c45110_g1	-3,461	76	13	1	0,004	1411	c54679_g1	-2,862	379,99	411,1	17	0,000
1352	c97073_g1	-3,451	168	72	3	0,000	1412	c26676_g1	-2,856	440,99	188,99	12	0,000
1353	c50986_g2	-3,449	139	32	2	0,001	1413	c47346_g1	-2,847	113	157	6	0,000
1354	c32839_g1	-3,430	1021	16	11	0,000	1414	c84087_g1	-2,840	757,31	366	22	0,000
1355	c45955_g1	-3,427	118	42,96	2	0,001	1415	c30304_g1	-2,838	202	66	5	0,001
1356	c37503_g1	-3,421	424,98	302	10	0,000	1416	c45428_g1	-2,833	340,96	94,09	8	0,000
1357	c46416_g1	-3,403	402,98	361,84	11	0,000	1417	c42822_g1	-2,831	305,99	186,95	10	0,000
1358	c55397_g1	-3,401	131	33	1,69	0,001	1418	c58017_g1	-2,828	285,84	233,87	11	0,000
1359	c43077_g1	-3,395	285,77	212,38	7	0,000	1419	c54457_g1	-2,823	706	241,99	18,2	0,000
1360	c32709_g1	-3,373	211	91	4	0,000	1420	c54671_g9	-2,821	1297,73	476	34	0,000
1361	c48509_g1	-3,363	1103,82	359,99	19	0,000	1421	c54698_g1	-2,799	243,99	143,74	8	0,000
1362	c52157_g1	-3,360	161,64	118,07	4	0,000	1422	c57460_g2	-2,793	340,96	157,45	9,98	0,000
1363	c46396_g1	-3,347	478,36	140,44	8	0,000	1423	c30138_g1	-2,792	349,9	538,99	21	0,000
1364	c49547_g1	-3,340	84	57	2	0,001	1424	c57382_g1	-2,791	74	65,46	3	0,003
1365	c58098_g1	-3,327	43,91	28	1	0,008	1425	c47100_g1	-2,774	28480,97	3280	564	0,000
1366	c25900_g1	-3,318	61,96	16	1	0,008	1426	c36605_g1	-2,769	198	95	6	0,001
1367	c56130_g1	-3,314	675,95	219	12	0,000	1427	c54240_g1	-2,768	281	151	8,98	0,000
1368	c51933_g1	-3,309	309	125,96	6	0,000	1428	c54395_g1	-2,755	203	90,01	6	0,001
1369	c58203_g1	-3,290	154	62	3	0,000	1429	c55536_g1	-2,754	124	67	4	0,002
1370	c52265_g1	-3,277	125	78	3	0,000	1430	c47897_g1	-2,724	100,85	77,99	4	0,002
1371	c51719_g1	-3,273	107	38	2	0,001	1431	c84251_g1	-2,720	87	86	4	0,002
1372	c57589_g1	-3,251	387	166,17	8	0,000	1432	c55170_g12	-2,710	165	38	4	0,003
1373		-3,230	158	101,99	4	0,000	1433		-2,705	252,85	154	9	0,000
1374		-3,224	228,73	59	4	0,000	1434		-2,695	900	273	24	0,000
1375		-3,201	328	140	7	0,000	1435		-2,688	229	65	6	0,001
1376		-3,200	181,99	131	5	0,000		c56292_g1	-2,687	99	42	3	0,004
1377		-3,195	71,93	54	2	0,002	1437		-2,676	642,69	572,98	29	0,000
1378		-3,176	66	8	1	0,014	1438		-2,664	41	76	3	0,004
1379	c10667_g1	-3,165	110,98	74,8	3	0,000	1439	c34305_g1	-2,663	53,97	68	3	0,005
1380		-3,165	106	78,49	3	0,000	1440		-2,642	166	31	4	0,003
		_,_00		-,	-	.,	102	61	,				.,

1441	c57858_g3	-2,637	287	87,74	8	0,001	1501	c55965_g5	-2,237	109	33	4	0,01
1442	c57829_g1	-2,615	39	42	2	0,018	1502	c50854_g1	-2,233	641,55	586,91	40	0,00
1443	c55277_g1	-2,605	268	125	9	0,001	1503	c25365_g1	-2,212	930,96	688,87	51,9	0,00
1444	c51968_g1	-2,604	54	32	2	0,020	1504	c55516_g1	-2,199	314	333,99	22	0,00
1445	c57575_g2	-2,578	677,57	339	24	0,000	1505	c71560_g1	-2,196	396	97,97	14	0,00
1446	c51177_g1	-2,574	109,01	28,23	3	0,007	1506	c55008_g1	-2,186	383,99	125,96	15	0,00
1447	c52177_g1	-2,569	115,98	177	8	0,001	1507	c45565_g1	-2,172	112	74	6	0,00
1448	c54398_g1	-2,564	251	127	8,99	0,001	1508	c53305_g1	-2,167	459,94	215	21	0,00
1449	c50088_g1	-2,556	77,72	46	3	0,007	1509	c32546_g1	-2,166	249	108	10,5	0,00
1450	c57014_g2	-2,549	280,47	196,82	12	0,001	1510	c52075_g1	-2,163	458	192	20	0,00
1451	 c46072_g1	-2,543	641	105	16	0,000	1511	c49935 g1	-2,162	194,89	139	10,9	0,00
1452	c57285_g3	-2,519	87,01	38	3	0,009	1512	 c43718_g1	-2,158	562	244	25	0,00
1453	c29083_g1	-2,496	1372	244	36	0,000	1513	c39500 g1	-2,150	155	115	9	0,00
1454	c42741_g1	-2,486	142,34	148,31	8	0,001	1514	c56982_g1	-2,137	141	76	7	0,00
1455	c53426_g6	-2,463	114	47	4	0,007	1515	c71416_g1	-2,134	900	731	56	0,00
1456	c50648_g1	-2,461	100	84	5	0,004	1516	c38825 g1	-2,129	68	51	4	0,01
1457	c46405 g1	-2,460	89	62	4	0,007	1517	c56248 g1	-2,123	149	46,73	6	0,01
1458	c57624_g4	-2,454	159,99	104,22	7	0,002	1518	c122580 g1	-2,122	301,86	181,2	16	0,00
1459	c55667_g1	-2,453	381	114,97	12	0,001	1519	c34387_g1	-2,119	300,95	202,96	16,9	0,00
1460 1461	c55565_g1	-2,453 -2,452	357	157	13	0,001	1520	c56786_g5	-2,114 -2,113	2250,87	1016,27	105	0,00
1461 1462	c52349_g1		134 231	90,91	6 8	0,003	1521 1522	c35450_g1		265,99 220	332 138	22 12	0,00 0,00
	c53117_g1	-2,446		88,98				c53141_g1	-2,113				
1463	c84044_g1	-2,443	644	348,98	26	0,000	1523	c50790_g1	-2,086	94,99	98	7	0,00
1464	c53225_g3	-2,437	68	73	4	0,008	1524	c54722_g1	-2,085	89,99	78,99	6	0,01
1465	c41358_g1	-2,427	985	608,95	43	0,000		c109627_g1	-2,084	255	133,85	13,2	0,00
1466	c71344_g1	-2,425	109	75	5	0,005	1526		-2,084	526,41	451,84	35	0,00
1467	c52108_g1	-2,424	167	40	5	0,005	1527	c57088_g1	-2,080	348	186,99	18	0,00
1468	c50692_g1	-2,420	147	243,99	12	0,001	1528	c52445_g1	-2,079	81	62	5	0,01
1469	c54041_g1	-2,408	123	65	5	0,005	1529	c23862_g1	-2,078	2017	1583,76	128	0,00
1470	c56235_g1	-2,403	163	68	6	0,003	1530	c41421_g1	-2,077	79	63	5	0,01
1471	c54316_g1	-2,398	641	408,93	28,9	0,000	1531	c53403_g1	-2,068	171	94	9,35	0,00
1472	c57856_g1	-2,398	660,97	262,95	24	0,001	1532	c54682_g5	-2,062	162	77	8	0,00
1473	c10659_g1	-2,396	607	213	21	0,001	1533	c55862_g1	-2,060	173,19	156,03	12	0,00
1474	c44257_g1	-2,394	578,89	389	27	0,001	1534	c37914_g1	-2,054	196	34	7	0,01
1475	c53066_g1	-2,392	242	208,99	13	0,001	1535	c55689_g1	-2,037	3587,84	90	103	0,00
1476	c46085_g1	-2,377	808,11	353,73	31	0,001	1536	c53801_g1	-2,036	943,59	458,43	48,3	0,00
1477	c56571_g1	-2,375	101	48	4	0,007	1537	c56445_g1	-2,029	155	55,87	7	0,01
1478	c43981_g2	-2,353	333	94	11	0,002	1538	c49720_g1	-2,024	196	157	13	0,00
1479	c50640_g1	-2,347	179	131	9	0,002	1539	c56873_g1	-2,017	176	126	11	0,00
1480	c47222_g2	-2,345	190	98	7,98	0,003	1540	c46581_g1	-2,014	1892,88	1210,18	112	0,00
1481	c43198_g1	-2,345	349	239	17	0,001	1541	c56045_g1	-2,013	860,93	386,88	43	0,00
1482	c52161_g1	-2,342	198,58	66	7	0,004	1542	c56324_g1	-2,006	141	41	5,97	0,01
1483	c54488_g1	-2,342	534,97	182,41	19	0,001	1543	c57314_g1	-1,982	940,84	262	40	0,00
1484	c42617_g1	-2,338	71,97	63	4	0,008	1544	c57525_g2	-1,981	320	137	16	0,00
1485	c96840_g1	-2,327	393	284,99	20	0,001	1545	c51784_g1	-1,968	1280,81	852,98	79,5	0,00
1486	c55000_g2	-2,326	717,97	733,75	45	0,001	1546	c51362_g1	-1,956	437	143	20	0,00
1487	c34714_g1	-2,324	644,98	444,04	32	0,001	1547	c50386_g1	-1,942	302,98	216,98	20	0,00
1488	c53583_g2	-2,316	142,98	95,58	7,02	0,004	1548	c56392_g2	-1,939	105	77	7	0,01
1489	c55864_g2	-2,313	88	25	3	0,018	1549	c23688_g1	-1,935	230	199	17	0,00
1490	c57050_g2	-2,308	549,52	262,6	23	0,001	1550	c52695_g1	-1,934	162	82,09	9	0,01
1491	c54423_g1	-2,305	99	44	4	0,009	1551	c57811_g1	-1,933	183	148	13	0,00
1492	c42021_g1	-2,287	149	138,94	9	0,003	1552		-1,926	133,93	77,98	7,86	0,01
1493		-2,279	210,99	150,98	11	0,002	1553		-1,912	366	229,79	23,1	0,00
1494	c41087_g1	-2,278	53	45	3	0,020	1554		-1,906	604	205	28,9	0,00
1495	c48374_g1	-2,276	451,97	232,78	20	0,001	1555		-1,894	1634,99	797	92	0,00
1496	c56893_g2	-2,266	83	51,29	4	0,010	1556		-1,886	465,96	276,58	29	0,00
1497	c49206_g1	-2,247	314	108,99	12	0,002	1557	c57346_g1	-1,876	114,95	65	7	0,00
1498	c57573_g2	-2,247	151	57,83	6	0,002	1558		-1,872	56	119	8	0,02
1498	c37575_g2	-2,240	306	137	13	0,008	1558		-1,872	526	455	8 41	0,01
1499	C21100_81	-2,242	300	13/	13	0,002	1339	C33340_83	-1,862	520	400	41	0,00

1561	c51358_g4	-1,844	703,99	86,77	27	0,006	1621	c57145_g1	1,386	94,99	66	62	0,017
1562	c33443_g1	-1,839	339	77	15	0,010	1622	c54210_g1	1,387	159	21	59	0,017
1563	c57306_g4	-1,837	102,95	123,99	10	0,015	1623	c56272_g1	1,390	111	54	61	0,017
1564	c49452_g1	-1,834	101	143,18	11	0,013	1624	c56069_g1	1,390	263	148,55	155	0,012
1565	c52884_g1	-1,833	369,59	130,67	19	0,008	1625	c48009_g1	1,392	278	168,71	170	0,012
1566	c57566_g4	-1,822	1107,57	584,56	68	0,005	1626	 c39584_g1	1,395	142,33	144,99	116,8	0,013
1567	c37474_g1	-1,810	536,59	333	36	0,007	1627	 c56499_g1	1,395	89	39	47	0,020
1568	c42274_g1	-1,808	104,7	83	8	0,020	1628	c55095_g1	1,402	359	198,99	211	0,011
	c32403 g1	-1,795		154	16	0,020	1629	c49653 g1	1,403	96,97	80,87	71	0,016
1569			223,81				1630	c23145_g1	1,409	391,97	145	194	0,010
1570	c25331_g1	-1,787	276	122,03	16	0,013	1631	c57125_g1	1,411	319,98	145,93	173	0,010
1571	c57178_g1	-1,780	343,92	203,97	23	0,009	1632	c33554 g2	1,411	151	78,98	87	0,011
1572	c51585_g1	-1,772	702	273	39	0,007	1633		1,423	88,02		65	0,015
1573	c51917_g1	-1,771	188	65	9,71	0,020		c26950_g1			73,09		
1574	c46274_g1	-1,769	661,99	364	43	0,007	1634	c19925_g1	1,426	254	276	223	0,009
1575	c50915_g1	-1,766	119,94	191,87	15	0,013	1635	c57841_g1	1,427	105	30,7	49	0,016
1576	c53542_g1	-1,756	1114	715,47	79	0,006	1636	c55820_g1	1,427	217	210,44	176,7	0,010
1577	c47762_g1	-1,754	491	334,99	36	0,009	1637	c42893_g1	1,432	177	108,94	112	0,011
1578	c57100_g1	-1,753	351	158	21	0,011	1638	c54633_g1	1,444	56	35	36	0,019
1579	c49411_g1	-1,753	823,76	210,87	40	0,008	1639	c53977_g1	1,450	1193,76	371	568,7	0,007
1580	c51782_g1	-1,740	2135,97	2314,71	209	0,006	1640	c53015_g1	1,452	4921,81	3514,67	3420	0,007
1581	c56356 g1	-1,734	234	84,8	13	0,018	1641	c52776_g1	1,463	257	58,98	113	0,009
1582	c55400_g2	-1,714	386	195,32	25	0,012	1642	c49046_g1	1,465	65,34	36	40	0,016
1583	c15618_g1	-1,701	121	129,99	12	0,012	1643	c54809_g2	1,476	92,8	56	60	0,012
1584	c47909_g1	-1,692	97	142,99	12	0,020	1644	c48536_g1	1,482	61	30	36	0,017
							1645	c29913_g1	1,483	153	77	91	0,009
1585	c56584_g3	-1,690	871,98	629,99	69	0,009	1646	c55686_g3	1,485	162	101	107	0,008
1586	c51849_g1	-1,687	613,57	595,87	58	0,009	1647	c50253_g1	1,489	278,79	147	170	0,007
1587	c57352_g1	-1,671	2070,88	815,94	124	0,008	1648	c36055_g1	1,490	99	55	62	0,011
1588	c51856_g1	-1,667	301	166	21	0,016	1649	c45414_g1	1,495	90	106	86,99	0,009
1589	c35185_g1	-1,648	5528	1698	306	0,008	1650	c40964_g1	1,498	123,99	54	70	0,010
1590	c53268_g1	-1,641	906,92	1566,84	132	0,010	1651	c42539_g2	1,500	213,97	101	125	0,007
1591	c50396_g3	-1,627	511	240	34	0,014	1652	c50420_g1	1,507	183	91	110	0,007
1592	c33044_g1	-1,620	592,58	314,51	42	0,014	1653	c51319_g1	1,511	589,59	379,23	402,6	0,007
1593	c96827_g1	-1,615	720	488,94	58	0,013	1654	c54547_g1				323	0,005
1594	c47020_g1	-1,612	971,04	481,88	66,7	0,012			1,512	601	229,46		
1595	c55727_g4	-1,600	16983,61	6380,6	1048	0,010	1655	c49420_g1	1,513	154	81,99	96	0,008
1596	c56753_g1	-1,586	591	254,77	39	0,016	1656	c33815_g1	1,513	204	147,81	149	0,007
1597	c51017_g1	-1,576	477,35	180	30	0,019	1657	c46174_g1	1,516	166	60	88	0,008
1598	c56741_g1		1359,73	1180,92	132	0,014	1658	c43853_g1	1,516	72,99	45	49	0,012
1599	c50761 g3	-1,548	954	298	57	0,016	1659		1,520	67	30	39	0,014
1600	c46488 g2	-1,529	1027,93	566,84	79	0,017	1660		1,520	61	54	50,02	0,011
1601	c54618 g1		1304,98	1067,99		0,016	1661	c47652_g1	1,522	37	36	32	0,018
		-1,518		,	125		1662	c50864_g1	1,531	318	58	138	0,006
1602	c30806_g1	-1,514	549,91	394,98	49	0,020	1663	c53019_g1	1,539	133	79	88,98	0,007
1603	c44570_g1	-1,511	446,99	770,97	71	0,018	1664	c34247_g1	1,543	331	262,98	260	0,005
1604	c54301_g1	-1,502	1140,85	638,89	90	0,018	1665	c55022_g1	1,546	111	14	45,99	0,009
1605	c71380_g1	-1,498	768	663	77	0,019	1666	c53426_g5	1,553	142,96	82	95	0,006
1606	c50040_g1	-1,482	3208,98	60	134	0,018	1667	c51094_g1	1,563	299,99	166	196,8	0,005
1607	c57332_g3	-1,458	1577,85	780,55	121	0,021	1668	c51228_g2	1,563	132	54	75,99	0,007
1608	c55492_g4	1,291	257	222	178	0,020	1669	c10746_g1	1,581	146	103	110	0,005
1609	c47130_g1	1,292	235,87	211	167	0,020	1670	c109618_g1	1,592	131	157,97	138	0,005
1610	c41582_g1	1,320	359	107,99	155	0,017	1671	c48866_g1	1,600	365,73	166,5	224,9	0,004
1611	c54696_g1	1,325	208	68	93	0,019	1672		1,602	189,94	253	216	0,004
1612	c39759_g1	1,327	430	222	232	0,015	1673		1,607	76	20	39	0,008
1613	c49578_g1	1,328	599	331,16	334	0,015	1674		1,611	155	92	109	0,000
1614	c58111_g1	1,332	230	93,32	112	0,017	1675		1,611	83	52	60	0,004
1615	c53382_g1	1,339	187	55,52	82	0,017							
				46	59		1676		1,616	146,96	47	80	0,005
1616	c52205_g2	1,350	123			0,021	1677	c9297_g1	1,616	246	83	136	0,004
1617	c57276_g5	1,354	134	91,99	85	0,018	1678		1,626	1634,75	671,01	978,9	0,003
1618		1,364	292,97	113	143	0,014	1679	c53395_g1	1,632	108	30	56,99	0,005
1619	c16562_g1	1,372	117	88	79	0,017	1680	c57723_g1	1,633	2112586,69	574876,11	1E+06	0,002
	c51316_g1	1,384	276,81	76,9	122	0,013	1681	c50684_g1	1,636	139,85	51	81	0,004

1682	c54765_g5	1,639	46	29	34	0,009	1742	c53468_g1	1,931	106	37,95	75	0,001
1683	c44904_g1	1,643	87	54	64	0,005	1743		1,933	50	106	100	0,001
1684	c18689_g1	1,646	160	53	90	0,004	1744	c57655_g3	1,937	72	90,89	99	0,00
1685	c58033_g1	1,647	89	22	46	0,006	1745	c47210_g1	1,945	119	29	75	0,00
1686	c56922_g1	1,647	134	94,97	106	0,004	1746	c48555_g1	1,947	10	12,47	13	0,019
1687	c41707_g1	1,654	169	134	143	0,003	1747	c57957_g1	1,963	62	28,92	50	0,003
1688	c47718_g1	1,662	1385,96	760,93	971	0,002	1748	c55208_g1	1,965	86,94	20	55	0,00
1689	c44902_g1	1,670	617	459	509,7	0,002	1749	c56636_g1	1,970	180	87,62	148	0,00
1690	c32781_g1	1,676	225	192	202	0,002	1750	c50534_g1	1,984	63	26	49	0,00
1691	c52727_g1	1,677	166	156	158	0,003	1751	c58119_g1	1,996	253,55	94,97	190	0,000
1692	c36796_g1	1,680	65	55,01	58	0,004	1752	c51999_g1	2,000	89	41	73	0,00
1693	c42796_g1	1,681	66,98	29	43	0,006	1753	c39331_g2	2,001	61,99	55	71	0,00
1694	c52797_g1	1,681	195	74	118	0,003	1754	c58057_g7	2,002	84,39	40	70	0,00
1695	c53976_g1	1,685	50	71,98	63	0,005	1755	c46473_g1	2,003	128	68	111,7	0,00
1696	c54424_g4	1,689	95,64	63	75	0,003	1756	c57572_g4	2,004	112	45	87	0,000
1697	c49504_g1	1,694	184,96	67	111	0,003	1757	c48549_g1	2,004	101	87,89	115	0,00
1698	c51931_g1	1,696	98	27	54	0,004	1758	c55784_g1	2,006	97	36,96	74	0,00
1699	c10737_g1	1,698	48,99	27,97	36	0,007	1759	c50327 g3	2,011	284	62	180	0,00
1700	c56585_g1	1,711	899,31	460,27	630,3	0,002	1760		2,012	27	3	16	0,00
1701	c49378_g1	1,713	273	111,98	174	0,002	1761		2,012	136	48	101	0,00
1701	c58152_g1	1,713	168	63	104	0,002	1761	c57664 g1	2,012	28	27	34	0,00
1702	c46374_g1	1,721	56	34	43	0,002	1763			412,52	166,13	323,9	0,00
									2,026				
1704	c32558_g1	1,722	66,89	59	63	0,004	1764		2,032	123,07	62,98	107,6	0,00
1705	c57173_g1	1,737	59	5	27	0,006	1765	c47923_g1	2,036	158	67	128	0,00
1706	c39444_g1	1,742	80,97	133,66	118,4	0,002	1766		2,039	199	118,99	189	0,00
1707	c54013_g1	1,748	107,01	41,98	69	0,003	1767		2,049	68	29,08	56	0,00
1708		1,756	129	95,58	113	0,002		c53392_g1	2,052	49	37	53	0,00
1709	c23940_g1	1,758	52	55	56	0,003	1769	c23671_g1	2,052	182	112	177	0,00
1710	c45882_g1	1,759	624,85	517,85	585	0,001	1770	c58103_g2	2,054	102,99	92,98	124	0,00
1711	c52162_g1	1,767	147,47	60,97	98	0,002	1771	c50407_g1	2,067	99	14,55	61	0,00
1712	c33415_g1	1,785	159	55	100	0,002	1772	c52247_g1	2,080	89	18	59	0,00
1713	c46084_g2	1,787	150,99	127	145	0,001	1773	c34056_g1	2,086	358	53	218	0,00
1714	c49025_g1	1,789	79	24	48	0,003	1774	c57592_g3	2,103	89	83	113	0,00
1715	c22919_g1	1,794	72	48	61	0,002	1775	c54149_g1	2,114	85	41	77	0,00
1716	c49559_g1	1,807	108,99	53	79,89	0,002	1776	c51628_g1	2,126	12	26	27	0,00
1717	c23689_g1	1,807	16	36	30	0,006	1777	c53085_g1	2,128	113	47	97	0,00
1718	c54844_g1	1,810	171,42	125	154	0,001	1778	c123192_g1	2,139	21	33	38	0,00
1719	c41890_g1	1,816	119	61	90	0,001	1779	c39927_g1	2,151	32	18	32	0,00
1720	c37476_g1	1,821	120	82	105	0,001	1780	c51920_g1	2,166	41	24,99	43	0,00
1721	c51148_g1	1,823	252	113	180	0,001	1781	c37676_g1	2,169	5	31	28	0,00
1722	c52863_g1	1,827	39,96	18	29	0,005	1782	c54212_g3	2,176	65	4	39	0,00
	c52291_g1	1,831	168,88	75	121	0,001		c52859 g1	2,180	94	17	65	0,00
1724		1,834	111	53,95	83	0,001		c55244_g1	2,195	352,31	219,98	380,7	0,00
1725		1,848	67	55	66	0,001	1785		2,202	24	44	51	0,00
1726		1,854	29	1	14	0,002	1786		2,202	123,99	55	116	0,00
1727	c47506 g1	1,854	111	52	83	0,003	1787		2,215	81	111	143	0,00
1727	c29222_g1	1,858		97	170	0,001	1787			94	47	92,89	0,00
			243,99						2,219				
1729	c58072_g6	1,866	159,73	220,92	224	0,001	1789		2,220	48	29	52	0,00
1730	c57184_g1	1,867	455,08	244,61	364	0,001		c58202_g2	2,221	14	19	24	0,00
1731	c54228_g1	1,869	63	100	97	0,001	1791		2,226	87	53	94,96	0,00
1732	c57966_g1	1,869	408,87	165,69	288,7	0,001		c50448_g1	2,244	64,05	37	69	0,00
1733	c55006_g2	1,871	746,97	316,99	538	0,001		c55257_g1	2,275	34	11	30	0,00
1734	c57392_g1	1,878	108	45	78	0,001	1794	c55271_g1	2,279	48	21	47	0,00
1735	c54576_g1	1,880	105,99	66	91,93	0,001	1795	c55993_g1	2,280	229	84,75	208	0,00
1736	c55789_g1	1,896	267	27	134	0,001	1796	c54102_g1	2,285	81	61	103	0,00
1737	c84246_g1	1,907	362,99	174	283	0,000	1797	c50070_g1	2,293	242,78	212,78	339,9	0,00
1738	c47095_g1	1,911	47	41	50	0,002	1798	c52632_g1	2,301	35	12	31,93	0,00
1739	c56595_g2	1,916	261,99	194	255,9	0,000	1799	c49958_g1	2,311	123	87	154	0,00
1740	c53476_g1	1,927	246	119,98	196	0,000	1800	c43032_g1	2,318	64,99	41	77	0,00
	c12732_g1	1,928	256	254,95	301	0,000	1801		2,339	74,98	42	85,3	0,00

1802	c45491 g1	2,341	63	41,99	78	0,000
.803	c35129_g1	2,346	40	13	37	0,000
1804	c54886_g2	2,346	68	50	89	0,000
1805	c45168_g1	2,355	13	0	9	0,005
1806		2,359	158,86	49	143	0,000
1807	c10186_g1	2,362	0	18	16	0,004
1808	 c48671_g1	2,371	13	7	15	0,002
1809	 c56647_g1	2,372	45,99	19	47	0,000
1810	 c57329_g2	2,373	44	44	70	0,000
1811	c43034_g1	2,375	108	105	170	0,000
1812	c34548_g1	2,378	376	182	408	0,000
1813	c28634_g1	2,378	25	6	22	0,001
1814	c39173 g1	2,390	107	18,68	85	0,000
1815	c56866 g1	2,392	91	57	113	0,000
1815	c54926_g1	2,392	93,67	63,99	122	0,000
1817	c56428_g1	2,394	66,09 103	25	65,9 126	0,000
1818	c50832_g1	2,399	103	62	126	0,000
1819	c49777_g1	2,404	32	23	43	0,000
1820	c46983_g1	2,433	49	18	50	0,000
1821	c34377_g1	2,439	72	32	79	0,000
1822	c57781_g1	2,459	88,99	30	89	0,000
1823	c57181_g1	2,459	97	70	136	0,000
1824	c52241_g1	2,473	84	39	96	0,000
1825	c45053_g1	2,473	48	29	62	0,000
1826	c58054_g5	2,481	87,84	36	96	0,000
1827	c15726_g1	2,485	142	75	173	0,000
1828	c38563_g1	2,498	31	51	75	0,000
1829	c57742_g1	2,501	96	42	109	0,000
1830	c47409_g1	2,501	56,28	0	39	0,000
1831	c54341_g1	2,505	52,99	32,65	70,67	0,000
1832	c47791_g1	2,512	97	20	87	0,000
1833	c12925_g1	2,527	52	40	79	0,000
1834	c58307_g1	2,529	16	5	16,88	0,001
1835	c15822_g1	2,535	45,99	47	83	0,000
1836	c43737_g1	2,556	76,99	31	88	0,000
1837	c43850_g1	2,559	56,71	28	71	0,000
1838	c48870_g1	2,568	6	1	6	0,018
1839	c49792_g1	2,568	33	10	35	0,000
1840	c48768_g1	2,588	15	8	20	0,000
1841	c55562_g1	2,595	70	42	98	0,000
1842	c51998_g1	2,608	56	30	75	0,000
1843	c51422_g1	2,610	39	16	47	0,000
1844	c57236_g1	2,617	176	37	169	0,000
L845	c39318_g1	2,625	53	38	83	0,000
1846	c47300_g1	2,632	37	14	44	0,000
1847	c57655_g1	2,643	78,01	41	106	0,000
1848	c23742_g1	2,644	191	87	243	0,000
1849	c23863_g1	2,657	1,68	26,55	32	0,000
	c41090_g1	2,670	67,93	28	85	0,000
1851		2,672	156,91	47,99	175	0,000
1852	c51282_g3	2,675	156	36	160	0,000
1853		2,678	5	9	14	0,002
1854	c47642 g1	2,689	28	16	41	0,000
1855	c71388 g1	2,702	52	39	88	0,000
1855		2,702	42	24	62	0,000
1857	c56455_g1	2,703	46	31	74	0,000
1858	c50492_g1	2,711	6	7	13	0,000
1859	c57566_g1	2,722	167	17	150	0,001
1072			187	31,07	145	0,000
1860	c55256_g1	2,725				

	:33687_g1	3,450	38	30	111	0,000
1922 c	:57755_g2	3,481	79,99	56	223,9	0,000
1923 c	:55761_g1	3,512	13	12	43	0,000
1924 c	57466_g1	3,526	2	3	8,69	0,001
1925 c	:54339_g4	3,534	18	11	49	0,000
1926 c	49810_g1	3,567	13	15	51	0,000
1927 c	42884_g1	3,609	0	4	8	0,002
1928 c	:52721_g1	3,657	2	6	16	0,000
1929 c	:54830_g1	3,682	4	15	40	0,000
1930 c	:57988_g6	3,790	13	3	31	0,000
1931 c	42832_g2	3,844	14	3	34	0,000
1932 c	:57197_g1	3,868	15,99	9	53	0,000
1933 c	:54424_g5	3,869	15	14	64	0,000
1934 c	22881_g1	3,870	0	2	5	0,007
	45384_g1	3,870	0	2	5,18	0,007
	:56289_g1	3,890	3	10	31	0,000
	:30879_g1	3,895	28	1	56	0,000
	47907_g1	3,921	34	26,8	138	0,000
	114314_g1	3,921	42	4	90	0,000
	42285 g1	3,931	4	10	34	0,000
	:44214_g1	3,941	1	13	36	0,000
	53664 g1	3,942	2	0	5,46	0,000
	:71324_g1	3,974	8	12	48,98	0,000
	:51557_g1	3,988	12	2	31	0,000
	:46527_g1	3,995	12	23	98	0,000
	:57908_g2	4,015	29	8	81,98	0,000
		4,013	29	8	27	
	53733_g1					0,000
	52934_g1	4,086	155	66 17	162.0	0,000
	39874_g1	4,101	53	17	163,9	0,000
	56415_g1	4,130	3,72	9	35,85	0,000
	40063_g1	4,145	27	23	133	0,000
	58037_g1	4,174	15,16	6	54	0,000
	52696_g1	4,208	20	15	96	0,000
	54919_g1	4,225	16	16	90,95	0,000
	49167_g1	4,292	3	10	41	0,000
	:14276_g1	4,343	8	1	26	0,000
	:51761_g1	4,380	0	7	24	0,000
	:57185_g8	4,421	1	0	3,56	0,006
	:51941_g1	4,427	12	4	48,83	0,000
	:56286_g1	4,543	0	2	8	0,000
	:14760_g1	4,615	2	0	8	0,000
	:40774_g2	4,625	0,97	7	32	0,000
	116579_g1	4,645	4	0	15	0,000
	:50147_g1	4,753	19	1	72	0,000
	:57098_g1	4,758	0	11	50	0,000
	20831_g1	4,771	5	6	46	0,000
	:56730_g2	5,100	11	16	145	0,000
1968 c	:57577_g7	5,178	1	15	98	0,000
1969 c	:47944_g2	5,241	0	17	111	0,000
1970 c	48876_g1	5,242	3	4	41	0,000
1971 c	87135_g1	5,354	3	0	18,99	0,000
1972 c1	103700_g1	5,369	1074	102	5861	0,000
1973 c	39138_g1	5,442	4	10	97	0,000
1974 c	23373_g1	5,561	3	1	29	0,000
1975 c	53753_g1	5,652	9	1	70,95	0,000
1976 c	:55948_g2	6,016	0	0	3,14	0,014
1977 c1	110324_g1	6,129	11	0	106	0,000
	:52530_g1	6,278	0	1,37	15,22	0,000
	:44994_g1	6,676	0	5	84	0,000
	:55058_g1	6,744	0	0	4,93	0,001
	:49874_g1	6,811	0	4	74	0,000

1982	c57242_g4	6,911	3,29	0	55,82	0,000
1983	c43804_g1	7,005	0	0	6	0,000
1984	c53455_g1	7,013	0	0,82	25,36	0,000
1985	c52925_g1	7,417	0	0,29	7,87	0,000
1986	c56919_g1	7,828	0	1	44,09	0,000
1987	c20195_g1	8,582	0	0	17,87	0,000
1988	c53122_g2	9,455	0	0	33	0,000
1989	c56947_g1	9,658	0	0	38	0,000
1990	c56744_g1	9,934	0	0	46	0,000
1991	c57839_g1	10,054	0	0	50	0,000

6.4 The results from the RNAseq analysis of the lower female reproductive tract tissue (Table 6.3)

							61	c46190 c1	1556 42	1492.05	0	12.000	2 725 00
N	gene_id	M_FEMALE_1	M_FEMALE_2		logFC	PValue	61	c46189_g1	1556,43	1483,95	0	-13,006	2,72E-08
1	c52845_g1	11402,59	5505,82	0	-15,445	1,41E-14	62	c49765_g1	1983	1073,99	0	-12,984	3,12E-08
2	c55628_g1	9669,81	3713,62	0	-15,097	1,48E-13	63	c55509_g7	1508,25	1456,78	0	-12,971	3,37E-08
3	c42759_g2	7576,96	4660,95	0	-14,991	3,01E-13	64	c58054_g1	1967,96	1032,9	0	-12,955	3,72E-08
4	c51837_g1	5851,97	5356,98	0	-14,886	6,09E-13	65	c56851_g2	1392,46	1478,65	0	-12,929	4,35E-08
5	c53966_g8	6324,88	4085,97	0	-14,761	1,05E-12	66	c46581_g1	1328,07	1524,84	0	-12,925	4,50E-08
6	c44387_g1	6282,94	4012	0	-14,744	1,18E-12	67	c53123_g1	1648,28	1196,99	0	-12,895	5,39E-08
7	c30526_g1	2803,99	6153,99	0	-14,608	2,90E-12	68	c55319_g1	1605,99	1220,97	0	-12,889	5,58E-08
8	c53346_g1	5313	4002	0	-14,608	2,90E-12	69	c46085_g1	1965,82	908	0	-12,887	5,65E-08
9	c47567_g2	4495,89	3677,85	0	-14,424	9,85E-12	70	c57012_g1	1420,85	1362,98	0	-12,879	5,91E-08
10	c71357_g1	3570,25	3997,9	0	-14,331	1,84E-11	71	c57266_g3	1711,25	1104,95	0	-12,874	6,12E-08
11	c53746_g2	3519,99	3896,97	0	-14,301	2,24E-11	72	c27268_g1	1507,24	1261,73	0	-12,864	4,68E-08
12	c53092_g2	3133,93	4213,95	0	-14,298	2,28E-11	73	c49662_g2	1705,66	1067,5	0	-12,851	5,08E-08
13	c54618_g1	3496,35	3775,4	0	-14,271	2,72E-11	74	c52754_g1	1522,43	1155	0	-12,810	6,61E-08
14	c47917_g2	5081,99	2067,97	0	-14,195	3,31E-11	75	c42687_g1	1049,96	1536,9	0	-12,796	7,11E-08
15	c53040_g1	3013,94	3809	0	-14,188	3,48E-11	76	c42956_g1	1367,61	1258,99	0	-12,793	7,29E-08
16	c54829_g2	4335,89	2623,59	0	-14,176	3,77E-11	77	c27318_g1	994,92	1536,98	0	-12,768	8,45E-08
17	c57143_g2	4068,84	2555,78	0	-14,107	5,92E-11	78	c43468_g1	1529,37	1031,56	0	-12,740	1,01E-07
18	c55918_g1	3073,67	3214,22	0	-14,060	8,10E-11	79	c50627_g1	1661,93	878,91	0	-12,716	1,17E-07
19	c52436_g1	3570,88	2568,93	0	-14,005	1,16E-10	80	c48875_g2	1282,96	1192	0	-12,708	1,24E-07
20	c21198_g1	4097,79	1878,96	0	-13,942	1,74E-10	81	 c47214_g1	1560,99	947,17	0	-12,704	1,27E-07
21	c53599_g1	3683,59	2225,84	0	-13,940	1,76E-10	82	c12311_g1	1065,74	1355,44	0	-12,693	1,35E-07
22	c51323_g1	2910,6	2637,84	0	-13,871	2,76E-10	83	c54043_g1	1660,81	804,43	0	-12,667	1,58E-07
23	c27262_g1	2850,69	2688,94	0	-13,871	2,76E-10	84	c55085_g1	1584	867,94	0	-12,666	1,58E-07
24	c10647 g1	2669,33	2838,31	0	-13,869	2,80E-10	85	c53746_g1			0		
25	c56768_g3	3549,6	2074,92	0	-13,867	2,85E-10	86	c23095 g1	1235,96 1053,67	1156,24	0	-12,659 -12,645	1,67E-07 1,81E-07
26	c45452_g1	2770,8	2442,9	0	-13,780	3,67E-10	87			1290,95			
27	c29117_g1	3270,08	1915,98	0	-13,750	4,48E-10	88	c46280_g1	1553,55	861	0	-12,645	1,81E-07
28	c44594_g1	2842,83	2199,95	0	-13,725	5,25E-10		c51868_g1	1318,09	1033	0	-12,625	2,04E-07
29	c58085_g1	2890,92	2053,98	0	-13,692	6,54E-10	89	c47782_g1	1552,64	820,07	0	-12,617	2,16E-07
30	c52934_g1	3670,99	1342,83	0	-13,678	7,10E-10	90	c54301_g1	1337,75	970,94	0	-12,594	1,77E-07
31	c57634_g1	3203,93	1685,84	0	-13,660	8,00E-10	91	c42523_g1	1211,84	1079	0	-12,594	1,77E-07
32	c58253_g1	2750,98	1864,95	0	-13,590	1,26E-09	92	c50891_g1	1504,84	820,94	0	-12,590	1,82E-07
33	c51907_g4	1948,17	2482,17	0	-13,565	1,47E-09	93	c57564_g1	1212,13	1033,88	0	-12,563	2,12E-07
34	c32492_g1	2156,9	2273,48	0	-13,555	1,57E-09	94	c57765_g3	882,94	1301,99	0	-12,553	2,25E-07
35	c52931_g1	2911,86	1529,98	0	-13,521	1,96E-09	95	c52177_g1	1417,14	841,81	0	-12,552	2,28E-07
36	c23076 g1	2498,42	1741,96	0	-13,469	1,99E-09	96	c50839_g1	1066,86	1118,94	0	-12,536	2,52E-07
37	c46559_g1	2045,08	2014,65	0	-13,425	2,64E-09	97	c52840_g1	997,28	1153,99	0	-12,518	2,79E-07
38	c42417_g1	2344,91	1745,24	0	-13,420	2,73E-09	98	c36177_g1	719	1302,93	0	-12,452	4,16E-07
39	c44954_g1	2379	1541	0	-13,352	4,22E-09	99	c54520_g1	1312,82	782,95	0	-12,444	4,35E-07
40	c44953 g1	1890,95	1925,99	0	-13,338	4,60E-09	100	c47718_g1	1001,52	1046,2	0	-12,441	4,42E-07
40	c43875_g1	2650,71	1925,99	0	-13,334	4,60E-09 4,69E-09	101	c57577_g2	1192,93	849,99	0	-12,417	5,15E-07
42	c49340_g1	2569,65	1268,99	0	-13,307	5,58E-09	102	c57050_g2	1017,93	961,3	0	-12,386	6,21E-07
43	c54856_g2	2309,05	1268,99	0	-13,299	5,89E-09	103	c31514_g1	1038	942	0	-12,385	6,21E-07
43	c51944_g2	1978,05	1749,99	0	-13,299	5,89E-09	104	c55621_g1	1042,95	929	0	-12,378	6,51E-07
44	c50798_g2	2372,02	1749,99	0	-13,296		105	c57575_g2	962,84	980,94	0	-12,365	7,04E-07
45	c50481_g1	2372,02	1405,99	0		6,10E-09 8,61E-09	106	c47020_g1	951,66	966,97	0	-12,346	5,60E-07
40	c10600_g2	2358,85 1367,97	2136,94	0	-13,239 -13,238	8,61E-09 8,69E-09	107	c54013_g3	1072,25	848,99	0	-12,334	5,97E-07
47	c96905 g1	1662,85	1838,54	0	-13,238	9,80E-09	108	c47106_g2	1126,03	782,06	0	-12,317	6,59E-07
48	c50073_g1	1638,08	1858,54	0	-13,218	9,80E-09 1,14E-08	109	c57856_g1	1042,55	837	0	-12,303	7,15E-07
50	c54629_g1	1974,67	1807,95	0	-13,195	1,14E-08 1,24E-08	110	c52600_g1	895,14	934	0	-12,278	8,31E-07
51	c55864_g1	2066,9	1488	0	-13,181	1,24E-08 1,05E-08	111	c43569_g1	1163,99	676,99	0	-12,256	9,52E-07
51	c57594_g1						112	c56278_g2	1018,96	801,41	0	-12,255	9,52E-07
52	c54659_g1	1904,63	1490,99	0	-13,155	1,06E-08	113	c8808_g1	916,51	886,96	0	-12,254	9,68E-07
		1873,08	1503,62	0	-13,148	1,10E-08	114	c53801_g1	969,77	832,99	0	-12,247	1,00E-06
54	c58082_g2	1984,96	1395,27	0	-13,142	1,15E-08	115	c50743_g1	935,48	860,84	0	-12,245	1,02E-06
55	c48434_g1	1781,41	1535,57	0	-13,126	1,27E-08	116	 c56753_g1	856,44	927	0	-12,243	1,02E-06
56	c84110_g1	1445	1801,88	0	-13,116	1,36E-08	117	 c46274_g1	1310,34	531	0	-12,238	1,06E-06
57	c53327_g2	1912,71	1283,96	0	-13,059	1,94E-08	118	c8815_g1	887,08	888	0	-12,233	1,09E-06
58	c56913_g5	1884,63	1284,75	0	-13,048	2,09E-08	119	c54746_g6	1043,42	752,64	0	-12,232	1,09E-06
59	c49653_g2	1901,63	1266,39	0	-13,046	2,11E-08	120	c56779_g2	1026	760,95	0	-12,226	1,13E-06
60	c56580_g1	1996,56	1130,99	0	-13,019	2,49E-08		0-		,	v	,0	_, 00

121	c40827_g1	1092,98	687,88	0	-12,212	1,23E-06	181	c56105_g1	901,19	523,99	0	-11,886	4,00E-06
122	c51710_g1	934,6	821,93	0	-12,211	1,23E-06	182	c11918_g1	921,25	501,82	0	-11,881	4,18E-06
123	c53296_g1	1030,67	735,98	0	-12,208	1,28E-06	183	c56435_g1	814	591	0	-11,878	4,27E-06
124	c47323_g1	1088,14	681,69	0	-12,203	1,30E-06	184	c57563_g2	760,84	631,99	0	-11,873	4,36E-06
125	c33421_g1	1182,94	585,99	0	-12,190	1,40E-06	185	c55406_g1	772,94	620,96	0	-11,872	4,36E-06
126	c96851_g1	977,83	727	0	-12,158	1,70E-06	186	c47822_g1	802	595	0	-11,871	4,36E-06
127	c55329_g1	504	1134,37	0	-12,158	1,67E-06	187	c55697_g1	979,72	440	0	-11,868	4,45E-06
128	c50429_g1	896,06	796,94	0	-12,158	1,70E-06	188	c53700_g1	727,89	652,98	0	-11,864	4,55E-06
129	c53244_g1	962,39	735,71	0	-12,154	1,73E-06	189	c50073_g2	766,99	617,99	0	-11,863	4,65E-06
130	c43092_g1	989,97	711	0	-12,153	1,76E-06	190	c50396_g3	936,72	470,98	0	-11,862	4,65E-06
131	c56594_g1	1010,09	692,99	0	-12,152	1,76E-06	191	c52661_g1	959,99	443	0	-11,852	4,86E-06
132	c26938_g1	982,18	707,55	0	-12,144	1,83E-06	192	c52717_g2	831,99	551,84	0	-11,851	4,96E-06
133	c43056_g1	888,69	785	0	-12,141	1,86E-06	193	c53977_g1	785,94	589	0	-11,848	4,96E-06
134	c58017_g2	943,45	733,85	0	-12,137	1,93E-06	194	c36219_g1	812,95	565	0	-11,848	5,07E-06
135	c39949_g1	1081,36	603,99	0	-12,126	2,04E-06	195	c45281_g1	819,97	557,99	0	-11,846	5,07E-06
136	c51284_g1	838,79	806,24	0	-12,121	2,11E-06	196	c23641_g1	876,42	508	0	-11,844	5,07E-06
137	c56063_g3	869,82	763	0	-12,105	1,63E-06	197	c49783_g2	707,99	650	0	-11,842	5,19E-06
138	c53812_g1	920,99	717,28	0	-12,103	1,63E-06	198	c50748_g1	811,96	558,72	0	-11,840	5,30E-06
139	c51907_g1	890,37	743	0	-12,102	1,67E-06	199	c84144_g1	567	769	0	-11,839	5,30E-06
140	c48898_g1	332,9	1220,76	0	-12,102	1,63E-06	200	c40681_g2	691,97	655	0	-11,831	5,54E-06
141	c48550_g2	757	851,98	0	-12,097	1,70E-06	201	c31463 g1	804,92	556,95	0	-11,830	5,54E-06
142	c41090_g1	1056,87	591,99	0	-12,095	1,73E-06	202	c49086_g2	841,89	523,7	0	-11,829	5,54E-06
143	c46953_g1	996,58	641,97	0	-12,093	1,73E-06	203	c49625_g2	739,15	610,65	0	-11,827	5,66E-06
144	c44589_g1	660,99	929,96	0	-12,094	1,73E-06	203	c38927_g1	812	547	0	-11,826	5,66E-06
145	c51247_g1	764,6	833	0	-12,035	1,83E-06	204	c54608_g1	833,99	525,7	0	-11,823	5,79E-06
145	c57693_g1			0			205	c57314_g1			0		,
140		780	804,02	0	-12,070	2,01E-06	200		909,6	456,94		-11,819	5,92E-06
	c46698_g1	807,98	758		-12,048	2,26E-06	207	c54078_g1	720,21	618,95	0	-11,818	5,92E-06
148	c34532_g1	931,53	648,86	0	-12,046	2,30E-06		c44374_g1	701,17	634,58	0	-11,817	5,92E-06
149	c52861_g2	852,29	711,9	0	-12,040	2,39E-06	209	c43515_g1	774,43	570,92	0	-11,816	6,05E-06
150	c56741_g1	881	678	0	-12,031	2,49E-06	210	c55265_g1	784,96	557	0	-11,810	6,19E-06
151	c47790_g1	891,95	662	0	-12,024	2,59E-06	211	c55179_g1	842,78	504,02	0	-11,807	6,33E-06
152	c37475_g1	1046,97	524	0	-12,019	2,69E-06	212	c54316_g1	840	504,95	0	-11,805	6,47E-06
153	c53388_g1	798	725,91	0	-12,007	2,86E-06	213	c55607_g1	751	577	0	-11,800	6,62E-06
154	c55275_g2	914,98	624,19	0	-12,006	2,91E-06	214	c46567_g1	745,21	573,98	0	-11,790	6,92E-06
155	c56555_g3	876,75	654,55	0	-12,004	2,91E-06	215	c55648_g1	586	708,59	0	-11,788	7,08E-06
156	c57792_g1	879,95	652,21	0	-12,004	2,91E-06	216	c57480_g1	805	519,26	0	-11,786	7,08E-06
157	c57914_g1	1063,71	486,82	0	-11,997	3,03E-06	217	c51784_g1	702,91	602	0	-11,780	7,40E-06
158	c25210_g1	1026,98	512	0	-11,990	3,15E-06	218	c58060_g1	658,81	634,39	0	-11,773	7,57E-06
159	c56205_g3	811,96	695	0	-11,988	3,22E-06	219	c49066_g1	955,69	377,99	0	-11,772	7,75E-06
160	c10618_g1	921,07	600,88	0	-11,987	3,22E-06	220	c57875_g1	587,99	690,17	0	-11,767	7,93E-06
161	c55863_g1	751,99	743,96	0	-11,985	3,28E-06	221	c24207_g1	668,65	619,99	0	-11,767	7,93E-06
162	c56656_g2	860,99	645	0	-11,980	3,35E-06	222	c71416_g1	581,88	690,96	0	-11,762	8,11E-06
163	c53758_g3	933,6	577	0	-11,974	3,49E-06	223	c45991_g5	695,94	590,61	0	-11,760	8,30E-06
164	c51418_g1	774	701,99	0	-11,961	3,78E-06	224	c25344_g1	887,98	423,97	0	-11,757	8,30E-06
165	c45998_g1	854,96	630,72	0	-11,960	3,78E-06	225	c55186_g1	732	554,81	0	-11,754	8,49E-06
166	c58077_g1	931,99	563,94	0	-11,959	3,78E-06	226	c51856_g1	432,75	810,99	0	-11,753	8,49E-06
167	c53741_g1	785	690	0	-11,958	3,78E-06	227	c53461_g1	736,96	546,99	0	-11,749	8,69E-06
168	c55326_g1	873,78	607,94	0	-11,952	3,94E-06	228	c50756_g1	639,99	628	0	-11,746	8,89E-06
169	c53734_g1	924,87	556,7	0	-11,945	4,10E-06	229	c56319_g1	555,74	699,93	0	-11,746	8,89E-06
170	c26940_g1	890,94	586	0	-11,945	4,10E-06	230	c54168_g1	616	647,92	0	-11,746	8,89E-06
171	c38209_g1	849,97	612	0	-11,935	4,37E-06	231	c54648_g1	524,99	722,98	0	-11,742	9,10E-06
172	c52656_g2	994,92	487	0	-11,934	4,37E-06	232	c49519_g2	810,98	473,75	0	-11,738	9,31E-06
173	 c42841_g1	754,38	685	0	-11,925	4,64E-06	233	c58165_g1	788,29	490,99	0	-11,734	9,53E-06
174	c45726_g1	887,96	562,97	0	-11,917	4,84E-06	234	c52129_g1	567,99	674	0	-11,727	9,98E-06
175	c55000_g2	706,32	713,98	0	-11,911	4,94E-06	235	c57877_g1	736,99	521,92	0	-11,718	1,05E-05
176	c16060_g1	926,37	521,95	0	-11,908	5,05E-06	236	c56786_g4	696,99	556	0	-11,718	1,05E-05
177	c43839_g1	908,44	533,88	0	-11,908	5,16E-06	230	c39536_g1	718,93	537,46	0	-11,718	1,05E-05
178	c58086_g1	530,98	855,46	0	-11,904	5,26E-06	237	c56891_g1	693,82	558	0		1,05E-05
178	c58086_g1						238	c42721_g1				-11,717	
		911,8	523	0	-11,896	5,49E-06			739,29	511,11	0	-11,707	1,12E-05
180	c56114_g2	313	1030	0	-11,887	3,92E-06	240	c54044_g1	561	661,99	0	-11,704	1,12E-0

241	c57563_g1	697,88	541,94	0	-11,701	1,15E-05	301	c55753_g1	691,7	369,68	0	-11,458	3,06E-05
242	c51362_g1	625,91	601	0	-11,698	1,18E-05	302	c57592_g2	524	513	0	-11,456	3,06E-05
243	c55522_g1	835,76	413,99	0	-11,689	1,23E-05	303	c8482_g1	624,69	423,77	0	-11,453	3,15E-05
244	c47397_g1	608	608,98	0	-11,688	1,23E-05	304	c57012_g2	560,19	476	0	-11,447	3,23E-05
245	c50433_g2	803,96	438,95	0	-11,686	1,23E-05	305	c49935_g1	616,56	424,95	0	-11,444	3,32E-05
246	c26676_g1	654,9	567	0	-11,686	1,26E-05	306	c47589_g1	688,06	363,41	0	-11,443	2,28E-05
247	c57241_g1	752,24	483,26	0	-11,685	1,26E-05	307	c55705_g1	526	498	0	-11,436	2,34E-05
248	c57125_g1	679	544	0	-11,683	1,26E-05	308	c55342_g1	584,35	444,94	0	-11,431	2,41E-05
249	c49411_g1	716	509,98	0	-11,680	1,29E-05	309	c8759_g1	683,92	358,91	0	-11,431	2,41E-05
250	c57386 g11	817,93	420,99	0	-11,679	1,29E-05	310	c55710_g1	487,8	525,86	0	-11,429	2,48E-05
251	c37540_g1	772	458,98	0	-11,677	1,33E-05	311	c57925_g1	599,54	423,34	0	-11,419	2,62E-05
252	c50662_g1	674,68	530,84	0	-11,662	9,87E-06	312	c56109_g1	707,93	329,91	0	-11,418	2,62E-05
253	c84123_g1	671	532	0	-11,659	1,01E-05	313	c50784_g1	573,99	444,88	0	-11,418	2,62E-05
254	c50703_g1						314	c34064_g1			0		
		771,73	445,14	0	-11,658	1,01E-05			594,96	424,7		-11,415	2,62E-05
255	c54032_g1	846,99	378	0	-11,655	1,04E-05	315	c37474_g1	540,99	469,99	0	-11,413	2,69E-05
256	c41105_g1	863,06	352,99	0	-11,640	1,12E-05	316	c32781_g1	647,48	376,97	0	-11,410	2,69E-05
257	c53755_g9	641,86	535,96	0	-11,631	1,17E-05	317	c25331_g1	390,68	593,98	0	-11,405	2,77E-05
258	c42476_g1	746,98	445	0	-11,630	1,17E-05	318	c39556_g1	517	484	0	-11,403	2,85E-05
259	c53066_g1	655	518	0	-11,622	1,23E-05	319	c49699_g1	537,89	464,99	0	-11,401	2,85E-05
260	c56350_g1	381,98	745,57	0	-11,613	1,29E-05	320	c27562_g2	458	528,98	0	-11,394	2,93E-05
261	c57088_g1	655,43	508,98	0	-11,610	1,33E-05	321	c44842_g1	538	457,97	0	-11,390	3,02E-05
262	c47442_g1	673,99	482,26	0	-11,596	1,43E-05	322	c54175_g1	612,99	392	0	-11,388	3,10E-05
263	c53173_g1	477,98	649,61	0	-11,595	1,43E-05	323	c57041_g1	412,11	564	0	-11,387	3,10E-05
264	c53264_g2	542,92	589,73	0	-11,589	1,47E-05	324	c55306_g1	485,54	497,51	0	-11,383	3,19E-05
265	c53386_g2	539,96	587,88	0	-11,583	1,54E-05	325	c57655_g1	516,96	468,81	0	-11,379	3,19E-05
266	c34297_g1	356	740	0	-11,575	1,58E-05	326	c24824_g1	499,97	482,83	0	-11,378	3,19E-05
267	c55984_g1	683,77	457,95	0	-11,575	1,63E-05	327	c54880_g1	633,52	362,99	0	-11,371	3,38E-05
268	c122422_g1	658,47	476,54	0	-11,570	1,67E-05	328	c57861_g1	487	488,99	0	-11,370	3,38E-05
269	c17482_g1	515,99	591,95	0	-11,560	1,76E-05	329	c96827_g1	492	483	0	-11,367	3,38E-05
270	c56348_g10	546,23	565,99	0	-11,560	1,76E-05	330	c58149_g1	519,97	455,73	0	-11,363	3,48E-05
271	c49173_g1	697,35	431,92	0	-11,554	1,80E-05	331	c51106_g1	522	453,99	0	-11,362	3,48E-05
272	c52369_g1	663,98	455	0	-11,547	1,90E-05	332	c56898_g1	499,13	472	0	-11,359	3,58E-05
273	c51794_g1		417	0	-11,544	1,90E-05	333	c35296_g1		612	0		3,58E-05
273		705,94						c51285 g1	335,83			-11,359	
	c46866_g1	725	400	0	-11,543	1,90E-05	334		374	573,8	0	-11,351	3,69E-05
275	c56123_g1	579,16	525	0	-11,542	1,95E-05	335	c55683_g1	554,01	418,94	0	-11,350	3,80E-05
276	c47321_g2	679,98	435,97	0	-11,539	1,95E-05	336	c53305_g1	492,96	470	0	-11,348	3,80E-05
277	c55303_g1	407,96	662,99	0	-11,529	2,05E-05	337	c30806_g1	477,12	479	0	-11,340	4,03E-05
278	c52947_g1	595,18	501,97	0	-11,529	2,05E-05	338	c57588_g1	495,73	459,5	0	-11,336	4,03E-05
279	c56599_g1	570,94	520,39	0	-11,525	2,11E-05	339	c55188_g1	546	416,91	0	-11,336	4,03E-05
280	c34247_g1	746,33	369	0	-11,525	2,11E-05	340	c53740_g1	576,52	390,46	0	-11,335	4,03E-05
281	c40256_g1	652	448,65	0	-11,523	2,16E-05	341	c26900_g1	451	497,94	0	-11,335	4,15E-05
282	c46951_g2	439,36	630,93	0	-11,522	2,16E-05	342	c49817_g1	706,66	275,88	0	-11,332	4,15E-05
283	c46152_g1	528,97	548,93	0	-11,515	2,22E-05	343	c55226_g1	528,88	428,82	0	-11,332	4,15E-05
284	c57488_g12	709,59	393	0	-11,515	2,22E-05	344	c56902_g3	319,97	606,96	0	-11,329	4,15E-05
285	c50551_g1	558,99	514,85	0	-11,503	2,40E-05	345	c56045_g1	490,96	456,98	0	-11,324	4,40E-05
286	c52627_g1	649,95	434,79	0	-11,501	2,40E-05	346	c57966_g1	563,99	392	0	-11,320	4,40E-05
287	c55008_g1	501,25	562,99	0	-11,501	2,40E-05	347	c46488_g2	540	412	0	-11,319	4,40E-05
288	c40909_g1	421,92	630	0	-11,499	2,40E-05	348	c39708_g1	633,68	326	0	-11,311	4,67E-05
289	c49237_g1	552,27	515,99	0	-11,496	2,47E-05	349	c47734_g2	580,99	371	0	-11,310	4,67E-05
290	c46283_g1	669,97	412,88	0	-11,494	2,54E-05	350	c46428_g1	481,97	456	0	-11,309	4,67E-05
291	c57907_g1	461,65	585,98	0	-11,485	2,60E-05	351	c30202_g1	541	399,97	0	-11,301	4,95E-05
292	c57131_g1	529	526,99	0	-11,483	2,68E-05	352	c55662_g1	467,96	462	0	-11,299	4,95E-05
293	c51319_g1	541,83	512,35	0	-11,478	2,75E-05	353	c57651_g2	566,99	373,98	0	-11,295	5,10E-05
294	c58181_g2	605,48	457,38	0	-11,476	2,75E-05	354	c56400_g1	477,8	448,99	0	-11,293	5,10E-05
295	c49441_g1						355	c51717_g1	557		0		
	c37945_g1	700,89	372,24	0	-11,473	2,82E-05				380,99		-11,292	5,10E-05
296		661,99	401,99	0	-11,467	2,90E-05	356	c42567_g1	534,9	397,95	0	-11,289	5,26E-05
297	c26783_g1	513,99	528	0	-11,466	2,90E-05	357	c56595_g2	548	385,9	0	-11,287	5,26E-05
298	c50926_g1	388,99	634	0	-11,463	2,98E-05	358	c48604_g2	379	531	0	-11,287	5,26E-05
299	c27309_g1	562,38	483,87	0	-11,462	2,98E-05	359	c122672_g1	527,99	400,81	0	-11,284	5,42E-05
300	c54998_g2	534	505,82	0	-11,458	3,06E-05	360	c54861_g1	614,36	325,43	0	-11,280	5,42E-05

362 c 363 c 364 c 365 c 365 c 366 c 366 c 366 c 367 c 368 c 370 c 371 c 372 c 373 c 374 c 375 c 376 c 3776 c 3777 c	c10705_g1 c53851_g2 c52935_g1 c55026_g1 c56893_g1 c54826_g2 c57217_g1 c54488_g2 c48819_g1 c52120_g1 c58342_g1 c58342_g1 c593_g1	632 528,91 486 356,99 527,86 570,14 652,99 447,94 584 547 523,46	306,86 392,96 428 537 388,98 351,43 275,75 452	0 0 0 0 0 0	-11,276 -11,272 -11,268 -11,265 -11,263	5,58E-05 5,75E-05 5,75E-05 5,93E-05	421 422 423 424	c14616_g1 c53952_g1 c57065_g2	477 461 286,22	355 361,65 511,97	0 0 0	-11,124 -11,111 -11,110	8,63E-05 9,22E-05 9,22E-05
363 c 364 c 365 c 366 c 366 c 367 c 368 c 369 c 370 c 371 c 372 c 373 c 374 c 375 c 376 c 377 c 377 c 377 c	c52935_g1 c55026_g1 c56893_g1 c5482_g1 c54836_g2 c57217_g1 c54488_g2 c48819_g1 c52120_g1 c58342_g1	486 356,99 527,86 570,14 652,99 447,94 584 547	428 537 388,98 351,43 275,75	0 0 0 0	-11,268 -11,265 -11,263	5,75E-05 5,93E-05	423	c57065_g2		511,97	0		9,22E-05
364 c 365 c 366 c 367 c 368 c 367 c 370 c 371 c 372 c 373 c 374 c 375 c 376 c 377 c	c55026_g1 c56893_g1 c5462_g1 c54836_g2 c57217_g1 c54488_g2 c48819_g1 c52120_g1 c58342_g1	356,99 527,86 570,14 652,99 447,94 584 547	537 388,98 351,43 275,75	0 0 0	-11,265 -11,263	5,93E-05			286,22			-11,110	
365 c 366 c 367 c 368 c 369 c 370 c 371 c 372 c 373 c 374 c 375 c 376 c 377 c	c56893_g1 c55462_g1 c54836_g2 c57217_g1 c54488_g2 c48819_g1 c52120_g1 c58342_g1	527,86 570,14 652,99 447,94 584 547	388,98 351,43 275,75	0 0	-11,263		424						
366 c 367 c 368 c 369 c 370 c 371 c 372 c 373 c 374 c 375 c 376 c 377 c	c55462_g1 c54836_g2 c57217_g1 c54488_g2 c48819_g1 c52120_g1 c58342_g1	570,14 652,99 447,94 584 547	351,43 275,75	0				c54090_g2	432,34	385,22	0	-11,107	9,22E-05
367 c 368 c 369 c 370 c 371 c 372 c 373 c 374 c 375 c 376 c 377 c	c54836_g2 c57217_g1 c54488_g2 c48819_g1 c52120_g1 c58342_g1	652,99 447,94 584 547	275,75		11 200	5,93E-05	425	c55095_g1	354,97	450,94	0	-11,107	9,22E-05
367 c 368 c 369 c 370 c 371 c 372 c 373 c 374 c 375 c 376 c 377 c	c54836_g2 c57217_g1 c54488_g2 c48819_g1 c52120_g1 c58342_g1	652,99 447,94 584 547	275,75		-11,260	6,12E-05	426	c24239_g1	527,97	301	0	-11,104	9,53E-05
368 c 369 c 370 c 371 c 372 c 373 c 374 c 375 c 376 c 377 c	c57217_g1 c54488_g2 c48819_g1 c52120_g1 c58342_g1	447,94 584 547			-11,254	6,30E-05	427	c57583_g1	310,63	484	0	-11,097	9,85E-05
869 c 870 c 871 c 872 c 873 c 874 c 875 c 876 c 877 c	c54488_g2 c48819_g1 c52120_g1 c58342_g1	584 547	452	0	-11,253	6,30E-05	428	c52100_g1	378,11	421,99	0	-11,089	1,02E-04
370 c 371 c 372 c 373 c 374 c 375 c 376 c 377 c	c48819_g1 c52120_g1 c58342_g1	547	335	0	-11,253	6,30E-05	429	c34110_g1	515,99	301	0	-11,085	1,05E-04
371 c 372 c 373 c 374 c 375 c 376 c 377 c	c52120_g1				,		430	c55691_g1	452,95	352,97	0	-11,080	1,05E-04
372 c 373 c 374 c 375 c 376 c 377 c	c58342_g1		366	0	-11,252	6,30E-05	431	c50386_g1	412	388	0	-11,080	1,05E-04
373 c 374 c 375 c 376 c 377 c	=-	522,46	385,97	0	-11,249	6,50E-05	432	c58170_g1	458,49	346,84	0	-11,077	1,09E-04
374 c 375 c 376 c 377 c	c51973_g1	491,12	410,94	0	-11,246	6,50E-05	433	c52816_g1	512,54	299	0	-11,076	1,09E-04
375 c 376 c 377 c		538	370	0	-11,245	6,50E-05	434	c52905_g1					
376 с 377 с	c46160_g1	433,97	459	0	-11,245	6,70E-05			479,32	328	0	-11,075	1,09E-04
377 c	c56002_g1	441,83	452,09	0	-11,244	6,70E-05	435	c50190_g1	457,99	345,99	0	-11,075	1,09E-04
	c55680_g1	534	368,99	0	-11,238	6,91E-05	436	c53947_g1	301,93	480	0	-11,075	1,09E-04
70	c53091_g1	468,97	423,89	0	-11,236	6,91E-05	437	c46469_g1	450,98	350	0	-11,071	1,13E-04
878 c	c55917_g1	312,86	556,87	0	-11,234	6,91E-05	438	c51782_g1	505,99	302	0	-11,070	1,13E-04
879 c	c10659_g1	546,95	354,95	0	-11,233	7,13E-05	439	c52891_g1	446,73	351,65	0	-11,068	1,13E-04
380 c	c71595_g1	477,94	413,88	0	-11,232	7,13E-05	440	c49895_g1	435	358,95	0	-11,062	1,17E-04
881 c	c54971_g3	585,95	321	0	-11,232	7,13E-05	441	c54340_g1	557	253	0	-11,060	1,17E-04
	 56575_g1	471,79	416	0	-11,227	7,35E-05	442	c57237_g4	586,79	226	0	-11,057	1,21E-04
	 46423_g1	516,03	377,92	0	-11,226	7,35E-05	443	c51693_g1	487,99	308,93	0	-11,053	1,25E-04
	c56036_g1	522,25	371,62	0	-11,225	4,99E-05	444	c57329_g1	403,99	379	0	-11,049	1,25E-04
	c46636_g1	460,63	423,91	0	-11,223	4,99E-05	445	c44309_g1	405,48	377,83	0	-11,048	1,25E-04
							446	c15579_g1	354,98	421	0	-11,048	1,25E-04
	c71437_g1	465	413,96	0	-11,213	5,31E-05	447	c53693_g1	458	331	0	-11,046	1,29E-04
	c57968_g1	459,51	416,99	0	-11,210	5,31E-05	448	c52391_g1	344	429,25	0	-11,045	1,29E-04
	c57555_g1	316,24	536,99	0	-11,203	5,48E-05	449	c49404_g1	402,85	377,95	0	-11,045	1,29E-04
	c46396_g1	321,73	529,98	0	-11,200	5,66E-05	450	c44902_g1	409,62	370,46	0	-11,041	1,29E-04
390 c	c25201_g1	625,5	268	0	-11,199	5,66E-05	451	c57366_g1	496,95	295	0	-11,041	1,29E-04
891 c	c55859_g1	518	360	0	-11,198	5,84E-05	452	c48540_g1	467,99	318,94	0	-11,039	1,34E-04
392 c	c55357_g1	454	412,99	0	-11,194	5,84E-05	453	c54170_g1	320	445,88	0	-11,038	1,34E-04
393 c	c57713_g1	434,47	428,93	0	-11,192	6,03E-05	454	c58064_g4	465,2	319,89	0	-11,036	1,34E-04
894 c	c48374_g1	369,13	483,9	0	-11,190	6,03E-05	455	c57508_g1	389,99	383,98	0	-11,035	1,34E-04
895 c	c57759_g1	445	415	0	-11,184	6,23E-05	456	c45020_g1	455,98	326,97	0	-11,033	1,34E-04
896 c	c44934_g1	88	721	0	-11,182	6,03E-05	457	c54685_g1			0		,
897 c	c42889_g1	473,4	389,17	0	-11,180	6,23E-05	458	c55320_g1	424,7 390,76	352,96	0	-11,033	1,39E-04
898 c	c46536_g1	521,71	346	0	-11,179	6,43E-05	459	c55929_g1		381,32		-11,030	1,39E-04
399 c	c45802_g1	386,82	461,99	0	-11,178	6,43E-05			490,99	292,96	0	-11,026	1,43E-04
100 c	c37520_g1	430	424	0	-11,176	6,43E-05		c47502_g1	430	341	Ŭ	-11,017	1,48E-04
	c57648_g1	577	295,93	0	-11,174	6,43E-05	461	c51926_g1	500,92	279	0	-11,015	1,48E-04
	c55540_g3	438	411,95	0	-11,167	6,86E-05	462	c55175_g1	482	294	0	-11,013	1,54E-04
	c50533 g1	573,96	294,99	0	-11,167	6,86E-05	463	c55853_g1	422	345	0	-11,011	1,54E-04
	c55965_g3	474,99	380	0	-11,167	6,86E-05	464	c54696_g1	336	415,99	0	-11,005	1,07E-04
	c56485_g2						465	c54018_g2	391	367,66	0	-11,004	1,07E-04
		492	364,99	0	-11,166	6,86E-05	466	c55959_g1	443	320	0	-10,997	1,11E-04
	c35181_g1	459,22	393	0	-11,165	6,86E-05	467	c57988_g9	343	405,61	0	-10,997	1,11E-04
	c49648_g2	421,21	421,99	0	-11,159	7,09E-05	468	c57776_g4	467	299	0	-10,996	1,11E-04
	c53718_g2	457	390,5	0	-11,157	7,09E-05	469	c50372_g1	399,09	357	0	-10,995	1,11E-04
	c51611_g2	501	349,98	0	-11,153	7,32E-05	470	c42532_g1	327,99	418	0	-10,995	1,11E-04
410 c	c54910_g1	319,16	502,99	0	-11,146	7,56E-05	471	c48551_g1	271,99	465,91	0	-10,995	1,11E-04
411 c	c57211_g1	527,32	324	0	-11,146	7,56E-05	472	c56900_g1	328,65	416,2	0	-10,993	1,11E-04
412 c	c51653_g1	370,01	458	0	-11,144	7,56E-05	473	c56988_g1	289,99	447,99	0	-10,990	1,15E-04
413 c	c48353_g1	428,24	407	0	-11,142	7,81E-05	474	c49064_g1	379	371	0	-10,989	1,15E-04
414 c	c55792_g1	322	497,98	0	-11,142	7,81E-05	475	c57100_g1	355,53	390	0	-10,987	1,15E-04
	c44620_g1	388	438,47	0	-11,136	8,08E-05	476	c57764_g2	459,96	297	0	-10,980	1,19E-04
	c48009_g1	544,95	301,1	0	-11,132	8,08E-05	477	c47034_g1	403	345	0	-10,978	1,23E-04
	c58058_g1	478,99	356,92	0	-11,131	8,35E-05	478	c50831_g1	0,82	690,99	0	-10,978	1,23L-04
	c58017_g1	478,99	413	0	-11,131	8,35E-05	478	c57783_g1	379,72		0	-10,978	1,11E-04
	c51017_g1	394	413	0			479	c45303_g1		361,98			
	c56751_g5	394 492,55	428 342,21	0	-11,127 -11,125	8,35E-05 8,35E-05	480	c53055_g1	461,37 299	292 428,99	0	-10,971 -10,966	1,28E-04 1,28E-04

55 637. 617. 6														
bit bit< bit< <td>482</td> <td>c39573_g1</td> <td>469,99</td> <td>280</td> <td>0</td> <td>-10,962</td> <td>1,33E-04</td> <td>541</td> <td>c44257_g1</td> <td>401,8</td> <td>266</td> <td>0</td> <td>-10,801</td> <td>3,04E-04</td>	482	c39573_g1	469,99	280	0	-10,962	1,33E-04	541	c44257_g1	401,8	266	0	-10,801	3,04E-04
bis c u 0 10111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 111111 111111 11111	483	c54576_g1	277,99	443,56	0	-10,960	1,33E-04	542	c55492_g4	412	253	0	-10,790	3,16E-04
646 C <thc< th=""> C C C</thc<>	484	c39584_g1	500,9	247,96	0	-10,951	1,37E-04	543	c54547_g1	414	251	0	-10,790	3,16E-04
10.1 10.2 <th10.2< th=""> 10.2 10.2 <th1< td=""><td>485</td><td>c51997_g1</td><td>435,81</td><td>303</td><td>0</td><td>-10,949</td><td>1,43E-04</td><td>544</td><td>c57715_g4</td><td>429,93</td><td>237,21</td><td>0</td><td>-10,789</td><td>3,16E-04</td></th1<></th10.2<>	485	c51997_g1	435,81	303	0	-10,949	1,43E-04	544	c57715_g4	429,93	237,21	0	-10,789	3,16E-04
67 6307 62 6407 1 33 300 0 1078 2.1078 686 67178 1 904.2 316.2 0 -0.944 1.440.0 547 68201 1 907.3 2.118 0 -1.078 2.108 600 17147 11 404.2 2.328 0 -1.0381 1.846.4 50 6500.41 315 0 -1.078 2.108 61 1351.4 436.4 53 64700.41 439.4 0 -1.078 2.187 61 6350.4 113 135.4 53 64700.41 403.4 20 0 -1.078 2.187 62 6450.3 135.4 63 6450.4 135.4 63 6450.5 135.4 63 6450.5 135.7 0 0 107.8 2.187 64 6450.4 177.6 0 10.0131 17.164 55 64704.5 31.4 31.4 30.00	486	c56792_g1	380,8	350	0	-10,948	1,43E-04	545	c56474_g1	437,89	230	0	-10,789	3,16E-04
iso iso <td>487</td> <td>c56024_g2</td> <td></td> <td>381,51</td> <td>0</td> <td>-10,947</td> <td>1,43E-04</td> <td>546</td> <td>c44265_g1</td> <td>333</td> <td>320</td> <td>0</td> <td>-10,788</td> <td>2,10E-04</td>	487	c56024_g2		381,51	0	-10,947	1,43E-04	546	c44265_g1	333	320	0	-10,788	2,10E-04
989 6794 6794 6794 6791 6791 6791 6791 6791 6791 6791 6791 6791 6791 6791 6791 6791 6791 6791 6791 6791 6791 6791 1 6791 1 6791 6791 1 6791 1 6791 1 6791 1 6791 1 6791 1 6791 1 6791 1 6791 1 6791 1	488	c57178_g1	394,92	336,32	0	-10,944	1,43E-04	547	c45882_g1	404,26	258,41	0	-10,786	2,10E-04
10. 10.10 1	489	c57944_g1	405,88		0	-10,941	1,48E-04	548	c55001_g1	377	281	0	-10,785	2,10E-04
11 c731 c7311 c731 c731 <thc< td=""><td>490</td><td>c71475 g1</td><td>407,27</td><td>322,86</td><td>0</td><td>-10,938</td><td>1,48E-04</td><td>549</td><td>c54844_g2</td><td>335,98</td><td>316</td><td>0</td><td>-10,785</td><td>2,18E-04</td></thc<>	490	c71475 g1	407,27	322,86	0	-10,938	1,48E-04	549	c54844_g2	335,98	316	0	-10,785	2,18E-04
120 121 1237-0 135.70	491				0			550	c55059_g1	355	298,94	0	-10,783	2,18E-04
93 95.74 95.89 95.29 944 95.29 94.29 95.20 94.10 94.29 94.20 94.2	492	 c47027 g1	389.75		0			551	c42893_g1	348,99	304	0	-10,783	2,18E-04
44 c) c) <thc)< th=""> c)< c) c)<</thc)<>	493							552	c44418_g1	199	432,99	0	-10,782	2,18E-04
9 24190 27.295 34.29 0 -0.391 -1.652.04 554 6135.81 36.18 20.22 0 -0.108 2.188 466 66639.21 448.81 778 0 0.10314 1.656.04 556 61318.41 371.63 33.2 0 -0.078 2.188 478< 62471.81 371.63 342.37 0 0.10311 1.116.04 556 6138.14 220 0 -0.0778 2.727 500 64471.89 424 29.698 0 -10.0311 1.711-04 550 6138.14 23.4 0 -10.0778 2.867 5201 64471.89 464.9 25.54 0 -10.0391 1.711-04 560 6038.14 33.49 0 -10.707 2.867 5202 62503.25 38.48 32.40 0 -10.888 1.852-04 66138.21 32.39 22.308 0 -10.707 2.867 5201 621.52.4 38.55								553	c47490_g1	480,99	190	0	-10,782	2,18E-04
46 65503_1 448,18 278 0 -10,918 1,552.04 553 61538,g1 916,32 92 0 -10,708 2,182 477 6478,g.1 371,9 343 0 -10,917 1,556.04 556 67864,g1 379,9 275.55 0 -10,707 2,727 489 65292,g1 371,9 343,0 0 -10,917 1,711-04 558 67484,g1 399 255.6 0 -10,777 2,727 500 63507,g1 386,1 349 0 -10,997 1,711-04 562 63480,g1 379,9 22,682 379,3 286,11 0 -10,763 2,365 501 63507,g1 383,9 317,98 0 -10,891 1,871-0 563 6350,g1 322 21,06 0 -10,763 2,365 505 63506,g1 337,40 71,070 1,881 92,20 656 6350,g1 322 21,06 0 10,763 2,36								554	c52055_g1	214,55	419,22	0	-10,782	2,18E-04
497 elsystem 197.9 275.8 0 1.07.02 2.382 498 G2471_L1 371.63 342.9 0 1.0917 1.555.0 557 650.00L1 643.3 707 0 1.07.07 2.276 500 64225_L1 2.54.98 441.99 0 1.0914 1.716.04 556 6580.2L1 351.1 0 1.07.07 2.356 501 6477_L9 4.66.9 255.94 0 1.0907 1.716.04 556 6530.2L1 371.93 228.9 0 1.07.07 2.366 502 65533.2.53 384.18 324 0 1.0893 1.851-04 556 6630.2.21 373.93 288.9 0 1.07.62 2.366 505 6533.2.51 384.34 324.9 0 1.0893 1.851-04 556 66330.2.11 373.9 38.0 0 1.07.62 2.366 506 62130.2.11 0 1.0891 1.927.04 566 63130.21 357.3 0 1.07.62 2.366 506 63130.2.11								555	c31518_g1	361,82	292	0	-10,781	2,18E-04
498 cb271_g1 371.9 342.97 0 -10.97 1.65E.04 57 cb280_g1 463.3 20.0 -10.772 2.727 499 c5680_g1 32.348 0 -10.913 7.11E-04 550 cb280_g1 339 756 0 -10.772 2.727 500 cb4271_g8 466.60 25.54 0 -10.903 7.11E-04 560 c50380_g1 23.10 0 -10.772 2.726 501 c5637_g1 389 31.78 0 -10.898 1.85E-04 561 c63081_g1 35.793 278.8 0 -10.762 2.366 505 c5354_g1 384.33 31.78 0 -10.881 1.92E-04 566 c6303_g1 35.79 288.0 0 -10.782 2.366 507 c4570_g1 32.746 370 0 -10.881 9.32E-04 567 c4337_g1 31.59 360 0 -10.782 2.466 610 c422.32								556	c71454_g1	379,99	275,95	0	-10,780	2,18E-04
49 c5509_E1 4.44 296,98 0 1.71E-04 550 62489_E1 361 298 0 1.077 2.72E 500 c4427_E1 2348 41.99 0 1.0909 1.71E-04 560 65320_E1 251.00 381,71 0 1.0767 2.36E 501 c5537_E3 364.11 340 0 1.0907 1.71E-04 560 65320_E1 381,71 0 1.0767 2.36E 503 c5537_E3 384.11 324 0 1.0894 1.85E-04 566 6030E_E1 37.733 228 0 1.07.8 2.46E 505 c5364_E1 38.3.9 32.1.94 0 1.0884 1.92E-04 566 64313_E1 32.2 2.9.06 0 1.07.8 2.46E 506 c516.0_G17_E1 32.1.4 0 1.0.884 1.92E-04 570 64317_E1 452.31 199.6 0 1.0.7.4 2.76E 507 c4706_E1 3								557	c58204_g1	463,3	202	0	-10,774	2,27E-04
500 c42425_E1 254,98 411,99 0 10.913 1.71E-04 500 65802,91 231,91 31,71 0 1.076 2.36E 501 c46671,89 466,69 255,44 0 -10.907 7.1E-04 561 65304,11 374,99 274,71 0 1.076 2.36E 503 c5525,21 384,18 324 0 -10.989 1.85E-04 561 63049,11 312,98 0 -10.763 2.36E 505 c53644,81 384,39 321,94 0 -10.891 1.92E-04 560 6303,01 312,94 0 -10.768 2.46E 507 c4750,g1 10.266 2.122,41 327,60 0 -10.786 2.46E 500 c4760,g1 422,47 285,64 0 -10.888 1.92E-04 560 6331,21 315,59 340 0 -10.746 2.56E 510 c5478,21 340 0 -10.888 1.92E-04 560								558	c48495_g1	361	289	0	-10,772	2,27E-04
501 c54671_g9 466,69 255,94 0 1,71E-04 561 65302_g1 20,79 27,71 0 1,77E-04 561 65302_g1 37,99 7,74 0 1,77E-04 561 65302_g1 37,93 269,81 0 1,076 2,36E 504 c5382_g1 389 317,98 0 1,0894 1,85E-04 563 c4344_g1 379 12,398 0 1,076 2,36E 505 c5382_g1 389 317,98 0 1,0894 1,85E-04 566 6400c_g1 31,99 32,008 0 1,07.6 2,36E 506 c5432_g1 1,01,96 2,11 0 1,0,896 1,92E-04 566 6413_g1 422 2,86 0 1,0,88 1,92E-04 560 6437_g1 422 2,86 0 1,0,78 2,66 510 c4466_g1 422,87 2,85,64 0 1,0,88 1,92E-04 570 63344_g11 315,99 316,05								559	c47345_g1	399	256	0	-10,771	2,27E-04
502 c35070_E1 360 349 0 -10,907 ,711-04 561 c5340,g21 379,53 266,81 0 -10,767 2,566 533 c55393,g5 384,48 314 0 -10,888 1,851-04 563 c53484,g1 327,93 268,41 0 -10,763 2,366 505 c53644,g1 384,39 321,94 0 -10,891 1,921-04 566 c6130,g1 337,93 268,41 0 -10,763 2,366 506 c52162,g1 127,06 370 0 -10,891 1,921-04 566 c6130,g1 315,99 300.00 -10,763 2,466 508 c57068,g1 422,14 286,78 0 -10,881 1,921-04 570 c6130,g1 422 228 0 -10,731 2,767 510 c57068,g1 312,78 325,64 0 -10,884 1,921-04 571 c2410,g1 245,99 340 0 -10,739 2,676							,	560	c55820_g1	251,09	381,71	0	-10,767	2,36E-04
503 c5233_g5 384,18 324 0 -10,89 1,857-04 568 c5342_g1 329 312,38 0 -10,763 2,366 504 c55823_g1 384,39 321,34 0 -10,894 1,857-04 566 c64310_g1 329 312,38 0 -10,763 2,366 506 c5216_g1 327,64 307 0 -10,891 1,927-04 566 c64310_g1 352 291,00 0 -10,756 2,466 507 c44570_g1 502,05 c211 0 -10,898 1,927-04 566 c4317_g1 422,31 199,90 0 -10,762 2,466 507 c44750_g1 422,87 255,64 0 -10,888 1,927-04 571 c4313_g1 352,99 0 -10,730 2,676 510 c54268_g1 370,33 248 0 -10,737 2,666 371,43 2,569 0 -10,734 2,786 511 c54268_g1								561	c50340_g1	374,99	274,71	0	-10,767	2,36E-04
504 c55825_E1 339 317,98 0 -10,783 1,85E-04 564 c47395_E1 337,33 32,88 0 -10,763 2,565 505 c53644_E1 384,39 32,14 0 -10,893 1,85E-04 566 c47395_E1 357,33 32,88 0 -10,763 2,365 507 c4570_E1 321,08 0 -10,893 1,92E-04 566 c4030_E1 352 291,06 0 -10,751 2,566 507 c44570_E1 422,87 285,64 0 -10,888 1,92E-04 566 c43718_E1 422,21 228 0 -10,742 2,566 510 c54266_E1 312,75 0 -10,886 1,92E-04 570 c3444_E1 452,315,99 316,90 0 -10,742 2,866 511 c5722_E1 370,87 0 -10,873 2,07E-04 571 c5296_B,81 37,93 32,68 0 -10,723 2,77E 512 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>562</td><td>c52485_g2</td><td>379,53</td><td>269,81</td><td>0</td><td>-10,765</td><td>2,36E-04</td></td<>								562	c52485_g2	379,53	269,81	0	-10,765	2,36E-04
505 c35.44 c37.45 321.94 0 1.087.47 1.887.64 c566 c57162,g1 327.46 370 0 1.087.01 1.887.64 566 c5610,g1 332.98 0 1.0761 2.366 507 c44570,g1 510,96 211 0 1.0890 1.927.64 566 c56130,g1 352 291,06 0 -10.758 2.466 509 c57608,g1 422,87 285,64 0 1.0888 1.927.64 566 c4313.g1 452,31 199,96 0 -10.748 2.566 510 c54268,g1 342 357,64 0 1.0877 2.076.04 572 c4479,g1 241,85 376,97 0 -10.734 2.786 513 c57740,g1 401,65 295.99 0 -10.873 2.786 357 c5223,g1 365,9 288,90 0 -10.734 2.786 514 c5755 c5336,g2 400,05 295.99 0 -10.863 2.2								563	c43349_g1	329	312,98	0	-10,763	2,36E-04
506 cital all all all all all all all all all								564	c47895_g1	357,93	288	0	-10,763	2,36E-04
507 c44570_g1 510.0 1.0.70 1.0.70 1.0.70 2.466 508 641097_g1 422,14 286,78 0 1.0288 1.92E-04 568 64317_g1 422 228 0 -10.756 2.656 509 67568_g1 422,87 285,64 0 -10.888 1.92E-04 568 64317_g1 452,31 199.96 0 -10.746 2.566 511 657227_g1 372,08 329 0 -10.886 1.92E-04 571 c341.9g1 241.85 376.97 0 -10.748 2.567 512 64044_g1 10.46 2.07 0 -10.873 2.07E-04 573 c3426_g1 370.99 2.01.07.34 2.78E 514 65555_g1 313.75 373.45 0 -10.863 2.15E-04 576 6578.g1 277.89 326,66 0 -10.732 2.78E 515 6533.6_g1 40.02 2.52E-04 576 65768.g1 371.7								565	c40062_g1	319,99	320,08	0	-10,761	2,36E-04
508 c41392_g1 422,14 286,78 0 -10,888 1,92E-04 568 64718,84 422 228 0 -10,758 2,568 509 C57608_g1 422,87 285,64 0 -10,888 1,92E-04 569 c648317_g1 452,31 199,96 0 -10,745 2,565 510 C54268_g1 342 355,46 0 -10,888 1,92E-04 570 C3443_g1 115,99 316,95 0 -10,745 2,565 511 C5727_g1 372,08 229 0 -10,887 2,07E-04 571 C44199_g1 241,85 365,97 0 -10,732 2,785 515 C5336_g2 40,05 295,99 0 -10,862 2,15E-04 576 C5078_g1 297,78 326,86 0 -10,732 2,785 516 C5347_g1 40,99 28,95 0 -10,852 2,23E-04 577 C5278_g1 32,56 0 -10,772 2,906								566	c56130_g1	352	291,06	0	-10,758	2,46E-04
500 c5760_1 422, 728 0 1.0388 1.92E-04 586 (e337.6, g1 422, 11 199, 96 0 1.07.64 2.566 510 c54268.g1 342 355, 66 0 1.0386 1.92E-04 570 c33443.g1 315, 99 316, 95 0 1.07.76 2.56E 511 c57227.g1 372,08 329 0 1.0886 1.92E-04 571 c24409.g1 241,95 376,97 0 1.07.34 2.78E 513 c57140.g1 504,34 210 0 1.0874 2.07E-04 572 c54478.g1 370,99 264,94 0 1.07.34 2.78E 515 c56336.g2 400,05 258,99 0 1.0862 2.15E-04 576 c50788.g1 297,78 326,86 0 1.07.31 2.78E 516 c5743.g1 440,99 258,95 0 1.0854 2.23E-04 578 c5619.g3 326 01.07.34 .290E 518								567	c41582_g1	276,95	355	0	-10,756	2,46E-04
International and the set of the			422,14	286,78	0	-10,888	1,92E-04	568	c43718_g1	422	228	0	-10,751	2,56E-04
11 17.22 17.22 17.22 17.22 17.22 17.23 17.24 17				285,64	0	-10,888	1,92E-04	569	c48317_g1	452,31	199,96	0	-10,746	2,56E-04
512 c84044_g1 416 287 0 -10,877 2,07E-04 572 c4478g_g11 241,85 376,97 0 10,732 2,78E 513 c57140_g1 504,34 210 0 -10,874 2,07E-04 573 c54266_g1 262 358,81 0 -10,734 2,78E 514 c5555_g1 313,75 373,45 0 -10,873 2,07E-04 574 c5469g_g1 370,99 264,94 0 -10,734 2,78E 515 c56336_g2 201,75 404.8 0 -10,863 2,15E-04 576 C52923_g1 365,9 264,94 0 -10,732 2,78E 516 c57778_g2 21,717 404.8 0 -10,855 2,23E-04 578 c57640_g4 367,11 266 0 -10,722 2,90E 519 c48980_g1 31,97 0 -10,855 2,32E-04 580 c5497_g1 388 247 0 -10,722 2,90E 521 c4898_g1 343,35 338 0 -10,850 2,32E-04			342	355,46	0	-10,886	1,92E-04	570	c33443_g1	315,99	316,95	0	-10,745	2,56E-04
13 5710 647,36 247,35 376,37 0 10,764 2,872 513 657140 2 504,37 2 2 2 2 376,37 0 10,764 2,872 514 65336.g.2 400,05 255,99 0 -10,873 2,07E-04 574 65436.g.1 370,99 264,94 0 -10,734 2,78E 515 656336.g.2 400,05 255,99 0 -10,862 2,3EE-04 576 567786.g.1 278,97 342,56 0 -10,731 2,78E 516 657728.g.2 271,75 404,99 28,85 0 -10,852 2,3EE-04 576 56786.g.1 278,97 342,56 0 -10,721 2,78E 518 658237.g.1 361,92 324,97 0 -10,852 2,3EE-04 578 65619.g.3 326 301,25 0 -10,722 2,90E 520 650238.g.1 33,43 338 0 -10,854 2,3EE-04 581 654731_g.1 388 247 0 -10,722 2,90E <td></td> <td></td> <td>372,08</td> <td>329</td> <td>0</td> <td>-10,886</td> <td>1,92E-04</td> <td>571</td> <td>c24109_g1</td> <td>285,99</td> <td>340</td> <td>0</td> <td>-10,739</td> <td>2,67E-04</td>			372,08	329	0	-10,886	1,92E-04	571	c24109_g1	285,99	340	0	-10,739	2,67E-04
11 11 11 11 12 12 13 12 13 <th< td=""><td>512</td><td>c84044_g1</td><td>416</td><td>287</td><td>0</td><td>-10,877</td><td>2,07E-04</td><td>572</td><td>c44798_g1</td><td>241,85</td><td>376,97</td><td>0</td><td>-10,736</td><td>2,67E-04</td></th<>	512	c84044_g1	416	287	0	-10,877	2,07E-04	572	c44798_g1	241,85	376,97	0	-10,736	2,67E-04
51s 6536_g2 40,05 29,99 0 10,866 2,15E-04 576 652923_g1 36,99 20,9,4 0 10,733 2,78E 51s 6536_g2 271,75 404,8 0 -10,863 2,15E-04 576 652923_g1 326,86 0 -10,731 2,78E 51s 653447_g1 40,99 258,95 0 -10,862 2,23E-04 578 65619_g1 278,97 342,56 0 -10,731 2,78E 51s 658237_g1 361,92 324,97 0 -10,852 2,23E-04 578 65619_g3 326 301,25 0 -10,722 2,90E 520 65023_g1 375,96 309 0 -10,854 2,32E-04 580 649739_g1 388 247 0 -10,722 2,90E 521 65189_g1 351,99 331,67 0 -10,854 2,32E-04 581 654871_g1 395,9 240 0 -10,723 2,90E 522 65196_g1 375,96 309,92 0 -10,849 2,32E-04 <	513	c57140_g1	504,34	210	0	-10,874	2,07E-04	573	c54266_g1	262	358,81	0	-10,734	2,78E-04
516 C57728_g2 271,75 404,8 0 10,853 2,15F-04 576 C50788_g1 297,78 326,86 0 10,732 2,78E 517 C53447_g1 440,99 258,95 0 -10,852 2,23E-04 577 C57286_g1 278,97 342,56 0 -10,728 2,90E 518 C58237_g1 361,92 324,97 0 -10,855 2,23E-04 578 C57640_g4 367,11 266 0 -10,728 2,90E 520 C50238_g1 378,96 309 0 -10,855 2,32E-04 580 c49739_g1 388 247 0 -10,726 2,90E 522 C57540_g1 343,35 338 0 -10,854 2,32E-04 581 C54871_g1 395,59 240 0 -10,726 2,90E 522 C57540_g1 343,35 338 0 -10,849 2,32E-04 581 C54728_g1 367 263,98 0 -10,726 2,90E 523 C51916_g1 475,99 200 0 -10,849 <	514	c55565_g1	313,75	373,45	0	-10,873	2,07E-04	574	c54698_g1	370,99	264,94	0	-10,734	2,78E-04
517 c53447_g1 440,99 258,95 0 10,862 2,23E-04 577 67228_g1 232,05 0 10,722 2,90E 518 c58237_g1 361,92 324,97 0 -10,852 2,23E-04 578 c57640_g4 367,11 266 0 -10,722 2,90E 520 c50338_g1 378,96 309 0 -10,854 2,32E-04 580 c49739_g1 388 247 0 -10,726 2,90E 521 c48980_g1 31,99 331,67 0 -10,854 2,32E-04 580 c49739_g1 388 247 0 -10,726 2,90E 522 c57540_g1 343,35 338 0 -10,850 2,32E-04 581 c54871_g1 395,59 240 0 -10,723 2,90E 523 c56270_g1 375 309,92 0 -10,842 2,32E-04 586 c54846_g1 340,48 287 0 -10,723 2,90E 524 c51849_g1 395,99 220 0 -10,842 2,32E-04 58	515		400,05	295,99	0	-10,866	2,15E-04	575	c52923_g1	365,9	268,99	0	-10,733	2,78E-04
1 1 <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<>	516	c57728_g2	271,75	404,8	0	-10,863	2,15E-04	576	c50788_g1	297,78	326,86	0	-10,732	2,78E-04
519 c48980_g1 419,27 274,96 0 -10,855 2,23E-04 579 c56199_g3 326 301,25 0 -10,727 2,90E 520 c50238_g1 378,96 309 0 -10,854 2,32E-04 580 c49739_g1 388 247 0 -10,726 2,90E 521 c41895_g1 343,35 338 0 -10,850 2,32E-04 581 c54871_g1 395,59 240 0 -10,725 2,90E 522 c55750_g1 343,35 338 0 -10,849 2,32E-04 581 c54728_g1 367 263,98 0 -10,723 2,90E 523 c51916_g1 475,99 220 0 -10,842 2,41E-04 586 c54728_g1 367 287,83 332 0 -10,723 2,90E 526 c114157_g2 326 346 0 -10,832 2,50E-04 586 c5179_g1 417 218 0 -10,716 3,02E 526 c41457_g2 326 344 0 -10,712	517	c53447_g1	440,99	258,95	0	-10,862	2,23E-04	577	c57286_g1	278,97	342,56	0	-10,731	2,78E-04
520 c502 8, g1 378, 96 309 0 -10, 854 2, 32E-04 580 c49739 g1 388 247 0 -10, 726 2, 90E 521 c41895 g1 351, 99 331, 67 0 -10, 854 2, 32E-04 580 c49739 g1 398, 59 240 0 -10, 726 2, 90E 522 c57540 g1 343, 35 338 0 -10, 854 2, 32E-04 582 c56889 g1 304, 28 319, 02 0 -10, 723 2, 90E 523 c56270 g1 375 309, 92 0 -10, 844 2, 32E-04 584 c47358 g2 287, 83 332 0 -10, 723 2, 90E 524 c51819 g1 396, 96 291 0 -10, 842 2, 41E-04 585 c84246 g1 304, 48 287 0 -10, 723 2, 90E 525 c51916 g1 475, 99 220 0 -10, 833 2, 60E-04 585 c5157 g1 417 218 0 -10, 723 2, 90E 526 c14157 g2 326 344 30, 51	518	c58237_g1	361,92	324,97	0	-10,858	2,23E-04	578	c57640_g4	367,11	266	0	-10,728	2,90E-04
521 c41895_g1 351,99 331,67 0 -10,854 2,32E-04 581 c54871_g1 395,59 240 0 -10,726 2,90E 522 c57540_g1 333,35 338 0 -10,850 2,32E-04 582 c56889_g1 304,28 319,02 0 -10,725 2,90E 523 c56270_g1 375 309,92 0 -10,849 2,32E-04 583 c54728_g1 367 263,98 0 -10,722 2,90E 524 c51849_g1 396,96 291 0 -10,842 2,41E-04 585 c84246_g1 340,48 287 0 -10,722 2,90E 526 c14157_g2 326 346 0 -10,833 2,50E-04 586 c51579_g1 417 218 0 -10,716 3,02E 526 c14157_g2 324 304,31 0 -10,832 2,60E-04 588 c5516_g1 235 373,97 0 -10,714 3,02E 529 c54679_g1 372,98 304,31 0 -10,832 2,70	519	c48980_g1	419,27	274,96	0	-10,855	2,23E-04	579	c56199_g3	326	301,25	0	-10,727	2,90E-04
522 c57540_1 343,35 338 0 -10,850 2,32E-04 582 c56889_1 304,28 319.02 0 -10,725 2,90E 523 c56270_11 375 309,92 0 -10,849 2,32E-04 583 c54728_11 367 263,98 0 -10,725 2,90E 524 c51849_11 396,96 291 0 -10,849 2,32E-04 584 c47358_122 287,83 332 0 -10,725 2,90E 525 c51916_11 475,99 220 0 -10,842 2,41E-04 585 c84246_121 340,48 287 0 -10,725 2,90E 526 c14157_122 326 346 0 -10,833 2,50E-04 586 c51579_11 417 218 0 -10,716 3,02E 527 c41081_11 359 317,44 0 -10,832 2,60E-04 588 c5516_121 235 373,97 0 -10,714 3,02E 528 c5567_11 341,84 330,51 0 -10,822 2,70E-	520	c50238_g1	378,96	309	0	-10,854	2,32E-04	580	c49739_g1	388	247	0	-10,726	2,90E-04
523c56270_g1375309,920-10,8492,32E-04583c54728_g1367263,980-10,7232,90E524c51849_g1396,962910-10,8492,32E-04584c47358_g2287,833320-10,7232,90E525c51916_g1475,992200-10,8422,41E-04585c84246_g1340,482870-10,7232,90E526c14157_g23263460-10,8332,50E-04586c51579_g14172180-10,7163,02E527c41081_g1359317,440-10,8332,50E-04586c5516_g1235373,970-10,7163,02E528c55667_g1341,84330,510-10,8332,60E-04589c56454_g1369,152560-10,7073,15E530c42211_g14951950-10,8222,70E-04590c55624_g1383,982430-10,7073,15E531c54578_g1308,97352,950-10,8152,81E-04592c46416_g1336282,120-10,7013,28E533c56041_g1396276,970-10,8152,81E-04593c54194_g1331286,020-10,7013,28E533c5061_g1365,893010-10,8102,81E-04595c45456_g1394,992280-10,693 <t< td=""><td>521</td><td>c41895_g1</td><td>351,99</td><td>331,67</td><td>0</td><td>-10,854</td><td>2,32E-04</td><td>581</td><td>c54871_g1</td><td>395,59</td><td>240</td><td>0</td><td>-10,726</td><td>2,90E-04</td></t<>	521	c41895_g1	351,99	331,67	0	-10,854	2,32E-04	581	c54871_g1	395,59	240	0	-10,726	2,90E-04
524c51849_g1396,962910-10,8492,32E-04584c47358_g2287,833320-10,7232,90E525c51916_g1475,992200-10,8422,41E-04585c84246_g1340,482870-10,7222,90E526c14157_g23263460-10,8352,50E-04586c51579_g14172180-10,7163,02E527c41081_g1359317,440-10,8332,50E-04586c55616_g1235373,970-10,7143,02E528c55667_g1341,84330,510-10,8322,60E-04588c55516_g1235373,970-10,7143,02E529c54679_g1372,98304,310-10,8322,70E-04590c55624_g1383,982430-10,7073,15E530c42211_g14951950-10,8152,81E-04591c49571_g2386,622390-10,7073,15E531c54578_g1308,97352,950-10,8152,81E-04592c4616_g1336282,120-10,7013,28E533c56041_g1396276,970-10,8152,81E-04593c54194_g1331286,020-10,7013,28E533c5604_g1365,893010-10,8152,81E-04595c45456_g1394,992280-10,603 <td>522</td> <td>c57540_g1</td> <td>343,35</td> <td>338</td> <td>0</td> <td>-10,850</td> <td>2,32E-04</td> <td>582</td> <td>c56889_g1</td> <td>304,28</td> <td>319,02</td> <td>0</td> <td>-10,725</td> <td>2,90E-04</td>	522	c57540_g1	343,35	338	0	-10,850	2,32E-04	582	c56889_g1	304,28	319,02	0	-10,725	2,90E-04
525 c51916_g1 475,99 220 0 -10,842 2,41E-04 585 c84246_g1 340,48 287 0 -10,722 2,90E 526 c114157_g2 326 346 0 -10,833 2,50E-04 586 c51579_g1 417 218 0 -10,716 3,02E 527 c41081_g1 359 317,44 0 -10,833 2,50E-04 587 c56909_g3 266 347,62 0 -10,716 3,02E 528 c55667_g1 341,84 330,51 0 -10,832 2,60E-04 588 c55516_g1 235 373,97 0 -10,714 3,02E 529 c54679_g1 372,98 304,31 0 -10,832 2,70E-04 590 c5564_g1 369,15 256 0 -10,707 3,15E 530 c42211_g1 495 195 0 -10,812 2,70E-04 591 c46451_g1 336 282,12 0 -10,707 3,15E 531 c55509_g4 481,32 203,98 0 -10,815 2,81E-	523	c56270_g1	375	309,92	0	-10,849	2,32E-04	583	c54728_g1	367	263,98	0	-10,723	2,90E-04
526 c14157_g2 326 346 0 -10,835 2,50E-04 586 c51579_g1 417 218 0 -10,716 3,02E 527 c41081_g1 359 317,44 0 -10,833 2,50E-04 587 c56909_g3 266 347,62 0 -10,716 3,02E 528 c55667_g1 341,84 330,51 0 -10,832 2,60E-04 588 c55516_g1 235 373,97 0 -10,714 3,02E 529 c54679_g1 372,98 304,31 0 -10,831 2,60E-04 589 c56454_g1 369,15 256 0 -10,707 3,15E 530 c42211_g1 495 195 0 -10,812 2,70E-04 590 c55624_g1 383,98 243 0 -10,707 3,15E 531 c54578_g1 308,97 352,95 0 -10,815 2,81E-04 592 c46416_g1 336 282,12 0 -10,701 3,28E 533 c56041_g1 396 276,97 0 -10,815 2,81E-	524	c51849_g1	396,96	291	0	-10,849	2,32E-04	584	c47358_g2	287,83	332	0	-10,723	2,90E-04
527c41081_g1350317,440-10,8332,50E-04587c56909_g3266347,620-10,7163,02E528c55667_g1341,84330,510-10,8322,60E-04588c55516_g1235373,970-10,7143,02E529c54679_g1372,98304,310-10,8312,60E-04589c56454_g1369,152560-10,7073,15E530c42211_g14951950-10,8122,70E-04590c55624_g1383,982430-10,7073,15E531c54578_g1308,97352,950-10,8152,81E-04592c46416_g1336282,120-10,7013,28E532c55509_g4481,32203,980-10,8152,81E-04593c4194_g1331286,020-10,7013,28E533c56041_g1396276,970-10,8152,81E-04593c4194_g1331286,020-10,7013,28E533c56041_g1365,893010-10,8102,81E-04595c45456_g1394,992280-10,6933,42E535c71560_g1366,893030-10,8072,92E-04596c57477_g3273333,290-10,6933,42E536c41096_g1374293,810-10,8072,92E-04596c57477_g3273333,290-1	525	c51916_g1	475,99	220	0	-10,842	2,41E-04	585	c84246_g1	340,48	287	0	-10,722	2,90E-04
528 c55667_g1 341,84 330,51 0 -10,832 2,60E-04 588 c55516_g1 235 373,97 0 -10,714 3,02E 529 c54679_g1 372,98 304,31 0 -10,831 2,60E-04 589 c56454_g1 369,15 256 0 -10,707 3,15E 530 c42211_g1 495 195 0 -10,822 2,70E-04 590 c55624_g1 383,98 243 0 -10,707 3,15E 531 c54578_g1 308,97 352,95 0 -10,815 2,81E-04 591 c49571_g2 386,62 239 0 -10,707 3,28E 532 c55509_g4 481,32 203,98 0 -10,815 2,81E-04 592 c46416_g1 336 282,12 0 -10,701 3,28E 533 c56041_g1 396 276,97 0 -10,815 2,81E-04 593 c54194_g1 331 286,02 0 -10,603 3,42E 533 c71560_g1 365,89 301 0 -10,810 <	526	c14157_g2	326	346	0	-10,835	2,50E-04	586	c51579_g1	417	218	0	-10,716	3,02E-04
529c54679_g1372,98304,310-10,8312,60E-04589c56454_g1369,152560-10,7073,15E530c42211_g14951950-10,8222,70E-04590c55624_g1383,982430-10,7073,15E531c54578_g1308,97352,950-10,8172,70E-04591c49571_g2386,622390-10,7073,15E532c55509_g4481,32203,980-10,8152,81E-04592c46416_g1336282,120-10,7013,28E533c56041_g1396276,970-10,8152,81E-04593c54194_g1331286,020-10,6943,42E533c56041_g1365,893010-10,8102,81E-04595c45456_g1394,992280-10,6933,42E535c71560_g1365,893010-10,8072,92E-04596c57477_g3273333,290-10,6933,42E536c41096_g13162590-10,8072,92E-04598c38436_g11564,920-10,6873,42E538c25365_g1413,062590-10,8052,92E-04598c38436_g11564,920-10,6873,42E539c53824_g1353309,520-10,8052,92E-04599c47533_g12543470-10,687<	527	c41081_g1	359	317,44	0	-10,833	2,50E-04	587	c56909_g3	266	347,62	0	-10,716	3,02E-04
533 634 67 - 261 372,50 364,51 0 10,501 2,600 64 530 c42211_g1 495 195 0 -10,822 2,70E-04 590 c55624_g1 383,98 243 0 -10,707 3,15E 531 c54578_g1 308,97 352,95 0 -10,817 2,70E-04 591 c49571_g2 386,62 239 0 -10,707 3,15E 532 c55509_g4 481,32 203,98 0 -10,815 2,81E-04 592 c46416_g1 336 282,12 0 -10,701 3,28E 533 c56041_g1 396 276,97 0 -10,815 2,81E-04 593 c54194_g1 331 286,02 0 -10,693 3,42E 534 c34573_g1 325,95 336 0 -10,810 2,81E-04 594 c34700_g1 336 278,99 0 -10,693 3,42E 535 c71560_g1 361,89 303 0 -10,807 2,92E-04 596 c57477_g3 273 333,29 0 -10,693	528	c55667_g1	341,84	330,51	0	-10,832	2,60E-04	588	c55516_g1	235	373,97	0	-10,714	3,02E-04
531 c4578_g1 308,97 352,95 0 -10,817 2,70E-04 591 c49571_g2 386,62 239 0 -10,704 3,5E 532 c55509_g4 481,32 203,98 0 -10,815 2,81E-04 592 c46416_g1 336 282,12 0 -10,701 3,28E 533 c56041_g1 396 276,97 0 -10,815 2,81E-04 593 c54194_g1 331 286,02 0 -10,701 3,28E 534 c34573_g1 325,95 336 0 -10,812 2,81E-04 594 c34700_g1 336 278,99 0 -10,694 3,42E 535 c71560_g1 365,89 301 0 -10,810 2,81E-04 595 c45456_g1 394,99 228 0 -10,693 3,42E 536 c41096_g1 374 293,81 0 -10,807 2,92E-04 596 c57477_g3 273 333,29 0 -10,693 3,42E 537 c33815_g1 361,89 303 0 -10,807 2,	529	c54679_g1	372,98	304,31	0	-10,831	2,60E-04	589	c56454_g1	369,15	256	0	-10,707	3,15E-04
531 c54578_g1 308,97 352,95 0 -10,817 2,70E-04 591 c49571_g2 386,62 239 0 -10,704 3,15E 532 c55509_g4 481,32 203,98 0 -10,815 2,81E-04 592 c46416_g1 336 282,12 0 -10,701 3,28E 533 c56041_g1 396 276,97 0 -10,815 2,81E-04 593 c54194_g1 331 286,02 0 -10,701 3,28E 534 c34573_g1 325,95 336 0 -10,812 2,81E-04 593 c34700_g1 336 278,99 0 -10,603 3,42E 535 c71560_g1 365,89 301 0 -10,801 2,81E-04 596 c5455.g1 394,99 228 0 -10,693 3,42E 536 c41096_g1 374 293,81 0 -10,807 2,92E-04 596 c57477_g3 273 333,29 0 -10,693 3,42E 537 c33815_g1 361,89 303 0 -10,807 2	530	c42211_g1	495	195	0	-10,822	2,70E-04	590	c55624_g1	383,98	243	0	-10,707	3,15E-04
532 c55509_g4 481,32 203,98 0 -10,815 2,81E-04 592 c46416_g1 336 282,12 0 -10,701 3,28E 533 c56041_g1 396 276,97 0 -10,815 2,81E-04 593 c54194_g1 331 286,02 0 -10,701 3,28E 534 c34573_g1 325,95 336 0 -10,812 2,81E-04 594 c34700_g1 336 278,99 0 -10,694 3,42E 535 c71560_g1 365,89 301 0 -10,810 2,81E-04 595 c45456_g1 394,99 228 0 -10,693 3,42E 536 c41096_g1 374 293,81 0 -10,807 2,92E-04 596 c57477_g3 273 333,29 0 -10,693 3,42E 537 c33815_g1 361,89 303 0 -10,807 2,92E-04 596 c57477_g3 230,98 368,99 0 -10,687 3,42E 538 c25365_g1 413,06 259 0 -10,807	531	c54578_g1	308,97	352,95	0			591	c49571_g2	386,62	239	0	-10,704	3,15E-04
533 c56041_g1 396 276,97 0 -10,815 2,81E-04 593 c54194_g1 331 286,02 0 -10,701 3,28E 534 c34573_g1 325,95 336 0 -10,815 2,81E-04 594 c34700_g1 336 278,99 0 -10,693 3,42E 535 c71560_g1 365,89 301 0 -10,810 2,81E-04 595 c45456_g1 394,99 228 0 -10,693 3,42E 536 c41096_g1 374 293,81 0 -10,807 2,92E-04 596 c57477_g3 273 333,29 0 -10,693 3,42E 537 c33815_g1 361,89 303 0 -10,807 2,92E-04 596 c57477_g3 230,98 368,99 0 -10,693 3,42E 538 c25365_g1 413,06 259 0 -10,807 2,92E-04 598 c38436_g1 1 564,92 0 -10,687 3,42E 539 c53824_g1 353 309,52 0 -10,803 2,92E	532	c55509_g4						592	c46416_g1	336	282,12	0	-10,701	3,28E-04
534 c34573_g1 325,95 336 0 -10,812 2,81E-04 594 c34700_g1 336 278,99 0 -10,694 3,42E 535 c71560_g1 365,89 301 0 -10,810 2,81E-04 595 c45456_g1 394,99 228 0 -10,693 3,42E 536 c41096_g1 374 293,81 0 -10,807 2,92E-04 596 c57477_g3 273 333,29 0 -10,693 3,42E 537 c33815_g1 361,89 303 0 -10,807 2,92E-04 596 c57477_g3 230,98 368,99 0 -10,693 3,42E 538 c25365_g1 413,06 259 0 -10,807 2,92E-04 598 c38436_g1 1 564,92 0 -10,687 3,42E 539 c53824_g1 353 309,52 0 -10,805 2,92E-04 599 c47533_g1 254 347 0 -10,687 3,42E 540 c71380_g1 402,99 266 0 -10,803 2,92E-04	533							593	c54194_g1	331	286,02	0	-10,701	3,28E-04
535 c71560_g1 365,89 301 0 -10,810 2,81E-04 595 c45456_g1 394,99 228 0 -10,693 3,42E 536 c41096_g1 374 293,81 0 -10,810 2,81E-04 596 c57477_g3 273 333,29 0 -10,693 3,42E 537 c33815_g1 361,89 303 0 -10,807 2,92E-04 597 c71326_g1 230,98 368,99 0 -10,693 3,42E 538 c25365_g1 413,06 259 0 -10,807 2,92E-04 598 c38436_g1 1 564,92 0 -10,687 3,42E 539 c53824_g1 353 309,52 0 -10,805 2,92E-04 599 c47533_g1 254 347 0 -10,687 3,42E 540 c71380_g1 402,99 266 0 -10,803 2,92E-04 599 c364,55 g1 304,87 303 0 -10,687 3,42E 540 c71380_g1 402,99 266 0 -10,803 2,92E-0	534							594	c34700_g1	336	278,99	0	-10,694	3,42E-04
536 c41096_g1 374 293,81 0 -10,810 2,81E-04 596 c57477_g3 273 333,29 0 -10,693 3,42E 537 c33815_g1 361,89 303 0 -10,807 2,92E-04 597 c71326_g1 230,98 368,99 0 -10,693 3,42E 538 c25365_g1 413,06 259 0 -10,807 2,92E-04 598 c38436_g1 1 564,92 0 -10,693 3,42E 539 c53824_g1 353 309,52 0 -10,805 2,92E-04 599 c47533_g1 254 347 0 -10,687 3,42E 540 c71380_g1 402,99 266 0 -10,803 2,92E-04 599 c47533_g1 254 347 0 -10,687 3,42E 540 c71380_g1 402,99 266 0 -10,803 2,92E-04 500 c53545_g1 304,87 303 0 -10,687 3,42E								595	c45456_g1	394,99	228	0	-10,693	3,42E-04
537 c33815_g1 361,89 303 0 -10,807 2,92E-04 597 c71326_g1 230,98 368,99 0 -10,693 3,42E 538 c25365_g1 413,06 259 0 -10,807 2,92E-04 598 c38436_g1 1 564,92 0 -10,687 3,15E 539 c53824_g1 353 309,52 0 -10,805 2,92E-04 599 c47533_g1 254 347 0 -10,687 3,42E 540 c71380_g1 402,99 266 0 -10,803 2,92E-04 600 c53545_g1 304,87 303 0 -10,687 3,42E								596	c57477_g3	273	333,29	0	-10,693	3,42E-04
538 c25365_g1 413,06 259 0 -10,807 2,92E-04 598 c38436_g1 1 564,92 0 -10,687 3,15E- 539 c53824_g1 353 309,52 0 -10,805 2,92E-04 599 c47533_g1 254 347 0 -10,687 3,42E- 540 c71380_g1 402,99 266 0 -10,803 2,92E-04 600 c53545_g1 304,87 303 0 -10,687 3,42E-								597	c71326_g1	230,98	368,99	0	-10,693	3,42E-04
539 c53824_g1 353 309,52 0 -10,805 2,92E-04 599 c47533_g1 254 347 0 -10,687 3,42E 540 c71380_g1 402,99 266 0 -10,803 2,92E-04 600 c53545_g1 304,87 303 0 -10,687 3,42E								598	c38436_g1	1	564,92	0	-10,687	3,15E-04
540 c71380_g1 402,99 266 0 -10,803 2,92E-04 600 c53545_g1 304,87 303 0 -10,687 3,42E								599	c47533_g1	254	347	0	-10,687	3,42E-04
								600	c53545_g1	304,87	303	0	-10,687	3,42E-04
				200	5	_0,000		172						

												, incur y	
601	c26904_g1	302	305	0	-10,685	3,57E-04	661	c39572_g1	371	184	0	-10,519	5,15E-04
602	c48525_g1	345,99	267,42	0	-10,685	3,57E-04	662	c57262_g1	337,73	212	0	-10,518	5,15E-04
603	c39814_g1	349,35	260,95	0	-10,676	3,72E-04	663	c56719_g1	259,92	279	0	-10,517	5,15E-04
604	c55072_g1	157	425,76	0	-10,675	3,57E-04	664	c44151_g1	279	262	0	-10,515	5,15E-04
605	c46153_g1	360,72	249,99	0	-10,675	3,72E-04	665	c53538_g1	315	230	0	-10,513	5,39E-04
606	c15869_g1	362	249	0	-10,674	3,72E-04	666	c57187_g5	311	233	0	-10,511	5,39E-04
607	 c47762_g1	370	242	0	-10,674	3,72E-04	667	c58662_g1	275	264	0	-10,511	5,39E-04
608	c43425_g1	309,74	292,77	0	-10,672	3,72E-04	668	c45428_g1	319,45	224,99	0	-10,508	5,39E-04
609	c40374_g1	321	282	0	-10,668	3,89E-04	669	c56728_g1	249	284,96	0	-10,507	5,39E-04
610	c49752_g1	347	259	0	-10,667	3,89E-04	670	c26742_g1	343,2	202,7	0	-10,504	5,64E-04
611	c50327_g3	349,97	255,91	0	-10,666	3,89E-04	671	c29913_g1	228	301,99	0	-10,504	5,39E-04
512	c56729_g1	329,02	274,35	0	-10,665	3,89E-04	672	c55400_g2	256,95	277	0	-10,504	5,64E-04
513	c48034_g1	267,71	325,87	0	-10,664	3,89E-04	673	c29658_g1	235	295	0	-10,501	5,64E-04
514	c31661_g1	347,98	256	0	-10,661	3,89E-04	674	c51933_g1	388	161,99	0	-10,498	5,64E-04
615	c50643_g1	229	358	0	-10,660	3,89E-04	675	c47222_g2	201,72	321,76	0	-10,497	5,64E-04
516	c54408_g2	143	429	0	-10,652	4,05E-04	676	c54000_g1	269,11	263	0	-10,493	5,91E-04
617	c58033_g1	359,99	241,32	0	-10,649	4,23E-04	677	c49378_g1	309	227,88	0	-10,492	5,91E-04
518	c33324_g1	290	301,35	0	-10,648	4,23E-04	678	c84189_g1	217	306,82	0	-10,491	5,91E-04
519	c55276_g1	404,97	199,99	0	-10,643	4,23E-04	679	 c50882_g1	263	267	0	-10,490	5,91E-04
520	c46942_g1	422,76	181,71	0	-10,637	4,42E-04	680	c55183 g1	222,76	300,99	0	-10,489	5,91E-04
520	c44028_g1	118	443	0	-10,632	4,42E-04 4,42E-04	681	c59210_g1	325	213	0	-10,489	
								c55405 g1					5,91E-04
522	c56585_g1	314,81	273,18	0	-10,631	4,61E-04	682		254,19	273,98	0	-10,488	5,91E-04
523	c51587_g1	376,96	219	0	-10,630	4,61E-04	683	c35218_g1	208	311,87	0	-10,483	6,20E-04
524	c32004_g1	268,97	312	0	-10,630	4,61E-04	684	c54451_g6	229,97	292,95	0	-10,483	6,20E-04
525	c57363_g1	358,99	233,79	0	-10,628	4,61E-04	685	c26619_g1	272,02	255,97	0	-10,481	6,20E-04
526	c55935_g1	326	261	0	-10,625	4,81E-04	686	c55812_g2	358,8	179	0	-10,475	6,50E-04
527	c40796_g1	338,8	249	0	-10,622	4,81E-04	687	c52727_g1	254	269	0	-10,473	6,50E-04
528	c52060_g1	313,87	270	0	-10,621	4,81E-04	688	c54372_g1	300	228,99	0	-10,472	6,50E-04
529	c57289_g3	353,67	233	0	-10,614	5,03E-04	689	c49094_g1	230,92	287,99	0	-10,471	6,50E-04
530	c57984_g2	325	254	0	-10,604	5,25E-04	690	c52261_g1	262,81	260	0	-10,469	6,50E-04
531	c51652_g1	224,99	339,67	0	-10,603	5,25E-04	691	c53705_g1	294,31	231,72	0	-10,466	6,81E-04
532	c55394_g2	279,99	292	0	-10,601	5,25E-04	692	c50646_g1	287,63	236,98	0	-10,465	6,81E-04
533	c49669_g1	406,87	180,32	0	-10,594	5,49E-04	693	c52111_g1	283,75	239,97	0	-10,464	6,81E-04
534	c55906_g1	268,99	296,98	0		5,49E-04	694	c49565_g1	332		0	-10,464	6,81E-04
					-10,589					197,99			,
535	c53574_g1	389	193	0	-10,588	5,73E-04	695	c57023_g2	340,43	191,49	0	-10,462	6,81E-04
536	c47443_g1	195	360	0	-10,587	5,49E-04	696	c52773_g1	100	395,97	0	-10,456	6,81E-04
637	c52988_g1	400,85	182	0	-10,586	5,73E-04	697	c56392_g1	224,85	287	0	-10,452	7,14E-04
538	c47750_g1	309,99	260	0	-10,585	5,73E-04	698	c55322_g1	223	288	0	-10,450	7,14E-04
539	c57784_g1	306,92	261,94	0	-10,583	5,73E-04	699	c55000_g1	296	223	0	-10,444	7,49E-04
640	c71422_g1	0	525	0	-10,579	5,25E-04	700	c57631_g2	265,96	247,93	0	-10,441	7,49E-04
641	c36576_g1	375	201	0	-10,577	5,99E-04	701	c12847_g1	339,91	184	0	-10,441	7,49E-04
642	c54053_g5	317	248,59	0	-10,571	6,26E-04	702	c50574_g1	312	208	0	-10,440	7,49E-04
543	c51676_g1	298	265	0	-10,570	6,26E-04	703	c52009_g1	284	231,73	0	-10,440	7,49E-04
544	c50866_g2	308	255,88	0	-10,569	6,26E-04	704	c53327_g1	321	200	0	-10,440	7,49E-04
545	c50070_g1	203	346	0	-10,568	6,26E-04	705	 c43797_g1	284,91	230,93	0	-10,439	7,49E-04
546	c52223_g1	416	162	0	-10,566	4,10E-04	706	c36358_g1	259,67	252	0	-10,438	7,49E-04
547	c55559_g1	268,5	288,33	0	-10,562	4,10E-04 4,10E-04	707	c9297_g1	213	291	0	-10,433	7,86E-04
548	c57509 g1						707	c53605 g1					
		233	317,67	0	-10,562	4,10E-04			224,13	280	0	-10,428	7,86E-04
49	c53192_g1	331	232,98	0	-10,560	4,29E-04	709	c56584_g5	191	307	0	-10,424	7,86E-04
550	c57144_g1	287,72	269,41	0	-10,557	4,29E-04	710	c42941_g2	263,88	244	0	-10,424	8,24E-04
51	c47367_g1	238	312,48	0	-10,557	4,29E-04	711	c49409_g3	403,99	121,99	0	-10,420	8,24E-04
52	c58082_g3	319,77	240	0	-10,553	4,29E-04	712	c54297_g1	222,4	278,01	0	-10,417	8,24E-04
53	c57539_g1	317,85	240,82	0	-10,551	4,48E-04	713	c47608_g1	310,82	199,98	0	-10,413	8,65E-04
554	c42527_g1	282	270	0	-10,546	4,48E-04	714	c45727_g1	260,95	243	0	-10,413	8,65E-04
555	c46282_g1	245,62	301	0	-10,545	4,48E-04	715	c53334_g1	333,9	180	0	-10,413	8,65E-04
556	c58084_g2	308,86	243,95	0	-10,538	4,69E-04	716	c55081_g1	212,16	285,09	0	-10,412	8,65E-04
557	 c48978_g1	179	353,86	0	-10,532	4,69E-04	717	 c52946_g1	135,71	350,33	0	-10,410	8,65E-04
558	c55822_g1	375	184	0	-10,529	4,91E-04	718	c57460_g2	247	253	0	-10,406	8,65E-04
559	c56756_g1						719	c42741_g1					
		337	215,15	0	-10,524	5,15E-04			313,95	194,9	0	-10,406	8,65E-04
560	c56763_g2	227	308,8	0	-10,522	5,15E-04	720	c34184_g1	231	266,46	0	-10,404	9,08E-04

721	c57152_g1	358	155	0	-10,399	9,08E-04	781	c53403_g1	278	191	0	-10,293	9,68E-04
722	c51680_g1	272,89	228	0	-10,398	9,08E-04	782	c45365_g1	277,88	190,96	0	-10,293	9,68E-04
723	c57939_g1	327	178,68	0	-10,391	9,53E-04	783	c44312_g1	212,66	247	0	-10,293	9,68E-04
724	c55168_g5	292,56	207	0	-10,387	9,53E-04	784	c49409_g2	345,99	132	0	-10,292	9,68E-04
725	c34387_g1	271,96	225	0	-10,386	9,53E-04	785	c109567_g1	229	231,89	0	-10,289	9,68E-04
726	c31547_g1	326	178	0	-10,385	9,53E-04	786	c56094_g1	247,19	214,96	0	-10,284	1,02E-03
727	c39794_g1	313,77	187,92	0	-10,384	1,00E-03	787	c37338_g1	247	215	0	-10,284	1,02E-03
728	c56944_g1	291,96	206	0	-10,381	1,00E-03	788	c51389_g1	276,97	189	0	-10,283	1,02E-03
729	c38990_g2	178	304	0	-10,380	1,00E-03	789	c56235_g1	271	194	0	-10,283	1,02E-03
730	c52465_g1	209	277	0	-10,379	1,00E-03	790	c49462_g1	241,96	219	0	-10,283	1,02E-03
731	c52188_g2	318,66	181,96	0	-10,379	1,00E-03	791	c54683_g1	271	192,92	0	-10,279	1,02E-03
732	c49299_g1	262,96	229,97	0	-10,378	1,00E-03	792	c57701_g1	121	321,93	0	-10,278	1,02E-03
733	c57727_g1	295	202,24	0	-10,376	1,00E-03	793	c42347_g1	290,98	175	0	-10,277	1,02E-03
734	c42943_g1	281,46	213,98	0	-10,376	1,00E-03	794	c54395_g1	214,65	240	0	-10,275	1,02E-03
735	c54774_g2	209	275,97	0	-10,376	1,00E-03	795	c57826_g1	252	207,93	0	-10,275	1,07E-03
736	c46603_g1	349,24	154,99	0	-10,375	1,00E-03	796	c38825_g1	173,99	273,96	0	-10,270	1,07E-03
737	c19475_g1	230,39	256,82	0	-10,373	1,05E-03	797	c56684_g2	240	216,99	0	-10,270	1,07E-03
738	c52058_g3	320	179	0	-10,372	1,05E-03	798	c51148_g1	236	220	0	-10,269	1,07E-03
739	c49323_g1	178	301	0	-10,370	1,05E-03	799	c39922 g1	200	251	0	-10,268	1,07E-03
740	c46209_g1	234	252	0	-10,368	1,05E-03	800	c50991_g1	244	212,99	0	-10,268	1,07E-03
741	c55101_g2	301	193	0	-10,364	1,05E-03	801	c15074_g1	285,92	176	0	-10,266	1,07E-03
742	c55389_g3	300,97	193	0	-10,364	1,05E-03	802	c57034_g1	266	192,99	0	-10,265	1,07E-03
743	c52312 g1	282	209	0	-10,363	1,05E-03	803	c28798 g1	220,9	231	0	-10,262	1,13E-03
744	c40654_g1	257,97	205	0	-10,361	1,10E-03	804	c46169_g1	347,95	120,95	0	-10,261	1,13E-03
745	c58057_g8	363	138	0	-10,351	1,10E-03	805	c47667_g1	339	120,95	0	-10,251	1,13E-03
746	c56076_g1	303,96	187,98	0	-10,355	1,10E-03	806	c57501_g1	282	128	0	-10,257	1,13E-03
747	c55685_g1	331,97	162,98	0	-10,357	1,10E-03	807	c49671_g1	309,71	152	0	-10,257	1,13E-03
748	c52176_g1	267,86		0	-10,354	1,10E-03	808	c51859_g2	226	223	0	-10,234	1,19E-03
749	c49628_g2	263,22	217,99 222	0	-10,353	1,10E-03	809	c51490_g1	252	223	0	-10,249	1,19E-03
750	c46473_g1	203,22		0			810	c58057_g2	232	200	0		
751	c57745_g1	194,99	268 280,04	0	-10,350	1,16E-03 1,16E-03	811	c27264_g1	213,59		0	-10,247 -10,246	1,19E-03 1,19E-03
752	c39759_g1			0	-10,350		812	c41739_g1	293	214,98			
753		291,99	196		-10,349	1,16E-03				164	0	-10,245	1,19E-03
754	c40487_g1	148	319,54	0	-10,348	1,16E-03	813	c55488_g1	265,4	187	0	-10,241	1,19E-03
755	c122703_g1 c56842 g1	251	230,88	0	-10,348	1,16E-03	814	c47130_g1 c57259 g2	245,76	203	0	-10,240	1,26E-03
756	c55162 g1	152,65	314,99	0	-10,346	1,16E-03	815		212,23	231,78	0	-10,239	1,26E-03
		263,99	219	0	-10,345	1,16E-03	816	c15618_g1	185,38	254,89	0	-10,238	1,26E-03
757	c58344_g1	333,68	157,95	0	-10,343	1,16E-03	817	c56356_g1	306	149	0	-10,232	1,26E-03
758	c51285_g2	341,81	150,98	0	-10,343	1,16E-03	818	c52305_g1	255	193,27	0	-10,232	1,26E-03
759	c52929_g1	183,8	287	0	-10,342	1,16E-03	819	c23697_g1	254,55	193,03	0	-10,232	1,26E-03
760	c55687_g1	255	222,94	0	-10,333	7,88E-04	820	c56979_g1	304	150	0	-10,230	1,26E-03
761	c36028_g1	225,48	248	0	-10,330	7,88E-04	821	c56948_g1	150,99	280,93	0	-10,226	1,33E-03
762	c55027_g1	169,07	295,81	0	-10,329	7,88E-04	822	c53776_g1	262	184,98	0	-10,225	1,33E-03
763	c30138_g1	312	170	0	-10,321	8,29E-04	823	c56746_g1	235,85	207	0	-10,224	1,33E-03
764	c52291_g1	156	303,99	0	-10,319	8,29E-04	824	c24327_g2	52	364,92	0	-10,221	1,26E-03
765	c45909_g1	234,95	235	0	-10,316	8,72E-04	825	c48422_g1	222	217,64	0	-10,220	1,33E-03
766	c55540_g1	261	209,78	0	-10,307	9,19E-04	826	c47341_g2	275,96	170	0	-10,215	1,40E-03
767	c51752_g1	240,86	227	0	-10,307	9,19E-04	827	c55121_g1	95	325,98	0	-10,214	1,33E-03
768	c49176_g1	241,17	227	0	-10,307	9,19E-04	828	c46703_g1	169,99	260,61	0	-10,213	1,40E-03
769	c54695_g1	190,87	269,52	0	-10,306	9,19E-04	829	c48854_g1	265	179	0	-10,213	1,40E-03
770	c32489_g1	287	186	0	-10,302	9,19E-04	830	c12732_g1	187	246	0	-10,212	1,40E-03
771	c51285_g3	238,93	227	0	-10,301	9,19E-04	831	c53842_g1	252,81	189,42	0	-10,212	1,40E-03
772	c18689_g1	183	275	0	-10,300	9,19E-04	832	c45505_g1	254,15	188	0	-10,211	1,40E-03
773	c39363_g1	265	204	0	-10,299	9,19E-04	833	c48531_g1	182,82	249	0	-10,211	1,40E-03
774	c46987_g1	245,44	221,34	0	-10,298	9,19E-04	834	c45624_g1	258	184	0	-10,210	1,40E-03
775	c48323_g1	289	183	0	-10,298	9,19E-04	835	c43077_g1	267	176	0	-10,209	1,40E-03
776	c58072_g3	289	183	0	-10,298	9,19E-04	836	c41928_g1	254,76	186,29	0	-10,207	1,40E-03
777	c109723_g1	210,97	250	0	-10,297	9,19E-04	837	c55037_g1	247,03	192	0	-10,204	1,48E-03
778	c43148_g1	273	196,33	0	-10,295	9,68E-04	838	c57640_g2	191,91	239	0	-10,203	1,48E-03
779	c52764_g1	302,99	169,78	0	-10,295	9,68E-04	839	c52987_g1	269,87	170,99	0	-10,200	1,48E-03
780	c44191_g1	254,9	211	0	-10,294	9,68E-04	840	c57577_g8	269,28	171	0	-10,197	1,48E-03

841	c42653_g1	201,67	227,99	0	-10,194	1,48E-03	901	c55686_g3	195	206,99	0	-10,094	1,55E-03
842	c54844_g1	234,61	198,91	0	-10,192	1,56E-03	902	c54308_g1	197	205,49	0	-10,093	1,55E-03
843	c47898_g1	279,94	159,98	0	-10,192	1,56E-03	903	c54371_g1	140,54	250,6	0	-10,084	1,55E-03
844	c36726_g1	263	173,98	0	-10,189	1,56E-03	904	c46084_g2	244,93	161	0	-10,083	1,55E-03
845	c50637_g1	213	216,99	0	-10,189	1,56E-03	905	c52371_g1	213,32	188,37	0	-10,080	1,64E-03
846	c23145_g1	221	210	0	-10,188	1,56E-03	906	c39152_g1	220,9	181	0	-10,080	1,64E-03
847	c55117_g1	174,99	248,63	0	-10,186	1,56E-03	907	c15611_g1	162,63	231	0	-10,080	1,64E-03
848	c54799_g1	219,07	210,9	0	-10,186	1,56E-03	908	c58241_g1	217	184	0	-10,078	1,64E-03
849	c39257_g2	262,22	173	0	-10,183	1,56E-03	909	c57531_g1	158,53	233,95	0	-10,078	1,64E-03
850	 c45950_g1	205	220,99	0	-10,178	1,65E-03	910	c27180_g1	206,57	192	0	-10,076	1,64E-03
851	 c40625_g1	234,66	195	0	-10,178	1,65E-03	911	c57100_g2	283,99	124	0	-10,070	1,64E-03
852	c50608 g1	163,17	256,97	0	-10,177	1,65E-03	912	c39960_g1	188,92	205,86	0	-10,070	1,64E-03
853	c55993_g1	253	179	0	-10,176	1,65E-03	913	c44284_g1	220	178,19	0	-10,065	1,74E-03
854	c58154_g3	272,79	160,99	0	-10,173	1,65E-03	914	c54828_g1	96	284,92	0	-10,065	1,64E-03
855	c51979_g1	233		0		1,65E-03	915	c50787_g1	188	204,92	0		1,74E-03
856			195,44		-10,172							-10,063	
	c47346_g1	240,98	188	0	-10,171	1,65E-03	916	c51794_g2	249	152	0	-10,061	1,74E-03
857	c42822_g1	222,98	203	0	-10,169	1,74E-03	917	c44548_g1	241,96	158,03	0	-10,061	1,74E-03
858	c122430_g1	246,58	181,94	0	-10,168	1,74E-03	918	c23397_g1	177,59	212	0	-10,056	1,74E-03
859	c50832_g1	154	261,98	0	-10,167	1,65E-03	919	c55613_g6	172,72	215,51	0	-10,055	1,74E-03
860	c45382_g1	256,91	172,54	0	-10,167	1,74E-03	920	c41234_g1	218,96	174,99	0	-10,050	1,84E-03
861	c53532_g2	170	247,96	0	-10,167	1,74E-03	921	c56676_g1	221	173,37	0	-10,049	1,84E-03
862	c54908_g1	195,93	225	0	-10,165	1,74E-03	922	c27163_g1	266,98	133	0	-10,048	1,84E-03
863	c57811_g1	206	215	0	-10,159	1,74E-03	923	c55810_g1	156,76	228	0	-10,048	1,84E-03
864	c45782_g1	256	171	0	-10,156	1,84E-03	924	c51164_g1	188,25	201	0	-10,047	1,84E-03
865	c50872_g1	164	249	0	-10,151	1,84E-03	925	c56560_g1	197	193	0	-10,046	1,84E-03
866	c54688_g2	168,46	245	0	-10,149	1,84E-03	926	c41890_g1	174	212	0	-10,042	1,84E-03
867	c55042_g1	211,79	206,95	0	-10,149	1,84E-03	927	c36021_g1	197	191,53	0	-10,042	1,95E-03
868	c43854_g1	192	223,74	0	-10,148	1,84E-03	928	c56008_g1	202	187	0	-10,039	1,95E-03
869	c55554_g2	229	190,71	0	-10,144	1,94E-03	929	c53236_g1	201,73	186,73	0	-10,039	1,95E-03
870	c55743_g1	260	163,99	0	-10,143	1,94E-03	930	c55613_g3	224,85	167	0	-10,039	1,95E-03
871	c57176_g2	251,98	170,04	0	-10,140	1,94E-03	931	c54242_g1	255	141	0	-10,038	1,95E-03
872	c58152_g1	181	231,08	0	-10,139	1,94E-03	932	c55614_g1	217	173	0	-10,035	1,95E-03
873	c53172_g1	335,93	97	0	-10,138	1,94E-03	933	c40857_g1	167	216	0	-10,034	1,95E-03
874	c49418_g2	276,99	147	0	-10,135	1,94E-03	934	c24730_g1	165,98	216	0	-10,031	1,95E-03
875	c56571_g1	142	263	0	-10,133	1,94E-03	935	c53163_g1	153	227	0	-10,030	1,95E-03
876	c54036 g1	210,35	204	0	-10,132	2,05E-03	936	c34548 g1	197,8	187,97	0	-10,029	1,95E-03
877	 c54746_g5	232	185	0	-10,131	2,05E-03	937	 c41146_g1	146	232	0	-10,026	2,07E-03
878	c56997_g1	186	224	0	-10,129	2,05E-03	938	c49709_g1	221,36	167	0	-10,025	2,07E-03
879	c56879_g1	225	190	0	-10,128	2,05E-03	939	c52327_g1	201	184,47	0	-10,024	2,07E-03
880	c55658_g1	58	333,9	0	-10,127	1,94E-03	940	c56526_g1	278	117	0	-10,024	2,07E-03
881	c52416_g1						941	c57024_g2					
882	c57599_g1	209	202,99	0	-10,125	2,05E-03	941	c58072 g6	237,99	151	0	-10,019	2,07E-03
883		261,85	157	0	-10,124	2,05E-03		=-	235	152,74	0	-10,017	2,07E-03
	c36507_g1	170,98	235	0	-10,121	2,05E-03	943	c54300_g2	165,56	211,99	0	-10,015	2,07E-03
884	c122420_g1	283	137	0	-10,117	2,17E-03	944	c57740_g4	213	170,26	0	-10,009	2,20E-03
885	c56205_g4	299,99	122	0	-10,115	2,17E-03	945	c43034_g1	191,2	188,9	0	-10,009	2,20E-03
886	c56939_g1	201,98	206	0	-10,113	2,17E-03	946	c32002_g1	190,65	189	0	-10,009	2,20E-03
887	c32709_g1	203	205	0	-10,113	2,17E-03	947	c24475_g1	218	165	0	-10,006	2,20E-03
888	c15554_g1	217,82	192	0	-10,112	2,17E-03	948	c31400_g1	167,88	208	0	-10,005	2,20E-03
889	c56733_g1	182	223	0	-10,112	2,17E-03	949	c57338_g4	205,97	175	0	-10,005	2,20E-03
890	c57187_g3	286,24	133	0	-10,111	2,17E-03	950	c49231_g1	170	206	0	-10,004	2,20E-03
891	c53558_g1	234,99	176,9	0	-10,111	2,17E-03	951	c45608_g1	211	169	0	-9,998	2,34E-03
892	c55076_g1	222	188	0	-10,110	2,17E-03	952	c53816_g3	177,98	197	0	-9,996	2,34E-03
893	c56722_g2	241,38	169,81	0	-10,104	1,46E-03	953	c50901_g1	224	157,05	0	-9,995	2,34E-03
894	c55677_g1	177	225	0	-10,103	1,46E-03	954	c54736_g1	216,77	162,03	0	-9,990	2,34E-03
895	c57187_g1	244	167	0	-10,103	1,46E-03	955	c53769_g1	195	180,84	0	-9,990	2,34E-03
896	c51292_g1	260,99	152	0	-10,101	1,46E-03	956	c57969_g2	189,88	184,88	0	-9,989	2,34E-03
897	c47850_g1	246,99	164	0	-10,101	1,46E-03	957	c54905_g1	179	192	0	-9,979	2,48E-03
898	c39218_g1	227,85	180	0	-10,100	1,46E-03	958	 c44672_g1	188,28	184	0	-9,978	2,48E-03
		185,92	214,99	0	-10,095	1,46E-03	959	 c54801_g1	218	158	0	-9,977	2,48E-03
899	c71442_g1	105,52	214,55	0			555		210	130	0	-9,977	2,401-03

961	c54222_g1	147,99	217,95	0	-9,975	2,48E-03	1021 c57589_g1	196,59	152	0	-9,873	3,82E-03
962	c50560_g1	207	166,99	0	-9,975	2,48E-03	1022 c54157_g1	148	193,97	0	-9,872	4,07E-03
963	c52157_g1	222,96	152,78	0	-9,975	2,48E-03	1023 c71344_g1	239,97	113,99	0	-9,870	4,07E-03
964	c54808_g2	178	190,97	0	-9,971	2,64E-03	1024 c48549_g1	156	186	0	-9,867	4,07E-03
965	c56238_g1	212,99	159,63	0	-9,968	2,64E-03	1025 c31286_g1	182	162,12	0	-9,860	2,54E-03
966	c40865_g1	177	191	0	-9,967	2,64E-03	1026 c56307_g2	212,34	135,71	0	-9,860	2,54E-03
967	c56069_g1	211	160,99	0	-9,965	2,64E-03	1027 c54309_g1	206	141	0	-9,859	2,54E-03
968	c53355_g1	189	180	0	-9,965	2,64E-03	1028 c49902_g1	207	139,96	0	-9,858	2,54E-03
969	 c56982_g1	203,92	167	0	-9,964	2,64E-03	1029 c55151_g1	231	119	0	-9,857	2,71E-03
970	 c29766_g1	227	146	0	-9,960	2,80E-03	 1030 c39500_g1	186,87	157	0	-9,857	2,71E-03
971	c55632_g1	201	167,96	0	-9,958	2,80E-03	1031 c56071_g1	217	131	0	-9,857	2,71E-03
972	c49740_g1	179	186,57	0	-9,958	2,80E-03	1032 c52695_g1	181	161,99	0	-9,856	2,71E-03
973	c26797_g1	232		0			1033 c49932_g2	130,3		0	-9,856	
			141		-9,957	2,80E-03			205,96			2,54E-03
974	c50640_g1	191	173,9	0	-9,947	2,80E-03	1034 c54951_g1	212	134	0	-9,851	2,71E-03
975	c52108_g1	228	142	0	-9,946	2,80E-03	1035 c58347_g1	231,99	116	0	-9,847	2,71E-03
976	c32403_g1	226,93	142	0	-9,943	2,98E-03	1036 c50861_g1	218,61	127	0	-9,846	2,71E-03
977	c15658_g1	219,68	148	0	-9,943	2,98E-03	1037 c56129_g1	170	169	0	-9,845	2,71E-03
978	c45373_g1	256,69	115,95	0	-9,942	2,98E-03	1038 c25307_g1	137	197	0	-9,842	2,71E-03
979	c43369_g1	188	174,99	0	-9,940	2,98E-03	1039 c49121_g2	125	206,92	0	-9,840	2,71E-03
980	c45565_g1	162,01	197	0	-9,938	2,98E-03	1040 c53384_g1	148,2	187	0	-9,840	2,89E-03
981	c47134_g1	199,79	164	0	-9,937	2,98E-03	1041 c53426_g5	209	134	0	-9,839	2,89E-03
982	c47237_g1	201,08	163	0	-9,936	2,98E-03	1042 c55223_g1	159,08	176,9	0	-9,838	2,89E-03
983	c50775_g1	245,99	123,99	0	-9,936	2,98E-03	1043 c55496_g1	172,99	163,96	0	-9,834	2,89E-03
984	c57014_g2	238,54	130	0	-9,936	2,98E-03	1044 c53306_g2	204,9	136	0	-9,832	2,89E-03
985	c71411_g1	206	158	0	-9,934	2,98E-03	1045 c54643_g1	205	135,99	0	-9,832	2,89E-03
986	c51178_g1	164	193,98	0	-9,932	2,98E-03	1046 c56063_g4	213	129	0	-9,832	2,89E-03
987	c53368_g2	179	181	0	-9,932	2,98E-03	1047 c30098_g1	132	198	0	-9,827	2,89E-03
988	c54954_g1	208	154,96	0	-9,928	3,17E-03	1048 c50591_g1	177	150	0	-9,826	3,09E-03
989	c53038_g1	172	185,98	0	-9,928	3,17E-03	1049 c46475_g1	177,6		0	-9,826	3,09E-03
990									157,57			
	c56234_g1	204	158,06	0	-9,926	3,17E-03		149	183	0	-9,826	3,09E-03
991	c57238_g1	202	159	0	-9,923	3,17E-03	1051 c49278_g1	203,97	135	0	-9,823	3,09E-03
992	c36278_g1	236	129	0	-9,920	3,17E-03	1052 c58082_g4	182,83	153	0	-9,823	3,09E-03
993	c56636_g1	185	172,87	0	-9,920	3,17E-03	1053 c57699_g1	234,67	108	0	-9,823	3,09E-03
994	c57935_g3	170	185	0	-9,916	3,37E-03	1054 c51421_g1	118,98	208	0	-9,821	3,09E-03
995	c54902_g1	120	228	0	-9,915	3,17E-03	1055 c57573_g2	142	188	0	-9,821	3,09E-03
996	c57822_g1	216,05	144,78	0	-9,915	3,37E-03	1056 c32766_g1	141,64	188	0	-9,821	3,09E-03
997	c34913_g1	194,99	162	0	-9,910	3,37E-03	1057 c51476_g1	128	199,93	0	-9,820	3,09E-03
998	c97179_g1	198	158,97	0	-9,908	3,37E-03	1058 c31551_g2	174	159,99	0	-9,819	3,09E-03
999	c109627_g1	205,96	152	0	-9,908	3,37E-03	1059 c49420_g1	153	178	0	-9,818	3,09E-03
1000	c55512_g3	100	242,95	0	-9,905	3,37E-03	1060 c47492_g1	167,99	165	0	-9,818	3,09E-03
1001	c56768_g6	211	147	0	-9,905	3,37E-03	1061 c57128_g3	162,87	169,03	0	-9,817	3,09E-03
1002	c57411_g1	192	162,92	0	-9,903	3,37E-03	1062 c49608_g1	170,99	161,57	0	-9,816	3,09E-03
1003	c36479_g1	184,92	168,98	0	-9,903	3,37E-03	1063 c55678_g1	172	161	0	-9,816	3,09E-03
1004	c49256_g3	195	160	0	-9,901	3,59E-03	1064 c42178_g1	150	180	0	-9,816	3,09E-03
1005	c43198_g1	227	132	0	-9,900	3,59E-03	1065 c42395_g1	162	168,84	0	-9,813	3,09E-03
1006	c39193_g1	191	163	0	-9,899	3,59E-03	 1066 c54276_g1	91	230	0	-9,811	3,09E-03
1007	c46072_g1	180	172	0	-9,897	3,59E-03	1067 c52666_g1	195	140	0	-9,811	3,30E-03
1008	c51136_g1	144	202,98	0	-9,896	3,59E-03	1068 c48575_g2	181	152	0	-9,810	3,30E-03
1000	c53620_g1	183,07	168	0	-9,891	3,59E-03	1069 c52349_g1	123	202	0	-9,809	3,09E-03
1005	c39648_g1	265,76	96	0	-9,891	3,59E-03	1070 c84298_g1	221	117	0	-9,809	3,30E-03
	c46841_g1	170,99	177,94	0	-9,889	3,59E-03	1071 c57615_g2	207	128,94	0	-9,808	3,30E-03
	c52075_g1	170	177,98	0	-9,885	3,82E-03	1072 c24295_g1	201	134,39	0	-9,807	3,30E-03
	c35155_g1	207,65	145	0	-9,884	3,82E-03	1073 c45563_g1	172	159	0	-9,806	3,30E-03
	c42270_g1	216	138	0	-9,884	3,82E-03	1074 c55735_g1	172,51	158	0	-9,806	3,30E-03
1015	c56000_g1	187,07	161,98	0	-9,879	3,82E-03	1075 c55077_g1	187,99	145	0	-9,806	3,30E-03
1016	c56584_g4	212,25	140	0	-9,878	3,82E-03	1076 c49160_g1	166	164	0	-9,805	3,30E-03
1017	c57758_g1	136	205	0	-9,874	3,82E-03	1077 c40045_g1	161	168	0	-9,804	3,30E-03
1018	c10749_g1	232	122	0	-9,874	3,82E-03	1078 c57922_g1	139,99	185,74	0	-9,803	3,30E-03
1019	c54014_g2	202,98	146,62	0	-9,874	3,82E-03	1079 c57725_g1	165,99	163,28	0	-9,801	3,30E-03
1015												

1081	c57544_g1	176	154	0	-9,799	3,30E-03	1141 c57276_g1	168,79	142	0	-9,712	4,96E-03
1082	c36360_g1	198,88	132,99	0	-9,794	3,53E-03	1142 c44810_g1	176	134,9	0	-9,707	4,96E-03
1083	c40071_g1	223,39	112,15	0	-9,793	3,53E-03	1143 c36265_g1	207,93	106,52	0	-9,705	4,96E-03
1084	c48948_g1	198	133	0	-9,790	3,53E-03	1144 c26471_g1	164	144,99	0	-9,705	4,96E-03
1085	c53635_g1	213	119,72	0	-9,790	3,53E-03	1145 c52193_g1	122	181	0	-9,703	4,96E-03
1086	c42438_g1	174,99	152	0	-9,786	3,53E-03	1146 c53020_g1	197	116	0	-9,703	4,96E-03
1087	c34502_g1	198	132	0	-9,785	3,53E-03	1147 c46566_g1	211,86	102,66	0	-9,703	4,96E-03
1088	c24986_g1	173,96	152,24	0	-9,781	3,53E-03	1148 c57638_g1	115,55	186	0	-9,702	4,96E-03
1089	c55911_g2	152	171	0	-9,781	3,53E-03		155	152	0	-9,701	4,96E-03
1090	 c57114_g1	211,98	119	0	-9,781	3,53E-03	1150 c55764_g1	148,7	156,94	0	-9,700	4,96E-03
1091		136	184	0	-9,777	3,78E-03		164,32	143,99	0	-9,700	4,96E-03
1092		146	175,32	0	-9,776	3,78E-03	 1152 c58030_g1	129	174	0	-9,698	4,96E-03
1093	c8189_g1	184	142	0	-9,775	3,78E-03	1153 c53377_g1	167	141	0	-9,698	5,31E-03
1094	c57149_g1	162	161	0	-9,775	3,78E-03	1154 c39309_g1	200,14	111,78	0	-9,696	5,31E-03
1095	c36529_g1	195	132	0	-9,773	3,78E-03	1155 c53094_g7	106	193	0	-9,694	5,31E-03
1096	c57276_g5	128,89	188,96	0	-9,772	3,78E-03	1156 c50542_g1	161,27	135	0	-9,692	5,31E-03
1097	c34861_g1	115	201	0	-9,772	3,78E-03	1150 c50542_g1	139,74	162,99	0	-9,691	5,31E-03
1098	c29347_g1	235	97	0	-9,771	3,78E-03	1157 c52101_g1	139,74	102,99	0	-9,689	5,31E-03
1098	c56324_g1	200	127	0	-9,769	3,78E-03	1158 c47130_g1 1159 c53375_g1	128	173	0	-9,688	5,31E-03
1100	c33415_g1					,	1160 c54254 g1					
1100		148,87	171 180	0 0	-9,769	3,78E-03 3,78E-03	1160 c54254_g1 1161 c51736_g1	220 125	93 175	0	-9,687	5,31E-03
1101	c15576_g1 c39441_g1	137,52			-9,766	,	1161 c51736_g1 1162 c56722_g3		175	0	-9,686	5,31E-03
1102	c54682_g5	103,33	210,34 208	0 0	-9,765	3,78E-03	1162 C56722_g3 1163 c51193_g1	170,99	135	0	-9,685	5,31E-03
	c55907_g1	104,98			-9,764	3,78E-03	1164 c38269 g1	111,95	185,92		-9,685	5,31E-03
1104		153,04	166	0	-9,762	4,04E-03	=0	187,09	121	0	-9,684	5,31E-03
1105	c37516_g1	153,92	165	0	-9,761	4,04E-03	1165 c50904_g1	195	114	0	-9,684	5,31E-03
1106	=-	131,98	183,99	0	-9,761	4,04E-03	1166 c52313_g1	145	157	0	-9,682	5,31E-03
1107	c50002_g1	185	138	0	-9,760	4,04E-03	1167 c56254_g1	191	117	0	-9,681	5,69E-03
1108	c40821_g1	147,89	170	0	-9,760	4,04E-03	1168 c30304_g1	200	109	0	-9,680	5,69E-03
1109	c47692_g1	91	219	0	-9,758	3,78E-03	1169 c30953_g1	179,06	127	0	-9,680	5,69E-03
1110	c57054_g1	155	163	0	-9,755	4,04E-03	1170 c53527_g1	144	157	0	-9,678	5,69E-03
1111	=-	150	167	0	-9,754	4,04E-03	1171 c55809_g5	176	129	0	-9,676	5,69E-03
	c55213_g1	189	133	0	-9,752	4,04E-03	1172 c53808_g2	155	147	0	-9,676	5,69E-03
1113	c51484_g1	166,81	152	0	-9,752	4,04E-03	1173 c50138_g1	185	121,01	0	-9,675	5,69E-03
1114	c58230_g1	197	126	0	-9,752	4,04E-03	1174 c58181_g1	147	153	0	-9,671	5,69E-03
1115	c55256_g1	168	151	0	-9,752	4,04E-03	1175 c52403_g1	197	109	0	-9,667	5,69E-03
1116	c47601_g1	104	205,35	0	-9,745	4,04E-03	1176 c52467_g1	198,06	107,85	0	-9,666	5,69E-03
	c52776_g1	197,11	124	0	-9,742	4,32E-03	1177 c55912_g1	156	144,06	0	-9,665	5,69E-03
	c57828_g1	160,73	154,97	0	-9,742	4,32E-03	1178 c56692_g1	195	110	0	-9,663	6,11E-03
	c34968_g1	184	135	0	-9,741	4,32E-03	1179 c57208_g1	173	129	0	-9,663	6,11E-03
1120	c43974_g1	176,98	140,95	0	-9,741	4,32E-03	1180 c47378_g1	180,54	122	0	-9,663	6,11E-03
1121	c54951_g2	142	171	0	-9,740	4,32E-03	1181 c36438_g1	106,96	186	0	-9,662	5,69E-03
1122	c56473_g1	128,27	183	0	-9,739	4,32E-03	1182 c57778_g4	156,89	141,93	0	-9,659	6,11E-03
1123	c43307_g1	113,98	195	0	-9,738	4,32E-03	1183 c30784_g2	158	141	0	-9,658	6,11E-03
1124		167,04	149	0	-9,738	4,32E-03	1184 c40016_g1	183	119	0	-9,656	6,11E-03
1125	c52826_g1	164	151	0	-9,735	4,32E-03	1185 c49206_g1	138,69	155,95	0	-9,650	6,11E-03
1126	c96838_g1	180,76	135,56	0	-9,733	4,32E-03	1186 c39135_g1	142,88	152	0	-9,648	6,11E-03
1127	c122472_g1	152	161	0	-9,733	4,32E-03	1187 c50501_g1	140	154	0	-9,645	6,55E-03
1128	c32453_g1	167,91	147	0	-9,732	4,32E-03	1188 c84745_g1	104	185	0	-9,644	6,11E-03
1129	c52261_g4	236	87,99	0	-9,731	4,32E-03	1189 c47662_g1	150,97	144	0	-9,642	6,55E-03
1130	c57306_g2	168	145,99	0	-9,727	4,63E-03	1190 c23731_g1	144	149,97	0	-9,642	6,55E-03
1131	c55170_g12	183,52	132	0	-9,726	4,63E-03	1191 c57257_g1	137,94	155	0	-9,641	6,55E-03
1132	c47712_g1	170	144	0	-9,726	4,63E-03	1192 c52737_g1	147,97	146	0	-9,639	6,55E-03
1133	c57655_g3	120	186,54	0	-9,725	4,63E-03	1193 c54488_g1	174	122	0	-9,631	6,55E-03
1134	c53617_g1	137	172	0	-9,723	4,63E-03	1194 c54611_g1	122,07	167,05	0	-9,631	6,55E-03
1135	c57571_g4	160	150,99	0	-9,718	4,63E-03	1195 c45117_g1	151,73	141	0	-9,631	6,55E-03
1136		227,4	93	0	-9,717	4,63E-03	1196 c52880_g2	145	147	0	-9,630	6,55E-03
1137		74	224,99	0	-9,716	4,63E-03	 1197 c52241_g1	87,84	196	0	-9,629	6,55E-03
1138	c53555_g1	120	184,98	0	-9,715	4,63E-03	1198 c109657_g1		154	0	-9,626	7,03E-03
1139	c55150_g1	168	143	0	-9,712	4,96E-03	1199 c42425_g1	123	164,99	0	-9,625	7,03E-03
	_0-	200	265	0	-9,712	4,32E-03	1200 c42588_g1	110	_0.,55	0	2,023	,001 00

1210 1210 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>														
1010 0174 112 124 0 0.421 0.5520 1780 0178 0137 131 134 0 0.205 0.4760 1206 64720 1 155 166 0.4670 7.552.03 166 0.4671 112 148 140 0 0.660 0.4677 1555.24 110 101 102 0 9.905 6.474.03 1206 64729_1 143 144 0 0.4684 0.464.04 1206 63578_21 110 0 9.998 7.776 0.1774 110 112 153.93 0 9.998 7.776 0.1774 112 153.93 0 9.998 4.776 0.1774 112 153.93 113 0 9.977 4.876.03 127 6455.21 140 144 128 0 9.948 7.776 112 112 113 104 9.949 7.776 112 114 140.93 149.99 7.776 112	1201	c27304_g1	208	89,99	0	-9,617	7,03E-03	1261	c50915_g1	222	59	0	-9,513	6,74E-03
1010 1075 11 112 <td>1202</td> <td>c54978_g1</td> <td>155,01</td> <td>135</td> <td>0</td> <td>-9,613</td> <td>7,03E-03</td> <td>1262</td> <td>c56989_g1</td> <td>146,99</td> <td>122,97</td> <td>0</td> <td>-9,508</td> <td>6,74E-03</td>	1202	c54978_g1	155,01	135	0	-9,613	7,03E-03	1262	c56989_g1	146,99	122,97	0	-9,508	6,74E-03
1915 6582 11 115 119 0 9.400 7.55-60 1262 6224 1101 16.0 0 9.500 6.74-03 1207 C1570_g1 139 140 0 9.605 6.416-03 126 62744_g1 126 116.53 116.8 0 9.498 7.274-03 1207 6484_g1 16.90 9.024 4.044 0 4.044 120 67744_g1 116.53 116.9 0 9.498 7.274-03 1210 64884_g1 1123 113 0 9.577 4.6140 127 6484_g1 116.85 107 9.498 7.276-03 1211 61438_g4 113 0 9.577 4.6140 127 6484_g1 116.85 108 0 4.948 7.276-03 1211 61439_g4 113 143 140 0 4.948 7.276-03 1212 64549_g4 1455 0 9.593 4.9660 17.776-03	1203	c48768_g1	28,97	244	0	-9,612	6,55E-03	1263	c53726_g1	133,97	134	0	-9,506	6,74E-03
1010 10100 1010 1010 <t< td=""><td>1204</td><td>c54765_g3</td><td>112</td><td>172</td><td>0</td><td>-9,611</td><td>7,03E-03</td><td>1264</td><td>c56772_g1</td><td>74,7</td><td>185</td><td>0</td><td>-9,505</td><td>6,74E-03</td></t<>	1204	c54765_g3	112	172	0	-9,611	7,03E-03	1264	c56772_g1	74,7	185	0	-9,505	6,74E-03
1917 1532 114 10 0. 9,665 4,512 1202 1255 120 0. 9,695 7,276.01 120 6445.1 10,992 207 0 0,668 4,326.00 1207 6470.4 116.52 110.3 0 9,696 7,277.01 1210 6485.2 117 118 0 0,868 4,326.00 1207 6480.4 116.52 0. 9,696 7,277.01 1212 1213.6 11.52 11.53 0 0.577 6451.00 11.645.5 10.6 9,494 7,276.01 1214 105.2 13.57 10.7 0 9,393 6,890.0 1276 6351.4 11.44 10.8 9,493 7,276.01 1214 6485.4 11.55 11.50 0 9,593 4,990.0 1276 6351.4 11.44 14.48 0 9,497 7,276.01 1214 6485.4 11.55 11.50 0 9,593 4,99	1205	c55659_g1	172,99	119	0	-9,610	7,55E-03	1265	c55348_g1	121	144,83	0	-9,505	6,74E-03
1000 67582 1 1300 130 1300 130 1300 130 1300 130 13000	1206	c42232_g1	185	108	0	-9,607	7,55E-03	1266	c26695_g1	101	162	0	-9,503	6,74E-03
1919 4483 2 69 9,00	1207	c15822_g1	143	144	0	-9,605	4,63E-03	1267	c53478_g1	128	138	0	-9,499	7,27E-03
1210 e4630 211 e4640 217 e2740 1212 e4640 1676 0 9330 49640 128 e46471 117 10 0 9460 <td>1208</td> <td>c57559_g1</td> <td>159</td> <td>130</td> <td>0</td> <td>-9,604</td> <td>4,63E-03</td> <td>1268</td> <td>c33554_g2</td> <td>136,93</td> <td>130</td> <td>0</td> <td>-9,498</td> <td>7,27E-03</td>	1208	c57559_g1	159	130	0	-9,604	4,63E-03	1268	c33554_g2	136,93	130	0	-9,498	7,27E-03
1211 cb433 p1 164 0 -9,001 4,681-01 127 69453,1 184,38 182,97 0 -9,494 7,774-03 1212 c5353,4,4 1213,9 133 0 -9,597 4,684-0 127 6444,1,1 184,85 105 0 -9,494 7,774-03 1214 c6569,2,1 177 173 0 -9,593 4,686-0 127 55715,2,1 18,48 103 0 -9,492 7,276-03 1216 c6485,2,1 147 107 0 -9,593 4996-0 1277 55715,2,1 10,49 10,49 9,492 7,276-03 1216 c5489,2,1 1459 13,77 0 -9,59 4996-0 128 64987,1 113 104,943 7,276-03 1221 c5483,1,1 165,9 13,747 0 -9,597 4996-0 128 64987,1 113 104,943 7,276-03 1222 c5350,1,1 1555,1 149	1209	c44831_g2	69,92	207	0	-9,604	4,30E-03	1269	c57244_g1	166,59	103,96	0	-9,498	7,27E-03
1212 c313 0 9.538 4.632-03 1272 c4843.21 164.83 105 0 9.494 7.276-03 1213 c131 133 0 9.597 4.661-03 127 c4441.21 111 0 9.408 7.276-03 1215 c4407.11 136,7 147 0 9.593 4.661-0 127 c4477.11 16.40 108.99 0 9.402 7.276-03 1216 c4805.21 145 140 0 9.593 4.996-03 127 c5205.41 188 0 9.409 7.276-03 1216 c5393.21 167.98 137.7 0 9.593 4.996-03 128 c5305.41 18.00 0 4.997-03 128 c5303.41 14.93 0 4.467 7.276-03 1222 c5303.41 15.59 10.66 0 9.583 4.996-03 128 c5309.41 10.06 0 4.47 7.876-03 1222 c5303.41 10.06 176 0 9.584 4.996-03 128 c5309.41 10.1	1210	c46562_g1	174,83	116	0	-9,604	4,63E-03	1270	c42490_g1	102	159,98	0	-9,496	7,27E-03
1313 0 9,597 4,676.0 1271 6544.1 16,468 101 0 9,494 7,277.03 1214 6505.0,1 177 113 0 9,597 4,687.03 1274 (44767,47) 114 128 0.0 3,08 7,277.03 1216 64407,41 121 0 9,393 4,987.03 1277 6571.5,81 160.40 0 0.0 7,277.03 1218 67393.9,1 146.99 146.90 0 9,393 4,987.03 120 65304.91 114 0.0 0.467 7,277.03 1222 63532.41 155 1311 0 9,593 4,996.03 1224 (4987.91 117 10.46 0 -468 7,277.03 1222 63532.41 199.33 126.7 0 9,583 4,996.03 1224 (4987.91 117 1.46.47 7,476.03 1222 63503.2,41 19.33 143.02 16.56 16.56 1.476.48	1211	c54339_g3	119	164	0	-9,601	4,63E-03	1271	c49452_g1	74,92	182,97	0	-9,494	6,74E-03
1212 c5980_1 117 111 0 9.937 4.81-01 1274 (4475_1) 158,04 111 0 9.403 7.277-03 1215 c5477_1,1 157 147 0 9.338 4.81-04 1276 6778,13 160.0 0.9.393 4.996-03 1277 c5210_2,13 130.99 134 0.9.490 7.277.03 1226 63783,12 167,98 1378 0 9.593 4.996-03 1278 c5730,21 130.9 3.487 0.9.593 4.996-03 1226 c5330,12 130.0 0.9.591 4.996-03 1221 c5330,11 130.0 0.9.581 4.996-03 1221 c5330,11 130.0 0.9.582 4.996-03 1221 c5330,11 130.0 0.9.486 7.277-03 1222 c5333,12 133 136 0.9.437 4.996-03 1223 c5330,11 131 0 9.486 7.277-03 1223 c5333,12 1302 1640 124,30 9.884	1212	c51358_g4	212	83	0	-9,598	4,63E-03	1272	c49458_g1	164,98	105	0	-9,494	7,27E-03
1215 c-0447_1 136,7 147 0 -9,533 4,617-03 1275 c-0028_11 10.048 100,89 0 -9,493 7,277-03 1216 c-4485_1 145 100 0 -9,534 4,997-03 1277 c-5371_21 10.048 100,89 0 -9,403 7,277-03 1218 c-7399_12 146,99 120,018 0 -9,534 4,997-03 1274 c-5371_21 1163 0 -9,407 7,277-03 1220 c-1388_12 146,99 136 0 -9,534 4,997-03 1220 c-5307_121 116,18 0 -9,487 7,277-03 1222 c-1380_14 149,99 136 0 -9,537 4,997-03 128 c-5381_14 10,101 0 -9,487 7,277-03 1222 c-1380_14 143,90 146,07 0 -9,537 4,997-03 128 c-5381_14 147 111,18 0 -9,478 7,277-03 1222 c-5303_14 143,91 0 -9,538 4,997-03 128 c-5381_14	1213	c53117_g1	153,99	133	0	-9,597	4,63E-03	1273	c54341_g1	164,85	105	0	-9,494	7,27E-03
1216 24895_1 127 1217 65715_1 1200.8 0 -9,393 4,996-30 1277 62105_41 130,99 131 0 -9,492 7,27E-03 1218 67398_11 167,88 107,08 0 -9,593 4,996-30 1278 65314_11 88 111 0 -9,407 7,27E-03 1212 63538_11 149 136 0 -9,503 4,996-30 1220 67345_11 114 104,80 0 -9,407 7,27E-03 1222 63532_11 149 136 0 -9,507 4,996-30 1221 61617_11 11.0 0 -9,407 7,27E-03 1222 63532_11 138 100 0.76 0 9,587 4,996-30 1224 6139_21 11.1 0 -9,407 7,27E-03 1224 63934_12 100.9 136 4,996-30 1226 61389_21 11.1 0 -9,407 7,87E-03 1224 63934_12 163.0 1476 7,87E-03 1237 63380_21 11.0 0 <td>1214</td> <td>c50650_g1</td> <td>177</td> <td>113</td> <td>0</td> <td>-9,597</td> <td>4,63E-03</td> <td>1274</td> <td>c44767_g1</td> <td>158,04</td> <td>111</td> <td>0</td> <td>-9,493</td> <td>7,27E-03</td>	1214	c50650_g1	177	113	0	-9,597	4,63E-03	1274	c44767_g1	158,04	111	0	-9,493	7,27E-03
1217 c3032_11 145 140 0 -9,593 4,996-03 127 c5105_21 130,99 134 0 -9,491 7,276-03 1218 c5334_21 146.99 127,87 0 -9,593 4,996-03 1270 c5345_11 14 148.03 0 -9,407 7,276-03 1220 c3285_21 139 136 0 -9,507 4,996-03 1220 c5007_21 137 0 -9,507 4,996-03 1220 c5487_21 147 119.18 0 -9,467 7,276-03 1222 c53521_21 845 136 10 -9,587 4,996-03 1226 c5487_21 147 0 -9,467 7,276-03 1222 c53521_21 845 143.9 143.9 0 -9,468 7,856-03 1226 c5403_21 143.9 172.4 0 -9,581 4,996-03 1286 c5359_21 140,74 117 0 -9,478 7,856-03 1226 c5403_21 166,97 117 0 -9,583 4,996-03 1286<	1215	c54247_g1	136,7	147	0	-9,593	4,63E-03	1275	c40268_g1	144	123	0	-9,493	7,27E-03
1218 6.7993_11 16.798 120.08 0 9.993 4.996-03 1279 6.7544_g1 114 148.0 0 9.490 7.27E-03 1218 6.3439_g1 145 1311 0 9.993 4.996-03 1220 6.0007_g1 159 10.01 0 9.408 7.27E-03 1222 6.3236_g1 1553 1.26,47 0 9.587 4.996-03 1223 6.335_g1 1.47 119.1 0 9.484 7.27E-03 1222 6.3033_g1 1.439 138,62 0 9.587 4.996-03 1223 6.3019_g1 14.7 119.4 0 9.484 7.27E-03 1224 6.3034_g1 1.00.9 1.76 0 9.584 4.99F-03 1226 6.3080_g1 118 143 0 9.477 7.85E-03 1227 6.3144_g1 16 124,19 0 9.580 4.99F-03 1287 6.3080_g1 118 143 0 9.477 7.85E-03 1226 6.3644_g1 1.91.9 9.56.5 0 9.580 4.	1216	c24805_g1	167	121	0	-9,593	4,99E-03	1276	c55715_g1	160,48	108,89	0	-9,492	7,27E-03
1219 63439_1 146.99 137.87 0 -9.522 4.99E-03 120 67045_11 114 148.03 0 -9.687 7.27E-03 1220 612584 159 131 0 -9.504 4.99E-03 122 64567_21 157.8 161.01 0 -9.687 7.27E-03 1222 63531_1 155.3 126.47 0 -9.687 4.99E-03 122 64512_1 157.8 161.66 0 -9.687 7.27E-03 1222 654031_21 164.99 138.6 0 -9.687 4.99E-03 1226 65316_21 159.4 105.62 0 -9.487 7.27E-03 1222 65403_21 161.99 17.6 0 -9.684 4.99E-03 1226 65308_21 118 143 0 -9.477 7.87E-03 1222 65403_21 161.99 167 0 -9.684 4.99E-03 1286 67396_23 119.7 116 0 -9.477 7.87E-03 1222 65403_21 17.0 9.580 0.6 0.775	1217	c43052_g1	145	140	0	-9,593	4,99E-03	1277	c52105_g1	130,99	134	0	-9,491	7,27E-03
1220 62855_g1 155 131 0 -9,591 4,99E-03 1280 60007_g1 159 108,99 0 -9,487 7,27E-03 1221 49555_g1 1195,3 126,47 0 -9,587 499E-03 1223 (4547_g1 117 113,18 0 -9,487 7,27E-03 1222 4303_g1 143,99 138,62 0 -9,587 499E-03 1283 (5139_g1 150,94 106,66 0 -9,487 7,27E-03 1225 6403_g1 110 152,47 0 -9,582 499E-03 1286 (5309_g1 118 143 0 -9,477 7,85E-03 1226 64304_g1 19,197 96,56 0 -9,580 499E-03 1287 (5478_g1 129,91 106 0 -9,477 7,85E-03 1228 65390_g1 19,197 96,56 0 -9,570 5,37E-03 129 (5544_g1 104 0 -9,477 7,85E-03 1232 65610_g1 151 122,2 0 -9,570 5,37E-03	1218	c57993_g1	167,98	120,08	0	-9,593	4,99E-03	1278	c55514_g1	88	171	0	-9,490	7,27E-03
121 c9959	1219	c53439_g1	146,99	137,87	0	-9,592	4,99E-03	1279	c57045_g1	114	148,03	0	-9,487	7,27E-03
1222 23761_81 159,53 126,47 0 -9,587 4,99E-03 128 63199_81 157 1114 0 -9,484 7,27E-03 1224 1533_11 143,99 138,62 0 -9,583 4,99E-03 128 63199_81 1524 1103 155,2 0 -9,484 7,27E-03 1225 64334_92 161 124,19 0 -9,581 4,99E-03 128 6736_81 103 155,2 0 -9,478 7,28E-03 1228 65390_81 19,197 96,66 0 -9,580 4,99E-03 128 67352_42 178,76 0 -9,477 7,88E-03 1226 65300_81 140 142 0 -9,580 4,99E-03 128 65732_42 178,76 0 -9,477 7,88E-03 1231 6330_81 109 167 0 -9,570 5,37E-03 129 65434_81 104 140 -9,477 7,88E-03 1232 6330_81 109 167 0 -9,577 5,37E-03 129 129	1220	c32858_g1	155	131	0	-9,591	4,99E-03	1280	c50007_g1	159	108,99	0	-9,487	7,27E-03
1223 c5502_g1 86 190 0 -9,57 4,99E-03 1282 c51359_g1 152,4 100,66 0 9,481 7,85E-03 1224 c13933_g1 143,99 138,62 0 -9,583 4,99E-03 1226 c5036_g1 103 155,64 0 -9,487 7,27E-03 1225 c5134_g2 161 124,19 0 -9,581 4,99E-03 1227 c5075_g1 147,76 189.8 0 -9,477 7,85E-03 1227 c5209_g1 140 142 0 -9,580 4,99E-03 1228 c5792_g3 155.9 0 -9,477 7,85E-03 1230 c52030_g1 87,92 187,10 -9,580 5,37E-03 1224 c5538_g1 112,9 0 -9,477 7,85E-03 1232 c5501_g1 161 122,2 0 -9,570 5,37E-03 1224 c5434_g1 104 154 0 -9,477 7,85E-03 1232 c5513.6_11 175,99 108 0 -9,555 5,37E-03 1224 c5434_g1	1221	c49559_g1	149	136	0	-9,590	4,99E-03	1281	c49617_g1	167,88	101,01	0	-9,486	7,27E-03
1224 c13933_g1 143,99 138,62 0 -9,583 4,99€-03 1284 c53013_g1 159,64 0 -9,480 7,85E-03 1225 c54013_g1 100,96 176 0 -9,581 4,99E-03 1285 c67206_g1 1118 113 0 -9,478 7,85E-03 1226 c5343_g2 166,99 117 0 -9,581 4,99E-03 1287 c52057_g1 147,74 117 0 -9,478 7,85E-03 1228 c55990_g1 140 142 0 -9,520 4,99E-03 1280 c56458_g1 125,99 135 0 -9,472 7,85E-03 1231 c5030_g1 87,92 187,21 0 -9,570 5,37E-03 1291 c56458_g1 125,99 135 0 -9,470 7,85E-03 1232 c5030_g1 167 0 9,570 5,37E-03 1292 c5634_g1 104 15 0 -9,460 7,85E-03 1232 c5316_g1 17,99 16 0 -9,59 5,37E-03 1296 <t< td=""><td>1222</td><td>c33261_g1</td><td>159,53</td><td>126,47</td><td>0</td><td>-9,587</td><td>4,99E-03</td><td>1282</td><td>c45487_g1</td><td>147</td><td>119,18</td><td>0</td><td>-9,484</td><td>7,27E-03</td></t<>	1222	c33261_g1	159,53	126,47	0	-9,587	4,99E-03	1282	c45487_g1	147	119,18	0	-9,484	7,27E-03
1225 c54013_g1 100.96 176 0 -9.582 4.99E-03 1286 c08080_g1 118 143 0 -9.478 7,28E-03 1226 c1843_2 161 124,19 0 -9.581 4.99E-03 1286 c08080_g1 118 143 0 -9.478 7,88E-03 1228 c5590_g1 191.97 96.96 0 -9.580 4.99E-03 1288 c47485_g2 178,76 89.89 0 -9.477 7,88E-03 1220 c5206_g1 140 142 0 -9.580 4.99E-03 1289 c5792_g2 159.81 10.6 0 -9.472 7,88E-03 1231 c5470_g1 136 144 0 -9.572 5,37E-03 1291 c5643_g2 171,38 96 0 -9.472 7,88E-03 1232 c56510_g1 161 122,23 0 -9.557 5,37E-03 1294 c4445_g1 129 13,04 0 -9.467 7,88E-03 1235 c5316_g1 15,99 10 -9.559 5,37E-03 1	1223	c55023_g1	86	190	0	-9,587	4,99E-03	1283	c51359_g1	152	114	0	-9,481	7,85E-03
1226 643343_g2 161 124,19 0 -9,581 4,99E.03 1287 62507_g1 147,7 117 0 -9,478 7,85E.03 1227 65209_g1 19,197 96,96 0 -9,580 4,99E.03 1287 62507_g1 147,7 7,85E.03 1228 65209_g1 140 142 0 -9,580 4,99E.03 1289 65792_g3 159,96 106 0 -9,472 7,85E.03 1231 634702_g1 136 144 0 -9,572 5,37E.03 1292 66441_g1 104 154 0 -9,472 7,85E.03 1233 63560_g1 161 122,2,3 0 -9,570 5,37E.03 1292 65441_g1 104 0 -9,470 7,85E.03 1234 63362_g1 192 95 5,37E.03 1292 65445_g1 1213 0 -9,466 7,85E.03 1235 63364_g1 122,9 135 0 9,555 5,77E-03 1297 6903_g1 124,9 0 9,456 7,85E.03	1224	c13933_g1	143,99	138,62	0	-9,583	4,99E-03	1284	c53019_g1	159,94	106,66	0	-9,480	7,85E-03
1227 651845_g2 168,99 117 0 -9,581 4,99E-03 1287 62507_g1 147,74 117 0 -9,477 7,85E-03 1228 652069_g1 140 142 0 -9,580 4,99E-03 1288 674785_g2 178,76 89,89 0 -9,477 7,85E-03 1229 65266_g1 1265 6757_g3 1291 65668_g1 125,59 135 0 -9,472 7,85E-03 1232 65610_g1 161 122,23 0 -9,572 5,37E-03 1291 65641_g1 104 154 0 -9,472 7,85E-03 1232 656510_g1 161 122,23 0 -9,569 5,37E-03 1294 624415_g1 129 132,04 0 -9,467 7,85E-03 1236 65479,81 170,98 111.6 0 -9,553 5,37E-03 1297 65903_g1 136 123,98 0 -9,467 7,85E-03 1237 64500_g1 127,5 135,88 0 -9,559 5,37E-03 1297 63903_g1	1225	c54013_g1	100,96	176	0	-9,582	4,99E-03	1285	c57236_g1	103	155,62	0	-9,478	7,27E-03
1228 c55990_g1 19,197 96,96 0 9,580 4,99E-03 1288 c47485_g2 178,76 89,89 0 9,477 7,85E-03 1220 c52080_g1 140 142 0 9,580 4,99E-03 1280 c5782_g3 125,99 135 0 9,472 7,85E-03 1231 c3702_g1 136 144 0 9,570 5,37E-03 1291 c5628_g2 171,38 96 0 9,472 7,85E-03 1232 c56510_g1 161 122,23 0 9,570 5,37E-03 1292 c5628_g2 171,38 96 0 9,467 7,85E-03 1232 c56510_g1 161 122,9 0 9,565 5,37E-03 1296 c5324_g1 129 132,04 0 9,466 7,85E-03 1236 c53479_g1 170,98 111.6 0 9,565 5,37E-03 1296 c54326_g1 129.9 129 0 9,456 7,85E-03 1237 c5040_g1 129,15 145,88 0 9,57E-03 1296<	1226	c43343_g2	161	124,19	0	-9,581	4,99E-03	1286	c30880_g1	118	143	0	-9,478	7,85E-03
1229 652069_g1 140 142 0 9,580 4,99E-03 1289 657592_g3 159,98 106 0 9,474 7,85E-03 1231 624030_g1 87,92 187,21 0 9,580 4,99E-03 1290 65648_g1 125,99 135 0 9,472 7,85E-03 1231 634702_g1 136 144 0 9,570 5,37E-03 1292 65641_g1 104 154 0 9,477 7,85E-03 1232 65316_g1 109 167 0 9,570 5,37E-03 1294 64244_g1 129 132,0 0 9,467 7,85E-03 1235 63136_g1 170,98 111,6 0 9,565 5,37E-03 1296 64326_g1 141,38 120,99 0 9,468 8,49E-03 1238 65409_g1 129,15 145,88 0 9,579 5,37E-03 1296 6103_g2 110,92 0 9,458 8,49E-03 1238 65600_g1 129,15 145,88 0 9,579 0,579E-03 1206<	1227	c51845_g2	168,99	117	0	-9,581	4,99E-03	1287	c52057_g1	147,74	117	0	-9,478	7,85E-03
1230 652030_B1 87,92 187,21 0 -9,802 4,99E-03 1290 656458_B1 125,99 135 0 -9,472 7,85E-03 1231 124702_E1 136 144 0 -9,572 5,37E-03 1291 655638_B2 104 0 -9,472 7,85E-03 1232 653638_B1 161 122,23 0 -9,570 5,37E-03 1292 65341_B1 104 0 -9,470 7,85E-03 1232 653638_B1 192 95 0 -9,565 5,37E-03 1292 63462_B1 129 132,04 0 -9,466 7,85E-03 1236 653479_B1 170,98 111,60 0 -9,555 5,37E-03 1296 64326_B1 141,38 120,99 0 -9,458 8,49E-03 1236 653479_B1 129,15 145,88 0 -9,555 5,37E-03 1298 10085_E1 129,99 129 0 -9,458 8,49E-03 1247 65034_B1 144,84 144,49 0 -9,545 5,79E-03 1300 </td <td>1228</td> <td>c55990_g1</td> <td>191,97</td> <td>96,96</td> <td>0</td> <td>-9,580</td> <td>4,99E-03</td> <td>1288</td> <td>c47485_g2</td> <td>178,76</td> <td>89,89</td> <td>0</td> <td>-9,477</td> <td>7,85E-03</td>	1228	c55990_g1	191,97	96,96	0	-9,580	4,99E-03	1288	c47485_g2	178,76	89,89	0	-9,477	7,85E-03
1231 c34702_g1 136 144 0 -9,72 5,37E-03 1291 c55628_g2 171,38 96 0 -9,472 7,85E-03 1232 c56510_g1 161 122,23 0 -9,570 5,37E-03 1292 c5641_g1 104 154 0 -9,470 7,85E-03 1233 c3368_g1 109 167 0 -9,565 5,37E-03 1292 c3444_g1 129 132.0 0 -9,467 7,85E-03 1235 c51316_g1 175,99 108 0 -9,565 5,37E-03 1295 c39162_g1 141,38 120,99 0 -9,468 8,89E-03 1237 c6420_g1 169,25 112,99 0 -9,555 5,79E-03 1297 c0030_g1 1236 123,98 0 -9,458 8,49E-03 1240 c5593_g1 142,91 0 -9,545 5,79E-03 1300 c7579_g2 108 147 0 -9,458 8,49E-03 1244 c5593_g1 148,91 149 0 -9,545 5,79E-03 <td< td=""><td>1229</td><td>c52069_g1</td><td>140</td><td>142</td><td>0</td><td>-9,580</td><td>4,99E-03</td><td>1289</td><td>c57592_g3</td><td>159,98</td><td>106</td><td>0</td><td>-9,474</td><td>7,85E-03</td></td<>	1229	c52069_g1	140	142	0	-9,580	4,99E-03	1289	c57592_g3	159,98	106	0	-9,474	7,85E-03
1232 c56510_g1 161 122.3 0 -9.770 5.37E-03 1292 c56341_g1 104 154 0 -9.471 7.85E-03 1233 c33638_g1 109 167 0 -9.570 5.37E-03 1293 c53204_g1 164,89 101 0 -9.469 7.85E-03 1234 c5362_g1 192 132,04 0 -9.466 7.85E-03 1235 c5134_9_g1 170,98 111.6 0 -9.559 5.37E-03 129 c5091_g1 136. 123,88 0 -9.466 7.85E-03 1236 c5347_9_g1 129,95 112,89 0 -9.559 5.37E-03 129 c5093_g1 136. 123,88 0 -9.458 8.49E-03 1238 c5504_g2 132,3 151 0 -9.549 5.79E-03 130 c5128_g3 130,92 127 0 -9.450 8.49E-03 1244 c5533_g1 164,89 114,49 0 -9.544 5.79E-03 130 c5128_g3 130,92 127 0 -9.450	1230	c52030_g1	87,92	187,21	0	-9,580	4,99E-03	1290	c56458_g1	125,99	135	0	-9,472	7,85E-03
1233 c33638_g1 109 167 0 -9,570 5,37E-03 1293 c53204_g1 164,89 101 0 -9,470 7,85E-03 1234 c53862_g1 192 95 0 -9,569 5,37E-03 1294 c24345_g1 125 132,04 0 -9,466 7,85E-03 1235 c53479_g1 170,98 111,6 0 -9,569 5,37E-03 1296 c54326_g1 141,38 120,99 0 -9,466 7,85E-03 1237 c4560_g1 129,15 145,88 0 -9,559 5,37E-03 1297 c5093_g1 136 123,99 0 -9,457 8,49E-03 1230 c5504_g2 137,25 139 0 -9,549 5,79E-03 130 c1782_g3 10,92 145 0 -9,450 8,49E-03 1240 c5503_g1 164,89 144,49 0 -9,544 5,79E-03 130 c1782_g3 10,92 140 0 -9,450 8,49E-03 1241 c5038_g1 197 86 0 -9,544 <t5< td=""><td>1231</td><td>c34702_g1</td><td>136</td><td>144</td><td>0</td><td>-9,572</td><td>5,37E-03</td><td>1291</td><td>c55628_g2</td><td>171,38</td><td>96</td><td>0</td><td>-9,472</td><td>7,85E-03</td></t5<>	1231	c34702_g1	136	144	0	-9,572	5,37E-03	1291	c55628_g2	171,38	96	0	-9,472	7,85E-03
1234 c53862_g1 192 95 0 9.569 5.37E-03 1294 c24345_g1 129 132,04 0 9.469 7,85E-03 1235 c51316_g1 175,99 108 0 9.565 5,37E-03 1295 c93162_g1 112,5 135 0 9.466 7,85E-03 1236 c64379_g1 170,98 111,6 0 9.559 5,77E-03 1296 c50305_g1 136 123,98 0 -9.458 8,49E-03 1238 c45500_g1 129,15 145,88 0 -9.559 5,77E-03 1299 c42539_g2 110,92 145 0 -9.458 8,49E-03 1240 c55038_g1 164,89 114,90 0 -9.545 5,79E-03 1300 c51282_g3 130,92 127 0 -9.450 8,49E-03 1242 c5251_g1 159,28 118,97 0 -9.544 5,79E-03 1303 c4424_g1 143 115,99 0 -9.446 8,49E-03 1242 c5237_g1 136 1377 0 -9.544	1232	c56510_g1	161	122,23	0	-9,570	5,37E-03	1292	c56341_g1	104	154	0	-9,471	7,85E-03
1235 c51316_g1 175,99 108 0 -9,565 5,37E-03 1295 c39162_g1 125 135 0 -9,466 7,85E-03 1236 c53479_g1 170,98 111,6 0 -9,565 5,37E-03 1296 c54326_g1 141,38 120,99 0 -9,466 7,85E-03 1237 c46120_g1 169,25 112,99 0 -9,549 5,79E-03 1298 c10085_g1 129.99 129 0 -9,458 8,49E-03 1238 c55094_g2 137,25 139 0 -9,549 5,79E-03 1300 c5776_g2 108 147 0 -9,450 8,49E-03 1240 c55939_g3 123 151 0 -9,545 5,79E-03 1301 c51282_g3 130,92 127 0 -9,450 8,49E-03 1242 c52815_g1 159,28 118,97 0 -9,544 5,79E-03 1303 c4142_g1 115,99 140 0 -9,445 8,49E-03 1244 c62849_g1 96 177 0 -9,540	1233	c33638_g1	109	167	0	-9,570	5,37E-03	1293	c53204_g1	164,89	101	0	-9,470	7,85E-03
1236 c33479_11 170.98 111.6 0 -9,563 5,37E-03 1296 c54326_g1 141,38 120.99 0 -9,458 8,49E-03 1237 c46120_g1 169,25 112,99 0 -9,559 5,37E-03 1297 c5093_g1 136 123,98 0 -9,458 8,49E-03 1238 c45690_g1 129,15 145,88 0 -9,549 5,79E-03 1209 c4233_g2 110.99 145 0 -9,458 8,49E-03 1240 c55039_g1 164,89 114,49 0 -9,545 5,79E-03 1301 c51282_g3 130,92 127 0 -9,450 8,49E-03 1242 c52815_g1 159,28 118,97 0 -9,544 5,79E-03 1301 c51282_g3 130,92 127 0 -9,450 8,49E-03 1242 c52815_g1 159,28 118,97 0 -9,544 5,79E-03 1302 c46442_g1 143 115,9 0 -9,446 8,49E-03 1244 c46894_g1 96 173 0 <	1234	c53862_g1	192	95	0	-9,569	5,37E-03	1294	c24345_g1	129	132,04	0	-9,469	7,85E-03
1237 c46120_g1 169,25 112,99 0 -9,558 5,37E-03 1297 C5090_g1 123,98 0 -9,458 8,49E-03 1238 c45690_g1 129,15 145,88 0 -9,550 5,79E-03 1298 c10085_g1 129,99 129 0 -9,457 8,49E-03 1230 c55094_g2 137,25 139 0 -9,549 5,79E-03 1300 c5776_g2 108 147 0 -9,450 8,49E-03 1241 c55038_g1 164,89 114,49 0 -9,545 5,79E-03 1301 c5128_g3 130,92 127 0 -9,450 8,49E-03 1242 c52815_g1 159,28 118,97 0 -9,544 5,79E-03 1302 c4642_g1 115,99 10 0 -9,458 8,49E-03 1242 c52815_g1 197 86 0 -9,544 5,79E-03 1302 c4642_g1 115,99 0 -9,448 8,49E-03 1244 c46894_g1 96 173 0 -9,540 5,79E-03 1306 <td>1235</td> <td>c51316_g1</td> <td>175,99</td> <td>108</td> <td>0</td> <td>-9,565</td> <td>5,37E-03</td> <td>1295</td> <td>c39162_g1</td> <td>125</td> <td>135</td> <td>0</td> <td>-9,466</td> <td>7,85E-03</td>	1235	c51316_g1	175,99	108	0	-9,565	5,37E-03	1295	c39162_g1	125	135	0	-9,466	7,85E-03
1238c45690 g1129,15145,880-9,505,79E-031298c10085_B1129,991290-9,4578,49E-031239c55094 g2137,251390-9,5495,79E-031209c42539_g2110,921450-9,4548,49E-031240c55939 g31231510-9,5495,79E-031300c57796_g21081470-9,4508,49E-031242c52815 g1164,89114,490-9,5455,79E-031302c4442_g1115,991400-9,4508,49E-031242c52815 g1159,28118,970-9,5445,79E-031302c4442_g1115,991400-9,4508,49E-031243c5002 gg1197860-9,5445,79E-031303c34124 g1131115,990-9,4468,49E-031244c4684 g1961730-9,5405,79E-031303c5666_g182330-9,4468,49E-031245c53476 g11121070-9,5395,79E-031305c56461_g1137120,660-9,4458,49E-031246c26573 g1136137,70-9,5395,79E-031307c56931_g1118,011370-9,4428,49E-031247c34714 g11591180-9,5326,24E-031310c57181_g1116,010-9,442	1236	c53479_g1	170,98	111,6	0	-9,563	5,37E-03	1296	c54326_g1	141,38	120,99	0	-9,466	7,85E-03
1239c55094_g2137,251390-9,5495,79E-031299c42533_g2110,921450-9,4548,49E-031240c55939_g31231510-9,5495,79E-031300c57796_g21081470-9,4508,49E-031241c5038_g1164,89114,490-9,5455,79E-031302c64442_g1115,991400-9,4508,49E-031242c52815_g1159,28118,970-9,5445,79E-031302c64442_g1115,991400-9,4468,49E-031243c50029_g1197860-9,5445,79E-031302c46442_g1143115,990-9,4468,49E-031244c46894_g1961730-9,5405,79E-031305c56461_g1137120,660-9,4458,49E-031245c53476_g11721070-9,5395,79E-031305c56931_g1118,011370-9,4468,49E-031246c26573_g1136137,70-9,5385,79E-031307c56931_g1118,011370-9,4488,49E-031247c34714_g11591180-9,5385,79E-031307c56931_g1118,011370-9,4488,49E-031246c36573_g1138136,70-9,5385,79E-031307c56931_g1118,011370 <t< td=""><td>1237</td><td>c46120_g1</td><td>169,25</td><td>112,99</td><td>0</td><td>-9,559</td><td>5,37E-03</td><td>1297</td><td>c50903_g1</td><td>136</td><td>123,98</td><td>0</td><td>-9,458</td><td>8,49E-03</td></t<>	1237	c46120_g1	169,25	112,99	0	-9,559	5,37E-03	1297	c50903_g1	136	123,98	0	-9,458	8,49E-03
1240c55939_g31231510-9,5495,79E-031300c57796_g21081470-9,4508,49E-031241c5038_g1164,89114,490-9,5455,79E-031301c51282_g3130,921270-9,4508,49E-031242c52815_g1159,28118,970-9,5445,79E-031302c46442_g1115,991400-9,4468,49E-031243c50029_g1197860-9,5445,79E-031303c34124_g1143115,990-9,4468,49E-031244c46894_g1961730-9,5445,79E-031305c56461_g1137120,660-9,4458,49E-031245c53476_g11721070-9,5395,79E-031306c648586_g11151400-9,4458,49E-031246c26573_g1136137,70-9,5376,24E-031306c56931_g1118,011370-9,4428,49E-031247c34714_g11591180-9,5326,24E-031306c56931_g1118,011370-9,4428,49E-031246c19430_g11371360-9,5326,24E-031306c57181_g197155,000-9,4418,49E-031250c38351_g1151,831230-9,5326,24E-031310c57181_g1154,970-9,434	1238	c45690_g1	129,15	145,88	0	-9,550	5,79E-03	1298	c10085_g1	129,99	129	0	-9,457	8,49E-03
1241c5038_f1164,89114,490-9.545.79E-031301c51282_g3130.921270-9.5408,49E-031242c52815_g1159,28118,970-9.5445.79E-031302c46442_g1115,991400-9.5408,49E-031243c50029_g1197860-9.5445.79E-031303c34124_g1143115,990-9.4468,49E-031244c6894_g1961730-9.5405.79E-031305c56461_g1137120,660-9.4458,49E-031245c53476_g11721070-9.5305.79E-031305c56461_g1137120,660-9.4458,49E-031246c26573_g1136137,70-9.5335.79E-031307c56931_g1118,011370-9.4428,49E-031247c34714_g11591180-9.5326.24E-031309c4533_g197154,970-9.4418,49E-031248c19430_g11381360-9.5326.24E-031300c4518_g1152,951060-9.4389,81E-031250c38351_g1151,831230-9.5326.24E-031311c5115_g1164960-9.4349,18E-031252c5086_g21241470-9.5326.24E-031312c31842_g1120,93132,970-9.42	1239		137,25	139	0	-9,549	5,79E-03	1299	c42539_g2	110,92	145	0	-9,454	8,49E-03
1242c52815_g1159,28118,970-9,5445,79E-031302c46442_g1115,991400-9,4508,49E-031243c50029_g1197860-9,5445,79E-031303c34124_g1143115,990-9,4668,49E-031244c46894_g1961730-9,5415,79E-031304c54050_g182330-9,4468,49E-031245c53476_g11721070-9,5405,79E-031305c56461_g1137120,660-9,4458,49E-031246c26573_g1136137,70-9,5395,79E-031306c48586_g11151400-9,4458,49E-031247c34714_g11591180-9,5376,24E-031307c56931_g1118,011370-9,4428,49E-031249c42021_g1137,131360-9,5326,24E-031309c44533_g197154,970-9,4488,49E-031250c38351_g1151,831230-9,5326,24E-031310c5181_g1152,951060-9,4389,18E-031252c50986_g21241470-9,5326,24E-031312c31842_g1120,93132,970-9,4289,18E-031252c50986_g21241470-9,5266,24E-031313c5780g1156,6510109,426 <td></td> <td></td> <td>123</td> <td>151</td> <td>0</td> <td>-9,549</td> <td>5,79E-03</td> <td></td> <td></td> <td>108</td> <td>147</td> <td>0</td> <td>-9,450</td> <td>8,49E-03</td>			123	151	0	-9,549	5,79E-03			108	147	0	-9,450	8,49E-03
1243c50029_g1197860-9,5445,79E-031303c34124_g1143115,990-9,4467,27E-031244c46894_g1961730-9,5415,79E-031304c54050_g182330-9,4467,27E-031245c53476_g11721070-9,5405,79E-031305c56461_g1137120,660-9,4458,49E-031246c26573_g1136137,70-9,5395,79E-031306c48586_g11151400-9,4458,49E-031247c34714_g11591180-9,5326,24E-031307c56931_g1118,011370-9,4428,49E-031249c42021_g1137,131360-9,5326,24E-031309c44533_g197154,970-9,4418,49E-031250c38351_g1151,831230-9,5326,24E-031310c57181_g1164960-9,4359,18E-031252c5086_g21241470-9,5326,24E-031312c1842_g1120,93132,970-9,4489,18E-031254c5337_g1168108,990-9,5286,24E-031313c5189_g1164960-9,4349,18E-031254c5474_g1162,991130-9,5286,24E-031313c5180c_g1164,99940-9,4289,18			164,89	114,49	0	-9,545				130,92	127	0	-9,450	8,49E-03
1244c46894_g19617309,5415,79E-031304c5405_g1823309,4467,27E-031245c53476_g117210709,5405,79E-031305c56461_g1137120,6609,4458,49E-031246c26573_g1136137,709,5395,79E-031306c48586_g111514009,4458,49E-031247c34714_g115911809,5385,79E-031307c56931_g1118,0113709,4428,49E-031248c19430_g113813609,5376,24E-031308c31076_g197154,9709,4418,49E-031249c42021_g1137,1313609,5326,24E-031310c57181_g1152,9510609,4389,18E-031250c3335_g1168108,9909,5326,24E-031312c31842_g1120,93132,9709,4439,18E-031252c50986_g212414709,5306,24E-031313c57800_g1156,6510109,4289,18E-031253c55474_g1162,9911309,5266,24E-031315c5428_g1113,83138,3209,4269,18E-031254c57420_g113513709,5256,24E-031315c5428_g1113,83138,3209,4269,18E-03 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							,							
1245c53476_g11721070-9,5405,79E-031305c56461_g1137120,660-9,4458,49E-031246c25573_g1136137,70-9,5395,79E-031306c48586_g11151400-9,4458,49E-031247c34714_g11591180-9,5385,79E-031307c56931_g1118,011370-9,4428,49E-031248c19430_g11381360-9,5376,24E-031308c31076_g197155,000-9,4418,49E-031249c42021_g1137,131360-9,5326,24E-031309c44533_g197154,970-9,4418,49E-031250c38351_g1151,831230-9,5326,24E-031310c57181_g1152,951060-9,4389,18E-031251c53337_g1168108,990-9,5326,24E-031311c51159_g1164960-9,4349,18E-031252c50986_g21241470-9,5386,24E-031313c5780_g1156,651010-9,4289,18E-031254c5742_g11351370-9,5286,24E-031313c5780_g1156,651010-9,4289,18E-031255c56727_g11231470-9,5266,24E-031315c52428_g1113,83138,320-9,428 <td></td> <td>=</td> <td></td>		=												
1246c26573_g1136137,70-9,5395,79E-031306c48586_g11151400-9,4458,49E-031247c34714_g11591180-9,5385,79E-031307c56931_g1118,011370-9,4428,49E-031248c19430_g11381360-9,5376,24E-031308c31076_g1971550-9,4418,49E-031249c4201_g1137,131360-9,5326,24E-031309c44533_g197154,970-9,4389,18E-031250c38351_g1151,831230-9,5326,24E-031310c57181_g1152,951060-9,4389,18E-031251c53337_g1168108,990-9,5316,24E-031311c51159_g1164960-9,4349,18E-031252c50986_g21241470-9,5306,24E-031312c31842_g1120,93132,970-9,4299,18E-031254c5742_g1162,991130-9,5266,24E-031315c52428_g1113,83138,320-9,4269,18E-031255c56727_g11231470-9,5256,24E-031316c47521_g1160980-9,4269,18E-031256c122580_g1168,92107,210-9,5255,79E-031317c54872_g2109,84141,110 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>														
1247c34714_g11591809,5385,79E-031307c56931_g1118,011370-9,4428,49E-031248c19430_g11381360-9,5376,24E-031308c31076_g1971550-9,4418,49E-031249c42021_g1137,131360-9,5326,24E-031309c44533_g197154,970-9,4418,49E-031250c38351_g1151,831230-9,5326,24E-031310c57181_g1152,951060-9,4389,18E-031251c5337_g1168108,990-9,5326,24E-031311c51159_g1164960-9,4349,18E-031252c50986_g21241470-9,5316,24E-031312c31842_g1120,93132,970-9,4429,18E-031253c55474_g1162,991130-9,5326,24E-031313c57800_g1156,651010-9,4299,18E-031254c5742_g11351370-9,5286,24E-031313c5780_g1156,651010-9,4299,18E-031255c5672_g113231470-9,5286,24E-031315c52428_g1113,83138,320-9,4299,18E-031256c5772_g11231470-9,5266,24E-031316c47521_g1160980-9,426<			172	107		-9,540	,						-9,445	
1248c19430_g11381360-9,5376,24E-031308c31076_g1971550-9,4418,49E-031249c42021_g1137,131360-9,5326,24E-031309c44533_g197154,970-9,4418,49E-031250c38351_g1151,831230-9,5326,24E-031310c57181_g1152,951060-9,4389,18E-031251c5337_g1168108,990-9,5326,24E-031311c51159_g1164960-9,4349,18E-031252c50986_g21241470-9,5316,24E-031312c31842_g1120,93132,970-9,4349,18E-031253c55474_g1162,991130-9,5306,24E-031313c57800_g1156,651010-9,4299,18E-031254c57420_g11351370-9,5286,24E-031313c5780_g1164,99940-9,4289,18E-031255c56727_g11231470-9,5286,24E-031315c52428_g1113,83138,320-9,4269,18E-031256c122580_g1168,92107,210-9,5256,24E-031316c47521_g1160980-9,4269,18E-031257c57042_g142216,970-9,5255,79E-031317c54872_g2109,84141,110<														
1249c4201_g1137,131360-9,5326,24E-031309c44533_g197154,970-9,418,49E-031250c38351_g1151,831230-9,5326,24E-031310c57181_g1152,951060-9,4389,18E-031251c53337_g1168108,990-9,5326,24E-031311c51159_g1164960-9,4389,18E-031252c50986_g21241470-9,5316,24E-031312c31842_g1120,93132,9770-9,4349,18E-031253c55474_g1162,991130-9,5326,24E-031313c57800_g1156,651010-9,4289,18E-031254c57420_g11351370-9,5266,24E-031315c5428_g1113,83138,320-9,4289,18E-031255c56727_g11231470-9,5266,24E-031316c5428_g1113,83138,320-9,4269,18E-031256c122580_g1168,92107,210-9,5255,79E-031316c45721_g1160980-9,4269,18E-031257c57042_g142216,970-9,5255,79E-031317c5487_g2109,84141,110-9,4249,18E-031258c10879_g1207,01730-9,5196,24E-031318c55066_g116394,52														
1250c38351_g1151,831230-9,5326,24E-031310c57181_g1152,951060-9,4389,18E-031251c53337_g1168108,990-9,5326,24E-031311c51159_g1164960-9,4359,18E-031252c50986_g212414770-9,5316,24E-031312c31842_g1120,93132,9770-9,4349,18E-031253c55474_g1162,991130-9,5306,24E-031313c57800_g1156,651010-9,4289,18E-031254c57420_g113513770-9,5266,24E-031314c51458_g1164,99940-9,4289,18E-031255c56727_g112314770-9,5266,24E-031315c52428_g1113,83138,320-9,4269,18E-031256c122580_g1168,92107,210-9,5256,24E-031316c47521_g1160980-9,4269,18E-031257c57042_g142216,970-9,5255,79E-031317c54872_g2109,84141,110-9,4249,18E-031258c10879_g1207,01730-9,5196,24E-031318c55066_g116394,520-9,4249,18E-031258c1897_g11259143,650-9,5196,24E-031318c55066_g116394,52											155			
1251c53337_g1168108,990-9,5326,24E-031311c51159_g1164960-9,4359,18E-031252c50986_g21241470-9,5316,24E-031312c31842_g1120,93132,970-9,4349,18E-031253c55474_g1162,991130-9,5306,24E-031313c57800_g1156,651010-9,4289,18E-031254c57420_g11351370-9,5286,24E-031314c51458_g1164,99940-9,4289,18E-031255c56727_g11231470-9,5266,24E-031315c52428_g1113,83138,3220-9,4269,18E-031256c122580_g1168,92107,210-9,5256,24E-031316c47521_g1160980-9,4269,18E-031257c57042_g142216,970-9,5255,79E-031317c54872_g2109,84141,110-9,4249,18E-031258c10879_g1207,01730-9,5196,24E-031318c55066_g116394,520-9,4249,18E-031259c56282_g1125143,650-9,5196,24E-031318c55066_g116394,520-9,4249,18E-031258c10879_g1207,01730-9,5196,24E-031319c5811_g1171,9986,99 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>														
1252c50986_g21241470-9,5316,24E-031312c31842_g1120,93132,970-9,4349,18E-031253c55474_g1162,991130-9,5306,24E-031313c57800_g1156,651010-9,4299,18E-031254c57420_g11351370-9,5286,24E-031314c51458_g1164,99940-9,4289,18E-031255c56727_g11231470-9,5266,24E-031315c52428_g1113,83138,320-9,4269,18E-031256c122580_g1168,92107,210-9,5256,24E-031316c47521_g1160980-9,4269,18E-031257c57042_g142216,970-9,5255,79E-031317c54872_g2109,84141,110-9,4249,18E-031258c10879_g1207,01730-9,5196,24E-031318c55066_g116394,520-9,4249,18E-031259c56282_g1125143,650-9,5196,24E-031318c55066_g116394,520-9,4249,18E-031259c56282_g1125143,650-9,5196,24E-031319c5811_g1171,9986,990-9,4249,18E-031259c56282_g1125143,650-9,5196,24E-031319c5811_g1171,9986,99 <td></td>														
1253c55474_g1162,991130-9,5306,24E-031313c57800_g1156,651010-9,4299,18E-031254c57420_g11351370-9,5286,24E-031314c51458_g1164,99940-9,4289,18E-031255c56727_g11231470-9,5266,24E-031315c52428_g1113,83138,320-9,4269,18E-031256c122580_g1168,92107,210-9,5256,24E-031316c47521_g1160980-9,4269,18E-031257c57042_g142216,970-9,5255,79E-031317c54872_g2109,84141,110-9,4249,18E-031258c10879_g1207,01730-9,5196,24E-031318c55066_g116394,520-9,4249,18E-031259c56282_g1125143,650-9,5196,24E-031319c5811_g1171,9986,990-9,4249,18E-031260c48536_g1177,99980-9,5186,74E-031320c5755_g3149,96106,30-9,4229,18E-031260c48536_g1177,99980-9,5186,74E-031320c5755_g3149,96106,30-9,4229,18E-03														
1254c57420_g11351370-9,5286,24E-031314c51458_g1164,99940-9,4289,18E-031255c56727_g11231470-9,5266,24E-031315c52428_g1113,83138,320-9,4269,18E-031256c122580_g1168,92107,210-9,5256,24E-031316c47521_g1160980-9,4269,18E-031257c57042_g142216,970-9,5255,79E-031317c54872_g2109,84141,110-9,4249,18E-031258c10879_g1207,01730-9,5196,24E-031318c55066_g116394,520-9,4249,18E-031259c56282_g1125143,650-9,5196,24E-031319c58111_g1171,9986,990-9,4239,18E-031260c48536_g1177,99980-9,5186,74E-031320c5755_g3149,96106,30-9,4229,18E-03														
1255c56727_g11231470-9,5266,24E-031315c52428_g1113,83138,320-9,4279,18E-031256c122580_g1168,92107,210-9,5256,24E-031316c47521_g1160980-9,4269,18E-031257c57042_g142216,970-9,5255,79E-031317c54872_g2109,84141,110-9,4249,18E-031258c10879_g1207,01730-9,5196,24E-031318c55066_g116394,520-9,4249,18E-031259c56282_g1125143,650-9,5196,24E-031319c58111_g1171,9986,990-9,4239,18E-031260c48536_g1177,99980-9,5186,74E-031320c57565_g3149,96106,30-9,4229,18E-03														
1256 c122580_g1 168,92 107,21 0 -9,525 6,24E-03 1316 c47521_g1 160 98 0 -9,426 9,18E-03 1257 c57042_g1 42 216,97 0 -9,525 5,79E-03 1317 c54872_g2 109,84 141,11 0 -9,424 9,18E-03 1258 c10879_g1 207,01 73 0 -9,519 6,24E-03 1318 c55066_g1 163 94,52 0 -9,424 9,18E-03 1259 c56282_g1 125 143,65 0 -9,519 6,24E-03 1319 c58111_g1 171,99 86,99 0 -9,423 9,18E-03 1260 c48536_g1 177,99 98 0 -9,518 6,74E-03 1320 c57555_g3 149,96 106,33 0 -9,423 9,18E-03 1260 c48536_g1 177,99 98 0 -9,518 6,74E-03 1320 c57555_g3 149,96 106,33 0 -9,422 9,18E-03														
1257c57042_g142216,970-9,5255,79E-031317c54872_g2109,84141,110-9,4249,18E-031258c10879_g1207,01730-9,5196,24E-031318c55066_g116394,520-9,4249,18E-031259c56282_g1125143,650-9,5196,24E-031319c58111_g1171,9986,990-9,4239,18E-031260c48536_g1177,99980-9,5186,74E-031320c57565_g3149,96106,330-9,4229,18E-03														
1258 c10879_g1 207,01 73 0 -9,519 6,24E-03 1318 c55066_g1 163 94,52 0 -9,424 9,18E-03 1259 c56282_g1 125 143,65 0 -9,519 6,24E-03 1319 c58111_g1 171,99 86,99 0 -9,423 9,18E-03 1260 c48536_g1 177,99 98 0 -9,518 6,74E-03 1320 c57565_g3 149,96 106,3 0 -9,422 9,18E-03														
1259 c56282_g1 125 143,65 0 -9,519 6,24E-03 1319 c58111_g1 171,99 86,99 0 -9,423 9,18E-03 1260 c48536_g1 177,99 98 0 -9,518 6,74E-03 1320 c57565_g3 149,96 106,3 0 -9,422 9,18E-03														
1260 c48536_g1 177,99 98 0 -9,518 6,74E-03 1320 c57565_g3 149,96 106,3 0 -9,422 9,18E-03														
	1200	(48530_g1	177,99	98	0	-9,518			ເວ/ວ05_g3	149,96	106,3	U	-9,422	9,18E-03

1321	c7777_g1	151,19	105,03	0	-9,422	9,18E-03	1381 c35450_g1	143,99	95,97	0	-9,327	8,21E-03
1322	c23688_g1	151	104,95	0	-9,422	9,18E-03	1382 c56080_g1	107,99	126,6	0	-9,325	8,21E-03
1323	c46019_g1	144	111	0	-9,421	9,18E-03	1383 c34576_g1	106	128	0	-9,320	8,21E-03
1324	c55766_g1	40	201	0	-9,420	9,18E-03	1384 c55673_g1	98,91	134	0	-9,320	8,21E-03
1325	c53942_g1	140	114	0	-9,418	9,93E-03	1385 c54525_g1	85	146	0	-9,319	8,21E-03
1326	c54701_g1	83	163	0	-9,416	9,18E-03	1386 c40934_g1	2	218	0	-9,319	6,95E-03
1327	c54616_g1	106	142	0	-9,409	9,93E-03	1387 c36605_g1	139,99	98	0	-9,317	8,21E-03
1328	 c57094_g2	115	134	0	-9,408	9,93E-03	1388 c27926 g1	72,95	156	0	-9,316	8,21E-03
1329	 c55989_g2	161	94	0	-9,407	9,93E-03	1389 c53292 g1	82,47	147,91	0	-9,315	8,21E-03
1330	c57233_g1	144,4	108	0	-9,403	9,93E-03	1390 c55699_g1	143	95	0	-9,314	8,93E-03
	c57039_g2	182,2	75	0	-9,402	9,93E-03	1391 c51209_g1	106,93	126	0	-9,313	8,93E-03
	c10746 g1	138	112,92	0	-9,401	9,93E-03	1392 c55000 g3	123	111	0	-9,305	8,93E-03
1333	c56106_g3			0			1393 c52130_g1			0		
1334		145,86	105,99		-9,401	9,93E-03		155	82,99		-9,304	8,93E-03
	c45294_g1	125	124	0	-9,400	9,93E-03		95	135	0	-9,303	8,93E-03
1335		163	91	0	-9,399	1,07E-02	1395 c26857_g1	148,99	88	0	-9,302	8,93E-03
1336	c54437_g1	148,97	102,99	0	-9,399	1,07E-02	1396 c52884_g1	126,97	107	0	-9,302	8,93E-03
1337		106	139,99	0	-9,397	1,07E-02	1397 c56386_g1	137	97,99	0	-9,300	8,93E-03
1338	c57624_g4	137,98	112	0	-9,395	1,07E-02	1398 c56382_g1	94	134,73	0	-9,298	8,93E-03
1339	c45412_g1	139,6	110	0	-9,394	1,07E-02	1399 c42456_g1	147	89	0	-9,298	8,93E-03
1340	c52378_g1	113,48	133	0	-9,391	1,07E-02	1400 c55586_g1	172	67	0	-9,296	8,93E-03
1341	c23207_g1	190	66	0	-9,390	1,07E-02	1401 c96939_g1	0	215,56	0	-9,294	7,55E-03
1342	c56445_g1	160	92	0	-9,390	1,07E-02	1402 c57957_g1	61	163,16	0	-9,293	8,93E-03
1343	c44560_g1	147	103	0	-9,388	1,07E-02	1403 c51118_g1	108	122	0	-9,292	8,93E-03
1344	c33984_g1	158	93	0	-9,385	1,07E-02	1404 c47829_g2	155,62	80	0	-9,290	9,73E-03
1345	c57083_g1	113	132	0	-9,385	1,07E-02	1405 c53806_g1	125,97	105,82	0	-9,289	9,73E-03
1346	c56031_g1	151,07	99	0	-9,384	1,07E-02	1406 c57561_g1	66,01	158	0	-9,289	8,93E-03
1347	c54493_g2	144	105	0	-9,384	1,07E-02	1407 c38329_g1	113	117	0	-9,288	9,73E-03
1348	c57525_g2	85	155,99	0	-9,383	1,07E-02	1408 c56272_g1	83	143	0	-9,287	9,73E-03
1349	 c52884_g2	124	122,26	0	-9,382	1,07E-02	1409 c55343_g1	136	97,11	0	-9,287	9,73E-03
	c49777_g1	147	102	0	-9,382	1,07E-02	1410 c10553_g1	86	139,99	0	-9,285	9,73E-03
	c52993_g1	102,02	141,48	0	-9,381	1,07E-02	1411 c53176_g1	100	127	0	-9,279	9,73E-03
1352	c55968_g1	149,96	99	0	-9,379	1,16E-02	1412 c57126_g1	146	87	0	-9,278	9,73E-03
1353				0								
	c46969_g1	95	146		-9,375	1,16E-02	1413 c48817_g1	124	105,98	0	-9,278	9,73E-03
1354		111	131	0	-9,368	1,16E-02	1414 c57392_g1	118	110,96	0	-9,276	9,73E-03
1355	c22919_g1	119	124	0	-9,367	1,16E-02	1415 c40234_g1	111,98	116	0	-9,275	9,73E-03
1356	c39254_g1	156,63	90,51	0	-9,367	1,16E-02	1416 c56299_g1	0	212,95	0	-9,274	8,21E-03
	c54049_g1	98	142	0	-9,366	1,16E-02	1417 c96846_g1	115	113	0	-9,272	9,73E-03
	c42321_g1	114,9	127	0	-9,364	1,16E-02	1418 c53354_g1	132	97,96	0	-9,271	9,73E-03
	c46027_g1	158	89	0	-9,360	1,16E-02	1419 c31243_g1	125	104	0	-9,270	9,73E-03
	c43968_g1	98	140,98	0	-9,359	1,16E-02	1420 c55069_g1	148	84,23	0	-9,270	9,73E-03
1361	c25322_g1	114	126,98	0	-9,359	1,16E-02	1421 c56499_g1	144	87	0	-9,267	1,06E-02
1362	c57338_g3	160,52	86,11	0	-9,357	1,26E-02	1422 c26950_g1	131	98	0	-9,265	1,06E-02
1363	c27232_g1	116	125	0	-9,357	1,26E-02	1423 c33943_g1	124	104	0	-9,264	1,06E-02
1364	c55160_g1	161,97	84,99	0	-9,356	1,26E-02	1424 c56392_g2	110	116	0	-9,263	1,06E-02
1365	c50571_g1	141,99	102	0	-9,354	1,26E-02	1425 c46899_g1	148	83	0	-9,263	1,06E-02
1366	c53541_g1	105	134	0	-9,353	1,26E-02	1426 c50344_g1	80	141,99	0	-9,263	1,06E-02
367	c42623_g1	63	170	0	-9,351	1,16E-02	1427 c46214_g1	89	133,82	0	-9,262	1,06E-02
1368	c47541_g1	161,96	84	0	-9,350	1,26E-02	1428 c44722_g1	128	98,88	0	-9,254	1,06E-02
1369	c57313_g1	140	103	0	-9,349	1,26E-02	1429 c52265_g1	145	84	0	-9,252	1,06E-02
L370		125	115,99	0	-9,349	1,26E-02	1430 c37891_g1	138,3	89,88	0	-9,252	1,06E-02
	c57466_g2	104,94	132,85	0	-9,347	1,26E-02	1431 c48410_g1	125,61	100	0	-9,249	1,06E-02
	c57530_g1	142,84	99,89	0	-9,347	1,26E-02	1432 c55142_g5	104	119	0	-9,248	1,06E-02
	c56322_g1	142,84	101	0	-9,342	1,26E-02	1433 c54824_g1	104	119	0	-9,248	1,16E-02
1374		141,32		0			1433 c54431_g1	88		0		
			101,96		-9,337	1,26E-02			132		-9,242	1,16E-02
		105,68	129,95	0	-9,333	1,37E-02	1435 c23742_g1	111	111,98	0	-9,242	1,16E-02
	c19925_g1	154	88	0	-9,331	8,21E-03	1436 c54430_g1	120,91	102,98	0	-9,240	1,16E-02
1377		164,11	79	0	-9,329	8,21E-03	1437 c47317_g1	137	89	0	-9,239	1,16E-02
1378	c55043_g1	149	92	0	-9,329	8,21E-03	1438 c10568_g1	117,99	104,99	0	-9,235	1,16E-02
1379	c39594_g1	134	105	0	-9,329	8,21E-03	1439 c56117_g3	119,46	104	0	-9,234	1,16E-02
	c98332_g1	119	118	0	-9,329	8,21E-03	1440 c43737_g1	127	97	0	-9,234	1,16E-02

1441	c53395_g1	136	89	0	-9,233	1,16E-02	1502	c46715_g1	121,83	89	0	-9,146	1,64E-02
1442	c47506_g1	106	114,58	0	-9,232	1,16E-02	1503	c54013_g4	108	101	0	-9,144	1,64E-02
1443	c53671_g1	91	128	0	-9,232	1,16E-02	1504	c50448_g1	124,99	85,99	0	-9,143	1,64E-02
1444	c52161_g1	98,98	120,98	0	-9,232	1,16E-02	1505	c56643_g1	127,97	83	0	-9,140	1,64E-02
1445	c53513_g1	104	116	0	-9,227	1,16E-02	1506	c49448_g1	67	136	0	-9,140	1,64E-02
1446	c41696_g1	142	83	0	-9,227	1,16E-02	1507	c47095_g1	99	108	0	-9,138	1,64E-02
1447	c55075_g2	165,99	62	0	-9,226	1,16E-02	1508	c55224_g1	99	108	0	-9,138	1,64E-02
1448	c57339_g1	121	101,33	0	-9,226	1,16E-02	1509	c36776_g1	115	93,99	0	-9,138	1,64E-02
1449	c54886_g1	152	74	0	-9,225	1,16E-02	1510	c36339_g1	138	74	0	-9,138	1,64E-02
1450	c47291_g1	146	79	0	-9,224	1,16E-02	1511	c52463_g1	155	59	0	-9,136	1,64E-02
1451	c16562_g1	144	80	0	-9,218	1,26E-02	1512	c10628_g1	125	85	0	-9,135	1,64E-02
1452	c41380_g1	154	71	0	-9,216	1,26E-02	1513		103	104,24	0	-9,134	1,64E-02
1453	c49606_g1	142	81,14	0	-9,213	1,26E-02	1514	c46230_g1	127,94	82	0	-9,132	1,64E-02
1454	c56204_g1	153	71	0	-9,210	1,26E-02		c26497_g1	106,87	99,74	0	-9,131	1,64E-02
1455	c48799_g1	71	142	0	-9,209	1,26E-02		c49417_g1	100,87	103	0	-9,127	1,64E-02
1456	c51228_g2	115,93	102	0	-9,202	1,26E-02	1517	c54862_g1	135,17	75	0		1,79E-02
1457	c50153_g1	85,9	128,12	0	-9,202	1,26E-02						-9,126	
1458	c84052_g1	109	108	0	-9,201	1,26E-02	1518	c51814_g1	99	105,81	0	-9,123	1,79E-02
1459	c39173_g1	117	101	0	-9,201	1,26E-02	1519	c55513_g3	131	77,82	0	-9,122	1,79E-02
1460	c49504_g1	140	81	0	-9,201	1,26E-02	1520	c47867_g1	70	130,99	0	-9,122	1,64E-02
1461	c56866_g1	112	105	0	-9,199	1,38E-02		c54218_g2	63	136,87	0	-9,121	1,64E-02
1462	c71604_g1	74	137,96	0	-9,199	1,26E-02	1522	c54210_g1	110	96	0	-9,120	1,79E-02
1463	c45720_g1	90,99	123	0	-9,197	1,38E-02	1523	c23655_g1	117,78	89	0	-9,120	1,79E-02
1464	c56292_g1	84,57	128	0	-9,195	1,38E-02	1524	c51115_g1	126	82	0	-9,119	1,79E-02
1465	c41198_g1	110	105,85	0	-9,193	1,38E-02	1525	c34100_g1	81	121	0	-9,119	1,79E-02
1466	c54424_g4	112	104	0	-9,192	1,38E-02	1526	c51138_g1	112	94	0	-9,118	1,79E-02
1467	c57781_g1	129,01	89	0	-9,190	1,38E-02	1527	c56213_g1	51,12	147	0	-9,118	1,64E-02
1468	c41973_g1	101	113	0	-9,188	1,38E-02	1528	c55362_g1	97	106,89	0	-9,118	1,79E-02
1469	c56087_g1	141	77,92	0	-9,186	1,38E-02	1529	c47969_g1	105	100	0	-9,118	1,79E-02
1470	c53085_g1	104	110	0	-9,185	1,38E-02	1530	c52143_g1	106	99	0	-9,117	1,79E-02
1471	c56397_g3	120,99	94,83	0	-9,183	1,38E-02	1531	c53657_g2	91	112	0	-9,116	1,79E-02
1472	c54485_g1	101	112	0	-9,180	1,38E-02	1532	c57145_g1	99,96	103,74	0	-9,115	1,79E-02
1473	c56686_g3	73	136	0	-9,178	1,38E-02	1533	c53545_g3	93	110	0	-9,114	1,79E-02
1474	c56800_g1	118,65	95,66	0	-9,178	1,38E-02	1534	c45033_g1	125	82	0	-9,113	1,79E-02
1475	c34140_g1	116	97,63	0	-9,173	1,50E-02	1535	c47182_g1	110	94,99	0	-9,113	1,79E-02
1476	c41767_g1	63,12	143,88	0	-9,173	1,38E-02	1536	c52862_g1	132,99	75	0	-9,113	1,79E-02
1477	c53583_g2	133,75	82,19	0	-9,171	1,50E-02	1537	c57386_g1	122	83,99	0	-9,108	1,79E-02
	c55132_g1	104	108	0	-9,170	1,50E-02	1538	c45387_g1	153,87	56	0	-9,107	1,79E-02
1479	c71328_g1	89	121	0	-9,170	1,50E-02	1539	c40964_g1	123,97	82	0	-9,106	1,79E-02
1480	c54641_g2	37	166	0	-9,169	1,38E-02	1540	c53490_g1	105	98	0	-9,102	1,79E-02
1481	c55655_g4	136	80	0	-9,169	1,50E-02	1541	c44053_g1	66	131,1	0	-9,096	1,79E-02
1482	c38325_g1	122	92	0	-9,168	1,50E-02	1542	c41007_g1	25	166	0	-9,091	1,79E-02
1483	c57075_g3	106,98	105	0	-9,167	1,50E-02	1543	c44892_g1	141,87	57	0	-9,034	1,38E-02
1484	c48910_g1	115	98	0	-9,167	1,50E-02	1544	c56120_g1	118,98	77	0	-9,034	1,38E-02
1485	c56712_g2	69,5	137	0	-9,166	1,50E-02	1545	c48399_g1	112	83	0	-9,033	1,38E-02
1486	c52174_g1	94	116	0	-9,165	1,50E-02	1546	c49720_g1	138,98	59,35	0	-9,029	1,38E-02
1487	c55778_g1	133	81,97	0	-9,164	1,50E-02	1547	c48555_g1	86,11	105	0	-9,028	1,38E-02
1488	c42772_g1	111	100,96	0	-9,164	1,50E-02	1548	 c45362_g1	102	91	0	-9,027	1,38E-02
1489	c56865_g1	72,8	134	0	-9,164	1,50E-02	1549	c52969 g1	87,24	104,05	0	-9,027	1,38E-02
1490	c53508_g1	145	71	0	-9,160	1,50E-02		 c45708_g1	88,86	101,99	0	-9,025	1,38E-02
1491	c55987_g1	114,67	97	0	-9,160	1,50E-02		c37106_g1	127,96	68	0	-9,024	1,38E-02
1492	c54398_g1	206,81	17	0	-9,159	1,38E-02		c34305_g1	104,99	88	0	-9,024	1,38E-02
1493	c57531_g2	131	83	0	-9,159	1,50E-02		c55277_g1	104,99	60	0	-9,024	1,38E-02
1494	c55407_g3	93	116,49	0	-9,159	1,50E-02		c32215_g1	67	120	0		
1495	c57649_g1	132	82	0	-9,158	1,50E-02						-9,016	1,52E-02
1496	c45595_g1	88,3	120	0	-9,156	1,50E-02	1555		98	92,97	0	-9,015	1,52E-02
1497	c55890_g1	147	68	0	-9,151	1,50E-02		c56371_g1	101	90	0	-9,012	1,52E-02
1498	c52307_g1	65	139	0	-9,149	1,50E-02	1557		95	95	0	-9,011	1,52E-02
1499	c50085_g1	111	99	0	-9,149	1,64E-02	1558	c55035_g1	73	114	0	-9,009	1,52E-02
1500	c56028_g1	97,03	110,98	0	-9,148	1,64E-02	1559	c29083_g1	113	79	0	-9,008	1,52E-02
1501	c32558_g1	106,02	103	0	-9,146	1,64E-02	1560	c47897_g1	98	92	0	-9,007	1,52E-02

1561	c54070_g1	91,43	97,99	0	-9,007	1,52E-02	1621 c109563_g1	2012,9	1891,95	2	-4,362	2,89E-06
1562	c50878_g1	61	123,87	0	-9,006	1,52E-02	1622 c57566_g4	1129,99	710,97	1	-4,253	1,00E-04
1563	c32455_g1	102	88	0	-9,003	1,52E-02	1623 c19814_g1	3957,96	3178,81	4	-4,225	4,85E-07
1564	c55220_g3	56	128	0	-9,003	1,52E-02	1624 c122464_g1	12809,7	12723,95	16	-4,077	4,74E-08
1565	c32480_g1	96	92,95	0	-9,001	1,52E-02	1625 c57020_g1	1094,96	539	1	-4,068	2,63E-04
1566	c23833_g1	34,98	146	0	-9,001	1,52E-02	1626 c55495_g3	4369,33	6148,87	7	-4,008	3,61E-07
1567	c37504_g1	62	121,98	0	-8,997	1,52E-02	1627 c47094_g1	9009,42	5977,11	10,04	-3,963	2,15E-07
1568	c52367_g1	124	68	0	-8,996	1,52E-02	1628 c53904_g1	895,81	545	1	-3,898	5,23E-04
1569	c52004_g1	85,99	101	0	-8,996	1,52E-02	1629 c71341_g1	1198,71	2897,77	3	-3,896	8,29E-06
1570	c42127_g1	94	94	0	-8,995	1,68E-02	1630 c37675_g1	4258,89	10137,98	11	-3,835	3,88E-07
1571	c57306_g4	102,82	86	0	-8,994	1,68E-02	1631 c57171_g1	7135,76	3836,95	8	-3,825	7,85E-07
1572	 c51733_g1	128,9	63	0	-8,991	1,68E-02	1632 c53094_g4	1788,44	957,96	2	-3,824	5,33E-05
1573	c48513_g1	145	48,75	0	-8,990	1,68E-02	 1633 c47318_g1	3759,1	4196,37	6	-3,815	1,66E-06
1574	c47404_g1	130	62	0	-8,990	1,68E-02	1634 c57475_g1	3413,96	3196,36	5	-3,801	2,87E-06
1575	c52831_g1	85,78	100	0	-8,987	1,68E-02	1635 c40774_g1	4776,14	5451,66	8	-3,764	1,13E-06
1576	c23039_g1	71	113	0	-8,987	1,68E-02	1636 c54734_g1	14331,96	12683,97	21	-3,759	2,43E-07
1577	c57624_g1	110,95	78	0	-8,985	1,68E-02	1637 c39277_g1	2158,9	2889,78	4	-3,754	7,22E-06
1578	c56291_g2	67	116	0	-8,983	1,68E-02	1638 c50896_g1	901,07	3823,24	4	-3,708	9,34E-06
1579	c46524_g1	122	68	0	-8,982	1,68E-02	1639 c52782 g1	728,99	456,95	1	-3,619	1,74E-03
1580	c40022_g1	122	68	0	-8,982	1,68E-02	1640 c50545_g1	6455,4	3974,99	9	-3,589	2,47E-06
	c57734_g1	69	113,98	0	-8,981	1,68E-02	1641 c96868_g1	4583,01	3290,85	7	-3,554	5,14E-06
1582	c57653_g1	78,56	104,92	0	-8,978	1,68E-02	1642 c43517_g1	5536,89	4314,88	9	-3,519	3,72E-06
1583	c39927_g1	81	104,92	0	-8,976	1,68E-02	1643 c46691_g2	2815,02		4		4,75E-05
1584	c51189 g1		96	0	-8,976	1,68E-02	1644 c56779_g4		1346,83	4	-3,419	4,73E-03 4,07E-03
1585		88,99		0				461	532,99	3	-3,397	
	c46050_g1	98	87,99		-8,974	1,68E-02		1579,98	1332		-3,349	1,54E-04
1586 1587	c16657_g1	82,92	100,95	0	-8,974	1,68E-02	1646 c47729_g4 1647 c53966 g2	7901,51	4884,88	14	-3,245	8,58E-06
	c44092_g1	83	101	0	-8,974	1,68E-02		1954,93	1628,59	3,97	-3,233	1,20E-04
1588	c57382_g1	113,51	73,84	0	-8,974	1,68E-02	1648 c46386_g1	522,83	376,99	1	-3,228	7,12E-03
1589	c49610_g1	70	112	0	-8,971	1,68E-02	1649 c15133_g1	2815,65	2486,83	6	-3,217	4,82E-05
1590	c10169_g1	123,62	65	0	-8,971	1,68E-02	1650 c57540_g2	1049,28	679,31	2	-3,166	1,24E-03
1591	c26673_g1	101,87	83,99	0	-8,970	1,68E-02	1651 c10634_g1	7291,94	8674,95	19	-3,161	9,53E-06
	c47847_g1	88	95,97	0	-8,969	1,68E-02	1652 c29272_g1	2151,71	1280,02	4	-3,152	1,84E-04
1593	c43940_g1	118,91	69	0	-8,968	1,68E-02	1653 c47773_g1	1405,98	1087,64	3	-3,121	4,57E-04
1594	c48671_g1	50	129	0	-8,968	1,68E-02	1654 c44943_g1	471,81	359,98	1	-3,118	9,86E-03
1595	c44737_g1	41,99	135	0	-8,960	1,68E-02	1655 c56762_g4	1403,49	1065,45	3,16	-3,104	4,92E-04
1596	c31616_g1	9035,99	13684,92	1	-7,926	1,98E-14	1656 c51296_g1	29748,38	25431,65	68	-3,093	5,87E-06
	c26772_g1	6914,99	1642,99	1	-6,425	4,34E-10	1657 c71319_g1	267,74	522	1	-3,092	1,07E-02
	c36796_g1	3474,71	1692	1	-5,728	3,08E-08	1658 c58095_g1	943,97	688,59	2	-3,091	1,57E-03
	c11124_g1	3156,57	1856	1	-5,694	3,82E-08	1659 c41358_g1	2380,03	1639	4,94	-3,066	1,65E-04
1600	c50761_g3	2598,92	1294	1	-5,321	3,79E-07	1660 c46881_g1	1358,69	970,82	3	-3,018	7,64E-04
	c46036_g2	4781,66	2312,96	1,99	-5,188	2,15E-08	1661 c50253_g1	401,92	362,99	1	-3,006	1,33E-02
	c56113_g1	1833,91	1588,57	1	-5,165	9,71E-07	1662 c37438_g1	9020,17	3879,23	17	-2,960	3,34E-05
	c96847_g1	1074,72	2225,98	1	-5,158	1,01E-06	1663 c44410_g1	5217,42	3585,95	12	-2,935	6,08E-05
1604	c57332_g3	2053,93	1376,09	1	-5,154	1,04E-06	1664 c51845_g4	1075,98	1091,76	3	-2,933	1,05E-03
	c54405_g1	1924,79	1458,48	1	-5,140	9,34E-07	1665 c57516_g2	4210,47	3696,89	11	-2,919	7,64E-05
1606	c26670_g1	5045,9	4425,96	3	-5,053	9,09E-09	1666 c52641_g1	3306,5	1739,82	7	-2,895	1,90E-04
1607	c53364_g1	2342,99	3346,69	2	-4,928	1,09E-07	1667 c109566_g1	12752,83	13865,97	38	-2,894	2,48E-05
1608	c49675_g1	1807,74	1129,79	1	-4,927	3,31E-06	1668 c10543_g1	7601,91	8893,97	25	-2,812	5,29E-05
1609	c49801_g1	1527,54	1335,34	1	-4,908	3,67E-06	1669 c41220_g1	927	1044,95	2,94	-2,803	1,77E-03
1610	c52007_g1	3773,78	1580,99	2	-4,775	2,80E-07	1670 c51099_g2	38384,64	23007,88	94	-2,760	3,58E-05
1611	c47303_g1	2882,78	2057,73	2	-4,686	4,80E-07	1671 c43584_g1	759,16	505,99	2	-2,718	6,73E-03
1612	c41162_g1	1368,74	1052,7	1	-4,659	1,27E-05	1672 c53380_g2	8404,67	9659,73	30	-2,679	9,41E-05
1613	c10660_g1	3892,79	1052,25	2	-4,641	6,28E-07	1673 c56418_g1	850,99	947,87	3	-2,669	3,32E-03
1614	c14192_g1	19853,08	6123,27	11	-4,582	3,55E-09	1674 c38993_g1	2310,3	3587,91	10	-2,665	3,19E-04
1615	c56877_g1	1680	642	1	-4,563	2,19E-05	1675 c46700_g1	1805,71	585,55	4	-2,603	2,24E-03
1616	c51321_g1	925,72	1282,98	1	-4,559	2,25E-05	1676 c43581_g2	9683,88	3797,88	23	-2,583	1,93E-04
4647	c56973_g1	11023,9	10445,72	9,8	-4,502	7,30E-09	1677 c52990_g1	2261,08	1215,71	6,08	-2,581	1,10E-03
1617					-4,420	7,30E-08	1678 c42642_g1	915,93	771,45	3	-2,561	4,92E-03
	c31126_g1	4813,79	5273,94	5	4,420	7,502 00	TOLO CUTOUT BT				-2,501	4,522 05
	c31126_g1 c34906_g1	4813,79 5929,9	5273,94 4171,57	5	-4,397	8,39E-08	1679 c27278_g1	4193,97	5668,96	18	-2,551	2,78E-04

1681	c55006_g2	1032,78	555,99	3	-2,451	7,25E-03	1741	c55776_g1	1	80	7	2,941	3,82E-03
1682	c36468_g5	2853,51	3310,87	12	-2,450	7,26E-04	1742	c19787_g1	658,91	339,68	80	2,955	2,29E-07
1683	c39630_g1	1934,49	2609,92	9	-2,433	1,17E-03	1743	c50415_g1	235,95	350	49	2,962	5,90E-07
1684	c24424_g1	11526,36	8052,96	38	-2,426	3,09E-04	1744	c71572_g1	176	251	36	2,975	1,28E-06
1685	c109579_g1	942,05	484,97	3	-2,294	1,30E-02	1745	c53266_g1	709,09	496,14	101	3,005	1,05E-07
1686	c52011_g1	667,95	709	3	-2,281	1,36E-02	1746	c52251_g1	144	168,25	27	3,023	2,81E-06
1687	c71688_g1	710,68	646,99	3	-2,253	1,54E-02	1747	c55656_g1	73	84	14	3,067	5,41E-05
1688	c54058_g1	1177,49	1054,96	5	-2,232	6,69E-03	1748	c46247_g1	56	76	12	3,086	1,26E-04
1689	c54274_g1	2306,63	1281,82	8	-2,214	3,66E-03	1749	c53438_g1	971	1014,88	180,71	3,104	2,33E-08
1690	c23686_g1	5940,84	7839,82	32	-2,203	1,04E-03	1750	c53257_g1	70	69	13	3,143	5,83E-05
1691	c45178_g1	4008,24	2858,95	16	-2,164	2,08E-03	1751	c35299_g1	386,3	413	75	3,146	4,69E-08
1692	c57583_g2	869,34	794,51	4	-2,132	1,42E-02	1752	c53083_g1	1000,8	809,96	175	3,203	9,20E-09
1693	c47898_g2	3691,69	3983,95	19	-2,099	2,40E-03	1753	c53144_g1	155	118	27	3,238	5,72E-07
1694	c56770_g1	1541,84	1249,99	7	-2,065	8,05E-03	1754	c54457_g1	467	705	120	3,253	8,36E-09
1695	c43562_g1	6305,48	7645,99	36	-2,046	2,08E-03	1755	c54646_g1	840,19	556,54	139	3,256	6,72E-09
1696	c25467_g1	203397,2	59273,2	691,99	-1,943	2,10E-03	1756	c50577_g1	2531,84	2251,97	483	3,261	2,89E-09
1697	 c47992_g1	2057	2596,26	13	-1,933	6,83E-03	1757		258	144,99	42	3,330	4,02E-08
1698	c56133_g1	13009,7	9215,55	61	-1,927	2,97E-03	1758	c51080_g1	126	70	21	3,368	1,04E-06
1699	c54123_g3	9926,98	14040	70	-1,875	3,62E-03	1759	c51692_g1	188	221	46	3,401	1,65E-08
1700	c50790_g2	7707,93	7867,91	46	-1,842	4,81E-03	1760	c14005_g2	4035	2302,52	711	3,437	4,12E-10
1701	c42746 g1	5048,76	8312,8	41,71	-1,777	6,61E-03		c45564 g1	346,72	295,99	74	3,452	2,69E-09
1702	c53698_g2	6782,99	4102,92	33,7	-1,732	8,65E-03		c84079_g1	539,71	305,93	98,33	3,483	1,10E-09
1703	c58238_g3	29046,98	32778,92	214	-1,618	9,74E-03	1763	c54144_g1	132,72	33	19	3,494	8,71E-07
1704	c43857_g2	7777,98	13538,97	79		1,51E-02	1764	c54397_g1	132,72	224	49		5,28E-09
1704	c54742_g1	4291,33	2497,97	187	-1,543 1,410	9,87E-02		c53532_g3	265,75	226,83	49 62	3,504	
1705	c55046_g1					7,83E-03	1766	c52653_g1	131	150		3,579	1,27E-09
1700	c51812_g1	867,97	501	42	1,566		1767	c50506_g1			36	3,590	8,63E-09
1708		728,94	411	35	1,568	9,08E-03			312,98	173,21	64	3,668	4,92E-10
	c55881_g1	1271,1	1321,89	82	1,578	5,01E-03		c33810_g2	33	26	8	3,684	1,40E-04
1709	c57979_g1	381	354,99	24	1,628	1,00E-02	1769	c49686_g1	27,17	24,12	6,91	3,695	2,72E-04
1710	c52989_g1	1849,78	1419,81	110	1,684	2,43E-03	1770	c31520_g1	71,57	79,98	21	3,700	1,20E-07
1711	c56584_g3	850	645,25	53	1,760	2,36E-03		c51512_g1	157,91	125	45	3,921	1,67E-10
1712	c57747_g1	201	154,99	13	1,801	1,30E-02		c52696_g1	53	41	15	3,923	5,77E-07
1713 1714	c37995_g1	791,49	479,76	46	1,801	2,11E-03	1773	c54042_g1	119,99	110,98	37	3,923	4,48E-10
	c24300_g1	499,89	436,98	35	1,827	2,45E-03	1774	c57790_g3	194	184,46	62	3,957	2,79E-11
1715	c54779_g3	195	867	44	1,902	1,25E-03		c55244_g1	540,95	558,99	180,73	3,957	3,08E-12
1716	c56952_g1	1819,82	1095,96	118	1,963	4,06E-04		c51276_g18	357	369	130,99	4,090	1,09E-12
1717	c42736_g1	476,94	374,17	35	1,972	1,11E-03	1777	c36300_g1	35	29	12	4,150	1,44E-06
1718	c58134_g1	1111,69	560,98	69	2,000	4,45E-04	1778	c39444_g1	65,44	15,39	15,87	4,292	3,84E-08
	c23656_g1	128,98	127,85	11	2,016	8,24E-03		c10762_g2	306,79	200,89	109	4,364	7,22E-14
1720	c57605_g1	162	360	25,94	2,195	5,35E-04	1780	c48522_g1	111	145	57	4,381	4,92E-13
	c54682_g3	189	140	16	2,216	1,59E-03		c43382_g2	15	2	4	4,489	1,70E-03
	c51910_g1	2661,98	2363,76	251	2,246	3,82E-05		c52058_g2	118	73	45	4,499	6,00E-13
	c53268_g1	500,91	449,84	48	2,260	1,17E-04		c49047_g1	202	171	92	4,551	1,34E-14
1724		582,11	426,54	54	2,356	5,12E-05		c56291_g1	164,83	132,63	81	4,694	4,71E-15
1725	c42361_g1	329,9	367	38	2,360	9,19E-05	1785	c46847_g1	76,02	139,68	66	4,821	2,60E-15
1726	c54468_g2	86	141	13	2,411	1,35E-03		c56959_g1	5,42	0	2	5,169	1,31E-02
1727	c42782_g1	194,99	191	22	2,430	2,18E-04	1787	c56893_g2	115	77	79	5,300	5,19E-18
1728	c57484_g1	128	216	20	2,431	3,14E-04	1788	c32378_g1	13	98,38	52	5,395	3,45E-17
1729	c39298_g1	612,98	326	54	2,476	2,17E-05		c84143_g1	85	63	66	5,410	3,52E-18
1730	c49219_g1	108,95	79	11	2,482	1,57E-03		c47324_g1	1,99	1,8	1,84	5,445	1,31E-02
	c51652_g2	498	308	47	2,488	2,52E-05		c26502_g2	17	23	19	5,468	5,68E-12
1732	c39199_g1	1311,59	563,66	111	2,528	6,05E-06	1792	c46661_g1	3,49	0,9	2,69	6,038	2,91E-04
1733	c31940_g1	435,9	409,99	52	2,542	1,37E-05	1793	c18631_g1	30	30	45	6,141	6,82E-20
1734	c57284_g1	283,67	280,73	35	2,550	3,01E-05	1794	c55650_g1	12	16,94	23	6,203	5,49E-16
1735	c49653_g1	222	198,99	26	2,551	6,63E-05	1795	c51276_g6	6	24	25,99	6,303	5,42E-17
1736	c56315_g3	100	111,26	14	2,642	3,55E-04	1796	c52890_g1	2	1	2,68	6,409	2,91E-04
1737	c84190_g1	356	242	40	2,681	8,66E-06	1797	c57109_g1	34	20	66	6,866	1,26E-24
1738	c38882_g1	198	180,49	27	2,760	1,58E-05	1798	c54365_g1	8	5	19	7,085	1,67E-16
1739	c27267_g1	276,69	332,83	45	2,792	2,91E-06	1799	c52517_g1	2	1	5	7,145	1,14E-05
1740	c51872_g1	576,53	668,97	97	2,871	3,73E-07	1800	c39339_g1	3,98	0	9,4	7,631	1,66E-08

1801	c50124_g1	17	9	75	8,094	1,94E-30
1802	c46260_g1	6	9	46	8,140	2,23E-28
1803	c49026_g1	5	9	53	8,438	5,60E-30
1804	c55419_g1	1	10	53	8,757	5,80E-30
1805	c56514_g1	14	32	226	8,820	3,92E-37
1806	c58545_g1	0	0	1,99	9,004	6,17E-03
1807	c58307_g1	9	7	91	9,049	3,02E-34
1808	c134138_g1	0	0	2,84	9,588	5,97E-04
1809	c14276_g1	5	0	43	9,593	1,63E-27
1810	c38226_g1	2	2	43	9,868	1,71E-27
1811	c55028_g1	0	0	3,99	10,003	1,45E-04
1812	c31740_g1	0	0	4	10,003	1,45E-04
1813	c46433_g1	2	4	72	10,059	3,51E-33
1814	c37120_g1	1	18	231	10,095	6,17E-42
1815	c84017_g1	2	0	34	10,423	1,77E-24
1816	c50147_g1	14	1	221	10,454	6,92E-44
1817	c103700_g1	392	110	8815	10,757	8,54E-52
1818	c10794_g1	4	5	200	10,981	5,64E-43
1819	c58232_g1	0	0	9,97	11,324	7,17E-09
1820	c114314_g1	12	1	389	11,467	5,71E-49
1821	c77614_g1	0	0	19	12,250	2,53E-15
1822	c129600_g1	0	0	38	13,250	6,61E-26
1823	c53455_g1	0	0	45,13	13,493	5,38E-28
1824	c47749_g1	0	1	173	13,545	1,24E-41

6.5 The annotated genes from the transcriptomic analysis of testes (Table 6.4)

		<i>B. oleae</i> transcriptome	2		
		Tissue: testes			
N	transcript_id	Annotation name	gene_id	logFC	PValue
1	c15699_g1	dikar	NW_013581252.1.3	8,750	3,0E-07
2	c582833_g1		not predicted	8,639	5,4E-07
3	c11986_g1	Octopamine receptor in mushroom bodies	NW_013581214.1.89	8,422	1,7E-06
4	c38051_g1	mucin-2	NW_013581220.1.46	8,354	2,5E-06
5	c52158_g4		not predicted	8,318	2,9E-06
6	c97454_g1		not predicted	8,167	6,3E-06
7	c57629_g2		not predicted	8,041	1,2E-05
8	c128061_g1		not predicted	7,856	2,8E-05
9	c52274_g1		not predicted	7,699	5,8E-05
10	c123143_g1	CG10911-like	NW_013581220.1.59	7,699	5,8E-05
11	c44387_g1	CG34189-like	NW_013583061.1.3	7,629	1,1E-11
12	c37552_g1		not predicted	7,480	3,0E-11
13	c56753_g2	Heat shock protein 23	NW_013581228.1.43	7,323	2,9E-04
14	c14215_g1		not predicted	7,323	2,9E-04
15	c13478_g1	antigen 5-related 2	NW_013581440.1.14	7,172	5,3E-04
16	c38273_g1	CG14958-like	NW_013581493.1.7	7,057	7,0E-12
17	c32508_g1		not predicted	6,903	1,2E-09
18	c47470_g1		not predicted	6,849	1,6E-09
19	c24782_g1	CG34426-like	NW_013581493.1.9	6,776	1,9E-13
20	c50402_g1		not predicted	6,698	4,1E-09
21	c36907_g1	CG16727-like	NW_013581259.1.32	6,597	1,3E-10
22	c45607_g1	CG9259-like	NW_013581453.1.8	6,544	1,1E-08
23	c84195_g1	CG2157-like	NW_013581212.1.127	6,544	1,1E-08
24	c44747_g1	CG6337-like	NW_013582004.1.1	6,323	8,6E-11
25	c51337_g1		not predicted	6,308	4,4E-08
26	c97069_g1	uncharacterized protein F12A10.7-like	NW_013581215.1.52	6,191	7,9E-08
27	c39724_g1	uncharacterized protein LOC106615417	6178_t	6,104	2,2E-13
28	c35561_g1	location of vulva defective 1	NW_013581251.1.58	5,839	5,8E-07
29	c25108_g1	uncharacterized protein LOC106615433	6172_t	5,745	5,1E-12
30	c122821_g1	vacuolar H[+] ATPase 100kD subunit 2	NW_013583611.1.1	5,650	1,6E-06
31	c34116_g1		not predicted	5,603	2,2E-11
32	c123047_g1	CG31789-like	NW_013581220.1.134	5,599	2,1E-06
33	c34524_g1	uncharacterized protein NW_013591147.1.1	NW_013591147.1.1	5,584	7,0E-08
34	c42518_g1		not predicted	5,468	1,4E-07
35	c122834_g1	uncharacterized protein LOC106615425	6177_t	5,395	5,1E-11
36	c15819_g1	uncharacterized protein LOC106615424	NW_013581248.1.9	5,348	1,6E-11
37	c55481_g1		not predicted	5,202	5,8E-07
38	c72383_g1	CG8560-like	NW_013583355.1.2	5,109	1,6E-07
39	c58415_g1	CG15043-like	NW_013581513.1.17	5,094	2,0E-08
40	c34152_g1	Cyp6a16	NW_013583451.1.1	5,070	2,3E-08
41	c15924_g1	CG31233-like	NW_013582303.1.1	4,989	4,7E-05
42	c48988_g3	uncharacterized protein LOC106615425	NW_013581248.1.11	4,926	1,6E-08
43	c54167_g1	CG15406-like	NW_013583385.1.2	4,811	2,7E-07
44	c39853_g1		not predicted	4,709	1,2E-09
45	c33022_g1	uncharacterized protein LOC106615431	NW_013581248.1.10	4,682	2,4E-07
46	c52085_g2		not predicted	4,661	2,7E-07
47	c48380_g1		not predicted	4,589	2,1E-07
48	c49725_g1	CG4363-like	NW_013581215.1.132	4,572	1,7E-05
49	c123043_g1	uncharacterized protein LOC106627291	NW_013581220.1.47	4,477	3,1E-09
50	c48988_g1	uncharacterized protein NW_013581248.1.14	NW_013581248.1.14	4,468	7,1E-08

184

51	c55436_g1	CG31106-like	NW_013581235.1.12	4,392	4,0E-08
52	c96078_g1		not predicted	4,360	4,9E-05
53	c53162_g1		not predicted	4,327	5,8E-05
54	c13906_g1	CG33282-like	NW_013581214.1.54	4,258	4,2E-08
55	c97206_g1	CG33998-like	 NW_013581220.1.132	4,247	4,3E-08
56	c84109_g1	CG10650-like	 NW_013581251.1.59	4,201	2,2E-05
57	c49026_g1	beta-site APP-cleaving enzyme	 NW_013581223.1.72	4,140	3,5E-07
58	c33506_g1	acanthoscurrin-1-like	 NW_013581221.1.16	4,110	1,6E-04
59	 c45977_g1	CG42235-like	 NW_013581576.1.7	4,091	1,3E-05
60	 c42936_g2	CG10031-like		4,086	7,0E-07
61	c123354_g1	CG10911-like	 NW_013581220.1.59	3,983	7,6E-08
62	c36293_g1	Сурба16	NW_013583451.1.1	3,946	3,4E-04
63	 c48988_g2	uncharacterized protein LOC106615425	 NW_013581248.1.11	3,945	9,3E-07
64	c112992_g1	CG3168-like		3,911	9,9E-07
65	c55736 g1	CG30375-like	 19027_t	3,740	1,4E-06
66	c109541_g1	CG15096-like	NW_013581220.1.91	3,724	8,7E-05
67	c50185_g1	SLC22A	NW_013581465.1.4	3,698	5,6E-07
68	c31533_g1	CG4363-like	NW_013581215.1.131	3,694	5,0E-05
69	c21199_g1		not predicted	3,694	3,1E-06
70	c43247_g1		not predicted	3,606	2,3E-05
71	c32887_g1	nucleolar protein 3-like	NW_013581215.1.64	3,559	9,8E-05
72	c46266_g1	black	NW_013581211.1.19	3,528	2,2E-04
73	c110791_g1	Cyp313a4	NW_013581299.1.20	3,502	2,3E-06
74	c49500_g1	tetraspanin 47F	NW_013582559.1.4	3,497	2,6E-04
75	c39986_g1	CG5246-like	NW_013581294.1.10	3,482	3,3E-05
76	c48959_g1		not predicted	3,468	1,9E-06
77	c55551_g1		not predicted	3,369	4,6E-04
78	c44647_g1	immune induced molecule 33	NW_013581471.1.2	3,318	6,2E-05
79	c111644_g1	CG13308-like	NW 013581493.1.12	3,240	1,9E-04
80	c44955_g1	CG5399-like	NW_013581371.1.4	3,217	3,9E-05
81	c27147_g1	Ecdysone-dependent gene 91	NW_013581239.1.59	3,189	2,1E-05
82	c49730_g1	urate oxidase	NW_013581246.1.40	3,171	2,6E-05
83	c54159_g1	CG33514-like	NW_013581240.1.40	3,164	1,3E-05
84	c41732_g1	serine-aspartate repeat-containing protein I-like	NW_013581209.1.24	3,153	1,6E-04
85	c48496_g1	CG9380-like	NW 013583883.1.2	3,144	1,1E-05
86	c43362_g1	C05560-11Ke	not predicted	3,130	8,4E-05
87	c56485 g2	CG8303-like	NW_013581233.1.1	3,127	4,7E-04
88	c55628_g1	Neural Lazarillo	NW 013581373.1.1	3,100	5,3E-04
89	c26491 g1	uncharacterized protein LOC106624419	NW_013582993.1.1	3,095	1,4E-05
90		CG8323-like			2,4E-05
90 91	c42352_g1		NW_013581250.1.4	3,062	
	c59379_g1	alpha esterase-4	NW_013581369.1.6	3,043	1,7E-04 1,7E-04
92	c52144_g1	11a+26Da	not predicted	3,043	-
93 94	c57220_g4	Ugt36Ba	NW_013581212.1.175	3,024	4,6E-05
	c51861_g2	CG8834-like	NW_013581215.1.3	2,965	7,6E-05
95	c41816_g1	uncharacterized protein LOC106623971	NW_013582629.1.1	2,956	7,0E-05
96	c84264_g1	Sodium-dependent multivitamin transporter	NW_013581377.1.15	2,924	2,1E-04
97	c34087_g1	CG5096-like	NW_013581248.1.32	2,885	4,1E-04
98	c13969_g1		not predicted	2,852	2,5E-04
99	c39639_g1		not predicted	2,791	1,0E-04
100	c26571_g1		not predicted	2,757	1,8E-04

6.6 The annotated list of genes from the transcriptomic analysis of male accessory glands with ejaculatory bulb (Table 6.5)

		<i>B. oleae</i> transcriptome			
		Tissue: male accessory glands, ejaculat		1. 50	D) (- l
	transcript_id	Annotation name	gene_id	logFC	PValue
1	c31616_g1	attacin-A	NW_013581217.1.68	-13,051	1,03E-16
2	c52655_g1	CG2254-like	NW_013581268.1.20	-12,304	1,58E-14
3	c51710_g1	CG31729-like	NW_013581210.1.33	-12,110	5,89E-14
4	c47341_g2	CG31798-like	NW_013581459.1.12	-11,860	3,11E-13
5	c47596_g1	CG10096-like	NW_013581245.1.66	-11,831	3,79E-13
6	c52892_g1	CG10435-like	NW_013581672.1.3	-11,801	4,63E-13
7	c57023_g2	timeless	NW_013581222.1.24	-11,708	8,58E-13
8	c23397_g1	CG4666-like	NW_013581218.1.116	-11,707	8,58E-13
9	c47442_g1	sorting nexin 3	NW_013581987.1.5	-11,700	8,94E-13
10	c53574_g1	CG7840-like	NW_013588004.1.1	-11,667	1,11E-12
11	c40374_g1	catalase	NW_013581552.1.5	-11,645	1,30E-12
12	c47533_g1	Nuclear protein localization 4	NW_013585174.1.1	-11,578	2,03E-12
13	c55275_g2	CG43693-like	NW_013581324.1.28	-11,254	1,68E-11
14	c41928_g1	mus81	NW_013581254.1.18	-11,230	1,94E-11
15	c45555_g1	CG3690-like	NW_013584662.1.1	-11,191	2,43E-11
16	c57217_g1	twenty four	NW_013581628.1.11	-11,185	2,62E-11
17	c84745_g1	Nuclear polyadenosine RNA-binding 2-RA	NW_013581231.1.68	-11,180	2,72E-11
18	c57024_g2	Na+/H+ hydrogen exchanger 2	NW_013581246.1.67	-11,153	3,24E-11
19	c53204_g1	CG3394-like	NW_013581407.1.1	-11,101	4,53E-11
20	c53812_g1		not predicted	-11,098	4,63E-11
21	c57131_g1	CG34408-like	NW_013582394.1.4	-11,024	7,44E-11
22	c39257_g2	CG3420-like	NW_013581226.1.64	-11,006	8,27E-11
23	c10660_g1	Tetraspanin 42Ee	NW_013581220.1.29	-10,976	1,00E-10
24	c47311_g1	Gustatory receptor 32a	NW_013581242.1.18	-10,965	1,07E-10
25	c72530_g1		not predicted	-10,960	1,12E-10
26	c53055_g1	Isoleucyl-tRNA synthetase	NW_013581248.1.21	-10,948	1,22E-10
27	c55859_g1	galaktokinase	NW_013583755.1.2	-10,922	1,43E-10
28	c39648_g1	CG7322-like	NW_013581236.1.21	-10,914	1,50E-10
29	c57875_g1		not predicted	-10,907	1,57E-10
30	c53746_g1	Imaginal disc growth factor 3-RB	NW_013581222.1.28	-10,849	2,27E-10
31	c58086_g1	domino	13374_t	-10,834	2,50E-10
32	c54574_g1	juvenile hormone epoxide hydrolase 2	NW_013581209.1.139	-10,788	3,34E-10
33	c43349_g1		18614_t	-10,772	3,69E-10
34	c55965_g3	Dopamine/Ecdysteroid receptor-RA	NW_013581302.1.11	-10,762	3,97E-10
35	c54053_g5	Signal-transducer and activator of transcription protein at 92E	NW_013581294.1.27	-10,746	4,39E-10
36	c52465_g1	Guanine nucleotide exchange factor in mesoderm	NW_013581692.1.2	-10,683	6,46E-10
37	c55810_g1	CG3376-like	NW_013581229.1.55	-10,667	7,18E-10
38	c33324_g1	Small ribonucleoprotein particle protein SmB	NW_013581247.1.17	-10,650	7,99E-10
39	c54844_g2	Glucose transporter 1	NW_013581411.1.14	-10,645	8,21E-10
40	c26099_g1	CG30008-LIKE	NW_013581852.1.2	-10,644	8,43E-10
41	c58149_g1	expanded	NW_013581242.1.89	-10,630	9,14E-10
42	c51872_g1	CG43143-like	NW_013582061.1.2	-10,620	9,66E-10
43	c30784_g2	Methylthioadenosine phosphorylase	NW_013581238.1.9	-10,593	1,14E-09
44	c10274_g1	echinoid	NW_013581222.1.2	-10,574	1,31E-09
45	c56997_g1	Gustatory receptor 21a	NW_013584380.1.1	-10,563	1,39E-09
46	c32538_g1	CG12321-like	NW_013581448.1.7	-10,544	1,55E-09
47	c54799_g1	Cysteine string protein	NW_013581269.1.4	-10,532	1,69E-09
48	c57176_g2	wide awake	NW_013581262.1.13	-10,527	1,74E-09
49	c43839_g1	Gamma-interferon-inducible reductase 1	NW_013581310.1.15	-10,525	1,74E-09
50	c52007_g1	Pyruvate carboxylase	NW_013581314.1.23	-10,520	1,85E-09

186

51	c57583_g1	Abl tyrosine kinase	NW_013581213.1.160	-10,516	1,85E-09
52	c54018_g2	CG17746-like	NW_013582369.1.3	-10,500	2,08E-09
53	c54728_g1	yellow-g	NW_013581221.1.69	-10,490	2,14E-09
54	c49066_g1	CG4757-like	17950_t	-10,481	2,34E-09
55	c45487_g1	CG5590-like	NW_013581593.1.5	-10,480	2,34E-09
56	c47712_g1	47712_g1 astray NW_013581245.1.45		-10,475	2,41E-09
57	c52931_g1	CG9747-like	NW_013581266.1.30	-10,454	2,80E-09
58	c49237_g1	CG4266-like	NW_013581233.1.39	-10,379	4,33E-09
59	c34297_g1	CG7185-like	NW_013581249.1.17	-10,372	4,61E-09
60	c57747_g1	CG1024-like	NW_013581280.1.32	-10,353	5,07E-09
61	c56234_g1	split ends	NW_013581242.1.94	-10,352	5,24E-09
62	c53020_g1	CG8243-like	NW_013581233.1.54	-10,341	5,41E-09
63	c56726_g1	PTEN-induced putative kinase 1	NW_013581231.1.28	-10,275	8,33E-09
64	c57660_g1		not predicted	-10,269	8,62E-09
65	c50703_g1	CG40160-like	NW_013582263.1.2	-10,253	9,55E-09
66	c50574_g1	CG12121-like	NW_013582327.1.2	-10,229	1,10E-08
67	c54908_g1	CG8858-like	NW_013581229.1.3	-10,222	1,13E-08
68	c55183_g1	CG16935-like	NW_013582071.1.6	-10,211	1,22E-08
69	c55990_g1	ance-4-ra	NW_013583092.1.3	-10,197	1,35E-08
70	c56768_g6	CG1090-like	NW_013582064.1.1	-10,193	1,35E-08
71	c46700_g1	Hexosaminidase 1	NW_013581275.1.12	-10,187	1,40E-08
72	c34700_g1	Smad anchor for receptor activation	NW_013581209.1.20	-10,171	1,56E-08
73	c56128_g2	moody	NW_013582266.1.2	-10,162	1,62E-08
74	c54701_g1	strawberry notch	NW_013581414.1.4	-10,148	1,81E-08
75	c47569_g1	CG11414-like	NW_013581215.1.108	-10,135	1,94E-08
76	c55175_g1	Vacuolar protein sorting 24	NW_013581374.1.3	-10,133	1,94E-08
77	c52369_g1	CG8888-like	NW_013581233.1.61	-10,114	2,17E-08
78	c48551_g1	Nucleoporin 214kD	NW_013581215.1.31	-10,098	2,43E-08
79	c71420_g1	Phosphoenolpyruvate carboxykinase	NW_013581568.1.4	-10,082	7,02E-09
80	c53306_g2	IdlCp-related protein	NW_013582073.1.8	-10,079	7,02E-09
81	c51656_g1	CG5390-like	NW_013581211.1.51	-10,069	7,02E-09
82	c37891_g1	Heat shock protein cognate 20	NW_013581285.1.42	-10,067	7,58E-09
83	c55308_g1	odd skipped	NW_013581667.1.1	-10,065	7,58E-09
84	c54308_g1	CG1208-like	NW_013581589.1.12	-10,054	8,20E-09
85	c46027_g1	CG8417-like	NW_013583228.1.2	-10,047	8,52E-09
86	c53094_g7	Acid phosphatase 1	NW_013581380.1.16	-10,046	8,52E-09
87	c56461_g1	elbow B	NW_013583577.1.1	-10,013	1,04E-08
88	c47034_g1	CG5254-like	NW_013581478.1.4	-10,009	1,08E-08
89	c56555_g3	GluCla	NW_013581276.1.14	-10,008	1,08E-08
90	c56397_g3	Ryanodine receptor	NW_013581420.1.2	-10,007	1,08E-08
91	c57800_g1	heixuedian	NW_013581242.1.70	-10,002	1,13E-08
92	c10628_g1	CG4332-like	NW_013583288.1.2	-9,996	1,17E-08
93	c36907_g1	CG16727-like	NW_013581259.1.32	-9,994	1,08E-08
94	c49121_g2	Microcephalin	NW_013581448.1.9	-9,994	1,17E-08
95	c55037_g1		not predicted	-9,987	1,22E-08
96	c43052_g1	CG7011-like	NW_013581241.1.24	-9,972	1,33E-08
97	c51676_g1	SP2637-RC like	NW_013581226.1.57	-9,972	1,33E-08
98	c46198_g1	CG4603-like	NW_013581228.1.2	-9,971	1,33E-08
99	c23655_g1	CG17221-like	NW_013581662.1.6	-9,968	1,38E-08
100	c55935_g1	CG4896-like	NW_013581251.1.13	-9,959	1,44E-08

6.7 The annotated list of genes from the transcriptomic analysis of female lower reproductive tract (Table 6.6)

<i>B. oleae</i> transcriptome Tissue: female lower reproductive track					
N	transcript id	Annotation name		logFC	PValue
1	transcript_id	neprilysin 2	gene_id NW 013581321.1.34	-15,445	1,41E-14
2	c52845_g1 c55628_g1	Neural Lazarillo	NW_013581373.1.1	-15,097	1,411-14 1,48E-13
3	c42759_g2	troponin-C	NW 013581215.1.48	-14,991	3,01E-13
4	c51837_g1	cryptocephal	NW_013583142.1.1	-14,886	6,09E-13
5	c53966_g8	midlin fascelin	NW_013581231.1.21	-14,761	1,05E-12
6	c44387_g1	CG34189-like	NW 013583061.1.3	-14,744	1,03E-12
7	c30526_g1	Ribosomal protein S16	NW 013581356.1.32	-14,608	2,90E-12
8	c53346_g1	yolk protein 2	NW_013581230.1.18	-14,608	2,90E-12
9	c47567_g2	rudimentary-like	NW_013581298.1.19	-14,424	9,85E-12
10	c71357_g1	CG6426-like	NW_013581234.1.7	-14,331	1,84E-11
11	c53746_g2	Imaginal disc growth factor 3	NW_013581222.1.28	-14,301	2,24E-11
12	c53092_g2	Ornithine decarboxylase antizyme	NW_013581383.1.6	-14,298	2,24E 11
13	c54618_g1	starvin	NW_013581477.1.2	-14,271	2,72E-11
14	c47917_g2	Cyp6q1	NW_013581325.1.20	-14,195	3,31E-11
15	c53040_g1	Ecdysone-inducible gene L3	NW 013582894.1.2	-14,188	3,48E-11
16	c54829_g2	serpin42da	NW 013581585.1.8	-14,176	3,77E-11
17	c57143_g2	Vacuolar H+-ATPase 55kD subunit	NW 013581338.1.3	-14,107	5,92E-11
18	c55918_g1	CG14210-like	NW 013581232.1.22	-14,060	8,10E-11
19	c52436_g1	scylla	NW_013581315.1.11	-14,005	1,16E-10
20	c21198_g1	CG9676-like	6587 t	-13,942	1,74E-10
21	c53599_g1	Secreted protein, acidic, cysteine-rich	NW_013581490.1.3	-13,940	1,76E-10
22	c51323_g1		not predicted	-13,871	2,76E-10
23	c27262_g1	ERp60	NW_013581448.1.6	-13,871	2,76E-10
24	c10647_g1	ribosomal protein S17	 NW_013582719.1.1	-13,869	2,80E-10
25	 c56768_g3	CG6770-like	 3377_t	-13,867	2,85E-10
26	c45452_g1	thin	NW_013581209.1.155	-13,780	3,67E-10
27	c29117_g1	defensin	NW_013581584.1.4	-13,750	4,48E-10
28	c44594_g1	CG7265-like	NW_013581239.1.34	-13,725	5,25E-10
29	c58085_g1	megalin	NW_013581232.1.2	-13,692	6,54E-10
30	c52934_g1		not predicted	-13,678	7,10E-10
31	c57634_g1	CG10178-like	NW_013581223.1.78	-13,660	8,00E-10
32	c58253_g1	cathD	NW_013581226.1.24	-13,590	1,26E-09
33	c51907_g4	ribosomal protein L21	NW_013581210.1.127	-13,565	1,47E-09
34	c32492_g1	ribosomal protein L23	NW_013581313.1.21	-13,555	1,57E-09
35	c52931_g1	CG9747-like	NW_013581266.1.30	-13,521	1,96E-09
36	c23076_g1	NADH dehydrogenase 13 kDa B subunit	NW_013582233.1.1	-13,469	1,99E-09
37	c46559_g1	knockdown	NW_013581243.1.12	-13,425	2,64E-09
38	c42417_g1	prip	NW_013581220.1.123	-13,420	2,73E-09
39	c44954_g1	Cuticular protein 57A	NW_013583188.1.8	-13,352	4,22E-09
40	c44953_g1	CG2852-like	NW_013593435.1.1	-13,338	4,60E-09
41	c43875_g1	Vacuolar H+-ATPase SFD subunit	NW_013581318.1.19	-13,334	4,69E-09
42	c49340_g1	Gelsolin	NW_013581416.1.11	-13,307	5,58E-09
43	c54856_g2	Ubiquinol-cytochrome c reductase core	NW_013581287.1.15	-13,299	5,89E-09
44	c51944_g2	refractory to sigma P	NW_013586868.1.2	-13,296	5,99E-09
45	c50798_g2	ADP ribosylation factor at 79F	NW_013581336.1.12	-13,294	6,10E-09
46	c50481_g1	Cytochrome P450-4g1	NW_013581572.1.3	-13,239	8,61E-09
47	c10600_g2	Ribosomal protein S14a	NW_013581258.1.15	-13,238	8,69E-09
48	c96905_g1	tryptophanyl-tRNA synthetase	21294_t	-13,218	9,80E-09
49	c50073_g1	translation elongation factor 1 alpha 2	NW_013581377.1.9	-13,195	1,14E-08
50	c54629_g1	Histone H4 replacement 188	NW_013581368.1.23	-13,181	1,24E-08

51	c55864_g1		not predicted	-13,156	1,05E-08
52	c57594_g1	CG42768-like	NW_013581916.1.3	-13,155	1,06E-08
53	c54659_g1		not predicted	-13,148	1,10E-08
54	c58082_g2	atlastin	NW_013581457.1.10	-13,142	1,15E-08
55	c48434_g1	Rab1 NW_013581293.1.12		-13,126	1,27E-08
56	c84110_g1	Heat shock protein cognate 5-RA	NW_013581313.1.14	-13,116	1,36E-08
57	c53327_g2	N-m-D-a receptor-associated protein	NW_013581247.1.40	-13,059	1,94E-08
58	c56913_g5	Protein kinase regulatory subunit type 1	NW_013581359.1.26	-13,048	2,09E-08
59	c49653_g2	Rho1	NW_013581209.1.264	-13,046	2,11E-08
60	c56580_g1	CG4276-like	NW_013583226.1.1	-13,019	2,49E-08
61	c46189_g1	purity of essence	NW_013581503.1.2	-13,006	2,72E-08
62	c49765_g1	CG9572-like	NW_013581212.1.180	-12,984	3,12E-08
63	c55509_g7	Argonaute 2	NW_013581786.1.1	-12,971	3,37E-08
64	c58054_g1	CG8177-like	NW_013581302.1.29	-12,955	3,72E-08
65	c56851_g2	CG13776-like	NW_013581210.1.73	-12,929	4,35E-08
66	c46581_g1	coro	NW_013581849.1.8	-12,925	4,50E-08
67	c53123_g1	Mitochondrial assembly regulatory factor	NW_013581256.1.7	-12,895	5,39E-08
68	c55319_g1	CG12702-like	NW_013581246.1.53	-12,889	5,58E-08
69	c46085_g1	CG12605-like	NW_013581221.1.123	-12,887	5,65E-08
70	c57012_g1	calnexin 99a	NW_013581348.1.10	-12,879	5,91E-08
71	c57266_g3	CG7115-like	NW_013581251.1.23	-12,874	6,12E-08
72	c27268_g1	Adenylosuccinate Synthetase	NW_013581262.1.41	-12,864	4,68E-08
73	c49662_g2	Neural conserved at 73EF	NW_013581423.1.20	-12,851	5,08E-08
74	c52754_g1	Gelsolin-isoform B	NW_013581310.1.24	-12,810	6,61E-08
75	c42687_g1	CG10576-like	NW_013581296.1.14	-12,796	7,11E-08
76	c42956_g1	Sterile20-like kinase	NW_013581314.1.26	-12,793	7,29E-08
77	c27318_g1	CG6236-like	NW_013581321.1.8	-12,768	8,45E-08
78	c43468_g1		not predicted	-12,740	1,01E-07
79	c50627_g1	Imaginal disc growth factor 1	NW_013581222.1.30	-12,716	1,17E-07
80	c48875_g2	Glutamine synthetase 2	NW_013581268.1.16	-12,708	1,24E-07
81	c47214_g1	Nimrod B2	NW_013584023.1.3	-12,704	1,27E-07
82	c12311_g1	Tudor staphylococcal nuclease	NW_013581296.1.10	-12,693	1,35E-07
83	c54043_g1	mushroom-body expressed	NW_013581465.1.2	-12,667	1,58E-07
84	c55085_g1		not predicted	-12,666	1,58E-07
85	c53746_g1	Imaginal disc growth factor 3	NW_013581222.1.28	-12,659	1,67E-07
86	c23095_g1	intronic protein 259	NW_013581346.1.1	-12,645	1,81E-07
87	c46280_g1	vacuolar H[+] ATPase PPA1 subunit 1	NW_013581485.1.9	-12,645	1,81E-07
88	c51868_g1	tetracycline resistance	NW_013581225.1.87	-12,625	2,04E-07
89	c47782_g1	sugarless	NW_013581551.1.6	-12,617	2,16E-07
90	c54301_g1	prolyl-4-hydroxylase-alpha SG1	NW_013583024.1.4	-12,594	1,77E-07
91	c42523_g1	odorant-binding protein 99c	NW_013581311.1.25	-12,594	1,77E-07
92	c50891_g1	Rab7	NW_013581264.1.50	-12,590	1,82E-07
93	c57564_g1	Hexokinase C	NW_013581215.1.93	-12,563	2,12E-07
94	c57765_g3	multiple ankyrin repeats single KH domain	NW_013581297.1.9	-12,553	2,25E-07
95	c52177_g1	CG33203-like	NW_013581264.1.62	-12,552	2,28E-07
96	c50839_g1	kayak	NW_013581264.1.69	-12,536	2,52E-07
97	c52840_g1	Akt1	NW_013581333.1.4	-12,518	2,79E-07
98	c36177_g1	Novel nucleolar protein 1	NW_013581226.1.40	-12,452	4,16E-07
			NUM 012501250 1 0	42.444	
99	c54520_g1	lipophorin receptor 1	NW_013581259.1.9	-12,444	4,35E-07

6.8 Housekeeping genes

Housekeeping genes				
	primers	sequences	Tm	Product size
mala tissuas	RPL19	5'-CTTCACGTACTTTATGCCTTC-3'	55	126
male tissues		5'-GCAAGGGTAATGTGTTCAA-3'		
formale ticques	GAPDH	5'-ATGAAGGTCGTATCTAATGC-3'		445
female tissues		5'-TAGTTGCGTGAACAGTAGTC-3'	55	115

Table 6.7: Housekeeping primers used for the qRT-PCR. The RPL19 was used for the normalization of the values obtained from qRT-PCR for male tissues and GAPDH for the normalization of the values obtained from qRT-PCR for female tissues.

7. Publications

RESEARCH ARTICLE

Open Access

Olive fly transcriptomics analysis implicates energy metabolism genes in spinosad resistance

Efthimia Sagri¹, Martin Reczko², Maria-Eleni Gregoriou¹, Konstantina T Tsoumani¹, Nikolaos E Zygouridis¹, Klelia D Salpea², Frank G Zalom³, Jiannis Ragoussis^{2,4} and Kostas D Mathiopoulos^{1*}

Abstract

Background: The olive fly, *Bactrocera oleae*, is the most devastating pest of cultivated olives. Its control has been traditionally based on insecticides, mainly organophosphates and pyrethroids. In recent years, the naturalyte spinosad is used against the olive fly. As with other insecticides, spinosad is subject to selection pressures that have led to resistance development. Mutations in the α6 subunit of the nicotinic acetylcholine receptor (nAChR) have been implicated in spinosad resistance in several species (e.g., *Drosophila melanogaster*) but excluded in others (e.g., *Musca domestica*). Yet, additional mechanisms involving enhanced metabolism of detoxification enzymes (such as P450 monooxygenases or mixed function oxidases) have also been reported. In order to clarify the spinosad resistance mechanisms in the olive fly, we searched for mutations in the α6-subunit of the nAChR and for up-regulated genes in the entire transcriptome of spinosad resistant olive flies.

Results: The olive fly a6-subunit of the nAChR was cloned from the laboratory sensitive strain and a spinosad selected resistant line. The differences reflected silent nucleotide substitutions or conserved amino acid changes. Additionally, whole transcriptome analysis was performed in the two strains in order to reveal any underlying resistance mechanisms. Comparison of over 13,000 genes showed that in spinosad resistant flies nine genes were significantly over-expressed, whereas ~40 were under-expressed. Further functional analyses of the nine over-expressed and eleven under-expressed loci were performed. Four of these loci (Yolk protein 2, ATP Synthase FO subunit 6, Low affinity cationic amino acid transporter 2 and Serine protease 6) showed consistently higher expression both in the spinosad resistant strain and in wild flies from a resistant California population. On the other side, two storage protein genes (HexL1 and Lsp1) and two heat-shock protein genes (Hsp70 and Hsp23) were unfailingly under-expressed in resistant flies.

Conclusion: The observed nucleotide differences in the nAChR- α 6 subunit between the sensitive and spinosad resistant olive fly strains did not advocate for the involvement of receptor mutations in spinosad resistance. Instead, the transcriptome comparison between the two strains indicated that several immune system loci as well as elevated energy requirements of the resistant flies might be necessary to lever the detoxification process.

Keywords: Insecticide tolerance, Spinosyns, Next generation sequencing, Expression analysis

Background

The olive fruit fly, *Bactrocera oleae* (Rossi) (Diptera, Tephritidae) is the most important pest of cultivated olives. The female insect deposits its eggs in the olive fruit mesocarp where the developing larvae feed and grow. Furthermore, oviposition provides entry points for bacteria and fungi, increasing the consequences of damage. As a result olives either drop before maturity and become inedible or oil quality is affected [1]. More than 30% annual olive crop losses are attributed to the olive fly [2], which accounts to an economic impact of more than 800 million dollars [3].

During the last fifty years, the control of the fly has been traditionally based on chemical insecticides, mainly organophosphates (OPs) and, more recently, pyrethroids. Apart from the harmful effects of pesticides in the environment, insecticide exposure has led to the selection of resistant alleles in natural populations and the development of widespread insecticide resistance, mainly to organophosphates [4] but also to pyrethroids [5]. The mechanism of resistance to OPs has been extensively studied and has

© 2014 Sagri et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

^{*} Correspondence: kmathiop@bio.uth.gr

¹Department of Biochemistry and Biotechnology, University of Thessaly, Ploutonos 26, Larissa, Greece

Full list of author information is available at the end of the article

been attributed to target site mutations in the acetylcholinesterase (AChE). Two of these are point mutations that reside in the catalytic gorge of the enzyme [6] and a third one is a small deletion located in the carboxyl-terminal of the enzyme [7,8].

Replacement of organophosphates with other environmentally friendlier products such as spinosad, has been a trend in recent years. Spinosad belongs to the naturalyte class [9] and has demonstrated particular efficiency against the Tephritid family of insects [10]. It is derived from the bacterium Saccharopolyspora spinosa, and is composed of a mixture of two macrocyclic lactones, spinosyn A (50-95%) and spinosyn D (5-50%) [9]. This insecticide acts by two main routes. Firstly, by activating the nicotinic acetylcholine receptor, but at a different site from that used by nicotine and imidacloprid [11], and secondarily through the GABA receptor, but at a distinct site from that used by abamectin [12,13]. Spinosad may enter the organism by contact or through ingestion. The symptoms are limp paralysis, tremors and finally insect death [14].

Despite the relatively short history of spinosad in the marketplace, spinosad-associated resistance has been reported in many insects [15]. The first reports of spinosad resistance in the field were for the beet armyworm, Spodoptera exigua [16,17]. Spinosad resistance has also been reported in several other species, such as the melon fly, Bactrocera cucurbitae [18], the Colorado potato beetle, Leptinotarsa decemlineata [19], the housefly, Musca domestica [20] and the tobacco budworm, Heliothis virescens [21]. The molecular mechanism of resistance to spinosad has not been fully clarified. There is evidence that resistance is a result of either enhanced metabolism of detoxification enzymes or a consequence of changes in a target site. The most noticeable target site of spinosad resistance is the nicotinic acetylcholine receptor (nAChR). In the case of Drosophila melanogaster, mutations in the $\alpha 6$ subunit of the nAChR (D $\alpha 6$) confer highfold resistance to spinosad, clearly implicating the $D\alpha 6$ subunit in resistance [22,23]. The $\alpha 6$ subunit of nAChR has been associated in spinosad resistance in other insects as well. For example, mis-spliced or truncated nAChR-α6 transcripts in the diamondback moth, Plu*tella xylostella* [24,25], truncated $Bd\alpha 6$ transcripts of Bactrocera dorsalis [26], or a point mutation (G275E) in the transmembrane domain of the nAChR- α 6 subunit in the western flower thrips, Frankliniella occidentalis [27], all confer high levels of resistance to spinosad. In contrast, spinosad resistance in Musca domestica does not seem to be related with the $\alpha 6$ subunit of nAChR. Instead, it correlates with a recessive factor on chromosome I [20], rather than the three nicotinic acetylcholine subunits (α 5, α 6, β 3) that reside on the same chromosome [28].

In other cases, however, enhanced metabolism of detoxification enzymes have been implicated in spinosad resistance. For example, the microsomal-O-demethylase as well as monooxygenases were shown to be involved in resistance in *Spodoptera exigua* from China [29], an increase in cytochrome P450 monooxygenase was associated in cotton bollworm, *Helicoverpa armigera* [30], while enhanced activity of detoxifying mixed-function oxidases were connected with resistance in the Chilean populations of *Tuta absoluta* [31].

Until now, the most frequently used approach for isolating genes from an organism with few genetic and molecular tools was through PCR amplification with heterologous primers of the respective genes of closely related species. This approach, however, is greatly biased and excludes the possibility of identifying either genes that do not have homology in other organisms, or loci responsible for mechanisms that have not been studied in relative species. A transcriptomics approach, instead, may assess the differences of all expressed genes at the same time between sensitive and resistant individuals, without any preconceived ideas about specific genes, and thus reveal novel mechanisms that might be involved in resistance.

In the present study, we determined the sequence of the $\alpha 6$ subunit of nAChR of both a sensitive and a spinosad resistant olive fly strain, in order to explore possible presence of resistance mutations. In addition, we compared the entire transcriptomes of these two strains, in search of unknown loci that might be involved in spinosad resistance. Differential expression observed in several genes was validated both in laboratory colonies and field collected flies.

Results

Cloning of the *B. oleae* nAChR subunit a6 gene

A total of 2,367 bp of the *Bactrocera oleae* nAChR α 6 subunit (Bo α 6) cDNA sequence was obtained from a susceptible laboratory (LAB) and a spinosad-selected (SPIN) strain. Initially, the *B. dorsalis*-based primers Bd α 6F and Bd α 6R amplified a partial ~1,800 bp coding fragment and subsequent 5'- and 3'-RACE reactions unraveled a 5'-UTR region of 300 bp upstream the start codon and a 3'-UTR of 600 bp that ended in a poly-A tail.

The beginning of the coding sequence was determined by the presence of a methionine residue at the expected place, as compared with known sequences from *Drosophila melanogaster* and *Bactrocera dorsalis*. Upstream of that residue there was no significant ORF. The next downstream Met residue was after 467 bp that would result in a substantially truncated product. An open reading frame of 1,467 bp encodes a putative 489 amino acid protein. The putative protein has 97% identity to the reciprocal *B. dorsalis* (AFN88980.1) protein. The Boa6 has all typical nAChR α subunit characteristics (Figure 1). The mature MDPSLLVVLIFLVIIKESCQGPHEKRLLNHLLSTYNTLERPVANESEPLEVKFGLTLQQIIDV DEKNQLLITNLWLSLEWNDYNLRWNESEYGGVKDLRITPNKL<u>WKPDVLM</u>YNSADEGFDGTYHT NI<u>VVKHGGSC</u>LYVPPAIFKSTOKMDITWFPFDDQHCEMKFGS<u>WTYDGNQ</u>LDLVL<u>SSEDGG</u>DLS DFITNGEWYLLAMPGKNTI<mark>YACC</mark>PEPYVDVTFTIQIRRTLYY**FFNLIVPCVLISSMALL**GFT LPPDSGEKLT**LGVTILLSLTVFLNLVA**ETLPQVSDAIPLIGTYFN**CIMFMVASSVVLTVVVL**N YHHRTADIHEMPPWIKSVFLQWLPWILRMGGPGRKITRKTILLSNRMKELELKERSSKSLLAN VLDIDDDFRHTISGSQTAIGSSASFGRPTTVEEHHNTIGCNHKDLHLILKELQFITSRMRKSD DEAELISDWK**FAAMVVDRFCLIVFTLFTIIATVTVLLSAPH**IIVQ

Figure 1 Basic characteristics of the *Bactrocera oleae* **nAChR α6 subunit.** N-terminal site is presented in dashed line and it is consisted of 20 amino acids. There are four transmembrane domains (TM1-4) (bold italic letters) and three glycosylation sites (blue boxes). The YxCC motif of alpha subunits is shown in orange box and the Cystein residues in green ovals. Six ligand binding loops are underlined. The three mutations are indicated by vertical arrows.

protein has a calculated molecular weight of 55.57 kDa and an isoelectric point of 4.49. It has all the characteristics of neurotransmitter-gated ion channels, with a signature of two cysteines separated by 13 amino acids [32] and four hydrophobic transmembrane domains (TM1-4) of conserved nAChR [33]. The Boa6 protein also possesses six loops and the alpha subunit character of YxCC motif [34].

Alignment of the two cDNA sequences obtained from the LAB and SPIN strains showed 13 point mutations (Additional file 1: Table S1). Ten of them were silent substitutions, while the remaining three led to homologous missense alterations: an Alanine (A) to Glycine (G) substitution at position 142 and two Lysine (K) to Arginine (R) substitutions at positions 145 and 149. The mutations are located in the N-terminal site and cause no changes on chain polarity or charge. In fact, the protein structure prediction server [35] indicated that the molecular structure of the receptor between the sensitive and the resistant strains remained unaffected. It is also known that nAChR α 6 transcript undergoes RNA editing [36-38], although this process has not thus far been related to spinosad resistance. None of the 13 point mutations of Boa6 coincided with the recognized RNA editing sites of Drosophila melanogaster or Bombyx mori.

Solid ABI sequencing and reads assembly

In order to explore possible mechanisms and pathways involved in spinosad resistance in *Bactrocera oleae*, the entire transcriptomes of the LAB and SPIN strains were compared. For transcriptome assembly, four libraries were sequenced and used. The sample names for the libraries are LAB, SPIN, MALE and FEMALE. Each library was sequenced with paired-end sequences, where each sequence pair consists of a 35 nt and a 50 nt fragment with a variable length insert between these fragments. Sequencing obtained a total of 122,623,894 read pairs. The reads of the libraries were pooled to construct a reference transcriptome assembly of 69,359 contigs using the SOAPdenovo assembler [39] (Table 1).

Sequence annotation

Annotation of the assembled sequences was obtained by aligning the 69,359 assembled *B. oleae* sequences against the NCBI non-redundant (Nr) protein database using blastx and collecting the annotations with the BLAS-T2GO tool [40]. Using an E-value threshold of $\leq 1e^{-6}$,

Table 1 Sequencing and assembly statistics

Sequencing and assembly summary

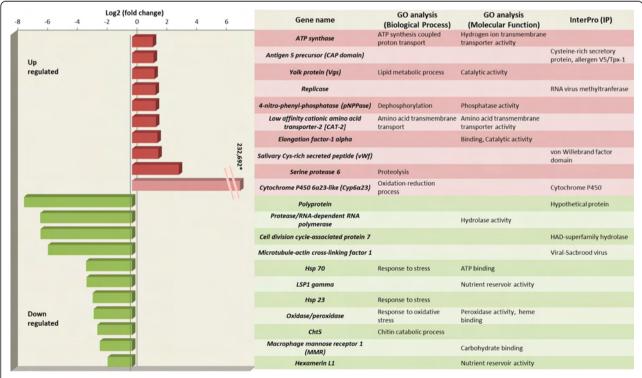
Total number of paire	122,623,894					
Total number of base	10,423,030,990					
LAB sample	number of paired-end reads	26,713,286				
	number of bases	2,270,629,310				
SPIN sample	number of paired-end reads	36,252,803				
	number of bases	3,081,488,255				
FEMALE sample	number of paired-end reads	36,962,061				
	number of bases	3,141,775,185				
MALE sample	number of paired-end reads	22,695,744				
	number of bases	1,929,138,240				
Large contigs (≥500 bp)						
Number of contigs	1,573					
Number of bases	1,035,345					
Average contig size	658					
N50*	633					
Largest contig size	2,301					
All contigs (≥100 bp)						
Number of contigs	69,359					
Number of bases	12,709,410					

^{*}Contig length, where all contigs of that length or longer sum up to at least half of the total of the lengths of all contigs.

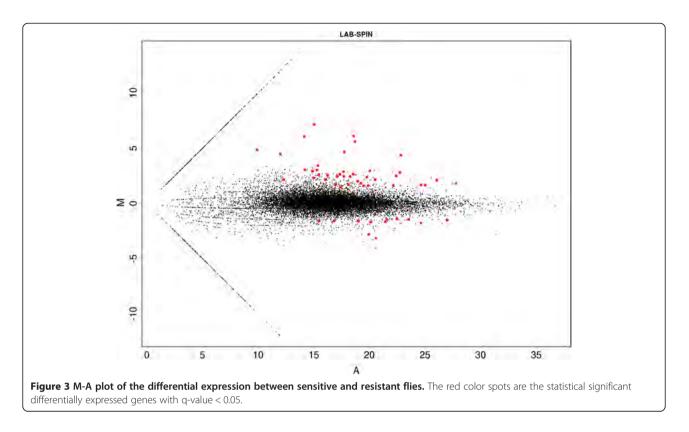
20207 (29.13%) of the contigs were aligned. The top 19 species in these alignments are diptera. Of the 69,359 contigs, 23,042 (33.22%) have almost exact hits in the *B. oleae* transcriptome of Pavlidi et al. [41] (E-value $\leq 1e^{-6}$).

Only synonymous SNPs in detox genes

The presence of significant SNPs or truncations in known detoxification loci was assayed in the SPIN transcriptome. One hundred and fifty five genes involved in detoxification were analyzed. SNP calling was performed with the mpileup tool [42]. There are 9 SNPs in the sensitive strain (LAB) that are not in the resistant strain (SPIN), of which only 2 have more than 10 reads and were found to be synonymous. There are 19 SNPs in SPIN that are not in the LAB, of which only 2 have more than 10 reads and were found to be synonymous.


Differentially expressed genes

The Cuffdiff [43] tool was used in order to reveal the differentially expressed genes between the spinosad resistant and the laboratory flies, a stringent cutoff (p value adjusted for multiple testing, called q value <0.05) was used. This resulted in 46 differentially expressed transcripts in the LAB vs. SPIN strain comparison.

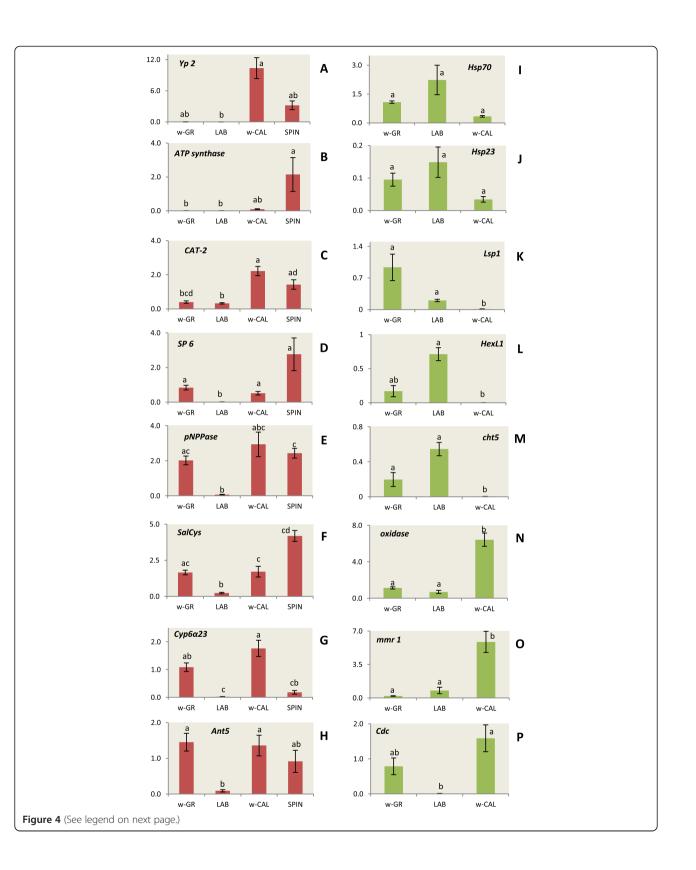

Twelve of these transcripts were up-regulated in SPIN resistant *B. oleae* flies than in sensitive (LAB) strain. More careful analysis revealed that three of these transcripts coincided with others and, therefore, nine distinct genes of the initial set of twelve were chosen for further functional analysis by quantitative real time PCR. These genes are listed in Figure 2 and Additional file 1: Table S2. Additionally, Cytochrome *P450* $6\alpha 23$ -*like* gene, a gene belonging in a group of known detoxification genes often involved in insecticide resistance, was considered. This gene was highly over-expressed, albeit not statistically significantly, falling below the stated criteria (p value = 0.000388, q value = 0.11).

An M-A plot was also constructed for comparison of the genes for resistant vs sensitive strain with q value < 0.05. In Figure 3 the 12 up-regulated and 40 down-regulated genes in the resistant strain are depicted in red.

Finally, functional annotation was made for the assembled sequences of the significantly differential up- and down-regulated genes mentioned in Additional file 1: Table S2, based on gene ontology (GO) categorization obtained using BLAST2GO. The GO analysis performed for two main categories, molecular function and biological process, is shown in Figure 2.

Figure 2 Functional annotation of differentially expressed genes. Gene expression levels of the differentially expressed genes (Log2, fold change), as resulted from the RNA-seq analysis, is shown at the left part of the Figure. Gene Ontology (GO) classification of the same genes for the ontologies: Biological Process (BP), Molecular Function (MF), and Interpro (IP) protein domains, are listed at the right part of the Figure. In crimson red are the up-regulated genes. The non-statistically significantly up-regulated *Cytochrome P450 6a23-like (Cyp6a23)* is shown in lighter color. In green are the down-regulated genes.

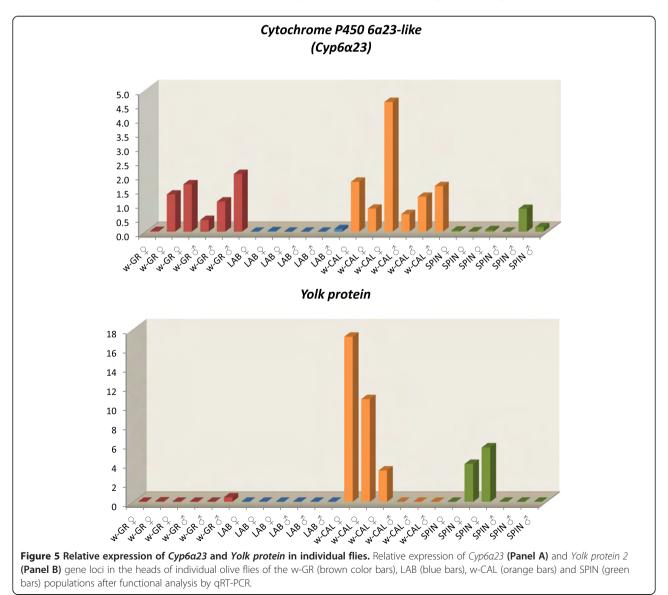
Functional analysis of genes that are putatively involved in spinosad resistance


In order to find the most suitable reference gene for the functional analyses of gene expression in the *B. oleae* head tissue, nine candidate genes were tested with NormFinder [44] and Bestkeeper [45] analysis. The nine genes were: RPL19 (ribosome protein L19), tbp (TATA-binding protein), ubx (ultrabithorax), GAPDH (glyceraldehyde 3-phosphate dehydrogenease), α -TUB $(\alpha$ -tubulin), β -TUB (β -tubulin), 14-3-3zeta, RPE (RNA) polymerase II) and actin3. Normfinder analysis showed that the best housekeeping gene is the 14-3-3 zeta with stability value 0.027 and the best combination of two genes is *tbp* and *14-3-3 zeta* with a stability value 0.031. From most stable (lowest stability value) to least stable (highest stability value) the candidate reference genes are ranged as: 14-3-3 zeta < $ubx < tbp < \beta$ -TUB < GAPDH $< actin3 < RPE < RPL19 < \alpha$ -TUB. These results were also confirmed by the Bestkeeper software since standard deviation and coefficient of variance values of 14-3-3 zeta and *tbp* fell within the accepted range.

Functional analysis of all significantly over- or underexpressed aforementioned genetic loci was performed in conjunction with the best combination of the two housekeeping genes (*tbp* and 14-3-3 zeta). Separately, the expression of all the target genes was calculated by normalization with *tbp* and 14-3-3 zeta. The final expression value for each target gene was calculated as the geometric mean of its relative expression to the two housekeeping genes. Geometric mean values, range and standard error of expression are shown in Additional file 1: Table S3. More specifically.

Up-regulated genes

Yolk protein 2 gene (Yp2) showed no relative expression in the sensitive flies (LAB, w-GR), while the expression in the resistant flies varied between 0.0075-5.656 and 3.265-17.178 fold for the SPIN and the w-CAL, respectively. As expected, the higher expression of spinosad resistance is observed only in female individuals, as Yp2 is not expressed in males (Figures 4A and 5). Likewise, the relative expression of ATP synthase F_O subunit 6 in the sensitive flies of LAB and w-GR is approximately at the same range, nearby zero. The expression values in the two resistant groups (w-CAL, SPIN) were higher (Figure 4B), while a single male individual of the SPIN strain presented a remarkably high expression value (12.124-fold). Expression of Low affinity cationic amino acid transporter 2 was 0.399-fold and 0.328-fold in w-GR and LAB, respectively, while expression in the resistant group was significantly elevated, 2.222-fold and 1.428-fold for w-CAL and SPIN (Figure 4C). Serine Protease 6 (SP6) was also significantly over-expressed in SPIN (2.763-fold) compared to the LAB (0.016-fold), while the expression of the wild flies was relatively low (0.838-fold for w-GR and 0.519-fold for w-CAL) (Figure 4D). The expression of 4-nitrophenylphosphatase


Sagri et al. BMC Genomics 2014, **15**:714 http://www.biomedcentral.com/1471-2164/15/714

(See figure on previous page.)

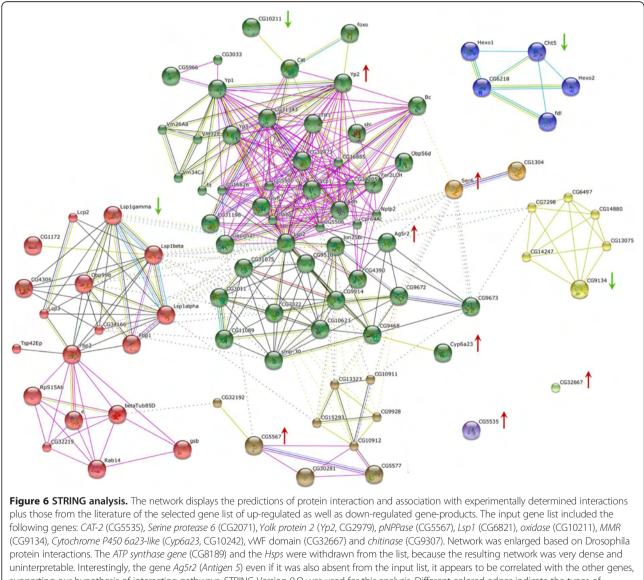
Figure 4 Relative expression profiles of genes potentially associated with spinosad resistance. The red color bars represent the up-regulated genes, *Yolk protein 2 (Yp2*, Panel **A**), *ATP synthase F*_O subunit 6 (*ATP synthase*, Panel **B**), *Low affinity cationic amino acid transporter 2 (CAT-2, Panel C), <i>Serine protease 6 (SP6*, Panel **D**), *4-nitrophenylphophatase (pNPPase*, Panel **E**), *Salivary Cys-rich secreted peptide-VWF (SalCys*, Panel **F**), *Cytochrome P450 6a23-like (Cyp6a23*, Panel **G**) and *Antigen 5 precursor (Ant5*, Panel **H**), for the mean of three male and three female individual flies, after functional analysis by qRT-PCR. Only for the *Yolk protein* the evaluation was based on female expression, since males show zero expression values. The green color bars represent the down-regulated genes *Heat-shock protein 70 (Hsp70*, Panel **I**), *Heat-shock protein 23 (Hsp23*, Panel **J**), Larval serum protein 1 (*LSP1*, Panel **K**), *Hexamerin L1 (HexL1*, Panel **L**), *Chitinase 5 (Cht5*, Panel **M**), *Oxidase/peroxidase (oxidase*, Panel **N**), *Macrophage mannose receptor 1 (mmr1*, Panel **O**), *Cell division cycle-associated protein 7 (Cdc*, Panel **P**), for the mean of three male and three female individual flies, after functional analysis by qRT-PCR. The five RNA viral genes are not included. Standard error is also depicted in the bars. Small letters next to the error bars indicate significantly different mean values estimated by pairwise comparisons (either Tukey's or Kruskal-Wallis tests). All comparisons were performed on Ln transformed data except for *macrophage mannose receptor 1*.

(*pNPPase*) was significantly higher in w-CAL as compared to LAB (2.937 vs 0.064), while that of w-GR was intermediate (2.016) but not significantly different from w-CAL (Figure 4E). The same pattern holds true for *Salivary Cys-rich secreted peptide* (vWF domain) and *antigen 5* *precursor* (Figures 4F and 4H). Finally, for *cytochrome P450 6a23-like* (*Cyp6a23*) while the expression of SPIN was higher than LAB (0.179 vs 0.019) and w-CAL was higher than w-GR (1.762 vs 1.083), the differences were not statistically significant (Figure 4G).

Down-regulated genes

Functional analysis for the down-regulated genes was performed for LAB, w-GR and w-CAL populations since our SPIN colony was no longer available. Relative expression of both Hsp genes was not significantly different in the various groups of flies. Hsp70 expression was 1.082-, 2.236- and 0.337-fold for w-GR, LAB and w-CAL, respectively, while Hsp23 expression was 0.095-, 0.149- and 0.034-fold (Figure 4I and 4J). Larval serum protein 1 (Lsp1), on the other hand, was significantly underexpressed in w-CAL flies as compared to both w-GR and LAB (0.012 vs 0.937 and 0.203) (Figure 4K). Similarly, Hexamerin L1 showed higher expression in the sensitive flies (LAB: 0.713, w-GR: 0.17), while for the resistant w-CAL the expression range was 0.001 (Figure 4L). Underexpression was even more pronounced in the chitinase 5 locus of the resistant w-CAL (0.002) compared to both w-GR (0.197) and LAB (0.545) (Figure 4M). The expression pattern of oxidase/peroxidase did not confirm the RNAseq results, since expression of the resistant w-CAL was higher than that observed in the sensitive w-GR and LAB (6.148 vs 1.129 and 0.685) (Figure 4N). The same reverse pattern was observed for Macrophage mannose receptor 1 (MMR) (5.856 vs 0.196 and 0.776) and cell division cycle associated protein7 (Cdc) (1.585 vs 0.784 and 0.0102) (Figures 4O and P).

Discussion


Spinosad is a relatively new and very promising insecticide used against a variety of insect pests. As is the case with any other chemical, resistance has already developed in several natural and greenhouse populations of insects. In several cases of resistance, mutations in the α 6 subunit of the nAChR were shown to be responsible, while in others this locus was shown to not be involved. Yet, general detoxifying systems have also been implicated. In order to understand the mechanism of spinosad resistance in the olive fly, we both looked for mutations in the *Boa*6 nAChR as well as searched the entire transcriptome for potential new loci involved in resistance.

Firstly, the *Boa6* cDNA from the olive fly *Bactrocera* oleae was identified and characterized. The deduced amino acid sequence presented very high similarity with $\alpha 6$ subunits of other diptera and retained typical subunit characteristics with the nAChR homologs. Comparison of the Boa6 between the laboratory sensitive (LAB) and spinosad-resistant (SPIN) strains yielded three homologous amino acid substitutions. This fact most likely excludes the involvement of Boa6 nAChR in resistance, at least under the conditions of the experiment. Indeed, it should be pointed out that all published reports that implicate $\alpha 6$ nAChR subunit in spinosad resistance, the resistance level of the organism is considerably high: ~1200-fold in *D. melanogaster* [22], >2000-fold in *B. dorsalis* [26], >350,000-fold in *F. occidentalis* [27], 1070-fold in *H. virescens* [21], 18,600-fold in *P. xylostella* [24,25]. On the contrary, lower levels of resistance are associated with mechanisms that do not involve target site resistance but, rather, more generalized detoxification systems. This is the case, for example, of *M. domestica* (~150-fold; [20]), *H. armigera* (20-fold; [30]), *S. exigua* (~350-fold; [29]), *T. absoluta* (1.8 to 4.6-fold; [31]) and *B. oleae* (~35-fold; this study).

Secondly, in our efforts to shed light on other possible mechanisms of resistance, we compared the entire transcriptomes of a laboratory sensitive (LAB) and a spinosad resistant (SPIN) strain through RNAseq. During the course of our study, Pavlidi and co-workers produced a basic transcriptome dataset for B. oleae using 454 pyrosequencing [41]. Due to the different sequencing technology used in the present study, our reference transcriptome has fewer long contigs but a significantly higher number of total contigs and contigs with alignments (Table 1), which is more relevant for the purpose of detecting differentially expressed genes. Our comparative LAB vs SPIN analysis yielded several over- and underexpressed loci that are discussed below. Two caveats should be added at this point. Firstly, since LAB and SPIN transcriptomes were sequenced only once, we ought to validate the observed differences through qRT-PCR in multiple samples. In order to ascertain that the observed differences reflected differences that would hold true not only under laboratory but also under natural conditions, we decided to extend our validation experiments in natural spinosad-sensitive and spinosad-resistant populations. As such, wild flies were collected from a presumably untreated orchard in the surroundings of the city of Volos (Greece) (w-GR), where there is no documented use of spinosad and from a site in Sonoma County in California (w-CAL) with the highest documented naturally observed spinosad-resistance ratio (see Methods). However, resistance bioassays showed that while the resistance ratio (RR) of the SPIN strain was ~35, w-CAL and w-GR had RRs 12.96 and 3.14, respectively. Therefore, w-GR cannot be considered as a source of truly spinosad sensitive flies. Indeed, the expression of various genes was shown to be intermediate between LAB and SPIN values. Secondly, the presence of different resistance mechanisms in the laboratory or naturally selected flies cannot be excluded. While this is plausible, we doubt it for three main reasons: One, the genetic background of the SPIN strain and the w-CAL is similar since the SPIN strain was enriched by w-CAL; two, the selective force used in the laboratory was the same as the one used in California (i.e., spinosad); and, three, the difference between w-CAL RR and SPIN RR (~13 vs ~35) is not that large to indicate the presence of a different mechanism. As stated earlier, usually high

RR levels are associated with target-site resistance while lower RR levels are associated with more generalized detox mechanisms. Be that as it may, and even if more resistance mechanisms are at play, our analysis should point towards their underlying common ground. And since spinosad selection is common between SPIN and w-CAL flies, any transcriptome differences with LAB (and partly w-GR) should indicate events involved in spinosad resistance.

Potential interactions between the up- and down-regulated genes were examined through STRING (Search Tool for the Retrieval of Interacting Genes). STRING makes available precomputed results in predicted functional linkages among proteins by comparative genomics and text-mining [46]. STRING analysis using the MCL clustering algorithm yielded several links between the examined differentially expressed genes (Figure 6). The generated network supports the hypothesis of non-randomness in the results and rather reflects a regulation feature by both activator genes (the up-regulated expression) and maybe also repressor genes (down-regulated expression). However, for the characterization of the transcriptional regulatory network and the understanding of these genes dynamic association and their possible involvement in insecticide resistance, we should first consider their function and their well-documented role.

supporting our hypothesis of interacting pathways. STRING Version 9.0 was used for this analysis. Different colored edges indicate the types of evidence used in predicting the associations¹. Up-regulated genes are indicated by red arrows, whereas down-regulated ones by green arrows. ¹A red line indicates the presence of fusion evidence; a green line - neighborhood evidence; a blue line - coocurrence evidence; a purple line - experimental evidence; a yellow line - textmining evidence; a light blue line - database evidence; a black line - coexpression evidence.

Increased energy and metabolism demands

ATP synthase is an important enzyme that provides energy for the cell to use through the synthesis of ATP. Located within the mitochondria, ATP synthase consists of 2 regions: the F_{Ω} portion is embedded in the mitochondrial membrane and functions as a proton pore; and the F_1 portion is inside the matrix of the mitochondria and is associated with the ATP synthase activity. Through differential proteome analysis and enzyme activity assays, increased expression of ATP synthase was found in the midgut of pyrethroid resistant populations of Helicoverpa armigera [47]. Since more energy related proteins (such as vacuolar-type ATPase A/B and arginine kinase) were upregulated, the authors suggested that increased energy metabolism may be a general prerequisite for compensating the costs of energy-consuming detoxification processes. As a matter of fact, inhibitors of mitochondrial ATP synthase, such as Diafenthiuron, are known insecticides for aphids, whiteflies and hoppers [48]. Significantly elevated levels of ATP synthase F_{Ω} subunit 6 were observed in SPIN flies as compared with LAB and w-GR, while w-CAL levels were intermediate (Figure 4B). This constitutes an indication of elevated energy requirements of the resistant flies so as to lever the detoxification process.

The Low affinity cationic amino acid transporter-2 (CAT-2) belongs to a large group of solute carrier proteins, a group of over 300 membrane transport proteins organized into 52 families [49]. These transporters utilize the energy of ATP hydrolysis to transport various substrates across cellular membranes. Several functions are controlled such as protein synthesis, hormone metabolism, catalytic functions, nerve transmission, regulation of cell growth, production of metabolic energy, synthesis of purines and pyrimidines, nitrogen metabolism and biosynthesis of urea. In addition, in the mammalian cells, the uptake of amino acids is mediated by energy-dependent and passive transporters with overlapping substrate specificities. Most energy-dependent transporters are grouped either to the co-transport of Na⁺ or Cl⁻ or to the counter-transport of K⁺. As reported for system y⁺, the CAT proteins catalyze the Na⁺-independent uptake of arginine, lysine and ornithine and the Na⁺-dependent uptake of some neutral amino acids [50]. Both SPIN and w-CAL olive flies showed significantly higher CAT-2 levels compared to LAB and w-GR (Figure 4C). While there are no data in the literature suggesting that CAT-2 may be involved in transport or extrusion of spinosad from the cell, we think that the up-regulation of this locus is related with the up-regulation of ATP synthase and reflects the increased energy and metabolic needs of the resistant flies.

Egg and larval development proteins

Vitellogenins (Vgs) are precursors of the major egg storage protein, vitellin, in many oviparous animals. In

higher Diptera, Vgs are called Yolk proteins (Yps) and are produced by both the fat body and the ovary in the majority of the species. Three main factors regulate vitellogenesis in D. melanogaster: a brain factor, an ovarian factor that stimulates fat bodies Yp synthesis (further recognized as ecdysone) and a thoracic factor (Juvenile Hormone, JH) involved in the Yp uptake by ovaries. JH regulates the Yp synthesis and uptake, while ecdysone is involved only in Yp synthesis [51,52]. In Culex mosquitoes the head factor is released 4-8 minutes after the beginning of feeding [53]. The vitellogenic phase is initiated after feeding on non-autogenous species or after the adult emergence of autogenous species, when the corpora cardiaca stimulating factor (CCSF) is released from the ovary [54,55]. Insect Vgs are synthesized in the fat body in a process that involves substantial structural modifications (e.g., glycosylation, lipidation, phosphorylation, de-phosphorylation, proteolytic cleavage, etc.) of the nascent protein prior to its secretion and transport to the ovaries (for a review see [56,57]). 4-nitro-phenylphosphatase (pNPPase) catalyzes the hydrolysis of nitrophenyl phosphates to nitrophenols. At acid pH it is probably acid phosphatase; at alkaline pH it is probably alkaline phosphatase. In the kissing bug Rhodnius prolixus, acid phosphatase activation follows oocyte fertilization and *pNPPase* seems to be involved in vitellin dephosphorylation [58]. Taken together, pNPPase should follow elevated levels in Yp expression since it is involved in its modification during transport to the ovaries (Figure 4E). In the case of spinosad resistant flies, the elevated levels of Yp2 and, to a lesser extent of pNPPase, observed in the resistant flies is most likely related to events taking place in the fat body surrounding the heads of the insects rather than their brain and probably associated with feeding rather than processes associated to egg development. Furthermore, it has been reported that there is a physiological link between vitellogenin activity, oxidative damage and mortality, suggesting an antioxidant role of vitellogenin. RNAi experiments in bees demonstrated that vitellogenin expression was linked to the bees' level of resistance to oxidative stress [59]. In the same study, excess mortality of vg^- bees was shown to be linked to cellular damage that included a severe oxidative insult to the fat body, after exposure to paraquat. This elevated expression of Yp2 gene in spinosad-resistant flies is somewhat analogous to the observance of persistent production of a vitellogenin-like protein in insecticide-resistant mosquitofish Gambusia affinis. Normally, in the mosquitofish Vg is produced during reproductive season. However, insecticideresistant mosquitofish produce a vitellogenin-like protein year around [60]. The authors suggest that xenobiotics may induce the formation of a vitellogenin-like protein in order to bind and transport insecticides. Finally, we questioned whether the observed up-regulation is female-specific only.

In fact, as expected, functional analysis in three female and three male flies of SPIN, w-CAL, LAB and w-GR showed elevated Yp expression in female SPIN and w-CAL heads only (Figure 5). Interestingly, the within population variability was very high. While values for w-GR and LAB were close to zero (0.0016-0.0548 and 0.00036-0.00079, respectively), values for w-CAL ranged from 3.265 to 17.178 and for SPIN 0.0075 to 5.656. Considering that all SPIN flies fed on constant spinosad diet, the low Yp expression observed in a SPIN female (0.0075) suggests that high Yp2 expression may be protective but not necessary for spinosad resistance in female flies.

By contrast, two storage proteins, hexamerin larval protein 1 (HexL1) and larval serum protein 1 (Lsp1), showed a tendency of down-regulation. In holometabolous insects, which go through distinct stages, essential nutrients obtained in one stage but required in another are sequestered in storage proteins and carried across stages until they are utilized. In that sense, if an insect does not feed or restricts its diet during a specialized stage, its activities should be supported by nutrient intake during a previous feeding stage. Egg development in mosquitoes, for example, heavily depends on a protein-rich blood feed. Nectar feeders, on the other hand, should obtain most protein destined for eggs during the larval stage and stored until synthesis of yolk proteins. This storage takes place through various structurally similar hexamerins (for a review, see [61-63]). Storage proteins are not only produced during larval development. Adult females of the diamondback moth, Plutella xylostella, synthesize hexamerins within hours post eclosion to resequester amino acids that have been utilized until then [64]. Hexamerins are also implicated in JH regulation. In termites, hexamerins are involved in nutrient storage and nutritional signaling and are also known to bind JH [65]. It is thought that by binding to it hexamerins sequester JH, thus preventing it from eliciting downstream effects on developmental gene expression [66]. Indeed, RNAi-based hexamerin silencing affected 15 out of 17 morphogenesis-associated genes that are members of a JH-responsive genomic network [67].

So, why are storage protein transcripts down-regulated in spinosad resistant flies? It is plausible that the resistant w-CAL flies (and to a lesser extent the less resistant w-GR flies) have developed the ability to store sufficient amounts of the necessary amino acids for their adult lives during their larval stages and to not require additional replenishments during adulthood. Such nutrient availability may be necessary for overcoming the elevated demands in energy and metabolism in the 'toxic' environment of the resistant flies. Instead, under 'normal' conditions, when the flies have the luxury of acquiring and store amino acids later in their adult lives, they can activate their storage proteins after a meal. In order to prove this claim, however, further detailed experiments should be performed to assess the expression of storage and related genes during the larval, pupal and adult stages, under different nutritional conditions.

Immunity, detoxification and stress related loci

Six genes that fall in this category have raised our interest. Serine protease 6 (SP6). While the role of other detoxification enzymes in insecticide resistance is well understood, the involvement of proteases/serine proteases is not. Proteases are involved in protein digestion outside the cells and also in the expression and regulation of cellular proteins [68]. Cellular proteases function to create biologically active molecules or destroy biologically active proteins and peptides [69,70]. Additionally, the signalling transduction system/pathways that are controlled by G protein coupled receptors (GPCRs), protein kinase/ phosphatases and proteases are involved in the regulation of P450s genes [71]. Very interestingly, elevated levels of all cytoplasmic and lysosomal proteases were detected in spinosad-resistant M. domestica flies 48 hours after exposure to spinosad at LD₅₀ dose level [72], indicating involvement of proteases in the development of spinosad resistance to the housefly. Two serine protease genes (trypsin and chymotrypsin) were also shown to have threefold higher expression in deltamethrin-resistant Culex pipiens pallens mosquitoes [73]. These two enzymes were further shown to hydrolyze deltamethrin [74]. Moreover, up-regulation of serine proteases was also documented in permethrin resistant Culex quinquefasciatus mosquitoes [75]. Finally, in the mosquito Aedes aegypti, serine proteases are also expressed in the salivary glands and thought to have a defense role against bacterial growth ingested with saliva during sugar meals [76,77]. In the olive fly, the level of serine protease 6 in the resistant SPIN and w-CAL flies strain is significantly elevated compared to LAB (Figure 4D), while w-GR has also considerable expression. Apparently, serine proteases are required not only for the digestion of more complex nutrients of the wild flies, compared to the standardized laboratory diet, but may also participate in the defense against bacterial pathogens during feeding.

An oxidase/peroxidase family protein was found downregulated in the transcriptome of the SPIN strain. However, further comparisons between LAB, w-GR and w-CAL reversed the trend and showed higher level of expression in w-CAL flies. While such proteins present protein-protein binding properties and are known to be involved in defense mechanisms (such as intracellular phagocytosis of apoptotic cells or foreign material) [78], the gene was not further evaluated.

A *macrophage mannose receptor (MMR)* was also found to be down-regulated in the SPIN strain. The MMR is a C-type lectin receptor, a family of surface carbohydratebinding receptors that require calcium for binding. In humans they are known to recognize microbial carbohydrate moieties, also sense products from dying cells and transduce inflammatory signals that modulate the immune system [79]. In crustaceans, on the other hand, they are thought to be involved in the regulation of the exoskeleton calcification [80]. Its expression displayed molt cycle-related differential profile. In the same study, members of the serine protease superfamily also varied their expression during different molting stages. In insects, secretory C-type lectins are thought to play roles in cellular interactions during development [81]. In addition, they are considered important in the immune system, including the detection and neutralization of pathogenic and non-self materials in several insect species [82]. In the mosquito Aedes aegypti and the flesh fly Sarcophaga peregrina, C-type lectins are expressed in the salivary gland and are considered to control bacterial pathogens from ingested meals [76,77,83,84]. In the olive fly transcriptome a macrophage mannose receptor was found to be down-regulated in the SPIN strain but the trend was reversed in the functional analysis of the LAB, w-GR and w-CAL strains and, therefore, cannot be evaluated before further analyses are performed.

A von Willebrand factor domain within a Salivary cysrich peptide was also up-regulated. The majority of vWFcontaining proteins are extracellular. The oldest ones in eukaryotes, however, are parts of intracellular proteins involved in transcription, DNA repair, ribosomal and membrane transport and the proteasome. vWF tends to bind to other proteins and thus it appears to be involved in multiprotein complexes. In insects, huge vWF-containing proteins, such as hemolectin in D. melanogaster and hemocytin in B. mori, are thought to function in the hemolymph coagulation or hemocyte aggregation processes, such as nodule formation [85,86]. Such processes are fundamental responses of insect innate immunity in order to clear microorganisms from the hemocoel. A similar role might be envisaged in SPIN flies of B. oleae. This up-regulation is concordant with the up-regulation of the previously described defense loci. Functional analyses on LAB, w-GR and w-CAL flies confirmed a significant under-expression in the LAB strain (Figure 4F).

Cytochrome P450 6a23-like (Cyp6a23)

This gene belongs to a superfamily of monooxygenases that catalyze the oxidation of organic substances. They are involved in drug metabolism and bioactivation of about 75% of all the different metabolic reactions [87]. *P450s* have been implicated in insecticide resistance against various substances (for reviews see [88-90]). Their role in spinosad detoxification has been hypothesized at least in *Helicoverpa armigera* [91], *Musca domestica* [92] and *Bombus huntii* [93], whereas it has been disputed in *Drosophila melanogaster* [94]. *Cyp6a23* was highly overexpressed in the RNAseq of the olive fly SPIN strain (232,692-fold), albeit not statistically significantly, falling below the stated criteria (p value = 0.0003877, q value = 0.109514). Functional analysis in three female and three male flies of SPIN, LAB, w-CAL and w-GR showed, on average, elevated levels of expression in SPIN and w-CAL compared to LAB (Figure 5). However, w-GR had intermediate levels of expression. Two things should be mentioned at this point. Firstly, the large variability of Cyp6 α 23 levels. In some SPIN individuals the Cyp6 α 23 level was lower than that of some LAB individuals. However, since the RNA for the RNAseq was obtained from a pool of 40 female and 40 male flies, the RNAseg result should reflect the average expression in the population. In addition, P450s expression levels vary throughout the life cycle of the insect [93] and the observed variability in Cyp6 α 23 expression in olive fly individuals may reflect the asynchrony of their life stage. Secondly, w-GR flies had, on average, intermediate levels of $Cyp6\alpha 23$ expression. As mentioned in the Methods section, even though these flies were obtained from a presumably untreated orchard in Greece, their resistance ratio was three times higher than that of the LAB flies and, therefore, w-GR cannot be considered as a source of truly spinosad sensitive flies.

Heat shock proteins

Two heat shock proteins, Hsp70 and Hsp23, were found to be down-regulated in the SPIN transcriptome, a fact that was not confirmed after functional analyses. Hsp70 proteins are very conserved and ubiquitously expressed in virtually all living organisms, being very important in folding and unfolding of proteins, detoxification of pesticides and heavy metals. Hsp23 belongs to a lens alpha crystalline-related superfamily, also found in the salivary gland cells of *D. melanogaster* [95]. In all reported cases of stress and detoxification where Hsp were involved, their transcripts were strongly up-regulated. In order to clarify their role in spinosad resistance in the olive fly, further experiments should be performed.

Antigen 5 precursor (Ant5)

This gene product shows similarity to Drosophila's *Antigen* 5-related 2 gene (Agr2). Agr2 proteins belong to the CAP family of proteins, which include the mammalian Cysteine-rich secretory proteins, wasp venom Antigen 5 proteins, and plant group 1 Pathogenesis-related proteins. The gene product of the *Drosophila melanogaster* ortholog Agr2 is suggested to function either as a novel type of protease inhibitor or as an antimicrobial protein [96]. In our study, Ant5 was over-expressed in the SPIN transcriptome. However, further functional analysis showed over-expression in both the w-GR and w-CAL populations (Figure 4H).

Chitinase 5 (Cht5)

In insects, chitin is known as a scaffold material, providing both exo- and endo-support to the cuticles of the epidermis and trachea as well as the peritrophic matrices lining the gut epithelium [97]. The midgut chitinases seem to be involved in the formation, perforation and degradation of the midgut peritrophic matrix, which protects the gut epithelium from damaging factors, toxins and pathogens [98-100]. Chitinases have also been proposed as biopesticides, as transgenic plants expressing chitinolytic enzymes potentiate the efficacy of other biological toxins (e.g. Bt or fungal toxins) [101,102]. In the olive fly, Cht5 was underexpressed in the SPIN transcriptome and was found down-regulated in the w-CAL populations (Figures 2 and 4M). Given the aforementioned role of *chitinases*, we can hypothesize that by under-expressing *chitinase* genes the resistant flies decrease spinosad penetrance, thus increasing resistance.

Cell division cycle-associated protein 7 (Cdc)

This gene belongs to the HAD-superfamily hydrolase, according to Interpro [103]. RNAseq analysis showed that *Cdc* was under-expressed in the SPIN transcriptome. However, after functional analysis the RNAseq result was not confirmed, since both the resistant w-CAL population and the sensitive w-GR were up-regulated compared to the sensitive LAB flies (Figure 4P). Therefore, further analysis is required in order to clarify *Cdc's* role in spinosad resistance.

RNA viral genes

Five more genetic loci were of curious origin. Two of them were up-regulated: a replicase-like protein was identified as having considerable similarity with a dimethyl transferase domain of an RNA virus; and an elongation factor had similarity with a viral helicase domain. Three of them were down-regulated (*hypothetical* B. oleae polyprotein; RNA-dependent RNA polymerase; microtubule-actin cross-linking factor 1), but they are also implicated with viral functions as homology searches matched sacbrood virus sequences. Finding similarities with viral sequences is not surprising. In fact, the presence of viral sequences has been reported in previous both smaller and larger transcriptome sequencing efforts [41,104,105]. Obviously, such genes reflect the presence of RNA virus infections in different laboratory or wild populations. The impact of such infections has not been studied and cannot be assessed at this point whether this might have been among the causes of our SPIN colony collapse.

Conclusion

Adaptation and survival of the flies in the altered environment caused by insecticide stress appears to be a consequence of changes in multiple genes' expression, affecting both biological and physiological pathways. Our perception about the development of insecticide resistance in insects, traditionally attributed to either a target site alteration or the up-regulation of various detoxification genes (such as P450s, esterases and GSTs), is recently changing due to our ability to address such questions in a more holistic way through transcriptomic analysis. This gives us the opportunity to consider diverse regulatory networks of interacting genes via complex mechanisms. In the present study, we conducted whole transcriptome comparative analyses between spinosad resistant and susceptible olive flies, in order to investigate and identify genetic loci and molecular mechanisms that are most likely to be involved in spinosad resistance. The observed changes at the RNA level as well as the functional analyses and bioassays, point towards a multi-level impact of the insecticide to the insect's physiology. Our results indicate that the organism's response to this novel environmental stressor mainly affects energy metabolism pathways, immunity defense pathways and detoxification. The oxidative, xenobiotic, and innate immune stress response pathways appear to be coordinated, leading to the regulation of numerous cellular and biological/physiological processes. Further studies are required to determine the molecular mechanisms and significance of this cross-regulation.

Methods

Ethics statement

The study was carried out on laboratory reared olive flies and wild olive flies collected from the area around the city of Volos, Greece, and the Sonoma County in California. No specific permissions are required for these experiments or collections, since these studies did not involve endangered or protected species.

Fly culture and stocks

Laboratory strain

The laboratory strain of the olive fly (LAB) is part from the original stock from the Department of Biology, 'Demokritos' Nuclear Research Centre, Athens, Greece, and has been reared in our laboratory for over 15 years. The flies are reared at 25°C with a 12 h light/12 h dark photoperiod in $30 \times 30 \times 30$ cages, as described by [106-108].

Development of a spinosad-resistance colony

A spinosad resistant strain (SPIN) was also developed in our laboratory. Starting material for this colony was the aforementioned LAB colony that was supplemented with \sim 1000 wild flies from Argalasti (Pelion, Greece). Increasing amounts of spinosad were gradually introduced into the colony's feeding water that reached 0.04 g/ml after 10 generations. The colony was maintained for about 22 generations (\sim 2 years) under constant 0.04 g/ml spinosad selection. This amount of spinosad corresponds to approximately 2× the recommended amount for field applications that would result in 100% mortality. It also corresponds to 125× the LC50 of the susceptible LAB strain. In order to increase the resistance to spinosad, the colony was refreshed a second time with wild flies from Sonoma County (CA, USA), since this area was shown to have the highest spinosad resistance level [109]. Six months later the colony practically crashed and was recovered by a single female, under no selection. Progeny of that female were put under gradually increasing amounts of spinosad. The colony recovered previous levels of resistance (0.04 g/ml) after only 4 generations. After a total of 46 generations, a more precise estimation of the resistance ratio (RR) was obtained by ingestion bioassays, as described in Kakani et al. [109], showing that resistance level had reached 35×. This is the stage from where all spinosad resistant laboratory flies (referred to as SPIN throughout the text) were collected, both for the isolation of the nAChR and the RNAseq analysis. Finally, during the fall of 2012, entirely unexpectedly and without any obvious changes in the insectary environment, the spinosad resistant colony crashed. Initially it was noted that females did not oviposit in the offered waxed cone, while both male and female adult numbers started to decline. During that time, new wild material arrived from California, which was intended to enrich the laboratory colony with new alleles. Nonetheless, after about 3 months of continuous efforts the last adult flies died and no progeny emerged.

Field-collected flies

Wild flies were collected from two geographical locations, one from an untreated orchard in Greece [Agria, Pelion (w-GR)] and another from a different site in Sonoma County [CA, USA (w-CAL)] that was the source of flies used to refresh the SPIN strain, but where flies had also shown highest levels of spinosad resistance in the Kakani et al. study [109]. Contact bioassays were performed on these flies according to Kakani et al. [109], using seven doses of spinosad ranging between 1/2× to 1/128×, plus a blank control of acetone. LD₅₀ values and 95% confidence intervals were calculated by probit analysis using SPSS v.13 (SPSS Inc, Chicago, IL). The calculated resistance ratio (RR) of the w-CAL was 12.96 (11.62-14-28) whereas that of the w-GR was 3.14 (2.25-4.2). Infected olives were brought into the laboratory and emerged flies were put in $30 \times 30 \times 30$ cages and fed on the standard yeast hydrolysate diet [107]. Female flies were allowed to oviposit in fresh olives, since wild olive flies do not oviposit on artificial substrates. Flies from this F1 generation were used for the functional analysis experiments described in the Results.

Extraction of RNA, cDNA synthesis, cloning of nAchR Boα6 and sequencing

Total RNA was isolated from pools of four heads of adult flies from the LAB and SPIN strains with the use of TRIzol[®] Reagent (Ambion-Invitrogen). One to five micrograms of total RNA was used for first strand synthesis of poly(A) of cDNA using the MMLV high performance Reverse Transcriptase (GeneOn) and random primers (GeneOn) according to the manufacturer's instructions.

Partial cDNA of the LAB acetylcholine nicotinic receptor $\alpha 6$ gene of *B. oleae* was amplified by PCR using primers Bdα6-F (ACATGGTTCCCATTCGATGACC) and Bda6-R (GCGACCATGAACATGATGCAATT) designed on conserved regions of the published nAChRa6 cDNA sequence of *Bactrocera dorsalis* (Bdα6-JN560169.1) [26]. The PCR amplification reaction consisted of 2 μ l of the first strand cDNA reaction mix as a template, 0.7 µl of 10 mM primers, 0.2 mM dNTPs, 1.5 mM MgCl₂ and 1unit Taq DNA Polymerase (GeneOn) in a 20 µl reaction. Cycling conditions were 95°C for 5 min, followed by 30 cycles of 95°C for 30s, 49°C for 2 min and 72°C for 1.5 min and a final extension at 72°C for 10 min in a thermal cycler (MJ Mini Biorad). The amplified PCR product was then separated in a 1% agarose gel, stained with ethidium bromide. The amplified PCR product was isolated by the GF-1 Gel recovery kit (Vivantis) and subcloned into the pBluescriptII SK(+) plasmid vector and sequenced. Based on the obtained sequence, four gene specific primers were designed to amplify the full-length cDNA: two reverse primers for 5'-RACE PCR (5GSP1: 5'- GTCCTTAGAT TTCAGCTACC-3' for the first round reaction and 5GSP2: 5'-GGGCGGGTGGGTATAAGTAT-3' for the nested reaction) and two forward primers for 3'-RACE PCR (3GSP1: 5'- CACAACGGTGGAGGAGCATC-3' for the first round reaction and 3GSP2: 5'-GGGCGGGTGGG TATAAGTAT-3' for the nested reaction). A poly-A tail was added to the 3'-end of the resulting strand of 5'-RACE by terminal deoxynucleotidyl transferase (TdT, Biolabs). Thermal cycling conditions for the 5'- and 3'-RACE were: pre-denaturation 5 min at 94°C, 30 cycles of 94°C for 30 sec, 49/52°C (first/second round) for 45 sec and 72°C for 2 min (according to the size of the expected fragment) with a final extension of 15 min at 72°C. The resulting PCR products of 5'-RACE and 3'-RACE were subcloned into pBluescriptII SK (+) vector and sequenced. Each time plasmids were sequenced, three different isolates were used and no variation was observed.

Sequence comparison between sensitive and resistant *Bactrocera oleae* nAChRa6 subunits

For comparison of the *Boa6* transcripts, total RNA was extracted from a pool of 4 adult heads from the two strains (LAB and SPIN), as described above. The specific primer pair Boa6-F (5'-AGATTAGTGACAGCATAACC

G-3') and Bo α 6-R (5'-TCTATCCACAACCATTGCCG C-3') was used for the amplification of the full-length open reading frame of BoAChR- α 6 gene. The PCR products were sequenced directly with the use of Bo α 6-F, Bo α 6-R and two more internal primers (Bo α 6FI: 5'-AT GAATCGGAATATGGAG-3' and Bo α 6R1: 5'-AACGGA TTTAATCCAAGG-3'). No multiple peaks were observed in the obtained sequences, indicating the absence of sequence polymorphism in the pools.

Nucleotide sequence similarity searches were performed using BLAST [110]. Multiple sequence alignments [111] with other insect nAChR subunits were performed with ClustalW2 [112]. The calculated molecular weight and isoelectric point of the putative protein encoded by $Bo\alpha 6$ were predicated by Compute pI/Mw tool in Expasy Server [113]. Phosphorylation sites and N-linked glycosylation sites were identified by the PROSITE database [114].

RNA isolation for library preparation and functional analysis

Total RNA was isolated from fly heads with the use of TRIzol® Reagent (Ambion-Invitrogen) following the instructions of the manufacturer with minor modifications. More specifically, RNA was extracted from forty male and forty female heads from the laboratory colony (LAB) and from an equal number of spinosad resistant fly heads (SPIN). For more complete sequence assembly, two more libraries were constructed and sequenced: a FEMALE library made of female accessory glands and spermathecae of ~300 female flies and a MALE library made of testes of ~150 male flies [115]. RNA extraction was followed by an additional DNA removal using the TURBO DNA-free Kit (Ambion-Invitrogen), according to manufacturer's instructions. The integrity of RNA was assessed by 1% agarose gel electrophoresis and the purity of all RNA samples was evaluated at Fleming Institute (Greece) with the use of (Agilent 2100 Bioanalyzer) and NanoDrop (2000).

For functional analysis, RNA was extracted as described above from three different individual male and female heads from the LAB strain, the SPIN resistant strain, the Sonoma County wild population (w-CAL) and the Agria (w-GR) wild population.

Whole transcriptome library preparation for next-generation sequencing with the SOLiD 4 Sequencing System

RNA transcripts expressed in the head of the spinosadsensitive (LAB) and spinosad-resistant (SPIN) olive fly strains were used to construct cDNA library for high throughput sequencing analysis on the SOLiD 4 Sequencing System. More specifically, polyadenylated RNA (polyA-RNA) was isolated from 5 μ g of total RNA using the Dynabeads Oligo(dT) kit (Ambion, Life Technologies Corporation). The isolated polyA-RNA was randomly fragmented by chemical hydrolysis at 94°C for 5 minutes and was then treated with antarctic phosphatase to remove phosphate groups from the fragments' ends, followed by treatment with T4 polynucleotide kinase to add a Pi at the 5' end of each fragment. The resulting RNA fragments were hybridized and ligated to the P1 and P2 adaptor sequences specifically designed for sequencing with the SOLiD system (SOLiD Total RNA-Seq Kit, Life Technologies Corporation). The RNA produced was reverse transcribed to cDNA which was then amplified in a 15-cycle PCR. At this step, the use of different barcoded 3' PCR primers from the selection included in the SOLiD barcoding kit allowed the preparation of cDNA libraries for multiplex sequencing. From the cDNA produced, only fragments of average size 200-300 bp were selected with two rounds of magnetic bead purification (Agencourt AMPure XP Reagent, Beckman Coulter).

The quality and size of the purified cDNA library was assessed on the Agilent Bioanalyzer 2100 (Agilent Technologies Inc.) and with quantitative PCR using the Library Quant Kit ABI Solid (KAPA Biosystems). A multiplex library mix (500pM) was used to prepare a full-slide for analysis on the SOliD 4 Sequencing System (Applied Biosystems) with 35 + 50 bp PE –chemistry.

Bioinformatics analysis

The reads of the libraries were assembled to construct the reference transcriptome using the SOAPdenovo assembler [39] with a word size of 25 nt and using all paired and unpaired reads. Annotation of the assembled sequences was obtained by aligning against the NCBI non-redundant (Nr) protein database using blastx [116] and collecting the annotations with the BLAST2GO tool [40]. TopHat [117] was used to generate a spliced alignment to the reference transcriptome. Transcripts were assembled using Cufflinks and Cuffdiff [43] was used in order to reveal differentially expressed genes. SNP calling was performed with the mpileup tool and converted to the vcf fomat using the vcfutils, both from the SAMTOOLS package [42]. The SNP loci were intersected with the gene coordinates using the intersectBed tools from the BEDtools suite [118].

Expression stability of candidate reference genes in *B. oleae* head

In order to find the most suitable reference gene for gene expression analyses in *B. oleae* head tissue, nine different housekeeping genes commonly used in other dipteran species were analyzed. The nine genes were: *RPL19 (ribosome protein L19), tbp (TATA-binding protein), ubx (ultrabithorax), GAPDH (glyceraldehyde 3-*

phosphate dehydrogenease), α -TUB (α -tubulin), β -TUB (β -tubulin), 14-3-3zeta, RPE (RNA polymerase II) and actin3. To determine the expression stability of the selected genes in *B. oleae* head, the expression of the reference genes was measured in 24 heads (6 individuals from each of the LAB, SPIN, w-GR and w-CAL populations, i.e., 24 biological replicates) in duplicate reactions (two technical replicates). The amplification efficiency of the reactions was calculated by the CFX Manager^{**} software (Bio-Rad) (Additional file 1: Table S4). Using the comparative Cq method with a procedure of specific PCR efficiency correction, all the Cq values were converted to relative quantities and transformed to an input file format with raw data for subsequent analysis by the Normfinder Excel applications.

Normfinder [119] is an algorithm for identifying the optimal normalization gene among a set of candidate genes. This software is based on a mathematical model of gene expression that enables estimation not only of the overall variation of the candidate normalization genes but also of the variation between samples subgroups of the sample set [44].

BestKeeper determines the most stably expressed genes based on the coefficient of correlation to the BestKeeper Index, which is the geometric mean of the candidate reference gene Cq values. Additionally, it calculates the standard deviation (SD) and the coefficient of variation (CV) based on the Cq values of all candidate reference genes [45]. Reference genes are identified as the most stable genes, i.e. those that exhibit the lowest coefficient of variance and standard deviation [120].

Additional file 1: Table S5 presents the data on the ranking of the tested reference genes.

Functional analysis of spinosad-resistance differentially expressed genes

Specific primers for the amplification of the differentially expressed genes revealed by the transcriptome analysis were designed by Primer-BLAST [121] (Additional file 1: Table S4).

For the functional analysis experiments, RNA was extracted from the heads of six individual flies (equal number of males and females) of all different strains and populations described previously. Subsequently, one microgram of each DNA-free total RNA was converted into cDNA using 300 ng Random hexamer primers (equimolar mix of N₅A, N₅G, N₅C and N₅T), 200 units MMLV Reverse Transcriptase (Geneon), 5X reaction buffer, 40 mM dNTP mix and 40 units RNase Inhibitor (GeneOn) according to the manufacturer's instructions.

Relative quantitation was used to analyze changes in expression levels of the selected genes using a Real-time PCR approach. Expression values were calculated as the geometric mean of the relative expression of each target gene against the expression of each one of the reference genes tbp and 14-3-3 zeta gene. The qRT-PCR conditions were: polymerase activation and DNA denaturation step at 95°C for 4 min, followed by 40 cycles of denaturation at 95°C for 30 s, annealing/extension and plate read at 56°C for 30 s and finally, a step of melting curve analysis at a gradual increase of temperature over the range 55°C to 95°C. In this step, the detection of one gene specific peak and the absence of primer dimer peaks was assured. Each reaction was performed in a total volume of 15 μ l, containing 5 μ l from a dilution 1:10 of the cDNA template, 1X iTaq Universal SYBR Green Supermix (Bio-Rad) and 400 nM of each primer. The reactions were carried out on Bio-Rad Real-Time thermal cycler CFX96 (Bio-Rad, Hercules, CA, USA) and data analysed using the CFX Manager[™] software. All assays were performed three times (three technical replicates), contained six different individuals (six biological replicates) and three negative controls. A standard curve was generated for each gene using 5-fold serial dilutions of pooled cDNA from the flies head. The PCR efficiency (E) and the correlation coefficient (R^2) characterizing each standard curve are given in Additional file 1: Table S4. Efficiencies for all tested genes varied between 93.3% to 109.2%. The $2^{-\Delta\Delta Ct}$ method was used for the analysis of relative gene expression [122].

String analysis

In order to investigate the potential interactions between the up- and down-regulated genes, we queried the resource STRING (Search Tool for the Retrieval of Interacting Genes) which makes available precomputed results in predicted functional linkages among proteins by comparative genomics and text-mining [46]. Specifically, the gene IDs of the *Drosophila melanogaster* orthologs of our genes were used as input in the online database resource STRING in order to be placed in a biological context according to a large number of computational predicted and experimentally determined functional associations and protein-protein interactions. Results were graphically displayed and scored using a STRING specific scoring scheme that correlates with validated proteinprotein functional associations.

Statistical analysis

Statistical analysis was performed using GraphPad Prism 6 [123] after normalization of raw Cq values. The normality for all genes was based on the Kolmogorov-Smirnov and Dallal-Wilkinson-Lillie tests (alpha = 0.05). For the genes that passed the normality test, one-way ANOVA and the Tukey's multiple comparison tests were performed. Genes that did not pass the normality test were analyzed by the non-parametric Kruskal-Wallis test with P < 0.05.

Availability of supporting data

All data have been deposited at the Sequence Read Archive (SRA) of NCBI. All reads for each sample are summarized at the BioProject page: http://www.ncbi.nlm.nih.gov/bioproject/PRJNA231981.

Additional file

Additional file 1: Table S1. Polymorphic sites in the nAChR a6-subunit sequences in the olive fly LAB and SPIN strains Table S2. Up- and down-regulated genes in spinosad resistant olive fly heads. Table S3. Basic statistics of relative expression of the up- and down-regulated genes. Table S4. Primer sequences used for q-PCR. Table S5. Normfinder and Bestkeeper analysis results.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

ES maintained the laboratory strains, participated in the construction of the transcriptome libraries, performed the functional and statistical analyses and part of the bioinformatics analysis; MG cloned and analysed the BoaG nAChR; MR performed most of the bioinformatic analysis of the transcriptome; KT performed the network analysis and part of the bioinformatic analysis; NZ reared the spinosad resistant strain; KS constructed the transcriptome libraries and analysed the sequencing data; FGZ participated in the design of the study and organized the California samples; JR directed the bioinformatics analysis; KDM designed and coordinated the study. All authors participated in drafting the manuscript and read and approved the final document.

Acknowledgements

This research has been co-financed by: the European Union (ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework - Research Funding Program: Heracleitus II, "Investing in knowledge society through the European Social Fund"; State of California Specialty Crops Block Grant Program award SCB10037; and the two postgraduate programs of the Department of Biochemistry and Biotechnology of the University of Thessaly ("Biotechnology - Nutrition and Environment" and "Molecular Biology and Genetics applications"). We would also like to thank Dr Evdoxia Kakani for her support with valuable suggestions and ideas and the two anonymous reviewers for their useful criticisms that helped to clarify many points in this final version of the manuscript.

Author details

¹Department of Biochemistry and Biotechnology, University of Thessaly, Ploutonos 26, Larissa, Greece. ²Institute of Molecular Biology and Genetics, Biomedical Sciences Research Centre "Alexander Fleming", Athens, Greece. ³Department of Entomology, University of California, Davis, CA, USA. ⁴Present address: Department of Human Genetics, McGill University, Montreal, QC, Canada.

Received: 11 May 2014 Accepted: 31 July 2014 Published: 25 August 2014

References

- Michelakis SE, Neuenschwander P: Estimates of the crop losses caused by Dacus oleae (Gmel.) (Diptera, Tephritidae) in Crete. In *Fruit Flies of Economic Importance*. Edited by Cavalloro R. Rotterdam, Netherlands: AA:Balkema Publishers; 1983:603–611.
- Mazomenos BE: Estimates of the crop losses caused by Dacus oleae (Gmel.) (Diptera, Tephritidae) in Crete. In Fruit Flies of Economic Importance. Edited by Robinson AS, Hooper G. Amsterdam: Elsevier Science Publishers B.V., Amsterdam; 1989:169–177.
- Bueno AM, Jones O: Alternative methods for controlling the olive fly, Bactrocera oleae, involving semiochemicals. *IOBC wprs Bull* 2002, 25:147–155.

- Skouras PJ, Margaritopoulos JT, Seraphides NA, Ioannides IM, Kakani EG, Mathiopoulos KD, Tsitsipis JA: Organophosphate resistance in olive fruit fly, Bactrocera oleae, populations in Greece and Cyprus. *Pest Manag Sci* 2007, 63:42–48.
- Margaritopoulos JT, Skavdis G, Kalogiannis N, Nikou D, Morou E, Skouras PJ, Tsitsipis JA, Vontas J: Efficacy of the pyrethroid alpha-cypermethrin against Bactrocera oleae populations from Greece, and improved diagnostic for an iAChE mutation. *Pest Manag Sci* 2008, 64:900–908.
- Vontas JG, Hejazi MJ, Hawkes NJ, Cosmidis N, Loukas M, Hemingway J, Janes RW: Resistance-associated point mutations of organophosphate insensitive acetylcholinesterase, in the olive fruit fly Bactrocera oleae. *Insect Mol Biol* 2002, 11:329–336.
- Kakani EG, Mathiopoulos KD: Organophosphosphate resistance-related mutations in the acetylcholinesterase gene of Tephritidae. J Appl Entomol 2008, 132:762–771.
- Kakani EG, Bon S, Massoulié J, Mathiopoulos KD: Altered GPI modification of insect AChE improves tolerance to organophosphate insecticides. Insect Biochem Mol Biol 2011, 41:150–158.
- Sparks T, Thompson GD, Larson LL, Kirst HA, Jantz O, Worden TV, Hertlein MB, Busacca JD: Biological characteristics of the spinosyns: a new and naturally derived insect control agent. In *Proceedings of the 1995 Beltwide Cotton Conference*. San Antonio, Texas: National Cotton Council of America, Memphis, Tennessee; 1995:903–907.
- Tomlin C, Tomlin C, Tomlin C (Eds): *The e-Pesticide Manual*. 13th edition. Hants, UK: BCPC Publ Alton; 2004.
- 11. Salgado VL: The modes of action of spinosad and other insect control products. *Down to Earth* 1997, **52**:35–43.
- Thompson GD, Dutton R, Sparks TC: Spinosad a case study: an example from a natural products discovery programme. *Pest Manag Sci* 2000, 56:696–702.
- Watson G: Actions of insecticidal spinosyns on c-aminobutyric acid responses from small-diameter cockroach neurons. *Pestic Biochem Physiol* 2001, 71:20.
- Thompson GD, Busacca JD, Jantz OK, Kirst HA, Larson LL, Sparks TC: Spinosyns: an overview of new natural insect management systems. In Proc Beltwide Cott Conf, Natl Cott Counc San Antonio, TX, 1995:1039–1043.
- 15. Wolstenholme AJ, Kaplan RM: Resistance to macrocyclic lactones. *Curr Pharm Biotechnol* 2012, **13**:873–887.
- Moulton JK, Pepper DA, Dennehy TJ: Studies of Resistance of Beet Armyworm (Spodoptera exigua) to Spinosad in Field Populations From the Southern USA and Southeast Asia. In Proc Beltwide Cott Conf, Volume 2. Orlando, Florida, USA: 1999:884–887.
- 17. Moulton JK, Pepper DA, Dennehy TJ: Beet armyworm (Spodoptera exigua) resistance to spinosad. *Pest Manag Sci* 2000, 848:842–848.
- Hsu J-C, Haymer DS, Chou M-Y, Feng H-T, Chen H-H, Huang Y-B, Mau RFL: Monitoring resistance to spinosad in the melon fly (Bactrocera cucurbitae) in Hawaii and Taiwan. *Scientific World J* 2012, 2012;750576.
- Mota-Sanchez D, Hollingworth RM, Grafius EJ, Moyer DD: Resistance and cross-resistance to neonicotinoid insecticides and spinosad in the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae). *Pest Manag Sci* 2006, 62:30–37.
- Shono T, Scott JG: Spinosad resistance in the housefly, Musca domestica, is due to a recessive factor on autosome 1. *Pestic Biochem Physiol* 2003, 75:1–7.
- 21. Young HP, Bailey WD, Roe RM: Spinosad selection of a laboratory strain of the tobacco budworm, Heliothis virescens (Lepidoptera: Noctuidae), and characterization of resistance. *Crop Prot* 2003, **22**:265–273.
- 22. Perry T, McKenzie JA, Batterham P: A Dalpha6 knockout strain of Drosophila melanogaster confers a high level of resistance to spinosad. *Insect Biochem Mol Biol* 2007, **37:**184–188.
- Watson GB, Chouinard SW, Cook KR, Geng C, Gifford JM, Gustafson GD, Hasler JM, Larrinua IM, Letherer TJ, Mitchell JC, Pak WL, Salgado VL, Sparks TC, Stilwell GE: A spinosyn-sensitive Drosophila melanogaster nicotinic acetylcholine receptor identified through chemically induced target site resistance, resistance gene identification, and heterologous expression. *Insect Biochem Mol Biol* 2010, 40:376–384.
- 24. Baxter SW, Chen M, Dawson A, Zhao J-Z, Vogel H, Shelton AM, Heckel DG, Jiggins CD: Mis-spliced transcripts of nicotinic acetylcholine receptor alpha6 are associated with field evolved spinosad resistance in Plutella xylostella (L.). *PLoS Genet* 2010, 6:e1000802.

- Rinkevich FD, Chen M, Shelton AM, Scott JG: Transcripts of the nicotinic acetylcholine receptor subunit gene Pxylα6 with premature stop codons are associated with spinosad resistance in diamondback moth, Plutella xylostella. *Invert Neurosci* 2010, 10:25–33.
- Hsu J-C, Feng H-T, Wu W-J, Geib SM, Mao C, Vontas J: Truncated transcripts of nicotinic acetylcholine subunit gene Bdα6 are associated with spinosad resistance in Bactrocera dorsalis. *Insect Biochem Mol Biol* 2012, 42:806–815.
- Puinean AM, Lansdell SJ, Collins T, Bielza P, Millar NS: A nicotinic acetylcholine receptor transmembrane point mutation (G275E) associated with resistance to spinosad in Frankliniella occidentalis. J Neurochem 2013, 124:590–601.
- Scott JG: Unraveling the mystery of spinosad resistance in insects. J Pestic Sci 2008, 33:221–227.
- Wang W, Mo J, Cheng J, Zhuang P, Tang Z: Selection and characterization of spinosad resistance in Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). Pestic Biochem Physiol 2006, 84:180–187.
- Wang D, Qiu X, Ren X, Niu F, Wang K: Resistance selection and biochemical characterization of spinosad resistance in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). *Pestic Biochem Physiol* 2009, 95:90–94.
- Reyes M, Rocha K, Alarcón L, Siegwart M, Sauphanor B: Metabolic mechanisms involved in the resistance of field populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) to spinosad. *Pestic Biochem Physiol* 2012, 102:45–50.
- Karlin A: Emerging structure of the nicotinic acetylcholine receptors. Nat Rev Neurosci 2002, 3:102–114.
- Le Novère N, Changeux J-P: Molecular evolution of the nicotinic acetylcholine receptor: an example of multigene family in excitable cells. J Mol Evol 1995, 40:155–172.
- Kao PN, Dwork AJ, Kaldany RR, Silver ML, Wideman J, Stein S, Karlin A: Identification of the alpha subunit half-cystine specifically labeled by an affinity reagent for the acetylcholine receptor binding site. J Biol Chem 1984, 259:11662–11665.
- 35. Molecular Bioinformatics Center. (PS)2-v2: Protein Structure Prediction Server [http://ps2v2.life.nctu.edu.tw]
- Grauso M, Reenan RA, Culetto E, Sattelle DB: Novel putative nicotinic acetylcholine receptor subunit genes, Dalpha5, Dalpha6 and Dalpha7, in Drosophila melanogaster identify a new and highly conserved target of adenosine deaminase acting on RNA-mediated A-to-I pre-mRNA editing. *Genetics* 2002, 160:1519–1533.
- Jin Y, Tian N, Cao J, Liang J, Yang Z, Lv J: RNA editing and alternative splicing of the insect nAChR subunit alpha6 transcript: evolutionary conservation, divergence and regulation. *BMC Evol Biol* 2007, 7:98.
- Rinkevich FD, Scott JG: Reduction of dADAR activity affects the sensitivity of Drosophila melanogaster to spinosad and imidacloprid. *Pestic Biochem Physiol* 2012, 104:163–169.
- Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K, Li S, Yang H, Wang J, Wang J: De novo assembly of human genomes with massively parallel short read sequencing. *Genome Res* 2010, 20:265–272.
- Götz S, García-Gómez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talón M, Dopazo J, Conesa A: High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 2008. 36:3420–3435.
- Pavlidi N, Dermauw W, Rombauts S, Chrisargiris A, Van Leeuwen T, Vontas J: Analysis of the Olive Fruit Fly Bactrocera oleae Transcriptome and Phylogenetic Classification of the Major Detoxification Gene Families. *PLoS One* 2013, 8:e66533.
- Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, and 1000 Genome Project Data Processing Subgroup: The Sequence Alignment/Map format and SAMtools. *Bioinformatics* 2009, 25:2078–2079.
- Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 2010, 28:511–515.
- 44. Andersen CL, Jensen JL, Ørntoft TF: Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. *Cancer Res* 2004, 64:5245–5250.
- 45. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP: Determination of stable housekeeping genes, differentially regulated target genes and sample

integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnol Lett 2004, 26:509–515.

- von Mering C, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B: STRING: a database of predicted functional associations between proteins. *Nucleic Acids Res* 2003, 31:258–261.
- Konus M, Koy C, Mikkat S, Kreutzer M, Zimmermann R, Iscan M, Glocker MO: Molecular adaptations of Helicoverpa armigera midgut tissue under pyrethroid insecticide stress characterized by differential proteome analysis and enzyme activity assays. Comp Biochem Physiol Part D Genomics Proteomics 2013, 8:152–162.
- IRAC International MoA Working Group: IRAC MoA Classification Scheme. 2011:1–23.
- Hediger MA, Romero MF, Peng JB, Rolfs A, Takanaga H, Bruford EA: The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteins. *Pflugers Arch* 2004, 447:465–468.
- 50. White MF: The transport of cationic amino acids across the plasma membrane of mammalian cells. *Biochim Biophys Acta* 1985, **822**:355–374.
- Handler AM, Postlethwait JH: Endocrine control of vitellogenesis in Drosophila melanogaster: effects of the brain and corpus allatum. *J Exp* Zool 1977, 202:389–402.
- Postlethwait JH, Handler A: The roles of juvenile hormone and 20-hydroxy-ecdysone during vitellogenesis in isolated abdomens of Drosophila melanogaster. J Insect Physiol 1979, 25:455–460.
- Baldridge GD, Feyereisen R: Ecdysteroid titer and oocyte growth in the northern house mosquito, Culex pipiens L. Comp Biochem Physiol A Comp Physiol 1986, 83:325–329.
- Borovsky D: Release of egg development neurosecretory hormone in Aedes aegypti and Aedes taeniorhynchus induced by an ovarian factor. *J Insect Physiol* 1982, 28:311–316.
- Lea AO, Van Handel E: A neurosecretory hormone-releasing factor from ovaries of mosquitoes fed blood. J Insect Physiol 1982, 28:503–508.
- Hagedorn H, Kunkel J: Vitellogenin and Vitellin in Insects. Annu Rev Entomol 1979, 24:475–505.
- 57. Tufail M, Takeda M: Molecular characteristics of insect vitellogenins. *J Insect Physiol* 2008, **54:**1447–1458.
- Fialho E, Silveira AB, Masuda H, Silva-Neto MA: Oocyte fertilization triggers acid phosphatase activity during Rhodnius prolixus embryogenesis. Insect Biochem Mol Biol 2002, 32:871–880.
- Seehuus SC, Norberg K, Gimsa U, Krekling T, Amdam GV: Reproductive protein protects functionally sterile honey bee workers from oxidative stress. Proc Natl Acad Sci U S A 2006, 103:962–967.
- Denison MS, Chambers JE, Yarbrough JD: Persistent vitellogenin-like protein and binding of DDT in the serum of insecticide-resistant mosquitofish (Gambusia affinis). Comp Biochem Physiol C 1981, 69C:109–112.
- 61. Telfer WH, Kunkel JG: The function and evolution of insect storage hexamers. *Annu Rev Entomol* 1991, **36**:205–228.
- 62. Kanost M, Kawooya J, Law J, Ryan R, Van Heusden M, Ziegler R: Insect hemolymph proteins. *Adv Insect Physiol* 1990, **22**:299–396.
- 63. Haunerland NH: Insect storage proteins: gene families and receptors. Insect Biochem Mol Biol 1996, 26:755–765.
- 64. Wheeler DE, Tuchinskaya II, Buck NA, Tabashnik BE: Hexameric storage proteins during metamorphosis and egg production in the diamondback moth, Plutella xylostella (Lepidoptera). *J Insect Physiol* 2000, **46**:951–958.
- Tawfik AI, Kellner R, Hoffmann KH, Lorenz MW: Purification, characterisation and titre of the haemolymph juvenile hormone binding proteins from Schistocerca gregaria and Gryllus bimaculatus. J Insect Physiol 2006, 52:255–268.
- Zhou X, Oi FM, Scharf ME: Social exploitation of hexamerin: RNAi reveals a major caste-regulatory factor in termites. *Proc Natl Acad Sci U S A* 2006, 103:4499–4504.
- 67. Zhou X, Tarver MR, Scharf ME: Hexamerin-based regulation of juvenile hormone-dependent gene expression underlies phenotypic plasticity in a social insect. *Development* 2007, **134**:601–610.
- Wilkins RM, Ahmed S, Mantle D: Intracellular proteases: their role, insecticide toxicity and resistance mechanisms. *The 1998 Brighton Conference-Pests & Diseases* 1998, 511–516.
- Bond JS, Butler PE: Intracellular proteases. Annu Rev Biochem 1987, 56:333–364.

- 70. Rivett AJ: Intracellular protein degradation. Essays Biochem 1990, 25:39-81.
- Li M, Reid WR, Zhang L, Scott JG, Gao X, Kristensen M, Liu N: A whole transcriptomal linkage analysis of gene co-regulation in insecticide resistant house flies. Musca domestica. *BMC Genomics* 2013, 14:803.
- Saleem MA, Ashfaq M, Shakoori AR: In vivo Effect of Spinosad on Proteases of Insecticide-Resistant and Susceptible Strains of Musca domestica. *Pakistan J Zool* 2009, 41:455–462.
- Gong M, Shen B, Gu Y, Tian H, Ma L, Li X, Yang M, Hu Y, Sun Y, Hu X, Li J, Zhu C: Serine proteinase over-expression in relation to deltamethrin resistance in Culex pipiens pallens. *Arch Biochem Biophys* 2005, 438:53–62.
- Yang Q, Zhou D, Sun L, Zhang D, Qian J, Xiong C, Sun Y, Ma L, Zhu C: Expression and characterization of two pesticide resistance-associated serine protease genes (NYD-tr and NYD-ch) from Culex pipiens pallens for metabolism of deltamethrin. *Parasitol Res* 2008, **103**:507–516.
- 75. Liu N, Reid WR, Zhang L: A whole transcriptome approach to investigate the genes involved in permethrin resistance in the southern house mosquito culex quinquefasciatus. *J Proteomics Bioinform* 2012, **5**:95.
- 76. Marinotti O, James AA, Ribeiro JMC: Diet and salivation in female Aedes aegypti mosquito. J Insect Physiol 1990, 36:545–548.
- 77. Valenzuela JG, Pham VM, Garfield MK, Francischetti IM, Ribeiro JM: Toward a description of the sialome of the adult female mosquito Aedes aegypti. *Insect Biochem Mol Biol* 2002, **32**:1101–1122.
- Soudi M, Zamocky M, Jakopitsch C, Furtmüller PG, Obinger C: Molecular evolution, structure, and function of peroxidasins. *Chem Biodivers* 2012, 9:1776–1793.
- Cambi A, Figdor C: Necrosis: C-type lectins sense cell death. Curr Biol 2009, 19:R375–R378.
- Kuballa AV, Elizur A: Differential expression profiling of components associated with exoskeletal hardening in crustaceans. *BMC Genomics* 2008, 9:575.
- Kawaguchi N, Komano H, Natori S: Involvement of Sarcophaga lectin in the development of imaginal discs of Sarcophaga peregrina in an autocrine manner. *Dev Biol* 1991, 144:86–93.
- Natori S: Insect Lectins and Innate Immunity. In *Phylogenetic Perspect Vertebr Immune Syst*, Volume 484. Edited by Beck G, Sugumaran M, Cooper EL. New York: Kluwere Academic/Plenum Publishers; 2001:223–228.
- Grossman GL, James AA: The salivary glands of the vector mosquito, Aedes aegypti, express a novel member of the amylase gene family. Insect Mol Biol 1993, 1:223–232.
- 84. Yamamoto-Kihara M, Kotani E: Isolation and characterization of a C-type lectin cDNA specifically expressed in the tip of mouthparts of the flesh fly Sarcophaga peregrina. *Insect Mol Biol* 2004, **13**:133–140.
- Lesch C, Goto A, Lindgren M, Bidla G, Dushay MS, Theopold U: A role for Hemolectin in coagulation and immunity in Drosophila melanogaster. Dev Comp Immunol 2007, 31:1255–1263.
- Arai I, Ohta M, Suzuki A, Tanaka S, Yoshizawa Y, Sato R: Immunohistochemical analysis of the role of hemocytin in nodule formation in the larvae of the silkworm, Bombyx mori. J Insect Sci 2013, 13:1–13.
- 87. Guengerich FP: Cytochrome p450 and chemical toxicology. Chem Res Toxicol 2008, 21:70–83.
- 88. Feyereisen R: Insect P450 enzymes. Annu Rev Entomol 1999, 44:507-533.
- Scott JG: Cytochromes P450 and insecticide resistance. Insect Biochem Mol Biol 1999, 29:757–777.
- Li X, Schuler MA, Berenbaum MR: Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. *Annu Rev Entomol* 2007, 52:231–253.
- Wang D, Qiu X, Ren X, Zhang W, Wang K: Effects of spinosad on Helicoverpa armigera (Lepidoptera: Noctuidae) from China: tolerance status, synergism and enzymatic responses. *Pest Manag Sci* 2009, 65:1040–1046.
- Markussen MDK, Kristensen M: Spinosad resistance in female Musca domestica L. from a field-derived population. *Pest Manag Sci* 2012, 68:75–82.
- Xu J, Strange JP, Welker DL, James RR: Detoxification and stress response genes expressed in a western North American bumble bee, Bombus huntii (Hymenoptera: Apidae). *BMC Genomics* 2013, 14:874.
- Willoughby L, Chung H, Lumb C, Robin C, Batterham P, Daborn PJ: A comparison of Drosophila melanogaster detoxification gene induction responses for six insecticides, caffeine and phenobarbital. *Insect Biochem Mol Biol* 2006, 36:934–942.

- Arrigo AP, Ahmad-Zadeh C: Immunofluorescence localization of a small heat shock protein (hsp 23) in salivary gland cells of Drosophila melanogaster. *Mol Gen Genet* 1981, 184:73–79.
- Megraw T, Kaufman TC, Kovalick GE: Sequence and expression of Drosophila Antigen 5-related 2, a new member of the CAP gene family. *Gene* 1998, 222:297–304.
- Merzendorfer H, Zimoch L: Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. J Exp Biol 2003, 206(Pt 24):4393–4412.
- Peters W: Peritrophic Membranes. In Zoophysiol, Volume 30. Edited by Bradshaw SD, Burggren W, Heller HC, Ishii S, Langer H, Neuweiler G, Randall DJ. Berlin: Springer; 1992:1–238.
- Shen Z, Jacobs-Lorena M: Characterization of a novel gut-specific chitinase gene from the human malaria vector Anopheles gambiae. J Biol Chem 1997, 272:28895–28900.
- 100. Filho BPD, Lemos FJA, Secundino NFC, Páscoa V, Pereira ST, Pimenta PFP: Presence of chitinase and beta-N-acetylglucosaminidase in the Aedes aegypti. a chitinolytic system involving peritrophic matrix formation and degradation. *Insect Biochem Mol Biol* 2002, 32:1723–1729.
- Kramer KJ, Muthukrishnan S: Insect chitinases: molecular biology and potential use as biopesticides. Insect Biochem Mol Biol 1997, 27:887–900.
- Herrera-Estrella A, Chet I: Chitinases in biological control. EXS 1999, 87:171–184.
- 103. InterPro: protein sequence analysis & classification. [http://www.ebi.ac.uk/ interpro/]
- 104. Gomulski LM, Dimopoulos G, Xi Z, Soares MB, Bonaldo MF, Malacrida AR, Gasperi G: Gene discovery in an invasive tephritid model pest species, the Mediterranean fruit fly, Ceratitis capitata. *BMC Genomics* 2008, 9:243.
- 105. Tsoumani KT, Augustinos AA, Kakani EG, Drosopoulou E, Mavragani-Tsipidou P, Mathiopoulos KD: Isolation, annotation and applications of expressed sequence tags from the olive fly, Bactrocera oleae. *Mol Genet Genomics* 2011, 285:33–45.
- 106. Tzanakakis ME, Economopoulos A, Tsitsipis J: The importance of conditions during the adult stage in evaluating an artificial food for larvae of Dacus oleae (Gmel.) (Diptera, Tephritidae). Z Angew Entomol 1967, 59:127–130.
- 107. Tsitsipis J: Development of a caging and egging system for mass rearing the olive fruit fly, Dacus oleae (Gmel.) (Diptera, Tephritidae). Ann Zool Ecol Anim 1977, 9:133–139.
- 108. Tsitsipis JA, Kontos A: Improved solid adult diet for the olive fruit fly Dacus oleae. Entomol Hell 1983, 1:24–29.
- 109. Kakani EG, Zygouridis NE, Tsoumani KT, Seraphides N, Zalom FG, Mathiopoulos KD: Spinosad resistance development in wild olive fruit fly Bactrocera oleae (Diptera: Tephritidae) populations in California. *Pest Manag Sci* 2010, 66:447–453.
- 110. BLAST. http://blast.ncbi.nlm.nih.gov/Blast.cgi.
- 111. Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994, 22:4673–4680.
- 112. ClustalW2. http://www.ebi.ac.uk/Tools/msa/clustalw2/.
- 113. ExPASy Bioinformatics Resource Portal; Compute pl/Mw tool. http://web.expasy.org/compute_pi/.
- Falquet L, Pagni M, Bucher P, Hulo N, Sigrist CJA, Hofmann K, Bairoch A, Koeln D, Bairoch P, Acids BN: The PROSITE database, its status in 2002. *Nucleic Acids Res* 2002, 30:235–238.
- 115. Sagri E, Reczko M, Tsoumani KT, Gregoriou M-E, Mavridou A-M, Tastsoglou S, Athanasiadis K, Ragoussis J, Mathiopoulos KD: The molecular biology of the olive fly comes of age. 2014.
- Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL: BLAST+: architecture and applications. *BMC Bioinformatics* 2009, 10:421.
- 117. Trapnell C, Pachter L, Salzberg SL: TopHat: discovering splice junctions with RNA-Seq. *Bioinformatics* 2009, 25:1105–1111.
- 118. Quinlan AR, Hall IM: BEDTools: a flexible suite of utilities for comparing genomic features. *Bioinformatics* 2010, 26:841–842.
- 119. Normfinder. http://moma.dk/normfinder-software.
- 120. Chang E, Shi S, Liu J, Cheng T, Xue L, Yang X, Yang W, Lan Q, Jiang Z: Selection of reference genes for quantitative gene expression studies in

Platycladus orientalis (Cupressaceae) Using real-time PCR. *PLoS One* 2012, 7:e33278.

- 121. Primer-BLAST. http://www.ncbi.nlm.nih.gov/tools/primer-blast.
- 122. Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(–Delta Delta C(T)) Method. *Methods* 2001, 25:402–408.
- 123. GraphPad Software, Inc. http://www.graphpad.com.

doi:10.1186/1471-2164-15-714

Cite this article as: Sagri *et al.*: **Olive fly transcriptomics analysis** implicates energy metabolism genes in spinosad resistance. *BMC Genomics* 2014 **15**:714.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar

BioMed Central

(

• Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

RESEARCH

Open Access

The molecular biology of the olive fly comes of age

Efthimia Sagri¹, Martin Reczko², Konstantina T Tsoumani¹, Maria-Eleni Gregoriou¹, Vaggelis Harokopos², Anna-Maria Mavridou¹, Spyros Tastsoglou¹, Konstantinos Athanasiadis¹, Jiannis Ragoussis^{2†}, Kostas D Mathiopoulos¹

Abstract

Background: Olive cultivation blends with the history of the Mediterranean countries since ancient times. Even today, activities around the olive tree constitute major engagements of several people in the countryside of both sides of the Mediterranean basin. The olive fly is, beyond doubt, the most destructive pest of cultivated olives. The female fly leaves its eggs in the olive fruit. Upon emergence, the larvae feed on the olive sap, thus destroying the fruit. If untreated, practically all olives get infected. The use of chemical insecticides constitutes the principal olive fly control approach. The Sterile Insect Technique (SIT), an environmentally friendly alternative control method, had been tried in pilot field applications in the 1970's, albeit with no practical success. This was mainly attributed to the low, non-antagonistic quality of the mixed-sex released insects. Many years of experience from successful SIT applications in related species, primarily the Mediterranean fruit fly, Ceratitis capitata, demonstrated that efficient SIT protocols require the availability of fundamental genetic and molecular information.

Results: Among the primary systems whose understanding can contribute towards novel SIT approaches (or its recently developed alternative RIDL: Release of Insects carrying a Dominant Lethal) is the reproductive, since the ability to manipulate the reproductive system would directly affect the insect's fertility. In addition, the analysis of early embryonic promoters and apoptotic genes would provide tools that confer dominant early-embryonic lethality during mass-rearing. Here we report the identification of several genes involved in these systems through whole transcriptome analysis of female accessory glands (FAGs) and spermathecae, as well as male testes. Indeed, analysis of differentially expressed genes in these tissues revealed higher metabolic activity in testes than in FAGs/ spermathecae. Furthermore, at least five olfactory-related genes were shown to be differentially expressed in the female and male reproductive systems analyzed. Finally, the expression profile of the embryonic serendipity- α locus and the pre-apoptotic head involution defective gene were analyzed during embryonic developmental stages.

Conclusions: Several years of molecular studies on the olive fly can now be combined with new information from whole transcriptome analyses and lead to a deep understanding of the biology of this notorious insect pest. This is a prerequisite for the development of novel embryonic lethality female sexing strains for successful SIT efforts which, combined with improved mass-reared conditions, give new hope for efficient SIT applications for the olive fly.

Background

When Athena, the goddess of peace and wisdom, offered an olive tree to the people of Attica to sway them into choosing her name for their city - and not that of her brother's Poseidon - neither she nor the people of Attica

* Correspondence: kmathiop@bio.uth.gr

were aware of the 'worm' that could destroy the precious fruit of that tree. That was described much later in the 3rd century AD, by the botanist Theophrastus who, in his works "Enquiry into Plants" and "Causes of Plants" [1], talked about the 'worm underneath the skin of the olive that destroys the fruit'. Indeed, the female olive fly (Bactrocera oleae, Rossi) lays her eggs in an olive fruit and the resulting larva feeds on the olive sap, opening channels inside it, thus destroying it. In this way, a female fly can damage more than 300 olives in her lifetime. Given the

© 2014 Sagri et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons BioMed Central Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

⁺ Contributed equally

¹Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece

Full list of author information is available at the end of the article

fact that during the summer and fall months about five generations of these flies are born, one can imagine the cumulative damage that can take place in an olive orchard. If untreated, practically every single olive will get infested. It is estimated that due to olive fly infestation olive oil production is reduced by more than 30% annually [2].

Control of these flies is traditionally based on cover or bait sprays with chemical insecticides. During the last 40-50 years, organophosphate insecticides have been extensively used against the olive fly, mainly dimethoate and fenthion. More recently, pyrethroids as well as the naturalyte spinosad have been added in the arsenal against the olive fly. The use of chemical pesticides, however, entails many known hazards. Among these are ecological disturbances, the development and spread of insecticide resistance, harmful toxicological effects on human health [3]. Many of these risks are apparent not only to scientists but also to growers and consumers who require a cleaner and safer environment as well as products of high quality. Alternative, environmentally friendly control methods against insect pests, such as the Sterile Insect Technique (SIT) have been experimented in the past with considerable success [4]. The SIT involves the mass production, sterilization and subsequent release of the sterilized insects [5]. The sterilized males will mate with wild females, whose unfertilized eggs will never hatch, thus reducing the numbers of the following generation. In theory, if continued releases are performed over several consecutive generations, the population will progressively be reduced and, eventually, a total eradication could occur.

Given the substantial economic burden of the olive fly in olive producing countries and the concerns raised about the heavy use of insecticides to control the flies, the SIT was proposed [6] and implemented in two pilot efforts. In the early 1970s, about 150,000 laboratory-reared male and female flies were sterilized by gamma-irradiation and subsequently released in the environment [7]. Although initially the releases seemed to contribute to low infestation levels, by the end of the season olives were as highly infested as in the two nearby control plantations. The sterilized flies were proven ineffective to reduce infestation. Similar results were obtained in a second pilot SIT effort that took place in the late '70s in a small Greek island. These unsuccessful pilot experiments led to funding suspension and the eventual abandonment of the program [8-10]. Apart from the high cost and labor-intensive rearing of the olive fly, extensive research that followed these first pilot efforts revealed several key issues of olive fly biology that should have been sorted out before a successful SIT could be implemented. The first issue regarded assortative mating of the released and wild populations. Laboratory-reared flies mated several hours before scotophase whereas wild flies mated at the end of the photophase [11]. Apparently, mass-laboratory rearing caused substantial alterations in the genetic makeup of the flies due to selective pressures in the artificial laboratory environment [12,13]. The second issue regarded the quality of the radiation-sterilized mass-reared flies. Radiation did not leave the vigor of the flies unaffected [14]. Another factor that probably exacerbated the low fitness of the laboratory reared flies was the use of antibiotics in the flies' diet that destroyed the endosymbiotic bacteria that are now known to play a very important role in the organism's fitness [15-19]. Finally, but equally importantly, extensive stinging of the olive fruits from the released females led to further fungal infestation [7].

Since those early years, several molecular and genetic studies have changed B. oleae's research landscape. First, the development of microsatellite markers [20] and the analysis of the mitochondrial genome [21] have offered tools for a fairly detailed analysis of population structure and dynamics in the Mediterranean basin [22-26]. Second, cytogenetic analysis, including in situ hybridization of several molecular markers, established the details of the chromosomal complement [27-31]. Third, isolation and characterization of various genes has shed light on important processes such as insecticide resistance [32-35], female germline differentiation and morphogenesis of epidermal cells [36], enzyme catalytic mechanisms [37], sexdetermining cascades [38,39]. Fourth, an initial assessment of the genome of the olive fly was gained by an accurate estimate of its size [40] and the characterization and analysis of centromeric repeats [41] and several EST loci [42]. This was followed by a whole transcriptome analysis with 454 pyrosequencing [43]. Fifth, *B. oleae* was successfully transformed with the use of a Minos-based transposon [44]. Transformation efforts recently led to the development of piggyBac-based conditional female-lethal olive fly strains that provide highly penetrant female specific lethality, dominant fluorescent marking and genetic sterility [45]. Sixth, B. oleae was recently trans-infected with a cherry fly Wolbachia strain and shown to induce complete cytoplasmic incompatibility in the fly [46]. Finally, the experience gained during the first two pilot SIT efforts and the relevant research that followed, underlined a few key requirements for the maintenance of high quality and well-fit mass-reared olive flies (reviewed in [47]). Among them were changes in larval and adult diets (eg removal of antibiotics) that would preserve the endosymbiotic flora (that is now known to improve fitness) and occasional enrichments of the long-term laboratory colonies with wild individuals (that provide natural vigor). These achievements have renewed the interest in using SIT for olive fly control. In fact, there is a large international effort led by the Joint Division of the Food and Agricultural Organization and the International Atomic Energy Agency

(FAO/IAEA) to develop a vigorous laboratory olive fly strain that could be used in such new SIT efforts.

Further scientific and technological developments, in addition to successful SIT applications in other insects, point to the direction olive fly research could go. Indeed, SIT has proven particularly effective in the medfly, the prototype Tephritid species where most genetic and molecular tools have been developed. One of the most active medfly research areas in recent years has been the development of the RIDL technology. RIDL (Release of Insects carrying a Dominant Lethal; [48,49]) is a variant of the conventional SIT, in which sterilization of the released insects is induced not by irradiation but by homozygocity for a dominant lethal gene. Mating with wild individuals results in offspring that are heterozygous for the lethal gene leading to the death of all progeny [50,51]. This dominant lethal gene can be placed under the control of an inducible early embryonic female promoter [51,52] that could achieve genetic sexing at a very early developmental stage. In this way, both genetic sexing and sterilization can be accomplished by the same construct. One other active research area regards the analysis of biological systems with relevance to SIT. Of particular interest are those that regard reproduction and olfaction. The first one is involved in successful mating and egg development, while the second in food and mate localization. A possible manipulation of either or both of these systems would severely affect the destructive ability of the flies. In that sense, transgenic flies could be developed in which genes regulating food and mate recognition or fertility are knocked-down, over-expressed or mis-expressed (depending on the case). Such flies would be safer and more efficient to be released in control programs in an SIT context.

The falling prices of next generation sequencing make it now possible to sequence the entire transcriptome of non-model organisms under different settings and identify differentially expressed genes relevant to the chosen conditions. Subsequently, these genes can be manipulated *in vitro* and re-introduced into the genome of the organism through well-established transgenic technologies. In a first attempt to explore the relevant-to-SIT transcriptome of the olive fly, we present differences observed in female and male reproductive systems and we examine the differential expression of olfactory genes in the same tissues. Finally, we assess the developmental expression of two of the most commonly used early embryonic genes.

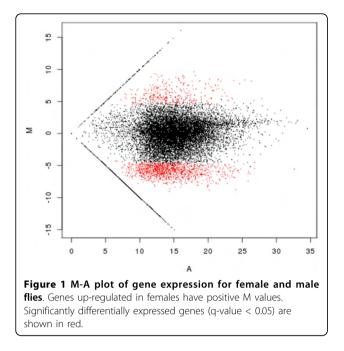
Results and discussion

1. Sequencing and annotation

1.1. Solid ABI sequencing and reads assembly

In order to explore differentially expressed genes in the transcriptome of reproductive organs of the olive fly that could be useful in SIT development, the entire transcriptomes from female accessory glands and spermathecae were compared to male testes. For transcriptome assembly, the sequences from these two libraries (FEMALE and MALE) were combined with two more obtained from heads of spinosad-sensitive (LAB) and spinosad-resistant (SPIN) olive flies [53]. Paired-end sequencing with 35nt and 50nt read sizes was performed for each library and a total of 122,623,894 read pairs was obtained. All reads of the libraries were pooled to obtain a reference transcriptome assembly using SOAPdenovo assembler [54].

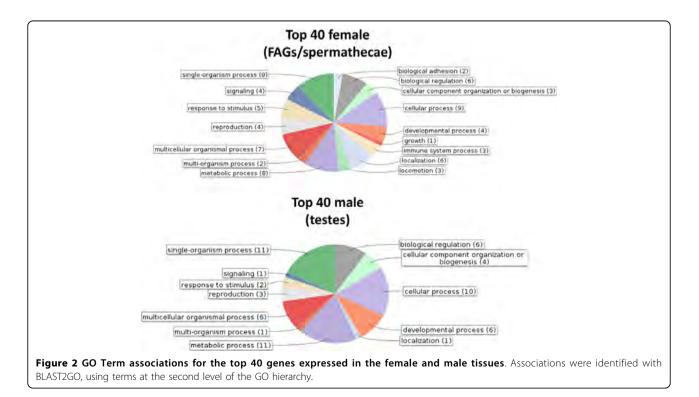
1.2. Sequence annotation

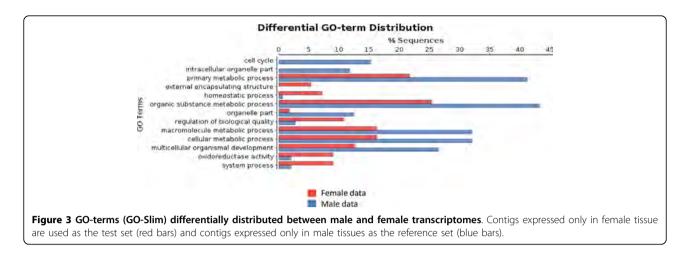

Annotation of the assembled sequences was obtained by aligning the 69,359 assembled *B. oleae* sequences against the NCBI non-redundant (Nr) protein database using blastx and collecting the annotations with the BLAST2GO tool [55]. Using an E-value threshold of $\leq 1e^{-6}$, 20207 (29.13 %) of the contigs were aligned. Of the 69,359 contigs, 23,042 (33.22%) have almost exact hits in the *B. oleae* transcriptome of Pavlidi et al [43] (E-value $\leq 1e^{-6}$).

2. Female vs male differential expression

The Cuffdiff [56] tool was used in order to reveal the differentially expressed genes between the reproductive systems of female and male flies, a stringent cutoff (p value adjusted for multiple testing, called q value <0.05) was used. This resulted in 1568 differentially expressed transcripts in the FEMALE vs. MALE comparison. Three hundred and thirty of these transcripts were up-regulated in FEMALE, while 1238 were up-regulated in MALE *B. oleae* flies. The top 40 up-regulated genes in each category are listed in Table S1. The entire lists of all significantly (q<0.05) up-regulated genes in FEMALE and MALE are given in Tables S3 and S4, respectively.

An M-A plot was constructed for comparison of the genes for FEMALE vs MALE flies with q value < 0.05. In Figure 1 the de-regulated genes are depicted in red.

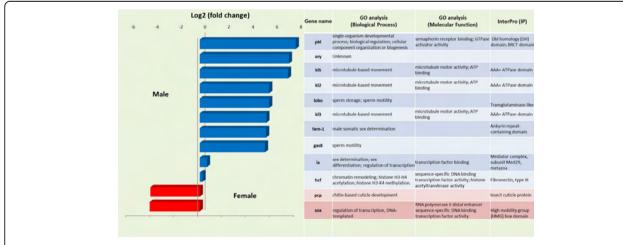

Functional annotation was made for the assembled sequences of the significantly differentially expressed female- and male- specific genes mentioned in Table S1, based on gene ontology (GO) categorization obtained using BLAST2GO. The FEMALE and MALE GO analysis performed for biological process of the top 40 female and male expressed genes is shown in Figure 2. In general, more GO terms appear in female tissues than in male (16 vs 12), a point that holds even in deeper GOterm analysis. This can be attributed to the fact that the FEMALE library was comprised of both FAGs and spermathecae, while the MALE from testes only. Furthermore, there were more male- than female-specific genes involved in metabolism and development, a fact that can be attributed to sperm activity in the MALE tissue. Finally, the presence of three immune system process genes in the female list should be noted. In fact, increased



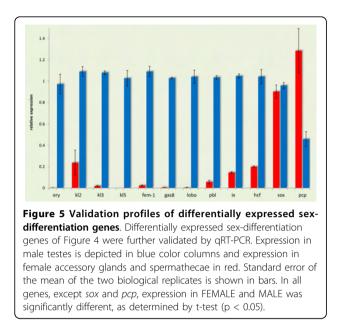
levels of immune response genes have been found in transcriptome analyses of insect female reproductive systems, particularly after mating [57,58]. Upregulation of these genes may assist females to combat pathogens introduced during copulation. Alternatively, it could be a result of female's perception of sperm as non-self molecules. A more direct comparison between FEMALE-only and MALE-only GO-term distribution is shown in Figure 3. Interestingly, numbers of GO-terms for biological process appear different in the two datasets, suggesting a different complexity of the studied female and male reproductive tissues. In most terms, there are more male- than female-specific transcripts that are differentially expressed. Many of these terms (cell cycle, intracellular organelle part, primary metabolic process, organic substance metabolic process, multicellular organismal development) refer to higher metabolic processes. This could be attributed to higher metabolic and cellular activity that takes place in the testes before mating.

3. Genes that might be implicated in sexual differentiation in *B. oleae*

In order to validate the differential expression of various genes observed after the RNAseq analysis of reproductive tissues of female and male olive flies, further functional analysis was performed for twelve genes that were differentially expressed in female accessory glands and spermathecae, on one hand, and male testes, on the other (Figure 4). These genes were selected on the basis of known involvement in sexual differentiation in other insects. Seven of them were selected from the 1238 significantly up-regulated in MALE (Table S4): *kl2 (male fertility factor kl2), kl3 (male fertility factor kl3), kl5*



(male fertility factor kl5), ory (occludin-related Y protein), fem-1 (sex-determining protein fem-1), gas8 (growth arrest specific protein 8) and lobo (lost boys). Three more genes that were up-regulated in MALE [ix (intersex), pbl (pebble) and hcf (host cell factor C1)] and two that were up-regulated in FEMALE [sox and pcp (pupal cuticle protein 78E)], albeit with lower statistical power (i.e., q>0.05) were also selected for further validation.


3.1. Drosophila Y-linked genes kl3, kl5 and ory

Quantitative RT-PCR confirmed the elevated expression of *kl2*, *kl3*, *kl5* and *ory* in male testes of the olive fly (Figure 5). In *Drosophila melanogaster*, *kl3* and *kl5* (along with *kl2*) are known Y-linked fertility factors. The lack of *kl3* or *kl5* causes the loss of the outer arm of the sperm tail axoneme [59], a structure known to contain the molecular motor protein dynein in other organisms [60]. Indeed, Goldstein et al. showed in 1982 that sperm from mutant $kl3^{-}$ and $kl5^{-}$ males lack three discrete high molecular weight proteins with mobility similar to dynein heavy chains of *Chlamydomonas reinhardtii* and proposed that these fertility factors are the structural genes of three different dynein heavy chain proteins [61]. In 1993, Gepner and Hays sequenced part of kl5 and showed that it encodes an axonemal β -dynein heavy chain that is expressed in the testes [62].

ory is also Y-linked in *D. melanogaster*, although details on this gene are scarce. *kl3*, *kl5* and *ory* are Y-linked in 12 different sequenced Drosophila genomes [63]. In Drosophila, the closest paralogs of *kl2*, *kl3*, and *kl5* are autosomal and not X-linked, suggesting that the evolution of the Drosophila Y chromosome has been driven by an accumulation of male-related genes arising *de novo* from the autosomes [64]. While the most likely function of the

Figure 4 Functional annotation of differentially expressed sex-differentiation genes. In the left part of the figure, the gene expression levels of the differentially expressed sex-differentiation genes (Log2, fold change) are shown, as resulted from the RNA-seq analysis. The up-regulated genes in males are depicted in blue bars and the up-regulated genes in females in red bars. At the right part of the figure, the Gene Ontology (GO) classification of the same genes for the ontologies: Biological Process (BP), Molecular Function (MF), and Interpro (IP) protein domains is listed.

three genes in the olive fly might be similar to that of Drosophila, we have no indication with regard to their chromosomal localization in the olive fly. Such information could shed some light to the evolutionary origin of the olive fly's Y chromosome.

3.2. Spermatogenesis and sperm motility genes

One spermatogenesis and two sperm motility genes were shown to be differentially over-expressed in male olive fly tissues both in the transcriptome analysis and after g-RT PCR (Figure 4 and 5). The first locus, *sex-determining* protein fem-1 (fem-1), encodes an essential spermatogenesis product in Caenorhabditis elegans. Three fem genes, fem-1, fem-2, and fem-3, have been shown to be essential for male development [65]. Loss-of-function mutations in any one of the fem genes prevent all aspects of male development and transform the animals that are genetically males into females [66,67]. The predicted product of the *fem-1* gene is an intracellular protein that contains ankyrin repeats, which in many other proteins mediate specific protein-protein interaction [67]. In D. melanogaster, a fem-1 homolog with similar structure has been found [68]. The second locus, growth arrest-specific protein 8 (Gas8) is a microtubule-binding protein localized to regions of dynein regulation in mammalian cells. In mouse, Gas8 is predominantly a testicular protein, whose expression is developmentally regulated during puberty and spermatogenesis. In humans, it is absent in infertile males who lack the ability to generate gametes [69]. Gas8 has not been studied in insects. Finally, lost boys (lobo), has been shown to affect sperm entry movement into the female seminal receptacle and does not affect sperm exit movement from the seminal vesicle of D. melanogaster [70]. Given a similar function of these two loci in the olive fly, over-expression in male testes is expected.

3.3. Sex determination genes

In *D. melanogaster, intersex (ix)* controls somatic sexual differentiation only in females, acting near the end of the sex determination hierarchy. Its product does not have a known DNA-binding domain and, therefore, it is thought to act as a transcriptional co-factor for the female variant of Doublesex protein (DSX^F), a key gene of the sexual determination cascade in *D. melanogaster* [71]. Minimal differences were observed in *ix* expression between the two sexes of the olive flies.

Transcriptome analysis also showed a four-fold overexpression of *sox* in female tissues, a result that was not confirmed after validation. The *sox* gene family is a group of related transcription factors that play critical roles in embryonic development. This family was originally identified in mammals based on sequence similarity to SRY, the sex-determining region Y chromosome [72]. In the honeybee, as SOX proteins play key roles in gonad differentiation, the SoxE group orthologues were up-regulated in the drone testes [73]. In Drosophila SoxN is a new group B Sox gene expressed in the developing CNS and is one of the earliest transcription factors to be expressed in a panneuroectodermal manner [74].

3.4. Other genes

The **Pebble** (*pbl*) gene belongs to a family of GTP exchange factors that are essential for the construction of a contractile ring and the initiation of cytokinesis during the embryonic division cycles of the somatic cells in *D. melanogaster* [75,76]. Its role in spermatogenesis has not been elucidated yet. Expression of *pbl* in *D. melanogaster* testes is low [68]. On the other hand, expression in olive fly testes was found elevated in comparison to its expression in female accessory glands/spermathecae (Figure 4 and 5).

Host cell factor C1 (Hcf) is involved in a wide variety of cellular functions, including regulation of transcription, cytokinesis, cell cycle progression and chromatin remodeling [77]. The protein is essential for cellular viability and demonstrates similar activity among a broad range of species. A single *hcf* homolog is also present in *Drosophila* (called dHCF) and is expressed in all tissues, although at relatively low levels [68]. The transcriptome analysis in the olive fly tissues showed a ~0,2-fold higher expression in the male tissues. This result was confirmed after qRT-PCR in the same tissues, where higher levels of expression in testes were observed in comparison with female accessory glands/spermathecae (Figure 4 and 5).

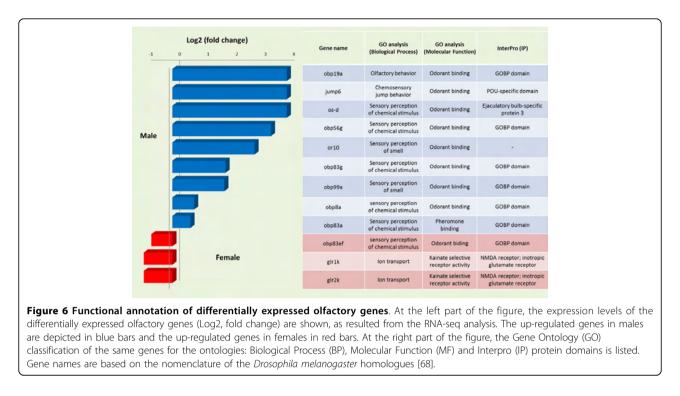
Quantitation by RT-PCR confirmed the over-expression of *pupal cuticle protein (pcp)* in female accessory glands/spermathecae as compared to male testes. Cuticle proteins, along with chitin, are the two components of insect cuticle. The cuticular proteins seem to be specific to the type of cuticle that occurs at stages of the insect development. Flexible proteins are found in the flexible cuticle of larva and pupa, but can also be found in the soft endocuticle of adult insects [78].

Female insects require the steroid hormone 20-hydroxyecdysone (20E) in order to activate vitellogenesis, a process required for egg development. In *Anopheles gambiae* mosquitoes, large amounts of 20E are produced and stored in male accessory glands and subsequently delivered to female mosquitoes during mating [79]. Pupal cuticle proteins, on the other hand, are known to accumulate in response to a pulse of 20E [80]. However, given that FAGs/spermathecae collected were from unmated females, we cannot offer a plausible explanation for the over-expression of *pcps*.

4. Validation of olfactory gene differential expression

Insects possess very sensitive chemosensory systems that can detect and discriminate among a diverse array of odors. These systems play a crucial role in insect survival and reproductive success, mediating responses to food detection, mating and oviposition. Odor recognition is a coordinated process requiring the combined specificities contributed by odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) as well as odorant receptors (ORs) (Reviewed in [81]). Insect odorant-binding proteins (OBPs) are soluble proteins surrounding the extracellular lymph of olfactory neurons [82]. OBPs are capable of binding and solubilizing small hydrophobic molecules from the environment and therefore transport them to the underlying ORs, which are expressed on peripheral olfactory receptor neurons. Insect ORs are either ionotropic receptors (IRs) or seven-transmembrane proteins (ORs) with an inverse topology compared to GPCRs, that form heterodimers of a ligand-binding OR and an ubiquitous highly conserved co-receptor named Orco [83]. These complexes are suggested to constitute ligand-gated nonselective cation channels triggering the olfactory signaling [81].

While OR expression in olfactory tissues is obvious and well-established, the distribution of ORs beyond the olfactory system has also been documented in different mammalian species [84-86], suggesting that ORs may play an important role in the ectopic expression of non-chemosensory tissues. Interestingly, OR expression has been documented in human and mouse germ cells [87-91] and recently in mosquitoes [92]. Similarly, other non-olfactory functions have been reported for OBP-like proteins including the B proteins of *Tenebrio molitor* accessory glands [93], the male specific serum proteins of *Ceratitis capitata* [94], and the heme-binding protein of *Rhodnius prolixus* [95]. These demonstrate that OBPs are not restricted to olfaction and are likely to be involved in broader physiological functions, suggesting that their


roles may be restricted to general carrier capabilities with broad specificity for lipophilic compounds [96].

With that in mind, we opted to explore the expression of various olfactory-related genes in the reproductive systems under investigation. Twelve olfactory-related genes were present in the annotated list that resulted from the transcriptome assembly of the FEMALE and MALE olive fly tissues (Figure 6), nine of which presented various levels of over-expression in MALE, whereas the remaining three in FEMALE. In order to get a deeper insight, the relative expression of five of these genes was further analyzed in female FAGs/spermathecae, male testes and male accessory glands (MAGs), before and after mating.

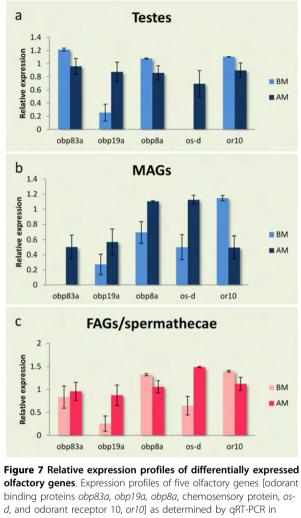
obp83a, obp8a and obp19a genes are over-expressed in MALE tissue (Figure 6). qRT-PCR revealed that these genes share the same expression pattern in MAGs. obp83a and obp8a are over-expressed before mating in testes while obp83a and obp19a are over-expressed after mating in FAGs/spermathecae (Figure 7). All three genes are characterized by a GOBP (general odorant binding protein) domain that is also found in their orthologues in Drosophila melanogaster. This structural domain is found in pheromone binding proteins, which exist in extracellular fluid surrounding odorant receptors [97]. The presence of these OBPs in the reproductive tissues implicates their interaction with other substrates except the olfactory system as transporters in the post-mating events in the male reproductive system. In fact, D. melanogaster's obp8a shows the highest levels of expression in male accessory glands [98,99] and has been associated with non-olfactory functions such as RNA transcription [100].

os-d is over-expressed in MALE tissue (Figure 6) while qRT-PCR showed similar expression patterns in mature FAGs/spermathecae, MAGs and testes, but no expression in MAGs before mating (Figure 7). Os-D is a chemosensory protein (CSP) that encodes the antennal protein 10 in *D. melanogaster*. CSPs are secreted in the sensillum lymph of insect chemosensory sensilla and some OS-D-like proteins bind short to medium chain length fatty acid derivatives with low specificity [101,102]. Their specific function remains uncertain [103], suggesting a more general physiological function relating to the transport/solubility of hydrophobic ligands in various tissues.

or10 showed expression in male tissues (Figure 6) while qRT-PCR detected same transcriptional profiles in all three tissues before and after mating (Figure 7). *or10* encodes an olfactory receptor protein and has a G-protein coupled receptor activity. The expression of ORs in testes has been reported for a number of species [90,104]. ORs' function in mammalian sperm is thought to regulate motility in response to exogenous signals derived from the existence of sperm-egg chemotaxis in invertebrates. The small peptides, speract and resact, are secreted by sea urchin eggs and attract spermatozoa in a species-specific

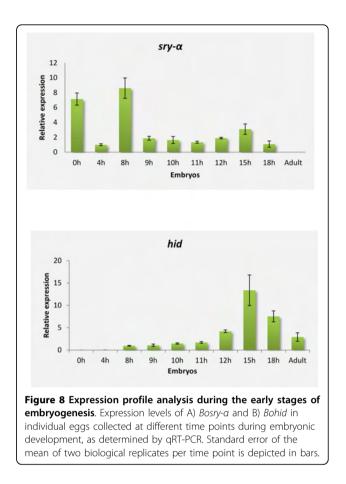
manner by stimulating sperm motility and respiration [105,106]. The presence of a similar chemoreceptor may be essential in female spermatheca in order to establish a concentration gradient of a putative chemo-attractant. Since female accessory glands and spermatheca were dissected together, we are not able at this point to establish which exact tissue is the source of the observed expression of *or10*.

5. Early embryonic gene expression in the olive fly


As mentioned in the Background, promoters of early embryonic genes in combination with pro-apoptotic cell death genes are very important tools in inducing dominant early-embryonic lethality during insect transgenesis [107]. In that regard, the *serendipity-* α (*sry-* α) and *head involution defective* (*hid*) genes were selected for expression evaluation during embryonic development in the olive fly.

The embryonic developmental progress begins with the egg maturation and formation of the zygote, then enters the stage of blastoderm formation and gastrulation and ultimately ends with the organogenesis. Accordingly, three stages of embryogenesis have been also designated in *B. oleae*, whose average duration is 65-70h at $25 \pm 1^{\circ}$ C under standard laboratory conditions [108]. Microscopy morphological observations in living embryos report that cellularization of the blastoderm begins 6h after oviposition and lasts until 10h. During the third stage of organogenesis, the ventral furrow formation starts by 22h and the head and abdominal lobe masses become visible by 46h. Gut and mouth hook formation can be identified by

52h, whereas the development of other systems are distinct by 60h.


In Drosophila melanogaster, sry- α gene is specifically transcribed at the blastoderm stage in all somatic nuclei, from nuclear cycle 11 to the onset of gastrulation [109]. The gene product is required for the complete reorganization of the microfilaments at the onset of membrane invagination [110]. sry- α is fast evolving even within the Drosophilidae [111] and extensive divergence of many developmental genes within dipterans has also been reported [112-114]. This was most likely the reason for the unsuccessful efforts in *C. capitata* to obtain *sry-* α by degenerate PCR on the basis of sequence similarity with the homologous D. melanogaster [115]. Given the availability of both *D. melanogaster* and *C. capitata sry-* α sequences in the NCBI database, a homology search in the B. oleae transcriptome identified the relevant B. oleae sry- α gene homologue.

Based on this sequence, *B. oleae*-specific primers were designed and the expression profiles of $sry-\alpha$ mRNA were studied by qRT-PCR analysis at different stages of *B. oleae* embryonic development. Eggs were collected throughout embryogenesis from the time of egg laying to larval hatching. The selected time points represented embryos at 0h, 4h, 8h, 9h, 10h, 11h, 12h, 15h and 18h after oviposition (Figure 8, panel A). This analysis revealed that $sry-\alpha$ mRNA is developmentally regulated during the second major event in the first stage of embryogenesis. It is initially present in large amounts just after oviposition (0h embryos), following a reduction in 4h embryos. The larger

d, and odorant receptor 10, *or10*] as determined by qRT-PCR in three different tissues: Testes (a), MAGs (b) and FAGs/spermatheca (c) before (BM) and after (AM) mating. Standard error of the mean of five biological replicates is depicted in bars. No significant difference (for P < 0.05) was detected.

amounts of the transcripts among all time points examined were detected in 8h embryos. This suggests the presence of maternal mature transcripts which in turn are eliminated probably in the first event of maternal-to-zygotic transition (MZT). The subsequent wave of 'zygotic' activity requires zygotically synthesized transcripts [116]. In *D. melanogaster* as well as in *C. capitata, sry-* α is expressed only in the zygote [117]. However the retrieved B. oleae transcript shared greater amino acid similarity to the *D. melanogaster* CG8247 gene than to *sry-* α , as was also reported for the *Ccsry-\alpha like* gene [118]. The orthologous CG8247 in D. melanogaster is characterized as a *sry-\alpha-*like gene being also involved in cellular blastoderm formation. However, it is maternally inherited in contrast to *sry-\alpha*, demonstrating a different mechanism of molecular control of transcription. In our case *Bosry-* α *like* gene

seems to be maternally supplied in the embryos as mature transcripts. Previous studies have designated that the cellular blastoderm formation in *C. capitata* occurs within 9 h and 11 h after oviposition [115]. In accordance with *C. capitata*, a relative Tephritid species, we suggest that the cellurarization process in *B. oleae* during embryogenesis also occurs at 8h, since the *sry*- α transcripts were detected at higher levels during this time.

6. Apoptotic gene expression

At the same time, *head involution defective (hid)*, known to have a central role in apoptosis pathway, was also selected for further study. Apoptosis is a genetically controlled mechanism of cytological events that results in programmed cell death. During development, programmed cell death plays a key role by eliminating unwanted cells from a variety of tissues, such as, for example, larval tissues during insect metamorphosis (Reviewed in [119]). A series of caspases, a family of cysteine proteases, play a central role during apoptosis. Once activated, caspases can cleave more than 100 different cell target proteins, bringing about ultimately the cell death [120]. Regulators of caspase activation may either promote apoptosis (pro-apoptotic) or inhibit apoptosis (anti-apoptotic). Drosophila Hid belongs to a family of pro-apoptotic proteins which act as antagonists of IAPs (Inhibitor of Apoptosis Proteins), thus resulting in caspase activation and apoptosis [119,121,122]. Such pro-apoptotic genes have been used in transgenic control systems for pest insects. In tetracycline-suppressible systems for female-specific lethality and conditional embryonic expression of a Drosophila *hid*-containing transgene, for example, 100% lethality was observed in Drosophila [123], as well as in the Tephritid flies *Ceratitis capitata* [117] and *Anastrepha suspensa* [124].

The developmental regulation of *Bohid* was explored by determining the transcript levels during embryogenesis. A qRT-PCR approach with species-specific primers was used to evaluate the expression pattern of *hid* in embryos at 0 h, 4 h, 8 h, 9 h, 10 h, 11 h, 12 h, 15 h, 18 h after oviposition. Based on *D. melanogaster hid* expression pattern, no expression was expected in embryos prior to formation of the syncytial blastoderm [125]. Indeed, until 8h no transcripts were detected. *hid* expression was first detected at 12h and peaked during 15h (Figure 8, panel B).

It is noteworthy that most developmental programmed cell death occurs during the gastrulation process of *D. melanogaster* embryonic development [126], suggesting that the onset of this period in *B. oleae* could be defined approximately at 12h, occurring mainly within 15-18h.

However, further examination of the pro-apoptotic function of *hid* gene is required in order to explore its ability of inducing apoptosis in *B. oleae* cells. Specific lethal embryonic phenotypes need to be obtained to characterize its role in the cell-death pathway. Ongoing analysis for the isolation of the complete gene will provide the essential tools for the generation of an endogenous effective lethal effector system.

Conclusions

In serious agricultural pests (like the olive fly) which are not model experimental organisms (unlike the medfly), the major focus of most scientific research is, in the end, directed towards control of the pest. Old and new environmental concerns and sensibilities, that regard mostly insecticide use, drive science to the quest of alternative, environmentally friendlier methods of pest control. Time and again it has been shown that such methods go through thorough understanding of the biology and ecology of the target organism. Since the initial unsuccessful SIT efforts, molecular and genetic studies in the olive fly have focused on genetic analyses of natural populations, cytogenetics, isolation and characterization of genes that control important biological processes, as well as the identification and mapping of several microsatellite loci. Just a few years ago, B. oleae was successfully transformed, an achievement that gave new perspective towards the efficient use of the SIT. Lately, this is being coupled with genomics studies and transcriptomics analyses of various important systems, as well as efforts in advancing olive fly mass-rearing, that are setting the ground for the application of modern control approaches through the genetic manipulation of the insect.

Methods

Ethics statement

The study was carried out on laboratory reared olive flies. No specific permissions are required for these experiments, since these studies did not involve endangered or protected species.

Fly culture and stocks

Laboratory strain

The laboratory strain of the olive fly (LAB) is part from the original stock from the Department of Biology, 'Demokritos' Nuclear Research Centre, Athens, Greece, and has been reared in our laboratory for over 15 years. The flies are reared at 25°C with a 12h light/12h dark photoperiod in 30x30x30cm³ cages, as described by [127-129].

Egg collection

For embryo analysis, eggs were collected from 10-day old mated females maintained in our laboratory, which were fed with artificial adult diet to ensure high oviposition rates and embryo viability. Adults were exposed to paraffin oviposition domes for 10 minutes and the eggs were obtained with a 0.3% propionic acid solution, assigning this as the start time point. Eggs were maintained in an incubator according to the standard rearing conditions.

RNA isolation for library preparation and functional analysis

Total RNA was isolated from female accessory glands (FAGs) and spermathecae of ~300 female flies and from testes of ~150 male flies. Four-day old sexually immature unmated insects were used. For RNA isolation, the TRIzol[®] Reagent (Ambion-Invitrogen) was used, following the instructions of the manufacturer with minor modifications. RNA extraction was followed by an additional DNA removal using the TURBO DNA-free Kit (Ambion-Invitrogen), according to manufacturer's instructions. The integrity of RNA was assessed by 1% agarose gel electrophoresis and the purity of all RNA samples was evaluated at Fleming Institute (Greece) with the use of (Agilent 2100 Bioanalyzer) and NanoDrop (2000).

Whole transcriptome library preparation for nextgeneration sequencing with the SOLiD 4 Sequencing System

RNA transcripts from olive fly FAGs/spermathecae (FEMALE) and testes (MALE) were used to construct

two cDNA libraries for sequencing analysis on the SOLiD 4 Sequencing System. More specifically, polyadenylated RNA (polyA-RNA) was isolated from 5 µg of total RNA using the Dynabeads Oligo(dT) kit (Ambion, Life Technologies Corporation). The isolated polyA-RNA was randomly fragmented by chemical hydrolysis at 94°C for 5 minutes and was then treated with antarctic phosphatase to remove phosphate groups from the fragments' ends, followed by treatment with T4 polynucleotide kinase to add a Pi at the 5' end of each fragment. The resulting RNA fragments were hybridized and ligated to the P1 and P2 adaptor sequences specifically designed for sequencing with the SOLiD system (SOLiD Total RNA-Seq Kit, Life Technologies Corporation). The RNA produced was reverse transcribed to cDNA which was then amplified in a 15-cycle PCR. At this step, the use of different barcoded 3' PCR primers from the selection included in the SOLiD barcoding kit allowed the preparation of cDNA libraries for multiplex sequencing. From the cDNA produced, only fragments of average size 200-300 bp were selected with two rounds of magnetic bead purification (Agencourt AMPure XP Reagent, Beckman Coulter).

The quality and size of the purified cDNA library was assessed on the Agilent Bioanalyzer 2100 (Agilent Technologies Inc.) and with quantitative PCR using the Library Quant Kit ABI Solid (KAPA Biosystems). A multiplex library mix (500pM) was used to prepare a full-slide for analysis on the SOliD 4 Sequencing System (Applied Biosystems) with 35+50 bp PE-chemistry.

RNA isolation and expression analysis of selected genes

RNA extraction for expression analysis of sexually differentially expressed genes. For the validation of the differential expression of sexually differentially expressed genes, RNA was extracted from two pools of 40 pairs of spermathecae/ FAGs and 40 pairs of testes (two biological pool replicates), dissected from an equivalent number of female and male adult laboratory flies, respectively.

RNA extraction for expression analysis of olfactory and early embryonic developmental genes. For the validation of the olfactory genes expression, RNA was extracted from five female and five male individual insects (five biological replicates, respectively) before and after mating of the aforementioned laboratory strain. Two groups of insects were considered. Firstly, unmated insects, i.e., sexually mature 7-day old unmated insects (before mating, BM). Secondly, mated insects, i.e., sexually mature 7-day old insects that were allowed to mate on the seventh day and were dissected 12 hours after mating (after mating, AM). For the validation of the sexually differentially expressed genes, the RNA isolated for the construction of the two libraries was used. RNA was extracted using TriZol reagent according to manufacturer's protocol. For the validation of the early embryonic genes, eggs were removed from the incubator at different time intervals throughout embryonic development and total RNA was extracted from each egg using TriZol reagent according to the manufacturer's protocol. Two individual eggs (two biological replicates) from the various time points during the embryonic developmental stages were used for the extractions.

Following extraction, the RNA was treated with 1.0 unit of DNase I (Invitrogen) according to manufacturer's instructions. In all of the above cases, the total amount of DNA-free RNA obtained from each tissue (between 400 to 700 ng) was converted into cDNA using 300ng Random hexamer primers (equimolar mix of N₅A, N₅G, N₅C and N₅T), 200 units MMLV Reverse Transcriptase (Geneon), 5X reaction buffer, 40mM dNTP mix and 40 units RNase Inhibitor (GeneOn) according to the manufacturer's instructions. Reverse transcription was conducted at 42°C for 50 min and 70°C for 15 min. The resulting cDNA was used in the subsequent qPCR reactions.

Specific primers for the amplification of selected differentially expressed genes revealed by the transcriptome analysis were designed by Primer-BLAST (http://www.ncbi.nlm.nih. gov/tools/primer-blast) (Table S2). To identify sequences with homology to the genes *sry-* α and *hid*, the orthologous genes of *C. capitata* and *An. suspensa* were used as queries to search for *B. oleae* transcripts using tBLASTX in the TSA Database. Species-specific Blast hits for each of the query sequences were retrieved (Genbank: GAKB01005111.1, GAKB01003654.1) and used to design primers (Table S2) for the subsequent amplification of gene-specific sequences by quantitative real-time PCR (qRT-PCR).

Relative quantitation was used to analyze changes in expression levels of the selected genes using a Real-time PCR approach. Expression values were calculated relatively to the housekeeping rpl19 gene. Rpl19 and 14-3-3z genes were used as reference in MAGs and testes while actin3 and a-tubulin in FAGs/spermathecae. The qRT-PCR conditions were: polymerase activation and DNA denaturation step at 95 °C for 4 min, followed by 40 cycles of denaturation at 95 °C for 30 s, annealing/ extension and plate read at 56 °C for 30 s and finally, a step of melting curve analysis at a gradual increase of temperature over the range 55 °C \rightarrow 95 °C. In this step, the detection of one gene specific peak and the absence of primer dimer peaks was assured. Each reaction was performed in a total volume of 15 μ l, containing 5 μ l from a dilution 1:10 of the cDNA template, 1X iTaq Universal SYBR Green Supermix (Biorad, Gaithesburg, MD) and 400nM of each primer. The reactions were carried out on Bio-Rad Real-Time thermal cycler CFX96 (Bio-Rad, Hercules, CA, USA) and data analysed using the CFX Manager[™] software. All qRT-PCRs were performed in triplicate (i.e., three technical replicates).

Bioinformatics analysis

All paired and unpaired reads of the libraries were assembled to construct the reference transcriptome using the SOAPdenovo assembler [54] with a word size of 25 nt. Annotation of the assembled sequences was obtained by comparing to the NCBI non-redundant (Nr) protein database (May 7th, 2014 version) using blastx [130] and collecting the annotations with the BLAS-T2GO tool [55]. TopHat [131] was used to generate a spliced alignment to the reference transcriptome. Transcripts were assembled using Cufflinks and differentially expressed genes were identified using Cuffdiff [56]. GO-term enrichment between male and female transcriptomes was analyzed using the using the GOSSIP [132] application embedded in BLAST2GO.

Availability of supporting data

The data sets supporting the results of this article are included within the article and its additional files. Additional File 1, Additional File 2, Additional File 3 and Additional File 4

Additional material

Additional File 1:	
Additional File 1:	
Additional File 1:	
Additional File 1:	

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

ES was involved in the transcriptome library construction and performed the analysis of the sex-determination genes; MR performed the bioinformatics analysis of the transcriptome; VH constructed the transcriptome libraries and analysed the sequencing data; KTT and AMM analyzed the embryonic and apoptotic genes; MEG, ST and KA analysed the olfactory genes; JR directed the bioinformatics analysis; KDM designed and coordinated the study. All authors participated in drafting the manuscript and read and approved the final document.

Acknowledgements

This research has been co-financed by: the Actions Heracleitus II and "ARISTEIA" ("OLFLY SMELL & SEX") of the "Operational programme Education and Life Long Learning", co-funded by the European Social Fund and Greek National Resources"; and the two postgraduate programs of the Department of Biochemistry and Biotechnology of the University of Thessaly ("Biotechnology - Nutrition and Environment" and "Molecular Biology and Genetics applications"). Special acknowledgements should also go the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture for their support in the organization of a Coordinated Research Project on "Development and evaluation of imported strains of insect pests for SIT. This article has been published as part of BMC Genetics Volume 15 Supplement 2, 2014: Development and evaluation of improved strains of insect pests for SIT. The full contents of the supplement are available online at http://www.biomedcentral.com/bmcgenet/supplements/15/S2. Publication of this supplement was funded by the International Atomic Energy Agency. The peer review process for articles published in this supplement was overseen by the Supplement Editors in accordance with

BioMed Central's peer review guidelines for supplements. The Supplement Editors declare that they have no competing interests.

Authors' details

¹Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece. ²Institute of Molecular Biology and Genetics, Biomedical Sciences Research Centre "Alexander Fleming", Greece.

Published: 1 December 2014

References

- Theophrastus: Enquiry into plants (History of plants HP), I & II (HORT, A. F., translator). London, Cambridge & Massachusetts; 1916, [in ancient Greek with English translation].
- Daane KM, Johnson MW: Olive fruit fly: managing an ancient pest in modern times. Annu Rev Entomol 2010, 55:151-69.
- Pimentel D: Ecological Effects of Pesticides on Non-target Species. Washington, D.C.: Executive Office of the President, Office of Science and Technology; 1971, 220.
- Baumhover A, Graham A, Bitter B, Hopkins D, New W, Dudleyandr F, Bushland C: Screwworm control through release of sterilized flies. J Econ Entomol 1955, 462-466.
- Knipling E: Possibilities of insect control or eradication through the use of sexually sterile males. J Econ Entomol 1955, 459-462.
- 6. Greek Ministry of Agriculture: **Description of research organization for the control of the olive fruit fly.** 1961, 33, (in Greek).
- Economopoulos A, Avtzis N, Zervas G, Tsitsipis J, Haniotakis G, Tsiropoulos G, Manoukas A: Control of the olive fly, Dacus oleae (Gmelin), by the combined effects of insecticides and release of gamma sterilized insects. J Appl Entomol 1977, 201-215.
- Economopoulos AP, Haniotakis GE, Mathioudis J, Missis N, Kinigakis P: Long-distance flight of wild and artificially-reared Dacus oleae (Gmelin) (Diptera, Tephritidae). Z Angew Entomol 1978, 101-108.
- 9. Economopoulos A, Zervas G: The quality problem in olive flies produced for SIT experiments. *IAEA STI/PUB* 1982.
- 10. Economopoulos A: The olive fruit fly, Bactrocera (Dacus) oleae (Gmelin) (Diptera: Tephritidae): its importance and control; previous SIT research and pilot testing. Int At Energy Agency, Vienna, Austria 2002.
- Zervas GA, Economopoulos AP: Mating frequency in caged populations of wild and artificially reared (normal or γ-sterilized) olive fruit flies. *Environ Entomol* 1982, 17-20.
- 12. Loukas M, Economopoulos AP, Zouros E, Vergini Y: Genetic changes in artificially reared colonies of the olive fruit fly. Ann Ent Soc Amer 1985, 159-165.
- Economopoulos A, Loukas M: ADH allele frequency changes in olive fruit flies shift from olives to artificial larval food and vice versa, effect of temperature. Entomol Exp Appl 1986, 215-221.
- 14. Economopoulos A: Sexual competitiveness of gamma-ray sterilized males of Dacus oleae. Mating frequency of artificially reared and wild females. *Env Entomol* 1972, 490-497.
- Capuzzo C, Firrao G, Mazzon L, Squartini A, Girolami V: "Candidatus Erwinia dacicola", a coevolved symbiotic bacterium of the olive fly Bactrocera oleae (Gmelin). Int J Syst Evol Microbiol 2005, 55(Pt 4):1641-7.
- Sacchetti P, Granchietti A, Landini S, Viti C, Giovannetti L, Belcari A: Relationships between the olive fly and bacteria. J Appl Entornol 2008, 132:682-689.
- Estes AM, Hearn DJ, Bronstein JL, Pierson EA: The olive fly endosymbiont, "Candidatus Erwinia dacicola," switches from an intracellular existence to an extracellular existence during host insect development. *Appl* Environ Microbiol 2009, 75:7097-106.
- Ben-Yosef M, Aharon Y, Jurkevitch E, Yuval B: Give us the tools and we will do the job: symbiotic bacteria affect olive fly fitness in a diet-dependent fashion. *Proc Biol Sci* 2010, 277:1545-52.
- Kounatidis I, Crotti E, Sapountzis P, Sacchi L, Rizzi A, Chouaia B, Bandi C, Alma A, Daffonchio D, Mavragani-Tsipidou P, Bourtzis K: Acetobacter tropicalis is a major symbiont of the olive fruit fly (Bactrocera oleae). *Appl Environ Microbiol* 2009, 75:3281-8.
- Augustinos AA, Stratikopoulos EE, Zacharopoulou A, Mathiopoulos KD: Polymorphic microsatellite markers in the olive fly, Bactrocera oleae. Mol Ecol Notes 2002, 2:278-280.
- 21. Nardi F, Carapelli A, Dallai R, Frati F: The mitochondrial genome of the olive fly Bactrocera oleae: two haplotypes from distant geographical locations. *Insect Mol Biol* 2003, **12**:605-611.

- Augustinos AA, Mamuris Z, Stratikopoulos EE, D'Amelio S, Zacharopoulou A, Mathiopoulos KD: Microsatellite analysis of olive fly populations in the Mediterranean indicates a westward expansion of the species. *Genetica* 2005, **125**:231-41.
- Nardi F, Carapelli A, Dallai R, Roderick GK, Frati F: Population structure and colonization history of the olive fly, Bactrocera oleae (Diptera, Tephritidae). *Mol Ecol* 2005, 14:2729-38.
- Nardi F, Carapelli A, Boore JL, Roderick GK, Dallai R, Frati F: Domestication of olive fly through a multi-regional host shift to cultivated olives: comparative dating using complete mitochondrial genomes. *Mol Phylogenet Evol* 2010, 57:678-86.
- Zygouridis NE, Augustinos AA, Zalom FG, Mathiopoulos KD: Analysis of olive fly invasion in California based on microsatellite markers. *Heredity* (*Edinb*) 2009, 102:402-12.
- Dogaç E, Kandemir İ, Taskin V: The genetic polymorphisms and colonization process of olive fly populations in Turkey. *PLoS One* 2013, 8: e56067.
- 27. Mavragani-Tsipidou P: Genetic and cytogenetic analysis of the olive fruit fly Bactrocera oleae (Diptera: Tephritidae). *Genetica* 2002, 116:45-57.
- Mavragani-Tsipidou P, Karamanlidou G, Zacharopoulou A, Koliais S, Kastritisis C: Mitotic and polytene chromosome analysis in Dacus oleae (Diptera: Tephritidae). *Genome* 1992, 35:373-8.
- Zambetaki A, Kleanthous K, Mavragani-Tsipidou P: Cytogenetic analysis of Malpighian tubule and salivary gland polytene chromosomes of Bactrocera oleae (Dacus oleae) (Diptera: Tephritidae). Genome 1995, 38:1070-81.
- Drosopoulou E, Chrysopoulou A, Nikita V, Mavragani-Tsipidou P: The heat shock 70 genes of the olive pest Bactrocera oleae: genomic organization and molecular characterization of a transcription unit and its proximal promoter region. *Genome* 2009, 52:210-4.
- Drosopoulou E, Nakou I, Síchová J, Kubíčková S, Marec F, Mavragani-Tsipidou P: Sex chromosomes and associated rDNA form a heterochromatic network in the polytene nuclei of Bactrocera oleae (Diptera: Tephritidae). *Genetica* 2012, 140:169-80.
- Vontas JG, Hejazi MJ, Hawkes NJ, Cosmidis N, Loukas M, Hemingway J, Janes RW: Resistance-associated point mutations of organophosphate insensitive acetylcholinesterase, in the olive fruit fly Bactrocera oleae. Insect Mol Biol 2002, 11:329-336, April.
- Vontas J, Blass C, Koutsos AC, David JP, Kafatos FC, Louis C, Hemingway J, Christophides GK, Ranson H: Gene expression in insecticide resistant and susceptible Anopheles gambiae strains constitutively or after insecticide exposure. Insect Mol Biol 2005, 14:509-21.
- Kakani EG, Mathiopoulos KD: Organophosphosphate resistance-related mutations in the acetylcholinesterase gene of Tephritidae. J Appl Entomol 2008, 132:762-771.
- Kakani EG, Bon S, Massoulié J, Mathiopoulos KD: Altered GPI modification of insect AChE improves tolerance to organophosphate insecticides. *Insect Biochem Mol Biol* 2011, 41:150-8.
- Khila A, El Haidani A, Vincent A, Payre F, Souda SI: The dual function of ovo/shavenbaby in germline and epidermis differentiation is conserved between Drosophila melanogaster and the olive fruit fly Bactrocera oleae. Insect Biochem Mol Biol 2003, 33:691-9.
- Benos P, Tavernarakis N, Brogna S, Thireos G, Savakis C: Acquisition of a potential marker for insect transformation: isolation of a novel alcohol dehydrogenase gene from Bactrocera oleae by functional complementation in yeast. *Mol Gen Genet* 2000, 263:90-5.
- Lagos D, Ruiz MF, Sánchez L, Komitopoulou K: Isolation and characterization of the Bactrocera oleae genes orthologous to the sex determining Sex-lethal and doublesex genes of Drosophila melanogaster. *Gene* 2005, 348:111-21.
- Lagos D, Koukidou M, Savakis C, Komitopoulou K: The transformer gene in Bactrocera oleae: the genetic switch that determines its sex fate. *Insect Mol Biol* 2007, 16:221-30.
- Tsoumani KT, Mathiopoulos KD: Genome size estimation with quantitative real-time PCR in two Tephritidae species: Ceratitis capitata and Bactrocera oleae. J Appl Entomol 2012, 136:626-631.
- Tsoumani KT, Drosopoulou E, Mavragani-Tsipidou P, Mathiopoulos KD: Molecular characterization and chromosomal distribution of a speciesspecific transcribed centromeric satellite repeat from the olive fruit fly, Bactrocera oleae. *PLoS One* 2013, 8:e79393.

- Tsoumani KT, Augustinos AA, Kakani EG, Drosopoulou E, Mavragani-Tsipidou P, Mathiopoulos KD: Isolation, annotation and applications of expressed sequence tags from the olive fly, Bactrocera oleae. *Mol Genet Genomics* 2011, 285:33-45.
- Pavlidi N, Dermauw W, Rombauts S, Chrisargiris A, Van Leeuwen T, Vontas J: Analysis of the Olive Fruit Fly Bactrocera oleae Transcriptome and Phylogenetic Classification of the Major Detoxification Gene Families. *PLoS One* 2013, 8:e66533.
- Koukidou M, Klinakis A, Reboulakis C, Zagoraiou L, Tavernarakis N, Livadaras I, Economopoulos A, Savakis C: Germ line transformation of the olive fly Bactrocera oleae using a versatile transgenesis marker. *Insect Mol Biol* 2006, 15:95-103.
- Ant T, Koukidou M, Rempoulakis P, Gong HF, Economopoulos A, Vontas J, Alphey L: Control of the olive fruit fly using genetics-enhanced sterile insect technique. *BMC Biol* 2012, 10:51.
- Apostolaki A, Livadaras I, Saridaki A, Chrysargyris A, Savakis C, Bourtzis K: Transinfection of the olive fruit fly Bactrocera oleae with Wolbachia: towards a symbiont-based population control strategy. J Appl Entomol 2011, 135:546-553.
- Estes AM, Hearn DJ, Burrack HJ, Rempoulakis P, Pierson EA: Prevalence of Candidatus Erwinia dacicola in wild and laboratory olive fruit fly populations and across developmental stages. *Environ Entomol* 2012, 41:265-74.
- Alphey L, Andreasen M: Dominant lethality and insect population control. Mol Biochem Parasitol 2002, 121:173-8.
- Alphey L, Beard C Ben, Billingsley P, Coetzee M, Crisanti A, Curtis C, Eggleston P, Godfray C, Hemingway J, Jacobs-Lorena M, James AA, Kafatos FC, Mukwaya LG, Paton M, Powell JR, Schneider W, Scott TW, Sina B, Sinden R, Sinkins S, Spielman A, Touré Y, Collins FH: Malaria control with genetically manipulated insect vectors. *Science* 2002, 298:119-21.
- Heinrich JC, Scott MJ: A repressible female-specific lethal genetic system for making transgenic insect strains suitable for a sterile-release program. Proc Natl Acad Sci USA 2000, 97:8229-32.
- Thomas DD, Donnelly CA, Wood RJ, Alphey LS: Insect population control using a dominant, repressible, lethal genetic system. *Science* 2000, 287:2474-6.
- Gong P, Epton MJ, Fu G, Scaife S, Hiscox A, Condon KC, Condon GC, Morrison NI, Kelly DW, Dafa'alla T, Coleman PG, Alphey L: A dominant lethal genetic system for autocidal control of the Mediterranean fruitfly. *Nat Biotechnol* 2005, 23:453-6.
- Sagri E, Reczko M, Gregoriou M-E, Tsoumani KT, Zygouridis NE, Salpea KD, Zalom FG, Ragoussis J, Mathiopoulos KD: Olive fly transcriptomics analysis implicates energy metabolism genes in spinosad resistance. *BMC Genomics* 2014, 15:714.
- Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K, Li S, Yang H, Wang J, Wang J: De novo assembly of human genomes with massively parallel short read sequencing. *Genome Res* 2010, 20:265-72.
- Götz S, García-Gómez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talón M, Dopazo J, Conesa A: High-throughput functional annotation and data mining with the Blast2GO suite. *Nucleic Acids Res* 2008, 36:3420-35.
- Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. *Nat Biotechnol* 2010, 28:511-5.
- 57. Domanitskaya E V, Liu H, Chen S, Kubli E: The hydroxyproline motif of male sex peptide elicits the innate immune response in Drosophila females. *FEBS J* 2007, **274**:5659-68.
- McGraw LA, Clark AG, Wolfner MF: Post-mating gene expression profiles of female Drosophila melanogaster in response to time and to four male accessory gland proteins. *Genetics* 2008, 179:1395-408.
- Hardy RW, Tokuyasu KT, Lindsley DL: Analysis of spermatogenesis in Drosophila melanogaster bearing deletions for Y-chromosome fertility genes. Chromosoma 1981, 83:593-617.
- 60. Gibbons IR: Dynein family of motor proteins: present status and future questions. *Cell Motil Cytoskeleton* 1995, **32**:136-44.
- Goldstein LS, Hardy RW, Lindsley DL: Structural genes on the Y chromosome of Drosophila melanogaster. Proc Natl Acad Sci USA 1982, 79:7405-9.

- 62. Gepner J, Hays TS: A fertility region on the Y chromosome of Drosophila melanogaster encodes a dynein microtubule motor. *Proc Natl Acad Sci USA* 1993, **90**:11132-6.
- Koerich LB, Wang X, Clark AG, Carvalho AB: Low conservation of gene content in the Drosophila Y chromosome. *Nature* 2008, 456:949-51.
- Carvalho AB, Lazzaro BP, Clark AG: Y chromosomal fertility factors kl-2 and kl-3 of Drosophila melanogaster encode dynein heavy chain polypeptides. Proc Natl Acad Sci USA 2000, 97:13239-44.
- Kimble J, Edgar L, Hirsh D: Specification of male development in Caenorhabditis elegans: the fem genes. Dev Biol 1984, 105:234-9.
- Doniach T, Hodgkin J: A sex-determining gene, fem-1, required for both male and hermaphrodite development in Caenorhabditis elegans. *Dev Biol* 1984, 106:223-35.
- Spence AM, Coulson A, Hodgkin J: The product of fem-1, a nematode sex-determining gene, contains a motif found in cell cycle control proteins and receptors for cell-cell interactions. *Cell* 1990, 60:981-90.
- 68. flybase. [http://www.flybase.org].
- Yeh SD, Chen YJ, Chang AC, Ray R, She BR, Lee WS, Chiang HS, Cohen SN, Lin-Chao S: Isolation and properties of Gas8, a growth arrest-specific gene regulated during male gametogenesis to produce a protein associated with the sperm motility apparatus. J Biol Chem 2002, 277:6311-7.
- Yang Y, Cochran DA, Gargano MD, King I, Samhat NK, Burger BP, Sabourin KR, Hou Y, Awata J, Parry DAD, Marshall WF, Witman GB, Lu X: Regulation of flagellar motility by the conserved flagellar protein CG34110/Ccdc135/FAP50. Mol Biol Cell 2011, 22:976-87.
- Garrett-Engele CM, Siegal ML, Manoli DS, Williams BC, Li H, Baker BS: intersex, a gene required for female sexual development in Drosophila, is expressed in both sexes and functions together with doublesex to regulate terminal differentiation. *Development* 2002, **129**:4661-75.
- Gubbay J, Collignon J, Koopman P, Capel B, Economou A, Münsterberg A, Vivian N, Goodfellow P, Lovell-Badge R: A gene mapping to the sexdetermining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. *Nature* 1990, 346:245-50.
- Wilson MJ, Dearden PK: Evolution of the insect Sox genes. BMC Evol Biol 2008, 8:120.
- Crémazy F, Berta P, Girard F: Sox neuro, a new Drosophila Sox gene expressed in the developing central nervous system. *Mech Dev* 2000, 93:215-9.
- Prokopenko SN, Brumby A, O'Keefe L, Prior L, He Y, Saint R, Bellen HJ: A putative exchange factor for Rho1 GTPase is required for initiation of cytokinesis in Drosophila. *Genes Dev* 1999, 13:2301-14.
- O'Keefe L, Somers WG, Harley A, Saint R: The pebble GTP exchange factor and the control of cytokinesis. *Cell Struct Funct* 2001, 26:619-26.
- Khurana B, Kristie TM: A protein sequestering system reveals control of cellular programs by the transcriptional coactivator HCF-1. J Biol Chem 2004, 279:33673-83.
- Talbo G, Højrup P, Rahbek-Nielsen H, Andersen SO, Roepstorff P: Determination of the covalent structure of an N- and C-terminally blocked glycoprotein from endocuticle of Locusta migratoria. Combined use of plasma desorption mass spectrometry and Edman degradation to study post-translationally modified proteins. *Eur J Biochem* 1991, **195**:495-504.
- Pondeville E, Maria A, Jacques J-C, Bourgouin C, Dauphin-Villemant C: Anopheles gambiae males produce and transfer the vitellogenic steroid hormone 20-hydroxyecdysone to females during mating. *Proc Natl Acad Sci USA* 2008, 105:19631-6.
- Doctor J, Fristrom D, Fristrom JW: The pupal cuticle of Drosophila: biphasic synthesis of pupal cuticle proteins in vivo and in vitro in response to 20-hydroxyecdysone. J Cell Biol 1985, 101:189-200.
- Leal WS: Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annu Rev Entomol 2013, 58:373-91.
- Pelosi P, Maida R: Odorant-binding proteins in insects. Comp Biochem Physiol B Biochem Mol Biol 1995, 111:503-14.
- Vosshall LB, Hansson BS: A unified nomenclature system for the insect olfactory coreceptor. Chem Senses 2011, 36:497-8.
- Vanderhaeghen P, Schurmans S, Vassart G, Parmentier M: Olfactory receptors are displayed on dog mature sperm cells. J Cell Biol 1993, 123(6 Pt 1):1441-52.
- Vanderhaeghen P, Schurmans S, Vassart G, Parmentier M: Specific repertoire of olfactory receptor genes in the male germ cells of several mammalian species. *Genomics* 1997, 39:239-46.

- 87. Spehr M, Gisselmann G, Poplawski A, Riffell JA, Wetzel CH, Zimmer RK, Hatt H: Identification of a testicular odorant receptor mediating human sperm chemotaxis. *Science* 2003, **299**:2054-8.
- Spehr M, Schwane K, Heilmann S, Gisselmann G, Hummel T, Hatt H: Dual capacity of a human olfactory receptor. *Curr Biol* 2004, 14:R832-3.
- Spehr M, Schwane K, Riffell JA, Zimmer RK, Hatt H: Odorant receptors and olfactory-like signaling mechanisms in mammalian sperm. *Mol Cell* Endocrinol 2006, 250:128-36.
- 90. Fukuda N, Yomogida K, Okabe M, Touhara K: Functional characterization of a mouse testicular olfactory receptor and its role in chemosensing and in regulation of sperm motility. *J Cell Sci* 2004, **117(Pt 24)**:5835-45.
- Veitinger T, Riffell JR, Veitinger S, Nascimento JM, Triller A, Chandsawangbhuwana C, Schwane K, Geerts A, Wunder F, Berns MW, Neuhaus EM, Zimmer RK, Spehr M, Hatt H: Chemosensory Ca2+ dynamics correlate with diverse behavioral phenotypes in human sperm. J Biol Chem 2011, 286:17311-25.
- Pitts RJ, Liu C, Zhou X, Malpartida JC, Zwiebel LJ: Odorant receptormediated sperm activation in disease vector mosquitoes. Proc Natl Acad Sci USA 2014, 111:2566-71.
- Paesen GC, Happ GM: The B proteins secreted by the tubular accessory sex glands of the male mealworm beetle, Tenebrio molitor, have sequence similarity to moth pheromone-binding proteins. *Insect Biochem Mol Biol* 1995, 25:401-8.
- Thymianou S, Mavroidis M, Kokolakis G, Komitopoulou K, Zacharopoulou A, Mintzas AC: Cloning and characterization of a cDNA encoding a malespecific serum protein of the Mediterranean fruit fly, Ceratitis capitata, with sequence similarity to odorant-binding proteins. *Insect Mol Biol* 1998, 7:345-53.
- Paiva-Silva GO, Sorgine MHF, Benedetti CE, Meneghini R, Almeida IC, Machado EA, Dansa-Petretski M, Yepiz-Plascencia G, Law JH, Oliveira PL, Masuda H: On the biosynthesis of Rhodnius prolixus heme-binding protein. Insect Biochem Mol Biol 2002, 32:1533-41.
- 96. Forêt S, Maleszka R: Function and evolution of a gene family encoding odorant binding-like proteins in a social insect, the honey bee (Apis mellifera). *Genome Res* 2006, **16**:1404-13.
- Vogt RG, Prestwich GD, Lerner MR: Odorant-binding-protein subfamilies associate with distinct classes of olfactory receptor neurons in insects. J Neurobiol 1991, 22:74-84.
- Arya GH, Weber AL, Wang P, Magwire MM, Negron YL, Mackay TF, Anholt RR: Natural variation, functional pleiotropy and transcriptional contexts of odorant binding protein genes in Drosophila melanogaster. *Genetics* 2010, 186:1475-85.
- Zhou S, Stone EA, Mackay TF, Anholt RR: Plasticity of the chemoreceptor repertoire in Drosophila melanogaster. *PLoS Genet* 2009, 5:e1000681.
- Kodrík D, Filippov VA, Sehnal F, Filippova MA: Sericotropin: an insect neurohormonal factor affecting RNA transcription. Netherlands J Zool 1995.
- Nagnan-Le Meillour P, Cain AH, Jacquin-Joly E, François MC, Ramachandran S, Maida R, Steinbrecht RA: Chemosensory proteins from the proboscis of mamestra brassicae. *Chem Senses* 2000, 25:541-53.
- 102. Jacquin-Joly E, Vogt RG, François MC, Nagnan-Le Meillour P: Functional and expression pattern analysis of chemosensory proteins expressed in antennae and pheromonal gland of Mamestra brassicae. *Chem Senses* 2001, 26:833-44.
- Wanner KW, Willis LG, Theilmann DA, Isman MB, Feng Q, Plettner E: Analysis of the insect os-d-like gene family. J Chem Ecol 2004, 30:889-911.
- Walensky LD, Ruat M, Bakin RE, Blackshaw S, Ronnett G V, Snyder SH: Two novel odorant receptor families expressed in spermatids undergo 5'splicing. J Biol Chem 1998, 273:9378-87.
- Suzuki N, Garbers DL: Stimulation of sperm respiration rates by speract and resact at alkaline extracellular pH. *Biol Reprod* 1984, 30:1167-74.
- 106. Parmentier M, Libert F, Schurmans S, Schiffmann S, Lefort A, Eggerickx D, Ledent C, Mollereau C, Gérard C, Perret J, *et al*: Expression of members of the putative olfactory receptor gene family in mammalian germ cells. *Nature* 1992, 355:453-5.
- Ogaugwu CE, Schetelig MF, Wimmer EA: Transgenic sexing system for Ceratitis capitata (Diptera: Tephritidae) based on female-specific embryonic lethality. *Insect Biochem Mol Biol* 2013, 43:1-8.
- 108. Hanife G: Embryonic development of the olive fruit fly, Bactrocera oleae Rossi (Diptera: Tephritidae), in vivo. *Turkish J Zool* 2014.

- 109. Schweisguth F, Lepesant JA, Vincent A: The serendipity alpha gene encodes a membrane-associated protein required for the cellularization of the Drosophila embryo. *Genes Dev* 1990, 4:922-31.
- 110. Ibnsouda S, Schweisguth F, de Billy G, Vincent A: Relationship between expression of serendipity alpha and cellularisation of the Drosophila embryo as revealed by interspecific transformation. *Development* 1993, 119:471-83.
- 111. Schmid KJ, Tautz D: A screen for fast evolving genes from Drosophila. Proc Natl Acad Sci USA 1997, 94:9746-50.
- 112. Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR, Wincker P, Clark AG, Ribeiro JM, Wides R, Salzberg SL, Loftus B, Yandell M, Majoros WH, Rusch DB, Lai Z, Kraft CL, Abril JF, Anthouard V, Arensburger P, Atkinson PW, Baden H, de Berardinis V, Baldwin D, Benes V, Biedler J, Blass C, Bolanos R, Boscus D, Barnstead M, et al: The genome sequence of the malaria mosquito Anopheles gambiae. *Science* 2002, 298:129-49.
- 113. Zou Z, Lopez DL, Kanost MR, Evans JD, Jiang H: Comparative analysis of serine protease-related genes in the honey bee genome: possible involvement in embryonic development and innate immunity. *Insect Mol Biol* 2006, **15**:603-14.
- 114. Haugen M, Flannery E, Tomchaney M, Mori A, Behura SK, Severson DW, Duman-Scheel M: Semaphorin-1a is required for Aedes aegypti embryonic nerve cord development. *PLoS One* 2011, 6:e21694.
- 115. Schetelig MF, Horn C, Handler AM, Wimmer EA: Development of an Embryonic Lethality System in Mediterranean Fruit Fly Ceratitis capitata. In Area-Wide Control Insect Pests MJB Vreysen, AS Robinson J Hendrichs 2007, 85-93.
- 116. Tadros W, Lipshitz HD: The maternal-to-zygotic transition: a play in two acts. *Development* 2009, **136**:3033-42.
- 117. Schetelig MF, Caceres C, Zacharopoulou A, Franz G, Wimmer EA: Conditional embryonic lethality to improve the sterile insect technique in Ceratitis capitata (Diptera: Tephritidae). *BMC Biol* 2009, **7**:4.
- 118. Gabrieli P, Gomulski LM, Bonomi A, Siciliano P, Scolari F, Franz G, Jessup A, Malacrida AR, Gasperi G: Interchromosomal duplications on the Bactrocera oleae Y chromosome imply a distinct evolutionary origin of the sex chromosomes compared to Drosophila. *PLoS One* 2011, 6:e17747.
- 119. Bilak A, Su TT: **Regulation of Drosophila melanogaster pro-apoptotic gene hid.** *Apoptosis* 2009, **14**:943-9.
- 120. Kornbluth S, White K: Apoptosis in Drosophila: neither fish nor fowl (nor man, nor worm). J Cell Sci 2005, 118(Pt 9):1779-87.
- 121. Hay BA, Guo M: Caspase-dependent cell death in Drosophila. Annu Rev Cell Dev Biol 2006, 22:623-50.
- 122. Steller H: Regulation of apoptosis in Drosophila. *Cell Death Differ* 2008, **15**:1132-8.
- 123. Horn C, Wimmer EA: A transgene-based, embryo-specific lethality system for insect pest management. *Nat Biotechnol* 2003, **21**:64-70.
- 124. Schetelig MF, Nirmala X, Handler AM: **Pro-apoptotic cell death genes, hid and reaper, from the tephritid pest species, Anastrepha suspensa.** *Apoptosis* 2011, **16**:759-68.
- Grether ME, Abrams JM, Agapite J, White K, Steller H: The head involution defective gene of Drosophila melanogaster functions in programmed cell death. *Genes Dev* 1995, 9:1694-708.
- 126. Abrams JM, White K, Fessler LI, Steller H: Programmed cell death during Drosophila embryogenesis. *Development* 1993, 117:29-43.
- 127. M.E Economopoulos A, Tsitsipis J: The importance of conditions during the adult stage in evaluating an artificial food for larvae of Dacus oleae (Gmel.) (Diptera, Tephritidae). Z Angew Entomol 1967, **59**:127-130.
- 128. Tsitsipis J: Development of a caging and egging system for mass rearing the olive fruit fly, Dacus oleae (Gmel.) (Diptera, Tephritidae). Ann Zool Ecol Anim 1977, 9:133-139.
- 129. Tsitsipis JA, Kontos A: Improved solid adult diet for the olive fruit fly Dacus oleae. Entomol Hell 1983, 1:24-29.
- Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL: BLAST+: architecture and applications. *BMC Bioinformatics* 2009, 10:421.
- 131. Trapnell C, Pachter L, Salzberg SL: TopHat: discovering splice junctions with RNA-Seq. *Bioinformatics* 2009, 25:1105-11.
- Blüthgen N, Brand K, Cajavec B, Swat M, Herzel H, Beule D: Biological profiling of gene groups utilizing Gene Ontology. *Genome Inform* 2005, 16:106-15.

doi:10.1186/1471-2156-15-S2-S8

Cite this article as: Sagri *et al*.: The molecular biology of the olive fly comes of age. *BMC Genetics* 2014 15(Suppl 2):S8.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

SCIENTIFIC REPORTS

Received: 22 August 2016 Accepted: 01 March 2017 Published: 03 April 2017

OPEN Housekeeping in Tephritid insects: the best gene choice for expression analyses in the medfly and the olive fly

Efthimia Sagri¹, Panagiota Koskinioti¹, Maria-Eleni Gregoriou¹, Konstantina T. Tsoumani¹, Yiannis C. Bassiakos² & Kostas D. Mathiopoulos¹

Real-time quantitative-PCR has been a priceless tool for gene expression analyses. The reaction, however, needs proper normalization with the use of housekeeping genes (HKGs), whose expression remains stable throughout the experimental conditions. Often, the combination of several genes is required for accurate normalization. Most importantly, there are no universal HKGs which can be used since their expression varies among different organisms, tissues or experimental conditions. In the present study, nine common HKGs (RPL19, tbp, ubx, GAPDH, α -TUB, β -TUB, 14-3-3zeta, RPE and actin3) are evaluated in thirteen different body parts, developmental stages and reproductive and olfactory tissues of two insects of agricultural importance, the medfly and the olive fly. Three software programs based on different algorithms were used (geNorm, NormFinder and BestKeeper) and gave different ranking of HKG stabilities. This confirms once again that the stability of common HKGs should not be taken for granted and demonstrates the caution that is needed in the choice of the appropriate HKGs. Finally, by estimating the average of a standard score of the stability values resulted by the three programs we were able to provide a useful consensus key for the choice of the best HKG combination in various tissues of the two insects.

The Mediterranean fruit fly, Ceratitis capitata (Wiedemann), and the olive fruit fly, Bactrocera oleae (Rossi), belong to the Tephritidae family of insects. As typical fruit flies, females lay their eggs in fruits or vegetables and the emerging larvae feed in the fruit sap, thus destroying the fruit. The medfly is one of the most devastating insects, easily adapting to new environments and hosts, infecting more than 260 species of fruits and vegetables worldwide^{1,2}, and causing great economic losses in fruit production and quarantine costs. The olive fruit fly, on the other hand, is a monophagous species, the most important enemy of olive cultivations^{3,4}. Whole genome sequencing of both species has been completed^{5,6}, offering a holistic view of the entire genomes, allowing the study of any desired gene and thus leading to a profound understanding of the biology of these species. Such understanding is a prerequisite for novel, alternative to insecticides, control approaches.

The study of any gene inevitably goes through detailed and thorough scrutiny of its expression profile in various tissues and under different conditions. An invaluable tool for such expression analysis is RT-qPCR. The same way PCR revolutionized modern day molecular biology, RT-qPCR gave tremendous impetus to studies of gene expression, quantitative genotyping, genetic variation, disease diagnosis, forensics and many more. Due to the simplicity of the reaction, data can be easily collected and published in high impact journals without, necessarily, following good practices of RT-qPCR7. One of the most important parameters that should be addressed in order to standardize the reaction and perform a valid RT-qPCR analysis is the selection of suitable reference housekeeping genes. Since the reaction has several limitations as a result of the quality and quantity of starting RNA and the efficiency of its reverse transcription, housekeeping genes are used for the systematic normalization of gene expression data in order to improve the fidelity and accuracy of RT-qPCR⁸⁻¹⁰. Time and again, it has been demonstrated that the use of an unsuitable reference gene can lead to false results of the qPCR data and, consequently,

¹Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece. ²Department of Economic Sciences, National and Kapodistrian University of Athens, Athens, 10559, Greece. Correspondence and requests for materials should be addressed to K.D.M. (email: kmathiop@bio.uth.gr)

to erroneous interpretations^{11–14}. Most frequently, indeed, more than one housekeeping genes are required for proper normalization of the data^{15,16}.

In insects, many articles have been published on the identification and selection of the best reference gene in specific tissues and under different conditions. In the Tephritidae family there are two studies on the oriental fruit fly, Bactrocera dorsalis^{17,18} and one in the West Indian fruit fly Anastrepha obliqua¹⁹. Among other dipteran species, there are three studies on Drosophila melanogaster^{15,20,21} and a single one on each of D. suzukii²², Musca domestica²³, Lucilia cuprina²⁴ and the Calliphoridae family²⁵. Interestingly, there are no studies published on any mosquito species. In many mosquito publications, normalization of RT-qPCR is at best performed using a housekeeping gene (HKG) that demonstrates stable expression in microarray or RNAseq results^{26,27}. This strategy may seem biologically reasonable, but there is a potential technical artifact considering that microarrays, RNAseq and RT-qPCR constitute quite different methods, with different limitations, requiring different standardization each. Most frequently, however, there is no specific justification regarding the selection of the utilized HKGs²⁸⁻³⁴ except, at most, that it may have been used previously in the same^{35,36} or related species^{37,38}. Furthermore, with regard to published HKG studies on Diptera, the number of HKGs tested varies from as low as six^{18,21,25} to over 2015. Unfortunately, neither the same genes nor the same tissues and conditions are studied, a fact that makes any effort to compare results practically impossible. Very importantly, these studies hardly ever indicate the use of the same housekeeping gene or gene combination in different tissues of the same insect or in the same tissue of different insects. Since, as mentioned above, the use of improper housekeeping genes for the normalization of the RT-qPCR can lead to erroneous results, this variability necessitates each time, for every organism and every tissue, the search for the proper housekeeping genes. Additionally, given the fact that the available software (such as geNorm⁹, NormFinder³⁹, BestKeeper⁴⁰ and the web-based RefFinder platform⁴¹) are based on different statistical algorithms, they do not result in the same HKG suggestions for a particular tissue^{42,43}.

Here we present the most extensive study on HKGs, at least in the dipteran order of insects. The study validates nine candidate reference genes in thirteen different tissues of the model tephritid fly, the Mediterranean fruit fly, *C. capitata*, and the olive fruit fly, *B. oleae*. The genes are: *RPL19 (ribosome protein L19)*, *tbp (TATA-binding protein)*, *ubx (ultrabithorax)*, *GAPDH (glyceraldehyde 3-phosphate dehydrogenease)*, α -*TUB* (α -*tubulin*), β -*TUB (\beta-tubulin*), 14-3-3zeta, *RPE (RNA polymerase II)* and *actin3*. The tissues selected for the analysis were mostly tissues from either the reproductive [testes, ovaries, male and female accessory glands (MAGs and FAGs, respectively), ovipositors] or the olfactory (maxillary palps and antennae) systems of the flies. In addition, we analyzed three developmental stages (egg, larva, pupa) and the three sections of the insect body (head, thorax, abdomen), as they are often convenient controls for comparison with other tissues.

Results

In the present study, the best choice for reference genes for RT-qPCR in thirteen tissues of two insects of the Tephritidae family, the Mediterranean fruit fly, *Ceratitis capitata* and the olive fruit fly, *Bactrocera oleae*, was examined. Three available software programs were used for the analysis and, since each program is based on a different algorithm, an effort was put to generate a consensus of the three programs.

Gene choice and amplification performance. Nine different housekeeping genes, commonly used in other dipteran species, were chosen for the analysis. The genes considered were: *RPL19 (ribosome protein L19)*, *tbp (TATA-binding protein)*, *ubx (ultrabithorax)*, *GAPDH (glyceraldehyde 3-phosphate dehydrogenease)*, α -*TUB (\alpha-tubulin)*, β -*TUB (\beta-tubulin)*, 14-3-3zeta, *RPE (RNA polymerase II)* and *actin3*. Gene names and IDs for the two species are presented in Supplementary Table S6.

In all instances, primers were designed by Primer-BLAST⁴⁴ in order to get amplicons ranging from 82 to 150 bp, as shown in Supplementary Table S7. Reaction conditions described in the Methods section resulted in one gene-specific peak and the absence of primer dimers peaks (data not shown). The PCR efficiency (E) and the correlation coefficient (R²) characterizing each standard curve are also given in Supplementary Table S7. Efficiencies for all tested genes varied between 90.1% and 106.4%.

All reactions were done in triplicate (three technical replicates). The expression of the reference genes was measured in 8 or 10 biological replicates, as indicated in Table 1. Three negative controls were also used.

Expression stability by geNorm. geNorm is a Visual Basic Application (VBA) for Microsoft Excel that automatically calculates two parameters: the gene-stability measure M and the pairwise variation V. The lower the gene-stability M value indicates the more stably expressed gene. Values of M higher than 1.5 are not considered stable across measurements. The pairwise variation V, on the other hand, indicates the least number of the most stably expressed genes that should be combined for optimal normalization. Additionally, V should be below the cut-off value of 0.15, otherwise, the lowest V should be considered. Using this algorithm, we ranked the nine housekeeping genes in the thirteen tissues tested according to their expression stability (Fig. 1). For *B. oleae* egg, for example, under the cut-off value of 0.150 is V4/5 (0.136, Fig. 1-D) and, therefore, the four most stable genes for the eggs (*ubx* with M = 0.508, *14-3-3zeta* with M = 0.556, *tbp* with M = 0.601 and *RPE* with M = 0.658) should be combined in order to obtain optimal normalization. For the other tissues, the lowest pairwise variation value and the suggested combination of HKGs are presented in Supplementary Table S1. In most cases, *geNorm* suggests the combination of 2-3 HKGs for optimal normalization. In one case (FAGs of *B. oleae*) it suggests the combination of six; and in one other (ovipositor of *B. oleae*) it suggests the combination of seven. For *C. capitata*, α - and β -tubulin are most frequently among the suggested HKGs, while for *B. oleae* 14-3-3zeta is the winner. *RPE* and *ubx* are never among the suggested HKGs in *C. capitata*.

Expression stability by *NormFinder*. *NormFinder* algorithm identifies the optimal normalization gene among a set of candidate genes, providing a stability value for each gene. This value is the estimated expression

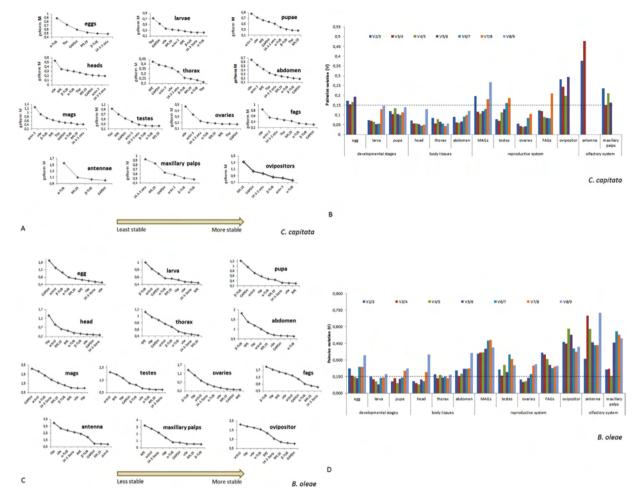
Tested tissues		Biological replicates		
Developmental Stages	Egg	10 individuals		
	Larva	10 individuals		
	Pupa	10 individuals		
Body parts	Head	10 individual parts (5 male and 5 female)		
	Thorax	10 individual parts (5 male and 5 female)		
	Abdomen	10 individual parts (5 male and 5 female)		
Reproductive System	MAGs	10 pairs (1 pair of MAGs/fly)		
	Testes	10 pairs (1 pair of testes/fly)		
	FAGs	10 pairs (1 pair of FAGs/fly)		
	Ovaries	10 sets (1 set of ovaries/fly)		
	Ovipositors	8 pools (4 flies/pool)		
Olfactory System	Maxillary palps	8 pools (4 flies/pool)		
Olfactory System	Antennae	8 pools (4 flies/pool)		

Table 1. The thirteen tested tissues of C. capitata and B. oleae.

.....

variation if a given gene is used for normalization. Therefore, the candidate genes can be ranked according to their expression stability in the different tissues or experimental conditions⁴⁵. The calculated stability values for each HKG and the according ranking in the thirteen tissues are shown in Supplementary Tables S2A and S2B for *C. capitata* and *B. oleae*, respectively. For *C. capitata*, *GADPH* ranks first in four tissues, *14-3-3zeta* in three, while *ubx* and *actin3* never rank first. For *B. oleae*, *RPE* and *14-3-3zeta* rank first in three tissues each, while *ubx* and *GADPH* never rank first.

Expression stability by *BestKeeper*. *BestKeeper* software estimates standard deviation (SD) of the Ct values of all candidate genes. Since the expression levels of suitable HKGs should be highly correlated, the lower the SD the more stable the gene⁴⁰. The disadvantage of *BestKeeper* is that it does not provide a combination of reference genes required for an experiment. The calculated SD values and CV (coefficient of variation) for each HKG in the thirteen tissues are shown in Supplementary Tables S3A and S3B for *C. capitata* and *B. oleae*, respectively. According to *BestKeeper*, α -*TUB*, *GADPH* and *RPL19* have the least SD values in three different tissues of *C. capitata* each, while *tbp* and *ubx* in none. For *B. oleae*, α -*TUB* and *RPE* have the least SD in four different tissues each, while β -*TUB*, *ubx*, *GADPH* and *actin3* in none.


Seeking consensus. Since the different software programs use different algorithms to estimate gene expression stability, they rarely reach the same ranking. *RefFinder* software theoretically integrates the results of the previous analyses (by *geNorm*, *Normfinder* and *BestKeeper*). It then assigns an appropriate weight to an individual HKG and calculates the geometric mean of their weights for an overall final ranking⁴¹. We ran this user-friendly web-based tool as well. However, since the values that *RefFinder* calculated for, e.g., *geNorm* differed from those estimated by *geNorm* itself, we considered *RefFinder* unreliable and we did not use it any further. *RefFinder* results are presented in Supplementary Tables S4A and S4B.

In order to propose a combination of the most stable HKGs that a researcher can use for normalization of gene expression in *C. capitata* and *B. oleae*, we took a different route. We first estimated the average of a standard score (z-score) of the stability values resulted by all three software packages for every single gene and then ranked them according to this new average score. Complete results of this ranking are presented in Supplementary Tables 5A and 5B. The first three genes of this consensus ranking are presented in Table 2. In the medfly, *RPL19* is the HKG that is most often found in the best three ranking genes, followed by β -*TUB*, while *ubx* is never among the top three. Similarly, in the olive fly *14-3-3zeta* is the HKG that is most often found in the best three ranking genes, followed by *GADPH*, while α -*TUB* is not found at all. To our experience, the combination of at least two HKGs and at most the number of genes suggested by *geNorm*, provides an excellent internal control in all RT-qPCRs.

Discussion

Several times in the recent years it has been documented that the choice of the right reference gene/s for the standardization of RT-qPCRs is of paramount importance and the possible use of the inappropriate HKGs can lead to incorrect results¹¹⁻¹⁴. Common housekeeping genes, that are supposed to be constitutively expressed in order to maintain basic cellular functions, may not have constant and stable expression throughout an experiment. This may be due to the special characteristics of the organism or tissue analyzed or the particular conditions of the experimental design. Good practice of an RT-qPCR experiment requires the establishment of the appropriate HKGs for its standardization⁴⁶, even though good practice is not always observed.

We set out to address the above question for the medfly, *C. capitata*, and the olive fly, *B. oleae*, both very important agricultural pests. Particularly, the medfly is a cosmopolitan pest and due to its great importance in the cultivation and export of more than 260 fruits and vegetables^{1,2}, it has turned out to be a model organism in the Tephritidae family of insects and beyond, for studies ranging from classical genetics to genomics^{5,47–52}, as well as area-wide control practices^{53,54}. The olive fly, on the other hand, is a strictly monophagous cousin of the medfly,

Figure 1. (A) Stability values of the reference genes in the 13 *C. capitata* tissues under study as generated by the *geNorm* algorithm. The average expression stability values from least stable (left) to most stable (right) for the egg, larva, pupa, head, thorax, abdomen, MAGs, testes, ovaries, FAGs, antennae, maxillary palps and ovipositor of the Mediterranean fruit fly. (**B**) Pairwise variation (V) of the housekeeping genes computed by *geNorm* in *C. capitata*. The pairwise variation (V_n/V_{n+1}) analysis determines the optimal number of reference genes for all of the tissues under study. (**C**) Stability values of the reference genes in the 13 *B. oleae* tissues as generated by the *geNorm* algorithm. The average expression stability values from least stable (left) to most stable (right) for the egg, larva, pupa, head, thorax, abdomen, MAGs, testes, ovaries, FAGs, antennae, maxillary palps and ovipositor of the olive fruit fly. (**D**) Pairwise variation (V) of the housekeeping genes computed by *geNorm* in *B. oleae*. The pairwise variation (V_n/V_{n+1}) analysis determines the optimal number of reference genes for all of the study.

of particular interest in the olive producing areas of the world⁴. Recent development of molecular and genomics tools have made it focus of active research, with renewed interest in its control^{55,56}. The tissues selected for the analysis were mostly tissues from either the reproductive (testes, ovaries, male and female accessory glands, ovipositors) or the olfactory (maxillary palps and antennae) systems of the flies. The reproductive system is involved in the successful mating and egg development while the olfactory system plays a crucial role in insect survival and reproductive success, mediating responses to food, mates and oviposition. Beyond their general interest, such systems can serve as targets for alternative control approaches, such as the Sterile Insect Technique and its alternatives^{52,57–59} and, therefore, are currently under scrutiny in the scientific community. In addition, we analyzed three developmental stages (egg, larva, pupa), as they are useful in order to obtain the expression profile throughout the life cycle of an insect. Finally, we included the three sections of the insect body (head, thorax, abdomen), as they are often convenient controls for comparison with other tissues.

In order to determine the best combination of HKGs, we performed our analyses with the three most popular software programs, *geNorm*⁹, *NormFinder*³⁹ and *BestKeeper*⁴⁰. As anticipated, results were largely inconsistent among them, as they are based on different algorithms. A fourth user-friendly web-based software, *RefFinder*⁴¹, that is supposed to integrate the results of the previous three programs, gave inconsistent results with the programs themselves and so it was deemed untrustworthy. Instead, we decided to take a different route: we first transformed the raw scores of the three programs into standard scores, then calculated the average of the standard scores and finally ranked them. The use of the average of scores is based on the underlying idea of producing a

Tested tissues		The best ranking reference genes in <i>C. capitata</i>			The best ranking reference genes in <i>B. oleae</i>		
Developmental stages	Egg	14-3-3 zeta	RPL19	β -TUB	RPE	14-3-3zeta	RPL19
	Larva	RPE	actin3	RPL19	14-3-3zeta	RPE	GAPDH
	Pupa	tbp	RPL19	β -TUB	RPL19	14-3-3zeta	RPE
Body tissues	Head	14-3-3zeta	RPL19	actin3	14-3-3zeta	RPL19	actin3
	Thorax	RPL19	GAPDH	14-3-3zeta	14-3-3zeta	GAPDH	β -TUB
	Abdomen	α -TUB	GAPDH	β -TUB	14-3-3zeta	GAPDH	ubx
Reproductive system	Testes	actin3	RPL19	α -TUB	14-3-3 zeta	actin3	RPE
	MAGs	RPL19	α -TUB	GAPDH	RPL19	actin3	GAPDH
	Ovaries	GAPDH	α -TUB	RPE	actin3	GAPDH	RPL19
	FAGs	β -TUB	tbp	RPE	GAPDH	RPE	actin3
	Ovipositor	β -TUB	α -TUB	14-3-3 zeta	tbp	14-3-3zeta	RPL19
Olfactory system	Antennae	14-3-3zeta	β -TUB	GAPDH	14-3-3zeta	actin3	GAPDH
	Maxillary palps	α -TUB	RPL19	β -TUB	ubx	GAPDH	actin3

Table 2. Consensus ranking of tested *Ceratitis capitata* and *Bactrocera oleae* housekeeping genes according to the mean of the z-scores of their stability values obtained by *geNorm*, *NormFinder* and *BestKeeper*. Only the first three genes are indicated, listed from the most stable (left) to the least stable (right) gene order. Genes in bold contain highly ranked HKGs that are common in both *C. capitata* and *B. oleae*.

.....

composite score using a linear combination of the individual score values. This practice is common in Statistics, e.g., Principal Components Analysis, Factor Analysis and other multivariate^{60–62} methods. In all these methods the individual variables do not have to be similar in derivation nor do they have to measure the same quantity. Instead, they measure different facets of the same concept, in many instances using different measurement tools. This is the case in our work. Averaging is the simplest form of linear combination (all scores have the same coefficient). The major issue in this case is not how the individual scores are derived, but if their values are in a similar range. When this is not true the score with the larger values would dominate the composite score. We resolved this problem by score standardization.

The aforementioned approach resulted in a useful consensus key (Table 2) for the choice of the best HKG combination in various tissues of the medfly and the olive fly. A few qualified comments based on Table 2 are worth making. First, the most common genes found in the top three choices for both the medfly and the olive fly (i.e., found five times or more in both organisms in Table 2) are 14-3-3zeta, RPL19 and GAPDH, while the least common (two times or less) are, *tbp* and *ubx*. Curiously, α - and β -*tubulins* are quite frequently found in the medfly (6 and 7 times, respectively), while only β -tubulin is found only once in the olive fly. Secondly, in quite a few occasions (indicated by the genes in bold in Table 2) the same HKGs are found in the top three genes in the same tissue of both insects. For example, in eggs 14-3-3zeta and RPL19 are ranked in the top three HKGs in both the medfly and the olive fly. All things being equal, the probability of finding one particular gene out of the nine tested HKGs among three selected genes is 1/3; the probability of finding two particular genes out of nine tested HKGs among three selected genes is $\frac{1}{1}$; while the probability of finding three particular genes out of nine tested HKGs among three selected genes is 1/84 (calculation based on hypergeometric probabilities). Furthermore, the probability of finding the same two of the nine tested HKGs among three genes of both organisms (independent selections from a probability point of view) acquires the statistically significant value of 0.0069 $(\frac{1}{12} \times \frac{1}{12})$, while finding the same three of the nine tested HKGs among three genes of both organisms acquires the statistically significant value of $0.00014 (\frac{1}{84} \times \frac{1}{84})$. This observation may suggest a biological explanation for the stability of 14-3-3zeta, RPL19 and actin3 in heads or the stability of 14-3-3zeta and RPL19 in eggs of both species. A similar situation is detected in thoraces, MAGs and antennae, but not in FAGs or maxillary palps. Therefore, one can imagine that similar patterns of neuronal development in heads or embryonic development in eggs of both species would require similar expression of HKGs; on the contrary, differences in the female reproductive system (FAGs) or different diets (perceived by the maxillary palps) between the two insects would be reflected in the expression of different HKGs. More analyses are needed to substantiate such claims that are beyond the scope of this article.

Closing, we should iterate once again that the stability of common HKGs should not be taken for granted and that a lot of caution is needed in the choice of the appropriate HKGs. In fact, there is a need to validate the use of the proper HKG more often than practically encountered in recent literature. Even though we consider that our analysis offers a useful tool in the medfly and olive fly research community, we do encourage researchers to check these HKGs on their own subjects before use in a particular expression study.

Methods

Fly strains. The 'Benakeion' medfly and the 'Demokritos' olive fly strains were used in the experiments. The 'Benakeion' strain was originally established at the Benakeion Institute of Phytopathology, Athens, Greece, and has been kindly provided by Prof Nikos Papadopoulos at the Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Greece. The 'Demokritus' strain originally comes from the Nuclear Research Centre in Athens, Greece, and has been reared in our laboratory for over 15 years. Both strains are maintained in wooden, nylon-screened, holding cages ($30 \times 30 \times 30 \times 30$ cm) under an LD 14:10 h photocycle at 25 ± 1 °C and $60 \pm 10\%$ relative humidity. Olive fly rearing conditions are described in refs 63–65, while medfly conditions are described by Boller⁶⁶.

RNA isolation from specific tissues of *Ceratitis capitata* **and** *Bactrocera oleae.* Thirteen specific tissues at different developmental stages were used, as shown in Table 1. Eggs were collected from adult females 15 minutes after being laid. Larvae were 2nd stage and pupae were harvested 12 hours after pupation. All dissected tissues (heads, thoraces and abdomens, as well as reproductive and olfactory) were from 5 day-old adult male and female insects.

Total RNA was isolated with the use of TRIsure[™] (Bioline) following the instructions of the manufacturer with minor modifications. RNA extraction was followed by an additional DNA removal using the TURBO DNA-free Kit (Ambion-Invitrogen), according to manufacturer's instructions. The integrity of RNA was assessed in a 1% agarose gel electrophoresis and quantified by Qubit[®] 2.0 Fluorometer (Thermo Fisher Scientific).

The RNA extracted from: a single larva, a single pupa, a single head, a single thorax, a single abdomen and a set of ovaries from a single female, was quantified by Qubit and the amount of $2\mu g$ was used for cDNA preparation. The entire RNA amount extracted from: a single egg, one pair of MAGs, one pair of testes, one pair of FAGs, and maxillary palps, antennae or ovipositors from a pool of 4 individual flies, was used for cDNA preparation, since the amount of RNA was undetectable.

DNA-free total RNA was converted into cDNA using 300 ng Random hexamer primers (equimolar mix of N₅A, N₅G, N₅C and N₅T), 200 units MMLV Reverse Transcriptase (Bioline), $10 \times$ reaction buffer, 40 mM dNTP mix and 40 units RNase Inhibitor (Bioline) according to the manufacturer's instructions.

Expression stability of candidate reference genes in *C. capitata* and *B. oleae*. 82 to 150 bp amplicons from nine different housekeeping genes commonly used in other dipteran species were analyzed. The genes considered were: *RPL19 (ribosome protein L19), tbp (TATA-binding protein), ubx (ultrabithorax), GAPDH (glyceraldehyde 3-phosphate dehydrogenease), \alpha-TUB (\alpha-tubulin), \beta-TUB (\beta-tubulin), 14-3-3zeta, RPE (RNA polymerase II) and actin3 (Supplementary Table S6). For the medfly, primers were based on sequences retrieved in the NCBI database. For the olive fly, primers were based on the sequences obtained during the transcriptome analysis of <i>B. oleae*^{55,67}. Specific primers for the amplification of these HKGs were designed by Primer-BLAST⁴⁴ (Supplementary Table S7). Each primer was also evaluated using OligoAnalyzer 3.1 tool⁶⁸ in order to avoid hairpin formation and self-/hetero-dimerization of the oligonucleotides.

Relative quantitation was used to analyze changes in expression levels of the selected genes using a quantitative real-time PCR approach. The RT-qPCR conditions were: polymerase activation and DNA denaturation step at 95 °C for 4 min, followed by 40 cycles of denaturation at 95 °C for 30 s, annealing/extension and plate read at 56 °C (for all the tested housekeeping genes) and 60 °C (only for the reference genes *RPE* and *actin3*) for 30 s and finally, a step of melting curve analysis at a gradual increase of temperature over the range 55 °C \rightarrow 95 °C. In this step, the detection of one gene specific peak and the absence of primer dimer peaks were assured. Each reaction was performed in a total volume of 15 µl, containing 5 µl from a 1:10 dilution of the cDNA template, 1 × iTaq Universal SYBR Green Supermix (Bio-Rad) and 400 nM of each primer. The reactions were carried out on Bio-Rad Real-Time thermal cycler CFX96 (Bio-Rad, Hercules, CA, USA) and data analyzed using the CFX ManagerTM software. The expression of the reference genes was measured in 8 or 10 biological replicates, as indicated in Table 1. Three negative controls were also used. All reactions were done in triplicate (three technical replicates). The amplification efficiency of the reactions was calculated by the CFX ManagerTM software (Bio-Rad). The PCR efficiency (E) and the correlation coefficient (R²) characterizing each standard curve are given in Supplementary Table S7. Efficiencies for all tested genes varied from 90.1% to 106.4%. The 2^{- $\Delta\Delta$ Ct} method was used for the analysis of relative gene expression⁶⁹.

geNorm analysis. The expression stability of the nine reference genes was assessed using the *geNorm* software. This algorithm is based on the principle that the logarithmically transformed expression ratio between two genes should be constant if both genes are stably expressed in a given sample set. The candidate reference genes were ranked by *geNorm* based on the expression stability value M, which is calculated for all genes under study. The lower the M value, the higher the gene's expression stability. Furthermore, *geNorm* performs a stepwise calculation of the pairwise variation (V_n/V_{n+1}) between sequential normalization factors (NF_n and NF_{n+1}) to determine the optimal number of reference genes required for accurate normalization⁹. Results are presented in Fig. 1 and Supplementary Table S1.

*Normfinder*³⁹ is an algorithm for identifying the optimal normalization gene among a set of candidate genes. This software is based on a mathematical model of gene expression that enables estimation not only of the overall variation of the candidate normalization genes but also of the variation between samples subgroups of the sample set³⁹. Results are presented in Supplementary Table S2A and S2B for *C. capitata* and *B. oleae*, respectively.

BestKeeper determines the most stably expressed genes based on the coefficient of correlation (r) to the *BestKeeper* Index (BI), which is the geometric mean of the candidate reference gene Cq values. Additionally, it calculates the standard deviation (SD) and the coefficient of variation (CV) based on the Cq values of all candidate reference genes⁴⁰. Reference genes are identified as the most stable genes, i.e. those that exhibit the lowest coefficient of variance and standard deviation⁷⁰. Results are presented in Supplementary Table S3A and S3B for *C. capitata* and *B. oleae*, respectively.

The *RefFinder* tool ranks all the potential reference genes according to the gene expression stability based on the rankings from *geNorm*, *Normfinder*, *BestKeeper* and the comparative $\Delta\Delta$ Ct method programs. Also, this program assigns an appropriate weight to an individual gene and calculates the geometric mean of their weights for the overall final ranking⁷¹. Results are presented in Supplementary Table S4A and S4B for *C. capitata* and *B. oleae*, respectively.

Statistical Analysis. Four different types of Microsoft Excel-based software, *geNorm*⁹, *NormFinder*³⁹, *BestKeeper*⁴⁰ and *RefFinder*⁴¹ were used to rank the expression stability of reference genes for all the experimental sets in the specific tissues of the medfly and the olive fruit fly. Relative quantities were used for *geNorm* and *NormFinder*, while *BestKeeper* analyses and the web-based program *refFinder* were based on untransformed Cq values. All four software packages were used according to the manufacturer's instructions.

The consensus rank of the reference genes was estimated by the combination of the stability measurements obtained by *geNorm*, *Normfinder* and *BestKeeper*. More specifically, the raw scores calculated by these three software (M value by *geNorm*, stability value by *Normfinder* and SD by *BestKeeper*) were transformed into standard scores (z-score) for each housekeeping gene separately. The average of the three z-scores was subsequently calculated and the final rank was computed using the RANK function in Excel software. The above measurements were produced for every single reference gene in each one of the insect tissues under study. Thus, a consensus ranking of all nine genes was estimated for each one of the 13 tissues separately. Results are presented in Supplementary Table S5A and S5B for *C. capitata* and *B. oleae*, respectively.

Ethics statement. The study was carried out on laboratory reared olive flies and medflies. No specific permissions are required for these experiments or collections, since these studies did not involve endangered or protected species.

References

- Khoo, K. C., Ooi, P. A. C. & Ho, C. T. Crop pests and their management in Malaysia. Malaysia: Tropical Press SDN. BHD at http:// www.cabi.org/isc/abstract/19941105253 (1991).
- Liquido, N. J., Shinoda, L. A. & Cunningham, R. T. Host plants of the Mediterranean fruit fly (Diptera, Tephritidae). An annotated world list. Ann. Entomol. Soc. Am. 77, 1–57 (1991).
- Mazomenos, B. E. Estimates of the crop losses caused by Dacus oleae (Gmel.) (Diptera, Tephritidae) in Crete, in Fruit Flies of Economic Importance. (Elsevier Science Publishers B.V., Amsterdam., 1989).
- Daane, K. M. & Johnson, M. W. Olive fruit fly: managing an ancient pest in modern times. *Annu. Rev. Entomol.* 55, 151–69 (2010).
 Papanicolaou, A. *et al.* The whole genome sequence of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), reveals insights
- into the biology and adaptive evolution of a highly invasive pest species. *Genome Biol.* **17**, 192 (2016). 6. The olive fly genome. at https://i5k.nal.usda.gov/Bactrocera_oleae (November 30, 2016)
- The once my genome: a https://isc.nai.usua.gov/bactrocera_oreac (November 30, 2010)
 Bustin, S. A. *et al.* The need for transparency and good practices in the qPCR literature. *Nat. Methods* 10, 1063–1067 (2013).
- Bussin, S. A. et al. The field of transparency and good practices in the qr CK incrature. *Nat. Memous* 10, 1005–1007 (2015).
 Huggett, J., Dheda, K., Bustin, S. & Zumla, A. Real-time RT-PCR normalisation; strategies and considerations. *Genes Immun.* 6, 279–84 (2005).
- Vandesompele, J. et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. *Genome Biol.* 3, RESEARCH0034 (2002).
- 10. Nolan, T., Hands, R. E. & Bustin, S. A. Quantification of mRNA using real-time RT-PCR. Nat. Protoc. 1, 1559-82 (2006).
- 11. Tricarico, C. et al. Quantitative real-time reverse transcription polymerase chain reaction: normalization to rRNA or single housekeeping genes is inappropriate for human tissue biopsies. Anal. Biochem. **309**, 293–300 (2002).
- Bas, A., Forsberg, G., Hammarström, S. & Hammarström, M.-L. Utility of the housekeeping genes 18S rRNA, beta-actin and glyceraldehyde-3-phosphate-dehydrogenase for normalization in real-time quantitative reverse transcriptase-polymerase chain reaction analysis of gene expression in human T lymphocytes. Scand. J. Immunol. 59, 566–73 (2004).
- 13. Babij, C. et al. STK33 Kinase Activity Is Nonessential in KRAS-Dependent Cancer Cells. Cancer Res. 71, 5818–5826 (2011).
- 14. Scholl, C. *et al.* Synthetic Lethal Interaction between Oncogenic KRAS Dependency and STK33 Suppression in Human Cancer Cells. *Cell* **137**, 821–834 (2009).
- Ling, D. & Salvaterra, P. M. Robust RT-qPCR data normalization: validation and selection of internal reference genes during postexperimental data analysis. *PLoS One* 6, e17762 (2011).
- Xiao, X. et al. Validation of suitable reference genes for gene expression analysis in the halophyte Salicornia europaea by real-time quantitative PCR. Front. Plant Sci. 5, 788 (2014).
- Shen, G.-M., Jiang, H.-B., Wang, X.-N. & Wang, J.-J. Evaluation of endogenous references for gene expression profiling in different tissues of the oriental fruit fly Bactrocera dorsalis (Diptera: Tephritidae). BMC Mol. Biol. 11, 76 (2010).
- Shen, A. G., Huang, Y., Jiang, X. & Dou, W. Effect of β -Cypermethrin Exposure on the Stability of Nine Housekeeping Genes in Bactrocera dorsalis (Diptera: Tephritidae). Florida Entomol. 96, 442–450 (2013).
- 19. Nakamura, A. M. *et al.* Reference genes for accessing differential expression among developmental stages and analysis of differential expression of OBP genes in Anastrepha obliqua. *Sci. Rep.* **6**, 17480 (2016).
- Ponton, F., Chapuis, M.-P., Pernice, M., Sword, G. A. & Simpson, S. J. Evaluation of potential reference genes for reverse transcription-qPCR studies of physiological responses in Drosophila melanogaster. J. Insect Physiol. 57, 840–850 (2011).
- Matta, B. P., Bitner-Mathé, B. C. & Alves-Ferreira, M. Getting real with real-time qPCR: a case study of reference gene selection for morphological variation in Drosophila melanogaster wings. Dev. Genes Evol. 221, 49–57 (2011).
- 22. Zhai, Y. et al. Identification and Validation of Reference Genes for Quantitative Real-Time PCR in Drosophila suzukii (Diptera: Drosophilidae). PLoS One 9, e106800 (2014).
- Zhong, M. et al. Selection of reference genes for quantitative gene expression studies in the house fly (Musca domestica L.) using reverse transcription quantitative real-time PCR. Acta Biochim. Biophys. Sin. (Shanghai). 45, 1069–1073 (2013).
- BAGNALL, N. H. & KOTZE, A. C. Evaluation of reference genes for real-time PCR quantification of gene expression in the Australian sheep blowfly, Lucilia cuprina. *Med. Vet. Entomol.* 24, 176–181 (2010).
- Cardoso, G. A., Matiolli, C. C., de Azeredo-Espin, A. M. L. & Torres, T. T. Selection and validation of reference genes for functional studies in the Calliphoridae family. J. Insect Sci. 14, 2 (2014).
- Sanders, H. R., Evans, A. M., Ross, L. S. & Gill, S. S. Blood meal induces global changes in midgut gene expression in the disease vector, Aedes aegypti. *Insect Biochem. Mol. Biol.* 33, 1105–22 (2003).
- 27. Faucon, F. *et al.* Identifying genomic changes associated with insecticide resistance in the dengue mosquito Aedes aegypti by deep targeted sequencing. *Genome Res.* **25**, 1347–59 (2015).
- Zhao, L., Pridgeon, J. W., Becnel, J. J., Clark, G. G. & Linthicum, K. J. Mitochondrial gene cytochrome b developmental and environmental expression in Aedes aegypti (Diptera: Culicidae). J. Med. Entomol. 46, 1361–9 (2009).
- Bariami, V., Jones, C. M., Poupardin, R., Vontas, J. & Ranson, H. Gene Amplification, ABC Transporters and Cytochrome P450s: Unraveling the Molecular Basis of Pyrethroid Resistance in the Dengue Vector, Aedes aegypti. *PLoS Negl. Trop. Dis.* 6, e1692 (2012).
 Zink, S., Van Slyke, G., Palumbo, M., Kramer, L. & Ciota, A. Exposure to West Nile Virus Increases Bacterial Diversity and Immune
- Zink, S., Van Slyke, G., Palumbo, M., Kramer, L. & Ciota, A. Exposure to West Nile Virus Increases Bacterial Diversity and Immune Gene Expression in Culex pipiens. *Viruses* 7, 5619–5631 (2015).
- 31. Liu, H. *et al.* Functional analysis of Orco and odorant receptors in odor recognition in Aedes albopictus. *Parasit. Vectors* **9**, 363 (2016).

- 32. Yang, L. & Piermarini, P. M. Molecular expression of aquaporin mRNAs in the northern house mosquito, Culex pipiens. J. Insect Physiol. 96, 35–44 (2016).
- Kang, D. S., Cotten, M. A., Denlinger, D. L. & Sim, C. Comparative Transcriptomics Reveals Key Gene Expression Differences between Diapausing and Non-Diapausing Adults of Culex pipiens. *PLoS One* 11, e0154892 (2016).
- Alfonso-Parra, C. et al. Mating-Induced Transcriptome Changes in the Reproductive Tract of Female Aedes aegypti. PLoS Negl. Trop. Dis. 10, e0004451 (2016).
- Shin, D., Jin, L., Lobo, N. F. & Severson, D. W. Transcript profiling of the meiotic drive phenotype in testis of Aedes aegypti using suppressive subtractive hybridization. J. Insect Physiol. 57, 1220–1226 (2011).
- 36. Cassone, B. J. et al. Differential gene expression in incipient species of Anopheles gambiae. Mol. Ecol. 17, 2491–2504 (2008).
- Pelletier, J. & Leal, W. S. Characterization of olfactory genes in the antennae of the Southern house mosquito, Culex quinquefasciatus. J. Insect Physiol. 57, 915–929 (2011).
- Lv, Y. et al. Comparative transcriptome analyses of deltamethrin-susceptible and -resistant Culex pipiens pallens by RNA-seq. Mol. Genet. Genomics 291, 309–321 (2016).
- Andersen, C. L., Jensen, J. L. & Ørntoft, T. F. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. *Cancer Res.* 64, 5245–50 (2004).
- Pfaffl, M. W., Tichopad, A., Prgomet, C. & Neuvians, T. P. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. *Biotechnol. Lett.* 26, 509–15 (2004).
- Xie, F., Xiao, P., Chen, D., Xu, L. & Zhang, B. miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol. Biol. 80, 75–84 (2012).
- Mallona, I., Lischewski, S., Weiss, J., Hause, B. & Egea-Cortines, M. Validation of reference genes for quantitative real-time PCR during leaf and flower development in Petunia hybrida. BMC Plant Biol. 10, 4 (2010).
- 43. Mafra, V. *et al.* Reference genes for accurate transcript normalization in citrus genotypes under different experimental conditions. *PLoS One* 7, e31263 (2012).
- 44. Primer-BLAST. at http://www.ncbi.nlm.nih.gov/tools/primer-blast (November 30, 2016)
- 45. Zhong, H.-Y. et al. Selection of reliable reference genes for expression studies by reverse transcription quantitative real-time PCR in litchi under different experimental conditions. Plant Cell Rep. 30, 641–53 (2011).
- Bustin, S. A. *et al.* The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR E xperiments. *Clin. Chem.* 55, 611–622 (2009).
- 47. Robinson, A. S. Genetic sexing strains in medfly, Ceratitis capitata, sterile insect technique programmes. Genetica 116, 5–13 (2002).
- Delprat, M. A., Stolar, C. E., Manso, F. C. & Cladera, J. L. Genetic stability of sexing strains based on the locus sw of Ceratitis capitata. Genetica 116, 85–95 (2002).
- 49. Gasperi, G. *et al.* Genetic differentiation, gene flow and the origin of infestations of the medfly, Ceratitis capitata. *Genetica* **116**, 125–35 (2002).
- 50. Scolari, F. et al. How functional genomics will impact fruit fly pest control: the example of the Mediterranean fruit fly, Ceratitis capitata. BMC Genet. 15, S11 (2014).
- Loukeris, T. G., Livadaras, I., Arcà, B., Zabalou, S. & Savakis, C. Gene transfer into the medfly, Ceratitis capitata, with a Drosophila hydei transposable element. Science 270, 2002–5 (1995).
- Schetelig, M. F., Caceres, C., Zacharopoulou, A., Franz, G. & Wimmer, E. A. Conditional embryonic lethality to improve the sterile insect technique in Ceratitis capitata (Diptera: Tephritidae). BMC Biol. 7, 4 (2009).
- Hendrichs, J., Robinson, A. S., Cayol, J. P. & Enkerlin, W. Medfly Areawide Sterile Insect Technique Programmes for Prevention, Suppression or Eradication: The Importance of Mating Behavior Studies. *Florida Entomol.* 85, 1–13 (2002).
- Sterile Insect Technique Principles and Practice in Area-Wide Integrated Pest Management (eds Dyck, V.A., Hendrichs, J., & Robinson, A.S.), (Springer, 2005).
- 55. Sagri, E. et al. The molecular biology of the olive fly comes of age. BMC Genet. 15 Suppl 2, S8 (2014).
- 56. Estes, A. M. *et al.* A basis for the renewal of sterile insect technique for the olive fly, Bactrocera oleae (Rossi). *J. Appl. Entomol.* **136**, 1–16 (2011).
- 57. Gong, P. et al. A dominant lethal genetic system for autocidal control of the Mediterranean fruitfly. Nat. Biotechnol. 23, 453-6 (2005).
- 58. Fu, G. *et al.* Female-specific insect lethality engineered using alternative splicing. *Nat. Biotechnol.* **25**, 353–357 (2007).
- Scolari, F. *et al.* Fluorescent sperm marking to improve the fight against the pest insect Ceratitis capitata (Wiedemann; Diptera: Tephritidae). *N. Biotechnol.* 25, 76–84 (2008).
- Meng, J., Chen, H.-I., Zhang, J., Chen, Y. & Huang, Y. Uncover cooperative gene regulations by microRNAs and transcription factors in glioblastoma using a nonnegative hybrid factor model. In 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 6012–6015 (IEEE, 2011). doi:10.1109/ICASSP.2011.5947732
- Wang, W., Mo, J., Cheng, J., Zhuang, P. & Tang, Z. Selection and characterization of spinosad resistance in Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). Pestic. Biochem. Physiol. 84, 180–187 (2006).
- 62. Child, D. The Essentials of factor analysis. (Universitas Negeri Malang, 1975).
- Tzanakakis, M., Economopoulos, A. P. & Tsitsipis, J. The importance of conditions during the adult stage in evaluating an artificial food for larvae of Dacus oleae (Gmel.) (Diptera, Tephritidae). Z. Angew. Entomol. 59, 127–130 (1967).
- 64. Tsitsipis, J. Development of a caging and egging system for mass rearing the olive fruit fly, Dacus oleae (Gmel.) (Diptera, Tephritidae). Ann. Zool. Ecol. Anim **9**, 133-139 (1977).
- 65. Tsitsipis, J. A. & Kontos, A. Improved solid adult diet for the olive fruit fly Dacus oleae. Entomol. Hell. 1, 24-29 (1983).
- 66. Boller, E. Rhagoletis cerasi and Ceratitis capitata. In *Handbook of insect rearing* (eds Sing, P. & Moore, R.) 135–144 (The Netherlands: Elsevier, 1985).
- 67. Sagri, E. *et al.* Olive fly transcriptomics analysis implicates energy metabolism genes in spinosad resistance. *BMC Genomics* **15**, 714 (2014).
- 68. OligoAnalyzer 3.1 tool. at http://eu.idtdna.com/calc/analyzer (November 30, 2016)
- 69. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. *Methods* **25**, 402–8 (2001).
- Chang, E. et al. Selection of reference genes for quantitative gene expression studies in Platycladus orientalis (Cupressaceae) Using real-time PCR. PLoS One 7, e33278 (2012).
- 71. Yuan, M. *et al.* Selection and evaluation of potential reference genes for gene expression analysis in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae) using reverse-transcription quantitative PCR. *PLoS One* **9**, e86503 (2014).

Acknowledgements

This research has been co-financed by: the European Union (ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework - Research Funding Program: Heracleitus II, "Investing in knowledge society through the European Social Fund"; State of California Specialty Crops Block Grant Program award SCB10037; and the two postgraduate programs

of the Department of Biochemistry and Biotechnology of the University of Thessaly ("Biotechnology - Nutrition and Environment" and "Molecular Biology and Genetics applications").

Author Contributions

E.S. maintained the laboratory strains, isolated the tissues egg, larva, pupa, head, thorax and abdomen, performed the functional analyses for *Bactrocera oleae* and the bioinformatics analysis and designed part of the study; P.K. isolated all the tissues for the medfly, performed the functional analyses and the bioinformatics analysis for *Ceratitis capitata*; M.G. isolated the tissues MAGs, FAGs, testes, ovaries and ovipositor for *Bactrocera oleae*; K.T. isolated the tissues antennae and maxillary palps for *Bactrocera oleae*; Y.C.B. guided the calculation of the consensus ranking of the three software programs used; K.D.M. designed and coordinated the study. All authors participated in drafting the manuscript and read and approved the final document.

Additional Information

Supplementary information accompanies this paper at http://www.nature.com/srep

Competing Interests: The authors declare no competing financial interests.

How to cite this article: Sagri, E. *et al.* Housekeeping in Tephritid insects: the best gene choice for expression analyses in the medfly and the olive fly. *Sci. Rep.* **7**, 45634; doi: 10.1038/srep45634 (2017).

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2017