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Abstract 

The study of a semiconductor manufacturing system is very difficult in practice 

due to the highly complexity of its re-entrant behavior. The complexity arises also from 

the fact that the basic entities of a fabrication facility, which is the jobs composed of 

wafers, have stochastic routing flows. Not only this, but the jobs might be scrapped and 

reworked, partially or entirely. So, the size of a job may be change during the process. 

Furthermore, a wafer fabrication facility (wafer fab) consists of several different types of 

tools grouped into distinct tool groups. Each tool type presents specific characteristics in 

conjunction with the incapacitation events that occur on this. All the above factors 

increase the variability of such a production line making the control of it challenging. 

Thereafter, with these in mind, for performance evaluation of manufacturing 

systems, queueing models are extensively used. Especially, we present an open queueing 

network model developed by Connors et al. [3] for rapid performance analysis of 

semiconductor manufacturing facilities. This model differs from other queueing models 

in the detailed ways in which the effect of rework and scrap on wafer job sizes is 

characterized and different tool groups found in semiconductor wafer fab are modeled. 

In the analysis of the theoretical model of a Queueing Network, the 

Decomposition Approach is implemented to interpret more efficient the performance 

features of the tool groups, represented by individual queues. The variability is 

incorporated in the first two moments of the inter-arrival time even the service time and 

for that reason coefficients of variation are defined. Hence, from the traffic rates and the 

time requirements of the jobs at each of the tool groups the performance measures of 

utilization and queueing delay are affected. Considering that, we analyze two different 

types of tool groups, single-wafer tools and batch tools. For the batch tools a greedy 

policy is occasionally described. The model achieves, in the end, to estimate a mean 

cycle time for the products of the system. 

Our main contribution to the based research area of analysis of production control 

methods is the development of a computational model based on Connors et al. [3] 
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theoretical analysis, modelling every needed aspect of this and implementing various 

examples in order to compare the accuracy and the reliability of the model. The 

bibliographic model that is thoroughly used is the Mini-Fab model introduced by Kempf 

[6]. Implementing this in our computational model we derived reasonable and 

encouraging results. The performance measures of mean utilization and mean queueing 

delay at each tool group type and the average cycle time for all released products are 

verified from related literature and simulated examples. From that we conclude that our 

implementation approach is reliable. 
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Chapter 1 

 

Introduction 

 

1.1 General 

In the last decade, the electronics industry has become one of the largest and 

fastest growing industries in the world. Semiconductors became the leaders of the 

electronics revolution due to the rapid development of technology and especially the fast-

changing market demands for networking, storage components, 

telecommunications/wireless, consumer, computer, and storage systems that have 

become necessary tools for today. On its basis, the semi-conductor material is the raw 

silicon or gallium, mainly, the raw silicon, which is identified as the dominant material 

for semiconductor fabrication. Silicon is the main-substrate that is used to manufacture 

integrated circuits (ICs). An integrated circuit (IC) is a device made of interconnected 

electronic components that can hold millions of circuits that are capable of performing a 

wide range of computing operations at high speeds. Most importantly, silicon is 

abundantly available in nature and has very special properties making it an inexpensive 

raw material, which is extremely affordable and appealing. It acts as a semiconductor, 

wherein it conducts electricity under some conditions and alternatively acts as an 

insulator in others. These properties have enabled ICs to be extensively used in electronic 

products like computers, transistors and indispensable “smart” devices, the mobile 

phones, in which they have been incorporated advanced technologies ([13]). 
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The Semiconductor Manufacturing comprises four (4) basic stages: the Wafer 

Fabrication (Wafer-Fab), the Probe or Sort, the Assembly and finally the Testing, as it is 

illustrated in Figure 1.1. These manufacturing processes can be grouped into two 

essential categories: “Front-End” and “Back-End Operations”. Wafer Fabrication and 

Probe/Sort are included in “Front-End Operations” while Assembly and Testing belong 

to “Back-End Operations”. 

 

Figure 1.1: Stages of Semiconductor Manufacturing (source: Mönch et al., [9]) 

 

In this thesis we are going to deal with the first stage of the Semiconductor 

Manufacturing and most crucial part of wafer processing, the Wafer Fabrication. Wafer 

Fabrication, as we mentioned, is the manufacturing of integrated circuits (ICs or chips) 

on thin silicon discs (wafers) and, accordingly, it is at the heart of this industry. However, 

the terminologies “Front-End” and “Back-End Operations” of the Semiconductor Manufacturing 

do not work to build the model on this thesis project. 

In comparison to discrete manufacturing facilities, the unique challenges that 

semiconductor fabrication processes faces are ([10]): 

 Large number of process steps; 

 Complex and reentrant process flows; 

 Intermixture of lots and single wafers in tool queues; 

 Batching of different lots having common processing recipes and times; 

 Different rework routes for every product; and 
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 Regular use of metrology tools for parameter measurement and to judge the health 

of the wafer. 

As a result from the above challenges, the fabrication of ICs on silicon wafers is 

arguably the most complex manufacturing process in existence. Also, it is the most time-

consuming and the most costly step. This complexity is caused by many factors including 

multiple products, routes with several hundred process steps, and a large number of 

machines (tools). More specifically, wafer fabrication is characterized by the following 

process conditions: 

 A mix of different process types, for example, batch processes, i.e., several jobs, 

can be processed simultaneously on the same machine vs. single wafer processes; 

 Unrelated parallel machines that are often highly unreliable or require 

considerable preventive maintenance to keep them reliable; 

 Sequence-dependent setup times that can in some cases take considerably longer 

than the time to process a job; 

 Variety of products with a changing product mix; and 

 Customer due dates that are very aggressive.     

Afterwards, refer at [10], a vast amount of research has gone into optimizing the 

wafer fabrication process since it is the most expensive phase of semiconductor 

manufacturing. This stage involves the addition of layers of circuits on the silicon wafer 

through a sequence of 300-600 intricate steps. As we said, the process flow is highly 

reentrant, where many of the processing steps are repeated for every layer. Different 

sequences of steps are required for different circuits and some steps can include sub-

operations on different tools. Processing steps also vary in the quantity of wafers that are 

processed at one time. These quantities can be single wafers, wafer lots or batches of 

wafer lots. Typically a lot consists of 24-48 wafers, while a batch consists of 6 lots. Each 

lot or job contains a fixed number of wafers. These characteristics of semiconductor 

manufacturing make it different from traditional manufacturing. Due to the reentrant 

nature of the flow, wafers at different stages of production queue up in front of the same 

tool a number of times. 
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A simplification of the typical reentrant flow of a wafer fab in a semiconductor 

manufacturing facility is shown in Figure 1.2, where the different work areas within a 

wafer fab are also summarized. 

 

Figure 1.2: Operations in a wafer fab (source: Mönch et al., [9]) 

 

Referring to [9], in the production process every semiconductor manufacturing 

starts with raw wafers and building the electronic circuit layer-by-layer on each wafer can 

be made up to thousand identical chips. Next, the wafers are sent to sort or probe, where 

electrical tests identify the individual dies that are not likely to be good when packaged. 

The probed wafers are sent to an assembly facility where the dies with a reasonable 

quality are put into an appropriate package. Finally, the packaged dies are sent to a test 

facility where they are tested in order to ensure that only good products are sent to 

customers. At certain process steps, it can happen that jobs, wafers, or dies are processed 

in a way that they become damaged. In some situations, rework is possible to repair the 

wafer. When rework is not allowed, the useless wafers are called scrapped material.  
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As a result, the performance measures of Semiconductor Manufacturing Systems 

(SMSs) are the percentage (yield) of dies that meet their electrical specifications and the 

cycle time that is defined as the time needed for a lot of wafers (a job) to travel through 

the semiconductor manufacturing system including queue time, processing time, and 

transit time. Therefore, apart from implementing changes in the products and the 

fabrication procedures, improvement in productivity is achieved by increasing utilization 

of resources on the fab floor, effectively managing the work-in-process (WIP) and 

reducing cycle times. 

 

1.2 Overview of the Thesis 

Here, in this thesis’s project, we are engaged in research of controlling average 

cycle times in interconnection with the utilization of tool groups. Our goal is to compute 

the average cycle time for a product family crossing the flow line from the start through 

the finish area. This is done by implementing Queueing Theory methods to model a re-

entrant flow line of a discrete-event system, Chapter 2. In addition, the manufacturing 

environment is highly stochastic whereas the number of wafers in a job may change as 

the job moves through the fab. Also, tool breakdowns, preventive maintenance, operator 

unavailability, setup requirements and other factors combine to make the problem 

stochastic. Consequently, the first method related to decision-making for stochastic 

problems is queueing theory. We will analyze its aspects like the use of the traffic 

equations (traffic rates & variability) and the characteristics of different tool types in 

Chapter 3. 

In our attempts to implement a computational model adapted to queueing theory, 

we were relied on the Connors et al.’s research work ([3]) of Chapter 3, and we 

succeeded in modelling every aspect of the theoretical analysis required and incorporated 

into analytical models. The computational model and some techniques and methods in its 

coding are analyzed extensively in Chapter 4. The model was developed in the 

programming environment of MATLAB-MathWorks software. 



16 
 

The computational model that we developed in Chapter 4 has to reflect the 

physical structure of a real-time re-entrant semiconductor manufacturing facility 

illustrating the complexity of the semi-conductor industry. This is succeeded 

implementing a few variants of the Mini-Fab model introduced by Kempf [6]. The 

significant input data that we are need are extracted from this Five-Machine Six Step 

Mini-Fab case. Not only the data, but also the structure of our computational model is 

influenced from the Mini-Fab case. This simulation model suggested by researchers from 

Intel Corporation and is described as an example of simulation model that contains 

typical features of a wafer fab (fabrication facility). Hence, from the derived results we 

evaluate our computational model in Chapter 5. 

 

1.3 Motivation 

The main literature in which this thesis’s project is based on is the scientific paper 

of Daniel Ρ. Connors, Gerald Ε. Feigin, and David D. Yao that was published in IEEE 

Transactions on Semiconductor Manufacturing scientific magazine in August 1996. It is 

dealt with a Queueing Network Model for Semiconductor Manufacturing. Specifically, 

an open queueing network model is being developed for rapid performance analysis of 

semiconductor manufacturing facilities, but it is differentiated from other approaches and 

researches in the detailed ways that the different tool groups, which are found in a 

semiconductor wafer fabrication, are modeled. The paper’s research was my graduate 

work, but the perspective of this is described below. 

The Production Organization Laboratory of the Department of Mechanical 

Engineering at University of Thessaly participates in the research project Productive4.0 

“Electronics and ICT as an enabler for digital industry and optimized supply chain 

management covering the whole product lifecycle”. This project started on May 1, 2017, 

has duration of three years and it is funded by the Consortium Electronic Components 

and Systems for European Leadership Joint Undertaking (ECSEL JU) under project 

contract No. 737459. This consortium is funded by the European Research and 

Innovation Program H2020 and National Funding Authorities. Project coordinator is 
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Infineon Technologies and many other industrial and research partners are involved. 

Particularly our Production Organization Lab cooperates under the guidance of the 

Robert Bosch GmbH (Bosch) Company. The main purpose of the project is a significant 

improvement in digitalization of European industry through electronic and Information 

and Communication Technology (ICT). This project is the largest European research 

effort to date under the initiative of automation and data exchange in Industry4.0 

industrial technologies ([1]). 

So, in this context, the development of our model has the prospect to be 

implemented in the semiconductor supply chain of Bosch in its factories in Reutlingen 

(Germany). With the corresponding adjustments, there is strong potentiality that the 

physical system’s structure of the Frontend part of its semiconductor plant can be 

described better and more thoroughly with our implementation model in order to manage 

significant impact on the improvement of the line’s performance. 
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Chapter 2 

 

Queueing Theory for Semiconductor 

Manufacturing Systems 

 

Before we continue to analyze the Connors et al.’s [3] model we will make a 

reference in this Chapter to the theoretical background of the Queueing Theory that 

implemented in semiconductor manufacturing systems (SMSs). A literature review is 

conducted at first in Section 2.1 in order to make a connection with the basic Queueing 

Models for Toolsets which are introduced in Section 2.2. In Section 2.3 the Queueing 

Network and the implemented Decomposition method with its properties are discussed. 

 

2.1 Literature Review 

Performance measures evaluation is very crucial part during the analysis of high-

complex semiconductor manufacturing systems, such as semiconductor fabs, especially 

for the thorough modeling and management of such stochastic systems. Queueing theory 

is the most well-known method to analyze stochastic networks in conjunction with the 

different types of toolsets there have been in semiconductor fabs. 

Our focus in this Chapter is on analytical methods, which are primarily based on 

queueing models. One of the earliest applications of queueing network models for the 

performance evaluation of semiconductor fabs is Connors et al. [3]. They incorporated 
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various tool models as well as the functions of scrapping and rework into the fab 

queueing network. Compared with simulation, they showed that the predictability of their 

model was accurate in that 47 out of 72 toolsets falling in the 95% confidence interval. In 

this thesis work, we describe the methodology of Connors et al. [3] and report on our 

experience from implementing it.  

Since the early work of Connors et al. [3], other queueing network approaches for 

modeling Semiconductor Manufacturing Systems (SMSs) have been developed. Much of 

the work on queueing network modeling for the performance evaluation of large-scale 

manufacturing systems has relied on decomposition approaches, because they are the 

only realistic methods for analyzing such systems. The first decomposition method, 

called queueing network analyzer (QNA), was developed by Whitt [16]. He identified 

three basic network operations to capture the propagation of variance of flow in the 

network as his (QNA) model characterizes the arrival processes by two or three 

parameters analyzing the individual nodes separately. Meng et al. [8] extended the 

decomposition model to incorporate batch tools with operation-specific batch size instead 

of machine-specific batch size. Their experiments showed that significant improvement 

in cycle time estimation was achieved compared with the QNA model (Whitt, [16]). 

Despite the development presented above, practical applications of queueing 

theory in SMSs are rather limited, as Shanthikumar et al. [12] pointed out in their review 

paper. They suggested that in order to improve the quality of queueing network modeling 

approaches, researchers should pay more attention to the collection and analysis of fab 

data, revisit the independence assumptions regarding the sequence of interarrival and 

service times, incorporate control policies with specific tool configurations, and explore 

diffusion approximation methods of reentrant queueing networks to accurately quantify 

the performance of control policies that address instabilities in reentrant process flows. 

Also, Grosbard et al. [4] developed a decomposition without aggregation (DWOA) 

method to model a Semiconductor Manufacturing Queueing Network (SMQN) and yield 

cycle time approximations. 
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2.2 Queueing Models for Toolsets 

In order to translate the fab environment into a queuing network, it is firstly 

modelled lots (jobs) as the basic customers in the network, so all lots of the same 

customer class (product family) follow the same route (process sequence). This is helping 

in order now each toolset in the fab to be modeled as a queue with multiple and every 

operation to be described as a different customer service at a queue with its own service 

time distribution. A queue may perform multiple operations yet every operation can be 

performed on a single queue. The tool groups are going to be characterized in the fab as 

queueing systems with their queue properties because this is going to help viewing the 

production line as a queueing network upon which the appropriate network 

decomposition process will be applied. 

To designate a queue model suited for a toolset in a fab they are quoted some 

characterization properties as they displayed in [4]: 

 Service Process: The actual time taken to perform a single process on a job/wafer 

is typically constant. However, different operations performed on the same tool 

may require different processing times and may require setup times between 

them. As a result the processing time distribution is discrete and the queue service 

distribution is of a general distribution, G. 

 Arrival/Departure Processes: Lots (jobs) arrive at a toolset follow a deterministic 

production route. Rework and metrology inspection operations divert some of the 

lots from the main route, requiring probabilistic routing modeling. Due to the 

highly re-entrant nature of fabs, arrivals to a single toolset may come from various 

other toolsets requiring superposition of different arrival processes. Hence the 

inter-arrival process distribution is considered general, G, or more specifically 

∑G. 

 Service Disciplines: The service policy is First-Come-First-Served (FCFS), or 

First-In-First-Out (FIFO). 

 Number of Servers: The number of servers at each queue is the number of tools or 

machines within the represented toolset or tool group. In my work, we come 
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across with one and multiple machines in the tool groups that service customers 

(jobs). 

 Incapacitation Events: The incapacitation of tools in a toolset, due to breakdowns 

and Preventive Maintenance (PM), is a primary factor for a large portion of the 

production flow variance. Considering incapacitation events only in the 

approximation of queue’s performance measures fails to estimate the impact of 

these on the arrival variance to downstream toolsets in fabs. The incapacitation 

events of each toolset are modelled as arrivals of different “incapacitating” type 

customers to the queue, occupying a single server for the duration of its service 

time. To avoid dealing with truncated service, server incapacitation events are 

modeled as a non-preemptive high-priority customer class. 

General, service processes on toolsets are subject to high variation. Usually, fabs 

are constructed as job-shop systems, whereby similar tools are grouped together as one 

toolset to perform similar processes. High variation is introduced through multiple 

products and operations on the same toolset, accompanied with requirements of 

cascading and setups. Scheduled and nonscheduled downtimes also add to the toolset 

unavailability and variability. Moreover, the lot arrival process of a toolset is a stochastic 

process with inter-arrival times usually following certain distributions. Based on tool 

configuration and process requirements, processing times are also stochastic. Lots that 

have already arrived but cannot be processed immediately are placed in the waiting 

queue. So, Queueing theory takes information of the arrival process and the service 

process and predicts the average waiting time or queue size in steady states. 

From existing literature models answered in semiconductor manufacturing (refer 

to [12]) the average cycle time can be calculated exactly as 

                                                                      𝐶𝑇 = 𝑠 + 𝑡𝑞                                                           (𝟐. 𝟏) 

where 𝑠 is the average service time, 𝜆 is the arrival rate, 𝜌(= 𝜆 ∗ 𝑠) denotes the tool 

utilization, 𝑡𝑞 is the average waiting time in queue, and 𝐶𝑇 is the average cycle time. But, 

for realistic queueing models, exact analytical solutions are very difficult to achieve. 

Researchers usually use approximations to estimate cycle time because of the 

stochasticity of process and queue times. Accuracy of approximation models depends 
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greatly on the actual distribution of the inter-arrival times and the service times. It also 

assumed that the arrival process and the service process are independent.  

At next level of analyzation, the second term of (𝟐. 𝟏) can be analyzed for its easy 

comprehension. Various approximations may exist for the same queueing model, 

although the most widely used approximation developed by Kingman is the 𝐺/𝐺/1 

model where the service time has general distribution. It is given by 

                                                          𝑡𝑞 = (
𝜌 ∗ (𝐶𝑎

2 + 𝐶𝑠
2)

2 ∗ (1 − 𝜌)
) ∗ 𝑠                                           (𝟐. 𝟐) 

where 𝐶𝑠
2
 is the squared coefficient of variation (SCV) of the service times and 𝐶𝑎

2
 the 

SCV of the inter-arrival times. Similar notation for the Squared Coefficient of Variation 

(SCV) is 𝜐, 𝜐𝑠 for the SCV of service times, 𝜐𝑎 for the SCV of inter-arrival times. 

Continuing at the multi-machine station types, with given distribution, any 

𝐺/𝐺/𝑚 system, where 𝑚 means the number of identical machines, can theoretically be 

estimated with exact analytical formula. Based on Kingman’s 𝐺/𝐺/1 approximation and 

the 𝐺/𝐺/𝑚 approximation, Hopp and Spearman developed the following approximation 

                                                 𝑡𝑞 = (
𝐶𝑎

2 + 𝐶𝑠
2

2
) ∗ (

𝜌√2∗(𝑚+1)−1

1 − 𝜌
) ∗ 𝑠                               (𝟐. 𝟑) 

In general, the higher the variance in either interarrival times or service times, the 

longer the waiting time. If the number of machines increases, even though the average 

utilization of each machine keeps the same, the average waiting time will decrease 

dramatically. It is also worth mentioning that 𝐺/𝐺/𝑚 assumption is reasonably close to 

reality for some toolsets of SMSs. The approximation that is used in my work such as at 

Connors et al. [3] is relatively accurate but much more complicated. 

Finally, the last model of toolset type is for the batch tools. 𝐺𝑋/𝐺/𝑚 models 

where 𝑋 represents the batch size distribution of arrivals presented. Specifically for a 

SMS the Connors et al.’s approach uses a model with flexible and upper limited batch 

sizes. This last category of tool type is important to be modelled because up to one-third 

of the steps in semiconductor manufacturing involve batch processing. We proceed now 
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in the description of the structure that the model is discernible and the method that it is 

used to solve such systems. 

 

2.3 Queueing Network and Decomposition 

Approach 

Toolsets in SMSs are not independent from each other. The arrival process of a 

toolset is constructed from the departure processes of its upstream toolsets. In fact, all 

toolsets are linked together stochastically by process flows. The system can be modeled 

as a queueing network, in which the toolsets are the nodes and the flows are the arcs. The 

toolsets and lots are modeled as servers and customers, respectively. 

Here is a rough description of the model as Whitt presents in [16]: There is a 

network of nodes and directed arcs. The nodes represent service facilities (servers) and 

the arcs represent flows of customers (jobs or wafers). There is also one external node, 

which is not a service facility, representing the outside world. Customers enter the 

network on directed arcs from the external node to the internal nodes, move from node to 

node along the internal directed arcs, and eventually leave the system on one of the 

directed arcs from an internal node to the external node. The flows of customers on the 

arcs are assumed to be random so that they can be represented as stochastic processes. If 

all servers are busy at a node when a customer arrives, then the customer joins a queue 

and waits until a server is free. When there is a free server, that customer begins service, 

which is carried out without interruption. Successive service times at each node are 

assumed to be random variables, which may depend on the type of customer but which 

otherwise are independent of the history of the network and are mutually independent and 

identically distributed. After the customer completes service, he goes along some directed 

arc from that node to another node. The customer receives service in this way from 

several internal nodes and then eventually leaves the network. A picture of a typical 

network (without the external node) is given in Figure 2.1. 
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Figure 2.1: An open network of queues (source: Whitt, [16]) 

  

An important feature of the model is that there may be flows from node 𝑗 to node 

𝑖, as well as flows from node 𝑖 to node 𝑗. Flows from node 𝑗 to node 𝑖 represent different 

customers than the customers that flow from node 𝑖 to node 𝑗. The network is open rather than 

closed because customers come from outside, receive service at one or more nodes, and 

eventually leave the system with replenishment after finishing the last processing step. 

This was an assumption about the model as well as that there are no capacity constraints. 

There is no limit on the number of customers that can be in the entire network and each 

service facility has unlimited waiting space. 

The general approach is to represent all the arrival processes and service-time 

distributions by a few parameters. The congestion at each facility is then described by 

approximate formulas that depend only on these parameters. The parameters for the 

internal flows are determined by applying an elementary calculus that transforms the 

parameters for each of the three basic network operations: superposition (merging), 

thinning (splitting), and flow through a queue (departure). These basic operations are 

displayed in Figure 2.2. 
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Figure 2.2: Basic network operations, (a) Superposition or merging, (b) Decomposition or 

splitting, (c) Departure or flow through a queue (source: Whitt, [16]) 

 

In simple words, the arrival processes and the service times are characterized from 

two parameters, one to describe the rate and the other to describe the variability. For the 

service times, the two parameters are the first two moments. For the arrival processes, the 

parameters are associated with renewal-process approximations. The first two parameters 

are equivalent to the first two moments of the renewal interval (interval between 

successive points) in the approximating renewal process. The equivalent parameters we 

use are the arrival rate 𝜆, which is the reciprocal of the renewal-interval mean, and the 

squared coefficient of variation 𝐶2,  which is the variance of the renewal interval divided 

by the square of its mean. For the calculation of these first-two moment’s quantities, we 

describe, in the next paragraphs, how the approximated SCVs are estimated from 

decomposition method processes. 

Primarily, researchers have extended Jackson’s model to incorporate general 

service times and inter-arrival times as the renewal process with general distributions. 

Such model can be analyzed by the decomposition method. The method assumes: (a) the 

nodes (toolsets) can be treated as being stochastically independent and (b) the input to 

each queue is the renewal process characterized by the mean and variation of the lot 

inter-arrival time distributions. The input and output of each node is linked through lot 

routings. The following processes at each node are considered: queue output process, 
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output splitting, and output merging. The traffic and variations are then carried over 

through the network structure. So, queuing network decomposition method works by 

decomposing the queuing network into a set of separate queues having independent 

arrival processes and approximating the performance measures of those queues. The 

process is comprised of three steps (the second step is the core of network decomposition 

method):  

1) Calculation of the first moment of the inter-arrival durations to each queue in the 

network. 

2) Approximation of the second moment of the inter-arrival durations to each queue 

in the network. 

3) Approximation of queue performance measures based on the above first two 

moments. 

The decomposition method can be classified into two classes, decomposition with 

aggregation (DWA) and decomposition without aggregation (DWOA) (refer to [4]). In 

order to obtain approximations of the SCVs of the general arrival process at each queue 

in the network, DWA methods apply the three basic linear operators of superposition, 

departure and splitting, as they mentioned above, that approximate the SCV of the 

aggregated inter-arrival, inter-departure distribution to and from the queue and every 

departure process from the queue, respectively. The three operators are used to create a 

set of linear equations that yields an approximation of SCV of the inter-arrival 

distribution of the aggregated arrival process at each queue (aggregated over all arrival 

processes to the queue). To sum up, my research work focuses on the DWA method as 

Connors et al. and Whitt ([3], [16]) have done in their models and so we are going to 

analyze the Sections of traffic variability in this scheme. 
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Chapter 3 

 

Analysis and Description of the Queueing 

Network Model 

 

In this Chapter we are going to present you the theoretical basics of the Connors 

et al. paper’s research ([3]) on which we supported the work we have done on our 

computational model of the next Chapter 3. The paper describes an open queueing 

network model that is specifically developed to provide reliable performance estimates 

for complex semiconductor fabs, as the use of queueing models for estimating 

performance of manufacturing systems is not new. The chapter begins with the basic 

differentiation in analysis of the paper’s research work (Section 3.1) in comparison to 

similar research works. Next, in Section 3.2 we format-standardize the operations of a 

process sequence and we discuss the details of the scrap and rework processes and their 

impact on routing and job-size distributions. Then, in Section 3.3, the relative traffic 

equations are listed which will help us understand the flow rates between the operations 

and tool-groups. In Section 3.4, the characteristics of the tools’ types, such as the mean 

queueing delay and the utilization of each toolset type, as the analyzation of the 

incapacitation events, which is equally important, are presented. Last but not least, we 

give a formula for the estimation of average cycle time for the products in Section 3.5. 

. 
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3.1 Semiconductor-Specific Model Features 

Considering that a flow line is composed from toolsets in a row and its toolset has 

its own queue that accepts customers (lots or jobs, they represent the same entities in the 

system) with some arrival process, then this system can be decomposed in such systems, 

which are the toolsets (or tool-groups, it’s the same term). So, in order to analyze the 

queueing network we will follow the decomposition based approximation approach. That 

is, each node in the network is analyzed separately, with a set of renewal input processes, 

characterized by the first two moments of their respective inter-arrival times. These two 

moments capture the interdependency among the nodes, and they are obtained through 

solving two sets of linear equations, for traffic rates and traffic variability, respectively. It 

is fair to say that this decomposition approach has by now become a standard and well-

accepted technique at the network level. How well it works depends largely on how well 

it captures the details of the specific system under study, in particular, how well the 

individual queueing models at the node level capture the operating features of the 

manufacturing processes. It is exactly in this regard that this model differs quite 

significantly from what exists in the literature.  

The model of Connors et al. [3] includes the following features: 

• Α detailed analysis of the scrap and rework processes to capture the effect of 

variable job sizes on the workload and utilization of the tool groups; 

• Α detailed modeling of different types of tools that are typical in semiconductor 

fabs, including the use of batch-service queues and tandem queues; 

• Α careful treatment of the “incapacitation” events, those that disrupt the normal 

process at the tools, using priority queueing results and other related techniques. 

These are the main differences among other research works. Briefly, this model is 

taking into account the rework characteristics and the special treatment of the 

incapacitation events at the node level, in conjunction with the features of the different 

tool types and its properties in different cases. 

In this graduate work I have been involved with two types of tool groups, the 

single wafer tools, including the simple server (single tool - one machine) and multiple 
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tools (parallel identical machines), and the batch tools. In aim to calculate the average 

cycle time of each product family that flow in the line and process in each tool type, we 

first have to estimate the mean queueing delays for these different tool types. More 

precisely, we use exact priority queueing formula for the single wafer tools with a simple 

server and an approximate analysis based on modified service times for single-wafer 

tools with multiple machines. For the batch tools we distinguish two cases from which 

we calculate queueing delays and utilizations. In constructing the model, the 

characteristic quantities of mean and variance of processing time and utilization of each 

toolset type are used. 

 

3.2 Probabilistic Model Formulation 

Because the individual customer’s routes that are represented by the job’s 

routings in a semiconductor network fab are not deterministic, but random (stochastic) 

routes depending on probabilities, the derivation of the job-size distribution is essential to 

be determined in order to have a knowledge of the lot size in wafers that flow in the 

network in each state of the system. So, in Section Part 3.2.1, we have an introduction of 

what configurations and properties of semiconductor fabs we have to be aware of in order 

in Section Part 3.2.2 to set the appropriate probabilities and finally in Section Part 3.2.3 

to define the wafers in a job (distribution) that flows in the fab. 

 

3.2.1 Pre-Analysis 

The first step of our analysis is to format the operations in a semiconductor fab 

into those of a queueing network. We associate each tool group in the fab with a node in 

the queueing network. Recall that wafers circulate in the fab in groups referred as jobs, 

so, wafers and jobs are the basic entities that travel among the nodes and are processed by 

the tools there. In general, there is a set of distinct product families and a set of distinct 

toolsets. Each product family corresponds to the distinct set of wafers and jobs and has its 

own process sequence of operations. A process sequence consists of a set of process 
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steps-operations that are to be performed on jobs belonging to that product family. 

According to the model, the operations have an ascending sequence, i.e., the first 

operations matches with the first product family, the second’s with the 2
nd

 product 

family, etc. In this part of analysis the main study structure is the operations because of 

the need to define how many wafers or fraction of the job continue to the next process 

step of process sequence without problems. This work’s plan will help us determine the 

size’s distribution of jobs that are scrapped or goes to the next process step and 

additionally the job-size distribution that are sent for rework operations among with the 

times of reworking. 

The process sequence consists of a nominal part and a set of rework sequences. 

The nominal process sequence is an ordered list of operations to be performed on the job, 

if no rework needs to be performed on it. The total operations of a product family 𝑓 are 

denoted by 𝑁𝑓. More precisely, the rework sequences specify the operations that are to 

be performed when a job is sent for rework. After any operation we evaluate the status of 

the job, i.e. a job may be entirely or partially scrapped or can be sent for rework (entirely 

or partially). When a job or part of a job is sent for rework, a set of operations is 

performed on it and then it reenters the nominal process sequence at or before the point at 

which it was sent for rework. If only a portion of a job is sent for rework, the remaining 

portion waits for the rework portion to complete its rework. When the rework portion of 

the job eventually returns to the point at which it was sent for rework, the two jobs are 

merged into one and this merged job continues along its nominal process sequence. Note 

that it is possible for a job or a portion of a job to be sent for the same rework sequence 

multiple times. In general, then, every operation has at most one nominal successor 

operation and at most one rework successor operation. 

The above of course is much in theory as well as there are differences in practice. 

The formulation that was displayed previous cannot be implemented in absolute degree in 

the supply chains of the manufacturing industries. That is because companies have 

standardized their operations in their production lines and it is very difficult to change 

some characteristics of the common facilities. Additionally, it has to be examined the 
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effect changes that will be occurred of these implementations to existing line’s 

performance. Nevertheless, this is time consuming as well money investments required. 

 For instance, in contradiction with the model’s formalism, there are some 

important differences in characteristics of existing flow lines in big companies-industries, 

like Bosch. Characteristically, their product families contain products with common 

process sequences and each process of the sequence has a recipe with certain process 

phases. Usually, there are some preparatory operations before or at the end of the main 

sequence while 10-15% of the total operations correspond to Testing Operations. Testing 

operations are the last operations in the recipe of a sequence’s process. For the Testing, it 

is used one wafer every 10 wafers as a sample. Checking only the sample wafer, it is 

decided if the lot (job) will proceed in next station or will be scrapped or it is needed 

rework. Obviously, if the sample wafer is ok the lot will proceed, even though bad parts 

will proceed too. Moreover, for the rework operations, depending on the symptom-defect 

that is detected from the control check the wafers follow specific rework process 

sequence. If one wafer goes for rework then the whole job goes for rework. As you 

notice, the formulation that develop in a theoretical model differentiate from existing 

supply chains and production lines, so, do not be surprised of disagreements between 

them at the rest of the paper’s research work. 

 

3.2.2 Scrap and Rework Probabilities 

In this Section Part we are going to define the probabilities that an individual 

wafer is scrapped or sent for rework after each operation. Calculating these probabilities 

(𝑃𝑤𝑠, 𝑃𝑤𝑟𝑤) it will help us to specify the routing probabilities in the network and, as a 

result, to find the unknown job-size’s distributions. Recall that 𝑃𝑤𝑠 is the probability that 

an individual wafer is scrapped after an operation and 𝑃𝑤𝑟𝑤 is the probability that an 

individual wafer is sent for rework after an operation. 

After a job completes an operation, it may either be partially or completely 

scrapped, partially or completely sent for rework, or may proceed to the next operation in 

its nominal process sequence unaffected by scrap and rework. By being scrapped, we 
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mean that wafers in the job are eliminated from the job and discarded. If a job is 

completely scrapped, then all wafers in that job are discarded. If it is partially scrapped, 

then a subset of the wafers in the job is lost. By the same token, if a job is completely 

reworked, all wafers in the job are sent for rework, whereas if a job is partially reworked, 

a subset of the wafers in the job is sent for rework. 

It is assumed that scrapping and rework decisions are made sequentially. More 

specifically, after each nominal operation, it is decided in the following order: 

1) whether or not the entire job should be scrapped; 

2) which, if any, of the wafers in a job are to be scrapped; 

3) whether or not the entire job, with all the remaining wafers in it, should be sent to 

rework; 

4) which, if any, individual wafers need rework. 

In the scrapping and rework decision hierarchy, we always examine the job first, 

before examining any individual wafer. This is because all the wafers in the same job 

often share a common quality problem (in addition to their individual problems). For 

instance, the entire job has to be reworked or scrapped because of contamination or 

physical damage to the container that carries the job. Note that an entire job can be 

scrapped or sent to rework for reasons other than that all the individual wafers in the job 

have to be scrapped or reworked. Hence, the following probabilities for each operation in 

the nominal process sequence are identified,  

𝑃𝑗𝑠 = probability a job is scrapped after an operation 

𝑃𝑒𝑠|𝑗𝑠  = probability a job is entirely scrapped given it is scrapped 

𝑃𝑝𝑠|𝑗𝑠  = probability a job is partially scrapped given it is scrapped, 𝑃𝑝𝑠|𝑗𝑠 = 1 − 𝑃𝑒𝑠|𝑗𝑠 

𝑃𝑤𝑠|𝑝𝑠  = probability a wafer is scrapped given it .is in a job that is partially scrapped 

𝑃𝑟𝑤|𝑛𝑒𝑠 = probability a job is reworked given it is not entirely scrapped 

𝑃𝑒𝑟𝑤|𝑟𝑤  = probability a job is entirely reworked given it is reworked 

𝑃𝑝𝑟𝑤|𝑟𝑤 = prob. a job is partially reworked given it is reworked, 𝑃𝑝𝑟𝑤|𝑟𝑤  = 1 − 𝑃𝑒𝑟𝑤|𝑟𝑤 

𝑃𝑤𝑟𝑤|𝑝𝑟𝑤  = probability a wafer is reworked given it is in a job that is partially reworked. 
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From the above probabilities, Connors et al. [3] calculate the probabilities that a 

wafer is scrapped or sent for rework after a given operation. 

𝑃𝑤𝑠 = 𝑃𝑗𝑠 ∗ [𝑃𝑒𝑠|𝑗𝑠 + 𝑃𝑝𝑠|𝑗𝑠 ∗ 𝑃𝑤𝑠|𝑝𝑠]                                                                        (𝟑. 𝟏) 

𝑃𝑤𝑟𝑤 = [1 − 𝑃𝑗𝑠 ∗ 𝑃𝑒𝑠|𝑗𝑠] ∗ [𝑃𝑟𝑤|𝑛𝑒𝑠] ∗ [𝑃𝑒𝑟𝑤|𝑟𝑤 + 𝑃𝑝𝑟𝑤|𝑟𝑤 ∗ 𝑃𝑤𝑟𝑤|𝑝𝑟𝑤]         (𝟑. 𝟐) 

To understand how expressions (𝟑. 𝟏) and (𝟑. 𝟐) are derived, we constructed 

three probability tree diagrams shown in Figures 3.1-3.3. The middle diagram in Figure 

3.2 is used to derive an expression for the auxiliary probability that a job is not entirely 

scrapped, (𝑃𝑛𝑒𝑠 = 1 − 𝑃𝑗𝑠 ∗ 𝑃𝑒𝑠|𝑗𝑠), which is used as an input for the derivation of 𝑃𝑤𝑟𝑤 

shown in Figure 3.3. 

 

Figure 3.1: Derivation of probability 𝑃𝑤𝑠 

 



34 
 

Figure 3.2: Derivation of probability 𝑃𝑛𝑒𝑠 

Figure 3.3: Derivation of probability 𝑃𝑤𝑟𝑤 

 

Observing more carefully the second equation (𝟑. 𝟐) for the calculation of 𝑃𝑤𝑟𝑤 

we find out that this is wrong. This is because the first pair of brackets, which specifies 

the probability that a wafer is not scrapped is partially correct. It is implied that a wafer 

may be sent for rework if the job it belongs to is not entirely scrapped. We believe that 
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this is only partially correct and results in overestimating 𝑃𝑤𝑟𝑤, because a wafer may be 

sent for rework if the wafer itself (not only the jobs it belongs to) is not scrapped. 

Alternatively, according to the situations that a job or a wafer can pass or end up, the 

derivation type of 𝑃𝑤𝑟𝑤 includes the concept of the state that a job is not entirely 

scrapped. From this state it is evidenced that a wafer can be sent for rework but also it 

can be scrapped. The latest case is not taken into account in type (𝟑. 𝟐) and therefore we 

think we should replace the probabilistic term of (𝑃𝑛𝑒𝑠) with (1 − 𝑃𝑤𝑠) which 

incorporates the occasion that a wafer can be scrapped when a job is not entirely 

scrapped. Thus, given the expression (𝟑. 𝟏) for the probability that a wafer is not 

scrapped, we modify the equation (𝟑. 𝟐) that gives the probability that a wafer is sent for 

rework (𝑃𝑤𝑟𝑤) into the following expression: 

    𝑃𝑤𝑟𝑤 = [1 − 𝑃𝑗𝑠 ∗ (𝑃𝑒𝑠|𝑗𝑠 + 𝑃𝑝𝑠|𝑗𝑠 ∗ 𝑃𝑤𝑠|𝑝𝑠)] ∗ [𝑃𝑟𝑤|𝑛𝑒𝑠]                           

∗ [𝑃𝑒𝑟𝑤|𝑟𝑤 + 𝑃𝑝𝑟𝑤|𝑟𝑤 ∗ 𝑃𝑤𝑟𝑤|𝑝𝑟𝑤] ⇒ 

                    𝑃𝑤𝑟𝑤 = [1 − 𝑃𝑤𝑠] ∗ [𝑃𝑟𝑤|𝑛𝑒𝑠] ∗ [𝑃𝑒𝑟𝑤|𝑟𝑤 + 𝑃𝑝𝑟𝑤|𝑟𝑤 ∗ 𝑃𝑤𝑟𝑤|𝑝𝑟𝑤]                (𝟑. 𝟑) 

 

3.2.3 Job-Size Distributions 

Due to scrapping and rework, the number of wafers contained in each job 

circulating in the fab is a random variable. For our analysis, we need to calculate the job-

size distribution at each operation. Connors et al. [3] supposed the following random 

variables with their distributions, 

 𝐽~𝐹(𝑘): Distribution of size of jobs arriving to an operation 𝑘 

 𝐽~𝐹𝜎(𝑘): Distribution of size of jobs arriving to the nominal successor 

operation of the operation 𝑘 

 𝐽~𝐹𝜎𝑟𝑤(𝑘): Distribution of size of jobs arriving to the rework operation of the 

nominal operation 𝑘 

 𝑛𝑚𝑎𝑥: maximum number of wafers in a job 
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(Note: 𝜎(𝑘) = the nominal successor operation of operation k, 𝜎𝑟𝑤(𝑘) = the rework 

successor operation 𝑘, 𝑃(𝐽 = 𝑛) = the probability that a job arriving to a certain 

operation has 𝑛 wafers in it). 

To calculate the 𝐹𝜎(𝑘) distribution given 𝐹(𝑘) we use the following expressions: 

         𝑃(𝐽 = 𝑛) = 𝑃(𝐽 = 𝑛) ∗ (1 − 𝑃𝑗𝑠) + 𝑃𝑗𝑠 ∗ 𝑃𝑝𝑠|𝑗𝑠

∗ ∑ 𝑃(𝐽 = 𝑖) ∗ 𝑃(𝑒𝑥𝑎𝑐𝑡𝑙𝑦 𝑖 − 𝑛 𝑤𝑎𝑓𝑒𝑟𝑠 𝑠𝑐𝑟𝑎𝑝𝑝𝑒𝑑 𝑓𝑟𝑜𝑚 𝑗𝑜𝑏)

𝑛𝑚𝑎𝑥

𝑖=𝑛

, 𝑛

= 1,… , 𝑛𝑚𝑎𝑥                                                                                                    (𝟑. 𝟒)  

          𝑃(𝐽 = 0) = 𝑃𝑗𝑠 ∗ 𝑃𝑒𝑠|𝑗𝑠 + 𝑃𝑗𝑠 ∗ 𝑃𝑝𝑠|𝑗𝑠

∗ ∑ 𝑃(𝐽 = 𝑖) ∗ 𝑃(𝑒𝑥𝑎𝑐𝑡𝑙𝑦 𝑖 𝑤𝑎𝑓𝑒𝑟𝑠 𝑠𝑐𝑟𝑎𝑝𝑝𝑒𝑑 𝑓𝑟𝑜𝑚 𝑗𝑜𝑏)

𝑛𝑚𝑎𝑥

𝑖=1

          (𝟑. 𝟓)  

Because this procedure is an iterative algorithm, the above types can be written in a more 

readable form in order to be emerged the retrospective process which is implied. This is 

accomplished by expunging the second random variable 𝐽 with distribution 𝐹𝜎, using only 

the random variable 𝐽 with distribution 𝐹 and letting 𝑘 be the index of repetitions that 

correspond to each operation. 

Suppose that wafers are scrapped according to a Bernoulli trial with parameter 

𝑝 ≡  𝑃𝑤𝑠|𝑝𝑠. In the sum, the probability density function of the Binomial distribution 

form is used. 

𝑃(𝑒𝑥𝑎𝑐𝑡𝑙𝑦 (𝑖 − 𝑛) of 𝑖 wafers are scrapped) = (
𝑖

𝑖 − 𝑛
)𝑝𝑖−𝑛(1 − 𝑝)𝑛 

The above distribution for 𝐽 holds if jobs with no wafers continue to circulate in 

the fab. However, since empty jobs are removed from the fab, we are really interested in 

the conditional distribution 

𝑃(𝐽 = 𝑛 | 𝐽  > 0) =
𝑃(𝐽 = 𝑛)

1 − 𝑃(𝐽 = 0)
 

Now, to calculate the distribution 𝐹𝜎𝑟𝑤  for jobs that are sent for rework, we 

proceed in a similar manner, except we use 𝐹𝜎 as the a priori distribution. The reason is 
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that, as we mentioned earlier, the decision to send a job or a portion of a job for rework 

comes after the scrapping decisions are made. 

        𝑃(𝐽  = 𝑛) = 𝑃(𝐽 = 𝑛) ∗ 𝑃𝑟𝑤|𝑛𝑒𝑠 ∗ 𝑃𝑒𝑟𝑤|𝑟𝑤 + 𝑃𝑟𝑤|𝑛𝑒𝑠 ∗ 𝑃𝑝𝑟𝑤|𝑟𝑤

∗ ∑ 𝑃(𝐽 = 𝑖) ∗ 𝑃(𝑒𝑥𝑎𝑐𝑡𝑙𝑦 𝑖 𝑤𝑎𝑓𝑒𝑟𝑠 𝑠𝑒𝑛𝑡 𝑓𝑜𝑟 𝑟𝑒𝑤𝑜𝑟𝑘)

𝑛𝑚𝑎𝑥

𝑖=𝑛

, 𝑛

= 1,… , 𝑛𝑚𝑎𝑥                                                                                                     (𝟑. 𝟔) 

        𝑃(𝐽 = 0) = 𝑃𝑟𝑤|𝑛𝑒𝑠 ∗ 𝑃𝑝𝑟𝑤|𝑟𝑤

∗ ∑ 𝑃(𝐽 = 𝑖) ∗ 𝑃(𝑒𝑥𝑎𝑐𝑡𝑙𝑦 0 𝑜𝑓 𝑖 𝑤𝑎𝑓𝑒𝑟𝑠 𝑠𝑒𝑛𝑡 𝑓𝑜𝑟 𝑟𝑒𝑤𝑜𝑟𝑘)

𝑛𝑚𝑎𝑥

𝑖=1

       (𝟑. 𝟕) 

where it is assumed that wafers are sent for rework according to a Bernoulli trial with 

𝑝 ≡  𝑃𝑤𝑟𝑤|𝑝𝑟𝑤, i.e., 

𝑃(𝑒𝑥𝑎𝑐𝑡𝑙𝑦 𝑛 of 𝑖 wafers are scrapped) = (
𝑖

𝑛
) ∗ 𝑝𝑛 ∗ (1 − 𝑝)𝑖−𝑛 

𝑃(0 of 𝑖 wafers are sent for rework) = (1 − 𝑝)𝑖 

Again, since no rework jobs contain zero wafers, we are really interested in the 

conditional distribution 

𝑃(𝐽 = 𝑛 | 𝐽  > 0) =
𝑃(𝐽 = 𝑛)

1 − 𝑃(𝐽 = 0)
. 

The second formula for 𝑃(𝐽 = 0) specifies that any of the wafers in the reworked 

job will go for rework. This means that despite the control for the job and the decision to 

go for rework, though any of the wafers in it are about to go for rework after the check, 

i.e. none of the wafers in a job sent for rework must need rework, given that the job needs 

to be partially reworked. Therefore, all wafers of the reworked job are not reworked and 

they will proceed to the nominal operation without rework. Under this condition, we 

believe that the calculation type of 𝑃(𝐽 = 0), equation (𝟑. 𝟕), is wrong, or else, is 

partially correct and results in underestimating 𝑃(𝐽 = 0) because the number of wafers in 

a job sent for rework can also be zero if the entire job is not sent for rework to begin with. 
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The probability of this event is (1 − 𝑃𝑟𝑤|𝑛𝑒𝑠). With this in mind, we modify equation 

(𝟑. 𝟕) into the following expression: 

         𝑃(𝐽 = 0) = (1 − 𝑃𝑟𝑤|𝑛𝑒𝑠) + 𝑃𝑟𝑤|𝑛𝑒𝑠 ∗ 𝑃𝑝𝑟𝑤|𝑟𝑤

∗ ∑ 𝑃(𝐽 = 𝑖) ∗ 𝑃(𝑒𝑥𝑎𝑐𝑡𝑙𝑦 0 𝑤𝑎𝑓𝑒𝑟𝑠 𝑠𝑒𝑛𝑡 𝑓𝑜𝑟 𝑟𝑒𝑤𝑜𝑟𝑘)

𝑛𝑚𝑎𝑥

𝑖=1

               (𝟑. 𝟖) 

The above analysis assumes jobs are sent for rework at a given operation a 

maximum of once. It can be easily modified by repeatedly applying the above formulas 

for up to a maximum allowed number of times that a job can be sent for rework. To carry 

out the computations we also need the distribution of the sizes of jobs initially released in 

the fab. Normally, they are deterministic. 

 

3.3 Traffic Equations   

Traffic equations characterize the arrival processes to the tool groups, in terms of 

rates and variability. They form a critical link in the decomposition approach relating the 

overall network to the individual nodes. Therefore, in this Section we indicate the 

calculus of the parameters which characterize the internal (and external) flows of the 

network. The calculus is linear for each network operation, so that the internal flow 

parameters are determined simply by solving systems of linear equations. In Section Part 

3.3.1 we focus on the flow rates, which are obtained via the traffic rate equations, just as 

with the Markov models. In Section Part 3.3.2 we display the corresponding system of 

linear equations yielding the variability parameters. The analyzation of Traffic Equations 

will help to understand the complexity in modelling the wafer fab. 

 

3.3.1 Traffic Rates 

In this step the total arrival rate to each node is calculated where the main 

structure of study is the operations and not the tool groups. Let 𝛼𝑘 denote the rate at 

which wafers are released exogenously into the fab (in wafers per time unit) to operation 
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𝑘. Let 𝜆𝑘 be the overall rate at which wafers arrive to operation 𝑘, including both 

exogenous arrivals and internal transitions. These quantities are the unknowns in the 

traffic equations. Let 𝑞𝑗,𝑘 denote the probability that a wafer after completing operation 𝑗 

is routed to operation 𝑘. From the analysis in Section Part 3.2.2 we can write an 

expression for the probability that a wafer departing operation 𝑗 arrives at operation 𝑘, for 

all operations 𝑗 and 𝑘. So, this expression is: 

                                   𝑞𝑗,𝑘 = {

𝑃𝑤𝑟𝑤(𝑗)                                   𝑖𝑓 𝑘 = 𝜎𝑟𝑤(𝑗)  

1 − 𝑃𝑤𝑟𝑤(𝑗) − 𝑃𝑤𝑠(𝑗)          𝑖𝑓 𝑘 = 𝜎(𝑗)       

𝑃𝑤𝑠(𝑗)                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒        

                      (𝟑. 𝟗) 

Therefore, given the arrival rates of the exogenous arrival process, the traffic rates 

𝜆𝑘, for all operations 𝑘, can be calculated by solving the following set of linear equations: 

                                                                𝜆𝑘 = 𝛼𝑘 +∑𝑞𝑗,𝑘 ∗

𝑗

𝜆𝑗                                            (𝟑. 𝟏𝟎) 

The solution to the traffic equations gives us the arrival rate of wafers to each 

operation. As we mentioned earlier, however, wafers travel through the fab in jobs. With 

the job-size distribution derived in Section Part 3.2.3, the wafer arrival rate is translated 

into a job arrival rate by dividing the wafer arrival rate by the average job size. Letting 𝛬𝑘 

be the arrival rate of jobs to operation 𝑘, we have 

                                                                       𝛬𝑘 =
𝜆𝑘
𝐸[𝐽𝑘]

                                                         (𝟑. 𝟏𝟏) 

where 𝐸[𝐽𝑘] is the average job size of jobs arriving to operation 𝑘. 

 

3.3.2 Traffic Variability 

The reciprocal of the arrival rate to each operation gives the mean of the inter-

arrival times. Connors e al. [3] gives a second-order characterization of the inter-arrival 

times, in terms of specifying the squared coefficient of variation (SCV), i.e., the ratio of 

the variance (of the inter-arrival times) to the square of the mean. Their analysis has two 

simplifications: 
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 All arrivals to each tool group are aggregated into a single process, instead of 

treating the more detailed breakdown of different product types. 

 The departure processes from batch tools (i.e., tool groups that process wafers in 

batches) is not explicitly dealt with. 

Before proceeding in the linear equations of variability, we provide some 

introductory and auxiliary entities which interpret with clarity the equation’s parameters. 

Denote 𝛤𝑔 as the total arrival rate of jobs to tool group 𝑔, i.e., 𝛤𝑔 ≡ ∑ 𝛬𝑘𝑘𝜖𝑇𝑔 . Also, 

denote 𝛾𝑔ℎ as the total arrival rate of jobs to tool group ℎ from tool group 𝑔. When 

𝑔 =  0, 𝛾𝑔ℎ denotes the rate of exogenous arrivals to ℎ. Let 𝑐𝑔 denote the number of 

tools or machines at tool group 𝑔. Let 𝜌𝑔 denote the utilization of tool group 𝑔, this input 

parameter we will calculate it in the later section’s parts. Let 𝑟𝑔ℎ denote the proportion of 

jobs leaving tool group 𝑔 that proceed directly to tool group ℎ. Finally, let 𝜃𝑔ℎ  ≡ 𝛾𝑔ℎ/𝛤ℎ. 

𝜃𝑔ℎ represents the proportion of arrivals to tool group ℎ that came from tool group 𝑔. 

As input parameters for the variability equations are also needed the SCV of the 

aggregate job arrival process to tool group 𝑔 𝜖 𝐺, 𝜐𝑔
𝑎, which is the merged stream of all 

job types arriving to the tool group including both exogenous arrivals and internal 

transitions, the SCV of the aggregate exogenous arrival processes to tool group 𝑔, 𝜐𝑔
𝑒 

and the SCV of the service time at station 𝑔 for a “generic job” arriving to tool group 𝑔, 

𝜐𝑔
𝑠. The calculation of 𝜐𝑔

𝑠 is specified in the Section 3.4 for each tool type. Therefore, 

𝜐𝑔
𝑎 are the unknowns in the equations that we are going to list below. 

Generally, the starting point for studying flows is the arrival of jobs to a single 

workstation (tool group). At a basic stage, the departures from this workstation will be 

arrivals to other workstations. Therefore, once we have described the variability of 

arrivals to one workstation and determined how this affects the variability of departures 

from that workstation (and hence arrivals to other workstations), we will have 

characterized the flow variability for the entire line. This is the philosophy of the 

Decomposition approach. The essential step is to characterize the departures from a 

workstation as it analyzed in the Factory Physics [5]. In a serial production line without 

yield loss or rework, the departure features of an (𝑖) workstation corresponds to the 
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arrival features of the downstream (𝑖 +  1) station. So, as it is depicted in Figure 3.4, for 

the coefficient of variations it holds that: 

𝐶𝑎(𝑖 + 1) = 𝐶𝑑(𝑖) 

 

Figure 3.4: Propagation of variability between workstations in series (source: Factory 

Physics, [5]) 

 

However, the main issue to resolve concerning flow variability is how to 

characterize the variability of departures from a station in terms of information about the 

variability of arrivals and process times. Specifically, variability in departures from a 

station is the result of both variability in arrivals to the station and variability in the 

process times. The relative contribution of these two factors depends on the utilization of 

the workstation. This relationship can be imprinted by the following expression: 

𝜐ℎ
𝑎 = (1 − 𝜌𝑔

2) ∗ 𝜐𝑔
𝑎 + 𝜌𝑔

2 ∗ 𝜐𝑔
𝑠 

Hence, following standard techniques that approximate the SCV of merging and 

splitting point processes, using parameter’s variables and additional factors to modify 

different cases of the wafer fab processes, aggregately, the set of linear equations with 

𝜐𝑔
𝑎 unknowns is given as follows: 

                                              𝜐ℎ
𝑎 = 𝑎ℎ + ∑ 𝜐𝑔

𝑎 ∗ 𝑏𝑔ℎ      ∀ 𝑔, ℎ 𝜖 𝐺

𝑔 𝜖 𝐺

                              (𝟑. 𝟏𝟐) 

where 
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𝑎ℎ = 1 + 𝑤ℎ ∗ ((𝜃0ℎ ∗ 𝜐ℎ
𝑒 − 1) + ∑ 𝜃𝑔ℎ ∗ [(1 − 𝑟𝑔ℎ) + 𝑟𝑔ℎ ∗ 𝜌𝑔

2 ∗ 𝑥𝑔]

𝑔 𝜖 𝐺

) 

𝑏𝑔ℎ = 𝑤ℎ ∗ 𝜃𝑔ℎ ∗ 𝑟𝑔ℎ ∗ (1 − 𝜌𝑔
2) 

𝑤ℎ = [1 + 4 ∗ (1 − 𝜌ℎ)
2 ∗ (𝑣ℎ − 1)]

−1 

𝑣ℎ = [∑ 𝜃𝑔ℎ
2

𝑔 𝜖 𝐺

]

−1

 

𝑥𝑔 = 1 +
max(𝜐𝑔

𝑠, 0.2) − 1

√𝑐𝑔
 

 

3.4 Tool-Types Characteristics 

We have obtained, the rates of jobs arrive to the operations as well as the job-size 

(in wafers) distributions. In this Section we decompose the network into 𝐺 isolated 

queues, one for each tool group. To analyze each queue, we first model the features of the 

incapacitation events (Section Part 3.4.1) and then we distinguish the two different types 

of tool groups that we got involved with in our model: the single-wafer tools (Section 

Part 3.4.2) and the batch tools (Section Part 3.4.3). Following the standard 

decomposition-based approximations in queueing networks, one key assumption we 

make in our analysis is that jobs arrive to each tool group following a renewal process 

with known mean and SCV. The mean is taken to be the reciprocal of the job arrival rate 

following the traffic rate equations and the SCV comes from solving the traffic variability 

equations. For each type of tool group, our goal is to derive approximate formulas for the 

utilization and the mean queueing delay. To this end, we need to derive the following 

quantities: the first two moments of the processing time for each operation, and the long-

run proportion of time that the tool group is incapacitated. 
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3.4.1 Incapacitation Events 

Before proceeding with our analysis for each type of tool group, Connors et al. [3] 

describe the different types of incapacitation events that can affect the utilization of each 

tool and define some of the parameters associated with these events. There are three types 

of incapacitation events that disrupt the operation of a tool: breakdown, preventative 

maintenance, and major setup. We model each of these events as non-preemptive priority 

jobs that arrive to each tool group according to renewal processes with known 

distributions. 

Under this assumption, it is conceivable that multiple incapacitation events of the 

same type could be in queue at the same time. To justify the non-preemptive assumption, 

Connors et al. [3] argue that a breakdown does not necessarily mean that a tool comes to 

a sudden halt but rather that it has drifted outside of strict process control specifications. 

When this happens, the job in process will often finish processing before the tool is taken 

out of service. To justify the queueing of multiple similar incapacitation events, they 

argue that the relative infrequency of these events makes the probability of there being 

more than one incapacitation event in queue at any time rather small. 

In general, suppose that there is a set 𝐵𝑔 of incapacitation events that affect tools 

at tool-group 𝑔. Denote by 𝛬𝑏 the arrival rate for incapacitation events of type 𝑏 ∈ 𝐵𝑔 for 

tools at tool-group 𝑔. Associated with each incapacitation event is a random variable 𝑆𝑏 

with a known distribution that represents the duration of the incapacitation event. 

According to the way we model incapacitation events, the steady state proportion of time 

each tool at tool group g spends incapacitated, 𝜌𝑏
𝑖𝑛𝑐 is given by 

                                                           𝜌𝑏
𝑖𝑛𝑐 = ∑

𝛬𝑏 ∗ 𝐸[𝑆𝑏]

𝑐𝑔
𝑏∈𝐵𝑔

                                             (𝟑. 𝟏𝟑) 

This quantity plays decisive role in analysis because it is used extensively in the 

computational type for the mean queueing delay for each tool type. 
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3.4.2 Single-Wafer Tools 

The single-wafer tools carry out operations wafer by wafer - one wafer at a time. 

We will analyze the tool groups that consist of single-wafer tools distinguishing two 

cases for that: the single tools consisting of one server-machine in a tool group (𝑐𝑔 = 1) 

(Case 3.4.2 A) and the multiple tools (𝑐𝑔 > 1) (Case 3.4.2 B). The reason for this 

distinction is that in the case of 𝑐𝑔 = 1 there exists exact priority queueing formulas for 

the mean queueing delay, whereas in the case 𝑐𝑔 > 1, we must resort to an approximate 

analysis based on modified service times. Notice that, our analysis is proceeding from the 

node level of operations at the node level of tools. 

The procedure of processing a job at a single-wafer tool consists of four distinct 

steps: minor setup, load, serially processing of all the wafers in the job and unload. Minor 

setup is the one step that is not necessarily performed for each job and it can be claimed 

that its time is negligible comparing to the other time’s steps. If a minor setup is 

performed for a specific job depending on its operation, the operation of the job will be 

processed immediately before it. In our steady-state analysis, we suppose that the minor 

setup having a deterministic setup time is performed with a given probability for each 

operation. The load and unload times are each assumed to be are independent and 

identically distributed (i.i.d.) random variables with known distributions. The process 

time of a job is the sum of the process times of the individual wafers in the job, which are 

also assumed to be i.i.d. random variables. So, the total processing time for a job at 

operation 𝑘 of a single-wafer tool is calculated by: 

                                                    𝑆𝑘 = 𝑀𝑘 + 𝐿𝑘 +∑𝑊𝑘(𝑛)

𝐽𝑘

𝑛=1

+ 𝑈𝑘                                    (𝟑. 𝟏𝟒) 

𝑀𝑘 denotes the amount of time required for a minor setup, 𝐿𝑘 and 𝑈𝑘 give the time 

needed to load and unload a job at operation 𝑘 and 𝑊𝑘 represents the processing time per 

wafer for a job at operation 𝑘. 

However, what we need to define the characteristic tool measures of utilization 

and delay time are the first two moments of the total processing time 𝑆𝑘, the mean and 
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the variance, which are the most significant quantities in our further analysis. These two 

moments are specified by the following expressions: 

                                  𝐸[𝑆𝑘] = 𝐸[𝑀𝑘] + 𝐸[𝐿𝑘] + 𝐸[𝐽𝑘] ∗ 𝐸[𝑊𝑘] + 𝐸[𝑈𝑘]                      (𝟑. 𝟏𝟓) 

                𝑉[𝑆𝑘] = 𝑉[𝑀𝑘] + 𝑉[𝐿𝑘] + 𝐸[𝐽𝑘] ∗ 𝑉[𝑊𝑘] + 𝐸
2[𝑊𝑘] ∗ 𝑉[𝐽𝑘] + 𝑉[𝑈𝑘]       (𝟑. 𝟏𝟔) 

At next, the utilization of the tool group that measures the long-run proportion of 

time that a tool in a tool group spends processing jobs (i.e., neither idle nor incapacitated) 

is calculated by: 

                                                              𝜌𝑔 = ∑
𝛬𝑘 ∗ 𝐸[𝑆𝑘]

𝑐𝑔
𝑘∈𝑇𝑔

                                                (𝟑. 𝟏𝟕) 

To calculate the mean queueing delay at a single-wafer tool group, it is further 

assumed that jobs and incapacitation events arrive following Poisson processes. The 

queueing delay formulas are then modified to account for more general arrival processes. 

Regarding that, we specialize our analysis in two cases considering the case of a single 

tool (𝑐𝑔 = 1) in the tool group and the case of multiple tools (𝑐𝑔 > 1). For the first case, 

there exist exact priority queueing formulas, in contrast with the second case where 

approximate expressions based on modified service times are used due to the lack of 

analytical types for general arrival processes. 

 

Case 3.4.2 A: Single Tool 

Because of the Poisson arrivals of operations even for incapacitation events we 

give the exact type for 𝑀/𝐺/1 queue with nonpreemtive priority jobs. The following 

expression for the mean queueing delay for jobs at tool group 𝑔 is at the same form and it 

is sharing the equal idea as the type (𝟐. 𝟐) that we gave describing Queueing Models for 

Toolsets in Section 2.2. 

                                    𝐸[𝐷𝑔] =
∑ 𝛬𝑏 ∗ 𝐸[𝑆𝑏

2]𝑏∈𝐵𝑔 + ∑ 𝛬𝑘 ∗ 𝐸[𝑆𝑘
2]𝑘∈𝑇𝑔

2 ∗ (1 − 𝜌𝑏𝑖𝑛𝑐) ∗ (1 − 𝜌𝑏𝑖𝑛𝑐 − 𝜌𝑔)
                       (𝟑. 𝟏𝟖) 

The generalized formula of (𝟑. 𝟏𝟖) incorporates the first two moments of inter-

arrival and service times of jobs using their squared coefficients of variation. 
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The SCV of the inter-arrival processes are derived from the linear equations of 

variability (𝟑. 𝟏𝟐) while the SCV of the “generic” service times of jobs is extracted from 

the expression: 

                                                          𝜐𝑔
𝑠 =

𝐸[𝑆𝑔
2] + 𝐸2[𝑆𝑔]

𝐸2[𝑆𝑔]
                                                (𝟑. 𝟏𝟗) 

where 𝑆𝑔 ≡ 𝑆𝑘(𝑤. 𝑝.
𝛬𝑘

𝛤𝑔
) for each operation 𝑘 that is performed at tool group 𝑔. The first 

two moments of 𝑆𝑔 are given by the following types: 

                           𝐸[𝑆𝑔] = ∑
𝛬𝑘∗𝐸[𝑆𝑘]

𝛤𝑔
𝑘∈𝑇𝑔                𝐸[𝑆𝑔

2] = ∑
𝛬𝑘∗𝐸[𝑆𝑘

2]

𝛤𝑔
𝑘∈𝑇𝑔              (𝟑. 𝟐𝟎) 

Before we give the expression of the mean queueing delay, Connors et al. [3] 

specifies two correction factors contributing the term variability of general processes. The 

one describes the arrival and service processes of jobs and the second which corresponds 

to the incapacitation events. 

                                        𝜑𝑔 =
𝜐𝑔
𝑠 + 𝜐𝑔

𝑎

𝜐𝑔𝑠 + 1
                        𝜑𝑏 =

𝜐𝑏
𝑠 + 𝜐𝑏

𝑎

𝜐𝑏𝑠 + 1
                         (𝟑. 𝟐𝟏) 

The approximation for the mean queueing delay at tool group g, for non-Poisson 

(general) inter-arrival times, is 

                     𝐸[𝐷𝑔] =
∑ 𝛬𝑏 ∗ 𝐸[𝑆𝑏

2] ∗ 𝜑𝑏𝑏∈𝐵𝑔 + 𝜑𝑔 ∗ (∑ 𝛬𝑘 ∗ 𝐸[𝑆𝑘
2])𝑘∈𝑇𝑔

2 ∗ (1 − 𝜌𝑏𝑖𝑛𝑐) ∗ (1 − 𝜌𝑏𝑖𝑛𝑐 − 𝜌𝑔)
               (𝟑. 𝟐𝟐) 

The extraction of this approximation was motivated (have strong influences) from the 

well-known approximation for 𝐺/𝐺/1 queues, as you can prove setting 𝑚 = 1 at the 

expression (𝟐. 𝟑). It is evident from the approximations (𝟑. 𝟐𝟐), (𝟐. 𝟑) that 

          E[D]G/G/1 ≈ E[D]M/G/1 * (
𝜐𝑠+𝜐𝛼

 𝜐𝑠+1
) ≈ (

𝜌2∗(𝜐𝑠+𝜐𝛼)

2∗𝜆∗(1−𝜌)
) ≈ (

𝜌∗(𝜐𝑠+𝜐𝛼)

2∗(1−𝜌)
) ∗ 𝑠  

 

Case 3.4.2 B: Multiple Tools 

In this case we want to model theoretically the tool groups which consist of more 

than one machine-server. The exception from the previous case of a single machine is 

that the formulas for the mean queueing delay are estimations rather than exact analytical 
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types, even for Poisson and non-Poisson (general) arrivals. To doing so, we develop two 

approximation schemes. The first one adjusts the service times to account for 

incapacitation, and then uses a (nonpriority) multi-server queue model. The second 

approach is to simply convert the model of the tool group with multiple tools into a 

single-server model like the one in Case 3.4.2 A, in which the single tool operates 𝑐𝑔 

times faster. We will explain them in next paragraphs. 

Specifically, analyzing the first approach, Connors et al. [3] created the random 

variable of the adjusted service time at a tool group 𝑔, 𝑍𝑔, which is the sum of the generic 

service time aggregated over all operations for the specific tool group, 𝑆𝑔, and the 

variable defined as, 

𝐵𝑔 =

{
 
 

 
 𝑆𝑏       𝑤. 𝑝.  

𝛬𝑏
𝛤𝑔
, 𝑏 ∈ 𝐵𝑔 

0       𝑤. 𝑝.  1 − ∑
𝛬𝑏
𝛤𝑔

𝑏∈𝐵𝑔

 
 

The first two moments of the adjusted service time that they will be used to calculate the 

SCV of the adjusted service time are given from the following expressions: 

                                                             𝐸[𝑍𝑔] = 𝐸[𝑆𝑔] + 𝐸[𝐵𝑔]                                            (𝟑. 𝟐𝟑) 

                                       𝐸[𝑍𝑔
2] = 𝐸[𝑆𝑔

2] + 𝐸[𝐵𝑔
2] + 2 ∗ 𝐸[𝑆𝑔] ∗ 𝐸[𝐵𝑔]                      (𝟑. 𝟐𝟒) 

where  

                     𝐸[𝐵𝑔] = ∑ 𝐸[𝑆𝑏]𝑏∈𝐵𝑔 ∗
𝛬𝑏

𝛤𝑔
     𝑎𝑛𝑑     𝐸[𝐵𝑔

2] = ∑ 𝐸[𝑆𝑏
2]𝑏∈𝐵𝑔 ∗

𝛬𝑏

𝛤𝑔
       (𝟑. 𝟐𝟓)      

It is implicitly assumed that ∑ 𝛬𝑏 ≤ 𝛤𝑔𝑏∈𝐵𝑔  is applied. This equation shows that the 

incapacitation events (of all types) occur at each tool group less frequently than job 

arrivals (of all operations). This assumption certainly holds in the applications that we are 

concerned with. 

Hence, the SCV for the adjusted service time, 𝜐𝑔
𝑧, is 

                                                           𝜐𝑔
𝑧 =

𝐸[𝑍𝑔
2] − 𝐸2[𝑍𝑔]

𝐸2[𝑍𝑔]
                                              (𝟑. 𝟐𝟔) 

and the approximation for the mean queueing delay is 
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                                                  𝐸[𝐷𝑔] ≈ E[D]M/M/c ∗ (
𝜐𝑔

𝑧 + 𝜐𝑔
𝑎

2
)                                  (𝟑. 𝟐𝟕) 

E[D]M/M/c is the mean queueing delay for an “equivalent” M/M/c queue, with arrival rate 

of 𝛤 ≡ 𝛤𝑔, the service rate is equal to 𝜇 = 1/𝐸[𝑍𝑔], and 𝑐 ≡ 𝑐𝑔, 

                                                            E[D]M/M/c = (
𝑃(𝐷 > 0)

𝑐 ∗ 𝜇 − 𝛤
)                                        (𝟑. 𝟐𝟖) 

where             𝑃(𝐷 > 0) = (

(𝑐𝜌)𝑐

𝑐!(1−𝜌)

∑
(𝑐𝜌)𝑐

𝑖!
𝑐−1
𝑖=0 +

(𝑐𝜌)𝑐

𝑐!(1−𝜌)

)         and        𝜌 =
𝛤

𝜇∗𝑐
           (𝟑. 𝟐𝟗) 

This is an Erlang’s loss formula that represents an approximation of the probability that 

all servers are busy. 

The second approaching method replaces the 𝑐𝑔 tools by a single tool that 

operates 𝑐𝑔 times faster. This is tantamount to scaling (dividing) all service times 𝑆𝑘 and 

incapacitation times 𝑆𝑏 by a factor 𝑐𝑔. For instance, for Poisson arrivals (of both jobs and 

incapacitation events), the expected queueing delay can be computed easily following the 

𝐸[𝐷𝑔] expression (𝟑. 𝟐𝟐) with no change but only divide the result by 𝑐𝑔
2. Though, this 

method will result in overestimating the queueing delay because replacing a set of 

multiple servers by a single, faster server often results in a longer queueing delay. One 

way to compensate for this is to include an adjustment factor (𝜌𝑔 + 𝜌𝑏
𝑖𝑛𝑐)

√𝑐𝑔−1
. So, the 

mean queueing delay, for non-Poisson arrivals using the adjustment factors 𝜑𝑏, 𝜑𝑔, is 

           𝐸[𝐷𝑔] =
(𝜌𝑔 + 𝜌𝑏

𝑖𝑛𝑐)
√𝑐𝑔−1

𝑐𝑔2

∗
∑ 𝛬𝑏 ∗ 𝐸[𝑆𝑏

2] ∗ 𝜑𝑏𝑏∈𝐵𝑔 + 𝜑𝑔 ∗ (∑ 𝛬𝑘 ∗ 𝐸[𝑆𝑘
2])𝑘∈𝑇𝑔

2 ∗ (1 − 𝜌𝑏𝑖𝑛𝑐) ∗ (1 − 𝜌𝑏𝑖𝑛𝑐 − 𝜌𝑔)
                       (𝟑. 𝟑𝟎) 

To summarize, in Connors et al.’s research paper ([3]), it is underlined that from 

numerical experience in this field indicates that both approaches presented at this case of 

multiple tools work quite well, with the second approach slightly better for tool groups 

with a small number of tools. 
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3.4.3 Batch Tools 

Simple batch tools process wafers in batches. For these tools, the processing of a 

job consists of the same four distinct steps: minor setup, load, parallel process of all the 

wafers in the job, and unload. For the analysis two distinct cases are considered: the case 

where the maximum batch size, 𝛽𝑔
𝑚𝑎𝑥

, is less than or equal to the average job size and 

the case where the maximum batch size is greater than the average job size. By average 

job size, we mean the average over all jobs arriving to a tool group. It is defined as 

                                                    𝐽�̅� ≡ 𝐸[𝐽𝑔] =
∑ 𝛬𝑘 ∗ 𝐸[𝐽𝑘]𝑘∈𝑇𝑔

𝛤𝑔
                                        (𝟑. 𝟑𝟏) 

 

Case 3.4.3 A: 𝜷𝒈
𝒎𝒂𝒙 ≤ 𝑱𝒈̅̅̅ 

In this case, the average size of a job exceeds the capacity of a single batch, so the 

jobs must typically be split into two or more batches. It is defined the number of batches 

required to process a job at operation 𝑘 that has 𝐽𝑘 wafers in it. 

                                                                    𝛽𝑘 ≡ ⌈
𝐽𝑘

𝛽𝑔
𝑚𝑎𝑥⌉                                                       (𝟑. 𝟑𝟐) 

Since 𝛽𝑘 batches need to be processed to complete the processing of a job at operation 𝑘, 

the total processing time of the job is 

𝑌𝑘 =∑𝑆𝑘

𝛽𝑘

𝑖=1

(𝑖) 

where the 𝑆𝑘(𝑖)’s are i.i.d. random variables, each following the same distribution as 𝑆𝑘. 

The mean and variance of 𝑌𝑘 are 

            𝐸[𝑌𝑘] = 𝐸[𝛽𝑘] ∗ 𝐸[𝑆𝑘]    ,    𝑉[𝑌𝑘] = 𝐸[𝛽𝑘] ∗ 𝑉[𝑆𝑘] + 𝐸
2[𝑆𝑘] ∗ 𝑉[𝛽𝑘]       (𝟑. 𝟑𝟑) 

The calculation of the utilization and mean queueing delay is done similarly to the 

single-wafer tool case with the difference that we use the 𝐸[𝑌𝑘] and 𝑉[𝑌𝑘] of types 
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(𝟑. 𝟑𝟑) instead of 𝐸[𝑆𝑘], 𝑉[𝑆𝑘]. In the above case the assumption that different jobs are 

not batched together is hold. 

 

Case 3.4.3 B: 𝜷𝒈
𝒎𝒂𝒙 > 𝑱𝒈̅̅̅ 

In second case where the maximum batch size is greater than the average job-size 

a batch-service queueing model is used. Particularly, Connors et al. [3] follows a 

“greedy” policy of what is mostly used in practice. they assume that a “greedy” rule is 

followed to load batches, i.e., as soon as a tool (machine) becomes available it begins to 

process a new batch if at least one job is waiting and it batches as many jobs as are 

available. To model this type of tool, it was supposed that operations with different 

process codes can be batched together. 

Since a job does not require more than one batch to be processed, its processing 

time at an operation 𝑘 is just 𝑆𝑘. Then, an adjusted service time model is constructed to 

account for incapacitation events as it was done for the case of multiple single-wafer 

tools in Case 3.4.2 B. The same method is followed in order to define the first two 

moments of the adjusted service time of a batch. Next, we modify the maximum batch 

size so to correlate the number of wafers into a maximum batch size and the average 

number of jobs. We define the maximum batch size in jobs, 𝜔𝑔
𝑚𝑎𝑥, to be 

                                                                𝜔𝑔
𝑚𝑎𝑥 ≡ ⌊

𝛽𝑔
𝑚𝑎𝑥

𝐸[𝐽𝑔]
⌋                                                   (𝟑. 𝟑𝟒) 

To calculate the queueing delay and the utilization of this case of batch tools it is 

necessary to compute some probabilities that identify the busy servers of a 𝑀/𝑀𝜔𝑔
𝑚𝑎𝑥

/

𝑐𝑔 batch-service queue. Let 𝜋𝑚,𝑛 denote the probability that 𝑚 servers are busy and there 

are 𝑛 customers in queue. Define 𝜑𝑔 ≡ 𝛤𝑔 ∗ 𝐸[𝑍𝑔], so, from Connors et al. [3] we list the 

equations for the probabilities, types (𝟑. 𝟑𝟓): 

                                           (𝜋0,0)
−1
=
𝜑𝑔

𝑐𝑔

𝑐𝑔!
∗ (1 −

1

𝑥
)
−1

+ ∑
𝜑𝑔

𝑖

𝑖!

𝑐𝑔−1

𝑖=0

                           (𝟑. 𝟑𝟓 𝒂) 
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                                               𝜋𝑚,0 = 𝜋0,0 ∗
𝜑𝑔

𝑚

𝑚!
,𝑚 = 1,… , 𝑐𝑔 − 1                              (𝟑. 𝟑𝟓 𝒃) 

                                               𝜋𝑐𝑔,0 = 𝜋0,0 ∗
𝜑𝑔

𝑐𝑔

𝑐𝑔!
∗ (
1

𝑥
)
𝑛

, 𝑛 = 0,1, …                           (𝟑. 𝟑𝟓 𝒄) 

where 𝑥 is the single root, lying in the interval (1, 𝑐𝑔 ∗
𝜔𝑔

𝑚𝑎𝑥

𝜑𝑔
) of the following equation 

                                     
𝜑𝑔

𝑐𝑔
∗ 𝑥(𝜔𝑔

𝑚𝑎𝑥+1) − (1 +
𝜑𝑔

𝑐𝑔
) ∗ 𝑥𝜔𝑔

𝑚𝑎𝑥
+ 1 = 0                        (𝟑. 𝟑𝟔) 

Concluding, the approximation of the mean queueing delay when arrivals and 

service times follow general distributions is given by 

𝐷
𝐺/𝐺𝜔𝑔

𝑚𝑎𝑥
/𝑐𝑔

≈ 𝐷
𝑀/𝑀𝜔𝑔

𝑚𝑎𝑥
/𝑐𝑔

∗ (
𝜐𝑔
𝑎 + 𝜐𝑔

𝑧

2
) = (

𝜋𝑐𝑔,0 ∗ 𝑥

𝛤𝑔 ∗ (𝑥 − 1)2
) ∗ (

𝜐𝑔
𝑎 + 𝜐𝑔

𝑧

2
) (𝟑. 𝟑𝟕) 

To calculate the utilization of the batch tool, Connors et al. [3] give the 

calculation type of the utilization included incapacitation events, �̃�𝑔, from the adjusted 

service time model because of the true utilization of the tool is unknown. 

       �̃�𝑔 ≡ ∑ 𝜋𝑖,0 ∗
𝑖

𝑐𝑔

𝑐𝑔−1

𝑖=1

+∑𝜋𝑐𝑔,𝑖

∞

𝑖=0

= 𝜋0,0 ∗ ∑
𝑖 ∗ 𝜑𝑔

𝑖

𝑐𝑔 ∗ 𝑖!

𝑐𝑔−1

𝑖=1

+ 𝜋0,0 ∗ (
𝜑𝑔

𝑐𝑔

𝑐𝑔!
∗

𝑥

𝑥 − 1
)   (𝟑. 𝟑𝟖) 

The quantity �̃�𝑔 includes time spent “serving” incapacitation events and so is greater than 

the proportion of time the tool spends processing jobs. To obtain the actual tool’s 

utilization 𝜌𝑔 that spends only processing an adjustment of type (𝟑. 𝟑𝟖) is needed. 

Setting �̃�𝑔
𝑖𝑛𝑐 the proportion of time the tool spends “serving” incapacitation events (in 

general, �̃�𝑔
𝑖𝑛𝑐 is less than the actual proportion of time the tool spends incapacitated), and 

then, combining the following relations, we can resolve with unknown the requested 

actual tool utilization. 

                                              

�̃�𝑔 = 𝜌𝑔 + �̃�𝑔
𝑖𝑛𝑐

 

�̃�𝑔
𝑖𝑛𝑐

𝜌𝑔
=
𝐸[𝐵𝑔]

𝐸[𝑆𝑔]

 =>  𝜌𝑔 =
�̃�𝑔

1 +
𝐸[𝐵𝑔]

𝐸[𝑆𝑔]

                               (𝟑. 𝟑𝟗) 
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Now, we proceed to end up the theoretical analysis with the expressions of the 

Cycle Time Estimation. 

 

3.5 Cycle Time Estimation 

Once the mean queueing delay at each tool group and the mean processing time of 

each operation are computed, the average cycle time for each product family in the can be 

estimated using the family routing information. 

Lettting 𝑁𝑓 denote the set of norninal operations for product family 𝑓 and let 𝑅(𝑗) 

denote the set of operations in the rework sequence initiated immediately after operation 

𝑗, the expected nominal cycle time for product family 𝑓, 𝛹𝑛𝑜𝑚
𝑓, and the expected cycle 

time of the rework sequence initiated after operation 𝑗, 𝛹𝑟𝑤(𝑗), are approximated as 

follows: 

                                                  𝛹𝑛𝑜𝑚
𝑓 ≈ ∑ (𝐸[𝐷𝑡(𝑘)] + 𝐸[𝑆𝑘])

𝑘∈𝑁𝑓

                                    (𝟑. 𝟒𝟎) 

                                                 𝛹𝑟𝑤(𝑗) ≈ ∑ (𝐸[𝐷𝑡(𝑘)] + 𝐸[𝑆𝑘])

𝑘∈𝑅(𝑗)

                                  (𝟑. 𝟒𝟏) 

where 𝐸[𝐷𝑡(𝑘)] denotes the approximate mean queueing delay at tool group 𝑡(𝑘) and 

𝐸[𝑆𝑘] denotes the mean total processing time of operation 𝑘. Recall that for an operation 

𝑘, 𝑃𝑟𝑤|𝑛𝑒𝑠(𝑘) denotes the probability that a job is sent for rework after the operation 𝑘. 

By definition, if 𝑃𝑟𝑤|𝑛𝑒𝑠(𝑘) = 0 then 𝛹𝑟𝑤(𝑗) = 0. Letting 𝑅𝑚𝑎𝑥 denote the maximum 

number of times that a job can be sent on any rework loop then the expected cycle time, 

𝛹𝑓, for the product family 𝑓 is given by 

                                       𝛹𝑓 ≈ 𝛹𝑛𝑜𝑚
𝑓 + ∑ ∑ 𝑃𝑟𝑤|𝑛𝑒𝑠(𝑘)

𝑖 ∗ 𝛹𝑟𝑤(𝑘)

𝑅𝑚𝑎𝑥

𝑖=1𝑘∈𝑁𝑓

                       (𝟑. 𝟒𝟐) 

With cycle time estimation we close this Chapter 3 of the theoretical background 

that we have to be aware of and of course it is supported and implemented from our 

computational model of the next Chapter 4. 
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Chapter 4 

 

Implementation of the Queueing Network 

Model 

 

The current Chapter represents our efforts to implement Connors et al.’s [3] 

approach in a reliable computational model. Here, we will describe the implemented 

techniques that were used developing the computational model while in parallel we will 

analyze the code, step by step, making references in the applied calculations types and 

methods of the theoretical model of Chapter 3. At first, we display the input variables that 

are necessary for the computational model (Section 4.1). These variables have the 

possibility to be changing manually or automatically at every different example will be 

executed. At Section 4.2, we initialize the probabilities that they will be used to find the 

distributions of the size of the jobs in the next Section 4.3. The next step is to solve the 

traffic equations of the rates (Section 4.4). This is happen by creating the routing matrix 

and solving a linear system of the traffic rates (Section Part 4.4.1). Also, some additional 

quantities based on these rates are defined (Section Part 4.4.2). At the next Section 4.5 we 

manipulate a function so that to calculate the first two moments of the tools time 

requirements of the processing steps as well the features of the incapacitated events. 

Based on the theoretical model, we calculate the tool’s utilization and the SCV of the 

service times in the same complex frame of code (Section 4.6), since, in Section 4.7, we 

solve the traffic variability equations. Lastly, we compute the mean queueing delay for 

each toolgroup and the mean cycle time for all product families (Section 4.8). 
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4.1 Input Variables for the Computational Model 

The most important and necessary part in coding is to aggregate at the top of the 

code all the input quantities or other variables that usually change in each different 

example that the computational model runs. This is a technique of modelling elegantly 

since the user would focus on the beginning of the code and not in the main code’s body 

searching the quantities that are to be changed. Thus, it is helpful for the user’s 

convenience and the optimization of the code, whichever parameter you want to change 

in a various executable instance to be at the beginning of the code. 

Firstly, we determine the number of tool groups, 𝐺, the number of product 

families, 𝐹, and the number of operations per product family, 𝑁𝑓. Moreover, the 

sequence of the tool groups where each operation is performed per product family are 

given as input data as well the number of machines at each tool group, 𝑐𝑔. 

We also specify the basic entity which circulates in a fab system namely the job-

size, i.e. the number of wafers that a lot is composed of. The maximum number of wafers 

in a job (𝑛𝑚𝑎𝑥) will be very helpful in the main body of the code because it is a variable 

that participate in calculations and control commands of the developed code. The 

exogenous arrival rate of wafers per week is used as the input rate for our modelling 

system and it is defined for each product family that enters into the fab. We assume it 

deterministic for our examples in an average of a week. The exogenous arrival rates are 

reversed in minutes (7days/24hours/60mins) because the basic time-unit of the model as 

in other similar literature examples is the minute. Another decisive quantity for our model 

is the maximum batch size at each toolgroup. This could be predefined in lots or wafers 

as a ration of the maximum number of wafers in a lot (𝑛𝑚𝑎𝑥) or an independent arbitrary 

number. 

Our computational model also requires some time’s specifications as input. The 

run processing time (in minutes) for a lot (job) of each process step without load, unload 

and setup times is known from the literature and other simulated models as well as the 

load and unload times at the machines of each tool group. We suppose that these time 
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durations of Load, effective-Processing and Unload processes are the mean values of a 

uniform distribution that they follow. The Loading, effective-Process and Unload times 

are determined for each lot. 

Additionally, the number of incapacitation events 𝐵 has to be fixed in advance. In 

the model that we are coding, these are the preventative maintenance, the breakdown and 

the major setup. For these incapacitation events we give their arrivals at each toolgroup 

and their mean processing time in each tool group. We assume that the time an 

incapacitation event spends in a toolgroup follows the uniform distribution with mean 

equals to the price we give as input. Especially, we import the arrivals and the time 

durations of incapacitation events in (𝐵 × 𝐺) matrices where 𝐺 the number of tool 

groups, as we mentioned in previous paragraph, and 𝐵 the number of incapacitation 

events. The times are determined in minutes while the arrivals are reported in arrivals per 

minute. 

Some auxiliary variables are also added as inputs that contribute to the economy 

of some calculations in the main body of the code. For example, the maximum allowable 

number of times that a job is sent for rework after each operation (max_mmax) is 

important for the creation of the probability that a job is sent for rework an exactly 

number of times after each operation. There also are percentages of dispersions that 

characterize the tool’s time requirements and the time requirements of incapacitation 

events. These percentages define the intervals of the uniform distributions affecting the 

variability of the system. 

Lastly, we also derive at the beginning the necessary quantities of the total 

number of operations 𝑁, the product family of each operation 𝑢(𝑓), the first operation of 

each product family 𝑠(𝑓), even, the nominal successor operation as well the rework 

successor operation of each operation for all operations. After the determination of the 

sequence of tool groups for each product family, now we define the tool group where 

each operation is performed for all operations, nominal and rework. All the above 

quantities are calculated from automated commands in MATLAB-MathWorks with the 

help of the pre-defined input quantities. 
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Having gathered the variable quantities that change in each example in the top of 

our computational model is much easier to simulate much more cases because it doesn’t 

need to modify the main body of the code, but just the parameters you need. 

 

4.2 Initializations of Scrap-Rework Probabilities 

Here, we initialize the main probabilities, their meaning analyzed in Section Part 

3.2.2, in order to run the code and calculate the appropriate distributions of the next 

Section 4.3. Under normal circumstances these probabilities would be found from 

statistical analyzations of semiconductor industrial datasets. Experts monitor and collect 

data from the production line in order to provide the correct elements of their analysis in 

other production sectors that they are involved in different kinds of analyzes. However, 

due to the lack of this information we can generate randomly the values of the 

probabilities which are independent each one from the other, or more specifically, we can 

initialize the probabilities in a specific value level, e.g. 10 or 15 percent. 

We refer to the scrapping probabilities 𝑃𝑗𝑠 , 𝑃𝑒𝑠|𝑗𝑠 and 𝑃𝑤𝑠|𝑝𝑠, also the rework 

probabilities 𝑃𝑟𝑤|𝑛𝑒𝑠, 𝑃𝑒𝑟𝑤|𝑟𝑤 and 𝑃𝑤𝑟𝑤|𝑝𝑟𝑤. For greater ease, we use one parameter 

probability for scrapping, 𝑝𝑠, and another one for the rework probabilities, 𝑝𝑟. At these 

two ancillary probabilities we set the value level of the above scrapping and rework 

probabilities that we want. The 𝑝𝑠 is weighted with the probabilities 𝑃𝑗𝑠 , 𝑃𝑒𝑠|𝑗𝑠, 𝑃𝑤𝑠|𝑝𝑠 and 

the 𝑝𝑟 with the corresponding probabilities of rework, 𝑃𝑟𝑤|𝑛𝑒𝑠, 𝑃𝑒𝑟𝑤|𝑟𝑤, 𝑃𝑤𝑟𝑤|𝑝𝑟𝑤. So, we 

initialize vectors of probabilities (population of individual numbers) illustrating a 

probability for each operation. After we have initialized our main probabilities, we 

calculate the two probabilities that an individual wafer go for scrapping and go for 

rework (𝑃𝑤𝑠, 𝑃𝑤𝑟𝑤 respectively) which are functions of the previous ones. 

The next task is to create the distribution of the probability that a job is sent for 

rework an exactly number of times after each operation, 𝑃𝑟𝑤𝑚. the distribution of this 

probability is created placing random probability’s numbers lying in the interval [0,1] in a 

delimited space defined by the maximum allowable number of times that a job is sent for 

rework after each operation, max_mmax,. Then, we normalize this distribution of 𝑃𝑟𝑤𝑚. 
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Finally, we initialize the requested distributions of the job-size for jobs are not 

scrapped and jobs go for rework, declaring a value for each operation of each probability. 

Vectors of auxiliary resources are also pre-initialized for testing different computational 

methods. Particularly, the probabilities that we initialize with zeros at first are: 

 𝑃𝑟𝑜𝑏𝑖𝑛(𝑓, 𝑛) = Probability that a job arriving to first operation of product 𝑓, 

𝑘 =  𝑠(𝑓), has 𝑛 wafers 

 𝑃𝑟𝑜𝑏𝑛𝑜𝑚(𝑘, 𝑛) = Probability that a job departing from operation 𝑘 has 𝑛 wafers 

 𝑃𝑟𝑜𝑏𝑟𝑒𝑤𝑚(𝑘, 𝑛,𝑚) = Probability that a job arriving at 𝑚𝑡ℎ rework operation 

after operation 𝑘 has 𝑛 wafers (𝑚: the number of rework times) 

 𝑃𝑟𝑜𝑏𝑟𝑒𝑤(𝑘, 𝑛) = Average probability that a job arriving at rework operation after 

operation 𝑘 has 𝑛 wafers 

 𝐷𝑖𝑓𝑓𝑛𝑜𝑚, 𝐷𝑖𝑓𝑓𝑟𝑒𝑤𝑚 = Vectors that store the numerical difference between two 

computational methods (determine the convergence of two methods). 

𝑃𝑟𝑜𝑏𝑖𝑛  is the distribution of wafers (job-size) in the entrance of the system, 𝑃𝑟𝑜𝑏𝑛𝑜𝑚  

is the distribution of wafers of a nominal operation, i.e., the distribution of the size of the 

job that leaves an operation and directed to its nominal operation (the next in the nominal 

sequence). 𝑃𝑟𝑜𝑏𝑟𝑒𝑤 is the average weighted distribution of the 𝑃𝑟𝑜𝑏𝑟𝑒𝑤𝑚  

probabilities’ distributions. 𝑃𝑟𝑜𝑏𝑟𝑒𝑤𝑚 declares the distribution of the job-size for a job 

arriving to a rework operation for the 𝑚𝑡ℎ time. 

 

4.3 Computation of Job-Size Distributions 

After we have initialized the probabilities we can implement the types (𝟑. 𝟒)-

(𝟑. 𝟕) of Section Part 3.2.3 in order to calculate the distributions of the job-size for the 

nominal successor operations and the rework successor operations. Τhe process is almost 

similar for both calculations if we take notice of these computational formulas. They are 

retrospective algorithms that are based on the precedent repetition of the process, i.e. they 

use the distribution of the job-size of the previous operation to calculate the job-size 

distribution of the current operation. 
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Firstly, we calculate the job-size distribution of jobs that are not being scrapped 

because in the next step this distribution will be used to find the job-size distribution of 

jobs sent to rework. The size in wafers of a job in the entrance of the system is concrete 

and deterministic. So, for each product family, the size for a job (lot) is determined from 

the given maximum number of wafers, 𝑛𝑚𝑎𝑥. Hence, the distribution of the job-size for 

the first nominal operation of the model, 𝑃𝑟𝑜𝑏𝑖𝑛, is degenerate and contains 𝑛𝑚𝑎𝑥 wafers 

with absolute probability equal to one without detriment of reality. 

The probability that a job has 𝑛 wafers in it and it is directed to the nominal 

successor operation from the operation it was in the previous repetition is calculated from 

the iterative algorithm (𝟑. 𝟒) for 𝑛 ≥ 1. The calculation is achieved with auxiliary 

temporary variables. One stores in a vector named “𝑃𝑟𝑜𝑏” the job-size distribution of the 

previous step-operation (𝑘 − 1), since the repetitive steps are the operations counting 

from the first to the last operation of each product family. The second auxiliary vector 

named “𝑃𝑒𝑥𝑎𝑐𝑡” stores the values of the binomial distribution of the current repetition. 

We use the type of the probability density function (pdf) of the binomial distribution with 

adjusted coefficients due to the form of the sums. Therefore, with this method we build 

step by step the distribution of job-size for the nominal operations. The probability that a 

job is departed from an operation with no wafers in it, i.e. all of the contained wafers are 

scrapped, can be calculated analytically from the Connors et al. formula (𝟑. 𝟓), or 

approximately from the type: 

𝑃𝑟𝑜𝑏𝑛𝑜𝑚(𝑘, 0) = 1 − ∑ 𝑃𝑟𝑜𝑏𝑛𝑜𝑚(𝑘, 𝑖)
𝑛𝑚𝑎𝑥

𝑖=1
 

where 𝑘 is the current repetition (operation). 

In the end, we can compare the two solutions of calculation probability a job 

contains zero wafers after completed an operation, 𝑃(𝐽 = 0), with the quantity 

𝐷𝑖𝑓𝑓𝑛𝑜𝑚. This vector calculates the difference between the two methods of computing 

the probability 𝑃(𝐽 = 0). If the resulted value is very small, approximately equal to zero, 

this means that both computational methods give correct, identical results. Certainly the 

most effective solution with less computational time and reliable results is the second one 

with the approximation type and not the Connors’s et al. formula (𝟑. 𝟓). As a last step, 

we normalize the completed probability’s distribution. 
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In order our analysis to be more accurate we calculate the job-size distribution 

assuming jobs can be sent for rework after each operation an arbitrary number of times, 

up to a maximum allowed, 𝑚𝑚𝑎𝑥. Following the above methodology, we first calculate 

the conditional job-size distribution given that a job has been sent for rework for 𝑚𝑡ℎ 

time, 𝑃𝑟𝑜𝑏𝑟𝑒𝑤𝑚. This can be done by repeatedly applying the calculation presented 

above. We use again the auxiliary temporary variables “𝑃𝑟𝑜𝑏” and “𝑃𝑒𝑥𝑎𝑐𝑡”, in rework 

terms in this case, and we continue by calculating the distribution that we interested in by 

the type (𝟑. 𝟔). To compute the probability that the job arriving for rework containing 

zero wafers after a nominal operation, two methods can be used to determine it, as it was 

done previous for the 𝑃𝑟𝑜𝑏𝑛𝑜𝑚 distribution. We can use Connors et al. formula (𝟑. 𝟕) or 

the following simply type: 

𝑃𝑟𝑜𝑏𝑟𝑒𝑤𝑚(𝑘, 0,𝑚) = 1 −∑ 𝑃𝑟𝑜𝑏𝑟𝑒𝑤𝑚(𝑘, 𝑖,𝑚)
𝑛𝑚𝑎𝑥

𝑖=1
 

where 𝑚 = 𝑚𝑚𝑎𝑥(𝑘): the number of rework times at operation 𝑘. Accordingly, we use 

the variable 𝐷𝑖𝑓𝑓𝑟𝑒𝑤𝑚 to compare the resulted probability 𝑃(𝐽 = 0) from the two 

computational methods presented above. The difference proves that both computational 

methods yield to the same values of 𝑃𝑟𝑜𝑏𝑟𝑒𝑤𝑚(𝐽 = 0). 

Having calculated and normalized the distribution 𝑃𝑟𝑜𝑏𝑟𝑒𝑤𝑚 distribution for 

each value of 𝑚 up to the allowed maximum, we use it to find the average job-size 

distribution of jobs sent to rework for up to the 𝑚𝑡ℎ time at each operation. In this way, 

we combine the completed distributions 𝑃𝑟𝑜𝑏𝑟𝑒𝑤𝑚(𝑘, 𝑛,𝑚) of all values of 𝑚, i.e. the 

times that a job is went for rework, into a single distribution 𝑃𝑟𝑜𝑏𝑟𝑒𝑤(𝑘, 𝑛) for each 

operation by weighting the distribution for rework exactly 𝑚 times by the probability that 

a job is sent for rework exactly 𝑚 times and summing over all values of 𝑚. In a code 

manner, the distribution of the job-size for a job that goes for rework exactly 𝑚 times, 

𝑃𝑟𝑜𝑏𝑟𝑒𝑤𝑚(𝑘, 𝑛,𝑚), is multiplied by the probability that the job is sent for rework 

exactly 𝑚 times, 𝑃𝑟𝑤𝑚 and in a repeat pattern, we sum all values of 𝑚 for each operation 

by keeping the current cost and adding the next value up to this. The probability 𝑃𝑟𝑤𝑚 is 

assumed as a known probability which we initialize it as an input distributional 

probability at Section 4.2. 
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So, before continue to calculate the arrival rates we have computed the 

distributions of the size of the jobs that are not scrapped and proceed to its nominal 

operation and also for the jobs that are sent for rework after a nominal operation. The 

computational methods of the above are certified in Appendix A, in which we quote the 

model codes and the applied commands in the environment of MATLAB-MathWorks. 

 

4.4 Solving Traffic Rates Equations 

In calculating the traffic rates between nodes we use the analytical types of 

Section Part 3.3.1. At first we create the routing matrix which corresponds to the 

probabilities that a job is directed from one situation (operation) to another and then we 

solve a linear system to calculate the arrival rates (Section Part 4.4.1). At the Section Part 

4.4.2, we compute other important resources related to the traffic rates which are needed 

as inputs at the calculation system of the Squared Coefficients of Variation (SCV) of the 

aggregate job arrival processes to each node. 

 

4.4.1 Linear System via Routing Matrix 

The routing matrix, called 𝑄, is integrated in the types that solve the traffic rates. 

In particular, type (𝟑. 𝟏𝟎), which is the linear system of the traffic equations, uses the 

matrix 𝑄 correlating the probability that a wafer departing from one operation arrives at a 

second operation with the arrival rate of the first one. Before continue to construct the 

matrix 𝑄 we have to identify its dimensions. In this part of the code, naming the 

operations we also mean the states. They are identical meanings. 

Except from the nominal operations of the system, 𝑁 at the total, we also have 𝑁 

rework operations, one for each nominal operation, based on the theoretical model that it 

is presented in Chapter 3. Additionally, we have to model the exit of the system as an 

individual state (+1 operation = exit state) and in analogous way, we do the same for the 

scrapping situation (+1 operation = state of scrap). So, the [(𝑁 + 𝑁) + 1] is the state of 
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exit for all product families and the [(𝑁 + 𝑁) + 2] is the state of scrapping for the 

system. 

Recall that 𝑄 is the matrix of probabilities that a wafer after completing operation 

𝑗 is routed to operation 𝑘. So, in order to build the matrix 𝑄 we assign values of 

probabilities to its matrix cells depending on the type (𝟑. 𝟗). We assume that the 

probability a wafer left the rework operation and directed to the nominal operation is 

equal to one, i.e., whatever goes for rework (of wafers) returns to the nominal sequence. 

Furthermore, we set with zero the probability that the wafers from exit stage go to a line 

operation, as well as no wafers from stage of scrapping go to a line operation. 

Having found the routing matrix 𝑄 we can easily solve the linear system: 

𝜆 = (𝐼 − 𝑄𝑇)−1 ∗ 𝐴. The implemented type referred by Connors et al. [3] implies that the 

matrix 𝐼 − 𝑄𝑇 is invertible and it also uses the vector 𝐴 of exogenous arrival rates to 

calculate the arrival rates 𝜆. The solution of the above system results in the rate of wafers 

at each nominal and rework operation of the system in conjunction with the rates of 

system’s exit. By the expression type (𝟑. 𝟏𝟏) we calculate the arrival rates in jobs for the 

nominal and rework operations. Obviously, when the arrival rate of wafers is zero then 

also the arrival rate of jobs at the specific operation is zero. 

 

4.4.2 Ancillary Resources for Calculation of Arrivals’ SCVs 

The linear equation system defined by the types (𝟑. 𝟏𝟐) calculates the Squared 

Coefficient of Variation (SCV) of the aggregated arrival processes to each tool group. 

These linear equations demand as input quantities the total arrival rate of jobs to each 

toolgroup, the total arrival rate of jobs from toolgroup to toolgoup, the proportion of 

arrivals between the tool groups and the proportion of jobs that leave one toolgroup and 

proceed directly to another. 

First of all, we find the set of operations (𝑇𝑔) performed at each toolgroup and we 

compute the total arrival rate of jobs to a toolgroup 𝑔, 𝛤𝑔, from the expression 𝛤𝑔 =

∑ 𝛬𝑘𝑘𝜖𝑇𝑔 . These two entities have essential contribution in the remaining body of the 

code. Subsequently, we use a repeatable structure of the order for to calculate the total 
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arrival rate of jobs to toolgroup ℎ from toolgroup 𝑔 (traffic rates between toolgroups), 

𝛾𝑔ℎ, and the proportion of arrivals to toolset ℎ came from toolgroup 𝑔, 𝜃𝑔ℎ. The latest 

two quantities are combining in the expression 𝜃𝑔ℎ = 𝛾𝑔ℎ/𝛤ℎ. 

A check for our computational code is considered if we quantify an additional 

state, (𝐺 + 1) state, which corresponds to the outside world (entrance or/and exit). So, 

the sum of arrival rates of all the states/toolgroups at one toolgroup including the extra 

state of entrance/exit must equal to the quantity of the specific 𝛤𝑔. Likewise, the sum of 

proportions of the arrivals to a specific toolgroup that come from all toolgroups (plus the 

state of outside) must equal to one, as these proportions represent probabilities that a job 

leave toolgroup 𝑔 and directed to toolgroup ℎ. At last, a secondary quantity can be 

computed. The rate of jobs that are going for scrapping is assumed as the deduction 

(quantitative difference) of all the rates from toolgroup 𝑔 that directed only to all other 

toolgroups, not outside, abstracted from all the arrival rates to that toolgroup 𝑔. 

Continuing in the same idea, we are able to compute the proportion of jobs 

leaving toolgroup 𝑔 that proceed directly to toolgroup ℎ, 𝑟𝑔ℎ, with the similar repetitive 

structure in terms of operations. We also have a check point (valuation) to the code for 

this computation by summing the values of proportions 𝑟𝑔ℎ for all ℎ from one specific 𝑔 

that must equal to one in according to all possibilities from which the jobs come to 

toolgroup 𝑔 (law of flow conservation). 

 

4.5 Processing & Other Time Requirements for 

Tools 

At the next Section Parts they are defined the most important quantities of time 

requirements that they will be used to calculate utilizations and SCVs of service and 

arrival times at each tool group. We will see which characteristic features of the 

incapacitation events will be calculated (Section Part 4.5.1), such as the proportion of 

time each tool spends incapacitated (“utilization” of incapacitation events). In the same 

context, the first moments of the time distributions of loading, effective process and 
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unloading will be extracted (Section Part 4.5.2), which are prerequisites entities even for 

the last step of the Cycle Time calculation and have a preliminary role for the calculation 

Sections of the tool’s utilization and queueing delay. 

 

4.5.1 Features for Incapacitation Events 

We have already imported at the model the arrival rate and the average duration 

for each incapacitation event at each tool group. Review that we model three 

incapacitation events: preventative maintenance, breakdown and major setup. 

Before we proceed we have to underline this: in the input matrices of arrival rates 

𝛬𝑏 and time durations 𝑆𝑏 of the incapacitation events, referred in the code as 

“𝐿𝑎𝑚𝑑𝑎𝑖𝑛𝑐” and “𝐸𝑆𝑖𝑛𝑐”, respectively, the rows indicate the types of incapacitation 

events (1
st
 row: preventative maintenance, 2

nd
 row: breakdown, 3

rd
 row: major setup) 

while the tool group which is affected from each incapacitation event is showed from 

each column (1
st
 column: tool group 1, 2

nd
 column: tool group 2, 3

rd
 column: tool group 

3). The matrices are in a (𝐵 × 𝐺) form which is more readable and understanding for the 

reader. 

For the user it is much more effectiveness to reconstruct the matrices of arrivals 

and duration times of the incapacitation events in vectors so to have dimensions of a 

column or row. Up to this view, we use a two-level repeatable structure with three 

indicators. The one runs the rows and the second runs the columns of the input matrices 

of the incapacitation events. The third one increases continuously from one to the number 

(𝐵 × 𝐺) which is the maximum number of combinations between 𝐵 number of types of 

incapacitation events and 𝐺 number of affected toolgroups, (𝑖, 𝑗) → 𝑘. So, running the 

third indicator 𝑘 specifies a specific position in the vector-table related to each 

incapacitation event of specific toolgroup. With this technique we decomposed the 

matrices in single vectors of one dimension. 

The main quantities that are being calculated in each repetition are the first two 

moments of the time duration of the incapacitation events, the SCV of the “service time” 
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of each type of incapacitation events, a correction factor 𝜑𝑏, the “utilization” of the 

incapacitation events for each tool group and finally two secondary variables. 

We assume that the input data of the time durations for the incapacitation events 

represent the mean values of a uniform distribution that the times follow. Therefore, in 

order to find the second moments of these time distributions and more specifically the 

variance 𝑉[𝑆𝑏] as well the mean of the squared values 𝐸[𝑆𝑏
2], we created a function 

named “moments”, which calculates the above quantities of the uniform distribution. The 

function accepts two variables as input, the mean value and a percentage of dispersion, 

while she outputs three quantities: the mean value, the variance and the mean of the 

squared times. The function uses the percentage of dispersion to create two bounds, a low 

(𝑙𝑏) and a high (𝑢𝑏) bound, around the mean value and then calculates the variance of 

the uniform distribution from the closed form: (𝑢𝑏 − 𝑙𝑏)2/12. The mean of the squared 

values is calculated by the expression: 𝐸[𝑆𝑏
2] = 𝑉[𝑆𝑏] + 𝐸

2[𝑆𝑏]. 

 The SCV of the “service time” of the incapacitation events is calculated from the 

type (𝟑. 𝟏𝟗) with a pointer 𝑏 indicating the terms of incapacitation events. To compute 

the correction factor 𝜑𝑏, except from the SCV of service times, we also need the SCV of 

the arrival rates of incapacitation events. In absence of data, we hypothesize that the SCV 

of the arrival rates of incapacitated arrivals is zero, i.e., we know exactly 

(deterministically) when each incapacitation event occur in the system. So, we calculate 

the correction factor from the expression (𝟑. 𝟐𝟏) for the incapacitation events. 

Finally, at each repetition we build the incapacitated “utilization” and an 

important entity consisting of three multiplication parameters, called “𝐿𝑏𝐸𝑆2𝑏” in the 

code. The “utilization” uses the first moment of 𝑆𝑏, i.e. the mean value, and the arrival 

rate of each incapacitation event at each toolgroup, while the entity “𝐿𝑏𝐸𝑆2𝑏” uses the 

second moment of 𝑆𝑏, i.e. the mean of the squared values, the arrival rate and the 

correction factor for each incapacitation event at each tool group. However, these two 

quantities are computed for each toolgroup. The values of the three incapacitation events 

corresponding for each tool group are summed together forming a single value of the 

“utilization” and “𝐿𝑏𝐸𝑆2𝑏” quantities for each toolgroup. 
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The last quantities that are calculated are the first two moments of the variable 𝐵𝑔 

as they are given in the formulas (𝟑. 𝟐𝟓). 

 

4.5.2 Time Requirements for Tools 

Continuing from the previous Section Part, we are going to enhance the technique 

that was followed to obtain the incapacitation time parameters, in order to compute the 

necessary processing time requirements and other variables which are incorporated in the 

calculations. The aim of this frame of code is to calculate the first two moments of the 

total processing time 𝑆𝑘 from the types (𝟑. 𝟏𝟓) and (𝟑. 𝟏𝟔). We compute the individual 

pieces of the above types by calculating the first two moments of each time distribution 

of the time requirements of a tool in a repetitive pattern for all operations. 

To begin with, it is considered that minor’s setup time is negligible comparing to 

the other time’s steps. In addition, it is not sure that it is necessarily performed for each 

job. If it is performed for a specific job depending on its operation, we calculate the first 

two moments of its time distribution. Given a nonnegative random probability for each 

operation, and a minimum deterministic setup time close to zero, we can calculate the 

mean and the variance of this time variable. Specifically, 𝐸[𝑀𝑘] = 𝑚𝑘 ∗ 𝑝𝑘
𝑚𝑠 + 0 ∗ (1 −

𝑝𝑘
𝑚𝑠), 𝑉[𝑀𝑘] = (𝑝𝑘

𝑚𝑠 ∗ 𝑀𝑘
2) − (𝐸2[𝑀𝑘]). At the next distinct steps, we compute the 

second moments of the Loading and Unloading times for a job and run-Processing times 

for the wafers at each operation. The approach is the same as we did to find the second 

moments of the time durations of the incapacitation events in the previous Section Part 

4.5.1. In particular, we use the function “moments” to calculate the variance of the 

uniformly time distribution that the above processes follow, setting as input the mean 

value of its time that equals to the input value that we gave at the beginning of the code. 

However, there is an exception in finding the second moments of the run-

Processing times of the wafers 𝑊𝑘 with the above technique of calculating the second 

moments of Load and Unload processes. It is needed to use the average of the Job-Size 

distribution for each operation. Particularly, the data that we have for the Processing 

procedures represent the effective processing times per lot (job) without load, unload and 
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minor setup times. The effective processing time per lot is given from the expression 

𝐸[𝐽] ∗ 𝐸[𝑊]. Consequently, to compute the total processing time for a job 𝑆𝑘 it is 

essential to define the average of the processing time per wafer, 𝐸[𝑊] = (𝐸[𝐽] ∗

𝐸[𝑊])/𝐸[𝐽]. Thus, before we proceed to calculate the second moments of the processing 

time per wafer at each operation, we calculate the average job-size 𝐸[𝐽] and then we use 

the mean processing time per wafer 𝐸[𝑊] in the function “moments” in order to calculate 

𝑉[𝑊] and 𝐸[𝑊2]. 

Therefore, having computed the individual terms of the types (𝟑. 𝟏𝟓), (𝟑. 𝟏𝟔), we 

calculate the first two moments of the Total Processing Time for a job at each operation, 

𝐸[𝑆𝑘], 𝑉[𝑆𝑘]. We also calculate the mean of the squared values of the uniformly 

distributed 𝑆𝑘,  𝐸[𝑆𝑘
2], which will be helpful to calculate the SCV of job’s service times. 

At the end of this code part, we compute characteristic quantities of batch tools. 

Referring to the first case where the average job’s size exceeds the maximum batch size, 

i.e. 𝛽𝑔
𝑚𝑎𝑥 ≤ 𝐽�̅�, we calculate the mean and the variance of the defined quantity of the 

number of batches required to process a specific job at each operation, 𝐸[𝛽𝑘], 𝑉[𝛽𝑘]. 

Then, the first two moments of the total processing time (𝑌𝑘) are also determined (see 

types (𝟑. 𝟑𝟑)). 

All the above procedure that it was followed in order to conclude in the 

calculation of the first two moments of the total processing time of a job at a nominal 

operation, it is also repeated for the rework operations. 

 

4.6 Calculation of Utilization and SCV of Service 

Time 

The current Section it may be the most significant part of the model’s coding. We 

compute all necessary quantities that they will be used to solve the linear equations in 

order to find the SCV of the arrival processes and finally to calculate the queueing delays 

of the toolgroups. Almost every aspect of the tool-types characteristics are modeling in 

this Section. 
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Primarily, we compose a structure of repetitions for each tool group 𝑔 ∈ 𝐺, in 

which several if statements are nested. The if statements check in which case we are 

placed at each time, i.e. what kind of tool-type characteristics are analyzed and computed 

at each frame of code. At the first level of control, the tool types of tool groups are 

separated accordingly to their batch size. If the batch size (in wafers) is equal to one, then 

the single-wafer tools are analyzed, or else if the batch size is greater than one, the 

properties of the batch tools are computed below this control. For the single-wafer tools, 

there is a control if the arrival rate of incapacitation events 𝛬𝑏 in that type of tool group is 

smaller or equal to the total arrival rate of jobs coming to a tool group 𝑔, 𝛤𝑔. Instead, for 

the batch tools (𝑏𝑚𝑎𝑥(𝑔) > 1), we have a second level of control and more specifically, 

we compare the maximum batch size 𝑏𝑚𝑎𝑥(𝑔) with the average job-size, or else the 

average amount of all jobs in wafers, 𝐴𝑣𝑊𝑎𝑓(𝑔), performed to that specific tool group. 

If 𝑏𝑚𝑎𝑥(𝑔) ≤ 𝐴𝑣𝑊𝑎𝑓(𝑔) we follow a similar modelling as we done for the single-

wafer tools, while, if 𝑏𝑚𝑎𝑥(𝑔) > 𝐴𝑣𝑊𝑎𝑓(𝑔), we follow the approach of the “greedy” 

policy which was presented in Case 3.4.3 B of Chapter 3. 

With these in mind, we compute first the average job-size by the type (𝟑. 𝟑𝟏). 

Then, in the code part that is referred for single-wafer tool groups, we calculate the 

utilization of that type of toolgroup and its overall utilization (total) including 

incapacitation events. We apply the expression (𝟑. 𝟏𝟕) in calculating the utilization of 

the single-wafer tool. The total utilization (𝑢𝑡𝑖𝑙(𝑔) = 𝑢𝑡𝑖𝑙𝑡𝑜𝑜𝑙(𝑔) + 𝑢𝑡𝑖𝑙𝑖𝑛𝑐(𝑔)) results 

by adding the “utilization” for the incapacitation events, i.e. the time that the tool spent 

incapacitated with the pure processing utilization of the toolgroup. Furthermore, we 

calculate the mean value and the mean squared value of 𝑆𝑔, as it is given in types (𝟑. 𝟐𝟎). 

So, now we can calculate the squared coefficient of variation (SCV) of the service times 

of jobs at the single-wafer tool implementing the type (𝟑. 𝟏𝟗). 

In case we have multiple, parallel, tools (𝑐𝑔 > 1), the above technique in 

calculation of the utilizations and the first two moments of 𝑆𝑔 is not changed. However, 

we have a control point that check the arrival rate of incapacitation events 𝛬𝑏. It is not 

permitted according to the theory the total of arrivals from incapacitation events occurred 

to a specific toolgroup to be greater than the total arrival rate of jobs in the tool group 
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(∑ 𝛬𝑏 ≤ 𝛤𝑔𝑏∈𝐵𝑔 ). We compute the quantities of the mean value and the mean squared 

value of the adjusted service times, 𝐸[𝑍𝑔] and 𝐸[𝑍𝑔
2],  from the types (𝟑. 𝟐𝟑), (𝟑. 𝟐𝟒) in 

order to calculate the SCV of the adjusted service times. We also give an alternative type 

for the total utilization of the toolgroup, 𝑢𝑡𝑖𝑙(𝑔) = 𝛤𝑔 ∗
𝐸[𝑍𝑔]

𝑐𝑔
. 

Having computed any necessary feature of the single-wafer tools we proceed in 

the batch-tool’s characteristic quantities. We use the entity of average job-size, 𝐴𝑣𝑊𝑎𝑓, 

to distinguish the two methods as they presented at Section Part 3.4.3. In the case where 

𝑏𝑚𝑎𝑥(𝑔) ≤ 𝐴𝑣𝑊𝑎𝑓(𝑔), the same commands in the same order as they were followed in 

the latest two paragraphs for the calculations of the single-wafer tools are used in coding. 

Only one key modification is needed in order for the batch tool’s type the appropriate 

equations to be executed. In particular, this change lies in using the first two moments of 

𝑆𝑘 where we modify the equations in order to use the first two moments of 𝑌𝑘. The first 

two moments of the total processing time 𝑌𝑘 were calculated at the end of the previous 

Section Part 4.5.2. 

In this frame of code, the types (𝟑. 𝟑𝟑) of the theoretical model are used and 

accordingly they are incorporated in the equations for single tools. Remember that in the 

equations of calculation of the first two moments of 𝑌𝑘, the number of batches required to 

process a job at an operation 𝑘, 𝛽𝑘, has strong contribution on them. Thus, we modify the 

equations (𝟑. 𝟏𝟕) and (𝟑. 𝟐𝟎) in order to take into account the first moments of the 

modified total time 𝑌𝑘. The utilization and the SCV of the service times are calculated 

based on the first two moments of 𝑌𝑘, 𝐸[𝑌𝑘], 𝐸[𝑌𝑘
2] and 𝐸[𝑌𝑔], 𝐸[𝑌𝑔

2] and then the 

technique for the calculation of the adjusted service time’s moments 𝐸[𝑍𝑔], 𝐸[𝑍𝑔
2] is 

implemented to calculate the adjusted SCV of service. 

The last case that we model is the case when 𝑏𝑚𝑎𝑥(𝑔) > 𝐴𝑣𝑊𝑎𝑓(𝑔). At the 

beginning, we calculate the first two moments of 𝑆𝑔 that help us to define the SCV of 

service times and secondly we find the adjusted SCV of service from the first two 

moments of 𝑍𝑔. Finishing, it is needed to model the approach that uses steady state 

probabilities for servers as well the roots of a polynomial equation to calculate the 

utilization of the second case of batch tools. This approach called “greedy” policy holds 
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when the batch size for the tool group is greater than the average job-size, as it was 

presented in Case B of Section Part 3.4.3. 

The “greedy” method says that first we specify the factor 𝜑𝑔 = 𝛤𝑔 ∗ 𝐸[𝑍𝑔], and 

then we initialize the polynomial coefficients with standard values based on the quantities 

𝜔𝑔
𝑚𝑎𝑥, 𝜑𝑔 and 𝑐𝑔. The maximum batch size 𝜔𝑔

𝑚𝑎𝑥 is given from the type (𝟑. 𝟑𝟒). After 

defining these, we solve the polynomial equation (𝟑. 𝟑𝟔) using the command roots of 

MATLAB-MathWorks. This command solves the polynomial equation and finds all its 

roots in a complex form of the imaginary plus the real part of the root. The method 

instead uses the single root of the solution which lying in the interval (1, 𝑐𝑔 ∗ 𝜔𝑔
𝑚𝑎𝑥/

𝜑𝑔). So, we keep the root which has zero imaginary part from the pre-referred interval. 

This root is used as an input for the types of the steady state probabilities as it is 

presented in types (𝟑. 𝟑𝟓 𝒂), (𝟑. 𝟑𝟓 𝒄) where 𝑥 corresponds to the single root. 

Lastly, we compute the “adjusted” utilization �̃�𝑔 by the analytical type of (𝟑. 𝟑𝟖) 

after we have computed the appropriate steady state probabilities. But, the actual 

utilization for the tool group, i.e. the proportion of time the tool spends processing jobs 

without the effect of the incapacitation events is calculated by the relation (𝟑. 𝟑𝟗). Note 

that the “adjusted” utilization is the total utilization including time spent “serving” 

incapacitation events. 

 

4.7 Linear Equations for the SCV of Arrivals 

In this Section we are going to calculate the Squared Coefficients of Variation 

(SCVs) of the aggregate job arrival processes to each toolgroup, 𝜐𝑔
𝑎, solving the linear 

equations of the analytical model equations (𝟑. 𝟏𝟐) of the Section Part 3.3.2. 

The variables that are assumed as inputs for these equations are the SCV of the 

aggregate exogenous arrival processes to each tool group 𝜐𝑔
𝑒, the SCV of the service 

times 𝜐𝑔
𝑠, the overall utilization (total), and especially the auxiliary resource quantities 

that we have computed in Section Part 4.4.2. Well, the ancillary resource’s parameters 

are the proportion of arrivals to toolgroup ℎ came from other toolgroup 𝑔, 𝜃𝑔ℎ, and the 
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proportion of jobs departure from toolgroup 𝑔 and proceed directly at a toolgroup ℎ, 𝑟𝑔ℎ. 

The individual coefficients of 𝜐𝑔
𝑎 that are incorporated in linear equation’s model of 

(𝟑. 𝟏𝟐) are the 𝑎ℎ, 𝑏𝑔ℎ, 𝑤ℎ, 𝑣ℎ and 𝑥𝑔 for two general tool groups 𝑔, ℎ ∈ 𝐺. 

We assume that the SCV of the aggregate exogenous arrival process to a tool 

group is zero (deterministic arrival procedures) while the total utilization has been 

calculated in the previous Section 4.6. Therefore, implementing the types of the linear 

equation system it results in finding the SCVs of the arrival processes. Underline that in 

the equations we use the total utilization and not the pure utilization of processing for a 

toolgroup because we want to find the SCV of the total arrival processes to the toolgroup 

affected by jobs and incapacitation arrivals. Finally, we calculate and the correction 

factor of the single-wafer tool groups and the batch tools for which it is applied the first 

case where 𝑏𝑚𝑎𝑥(𝑔) ≤ 𝐴𝑣𝑊𝑎𝑓(𝑔). 

 

4.8 Calculation of Mean Queueing Delay and 

Average Cycle Time 

At the last Section we are going to code the calculation types of the model’s 

quantities that support the main results of our implementation. We succeed in calculating 

the queueing delay at each tool group of the system and an estimation of the cycle time 

for all product families that we import in the system. 

About calculating the queueing delay, we implement the same code modelling 

construction with the commands for and if, as we developed in Section 4.6 for the 

calculation of the utilization and the SCV of service time. Especially, for single-wafer 

tools, we implement the method that specified from the expressions (𝟑. 𝟐𝟖) and (𝟑. 𝟐𝟗) 

in case the inequality ∑ 𝛬𝑏 ≤ 𝛤𝑔𝑏∈𝐵𝑔  is valid and we have 𝑐𝑔 ≥ 5 machines at these types 

of tool groups. On the other hand, if these conditions are not true, then we calculate the 

mean queueing delay from the general type (𝟑. 𝟑𝟎), as it is presented in Case B of 

Section Part 3.4.2. We have to note that these approaches are implemented either we have 

one machine/tool (𝑐𝑔 = 1) or we have multiple tools (𝑐𝑔 > 1) in the tool group. The final 
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delay with non-Poisson processes is calculated using the SCVs of the adjusted service 

times in the first case or the SCV of the actual service times in the second case in 

conjunction with the SCV of the arrivals. If the second, general, approach is followed the 

above SCVs of the service times are incorporated in the correction factors of types 

(𝟑. 𝟐𝟏). 

For the batch tools, in the case that 𝑏𝑚𝑎𝑥(𝑔) ≤ 𝐴𝑣𝑊𝑎𝑓(𝑔) we repeat the code 

for the single-wafer tools with the detailed assumption that we refer to batch tools of the 

specific instance. This is because in the term of service rate, 𝜇 = 1/𝐸[𝑍𝑔], the features of 

the total processing time 𝑌𝑘, which takes account the batching processing, are implied. 

Practically, we replace the 𝐸[𝑆𝑘
2] with 𝐸[𝑌𝑘

2]. In the case where 𝑏𝑚𝑎𝑥(𝑔) >

𝐴𝑣𝑊𝑎𝑓(𝑔) we implement the approximation (𝟑. 𝟑𝟕) in which the SCV of the service 

time is the adjusted. 

In the final point of modelling, in order to calculate the average cycle time for 

each product family, we first compute the expected nominal cycle time for each product 

family, as it is given from the approximation (𝟑. 𝟒𝟎), and the cycle time for the rework 

sequence after each operation, see type (𝟑. 𝟒𝟏). We code these calculation types with the 

Connors et al. [3] assumption that a rework operation after an operation 𝑘 is performed in 

the same equipment with the same processing time requirements. In the end, the total 

estimated cycle time is calculated building a sum of the maximum number of times 

(𝑚𝑚𝑎𝑥) that a job can be sent on any rework loop. In Chapter of the theoretical model, 

the quantity 𝑚𝑚𝑎𝑥 is referred as 𝑅𝑚𝑎𝑥. After all, we arrived at the point to calculate an 

estimation of the mean cycle time from the type (𝟑. 𝟒𝟐). 

The next Chapter exhibits the results which are derived from corresponding 

examples of the literature as well with our own applications. 
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Chapter 5 

 

Numerical Results 

 

In this Chapter we present the derived results of various numerical examples in 

which we coded and implemented Connors et al.’s [3] approach. These are variants of a 

five-machine six-step model of a wafer fab initially suggested by Kempf ([6]) at Intel 

Corporation, described by Spier and Kempf ([14]). This model which is often referred to 

as Mini-Fab, has small complexity but contains many of the typical features of a wafer 

fab with respect to the basic system and process. At first, we describe the Mini-Fab 

model and two main variants of it that we analyzed (Section 5.1), as well as the results of 

our analysis on the two nominal examples (Section 5.2). Afterwards, we list an amount of 

different scenarios created by changing one parameter that we choose of the original 

model of Mini-Fab each running time (Section 5.3). At last, we give the results of these 

applications discussing probable correlations and ratios between the scenarios (Section 

5.4). 

 

5.1 The Mini-Fab model 

The basic flow line of the Mini-Fab model consists of three machine groups 

where multi-product production and batch-processing are performed. A general diagram 

of the Mini-fab is shown in Figure 5.1. It is assumed that the Mini-Fab operates 24 hours 

per day, 7 days per week. Each day of operations is composed of two shifts of 12 hours. 
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Figure 5.1: Process flow of the Mini-Fab model (source: Mönch et al., [9]) 

 

Suppose that the machines of each workstation represent in reality the diffusion, 

ion implantation and lithography machines with the corresponding processes of the wafer 

fabrication, respectively. So, the three machine groups, as indicated in Figure 5.1, provide 

the following features: 

 Machine Group 1 (Diffusion) has two identical machines (Machines A and B). 

Each machine batches 3 lots at a time and requires 75 minutes per day of 

preventive (scheduled) maintenance. 

 Machine Group 2 (Ion Implantation) has two machines (Machines C and D). Each 

machine processes one lot at a time, requires 120 minutes of preventive 

maintenance per 12-hour shift, and is down for emergency (unscheduled) 

maintenance between 12 and 16 hours per week. 

 Machine Group 3 (Lithography) has of one machine (Machine E) that processes 

one lot at a time, requires 30 minutes of preventive maintenance per shift, and 

requires time-consuming setup changes when converting between process steps 

and/or product lots. Specifically, there is a 10-min setup on each step change, a 5-

min setup on each product family change, and a 12-min setup on each step and 

product family change. 

The Mini-Fab produces three different families of products, including a test 

product utilized for monitoring and production tracking. Hereafter, we refer to these 

products as Product A, Product B, and Test wafers. The test product is used to monitor 
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the accuracy of the production process and the other two types are commercial products 

to be sold to customers. 

The basic product unit is the lot. There is no lot-sizing specification, so to be 

consistent with the framework of Connors et al. [3], we assume that each lot contains one 

wafer. The nominal lot starts (i.e., the lots releasing rates) are as follows: 

 Product A: 51 lots per week 

 Product B: 30 lots per week 

 Test wafers: 3 lots per week 

The released products follow a predefined production sequence visualized in Figure 5.1. 

So, the fabrication of each product considered in the model is completed following the 

next sequence of six processing steps where in each workstation the products are entered 

twice. These steps are as follows: 

 Start  

 Step 1: Diffusion (Machine Group 1)  

 Step 2: Ion Implantation (Machine Group 2)  

 Step 3: Lithography (Machine Group 3)  

 Step 4: Ion Implantation (Machine Group 2)  

 Step 5: Diffusion (Machine Group 1)  

 Step 6: Lithography (Machine Group 3)  

 Exit 

Before starting the processing at each station, the wafer lots are held in six 

different buffers at the beginning of each step. In addition, in Station 1 there is a batching 

process that takes place before the batches are placed in buffers of Machine Group 1 for 

the process steps of 1 and 5. The capacity in the buffers of the system is limited to 18 lots 

(6 batches) in both buffers of workstation 1 and 12 lots in the remaining 4 buffers of 

workstations 2 and 3. 

There are also 2 equipment operators and 1 maintenance technician assigned to 

each shift. Each operator gets two one-hour breaks per shift and has an additional 60 
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minutes for meetings and training. The technician has 30 minutes per shift for meetings 

and training and gets two 45-minute breaks. 

The re-entrant mapping between processing steps, machines, and personnel is 

shown in Table 5.1, along with loading, processing, and unloading times in minutes. 

 

Table 5.1: Processing steps, machines, and operator assignments (LT = Load Time, PT = 

Process Time, UT = Unload Time, OD = Operator Designation). 

 Machine Group 1: 

Machines A and B 

Maximum batch size: 3 

Machine Group 2: 

Machines C and D 

Maximum batch size: 1 

Machine Group 3: 

Machine E 

Maximum batch size: 1 

Step LT PT UT OD LT PT UT OD LT PT UT OD 

1 20 225 40 1         
2     15 30 15 1,2     
3         10 55 10 2 
4     15 50 15 1,2     
5 20 255 40 1         
6         10 10 10 2 

 

The factory has a cellular layout and an automated material handling system. The 

linear layout consists of five cells: the starting material warehouse on the extreme left, 

Machine Group 1 in the next cell, Machine Group 3 in the middle, machine Group 2 in 

the fourth production cell, and the finished product warehouse on the extreme right. 

Personnel work only in the production cells (machine groups) taking 1 minute to move 

from cell to cell or 2 minutes to traverse the length of the three cells. The material 

handling system can carry only one lot at a time and requires one minute to load and one 

minute to unload. It visits all five cells, taking 4 minutes to move from cell to cell or 16 

minutes to traverse the length of the factory. 

Finally, some restrictions are incorporated in the Mini-Fab model especially for 

the batching processing. In the diffusion machines the formation of a batch can be done 

with any combination of lots of Products A or B, but no more than one lot of Test 

Wafers. Also, the batch must contain three products of equal production step and less 

than two test product lots. At last, at the processing step 5, the batches cannot contain a 

mix of commercial products (A and B). In addition, in multi-machine workstations, test 
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products are processed once by both machines. So, when a test product enters the 

diffusion or the implantation workstation for the second time it can only be processed on 

the machine it was not processed on the first time. 

In the two variants and the different scenarios of the Mini-Fab model that we 

analyzed in the next Sections, we made the following assumptions: 

1) No buffer sizes are modeled for the tool stations. 

2) Neither maintenance technicians nor operators are modeled. 

3) No transport limits are imposed. 

4) Batches in Machine Group 1 can be formed by mixing lots in any combination of 

products. 

5) Each machine in Machine Group 2 (Machines C and D) is down for emergency 

(unscheduled) maintenance 14 hours per week instead of between 12 and 16 hours 

per week assumed in the original Mini-Fab model. 

6) Scrapping and rework probabilities are as follows: 𝑃𝑗𝑠 = 𝑃𝑒𝑠|𝑗𝑠 = 𝑃𝑤𝑠|𝑝𝑠 = 𝑝𝑠 and 

𝑃𝑟𝑤|𝑛𝑒𝑠 = 𝑃𝑒𝑟𝑤|𝑟𝑤 = 𝑃𝑤𝑟𝑤|𝑝𝑟𝑤 = 𝑝𝑟, for some values of 𝑝𝑠 and 𝑝𝑟. 

7) A lot may be sent for rework only once after each nominal operation. The rework 

operation following each nominal operation as a repetition of the nominal 

operation, i.e., it is performed on the same equipment and takes the same total 

processing time as the nominal operation. 

 

As far as the scrapping and rework probabilities are concerned, we distinguish 

between four cases shown in Table 5.2. 

Table 5.2: Four cases of scrapping and rework probabilities. 

Case Description 𝑝𝑠 𝑝𝑟 

1 Neither scrapping nor rework 0 0 
2 Rework but no scrapping 0 0.15 
3 Scrapping but no rework 0.1 0 
4 Both scrapping and rework 0.1 0.15 

It should be noted that in the original Mini-Fab model, neither scrapping nor rework is 

modelled; therefore, the original model corresponds to case 1. 
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To evaluate the analytical queueing network methodology of Connors et al. [3] 

we compute the following performance metrics. 

 Mean utilization and queueing delay for each machine group; 

 Mean cycle time of each product family. 

 

5.2 Two Nominal examples 

In this Section, we describe the two of the examples that we studied, which are 

variants of the Mini-Fab model, and we discuss the resulting Mini-Fab model for the four 

cases shown in Table 5.2. 

 

5.2.1 Example 1 

In Example 1, we consider a variant of the Mini-Fab model described above with 

the following modifications in the assumptions: 

 There are no setups. 

 The loading, process, and unloading times are uniformly distributed with means 

equal to those shown in Table 5.1. The intervals of the uniform distributions are 

very tight and equal to only 1‰ of the means on either side; therefore, practically, 

the process times are close to deterministic. 

The results are shown in Table 5.3 and Table 5.4, respectively. 

 

Table 5.3: Mean utilization (MU) and mean queuing delay (MD) (in min) per machine 

group for Example 1. 

Machine 

Group 

Case 1 Case 2 Case 3 Case 4 

MU MD MU MD MU MD MU MD 

1 0.9793 153.1077 0.9849 190.6113 0.9735 128.2448 0.9794 149.8951 
2 0.8333 59.7915 0.8576 74.0378 0.8099 48.9940 0.8328 58.9394 
3 0.9167 276.5681 0.9531 481.9089 0.8703 178.2601 0.9041 242.8269 
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Table 5.4: Mean cycle time (in hrs) per product family for Example 1. 

Product family Case 1 Case 2 Case 3 Case 4 

A 30.3989 44.8139 25.9333 33.5095 
B 30.3989 44.8139 25.9333 33.5095 

Test wafers 30.3989 44.8139 25.9333 33.5095 

 

From the results of Example 1 we can make the following observations. 

When the rework probability 𝑝𝑟 is increased from zero to a positive value 

(compare case 1 vs. case 2 and case 3 vs. case 4), the mean utilization, mean queuing 

delay and mean cycle time increase. This is expected because with rework, the system 

becomes more utilized and more congested. Instead, when the scrapping probability 𝑝𝑠 is 

increased from zero to a positive value (compare case 1 vs. case 3 and case 2 vs. case 4), 

the mean utilization, mean queuing delay and mean cycle time decrease. This is also 

expected because with scrapping the system is less utilized and less congested. The 

downside of scrapping, of course, is the decrease in throughput. 

When both the rework probability 𝑝𝑟 and the scrapping probability 𝑝𝑠 are 

increased from zero to positive values (compare case 1 vs. case 4), both effects take 

place, i.e., there is a tendency for the mean utilization, mean queuing delay and mean 

cycle time to both increase and decrease. For the set of parameters that we considered, it 

turns out that while the mean utilization and mean queuing delay decrease, the mean 

cycle time increases. A reason to that could be that the probability we are going for 

rework is a bit greater than the probability of scrapping and so the cycle time is bigger 

comparing to the case 1 where we have neither scrapping nor rework. 

According to Connors et al. [3], the mean utilization for each machine is 

calculated as the percentage of the total time that the machine is being utilized either 

processing jobs or doing other tasks like setups scheduled/unscheduled maintenance, etc. 

Kempf [6] calculates the utilization as the ratio of the time that the machine is processing 

jobs over the time that the machine is available to process jobs, where by available we 

mean that it is not doing other tasks like setups scheduled/unscheduled maintenance, etc. 

Once the utilization defined in Kempf [6] is converted to the utilization defined by 

Connors et al. [3], the mean utilization values for Machine Groups 2 and 3 in Table 5.3 
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agree with the utilization values calculated in Kempf [6]. For Machine Group 1, the 

utilization displayed in Table 5.3, which is calculated based on Connors et al. [3], is 

higher than that calculated in Kempf ([6]). The reason for this is that in Connors et al. [3] 

the machines in Machine Group 1 are assumed to operate under a greedy batching policy, 

which means that each machine can start processing a batch of lots even if the maximum 

batch size has not been reached. The calculation of the utilization in Kempf [6], on the 

other hand, assumes that the size of all batches is equal to the maximum batch size. 

All product families have the same mean cycle time values. This is expected, 

since they all have the same processing sequence and processing times. 

 

5.2.2 Example 2 

In Example 2, we consider another variant of the Mini-Fab model described 

above with the following modifications in the assumptions: 

 There is no preventive (scheduled) maintenance in any of the machines. 

 Machine E in Machine Group 3 requires a 10-min setup twice per shift. This 

value is close to the value of a 24-min setup per shift assumed in van den Berk 

[15]. 

 The loading, process, and unloading times are uniformly distributed with means 

equal to those shown in Table 1, except for the process time of step 5 in Machine 

Group 1 which has a mean of 225 min instead of 255 min and the unload times of 

steps 1 and 5 in Machine Group 1 which have a mean of 20 min instead of 40 

min. The intervals of the uniform distributions are very tight and equal to only 

1‰ of the means on either side; therefore, practically, the process times are close 

to deterministic. 

The results of the analysis are shown in Table 5.5 and Table 5.6. 
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Table 5.5: Mean utilization (MU) and mean queuing delay (MD) (in min) per machine 

group for Example 2. 

Machine 

Group 

Case 1 Case 2 Case 3 Case 4 

MU MD MU MD MU MD MU MD 

1 0.9557 84.1840 0.9629 92.2022 0.9487 77.2387 0.9561 83.2401 
2 0.6667 20.4343 0.6909 23.6485 0.5599 17.6496 0.6661 20.2133 
3 0.9028 238.3171 0.9392 377.0837 0.8286 160.9358 0.8902 212.8048 

 

Table 5.6: Mean cycle time (in hrs) per product family for Example 2. 

Product family Case 1 Case 2 Case 3 Case 4 

A 24.3478 33.7500 21.4441 26.9774 

B 24.3478 33.7500 21.4441 26.9774 

Test wafers 24.3478 33.7500 21.4441 26.9774 

 

From the results we can make the same observations as those we made for 

Example 1 as well as the following additional observation. 

The mean utilization, queuing delay and cycle time for all the cases of Example 2 

are lower than their respective values in Example 1. The reason for this is that, while the 

characteristics of the emergency (unscheduled) maintenance are the same in both 

examples, the times of certain tasks that use up machine capacity are lower in Example 2 

than they are in Example 1. More specifically, the preventive (scheduled) maintenance 

times in Example 2 are zero whereas they are positive in Example 1, and the mean 

process time of step 5 and the unload times of steps 1 and 5 in Machine Group 1 in 

Example 2 are lower than their respective values in Example 1. The only task that takes 

longer in Example 2 than it does in Example 1 is the setup of Machine E in Machine 

Group 3, but this time is not high enough to cause higher machine utilization, delays and 

cycle time in Example 2. 

 

5.3 Variants of the Example 1 

Taking occasion of the previous variants of the original Mini-Fab model, we 

decided to execute many different cases (scenarios) of the Mini-Fab, as it was presented 
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in Section 5.1, by changing each running time a specific parameter. This strategy aims to 

notice how each factor affects the basic model. 

The basic model we agreed to be the original Mini-Fab model including the 

assumptions we made in Section 5.1 and corresponds to the case that we have neither 

scrapping nor rework. Then, we chose eight different parameters of the model to change 

with alternative case values for each parameter. In particular, the parameters we chose to 

change are: 

1. The scrapping probabilities, 𝑃𝑗𝑠 = 𝑃𝑒𝑠|𝑗𝑠 = 𝑃𝑤𝑠|𝑝𝑠 = 𝑝𝑠, which are quantified in 

probability levels of 0%, 10% or 20%. 

2. The rework probabilities, 𝑃𝑟𝑤|𝑛𝑒𝑠 = 𝑃𝑒𝑟𝑤|𝑟𝑤 = 𝑃𝑤𝑟𝑤|𝑝𝑟𝑤 = 𝑝𝑟, which are also 

quantified with the same three case-values of 0%, 10% and 20%. 

3. The time durations of the incapacitation events (setup, scheduled and unscheduled 

maintenance) we assume that are uniformly distributed with means equal to those 

presented for each Machine Group at Section 5.1. The intervals of these uniform 

distributions are specified by a percentage of the means noted by 𝑒1. This 

percentage changes to 1‰, 10‰ and 100‰ each time, reflecting either a tight, 

practically deterministic, interval or a slack interval. 

4. The loading, process, and unloading times are uniformly distributed with means 

equal to those shown in Table 5.1. The intervals of the uniform distributions are 

also specified by a percentage of the means, 𝑒2. This percentage equals as well to 

1‰, 10‰ and 100‰ reflecting either a tight, practically deterministic, interval or 

a slack interval. 

5. We suppose that from the three cases of setup changes in Machine Group 3, only 

one setup change is modelled with setup time equals to 10 minutes. We 

distinguish between two cases where no setup is performed, i.e. setup with zero 

time, or a 10-min setup is conducted. 

6. The arrival rate of setups is changed depending in the possibility if setups is 

actually performed on that specific occasion. When no setups are performed, then 

the arrivals of setup-changes are zero. Instead, when it is decided the 10-min 

setups to be performed on the machine E, then three distinct cases of arrival rates 
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are modelled for the setup-changes, e.g. a low level of 1 arrival of setup-changes 

per shift, a median level of 2 arrivals per shift and a high level of 3 arrivals per 

shift. 

7. We assumed that each machine in Machine Group 2 (Machines C and D) is down 

for emergency (unscheduled) maintenance 14 hours per week. Now, we model an 

alternative case in which the emergency maintenance (breakdown) lasts 7 hours 

per half-week. (This sentence is modelled as two different parameters, one for the 

time duration of the breakdown and the second that represents the arrival rate). Ιn 

the mean time the two cases are identical but have a different effect on the system. 

Briefly, the alternative cases of the parameters are summarized in the following two 

Tables. 

 

Table 5.7: Cases of scrapping and rework probabilities, cases of the percentage of the 

means that determine the intervals. 

   𝑝𝑠   𝑝𝑟 𝑒1 𝑒2 

0 0 1‰ 1‰ 

0.1 0.1 10‰ 10‰ 

0.2 0.2 100‰ 100‰ 

Table 5.8: Setup time (ST) (in min) and frequency of setups (FS) (in arrivals per shift) at 

each machine of machine group 2, time duration of unscheduled maintenance (DM) (in 

hours) and frequency of unscheduled maintenances (FM) (in arrivals per week) at each 

machine of machine group 3. 

Setup Unscheduled Maintenance 

ST FS DM FM 

0 0 14 1 
10 1 7 2 
10 2   
10 3   

 

Hence, combining all the above mentioned instances of changes, they are 

extracted a total of 216 different scenarios of the basic Mini-Fab model. (We list the 216 

different cases at Appendix B). The first scenario (scenario 1) is our basic Mini-Fab 

model. 
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It is noted that the two different cases of the unscheduled maintenance are 

modeled for our own convenience as follows: 

 Failures arrive at each machine in Machine Group 2 (Machines C and D) twice a 

week and each machine requires a repair time of 420 min (7 hrs), instead of 14 

hours per week for each machine that an emergency (unscheduled) maintenance 

was lasted; 

 In the same manner, for the second case, failures arrive at each machine in 

Machine Group 2 (Machines C and D) twice per half-week and each machine 

requires a repair time of 210 min (3.5 hrs), instead of a breakdown with 7 hours 

per half-week for each machine. 

 

5.4 Discussion of the Results 

The results of the various scenarios that were presented in the previous Section 

are listed in Appendix C. Here, we make some observations on how each parameter 

affects the performance metrics of the system. First of all, the observations that we made 

in Section Part 5.2.1 for the first example, which is our basic case (Scenario 1), also apply 

to this Section for the different scenarios. 

As far for the influence of the probabilities is concerned, when we increase the 

value level of the rework probability the mean utilization, mean queuing delay and mean 

cycle time are also increased. In contrast, when the scrapping probability is increased 

from zero to a positive value the mean utilization, mean queuing delay and mean cycle 

time decrease. In the interim cases, when both rework and scrapping probabilities are 

increased from zero to positive values the performance measures have the tendency either 

to increase or decrease, depending on which probability is greater than the other. A 

significant observation is made out when both probabilities have the same positive value. 

In these scenarios (compare scenario 5 vs. scenario 9) the mean utilization, mean queuing 

delay and mean cycle time are decreased compared to the basic case (scenario 1) where 

we have zero probabilities for rework and scrapping processes. This can be justified from 

a view that, lots removed due to scrap would reduce the traffic of the downstream toolsets 
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so less jobs would go for rework, although the probability for scrapping and rework is the 

same. The above tendencies are repeated in each change cases of the other parameters. 

Changing the percentage of the means used to determine the intervals of the 

uniform distribution, which is followed from the load, process and unload processes, also 

as well the incapacitation processes, it is observed that the increase of this percentage 

forces the intervals to widen. So, the metrics of mean queuing delay and mean cycle time 

have the tendency to increase, while the mean utilization is stable. For 10‰ of 𝑒1 and 𝑒2, 

the difference in the increase is not great (compare scenario 10 vs. scenario 1), but for 

100‰ of 𝑒1 and 𝑒2, the increase in the mean queuing delay and mean cycle time is 

obvious (compare scenario 19 vs. scenario 1). This tendency can be evaluated comparing 

scenarios in which we have changed other parameter’s characteristics, such as for setup 

or/and unscheduled maintenance (compare scenario 37 vs. scenario 28 and scenario 46 

vs. scenario 28, etc.). 

The incapacitation event of setup has a great impact on the performance metrics 

of machine group 3. More specifically, increasing the setup time from zero to 10 minutes 

and simultaneously setting the arrivals processes of setups at the low level of 1 arrival per 

12-hour shift, we observe that the mean utilization and mean queueing delay is increasing 

only for the machine group 3. This is expected because setups are performed only on the 

machines of tool group 3 and so that the utilization and the mean queueing delay of the 

other two machines groups are not affected at all (compare scenario 28 vs. scenario 1). 

Moreover, the mean cycle time of the three products is increased. This is also logical 

because the machine group 3 is delaying the whole system. 

Next, increasing the value of the mean rate of arrivals of setups to the median 

level of 2 arrivals per shift and the high level of 3 arrivals per shift, we come across with 

some important results. Firstly, the mean utilization and the mean queueing delay of the 

machine group 3 and the mean cycle time of the product families are increased for all 

scenarios based on the different values of 𝑝𝑠, 𝑝𝑟 and 𝑒1, 𝑒2. However, there are scenarios 

where the cycle times present negative values as well the same happens for the mean 

queueing delay of machine group 3. This fact is confirmed by the observation that the 

mean utilization at machine group 3 exceeds the one. This value for utilization is equal 
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strange and wrong, because it is not feasible for a machine to operate over 100% of its 

production capacity. These specific scenarios are determined by the state of the system in 

which the rework probability 𝑝𝑟 equals to the high value level of 20% as the scrapping 

probability 𝑝𝑠 is zero, i.e. the processed jobs have only the possibility to go for rework 

but cannot be scrapped. 

The last sentence may explain the unfeasible results, since the system becomes 

more utilized and more congested. In combination with the tendency of increase of the 

performance metrics caused by the increase of the arrival rate of setups, the negative 

results imply that the system require more time to process all amount of nominal and 

reworked jobs. This results in negative cycle times for the products due to lack of extra 

time for processing in the machine group 3 (negative queueing delay). That is why the 

machine group 3 works in greater production capacity of what it can provide (utilization 

over one). All the observations denoted in this paragraph can be verified comparing 

scenarios 57, 66, 75, 84, 93 and 102 vs. scenarios 3, 12, 21, 30, 39, 48. 

To prove the problem of the over-congestion that is mentioned previously, we ran 

some extra scenarios in which the probability of rework is 15 percent instead of 20 

percent while at the same time the scrapping probability is zero. Practically, we ran the 

same scenarios which have the problem with the negative values in delay and cycle times 

with the difference that the rework probability 𝑝𝑟 is 15%. From this analysis, we 

conclude that the system with probability of rework equals to 15% and setup arrivals of 

two and three arrivals per shift operates to full. This is happening since the utilization of 

machine group 3 is 98% at least at these scenarios, the mean queueing delay at the 

machine group 3 is very high and therefore the mean cycle times are very big (compare 

scenarios 57A, 66A, 75A, 84A, 93A, 102A vs. scenarios 3, 12, 21, 30, 39, 48). However, 

the system seemed to be over-congested even when the arrivals of setups in machine 

group 3 were only one per shift (see scenarios 30, 39, 48). In these scenarios, the mean 

utilization of machine group 3 is approximately 99.4%, the mean queueing delay in this 

tool group takes the extravagant time of 3260-3268 minutes, while the mean cycle time 

of the products is about to 160 hours. We understand that if any of the factors increase, 

the system would be infeasible. 
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Ending up, we observe that the system in the above scenarios with rework 

probability 𝑝𝑟 = 15% is working to its maximum capacity, especially referred to 

machine group 3, and if we increase a little bit this probability by a 5% (15 → 20%) then 

the productivity of machine group 3 and the total time that the system offers for the 

products, including processing and queue time, are insufficient. (compare scenarios 57, 

66, 75, 84, 93, 102 vs. scenarios 57A, 66A, 75A, 84A, 93A and 102A). 

Finally, the last parameter that is changing is the frequency of the failures which 

occur at machine group 2. Comparing the scenarios where the machines C and D 

(machine group 2) are down for 14 hours in a week in one hand, or in the other hand they 

are down for 7 hours per half-week, we conclude based on the results that the values of 

mean queueing delays and cycle times are not differentiate almost at all, (the utilizations 

are identical). Of course, this is expected and something else would be wrong because the 

two cases of modelling the unscheduled maintenance have the same effect on the system 

in an average of time. So, there is no disagreement in the performance measures, since 

their mean values are calculated. (compare scenario 109 vs. scenario 1, scenario 136 vs. 

scenario 28, etc.). 
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Chapter 6 

 

Conclusions 

 

6.1 Summary 

We presented the open queueing network model developed by Connors et al. [3] 

for rapid performance analysis of semiconductor manufacturing facilities. This model 

differs from other queueing models for performance evaluation of manufacturing systems 

in the detailed ways in which the effect of rework and scrap on wafer lot sizes is 

characterized and different tool groups found in semiconductor wafer fabrication are 

modeled. 

Especially, a high-volume semiconductor wafer fabrication facility consists of 

several hundred tools grouped into dozens of distinct tool groups. Collections of wafers 

(jobs) move from tool group to tool group undergoing hundreds of operations before 

completion. Each job follows a process sequence that corresponds to the product family 

to which the job belongs. The process sequence is specified by a consecutive list of 

operations to be performed on the wafers in the job. The highly reentrant flow of jobs 

through the fab causes jobs make multiple visits to tool groups. The jobs, or portions of 

jobs, may be scrapped or/and go for rework during the course of being processed. Thus, 

the number of wafers in a job is changing as the job moves through the fab. So, the first 

basic step in our analyzation was the determination of the job-size distribution for the 

jobs that are not being scrapped, also for the jobs that go for rework. 
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Then, the decomposition approach is implemented at the queueing model of 

Connors et al. [3] to decompose the complex system’s network into individual queues. 

The decomposition method uses the first moment traffic equations in order to interpret 

more efficient and accurate the characteristics of the tool groups, represented by the 

individual queues. The first moment traffic equations are formulated and solved at the 

operation level instead of the tool level and only then summed for every queue. 

The first two moments of the effective arrival rates at each node are obtained by 

solving two systems of linear equations, which synthesize the effects of the three basic 

network operations (superposition, splitting and departure) on the first and second 

moments of the arrival rates, respectively. In simple words, a system of linear equations 

that is just the familiar traffic rate equations occurring in the Jackson network of M/M/m 

queues (Markov models) is used for the rates, and after having obtained the rates, we 

obtain the variability parameters (the squared coefficients of variations) of the internal 

flows by solving another system of linear equations. 

In the main part of the analysis, we specify the features of three different tool 

types: single-wafer tools with one machine and multiple (parallel) machines and batch 

tools. Basically, we define the SCV of the service time by calculating the first two 

moments of the service time at each node as the weighted combination of the service 

times of all the operations performed on this node (machine group). After obtaining the 

first two moments of the effective arrival rates and service time of all the nodes, the 

performance measures of the mean utilization and mean waiting time in the queue are 

calculated from exact and approximated methods. In one case of batch tools analysis, a 

“greedy” policy was followed. It is noted that in our modelled system the incapacitations 

events of the tool breakdowns, the preventative maintenance and the setup requirements, 

which make the manufacturing environment highly stochastic, are modelled as a non-

preemptive priority jobs arriving at the tool groups. Finally, we calculate the average 

cycle time of each product family considering that the rework operations are performed 

on the same tool group and takes the same total processing time as its nominal operation. 

To implement the analysis of Connors et al. [3] for a semiconductor 

manufacturing queueing network model, we developed a computational model at the 
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environment of the software of MATLAB-MathWorks. The results that were derived 

from executing the model in many different variants of the Mini-Fab model introduced 

by Kempf [6] seem reasonable. When scrapping probabilities increase then the 

performance metrics of average utilization and mean queueing delay at each of the 

toolgroup as well the mean cycle time for each product family decrease due to the 

decongestion of the system. Instead, when the rework probabilities increase the system 

becomes more utilized and thus cycle time and queueing delay of the toolsets would 

increase. 

Comparing our results with other literature examples, we observe that our results 

for the single-wafer tool types agree with the second ones, though the modelling of the 

batch tools seem problematic. A reason that the performance metrics for the batch tools 

are higher than from corresponding bibliographic examples is that Connors et al. [3] 

assumes a greedy batching policy. Finally, we ran a lot of variants of the Mini-Fab case 

in order to clarify the effectiveness of each parameter in the system. 

 

6.2 Expectations & Future research 

Thorough understanding of the fab operation was critical to queueing network 

modeling. Based on the results that were obtained from the study, it can be concluded 

that the model did verify its expected behavior. Considering the practical manufacturing 

process scenarios of the semiconductor industry, the dissertation model encapsulates the 

real IC fabrication process, given the accuracy of the data that was available. The data 

used to model the fabrication process was obtained from literature models assuming that 

the time requirements follow the uniform distribution. Hence the model could have been 

more accurate if access to real data were available, or if real data were fitted to a 

probability distribution. Since this model instantiates the fabrication process of three 

products at one time in a representative fab, this model could be used in the industry to 

simulate the fabrication process by modifying the model components to match the 

architecture of the fab. Several inferences like the analysis of the interactions between the 
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factors that participate in the system and machine failures on cycle times can be made 

using this model. 

Also, model type effects on machine utilization, throughput, lot sizing, work-in 

process could be studied in detail using these models. But, the biggest challenge in 

gauging and improving operational performance is the nature of the semiconductor 

manufacturing process itself – characterized by complex reentrant flows, large variations 

in raw process times, differences in batch sizes for tool sets, cascading tool sets, and a 

rich set of complexity in the tools themselves. This results in a significant portion of lead 

time being non-productive queue time (waiting to be serviced) and a well-known tradeoff 

between reducing cycle time and increasing equipment utilization sometimes known as 

the operating curve. Its research analysis would provide the expectations of a reduced 

cycle time, which is always highly desirable, in order to enable faster yield learning, 

resulting in an increase in good chips per wafer earlier in a development cycle. 

To end up, the results from the implementation of Connors et al. [3] approach 

seem reasonable and promising, something that make us to ascertain that we developed a 

reliable computational model. Therefore, the findings and conclusions from this research 

thesis provide opportunities for further research in the same area, although, how to 

extract the input parameters for the queueing network analyzer from real factory data 

remains a formidable challenge. 
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Appendices 

 

Appendix A: Code of the Computational Model 

clear all 
close all 
clc 
 
InputData=xlsread('DATA.xlsx','InputData','B2:I217'); 
Cases=size(InputData,1); 
for Case=1:Cases 
   
rng(1);                               % initialize random number generator seed 
 
G=3;                                   % number of tool groups 
F=3;                                    % number of product families 
Nf=[6 6 6];                        % number of operations per product family 
seq=[1 2 3 2 1 3];             % sequence of tool groups per product family where each operation is performed 
c=[2 2 1];                           % number of machines at each toolgroup 
 
EJEWt=[225 30 55 50 255 10];        % run processing time (in minutes) for a lot(job) of each process step - 
                                                              % per product family without load, unload times and setup times  
Load=[20 15 10];                                % load times (in minutes) for each tool group 
Unload=[40 15 10];                            % unload times (in minutes) for each tool group 
 
nmax=1;                                               % maximum number of wafers in a job 
A=[51*nmax 30*nmax 3*nmax];     % exogenous arrival rates of wafers per time-unit(week) for each - 
                                                               % product family into the fab 
A=A/(7*24*60);                                  % exogenous arrival rates per minute (7days/24hours/60mins) 
bmax=[3*nmax 1 1];                          % maximum batch size of wafers at each toolgroup 
max_mmax=1;                                    % maximum allowable number of times that a job is sent for rework - 
                                                               % after each operation 
nnmax=4;  
 
B=3;                                                                          % number of incapacitation events (preventative - 
                                                                                  % maintenance, breakdown and major setup) 
Lamdainc=[2/(24*60) 2/(12*60) 1/(12*60);     % arrivals of incapacitation events at each toolgroup 
          0 InputData(Case,8) 0 
          0 0 InputData(Case,6)]; 
ESinc=[75 120 30;                                                  % mean processing times of incapacitation events 
       0 InputData(Case,7) 0; 
       0 0 InputData(Case,5)]; 
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e1=InputData(Case,3);                 % percentage of dispersion from the mean value for incapacitation's - 
                                                         % events time requirements 
e2=InputData(Case,4);                 % percentage of dispersion from the mean value for tool's time - 
                                                         % requirements 
 
N=sum(Nf);                                     % total number of operations 
u=repelem(1:F,Nf);                        % product family of each operation 
s=cumsum(Nf)-Nf+1;                    % first operation of each product family 
nom=(1:N)+1;                                 % nominal successor operation of operation k for all operations 
nom(1,cumsum(Nf))=0;                % nominal successor operation of last operation of each product family 
rew=(sum(Nf)+1:sum(Nf)+N);     % rework successor operation of operation k for all operations (each has - 
                                                          % the value k+N) 
t=[seq seq seq];                              % tool group where each nominal operation is performed 
t(rew)=[seq seq seq];                    % tool group where each rework operation is performed 
EJEW=[EJEWt EJEWt EJEWt]; 
EJEW(rew)=[EJEWt EJEWt EJEWt]; 
 
%% 
 
% Scrap and Rework Probabilities section (Initializations) 
 
ps=InputData(Case,1); 
pr=InputData(Case,2); 
 
Pjs= ps*ones(1,N);               % prob that a job is scrapped after op k 
Pesjs= ps*ones(1,N);           % prob that a job is entirely scrapped given it is scrapped after op k 
Ppsjs=1-Pesjs;                       % prob that a job is partially scrapped given it is scrapped after op k 
Pwsps= ps*ones(1,N);         % prob that a wafer is  scrapped given it is in a job that is partially - 
                                                % scrapped after op k 
Prwnes= pr*ones(1,N);       % prob that a job is reworked given that it is not entirely scrapped after op k 
Perwrw= pr*ones(1,N);      % prob that a a job is entirely reworked given it is reworked after op k 
Pprwrw=1-Perwrw;             % prob that a a job is partially reworked given it is reworked after op k 
Pwrwprw= pr*ones(1,N);   % prob that a wafer is reworked given it is in a job that is partially reworked - 
                                                % after op k 
 
Pws=Pjs.*(Pesjs+Ppsjs.*Pwsps);                                                 % prob that a wafer is scrapped after op k 
Pwrw=(1-Pws).*Prwnes.*(Perwrw+Pprwrw.*Pwrwprw);      % prob that a wafer is reworked after op k 
 
% Creation of Probability Distribution Prwm that a job is sent for rework exactly m times after operation k 
mmax = randi(max_mmax,1,N);  
max_mmax = max(mmax); 
Prwm = zeros(N, max_mmax); 
for k = 1:N 
    Prwm(k,1:mmax(k)) = rand(1,mmax(k));  
    Prwm(k,1:mmax(k)) = Prwm(k,1:mmax(k))/sum(Prwm(k,1:mmax(k)));     % Normalized Prwm 
end 
 
% Initializations of our main Prob Distributions 
Probin=zeros(F,nmax+1);                                 % Prob(f,n) = Prob that a job arriving to first op of product f, - 
                                                                              % k=s(f), has n wafers 
Probnom=zeros(N,nmax+1);                            % Prob(k,n) = Prob that a job departing from op k has n wafers 
Probrewm=zeros(N,nmax+1,max_mmax);    % Prob(k,n) = Prob that a job arriving at mth rework op after 
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                                                                               % op k has n wafers 
Probrew=zeros(N,nmax+1);                             % Prob(k,n) = Average prob that a job arriving at rework op 
                                                                               % after op k has n wafers 
 
% Initializations of auxiliary resources for testing different computational methods 
Probnom1=zeros(1,N); 
Diffnom=zeros(1,N); 
Probrewm1=zeros(N,max_mmax); 
Diffrewm=zeros(N,max_mmax); 
 
%% 
 
% Job-Size Distributions section 
 
% Calculate job-size distribution of jobs not scrapped 
for f=1:F 
    Probin(f,1:nmax)=0; 
    Probin(f,nmax+1)=1; 
 
    for k=s(f):s(f)+Nf(f)-1 
        p=Pwsps(k); 
        for n=2:nmax+1 
            Prob(1:n-1)=zeros; 
            Pexact=zeros(1,nmax); 
            ntemp=n-1; 
            if k==s(f) 
                Prob(n:nmax+1)=Probin(f,n:nmax+1); 
                Prob1=Probin(f,2:nmax+1); 
            else 
                Prob(n:nmax+1)=Probnom(k-1,n:nmax+1); 
                Prob1=Probnom(k-1,2:nmax+1); 
            end    
            for i=ntemp:nmax 
                Pexact(i)=binopdf(i-ntemp,i,p); 
            end 
            Probnom(k,n)=Prob(n)*(1-Pjs(k))+Pjs(k)*Ppsjs(k)*sum(Prob(n:nmax+1).*Pexact(ntemp:nmax));            
        end 
        Probnom(k,1)=1-sum(Probnom(k,2:nmax+1)); 
        Probnom(k,2:nmax+1)=Probnom(k,2:nmax+1)/(1-Probnom(k,1));           % normalization 
%         Probnom(k,2:nmax+1)=Probnom(k,2:nmax+1)/sum(Probnom(k,2:nmax+1)); 
 
        % Compute Prob(J=0), Probability job contains zero wafers at operation k, using Connors et al. - 
        % formula 
        Pexact1=zeros(1,nmax); 
        for i=1:nmax 
            Pexact1(i)=p^i; 
        end 
        Probnom1(k)=Pjs(k)*Pesjs(k)+Pjs(k)*Ppsjs(k)*sum(Prob1.*Pexact1);     
        Diffnom(k)=Probnom1(k)-Probnom(k,1);    % Checking that both computational formulas yield to the - 
                                                                                     % same Probnom(J=0) 
         
    end 
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end 
 
% Calculate job-size distribution of jobs sent to rework for the m_th time 
for k=1:N 
    Prob=Probnom(k,:); 
    Prob1=Probnom(k,2:nmax+1); 
    p=Pwrwprw(k);     
    for m=1:mmax(k) 
        for n=2:nmax+1 
            Pexact=zeros(1,nmax); 
            ntemp=n-1; 
            for i=ntemp:nmax 
                Pexact(i)=binopdf(ntemp,i,p); 
            end 
            Probrewm(k,n,m)=Prob(n)*Prwnes(k)*Perwrw(k)+Prwnes(k)*Pprwrw(k)*sum(Prob(n:nmax+1) 
                                             .*Pexact (ntemp:nmax)); 
        end  
        Probrewm(k,1,m)=1-sum(Probrewm(k,2:nmax+1,m)); 
        Probrewm(k,2:nmax+1,m)=Probrewm(k,2:nmax+1,m)/(1-Probrewm(k,1,m));           % normalization 
%         Probrewm(k,2:nmax+1,m)=Probrewm(k,2:nmax+1,m)/sum(Probrewm(k,2:nmax+1,m)); 
 
        % Compute Prob(J=0), Probability job senting for rework contains zero wafers after op k, using 
        % Connors et al. formula 
        Pexact1=zeros(1,nmax); 
        for i=1:nmax 
            Pexact1(i)=(1-p)^i; 
        end 
        Probrewm1(k,m)=(1-Prwnes(k))+Prwnes(k)*Pprwrw(k)*sum(Prob1.*Pexact1); 
        Diffrewm(k,m)=Probrewm1(k,m)-Probrewm(k,1,m);     % Checking that both computational formulas 
                                                                                                          % yield to the same Probrewm(J=0) 
         
        Prob=Probrewm(k,:,m); 
        Prob1=Probrewm(k,2:nmax+1,m); 
        Probrew(k,:)=Probrew(k,:)+Probrewm(k,:,m)*Prwm(k,m);  % Running average job-size distribution of - 
                                                                                                                 % jobs sent to rework for up to the mth - 
                                                                                                                 % time 
    end 
end 
 
%% 
 
% Traffic Rates section 
 
% [N nominal operations],[N rework operations],[1 exit operation],[1 scrap operation] 
% (N+N)+1 : state of exit for each product family, (N+N)+2 : state of scrapping 
% Operations===States 
 
% Q(matrix of probabilities that a wafer after completing operation j is routed to operation k) 
% Qf(routing matrix for each product family) 
Q=zeros;     % Q = [ (N+N)+2 , (N+N)+2 ] 
Qf=zeros;    % Qf(f) = [ 2*Nf(f)+1 , 2*Nf(f)+1 ] 
 
len=zeros; 
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lenold=0; 
i=0; 
for f=1:F 
    % Create matric Q 
    for k=s(f):s(f)+Nf(f)-2 
        Q(k,rew(k))=Pwrw(k);                       % Prob wafers go for rework   
        Q(k,nom(k))=1-Pwrw(k)-Pws(k);     % Prob wafers go to nominal successor 
        Q(k,rew(N)+2)=Pws(k);                     % Prob wafers go for scrapping 
        Q(rew(k),nom(k))=1;                         % Prob=1 after rework go to nominal operation  
    end 
    k=s(f)+Nf(f)-1;                                         % last operation of each product family f     
    Q(k,rew(k))=Pwrw(k);                        
    Q(k,rew(N)+1)=1-Pwrw(k)-Pws(k);                
    Q(k,rew(N)+2)=Pws(k);                        
    Q(rew(k),rew(N)+1)=1;  
     
    Q(rew(k)+1,:)=0;                                    % Prob wafers from exit stage go to a line operation 
    Q(rew(k)+2,:)=0;                                    % Prob wafers from stage of scrapping go to a line operation 
  
    % Build matrix Qf from Q 
    len(f)=0; 
    for k=s(f):s(f)+Nf(f)-1 
        i=i+1;       
        Qf(i,1:Nf(f))=Q(k,s(f):s(f)+Nf(f)-1); 
        Qf(i,Nf(f)+1:2*Nf(f))=Q(k,N+s(f):N+s(f)+Nf(f)-1); 
        Qf(i+Nf(f),1:Nf(f))=Q(rew(k),s(f):s(f)+Nf(f)-1); 
        Qf(i+Nf(f),Nf(f)+1:2*Nf(f))=Q(rew(k),N+s(f):N+s(f)+Nf(f)-1);  
    end 
    k=s(f)+Nf(f)-1; 
    Qf(i,2*Nf(f)+1)=Q(k,rew(N)+1); 
    Qf(i+Nf(f),2*Nf(f)+1)=Q(rew(k),rew(N)+1);  
    Qf(i+Nf(f)+1,:)=0; 
     
    len(f)=length(Qf); 
    len(f)=len(f)-lenold; 
    lenold=length(Qf); 
    i=length(Qf); 
end 
 
% Calculate arrival rates to nominal operations of each product family (+ traffic rate of exit) 
 
PF=zeros; 
Pf=zeros;      
lamda=zeros; 
Lamda=zeros; 
lenold=1; 
Nfold=0; 
for f=1:F 
    I=eye(len(f),len(f)); 
    A(2:Nf(f)+1,:)=zeros; 
 
%     [Pf] : Auxiliary invertible matrix with dimension (Nf(f)+1)x(Nf(f)+1), Nf(f)+1:state of exit 
%     [PF] : PF=inv(I-transp(Qf)) 
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    PF(1:len(f),1:len(f),f)=inv(I-(Qf(lenold:lenold+len(f)-1,1:len(f)))'); 
    Pf(1:Nf(f)+1,1:Nf(f)+1,f)=[PF(1:Nf(f),1:Nf(f),f) , PF(1:Nf(f),len(f),f) ; PF(len(f),1:Nf(f)+1,f)];   % formation - 
                                                                                                                                                                 % by segments - 
                                                                                                                                                                   % of matrix PF 
    Pf(Nf(f)+1,Nf(f)+1,f)=PF(len(f),len(f),f); 
     
    % Calculation of traffic rates of wafers to operation k 
    lamda(1,s(f):s(f)+Nf(f))=Pf(:,:,f)*A(:,f); 
%     lamda(1,1:Nf(f)+1,f)=Pf(:,:,f)*A(:,f);     
    lamda(2,s(f)+Nf(f)-1)=lamda(1,s(f)+Nf(f));     % exit rate of product family f 
     
    lamda=lamda(:,1:f*Nf(f)); 
    Nfold=Nf(f); 
    lenold=lenold+len(f); 
     
%     Compute arrival rates of JOBS to operation k of product family f 
    for k=s(f):s(f)+Nf(f)-1 
        if k==s(f) 
            Lamda(1,k)=lamda(1,k)/sum((1:nmax).*Probin(f,2:nmax+1)); 
        else 
            Lamda(1,k)=lamda(1,k)/sum((1:nmax).*Probnom(k-1,2:nmax+1)); 
        end 
    end 
    Lamda(2,k)=lamda(2,k)/sum((1:nmax).*Probnom(k,2:nmax+1));     % exit rate of JOBS of product family f 
end 
 
I2=eye(2*N+2,2*N+2); 
A2=zeros(2*N+2,1); 
for f=1:F 
    A2(s(f))=A(1,f); 
end 
lamda2=(inv(I2-Q'))*A2; 
lamda2=lamda2'; 
 
Lamda2=zeros; 
for f=1:F 
    for k=s(f):s(f)+Nf(f)-1 
        if k==s(f) 
            Lamda2(k)=lamda2(k)/sum((1:nmax).*Probin(f,2:nmax+1)); 
            if lamda2(rew(k))==0 
                Lamda2(rew(k))=0; 
            else 
                Lamda2(rew(k))=lamda2(rew(k))/sum((1:nmax).*Probrew(k,2:nmax+1)); 
            end 
        else 
            Lamda2(k)=lamda2(k)/sum((1:nmax).*Probnom(k-1,2:nmax+1)); 
            if lamda2(rew(k))==0 
                Lamda2(rew(k))=0; 
            else 
                Lamda2(rew(k))=lamda2(rew(k))/sum((1:nmax).*Probrew(k,2:nmax+1)); 
            end 
        end 
    end 
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end 
Lamda2(rew(N)+1)=sum(Lamda(2,:)); 
 
 % Auxiliary Resources for traffic Variability equations 
 
T=zeros; 
Gamma=zeros; 
for g=1:G 
    T(1:length(find(t==g)),g)=find(t==g);        % Set of nominal operations performed at each toolgroup 
    Gamma(g)=sum(Lamda2(1,T(:,g)));           % Total arrival rate of jobs to each toolgroup 
end 
% Gamma(G+1)=sum(Lamda(2,cumsum(Nf))); 
Gamma(G+1)=Lamda2(rew(N)+1); 
 
%{ 
 Calculate the total arrival rate of jobs to toolgroup h from toolgroup g and 
 the proportion of arrivals to tool h came from toolgroup g. 
 (G+1):state of outside(entrance or/and exit) 
%} 
gamma=zeros(G+1,G+1);     % traffic rates between toolgroups     
thita=zeros(G+1,G+1);     % proportion of arrivals at toolgroups 
for f=1:F 
    for k=s(f):s(f)+Nf(f)-1 
        if k==s(f) 
            gamma(G+1,t(k))=gamma(G+1,t(k))+Lamda2(1,k)+Lamda2(1,rew(k)); 
            thita(G+1,t(k))=gamma(G+1,t(k))/Gamma(t(k)); 
        else 
            gamma(t(k-1),t(k))=gamma(t(k-1),t(k))+Lamda2(1,k)+Lamda2(1,rew(k)); 
            thita(t(k-1),t(k))=gamma(t(k-1),t(k))/Gamma(t(k)); 
        end 
    end 
    gamma(t(k),G+1)=gamma(t(k),G+1)+Lamda(2,k); 
    thita(t(k),G+1)=gamma(t(k),G+1)/Gamma(G+1); 
end 
ScrapRate=zeros; 
for g=1:G 
    ScrapRate(g)=Gamma(g)-sum(gamma(g,1:G+1));  
end 
 
% Compute the proportion of jobs leaving toolgroup g that proceed directly to tool h 
r=zeros; 
for f=1:F 
    for k=s(f):s(f)+Nf(f)-1 
        if k==s(f) 
            r(G+1,t(k))=gamma(G+1,t(k))/sum(gamma(G+1,:));  
        else 
            r(t(k-1),t(k))=gamma(t(k-1),t(k))/sum(gamma(t(k-1),:)); 
        end 
    end 
    r(t(k),G+1)=gamma(t(k),G+1)/sum(gamma(t(k),:)); 
end 
 
%% 
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% Processing & Other Time Requirements for Tools section 
 
% incapacitation events: preventative maintenance, breakdown and major setup 
corfinc=zeros; 
SCVbs=zeros; 
SCVba=zeros; 
Lamdab=zeros; 
Sb=zeros(B*G,3); 
ESb=zeros(1,B*G); 
ES2b=zeros(1,B*G); 
LbES2b=zeros(1,G); 
utilinc=zeros(1,G); 
EB=zeros(1,G); 
EB2=zeros(1,G); 
k=0; 
for i=1:B 
    for j=1:G 
        k=k+1; 
        SCVba(k)=0; 
        Lamdab(k)=Lamdainc(i,j); 
        e=e1; 
        EX=ESinc(i,j); 
        Sb(k,:)=moments(EX,e); 
        ESb(k)=Sb(k,1); 
        ES2b(k)=Sb(k,3); 
        if ESb(k)==0 
            SCVbs(k)=0; 
        else 
            SCVbs(k)=(ES2b(k)-(ESb(k)^2))/(ESb(k)^2); 
        end 
        corfinc(k)=(SCVbs(k)+SCVba(k))/(SCVbs(k)+1); 
         
        LbES2b(j)=LbES2b(j)+Lamdab(k)*ES2b(k)*corfinc(k); 
        utilinc(j)=utilinc(j)+(Lamdab(k)*ESb(k))/c(j);                   % Utilization of incapacitation events 
         
        EB(j)=EB(j)+ESb(k)*(Lamdab(k)/Gamma(j)); 
        EB2(j)=EB2(j)+ES2b(k)*(Lamdab(k)/Gamma(j));    
    end 
end 
 
pms=zeros; 
M=zeros; 
EM=zeros; 
VM=zeros; 
L=zeros(2*N,3); 
EL=zeros; 
VL=zeros; 
U=zeros(2*N,3); 
EU=zeros; 
VU=zeros; 
W=zeros(2*N,3); 
EW=zeros; 
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VW=zeros; 
EJ=zeros; 
VJ=zeros; 
ES=zeros; 
VS=zeros; 
ES2=zeros; 
Eb=zeros; 
Vb=zeros; 
EY=zeros; 
VY=zeros; 
EY2=zeros; 
for f=1:F 
    for k=s(f):s(f)+Nf(f)-1 
        pms(k)=rand(); 
        M(k)=randi([0 0],1);               % minor setup time(min) for a job 
        EM(k)=pms(k)*M(k); 
        VM(k)=(pms(k)*(M(k)^2))-(EM(k)^2); 
         
        e=e2; 
        EX=Load(t(k)); 
        L(k,:)=moments(EX,e); 
        EL(k)=L(k,1); 
        VL(k)=L(k,2); 
        EX=Unload(t(k)); 
        U(k,:)=moments(EX,e); 
        EU(k)=U(k,1); 
        VU(k)=U(k,2); 
 
        EJ(k)=sum(Probnom(k,2:nmax+1).*(1:nmax)); 
        VJ(k)=sum(Probnom(k,2:nmax+1).*((1:nmax).^2))-(EJ(k)^2); 
 
        EW(k)=EJEW(k)/EJ(k); 
 
        if bmax(t(k))>1               % Diffusion tool group(furnace) : processing times of wafers are the same 
            e=0; 
            EX=EW(k); 
            W(k,:)=moments(EX,e); 
        else 
            e=e2; 
            EX=EW(k); 
            W(k,:)=moments(EX,e); 
        end 
        EW(k)=W(k,1); 
        VW(k)=W(k,2); 
 
        ES(k)=EM(k)+EL(k)+EJ(k)*EW(k)+EU(k);     % Mean Processing Time (total) for jobs 
        VS(k)=VM(k)+VL(k)+EJ(k)*VW(k)+(EW(k)^2)*VJ(k)+VU(k); 
        ES2(k)=VS(k)+(ES(k)^2); 
     
        if k==s(f) 
            Eb(k)=sum((ceil((1:nmax)./bmax(t(k)))).*Probin(f,2:nmax+1)); 
            Vb(k)=sum(((ceil((1:nmax)./bmax(t(k)))).^2).*Probin(f,2:nmax+1))-(Eb(k)^2); 
        else 
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            Eb(k)=sum((ceil((1:nmax)./bmax(t(k)))).*Probnom(k-1,2:nmax+1)); 
            Vb(k)=sum(((ceil((1:nmax)./bmax(t(k)))).^2).*Probnom(k-1,2:nmax+1))-(Eb(k)^2); 
        end 
        EY(k)=Eb(k)*ES(k); 
        VY(k)=Eb(k)*VS(k)+Vb(k)*(ES(k)^2); 
        EY2(k)=VY(k)+(EY(k)^2);  
     
    end 
end 
for f=1:F 
    for k=s(f):s(f)+Nf(f)-1 
        pms(rew(k))=rand(); 
        M(rew(k))=randi([0 0],1); 
        EM(rew(k))=pms(rew(k))*M(rew(k)); 
        VM(rew(k))=(pms(rew(k))*(M(rew(k))^2))-(EM(rew(k))^2); 
        e=e2; 
        EX=Load(t(rew(k))); 
        L(rew(k),:)=moments(EX,e); 
        EL(rew(k))=L(rew(k),1); 
        VL(rew(k))=L(rew(k),2); 
        EX=Unload(t(rew(k))); 
        U(rew(k),:)=moments(EX,e); 
        EU(rew(k))=U(rew(k),1); 
        VU(rew(k))=U(rew(k),2); 
        if lamda2(rew)==0 
            EJ(rew(k))=0; 
            VJ(rew(k))=0; 
            EW(rew(k))=0; 
        else 
            EJ(rew(k))=sum(Probrew(k,2:nmax+1).*(1:nmax)); 
            VJ(rew(k))=sum(Probrew(k,2:nmax+1).*((1:nmax).^2))-(EJ(rew(k))^2); 
            EW(rew(k))=EJEW(rew(k))/EJ(rew(k)); 
        end 
        if bmax(t(rew(k)))>1 
            e=0; 
            EX=EW(rew(k)); 
            W(rew(k),:)=moments(EX,e); 
        else 
            e=e2; 
            EX=EW(rew(k)); 
            W(rew(k),:)=moments(EX,e); 
        end 
        EW(rew(k))=W(rew(k),1); 
        VW(rew(k))=W(rew(k),2); 
        ES(rew(k))=EM(rew(k))+EL(rew(k))+EJ(rew(k))*EW(rew(k))+EU(rew(k)); 
        VS(rew(k))=VM(rew(k))+VL(rew(k))+EJ(rew(k))*VW(rew(k))+(EW(rew(k))^2)*VJ(rew(k))+VU(rew(k)); 
        ES2(rew(k))=VS(rew(k))+(ES(rew(k))^2); 
        Eb(rew(k))=sum((ceil((1:nmax)./bmax(t(rew(k))))).*Probrew(k,2:nmax+1)); 
        Vb(rew(k))=sum(((ceil((1:nmax)./bmax(t(rew(k))))).^2).*Probrew(k,2:nmax+1))-(Eb(rew(k))^2); 
        EY(rew(k))=Eb(rew(k))*ES(rew(k)); 
        VY(rew(k))=Eb(rew(k))*VS(rew(k))+Vb(rew(k))*(ES(rew(k))^2); 
        EY2(rew(k))=VY(rew(k))+(EY(rew(k))^2);  
    end 
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end 
 
%% 
 
% Calculation of the utilization of each toolgroup and the SCV of service & inter-arrival time section 
 
utiltool=zeros; 
AvWaf=zeros; 
ESg=zeros; 
ES2g=zeros; 
EYg=zeros; 
EY2g=zeros; 
EZ=zeros; 
EZ2=zeros; 
SCVs=zeros; 
SCVz=zeros; 
wmax=zeros; 
corf=zeros; 
utiladj=zeros; 
util=zeros; 
for g=1:G 
    AvWaf(g)=sum(Lamda2(1,T(:,g)).*EJ(T(:,g)))/Gamma(g); 
    if bmax(g)==1 
        utiltool(g)=sum((Lamda2(1,T(:,g)).*ES(T(:,g)))/c(g));            % Utilization of single-wafer tools        
        util(g)=utiltool(g)+utilinc(g); 
        ESg(g)=sum((Lamda2(1,T(:,g)).*ES(T(:,g)))/Gamma(g)); 
        ES2g(g)=sum((Lamda2(1,T(:,g)).*ES2(T(:,g)))/Gamma(g)); 
        SCVs(g)=(ES2g(g)-(ESg(g)^2))/(ESg(g)^2);                               % SCV of the service time at station g for a - 
                                                                                                               % "generic job" arriving to toolgroup g      
        if any(Lamdainc(:,g)<=Gamma(g)) && c(g)>=5 
            EZ(g)=ESg(g)+EB(g); 
            EZ2(g)=ES2g(g)+EB2(g)+2*ESg(g)*EB(g); 
            SCVz(g)=(EZ2(g)-(EZ(g)^2))/(EZ(g)^2); 
            util(g)=Gamma(g)/((1/EZ(g))*c(g)); 
        end    
    elseif bmax(g)>1 
        if bmax(g)<=AvWaf(g) 
            utiltool(g)=sum((Lamda2(1,T(:,g)).*EY(T(:,g)))/c(g));        % Utilization of batch tools 
            util(g)=utiltool(g)+utilinc(g); 
            EYg(g)=sum((Lamda2(1,T(:,g)).*EY(T(:,g)))/Gamma(g)); 
            EY2g(g)=sum((Lamda2(1,T(:,g)).*EY2(T(:,g)))/Gamma(g)); 
            SCVs(g)=(EY2g(g)-(EYg(g)^2))/(EYg(g)^2); 
            if any(Lamdainc(:,g)<=Gamma(g)) && c(g)>=5      
                EZ(g)=EYg(g)+EB(g); 
                EZ2(g)=EY2g(g)+EB2(g)+2*EYg(g)*EB(g);      
                SCVz(g)=(EZ2(g)-(EZ(g)^2))/(EZ(g)^2);  
                util(g)=Gamma(g)/((1/EZ(g))*c(g)); 
            end    
        elseif bmax(g)>AvWaf(g) 
            ESg(g)=sum((Lamda2(1,T(:,g)).*ES(T(:,g)))/Gamma(g)); 
            ES2g(g)=sum((Lamda2(1,T(:,g)).*ES2(T(:,g)))/Gamma(g)); 
            SCVs(g)=(ES2g(g)-(ESg(g)^2))/(ESg(g)^2); 
            EZ(g)=ESg(g)+EB(g); 
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            EZ2(g)=ES2g(g)+EB2(g)+2*ESg(g)*EB(g);      
            SCVz(g)=(EZ2(g)-(EZ(g)^2))/(EZ(g)^2); 
             
            corf(g)=Gamma(g)*EZ(g); 
            wmax(g)=floor(bmax(g)/AvWaf(g)); 
            pp=zeros(1,wmax(g)+2); 
            clear roots 
            pp(1)=corf(g)/c(g); 
            pp(2)=-(1+corf(g)/c(g)); 
            pp(wmax(g)+2)=1; 
            roots=roots(pp); 
            sroots=roots(imag(roots)==0); 
            sroot=sroots(single(sroots)>1 & single(sroots)<(c(g)*wmax(g)/corf(g))); 
            StBatProb00=(((corf(g)^c(g))/factorial(c(g)))*((1-(1/sroot))^(-1))+sum((corf(g).^ 
                                    (0:c(g)-1))./factorial(0:c(g)-1)))^(-1); 
            StBatProbm0=StBatProb00*((corf(g).^(1:c(g)-1))./factorial(1:c(g)-1)); 
            StBatProbcn=StBatProb00*((corf(g)^c(g))/factorial(c(g)))*((1/sroot).^(0:nnmax)); 
            utiladj(g)=StBatProb00*(sum(((1:c(g)-1).*(corf(g).^(1:c(g)-1)))./(c(g).*factorial(1:c(g)-1)))+ 
                              (((corf(g)^c(g))*sroot)/(factorial(c(g))*(sroot-1)))); 
            utiltool(g)=utiladj(g)/(1+(EB(g)/ESg(g))); 
            util(g)=utiladj(g); 
             
        end 
    end 
end 
 
% Calculate Squared Coefficients of Variation (SCV) of the aggregate job arrival processes to each - 
% toolgroup solving linear equations. 
SCVa=zeros(G,1); 
SCVe=zeros; 
x=zeros; 
v=zeros; 
w=zeros; 
b=zeros(G,1); 
a=zeros; 
for g=1:G 
    SCVe(g)=0;           % SCV of the aggregate exogenous arrival process to tool group g 
        
    x(g)=1+(max(SCVs(g),0.2)-1)/sqrt(c(g)); 
    v(g)=(sum(thita(:,g).^2))^(-1); 
    w(g)=(1+4*(1-util(g)^2)*(v(g)-1))^(-1); 
    b(:,g)=w(g)*(thita(1:G,g).*r(1:G,g))*(1-util(g)^2); 
    a(g)=1+w(g)*((thita(G+1,g)*SCVe(g)-1)+sum(thita(1:G,g).*((1-r(1:G,g))+r(1:G,g).*((util(g)^2)*x(g))))); 
 
    SCVa(g)=a(g)+sum(SCVa(:).*b(:,g)); 
     
    if bmax(g)==1 || bmax(g)<=AvWaf(g) 
        corf(g)=(SCVs(g)+SCVa(g))/(SCVs(g)+1);     % correction factor         
    end 
end 
 
%% 
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% Mean Queueing Delay and Average Cycle Time section 
 
adjust=zeros; 
Delay=zeros; 
for g=1:G 
    if bmax(g)==1 
        if any(Lamdainc(:,g)<=Gamma(g)) && c(g)>=5  
            Gg=Gamma(g); 
            mi=1/EZ(g); 
            cc=c(g); 
            ro=Gg/(mi*cc); 
            ProbD=(((cc*ro)^cc)/(factorial(cc)*(1-ro)))/(sum(((cc*ro).^(0:cc-1))./ 
                          factorial(0:cc-1))+(((cc*ro)^cc)/(factorial(cc)*(1-ro)))); 
            DelayMMc=ProbD/((cc*mi)-Gg); 
            Delay(g)=DelayMMc*((SCVz(g)+SCVa(g))/2); 
        else 
            adjust(g)=((utiltool(g)+utilinc(g))^(sqrt(c(g)-1)))/(c(g)^2); 
            Delay(g)=adjust(g)*((LbES2b(g)+corf(g)*sum(Lamda2(1,T(:,g)).*ES2(T(:,g))))/ 
                             (2*(1-utilinc(g))*(1-utilinc(g)-utiltool(g)))); 
        end 
    elseif bmax(g)>1 
        if bmax(g)<=AvWaf(g) 
            if any(Lamdainc(:,g)<=Gamma(g)) && c(g)>=5 
                Gg=Gamma(g); 
                mi=1/EZ(g); 
                cc=c(g); 
                ro=Gg/(mi*cc); 
                ProbD=(((cc*ro)^cc)/(factorial(cc)*(1-ro)))/(sum(((cc*ro).^(0:cc-1))./ 
                              factorial(0:cc-1))+(((cc*ro)^cc)/(factorial(cc)*(1-ro)))); 
                DelayMMc=ProbD/((cc*mi)-Gg); 
                Delay(g)=DelayMMc*((SCVz(g)+SCVa(g))/2); 
            else 
                adjust(g)=((utiltool(g)+utilinc(g))^(sqrt(c(g)-1)))/(c(g)^2); 
                Delay(g)=adjust(g)*((LbES2b(g)+corf(g)*sum(Lamda2(1,T(:,g)).*EY2(T(:,g))))/ 
                                 (2*(1-utilinc(g))*(1-utilinc(g)-utiltool(g)))); 
            end 
        elseif bmax(g)>AvWaf(g) 
            Delay(g)=((StBatProbcn(1)*sroot)/(Gamma(g)*((sroot-1)^2)))*((SCVa(g)+SCVz(g))/2); 
        end 
    end 
end 
 
CTnom=zeros; 
CTrw=zeros; 
CT=zeros(1,F); 
for f=1:F 
    CTnom(f)=sum(Delay(t(s(f):s(f)+Nf(f)-1))+ES(s(f):s(f)+Nf(f)-1)); 
    CTrw(s(f):s(f)+Nf(f)-1)=Delay(t(rew(s(f)):rew(s(f))+Nf(f)-1))+ES(rew(s(f)):rew(s(f))+Nf(f)-1); 
    for k=s(f):s(f)+Nf(f)-1     
        CT(f)=CT(f)+sum((Prwnes(k).^(1:mmax(k))).*CTrw(k)); 
    end 
    CT(f)=CT(f)+CTnom(f); 
end 
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xlswrite('DATA.xlsx',[util,Delay,CT/60],'Results',strcat('B',num2str(Case+1))); 
end 
 
%%----------------------------------------------------------------------------------------------------------------------------- ----------- 
 
% Function for the calculation of the first moments of the uniform distribution 
 
function [moments]= moments(EX,e) 
 
lb=EX-e*EX; 
ub=EX+e*EX; 
VX=((ub-lb)^2)/12; 
EX2=VX+(EX)^2; 
moments=[EX,VX,EX2]; 
 
end 
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Appendix B: Input Data 

Table B: Input values for the different scenarios (𝑝𝑠, 𝑝𝑟: probabilities of scrapping and 

rework, respectively, 𝑒1, 𝑒2: percentages of the means that determine the intervals, ST: 

Setup Time in min, FS: Frequency of Setups in arrivals per shift, DM: Duration of the 

unscheduled Maintenance in min, FM: Frequency of unscheduled Maintenances in 

arrivals per week) 

In our analysis we modified the frequency of setups and unscheduled maintenances in 

order to specify the arrivals in minutes, for example: 

 FS = 1 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑝𝑒𝑟 𝑠ℎ𝑖𝑓𝑡 ≡
1

12∗60
= 0.001388889/min,                                             

      = 2 𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑠 𝑝𝑒𝑟 𝑠ℎ𝑖𝑓𝑡 ≡
2

12∗60
= 0.002777778/min, etc. 

 FM = 4 𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑠 𝑝𝑒𝑟 𝑤𝑒𝑒𝑘 ≡
4

7∗24∗60
= 0.000396825/min, etc. 

Scenarios 𝑝𝑠 𝑝𝑟 𝑒1 𝑒2 ST 

(min) 

FS (arrivals 

per shift) 

DM 

(min) 

FM 

(arrivals per 

week) 

1 0 0 0.001 0.001 0 0 420 4 

2 0 0.1 0.001 0.001 0 0 420 4 

3 0 0.2 0.001 0.001 0 0 420 4 

4 0.1 0 0.001 0.001 0 0 420 4 

5 0.1 0.1 0.001 0.001 0 0 420 4 

6 0.1 0.2 0.001 0.001 0 0 420 4 

7 0.2 0 0.001 0.001 0 0 420 4 

8 0.2 0.1 0.001 0.001 0 0 420 4 

9 0.2 0.2 0.001 0.001 0 0 420 4 

10 0 0 0.01 0.01 0 0 420 4 

11 0 0.1 0.01 0.01 0 0 420 4 

12 0 0.2 0.01 0.01 0 0 420 4 

13 0.1 0 0.01 0.01 0 0 420 4 

14 0.1 0.1 0.01 0.01 0 0 420 4 

15 0.1 0.2 0.01 0.01 0 0 420 4 

16 0.2 0 0.01 0.01 0 0 420 4 

17 0.2 0.1 0.01 0.01 0 0 420 4 

18 0.2 0.2 0.01 0.01 0 0 420 4 

19 0 0 0.1 0.1 0 0 420 4 

20 0 0.1 0.1 0.1 0 0 420 4 

21 0 0.2 0.1 0.1 0 0 420 4 

22 0.1 0 0.1 0.1 0 0 420 4 
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23 0.1 0.1 0.1 0.1 0 0 420 4 

24 0.1 0.2 0.1 0.1 0 0 420 4 

25 0.2 0 0.1 0.1 0 0 420 4 

26 0.2 0.1 0.1 0.1 0 0 420 4 

27 0.2 0.2 0.1 0.1 0 0 420 4 

28 0 0 0.001 0.001 10 1 420 4 

29 0 0.1 0.001 0.001 10 1 420 4 

30 0 0.2 0.001 0.001 10 1 420 4 

31 0.1 0 0.001 0.001 10 1 420 4 

32 0.1 0.1 0.001 0.001 10 1 420 4 

33 0.1 0.2 0.001 0.001 10 1 420 4 

34 0.2 0 0.001 0.001 10 1 420 4 

35 0.2 0.1 0.001 0.001 10 1 420 4 

36 0.2 0.2 0.001 0.001 10 1 420 4 

37 0 0 0.01 0.01 10 1 420 4 

38 0 0.1 0.01 0.01 10 1 420 4 

39 0 0.2 0.01 0.01 10 1 420 4 

40 0.1 0 0.01 0.01 10 1 420 4 

41 0.1 0.1 0.01 0.01 10 1 420 4 

42 0.1 0.2 0.01 0.01 10 1 420 4 

43 0.2 0 0.01 0.01 10 1 420 4 

44 0.2 0.1 0.01 0.01 10 1 420 4 

45 0.2 0.2 0.01 0.01 10 1 420 4 

46 0 0 0.1 0.1 10 1 420 4 

47 0 0.1 0.1 0.1 10 1 420 4 

48 0 0.2 0.1 0.1 10 1 420 4 

49 0.1 0 0.1 0.1 10 1 420 4 

50 0.1 0.1 0.1 0.1 10 1 420 4 

51 0.1 0.2 0.1 0.1 10 1 420 4 

52 0.2 0 0.1 0.1 10 1 420 4 

53 0.2 0.1 0.1 0.1 10 1 420 4 

54 0.2 0.2 0.1 0.1 10 1 420 4 

55 0 0 0.001 0.001 10 2 420 4 

56 0 0.1 0.001 0.001 10 2 420 4 

57A 0 0.15 0.001 0.001 10 2 420 4 

57 0 0.2 0.001 0.001 10 2 420 4 

58 0.1 0 0.001 0.001 10 2 420 4 

59 0.1 0.1 0.001 0.001 10 2 420 4 

60 0.1 0.2 0.001 0.001 10 2 420 4 

61 0.2 0 0.001 0.001 10 2 420 4 

62 0.2 0.1 0.001 0.001 10 2 420 4 

63 0.2 0.2 0.001 0.001 10 2 420 4 

64 0 0 0.01 0.01 10 2 420 4 

65 0 0.1 0.01 0.01 10 2 420 4 

66A 0 0.15 0.01 0.01 10 2 420 4 

66 0 0.2 0.01 0.01 10 2 420 4 
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67 0.1 0 0.01 0.01 10 2 420 4 

68 0.1 0.1 0.01 0.01 10 2 420 4 

69 0.1 0.2 0.01 0.01 10 2 420 4 

70 0.2 0 0.01 0.01 10 2 420 4 

71 0.2 0.1 0.01 0.01 10 2 420 4 

72 0.2 0.2 0.01 0.01 10 2 420 4 

73 0 0 0.1 0.1 10 2 420 4 

74 0 0.1 0.1 0.1 10 2 420 4 

75A 0 0.15 0.1 0.1 10 2 420 4 

75 0 0.2 0.1 0.1 10 2 420 4 

76 0.1 0 0.1 0.1 10 2 420 4 

77 0.1 0.1 0.1 0.1 10 2 420 4 

78 0.1 0.2 0.1 0.1 10 2 420 4 

79 0.2 0 0.1 0.1 10 2 420 4 

80 0.2 0.1 0.1 0.1 10 2 420 4 

81 0.2 0.2 0.1 0.1 10 2 420 4 

82 0 0 0.001 0.001 10 3 420 4 

83 0 0.1 0.001 0.001 10 3 420 4 

84A 0 0.15 0.001 0.001 10 3 420 4 

84 0 0.2 0.001 0.001 10 3 420 4 

85 0.1 0 0.001 0.001 10 3 420 4 

86 0.1 0.1 0.001 0.001 10 3 420 4 

87 0.1 0.2 0.001 0.001 10 3 420 4 

88 0.2 0 0.001 0.001 10 3 420 4 

89 0.2 0.1 0.001 0.001 10 3 420 4 

90 0.2 0.2 0.001 0.001 10 3 420 4 

91 0 0 0.01 0.01 10 3 420 4 

92 0 0.1 0.01 0.01 10 3 420 4 

93A 0 0.15 0.01 0.01 10 3 420 4 

93 0 0.2 0.01 0.01 10 3 420 4 

94 0.1 0 0.01 0.01 10 3 420 4 

95 0.1 0.1 0.01 0.01 10 3 420 4 

96 0.1 0.2 0.01 0.01 10 3 420 4 

97 0.2 0 0.01 0.01 10 3 420 4 

98 0.2 0.1 0.01 0.01 10 3 420 4 

99 0.2 0.2 0.01 0.01 10 3 420 4 

100 0 0 0.1 0.1 10 3 420 4 

101 0 0.1 0.1 0.1 10 3 420 4 

102A 0 0.15 0.1 0.1 10 3 420 4 

102 0 0.2 0.1 0.1 10 3 420 4 

103 0.1 0 0.1 0.1 10 3 420 4 

104 0.1 0.1 0.1 0.1 10 3 420 4 

105 0.1 0.2 0.1 0.1 10 3 420 4 

106 0.2 0 0.1 0.1 10 3 420 4 

107 0.2 0.1 0.1 0.1 10 3 420 4 

108 0.2 0.2 0.1 0.1 10 3 420 4 
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109 0 0 0.001 0.001 0 0 210 8 

110 0 0.1 0.001 0.001 0 0 210 8 

111 0 0.2 0.001 0.001 0 0 210 8 

112 0.1 0 0.001 0.001 0 0 210 8 

113 0.1 0.1 0.001 0.001 0 0 210 8 

114 0.1 0.2 0.001 0.001 0 0 210 8 

115 0.2 0 0.001 0.001 0 0 210 8 

116 0.2 0.1 0.001 0.001 0 0 210 8 

117 0.2 0.2 0.001 0.001 0 0 210 8 

118 0 0 0.01 0.01 0 0 210 8 

119 0 0.1 0.01 0.01 0 0 210 8 

120 0 0.2 0.01 0.01 0 0 210 8 

121 0.1 0 0.01 0.01 0 0 210 8 

122 0.1 0.1 0.01 0.01 0 0 210 8 

123 0.1 0.2 0.01 0.01 0 0 210 8 

124 0.2 0 0.01 0.01 0 0 210 8 

125 0.2 0.1 0.01 0.01 0 0 210 8 

126 0.2 0.2 0.01 0.01 0 0 210 8 

127 0 0 0.1 0.1 0 0 210 8 

128 0 0.1 0.1 0.1 0 0 210 8 

129 0 0.2 0.1 0.1 0 0 210 8 

130 0.1 0 0.1 0.1 0 0 210 8 

131 0.1 0.1 0.1 0.1 0 0 210 8 

132 0.1 0.2 0.1 0.1 0 0 210 8 

133 0.2 0 0.1 0.1 0 0 210 8 

134 0.2 0.1 0.1 0.1 0 0 210 8 

135 0.2 0.2 0.1 0.1 0 0 210 8 

136 0 0 0.001 0.001 10 1 210 8 

137 0 0.1 0.001 0.001 10 1 210 8 

138 0 0.2 0.001 0.001 10 1 210 8 

139 0.1 0 0.001 0.001 10 1 210 8 

140 0.1 0.1 0.001 0.001 10 1 210 8 

141 0.1 0.2 0.001 0.001 10 1 210 8 

142 0.2 0 0.001 0.001 10 1 210 8 

143 0.2 0.1 0.001 0.001 10 1 210 8 

144 0.2 0.2 0.001 0.001 10 1 210 8 

145 0 0 0.01 0.01 10 1 210 8 

146 0 0.1 0.01 0.01 10 1 210 8 

147 0 0.2 0.01 0.01 10 1 210 8 

148 0.1 0 0.01 0.01 10 1 210 8 

149 0.1 0.1 0.01 0.01 10 1 210 8 

150 0.1 0.2 0.01 0.01 10 1 210 8 

151 0.2 0 0.01 0.01 10 1 210 8 

152 0.2 0.1 0.01 0.01 10 1 210 8 

153 0.2 0.2 0.01 0.01 10 1 210 8 

154 0 0 0.1 0.1 10 1 210 8 
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155 0 0.1 0.1 0.1 10 1 210 8 

156 0 0.2 0.1 0.1 10 1 210 8 

157 0.1 0 0.1 0.1 10 1 210 8 

158 0.1 0.1 0.1 0.1 10 1 210 8 

159 0.1 0.2 0.1 0.1 10 1 210 8 

160 0.2 0 0.1 0.1 10 1 210 8 

161 0.2 0.1 0.1 0.1 10 1 210 8 

162 0.2 0.2 0.1 0.1 10 1 210 8 

163 0 0 0.001 0.001 10 2 210 8 

164 0 0.1 0.001 0.001 10 2 210 8 

165A 0 0.15 0.001 0.001 10 2 210 8 

165 0 0.2 0.001 0.001 10 2 210 8 

166 0.1 0 0.001 0.001 10 2 210 8 

167 0.1 0.1 0.001 0.001 10 2 210 8 

168 0.1 0.2 0.001 0.001 10 2 210 8 

169 0.2 0 0.001 0.001 10 2 210 8 

170 0.2 0.1 0.001 0.001 10 2 210 8 

171 0.2 0.2 0.001 0.001 10 2 210 8 

172 0 0 0.01 0.01 10 2 210 8 

173 0 0.1 0.01 0.01 10 2 210 8 

174A 0 0.15 0.01 0.01 10 2 210 8 

174 0 0.2 0.01 0.01 10 2 210 8 

175 0.1 0 0.01 0.01 10 2 210 8 

176 0.1 0.1 0.01 0.01 10 2 210 8 

177 0.1 0.2 0.01 0.01 10 2 210 8 

178 0.2 0 0.01 0.01 10 2 210 8 

179 0.2 0.1 0.01 0.01 10 2 210 8 

180 0.2 0.2 0.01 0.01 10 2 210 8 

181 0 0 0.1 0.1 10 2 210 8 

182 0 0.1 0.1 0.1 10 2 210 8 

183A 0 0.15 0.1 0.1 10 2 210 8 

183 0 0.2 0.1 0.1 10 2 210 8 

184 0.1 0 0.1 0.1 10 2 210 8 

185 0.1 0.1 0.1 0.1 10 2 210 8 

186 0.1 0.2 0.1 0.1 10 2 210 8 

187 0.2 0 0.1 0.1 10 2 210 8 

188 0.2 0.1 0.1 0.1 10 2 210 8 

189 0.2 0.2 0.1 0.1 10 2 210 8 

190 0 0 0.001 0.001 10 3 210 8 

191 0 0.1 0.001 0.001 10 3 210 8 

192A 0 0.15 0.001 0.001 10 3 210 8 

192 0 0.2 0.001 0.001 10 3 210 8 

193 0.1 0 0.001 0.001 10 3 210 8 

194 0.1 0.1 0.001 0.001 10 3 210 8 

195 0.1 0.2 0.001 0.001 10 3 210 8 

196 0.2 0 0.001 0.001 10 3 210 8 
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197 0.2 0.1 0.001 0.001 10 3 210 8 

198 0.2 0.2 0.001 0.001 10 3 210 8 

199 0 0 0.01 0.01 10 3 210 8 

200 0 0.1 0.01 0.01 10 3 210 8 

201A 0 0.15 0.01 0.01 10 3 210 8 

201 0 0.2 0.01 0.01 10 3 210 8 

202 0.1 0 0.01 0.01 10 3 210 8 

203 0.1 0.1 0.01 0.01 10 3 210 8 

204 0.1 0.2 0.01 0.01 10 3 210 8 

205 0.2 0 0.01 0.01 10 3 210 8 

206 0.2 0.1 0.01 0.01 10 3 210 8 

207 0.2 0.2 0.01 0.01 10 3 210 8 

208 0 0 0.1 0.1 10 3 210 8 

209 0 0.1 0.1 0.1 10 3 210 8 

210A 0 0.15 0.1 0.1 10 3 210 8 

210 0 0.2 0.1 0.1 10 3 210 8 

211 0.1 0 0.1 0.1 10 3 210 8 

212 0.1 0.1 0.1 0.1 10 3 210 8 

213 0.1 0.2 0.1 0.1 10 3 210 8 

214 0.2 0 0.1 0.1 10 3 210 8 

215 0.2 0.1 0.1 0.1 10 3 210 8 

216 0.2 0.2 0.1 0.1 10 3 210 8 

 

 

 

 

 

 

 

 

 

 

 

 

 



113 
 

Appendix C: Results for the Different Scenarios 

Table C: Mean utilization (Util) and mean queueing delay (Delay) (in min) at each of the 

machines groups 1,2,3, mean cycle time (CT) (in hours) for each of the product families 

A,B,Test Wafers for all the different scenarios. 

Scena

rios 

Util 1 Util 2 Util 3 Delay 1 

(min) 

Delay 2 

(min) 

Delay 3 

(min) 

CT A 

(hrs) 

CT B 

(hrs) 

CT Test 

(hrs) 

1 0.9793 0.8333 0.9167 153.10767 59.79154 276.5681 30.39891 30.39891 30.39891 

2 0.982 0.8444 0.9333 167.80701 65.75416 343.66908 36.65678 36.65678 36.65678 

3 0.9887 0.8753 0.9797 236.39666 87.83824 1069.60711 72.65368 72.65368 72.65368 

4 0.9735 0.8099 0.8703 128.24485 48.99405 178.26009 25.9333 25.9333 25.9333 

5 0.9762 0.8204 0.8857 137.07690 53.22373 203.2899 29.92332 29.92332 29.92332 

6 0.9833 0.8495 0.9288 172.83246 68.06622 325.66649 39.56261 39.56261 39.56261 

7 0.9561 0.7484 0.752 91.71345 30.39625 87.21201 21.06072 21.06072 21.06072 

8 0.9591 0.7572 0.7645 94.8774 32.3158 93.01378 23.56592 23.56592 23.56592 

9 0.967 0.7817 0.7994 105.60747 38.50045 112.71343 27.17285 27.17285 27.17285 

10 0.9793 0.8333 0.9167 153.10796 59.79555 276.57443 30.39927 30.39927 30.39927 

11 0.982 0.8444 0.9333 167.80734 65.75853 343.67713 36.65724 36.65724 36.65724 

12 0.9887 0.8753 0.9797 236.39715 87.84397 1069.63483 72.65504 72.65504 72.65504 

13 0.9735 0.8099 0.8703 128.24509 48.99743 178.26399 25.93355 25.93355 25.93355 

14 0.9762 0.8204 0.8857 137.07717 53.22737 203.2944 29.92363 29.92363 29.92363 

15 0.9833 0.8495 0.9288 172.83281 68.07077 325.67407 39.56311 39.56311 39.56311 

16 0.9561 0.7484 0.752 91.71362 30.39854 87.21383 21.06087 21.06087 21.06087 

17 0.9591 0.7572 0.7645 94.87755 32.31821 93.01572 23.56609 23.56609 23.56609 

18 0.967 0.7817 0.7994 105.60768 38.50325 112.71581 27.17307 27.17307 27.17307 

19 0.9793 0.8333 0.9167 153.13739 60.19659 277.20717 30.43471 30.43471 30.43471 

20 0.982 0.8444 0.9333 167.84020 66.19589 344.48197 36.704 36.704 36.704 

21 0.9887 0.8753 0.9797 236.44603 88.41711 1072.40711 72.79081 72.79081 72.79081 

22 0.9735 0.8099 0.8703 128.26939 49.33552 178.654 25.95863 25.95863 25.95863 

23 0.9762 0.8204 0.8857 137.10361 53.59131 203.74502 29.95446 29.95446 29.95446 

24 0.9833 0.8495 0.9288 172.86791 68.52606 326.43275 39.61307 39.61307 39.61307 

25 0.9561 0.7484 0.752 91.73062 30.62771 87.39510 21.07511 21.07511 21.07511 

26 0.9591 0.7572 0.7645 94.8954 32.55938 93.20985 23.58270 23.58270 23.58270 

27 0.9667 0.7817 0.7994 105.62843 38.78309 112.95425 27.19463 27.19463 27.19463 

28 0.9793 0.8333 0.9306 153.10767 59.79154 330.24682 32.18820 32.18820 32.18820 

29 0.982 0.8444 0.9472 167.80701 65.75416 429.98355 39.82164 39.82164 39.82164 

30 0.9887 0.8753 0.9936 236.39666 87.83824 3259.88817 160.2649 160.2649 160.2649 

31 0.9735 0.8099 0.8842 128.24485 48.99405 200.15214 26.66303 26.66303 26.66303 

32 0.9762 0.8204 0.8996 137.07690 53.22373 231.57305 30.96037 30.96037 30.96037 

33 0.9833 0.8495 0.9427 172.83246 68.06622 401.41536 42.59256 42.59256 42.59256 

34 0.9561 0.7484 0.7659 91.71345 30.39625 93.27461 21.26281 21.26281 21.26281 

35 0.9591 0.7572 0.7784 94.87738 32.3158 99.7543 23.81307 23.81307 23.81307 

36 0.967 0.7817 0.8133 105.60747 38.50045 122.04375 27.54607 27.54607 27.54607 
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37 0.9793 0.8333 0.9306 153.10796 59.79555 330.25456 32.18860 32.18860 32.18860 

38 0.982 0.8444 0.9472 167.80734 65.75853 429.99391 39.82219 39.82219 39.82219 

39 0.9887 0.8753 0.9936 236.39715 87.84397 3259.97731 160.2687 160.2687 160.2687 

40 0.9735 0.8099 0.8842 128.24509 48.99743 200.1566 26.66330 26.66330 26.66330 

41 0.9762 0.8204 0.8996 137.07717 53.22737 231.57827 30.96070 30.96070 30.96070 

42 0.9833 0.8495 0.9427 172.83281 68.07077 401.42497 42.59314 42.59314 42.59314 

43 0.9561 0.7484 0.7659 91.71362 30.39854 93.27657 21.26296 21.26296 21.26296 

44 0.9591 0.7572 0.7784 94.87755 32.31821 99.7564 23.81325 23.81325 23.81325 

45 0.967 0.7817 0.8133 105.60768 38.50325 122.04636 27.54629 27.54629 27.54629 

46 0.9793 0.8333 0.9306 153.13738 60.19659 331.02851 32.22875 32.22875 32.22875 

47 0.982 0.8444 0.9472 167.84020 66.19589 431.02992 39.87742 39.87742 39.87742 

48 0.9887 0.8753 0.9936 236.44603 88.41711 3268.89062 160.6502 160.6502 160.6502 

49 0.9735 0.8099 0.8842 128.26939 49.33552 200.60189 26.69023 26.69023 26.69023 

50 0.9762 0.8204 0.8996 137.10361 53.59131 232.1012 30.99419 30.99419 30.99419 

51 0.9833 0.8495 0.9427 172.86791 68.52606 402.38561 42.65118 42.65118 42.65118 

52 0.9561 0.7484 0.7659 91.73062 30.62771 93.47246 21.27769 21.27769 21.27769 

53 0.9591 0.7572 0.7784 94.8954 32.55938 99.96682 23.83046 23.83046 23.83046 

54 0.967 0.7817 0.8133 105.62843 38.78309 122.3076 27.56876 27.56876 27.56876 

55 0.9793 0.8333 0.9444 153.10767 59.79154 409.36806 34.82558 34.82558 34.82558 

56 0.982 0.8444 0.9611 167.80701 65.75416 575.15732 45.14468 45.14468 45.14468 

57A 0.9849 0.8576 0.9809 190.61134 74.03781 1133.42143 69.78854 69.78854 69.78854 

57 0.9887 0.8753 1.0074 236.39666 87.83824 -2683.09244 -77.4543 -77.4543 -77.4543 

58 0.9735 0.8099 0.8981 128.24485 48.99405 227.66935 27.58027 27.58027 27.58027 

59 0.9762 0.8204 0.9135 137.07690 53.22373 268.41829 32.31136 32.31136 32.31136 

60 0.9833 0.8495 0.9566 172.83246 68.06622 523.38155 47.47121 47.47121 47.47121 

61 0.9561 0.7484 0.7797 91.71345 30.39625 100.08692 21.48989 21.48989 21.48989 

62 0.9591 0.7572 0.7923 94.87738 32.3158 107.37349 24.09244 24.09244 24.09244 

63 0.967 0.7817 0.8272 105.60747 38.50045 132.81497 27.97692 27.97692 27.97692 

64 0.9793 0.8333 0.9444 153.10796 59.79555 409.37793 34.82605 34.82605 34.82605 

65 0.982 0.8444 0.9611 167.80734 65.75853 575.17165 45.14538 45.14538 45.14538 

66A 0.9849 0.8576 0.9809 190.6117 74.04269 1133.451 69.78988 69.78988 69.78988 

66 0.9887 0.8753 1.0074 236.39715 87.84397 -2683.17109 -77.4572 -77.4572 -77.4572 

67 0.9735 0.8099 0.8981 128.24509 48.99743 227.6745 27.58057 27.58057 27.58057 

68 0.9762 0.8204 0.9135 137.07717 53.22737 268.42448 32.31173 32.31173 32.31173 

69 0.9833 0.8495 0.9566 172.83281 68.07077 523.39448 47.47192 47.47192 47.47192 

70 0.9561 0.7484 0.7797 91.71362 30.39854 100.08904 21.49004 21.49004 21.49004 

71 0.9591 0.7572 0.7923 94.87755 32.31821 107.37578 24.09262 24.09262 24.09262 

72 0.967 0.7817 0.8272 105.60768 38.50325 132.81784 27.97715 27.97715 27.97715 

73 0.9793 0.8333 0.9444 153.13738 60.19659 410.36423 34.87327 34.87327 34.87327 

74 0.982 0.8444 0.9611 167.84020 66.19589 576.60457 45.21516 45.21516 45.21516 

75A 0.9849 0.8576 0.9809 190.6499 74.53074 1136.428 69.92418 69.92418 69.92418 

75 0.9887 0.8753 1.0074 236.44603 88.41711 -2691.03533 -77.7469 -77.7469 -77.7469 

76 0.9735 0.8099 0.8981 128.26939 49.33552 228.19043 27.60984 27.60984 27.60984 

77 0.9762 0.8204 0.9135 137.10361 53.59131 269.04327 32.34873 32.34873 32.34873 

78 0.9833 0.8495 0.9566 172.86791 68.52606 524.68702 47.54324 47.54324 47.54324 

79 0.9561 0.7484 0.7797 91.73062 30.62771 100.30151 21.50533 21.50533 21.50533 
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80 0.9591 0.7572 0.7923 94.8954 32.55938 107.60481 24.11052 24.11052 24.11052 

81 0.9667 0.7817 0.8272 105.62843 38.78309 133.10572 28.00069 28.00069 28.00069 

82 0.9793 0.8333 0.9583 153.10767 59.79154 538.81836 39.14059 39.14059 39.14059 

83 0.982 0.8444 0.975 167.80701 65.75416 875.75566 56.16662 56.16662 56.16662 

84A 0.9849 0.8576 0.9948 190.6113 74.03781 3990.651 179.3157 179.3157 179.3157 

84 0.9887 0.8753 1.0213 236.39666 87.83824 -867.86865 -4.84535 -4.84535 -4.84535 

85 0.9735 0.8099 0.9119 128.24485 48.99405 263.3708 28.77032 28.77032 28.77032 

86 0.9762 0.8204 0.9274 137.07690 53.22373 318.57199 34.15033 34.15033 34.15033 

87 0.9833 0.8495 0.9705 172.83246 68.06622 755.73778 56.76546 56.76546 56.76546 

88 0.9561 0.7484 0.7936 91.71345 30.39625 107.79369 21.74678 21.74678 21.74678 

89 0.9591 0.7572 0.8062 94.87738 32.3158 116.05174 24.41065 24.41065 24.41065 

90 0.967 0.7817 0.8411 105.60747 38.50045 145.38734 28.47981 28.47981 28.47981 

91 0.9793 0.8333 0.9583 153.10796 59.79555 538.83177 39.14118 39.14118 39.14118 

92 0.982 0.8444 0.975 167.80734 65.75853 875.77837 56.16762 56.16762 56.16762 

93A 0.9849 0.8576 0.9948 190.6117 74.04269 3990.761 179.3201 179.3201 179.3201 

93 0.9887 0.8753 1.0213 236.39715 87.84397 -867.89663 -4.84622 -4.84622 -4.84622 

94 0.9735 0.8099 0.9119 128.24509 48.99743 263.37689 28.77065 28.77065 28.77065 

95 0.9762 0.8204 0.9274 137.07717 53.22737 318.5795 34.15075 34.15075 34.15075 

96 0.9833 0.8495 0.9705 172.83281 68.07077 755.75716 56.76643 56.76643 56.76643 

97 0.9561 0.7484 0.7936 91.71362 30.39854 107.79601 21.74694 21.74694 21.74694 

98 0.9591 0.7572 0.8062 94.87755 32.31821 116.05425 24.41083 24.41083 24.41083 

99 0.967 0.7817 0.8411 105.60768 38.50325 145.39054 28.48006 28.48006 28.48006 

100 0.9793 0.8333 0.9583 153.13738 60.19659 540.17277 39.20022 39.20022 39.20022 

101 0.982 0.8444 0.975 167.84020 66.19589 878.04977 56.26815 56.26815 56.26815 

102A 0.9849 0.8576 0.9948 190.6499 74.53074 4001.834 179.7647 179.7647 179.7647 

102 0.9887 0.8753 1.0213 236.44603 88.41711 -870.69422 -4.93324 -4.93324 -4.93324 

103 0.9735 0.8099 0.9119 128.26939 49.33552 263.98609 28.80303 28.80303 28.80303 

104 0.9762 0.8204 0.9274 137.10361 53.59131 319.33127 34.19263 34.19263 34.19263 

105 0.9833 0.8495 0.9705 172.86791 68.52606 757.6949 56.86355 56.86355 56.86355 

106 0.9561 0.7484 0.7936 91.73062 30.62771 108.02742 21.76286 21.76286 21.76286 

107 0.9591 0.7572 0.8062 94.8954 32.55938 116.30469 24.42951 24.42951 24.42951 

108 0.967 0.7817 0.8411 105.62843 38.78309 145.70989 28.50486 28.50486 28.50486 

109 0.9793 0.8333 0.9167 153.10767 59.79153 276.5681 30.39891 30.39891 30.39891 

110 0.982 0.8444 0.9333 167.80701 65.75415 343.66908 36.65678 36.65678 36.65678 

111 0.9887 0.8753 0.9797 236.39666 87.83822 1069.60711 72.65368 72.65368 72.65368 

112 0.9735 0.8099 0.8703 128.24485 48.99404 178.26009 25.9333 25.9333 25.9333 

113 0.9762 0.8204 0.8857 137.07690 53.22372 203.28989 29.92332 29.92332 29.92332 

114 0.9833 0.8495 0.9288 172.83246 68.06621 325.66649 39.56261 39.56261 39.56261 

115 0.9561 0.7484 0.752 91.71345 30.39624 87.21201 21.06072 21.06072 21.06072 

116 0.9591 0.7572 0.7645 94.87738 32.3158 93.01378 23.56592 23.56592 23.56592 

117 0.967 0.7817 0.7994 105.60747 38.50044 112.71343 27.17285 27.17285 27.17285 

118 0.9793 0.8333 0.9167 153.10796 59.79457 276.57443 30.39923 30.39923 30.39923 

119 0.982 0.8444 0.9333 167.80734 65.75748 343.67713 36.65720 36.65720 36.65720 

120 0.9887 0.8753 0.9797 236.39715 87.8426 1069.63483 72.65498 72.65498 72.65498 

121 0.9735 0.8099 0.8703 128.24509 48.9966 178.26399 25.93352 25.93352 25.93352 

122 0.9762 0.8204 0.8857 137.07717 53.22648 203.2944 29.9236 29.9236 29.9236 
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123 0.9833 0.8495 0.9288 172.83281 68.06967 325.67407 39.56306 39.56306 39.56306 

124 0.9561 0.7484 0.752 91.71362 30.39796 87.21383 21.06085 21.06085 21.06085 

125 0.9591 0.7572 0.7645 94.87755 32.31761 93.01572 23.56607 23.56607 23.56607 

126 0.967 0.7817 0.7994 105.60768 38.50255 112.71581 27.17304 27.17304 27.17304 

127 0.9793 0.8333 0.9167 153.13738 60.09937 277.20717 30.43146 30.43146 30.43146 

128 0.982 0.8444 0.9333 167.84020 66.09036 344.48197 36.70013 36.70013 36.70013 

129 0.9887 0.8753 0.9797 236.44603 88.28058 1072.40711 72.78535 72.78535 72.78535 

130 0.9735 0.8099 0.8703 128.26939 49.25266 178.654 25.95587 25.95587 25.95587 

131 0.9762 0.8204 0.8857 137.10361 53.50251 203.74502 29.95121 29.95121 29.95121 

132 0.9833 0.8495 0.9288 172.86791 68.41631 326.43275 39.60868 39.60868 39.60868 

133 0.9561 0.7484 0.752 91.73062 30.56988 87.3951 21.07319 21.07319 21.07319 

134 0.9591 0.7572 0.7645 94.8954 32.49875 93.20985 23.58048 23.58048 23.58048 

135 0.967 0.7817 0.7994 105.62843 38.71347 112.95425 27.19185 27.19185 27.19185 

136 0.9793 0.8333 0.9306 153.10767 59.79153 330.24682 32.1882 32.1882 32.1882 

137 0.982 0.8444 0.9472 167.80701 65.75415 429.98355 39.82164 39.82164 39.82164 

138 0.9887 0.8753 0.9936 236.39666 87.83822 3259.8882 160.2649 160.2649 160.2649 

139 0.9735 0.8099 0.8842 128.24485 48.99404 200.15214 26.66303 26.66303 26.66303 

140 0.9762 0.8204 0.8996 137.0769 53.22372 231.57305 30.96037 30.96037 30.96037 

141 0.9833 0.8495 0.9427 172.83246 68.06621 401.41536 42.59256 42.59256 42.59256 

142 0.9561 0.7484 0.7659 91.71345 30.39624 93.27461 21.26281 21.26281 21.26281 

143 0.9591 0.7572 0.7784 94.87738 32.3158 99.7543 23.81307 23.81307 23.81307 

144 0.967 0.7817 0.8133 105.60747 38.50044 122.04375 27.54607 27.54607 27.54607 

145 0.9793 0.8333 0.9306 153.10796 59.79457 330.25456 32.18857 32.18857 32.18857 

146 0.982 0.8444 0.9472 167.80734 65.75748 429.99391 39.82215 39.82215 39.82215 

147 0.9887 0.8753 0.9936 236.39715 87.8426 3259.9773 160.2687 160.2687 160.2687 

148 0.9735 0.8099 0.8842 128.24509 48.9966 200.1566 26.66328 26.66328 26.66328 

149 0.9762 0.8204 0.8996 137.07717 53.22648 231.57827 30.96067 30.96067 30.96067 

150 0.9833 0.8495 0.9427 172.83281 68.06967 401.42497 42.5931 42.5931 42.5931 

151 0.9561 0.7484 0.7659 91.71362 30.39796 93.27657 21.26294 21.26294 21.26294 

152 0.9591 0.7572 0.7784 94.87755 32.31761 99.7564 23.81322 23.81322 23.81322 

153 0.967 0.7817 0.8133 105.60768 38.50255 122.04636 27.54626 27.54626 27.54626 

154 0.9793 0.8333 0.9306 153.13738 60.09937 331.02851 32.22551 32.22551 32.22551 

155 0.982 0.8444 0.9472 167.8402 66.09036 431.02992 39.87355 39.87355 39.87355 

156 0.9887 0.8753 0.9936 236.44603 88.28058 3268.8906 160.6447 160.6447 160.6447 

157 0.9735 0.8099 0.8842 128.26939 49.25266 200.60189 26.68746 26.68746 26.68746 

158 0.9762 0.8204 0.8996 137.10361 53.50251 232.1012 30.99093 30.99093 30.99093 

159 0.9833 0.8495 0.9427 172.86791 68.41631 402.38561 42.64679 42.64679 42.64679 

160 0.9561 0.7484 0.7659 91.73062 30.56988 93.47246 21.27576 21.27576 21.27576 

161 0.9591 0.7572 0.7784 94.8954 32.49875 99.96682 23.82824 23.82824 23.82824 

162 0.967 0.7817 0.8133 105.62843 38.71347 122.3076 27.56598 27.56598 27.56598 

163 0.9793 0.8333 0.9444 153.10767 59.79153 409.36806 34.82558 34.82558 34.82558 

164 0.982 0.8444 0.9611 167.80701 65.75415 575.15732 45.14468 45.14468 45.14468 

165A 0.9849 0.8576 0.9809 190.6113 74.0378 1133.421 69.78854 69.78854 69.78854 

165 0.9887 0.8753 1.0074 236.39666 87.83822 -2683.092 -77.4543 -77.4543 -77.4543 

166 0.9735 0.8099 0.8981 128.24485 48.99404 227.66935 27.58027 27.58027 27.58027 

167 0.9762 0.8204 0.9135 137.0769 53.22372 268.41829 32.31136 32.31136 32.31136 
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168 0.9833 0.8495 0.9566 172.83246 68.06621 523.38155 47.47121 47.47121 47.47121 

169 0.9561 0.7484 0.7797 91.71345 30.39624 100.08692 21.48989 21.48989 21.48989 

170 0.9591 0.7572 0.7923 94.87738 32.3158 107.37349 24.09244 24.09244 24.09244 

171 0.967 0.7817 0.8272 105.60747 38.50044 132.81497 27.97692 27.97692 27.97692 

172 0.9793 0.8333 0.9444 153.10796 59.79457 409.37793 34.82602 34.82602 34.82602 

173 0.982 0.8444 0.9611 167.80734 65.75748 575.17165 45.14534 45.14534 45.14534 

174A 0.9849 0.8576 0.9809 190.6117 74.04152 1133.451 69.78984 69.78984 69.78984 

174 0.9887 0.8753 1.0074 236.39715 87.8426 -2683.171 -77.4573 -77.4573 -77.4573 

175 0.9735 0.8099 0.8981 128.24509 48.9966 227.6745 27.58054 27.58054 27.58054 

176 0.9762 0.8204 0.9135 137.07717 53.22648 268.42448 32.3117 32.3117 32.3117 

177 0.9833 0.8495 0.9566 172.83281 68.06967 523.39448 47.47188 47.47188 47.47188 

178 0.9561 0.7484 0.7797 91.71362 30.39796 100.08904 21.49002 21.49002 21.49002 

179 0.9591 0.7572 0.7923 94.87755 32.31761 107.37578 24.0926 24.0926 24.0926 

180 0.967 0.7817 0.8272 105.60768 38.50255 132.81784 27.97712 27.97712 27.97712 

181 0.9793 0.8333 0.9444 153.13738 60.09937 410.36423 34.87003 34.87003 34.87003 

182 0.982 0.8444 0.9611 167.8402 66.09036 576.60457 45.21129 45.21129 45.21129 

183A 0.9849 0.8576 0.9809 190.6499 74.41362 1136.428 69.91969 69.91969 69.91969 

183 0.9887 0.8753 1.0074 236.44603 88.28058 -2691.035 -77.7524 -77.7524 -77.7524 

184 0.9735 0.8099 0.8981 128.26939 49.25266 228.19043 27.60708 27.60708 27.60708 

185 0.9762 0.8204 0.9135 137.10361 53.50251 269.04327 32.34548 32.34548 32.34548 

186 0.9833 0.8495 0.9566 172.86791 68.41631 524.68702 47.53885 47.53885 47.53885 

187 0.9561 0.7484 0.7797 91.73062 30.56988 100.30151 21.5034 21.5034 21.5034 

188 0.9591 0.7572 0.7923 94.8954 32.49875 107.60481 24.10829 24.10829 24.10829 

189 0.967 0.7817 0.8272 105.62843 38.71347 133.10572 27.9979 27.9979 27.9979 

190 0.9793 0.8333 0.9583 153.10767 59.79153 538.81836 39.14059 39.14059 39.14059 

191 0.982 0.8444 0.975 167.80701 65.75415 875.75566 56.16662 56.16662 56.16662 

192A 0.9849 0.8576 0.9948 190.6113 74.0378 3990.651 179.3157 179.3157 179.3157 

192 0.9887 0.8753 1.0213 236.39666 87.83822 -867.8687 -4.84535 -4.84535 -4.84535 

193 0.9735 0.8099 0.9119 128.24485 48.99404 263.3708 28.77032 28.77032 28.77032 

194 0.9762 0.8204 0.9274 137.0769 53.22372 318.57199 34.15033 34.15033 34.15033 

195 0.9833 0.8495 0.9705 172.83246 68.06621 755.73778 56.76546 56.76546 56.76546 

196 0.9561 0.7484 0.7936 91.713452 30.39624 107.79369 21.74678 21.74678 21.74678 

197 0.9591 0.7572 0.8062 94.87738 32.3158 116.05174 24.41065 24.41065 24.41065 

198 0.967 0.7817 0.8411 105.60747 38.50044 145.38734 28.47981 28.47981 28.47981 

199 0.9793 0.8333 0.9583 153.10796 59.79457 538.83177 39.14114 39.14114 39.14114 

200 0.982 0.8444 0.975 167.80734 65.75748 875.77837 56.16758 56.16758 56.16758 

201A 0.9849 0.8576 0.9948 190.6117 74.04152 3990.761 179.3201 179.3201 179.3201 

201 0.9887 0.8753 1.0213 236.39715 87.8426 -867.8966 -4.84628 -4.84628 -4.84628 

202 0.9735 0.8099 0.9119 128.24509 48.9966 263.37689 28.77062 28.77062 28.77062 

203 0.9762 0.8204 0.9274 137.07717 53.22648 318.5795 34.15072 34.15072 34.15072 

204 0.9833 0.8495 0.9705 172.83281 68.06967 755.75716 56.76639 56.76639 56.76639 

205 0.9561 0.7484 0.7936 91.71362 30.39796 107.79601 21.74692 21.74692 21.74692 

206 0.9591 0.7572 0.8062 94.87755 32.31761 116.05425 24.41081 24.41081 24.41081 

207 0.967 0.7817 0.8411 105.60768 38.50255 145.39054 28.48003 28.48003 28.48003 

208 0.9793 0.8333 0.9583 153.13738 60.09937 540.17277 39.19698 39.19698 39.19698 

209 0.982 0.8444 0.975 167.8402 66.09036 878.04977 56.26428 56.26428 56.26428 
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210A 0.9849 0.8576 0.9948 190.6499 74.41362 4001.834 179.7603 179.7603 179.7603 

210 0.9887 0.8753 1.0213 236.44603 88.28058 -870.6942 -4.9387 -4.9387 -4.9387 

211 0.9735 0.8099 0.9119 128.26939 49.25266 263.98609 28.80027 28.80027 28.80027 

212 0.9762 0.8204 0.9274 137.10361 53.50251 319.33127 34.18937 34.18937 34.18937 

213 0.9833 0.8495 0.9705 172.86791 68.41631 757.6949 56.85916 56.85916 56.85916 

214 0.9561 0.7484 0.7936 91.73062 30.56988 108.02742 21.76093 21.76093 21.76093 

215 0.9591 0.7572 0.8062 94.8954 32.49875 116.30469 24.42729 24.42729 24.42729 

216 0.967 0.7817 0.8411 105.62843 38.71347 145.70989 28.50207 28.50207 28.50207 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


	Chapter 1
	1.1 General

	Figure 1.1: Stages of Semiconductor Manufacturing (source: Mönch et al., [9])
	Figure 1.2: Operations in a wafer fab (source: Mönch et al., [9])
	1.2 Overview of the Thesis
	1.3 Motivation

	Chapter 2
	2.1 Literature Review
	2.2 Queueing Models for Toolsets
	2.3 Queueing Network and Decomposition Approach
	Figure 2.1: An open network of queues (source: Whitt, [16])
	Figure 2.2: Basic network operations, (a) Superposition or merging, (b) Decomposition or splitting, (c) Departure or flow through a queue (source: Whitt, [16])

	Chapter 3
	3.1 Semiconductor-Specific Model Features
	3.2 Probabilistic Model Formulation
	3.2.1 Pre-Analysis
	3.2.2 Scrap and Rework Probabilities

	Figure 3.1: Derivation of probability ,𝑃-𝑤𝑠.
	Figure 3.2: Derivation of probability ,𝑃-𝑛𝑒𝑠.
	Figure 3.3: Derivation of probability ,𝑃-𝑤𝑟𝑤.
	3.2.3 Job-Size Distributions

	3.3 Traffic Equations
	3.3.1 Traffic Rates
	3.3.2 Traffic Variability


	Figure 3.4: Propagation of variability between workstations in series (source: Factory Physics, [5])
	3.4 Tool-Types Characteristics
	3.4.1 Incapacitation Events
	3.4.2 Single-Wafer Tools
	3.4.3 Batch Tools

	3.5 Cycle Time Estimation

	Chapter 4
	4.1 Input Variables for the Computational Model
	4.2 Initializations of Scrap-Rework Probabilities
	4.3 Computation of Job-Size Distributions
	4.4 Solving Traffic Rates Equations
	4.4.1 Linear System via Routing Matrix
	4.4.2 Ancillary Resources for Calculation of Arrivals’ SCVs

	4.5 Processing & Other Time Requirements for Tools
	4.5.1 Features for Incapacitation Events
	4.5.2 Time Requirements for Tools

	4.6 Calculation of Utilization and SCV of Service Time
	4.7 Linear Equations for the SCV of Arrivals
	4.8 Calculation of Mean Queueing Delay and Average Cycle Time

	Chapter 5
	5.1 The Mini-Fab model

	Figure 5.1: Process flow of the Mini-Fab model (source: Mönch et al., [9])
	Table 5.1: Processing steps, machines, and operator assignments (LT = Load Time, PT = Process Time, UT = Unload Time, OD = Operator Designation).
	Table 5.2: Four cases of scrapping and rework probabilities.
	5.2 Two Nominal examples
	5.2.1 Example 1


	Table 5.3: Mean utilization (MU) and mean queuing delay (MD) (in min) per machine group for Example 1.
	Table 5.4: Mean cycle time (in hrs) per product family for Example 1.
	5.2.2 Example 2

	Table 5.5: Mean utilization (MU) and mean queuing delay (MD) (in min) per machine group for Example 2.
	Table 5.6: Mean cycle time (in hrs) per product family for Example 2.
	5.3 Variants of the Example 1

	Table 5.7: Cases of scrapping and rework probabilities, cases of the percentage of the means that determine the intervals.
	Table 5.8: Setup time (ST) (in min) and frequency of setups (FS) (in arrivals per shift) at each machine of machine group 2, time duration of unscheduled maintenance (DM) (in hours) and frequency of unscheduled maintenances (FM) (in arrivals per week)...
	5.4 Discussion of the Results

	Chapter 6
	6.1 Summary
	6.2 Expectations & Future research

	Bibliography
	Appendices
	Appendix A: Code of the Computational Model
	Appendix B: Input Data
	Appendix C: Results for the Different Scenarios


