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ABSTRACT 

 

 

In the recent years, the changes in the domain of electricity production and consumption are 

constant and fast-moving. Paired with the harsh environmental impact and the depletion of 

fossil fuels, the need for a 180-turn to renewable energy sources arises stronger than ever. 

Despite being known for its windmills and green energy, the Netherlands are actually 

amongst the worst performers in the European Union, with only 7% of renewable energy 

share. The fact that the country will miss 2020 targets for renewable energy production and 

greenhouse gas emissions, paired with the replacement of the current net-metering scheme 

with a not particularly favorable return subsidy, highlight the need to research and study new 

opportunities focused on solar power systems. Even though the number of solar energy 

installations increases day to day, with the installed capacity overpassing 4 MW, a great 

number of Dutch people has not ventured towards that direction yet.  

 

This thesis is going to describe the implementation of a solar business case analyzer, aimed 

to provide people with a free, easy way to assess the solar potential of buildings. As a first 

step, we implement rooftop detection on satellite images through the use of the Mask R-

CNN computer vision algorithm. After benchmarking the results, the efficiency of this 

method is measured at an average of 77.94% for all building categories. Afterwards, by 

employing Python’s pvlib library, we model the installation of a PV system and simulate the 

Return of Investment and earnings throughout a period of 10 years for a building in 

Hoofddorp. This study intends to create a generic framework that will be later used in the 

development of a web application, aiming to provide citizens with a tool to simplify their 

decisions regarding their solar energy system. 
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ΠΕΡΙΛΗΨΗ 

 

 

Κατά τη διάρκεια των τελευταίων ετών, οι αλλαγές στην παραγωγή και την κατανάλωση 

της ηλεκτρικής ενέργειας είναι ολοένα και πιο ραγδαίες. Το γεγονός αυτό σε συνδυασμό με 

τις ολέθριες περιβαλλοντικές συνέπειες και την εξάντληση των ορυκτών καυσίμων αποτελεί 

ένα μεγάλο κίνητρο για στροφή 180 μοιρών προς τις ανανεώσιμες μορφές ενέργειας. Παρά 

τη φήμη της για τους ανεμόμυλους και την αιολική ενέργεια, η Ολλανδία στην 

πραγματικότητα βρίσκεται στις χαμηλότερες θέσεις των ‘πράσινων’ χωρών της Ευρωπαϊκής 

Ένωσης, καθώς μόλις 7% της κατανάλωσης ηλεκτρικής ενέργειας προέρχεται από 

ανανεώσιμες πηγές. Δεδομένου ότι οι στόχοι του 2020 που αφορούν την παραγωγή 

ανανεώσιμης ενέργειας και τη μείωση εκπομπών αερίων του θερμοκηπίου δε θα 

επιτευχθούν, ενώ ταυτόχρονα το υπάρχον καθεστώς ενεργειακού συμψηφισμού (net-

metering) θα αντικατασταθεί από μία όχι ιδιαίτερα συμφέρουσα επιχορήγηση, είναι 

απαραίτητο για τους πολίτες να αναζητήσουν νέες ευκαιρίες στον τομέα των 

φωτοβολταϊκών συστημάτων. Αν και ο αριθμός των φωτοβολταϊκών εγκαταστάσεων 

αυξάνεται καθημερινά, ξεπερνώντας τα 4MW εγκατεστημένης ισχύος το 2018, ένας 

μεγάλος αριθμός Ολλανδών βρίσκονται μακριά από αυτές τις εξελίξεις.  

 

Η παρούσα διπλωματική εργασία περιλαμβάνει την μοντελοποίηση της έκθεσης 

επιχειρησιακής σκοπιμότητας φωτοβολταϊκών εγκαταστάσεων, με στόχο να παρέχει στους 

πολίτες έναν εύκολο, δωρεάν και άμεσο τρόπο να εκτιμήσουν τις προοπτικές κτηρίων στον 

τομέα αυτό. Σε πρώτη φάση, χρησιμοποιώντας τον αλγόριθμο MASK R-CNN, 

απομονώνονται και εξάγονται οι διαθέσιμες οροφές από δορυφορικές εικόνες, με επιτυχία 

77.94% κατά μέσο όρο. Στη συνέχεια, μέσω της χρήσης της βιβλιοθήκης PvLib της Python, 

επιλέγονται τα κατάλληλα στοιχεία για την εγκατάσταση και προσομοιώνεται η απόδοση 

του συστήματος κατά τη διάρκεια των επόμενων δέκα ετών για ένα οικιστικό συγκρότημα 

στο Hoofddorp, στα νότια του Άμστερνταμ. Ο στόχος αυτής της διπλωματικής είναι η 

δημιουργία ενός γενικού πλαισίου για την προσομοίωση της απόδοσης φωτοβολταϊκών 

συστημάτων που θα ενσωματωθεί στο μέλλον σε μια διαδικτυακή εφαρμογή-εργαλείο για 

την διευκόλυνση τέτοιου τύπου εγκαταστάσεων.  
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“We just can't seem to stop burning up all those buried trees from way back in the 

carboniferous age, in the form of coal, and the remains of ancient plankton, in the form of 

oil and gas. If we could, we'd be home free climate wise. Instead, we're dumping carbon 

dioxide into the atmosphere at a rate the Earth hasn't seen since the great climate 

catastrophes of the past, the ones that led to mass extinctions. We just can't seem to break 

our addiction to the kinds of fuel that will bring back a climate last seen by the dinosaurs, a 

climate that will drown our coastal cities and wreak havoc on the environment and our 

ability to feed ourselves. All the while, the glorious sun pours immaculate free energy down 

upon us, more than we will ever need. Why can't we summon the ingenuity and courage of 

the generations that came before us? The dinosaurs never saw that asteroid coming. What's 

our excuse?” 

 

 

 

                                                                                     

                                                                                                  - Neil DeGrasse Tyson 
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1. INTRODUCTION 

 

1.1 Background Information 

 

In the recent years, the imminent depletion of fossil fuels paired with the repercussions of 

an oil-based economy are leading causes of concerns for the whole world. On many 

countries, especially in the west, transportation, heating, and electricity generation are tightly 

tied to the oil reserves, which are fixed since petroleum is naturally formed far too slowly to 

be replaced at the rate at which it is being extracted [1]. Furthermore, the detrimental 

environmental effects of oil, due to its toxicity, contribute to phenomena like air and sea 

pollution, acid rain and greenhouse effect, while benzene exposure is closely linked to birth 

defects, terminal leukemia, Hodgkin’s lymphoma, and other blood and immune 

system diseases [2]. These reasons, and many more, fuel the transition of the world towards 

100% renewable energy sources and a sustainable, circular economy. According to Grin et 

al., a sustainability transition is defined as a “radical transformation towards a sustainable 

society, as a response to a number of persistent problems confronting contemporary modern 

societies” [3].  

 

During these events, the Netherlands, a country known for its windmills and green energy 

faces its own struggles: despite common beliefs, only 7% its energy consumption comes 

from renewable sources, indicating that the 2020 goals on renewable energy production and 

greenhouse gas emissions won’t be met. This realization coincides with the replacement of 

the current net-metering scheme (SDE+) with a return subsidy, which will gradually fade 

during the next ten years. Furthermore, even though the number of solar energy installations 

increases day to day, with the installed capacity overpassing 4 MW, a great number of Dutch 

people has not ventured towards that direction yet [4].  

 

But why solar? Solar energy is radiant light and heat from the Sun that is harnessed using a 

range of ever-evolving technologies such as solar heating, photovoltaics, solar thermal 

energy, solar architecture, molten salt power plants and artificial photosynthesis. It is an 

important source of renewable energy and its technologies are broadly characterized as either 

passive solar or active solar depending on how they capture and distribute solar energy or 
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convert it into solar power. Active solar techniques include the use of photovoltaic systems, 

concentrated solar power and solar water heating to harness the energy. Passive solar 

techniques include orienting a building to the Sun, selecting materials with favorable thermal 

mass or light-dispersing properties, and designing spaces that naturally circulate air [5]. 

 

In the Netherlands, wind energy has seen a massive rise during the past few years, but solar 

energy stays somewhat behind. Even though, naturally, we consider the Netherlands a sun-

less country, the data presented by SolarGIS in the next picture (Figure 1) show a different 

case. Even though irradiation levels do not reach those of Mediterranean countries, there is 

a lot of potential for solar installations, particularly in the middle-southern part of the 

country. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                             Figure 1: Solar energy potential throughout the Netherlands [6] 

 

Moreover, solar energy has some clear advantages over wind farms. Powering ones 

neighborhood or home with wind turbines is not a simple process, since turbines require 

planning and building approval and, due to their height and noise, are often not allowed to 

be installed in or near residential areas. In addition, good sites for wind turbines are hard to 

find, because of their need to be clear from ground obstructions that affect the wind. On the 

contrary, a photovoltaic installation, especially a grid-connected one, is a much simpler 
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process, since solar panels are allowed to be installed on most rooftops and the investment 

and recurring maintenance costs are significantly lower. 

 

 

1.2 Statement of Challenges 

 

 

In our mission to help this process along the way, we decided to create a solar business case 

analyzer: by using computer vision techniques and Mask R-CNN, we are able to extract 

rooftops from satellite imagery and, as a next step, simulate the performance of a solar 

energy system installation in the selected area. The scope of this thesis is to provide a free, 

accurate and easy-to-use tool to people who hesitate to take the first step towards solar 

energy. The analyzer can be proven particularly useful in the case of people who desire to 

remove the “middle man” from the process of the photovoltaic system installation, providing 

them with the optimum choice of installation components, settings and configurations, as 

well as a break-down of all costs and earnings during a 10-year period. It is especially 

interesting to research the economic viability and feasibility of such a project, given that in 

the Netherlands the existing net-metering scheme will no longer be the case from 2020 and 

onwards. Instead of giving the small-scale renewable energy producers the possibility to 

offset 100% of the generated energy from their total energy bill, the netting limit will drop 

to 70% in 2020 and will be gradually reduced to 0%. The remaining generated energy will 

be sold to the Distribution System Operators (DSOs) for predefined feed-in tariffs, which 

will also reduce with time. More information regarding the present situation and future 

regulations can be found in chapter 2. 

 

 

1.3 Literature Review 

 

 

Commercial applications utilizing computer vision only started to appear within the last 

decade. This is hardly a surprise, since computer vision itself is a new scientific field, with 

its origins traced back only 50 years ago [8]. Consequently, the number of computer vision 

rooftop detectors that combine detection with PV yield simulation is quite limited. Among 
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them, Google’s Project Sunroof is the one which stands out, but European countries are not 

yet available as an option. Moreover, a rooftop recognition implementation using SVM 

machine learning algorithm, a quite popular algorithm for image segmentation tasks before 

the rise of computer vision. Finally, one option which focuses specifically on the Netherlands 

is a tool developed by TU Delft, the Dutch PV Portal 2.0, which provides real-time weather 

data and PV system design simulations. 

 

1.3.1 Google’s Project Sunroof 

 

In 2015, Google INC launched Project Sunroof (PS), a web-based application aiming to 

provide consumers with an estimation of annual savings in terms of electricity bills, when 

solar panels are installed on their rooftop and can be considered the only computer vision 

based application commercially available which serves this purpose. In order to achieve that, 

PS uses imagery from Google Maps and Google Earth and through computer vision, 3D 

modeling and machine learning create a solar score for every rooftop that it maps. This score 

is calculated taking into account the amount of sunlight received by each portion of the 

sunroof during the course of a year, local weather patterns, sun’s position in various day-

times and, eventually, shading from the surrounding environment like trees, buildings etc. 

[8]. Finally, the estimated score is translated into potential energy production. A 

recommendation regarding installation size is given based on local electricity and personal 

billing rates plus the rooftops potential while the installation costs and payback period are 

calculated. Additionally, Google's’ application provides direct comparisons between finance 

options and direct links to providers. At the time of writing, PS is available only in the US 

and covering 50 states [8]. However, Google plans to expand PS to a global scale during the 

next years. 

 

 

1.2.1 Rooftop Detection SVM 

 

In 2013 Hayk Baluyan, Bikash Joshi, Amer Al Hinai, and Wei Lee Woon released a paper 

demonstrating rooftop segmentation from satellite images using an SVM approach. Regions 

of Interest (ROIs) were generated using k-Means clustering in order to divide the pixels of 

the input image into k clusters based on color and later adopting the flood-fill algorithm 



  5 

organize the pixels within a cluster into a set of regions. After a feature extraction process, 

an SVM classifier is applied to distinguish rooftop from non-rooftop regions. Lastly, a 

histogram method is used for detection rooftops that the SVM kernel may have declassified. 

The accuracy score of this approach measured to be 76% [9]. The model seems to struggle 

when a rather large rooftop relative to the input image size appears and in cases of rooftops 

with a color variation. 

 

 

1.2.3 Dutch PV Portal 2.0 

 

 

TU Delft's Dutch PV Portal 2.0 was created by the Photovoltaic Materials and Devices group 

of Delft University of Technology. The coal of this research was to provide publically 

accessible information on solar energy in the Netherlands, combining the expertise of the 

PVMD group with real-time and historical data provided by the Royal Netherlands 

Meteorological Institute. The simulations performed by the portal do not include specific 

components of the system, but take into account the panel technology, location, surface area, 

tilt and azimuth to create a realistic assessment of the potential solar energy yield. 

 

 

1.4 Thesis Outline 

 

In Chapter 1, there is an introduction to the overall approach of the research topic, 

highlighting the current situation and the reasoning behind the selection of this topic. Also, 

in different subsections, we include a literature review, examining similar projects in the 

field and clearly define the challenges of the project. 

 

Chapter 2 includes the presentation of the situation in the Netherlands now, an analysis of 

the imminent changes in the existing netting scheme and how these will affect renewable 

energy generation in the future.  

In Chapter 3, an in-depth description of utilized computer vision methods and techniques is 

discussed, covering the transition of our research through different algorithms to Mask R-

CNN. 
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 Chapter 4 encompasses the processes we used to calculate the energy yield of each potential 

PV system installation, including the different losses that are included in the model and other 

factors that affect its efficiency. 

 

 In Chapter 5, we describe the methodology used to implement and assess each specific case, 

starting from the rooftop extraction from satellite images and concluding with the 

implementation of 10-year scenario regarding the energy output of the system.  

 

Moving on to Chapter 6, an extensive presentation and assessment of our final results takes 

place, including the benchmarking of our models and used algorithms in order to examine 

their efficiency.  

 

In order to test our assumptions and results, in Chapter 7 we opted to research the case study 

of a residential, medium-sized, south-oriented building in Hoofddorp, near Amsterdam, 

define the optimum components, settings and configurations in the building and assess the 

return of investment of the installation during the next ten years.  

 

Finally, conclusions and recommendations for future work are included in Chapter 8.  
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2. THE CASE OF THE NETHERLANDS 

 

 

2.1 The electricity market in the Netherlands until 2004  

 

Nowadays, the Dutch energy market offers an abundance of choices and opportunities for 

small and large scale electricity consumers. The power sector is comprised of more than 45 

energy suppliers, that each offer different rates and contract conditions [11]. However, up 

until recent years, the situation in electricity production and distribution was drastically 

different. Until the beginning of the 20th century, the Dutch customers did not have the 

possibility of selecting their preferred energy supplier. Instead, responsible for the supply 

and balancing in each different province of the country was a specific utility assigned by the 

government [12]. Additionally, before 1998, utilities were allowed to own an electricity 

network, transmit, distribute and sell the electricity concurrently. According to Foxon, under 

this national system, a large-scale optimization was not feasible, since “every regional unit 

was responsible for balancing supply and demand in its own region” [13]. This, essentially, 

meant that companies who owned part of the network were easily able to commercially 

dominate those who were only active in the retail field. As a result, four companies, Essent, 

Eneco, Nuon and Delta eliminated the competition and monopolized the energy market in 

regions where each one owned the network.  

 

The liberalization of the Dutch power sector took place in July 2004 and was heavily fueled 

by the Electricity Act of 1998, which demanded the separation between the network 

ownership and the electricity supply and provided consumers with the opportunity to select 

their preferred electricity supplier [14, pp. 94]. Tõnurist et. al. confirm that the change would 

happen gradually, as a large part of the consumers would have the right to make their own 

decision by 2002, followed by some commercial users in 2004 and finally, households, in 

2018 [14]. Furthermore, they affirm that even though at first the reform was supposed to be 

applied to green-energy providers only, conventional electricity producers followed shortly. 

This period marked the start of the detachment of the distribution and transmission of 

generated energy from the fields of metering, trade and sales, following the EU electricity 

directive (2003/54/EC) [14, pp. 94-95]. The new state provided an incentive for companies 

to be competitive, offer better customer support and regulate electricity prices.  
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2.2 The liberalized Dutch power sector: 2004 - Today 

 

Following the years from 2004 and onwards, the electricity production and retail in the 

Netherlands were liberalized. Nevertheless, the fields of energy transmission and 

distribution remain centralized and operated by the Transmission System Operator (TSO) 

and the Distribution System Operators (DSOs) respectively.  

 

Nowadays, TenneT B.V., owned solely by the Dutch government, is the only stakeholder 

responsible for operating the 380 kV and 220 kV high-voltage grid throughout the 

Netherlands and its interconnections with neighboring countries, as well as the 150 kV grid 

in the province of South Holland. The sole shareholder of the company is the Dutch Ministry 

of Finance which is also responsible for its subsidiary, TenneT TSO GmbH, one of 

Germany’s four transmission system operators. As far as DSOs are concerned, at the moment 

there are seven Dutch utility companies which own the regional energy grids: Cogas Infra 

en Beheer B.V., Enduris B.V., Enexis B.V., Liander N.V., Stedin B.V. and Westland Infra 

Netbeheer B.V. Judging from the following barplot (Graph 1), it is apparent that three 

dominant DSOs manage more than 95% of customers’ connections, with Liander leading 

the way, followed shortly by Enexis [15]. 

 

         Graph 1: Market share of electricity Distribution System Operators (DSOs) in the Netherlands in 2016 [15] 
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The system operator and the utility companies still hold a monopoly position in the energy 

market. Customers can opt for the electricity retailer that better fits their needs, but the DSOs 

are still assigned regionally. As a result, to guarantee the rights of consumers and businesses 

in the energy sector and their ethical behaviour in this field, these parties have to be 

regulated. This necessity led to the creation of the Authority for Consumers and Markets, in 

2013.  

 

2.3 Legal and policy context 

 

The Dutch photovoltaic energy market experiences the greatest growth of its history, with 

1.3-1.5 GW expected increase in installed power in 2018. For the first time ever, the installed 

PV power is presumed to have surpassed 4 GW, which marks the entry of the Netherlands 

into Europe’s gigawatt club alongside Germany, Italy and others. This great milestone is 

largely driven by the Stimulering Duurzame Energieproductie, also known as SDE+ subsidy, 

which allows for net-metering (ΝΕΜ). Salderingsregeling or net-metering basically means 

that the energy supplier will only consider the balance of purchased and returned energy 

when charging the consumption costs. It is a way for consumers who produce part or all of 

their own electricity to consume generated power anytime, instead of only the moment it is 

produced. This policy proves to be particularly beneficial and motivating, principally in the 

cases of solar and wind installations, which are non-dispatchable (when not directly 

connected to storage options, like considerably sized batteries). Net-metering credit can be 

either monthly or annual, allowing consumers to use power generated in sunnier periods of 

the year anytime it is needed, just like an exchange. 

 

This arrangement is particularly advantageous for customers, since not only they accumulate 

considerable savings, but also avoid energy transportation costs and do not get charged with 

any kind of taxes (energy tax, storage of renewable, etc.). Graphs 2a and 2b demonstrate the 

allocation of energy generation and consumption due to net-metering. The SDE+ scheme 

was introduced in 2004 and will be concluded at 2020. The Dutch government intends to 

replace the current netting scheme with the Stimuleringsregeling Duurzame Energietransitie 

(SDE++) reform, which is essentially a return subsidy for technologies that compete on a 

reduction of CO2 emissions basis and not on generated renewable energy amount. 

Applications will be open throughout the year and the subsidy ceiling will be predetermined 
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annually. Furthermore, a cap on how much surplus power may be injected into the grid will 

be enforced, since the current network cannot store and support the ever-increasing amounts 

of power [6]. 

 

 

              

              Graph 2a, 2b: Allocation of energy consumption thanks to net-metering [16] 

 

For the time being, the subsidy is applicable to all small case producers of biomass, 

geothermal, water, wind and solar energy who fulfill the following criteria: 

 

• Having a connection of up to and including a maximum of 3 x 80 A. 

• Having a single, bi-directional meter that can measure the current flowing in two 

directions installed and in functioning order. A smart meter is currently not 

compulsory, though that is going to change from 2021 and onwards.  

 

Initially, there was a netting limit of 3000 kWh per connection, which was shifted to 5000 

kWh (Samson amendment) and then was altogether negated as of July 1st, 2013. The 

maximum netted amount of generated electricity now equals the consumer’s own 

consumption. If more energy is generated than one’s own consumption, the electricity 

supplier is responsible for buying the excess energy for a reasonable fee, which is called 

feed-in tariff. It is important to point out that, at the moment, the feed-in tariff is determined 

separately by each dutch utility. On Graph 3 below we can see the prices for electricity up 
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until this year, where a decreasing trend is quite apparent, except for 2018, where the price 

per kWh increased quite a bit. 

 

 

                   Graph 3: Electricity prices for households in the Netherlands from 2010 to 2018, semi-annually [15] 

 

The way that the SDE++ scheme is going to work in the future is better depicted in Table 1 

below (which is unfortunately only available in Dutch).  

 

SDE++ scheme: 

Table 1: SDE+ scheme [15] 

 

Basically, the scheme will work by imposing an annual netting limit on the total of produced 

energy. Starting from 2020, the netting limit will decrease every year, starting at 70%. This 

means that on 2020 the customers will be allowed to net 70% of their produced energy, 
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essentially selling it for the same price that they buy it. The remaining 30% will be bought 

from the DSOs for a predefined feed-in tariff, which in the case of 2020 will be 0.12 ct/kWh. 

It is quite apparent that the aim of this measure is to discourage the customers from feeding 

in the grid. This is due to the fact that, in the long term, the most sustainable solution for 

energy distribution is the maximization of self-consumption. On chapter 4, will conduct a 

case study to examine the viability of solar energy system in the future without the inclusion 

of a battery system for the time being.  
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3. COMPUTER VISION 

 

During the past decade, computer vision has revolutionized image detection applications. In 

this section, the theory behind computer vision algorithms is discussed starting from the task 

of image classification and convolutional neural network (CNN) architectures, a necessary 

step for understanding computer vision, and in the process unravelling the steps that led to 

Mask R-CNN algorithm. 

 

 

3.1 Convolutional Neural Networks 

 

Even though CNNs are being used widely in various applications, the most common purpose 

of such algorithms is related with imagery tasks, with the most notable being image 

classification, image semantic segmentation, and object detection among others. For now on 

though, the main focus would be image classification (or categorization). In this task, every 

image has a major object which occupies a large portion of itself. Hence, it is safe to assume 

that the image can be classified based on the identity of its main object, e.g., car, dog, cat, 

train, etc. [17, Ch. 1, pp. 5]. 

 

 

3.1.1 Tensor Vectorization 

 

According to DoitPoms platform, a teaching initiative by the Cambridge University, tensors 

are simply mathematical objects that can be used to describe physical properties, just like 

scalars and vectors. In fact, tensors can be considered a generalization of scalars and vectors; 

a scalar is a zero-rank tensor, and a vector is a first rank tensor [18].  

 

A tensor’s order (rank) is determined by the number of directions (and therefore the 

dimensionality of the array) needed to explain it. For instance, an order 1 tensor is a property 

that can be fully expressed by an n × 1 column vector (one direction), an order 2 tensor is a 

property that can be fully expressed by n × n tensor (two directions), etc. [18].  
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Images can be essentially considered as order 3 tensors due to their RGB format. A third 

order tensor contains 𝐻𝑊𝐷  elements, and every one of them can be classified by an 

indication triplet (𝑖, 𝑗, 𝑑) , with 0 <= 𝑖 < 𝐻, 0 <= 𝑗 < 𝑊, 0 < 𝑑 < 𝐷 . A way to view a 

tensor of that order is to treat it as it is containing 𝐷 channels of matrices according to Jianxin 

Wu et. al [17, Ch. 2.1, pp. 2]. Each individual channel is a matrix with a size 𝐻 × 𝐷, with 

the first channel having the numbers of the tensor that are classified by (𝑖, 𝑗, 0). Note that 

when 𝐷 = 1 the tensor decreases to a matrix [17, Ch. 2.1].  Thus, a color image with 𝐻 rows 

and 𝑊 columns is a tensor with size 𝐻 × 𝑊 × 3. If the image is stored in the RGB format, 

3 channels can be distinguished (for R, G, B, individually), while each channel being an 

𝐻 × 𝐷 matrix (second-order tensor) that holds the R (or G, or B) values of all pixels (first 

order tensor) [17, Ch. 2.1, pp. 3].  

 

It is always helpful to represent an image as a tensor. In the early years of computer vision, 

images were often converted to their gray-scale counterpart (which is a matrix instead of a 

third order tensor) since it was easier to process. Nevertheless, color information is crucial 

in any image or video recognition tasks. Various computer vision architectures need to 

process color in a principled way [17, Ch. 2.1, pp. 4].  

 

 

3.1.2 The architecture 

 

Ordinarily, a CNN receives as an input a third-order tensor of 𝐻 rows, 𝑊 columns and 3 

channels (Red, Green, Blue color channels). The input then sequentially goes through a set 

of processing  

steps called layers. An abstract composition of CNN’s structure is given below: 

 

Equation 1: Abstract description of CNN’s structure. 

 

The above equation highlights how a CNN runs layer by layer in a forward path. 𝑥1 is the 

input (in this case an image) and goes through the processing in the white box which is the 

first layer. All the parameters associated with the first layer’s processing are donated as 𝑤1 
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tensors.  𝑥2 is the output of the first layer, which also serves as an input for the second layer. 

The process continues until the final product,  𝑥𝑙 is reached. Still, a final layer is added for 

a method called back propagation, which learns good parameter values [17, Ch. 3.1, pp. 

3].  The last layer can be considered as loss layer. If the corresponding target (ground-truth) 

value is 𝑡 for the original input 𝑥1, then a loss function can be used in order to estimate 

discrepancy between the prediction 𝑥𝑙 made by the CNN and the target 𝑡  [17, Ch. 3.1, pp. 

4]. When all parameters 𝑤1,…,𝑤𝐿−1 of a CNN model have been “learned”, the model is 

ready to make predictions. Predictions are made by running through the CNN in a forward 

notion. When 𝑥𝐿 is calculated, which contains the probabilities of 𝑥1 belonging to one of the 

target categories, the predictions can be outputted as: 

 

𝑎𝑟𝑔𝑖𝑚𝑎𝑥(𝑥𝑖
𝐿) 

 

Equation 2: Predictions output. 

 

Last but not least, the loss layer is only necessary for the learning process and does not 

participate in the prediction estimation [17, Ch. 3.2].  

 

 

3.1.3 Gradient Descent 

 

As mentioned above, the parameters of a CNN are optimized to minimize the loss function. 

When we go through a CNN for the first time, the prediction is made using only the initial 

CNN’s parameters. After that the prediction is compared with the target 𝑡 corresponding to 

𝑥1  and the loss 𝑧 is calculated. The loss 𝑧 is then a supervision signal, guiding how the 

parameters of the model should be modified (updated) using gradient descent (GD) function 

[17, Ch. 3.3, pp. 2]. The GD function’s equation is given below: 

 

 3𝑤𝑖 ⟵ 𝑤𝑖 − 𝑛
𝜕𝑧

𝜕𝑤𝑖
 

 

Equation 3: GD output. 

 



  16 

The partial derivative 
∂z

∂wi
 or gradient calculates the rate of increase of z with respect to the 

changes in different dimensions of wi  [17, Ch. 3.3, pp. 5]. Given a small local area 

throughout the current value of wi , moving wi  towards the direction that the gradient 

indicates, will result in increasing the value of the loss function. Hence, in order to achieve 

minimization, wi should be updated in the opposite direction that the gradient indicates. This 

updating process is called gradient descent. A visual demonstration of this method can be 

found in graph 5, where the gradient is denoted by g. However, if the step being taken 

surpasses a certain threshold, namely leading too far in the negative gradient direction, z 

may increase. Consequently, the parameters should be changed only by a small portion of 

the negative gradient, controlled by the learning rate n > 0 which is normally initialized by 

a small value (0.001) [17, Ch. 3.3, pp. 6]. When all training samples have been used to update 

the internal model parameters, an epoch has been processed. According to Jason Brownlee, 

the number of epochs is a hyperparameter that defines the number of times that the learning 

algorithm will work through the entire training dataset [19]. An epoch will usually contribute 

in the average z’s reduction. Thus, the number of epochs is normally great (100 - 1000), 

deducting the learning algorithm to run until the model's error has been adequately 

minimized [19].  

 

3.1.4 Stochastic Gradient Descent 

 

Even though gradient descent may be simple in terms of mathematical complication, in 

practice it can be a challenging process. For instance, if only one training sample is used for 

the gradient calculation and parameters updating, an unstable loss function will occur. In 

order to avoid this, small subsets of the main training set can be used in estimating the 

gradient and before appling it to update the parameters. This method is called Stochastic 

Gradient Descent (SGD). However, SGD requires many computations in this batch approach 

since the parameters are updated only every epoch, making it impractical particularly for 

quite large datasets [17, Ch. 3.3, pp. 7]. A settlement is to use small batches of training 

samples called mini-batches. Mini-batch SGD is considered the most common method in 

CNN’s parameters updating. Note that in this case, the input tensor’s order is increased by 

one (H × W × 3 × S, where S is the mini-batch size) [17, Ch. 3.3, pp. 8].  
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3.1.5 Error back propagation 

 

The partial derivative corresponding to the last layer (
𝜕𝑧

𝜕𝑤𝐿) can be calculated with ease, 

considering 𝑥𝐿 is related to 𝑧 directly under the control of parameter 𝑤𝐿 , something that is 

also applicable with 
𝜕𝑧

𝜕𝑤𝐿
 [17, Ch. 3.4, pp. 1]. In fact, these two partial derivatives are 

calculated for every layer.   

• The term 
𝜕𝑧

𝜕𝑤𝑖 is used for updating the parameters corresponding to the current layer 

(𝑖-th).   

• The term 
𝜕𝑧

𝜕𝑥𝑖 is used for updating the parameters backwards, for instance, the (𝑖 − 1)-

th layer. A more intuitive approach is: 𝑥𝑖 is the output of the (𝑖 − 1)-th  layer and 
𝜕𝑧

𝜕𝑤𝑖 

is how 𝑥𝑖 should be changed in order to reduce the loss function. Thus,  
𝜕𝑧

𝜕𝑥𝑖 can be 

viewed as the part of the “error” supervision information propagated from 𝑧  to 

backward, until the current layer is reached, in a chained layer by layer manner [17, 

Ch. 3.4, pp. 2]. 

 

                                               

                                                   Graph 4: Illustration of the gradient descent method [17] 

 

 

 



  18 

3.1.6 The ReLU Layer 

 

The ReLU is not a separate segment of CNN’s process. In fact, it is an additional level in the 

convolutional procedure. The main purpose of this layer is to increase the non-linearity in 

an image. Images are simply not linear. The transition within pixels and colors are obvious 

examples of linearity. Thus, the ReLU function assists in breaking up that linearity [20]. If 

this layer is noted as the 𝑙-th layer, the ReLU is a function that transforms the input 𝑥𝑙 to 

output 𝑦  with both of these properties, sharing the same size. Then, a truncation applied 

independently for every element in the input is made: 

 

        𝑦𝑖,𝑗,𝑑 = 𝑚𝑎𝑥(0, 𝑥𝑖,𝑗,𝑑
𝑙 ) 

 

Equation 4: Truncation function. 

 

with 0 ≤ 𝑖 ≤ 𝐻𝑙 = 𝐻𝑙+1, 0 ≤ 𝑗 ≤ 𝑊𝑙 = 𝑊𝑙+1, and 0 ≤ 𝑑 ≤ 𝐷𝑙 = 𝐷𝑙+1 [17, Ch. 5, pp. 1]. 

Note that since there is not any parameter inside a ReLU layer, there is not any need for 

parameter learning. 

Based on the previous equation: 

 

 

 

 

Equation 5: indicator function.   

 

Inside the brackets is the indicator function which is 1 when its argument is true and 0 

otherwise.  

Therefore: 

 

 

 

 

 

Equation 6: ReLu function. 
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Note that 𝑦 is equivalent to 𝑥𝑙+1  [17, Ch. 5, pp. 3]. Relu function is visually demonstrated 

in Graph 6. 

 

In practice, the above equation implies that 𝑦𝑖,𝑗,𝑑
𝑙  will be activated only if an image has 

certain patterns ,for instance a cat’s ears or an airplane’s wings, that match. This process is 

achieved by, letting 𝑥𝑖,𝑗,𝑑
𝑙  be positive if a section within the input image is identified to have 

these kinds of patterns and negative or zero otherwise. The ReLU layer will set all negative 

values to zero. As a result, this processing step provides an early hint on whether the input 

image contains the target object or not [17, Ch. 5].  

 

 

 

 

 

 

 

 

 

 

 

 

                                                                      Graph 5: The ReLU function [17]. 

 

There are numerous additional nonlinear transformation methods being used widely in 

neural networks architectures. A common example can be regarded as the logistic sigmoid: 

 

 

 

 

Equation 7: Logistic sigmoid function. 

 

However, research suggests that logistic sigmoid works significantly inadequate in CNNs. 

A sigmoid layer will produce in a vital reduction to the magnitude of the gradient, which 

will end up 0 in many layers, making gradient-based learning (SGD) very tough. In contrast, 
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the ReLU only sets the gradient of insignificant features in the 𝑙-th layer to 0, allowing back 

propagation only for the activated ones, while keeping them unchanged. The replacement of 

sigmoid with ReLU was a great development in CNN’s design not only providing a 

decreased difficulty in learning the parameters but also boosting the predictive ability of the 

model [17, Ch. 5].   

 

3.1.7 The Convolution Layer 

 

The Convolution layer is the main building piece of a CNN and it is responsible for most of 

the computational heavy lifting. It contains an assortment of learnable filters called feature 

detectors which are order 3 tensors with a size of  𝐻 × 𝑊 × 3. Through the forward run of 

the input, its filter is slid across the surface of the input and the dot products between the 

indexes of the filter and the input are computed for all the available positions. This method 

will produce a 2-dimensional feature map that hοlds the responses of the filter at every spatial 

position. The aforementioned sliding process is called convolution. The principal aim of 

convolution is that the CNN will learn feature detectors that triggered when they detected 

certain visual patterns on the input image. Usually, a CNN includes many separate feature 

detectors and its one of them produces its own feature map [21].  

 

The size of the output is determined by key three factors: the depth, the stride and the pad. 

• Depth, describes the number of feature detectors being used in the layer. For instance, 

when an image is inserted into the CNN many different feature detectors may be 

activated in the presence of certain patterns.  

• Stride is referring to the sliding rate of the feature detector. When stride 𝑠 is 1, the 

feature detector is convolved with the image at every practicable spatial location 

moving from pixel to pixel. On the other hand, when the stride is  𝑠 > 1 every 

movement of the detector skips 𝑠 − 1 pixel positions [17, Ch. 6.1, pp. 6].  

• Pads are used in cases when the size of the input and the output should be equal. If 

the input is 𝐻𝑙 × 𝑊𝑙 × 𝐷𝑙  and the output 𝐻 × 𝑊 × 𝐷𝑙 × 𝐷 the convolution result 

has size (𝐻𝑙 − 𝐻 + 1) × (𝑊𝑙 − 𝑊 + 1) × 𝐷 D. For every channel of the input if a 

pad of ⌊
𝐻−1

2
⌋ rows is inserted  above the first row, a pad of ⌊

𝐻

2
⌋ is inserted above the 

last row and the columns ⌊
𝑊−1

2
⌋ to the left of the first column and   ⌊

𝑊

2
⌋ to the last 

column of input, the convolution output will have a size of 𝐻𝑙 × 𝑊𝑙 × 𝐷 . Often, the 
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element values of the pads are 0. In this case, the process is called zero padding [10, 

Ch. 6.1, pp. 5]. 

A distinct example of the convolution process is stated in figure 2. 

 

 

Figure 2: Illustration of the convolution process. Showcased above, the feature detector (kernel) is overlapped with the 

right top corner area in the input image. The convolution result would be 1 × 1 + 1 × 4 + 1 × 2 + 1 × 5 = 12. Then the 

filter is moved to the next pixel which will give a convolution result of 16 and the operation continues until the filter has 

slid through all the input’s pixels.  [17] 

 

 

3.1.8 Why convolute? 

 

If bias is added to the convolution process, the convolution product can be positive at 

horizontal edges in a certain direction and negative at different areas. If the next layer in the 

CNN’s design is a ReLU layer, the output of that layer defines many “edge detection 

features” which activate only at horizontal or vertical edges in certain directions. During the 

continuation of the forward run into the CNN’s deeper layers, the following layers will be 

able to activate when more specific and complex patterns are found [17, Ch. 6.2, pp. 2]. 

Moreover, all spatial areas of the input image share the same feature detectors leading to a 

significant reduction of the parameters needed for a convolution layer. For instance, if the 

input image contains multiple cats, the “cat-shaped ears” feature detector will be triggered 

at every cat [17, Ch. 6.2, pp. 3]. Furthermore, on deep CNN architectures convolution allows 

parameters sharing. For example, the CNN does not need dedicated feature detectors for 
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“cat-shaped ears” and “dog-shaped ears” in order to detect a dog. It is able maybe to have 

an “animal fur” detector which can be shared for both occasions [17, Ch. 6.2, pp. 4].  Last 

but not least, feature detectors like the aforementioned are extremely intuitive. In many 

cases, the activation may happen for pixels that correspond to patterns that are not related to 

something as semantic as cat ears [17, Ch. 6.2, pp. 5].  

 

 

3.1.9 Fully connected layer 

 

Finally, a fully connected layer is the layer that in order to compute its output product 𝑥𝑙+1 

needs all the elements of 𝑥𝑙 input. Commonly, fully connected are the very last layers of a 

CNN’s architecture which are responsible for class labeling and therefore they require all 

the previous features.  

 

 

3.2 From Sliding Windows to Mask R-CNN 

 

 

3.2.1 Sliding-window detectors 

 

Since 2012, when AlexNet designed by Alex Krizhevsky dominated the ImageNet LSVRC-

2012 competition, CNNs have ruled the field as the major deep learning method in image 

classification. Hence, one brute force approach for an image recognition task would be to 

slide windows all over the image’s surfaces. In order for our detection to be scale-free, 

windows of varied sizes and aspect ratios should be used. In practice, this means that 

fractures of the main image are constantly taken and delivered towards the CNN classifier 

to extract features. Then SVM classification and linear regression are applied for class 

identification and boundary box designation respectively [8]. Despite the simple concept, 

sliding-window detectors computational cost is massive. Decreasing the window’s number 

decreases run-time speed and system resources used, only crucially restraining 

classification’s accuracy. 
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3.2.2 Selective Search 

 

Instead of a brute force approach, a region proposal method can be used to create Regions 

of Interest (ROIs) for object detection. 

In selective search (SS) hierarchical groups of similar regions are computed, based on color, 

texture, size and shape. The architecture of SS is noted in figure 3. 

                                                 

 

Figure 3: System flow for the sliding-window detector [22] 

 

 

3.2.3 Pooling layer 

 

An early challenge that needs to be confronted when dealing with an object detection task 

are differences in scaling and aspect. The object of interest can appear in many forms and 

sizes into an image, still, it should be correctly identified and classified. In a more abstract 

approach, this means that if the distinct features of the classified object are a bit distorted the 

neural network should have some level of flexibility so as to identify these features. In terms 

of how a CNN works, the prospect of pooling layers is to obtain spatial invariance by 

reducing the resolution of the feature map which is essentially the distinct features. The 

resulted pool feature map resembles a feature map of the previous layer. Its units are the 

input from a small n × n patch, as indicated in figure 4. This pooling window’s size can be 

arbitrary and windows are allowed to overlap [23, Ch. 3, pp. 3]. 
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An example of max pooling operation is given in Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Max pooling with 2 × 2 pooling window. In this case, we lose 75% of the initial information located on the feature 

map since the pooled feature map contains only 1 out of 4 original pixels. This information is unnecessary and without 

which the CNN is more efficient. [24]. 

 

Usually, two sorts of pooling methods are applied: max pooling and average or mean 

pooling. In max pooling, the maximum unit included in the pooling window is transferred 

to the pooling map, while in mean pooling the mean value of the combined units is 

transferred instead [17, ch. 7]. In precise mathematics: 

 

                 max:  𝑦𝑖
𝑙+1, 𝑗𝑙+1, 𝑑 =0≤𝑖<𝐻,0≤𝑖<𝑊 𝑚𝑎𝑥(𝑥

𝑖𝑙+1×
𝑙 𝐻 + 𝑖, 𝑗𝑙+1 × 𝑊 + 𝑗, 𝑑), 

 

                 average: 𝑦𝑖
𝑙+1, 𝑗𝑙+1, 𝑑 =

1

𝐻𝑊
∑

0≤𝑖<𝐻,0≤𝑖<𝑊
𝑥

𝑖𝑙+1×
𝑙 𝐻 + 𝑖, 𝑗𝑙+1 × 𝑊 + 𝑗, 𝑑, 

 

Equations 8a, 8b: Max and average pooling 

 

As a result, the CNN is now able to account for distortions. This process is what provides 

the network with the aforementioned spatial variance capability. Besides that, pooling assists 

in minimizing the images’ size as well as the number of parameters, a result that eventually 

prevents overfitting from coming up. 
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3.2.4 Fast R-CNN 

 

After SS, Fast R-CNN algorithm appear. This architecture uses a region proposal method to 

construct around 2000 RoIs. The regions are removed from the original image and enter into 

a CNN for classification. Even though this method achieves an excellent detection accuracy 

in lesser time than SS, R-CNNs are still impractical in terms of training and object detection  

speed [22]. 

                                                                  

                                                                    

                                                                  Figure 5: Workflow of a fast R-CNN [22] 

 

 

3.2.5 RoI Pooling 

 

RoI pooling is a neural net layer using max pooling to turn the features included into a valid 

RoI area to a small feature map with a determined spatial extent of H × W [25, Ch. 2.1, pp. 

1]. The layer takes two inputs: 

 

• A fixed-size feature map gathered by a CNN with numerous convolutions and max 

pooling layers. 

• A RoI feature map.  

 

For every RoI of the input list, RoI pooling takes a section of the input feature map that 

corresponds to it and scales it down to a pre-setted size. The scaling is done by dividing the 

h × w into an H × W grid of equal-sized parts. The size of the parts is h/H × w/w. Then max 

pooling is applied to the windows the output units are transferred to the corresponding output 
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grid cell [25, Ch. 2.1, pp. 1]. The result is that starting from a group of rectangles with several 

sizes, a list of corresponding fixed size feature maps is generated. Note that the dimension 

of the corresponding pooling feature map depends only on the number of sections the 

proposal is divided into and not on the region proposals and feature maps sizes. Finally, the 

main reason we need RoI layer is speed. Usually, there are many region proposals on the 

frame, yet the network is still able to use the same feature map for every one of them [26]. 

 

3.2.6 Faster R-CNN 

 

A year after the Fast R-CNN deployment, a small team of researchers, including Ross 

Girshick, replace the selective search external region proposal method with a new internal 

deep network called RPN and can been seen in figure 6. This design change meant that RoIs 

are now produced by feature maps and manage to diminish the time needed for RoIs 

generation from 2 seconds to 10 ms [22].  

 

 

 

Figure 6: Faster R-CNN architecture. Fast and Faster R-CNNs share the same work main design. The only notable 

variation is the way region proposals are generated [22] 

 

 

3.2.7 Region Proposal Networks 

 

According to Shaoqing Ren et. al, an RPN takes an image (of any size)  as input and outputs 

a set of rectangular object proposals, each with an objectness score. Objectness primarily 

suggests membership measurement to a set of object classes versus background [26, Ch. 3, 
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pp. 1]. RPN consists a box-classifier which ascertains the probability of the proposal 

describes the target object and a box-regressor for determining the coordinates of the 

proposals. Instead of using pyramids of filters, RPN applies novel “anchor” boxes. For 

proposal generation, a small network is slid over the outputted convolutional feature map by 

the last shared convolutional layer. An n × n spatial window of the input convolutional 

feature map is fed to the small network, while its sliding window is mapped to a lower-

dimensional feature. Lastly, the box-classification and the box-regression layers take as input 

this feature map [26, Ch. 3, pp. 2]. The RPN integration into faster R-CNN architecture is 

given figure 7a while the workflow of the algorithm is demonstrated in figure 7b. 

 

Anchors  

 

At each sliding window location, multiple region proposals are predicted simultaneously, 

where the number of maximum proposals for each location is indicated as k. Thus, the 

regression layer has 4k outputs encoding the coordinates of k boxes, and the classification 

layer has 2k scores that predict the probability of a proposal being an object or not. The k 

proposals are parameterized relative to k reference boxes which called anchors.  An anchor 

is centered at the sliding window in question and is linked to a scale and aspect ratio.  The 

developers of RPN architecture choose 3 scales and 3 aspect ratios, generating k = 9 anchors 

at each sliding position. Given a convolutional feature map sized W × H, the estimated 

number of anchors is W × H × k [26, Ch. 3.1].  

 

Label Assignment and Loss Function 

 

During the training step, a binary class label (being an object or not) is assigned to each 

anchor. A positive label is attached to two sorts of anchors (Note that a ground truth box 

may allow positive labels to multiple anchors): 

 

• The anchors with the highest IoU overlap with a ground a ground-truth box 

• An anchor having IoU overlap higher than 0.7 with any ground truth box 
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On the other hand, negative labels are assigned to anchors having an IoU ration lower than 

0.3 for every ground truth box. Last but not least, anchors that are not labeled as positive or 

negative have zero contribution to the training process [26, Ch 3.1.2, pp 1]. 

Conclusively, since this is a training process a loss function needs to be minimized. RCN 

loss function for an image is defined as: 

 

               Loss function:  𝐿({𝑝𝑖}, {𝑡𝑖}) =
1

𝑁𝑐𝑙𝑠
∑
𝑖

𝐿𝑐𝑙𝑠(𝑝𝑖, 𝑝𝑖
∗) + 𝜆

1

𝑁𝑐𝑙𝑠
∑
𝑖

𝑝𝑖
∗𝐿𝑟𝑒𝑔(𝑡𝑖, 𝑡𝑖

∗), 

 

Equation 9: RCN loss function 

 

 

where 𝑖 is the index of an anchor in a mini-batch, 𝑝𝑖 is the predicted probability of anchor 

𝑖being an object. The ground-truth label 𝑝𝑖
∗ has a value of 1 if the anchor is positive, and a 

value of 0 if the anchor is negative. ti is the vector of 4 coordinates of the bounding box (top 

left corner coordinates, height, width) and 𝑡𝑖
∗ is that of the ground-truth box linked to a 

positive anchor [26, Ch. 3.1.2, pp 2].                                                                .  

The classification loss 𝐿𝑐𝑙𝑠  is log loss across two classes (being an object or not). The 

regression loss is calculated using 𝐿𝑟𝑒𝑔(𝑡𝑖, 𝑡𝑖
∗) = 𝑅(𝑡𝑖 − 𝑡𝑖 ∗), where 𝑅 corresponds to the 

robust loss function: 

 

  𝑠𝑚𝑜𝑜𝑡ℎ𝐿1
(𝑥) = 0.5𝑥2 if |𝑥| < 1 and 𝑠𝑚𝑜𝑜𝑡ℎ𝐿1

(𝑥) = |𝑥| − 0.5  otherwise.  

  

Equation 10: 𝑠𝑚𝑜𝑜𝑡ℎ𝐿1
(𝑥) 

 

 

The term 𝑝1
∗𝐿𝑟𝑒𝑔 suggests that the regression loss function is triggered only for positive 

anchors 𝑝1
∗ = 1 and is deactivated otherwise 𝑝1

∗ = 0. The products of the regression and 

classification layers consist of {𝑝𝑖} and {𝑡𝑖} respectively [26, Ch. 3.1.2, pp. 2]. 
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Figure 7a: Faster R-CNN workflow with RPN usage highlighted[27], Figure 7b: Region proposal network workflow [27].  

 

3.2.8 Mask R-CNN 

 

As the name suggests, mask R-CNN is a continuation of the earlier R-CNN variations and 

developed in 2017 by the FAIR team. Mask R-CNN uses Faster R-CNN as a blueprint and 

extends its design by aiming to locate exact pixels of an object instead of only highlighting 

it with a bounty box [28]. This operation in the computer vision world is called segmentation. 

As is demonstrated in figure 8, a special branch is being added that generates a binary mask 

determining if the given pixels are part of the target objects or not. Yet, the original Faster 

R-CNN architecture needs a supplementary adjustment since regions of the feature map 

selected by RoI pooling were misaligned compared to the regions of the primary image 

leading to inaccurate pixel masks. To bypass this issue, the FAIR team researchers re-

engineered the RoI polling operation in a different manner. They replace quantization of the 

ROI boundaries with the use of bipolar interpolation to calculate the exact values of the input 

features at four regularly sampled locations [20]. In simpler terms, given a 256 × 256 image 

as an input and having a 25 × 25 feature map, if a 16 × 16 pixels RoI is proposed, means that 

the corresponding feature to original ratio is 25/256. For the previous case, RoI is translated 

to 16 × 25/256 = 1.56 pixels. In the case of Faster R-CNN, this value would be rounded to 1 

and consequently lead to misalignment. Instead in Mask R-CNN, the exact value can be 

kept. This process is highlighted in Figure 8. 
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Figure 8: Mask R-CNN architecture. Its implementation adds an additional branch dedicated to binary mask generation       

[20]. 
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4. ANNUAL ENERGY YIELD CALCULATION 

 

Trying to estimate the annual energy yield of a solar panel is usually a quite complicate 

process. The concept of harnessing solar energy in order to generate electricity is only 

possible thanks to the solar radiation phenomenon. Hence, annual solar radiation data needs 

to be collected corresponding to the coordinates of the location that the PV system is about 

to be installed. Moreover, the system’s orientation is crucial for the final power production, 

since solar panels should face true south for maximum power production and other 

orientation could cause losses. In cases where the solar installation would happen on fixed 

pre-existing surfaces such as rooftops, the roof’s angle must be measured. Shading is 

essential too. Then, there is  module’s efficiency based on several additional factory 

specifications, while the local temperature is also significant. Last but not least, system 

losses should be considered. There are many equations, models and software that address 

this challenge. An intuitive equation that can be used as first step is given below: 

                                                     

                                                        𝐸 = 𝐴 × 𝑟 × 𝐻 × 𝑃𝑅  

 

Equation 11: Annual energy yield estimation  

 

where 𝐸 is the annual energy (KWh), 𝐴 is the total solar panel area (𝑚2), 𝑟 is the the panel’s 

efficiency (%), 𝐻  is the annual average solar radiation 𝑊 𝑚2⁄  and finally 𝑃𝑅  is the 

performance ratio, a metric which integrates the systems losses [30]. Figure 9 presents the 

nature of energy losses among PV systems, while a stepwise approach of annual yield 

estimation is displayed at figure 10. 

             Figure 9: Energy production losses [29] 
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                                            Figure 10: A stepwise approach in annual energy yield calculation 

 

4.2 The effect of physical phenomena 

 

4.2.1 Air Mass 

 

According to Matthew J. Reno et. al [31] in solar energy air mass (AM) actually refers to 

the relative air mass that is measured in relation to the path length at the zenith. For instance, 

AM = 0 indicates the absence of atmosphere and terrestrial radiation is equal to the 

extraterrestrial one while AM = 1 means that the sun is positioned right above. This physical 

phenomenon explains why the colors of the objects located near the horizon are significantly 

faded in comparison to object’s colors that are directly overhead [31]. Additionally, AM 

affects solar spectrum and causes refraction of the sunlight, an effect that leads into lengthier 

paths. For PV installations, AM = 1.5 is the optimal value. 

 

 

4.2.2 Solar Position 

 

The solar energy that reaches earth’s surface is extremely correlated with the sun’s position 

in the sky. The lesser the zenith angle, the shorter the layers of the atmosphere are [31]. 
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During the so-called solar noon, which occurs when the sun crosses the meridian on either 

the spring or fall equinox, the zenith angle 𝑧 is equal to the latitude of the location 𝜙: 

 

 

𝑧 = 𝜙 

 

Equation 12: Zenith angle calculation during solar noon. 

 

Otherwise, 𝑧 is calculated by subtracting the declination angle 𝛿: 

 

𝑧 = 𝜙 − 𝛿 

 

Equation 13: Alternative zenith angle formula. 

 

where 𝛿 = 23.45𝑠𝑖𝑛(𝑥) , with  𝑥 =
360𝑜

365
(𝐷𝑂𝐼 − 81) . Solar position is a crucial worth 

considering factor during the installation process in order to accurately model PV system 

performance.  

 

 

4.2.3 Solar radiation 

 

Solar radiation can is the core of solar energy. Namely, the sun’s energy is produced by an 

endless nuclear fission reaction during which 700 million tons of hydrogen are converted to 

helium per second [32]. Due to this process, enormous amounts of heat are generated in the 

sun’s surface, causing the release of photons which after a long journey are able to reach 

outer space and in our case Earth’s atmosphere in the form of extraterrestrial radiation 𝐸𝑎: 

 

                                                          𝐸𝑎 = 𝐸𝑠𝑐 × (
𝑅𝑎𝑣

𝑅
)2  

 

Equation 14: Extraterrestrial radiation.  
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where 𝐸𝑠𝑐 is the solar constant 1376 𝑊 𝑚2⁄ , 𝑅𝑎𝑣 is the mean sun-earth distance and 𝑅 is the 

actual sun-earth distance depending on the day of the year which varies due to earth’s 

elliptical orbit [26]. 

 

Even on a cloudless day however, a portion of the 𝐸𝑎 is scattered and absorbed as it passes 

through the atmosphere. It is estimated that on a clear day at noon only 75% of the  𝐸𝑎 

reaches the ground, a fraction that is further decreased during morning and evening hours 

[31]. The radiation springing straight from the sun is named direct normal irradiance (DNI) 

and is measured as the amount of solar radiation received per unit by a given surface that is 

always held perpendicular to the direction of the sun [33]. On the other hand, the radiation 

that is scattered through the atmosphere diverges randomly in every direction. Thus, a 

portion of this radiation is redirected towards the earth’s surface and is called diffuse 

horizontal irradiance (DHI). DHI is actually the reason why there is light in shady places 

and the sky is bright during daytime [31]. Through overcast days DHI is the main source of 

solar power. Furthermore, sunlight reflections from the ground contribute to he total portion 

of DHI. The amount of terrestrial radiation falling on a horizontal surface is the global 

horizontal irradiance (GHI) and is the sum of DHI and DNI when projected into the 

horizontal surface: 

 

𝐺𝐻𝐼 = 𝐷𝐻𝐼 + 𝐷𝑁𝐼 × 𝑐𝑜𝑠(𝑧) 

 

Equation 15: Global Horizontal Irradiance  

 

where 𝑧 is the solar zenith angle [33]. The knowledge of GHI is mandatory for the PV power 

output calculation.  

 

 

4.2.4 Temperature  

 

Local temperature can affect solar panels’ efficiency. During production, every PV module 

is going through a series of tests before it makes its way into the market. The temperature in 

these lab conditions is 25𝑜 [34] which is considered to be the ambient temperature. As the 

temperature of the solar panels rises, its output current increases exponentially while the 



  35 

voltage output linearly decreases, leading to a severe reduction in the PV module’s power 

production.  

 

Thus, solar panel manufacturers provide the so-called temperature coefficient, a term that 

quantifies the module’s heat tolerance by describing how much power the module will lose 

when a temperature increment by 1𝑜 is occurring [35]. For instance, if a 150 W solar panel 

has a temperature coefficient of -0.32%, operating at 35𝑜 , the power output reduction would 

be 150𝑊 × (30∘ − 10∘) × (−0.32%/𝐶) = −4.8𝑊  .Thus, the real power output, in this 

case, is 145.2 W. On the other hand, it is obvious that for temperatures below the ambient 

the power output is greater. For example, if the aforementioned module was operating at 

15𝑜 the real power output would be 154.8 W.   
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5. METHODOLOGY 

 

5.1 Overview 

 

In this section, we aim to describe the process followed in our research, including our 

assumptions, tools and model cases. This study can be split into two big parts: the use of 

computer vision techniques and algorithms for rooftop detection on satellite imagery and the 

modeling of photovoltaic production throughout the years. In order to comprehensively 

explore, analyze and assess the multi-dimensional aspects of this approach, programming in 

Python language, Mask R-CNN and PVvlib were employed as the main tools for this thesis. 

As a starter point, Mask R-CNN computer vision algorithm is used to detect and extract 

available areas for photovoltaic panel installation and, specifically, rooftops. This algorithm 

was the optimum option for image segmentation in not only detecting the desired object but 

also separating it from its surroundings, allowing us to calculate its exact dimensions, 

orientation and positioning on the global map. From that point and onwards, Python’s Pvlib 

library is used to simulate the installation and calculate the optimum parameters to be used, 

like the type and model of solar panels and inverter that suit a specific case. To better 

demonstrate the results of our research, we examined two separate cases with different 

characteristics and demands: a medium-sized, residential, south-oriented building and a 

large, commercial, north-oriented building.  

 

 

5.2 Image loading 

 

The first step for implementing the software requirements is finding an elegant and easy way 

of accessing satellite imagery. Thus, the Maps Static API is used so as to load images based 

on the geographic coordinates of the location of interest. The Maps Static API  is a member 

of the  Google Maps Platform, a software service developed from Google specifically for 

allowing Google Maps integration into third-party applications. Apart from the location’s 

longitude and latitude, a zoom level has to be specified along with the output image 

dimensions and format. The zoom level corresponds to the vertical distance which an 

external observer sees the earth surface. Table 2 demonstrates the magnitude of the zoom 

level. For instance, zoom level set to 0, will result in an image containing the whole earth. 
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Therefore, for this implementation, a zoom level of 19 is used, allowing the representation 

of individual buildings. The generated images are chosen to have a jpeg format. 

 

In order to be able to convert the number of pixels corresponding to a rooftop to square 

meters, the square meter per pixel ration needs to be calculated for the respected zoom level 

and location. According to Chris Broadfoot, one of Google’s employees, the conversion 

equation is the following: 

 

𝑀𝑒𝑡𝑒𝑟𝑠/𝑃𝑖𝑥𝑒𝑙 = 156543.03392 × 𝑐𝑜𝑠(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 × 𝜋/180)/2𝑧𝑜𝑜𝑚𝑙𝑒𝑣𝑒𝑙 

 

 Equation 16: Meters per pixel ratio 

 

The abovementioned equation is based on the assumption that the earth’s radius is 6378137 

m [36]. As a result, the rooftop’s surface is: 

 

                               𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = 𝑝𝑖𝑥𝑒𝑙𝑠 × (𝑀𝑒𝑡𝑒𝑟𝑠/𝑝𝑖𝑥𝑒𝑙)2 

 

 Equation 17: Rooftop’s acreage. 

 

where “pixels” is the number of pixels corresponding to a rooftop.  

 

Information regarding zoom levels: 

Level 
Number 

of Tiles 

Tile width  

(o of 

longitudes) 

m/pixel 

(on 

Equator) 

Scale (on 

screen) 

Examples of areas to 

represent 

0 1 360 156 412 
1:500 

million 

Whole world 

1 4 180 78 206 
1:250 

million 

 

2 16 90 39 103 
1:150 

million 

Subcontinental area 

3 64 45 19 551 
1:70 

million 

Largest country 

4 256 22.5 9 776 
1:35 

million 

 

5 1,024 11.25 4 888 
1:15 

million 

Large African country 

6 4,096 5.625 2 444 
1:10 

million 

Large European country 
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Table 2: Information regarding zoom levels. The number of tiles column refers to the portion of tiles needed to represent 

the entire world. Tile width provides the width of the map in degrees of longitude while m/pixel column highlights how 

meters are explained by each pixel. This is a rough estimation however and this metric is calculated accurately by equation 

16 [37]. 

 

 

5.3 Model Implementation 

 

The next step is the computer vision algorithm. The specifications of this project require not 

only an accurate recognition of rooftops, given an input image, like the one offered by many 

boundary box style detectors, but also the grouping of pixels based on whether they belong 

to a rooftop depiction or not. This is the main reason why Mask R-CNN algorithm was 

chosen as our final choice for this study.                              

 

The implementation of the main algorithm is heavily based on a slightly modified usage of 

Matterport’s Mask R-CNN build [38], modified by Sharada Prasanna Mohanty for 2018 

7 16,384 2.813 1 222 
1:4 

million 

Small country, US state 

8 65,536 1.406 610.984 
1:2 

million 

 

9 262,144 0.703 305.492 
1:1 

million 

Wide area, large 

metropolitan area 

10 
1,048,57

6 
0.352 152.746 

1:500 

thousand 

Metropolitan area 

11 
4,194,30

4 
0.176 76.373 

1:250 

thousand 

City 

12 
16,777,2

16 
0.088 38.187 

1:150 

thousand 

Town, or city district 

13 
67,108,8

64 
0.044 19.093 

1:70 

thousand 

Village, or suburb 

14 
268,435,

456 
0.022 9.547 

1:35 

thousand 

 

15 
1,073,74

1,824 
0.011 4.773 

1:15 

thousand 

Small road 

16 
4,294,96

7,296 
0.005 2.387 

1:8 

thousand 

Street 

17 
17,179,8

69,184 
0.003 1.193 

1:4 

thousand 

Block, park, addresses 

18 
68,719,4

76 ,36 
0.001 0.596 

1:2 

thousand 

Some buildings, trees 

19 
274,877,

906,944 
0.0005 0.298 

1:1 

thousand 

Local highway and 

crossing details 
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Crowd AI mapping challenge [39]. Matterport’s implementation uses an FPN along with an 

RPN, for improved feature extraction and ReSNET101 backbone to construct the bottom-up 

pathway through the pyramid of feature maps. This build was trained on Microsoft COCO 

library [40]. COCO contains a massive number of datasets tailor to image segmentation 

purposes, including 1.5 million object instances and more than 200K labeled images within 

80 different object categories. Despite the large portion of image classes that COCO 

contains, none of them corresponds to rooftops. Thus, in the modified version, the main build 

was altered is so as to be compatible with a conventional training set, using JPEG images.  

 

Applying a mask, however, is not enough since only the number of pixels corresponding to 

each mask is known. Hence, every time a binary mask is generated, before the visualization 

process, the mask’s surface size is calculated by equation 18 using the estimated meters/pixel 

ratio for the current location.  

 

 

5.3.1 Detection 

 

The detection function is the core of the segmentation process. During this step, the 

calculation of the ROIs, scores (the probabilities of an ROI being a rooftop or not), binary 

masks and mask’s acreage are occurring. The detection process as a whole is can be seen in 

Figure 11, on the following page.  
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                                                      Figure 11: Flowchart of the detection process 
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5.3.2 Visualization  

 

The next step is to apply the predictions visually into the input image. For every ROI, the 

corresponding boundary box, the score and the binary mask need visualization. Since the 

coordinates of the spatial instances are already know, plotting is a fast and easy process. Its 

variable is added to the original image an order similar to the detection process. A 

demonstration of the whole visualization step is given below, in Figures 12a-12f. Keep in 

mind that this is the exact same order that variables being are estimated during the detection 

step. 

 

 

 

 

 

 

 

 

 

  

 

 

                 (a)                                                                             (b)   
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  42 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                         (e)                                                                     (f) 

 

                                          Figures 12a -12f: Demonstration of the detection and visualization process 

 

a - An input satellite image. 

b - The boundary box is being deployed based on the anchors. 

c - The probability that the boundary box contains a building is calculated. 

d - The binary mask is generated and the corresponding acreage is measured. 

e - The binary mask is applied to the output image. 

f - Final result. 

 

 

5.4 Model Training and Evaluation 

 

5.4.1 Training using two distinct datasets 

 

The training process can be quite challenging in computer vision tasks. One of the main 

challenges that needs to be addressed is the distinct diversity that occurs in terms of rooftop 

sizes, shapes and colors. In the case of the Netherlands, many residential buildings have tile 

roofs, while more modern structures may have concrete ones. Moreover, large industrial 
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buildings like factories, etc. are usually built with metal rooftops., so this instance needs to 

be covered as well. Additionally, the model should have the flexibility to distinguish a 

rooftop in every possible pattern variation. It is obvious for example, that a shift in scenery 

occurs in the transition from an urban to a woodland environment. In order to cover all these 

discrete scenarios, the training set is required to include a vast portion of respected images 

corresponding to each individual case.  

 

Two different training sets were used during this project. Firstly, a fixed data set is used, 

containing 3000 satellite images from various buildings at 19 zoom level. In this imagery 

set, about 1000 satellite images of Dutch buildings were added with the hope that eventually 

the algorithm’s would become more specialized in the Dutch architecture. Moreover, an 

image generation algorithm was applied in order to further increase the training image 

sample. With the usage of a process similar to CNN’s, realistic representations of satellite 

images are generated by picking random noise from the training set and then through 

backpropagation and weight adjustment, altering the original design until it reaches an 

accepted similarity level compared with the original training set. This process adds 1000 

additional AI produced images. Then, the dataset is split into the training set and the test set 

using a 0.7 split ratio. For the deployment of this model, Google Cloud Compute virtual 

machine was used since the computational power required for this task is quite extensive. 

Secondly, for the training process, a dataset provided by CrowdAi [41] is used, consist of 

341,058 rooftop satellite images. Finally the dataset is split between a training test of 280,741 

images and a test set of 60,317 images, used to first train the model and then assess it 

accuracy.                                        

 

5.4.2 Evaluation Process 

 

In order to be able to precisely evaluate the model’s performance, daftlogic’s google map 

area calculator software is used. This software estimates the measurements of enclosed areas 

that are designated using a drawing tool. To better access the model’s efficiency, the tested 

buildings are grouped by whether they are residential or commercial and if their location is 

beneath an urban area or the countryside. Then the margin of error is calculated using the 

equation 18: 
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        𝑒𝑟𝑟𝑜𝑟 =∣ 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 − 𝑟𝑒𝑎𝑙 ∣ (𝑚2) 

 

Equation 18: Margin of error 

 

where estimated is the output area measurement and real is the measurement calculated by 

the external tool. The accuracy of its prediction is: 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 100 −
𝑒𝑟𝑟𝑜𝑟

𝑟𝑒𝑎𝑙
 

 

Equation 19: Prediction accuracy 

 

5.5 Photovoltaic system modeling 

 

5.5.1 Pvlib python 

 

Pvlib python is an open source tool, developed on GitHub by contributors from different 

backgrounds in the field of renewable energy. It is heavily based on its pvlib Matlab sibling 

toolbox created at Sandia National Laboratories and is intended to simulate the performance 

of photovoltaic energy systems [43]. The structure of the toolbox consists of three core 

classes: Location, PVSystem and ModelChain. A Location object represents a real place 

across the globe while a PVSystem object models an assembled group of solar panels, 

inverters, etc. Also in this step, various models that explain physical phenomena like solar 

radiation, solar position, air mass, etc. need to be configured. Finally, the ModelChain class 

serves as a mean for calculating the PVSystem energy output in a given location [44]. 

 

5.5.2 Modeling Air Mass and Solar Position 

Kasten and Young (1989) AM model is used in the annual energy yield forecasting process. 

The Kasten and Young model is given below: 

 

𝐴𝑀 =
1

𝑐𝑜𝑠(𝑧) + 0.50572(76.07995 − 𝑧)−1.6354
 

 

 

Equation 20: Kasten and Young air mass model 
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The solar position is determined using NREL’s Solar Position Algorithm (SPA). SPA is an 

algorithm developed in 2004 and forecasts the solar position with extreme accuracy for the 

years -2000 to 6000 based on a combination of date, time and location [45]. Azimuth and 

zenith angles along with the sun’s elevation and the equation of time are demonstrated for 

the annual year 2018 in graph 7.  

 

                Graph 6: Azimuth, zenith angles, solar elevation and equation of time for the Amsterdam region in 2018. 

 

5.5.3 Solar Radiation Models 

 

Equation 16 is a rather simplified and empirical approach to modeling solar radiation. Pvlib 

models GHI using a clear sky model. The available models are Ineichen and Perez (2002), 

B. Haurwitz (1946) and  Simplified Solis (2008). Graph 8 compares the GHI estimations for 

the year 2018 made by all three models. Judging by the resulted graph, it is clear that the 

estimations deviation between the respected models is insignificant. Hence, the Ineichen and 

Perez clear sky model is being chosen, since it provides the simplest approach in terms of 

external parameters. Ineichen and Perez model was an extension of the Kasten equation that 

was proposed in 1984 [31]. The equation that measures GHI is noted below: 

 

 

Equation 21: Ineichen and Perez mode 
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where 𝑐𝑔1 = 5.09 × 10−5 × ℎ + 0.868 , 𝑐𝑔2 = 3.92 × 10−5 × ℎ + 0.0387  and ℎ   is the 

elevation. The products of Ineichen and Perez formula are demonstrated in graph 9. 

                 Graph 7:  Comparison of the clear sky models available in pvlib. 

 

 

           Graph 8: GHI, DNI and DHI values for the 2018 annual year using Ineichen and Perez clear sky model 
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5.5.4 Temperature Model 

During the module simulation process, the build-in samp temperature model was used. The 

next graph demonstrates how power output and module temperature are related. In addition, 

Τable 3 demonstrates the average monthly local temperatures along with the respected 

average low and max temperatures. In neither of those instances, the local temperature 

exceeds the ambient one. Therefore, losses related to temperature should not be considered. 

In reality, the low temperatures of Amsterdam assist power production. The correlation 

between temperature and PV power output is highlighted in graph 10. 

 

Average monthly temperatures in the region of Amsterdam: 

 

                                             

                                         Table 3: Average monthly temperatures in the region of Amsterdam [31] 

 

 

                                                          Graph 9: PV power output related to temperature 
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5.6:  PV Module and Inverter selection 

 

5.6.1: PV Module Selection 

 

Nowadays, photovoltaic modules are easily accessible and more affordable than ever. 

Different types of panels are available to serve different needs, at different price ranges.  As 

a result, there are many factors to consider when choosing the optimal photovoltaic module 

to ensure that the investment will be as profitable as possible in the future.  

 

The main categories of PV panels are: 

 

• Monocrystalline panels: are the most efficient – that is they require the least possible 

area to install – but they are also the most expensive ones. 

• Polycrystalline panels: are less efficient than monocrystalline ones but their price is 

much more affordable. 

• Thin-film panels: are the least expensive ones but they require the largest area to 

install – about twice as much as monocrystalline panels. Therefore thin-film panels 

are a good choice only if you have enough area available on your roof. 

 

One thing that is really important in the process of selection, is to make sure that the 

manufacturer of the panels ensures optimum quality and offers a 25-year guarantee. Bad 

quality panels can present the Staebler - Wronski effect, in which the efficiency of an 

amorphous silicon solar cell critically drops during the first six months of operation, 

typically between 10% and 30% [46].  

 

Despite some recent achievements in thin-film panels production technology, it should be 

noted that crystalline panels (mono- and poly- ones) are the common type preferred for 

photovoltaic systems. In our case, we opted for polycrystalline panels, since they have the 

lowest price per Watt while maintaining their efficiency at quite high levels.  
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5.6.2: Inverter Selection  

 

A solar inverter (or photovoltaic inverter) is a type of electrical converter which is used for 

the conversion of the variable DC output(direct current) of a PV module into a utility 

frequency AC (alternating current), which most appliances use to function. Without a solar 

inverter, energy harnessed by solar panels cannot be easily put to use, since only alternating 

current with the correct frequency can be fed into a commercial electrical grid or used by a 

local, decentralized, off-grid electrical network. It is a critical balance of system (BOS) - 

component in a PV system installations, making the use of ordinary AC-powered equipment 

possible and easily doable.  

 

Inverters used in photovoltaic systems are commonly split into the following three 

categories:  

 

• Stand-alone inverters: This type of inverters is used in isolated systems. The 

inverter draws its DC energy from batteries charged by photovoltaic arrays. 

Normally, stand-alone inverters do not interface with the utility grid in any way. As 

a result, islanding does not occur and these systems do not require anti-islanding 

protection. According to Saleh, Esa et. al. Islanding is the condition in which a 

distributed generator (DG) continues to power a location even though electrical grid 

power is no longer present [47]. A great percentage of stand-alone inverters 

nowadays incorporate internal battery chargers to charge their batteries from an 

external AC source, when available. This further optimizes the function of the 

inverter, since it allows for greater savings and autonomy. In this document, we are 

not going to consider this type of appliance since the case study focuses on grid-tied 

systems.  

• Grid-tie inverters:  The phase of a grid-tie inverter matches with the supply from 

utility. It consists of a special circuit used to match the voltage and frequency of the 

grid, thus enabling the PV panel installation to supply electricity to the grid. Since 

this type of inverters is directly tied to the grid, the danger of islanding is present 

and thus it is mandatory for the system to be able to automatically shut down during 

utility outage. The inverter can detect the presence of a blackout and shuts down 

automatically to prevent the energy it produces from harming any line workers who 
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are sent to fix the power grid. Grid-tie inverters that are available in the market 

today take advantage of a number of different technologies. They may use a variety 

of transformers, as the newer-higher frequency or the conventional low-frequency 

ones or, even, no transformer. Especially in the case of the high-frequency 

transformers, it is important to point out that they employ a computerized multi-step 

process which involves first converting the power to high-frequency AC, then back 

to DC and then to the final desired AC output voltage, instead of converting current 

directly to 120 or 240 volts AC [48]. 

• Battery backup inverters:  Battery backup inverters are a special kind of inverters, 

which are designed to draw energy from a battery. They use an onboard charger to 

manage the battery charge and export excess energy to the utility grid. This type of 

inverters is capable of supplying AC energy to selected loads during a utility outage 

and are required to have anti-islanding protection, just like the grid-tied ones.  

 

Since the scope of our projects at the moment is focused on maximizing the feed-in, the most 

adequate type of inverter would be a grid-tied one. It is especially important to pick an 

inverter suited to the power demand of each specific building, to make sure that the load will 

be suitable to the device of our choice. As a general rule, the power of the inverter should 

follow the equation: 

      

     𝑃𝑜𝑤𝑒𝑟 𝑜𝑓 𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑟 = 𝑝𝑜𝑤𝑒𝑟 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡/ 𝑝𝑜𝑤𝑒𝑟 𝑓𝑎𝑐𝑡𝑜𝑟 

 

Equation 22: Power of inverter 

 

To be on the safe side of the calculations, from now on we will assume a power factor of 

0.7.  
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6. RESULTS 

 

6.1 Mask R-CNN Accuracy 

 

The model’s performance under the first training set was poor with the the accuracy of the 

generated ROI’s and the final boundary boxes was below average. Thus, the applied masks 

failed to capsule the target pixels which corresponded to a rooftop. Two distinct outputs that 

demonstrate the model’s inaccuracy are showcased in figures 18 and 19. In the first case , 

the model managed to correctly classify only a portion of the building, which is highlighted 

with a red color mask, while a parking area along with nearby roads are falsely classified as 

rooftops. On the other hand, in Figure 19 the model’s precision is significantly higher since 

it manages to correctly classify the main building in the center of the image. This is not the 

case however, in terms of mask accuracy. Even though the mask covers most of rooftop’s 

surface, it falsely includes numerous portions of surroundings. Let alone, a major part of a 

neighboring road that is incorrectly classified as a building as well. 

 

         Figures 13a, 13b: Demonstration of two distinct cases of model’s misclassifications under the first training set 

 

 

 



  52 

Under the second dataset however, model accuracy was significantly higher. The boundary 

box classification is now more precise while the generated masks describe the identified 

rooftops in a more valid manner.  

 

  

 

 

 

 

 

 

 

 

                                                

 

 

 

 

                                             Figure 14: Model performance under the second dataset. 

 

The results of this comparison are presented in Table 4. The model seems to be way more 

efficient in identifying rooftops belonging to commercial buildings like large storehouses, 

factories, etc. The model’s accuracy further increases when the surrounding patterns 

correspond to rural area scenery, something that also applies to residential buildings. The 

reason why this inconsistency in terms of accuracy occurs has to do with the distinct 

variation between textures in countryside locations. The wider spaces, the lack of shading 

from larger structures and the home’s architecture in general, seem to benefit the model 

prediction precision. On the other hand, in urban areas, the distance between buildings is 

limited making the discrimination even harder. Moreover, in Amsterdam’s case, many paved 

roads happen to have similar textures to many tile roofs, an occasion which the model 

strangle to distinguish. Lastly, the lower accuracy rates within city limits are also a result of 

Amsterdam’s distinct architecture and the inability of the model to generalize in these  

instances. A visualization of model’s accuracy is given in figures 21a and b. 
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Accuracy results in four different scenarios: 

 

 

Table 4: Accuracy results in four different scenarios. The model is more efficient in predicting commercial buildings located 

in rural areas.   

 

Demonstration of the model’s performance in the identification of a large storehouse: 

 

 

 

Figure 15: Demonstration of the model’s performance in the identification of a large storehouse. In this case, the size of 

the mask corresponds to 715.19 m² while the external tool measurement is 763.50 m² leading to 48.31 m² error. The 

accuracy in this instance is 93%. 

 

 

Cases of Misclassification 

 

During the evaluation process, a few frequently occurring cases of misclassification were 

noticed.  The first and most severe one, is correlated mostly with small residential buildings 

under shading, something that preserves the continuity of their surrounding environment. In 

cases like these, as the one demonstrated in figures 22a and 22b, due to texture similarities, 

 
Buildings within City 

Limits 

Countryside 

Buildings 
Overall 

Commercial 

Buildings 
0.7911 0.8539 0.8225 

Residential Buildings 0.7094 0.7632 0.7363 

All Buildings 0.7502 0.8086 0.7794 
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the model assumes that all the similar surfaces, consist of an entire building and generates 

the mask along with the boundary box accordingly. The second and third instances of 

misclassification share many similarities. These structures are parking lots and football 

fields, along with basketball and tennis courts. In both occasions, the presence of vivid lines 

across the structure’s surfaces is mistaken to be considered as a rooftop by the model. This 

is also the case rectangular structures in general with intense surrounding objects, like yards, 

which frequently tend to lead in false classifications. 

 

A case of misclassification: 

 

 

Figure 16a, 16b: A case of misclassification. The main causes of this issue are continuity in textures and colors along with 

the absence of vivid segregating objects. 

 

 

6.2 Energy Yield 

 

 

After examining the efficiency of our study regarding the rooftop extraction, it is now 

important to do the same for the annual energy yield calculations. To do so, we decided to 

use a website mentioned in “Literature Review”, Dutch PV Portal 2.0. The reasoning behind 

this choice is primarily the fact that this tool is specifically geared towards the Netherlands 

and uses exceptionally accurate data for the modeling, in collaboration with the Royal 

Netherlands Meteorological Institute. TU Delft’s Photovoltaic Materials and Devices 
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(PVMD) group closely monitor the forecasts’ accuracy, ensuring that the output will be as 

realistic as possible.  

 

In order to verify the annual energy yield calculations, we opted to test out two different 

cases, with different locations, orientation, solar panel type and compare them on a basis of 

10 m² surface area. In the first case, the annual energy yield of a rooftop mounted 

polycrystalline silicon system located in Eindhoven, with a tilt of 27° and azimuth of 130° 

is calculated at 1.3 MWh by the Portal and at 1.397 MWh by our model, which is quite 

accurate. On the second case, a solar park with monocrystalline silicon panels located in 

northern Amsterdam, with a tilt of 60° and azimuth of 95° yields 679.64 kWh in a year 

according to the Portal, while our model calculates an output of 798.543 kWh for the same 

time period. These are some examples of the tests we conducted to determined the accuracy 

and efficiency of our forecasting, which is measured at an average of 87.32%.  
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7. CASE STUDY: RESIDENTIAL BUILDING IN HOOFDDORP 

 

As a case study, we decided to simulate the solar rooftop installation on a medium-sized, 

residential, south-oriented building, which is quite a common occurrence. The building we 

chose is situated in Hoofddorp and is part of an extended neighborhood with numerous 

similar buildings. The horizontal geographical coordinates of the building are 52.300541 

longitude and 4.701127 latitude. As a first step, rooftop extraction was implemented though 

Mask R-CNN, as shown on the images below. On the image on the left (24a), we can see 

the part of the neighborhood where the building is situated, taken from the original Google 

Maps website, with a zoom level of 20. Subsequently, after applying the algorithm the result 

is depicted on the right (24b) where many buildings are identified, but we will focus on the 

one on the center, with the red mask.  

 

                              Figures 17a, 17b: Residential building in Hoofdoorp 

 

It is quite obvious that Mask R-CNN’s efficiency is affected by the factors mentioned before: 

it is important to have the whole building included in the selected area, while clear borders 

and colour contrast also play an important role. The efficiency of the algorithm is measured 

by comparing the calculated surface of the extracted area with the actual surface of the 

building in square meters (m²). Since the output of the mask is in pixels, we have to convert 

it to m² to have a basis for comparison. Based on the formula described on the 
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“Methodology” section, the surface of the building equals to 101.2912 m² (12153 pixels). 

Consequently, we decided to use the “Google Maps Area Calculator Tool”, which is freely 

available on Daft Logic website, to compare our results with [43]. The area calculator tool 

measures the surface of the enclosed area, shown below, at 97.86 m², in Figure 26.   

 

                              Figure 18: Estimated rooftop area using “Google Maps Area Calculator Tool” 

 

As a result, the percentage of error in our calculation equals to 3.506%, which is quite precise 

and, thus, acceptable to use to move forward with our calculations.  

 

Installation Specifications  

 

As previously mentioned, the solar panel that is going to be used in this simulation is the 

Talesun Solar TP660P-265, which is a 265 Watt polycrystalline solar panel. The cost of each 

PV module amounts to 165 USD or 145.59 euros, rounded up to 150 to cover any minimal 

increases in the exchange rate. This was one of the top-rated, most value-for-money panels 

in the market in the year 2018, with the cost per Watt being really low, at 0.44 $/Watt. It has 

an inbuilt system of bypass diodes (3-6) which ensure that the optimal operation of the panel 

is not disrupted even in the case of extreme shading. It has an open circuit voltage of VOC 

= 37.9 V , short circuit current ISC = 9.25 A, maximum power PMPP = 235.7 W , nominal 
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cell efficiency of η = 16.3%, dimensions of 64.6 x 39 x 1.4 inches (1640 x 990 x 35 mm). A 

complete overview of the specifications can be found in appendix. 

In order to implement our simulation, t is important to take into account the size of the PV 

modules: in our case, the Talesun TP660P-265 has dimensions of 64.6 x 39 x 1.4 inches 

(1640 x 990 x 35 mm), which accounts for 1.623.600 mm² or 1,623 m² per panel. Based on 

101.0 m² roof, the number of panels that could be installed could vary between 55 and 61, 

depending on the positioning and angle of the modules. Since some space is needed to be 

left free on the roof for the inverter, we will consider the optimum number of PV panels to 

be 52, just to be on the safe side with our calculations. As a result, our system will have an 

installed power of 13780 kW.  Based on this number, the total cost of the modules comes up 

to 8580 USD or 7560.68 euros, not taking into account any installation costs that might 

occur.  

The last thing that should be considered when researching the economic viability of the 

project is the type and the cost of the inverter. In table 5 below, we can see the power 

demands of a typical dutch household nowadays. Even though the sum comes up to 15 kW, 

we will assume that no more than 10 kW of power are required, since for example the tumble 

dryer and the washing machine won’t be running at the same time.  

 

Typical power usage of household appliances: 

Type of appliance Capacity (W) 

Combi fridge-freezer A+ 150-200  

Dishwasher 1200c 

Coffee Machine  500-1000 

Cooker hood 70-150 

Microwave oven 1000-1500 

Conventional electric oven 2000-2500 

LED TV x2 20-60 

Low-energy light bulbs x25 12 

Game console 20-180 

Tumble dryer C 2500-3000 

Washing Machine A+++ 2500-3000 

Iron 750-1100 

Vacuum cleaner 650-800 

Computer with flat screen 70-80 

Mobile phone charger x4 5 

Hairdryer  300-600 

Electric shaver 8-12 

Back-up heating appliance 1000-2000 

Sum  15345 
                 

            Table 5: Typical power usage of household appliances 
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As discussed in the sections above, there are many available options when choosing an 

inverter, but we opted for the StorEdge SE-5000 RWS, which is a model specifically 

designed for the Netherlands, Austria, Germany, Switzerland and Belgium. SolarEdge is a 

well-known and established company in the field of PV installations and offers a guarantee 

of 12 years for its products, making it a very reliable option. Two of these inverters are going 

to be used in the installation, which will allow for 10000 W of AC Power output. This 

inverter provides the user with some interesting features, like the ability to remotely access 

and change all settings in the device, which is connected to the network, through a simple 

app. In addition, the app gives a lot of insight on data generated by the inverter, such as PV 

production and self-consumption statistics, built-in monitoring of battery status and 

remaining power status. These assets will be proven especially useful in the future with the 

addition of a battery in the system, since the feed-in prices will continuously drop and the 

focus will be put on maximizing self-consumption. The price of each device is 488 USD or 

429.53 euro, so the total cost of them equals to 859.06 euro. As a result, the total cost of the 

materials for the installation is 8419.74 euro, rounded up to 9200 to include cables and 

rooftop installation materials (mounts, etc.).  

 

Now, there are two different cases to go from here, depending on the user's choice. Firstly, 

there is the option of the manual, independent installation, with some help from an electrician 

to finalize the connection to the grid. The second option is to hire a specialized company to 

professionally install all needed components, ensure connection to the grid and take care of 

all maintenance. We are going to consider the first case, where the cost can be rounded up 

to 10000 euros, including expenses for an electrician to help with the most challenging parts 

of the installation. Furthermore, regarding the maintenance costs of the system, 250 euros is 

a normal amount for this kind of installation, inflated by 2% every passing year [49].  

 

 

PV system simulation 

 

In order to better simulate the solar yield of the Hoofddorp building installation, we used the 

PvLib library for python. Firstly, we ran numerous simulations with different values for the 

panel tilt, ending up with 48° as a best case. The azimuth is set at 157.5° , since the house is 

oriented towards south-east.  Historical weather and irradiation data were used to calculate 

the losses of the system annually, according to the equations in “Methodology” section. The 
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distribution of the annual solar energy production is depicted on the left image (Graph 11a), 

while the percentages of the system’s efficiency losses on the right (Graph 11b). 

Graph 10a: System energy production for an average year                     Graph 10b:  real-time system efficiency losses 

 

Our calculations regarding the economic feasibility and viability of the project are presented 

in Table 6 below, where we simulate the results of the installation during the next 10 years. 

 

PV installation case study: 

 

 

                                                                       

                                                                     Table 6: PV installation case study 

 

Looking at this table, it is quite apparent that the system is profitable, with a Return Of 

Investment (ROI) of 18.5%. Return on investment, or ROI, is the ratio of a profit or loss 

made in a fiscal year expressed in terms of an investment and shown as a percentage of 
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increase or decrease in the value of the investment during the year in question. It is 

represented by the following equation: 

 

       𝑅𝑂𝐼 = (𝑅𝑒𝑡𝑢𝑟𝑛 − 𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡)/𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡  

 

Equation 23: ROI calculation 

 

It is important to point out that with the new scheme, SDE++, in order for a project to qualify 

for the subsidy, it should not reach the break-even point before its 6th year. As our project 

is supposed to reach its break-even point on year 6, it fulfills the criteria to receive the SDE++ 

subsidy and benefit from favorable feed-in tariffs. As the subsidy critically decreases 

throughout the years it would be interesting to examine as a future project the integration of 

a battery in the system. This move would drastically increase self-consumption, which is the 

main goal in the future since feed-in will become obsolete and non-profitable.  
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8. CONCLUSIONS AND FUTURE PROSPECTS 

 

In this study, a computer vision based research was conducted to implement a rooftop 

detector able to estimate rooftop’s acreage and then, using pvlib Python’s toolkit, to estimate 

the energy output of a potential PV installation. Later on, the developed methodology was 

applied in a case study focusing on a medium-sized residential building in Hoofddorp, 

Amsterdam. The aim of this case study was to provide a tailored PV installation to the energy 

requirements of the aforementioned residence, whilst creating an analytical investment 

report based on the current legislation. Namely our model was able to produce a calculation 

of rooftop’s area with a percentage of error equals to 3.506%. Using 52 Talesun Solar 

TP660P-265 PV modules and two StorEdge SE-5000 RWS inverters, it is estimated that this 

project will reach break-even point in year 6 and have a ROI of 18.5% against a starting cost 

of 9200 euros. The methods described in the sections above can be used in numerous 

different cases and are not limited on small or big buildings, urban or rural areas, shaded or 

not.  

 

Finally, this research allows room for potential improvement. The detector’s accuracy could 

be increased and further individualized to the Netherlands, especially in detection within the 

city-scape. Furthermore, the addition of batteries and energy management system in case 

studies would frame the broader picture of the future, which is centered around the 

maximization of self-consumption. Since the SDE++ pushes Dutch PV energy producers in 

this direction, aiming to minimize feeding-in the grid, a research focused purely on the 

impact of these components should follow this one, to counteract the problem as a whole. 

Last but not least, based on this thesis work, the ultimate goal would be to implement a web-

based application allowing the process discussed in previous chapters to be autonomous and 

personalized, intending to assist energy consumers who are willing to invest in renewable 

energy sources but hesitate to take the first step. 
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