

UNIVERSITY OF THESSALY

DEPARTMENT OF ELECTRICAL & COMPUTER

ENGINEERING

Optimization of the splitting parameters selection on Decision

Trees used by dynamically adaptive Markovian State Spaces

on elastic resource management under unpredictable loads

MASTER THESIS

Georgios Argyriou

Academic supervisor: Dr. Dimitrios Katsaros

 Assistant Professor

Volos, February 2019

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

1

Acknowledgements

 I would like to thank my supervisors Dimitrios Katsaros and Ioannis

Konstantinou for the help they provided. This work is the result of cooperating with the

Computing Systems Laboratory of National, Technical University of Athens. Special

thanks to Giannis Giannakopoulos for all the help and immediate response whenever I

had technical issues with my OpenStack resources.

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

2

“Swimming against the current. Lost in a sea of mediocrity”

J.P.

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

3

Abstract

 Cloud computing has gained popularity over the last decade leading companies

and organizations to either offer or use Infrastructure as a Service (IaaS). By utilizing

such technologies they succeed in using computer resources according to their everyday

needs. In IaaS, the computer resources are shared between many users and usage is much

more effective. Even so, when a user binds an amount of resources and deploys an

application, the clients may create varying loads, because clients’ needs vary during a 24

hour period. Therefore, users of IaaS need a way to increase or decrease their resources

according to their clients’ needs in order to satisfy the higher loads during peak hours, but

not bind more resources than needed during periods of lower traffic. This bind and

release process can be achieved either manually, or by following a simple policy that is

offered by several administrating systems

 In this work we study Tiramola’s performance, a system that offers automatic

adaptation of the size of a NoSQL database according to user’s policy. We use the last

version of Tiramola, where the Decision Making module implements Reinforcement

Learning algorithms along with adaptive partitioning of the State Space, using Decision

Trees. In order to succeed in partitioning the State Space, Tiramola uses metrics as

splitting parameters from the cluster of VMs where a NoSQL database (HBase in our

case) is deployed and stressed under a load. In the first two phases of experiments we

study the behavior of the metrics of the HBase-cluster under linear increasing load and

constant load. Based on this data analysis we estimate which one of them can behave

better as a splitting parameter when used by Tiramola. In the third phase of experiments,

we stress the HBase cluster under sinusoidal load, use the metrics we studied as splitting

parameters and verify our evaluation. Tiramola’s performance reveals which metrics are

efficient as splitting parameters and which are not. In the fourth and last phase of

experiments, we configure Tiramola to use the best splitting parameters and study its

performance by stressing the HBase cluster under unpredictable load.

Key Words

Distributed Systems, Cloud Computing, Markovian State Space, Resource Management,

Elasticity, Data Analysis, NoSQL, HBase, Tiramola

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

4

Περίληψη

 Η αύξηση της δημοτικότητας των υπολογιστικών νεφών, γνωστός όρος ως cloud

computing, έχει οδηγήσει σε προσφορά Υποδομών ως Υπηρεσίες, γνωστές κι ως

Infrastructure as a Service (IaaS). Με αυτές οι χρήστες μπορούν να δεσμεύσουν πόρους

για εκτέλεση απλών εφαρμογών ή πειραμάτων κατά το δοκούν. Ως αποτέλεσμα, η χρήση

των υλικών πόρων διαμοιράζεται ανάμεσα σε πολλούς χρήστες κι αξιοποίηση των πόρων

είναι πιο αποτελεσματική. Παρατηρείται πάντα αυξομείωση στη χρήση αυτών των

συστημάτων καθώς ο φόρτος που δημιουργούν οι τελικοί χρήστες των εφαρμογών

αλλάζει κατά τη διάρκεια της μέρας. Ως εκ τούτου, υπάρχει απαίτηση για αυξομείωση

της διαθεσιμότητας των πόρων ώστε από τη μία οι εφαρμογές που τρέχουν πάνω σε

τέτοια συστήματα να έχουν συνέπεια και να εξυπηρετούν τη ζήτηση ακόμα και τις ώρες

αιχμής, αλλά από την άλλη να μη δεσμεύουν περισσότερους από τους απαιτούμενους

πόρους τις υπόλοιπες χρονικές περιόδους. Αυτή η αυξομείωση μπορεί να επιτευχθεί είτε

χειροκίνητα, είτε με χρήση απλής τακτικής που προσφέρουν διάφορα συστήματα

διαχείρισης υποδομών.

 Σε αυτή την εργασία μελετούμε την επίδοση του Tiramola, ενός συστήματος που

επιτρέπει την αυτόματη αυξομείωση του μεγέθους μίας NoSQL βάσης δεδομένων

ακολουθώντας οποιαδήποτε τακτική ορίσει ο χρήστης. Χρησιμοποιούμε την τελευταία

έκδοση του Tiramola, όπου στη μονάδα απόφασης γίνεται προσαρμοστικός

διαμοιρασμός χώρου καταστάσεων Μαρκοβιανών μοντέλων. Για να επιτευχθεί ο

διαμοιρασμός των καταστάσεων χρησιμοποιούνται οι μετρικές των εικονικών

μηχανημάτων όπου τρέχει μια NoSQL κατανεμημένη βάση δεδομένων (HBase) υπό

φορτίο. Στις δύο πρώτες φάσεις πειραμάτων εξετάζουμε την συμπεριφορά των μετρικών

της συστάδας εικονικών μηχανημάτων της HBase υπό γραμμικά αυξανόμενο φορτίο,

αλλά και σταθερό, ώστε να αξιολογήσουμε ποιες από τις μετρικές μπορούν να

λειτουργήσουν καλύτερα ως παράμετροι διαχωρισμοί Μαρκοβιανών καταστάσεων από

τον Tiramola. Στην τρίτη φάση πειραμάτων επιβεβαιώνουμε την αξιολόγηση των

μετρικών/παραμέτρων διαχωρισμού παρακολουθώντας τις επιδόσεις του Tiramola υπό

ημιτονοειδές φορτίο προς τη βάση. Στην τέταρτη και τελευταία φάση πειραμάτων,

χρησιμοποιούμε τις βέλτιστες παραμέτρους διαχωρισμού και παρακολουθούμε τις

επιδόσεις του Tiramola υπό απρόβλεπτο φορτίο.

Λέξεις κλειδιά

Κατανεμημένα Συστήματα, Υπολογιστικό Νέφος, Μαρκοβιανές Καταστάσεις,

Ελαστικότητα, Διαχείριση Πόρων, Ανάλυση Δεδομένων, NoSQL, HBase, Tiramola

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

5

Contents

Acknowledgments 1

Abstract 3

Περίληψη 4

Contents 5

List of Figures 8

List of Tables 10

Chapter 1

Introduction 11

1.1 Cloud Computing, NoSQL databases and elasticity 11

1.2 Thesis subject 12

1.3 How this work is organized 12

Chapter 2

Technical Aspects 14

2.1 Technical overview 14

2.2 OpenStack 15

2.2.1 OpenStack components 15

2.3 Hadoop 16

2.3.1 HDFS architecture 16

2.4 HBase 18

2.4.1 HBase building blocks 18

2.4.2 HBase architecture 18

2.5 Yahoo Cloud Serving Benchmark 19

2.6 Ganglia 21

2.6.1 Ganglia architecture 21

2.7 Tiramola 23

2.7.1 Tiramola Architecture 23

2.7.2 Tiramola’s Decision Making Module 24

Chapter 3

Using Tiramola 26

3.1 Tiramola workflow 26

3.2 Type of load 27

3.3 Modes of the Decision Making module 27

3.4 Available metrics 27

3.5 State Spaces 30

3.5.1 State Spaces for beginners in Reinforcement Learning 30

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

6

3.5.2 State Spaces in Tiramola 31

3.5.2.1 State Space in Q and MDP modes 32

3.5.2.2 State Space in Q-DT and MDP-DT modes 33

3.6 Using the last version of Tiramola 34

Chapter 4

Analyzing HBase cluster metrics 35

4.1 Objective 35

4.2 Experiments pt. 1: Linear increasing load 35

4.2.1 Metrics’ behavior under linear load 41

4.2.2 Conclusions about metrics behavior for linear increasing load 41

4.3 Experiments pt. 2: Constant load 42

4.3.1 Metrics’ behavior under constant load 45

4.3.2 Data analysis of metrics. Cluster is stressed by constant load

close to critical

46

4.3.3 Conclusions about metrics behavior under constant load 49

Chapter 5

Experimental results 50

5.1 Objective 50

5.2 Experiments pt. 3: Sinusoidal load 51

5.2.1 Metrics as splitting parameters 51

5.2.2 The splitting algorithm 52

5.2.2.1 Assumptions on the splitting algorithm 53

5.2.3 Experimental setup 53

5.2.4. Introducing comparison measurement 55

5.2.5 Performance of splitting parameters 56

5.2.6 Conclusions on splitting parameters’ performance 60

5.3 Experiments pt. 4: Unpredictable Load 61

5.3.1 HBase cluster stressed under 1st type unpredictable load 62

5.3.2 HBase cluster stressed under 2nd type unpredictable load 64

5.3.3 HBase cluster stressed under 3rd type unpredictable load 66

5.3.4 HBase cluster stressed under 4th type unpredictable load 68

5.3.5 Conclusions on Tiramola’s performance under unpredictable

load

70

5.3.6 Extending Tiramola’s flexibility 70

5.3.6.1 Tiramola against unpredictable load of 2nd type 71

5.3.6.2 Tiramola against unpredictable load of 3rd type 75

5.3.7 Conclusions on extended Tiramola against unpredictable load 78

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

7

Chapter 6

Epilogue 79

6.1 Conclusions 79

Bibliography 81

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

8

List of Figures

Fig. 2.1 OpenStack components 15

Fig. 2.2 HDFS architecture 17

Fig. 2.3 The HBase architecture 19

Fig. 2.4 The YCSB client architecture 20

Fig. 2.5 The Ganglia architecture 22

Fig. 2.6 The Tiramola architecture 23

Fig. 3.1 State-space of RL-exercise for beginners 31

Fig. 3.2 Simple State Spaces in Reinforcement Learning 32

Fig. 4.1 % CPU usage behavior against linear increasing load 36

Fig. 4.2 total_latency behavior against linear increasing load 36

Fig. 4.3 load_one behaviro against linear increasing load 37

Fig. 4.4 total_throughput behavior against linear increasing load 37

Fig. 4.5 network_usage behavior against linear increasing load 38

Fig. 4.6 disk_free behavior against linear increasing load 38

Fig. 4.7 %free_RAM behavior against linear increasing load 39

Fig. 4.8 %_cached_RAM behavior against linear increasing load 39

Fig. 4.9 cpu_wio behavior against linear increasing load 40

Fig. 4.10 io_reqs behavior against linear increasing load 40

Fig. 4.11 %_CPU_usage @ 3VMs against constant loads: 2000, 3600 and 5000 42

Fig. 4.12 Figure 4.12: %_CPU_usage @ 6VMs against constant loads: 10000,

11400 and 12800

43

Fig. 4.13 %_CPU_usage @ 6VMs against constant loads: 15200, 16400 and 17200 43

Fig. 4.14 io_reqs @ 3VMs against constant loads: 2000, 3600 and 5000 44

Fig. 4.15 io_reqs @ 6VMs against constant loads: 10000, 11400 and 12800 44

Fig. 4.16 io_reqs @ 6VMs against constant loads: 15200, 16400 and 17200 45

Fig. 5.1 Ideal Tiramola performance against sinusoidal load 55

Fig. 5.2 Tiramola performace with total_thgoughput as splitting parameter 57

Fig. 5.3 Tiramola performace with cpu_wio as splitting parameter 57

Fig. 5.4 Tiramola performace with total_latency as splitting parameter 58

Fig. 5.5 Tiramola performace with %_free_RAM as splitting parameter 58

Fig. 5.6 Tiramola performace with all 1st group as splitting parameters 59

Fig. 5.7 Tiramola performace with all 2nd group as splitting parameters 59

Fig. 5.8 Tiramola performance: 1st type of Unpredictable load. 1000 t.s. training 62

Fig. 5.9 Tiramola performance: 1st type of Unpredictable load. 2000 t.s. training 62

Fig. 5.10 Tiramola performance: 1st type of Unpredictable load. 4000 t.s. training 63

Fig. 5.11 Tiramola performance: 1st type of Unpredictable load. 8000 t.s. training 63

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

9

Fig. 5.12 Tiramola performance: 2nd type of Unpredictable load. 1000 t.s. training 64

Fig. 5.13 Tiramola performance: 2nd type of Unpredictable load. 2000 t.s. training 64

Fig. 5.14 Tiramola performance: 2nd type of Unpredictable load. 4000 t.s. training 65

Fig. 5.15 Tiramola performance: 2nd type of Unpredictable load. 8000 t.s. training 65

Fig. 5.16 Tiramola performance: 3rd type of Unpredictable load. 1000 t.s. training 66

Fig. 5.17 Tiramola performance: 3rd type of Unpredictable load. 2000 t.s. training 66

Fig. 5.18 Tiramola performance: 3rd type of Unpredictable load. 4000 t.s. training 67

Fig. 5.19 Tiramola performance: 3rd type of Unpredictable load. 8000 t.s. training 67

Fig. 5.20 Tiramola performance: 4th type of Unpredictable load. 1000 t.s. training 68

Fig. 5.21 Tiramola performance: 4th type of Unpredictable load. 2000 t.s. training 68

Fig. 5.22 Tiramola performance: 4th type of Unpredictable load. 4000 t.s. training 69

Fig. 5.23 Tiramola performance: 4th type of Unpredictable load. 8000 t.s. training 69

Fig. 5.24 Ideal Tiramola performance against 2nd type of unpredictable load 72

Fig. 5.25 Tiramola perf.: Standard evaluation 2nd type of unpr. Load, 1000 train t.s. 73

Fig. 5.26 Tiramola perf.: Standard evaluation 2nd type of unpr. load, 2000 train t.s. 73

Fig. 5.27 Tiramola perf.: Standard evaluation 2nd type of unpr. load, 4000 train t.s. 74

Fig. 5.28 Tiramola perf.: Standard evaluation 2nd type of unpr. load, 8000 train t.s. 74

Fig. 5.29 Ideal Tiramola performance against 3rd type of unpredictable load 75

Fig. 5.30 Tiramola perf.: Standard evaluation 3rd type of unpr. load, 1000 train t.s. 76

Fig. 5.31 Tiramola perf.: Standard evaluation 3rd type of unpr. load, 2000 train t.s. 77

Fig. 5.32 Tiramola perf.: Standard evaluation 3rd type of unpr. load, 4000 train t.s. 77

Fig. 5.33 Tiramola perf.: Standard evaluation 3rd type of unpr. load, 8000 train t.s. 78

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

10

List of tables

Table 3.1 IaaS metrics 28

Table 3.2 NoSQL cluster metrics 28

Table 3.3 YCSB client metrics 29

Table 3.4 Combined metrics 30

Table 4.1 Metrics according to behavior under linear increasing load 41

Table 4.2 Critical load for each cluster size 41

Table 4.3 avg and cf_var of metrics @ 3 VMs 46

Table 4.4 avg and cf_var of metrics @ 4 VMs 46

Table 4.5 avg and cf_var of metrics @ 5 VMs 47

Table 4.6 avg and cf_var of metrics @ 6 VMs 47

Table 4.7 avg and cf_var of metrics @ 7 VMs 48

Table 4.8 avg and cf_var of metrics @ 8 VMs 48

Table 4.9 avg and cf_var of metrics @ 9 VMs 49

Table 5.1 Selected parameters for MDP 54

Table 5.2 VM characteristics for experiments 54

Table 5.3 Tiramola performance for one or more splitting parameters 56

Table 5.4 Tiramola performace against 2nd type of unp. load. Standard evaluation

load

72

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

11

Chapter 1

Introduction

1.1 Cloud Computing, NoSQL databases and elasticity

 The explosive growth of data during the last decade led us to employ new ways of

storing and processing them. New kinds infrastructures were created and cloud

computing was adopted very quickly both by companies and researchers. The volume of

the data is so vast that it became necessary to divide them into more than one machines.

Distributed systems were evolved and distributed file systems like the Hadoop DFS were

created. Along with distributed storage, platforms of distributed processing were

developed like Apache Hadoop, Apache Spark and many more. Furthermore, the

computing society needed to find an SQL equivalent for distributed data and NoSQL

distributed databases came to play like HBase, Cassandra, Riak, Voldemort and many

more.

 NoSQL databases are horizontally scalable distributed non-relational storage

spaces. They are designed to run on large scale distributed systems, managing the

distribution of data and the coordination of machines. Also, they tolerate hardware

failures.

 One of their most important characteristics of NoSQL databases is elasticity. It

makes them the most suitable for using Infrastructure as a Service (IaaS) offered by cloud

computing platforms. IaaS gives the ability of elastically scale up or down according to

the user’s needs. Elasticity is a very important ability giving the opportunity to users to

adapt to the incoming traffic caused by clients. Adapting to the resources according to

incoming traffic can reduce the cost during periods of low incoming load, while keeping

an application available during the periods of high demand.

 Tiramola is a system that allows automating elasticity of NoSQL databases

according to a user defined policy. Unlike other systems, Tiramola is not using simplified

methods to automate elasticity like defining a simple threshold or asking from the user to

set the conditions. Tiramola’s last version is using Reinforcement Learning algorithms

such as Markov Decision Processes and Q-Learning enriched with adaptive State Spaces

by utilizing Decision Trees. This enrichment allows Tiramola to better adapt the State

Space and capture the complexity of the system.

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

12

1.2 Thesis subject

 In this work, we are going to use the last version of Tiramola and evaluate its

behavior when unpredictable load runs against an HBase cluster. Tiramola’s last version

has already been evaluated as an improvement in comparison to older versions that

implement more traditional Reinforcement Learning algorithms, but not yet been tested

adequately as to which are the optimal splitting parameters. Also, all the related works

about automating elasticity with Tiramola were always using sinusoidal load, but in this

work we are going to experiment using unpredictable loads.

 The first challenge hides a bigger topic that has never been fully covered in any

previous relevant work, the HBase cluster’s behavior. Every Tiramola version has a

Decision Making module that implements Reinforcement Learning algorithms. That’s

how Tiramola decides about the size of the cluster. For doing so, every Tiramola version

uses the metrics of a NoSQL cluster and these metrics have never been analyzed

adequately. So, in the first two parts of the experiments we study the behavior of the

HBase cluster while it is stressed. We monitor the metrics of the cluster and considering

how the splitting parameters in Decision Trees are used, we evaluate the suitability of the

metrics as splitting parameters. During the third phase of experiments we verify our

evaluation and finally decide which of the metrics can be the optimal splitting parameters

for Tiramola’s Decision Trees. That’s how we meet the challenge about using optimally

the last version of Tiramola.

 The second challenge is split into two smaller ones. In the first phase we try to

find the level of randomness of an unpredictable load. When we find it, in the second

phase we configure Tiramola’s range of actions in order to have a fair encounter between

the big changes of the load and Tiramola’s flexibility. Then, we study and evaluate

Tiramola’s behavior against the most reasonably unpredictable loads.

1.3 How this work is organized

In the second chapter we present all the tools and platforms that are used in this work and

give an overview of our infrastructure.

In the third chapter we dive into Tiramola and explain its workflow in a technical way

and give an overview of what happens when we use Tiramola.

In the fourth chapter we present the first three round of experiments. By analyzing the

HBase cluster’s metrics we accomplish to describe how HBase reacts when stressed.

Also, by knowing how the splitting algorithm works, we can make solid assumptions

about which one of them can be used efficiently as a splitting parameter. In the third

round, we verify which parameters are more efficient

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

13

In the fifth chapter we are testing Tiramola by using the optimal splitting parameters. We

run several types of unpredictable loads against the HBase, study its behavior, extend its

flexibility and finally evaluate it.

In the sixth and last chapter, we present our conclusions.

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

14

Chapter 2

Technical Aspects

2.1 Technical Overview

 In order to test automation of the elasticity of a NoSQL database we need to

reproduce the whole environment. So, except of the cluster of machines that have a

NoSQL database installed, we also want machines that will act as clients of the database

and make the queries, a system that can monitor everything and of course, we want the

tool that decides automatically to expand or contract the NoSQL cluster.

 We use OpenStack to create all the virtual machines (VMs) we need. By using

OpenStack, we create cluster of VMs where a NoSQL database is installed, HBase in our

case, and a second cluster of VMs that will act as clients. In each client VM we install the

YCSB tool which can insert records into HBase, make either read or update queries and

even delete the records. For monitoring everything, we use Ganglia. The Open Stack

installation offered by the Computer Science Laboratory of the National and Technical

University already has Ganglia that monitors the installation (outside of our VMs). We

also install another Ganglia on the HBase cluster, because we want metrics from inside of

the HBase cluster. Last but not least, Tiramola is installed on the master of the HBase

cluster and is in charge of everything: start/stop the clients, define what kind of load the

clients create, get all kinds of metrics, decide the size of the cluster and send all

commands either to the HBase cluster about start/stop/restart or to the OpenStack

installation about add/remove VMs to the HBase cluster.

2.2 OpenStack

 OpenStack [7] is a cloud operating system that controls large pools of compute,

storage and networking resources throughout a datacenter, all managed through a

dashboard that gives administrators control while empowering their users to provision

resources through a web interface.

 OpenStack began in 2010 as a joint project of Rackspace Hosting and NASA. As

of 2016, it is managed by the OpenStack Foundation, a non-profit corporate entity

established in September 2012 to promote OpenStack software and its community.

OpenStack is a free and open-source software platform for cloud computing, mostly

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

15

deployed as infrastructure-as-a-service (IaaS), whereby virtual servers and other

resources are made available to customers. The software platform consists of interrelated

components that control diverse, multi-vendor hardware pools of processing, storage, and

networking resources throughout a data center. Users either manage it through a web-

based dashboard, through command-line tools, or through RESTful web services.

2.2.1 OpenStack components

 OpenStack Compute, also known as Nova, is a platform whose aim is to manage

the OpenStack infrastructure. It provides an interface and an API that allows the

management of large networks of virtual machines and scalable architectures. It is written

in Python and is designed to scale horizontally on standard hardware with no proprietary

requirements.

 Imaging Service manages the storage of the images of virtual machines that can

later be used as a template for new ones. It provides a RESTful API to perform queries

for information about the images hosted on different storage systems.

 Object Storage is a storage space that is designed for long term storage of large

volumes, and can host up to multiple petabytes of data. Objects and files are written to

multiple disk drives spread throughout servers in the data center, while data replication is

used to provide data integrity across the cluster.

Figure 2.1: OpenStack components

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

16

 The OpenStack services can be accessed through the OpenStack Dashboard,

Horizon, which provides a graphical interface for users and administrators to access,

provision, and automate cloud-based resources. Its design also accommodates third party

products and services, such as billing, monitoring, and additional management tools.

 OpenStack Identity, Keystone, provides a mapping of users to the OpenStack

services they can access. It acts as a common authentication system across the cloud

operating system, and supports multiple forms of authentication including standard

username and password credentials, token-based systems and AWS-style logins

2.3 Hadoop

 Installing Hadoop is a prerequisite for installing HBase. Hadoop [9] is consisted

of two main parts, the Hadoop Distributed File System, known as HDFS and the

MapReduce which is a programming model for data processing. HBase is using HDFS

for storing its data. The HDFS is a distributed file system designed to run on commodity

hardware. It is an open source implementation of the Google File System (GFS) [10] and

is a filesystem designed for storing very large files with streaming data access patterns,

running on clusters of commodity hardware providing scalability and fault tolerance.

2.3.1 HDFS architecture

 HDFS [8] uses a master/slave architecture. The Namenode takes on the role of the

master, and is responsible for coordinating the filesystem and providing access to its files

to the clients. Even though data in the HDFS are stored in multiple physical machines,

the Namenode maintains a traditional hierarchical file organization. Clients can create

files and directories, move and rename them in a manner similar to other existing file

systems. Any change to the file system is recorded by the Namenode, which is

responsible for maintaining the file system namespace. If the Namenode is not active,

clients lose the ability to access the data stored in the HDFS, making it the single point of

failure of the system. However, in order to increase reliability, a secondary Namenode is

active at all times, and can recover the file system in case of a Master failure.

 The slaves in HDFS are called Datanodes, and their responsibility is to store file

data and serve read and write requests from the file system’s clients. At the same time,

they perform block creation, deletion and replication upon instruction of the Namenode.

Each file in the file system is stored in multiple equally sized blocks (typically 64MB),

and each of these blocks is hosted in multiple Datanodes in order to increase fault

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

17

tolerance. It is possible for applications to specify or change the replication factor for

each separate file.

Figure 2.2: HDFS architecture

 In order for the Namenode to have an up-to-date knowledge of the active blocks

in the system, Heartbeat messages are periodically sent to it from each of the Datanodes.

If a Datanode fails to transmit a heartbeat message, the Namenode assumes that the

Datanode is dead, stops forwarding new requests to it and attempts to quickly restore the

replication factor of its blocks.

 The placement of the blocks is decided by the Namenode. The criteria by which

this is done is not only to increase fault tolerance, but also to improve performance. In the

common case where the replication factor is three, HDFS’s placement policy is to put one

replica on one node in the local rack, another on a node in a different (remote) rack, and

the last on a different node in the same remote rack. This policy reduces the required

communication between different racks during writes, while at the same time does not

leave the system vulnerable to a single rack failure. However, it does reduce the

aggregate network bandwidth used when reading data since a block is placed in only two

unique racks rather than three.

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

18

2.4 HBase

 HBase [12] is an open source, distributed database for storing structured data. Its

design is based on Google’s BigTable [13], and runs on top of the HDFS to enhance its

storing capabilities. Its data model is different from traditional relational databases. It

does not support a structured query language like SQL, but instead uses a key/value

model where data are organized in columns.

2.4.1 HBase building blocks

Table. The biggest building block in the database.

Row. Each table consists of a number of rows. Each row possesses a unique key through

which it can be identified, and all rows within a table are sorted based on that key. This

enables the programmer to control the way data are stored and allows for easy and

efficient access to ranges of rows.

Column Family. Data within each row are split to separate column families that are the

same for each row and need to be specified upon table creation (even though some rows

may not contain data in all column families). Data stored within each column family are

also physically stored in adjacent locations in order to more efficiently serve queries

requesting data from them.

Column. Each column family contains a number of columns. Unlike column families,

columns are allowed to differ from row to row, and can change dynamically.

Cell. A combination of a row key, a column family and a column uniquely identifies a

cell. Each cell stores a byte array, which is its value.

Timestamp. HBase has a built-in data versioning and recovery mechanism through the

use of its timestamps. Instead of storing a single value in each cell, HBase stores a

number of recent values. That number can be configured to be different for each column

family, and is by default equal to three. If not specified, HBase will store data using the

current timestamp and read the data with the latest timestamp, though the user is free to

read and write the versions of the data she specifies

2.4.2 HBase architecture

 HBase follows a master-slave architecture [11] consisted of the following

components:

Master Server. The Master Server in HBase holds the metadata for all the tables stored

in the database, and performs schema changes and table creation or deletion operations.

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

19

At the same time, it controls the distribution of the regions among the Region Servers in

order to evenly balance the workload.

Figure 2.3: The HBase architecture

Region Servers. Each Region Server is responsible for serving and managing a number

of regions. Even though data stored in the HDFS are spread across different physical

locations, each region server stores the data that correspond to the regions it serves within

the local HDFS DataNode in order to be able to serve requests locally.

ZooKeeper. It is a centralized service for maintaining configuration information,

naming, providing distributed synchronization, and providing group services. HBase uses

ZooKeeper to track the state of the servers in the cluster and handle communication

between the master and the region servers.

 HBase’s architecture allows it to easily scale and store large amounts of sparse

data. The fact that it runs on top of HDFS provides high availability and fault tolerance,

and makes HBase easy to integrate with other tools within the Hadoop ecosystem, such

as MapReduce. Finally, having only a single server responsible for each piece of data,

allows it to guarantee strong consistency and perform atomic row operations.

2.5 Yahoo Cloud Serving Benchmark

 The Yahoo! Cloud Serving Benchmark (YCSB) [14] is an open-source

specification and program suite for evaluating retrieval and maintenance capabilities of

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

20

computer programs. It is often used to compare relative performance of NoSQL database

management systems.

 The YCSB Client is a Java program for generating the data to be loaded to the

database, and generating the operations which make up the workload. The architecture of

the client is shown in figure 2.4. The basic operation is that the workload executor drives

multiple client threads. Each thread executes a sequential series of operations by making

calls to the database interface layer, both to load the database (the load phase) and to

execute the workload (the transaction phase). The threads throttle the rate at which they

generate requests, so that we may directly control the offered load against the database.

The threads also measure the latency and achieved throughput of their operations, and

report these measurements to the statistics module. At the end of the experiment, the

statistics module aggregates the measurements and reports average, 95th and 99th

percentile latencies, and either a histogram or time series of the latencies.

Figure 2.4: The YCSB client architecture

 The client takes a series of properties (name/value pairs) which define its

operation. By convention, we divide these properties into two groups:

Workload properties. Properties defining the workload, independent of a given database

or experimental run. For example, the read/write mix of the database, the distribution to

use (zipfian, latest, etc.), and the size and number of fields in a record.

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

21

Runtime properties. Properties specific to a given experiment. For example, the

database interface layer to use (e.g., Cassandra, HBase, etc.), properties used to initialize

that layer (such as the database service hostnames), the number of client threads, etc.

Thus, there can be workload property files which remain static and are used to benchmark

a variety of databases. In contrast, runtime properties, while also potentially stored in

property files, will vary from experiment to experiment, as the database, target

throughput, etc., change.

2.6 Ganglia

 Ganglia [16] is a scalable distributed monitoring system for high performance

computing systems such as clusters and grids, developed by the University of California,

Berkeley. It is based on a multicast, listen/announce protocol to monitor the state of the

cluster, and uses a tree of point to point connections between representative cluster nodes

to federate clusters and aggregate their state. Data are represented in XML format,

exchanged using the XDR protocol and stored and visualized with the RRD tool. It

manages to achieve very low per node overhead and high concurrency, and is available in

a wide range of operating systems.

2.6.1 Ganglia architecture

The Ganglia’s components [15] are:

 gmond. The Ganglia Monitoring Daemon is installed in every node of the cluster

from which metrics are to be collected. Its job is to collect the required metrics with the

help of the operating system, as well as announce them to a multicast channel through

UDP. It is organized as a collection of threads, most of which are assigned with the task

of collecting data for a specific metric. The collect and publish thread takes on the

responsibility of gathering the metrics collected by the local threads and publishing it on

a well-known multicast channel in periodic messages called heartbeats. The listening

threads are responsible for listening on the multicast channel for data transmitted by

other nodes and storing it in a local hash table. This allows the data for the whole cluster

to be available through any one of its nodes. Finally, a number of XML export threads

accept and process client requests to provide access to that data

 gmetad. Federation in Ganglia is achieved using a tree of point-to-point

connections amongst representative cluster nodes to aggregate the state of multiple

clusters. At each node in the tree, a Ganglia Meta Daemon periodically polls a collection

of child data sources, parses the collected XML, saves all numeric, volatile metrics to

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

22

round-robin databases and exports the aggregated XML over TCP sockets to clients. Data

sources may be either gmond daemons, representing specific clusters, or other gmetad

daemons, representing sets of clusters. Data collection in gmetad is done by periodically

polling a collection of child data sources which are specified in a configuration file,

dedicating a unique data collection thread to each child source. Collected data is parsed in

an efficient manner to reduce CPU overhead and the memory footprint.

 RRDtool Storage and visualization of the historical monitoring information for

the grid is managed by Round Robin Database. RRDtool is specialized in storing time

series data and is able to maintain different time granularities ranging from minutes to

years in compact, constant size databases. Additionally, RRDtool is able to plot the

historical trends of these metrics on graphs that are used by the Ganglia PHP web front-

end, to be presented through a web interface

Figure 2.5: The Ganglia architecture

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

23

2.7 Tiramola

 Tiramola [3] is a modular cloud-enabled framework for monitoring and

adaptively resizing NoSQL clusters. Its implementation is open-source, and contains

modules that can control a number of different NoSQL databases, including Cassandra,

HBase, Riak and Voldemort.

2.7.1 Tiramola Architecture

 Tiramola [4] is an open-source project that delivers automatic resource allocation

for NoSQL clusters. It features a modular architecture illustrated in figure. 2.6. The

Decision Making module incorporates both the user-policy defined through an

optimization function as well as cluster-side and client-side monitored metrics and

periodically decides on cluster resize actions. It outputs resize action to the Cloud

Management module that interacts with the cloud vendor in order to release or acquire

more virtual machines. The Cluster Coordinator is then responsible for orchestrating the

addition and removal commands relative to the particular NoSQL cluster in hand. The

Monitoring module maintains up-to-date performance metrics collected from both cluster

nodes and client nodes.

Figure 2.6: The Tiramola architecture

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

24

Decision Making Module. This module is responsible for deciding the appropriate

cluster resize action according to the applied load, cluster and user-perceived

performance and optimization policy. Tiramola formulates this process as a Markov

Decision Process (MDP) that continuously identifies the most beneficial action relative to

the current system state. The goals are defined through a reward function that translates

the optimization each application wishes to adhere to. Upon reaching a resize decision,

the module forwards this command to the Cloud Management module.

Monitoring. Tiramola uses Ganglia, a scalable distributed monitoring tool that allows

remote collection of live or historical cluster statistics (such as CPU load averages,

network, memory or disk utilization, number of open client threads, etc) through its XML

API.

Cloud management. The system interacts with the cloud vendor using the well-known

euca2ools, an Amazon EC2 compliant REST-based client library. This module receives

as input commands for a NoSQL cluster resize (in the number of running VMs). The use

of euca2ools along with the creation of Amazon Machine Images (AMIs) with pre-

installed versions of the supported NoSQL systems and Ganglia guarantees that Tiramola

can be deployed in practically any EC2-compliant IaaS cloud.

Cluster coordinator. The orchestration of newly commissioned or freed resources from

the NoSQL cluster is performed with the remote execution of shell scripts and the

injection of automatically created NoSQL-specific configuration files to each VM. A

high-level “start cluster”, “add NoSQL node(s)” and “remove NoSQL node(s)” command

is thus translated to a workflow of the aforementioned primitives. The implementation

ensured that each step has succeeded before moving to the next one, using applicable

time-outs. The framework has already [1] successfully incorporated three popular

NoSQL systems that exhibit elastic behavior: HBase, Cassandra and Riak. The system is

extensible enough to include more engines that support elastic operations by

implementing the system’s abstract primitives in the Cluster Coordinator module and by

including the system’s binaries to the existing AMI virtual machine image. The

precooked virtual machine image is available for download from the project’s web site.

Tiramola also strives to be robust: It periodically checkpoints and can be restarted after a

failure; required state is maintained through the monitoring module as well as the

underlying IaaS platform

2.7.2 Tiramola’s Decision Making Module

 Tiramola’s decision-making module is the unit that is responsible for

materializing user defined policies into cluster-resizing actions. The user policies come in

the form of reward functions that can evaluate the state of the cluster, and point Tiramola

towards states that are in accordance to the user’s needs. The state of the cluster is

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

25

acquired by Tiramola’s Monitoring module, which collects a number of metrics from

both the cluster and the user, and makes them available to the decision-making module.

Once a resizing action has been decided, the Cloud Management module communicates

with the cloud provider as well as the virtual machines in order to modify and configure

the cluster into its new state.

 Tiramola models the cluster as a Markov Decision Process (MDP). The states of

the MDP correspond to the current size of the cluster where k is the number of VMs

currently in the cluster and min and max are the minimum and maximum cluster sizes.

The available actions of the MDP are the resizing actions and include adding or removing

pre-specified numbers of VMs, or simply leaving the cluster unmodified. If a certain

resizing action would exceed the minimum or maximum cluster size if executed from a

certain state, then that action is made unavailable at that state (for example if the

minimum cluster size is four, an action that removes two VMs would not be available at

state s5).

 In an MDP, the rewards are the feedback of the world towards the agent that

informs it how good or bad the outcome of an action was. In the case of Tiramola, the

result of an action is the state of the cluster after executing that action. Therefore, the

reward function was calculated using the resulting state after each transition. In order to

achieve a balance between giving enough resources to satisfy the user’s needs, but at the

same time keeping the cost of the cluster as low as possible, the reward function

generally can include both positive and negative terms. For example, a reward function

that aims to direct Tiramola towards performing actions that maximize the throughput

and minimize the latency, while at the same time keeping the size of the cluster as low as

possible, can be in the form.

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

26

Chapter 3

3. Using Tiramola

3.1 Tiramola workflow

 Tiramola is responsible for the whole workflow of the experiments. When

running, Tiramola is making the following steps:

a) The NoSQL-cluster has X running nodes.

b) Tiramola is a Reinforcement Learning (RL) Agent knowing its State S1 by retrieving

cluster’s metrics and decides to take an action A1 defining if the cluster will expand,

contract or stay stable.

c) Due to action A1 the cluster ends up having Y running nodes.

b) The YCSB tool is running in machines that are the VM-clients stresses the NoSQL-

cluster with constant load L1. The duration of the load involves 2 3-minute periods with

an 1-minute break between them.

c) Each time the NoSQL-cluster is stressed, Tiramola is gathering metrics from 3 sources:

i) An external ganglia system that monitors the whole OpenStack installation.

(external-ganglia-metrics)

ii) An internal ganglia system that is installed in all the NoSQL nodes. (internal-

ganglia-metrics)

iii) Metrics reported from the YCSB running in clients. Each time YCSB-load

ends, a report with metrics is generated. (YCSB-metrics)

d) When the whole YCSB-session ends, Tiramola is taking into consideration only the

metrics gathered from the 2nd 3-minute period of YCSB-load. The 1st period considered

as a warm-up.

e) Tiramola’s Decision Making module defines the exact new State S2 based on all

retrieved metrics.

f) Tiramola is getting a reward R for selecting the Action A1, based on the reward-

function that is user-defined.

g) Tiramola updates the value of the State S1 and the Action-values, known as Q-Values

of the corresponding Actions based on the reward and runs the splitting algorithm, if such

involved by the selected model.

The iteration ends and the system is starting again from (a), where the NoSQL-

cluster now has Y running nodes, Tiramola is in State S2 and going to decide to take

Action A2 and so on...

We will call the whole iteration a “time-step”, which lasts about 10’ if no extra delays

happen.

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

27

3.2 Type of load

YCSB always stresses the NoSQL-cluster with constant load Lx. The load that is

stated as sinusoidal in previous works that benchmark Tiramola [4 - 7] is the overall

image of all different Lx loads. So, it is not a continuous sinusoidal load, but has distinct

values.

In this work we are going to stress the NoSQL-cluster with the same kind of

sinusoidal load when we evaluate the parameters of the MDP-DT model. Until now, all

previous works [1 - 7] benchmarked Tiramola by running sinusoidal load against the

NoSQL cluster. There is no prior knowledge on using Tiramola to change the size of a

NoSQL-cluster that is stressed under unpredictable load, thus we are going to experiment

on that case.

3.3 Modes of the Decision Making module

Tiramola is composed by 4 modules: Monitoring, Cluster Coordinator, Cloud

Management and Decision Making [4]. The latter is the “brain” of Tiramola. It defines

the whole State Space, the permissible Actions and the way that Tiramola evaluates each

Reward and decides its next Action. Most changes and improvements on Tiramola [1 - 5]

are related with this module and so did the last work [7].

In this work, we use the most recent version of Tiramola as described in [7]. In this

version the Decision Making module has 4 different modes that correspond to the

implementation of 4 different algorithms. The user decides which one of them to use and

defines it in a properties file:

 i) Q-Learning (Q)

 ii) Markov Decision Process (MDP)

 iii) Q-Learning with Decision Trees (Q-DT)

 iv) Markov Decision Process with Decision Trees (MDP-DT)

3.4 Available metrics

 As described in 3.1 (Tiramola workflow), Tiramola retrieves metrics about the

NoSQL cluster during each time-step. The Monitoring module retrieves metrics from 3

sources:

i) An external ganglia system that monitors the whole OpenStack

installation.(external-ganglia-metrics)

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

28

ii) An internal ganglia system that is installed in all the NoSQL nodes.

(internal-ganglia-metrics)

iii) Metrics reported from the YCSB running in clients. Each time a YCSB-

load ends, a report with metrics is generated. (YCSB-metrics)

 The metrics is the most crucial part, because they define the state of the NoSQL-

cluster and thus the environment of the Tiramola-agent. By retrieving these metrics the

agent defines its State. The following tables contain all the 44 metrics that are available

from the 3 sources along with a brief description.

IaaS metrics (external Ganglia)

cpu cpu of the whole user’s system

number_of_threads number of threads used by all VMs (NoSQL-cluster and clients)

read_io_reqs read io requests of the cluster (NoSQL-cluster and clients)

write_io_reqs write io requests of the cluster (NoSQL-cluster and clients)

Table 3.1: IaaS metrics

NoSQL-cluster metrics (internal Ganglia)

bytes_in bytes flowing into the cluster

bytes_out bytes flowing out of the cluster

cpu_idle percentage of cpu that is not used

cpu_nice percentage of CPU cycles spent on nice processes

cpu_system Percentage of CPU cycles spent in non-user mode

cpu_user Percentage of CPU cycles spent in user mode

cpu_wio Percentage of CPU cycles spent waiting for I/O

disk_free The amount of the HDD that is free

load_fifteen Reported system load, averaged over fifteen minutes

load_five Reported system load, averaged over five minutes

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

29

load_one Reported system load, averaged over one minute

mem_buffers Amount of memory allocated to system buffers

mem_cached Amount of memory allocated to cached data

mem_free Amount of free memory

mem_shared Amount of memory occupied by processes

mem_total Total amount of physical memory

part_max_used Maximum percent used for all partitions

pkts_in Packets in per second

pkts_out Packets out per second

proc_run Total number of running processes

proc_total Total number of processes

Table 3.2: NoSQL cluster metrics

Table 3.3: YCSB client metrics

YCSB-metrics

%_read_load Percentage of read load

incoming_load Amount of the whole load that YCSB sends

read_latency Latency of the read queries

read_throughput Throughput of the read queries

total_throughput Total throughput for all queries (read, update or delete)

update_latency Latency of the update queries

update_throughput Throughput of the update queries

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

30

Tiramola-made metrics

number_of_VMs Number of VMs of the NoSQL-cluster (with master, if NoSQL

has master-slave arch)

RAM_size Mean RAM size of all slaves of NoSQL-cluster

number_of_CPUs Mean number of CPUs of all slaves of NoSQL-cluster

storage_capacity Mean amount of HDD storage capacity of all slaves of NoSQL-

cluster

io_reqs = read_io_reqs + write_io_reqs

%_free_RAM = mem_free / mem_total

%_cached_RAM = mem_cached / mem_total

%_CPU_usage = 100 - cpu_idle

%_read_throughput = read_throughput / total_throughput

total_latency = (READ_LATENCY * READ_THROUGHPUT +

UPDATE_LATENCY * UPDATE_THROUGHPUT) /

(READ_THROUGHPUT + UPDATE_THROUGHPUT)

next_load = 2 * current_load - last_load.

It is a simple linear forecasting of the next load.

network_usage = bytes_in + bytes_out

Table 3.4: Combined metrics

3.5 State Spaces

3.5.1 State Spaces for beginners in Reinforcement Learning

 One of the most well-known examples for beginners in Reinforcement Learning

(RL) involves an agent that moves around in a grid, which has 12 squares defining 12

different states for the RL-agent. One of the states is usually the goal and gives the

maximum Reward and another one is something like trap giving minimum or negative

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

31

Reward. The available Actions of the agent and all the other possible Rewards are

defined and the student has all the data for solving the first RL-problem.

 GOAL

 TRAP

START

Figure 3.1: State-space of RL-exercise for beginners

During the next lessons an RL-student will deal with more RL-problems having

similar State Spaces defined as 4X4, or 4X5 etc. grids. Each State Space is defined in

Cartesian-like names, chess-like or each State may have a serial number.

Figure 3.2: Simple State Spaces in Reinforcement Learning

These all are simple cases for exercises, where the Agent is usually allowed to

decide between the Actions: Up, Down, Left and Right. The grid is like a map and the

RL-agent is just a walker in the map, having a certain goal in each problem. It is also

clear that the State Space in each of the above has 2 Dimensions and each Dimension has

units specified by each square.

3.5.2 State Spaces in Tiramola

 During every time-step, the NoSQL-cluster is stressed with load. When the

stressing is over, Tiramola receives the 44 metrics which describe NoSQL-cluster’s

reaction. As stated earlier, the Tiramola-agent can use them to define its State, but first

we should decide which one of them the agent will use. For instance, if we let the agent

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

32

use them all, then a State Space of 44 Dimensions will be available, which is surely a too

complicated State Space.

We want the Tiramola-agent to be able to add or remove VMs, so the available

Actions are “Add X Vms”, “Remove X Vms”, “No Action”, with X being 1, 2, or

whatever the user decides. Thus, it is obvious that one of the State Space’s Dimensions

will be the number_of_VMs, but one Dimension cannot be enough. We should define at

least one more.

 Part of this work will be to define which of the rest 43 metrics are the most

appropriate to be used as Dimensions of the State Space. Seeing this problem from a

different point of view, we are going to evaluate which if the 43 metrics are the most

suitable to be used from the MDP-DT algorithm as splitting parameters. The reason for

this equivalence of these 3 terms is that for the Tiramola’s Decision Making Module the

metrics of the cluster, the Dimensions of the State Space and the splitting parameters are

all the same thing. Tiramola gets the cluster metrics, uses some of them as splitting

parameters to create a State Space and from the State Space point of view these metrics /

splitting parameters are its Dimensions.

3.5.2.1 State Space in Q and MDP modes

The Q and MDP algorithms create a State Space that is more affected by the user

than the Q-DT and MDP-DT ones. In both Q and MDP algorithms, we modify a .json file

where we define which of the metrics will be considered as parameters of the State

Space. To make it clear, a metric and a parameter is the same, but a metric gets its value

from the cluster’s behavior, while a parameter has its values defined by the user. Taking

into account the previous descriptions of the State Space, a parameter is a Dimension of

the State Space and its user-defined values are the units of that Dimension. The user

selects number_of_VMs as a parameter and most of the times next_load is selected as the

second parameter.

Having these 2 parameters, the Tiramola-agent can now define the State Space.

We can think of it like a grid we often see in Reinforcement Learning problems.

Tiramola’s Dimensions of the State Space are defined by number_of_VMs values and by

next_load value-range. Both of these parameters and their values are defined by the user.

For instance, if we have a NoSQL-cluster that can contract or expand from 4 VMs to 10

VMs, the obvious choice for the values of number_of_VMs is 4, 5, 6, 7, 8, 9 and 10.

Also, we will define values for the next_load that will be converted to value-ranges. For

instance if we select [1000, 5000, 10000, 22000, 35000], the Tiramola-agent will convert

it to 4 value-ranges: [1000, 5000], [5000, 10000], [10000, 22000], and [22000, 35000].

Eventually, the State Space will look like the grids of the exercises for RL-beginners and

will be composed from a number of states equal to the product of number_of_VMs

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

33

values by next_load value-ranges, meaning 7 * 4 = 28 States. The States will be created

based on these two parameters as follows:

S0: [4, [1000, 5000]], S1: [5, [1000, 5000]] ...etc... S6: [10, [1000, 5000]], S7: [4, [1000,

5000]], S8: [5, [5000, 10000]] ...etc… S13: [10, [5000, 10000]]...etc, until S27.

 Now, as described in steps (b) and (e) in 3.1 (Tiramola workflow), the Tiramola-

agent by retrieving the metrics can define its State. For instance, if during the load-time

the NoSQL-cluster has 5 VMs (number_of_VMs = 5) and the next_load metric has value

of 3,000, then Tiramola-agent knows that it is in S1 State.

 Leaving aside that Q and MDP have a huge difference in their updating algorithm

and are considered as model-free and model-based RL approaches respectively, seeing

these algorithms from the Tiramola-agent point of view, they have a great similarity.

Each of them has its State Space fully defined by the user.

3.5.2.2 State Space in Q-DT and MDP-DT modes

 In Q-DT and MDP-DT algorithms, the user defines the metrics that will be used

as parameters for the State Space, but does not define their values or value-ranges. In fact

the user may not even know what the values of each parameter are at all. After each time-

step, Q-DT or MDP-DT are updating the values of the current State and the Action-

values (Q-Values) of every Action based on their updating algorithm and the Reward.

Then, they evaluate whether they can split the current State or not, based on the

accumulated experience. When a splitting algorithm runs, each of the (user-defined)

parameters are being checked if they are suitable to split the current State into two new

States. Each of the parameters is checked separately and the user-selected statistical test

returns a value. By using that value, the splitting algorithm calculates if a parameter is

suitable for splitting the current State. The lower the value, the bigger the probability of

doing the split. If more than 1 parameters are suitable for a split, the algorithm selects the

most probable one.

 The original algorithm of the Decision Trees [18] defines that the Decision Tree

starts with only one node, the root. While the experiment is running and especially during

the training period, the splits happen and the Decision Tree grows. Each Decision Node is

defined by a parameter and a specific value and points to 2 Leafs, either a State or a

Decision Node, which are the Children. Only the last level of the Decision Tree is

composed exclusively by States.

 Starting the Decision Tree / State Space with only one Leaf / State, means we

have no clue about the Tiramola-environment. Considering that such a case does not

exist, we can boost the Decision Tree with some initial Leafs. As in Q and MDP

algorithms, the most suitable metric to be a parameter for the initiation of the Decision

Tree is the number_of_VMs, complying with the fact that we surely know the possible

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

34

number of VMs the NoSQL-cluster has. As the preliminary experiments showed, even if

we start a session with only one starting-State, Q-DT and MDP-DT algorithms will surely

find the exact possible number of VMs. All the splits based on all different

number_of_VMs values will eventually happen and Tiramola will have perfect

knowledge of its environment regarding the number of VMs. Considering that fact, there

is no need in consuming time-steps for this to happen when we can give that information

to the algorithm from the beginning.

3.6 Using the last version of Tiramola

 In the work that implemented the last version of Tiramola [7] we can clearly

distinguish that the full-model with Decision Trees, the MDP-DT performs better than

the other models. Also, a lot of effort was given in experimenting with several parameters

either of the MDP algorithm or of the Decision Trees and it was made clear which values

are preferred for each one of the model-related parameters.

In this work, the primary target is to run Tiramola and study its behavior while the

NoSQL-cluster is stressed by unpredictable load. In all previous works [1 - 7] Tiramola

was always stressed by periodical load. For doing this challenging task, Tiramola should

work at its best and even though the last work [7] defined the best values for the most

model-related parameters (epsilon, initial_qvalues, discount, min_measurements, splitting

criterion, statistical test, model, update algorithm), there are still some more to clarify

before using it.

 In this work we will define which metrics are better to use as parameters for the

Decision Trees and we will try to explain why there are better or worse parameters. To do

this, we will study the metrics of an HBase-cluster in order to describe its behavior when

it is stressed. For doing the experiments more effectively, we will separate Tiramola’s

workflow. At first we will get the metrics stressing the NoSQL-cluster by all possible

loads and for all possible number_of_VMs. Then we will study these metrics to abstractly

define the behavior of the NoSQL cluster. In the end, we can run the Virtual Tiramola

where the Decision Making procedure will retrieve in each time-step the previously

retrieved metrics. This will give us the freedom to run many more experiments/sessions

in less time, because the time-step will last some milliseconds, instead of 10 minutes.

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

35

Chapter 4

ANALYZING HBASE CLUSTER METRICS

4.1 Objective

 In order to decide the proper size of a NoSQL cluster, the metrics we retrieve

while it is up and running and stressed under any kind of load are the raw material that is

used by any system. So does Tiramola in order to automate elasticity of NoSQL clusters.

The great difference is the way each system exploits these metrics.

 In this chapter, we are going to study the behaviour of these metrics. Later, we

will combine this kind of knowledge with the way Tiramola is exploiting them, in order

to come up with a conclusion. At the first part of experiments, we study the behavior of

10 different HBase metrics while linear increasing load runs against the HBase cluster. In

the second part, we study the metrics’ behavior, while the cluster is under constant load.

 The total number of metrics is 44, but we can divide them to the direct metrics

and indirect ones. By studying the latter, we practically studying the direct ones too. By

looking at the tables 3.1, 3.2, 3.3 and 3.4, we can see that studying the metrics:

%_CPU_usage, total_latency, network_usage, load_one, total_throughput, io_reqs,

cpu_wio, %_free_RAM, disk_free and %_cached_RAM, we also manage to study

another 11 metrics: read_io_reqs, write_io_reqs, bytes_in, bytes_out, cpu_idle,

mem_free, mem_total, read_latency, read_throughput, update_latency,

update_throughput. In addition to that, number_of_vms and next_load do not require

further study, and load_fifteen and load_five are useless, because each time the clients

stress the HBase cluster they do it for less than 5 minutes. Consequently, we manage to

study the behavior of 21 out of 40 metrics that need to and can be studied, and more

importantly, we cover all areas of metrics that define a running cluster of machines: CPU

usage, RAM usage, disk usage and network usage, thus having an adequate view.

4.2 Experiments pt. 1: Linear increasing load

 We have 13 VMs available for experiments, so we will use 1 + 8 VMs for the

HBase-cluster and 4 client-VMs running the YCSB tool. Selecting for the replication

factor of HDFS to be 2, we set the minimum size of the HBase-cluster at 2 VMs-slaves

and maximum at 8 VM-slaves and do the benchmarking against 3, 4, 5, 6, 7, 8 and 9

VMs (master included). The load we will run has range 1,000 to 25,000 reqs/sec in steps

of 100 reqs/sec. While the load increases the size of the Hbase cluster reamains the same.

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

36

Figure 4.1: %_CPU_usage behavior against linear increasing load

Figure 4.2: total_latency behavior against linear increasing load

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

37

Figure 4.3: load_one behavior against linear increasing load

Figure 4.4: total_throughput behavior against linear increasing load

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

38

Figure 4.5: network_usage behavior against linear increasing load

Figure 4.6: disk_free behavior against linear increasing load

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

39

Figure 4.7: %free_RAM behavior against linear increasing load

Figure 4.8: %_cached_RAM behavior against linear increasing load

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

40

Figure 4.9: cpu_wio behavior against linear increasing load

Figure 4.10: io_reqs behavior against linear increasing load

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

41

4.2.1 Metrics’ behavior under linear load

 Based on their behavior against linear increasing load, we can divide the metrics

into two groups.

Group 1 Group 2

%_CPU_usage io_reqs

total_latency cpu_wio

network_usage %_free_RAM

load_one disk_free

total_throughput %_cached_RAM

Table 4.1: Metrics according to behavior under linear increasing load

 In the first group the metrics are increasing alongside the load, until a specific

point. After that point, despite that the load continues to increase, each of the metrics

seems to be almost stable. This shows that the cluster reaches the maximum of its

performance and can’t go higher. We can call this load, the “critical load”. The critical

load is different for different size of the cluster, but the same for each metric.

 In the next table we show the critical load for different sizes of the cluster based

on the total_throughput.

Cluster Size Critical Load

3 5300

4 8200

5 9700

6 11600

7 12900

8 15300

9 17000

Table 4.2: Critical load for each cluster size

4.2.2 Conclusions about metrics behavior for linear increasing load

As it is expected, when the cluster has more nodes it also has a higher

performance maximum. While the load increases the values of the metrics of the 1st

group also increases. On the other hand, we cannot distinguish any pattern at all for the

metrics of the second group.

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

42

4.3 Experiments pt. 2: Constant load

 We will dive more into each metric’s behavior by running the same load 10 times

against all available HBase-cluster sizes. For each cluster size we divide the range of

loads from 1000 reqs/sec until the critical (different for every cluster size) in several

steps. We will show the behavior of 2 metrics, one of the 1st group, (%_CPU_usage)

and one of the 2nd, (io_reqs) in graphs in order to have a view of how the metrics of each

group behave under specific loads that are lower than the critical load for 3 different sizes

of the HBase-cluster. For loads equal or higher than the critical, all metrics reach a global

maximum, or minimum and we get no useful information by viewing such graphs.

We stressed the HBase with loads from 1000 reqs/sec until the critical one (different for

every cluster size). Given that we did it for all the different available sizes of the cluster:

3, 4, 5, 6, 7, 8 and 9 VMs it means that in total there are 70 graphs. Based on the data

gathered by all 70 graphs, we choose to present the 3 most representative for each

respective group of metrics. For clarity purposes, we select to present the results only for

3, 6 and 9 VMs for only 2 metrics (%_CPU_usage and io_reqs), one from each group.

Figure 4.11: %_CPU_usage @ 3VMs against constant loads: 2000, 3600 and 5000

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

43

Figure 4.12: %_CPU_usage @ 6VMs against constant loads: 10000, 11400 and 12800

Figure 4.13: %_CPU_usage @ 6VMs against constant loads: 15200, 16400 and 17200

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

44

Figure 4.14: io_reqs @ 3VMs against constant loads: 2000, 3600 and 5000

Figure 4.15: io_reqs @ 6VMs against constant loads: 10000, 11400 and 12800

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

45

Figure 4.16: io_reqs @ 6VMs against constant loads: 15200, 16400 and 17200

4.3.1 Metrics’ behavior under constant load

The graphs are showing that the metrics of the 1st group, like %_CPU_usage are

more stable against the same load. Also, for different loads that are lower than the critical

one, they differentiate enough.

On the other hand graphs of the metrics of the 2nd group, like io_reqs are less

stable against the same load. Also, for different loads that are lower than the critical one,

they do not differentiate.

We already had a clue of such behavior when studying the graphs from the 1st

phase of experiments (4.2). By running the same load many times and watching each

metric alone, we can be more certain of how stable a metric is when the HBase cluster is

stressed against the same load. Furthermore, we can compare the values of one metric

when the same HBase cluster size is stressed against different loads.

 In 4.3.2 we can see the average and the coefficient of variance for each metric for

all cluster sizes and each metric’s behavior will be even clearer.

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

46

4.3.2 Data analysis of metrics. Cluster is stressed by constant load close to critical

Load @ 3 VMs 2,000 reqs/sec 3,600 reqs/sec 5,000 reqs/sec

 average cf_var average cf_var average cf_var

%_CPU_usage 77.72381 0.01593 92.172 0.004844 95.85738 0.00493

load_one 1.8075 0.08843 2.978738 0.154038 4.40281 0.08295

total_throughput 1980 0.00025 3564 0.00094 4948 0.00045

total_latency 5.452527 0.02654 7.568624 0.023333 9.696665 0.01817

network_usage 1131310 0.00607 20401833 0.007231 2985658 0.02769

%_cached_RAM 0.590990 0.00201 0.588234 0.000777 0.590121 0.00047

%_free_RAM 0.028435 0.01099 0.028745 0.016131 0.02785 0.01011

cpu_wio 4.074286 0.16767 2.051905 0.184826 0.436667 0.15534

disk_free 29.94177 0.00106 30.00871 0.002268 30.00585 0.00142

io_reqs 68.62142 0.20337 143.3857 0.09652 92.28095 0.13455

Table 4.3: avg and cf_var of metrics @ 3 VMs

Table 4.4: avg and cf_var of metrics @ 4 VMs

Load @ 4 VMs 4800 reqs/sec 6000 reqs/sec 7200 reqs/sec

 average cf_var average cf_var average cf_var

%_CPU_usage 86.70111 0.008913 90.306 0.003178 93.02809 0.00803

load_one 2.412111 0.087961 3.001302 0.070168 4.468651 0.16461

total_throughput 4750 0.000596 5936 0.000697 7061 0.01753

total_latency 6.074851 0.014771 7.055016 0.03071 9.660051 0.17736

network_usage 1861754 0.010418 2341309 0.010243 2779146 0.03125

%_cached_RAM 0.588928 0.000817 0.588384 0.000824 0.576348 0.00369

%_free_RAM 0.028313 0.012940 0.028355 0.012172 0.028955 0.03457

cpu_wio 0.895238 0.298173 0.624444 0.434906 0.592857 1.21474

disk_free 29.99079 0.000794 29.97785 0.001515 29.98571 0.00219

io_reqs 33.40317 0.358443 41.8937 0.472 78.44285 1.25439

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

47

Load @ 5 VMs 7,200 reqs/sec 8,600 reqs/sec 10,000 reqs/sec

 average cf_var average cf_var average cf_var

%_CPU_usage 87.182619 0.008003 90.51059 0.008356 91.64190 0.003329

load_one 2.503595 0.06692 3.330357 0.05715 4.24244 0.066959

total_throughput 7127 0.000309 8510 0.000636 9421 0.012224

total_latency 6.325773 0.020495 8.023636 0.028752 8.604582 0.018364

network_usage 22718157 0.016769 2690874 0.005056 3029105 0.015186

%_cached_RAM 0.583332 0.001211 0.586646 0.002060 0.597155 0.000303

%_free_RAM 0.028362 0.014757 0.028554 0.007577 0.027915 0.007157

cpu_wio 0.457857 0.614129 0.414286 0.572392 0.553929 0.477591

disk_free 29.971383 0.001554 29.98094 0.001463 29.93228 0.000889

io_reqs 19.715476 0.573954 33.18928 0.467146 37.65476 0.36236

Table 4.5: avg and cf_var of metrics @ 5 VMs

Table 4.6: avg and cf_var of metrics @ 6 VMs

Load @ 6 VMs 10,000 reqs/sec 11,400 reqs/sec 12,800 reqs/sec

 average cf_var average cf_var average cf_var

%_CPU_usage 86.081048 0.007915 88.724381 0.007022 89.015524 0.004424

load_one 2.564143 0.060328 3.186514 0.062241 3.328762 0.077475

total_throughput 9886 0.002148 11275 0.001143 11612 0.014052

total_latency 5.985481 0.022798 6.208749 0.021719 6.687669 0.021069

network_usage 25644203 0.00551 24697072 0.020199 25474216 0.014908

%_cached_RAM 0.592324 0.000702 0.563658 0.011544 0.543696 0.006677

%_free_RAM 0.028158 0.010977 0.035834 0.097463 0.028886 0.016598

cpu_wio 0.868476 0.335025 0.232571 0.624887 0.342667 0.749432

disk_free 29.931784 0.00079 30.011533 0.00112 30.011155 0.00125

io_reqs 24.981905 0.339644 12.446667 0.629897 17.566667 0.610754

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

48

Table 4.7: avg and cf_var of metrics @ 7 VMs

Table 4.8: avg and cf_var of metrics @ 8 VMs

Load @ 7 VMs 12,800 reqs/sec 14,000 reqs/sec 15,000 reqs/sec

 average cf_var average cf_var average cf_var

%_CPU_usage 85.088651 0.006111 86.370397 0.006523 86.582778 0.004482

load_one 2.569897 0.078018 2.779032 0.057983 2.786476 0.064373

total_throughput 12666 0.000437 13480 0.012062 13219 0.008765

total_latency 4.829598 0.018814 5.425167 0.019126 5.573686 0.016596

network_usage 23284062 0.006517 24568631 0.019852 25994527 0.011533

%_cached_RAM 0.586181 0.000365 0.587606 0.000925 0.593965 0.000456

%_free_RAM 0.028107 0.007338 0.028469 0.011896 0.02794 0.010601

cpu_wio 0.359841 0.237559 0.535079 0.701306 0.544841 0.574781

disk_free 29.965803 0.000528 29.964808 0.000392 29.970753 0.00106

io_reqs 11.361111 0.44737 18.285714 0.972801 22.200794 0.455183

Load @ 8 VMs 14,000 reqs/sec 15,200 reqs/sec 16,400 reqs/sec

 average cf_var average cf_var average cf_var

%_CPU_usage 82.641769 0.006251 84.26966 0.006423 83.852245 0.005462

load_one 2.217776 0.059248 2.399449 0.048643 2.344 0.052588

total_throughput 13857 0.000677 14909 0.005279 14992 0.006868

total_latency 4.274929 0.027742 4.625379 0.014695 4.611362 0.004256

network_usage 23772741 0.003649 25512127 0.007383 25633135 0.009593

%_cached_RAM 0.584463 0.001431 0.586576 0.000611 0.587318 0.000617

%_free_RAM 0.028802 0.010101 0.028724 0.013494 0.029026 0.013826

cpu_wio 0.451293 0.251733 0.495714 0.720546 0.283946 0.197408

disk_free 29.985271 0.000377 29.978847 0.000817 29.979841 0.001001

io_reqs 15.055102 0.321264 13.705442 0.488938 11.678912 0.391404

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

49

Table 4.9: avg and cf_var of metrics @ 9 VMs

4.3.3 Conclusions about metrics behavior under constant load

The experiments with constant load lead us to two conclusions. The first is about

the variation of each metric and the second is how we can distinguish the different

environment-status of the HBase-cluster.

cpu_wio and io_reqs have higher variation than all the others. We run the same

load 10 times in a row against the same size HBase-cluster, but cpu_wio’s and io_reqs’

values are quite different each time, resulting in a high value in the coefficient of

variation (cf_var). cf_var shows the level of variation, is a measure of relative variability

and free of measurement units, so we can use it as a comparator among all metrics.

%_cached_RAM, %_free_RAM and disk_free have low variation, but their

values do not differ when the load or the HBase-cluster size change. If we take only them

into account we get the impression that there is no difference in HBase-cluster’s behavior

whether there are changes in the load or the size of the HBase-cluster. Such a behavior is

somewhat strange and not helpful as a Dimension of the State Space.

On the other hand, all the metrics of the 1st group have a low coefficient of

variation when the HBase-cluster has the same size and is stressed under the same load.

When the size of the cluster or the load change, the values of the metrics change. When

the load is above the critical load each of these metrics have almost the same value,

showing that the cluster is performing at its maximum.

Load @ 9 VMs 15,200 reqs/sec 16,400 reqs/sec 17,200 reqs/sec

 average cf_var average cf_var average cf_var

%_CPU_usage 78.55779 0.008779 80.356607 0.005831 81.462381 0.007533

load_one 1.966202 0.059277 2.07722 0.036486 2.126738 0.027519

total_throughput 15048 0.000984 16232 0.000617 16946 0.003409

total_latency 3.112685 0.036 3.301108 0.021883 3.483197 0.020624

network_usage 17434238 0.011549 18857000 0.003708 19638832 0.007305

%_cached_RAM 0.50802 0.021791 0.547197 0.017802 0.573302 0.007521

%_free_RAM 0.106464 0.104371 0.066956 0.145066 0.04171 0.081629

cpu_wio 0.436726 1.232836 0.321369 0.562276 0.603929 0.673864

disk_free 30.01915 0.001249 30.007959 0.001275 30.010566 0.00142

io_reqs 4.396429 0.966439 6.407143 0.720265 12.529762 0.443305

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

50

Chapter 5

EXPERIMENTAL RESULTS

5.1 Objective

 In this round of experiments we use the last version of Tiramola and focus on the

MDP-DT algorithm. This algorithm is already evaluated as the optimal among MDP, Q

and Q-DT in previous work. Also, the optimal values for its parameters, have already

been defined [6] (5.2.3).

 In chapter 4 we studied the metrics of the HBase cluster and led into conclusions

about their behavior and assumptions about their role as Dimensions of a State Space

(4.3.3). In this chapter we will test them as splitting parameters, using the MDP-DT,

which utilizes Decision Trees and is also optimal.

 We are going to test the 10 metrics as splitting parameters in several setups.

Firstly, we will use each one alone. Secondly, we will use them in groups, as they were

grouped in chapter 4. Finally, we will use them all together. For each setup we will

evaluate Tiramola’s performance and therefore we will draw conclusions about how

much each metric helped as a splitting parameter.

 For doing such evaluation, we are going to keep the same policy, which is “we

want the cluster to have the smallest possible size, but always serve the incoming load”.

Based on this policy, we are going to define the ideal performance of Tiramola for a

sinusoidal load. Therefore, every time we do an experiment we will compare the current

performance of Tiramola against the ideal one and introduce our measure of comparison

which is the Mistake (5.2.3).

 Having completed our evaluation of the splitting parameters and having defined

the optimal ones, we go to the 4th and last phase of experiments. In that phase we test

Tiramola with MDP-DT algorithm and all optimal parameters, general and splitting ones,

by sending unpredictable load against the HBase cluster. This last phase brings new

challenges like defining the level of randomness of an unpredictable load and the level of

Tiramola’s flexibility.

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

51

5.2 Experiments pt. 3: Sinusoidal load

5.2.1 Metrics as splitting parameters

 As it is stated in chapter 4, the basic parameter that defines the environment of the

Tiramola-agent is the number_of_VMs. The second most selected parameter is the

next_load. These two parameters are used in Q and MDP algorithms and are selected by

the user with their values defined. In this chapter we are going to use Decision Trees, by

experimenting with the MDP-DT algorithm, which uses the splitting algorithm [6]. In

MDP-DT we define some of the metrics as parameters and let the algorithm grow the

Decision Tree starting from only few States. Each time a split happens, the algorithm

decides which of the parameters is more suitable for splitting the current State into two

new States and in which point.

Also, we can help the algorithm by defining an initial parameter with its values. In

this case the algorithm knows from the beginning 1 Dimension of the State Space and

starts with a Tree having a small number of States from the beginning. The work [6]

defines the “small number of States” as 6 or something similar. In this work we choose to

use as initial parameter the number_of_VMs by defining all its possible values: 3, 4, 5, 6,

7, 8, 9. So, the algorithm will fully know from the beginning the 1st Dimension of the

State Space and start the Decision Tree with 7 States. We do this for several reasons.

- number_of_VMs is the most critical parameter that describes the cluster because the

size of the cluster is what matters most for the Tiramola-agent.

- During the preliminary experiments with Decision Trees (MDP-DT), we noticed that

the algorithm always preferred the number_of_VMs as the splitting parameter among the

others and always found out the exact splitting points/values which were identical with

the different sizes of the cluster.

- The MDP-DT spends many time-steps doing splits and growing the Decision Tree

(State Space). The bigger the Tree, the more detailed the description of the environment

within the Tiramola-agent acts. Obviously there is no need to deprive this knowledge and

let the algorithm spending time-steps for doing splits considering number_of _VMs,

given that we can define both the number_of_VMs as a parameter and its values/splitting

points from the beginning.

- Another reason for this decision is that we always know the accurate possible sizes of

the NoSQL-cluster (in our case, 3 - 9 VMs) and can easily define the number_of_VMs’

values in the .json file where all the parameters are defined. On the other hand, it is not

equally easy to know the possible values of all the other parameters!

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

52

5.2.2 The splitting algorithm

 The splitting algorithm is involved in both models that have Decision Trees, the

Q-DT and the MDP-DT. Taking into consideration the Tiramola’s workflow, the splitting

algorithm is part of the (g) step, and runs right after updating the values of the current

State and Q-State. When the conditions are mature, it splits the current State by replacing

it with a Decision Node and creates 2 new States and thus makes the Decision Tree to

grow bigger.

 From the beginning of the MDP-DT algorithm a vector of all States is created. As

required for a Markov Decision Process, a list of Q-states is stored in each State, and each

one of the Q-States corresponds to a possible Action the Tiramola-agent can do. Each Q-

state holds the number of transitions and sum of rewards towards each State, along with

the total number of times its corresponding Action has been taken. The Tiramola-agent

knows its current State S1 from the retrieved metrics M1. It decides to take Action A, the

NoSQL-cluster modifies its size and the clients run the load against it. During the load-

time, the Monitoring module gathers the metrics M2 and when the load-time is over, the

Tiramola-agent obtains its Reward R. The value of the Reward is determined by the

reward function, which is user-defined and usually depended by the value of one or more

metrics of the M2 set. Now, the Tiramola-agent has all the required information to update

the Values of State S1 and Q-Values of S1’s Q-States, according to the user-selected

update algorithm. Except of these values, it also updates all the variables that define the

number of transitions and other valuable statistics.

 One of the previously mentioned as “valuable statistics” is the quartet <M1, A,

M2, R> that corresponds to metrics M1 and M2, the obtained Reward R and the selected

Action A, as described in the previous paragraph. This quartet is stored in the State S1’s

list that corresponds to S2. When the updating ends, the algorithm checks for a possible

split on State S1, so it follows this workflow:

(i) It retrieves the current best Action of S1, which is the Action that corresponds to the

Q-State with the higher Q-Value of all S1’s Q-States.

(ii) It isolates the experiences <M1, A, M2, R> where the Action happened and by using

each quartet finds the State S2 that corresponds to M2 based on the current Decision Tree

and calculates q(m, a) = r + γV(s’), that is called “instantaneous Q-Value”.

(iii) For each user-defined parameter p it calculates all the tuples <m[p], q(m, a)> and

sorts them based on the value of the parameter m[p].

(iv) For each two consecutive unequal values of the parameter mi[p] and mi+1[p] in that

list, we consider splitting the state at their mid-point. For that purpose it runs a statistical

test on the sets of instantaneous Q-values dividing them in two groups. The q- = {q(mk, a)

| k <= i} and the q+ = {q(mk, a) | k > i}. Each of the groups must have at least a number of

values equal to the user-defined min_num_experiences. If not, splitting the State on the

current point is aborted.

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

53

(v) If the condition in (iv) is fulfilled, the q- and the q+ groups are fed in a statistical test

to check if they are statistically indifferent. The result of the statistical test is compared

each time to the user-defined max_type_I_error. If the result is lower than

max_type_I_error, the mid-point is a possible splitting point.

For each parameter we have many possible splitting points to check. For all these

points that fulfil all the conditions the winner is the one with the lowest achieved result of

the statistical test. This point becomes a possible splitting point. So, we have only one

splitting point for each one of the parameters. If there are more than one parameters with

a possible splitting point, we also chose the one with the lowest achieved result in the

statistical test. This means that when the splitting algorithm is running, only one point can

be a splitting point and each time we have only one split at most. As it is obvious, there is

a tuple that describes each split: <splitting_parameter, splitting_point>.

5.2.2.1 Assumptions on the splitting algorithm

It is obvious from step (iii) that if the parameter has always constant value, no real

sorting can be done. Also, in this case, step (iv) is practically aborted. The parameter has

always the same value, so the algorithm cannot define any splitting point.

The splitting algorithm tries to correlate the values of a parameter with the level

of success of an Action. If the parameter’s values vary a lot under the same circumstances

(load, size of NoSQL-cluster), as we noticed in experiments with constant load, or do not

have any certain pattern when the load or the size of the NoSQL-cluster changes, as we

noticed in the linear load experiments, the algorithm will not be able to be efficient. The

instantaneous Q-Values will be correlated with parameter-values that explain practically

nothing, because these parameters cannot describe reliably the effort of the NoSQL-

cluster in different circumstances. In such cases the split won’t be efficient and the

resulting States won’t be useful for the Tiramola-agent to be aware of the environment.

Our assumption is that metrics of the 2nd group will produce worse Decision

Trees and thus worse State Spaces than the ones of the 1st group, if they are used as

splitting parameters for the *-DT algorithms.

5.2.3 Experimental setup

 In the previous work [6] there is a lot of effort on defining the most efficient

algorithms and the best values for their parameters. We will take into consideration the

previous work and we will choose only the best algorithms and parameters in order to

focus on defining the more and less efficient parameters for the splitting algorithm. The

selected algorithms and parameters in the following experiments are:

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

54

- The HBase-cluster could expand and contract from 3 VMs to 9 VMs (including master).

- The Tiramola-agent could decide among the Actions: add 1 VM, add 2 VMs, no action,

remove 1 VM and remove 2 VMs.

Table 5.1: Selected parameters for MDP

 master slave client

number of VMs 1 8 4

vcpu 4 2 1

RAM (GB) 16 4 2

storage (GB) 10 40 10

Table 5.2: VM characteristics for experiments

 We loaded 3,000,000 records in the HBase and by defining the HBase-parameter

hbase.hregion.max.filesize to 32 MB we managed to have about 650 regions. The HDFS

replication factor was set to 2.

epsilon 0.5

RL model MDP-DT

Update Algorithm Prioritized Sweeping

Update Algorithm error 0.1

Max Steps 100

Initial Q-Values 0

Discount γ 0.5

Splitting Algorithm Q-value test (mid-point)

Split error (max_type_I_error) 0.005

Minimum number of experiences 2

Statistical Test Mann-Whitney test

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

55

 In each of the following experiments we run sinusoidal load from 1,000 to 19,000

reqs/sec. We let the Tiramola agent to train for 2,000 time-steps while the epsilon

parameter is set to 0.5. This means that the agent in each time-step has 50% possibility to

choose a random Action (exploration) and 50% to decide the optimal Action

(exploitation). Then, it runs for 200 more steps exploiting the accumulated knowledge

and choosing only the optimal Action. Each load-period needs 40 steps, so all the

evaluation time-steps were equal to 5 load-periods. In the following tables we study

Tiramola’s behavior and efficiency during the first 2 load-periods of evaluation and

during the last (5th) load-period of evaluation.

5.2.4 Introducing comparison measurement

 Based on the policy “we want the cluster to have the smallest possible size, but

always serve the incoming load”, we define the ideal performance of Tiramola for a

sinusoidal load. During every time step the cluster is stressed by a specific load and there

is an optimal size of the HBase-cluster with which the Tiramola-agent obtains the biggest

Reward. For each time-step in the experiments we compare the selected size of the

cluster by Tiramola with the optimal one and find the difference. If Tiramola selects the

size of the cluster to be X, but the optimal size is X-1 or X+1, we say that this is 1

Mistake. In this way we distinguish clearly Tiramola’s performance in each experiment.

By changing only the splitting parameter in the whole experiment setup, Tiramola’s

performance determines the effectiveness of each splitting parameter.

Figure 5.1: Ideal Tiramola performance against sinusoidal load

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

56

5.2.5. Performance of splitting parameters

 We ran every experiment with number_of_vms being the default Dimension of

the State Space. We use every metric as the only splitting parameter and run each

experiment 10 times. Each time we run an experiment, we calculate the mistakes for the

1st, 2nd and 5th period during exploitation. In this set of experiments the whole training

lasts 2000 time steps (50 sinusoidal periods), while the exploitation lasts 200 time steps

(5 sinusoidal periods). We exclude the best and the worst performance based on the

number of mistakes and calculate the average of mistakes of the remaining 8

experiments.

 In the experiments where we use multiple metrics as splitting parameters, we

expect Tiramola to split the State Space faster, so we are stricter and train Tiramola for

1000 time steps (25 sinus periods).

Parameters

AVG num of Mistakes

1st and 2nd period

AVG num of Mistakes

5th period

 2000 time-step-training

1st

group

%_CPU_usage 36.3

1st group

calculated

average:

37.05

16.3
1st group

calculated

average:

16.9

net_usage 40.6 19.6

total_throughput 37.3 18.6

total_latency 36.6 15

load_one 38 15

2nd

group

io_reqs 85.3
2nd group

calculated

average:

129.5

78.3
1st group

calculated

average:

73.26

cpu_wio 119 58

%_free_RAM 154 73

disk_free 197.6 95

%_cached_RAM 91.6 62

next_load 31.6 10.3

 1000 time-step-training

1st group + next_load 33.25 15

2nd group 82.75 28.75

All 96 24.75

Table 5.3: Tiramola performance for one or more splitting parameters

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

57

When Tiramola is using a splitting parameter of the 1st group of parameters the

average Mistakes for 2 periods right after training is approximately 37. The following

chart is an example of how Tiramola’s performance looks like using total_throughput as

a parameter in a similar case.

Figure 5.2: Tiramola performace with total_thgoughput as splitting parameter

When Tiramola is using a splitting parameter of the 2nd group, the average

Mistakes for 2 periods right after training is approximately 130. The following chart is an

example of how Tiramola’s performance looks like using cpu_wio as a parameter in a

similar case.

Figure 5.3: Tiramola performace with cpu_wio as splitting parameter

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

58

When Tiramola is using a splitting parameter of the 1st group, the average

Mistakes during the 5th period after the training is approximately 16. The following chart

is an example of how Tiramola’s performance looks like using total_latency as a

parameter in a similar case.

Figure 5.4: Tiramola performace with total_latency as splitting parameter

When Tiramola is using a splitting parameter of the 2nd group, the average

Mistakes during the 5th period after the training is approximately 73. The following chart

is an example of how Tiramola’s performance looks like using %_free_RAM as a

parameter in a similar case.

Figure 5.5: Tiramola performace with %_free_RAM as splitting parameter

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

59

When Tiramola is using next_load, %_CPU_usage, network_usage,

total_throughput, total_latency and load_one (the whole 1st group) as splitting

parameters, the average Mistakes during the 1st exploitation sinus period is around 33,

while during the 5th period is 15. The following chart shows a similar performance.

Figure 5.6: Tiramola performace with all 1st group as splitting parameters

When Tiramola is using io_reqs, cpu_wio, %_free_RAM, disk_free and

%_cached_RAM (the whole 2nd group) as splitting parameters, the average Mistakes

during the 1st exploitation sinus period is approximately 80, while during the 5th is 29.

The following chart show a similar performance.

Figure 5.7: Tiramola performace with all 2nd group as splitting parameters

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

60

5.2.6 Conclusions on splitting parameters’ performance

 It is obvious that the parameters of the 1st group have better performance than the

ones of the 2nd group when used separately.

 The more Tiramola is going further from training period the more it improves its

performance when it uses parameters from the 1st group. On the other hand this happens

less often when it uses the ones of the second, and when it does, the improvement on its

performance is not that great.

 When using parameters of the 1st group altogether, Tiramola’s performance is

better than using those of the 2nd altogether.

 When we use all 11 parameters the performance is worse than using only the ones

of the 1st group. That means that parameters of the 2nd group are not only worse when

used alone, but they also harm the whole performance.

 Using more parameters is not necessarily a smart choice. More Dimensions in

State-Spaces doesn’t imply better performance.

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

61

5.3 Experiments pt. 4: Unpredictable Load

 After defining the best parameters and algorithms of Tiramola, we are going to

run unpredictable load against the HBase-cluster and we will study Tiramola’s

performance. Tiramola’s configuration is the same as in the previous stages and the

chosen parameters are those of the 1st group. Never before the Tiramola has been tested

in such a load, so we are going to do a lot of preliminary tests in order to define the level

of unpredictability of the load, the range of the its values and when Tiramola is able to

react by taking into account the frequency in load’s transitions from very low values to

very high ones. Summing up, we are going to study and define a fair unpredictable load

according to Tiramola’s skills and then come to a conclusion about Tiramola’s speed of

reaction.

 We run 4 different types of unpredictable load against the HBase-cluster.

unpredictable_load1: In every time step, each of the 7 different loads is randomly chosen

and runs against the cluster.

unpredictable_load2: The same load stresses the cluster for 2 successive time steps. After

that, the load’s value is a new random one.

unpredictable_load3: The same load stresses the cluster for 3 successive time steps. After

that, the load’s value is a new random one.

unpredictable_load4: The same load stresses the cluster for 4 successive time steps. After

that, the load’s value is a new random one.

 We run every load in 4 different sessions changing only the number of training

time-steps. Tiramola has different number of training time steps: 1000, 2000, 4000 and

8000. During each experiment Tiramola runs for 100 more time steps choosing the

optimal Action. We present its performance in the next charts.

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

62

5.3.1. HBase cluster stressed under 1st type unpredictable load

Figure 5.8: Tiramola performance: 1st type of Unpredictable load. 1000 t.s. training

Figure 5.9: Tiramola performance: 1st type of Unpredictable load. 2000 t.s. training

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

63

Figure 5.10: Tiramola performance: 1st type of Unpredictable load. 4000 t.s. training

Figure 5.11: Tiramola performance: 1st type of Unpredictable load. 8000 t.s. training

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

64

5.3.2 HBase cluster stressed under 2nd type unpredictable load

Figure 5.12: Tiramola performance: 2nd type of Unpredictable load. 1000 t.s. training

Figure 5.13: Tiramola performance: 2nd type of Unpredictable load. 2000 t.s. training

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

65

Figure 5.14: Tiramola performance: 2nd type of Unpredictable load. 4000 t.s. training

Figure 5.15: Tiramola performance: 2nd type of Unpredictable load. 8000 t.s. training

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

66

5.3.3 HBase cluster stressed under 3rd type unpredictable load

Figure 5.16: Tiramola performance: 3rd type of Unpredictable load. 1000 t.s. training

Figure 5.17: Tiramola performance: 3rd type of Unpredictable load. 2000 t.s. training

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

67

Figure 5.18: Tiramola performance: 3rd type of Unpredictable load. 4000 t.s. training

Figure 5.19: Tiramola performance: 3rd type of Unpredictable load. 8000 t.s. training

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

68

5.3.4 HBase cluster stressed under 4th type unpredictable load

Figure 5.20: Tiramola performance: 4th type of Unpredictable load. 1000 t.s. training

Figure 5.21: Tiramola performance: 4th type of Unpredictable load. 2000 t.s. training

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

69

Figure 5.22: Tiramola performance: 4th type of Unpredictable load. 4000 t.s. training

Figure 5.23: Tiramola performance: 4th type of Unpredictable load. 8000 t.s. training

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

70

5.3.5 Conclusions on Tiramola’s performance under unpredictable load

Against 1st type of unpredictable load

 Tiramola is completely incapable of following such load. Only after a big number

of training time steps (only at 8000) it seems to react a bit, but the changes in the cluster’s

size seem hopeless. However, we should remind that based on the reward function we

defined, Tiramola must choose the smallest cluster size that serves the incoming load (the

less cost). Considering that fact, Tiramola cannot practically follow such an unpredictable

load and chooses to keep the cluster’s size in an average value and chooses 6 VMs (3

VMs minimum, 9 VMs maximum). In this way, it achieves a balance between serving the

loads and keeping the cost low.

Against 2nd type of unpredictable load

 Each load is random, but changes every 2 time steps. Tiramola now has one more

time step to modify the cluster’s size, but fails to adequately follow the load. By

increasing the training time-steps, Tiramola seems to be more stable, but still performing

poorly.

Against 3rd type of unpredictable load

During the 3rd type of unpredictable load, Tiramola has 2 more time-steps to

recognize the load. Under this load Tiramola starts performing well, especially when the

training lasts 4000 time-steps or more.

Against 4th type of unpredictable load

 During the 4th type of unpredictable load, Tiramola has more opportunities to

react and adjust the cluster’s size to the incoming load. It is not only performing well

after 4000 time-steps of training or more, but also achieves a slightly good performance

even after 2000 time steps of training.

5.3.6 Extending Tiramola’s flexibility

 Every time the load’s value changes the possible next value can be any of 7

predefined values. In the 2 worst cases for Tiramola the load goes from the lowest value

to the highest one or the opposite. In such cases it is possible that the cluster has the

smallest available size (3 VMs). In the case of the total increase of the load Tiramola

needs to expand the cluster to its biggest available size (9 VMs). During these

experiments we kept the previous availability of Actions for Tiramola, meaning that the

biggest expansion or contraction of the cluster is by 2 VMs. So, Tiramola needs 4 time

steps to expand the cluster by 6 VMs (2 + 2 + 2), considering that during the first time

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

71

step Tiramola has no way of knowing how much the load will change. In conclusion, if

Tiramola is able to choose only such Actions, then it is fair to study its performance only

against unpredictable loads of the 5th type. Tiramola’s available flexibility must be

proportionate to the changes of the load. In the next experiments that will follow we will

enable more Actions for the Tiramola, and we will study its performance under such

unpredictable loads.

 As the previous experiments showed, it is unfair to have extreme changes in the

load, i.e. from 6000 reqs/sec to 14000 reqs/sec, that can be served by 3 and 7 VMs

respectively, and Tiramola’s maximum flexibility being only 2 VMs (plus or minus). So,

we increased Tiramola’s flexibility by leaving all the other features as they were. Now

Tiramola can add or remove 1, 2, 3, 4, 5 and 6 VMs. Even so, Tiramola and no other

system can be able to predict a load that is completely unpredictable, meaning that

Tiramola can never follow adequately a load that is different in every time-step,

previously presented as “unpredictable load of 1st type”. So, we are going to test

Tiramola by stressing the HBase-cluster under loads of 2nd and 3rd type. Also, we will

randomly select a specific sequence of both loads for 100 time-steps that will be the

evaluation sequences. We will going to define the ideal reaction of Tiramola for these

100 steps in each case, thus being able to accurately define Tiramola’s performance.

5.3.6.1 Tiramola against unpredictable load of 2nd type

 As previously mentioned, the load changes randomly every 2 time steps. During

the 1st time-step Tiramola is unable to predict the load, so we stress the cluster with the

same load for one more step giving a realistic opportunity to Tiramola to follow it. Such

load is stressing the cluster for the whole training session, but we have a specific

sequence of this type of 100 loads in every experiment during the evaluation period. In

the next chart we can see this sequence of 100 loads and the ideal reaction of Tiramola, if

it was able to fully predict the load.

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

72

Figure 5.24: Ideal Tiramola performance against 2nd type of unpredictable load

 We evaluate Tiramola after 1000, 2000, 4000 and 8000 training steps. After every

training session the same sequence of loads for 100 time-steps happens during which we

study Tiramola’s behavior. Stressing the cluster under the same sequence of loads we

compare Tiramola’s reaction with the ideal one and count the Mistakes, our comparison

measurement, as defined in previous experiments with the sinusoidal load (if Tiramola

chooses 4 VMs, but the ideal choice is 3 or 5 VMs, this is 1 mistake and so on).

 Every experiment is conducted 10 times and each time we study Tiramola’s

performance by counting mistakes. Then, we neglect the best and the worst performance

and calculate the average number of mistakes based on the other 8 times we conducted

the experiment. Except of studying Tiramola’s performance for the whole 100 time steps

we will pay more attention on Tiramola’s performance during each 2nd time-step of the

evaluation sequence. During this time-step Tiramola has its realistic opportunity to react.

Table 5.4: Tiramola performace against 2nd type of unp. load. Standard evaluation load

Unpredictable

Load of 2nd type

1000 training

time-steps

2000 training

time-steps

4000 training

time-steps

8000 training

time-steps

AVG mistakes at

100 evaluation t.s.
167.4 155.3 136.6 131.1

AVG mistakes

every 2 eval. t.s.
66.3 52.1 39.6 35.1

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

73

In the next 4 charts we see how Tiramola’s performance looks like in similar cases as

depicted in the table above:

Figure 5.25: Tiramola perf.: Standard evaluation 2nd type of unpr. load, 1000 train t.s.

Figure 5.26: Tiramola perf.: Standard evaluation 2nd type of unpr. load, 2000 train t.s.

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

74

Figure 5.27: Tiramola perf.: Standard evaluation 2nd type of unpr. load, 4000 train t.s.

Figure 5.28: Tiramola perf.: Standard evaluation 2nd type of unpr. load, 8000 train t.s.

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

75

5.3.6.2 Tiramola against unpredictable load of 3rd type

As previously mentioned, the load changes randomly every 3 time steps. During

the 1st time-step Tiramola is unable to predict the load, so we stress the cluster with the

same load for two more steps. Now Tiramola has 2 opportunities to follow the load and

adapt the size of the cluster. Such load is stressing the cluster for the whole training

session, but during the evaluation we stress the cluster under the same sequence of 100

loads in every experiment. In the next chart we can see this sequence of 100 loads and the

ideal reaction of Tiramola, if it was able to fully predict the load.

Figure 5.29: Ideal Tiramola performance against 3rd type of unpredictable load

 We evaluate Tiramola after 1000, 2000, 4000 and 8000 training steps. After every

training session the same sequence of loads for 100 time-steps happens during which we

study Tiramola’s behavior.

 Every experiment is conducted 10 times and each time we study Tiramola’s

performance by counting mistakes. Then, we neglect the best and the worst performance

and calculate the average number of mistakes based on the other 8 times we conducted

the experiment. Except of studying Tiramola’s performance for the whole 100 time steps

we will pay more attention on Tiramola’s performance during the 2nd and 3rd time-step

every 3 time-steps of the evaluation sequence. During these 2 time-steps Tiramola has 2

realistic opportunities to react.

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

76

Unpredictable Load

of 3rd type

1000

training

time-steps

2000

training

time-steps

4000

training

time-steps

8000

training

time-steps

AVG mistakes 100

evaluation time-steps

126 105.1 94.2 89.8

AVG mistakes on

2nd and 3rd eval t.s.

64.3 46 33.7 27

 In the next 4 charts we see how Tiramola’s performance looks like in similar

cases as depicted in the table above:

Figure 5.30: Tiramola perf.: Standard evaluation 3rd type of unpr. load, 1000 train t.s.

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

77

Figure 5.31: Tiramola perf.: Standard evaluation 3rd type of unpr. load, 2000 train t.s.

Figure 5.32: Tiramola perf.: Standard evaluation 3rd type of unpr. load, 4000 train t.s.

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

78

Figure 5.33: Tiramola perf.: Standard evaluation 3rd type of unpr. load, 8000 train t.s.

5.3.7 Conclusions on extended Tiramola performance against unpredictable load

 By making Tiramola’s flexibility proportionate to the volume of load-changes,

Tiramola able to have much better performance under more demanding loads. Under

unpredictable load of the 2nd type Tiramola performs sufficiently after 4000 training

time-steps. In the previous experiments, having less flexibility, Tiramola’s behavior was

poor even after 8000 training time-steps. In the case of 3rd type of unpredictable load,

Tiramola is performing sufficiently after 2000 training time-steps, while in the previous

experiments it needed at least 4000 training time-steps to follow the load. So, if we let

Tiramola to be flexible enough and train it sufficiently enough, Tiramola can have a good

performance under unpredictable loads.

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

79

Chapter 6

EPILOGUE

 In this work we used the last version of Tiramola which implements Markov

Decision Process with Decision Trees that use the HBase cluster’s metrics as splitting

parameters and create a multi-dimension State Space based on them. We evaluated the

performance of Tiramola when an HBase cluster is stressed under unpredictable load and

Tiramola is trying to contract or expand the cluster under the policy “keep the cluster to

the smallest possible size, but always serve the incoming load”.

 For doing such challenging task, we decided that it is of high importance to tune

Tiramola to its optimal condition. All the MDP related parameters (epsilon, update

algorithm, discount γ etc. [see 5.2.3]) were already evaluated and we already knew the

optimal values, so we focused on the splitting parameters. Tiramola’s Decision Tree uses

the NoSQL cluster’s metrics, while cluster is stressed, as splitting parameters to create

new States, so these metrics are also becoming the Dimensions of the State Space. All

things considered, studying the behavior of these metrics in depth was very important.

6.1 Conclusions

 In the 4th chapter we present several experiments where we don’t use Tiramola,

but we send two different kinds of loads against an HBase cluster, while keeping the

cluster’s size constant. This allows us to study the behavior of 10 metrics directly and 21

metrics indirectly. Given that the total amount of useful metrics is 40 and we cover CPU,

memory, disk and network usage we consider that our study on cluster’s metrics is

complete.

 During the 1st phase of experiments we run linear increasing load and realize that

we can divide the metrics into two groups based on the behavior. The ones that have a

consistent behavior while the load is increasing and the ones that have unpredictable

behavior. Also, we define the critical load for each cluster size, which is the highest load

that the HBase cluster serves the requests for each size.

 During the 2nd phase of experiments we run several loads under the critical load

for each size of the HBase cluster (3, 4, 5, 6, 7, 8 and 9 VMs, master included). Doing so,

we managed to present some basic analytics about the metrics that helped us understand

deeper the behavior of metrics.

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

80

 Based on these two phases of experiments and thinking that the cluster’s metrics

will be used as splitting parameters and Dimensions of the State Space, we conclude that:

- The ones of the 2nd group (4.2.1) have high variance when the cluster’s size is

constant and is stressed under the same load multiple times and/or their values do

not differ when the load or the cluster’s size is changing. Thinking of them as

splitting parameters and/or Dimensions, we can make the assumption that they

will not be efficient. Both characteristics make them inappropriate for creating a

State Space that will describe the environment for the Tiramola agent reliably.

Also, when Tiramola is using any of them as splitting parameters cannot correlate

reliably under which circumstances a specific State will bring positive or negative

Reward.

- On the other hand, the metrics of the 1st group (4.2.1) have the opposite behavior

and thus, they can be used as Dimensions of a State Space that reliably describes

the environment for the Tiramola agent. Also, being consistent makes them

reliable as splitting parameters.

 In the 5th chapter we use Tiramola in two phases of experiments.

 During the 3rd phase we confirm our assumptions about which metrics can be

used as splitting parameters in Decision Trees and as Dimensions for the State Space. To

accomplish that, we run sinusoidal load against the HBase cluster and do multiple

experiments using each metric as a splitting parameter. In order to do the evaluation we

introduce the Mistake, which is a comparison measurement for evaluating Tiramola’s

performance that can be used when a NoSQL cluster is stressed under a standard load.

 During the 4th phase we used Tiramola optimally, while the HBase cluster was

stressed under unpredictable load. In this part of experiments we manage to:

- Define different level of randomness for unpredictable loads (4 different types).

Never before such loads were used in relevant works, so this was a challenging

task.

- Define when Tiramola is performing acceptably: against what type of

unpredictable loads and after how many training time steps.

- Go further by extending Tiramola’s flexibility about contracting or extending the

cluster. Doing so, we made the encounter (Tiramola VS unpredictable load) to be

fairer and saw that Tiramola can perform better against unpredictable loads that

have high randomness, while Tiramola is less trained.

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

81

Bibliography

[1]

Konstantinou I., Angelou Ε., Boumpouka C., Tsoumakos D. and Koziris N., “On

the elasticity of nosql databases over cloud management platforms”, in

Proceedings of the 20th ACM international conference on Information and

knowledge management, pp. 2385–2388, ACM, 2011.

[2] Angelou E., Papailiou N., Konstantinou I., Tsoumakos D. and Koziris N.,

“Automatic scaling of selective SPARQL joins using the TIRAMOLA system”, in

Proceedings of the 4th International Workshop on Semantic Web Information

Management, p.1, ACM, 2012.

[3] Konstantinou I., Angelou E., Tsoumakos D., Boumpouka C., Koziris N. and

Sioutas S., “Tiramola: elastic nosql provisioning through a cloud management

platform”, in Proceedings of the 2012 ACM SIGMOD International Conference

on Management of Data, pp.725–728, ACM, 2012.

[4] Tsoumakos D., Konstantinou I., Boumpouka C., Sioutas S. and Koziris N.,

“Automated, elastic resource provisioning for nosql clusters using tiramola”, in

The 13th IEEE/ACM International Symposium on Cluster, Cloud and Grid

Computing (CCGrid), pp.34 – 41, IEEE, 2013

[5] Kassela E., Boumpouka C., Konstantinou I. and Koziris N, “Automated workload-

aware elasticity of NoSQL clusters in the cloud”, in 2014 IEEE International

Conference on Big Data (Big Data), pp. 195–200, IEEE, 2014

[6] Lolos K., Konstantinou I., Kantere V. and Koziris N., “Adaptive State Space

Partitioning of Markov Decision Processes for Elastic Resource Management” in

2017 IEEE 33rd International Conference on Data Engineering, pp.191 – 194,

IEEE, 2017.

[7] Lolos K., Konstantinou I., Kantere V. and Koziris N., “Elastic Management of

Cloud Applications using Adaptive Reinforcement Learning”, in proceedings of

the 2017 IEEE International Conference on Big Data (BigData 2017), Boston,

MA, USA, December 11-14 2017.

[8] OpenStack official site (2019), Retrieved from: https://www.openstack.org/

[9] White T., Hadoop: The Definitive Guide, 4th Edition. O'Reilly Media, Inc, CA

(2015)

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

https://www.openstack.org/

82

[10] Hadoop official site (2019), Retrieved from: https://hadoop.apache.org/

[11] Ghemawat S., Gobioff H. and Leung S. T., “The Google file system”, in ACM

SIGOPS operating systems review, vol. 37, pp. 29–43, ACM, 2003.

[12] George L., HBase: The Definitive Guide, 2nd Edition O'Reilly Media, Inc, CA

(2015)

[13] HBase official site (2019), Retrieved from: https://hbase.apache.org/

[14] Chang F., Dean J., Ghemawat S., Hsieh W. C., Wallach D. A., Burrows M.,

Chandra T., Fikes A., and Gruber R. E., “Bigtable: A Distributed Storage System

for Structured Data,” in OSDI, 2006.

[15] Cooper B. F., Silberstein A., Tam E., Ramakrishnan R. and Sears R.,

“Benchmarking Cloud Serving Systems with YCSB”, in ACM SOCC, 2010.

[16] Massie M., Li B., Nicholes B. and Vuksan V., Monitoring with Ganglia, 1st

Edition O'Reilly Media, Inc, CA (2013).

[17] Ganglia official site (2019), Retrieved from: http://ganglia.sourceforge.net/

[18] Pyeatt L. D, Howe A. E. et al., “Decision tree function approximation in

reinforcement learning”, in Proceedings of the third international symposium on

adaptive systems: evolutionary computation and probabilistic graphical models,

vol.1, p.2, 2001.

[19] Sutton R. S. and Barto A. G., Reinforcement Learning: An Introduction, 2nd

Edition The MIT Press Cambridge, MA (2017).

[20] Puterman M. L., Markov Decision Processes: Discrete Stochastic Dynamic

Programming, 1st Edition John Wiley & Sons, Inc., New York, NY (1994).

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126

https://hadoop.apache.org/
https://hbase.apache.org/
http://ganglia.sourceforge.net/

