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Abstract 
 

 Cloud computing has gained popularity over the last decade leading companies 

and organizations to either offer or use Infrastructure as a Service (IaaS). By utilizing 

such technologies they succeed in using computer resources according to their everyday 

needs. In IaaS, the computer resources are shared between many users and usage is much 

more effective. Even so, when a user binds an amount of resources and deploys an 

application, the clients may create varying loads, because clients’ needs vary during a 24 

hour period. Therefore, users of IaaS need a way to increase or decrease their resources 

according to their clients’ needs in order to satisfy the higher loads during peak hours, but 

not bind more resources than needed during periods of lower traffic. This bind and 

release process can be achieved either manually, or by following a simple policy that is 

offered by several administrating systems  

 In this work we study Tiramola’s performance, a system that offers automatic 

adaptation of the size of a NoSQL database according to user’s policy. We use the last 

version of Tiramola, where the Decision Making module implements Reinforcement 

Learning algorithms along with adaptive partitioning of the State Space, using Decision 

Trees. In order to succeed in partitioning the State Space, Tiramola uses metrics as 

splitting parameters from the cluster of VMs where a NoSQL database (HBase in our 

case) is deployed and stressed under a load. In the first two phases of experiments we 

study the behavior of the metrics of the HBase-cluster under linear increasing load and 

constant load. Based on this data analysis we estimate which one of them can behave 

better as a splitting parameter when used by Tiramola. In the third phase of experiments, 

we stress the HBase cluster under sinusoidal load, use the metrics we studied as splitting 

parameters and verify our evaluation. Tiramola’s performance reveals which metrics are 

efficient as splitting parameters and which are not. In the fourth and last phase of 

experiments, we configure Tiramola to use the best splitting parameters and study its 

performance by stressing the HBase cluster under unpredictable load. 
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Περίληψη 
 

 Η αύξηση της δημοτικότητας των υπολογιστικών νεφών, γνωστός όρος ως cloud 

computing, έχει οδηγήσει σε προσφορά Υποδομών ως Υπηρεσίες, γνωστές κι ως 

Infrastructure as a Service (IaaS). Με αυτές οι χρήστες μπορούν να δεσμεύσουν πόρους 

για εκτέλεση απλών εφαρμογών ή πειραμάτων κατά το δοκούν. Ως αποτέλεσμα, η χρήση 

των υλικών πόρων διαμοιράζεται ανάμεσα σε πολλούς χρήστες κι αξιοποίηση των πόρων 

είναι πιο αποτελεσματική. Παρατηρείται πάντα αυξομείωση στη χρήση αυτών των 

συστημάτων καθώς ο φόρτος που δημιουργούν οι τελικοί χρήστες των εφαρμογών 

αλλάζει κατά τη διάρκεια της μέρας. Ως εκ τούτου, υπάρχει απαίτηση για αυξομείωση 

της διαθεσιμότητας των πόρων ώστε από τη μία οι εφαρμογές που τρέχουν πάνω σε 

τέτοια συστήματα να έχουν συνέπεια και να εξυπηρετούν τη ζήτηση ακόμα και τις ώρες 

αιχμής, αλλά από την άλλη να μη δεσμεύουν περισσότερους από τους απαιτούμενους 

πόρους τις υπόλοιπες χρονικές περιόδους. Αυτή η αυξομείωση μπορεί να επιτευχθεί είτε 

χειροκίνητα, είτε με χρήση απλής τακτικής που προσφέρουν διάφορα συστήματα 

διαχείρισης υποδομών. 

 Σε αυτή την εργασία μελετούμε την επίδοση του Tiramola, ενός συστήματος που 

επιτρέπει την αυτόματη αυξομείωση του μεγέθους μίας NoSQL βάσης δεδομένων 

ακολουθώντας οποιαδήποτε τακτική ορίσει ο χρήστης. Χρησιμοποιούμε την τελευταία 

έκδοση του Tiramola, όπου στη μονάδα απόφασης γίνεται προσαρμοστικός 

διαμοιρασμός χώρου καταστάσεων Μαρκοβιανών μοντέλων. Για να  επιτευχθεί ο 

διαμοιρασμός των καταστάσεων χρησιμοποιούνται οι μετρικές των εικονικών 

μηχανημάτων όπου τρέχει μια NoSQL κατανεμημένη βάση δεδομένων (HBase) υπό 

φορτίο. Στις δύο πρώτες φάσεις πειραμάτων εξετάζουμε την συμπεριφορά των μετρικών 

της συστάδας εικονικών μηχανημάτων της HBase υπό γραμμικά αυξανόμενο φορτίο, 

αλλά και σταθερό, ώστε να αξιολογήσουμε ποιες από τις μετρικές μπορούν να 

λειτουργήσουν καλύτερα ως παράμετροι διαχωρισμοί Μαρκοβιανών καταστάσεων από 

τον Tiramola. Στην τρίτη φάση πειραμάτων επιβεβαιώνουμε την αξιολόγηση των 

μετρικών/παραμέτρων διαχωρισμού παρακολουθώντας τις επιδόσεις του Tiramola υπό 

ημιτονοειδές φορτίο προς τη βάση. Στην τέταρτη και τελευταία φάση πειραμάτων, 

χρησιμοποιούμε τις βέλτιστες παραμέτρους διαχωρισμού και παρακολουθούμε τις 

επιδόσεις του Tiramola υπό απρόβλεπτο φορτίο. 
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Chapter 1 
 

Introduction 
 

 

 

1.1 Cloud Computing, NoSQL databases and elasticity 

 

 The explosive growth of data during the last decade led us to employ new ways of 

storing and processing them. New kinds infrastructures were created and cloud 

computing was adopted very quickly both by companies and researchers. The volume of 

the data is so vast that it became necessary to divide them into more than one machines. 

Distributed systems were evolved and distributed file systems like the Hadoop DFS were 

created. Along with distributed storage, platforms of distributed processing were 

developed like Apache Hadoop, Apache Spark and many more. Furthermore, the 

computing society needed to find an SQL equivalent for distributed data and NoSQL 

distributed databases came to play like HBase, Cassandra, Riak, Voldemort and many 

more. 

 NoSQL databases are horizontally scalable distributed non-relational storage 

spaces. They are designed to run on large scale distributed systems, managing the 

distribution of data and the coordination of machines. Also, they tolerate hardware 

failures. 

 One of their most important characteristics of NoSQL databases is elasticity. It 

makes them the most suitable for using Infrastructure as a Service (IaaS) offered by cloud 

computing platforms. IaaS gives the ability of elastically scale up or down according to 

the user’s needs. Elasticity is a very important ability giving the opportunity to users to 

adapt to the incoming traffic caused by clients. Adapting to the resources according to 

incoming traffic can reduce the cost during periods of low incoming load, while keeping 

an application available during the periods of high demand. 

 Tiramola is a system that allows automating elasticity of NoSQL databases 

according to a user defined policy. Unlike other systems, Tiramola is not using simplified 

methods to automate elasticity like defining a simple threshold or asking from the user to 

set the conditions. Tiramola’s last version is using Reinforcement Learning algorithms 

such as Markov Decision Processes and Q-Learning enriched with adaptive State Spaces 

by utilizing Decision Trees. This enrichment allows Tiramola to better adapt the State 

Space and capture the complexity of the system. 
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1.2 Thesis subject 

 

 In this work, we are going to use the last version of Tiramola and evaluate its 

behavior when unpredictable load runs against an HBase cluster. Tiramola’s last version 

has already been evaluated as an improvement in comparison to older versions that 

implement more traditional Reinforcement Learning algorithms, but not yet been tested 

adequately as to which are the optimal splitting parameters. Also, all the related works 

about automating elasticity with Tiramola were always using sinusoidal load, but in this 

work we are going to experiment using unpredictable loads. 

 The first challenge hides a bigger topic that has never been fully covered in any 

previous relevant work, the HBase cluster’s behavior. Every Tiramola version has a 

Decision Making module that implements Reinforcement Learning algorithms. That’s 

how Tiramola decides about the size of the cluster. For doing so, every Tiramola version 

uses the metrics of a NoSQL cluster and these metrics have never been analyzed 

adequately. So, in the first two parts of the experiments we study the behavior of the 

HBase cluster while it is stressed. We monitor the metrics of the cluster and considering 

how the splitting parameters in Decision Trees are used, we evaluate the suitability of the 

metrics as splitting parameters. During the third phase of experiments we verify our 

evaluation and finally decide which of the metrics can be the optimal splitting parameters 

for Tiramola’s Decision Trees. That’s how we meet the challenge about using optimally 

the last version of Tiramola. 

 The second challenge is split into two smaller ones. In the first phase we try to 

find the level of randomness of an unpredictable load. When we find it, in the second 

phase we configure Tiramola’s range of actions in order to have a fair encounter between 

the big changes of the load and Tiramola’s flexibility. Then, we study and evaluate 

Tiramola’s behavior against the most reasonably unpredictable loads. 

 

 

 

1.3 How this work is organized 

 

In the second chapter we present all the tools and platforms that are used in this work and 

give an overview of our infrastructure.  

In the third chapter we dive into Tiramola and explain its workflow in a technical way 

and give an overview of what happens when we use Tiramola. 

In the fourth chapter we present the first three round of experiments. By analyzing the 

HBase cluster’s metrics we accomplish to describe how HBase reacts when stressed. 

Also, by knowing how the splitting algorithm works, we can make solid assumptions 

about which one of them can be used efficiently as a splitting parameter. In the third 

round, we verify which parameters are more efficient 
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In the fifth chapter we are testing Tiramola by using the optimal splitting parameters. We 

run several types of unpredictable loads against the HBase, study its behavior, extend its 

flexibility and finally evaluate it. 

In the sixth and last chapter, we present our conclusions. 
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Chapter 2 
 

Technical Aspects 
 

 

 

2.1 Technical Overview 

 

 In order to test automation of the elasticity of a NoSQL database we need to 

reproduce the whole environment. So, except of the cluster of machines that have a 

NoSQL database installed, we also want machines that will act as clients of the database 

and make the queries, a system that can monitor everything and of course, we want the 

tool that decides automatically to expand or contract the NoSQL cluster. 

 We use OpenStack to create all the virtual machines (VMs) we need. By using 

OpenStack, we create cluster of VMs where a NoSQL database is installed, HBase in our 

case, and a second cluster of VMs that will act as clients. In each client VM we install the 

YCSB tool which can insert records into HBase, make either read or update queries and 

even delete the records. For monitoring everything, we use Ganglia. The Open Stack 

installation offered by the Computer Science Laboratory of the National and Technical 

University already has Ganglia that monitors the installation (outside of our VMs). We 

also install another Ganglia on the HBase cluster, because we want metrics from inside of 

the HBase cluster. Last but not least, Tiramola is installed on the master of the HBase 

cluster and is in charge of everything: start/stop the clients, define what kind of load the 

clients create, get all kinds of metrics, decide the size of the cluster and send all 

commands either to the HBase cluster about start/stop/restart or to the OpenStack 

installation about add/remove VMs to the HBase cluster. 

 

 

 

2.2 OpenStack 

 

 OpenStack [7] is a cloud operating system that controls large pools of compute, 

storage and networking resources throughout a datacenter, all managed through a 

dashboard that gives administrators control while empowering their users to provision 

resources through a web interface. 

 OpenStack began in 2010 as a joint project of Rackspace Hosting and NASA. As 

of 2016, it is managed by the OpenStack Foundation, a non-profit corporate entity 

established in September 2012 to promote OpenStack software and its community. 

OpenStack is a free and open-source software platform for cloud computing, mostly 
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deployed as infrastructure-as-a-service (IaaS), whereby virtual servers and other 

resources are made available to customers. The software platform consists of interrelated 

components that control diverse, multi-vendor hardware pools of processing, storage, and 

networking resources throughout a data center. Users either manage it through a web-

based dashboard, through command-line tools, or through RESTful web services.  

 

 

2.2.1 OpenStack components 

 

 OpenStack Compute, also known as Nova, is a platform whose aim is to manage 

the OpenStack infrastructure. It provides an interface and an API that allows the 

management of large networks of virtual machines and scalable architectures. It is written 

in Python and is designed to scale horizontally on standard hardware with no proprietary 

requirements. 

 Imaging Service manages the storage of the images of virtual machines that can 

later be used as a template for new ones. It provides a RESTful API to perform queries 

for information about the images hosted on different storage systems. 

 Object Storage is a storage space that is designed for long term storage of large 

volumes, and can host up to multiple petabytes of data. Objects and files are written to 

multiple disk drives spread throughout servers in the data center, while data replication is 

used to provide data integrity across the cluster. 

 

 
Figure 2.1: OpenStack components 
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 The OpenStack services can be accessed through the OpenStack Dashboard, 

Horizon, which provides a graphical interface for users and administrators to access, 

provision, and automate cloud-based resources. Its design also accommodates third party 

products and services, such as billing, monitoring, and additional management tools. 

 OpenStack Identity, Keystone, provides a mapping of users to the OpenStack 

services they can access. It acts as a common authentication system across the cloud 

operating system, and supports multiple forms of authentication including standard 

username and password credentials, token-based systems and AWS-style logins 

 

 

 

2.3 Hadoop 

 

 Installing Hadoop is a prerequisite for installing HBase. Hadoop [9] is consisted 

of two main parts, the Hadoop Distributed File System, known as HDFS and the 

MapReduce which is a programming model for data processing. HBase is using HDFS 

for storing its data. The HDFS is a distributed file system designed to run on commodity 

hardware. It is an open source implementation of the Google File System (GFS) [10] and 

is a filesystem designed for storing very large files with streaming data access patterns, 

running on clusters of commodity hardware providing scalability and fault tolerance.  

 

 

2.3.1 HDFS architecture 

 

 HDFS [8] uses a master/slave architecture. The Namenode takes on the role of the 

master, and is responsible for coordinating the filesystem and providing access to its files 

to the clients. Even though data in the HDFS are stored in multiple physical machines, 

the Namenode maintains a traditional hierarchical file organization. Clients can create 

files and directories, move and rename them in a manner similar to other existing file 

systems. Any change to the file system is recorded by the Namenode, which is 

responsible for maintaining the file system namespace. If the Namenode is not active, 

clients lose the ability to access the data stored in the HDFS, making it the single point of 

failure of the system. However, in order to increase reliability, a secondary Namenode is 

active at all times, and can recover the file system in case of a Master failure. 

 The slaves in HDFS are called Datanodes, and their responsibility is to store file 

data and serve read and write requests from the file system’s clients. At the same time, 

they perform block creation, deletion and replication upon instruction of the Namenode. 

Each file in the file system is stored in multiple equally sized blocks (typically 64MB), 

and each of these blocks is hosted in multiple Datanodes in order to increase fault 
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tolerance. It is possible for applications to specify or change the replication factor for 

each separate file. 

 

 
Figure 2.2: HDFS architecture 

 

 In order for the Namenode to have an up-to-date knowledge of the active blocks 

in the system, Heartbeat messages are periodically sent to it from each of the Datanodes. 

If a Datanode fails to transmit a heartbeat message, the Namenode assumes that the 

Datanode is dead, stops forwarding new requests to it and attempts to quickly restore the 

replication factor of its blocks. 

 The placement of the blocks is decided by the Namenode. The criteria by which 

this is done is not only to increase fault tolerance, but also to improve performance. In the 

common case where the replication factor is three, HDFS’s placement policy is to put one 

replica on one node in the local rack, another on a node in a different (remote) rack, and 

the last on a different node in the same remote rack. This policy reduces the required 

communication between different racks during writes, while at the same time does not 

leave the system vulnerable to a single rack failure. However, it does reduce the 

aggregate network bandwidth used when reading data since a block is placed in only two 

unique racks rather than three. 
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2.4 HBase 

 

 HBase [12] is an open source, distributed database for storing structured data. Its 

design is based on Google’s BigTable [13], and runs on top of the HDFS to enhance its 

storing capabilities. Its data model is different from traditional relational databases. It 

does not support a structured query language like SQL, but instead uses a key/value 

model where data are organized in columns. 

 

 

2.4.1 HBase building blocks 

 

Table. The biggest building block in the database. 

Row. Each table consists of a number of rows. Each row possesses a unique key through 

which it can be identified, and all rows within a table are sorted based on that key. This 

enables the programmer to control the way data are stored and allows for easy and 

efficient access to ranges of rows. 

Column Family. Data within each row are split to separate column families that are the 

same for each row and need to be specified upon table creation (even though some rows 

may not contain data in all column families). Data stored within each column family are 

also physically stored in adjacent locations in order to more efficiently serve queries 

requesting data from them. 

Column. Each column family contains a number of columns. Unlike column families, 

columns are allowed to differ from row to row, and can change dynamically. 

Cell. A combination of a row key, a column family and a column uniquely identifies a 

cell. Each cell stores a byte array, which is its value. 

Timestamp. HBase has a built-in data versioning and recovery mechanism through the 

use of its timestamps. Instead of storing a single value in each cell, HBase stores a 

number of recent values. That number can be configured to be different for each column 

family, and is by default equal to three. If not specified, HBase will store data using the 

current timestamp and read the data with the latest timestamp, though the user is free to 

read and write the versions of the data she specifies 

 

 

2.4.2 HBase architecture 

 

 HBase follows a master-slave architecture [11] consisted of the following 

components: 

Master Server. The Master Server in HBase holds the metadata for all the tables stored 

in the database, and performs schema changes and table creation or deletion operations. 
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At the same time, it controls the distribution of the regions among the Region Servers in 

order to evenly balance the workload. 

 

 
Figure 2.3: The HBase architecture 

 

Region Servers. Each Region Server is responsible for serving and managing a number 

of regions. Even though data stored in the HDFS are spread across different physical 

locations, each region server stores the data that correspond to the regions it serves within 

the local HDFS DataNode in order to be able to serve requests locally. 

ZooKeeper. It is a centralized service for maintaining configuration information, 

naming, providing distributed synchronization, and providing group services. HBase uses 

ZooKeeper to track the state of the servers in the cluster and handle communication 

between the master and the region servers. 

 HBase’s architecture allows it to easily scale and store large amounts of sparse 

data. The fact that it runs on top of HDFS provides high availability and fault tolerance, 

and makes HBase easy to integrate with other tools within the Hadoop ecosystem, such 

as MapReduce. Finally, having only a single server responsible for each piece of data, 

allows it to guarantee strong consistency and perform atomic row operations. 

 

 

 

2.5 Yahoo Cloud Serving Benchmark 

 

 The Yahoo! Cloud Serving Benchmark (YCSB) [14] is an open-source 

specification and program suite for evaluating retrieval and maintenance capabilities of 
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computer programs. It is often used to compare relative performance of NoSQL database 

management systems.  

 The YCSB Client is a Java program for generating the data to be loaded to the 

database, and generating the operations which make up the workload. The architecture of 

the client is shown in figure 2.4. The basic operation is that the workload executor drives 

multiple client threads. Each thread executes a sequential series of operations by making 

calls to the database interface layer, both to load the database (the load phase) and to 

execute the workload (the transaction phase). The threads throttle the rate at which they 

generate requests, so that we may directly control the offered load against the database. 

The threads also measure the latency and achieved throughput of their operations, and 

report these measurements to the statistics module. At the end of the experiment, the 

statistics module aggregates the measurements and reports average, 95th and 99th 

percentile latencies, and either a histogram or time series of the latencies. 

 

 
Figure 2.4: The YCSB client architecture 

 

 The client takes a series of properties (name/value pairs) which define its 

operation. By convention, we divide these properties into two groups: 

Workload properties. Properties defining the workload, independent of a given database 

or experimental run. For example, the read/write mix of the database, the distribution to 

use (zipfian, latest, etc.), and the size and number of fields in a record. 
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Runtime properties. Properties specific to a given experiment. For example, the 

database interface layer to use (e.g., Cassandra, HBase, etc.), properties used to initialize 

that layer (such as the database service hostnames), the number of client threads, etc. 

Thus, there can be workload property files which remain static and are used to benchmark 

a variety of databases. In contrast, runtime properties, while also potentially stored in 

property files, will vary from experiment to experiment, as the database, target 

throughput, etc., change. 

 

 

 

2.6 Ganglia 

 

 Ganglia [16] is a scalable distributed monitoring system for high performance 

computing systems such as clusters and grids, developed by the University of California, 

Berkeley. It is based on a multicast, listen/announce protocol to monitor the state of the 

cluster, and uses a tree of point to point connections between representative cluster nodes 

to federate clusters and aggregate their state. Data are represented in XML format, 

exchanged using the XDR protocol and stored and visualized with the RRD tool. It 

manages to achieve very low per node overhead and high concurrency, and is available in 

a wide range of operating systems. 

 

 

2.6.1 Ganglia architecture 

 

The Ganglia’s components [15] are: 

 gmond. The Ganglia Monitoring Daemon is installed in every node of the cluster 

from which metrics are to be collected. Its job is to collect the required metrics with the 

help of the operating system, as well as announce them to a multicast channel through 

UDP. It is organized as a collection of threads, most of which are assigned with the task 

of collecting data for a specific metric. The collect and publish thread takes on the 

responsibility of gathering the metrics collected by the local threads and publishing it on 

a well-known multicast channel in periodic messages called heartbeats. The listening 

threads are responsible for listening on the multicast channel for data transmitted by 

other nodes and storing it in a local hash table. This allows the data for the whole cluster 

to be available through any one of its nodes. Finally, a number of XML export threads 

accept and process client requests to provide access to that data 

 gmetad. Federation in Ganglia is achieved using a tree of point-to-point 

connections amongst representative cluster nodes to aggregate the state of multiple 

clusters. At each node in the tree, a Ganglia Meta Daemon periodically polls a collection 

of child data sources, parses the collected XML, saves all numeric, volatile metrics to 
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round-robin databases and exports the aggregated XML over TCP sockets to clients. Data 

sources may be either gmond daemons, representing specific clusters, or other gmetad 

daemons, representing sets of clusters. Data collection in gmetad is done by periodically 

polling a collection of child data sources which are specified in a configuration file, 

dedicating a unique data collection thread to each child source. Collected data is parsed in 

an efficient manner to reduce CPU overhead and the memory footprint. 

 RRDtool Storage and visualization of the historical monitoring information for 

the grid is managed by Round Robin Database. RRDtool is specialized in storing time 

series data and is able to maintain different time granularities ranging from minutes to 

years in compact, constant size databases. Additionally, RRDtool is able to plot the 

historical trends of these metrics on graphs that are used by the Ganglia PHP web front-

end, to be presented through a web interface 

 

 

 
Figure 2.5: The Ganglia architecture 
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2.7 Tiramola 

 

 Tiramola [3] is a modular cloud-enabled framework for monitoring and 

adaptively resizing NoSQL clusters. Its implementation is open-source, and contains 

modules that can control a number of different NoSQL databases, including Cassandra, 

HBase, Riak and Voldemort. 

 

 

2.7.1 Tiramola Architecture 

 

 Tiramola [4] is an open-source project that delivers automatic resource allocation 

for NoSQL clusters. It features a modular architecture illustrated in figure. 2.6. The 

Decision Making module incorporates both the user-policy defined through an 

optimization function as well as cluster-side and client-side monitored metrics and 

periodically decides on cluster resize actions. It outputs resize action to the Cloud 

Management module that interacts with the cloud vendor in order to release or acquire 

more virtual machines. The Cluster Coordinator is then responsible for orchestrating the 

addition and removal commands relative to the particular NoSQL cluster in hand. The 

Monitoring module maintains up-to-date performance metrics collected from both cluster 

nodes and client nodes. 

 

 
Figure 2.6: The Tiramola architecture 
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Decision Making Module. This module is responsible for deciding the appropriate 

cluster resize action according to the applied load, cluster and user-perceived 

performance and optimization policy. Tiramola formulates this process as a Markov 

Decision Process (MDP) that continuously identifies the most beneficial action relative to 

the current system state. The goals are defined through a reward function that translates 

the optimization each application wishes to adhere to. Upon reaching a resize decision, 

the module forwards this command to the Cloud Management module. 

Monitoring. Tiramola uses Ganglia, a scalable distributed monitoring tool that allows 

remote collection of live or historical cluster statistics (such as CPU load averages, 

network, memory or disk utilization, number of open client threads, etc) through its XML 

API. 

Cloud management. The system interacts with the cloud vendor using the well-known 

euca2ools, an Amazon EC2 compliant REST-based client library. This module receives 

as input commands for a NoSQL cluster resize (in the number of running VMs). The use 

of euca2ools along with the creation of Amazon Machine Images (AMIs) with pre-

installed versions of the supported NoSQL systems and Ganglia guarantees that Tiramola 

can be deployed in practically any EC2-compliant IaaS cloud. 

Cluster coordinator. The orchestration of newly commissioned or freed resources from 

the NoSQL cluster is performed with the remote execution of shell scripts and the 

injection of automatically created NoSQL-specific configuration files to each VM. A 

high-level “start cluster”, “add NoSQL node(s)” and “remove NoSQL node(s)” command 

is thus translated to a workflow of the aforementioned primitives. The implementation 

ensured that each step has succeeded before moving to the next one, using applicable 

time-outs. The framework has already [1] successfully incorporated three popular 

NoSQL systems that exhibit elastic behavior: HBase, Cassandra and Riak. The system is 

extensible enough to include more engines that support elastic operations by 

implementing the system’s abstract primitives in the Cluster Coordinator module and by 

including the system’s binaries to the existing AMI virtual machine image. The 

precooked virtual machine image is available for download from the project’s web site. 

Tiramola also strives to be robust: It periodically checkpoints and can be restarted after a 

failure; required state is maintained through the monitoring module as well as the 

underlying IaaS platform 

 

 

2.7.2 Tiramola’s Decision Making Module 

 

 Tiramola’s decision-making module is the unit that is responsible for 

materializing user defined policies into cluster-resizing actions. The user policies come in 

the form of reward functions that can evaluate the state of the cluster, and point Tiramola 

towards states that are in accordance to the user’s needs. The state of the cluster is 
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acquired by Tiramola’s Monitoring module, which collects a number of metrics from 

both the cluster and the user, and makes them available to the decision-making module. 

Once a resizing action has been decided, the Cloud Management module communicates 

with the cloud provider as well as the virtual machines in order to modify and configure 

the cluster into its new state. 

 Tiramola models the cluster as a Markov Decision Process (MDP). The states of 

the MDP correspond to the current size of the cluster where k is the number of VMs 

currently in the cluster and min and max are the minimum and maximum cluster sizes. 

The available actions of the MDP are the resizing actions and include adding or removing 

pre-specified numbers of VMs, or simply leaving the cluster unmodified. If a certain 

resizing action would exceed the minimum or maximum cluster size if executed from a 

certain state, then that action is made unavailable at that state (for example if the 

minimum cluster size is four, an action that removes two VMs would not be available at 

state s5). 

 In an MDP, the rewards are the feedback of the world towards the agent that 

informs it how good or bad the outcome of an action was. In the case of Tiramola, the 

result of an action is the state of the cluster after executing that action. Therefore, the 

reward function was calculated using the resulting state after each transition. In order to 

achieve a balance between giving enough resources to satisfy the user’s needs, but at the 

same time keeping the cost of the cluster as low as possible, the reward function 

generally can include both positive and negative terms. For example, a reward function 

that aims to direct Tiramola towards performing actions that maximize the throughput 

and minimize the latency, while at the same time keeping the size of the cluster as low as 

possible, can be in the form. 
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Chapter 3 
 

3. Using Tiramola 
 

 

3.1 Tiramola workflow 

 

 Tiramola is responsible for the whole workflow of the experiments. When 

running, Tiramola is making the following steps: 

a) The NoSQL-cluster has X running nodes. 

b) Tiramola is a Reinforcement Learning (RL) Agent knowing its State S1 by retrieving 

cluster’s metrics and decides to take an action A1 defining if the cluster will expand, 

contract or stay stable. 

c) Due to action A1 the cluster ends up having Y running nodes. 

b) The YCSB tool is running in machines that are the VM-clients stresses the NoSQL-

cluster with constant load L1.  The duration of the load involves 2 3-minute periods with 

an 1-minute break between them. 

c) Each time the NoSQL-cluster is stressed, Tiramola is gathering metrics from 3 sources: 

i) An external ganglia system that monitors the whole OpenStack installation.  

(external-ganglia-metrics) 

ii) An internal ganglia system that is installed in all the NoSQL nodes. (internal- 

ganglia-metrics) 

iii) Metrics reported from the YCSB running in clients. Each time YCSB-load 

ends, a report with metrics is generated. (YCSB-metrics) 

d) When the whole YCSB-session ends, Tiramola is taking into consideration only the 

metrics gathered from the 2nd 3-minute period of YCSB-load. The 1st period considered 

as a warm-up. 

e) Tiramola’s Decision Making module defines the exact new State S2 based on all 

retrieved metrics.  

f) Tiramola is getting a reward R for selecting the Action A1, based on the reward-

function that is user-defined. 

g) Tiramola updates the value of the State S1 and the Action-values, known as Q-Values 

of the corresponding Actions based on the reward and runs the splitting algorithm, if such 

involved by the selected model. 

The iteration ends and the system is starting again from (a), where the NoSQL-

cluster now has Y running nodes, Tiramola is in State S2 and going to decide to take 

Action A2 and so on... 

We will call the whole iteration a “time-step”, which lasts about 10’ if no extra delays 

happen. 
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3.2 Type of load 

 

YCSB always stresses the NoSQL-cluster with constant load Lx. The load that is 

stated as sinusoidal in previous works that benchmark Tiramola [4 - 7] is the overall 

image of all different Lx loads. So, it is not a continuous sinusoidal load, but has distinct 

values. 

In this work we are going to stress the NoSQL-cluster with the same kind of 

sinusoidal load when we evaluate the parameters of the MDP-DT model. Until now, all 

previous works [1 - 7] benchmarked Tiramola by running sinusoidal load against the 

NoSQL cluster. There is no prior knowledge on using Tiramola to change the size of a 

NoSQL-cluster that is stressed under unpredictable load, thus we are going to experiment 

on that case. 

 

 

 

3.3 Modes of the Decision Making module 

 

Tiramola is composed by 4 modules: Monitoring, Cluster Coordinator, Cloud 

Management and Decision Making [4]. The latter is the “brain” of Tiramola. It defines 

the whole State Space, the permissible Actions and the way that Tiramola evaluates each 

Reward and decides its next Action. Most changes and improvements on Tiramola [1 - 5] 

are related with this module and so did the last work [7]. 

In this work, we use the most recent version of Tiramola as described in [7]. In this 

version the Decision Making module has 4 different modes that correspond to the 

implementation of 4 different algorithms. The user decides which one of them to use and 

defines it in a properties file: 

 i) Q-Learning (Q) 

 ii) Markov Decision Process (MDP) 

 iii) Q-Learning with Decision Trees (Q-DT) 

 iv) Markov Decision Process with Decision Trees (MDP-DT) 

 

 

 

3.4 Available metrics 

 

 As described in 3.1 (Tiramola workflow), Tiramola retrieves metrics about the 

NoSQL cluster during each time-step. The Monitoring module retrieves metrics from 3 

sources: 

i) An external ganglia system that monitors the whole OpenStack 

installation.(external-ganglia-metrics) 

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126



28 

 

ii) An internal ganglia system that is installed in all the NoSQL nodes. 

(internal-ganglia-metrics) 

iii) Metrics reported from the YCSB running in clients. Each time a YCSB-

load ends, a report with metrics is generated. (YCSB-metrics) 

 The metrics is the most crucial part, because they define the state of the NoSQL-

cluster and thus the environment of the Tiramola-agent. By retrieving these metrics the 

agent defines its State. The following tables contain all the 44 metrics that are available 

from the 3 sources along with a brief description. 

 

IaaS metrics (external Ganglia) 

cpu cpu of the whole user’s system 

number_of_threads number of threads used by all VMs (NoSQL-cluster and clients) 

read_io_reqs read io requests of the cluster (NoSQL-cluster and clients) 

write_io_reqs write io requests of the cluster (NoSQL-cluster and clients) 

Table 3.1: IaaS metrics 

 

NoSQL-cluster metrics (internal Ganglia) 

bytes_in bytes flowing into the cluster 

bytes_out bytes flowing out of the cluster 

cpu_idle percentage of cpu that is not used 

cpu_nice percentage of CPU cycles spent on nice processes 

cpu_system Percentage of CPU cycles spent in non-user mode 

cpu_user Percentage of CPU cycles spent in user mode 

cpu_wio Percentage of CPU cycles spent waiting for I/O 

disk_free The amount of the HDD that is free 

load_fifteen Reported system load, averaged over fifteen minutes 

load_five Reported system load, averaged over five minutes 
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load_one Reported system load, averaged over one minute 

mem_buffers Amount of memory allocated to system buffers 

mem_cached Amount of memory allocated to cached data 

mem_free Amount of free memory 

mem_shared Amount of memory occupied by processes 

mem_total Total amount of physical memory 

part_max_used Maximum percent used for all partitions 

pkts_in Packets in per second 

pkts_out Packets out per second 

proc_run Total number of running processes 

proc_total Total number of processes 

Table 3.2: NoSQL cluster metrics 

 

 

 

Table 3.3: YCSB client metrics 

 

 

YCSB-metrics 

%_read_load Percentage of read load 

incoming_load Amount of the whole load that YCSB sends 

read_latency Latency of the read queries 

read_throughput Throughput of the read queries 

total_throughput Total throughput for all queries (read, update or delete) 

update_latency Latency of the update queries 

update_throughput Throughput of the update queries 
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Tiramola-made metrics 

number_of_VMs Number of VMs of the NoSQL-cluster (with master, if NoSQL 

has master-slave arch) 

RAM_size Mean RAM size of all slaves of NoSQL-cluster 

number_of_CPUs Mean number of CPUs of all slaves of NoSQL-cluster 

storage_capacity Mean amount of HDD storage capacity of all slaves of NoSQL-

cluster 

io_reqs = read_io_reqs + write_io_reqs 

%_free_RAM = mem_free / mem_total 

%_cached_RAM = mem_cached / mem_total 

%_CPU_usage = 100 - cpu_idle 

%_read_throughput = read_throughput / total_throughput 

total_latency  = (READ_LATENCY * READ_THROUGHPUT + 

UPDATE_LATENCY * UPDATE_THROUGHPUT) / 

(READ_THROUGHPUT + UPDATE_THROUGHPUT) 

next_load = 2 * current_load - last_load. 

It is a simple linear forecasting of the next load. 

network_usage = bytes_in + bytes_out 

Table 3.4: Combined metrics 

 

 

 

3.5 State Spaces 

 

3.5.1 State Spaces for beginners in Reinforcement Learning 

 

 One of the most well-known examples for beginners in Reinforcement Learning 

(RL) involves an agent that moves around in a grid, which has 12 squares defining 12 

different states for the RL-agent. One of the states is usually the goal and gives the 

maximum Reward and another one is something like trap giving minimum or negative 
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Reward. The available Actions of the agent and all the other possible Rewards are 

defined and the student has all the data for solving the first RL-problem. 

 

   GOAL 

   TRAP 

START    

Figure 3.1: State-space of RL-exercise for beginners 

 

During the next lessons an RL-student will deal with more RL-problems having 

similar State Spaces defined as 4X4, or 4X5 etc. grids. Each State Space is defined in 

Cartesian-like names, chess-like or each State may have a serial number. 

 

Figure 3.2: Simple State Spaces in Reinforcement Learning 

 

These all are simple cases for exercises, where the Agent is usually allowed to 

decide between the Actions: Up, Down, Left and Right. The grid is like a map and the 

RL-agent is just a walker in the map, having a certain goal in each problem. It is also 

clear that the State Space in each of the above has 2 Dimensions and each Dimension has 

units specified by each square. 

 

 

3.5.2 State Spaces in Tiramola 

 

 During every time-step, the NoSQL-cluster is stressed with load. When the 

stressing is over, Tiramola receives the 44 metrics which describe NoSQL-cluster’s 

reaction. As stated earlier, the Tiramola-agent can use them to define its State, but first 

we should decide which one of them the agent will use. For instance, if we let the agent 
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use them all, then a State Space of 44 Dimensions will be available, which is surely a too 

complicated State Space. 

We want the Tiramola-agent to be able to add or remove VMs, so the available 

Actions are “Add X Vms”, “Remove X Vms”, “No Action”, with X being 1, 2, or 

whatever the user decides. Thus, it is obvious that one of the State Space’s Dimensions 

will be the number_of_VMs, but one Dimension cannot be enough. We should define at 

least one more. 

 Part of this work will be to define which of the rest 43 metrics are the most 

appropriate to be used as Dimensions of the State Space. Seeing this problem from a 

different point of view, we are going to evaluate which if the 43 metrics are the most 

suitable to be used from the MDP-DT algorithm as splitting parameters. The reason for 

this equivalence of these 3 terms is that for the Tiramola’s Decision Making Module the 

metrics of the cluster, the Dimensions of the State Space and the splitting parameters are 

all the same thing. Tiramola gets the cluster metrics, uses some of them as splitting 

parameters to create a State Space and from the State Space point of view these metrics / 

splitting parameters are its Dimensions. 

 

 

3.5.2.1 State Space in Q and MDP modes 

 

The Q and MDP algorithms create a State Space that is more affected by the user 

than the Q-DT and MDP-DT ones. In both Q and MDP algorithms, we modify a .json file 

where we define which of the metrics will be considered as parameters of the State 

Space. To make it clear, a metric and a parameter is the same, but a metric gets its value 

from the cluster’s behavior, while a parameter has its values defined by the user. Taking 

into account the previous descriptions of the State Space, a parameter is a Dimension of 

the State Space and its user-defined values are the units of that Dimension. The user 

selects number_of_VMs as a parameter and most of the times next_load is selected as the 

second parameter. 

Having these 2 parameters, the Tiramola-agent can now define the State Space. 

We can think of it like a grid we often see in Reinforcement Learning problems. 

Tiramola’s Dimensions of the State Space are defined by number_of_VMs values and by 

next_load value-range. Both of these parameters and their values are defined by the user. 

For instance, if we have a NoSQL-cluster that can contract or expand from 4 VMs to 10 

VMs, the obvious choice for the values of number_of_VMs is 4, 5, 6, 7, 8, 9 and 10. 

Also, we will define values for the next_load that will be converted to value-ranges. For 

instance if we select [1000, 5000, 10000, 22000, 35000], the Tiramola-agent will convert 

it to 4 value-ranges: [1000, 5000], [5000, 10000], [10000, 22000], and [22000, 35000]. 

Eventually, the State Space will look like the grids of the exercises for RL-beginners and 

will be composed from a number of states equal to the product of number_of_VMs 
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values by next_load value-ranges, meaning 7 * 4 = 28 States. The States will be created 

based on these two parameters as follows: 

S0: [4, [1000, 5000]], S1: [5, [1000, 5000]] ...etc... S6: [10, [1000, 5000]], S7: [4, [1000, 

5000]], S8: [5, [5000, 10000]] ...etc… S13: [10, [5000, 10000]]...etc, until S27. 

 Now, as described in steps (b) and (e) in 3.1 (Tiramola workflow), the Tiramola-

agent by retrieving the metrics can define its State. For instance, if during the load-time 

the NoSQL-cluster has 5 VMs (number_of_VMs = 5) and the next_load metric has value 

of 3,000, then Tiramola-agent knows that it is in S1 State. 

 Leaving aside that Q and MDP have a huge difference in their updating algorithm 

and are considered as model-free and model-based RL approaches respectively, seeing 

these algorithms from the Tiramola-agent  point of view, they have a great similarity. 

Each of them has its State Space fully defined by the user. 

 

 

3.5.2.2 State Space in Q-DT and MDP-DT modes 

 

 In Q-DT and MDP-DT algorithms, the user defines the metrics that will be used 

as parameters for the State Space, but does not define their values or value-ranges. In fact 

the user may not even know what the values of each parameter are at all. After each time-

step, Q-DT or MDP-DT are updating the values of the current State and the Action-

values (Q-Values) of every Action based on their updating algorithm and the Reward. 

Then, they evaluate whether they can split the current State or not, based on the 

accumulated experience. When a splitting algorithm runs, each of the (user-defined) 

parameters are being checked if they are suitable to split the current State into two new 

States. Each of the parameters is checked separately and the user-selected statistical test 

returns a value. By using that value, the splitting algorithm calculates if a parameter is 

suitable for splitting the current State. The lower the value, the bigger the probability of 

doing the split. If more than 1 parameters are suitable for a split, the algorithm selects the 

most probable one. 

 The original algorithm of the Decision Trees [18] defines that the Decision Tree 

starts with only one node, the root. While the experiment is running and especially during 

the training period, the splits happen and the Decision Tree grows. Each Decision Node is 

defined by a parameter and a specific value and points to 2 Leafs, either a State or a 

Decision Node, which are the Children. Only the last level of the Decision Tree is 

composed exclusively by States. 

 Starting the Decision Tree / State Space with only one Leaf / State, means we 

have no clue about the Tiramola-environment. Considering that such a case does not 

exist, we can boost the Decision Tree with some initial Leafs. As in Q and MDP 

algorithms, the most suitable metric to be a parameter for the initiation of the Decision 

Tree is the number_of_VMs, complying with the fact that we surely know the possible 
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number of VMs the NoSQL-cluster has. As the preliminary experiments showed, even if 

we start a session with only one starting-State, Q-DT and MDP-DT algorithms will surely 

find the exact possible number of VMs. All the splits based on all different 

number_of_VMs values will eventually happen and Tiramola will have perfect 

knowledge of its environment regarding the number of VMs. Considering that fact, there 

is no need in consuming time-steps for this to happen when we can give that information 

to the algorithm from the beginning.  

 

 

 

3.6 Using the last version of Tiramola 

 

 In the work that implemented the last version of Tiramola [7] we can clearly 

distinguish that the full-model with Decision Trees, the MDP-DT performs better than 

the other models. Also, a lot of effort was given in experimenting with several parameters 

either of the MDP algorithm or of the Decision Trees and it was made clear which values 

are preferred for each one of the model-related parameters. 

In this work, the primary target is to run Tiramola and study its behavior while the 

NoSQL-cluster is stressed by unpredictable load. In all previous works [1 - 7] Tiramola 

was always stressed by periodical load. For doing this challenging task, Tiramola should 

work at its best and even though the last work [7] defined the best values for the most 

model-related parameters (epsilon, initial_qvalues, discount, min_measurements, splitting 

criterion, statistical test, model, update algorithm), there are still some more to clarify 

before using it. 

 In this work we will define which metrics are better to use as parameters for the 

Decision Trees and we will try to explain why there are better or worse parameters. To do 

this, we will study the metrics of an HBase-cluster in order to describe its behavior when 

it is stressed. For doing the experiments more effectively, we will separate Tiramola’s 

workflow. At first we will get the metrics stressing the NoSQL-cluster by all possible 

loads and for all possible number_of_VMs. Then we will study these metrics to abstractly 

define the behavior of the NoSQL cluster. In the end, we can run the Virtual Tiramola 

where the Decision Making procedure will retrieve in each time-step the previously 

retrieved metrics. This will give us the freedom to run many more experiments/sessions 

in less time, because the time-step will last some milliseconds, instead of 10 minutes. 
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Chapter 4 
 

ANALYZING HBASE CLUSTER METRICS 
 

 

4.1 Objective 

 

 In order to decide the proper size of a NoSQL cluster, the metrics we retrieve 

while it is up and running and stressed under any kind of load are the raw material that is 

used by any system. So does Tiramola in order to automate elasticity of NoSQL clusters. 

The great difference is the way each system exploits these metrics. 

 In this chapter, we are going to study the behaviour of these metrics. Later, we 

will combine this kind of knowledge with the way Tiramola is exploiting them, in order 

to come up with a conclusion. At the first part of experiments, we study the behavior of 

10 different HBase metrics while linear increasing load runs against the HBase cluster. In 

the second part, we study the metrics’ behavior, while the cluster is under constant load. 

 The total number of metrics is 44, but we can divide them to the direct metrics 

and indirect ones. By studying the latter, we practically studying the direct ones too. By 

looking at the tables 3.1, 3.2, 3.3 and 3.4, we can see that studying the metrics: 

%_CPU_usage, total_latency, network_usage, load_one, total_throughput, io_reqs, 

cpu_wio, %_free_RAM, disk_free and %_cached_RAM, we also manage to study 

another 11 metrics: read_io_reqs, write_io_reqs, bytes_in, bytes_out, cpu_idle, 

mem_free, mem_total, read_latency, read_throughput, update_latency, 

update_throughput. In addition to that, number_of_vms and next_load do not require 

further study, and load_fifteen and load_five are useless, because each time the clients 

stress the HBase cluster they do it for less than 5 minutes. Consequently, we manage to 

study the behavior of 21 out of 40 metrics that need to and can be studied, and more 

importantly, we cover all areas of metrics that define a running cluster of machines: CPU 

usage, RAM usage, disk usage and network usage, thus having an adequate view. 

 

 

4.2 Experiments pt. 1: Linear increasing load 

 

 We have 13 VMs available for experiments, so we will use 1 + 8 VMs for the 

HBase-cluster and 4 client-VMs running the YCSB tool. Selecting for the replication 

factor of HDFS to be 2, we set the minimum size of the HBase-cluster at 2 VMs-slaves 

and maximum at 8 VM-slaves and do the benchmarking against 3, 4, 5, 6, 7, 8 and 9 

VMs (master included). The load we will run has range 1,000 to 25,000 reqs/sec in steps 

of 100 reqs/sec. While the load increases the size of the Hbase cluster reamains the same. 
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Figure 4.1: %_CPU_usage behavior against linear increasing load 

Figure 4.2: total_latency behavior against linear increasing load 
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Figure 4.3: load_one behavior against linear increasing load 

Figure 4.4: total_throughput behavior against linear increasing load 

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126



38 

 

Figure 4.5: network_usage behavior against linear increasing load 

Figure 4.6: disk_free behavior against linear increasing load 
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Figure 4.7: %free_RAM behavior against linear increasing load 

Figure 4.8: %_cached_RAM behavior against linear increasing load 
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Figure 4.9: cpu_wio behavior against linear increasing load 

Figure 4.10: io_reqs behavior against linear increasing load 
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4.2.1 Metrics’ behavior under linear load 

 

 Based on their behavior against linear increasing load, we can divide the metrics 

into two groups. 

Group 1 Group 2 

%_CPU_usage io_reqs 

total_latency cpu_wio 

network_usage %_free_RAM 

load_one disk_free 

total_throughput %_cached_RAM 

Table 4.1: Metrics according to behavior under linear increasing load 

 

 In the first group the metrics are increasing alongside the load, until a specific 

point. After that point, despite that the load continues to increase, each of the metrics 

seems to be almost stable. This shows that the cluster reaches the maximum of its 

performance and can’t go higher. We can call this load, the “critical load”. The critical 

load is different for different size of the cluster, but the same for each metric. 

 In the next table we show the critical load for different sizes of the cluster based 

on the total_throughput. 

Cluster Size Critical Load 

3 5300 

4 8200 

5 9700 

6 11600 

7 12900 

8 15300 

9 17000 

Table 4.2: Critical load for each cluster size 

 

 

4.2.2 Conclusions about metrics behavior for linear increasing load 

 

As it is expected, when the cluster has more nodes it also has a higher 

performance maximum. While the load increases the values of the metrics of the 1st 

group also increases. On the other hand, we cannot distinguish any pattern at all for the 

metrics of the second group. 
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4.3 Experiments pt. 2: Constant load 

 

 We will dive more into each metric’s behavior by running the same load 10 times 

against all available HBase-cluster sizes. For each cluster size we divide the range of 

loads from 1000 reqs/sec until the critical (different for every cluster size) in several 

steps. We will show the behavior of 2 metrics, one of the 1st group, (%_CPU_usage) 

and one of the 2nd, (io_reqs) in graphs in order to have a view of how the metrics of each 

group behave under specific loads that are lower than the critical load for 3 different sizes 

of the HBase-cluster. For loads equal or higher than the critical, all metrics reach a global 

maximum, or minimum and we get no useful information by viewing such graphs. 

 

We stressed the HBase with loads from 1000 reqs/sec until the critical one (different for 

every cluster size). Given that we did it for all the different available sizes of the cluster: 

3, 4, 5, 6, 7, 8 and 9 VMs it means that in total there are 70 graphs. Based on the data 

gathered by all 70 graphs, we choose to present the 3 most representative for each 

respective group of metrics. For clarity purposes, we select to present the results only for 

3, 6 and 9 VMs for only 2 metrics (%_CPU_usage and io_reqs), one from each group. 

 

Figure 4.11: %_CPU_usage @ 3VMs against constant loads: 2000, 3600 and 5000 
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Figure 4.12: %_CPU_usage @ 6VMs against constant loads: 10000, 11400 and 12800 

Figure 4.13: %_CPU_usage @ 6VMs against constant loads: 15200, 16400 and 17200 
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Figure 4.14: io_reqs @ 3VMs against constant loads: 2000, 3600 and 5000 

Figure 4.15: io_reqs @ 6VMs against constant loads: 10000, 11400 and 12800 
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Figure 4.16: io_reqs @ 6VMs against constant loads: 15200, 16400 and 17200 

 

 

4.3.1 Metrics’ behavior under constant load 

 

The graphs are showing that the metrics of the 1st group, like %_CPU_usage are 

more stable against the same load. Also, for different loads that are lower than the critical 

one, they differentiate enough. 

On the other hand graphs of the metrics of the 2nd group, like io_reqs are less 

stable against the same load. Also, for different loads that are lower than the critical one, 

they do not differentiate. 

We already had a clue of such behavior when studying the graphs from the 1st 

phase of experiments (4.2). By running the same load many times and watching each 

metric alone, we can be more certain of how stable a metric is when the HBase cluster is 

stressed against the same load. Furthermore, we can compare the values of one metric 

when the same HBase cluster size is stressed against different loads. 

 In 4.3.2 we can see the average and the coefficient of variance for each metric for 

all cluster sizes and each metric’s behavior will be even clearer. 
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4.3.2 Data analysis of metrics. Cluster is stressed by constant load close to critical 

Load @ 3 VMs 2,000 reqs/sec 3,600 reqs/sec 5,000 reqs/sec 

 average cf_var average cf_var average cf_var 

%_CPU_usage 77.72381 0.01593 92.172 0.004844 95.85738 0.00493 

load_one 1.8075 0.08843 2.978738 0.154038 4.40281 0.08295 

total_throughput 1980 0.00025 3564 0.00094 4948 0.00045 

total_latency 5.452527 0.02654 7.568624 0.023333 9.696665 0.01817 

network_usage 1131310 0.00607 20401833 0.007231 2985658 0.02769 

%_cached_RAM 0.590990 0.00201 0.588234 0.000777 0.590121 0.00047 

%_free_RAM 0.028435 0.01099 0.028745 0.016131 0.02785 0.01011 

cpu_wio 4.074286 0.16767 2.051905 0.184826 0.436667 0.15534 

disk_free 29.94177 0.00106 30.00871 0.002268 30.00585 0.00142 

io_reqs 68.62142 0.20337 143.3857 0.09652 92.28095 0.13455 

Table 4.3: avg and cf_var of metrics @ 3 VMs 

Table 4.4: avg and cf_var of metrics @ 4 VMs 

Load @ 4 VMs 4800 reqs/sec 6000 reqs/sec 7200 reqs/sec 

 average cf_var average cf_var average cf_var 

%_CPU_usage 86.70111 0.008913 90.306 0.003178 93.02809 0.00803 

load_one 2.412111 0.087961 3.001302 0.070168 4.468651 0.16461 

total_throughput 4750 0.000596 5936 0.000697 7061 0.01753 

total_latency 6.074851 0.014771 7.055016 0.03071 9.660051 0.17736 

network_usage 1861754 0.010418 2341309 0.010243 2779146 0.03125 

%_cached_RAM 0.588928 0.000817 0.588384 0.000824 0.576348 0.00369 

%_free_RAM 0.028313 0.012940 0.028355 0.012172 0.028955 0.03457 

cpu_wio 0.895238 0.298173 0.624444 0.434906 0.592857 1.21474 

disk_free 29.99079 0.000794 29.97785 0.001515 29.98571 0.00219 

io_reqs 33.40317 0.358443 41.8937 0.472 78.44285 1.25439 
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Load @ 5 VMs 7,200 reqs/sec 8,600 reqs/sec 10,000 reqs/sec 

 average cf_var average cf_var average cf_var 

%_CPU_usage 87.182619 0.008003 90.51059 0.008356 91.64190 0.003329 

load_one 2.503595 0.06692 3.330357 0.05715 4.24244 0.066959 

total_throughput 7127 0.000309 8510 0.000636 9421 0.012224 

total_latency 6.325773 0.020495 8.023636 0.028752 8.604582 0.018364 

network_usage 22718157 0.016769 2690874 0.005056 3029105 0.015186 

%_cached_RAM 0.583332 0.001211 0.586646 0.002060 0.597155 0.000303 

%_free_RAM 0.028362 0.014757 0.028554 0.007577 0.027915 0.007157 

cpu_wio 0.457857 0.614129 0.414286 0.572392 0.553929 0.477591 

disk_free 29.971383 0.001554 29.98094 0.001463 29.93228 0.000889 

io_reqs 19.715476 0.573954 33.18928 0.467146 37.65476 0.36236 

Table 4.5: avg and cf_var of metrics @ 5 VMs 

Table 4.6: avg and cf_var of metrics @ 6 VMs 

Load @ 6 VMs 10,000 reqs/sec 11,400 reqs/sec 12,800 reqs/sec 

 average cf_var average cf_var average cf_var 

%_CPU_usage 86.081048 0.007915 88.724381 0.007022 89.015524 0.004424 

load_one 2.564143 0.060328 3.186514 0.062241 3.328762 0.077475 

total_throughput 9886 0.002148 11275 0.001143 11612 0.014052 

total_latency 5.985481 0.022798 6.208749 0.021719 6.687669 0.021069 

network_usage 25644203 0.00551 24697072 0.020199 25474216 0.014908 

%_cached_RAM 0.592324 0.000702 0.563658 0.011544 0.543696 0.006677 

%_free_RAM 0.028158 0.010977 0.035834 0.097463 0.028886 0.016598 

cpu_wio 0.868476 0.335025 0.232571 0.624887 0.342667 0.749432 

disk_free 29.931784 0.00079 30.011533 0.00112 30.011155 0.00125 

io_reqs 24.981905 0.339644 12.446667 0.629897 17.566667 0.610754 
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Table 4.7: avg and cf_var of metrics @ 7 VMs 

 

Table 4.8: avg and cf_var of metrics @ 8 VMs 

Load @ 7 VMs 12,800 reqs/sec 14,000 reqs/sec 15,000 reqs/sec 

 average cf_var average cf_var average cf_var 

%_CPU_usage 85.088651 0.006111 86.370397 0.006523 86.582778 0.004482 

load_one 2.569897 0.078018 2.779032 0.057983 2.786476 0.064373 

total_throughput 12666 0.000437 13480 0.012062 13219 0.008765 

total_latency 4.829598 0.018814 5.425167 0.019126 5.573686 0.016596 

network_usage 23284062 0.006517 24568631 0.019852 25994527 0.011533 

%_cached_RAM 0.586181 0.000365 0.587606 0.000925 0.593965 0.000456 

%_free_RAM 0.028107 0.007338 0.028469 0.011896 0.02794 0.010601 

cpu_wio 0.359841 0.237559 0.535079 0.701306 0.544841 0.574781 

disk_free 29.965803 0.000528 29.964808 0.000392 29.970753 0.00106 

io_reqs 11.361111 0.44737 18.285714 0.972801 22.200794 0.455183 

Load @ 8 VMs 14,000 reqs/sec 15,200 reqs/sec 16,400 reqs/sec 

 average cf_var average cf_var average cf_var 

%_CPU_usage 82.641769 0.006251 84.26966 0.006423 83.852245 0.005462 

load_one 2.217776 0.059248 2.399449 0.048643 2.344 0.052588 

total_throughput 13857 0.000677 14909 0.005279 14992 0.006868 

total_latency 4.274929 0.027742 4.625379 0.014695 4.611362 0.004256 

network_usage 23772741 0.003649 25512127 0.007383 25633135 0.009593 

%_cached_RAM 0.584463 0.001431 0.586576 0.000611 0.587318 0.000617 

%_free_RAM 0.028802 0.010101 0.028724 0.013494 0.029026 0.013826 

cpu_wio 0.451293 0.251733 0.495714 0.720546 0.283946 0.197408 

disk_free 29.985271 0.000377 29.978847 0.000817 29.979841 0.001001 

io_reqs 15.055102 0.321264 13.705442 0.488938 11.678912 0.391404 
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Table 4.9: avg and cf_var of metrics @ 9 VMs 

 

4.3.3 Conclusions about metrics behavior under constant load 
 

The experiments with constant load lead us to two conclusions. The first is about 

the variation of each metric and the second is how we can distinguish the different 

environment-status of the HBase-cluster. 

cpu_wio and io_reqs have higher variation than all the others. We run the same 

load 10 times in a row against the same size HBase-cluster, but cpu_wio’s and io_reqs’ 

values are quite different each time, resulting in a high value in the coefficient of 

variation (cf_var). cf_var shows the level of variation, is a measure of relative variability 

and free of measurement units, so we can use it as a comparator among all metrics. 

%_cached_RAM, %_free_RAM and disk_free have low variation, but their 

values do not differ when the load or the HBase-cluster size change. If we take only them 

into account we get the impression that there is no difference in HBase-cluster’s behavior 

whether there are changes in the load or the size of the HBase-cluster. Such a behavior is 

somewhat strange and not helpful as a Dimension of the State Space. 

On the other hand, all the metrics of the 1st group have a low coefficient of 

variation when the HBase-cluster has the same size and is stressed under the same load. 

When the size of the cluster or the load change, the values of the metrics change. When 

the load is above the critical load each of these metrics have almost the same value, 

showing that the cluster is performing at its maximum.  

Load @ 9 VMs 15,200 reqs/sec 16,400 reqs/sec 17,200 reqs/sec 

 average cf_var average cf_var average cf_var 

%_CPU_usage 78.55779 0.008779 80.356607 0.005831 81.462381 0.007533 

load_one 1.966202 0.059277 2.07722 0.036486 2.126738 0.027519 

total_throughput 15048 0.000984 16232 0.000617 16946 0.003409 

total_latency 3.112685 0.036 3.301108 0.021883 3.483197 0.020624 

network_usage 17434238 0.011549 18857000 0.003708 19638832 0.007305 

%_cached_RAM 0.50802 0.021791 0.547197 0.017802 0.573302 0.007521 

%_free_RAM 0.106464 0.104371 0.066956 0.145066 0.04171 0.081629 

cpu_wio 0.436726 1.232836 0.321369 0.562276 0.603929 0.673864 

disk_free 30.01915 0.001249 30.007959 0.001275 30.010566 0.00142 

io_reqs 4.396429 0.966439 6.407143 0.720265 12.529762 0.443305 
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Chapter 5 
 

EXPERIMENTAL RESULTS 
 

 

 

5.1 Objective 

 

 In this round of experiments we use the last version of Tiramola and focus on the 

MDP-DT algorithm. This algorithm is already evaluated as the optimal among MDP, Q 

and Q-DT in previous work. Also, the optimal values for its parameters, have already 

been defined [6] (5.2.3). 

 In chapter 4 we studied the metrics of the HBase cluster and led into conclusions 

about their behavior and assumptions about their role as Dimensions of a State Space 

(4.3.3). In this chapter we will test them as splitting parameters, using the MDP-DT, 

which utilizes Decision Trees and is also optimal. 

 We are going to test the 10 metrics as splitting parameters in several setups. 

Firstly, we will use each one alone. Secondly, we will use them in groups, as they were 

grouped in chapter 4. Finally, we will use them all together. For each setup we will 

evaluate Tiramola’s performance and therefore we will draw conclusions about how 

much each metric helped as a splitting parameter. 

 For doing such evaluation, we are going to keep the same policy, which is “we 

want the cluster to have the smallest possible size, but always serve the incoming load”. 

Based on this policy, we are going to define the ideal performance of Tiramola for a 

sinusoidal load. Therefore, every time we do an experiment we will compare the current 

performance of Tiramola against the ideal one and introduce our measure of comparison 

which is the Mistake (5.2.3). 

 Having completed our evaluation of the splitting parameters and having defined 

the optimal ones, we go to the 4th and last phase of experiments. In that phase we test 

Tiramola with MDP-DT algorithm and all optimal parameters, general and splitting ones, 

by sending unpredictable load against the HBase cluster. This last phase brings new 

challenges like defining the level of randomness of an unpredictable load and the level of 

Tiramola’s flexibility. 
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5.2 Experiments pt. 3: Sinusoidal load 

 

5.2.1 Metrics as splitting parameters 

 

 As it is stated in chapter 4, the basic parameter that defines the environment of the 

Tiramola-agent is the number_of_VMs. The second most selected parameter is the 

next_load. These two parameters are used in Q and MDP algorithms and are selected by 

the user with their values defined. In this chapter we are going to use Decision Trees, by 

experimenting with the MDP-DT algorithm, which uses the splitting algorithm [6]. In 

MDP-DT we define some of the metrics as parameters and let the algorithm grow the 

Decision Tree starting from only few States. Each time a split happens, the algorithm 

decides which of the parameters is more suitable for splitting the current State into two 

new States and in which point.  

Also, we can help the algorithm by defining an initial parameter with its values. In 

this case the algorithm knows from the beginning 1 Dimension of the State Space and 

starts with a Tree having a small number of States from the beginning. The work [6] 

defines the “small number of States” as 6 or something similar. In this work we choose to 

use as initial parameter the number_of_VMs by defining all its possible values: 3, 4, 5, 6, 

7, 8, 9. So, the algorithm will fully know from the beginning the 1st Dimension of the 

State Space and start the Decision Tree with 7 States. We do this for several reasons. 

- number_of_VMs is the most critical parameter that describes the cluster because the 

size of the cluster is what matters most for the Tiramola-agent. 

- During the preliminary experiments with Decision Trees (MDP-DT), we noticed that 

the algorithm always preferred the number_of_VMs as the splitting parameter among the 

others and always found out the exact splitting points/values which were identical with 

the different sizes of the cluster. 

- The MDP-DT spends many time-steps doing splits and growing the Decision Tree 

(State Space). The bigger the Tree, the more detailed the description of the environment 

within the Tiramola-agent acts. Obviously there is no need to deprive this knowledge and 

let the algorithm spending time-steps for doing splits considering number_of _VMs, 

given that we can define both the number_of_VMs as a parameter and its values/splitting 

points from the beginning. 

- Another reason for this decision is that we always know the accurate possible sizes of 

the NoSQL-cluster (in our case, 3 - 9 VMs) and can easily define the number_of_VMs’ 

values in the .json file where all the parameters are defined. On the other hand, it is not 

equally easy to know the possible values of all the other parameters! 
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5.2.2 The splitting algorithm 

 

 The splitting algorithm is involved in both models that have Decision Trees, the 

Q-DT and the MDP-DT. Taking into consideration the Tiramola’s workflow, the splitting 

algorithm is part of the (g) step, and runs right after updating the values of the current 

State and Q-State. When the conditions are mature, it splits the current State by replacing 

it with a Decision Node and creates 2 new States and thus makes the Decision Tree to 

grow bigger. 

 From the beginning of the MDP-DT algorithm a vector of all States is created. As 

required for a Markov Decision Process, a list of Q-states is stored in each State, and each 

one of the Q-States corresponds to a possible Action the Tiramola-agent can do. Each Q-

state holds the number of transitions and sum of rewards towards each State, along with 

the total number of times its corresponding Action has been taken. The Tiramola-agent 

knows its current State S1 from the retrieved metrics M1. It decides to take Action A, the 

NoSQL-cluster modifies its size and the clients run the load against it. During the load-

time, the Monitoring module gathers the metrics M2 and when the load-time is over, the 

Tiramola-agent obtains its Reward R. The value of the Reward is determined by the 

reward function, which is user-defined and usually depended by the value of one or more 

metrics of the M2 set. Now, the Tiramola-agent has all the required information to update 

the Values of State S1 and Q-Values of S1’s Q-States, according to the user-selected 

update algorithm. Except of these values, it also updates all the variables that define the 

number of transitions and other valuable statistics. 

 One of the previously mentioned as “valuable statistics” is the quartet <M1, A, 

M2, R> that corresponds to metrics M1 and M2, the obtained Reward R and the selected 

Action A, as described in the previous paragraph. This quartet is stored in the State S1’s 

list that corresponds to S2. When the updating ends, the algorithm checks for a possible 

split on State S1, so it follows this workflow:  

(i) It retrieves the current best Action of S1, which is the Action that corresponds to the 

Q-State with the higher Q-Value of all S1’s Q-States. 

(ii) It isolates the experiences <M1, A, M2, R> where the Action happened and by using 

each quartet finds the State S2 that corresponds to M2 based on the current Decision Tree 

and calculates q(m, a) = r + γV(s’), that is called “instantaneous Q-Value”. 

(iii) For each user-defined parameter p it calculates all the tuples <m[p], q(m, a)> and 

sorts them based on the value of the parameter m[p]. 

(iv) For each two consecutive unequal values of the parameter mi[p] and mi+1[p] in that 

list, we consider splitting the state at their mid-point. For that purpose it runs a statistical 

test on the sets of instantaneous Q-values dividing them in two groups. The q- = {q(mk, a) 

| k <= i} and the q+ = {q(mk, a) | k > i}. Each of the groups must have at least a number of 

values equal to the user-defined min_num_experiences. If not, splitting the State on the 

current point is aborted.  
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(v) If the condition in (iv) is fulfilled, the q- and the q+ groups are fed in a statistical test 

to check if they are statistically indifferent. The result of the statistical test is compared 

each time to the user-defined max_type_I_error. If the result is lower than 

max_type_I_error, the mid-point is a possible splitting point. 

For each parameter we have many possible splitting points to check. For all these 

points that fulfil all the conditions the winner is the one with the lowest achieved result of 

the statistical test. This point becomes a possible splitting point. So, we have only one 

splitting point for each one of the parameters. If there are more than one parameters with 

a possible splitting point, we also chose the one with the lowest achieved result in the 

statistical test. This means that when the splitting algorithm is running, only one point can 

be a splitting point and each time we have only one split at most. As it is obvious, there is 

a tuple that describes each split: <splitting_parameter, splitting_point>. 

 

 

5.2.2.1 Assumptions on the splitting algorithm 

 

It is obvious from step (iii) that if the parameter has always constant value, no real 

sorting can be done. Also, in this case, step (iv) is practically aborted. The parameter has 

always the same value, so the algorithm cannot define any splitting point.  

The splitting algorithm tries to correlate the values of a parameter with the level 

of success of an Action. If the parameter’s values vary a lot under the same circumstances 

(load, size of NoSQL-cluster), as we noticed in experiments with constant load, or do not 

have any certain pattern when the load or the size of the NoSQL-cluster changes, as we 

noticed in the linear load experiments, the algorithm will not be able to be efficient. The 

instantaneous Q-Values will be correlated with parameter-values that explain practically 

nothing, because these parameters cannot describe reliably the effort of the NoSQL-

cluster in different circumstances. In such cases the split won’t be efficient and the 

resulting States won’t be useful for the Tiramola-agent to be aware of the environment. 

Our assumption is that metrics of the 2nd group will produce worse Decision 

Trees and thus worse State Spaces than the ones of the 1st group, if they are used as 

splitting parameters for the *-DT algorithms. 

 

 

5.2.3 Experimental setup 

 

 In the previous work [6] there is a lot of effort on defining the most efficient 

algorithms and the best values for their parameters. We will take into consideration the 

previous work and we will choose only the best algorithms and parameters in order to 

focus on defining the more and less efficient parameters for the splitting algorithm. The 

selected algorithms and parameters in the following experiments are: 
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- The HBase-cluster could expand and contract from 3 VMs to 9 VMs (including master). 

- The Tiramola-agent could decide among the Actions: add 1 VM, add 2 VMs, no action, 

remove 1 VM and remove 2 VMs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.1: Selected parameters for MDP 

 

 

 master slave client 

number of VMs 1 8 4 

vcpu 4 2 1 

RAM (GB) 16 4 2 

storage (GB) 10 40 10 

 

Table 5.2: VM characteristics for experiments 

 

 We loaded 3,000,000 records in the HBase and by defining the HBase-parameter 

hbase.hregion.max.filesize to 32 MB we managed to have about 650 regions. The HDFS 

replication factor was set to 2. 

epsilon 0.5 

RL model MDP-DT 

Update Algorithm Prioritized Sweeping 

Update Algorithm error 0.1 

Max Steps 100 

Initial Q-Values 0 

Discount γ 0.5 

Splitting Algorithm Q-value test (mid-point) 

Split error (max_type_I_error) 0.005 

Minimum number of experiences 2 

Statistical Test Mann-Whitney test 
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 In each of the following experiments we run sinusoidal load from 1,000 to 19,000 

reqs/sec. We let the Tiramola agent to train for 2,000 time-steps while the epsilon 

parameter is set to 0.5. This means that the agent in each time-step has 50% possibility to 

choose a random Action (exploration) and 50% to decide the optimal Action 

(exploitation). Then, it runs for 200 more steps exploiting the accumulated knowledge 

and choosing only the optimal Action. Each load-period needs 40 steps, so all the 

evaluation time-steps were equal to 5 load-periods. In the following tables we study 

Tiramola’s behavior and efficiency during the first 2 load-periods of evaluation and 

during the last (5th) load-period of evaluation. 

 

 

5.2.4 Introducing comparison measurement 

 

 Based on the policy “we want the cluster to have the smallest possible size, but 

always serve the incoming load”, we define the ideal performance of Tiramola for a 

sinusoidal load. During every time step the cluster is stressed by a specific load and there 

is an optimal size of the HBase-cluster with which the Tiramola-agent obtains the biggest 

Reward. For each time-step in the experiments we compare the selected size of the 

cluster by Tiramola with the optimal one and find the difference. If Tiramola selects the 

size of the cluster to be X, but the optimal size is X-1 or X+1, we say that this is 1 

Mistake. In this way we distinguish clearly Tiramola’s performance in each experiment. 

By changing only the splitting parameter in the whole experiment setup, Tiramola’s 

performance determines the effectiveness of each splitting parameter. 

Figure 5.1: Ideal Tiramola performance against sinusoidal load 
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5.2.5. Performance of splitting parameters 

 

 We ran every experiment with number_of_vms being the default Dimension of 

the State Space. We use every metric as the only splitting parameter and run each 

experiment 10 times. Each time we run an experiment, we calculate the mistakes for the 

1st, 2nd and 5th period during exploitation. In this set of experiments the whole training 

lasts 2000 time steps (50 sinusoidal periods), while the exploitation lasts 200 time steps 

(5 sinusoidal periods). We exclude the best and the worst performance based on the 

number of mistakes and calculate the average of mistakes of the remaining 8 

experiments. 

 In the experiments where we use multiple metrics as splitting parameters, we 

expect Tiramola to split the State Space faster, so we are stricter and train Tiramola for 

1000 time steps (25 sinus periods). 

 

 

 
 

Parameters 

AVG num of Mistakes 

1st and 2nd period 

AVG num of Mistakes 

5th period 

                                   2000 time-step-training  

1st 

group 

 

 

 

%_CPU_usage 36.3 
 

1st group 

calculated 

average: 

37.05 

 

16.3 
1st group 

calculated 

average: 

16.9 

 

net_usage 40.6 19.6 

total_throughput 37.3 18.6 

total_latency 36.6 15 

load_one 38 15 

2nd 

group 

 

 

 

io_reqs 85.3 
2nd group 

calculated 

average: 

129.5 

 

78.3 
1st group 

calculated 

average: 

73.26 

 

cpu_wio 119 58 

%_free_RAM 154 73 

disk_free 197.6 95 

%_cached_RAM 91.6 62 

next_load 31.6  10.3  

                                                                 1000 time-step-training  

1st group + next_load 33.25  15  

2nd group 82.75  28.75  

All 96  24.75  

Table 5.3: Tiramola performance for one or more splitting parameters 
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When Tiramola is using a splitting parameter of the 1st group of parameters the 

average Mistakes for 2 periods right after training is approximately 37. The following 

chart is an example of how Tiramola’s performance looks like using total_throughput as 

a parameter in a similar case. 

Figure 5.2: Tiramola performace with total_thgoughput as splitting parameter 

When Tiramola is using a splitting parameter of the 2nd group, the average 

Mistakes for 2 periods right after training is approximately 130. The following chart is an 

example of how Tiramola’s performance looks like using cpu_wio as a parameter in a 

similar case. 

Figure 5.3: Tiramola performace with cpu_wio as splitting parameter 

 

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:40:16 EEST - 18.119.29.126



58 

 

When Tiramola is using a splitting parameter of the 1st group, the average 

Mistakes during the 5th period after the training is approximately 16. The following chart 

is an example of how Tiramola’s performance looks like using total_latency as a 

parameter in a similar case. 

Figure 5.4: Tiramola performace with total_latency as splitting parameter 

When Tiramola is using a splitting parameter of the 2nd group, the average 

Mistakes during the 5th period after the training is approximately 73. The following chart 

is an example of how Tiramola’s performance looks like using %_free_RAM as a 

parameter in a similar case. 

Figure 5.5: Tiramola performace with %_free_RAM as splitting parameter 
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When Tiramola is using next_load, %_CPU_usage, network_usage, 

total_throughput, total_latency and load_one (the whole 1st group) as splitting 

parameters, the average Mistakes during the 1st exploitation sinus period is around 33, 

while during the 5th period is 15. The following chart shows a similar performance. 

Figure 5.6: Tiramola performace with all 1st group as splitting parameters 

 

 

When Tiramola is using io_reqs, cpu_wio, %_free_RAM, disk_free and 

%_cached_RAM (the whole 2nd group) as splitting parameters, the average Mistakes 

during the 1st exploitation sinus period is approximately 80, while during the 5th is 29. 

The following chart show a similar performance. 

Figure 5.7: Tiramola performace with all 2nd group as splitting parameters 
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5.2.6 Conclusions on splitting parameters’ performance 

 

 It is obvious that the parameters of the 1st group have better performance than the 

ones of the 2nd group when used separately. 

 The more Tiramola is going further from training period the more it improves its 

performance when it uses parameters from the 1st group. On the other hand this happens 

less often when it uses the ones of the second, and when it does, the improvement on its 

performance is not that great. 

 When using parameters of the 1st group altogether, Tiramola’s performance is 

better than using those of the 2nd altogether. 

 When we use all 11 parameters the performance is worse than using only the ones 

of the 1st group. That means that parameters of the 2nd group are not only worse when 

used alone, but they also harm the whole performance. 

 Using more parameters is not necessarily a smart choice. More Dimensions in 

State-Spaces doesn’t imply better performance. 
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5.3 Experiments pt. 4: Unpredictable Load 

 

 

 After defining the best parameters and algorithms of Tiramola, we are going to 

run unpredictable load against the HBase-cluster and we will study Tiramola’s 

performance. Tiramola’s configuration is the same as in the previous stages and the 

chosen parameters are those of the 1st group. Never before the Tiramola has been tested 

in such a load, so we are going to do a lot of preliminary tests in order to define the level 

of unpredictability of the load, the range of the its values and when Tiramola is able to 

react by taking into account the frequency in load’s transitions from very low values to 

very high ones. Summing up, we are going to study and define a fair unpredictable load 

according to Tiramola’s skills and then come to a conclusion about Tiramola’s speed of 

reaction. 

 We run 4 different types of unpredictable load against the HBase-cluster. 

unpredictable_load1: In every time step, each of the 7 different loads is randomly chosen 

and runs against the cluster. 

unpredictable_load2: The same load stresses the cluster for 2 successive time steps. After 

that, the load’s value is a new random one. 

unpredictable_load3: The same load stresses the cluster for 3 successive time steps. After 

that, the load’s value is a new random one. 

unpredictable_load4: The same load stresses the cluster for 4 successive time steps. After 

that, the load’s value is a new random one. 

 We run every load in 4 different sessions changing only the number of training 

time-steps. Tiramola has different number of training time steps: 1000, 2000, 4000 and 

8000. During each experiment Tiramola runs for 100 more time steps choosing the 

optimal Action. We present its performance in the next charts. 
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5.3.1. HBase cluster stressed under 1st type unpredictable load 

Figure 5.8: Tiramola performance: 1st type of Unpredictable load. 1000 t.s. training 

 

Figure 5.9: Tiramola performance: 1st type of Unpredictable load. 2000 t.s. training 
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Figure 5.10: Tiramola performance: 1st type of Unpredictable load. 4000 t.s. training 

 

 

 

Figure 5.11: Tiramola performance: 1st type of Unpredictable load. 8000 t.s. training 
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5.3.2 HBase cluster stressed under 2nd type unpredictable load 

Figure 5.12: Tiramola performance: 2nd type of Unpredictable load. 1000 t.s. training 

 

 

Figure 5.13: Tiramola performance: 2nd type of Unpredictable load. 2000 t.s. training 
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Figure 5.14: Tiramola performance: 2nd type of Unpredictable load. 4000 t.s. training  

 

Figure 5.15: Tiramola performance: 2nd type of Unpredictable load. 8000 t.s. training 
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5.3.3 HBase cluster stressed under 3rd type unpredictable load 

Figure 5.16: Tiramola performance: 3rd type of Unpredictable load. 1000 t.s. training 

 

Figure 5.17: Tiramola performance: 3rd type of Unpredictable load. 2000 t.s. training 
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Figure 5.18: Tiramola performance: 3rd type of Unpredictable load. 4000 t.s. training  

 

Figure 5.19: Tiramola performance: 3rd type of Unpredictable load. 8000 t.s. training 
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5.3.4 HBase cluster stressed under 4th type unpredictable load 

Figure 5.20: Tiramola performance: 4th type of Unpredictable load. 1000 t.s. training 

 

 

Figure 5.21: Tiramola performance: 4th type of Unpredictable load. 2000 t.s. training 
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Figure 5.22: Tiramola performance: 4th type of Unpredictable load. 4000 t.s. training 

 

Figure 5.23: Tiramola performance: 4th type of Unpredictable load. 8000 t.s. training 
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5.3.5 Conclusions on Tiramola’s performance under unpredictable load 

 

Against 1st type of unpredictable load 

 Tiramola is completely incapable of following such load. Only after a big number 

of training time steps (only at 8000) it seems to react a bit, but the changes in the cluster’s 

size seem hopeless. However, we should remind that based on the reward function we 

defined, Tiramola must choose the smallest cluster size that serves the incoming load (the 

less cost). Considering that fact, Tiramola cannot practically follow such an unpredictable 

load and chooses to keep the cluster’s size in an average value and chooses 6 VMs (3 

VMs minimum, 9 VMs maximum). In this way, it achieves a balance between serving the 

loads and keeping the cost low. 

 

Against 2nd type of unpredictable load 

 Each load is random, but changes every 2 time steps. Tiramola now has one more 

time step to modify the cluster’s size, but fails to adequately follow the load. By 

increasing the training time-steps, Tiramola seems to be more stable, but still performing 

poorly. 

 

Against 3rd type of unpredictable load 

During the 3rd type of unpredictable load, Tiramola has 2 more time-steps to 

recognize the load. Under this load Tiramola starts performing well, especially when the 

training lasts 4000 time-steps or more. 

 

Against 4th type of unpredictable load 

 During the 4th type of unpredictable load, Tiramola has more opportunities to 

react and adjust the cluster’s size to the incoming load. It is not only performing well 

after 4000 time-steps of training or more, but also achieves a slightly good performance 

even after 2000 time steps of training. 

 

 

5.3.6 Extending Tiramola’s flexibility 

 

 Every time the load’s value changes the possible next value can be any of 7 

predefined values. In the 2 worst cases for Tiramola the load goes from the lowest value 

to the highest one or the opposite. In such cases it is possible that the cluster has the 

smallest available size (3 VMs). In the case of the total increase of the load Tiramola 

needs to expand the cluster to its biggest available size (9 VMs). During these 

experiments we kept the previous availability of Actions for Tiramola, meaning that the 

biggest expansion or contraction of the cluster is by 2 VMs. So, Tiramola needs 4 time 

steps to expand the cluster by 6 VMs (2 + 2 + 2), considering that during the first time 
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step Tiramola has no way of knowing how much the load will change. In conclusion, if 

Tiramola is able to choose only such Actions, then it is fair to study its performance only 

against unpredictable loads of the 5th type. Tiramola’s available flexibility must be 

proportionate to the changes of the load. In the next experiments that will follow we will 

enable more Actions for the Tiramola, and we will study its performance under such 

unpredictable loads. 

 As the previous experiments showed, it is unfair to have extreme changes in the 

load, i.e. from 6000 reqs/sec to 14000 reqs/sec, that can be served by 3 and 7 VMs 

respectively, and Tiramola’s maximum flexibility being only 2 VMs (plus or minus). So, 

we increased Tiramola’s flexibility by leaving all the other features as they were. Now 

Tiramola can add or remove 1, 2, 3, 4, 5 and 6 VMs. Even so, Tiramola and no other 

system can be able to predict a load that is completely unpredictable, meaning that 

Tiramola can never follow adequately a load that is different in every time-step, 

previously presented as “unpredictable load of 1st type”. So, we are going to test 

Tiramola by stressing the HBase-cluster under loads of 2nd and 3rd type. Also, we will 

randomly select a specific sequence of both loads for 100 time-steps that will be the 

evaluation sequences. We will going to define the ideal reaction of Tiramola for these 

100 steps in each case, thus being able to accurately define Tiramola’s performance. 

 

 

5.3.6.1 Tiramola against unpredictable load of 2nd type 

 

 As previously mentioned, the load changes randomly every 2 time steps. During 

the 1st time-step Tiramola is unable to predict the load, so we stress the cluster with the 

same load for one more step giving a realistic opportunity to Tiramola to follow it. Such 

load is stressing the cluster for the whole training session, but we have a specific 

sequence of this type of 100 loads in every experiment during the evaluation period. In 

the next chart we can see this sequence of 100 loads and the ideal reaction of Tiramola, if 

it was able to fully predict the load. 
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Figure 5.24: Ideal Tiramola performance against 2nd type of unpredictable load 

 We evaluate Tiramola after 1000, 2000, 4000 and 8000 training steps. After every 

training session the same sequence of loads for 100 time-steps happens during which we 

study Tiramola’s behavior. Stressing the cluster under the same sequence of loads we 

compare Tiramola’s reaction with the ideal one and count the Mistakes, our comparison 

measurement, as defined in previous experiments with the sinusoidal load (if Tiramola 

chooses 4 VMs, but the ideal choice is 3 or 5 VMs, this is 1 mistake and so on). 

 Every experiment is conducted 10 times and each time we study Tiramola’s 

performance by counting mistakes. Then, we neglect the best and the worst performance 

and calculate the average number of mistakes based on the other 8 times we conducted 

the experiment. Except of studying Tiramola’s performance for the whole 100 time steps 

we will pay more attention on Tiramola’s performance during each 2nd time-step of the 

evaluation sequence. During this time-step Tiramola has its realistic opportunity to react. 

 

 

Table 5.4: Tiramola performace against 2nd type of unp. load. Standard evaluation load 

Unpredictable 

Load of 2nd type 

1000 training 

time-steps 

2000 training 

time-steps 

4000 training 

time-steps 

8000 training 

time-steps 

AVG mistakes at 

100 evaluation t.s. 
167.4 155.3 136.6 131.1 

AVG mistakes 

every 2 eval. t.s. 
66.3 52.1 39.6 35.1 
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In the next 4 charts we see how Tiramola’s performance looks like in similar cases as 

depicted in the table above: 

Figure 5.25: Tiramola perf.: Standard evaluation 2nd type of unpr. load, 1000 train t.s. 

Figure 5.26: Tiramola perf.: Standard evaluation 2nd type of unpr. load, 2000 train t.s. 
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Figure 5.27: Tiramola perf.: Standard evaluation 2nd type of unpr. load, 4000 train t.s. 

 

Figure 5.28: Tiramola perf.: Standard evaluation 2nd type of unpr. load, 8000 train t.s. 
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5.3.6.2 Tiramola against unpredictable load of 3rd type 

 

As previously mentioned, the load changes randomly every 3 time steps. During 

the 1st time-step Tiramola is unable to predict the load, so we stress the cluster with the 

same load for two more steps. Now Tiramola has 2 opportunities to follow the load and 

adapt the size of the cluster. Such load is stressing the cluster for the whole training 

session, but during the evaluation we stress the cluster under the same sequence of 100 

loads in every experiment. In the next chart we can see this sequence of 100 loads and the 

ideal reaction of Tiramola, if it was able to fully predict the load. 

 

Figure 5.29: Ideal Tiramola performance against 3rd type of unpredictable load 

 

 We evaluate Tiramola after 1000, 2000, 4000 and 8000 training steps. After every 

training session the same sequence of loads for 100 time-steps happens during which we 

study Tiramola’s behavior. 

 Every experiment is conducted 10 times and each time we study Tiramola’s 

performance by counting mistakes. Then, we neglect the best and the worst performance 

and calculate the average number of mistakes based on the other 8 times we conducted 

the experiment. Except of studying Tiramola’s performance for the whole 100 time steps 

we will pay more attention on Tiramola’s performance during the 2nd and 3rd time-step 

every 3 time-steps of the evaluation sequence. During these 2 time-steps Tiramola has 2 

realistic opportunities to react. 
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Unpredictable Load 

of 3rd type 

1000 

training 

time-steps 

2000 

training 

time-steps 

4000 

training 

time-steps 

8000 

training 

time-steps 

AVG mistakes 100 

evaluation time-steps 

126 105.1 94.2 89.8 

AVG mistakes on 

2nd and 3rd eval t.s. 

64.3 46 33.7 27 

 

 

 

 In the next 4 charts we see how Tiramola’s performance looks like in similar 

cases as depicted in the table above: 

 

Figure 5.30: Tiramola perf.: Standard evaluation 3rd type of unpr. load, 1000 train t.s. 
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Figure 5.31: Tiramola perf.: Standard evaluation 3rd type of unpr. load, 2000 train t.s. 

 

Figure 5.32: Tiramola perf.: Standard evaluation 3rd type of unpr. load, 4000 train t.s. 
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Figure 5.33: Tiramola perf.: Standard evaluation 3rd type of unpr. load, 8000 train t.s. 

 

 

5.3.7 Conclusions on extended Tiramola performance against unpredictable load 

 

 By making Tiramola’s flexibility proportionate to the volume of load-changes, 

Tiramola able to have much better performance under more demanding loads. Under 

unpredictable load of the 2nd type Tiramola performs sufficiently after 4000 training 

time-steps. In the previous experiments, having less flexibility, Tiramola’s behavior was 

poor even after 8000 training time-steps. In the case of 3rd type of unpredictable load, 

Tiramola is performing sufficiently after 2000 training time-steps, while in the previous 

experiments it needed at least 4000 training time-steps to follow the load. So, if we let 

Tiramola to be flexible enough and train it sufficiently enough, Tiramola can have a good 

performance under unpredictable loads. 
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Chapter 6 
 

EPILOGUE 
 

 

 

 In this work we used the last version of Tiramola which implements Markov 

Decision Process with Decision Trees that use the HBase cluster’s metrics as splitting 

parameters and create a multi-dimension State Space based on them. We evaluated the 

performance of Tiramola when an HBase cluster is stressed under unpredictable load and 

Tiramola is trying to contract or expand the cluster under the policy “keep the cluster to 

the smallest possible size, but always serve the incoming load”. 

 For doing such challenging task, we decided that it is of high importance to tune 

Tiramola to its optimal condition. All the MDP related parameters (epsilon, update 

algorithm, discount γ etc. [see 5.2.3]) were already evaluated and we already knew the 

optimal values, so we focused on the splitting parameters. Tiramola’s Decision Tree uses 

the NoSQL cluster’s metrics, while cluster is stressed, as splitting parameters to create 

new States, so these metrics are also becoming the Dimensions of the State Space. All 

things considered, studying the behavior of these metrics in depth was very important. 

 

 

6.1 Conclusions 

 

 In the 4th chapter we present several experiments where we don’t use Tiramola, 

but we send two different kinds of loads against an HBase cluster, while keeping the 

cluster’s size constant. This allows us to study the behavior of 10 metrics directly and 21 

metrics indirectly. Given that the total amount of useful metrics is 40 and we cover CPU, 

memory, disk and network usage we consider that our study on cluster’s metrics is 

complete. 

 During the 1st phase of experiments we run linear increasing load and realize that 

we can divide the metrics into two groups based on the behavior. The ones that have a 

consistent behavior while the load is increasing and the ones that have unpredictable 

behavior. Also, we define the critical load for each cluster size, which is the highest load 

that the HBase cluster serves the requests for each size. 

 During the 2nd phase of experiments we run several loads under the critical load 

for each size of the HBase cluster (3, 4, 5, 6, 7, 8 and 9 VMs, master included). Doing so, 

we managed to present some basic analytics about the metrics that helped us understand 

deeper the behavior of metrics. 
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 Based on these two phases of experiments and thinking that the cluster’s metrics 

will be used as splitting parameters and Dimensions of the State Space, we conclude that: 

 

- The ones of the 2nd group (4.2.1) have high variance when the cluster’s size is 

constant and is stressed under the same load multiple times and/or their values do 

not differ when the load or the cluster’s size is changing. Thinking of them as 

splitting parameters and/or Dimensions, we can make the assumption that they 

will not be efficient. Both characteristics make them inappropriate for creating a 

State Space that will describe the environment for the Tiramola agent reliably. 

Also, when Tiramola is using any of them as splitting parameters cannot correlate 

reliably under which circumstances a specific State will bring positive or negative 

Reward. 

- On the other hand, the metrics of the 1st group (4.2.1) have the opposite behavior 

and thus, they can be used as Dimensions of a State Space that reliably describes 

the environment for the Tiramola agent. Also, being consistent makes them 

reliable as splitting parameters. 

 

 In the 5th chapter we use Tiramola in two phases of experiments. 

 During the 3rd phase we confirm our assumptions about which metrics can be 

used as splitting parameters in Decision Trees and as Dimensions for the State Space. To 

accomplish that, we run sinusoidal load against the HBase cluster and do multiple 

experiments using each metric as a splitting parameter. In order to do the evaluation we 

introduce the Mistake, which is a comparison measurement for evaluating Tiramola’s 

performance that can be used when a NoSQL cluster is stressed under a standard load. 

 During the 4th phase we used Tiramola optimally, while the HBase cluster was 

stressed under unpredictable load. In this part of experiments we manage to: 

- Define different level of randomness for unpredictable loads (4 different types). 

Never before such loads were used in relevant works, so this was a challenging 

task. 

- Define when Tiramola is performing acceptably: against what type of 

unpredictable loads and after how many training time steps. 

- Go further by extending Tiramola’s flexibility about contracting or extending the 

cluster. Doing so, we made the encounter (Tiramola VS unpredictable load) to be 

fairer and saw that Tiramola can perform better against unpredictable loads that 

have high randomness, while Tiramola is less trained. 
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