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ABSTRACT 

The emerging technological developments during the past decade enable large scale analyses 

in the “regulatory RNA” field and have turned non-coding RNA (ncRNA), initially 

considered as junk, into a research goldmine. ncRNAs play a crucial role in a remarkable 

variety of physiological and pathological biological processes. The vast production of data 

has also been the most important factor underlying the accelerated growth of bioinformatics, 

a field dedicated to the analysis of data and the development of computational tools 

indispensable for handling, manipulating and interpreting the results. This thesis focuses on 

the thorough aggregation of high-throughput data and state-of-the-art Machine Learning 

techniques in order to develop algorithms for the functional characterization of non-coding 

transcripts. 

The current dissertation is specialized on a specific category of RNA transcripts, the 

microRNAs. microRNAs (miRNAs) are small single stranded non-coding RNA molecules, 

~22 nucleotides long, that are loaded into Argonaute (AGO) to induce target cleavage, 

degradation or translational suppression. Accurate characterization of their targets is 

considered fundamental to elucidate their regulatory roles. Over the last 15 years, a multitude 

of in silico and experimental procedures have been developed aiming to determine the 

miRNA interactome. Currently, high-throughput techniques have enabled the identification 

of novel experimentally-supported miRNA-gene interactions in a transcriptome-wide scale. 

This wealth of information is dispersed in a great number of publications and raw datasets. 

During this thesis DIANA-TarBase v8.0, a reference database devoted to the indexing of 

experimentally-supported miRNA targets, was designed. Its 8th version is the first database to 

index more than 1 million entries, corresponding to ~700,000 unique miRNA target pairs, 

supported by more than 33 experimental methodologies, applied to 592 cell types/tissues 

under ~430 experimental conditions. 

AGO-CLIP-Seq experiments are the most widely used high-throughput methodologies.  PAR-

CLIP variant against AGO proteins methodology has been performed to map miRNA-gene 

interactions on a transcriptome-wide scale for healthy or disease cell types.  Computational 

methods devoted to AGO-PAR-CLIP present reduced ability to distinguish a large portion of 

genuine miRNA-targets. To this end, one of the aims of this thesis was to revisit, identify and 

address current obstacles in AGO-CLIP-Seq analysis. An in silico framework for CLIP-guided 

identification of miRNA interactions, microCLIP model, was developed. microCLIP is the 

first relevant implementation to employ the innovative super learner ensemble framework 

and the only available A-to-Z computational approach for the analysis of AGO-PAR-CLIP 

datasets. It operates on every AGO-enriched cluster, providing previously neglected 

functional miRNA binding events with strong RNA accessibility. 

microCLIP deployment emboldened the development of a next generation de novo miRNA 

target prediction algorithm. Even the extensive production of relevant approaches observed 
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during the past few years, leading implementations still achieve a far from perfect predictive 

accuracy followed by an increased number of false positives predictions. Therefore, microT 

Super Learning framework is presented that maintains and upgrades the pipeline adopted in 

microCLIP, by enhancing the training with even more high-throughput experiments under a 

tissue-specific scheme. The new model characterizes interactions with stronger functional 

efficacy and correctly detects 1.5-fold more experimentally validated target sites when 

juxtaposed against leading computational approaches. The increased performance of 

microCLIP and microT frameworks in the detection of miRNA interactions, uncovers 

previously elusive regulatory events and miRNA-controlled pathways. 

During this thesis, the candidate participated in 9 scientific studies, involving computational 

approaches for determining the activity of non-coding transcripts and in two of them is first 

author. The candidate’s main research activity and contribution in the publications 

incorporates the implementation of algorithms and automated pipelines for the analysis of 

Next Generation Sequencing data, data integration for the elucidation of non-coding RNA 

function and their involvement in mechanisms of post-transcriptional gene regulation. The 

studies are published in international journals of high impact factor and a total of 942 

citations have been received so far, according to Google Scholar. 

 

SUBJECT AREA: Computational Biology 

KEYWORDS: microRNA, high-throughput experiments, AGO-HITS-CLIP, AGO-PAR-CLIP, 

target prediction, experimentally supported targets, in silico predicted targets, 

Machine Learning 
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ΠΕΡΙΛΗΨΗ 

Οι ραγδαίες τεχνολογικές εξελίξεις την τελευταία δεκαετία επέτρεψαν αναλύσεις μεγάλης 

κλίμακας στο πεδίο του «ρυθμιστικού RNA», μετατρέποντας τα μη-κωδικά μετάγραφα, που 

αρχικά θεωρούνταν «σκουπίδια», σε ερευνητικό «χρυσωρυχείο». Τα μη-κωδικά μετάγραφα 

διαδραματίζουν καθοριστικό ρόλο σε ένα αξιοσημείωτο αριθμό από φυσιολογικές και 

παθολογικές βιολογικές διεργασίες. Η τεράστια παραγωγή δεδομένων ήταν επίσης ένας από 

τους σημαντικότερους παράγοντες της επιταχυνόμενης εξέλιξης του τομέα της 

βιοπληροφορικής, ενός τομέα εξειδικευμένου στην ανάλυση βιολογικών δεδομένων και την 

ανάπτυξη υπολογιστικών εργαλείων, απαραίτητων για την επεξεργασία και την ερμηνεία 

των αποτελεσμάτων τους. Αυτή η εργασία επικεντρώνεται στο λεπτομερή και ακριβή 

συνδυασμό υψηλής διεκπεραιωτικής ικανότητας δεδομένων και σύγχρονων τεχνικών 

μηχανικής μάθησης για την ανάπτυξη αλγορίθμων με στόχο το λειτουργικό χαρακτηρισμό 

των μη-κωδικών μεταγραφών. 

Η παρούσα διατριβή επικεντρώνεται σε μια συγκεκριμένη κατηγορία μεταγραφών, τα 

microRNAs. Τα microRNAs (miRNAs) είναι μικρά, μονόκλωνα, μη-κωδικά μόρια RNA, 

μήκους ~ 22 νουκλεοτιδίων, που προσδένονται στην πρωτεΐνη Αργοναύτη (AGO) για να 

προκαλέσουν τη διάσπαση του μεταγράφου-στόχου, την αποικοδόμηση ή την καταστολή της 

μετάφρασής του. Ο ακριβής χαρακτηρισμός των στόχων τους θεωρείται θεμελιώδης για την 

αποσαφήνιση του ρυθμιστικού τους ρόλου. Τα τελευταία 15 χρόνια, έχει αναπτυχθεί μία 

πληθώρα υπολογιστικών και πειραματικών προσεγγίσεων με στόχο τον προσδιορισμό των 

αλληλεπιδράσεων των μικρών RNAs. Επί του παρόντος, οι τεχνικές υψηλής απόδοσης 

επέτρεψαν την εύρεση νέων πειραματικά υποστηριζόμενων αλληλεπιδράσεων των miRNAs 

σε όλο το μεταγράφωμα. Αυτός ο πλούτος των πληροφοριών είναι διασκορπισμένος σε 

μεγάλο αριθμό δημοσιεύσεων και ακατέργαστων δεδομένων. Κατά τη διάρκεια αυτής της 

διατριβής, σχεδιάστηκε το DIANA-TarBase v8.0, μια βάση δεδομένων αναφοράς, 

αφιερωμένη στην ευρετηρίαση πειραματικά υποστηριζόμενων στόχων των miRNAs. Η 8η 

έκδοση είναι η πρώτη βάση δεδομένων που αναφέρει περισσότερες από 1 εκατομμύριο 

καταχωρήσεις, που αντιστοιχούν σε ~700.000 μοναδικές miRNA-gene αλληλεπιδράσεις, 

υποστηριζόμενες από περισσότερες από 33 πειραματικές μεθοδολογίες, που έχουν εφαρμοστεί 

σε 592 κυτταρικούς τύπους/ιστούς, υπό~ 430 πειραματικές συνθήκες. 

Τα πειράματα με ανοσοκατακρήμνηση της πρωτεΐνης AGO (AGO-CLIP-Seq) αποτελούν τις 

πιο διαδεδομένες μεθοδολογίες υψηλής απόδοσης. Η AGO-PAR-CLIP τεχνική έχει 

πραγματοποιηθεί ευρέως για τη χαρτογράφηση miRNA-gene αλληλεπιδράσεων σε μεγάλη 

κλίμακα σε υγιείς ή ασθενείς τύπους κυττάρων. Οι υπολογιστικές μέθοδοι που έχουν 

αναπτυχθεί με στόχο την ανάλυση αυτών των δεδομένων παρουσιάζουν μειωμένη ικανότητα 

να διακρίνουν ένα μεγάλο μέρος των πραγματικών miRNA-στόχων. Για το σκοπό αυτό, ένας 

από τους σκοπούς της παρούσας διατριβής είναι να επανεξετάσει, να εντοπίσει και να 

αντιμετωπίσει τα τρέχοντα εμπόδια στην ανάλυση AGO-CLIP-Seq δεδομένων. 
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Παρουσιάζεται, λοιπόν, το μοντέλο microCLIP, μία υπολογιστική προσέγγιση για την 

κατευθυνόμενη από CLIP-Seq δεδομένα αναγνώριση των αλληλεπιδράσεων των miRNAs. Το 

microCLIP είναι ένα καινοτόμο ensemble μοντέλο βαθειάς εκμάθησης (super learner) και η 

μόνη διαθέσιμη υπολογιστική προσέγγιση που αναλύει AGO-PAR-CLIP δεδομένα από το Α 

έως το Ω. Επεξεργάζεται όλες τις εμπλουτισμένες σε AGO περιοχές, παρέχοντας λειτουργικές 

περιοχές πρόσδεσης των miRNAs με ισχυρή προσβασιμότητα, που μέχρι πρότινος 

αγνοούνταν. 

Η ανάπτυξη του microCLIP ενέπνευσε τη δημιουργία ενός αλγόριθμου επόμενης γενιάς, για 

την εύρεση των στόχων των miRNAs απουσία πειράματος. Παρά την εκτενή ανάπτυξη 

σχετικών προσεγγίσεων που παρατηρείται τα τελευταία χρόνια, ακόμη και οι  αλγόριθμοι 

αιχμής εξακολουθούν να επιτυγχάνουν χαμηλή ακρίβεια και αυξημένο αριθμό ψευδώς 

θετικών προβλέψεων. Για αυτόν το λόγο, αναπτύχθηκε το μοντέλο microT Super Learning 

που διατηρεί και αναβαθμίζει τη μεθοδολογία του microCLIP αλγορίθμου, ενισχύοντας την 

εκπαίδευσή του με ακόμη περισσότερα πειράματα υψηλής απόδοσης υπό έναν ιστο-ειδικό 

σχεδιασμό. Το νέο μοντέλο χαρακτηρίζει αλληλεπιδράσεις με ισχυρότερη λειτουργικότητα 

και ανιχνεύει σωστά 1.5 φορές περισσότερες πειραματικά επιβεβαιωμένες περιοχές πρόσδεσης 

των μικρών RNAs, όταν αντιπαρατίθεται με κορυφαίες υπολογιστικές προσεγγίσεις. Η 

αυξημένη απόδοση των αλγορίθμων microCLIP και microT στην ανίχνευση των 

αλληλεπιδράσεων των miRNAs, αναδεικνύει ρυθμιστικά συμβάντα που μέχρι πρότινος 

αγνοούνταν και νέα μοριακά μονοπάτια που ελέγχονται από τα miRNAs. 

Κατά τη διάρκεια της παρούσας εργασίας, η υποψήφια διδάκτωρ συμμετείχε σε 9 

επιστημονικές δημοσιεύσεις που αφορούσαν υπολογιστικές προσεγγίσεις για τον 

προσδιορισμό της λειτουργίας των μη κωδικών μεταγραφών και σε δύο από αυτές είναι η 

πρώτη συγγραφέας. Η κύρια ερευνητική δραστηριότητα και η συμβολή της υποψήφιας στις 

δημοσιεύσεις αυτές αφορά την εφαρμογή αλγορίθμων, αυτοματοποιημένων ροών ανάλυσης 

για την επεξεργασία πειραματικών δεδομένων επόμενης γενιάς και τον κατάλληλο 

συνδυασμό τους με στόχο την αποσαφήνιση της λειτουργίας των μη-κωδικών RNAs και της 

συμμετοχής τους σε μηχανισμούς μετα-μεταγραφικής γονιδιακής ρύθμισης. Οι μελέτες έχουν 

δημοσιευθεί σε διεθνή περιοδικά υψηλής απήχησης και οι συνολικές ετεροαναφορές μέχρι 

σήμερα, σύμφωνα με το Google Scholar, είναι 942. 

 

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Υπολογιστική Βιολογία 

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: microRNA, πειράματα υψηλής απόδοσης, AGO-HITS-CLIP, AGO-PAR-

CLIP, πρόβλεψη στόχων, πειραματικά επιβεβαιωμένοι στόχοι, 

υπολογιστικά προβλεπόμενοι στόχοι, Μηχανική Μάθηση  
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CHAPTER 1 

Introduction 

1.1 ncRNAs – from “junk” DNA into a research goldmine 

The term non-coding RNAs (ncRNAs) is commonly employed for RNAs that do not encode 

proteins. However, this does not confirm that these RNAs do not have a function or do not 

play a fundamental role in cellular processes. The traditional view of molecular biology is 

that almost exclusively RNAs transfer genetic information in order to be subsequently 

translated into protein. However, the discovery of families of ncRNAs, such as ribosomal 

RNA (rRNA) and transfer RNA (tRNA), comprising a high portion of total RNA and serving 

necessary organisms functions, broadened the long-established RNA role. The majority of 

mammalian genomes and other complex organisms are transcribed into ncRNAs and seem to 

play a key regulatory role in various physiological and pathological processes[1]. 

ncRNAs are sub-divided according to their size and their biological function (Table 1). There 

are ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), >200 nucleotide-long non-coding 

RNAs, also known as long non-coding RNAs (lncRNAs), small non-coding RNAs, such as 

microRNAs (miRNAs), piwi-interacting RNAs (piRNAs), short interfering RNAs (siRNAs) 

etc. These categories also display sub-groups according to the genomic regulatory regions the 

ncRNAs originate from. ncRNAs may derive from intergenic, intragenic, intronic regions of 

protein coding genes or even from pseudogenes[2]. 

Emerging technological developments during the past decade have revolutionized 

biomedical research. Extensive sequencing experiments produced by large consortia, 

including the Encyclopedia of DNA Elements Consortium (ENCODE)[3, 4]  enabled large 

scale analyses in the “regulatory RNA” field and turned non-coding RNA, initially 

considered as junk, into a research goldmine. Numerous high-throughput experiments 

suggest that ncRNAs partake crucially in a remarkable variety of biological processes, such as 

gene expression, editing, splicing, heterochromatin formation, histone modification, DNA 

methylation etc[1]. 
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Table 1: Non-coding RNA subfamilies – Their Function and Size.  

Category Definition Function Size 

miRNA microRNA Small ncRNA that interacts with (non-
)coding RNAs through the RISC complex 
to  induce target cleavage/degradation or 
translational suppression 

~22nt 

piRNA piwi-interacting RNA ncRNA mainly characterized in the male 
germline - directs chromatin modification 
to repress transcription 

27nt 

siRNA small interfering RNA Product of Dicer cleavage of dsRNA that 
targets RNAs to induce their cleavage 

~22nt 

snRNA small nuclear RNA  ncRNA localized in the eukaryotic cell 
nucleus 

100-300nt 

snoRNA small nucleolar RNA Guide RNA of chemical modifications of 
other RNAs 

70nt 

sRNA small RNA regulator Bacterial ncRNA that interacts with 
mRNAs and regulate gene expression 

<300nt 

rRNA ribosomal RNA RNA component of the ribosomal subunit 120,160,1868, 
5025nt,human; 
120,1541, 
2904nt, E. coli 

tRNA transfer RNA Facilitates protein synthesis by carrying 
amino-acids to ribosomal units 

70-90nt 

lncRNA long non-coding RNA Transcribed ncRNA, often capped and 
polyadenylated. Epigenetic gene 
expression regulator, sponge, transporter 

>200nt 

 

1.2 The discovery of microRNAs 

miRNAs are small non-coding RNA molecules, approximately 22 nucleotides long. They are 

central post-transcriptional regulators of gene expression and play a pivotal role in numerous 

biological processes. For more than a decade, miRNAs are intensively researched for their 

involvement in a variety of physiological and pathological conditions[5].  

The first microRNAs were discovered in 1993 by C. elegans (Caenorhabditis elegans)[6]  by 

Ambros, Lee and Feinbaum. The researchers observed that the lin-4 gene produced a non-

coding RNA segment of approximately 22 bases long that binds to the 3'-untranslated region 

(3' UTR) of lin-14 mRNA. The interaction between the lin-4 non-coding and lin-14 gene led to 

the translational repression of the latter. The above phenomenon is amplified by another 

research result in the C. elegans organism, where the let-7 microRNA was identified to target 

the 3' UTR region and induce suppression of lin-41 gene expression[7]. Let-7 microRNA 

appeared to be conserved in other organisms supporting the existence and regulatory role of 

other small non-coding RNA molecules[8].  These first discoveries were the beginning of a 

large number of findings for novel microRNAs in various organisms that have established 

their function as regulators of gene expression. 
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1.2.1 Biogenesis of microRNAs 

More than 45% of miRNAs are derived from non-coding transcripts, while the rest are 

transcribed from protein coding regions. The majority of miRNA genes are transcribed from 

RNA polymerase II (Pol II), generating large primary transcripts (pri-miRNAs). The protein 

Drosha processes the pri-miRNAs generating ~60-100 bases long hairpin structures, also 

known as pre-miRNA precursors. Rapid cleavage of pri-miRNAs by Drosha in the nucleus 

prevents their characterization by conventional sequencing techniques, raising limitations to 

the clarification of the regulatory mechanisms that control their transcription. The precursor 

sequences are extracted from the nucleus and transferred to the cytoplasm by means of the 

exportin-5 and Ran-GTP proteins, which inter alia participate in the transport of molecules 

inside and outside the nuclear membrane. After the pre-miRNA comes out of the nucleus, 

they are cut with the help of the Dicer enzyme, a highly conserved protein found in most 

eukaryotic organisms. The effect of the Dicer enzyme by cutting the loop at the end of the 

microRNAs precursors leads to the release of double-stranded ~22 nucleotide microRNAs[9] 

(Figure 1). 

Both strands of the miRNA duplex-intermediate can be potentially functional. However, 

usually one strand (guide strand) accumulates as the mature miRNA. The mature single-

stranded molecule is loaded into protein Argonaute (AGO) while the other strand, termed as 

the “passenger” strand, is released and degraded. The main action of microRNAs is observed 

in the cytoplasm, while recent studies indicate that some mature miRNAs are able to re-enter 

into the nucleus and interact with other transcripts, something that displays their possible 

involvement in additional mechanisms that have not been yet characterized[10]. 
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Figure 1: Biogenesis of microRNAs. miRNAs are transcribed into the nucleus either autonomously or as 

polycistronic molecules. The miRNA precursor (pri-miRNA) is treated by the microprocessor complex which 

is composed of the DROSHA and DCGR8 proteins. The resulting pre-miRNA which is extracted from the 

nucleus by means of Exportin-5 and protein Dicer cuts the loop at the end of miRNA precursor. From the 

generated double-stranded miRNA, one clone is usually selected, which is incorporated into the RISC 

complex. The most well-defined functions of miRNAs are observed in the cytoplasm such as: translation 

suppression and/or degradation of the mRNA target. Recent studies suggest that some mature miRNAs are 

able to re-enter into the nucleus and interact with other transcripts, something that displays their possible 

involvement in additional mechanisms that have not been yet characterized. This figure has been designed 

for the purpose of this dissertation. 

1.2.2 microRNA function 

miRNAs are loaded into protein Argonaute and interact with the RISC complex to form the 

miRNA-induced silencing complex (miRISC). Since miRNAs are incorporated into the RISC 

complex, they induce gene silencing with partial or full complementary binding with mRNAs 

(Figure 2). In particular, interactions of miRNAs with target mRNAs require complementarity 
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of 6-8 nucleotides, the so-called seed region at the 5' end of the miRNA. It should be noted 

that the base pairing of the seed with the mRNA plays a very important role in the 

effectiveness of the interaction. 

Initially, miRNAs were demonstrated to systematically and effectively target the 3' 

untranslated region (3' UTRs) of mRNA, where highly conserved miRNA Recognition 

Elements (MREs) are identified. However, recent studies have shown new functional miRNA 

target sites within the 5'-Untranslated Region (5' UTR) and the coding region (CDS) of the 

mRNA[11]. 

At the same time, miRNAs play a key regulatory role in a variety of biological processes such 

as stem cell differentiation, involvement in immune mechanisms and cell signaling. Beyond 

their physiological role, a large number of studies address the positive or negative role of 

miRNAs in various diseases. miRNAs affect the expression levels of genes in different tissues. 

Consequently, possible changes in miRNA concentration by mutation, deletion, 

amplification, and epigenetic silencing or transcription factors, affect targeted genes, 

including oncogenes and tumor suppressors, involved in a wide range of pathological 

conditions in the human body, such as carcinogenesis, cardiovascular diseases, metabolic 

disorders, autoimmune diseases, etc.[12-16]. miRNAs are therefore intensively studied for 

their potential as therapeutic targets. 

 

 

Figure 2: Illustration of miRNA targeting. miRNAs are loaded on AGO and guide the RISC complex to target 

MRE(s). RISC binding to its target genes can either cease their translation or induce their cleavage and/or 

degradation (Paraskevopoulou MD and Karagkouni D et al, 2018)[17]. 

1.3 Identification of miRNA targets 

Accurate characterization of miRNA targets is considered fundamental to elucidate their 

regulatory roles. Over the last 15 years, a multitude of in silico and experimental procedures 

have been developed aiming to determine the miRNA interactome[5]. Currently, high-

throughput techniques have enabled the identification of novel experimentally-supported 
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miRNA-gene interactions in a transcriptome-wide scale[18]. The broad use of these 

experimental methodologies has advanced miRNA target recognition towards the gradual 

substitution of related computational approaches. Despite the contribution of experimental 

methods and computational techniques, much of the microRNA targets, even for extensively 

studied organisms, such as mouse and human, remain unexplored.  

1.3.1 In silico approaches for the identification of miRNA:mRNA interactions 

Target prediction tools constituted the first in silico approaches in miRNA research. miRNAs 

may occupy hundreds of thousands of potential target sites, while their validation with 

experimental procedures is time consuming and costly. Computational approaches constitute 

the backbone of miRNA related studies by facilitating the process and proposing potential 

target sites for downstream analyses.  

The first miRNA target prediction algorithm was published in 2003 by Lewis et al.[19], who 

first introduced the concept of the “seed region”. The miRNA “seed region” is a 7 base-long 

segment, between the 2nd and 8th nucleotide, counting from the 5’ of a miRNA sequence. This 

region showed perfect Watson-Crick complementarity with the 3’ UTR of the target mRNA 

and was highly conserved among miRNAs and species. Since then, several miRNA target 

prediction algorithms have been developed and heavily rely on the complementarity of this 

region with the respective binding site, as a key biological element for miRNA-target 

prediction. 

Most of the developed algorithms focused from the very beginning on the prediction of 

miRNA binding sites solely on the 3’ UTR of mRNAs. However, recent advances in high-

throughput sequencing revealed a significant portion of target sites in CDS[11]. Currently, 

there are numerous widely used and promising applications for de novo identification of 

miRNA-gene interactions. Most of them rely on decisive features for miRNA target 

recognition, such as nucleotide composition of the binding site, thermodynamic stability, 

secondary structure and evolutionary conservation. They often produce radically different 

outcomes due to the incorporation of diverse experimental data and different mathematical 

models, utilized for the deployment of each algorithm. Therefore, selecting the most 

appropriate implementation is a common and multifaceted problem.  

1.3.1.1  Overview of de novo miRNA Target Prediction Algorithms 

Available de novo miRNA Target Prediction algorithms, published in the last decade, are 

displayed in Table 2 and a concise description of the most widely used and recently 

developed methods, is reviewed below in more detail. 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
11/07/2024 07:57:03 EEST - 3.145.41.45



  

39 

Table 2: De novo miRNA Target Prediction algorithms, published the last decade. 

Algorithm URL Year of the latest 
update 

miRAW bitbucket.org/account/user/bipous/projects/MIRAW 2018 
DeepMirTar github.com/Bjoux2/DeepMirTar_SdA 2018 
chimiRic bitbucket.org/leslielab/chimiric 2016 
MIRZA-G www.clipz.unibas.ch/index.php?r=tools/sub/mirza g 2015 
PACCMIT/PACCMIT-
CDS 

paccmit.epfl.ch 2015 

Targetscan www.targetscan.org 2015 
MBSTAR www.isical.ac.in/,bioinfo_miu/MBStar30.htm 2014 
mirMark github.com/lanagarmire/MirMark 2014 
miRmap cegg.unige.ch/mirmap 2013 
DIANA-microT-CDS www.microrna.gr/microT-CDS 2012 
MiRanda/mirSVR www.microRNA.org 2010 

 

TargetScan[20]: TargetScan is a model with high performance in terms of sensitivity and 

precision. The first version of the algorithm was introduced in 2003 by Lewis et al. [19] and 

since then is constantly updated. Targetscan v7 provides a quantitative model that 

incorporates 14 distinct features, including the target site type, 3’ supplementary pairing, 

local AU content, 3’ UTR binding site abundance, predicted seed-pairing stability and 

conservation. It mainly detects canonical (high level of seed complementarity) sites within 3’ 

UTR regions, according to a seed-dependent scoring system. The latest version of the model 

also predicts effective non-canonical site types, such as 3’ compensatory sites and centered 

sites. The updated context++ model is applicable to all canonical sites, independently to the 

evolutionary conservation feature, evaluating not only non-conserved sites to conserved 

miRNAs but also sites for non-conserved miRNAs, including viral miRNAs. Each target site 

can be evaluated with a cumulative context and/or an aggregated conservation score. The 

training and testing of the model was performed on 74 microarray datasets, analyzed from 

scratch to minimize technical biases,  with clear sRNA-induced repression using stepwise 

regression[21].  

DIANA-microT-CDS[22, 23]: DIANA-microT-CDS is a state-of-the-art implementation which 

identifies seed-based miRNA binding sites with perfect or partial complementarity, both in 

CDS and 3’ UTR regions. It achieves increased performance in terms of sensitivity and 

precision due to the independent analysis and the distinct feature extraction performed for 

CDS and 3’ UTR regions. Important microT-CDS features are the target site complementarity, 

upflank AU content, accessibility, pairing stability and conservation of miRNA targeted 

regions in 30 and 16 species respectively. A dynamic programming algorithm identifies the 

optimal alignment between the miRNA extended seed sequence (nucleotides 1–9 from the 5’ 

end of the miRNA) and every 9 nt window on the 3’ UTR or the CDS region. Positive and 

negative instances are derived from PAR-CLIP data[11]. The separate prediction models are 
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combined in a Generalized Linear Model, which is trained on microarray datasets that 

measure mRNA expression changes after transfection or knockout of a specific miRNA. The 

potency of each miRNA-gene interaction is described by a combined score that represents the 

synergistic action of multiple binding sites in the targeted mRNA regions. The overall 

performance of the algorithm is estimated on quantitative proteomics and HITS-CLIP 

data[24]. 

miRAW[25]: miRAW is one of the more recently developed de novo miRNA target prediction 

algorithms. Its core algorithm identifies (non-)canonical sites within the 3’ UTR region. 

Decisive features of the model include miRNA:target hybrid stability, site accessibility and 

per-nucleotide base pairing composition. The model adopts a Deep Learning classification 

scheme of eight dense hidden layers, while the output layer is composed of two softmax 

nodes. It was trained and tested on experimentally validated miRNA:gene interactions 

indexed on TarBase v7[26] and mirTarBase[27] repositories. The miRNA:target pairs were 

further combined with AGO-PAR-CLIP[28] and CLASH[29] experiments to retrieve the exact 

miRNA binding locations.  The model also integrates evolutionary conservation of targets by 

combining broadly conserved sites from Targetscan[20]. The performance of the algorithm 

was further evaluated on microarray datasets after miRNA transfection into HeLa cells[30]. 

DeepMirTar[31]: DeepMirTar model is another Deep Learning approach that was recently 

developed. The algorithm predicts (non-)canonical miRNA target sites within the 3’ UTR 

region. It incorporates 7 categories of features including sequence composition, duplex free 

energy, site location, accessibility and evolutionary conservation. It also integrates hot-

encoding features representing the per-base nucleotide composition of miRNA binding 

regions. The model has been trained on experimentally validated miRNA-gene interactions 

derived from miRecords[32] database and a CLASH[29] experiment, while mock miRNA-

gene pairs were included as negative regions. DeepMirTar performance was evaluated on a 

separate AGO-PAR-CLIP dataset[11].  

chimiRic[33]: chimiRic detects seed-based miRNA-target pairs within the 3’ UTR region, with 

perfect or partial complementarity, by adopting a tissue-specific scheme. To address the 

possibility of cell type specific miRNA binding, the model applied a multi-task learning 

approach by treating the different cell types separately with related learning tasks. It 

integrates decisive features, such as base pairing composition, duplex structure and 3’ UTR 

related characteristics. chimiRic utilizes a Support Vector Machine approach while positive 

and negative miRNA binding sites were extracted from CLASH[29] and AGO-CLIP-

Seq[11],[34] experiments. The model was subsequently evaluated on AGO-PAR-CLIP, 

CLEAR-CLIP[35] datasets and Reporter Gene Assay experiments.  

MIRZA-G[36]: MIRZA-G is another tool able to predict seed-based canonical and non-

canonical miRNA binding sites, residing on 3’ UTR region and siRNA off-targets. Decisive 
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features for MIRZA-G are the nucleotide composition around putative targeted regions, the 

site structural accessibility, the evolutionary conservation and the location of the site within 

the 3’ UTR region. miRNA binding affinity in mRNA regions is assessed by the MIRZA 

biophysical model deduced from AGO-CLIP-Seq data[37]. The latter implementation assigns 

base binding energies on the candidate miRNA-mRNA duplexes. The training and testing of 

the algorithm was performed using a generalized linear model against 26 miRNA/siRNA 

transfection microarray and proteomics datasets. 

miRanda/mirSVR[38, 39]: miRanda is the target prediction model provided by 

microRNA.org. Its core algorithm identifies putative miRNA:gene interactions which are 

scored by mirSVR model. It provides both canonical and non-canonical miRNA binding sites 

within the 3’ UTR region, by permitting one G:U wobble pair or mismatch in the 6mer seed 

region, followed by a perfect binding in the 3’ compensatory region. mirSVR utilizes a 

Support Vector Regression approach and is trained on miRNA transfection microarray 

experiments performed on HeLa cells. The scoring scheme is based on local and global 

features. Local features incorporate the AU sequence composition and the accessibility of the 

target site, while global features refer to UTR-relevant features and the conservation level of 

the targeted region. The performance of miRanda-mirSVR joint usage was assessed on 

microarray, proteomics and AGO-IP datasets after miRNA perturbation and AGO-PAR-CLIP 

experiments.  

mirMark[40]: mirMark provides both canonical and non-canonical miRNA binding sites in 

the 3’ UTR region, allowing up to 2 G:U wobble pairs. The main characteristic of the 

algorithm is the extensive list of site and UTR relevant features that incorporates. Site level 

features refer to miRNA/mRNA duplex energy, complementarity, structural accessibility, 

composition and evolutionary conservation. The initial identification of candidate miRNA 

binding sites is performed with miRanda algorithm. mirMark adopts separate levels of 

classification, trained with a random forest model; a first one for the assessment of the target 

site and a second one for the evaluation of the miRNA-gene interaction. The training was 

performed using experimentally verified miRNA-gene targets derived from miRecords[32] 

and miRTarBase[27], while mock miRNA-gene pairs were included as negative targeted 

regions. AGO-PAR-CLIP data were used for the evaluation of mirMark’s performance. 

mBSTAR[41]: mBSTAR constitutes a learning framework designed for predicting seed-based 

binding sites of miRNAs within the 3’ UTR region, allowing a single G:U wobble pair. It 

incorporates 40 sequence, structural and energy features, including nucleotide frequencies, 

internal loops, bulges and minimum free energy of the entire flanking region. mBSTAR 

utilizes a Random Forest classifier, while the training and testing was performed on 

experimentally supported miRNA-gene targets derived from miRecords[32], Tarbase v6[42] 

and StarBase[43].  
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PACCMIT/PACCMIT-CDS[44]: PACCMIT algorithm (Prediction of the ACessible 

MIcroRNA Targets) is based on an overrepresentation ranking system. The original model 

ranks the candidate seed-based miRNA binding sites which reside on 3’ UTR regions, 

according to their over-representation with respect to a random background. The ranking 

system is based on a Markov model.  The sites are subsequently filtered by considering 

accessibility and evolutionary conservation. PACCMIT-CDS follows the aforementioned 

scheme by searching potential miRNA bindings also in the CDS region. The model was tested 

on AGO-PAR-CLIP data[11] and proteomics experiments, followed by miRNA 

transfection[45],[46]. 

1.3.2 Experimental Methods for the identification of miRNA:gene interactions 

The experimental techniques, utilized to identify novel miRNA targets and validate predicted 

interactions, can significantly differ in their accuracy and robustness. They are mainly 

divided into low- and high-throughput experiments according to the amount of information 

they produce. In low-throughput techniques, Reporter Gene Assays focus on the recognition 

of the exact miRNA binding location, while indirect methodologies like quantitative 

Polymerase Chain Reaction (qPCR), Western blot and Enzyme-Linked Immunosorbent 

Assay (ELISA) infer interactions by taking into consideration the reduction of mRNA or 

protein concentration[47]. High-throughput techniques, such as microarrays and proteomics 

are the extension of low-yield methodologies, enabling the indirect detection of numerous 

miRNA targets. Current advancements in Next Generation Sequencing (NGS) technologies 

have radically changed the characterization of the miRNA interactome[18]. RNA 

immunoprecipitation combined with sequencing (RIP-Seq) constitutes one of the first 

experiments to enable the identification of RNAs bound by a protein of interest[48]. Recently, 

Ribosome profiling sequencing (RPF-Seq) experiments have been proposed as a sensitive and 

quantitative protocol, able to measure the efficiency and speed of translation, as well as the 

ribosome occupancy per transcript. This methodology allows the evaluation of miRNA-

mediated translational repression by the analysis of captured ribosome-bound transcripts[49]. 

These procedures are coupled with overexpression or knockdown of a specific miRNA in 

order to detect genes quantitatively affected by miRNA expression perturbations. 

Crosslinking and immunoprecipitation sequencing (CLIP-Seq) methodologies focus on the 

transcriptome-wide recognition of RNA-protein binding regions and are usually 

complemented with RNA expression experiments[50]. AGO-CLIP-Seq methodologies 

inaugurated a new era in miRNA research, providing unprecedented accuracy and multitude 

of miRNA targets in a transcriptome-wide scale. Recent modified versions of the later 

techniques, such as CLEAR-CLIP(Covalent Ligation of Endogenous Argonaute-bound 

RNAs)[35] and CLASH(Crosslinking, Ligation, and Sequencing of Hybrids)[51] protocols, 
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include an extra ligation step which links miRNA molecules with their respective target 

binding site, resulting in hundreds of chimeric miRNA-mRNA fragments.  

Table 3 summarizes the most widely used experimental methodologies for miRNA target 

characterization. 

Table 3: Experimental methodologies for miRNA:gene interactions characterization. 

Method Direct technique Throughput Experiment context 

Reporter Gene Assay ✓ Low Identification of interacting 

miRNA-gene regions 

qPCR, Northern Blot - Low miRNA effect on mRNA levels 

Western Blot, ELISA - Low miRNA effect on protein 

abundance 

Microarrays, RNA-Seq - High miRNA effect on mRNA expression 

CLIP-Seq/CLASH/ CLEAR-CLIP ✓ High MRE binding site sequencing 

3LIFE ✓ High High-throughput Reporter Gene 

Assay 

RPF-Seq - High Sequencing of actively translated 

transcripts 

Biotin miRNA tagging (Biotin-

Seq, Biotin-Microarrays, Biotin-

qPCR) 

- High/Low Biotin-tagged miRNA pull down 

followed by RNA-

Seq/Microarrays/qPCR 

Quantitative Proteomics - High miRNA effect on protein 

abundance 

AGO-IP/RIP-Seq - High Enriched transcripts in AGO 

immunoprecipitates 

miTRAP - High miRNA trapping by RNA baiting 

IMPACT-Seq - High Biotin-tagged miRNA pull down 

PARE/Degradome-Seq - High Cleaved mRNA targets 

LAMP - High Labeled miRNA pull-down  with 

digoxigenin 

 

1.3.2.1 AGO-CLIP-Seq experimental methodologies 

CLIP-Seq methodologies have revolutionized the study of protein-RNA interactions by 

enabling the accurate characterization of RNA binding protein (RBP) target sites on a 

transcriptome-wide scale in different species under psychological or pathological conditions. 

The inception of the first and original CLIP-Seq protocol was conceived by Ule L et al[52] in 

2003 and since then several CLIP-Seq variants have been developed. Photoactivatable 
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Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation (PAR-CLIP) and High-

throughput Sequencing of RNA Isolated by Crosslinking Immunoprecipitation (HITS-CLIP) 

variants against protein AGO are widely used methodologies for miRNA targetome 

characterization. The last decade, these experiments have been performed to map miRNA-

gene interactions on a transcriptome-wide scale for healthy or diseased cell types/tissues and 

have provided valuable insights into miRNA regulation of pathogen infections and cancer[53, 

54]. They are considered among the most powerful high-throughput methods for the 

characterization of miRNA targets. 

The experimental protocol adopted in PAR-CLIP and HITS-CLIP methodologies is 

summarized in Figure 3. In brief, the implemented steps of the procedures are mentioned 

below: 

1. Protein–RNA complexes are covalently crosslinked in live cells or tissues. 

2. Cells/tissues are lysed and treated with RNase leaving small fragments of RNA 

molecules bound with the protein of interest. 

3. Protein–RNA complexes are immunoprecipitated, and non-specific RNAs and proteins 

are removed by stringent washes.  

4. Ligation of the radioactively labeled 5’ adapter is performed, while protein-RNA 

products are attached to beads, allowing the removal of unligated 5’ adapter. 

5. The purified protein–RNA complexes are radioactively labeled and separated by SDS-

PAGE.  

6. Bound RNA is isolated either directly from SDS-PAGE gels or from nitrocellulose 

membranes following transfer by Proteinase K treatment. 

7. Eluted RNA is ligated to adapters, reverse transcribed while the resulting cDNA is 

PCR amplified and subjected to sequencing.  

8. Sequencing reads are processed and mapped to reference genomes. Computational 

steps are following for CLIP-Seq analysis. 

 

HITS-CLIP relies on UV crosslinking of protein–RNA complexes at UV 254 nm. The resulting 

library usually contains substitutions or deletions at the crosslinking site, induced by reverse 

transcriptase, facilitating the downstream analysis. 

A major difference of PAR-CLIP against HITS-CLIP protocol is the use of 4-thiouridine (4SU) 

and 6-thioguanosine (6SG) analogs that significantly enhance the efficiency of protein–RNA 

crosslinking. In PAR-CLIP experiments, cells are typically grown in the presence of 

ribonucleoside analogs for up to 16 h and UV crosslinking is achieved at UV 365 nm. This 

procedure limits the application of PAR-CLIP experiment only to cell cultures. 
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The analogs incorporation provokes T-to-C (4SU) and G-to-A (6SG) substitutions at the 

crosslinking site during cDNA synthesis, an incident that allows the accurate mapping of 

protein RNA targets.   

 

Figure 3: Overview of AGO-HITS-CLIP (left) and AGO-PAR-CLIP (right) protocols. This figure has been 

designed for the purpose of this dissertation. 

Recently, modified protocols of AGO-CLIP-Seq methodologies have been introduced, such as 

CLEAR-CLIP[35] and CLASH[51], that incorporate extra ligation steps which link miRNA 
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molecules with their respective target binding site. This step facilitates the computational 

analysis and characterizes more accurate miRNA binding regions. The ligation step is 

following after the crosslinking and the AGO-IP process, and is induced by treatment with T4 

RNA Ligase I (Figure 4). In the case of CLEAR-CLIP experiment the RNA treatment with 

RNA Ligase yields miRNA–target chimeric RNAs in two orientations (5’ and 3’ ends). 

 

Figure 4: Overview of CLASH experiment. This figure has been designed for the purpose of this dissertation. 

1.4 AGO-PAR-CLIP guided implementations 

During the past few years, computational methods devoted to AGO-PAR-CLIP data analysis 

have been elaborated making the complex analysis of these datasets accessible to a broader 

community. They employ different mathematical models and feature sets and they depend 

strongly upon the induced T-to-C conversions to pinpoint miRNA binding sites, following 

the analysis performed in the seminal paper of Hafner et al[11]. Current models cannot be 

readily used on sequencing data, since they require extra pre-processing steps and the 

creation of non-standard file types. 

A concise description of the most widely used methodologies is reviewed below:  
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MIRZA[55]: MIRZA is one of the first computational approaches devoted to the analysis of 

AGO-CLIP-Seq datasets. The implementation introduces a biophysical model for the 

identification of miRNA targets, leaving behind the conventional miRNA seed-based 

approaches. The model incorporates 27 energy parameters, inferred from AGO-CLIP-Seq 

data, combined with characteristics associated with base pairs, loops and specific miRNA 

positions. More precisely, miRNA binding positions 2-7 (seed region), 13-16 and 18-19 show 

the highest energy contribution, contrary to position 9 which is usually disfavored as is 

opening a loop. The model characterizes seed-based miRNA binding sites with perfect or 

partial complementarity. The algorithm utilizes a simulated annealing approach for 

parameters optimization. It is trained on 2,988 cross-linked regions, derived from 4 AGO-

CLIP-Seq datasets[34] and evaluated against 36 microarray experiments after miRNA 

transfection. The model necessitates extra pre-processing steps by the user to run. It requires 

30-51nt long AGO bound fragments and discards miRNA sequences shorter than 21nt. 

microMUMMIE[56]: microMUMMIE is another state-of-the-art approach, that pioneered in 

the analysis of AGO-PAR-CLIP datasets.  The algorithm is based on a six-state Hidden 

Markov Model for characterizing the background, the AGO-bound clusters and their flanking 

regions. The shape of PAR-CLIP has been modeled in a six-state topology, in which state 5 

expands into a 41-state submodel for the detection of different types of miRNA seed pairing.  

Its core algorithm solely processes T-to-C enriched clusters determined by PARalyzer[57] and 

recognizes miRNA binding sites with (im)perfect seed complementarity. Evolutionary 

conservation, sequence composition and location of the miRNA binding site within the AGO-

bound region are deemed decisive for this model. Evaluation of the prediction accuracy of the 

model was performed via the signal-to-noise ratio (SNR), computed by comparing shuffled 

and non-shuffled sites among a set of predictions. The algorithm was trained and evaluated 

on AGO-PAR-CLIP data, performed on EBV infected lymphoblastoid and HEK293 cell lines. 

PARma[58]: PARma is a leading AGO-PAR-CLIP guided approach which provides canonical 

miRNA seed family interactions by processing significantly overrepresented kmers. The 

model adopts an iterative procedure. It identifies statistically overrepresented kmers in AGO-

bound regions and all the incorporated parameters, such as seed activity probabilities, are 

iteratively refined until convergence. Decisive features for miRNA-targets detection are the 

observed positions of the T-to-C conversions and the RNase T1 cleavage sites upstream and 

downstream of the seed region.  PARma characterizes the most probable miRNA seed in an 

AGO enriched cluster (MAscore), accompanied with a cluster score (Cscore). The Cscore 

describes the probability that a cluster is indeed a miRNA-AGO bound region, while the 

MAscore reflects the efficacy of the miRNA regulator. The model is fitted with an EM 

algorithm.  The algorithm has been trained on AGO-PAR-CLIP experiments performed on B-

cells. It is evaluated on DG75 cells, as well as on virus infected cell types, such as BCBL1, a 
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Kaposi's sarcoma-associated herpesvirus (KSHV) infected cell line and on EBV infected cells. 

1.5 Databases indexing miRNA-gene interactions 

The emergence of databases devoted to the cataloguing of miRNA-gene interactions has 

played a pivotal role in the miRNA research field.  

miRTarBase[59] constitutes an extensive repository, integrating 422,517 miRNA targets, 

supported from low-/high-throughput experiments for several species, collected from ~8,500 

publications. It provides information regarding the miRNA, the targeted gene, the binding 

site location, as well as miRNA/mRNA profiles retrieved from the Cancer Genome Atlas 

(TCGA)[60].  

miRecords[32] and miR2Disease[61] are smaller and not consistently updated repositories. 

They contain approximately 3,000 validated interactions from low-yield techniques, while the 

latter hosts manually curated miRNA targets combined with information for miRNA 

deregulation in human diseases.  

Other repositories, such as StarBase[62] and CLIPZ[63], substantially differ in their scope, as 

they provide RNA binding protein (RBP) regions from different CLIP-Seq datasets.  

DIANA-TarBase v8.0[64] is an extensive repository with approximately one million miRNA-

gene entries corresponding to ~670,000 unique experimentally supported miRNA-gene 

interactions. This collection of targets, supported by more than 33 experimental 

methodologies, applied to ~600 cell types/tissues under ~451 experimental conditions. 

TarBase was initially released in 2006, constituting the first database to catalog experimentally 

validated miRNA interactions and since then it is constantly updated. The current version has 

been enhanced with a large compilation of high quality miRNA-binding events derived from 

chimeric fragments, reporter gene assay and CLIP-Seq experiments. More than 200 high-

throughput experiments followed by perturbation of a specific miRNA have been analyzed 

and integrated in the database. This extension provides an increase of approximately 200,000 

interactions and ~300,000 entries since the previous version[50].  

1.6 Pattern recognition and Machine Learning in Bioinformatics 

Over the past two decades, the dramatic evolution of experimental methodologies has 

dropped the cost and increased the throughput of the results exponentially. The vast 

production of data has likely been the most important factor underlying the accelerated 

growth of bioinformatics, a field dedicated to the analysis of data and the development of 

computational tools indispensable for handling, manipulating and interpreting the results.  

Data-driven approaches are gaining ground over the traditional methods, mainly utilized to 

test pre-defined hypotheses in a biological phenomenon. In most cases, in spite of the 

availability of data, a theoretical model, able to study the phenomenon is missing. Thus, the 
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bioinformatic challenge is to build and generalize predictive models, suited to solve 

biological problems. 

Pattern recognition, in a more engineering-based approach, handles data modeling and 

algorithms development to effectively solve problems, by using a set of instances, represented 

by a number of characteristics. These problems are separated into supervised and 

unsupervised issues and incorporate clustering, classification and dimensionality reduction 

tasks. Pattern recognition is closely related to machine learning however, the latter constitutes 

only a part of the first. Supervised machine learning approaches are mainly trained based on 

characteristics derived from positive and negative instances (training data), under the 

purpose to effectively characterize a novel set of unknown instances.  Unsupervised learning 

on the other hand, is applied in cases where no positive/negative data are available and 

unknown patterns have to be discovered. According to  Bishop et al[65], “the field of pattern 

recognition is concerned with the automatic discovery of regularities in data through the use of 

computer algorithms and with the use of these regularities to take actions such as classifying the data 

into different categories”.  

The following section focuses on machine learning supervised classification approaches 

applied to ncRNA-related studies and discusses in detail the function of the algorithms.   

1.6.1 Probabilistic classifiers 

Probabilistic classifiers[66] are among the most popular classifiers used in the machine 

learning community and appear in a wide range of applications. These classifiers are derived 

from generative probability models that cover the original space or more involved spaces and 

are assigned to the study of complex statistical classification domains such as natural 

language and visual processing. A probabilistic classifier is able to predict and classify 

unknown observations by considering a set of characteristics. Notably, unlike other 

algorithms, it does not simply detect the “best” classification option but also assigns a 

probability under which the instance is being described by the label. Probabilistic classifiers 

provide classification that can also be utilized in ensemble learners that are discussed later in 

this section. 

1.6.2 Feature Extraction and Selection 

Descriptors are extracted from a positive and negative set of observations (training set) and 

are responsible for the training and the performance of the building models. The optimal 

selection of features, covering the complexity of the problem, is considered fundamental in a 

classification procedure. Transformation techniques are usually applied to descriptors with 

respect to the type of the latter (continuous, nominal, dichotomous, ordinal), prior to a 

machine learning algorithm in order to achieve the optimal model performance. The most 

common techniques are the (a) transformation of the categorical features in numerical, (b) 

Institutional Repository - Library & Information Centre - University of Thessaly
11/07/2024 07:57:03 EEST - 3.145.41.45



  

50 

scaling or normalizing features within a specific range, e.g. 0-1 and (c) dimensionality 

reduction. The latter can be achieved with the Principal Components Analysis (PCA)[67] 

which attempts to reduce a large dimensionality feature vector into a smaller dimensionality 

vector that encodes less redundancy and can be more efficiently interpreted. Another 

transformation method usually used for categorical features is the One Hot Encoding 

technique. The transformation actual takes one column with x categories (x>2) and converts it 

into x columns, where each one represents one category in the original column. Notably, 

several of the classification models mentioned below, such as Neural Networks and Support 

Vector Machines, also transform features internally.  

Feature selection methods differentiate from the aforementioned techniques as they are 

applied to privilege the most optimal subset of the original feature set[68]. The selection of the 

optimal subset of descriptors not only accelerates the training process but also improves the 

accuracy of the model and reduces overfitting. A brief description of various feature selection 

techniques is presented below.  

Filtering methods: Statistical tests such as Pearson’s Correlation, Linear discriminant 

analysis, Wilcoxon’s exact test etc., investigating the in-between correlations of features, as 

well as their equivalence with the outcome variable, are mainly used in this phase of the 

modeling procedure. Additionally, tests estimating the predictive accuracy of descriptors 

(ROC, AUC) are utilized for feature evaluation and ranking. However, these methods 

evaluate the behavior of features in one dimension, ignoring their in-between associations in 

the multidimensional space. 

Wrapper methods: Wrapper methods use subsets of features and train the model to retain 

only descriptors that provide the best performance. The sequential training processes make 

these methods computationally very expensive. Some of the main wrapper methods are the 

forward feature selection, the backward, and the recursive feature elimination.  In forward 

feature selection, descriptors are added iteratively until the addition of a new parameter does 

not improve the model’s performance. The backward feature elimination is the exact opposite 

procedure; starting from the initial set of features, a descriptor is detached until no 

improvement is observed by removal of another feature. The recursive feature elimination is 

a greedy procedure aiming to rank features based on their performance. The best and worst 

performing descriptors are retained in each iteration process until the exhaustion of all 

features. A great disadvantage of these methods is that by using the selected subset of 

features, the model becomes more prone to overfitting.  

Embedded methods: Embedded methods combine the advantages of the aforementioned 

categories and are usually implemented by algorithms that internally incorporate their own 

feature selection methods, performed simultaneously with classification. The most popular 
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examples are LASSO and RIDGE regression which include penalization functions to reduce 

overfitting. LASSO regression preforms L1 regularization which adds a penalty equivalent to 

the absolute value of the dimension of coefficients, while RIDGE regression performs L2 

regularization which adds a penalty equivalent to the square of the dimension of coefficients.  

1.6.3 Machine Learning Algorithms 

1.6.3.1 Generalized Linear Models 

The generalized linear models (GLMs) are primary introduced by Nelder and Wedderburn in 

1972130 and are considered as an extension of the linear regression model to variables that are 

not normally distributed.  The idea was conceived in order to unify other statistical models 

including linear regression, logistic regression and Poisson regression. In a generalized linear 

model the response variable is modelled by a linear predictor of explanatory variables (1) 

followed by a link (Error! Reference source not found.Error! Reference source not found.) 

and a variance (Error! Reference source not found.Error! Reference source not found.) 

function. The link function describes the dependency of the mean against the linear predictor 

and the variance associates variance with the mean. In contrast to the simple linear model, 

“general” refers to the dependence on potentially more than one explanatory variable and to 

an included error term which is independent and identically distributed.   

                           (1) 

                    (2) 

                            (3) 

The response variable is assumed to be generated from a particular distribution in the 

exponential family including the normal, binomial, Poisson and gamma distributions. The 

explanatory variables β are typically estimated with maximum likelihood or Bayesian 

techniques.  

The GLM models presume that the incorporated descriptors should be uncorrelated. 

Extensions of the methodology, such as Generalized estimating equations (GEEs) and 

Generalized Linear Mixed Models (GLMMs) permit in-between parameter associations.  

1.6.3.2 Naïve Bayes classifier 

Naïve Bayes classifier is a probabilistic machine learning model, ideal for classification 

tasks[69]. It is based on the Bayesian theorem in which the final predictions are displayed by 

combining prior and likelihood probabilities to form and maximize the probabilities of a class 

occurrence for a set of features, known as posterior probabilities. The main assumptions, 

adopted by the classifier, are that the input descriptors are independent and they have an 
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equal effect on the outcome. Naïve Bayes classifier was introduced in 1960s and since then 

several extensions of the algorithm have been developed. Some of the dominant types are the 

Multinomial Naïve Bayes, which is mostly utilized in document classification problems, the 

Bernoulli Naïve Bayes, which is quite similar with the former type, with the difference that 

the predictors are boolean variables and the Gaussian Naïve Bayes, which is ideal in cases of 

continuous descriptors that follow a Gaussian distribution.  

Naïve Bayes classifier, despite its simplicity, is still a popular baseline method mostly used in 

sentiment analysis, spam filtering, recommendation systems, bioinformatics, medical 

diagnosis etc. It is fast and easy to implement as it necessitates only a small number of 

training data. However, the worst drawback is the requirement of predictors to be 

independent, something practically impossible in most real cases. 

1.6.3.3 Support Vector Machines 

Support Vector Machines (SVMs) are supervised learning models widely used both in 

classification and regression analysis. They were initially introduced by Vapnik in 1963[70] 

and belong to the frontline in the machine learning field due to their high accuracy within a 

low computational cost. The purpose of this algorithm is to define a hyperplane in N-

dimensional space (N is the number of descriptors) that distinctly classifies the data points. 

The optimal hyperplane acquires the maximum margin i.e. the maximum distance between 

the data points of both classes (Figure 5), in order to confidently classify future unknown data 

points and reduce generalization error. Hyperplanes act as decision boundaries for the 

classification of new data, i.e. each side represents the different classes. Also, the dimension of 

the hyperplane is associated with the number of features. Support vectors are the data points 

that define hyperplane’s limits. SVMs perform a non-linear classification and define their 

inputs into high-dimensional feature space in terms of a kernel function k(x,y).  

Many extensions of the original SVMs have been proposed providing different options such 

as Support-Vector Clustering (SVC) ideal for unsupervised learning,  Transductive Support-

Vector Machines adopted in semi-supervised learning, multiclass SVM, Bayesian SVM etc.   
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Figure 5: Representation of possible hyperplanes (left) and the optimal hyperplane (right) in a SVM 

classification scheme. This figure has been designed for the purpose of this dissertation. 

1.6.3.4 Decision Trees 

Decision Trees is a widely used machine learning algorithm, ideal for classification and 

regression problems. The classification scheme of the algorithm imitates human thinking and 

logic with a tree-like approach. A decision tree incorporates nodes assigned to each feature, 

links representing a decision rule and leafs attributed to a categorical or continuous outcome. 

The modeling of the tree presumes the optimal selection of features and conditions in each 

step, followed by its trimming to avoid overfitting. Recursive binary splitting strategy is 

usually adopted where all the features are considered and different split strategies are tried 

and evaluated to minimize the cost. A large number of features can lead to complex trees and 

unavoidable to overfitting. Therefore, parameters indicating the minimum number of utilized 

training inputs on each leaf or the maximum depth of the model, i.e. the longest path from a 

root to a leaf, should be considered. Pruning is a subsequent method that can be utilized to 

remove features (nodes/branches) with low importance with the purpose to reduce tree 

complexity.  

The most commonly used decision trees are CART and ID3[71]. Decision trees are simple and 

can be easily interpreted. They handle both numerical and categorical data, are not affected 

by non-linear associations between descriptors and perform internally feature selection. 

Therefore, the data preparation process is eliminated. However, the use of this algorithm also 

demonstrates several drawbacks. The incorporation of high-dimensional data may lead to 

over-complex trees and to overfitting. Decision trees are very unstable – small variations in 
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the data may generate a totally different outcome. Also, if some classes dominate, the model 

becomes biased.    

1.6.3.5 Random Forest 

Random Forest (RF) is introduced by Ho in 1995[72] and evolved by Breiman[73] and Culter 

in 2001, as an ensemble learning method that constructs and combines a multitude of decision 

trees (bagging) at training time. “Bagging” is coupled with the random selection of features to 

control variance (Figure 6). It is one of the most widely used machine learning approaches 

which can be applied on several tasks including classification and regression. The Random 

Forest model displays high performance even with its default parameters and as an upgrade 

to the conventional decision trees it avoids overfitting.  

The Random Forest algorithm displays the general techniques of bagging/bootstrap 

aggregating. On each round, a random sample of the training set is selected with replacement 

and trees are subsequently constructed. After the training process, the unseen samples are 

predicted and scored by considering the majority vote of the individual trees (classification) 

or by averaging their predictions (regression). This procedure controls the variance without 

increasing the bias. The bagging process is complemented with the selection of a random 

subset of features at each candidate split, in order to avoid the correlation among the 

resulting trees. The adopted hyperparameters are nearly the same as in a decision tree or a 

bagging classifier. 

Random forest can also measure the relative importance of features internally. The estimate is 

conducted by evaluating the range of noise redundancy across all trees, achieved by each 

node-descriptor. The main limitation of the algorithm is the run-time performance in case of 

high-dimensional data processing.  
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Figure 6: Random Forest representation with two trees. This figure has been designed for the purpose of this 

dissertation. 

1.6.3.6  Deep Learning methods 

Deep Learning methods[74], also known as deep neural networks, are state-of-the-art 
algorithms that are widely used in supervised, semi-supervised and unsupervised tasks. 
They are inspired by the human brain to interpret sensory numerical data under a machine 
perception system.  Deep Learning as a “universal approximator” can easily define 
associations between inputs and outputs in classification, clustering and regression analysis. 
Walter Pitts and Warren McCulloch were the first who introduced a computational model 
based on neural networks of the human brain in 1943. Since then, Deep Learning is constantly 
evolving. 
Deep learning is composed of several layers, while each one displays several nodes. A node 
combines input data with a set of coefficients/weights that either amplify or scale down these 
input parameters. The weighted input data are summed and non-linearly processed by an 
activation function to determine nodes impact throughout the whole network and decide 
their activation or not. The activation functions are usually s-shaped functions, such as 
sigmoid, tanh, hard tanh etc. Deep Learning also utilizes a gradient descent optimization 
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function in order to adjust the weights according to the error they provoke. A diagram of a 
node representation is displayed in Figure 7. 
 

 

Figure 7: Representation of a node in a Deep Learning scheme. This figure has been designed for the purpose 

of this dissertation. 

Deep neural networks are characterized by their depth, which indicates the number of node 
layers (hidden layers) though which data are processed. The first neural networks consisted 
one hidden layer apart from the input and output. More than one hidden layers mark the 
“deep” learning condition, where each layer’s output is the input of the subsequent hidden 
layer. A representation of deep learning architecture is presented below. 

 

 
Figure 8: Deep Learning architecture. This figure has been designed for the purpose of this dissertation. 
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The ability to aggregate and recombine features successfully constitutes Deep Learning 
methods ideal for high-dimensional data manipulation. Notably, these algorithms perform 
automatic feature extraction without the user’s intervention, unlike most of the traditional 
machine learning techniques. Overfitting can be avoided by applying regularization methods, 
such as weight decay (L1 regularization) or sparsity (L2 regularization), as well as dropout 
regularization that randomly omits units from the hidden layers during training.   
Deep Learning methods have been applied in a multitude of different fields such as computer 
vision, natural language processing, audio recognition, social network filtering, 
bioinformatics, drug design, medical image analysis and demonstrate high accuracy by 
producing results comparable to human experts.  

1.6.3.7 Ensemble learning algorithms 

In machine learning, Ensemble learning algorithms combine multiple models to achieve 

better predictive performance than any individual classifier. A machine learning ensemble 

classifier is composed of a concrete finite set of alternative models that can be combined in a 

flexible structure. Not only slow algorithms may benefit from ensemble techniques but also 

fast algorithms such as decision trees are commonly utilized in ensemble methods e.g. 

Random Forests. Ensemble learning is separated into 4 main categories: boosting, bootstrap 

aggregating/bagging, ensemble averaging, mixture of experts. Boosting is an ensemble meta-

algorithm, mainly utilized for bias and variance redundancy, able to convert weak learners to 

strong ones. Bootstrap aggregating or bagging is specifically designed to improve stability 

and accuracy, as well as to evade overfitting. As discussed in the aforementioned sections, 

bagging is specifically utilized in decision tree methods. Ensemble averaging is particularly 

adopted in neural networks where different models are generated and combined. The final 

model displays the best performance because the various errors of the models are averaged 

out. In the final category “mixture of experts”, multiple experts (learners) divide the problem 

space into homogeneous regions. Therefore, the model decides which experts/learners are 

utilized in the different input regions.  

1.6.3.8 Gradient Boosting 

Gradient Boosting algorithm (GBM) is an ensemble machine learning boosting approach that 

combines weak models in a stage-wise fashion, typically decision trees, and generalizes them 

by optimizing a loss function. It is used both in regression and classification problems. It was 

initially introduced by Breiman[75] while the more recent form of the model was developed 

by Bartlett and Frean[76], who presented an iterative gradient descent algorithm.  

In contrast to the bagging ensemble methods, gradient boosting is generating trees gradually, 

additively and sequentially, i.e. each decision tree is a fit on a modified version of the original 

dataset, emerged after the evaluation of the former tree. Final predictions are the weighted 

sum of the predictions that were displayed by the previous trees. The algorithm defines the 

shortcomings of each learner/decision tree by utilizing gradients in the loss function.  
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One of the commonly used regularization techniques to control overfitting is the number of 

gradient boosting iterations attributed to the number of trees. An optimal value of iterations 

is often privileged by monitoring prediction error on a separate validation dataset. 

Several variants of Gradient Boosting have been developed that are widely used in a 

multitude of scientific fields. 
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CHAPTER 2 

Methods 
 

This section provides an overview of the implemented computational approaches for the 

accurate characterization of miRNA-mRNA interactions and their indexing in a 

comprehensive repository. The applied methods are summarized below: 

 

1. Methods for the development of DIANA-TarBase v8.0[64], a database dedicated to the 

cataloguing of experimentally supported miRNA-mRNA pairs.  

2. Implementation of microCLIP[17], a novel Super Learning Algorithm for the analysis 

of AGO-CLIP-Seq data.  

3. Implementation of microT, a Next Generation de novo framework for the detection of 

miRNA-target pairs. 

2.1 Methods for the development of the DIANA-TarBase v8.0 repository 

DIANA-TarBase[64] is a database devoted to the indexing of experimentally supported 

miRNA targets. One of the major aims of this thesis was to extensively study and characterize 

miRNA targets. To this end, the 8th version of TarBase has been developed providing more 

than a million of entries. It integrates information on cell-type specific miRNA-gene 

regulation and hundreds of thousands of miRNA binding locations are reported. The 

repository enables users to extract miRNA interactions derived from 33 experimental 

methodologies, applied to 603 distinct cell types/tissues under 88 experimental conditions. Α 

completely redesigned intuitive interface is also introduced, constituting a user-friendly 

application with flexible options to different queries. 

2.1.1 Collected Data 

In DIANA-TarBase v8.0 approximately 419 publications have been manually curated and 

added, while more than 245 high-throughput datasets harboring (in-)direct interactions have 

been collected and analyzed.  Emphasis was placed on extracting extensive meta-data to 

accompany indexed entries. Each miRNA-target interaction is coupled with information 

regarding the relevant publications and methodologies, tissues, cell types as well as the 

positive or negative type of regulation. In the case of direct techniques, the exact miRNA 

binding locations have been archived and complementary information of the cloning primers 

and the targeted regulatory regions on the transcripts (e.g. 3’ UTR, CDS) are included. 

Interactions supported from high-throughput experiments, have been extracted either from 

relevant publications or from the analysis of raw libraries retrieved from GEO[77] and 

DDBJ[78] repositories. Descriptions regarding the experimental procedures/conditions are 

also available to the users. 
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2.1.2 Analysis of high-throughput datasets incorporated in DIANA-TarBase v8.0 

High-throughput experiments were analyzed to retrieve gene expression alterations upon 

specific miRNA treatment. Raw microarray datasets have been processed with a standardized 

in silico pipeline developed in R[79]. In Affymetrix arrays, Robust Multi-Array Average 

(RMA) from Bioconductor packages affy[80] or oligo[81] was utilized to perform probe set 

summarization. Agilent and Illumina microarray data sets were background corrected using 

normexp method and quantile normalization[82]. Probe sets were mapped to Ensembl gene 

IDs[83] utilizing chip-specific Bioconductor R packages[84]. Differential expression was 

assessed with limma[82], using moderated t-statistics and adjusting the associated p-values 

with Benjamini-Hochberg method to control the false discovery rate. The log2 fold change 

values of probe sets mapped on the same gene were averaged to calculate its expression 

alteration. Positive and negative interactions from each set were inferred using a ±0.5 log2 

fold change threshold, according to the perturbation type.  

Processed RPF-Seq, RNA-Seq and RIP-Seq libraries, submitted to specific miRNA treatment 

were collected from the respective publications. Positive/negative miRNA interactions were 

formed from genes presenting >10 RPKM and >50% expression change.  

2.1.3 Analysis of AGO-CLIP-Seq datasets incorporated in DIANA-TarBase v8.0 

The CLIP-Seq analysis has been performed using an in-house developed pipeline. Regions 

formed by at least five overlapping reads were included to the analysis. For PAR-CLIP data, 

peaks containing adequate T-to-C (sense strand) or A-to-G (antisense strand) incorporation 

were selected. At least two transitions in the same position for peaks with less than 50 reads 

were required, while for the remaining regions a threshold of >5% was applied, as indicated 

by Hafner et al.[11]. For all CLIP-Seq data sets having replicates, a peak had to be present in at 

least two replicates in order to be considered as valid. Where available, top expressed 

miRNAs were retrieved from the original publication. In all other instances, publicly 

available small-RNA-Seq libraries derived from the relevant cell lines were analyzed. The 

adopted pipeline for the pre-processing of the AGO-PAR-CLIP libraries and the analysis of 

the sRNA-Seq datasets is described in detail in section Methods 2.2.2.   

miRNA:gene interactions were inferred using a modified a version of microT-CDS 

algorithm[85] which considers decisive features for the accurate MRE characterization such as 

the miRNA:mRNA binding type, binding free energy, MRE conservation and AU flanking 

content. In cases where replicates were available, an interaction had to be present in at least 

two replicates, in order to be included to the database. Figure 9 depicts the adopted pipeline 

for the analysis of the AGO-CLIP-Seq libraries. The snapshot has been retrieved from the 

IGV[86] Genome Browser. 
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Figure 9: Snapshot from the IGV Genome Browser depicting the adopted pipeline for the analysis of the 

AGO-CLIP-Seq libraries. Raw CLIP-Seq reads are initially aligned into the reference genome. Regions 

enriched in AGO are formed by overlapping reads. AGO-CLIP clusters are annotated in a comprehensive set 

of transcripts. MRE identification is subsequently applied to the annotated peaks. The illustrated peaks are 

derived from 1 AGO-PAR-CLIP library on HEK293 cells. The brown-and-green vertical lines represent T-to-

C transition sites while MREs are detected by microT-CDS algorithm.  This figure has been designed for the 

purpose of this dissertation. 

2.1.4 Database interface development 

A new relational schema was designed to host TarBase v8.0 data (Figure 10). Indices were 

created to guarantee the efficient execution of the system and foreign keys were added to 

avoid integrity violations in the data. PostgreSQL was utilized to implement the hosting 

database. The web interface of TarBase was designed around the new database schema and 

effort was put into making it adaptable to a wide variety of screen formats and devices (PCs, 

tablets, smartphones, etc.). The interface was developed using the Yii 2.0 PHP framework. 

The interactive charts were implemented using the D3.js JavaScript library.  

Institutional Repository - Library & Information Centre - University of Thessaly
11/07/2024 07:57:03 EEST - 3.145.41.45



  

62 

 

Figure 10: TarBase database schema. This figure has been designed for the purpose of this dissertation. 

2.2 Implementation of microCLIP, a novel Super Learning Algorithm for the analysis of 

AGO-CLIP-Seq data 

One of the aims of the current thesis was to revisit, identify and address current obstacles in 

AGO-CLIP-Seq analysis, in order to enable the accurate determination of experimentally 

supported functional miRNA targets. To this end, microCLIP[17] was developed, an in silico 

framework for CLIP-guided identification of miRNA interactions. microCLIP incorporates 

novel aspects in PAR-CLIP analysis and increases the experiment’s scope and robustness. 

Computational approaches for AGO-CLIP-Seq data analysis incorporate machine learning 

techniques and thus rely heavily on training/validation dataset selection. Therefore, an 

extensive experimental collection of miRNA interactions was created in order to boost the 

proper optimization of microCLIP algorithm and its exposure to the actual search space 

complexity. The most remarkable finding was that clusters depleted on T-to-C conversions, 

which are always filtered out in such analyses, can aid in the identification of functional 

miRNA binding events (Figure 11).  
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Figure 11: Peaks derived from 5 AGO-PAR-CLIP libraries on HEK293 cells and from 3 non-RBP background 

libraries are presented for T-to-C and non-T-to-C AGO-bound regions. The red-and-blue vertical lines 

represent T-to-C transition sites. Both types of AGO-enriched clusters are clearly distinguished from 

background signal. Chimeric miRNA-target fragments overlap with (non-)T-to-C peaks providing direct 

validation for specific miRNA-target pairs (hsa-miR-19a-3p–Ran and hsa-miR-103a-3p–Rps14). microCLIP 

identifies the aforementioned interactions as a 7-mer (chr12:131,361,200–131,361,400, Ran gene 3’ UTR) and an 

8-mer with a 3’ compensatory site (chr5:149,826,350–149,826,550, Rps14 gene CDS) respectively. The 3D 

depictions of AGO2 were based in the PDB structure 5JS1 (Paraskevopoulou MD and Karagkouni D et al, 

2018)[17]. 

microCLIP provides a robust pipeline for the analysis of all AGO-enriched regions. It 

encompasses an approach based on a super learning scheme and employs combinations of 

deep learning, random forest and gradient boosting classifiers. The super learner approach 

was introduced by van der Laan et al. in 2007 and has been shown to be an asymptotically 

optimal system for machine learning[87]. By using multiple combinations of classifiers, super 

learning outperforms a single prediction model.  

2.2.1 Dataset collection 

microCLIP was trained and evaluated against an extensive set of interactions from hundreds 

of miRNA specific low/high-throughput experiments across ~50 different cell types. A high 

quality set, composed of direct miRNA binding events retrieved from Reporter Gene Assays 

and chimeric miRNA-target fragments[28, 29, 50, 88, 89], was incorporated in the algorithm’s 

development and evaluation process (Figure 12). 
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Figure 12: Dataset collection and methodology for positive and negative MRE identification. More than 6,000 

interactions were retrieved from direct techniques and miRNA-target chimeric fragments. Numerous high-

throughput experimental data following specific miRNA perturbations enabled the identification of AGO 

bound or differentially transcribed/translated genes harboring functional binding sites. In order to resolve 

the exact miRNA binding sites, positive and negative instances were coupled with signal from 24 AGO-PAR-

CLIP libraries. The negative set was enhanced by incorporating background CLIP-Seq clusters. sRNA-Seq 

datasets were included to determine expressed miRNAs and accurately extract positive/negative MREs. This 

dataset collection was processed to form the training/test sets of microCLIP deployment (Paraskevopoulou 

MD and Karagkouni D et al, 2018)[17]. 

6,724 high confidence MREs were retrieved from direct experiments, including reporter gene 

assay techniques indexed in DIANA-TarBase repository[50, 89], miRNA-chimeras from 

CLASH[29] and CLEAR-CLIP[88] experiments, as well as additional miRNA-target chimeric 

fragments derived from a previous meta-analysis of published AGO-CLIP datasets[28]. In 

order to quantify miRNA-induced mRNA expression changes and to identify functional 

binding sites, 101 miRNA perturbation experiments were analyzed (89 microarray and 12 

RNA-Seq experiments, Table 4, Table 5). This process enabled the formation of approximately 

3,900 and 4,000 positive and negative miRNA-target pairs respectively. A set of 5 ribosome 

profiling sequencing (RPF-Seq) libraries after miRNA overexpression, capturing differentially 

ribosome-bound transcripts, and 6 pSILAC (quantitative proteomics) experiments were an 

additional source for detecting more than 5,900 miRNA effects at protein expression level 
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(Table 4). The inclusion of AGO-IP and biotin pull-down high-throughput experiments upon 

specific miRNA perturbation yielded approximately 2,600 miRNA binding events (Table 4). 

The aforementioned miRNA perturbation experiments enabled the detection of deregulated 

targets without specifying the exact binding sites[50]. miRNA-targeted regions were extracted 

from AGO-bound enriched regions present in at least 1 of 24 AGO-PAR-CLIP sequencing 

libraries (Table 6).Published background PAR-CLIP libraries[90], stably expressing a 

commonly utilized non-RBP control (FLAG-GFP), were incorporated in our pipeline to 

identify non-specific AGO-bound transcripts and deduce more than 24,000 negative miRNA 

binding sites. A compendium of 96 AGO-CLIP-Seq experiments was derived from DIANA-

TarBase and used to further select background-derived MREs displaying no overlap with 

AGO-enriched regions. 

Table 4: Summary of the collected experiments in human species upon specific miRNA deregulation. The 

datasets were utilized to extract independent training and test sets of positive and negative MRE regions for 

microCLIP deployment. 

Accession Repository Authors Experiment Cell Type miRNA miRNA 
treatment 

Post-
Transfection 
Cell Harvest 
Time/Experi
mental 
Condition 

GSE27718 ncbi.nlm.nih.gov/
geo 

Gaziel-Sovran et 
al. 

microarrays 113/6-4L, 
131/4-5B1 

hsa-miR-30d-5p Overexpression 60h 

GSE58004 ncbi.nlm.nih.gov/
geo 

Kiga et al. microarrays AGS hsa-miR-210-3p Overexpression 36h 

GSE38956 ncbi.nlm.nih.gov/
geo 

Ramachandran 
et al. 

microarrays CALU3 hsa-miR-138-5p Overexpression 48h 

GSE12400 ncbi.nlm.nih.gov/
geo 

Sander et al. microarrays CCL86, 
CRL1432 

hsa-miR-26a-5p Overexpression 72h 

GSE51053 ncbi.nlm.nih.gov/
geo 

Kristensen et al. microarrays DU145 hsa-miR-452-5p Overexpression 48h 

GSE42823 ncbi.nlm.nih.gov/
geo 

Nelson et al. microarrays H4 hsa-miR-103a-3p Overexpression 48h 

GSE42823 ncbi.nlm.nih.gov/
geo 

Nelson et al. microarrays H4 hsa-miR-107 Overexpression 48h 

GSE42823 ncbi.nlm.nih.gov/
geo 

Nelson et al. microarrays H4 hsa-miR-15b-3p Overexpression 48h 

GSE42823 ncbi.nlm.nih.gov/
geo 

Nelson et al. microarrays H4 hsa-miR-16-5p Overexpression 48h 

GSE42823 ncbi.nlm.nih.gov/
geo 

Nelson et al. microarrays H4 hsa-miR-195-5p Overexpression 48h 

GSE42823 ncbi.nlm.nih.gov/
geo 

Nelson et al. microarrays H4 hsa-miR-320b Overexpression 48h 

GSE22790 ncbi.nlm.nih.gov/
geo 

Elyakim et al. microarrays HEPG2 hsa-miR-191-5p Anti-miR NA 

GSE6207 ncbi.nlm.nih.gov/
geo 

Wang et al. microarrays HEPG2 hsa-miR-124-3p Overexpression 4h, 8h, 16h, 
24h, 32h, 72h 
, 120h 

GSE56973 ncbi.nlm.nih.gov/
geo 

Hill et al. microarrays HEY hsa-miR-429 Overexpression 48h 

GSE23392 ncbi.nlm.nih.gov/
geo 

Shahab et al. microarrays HEY hsa-miR-128-3p Overexpression 48h 
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GSE23392 ncbi.nlm.nih.gov/
geo 

Shahab et al. microarrays HEY hsa-miR-7-5p Overexpression 48h 

GSE41737 ncbi.nlm.nih.gov/
geo 

Shirasaki et al. microarrays HUH7.5 hsa-miR-27a-3p Anti-miR, 
Overexpression 

NA 

GSE16962 ncbi.nlm.nih.gov/
geo 

Fasanaro et al. microarrays HUVEC hsa-miR-210-3p Anti-miR, 
Overexpression 

24h 

GSE18651 ncbi.nlm.nih.gov/
geo 

Cushing et al. microarrays IMR90 hsa-miR-29a-3p Knockdown 48h 

GSE16674 ncbi.nlm.nih.gov/
geo 

Navarro et al. microarrays K562 hsa-miR-34a-5p Overexpression 24h 

GSE17362 ncbi.nlm.nih.gov/
geo 

Boll et al. microarrays LNCAP hsa-miR-130a-3p Overexpression 24h 

GSE17362 ncbi.nlm.nih.gov/
geo 

Boll et al. microarrays LNCAP hsa-miR-203a-3p Overexpression 24h 

GSE17362 ncbi.nlm.nih.gov/
geo 

Boll et al. microarrays LNCAP hsa-miR-205-5p Overexpression 24h 

GSE31620 ncbi.nlm.nih.gov/
geo 

Hudson et al. microarrays LNCAP hsa-miR-1 Overexpression 24h 

GSE31620 ncbi.nlm.nih.gov/
geo 

Hudson et al. microarrays LNCAP hsa-miR-27b-3p Overexpression 24h 

GSE33538 ncbi.nlm.nih.gov/
geo 

Bossel Ben-
Moshe et al. 

microarrays MCF10A hsa-miR-20a-5p Silencing 0h, 0.5h, 1h, 
2h 

GSE33538 ncbi.nlm.nih.gov/
geo 

Bossel Ben-
Moshe et al. 

microarrays MCF10A hsa-miR-671-5p Silencing 0h, 1h, 2h 

GSE58142 ncbi.nlm.nih.gov/
geo 

Frankel et al. microarrays MCF7 hsa-miR-95a-3p Overexpression 24h 

GSE31397 ncbi.nlm.nih.gov/
geo 

Frankel et al. microarrays MCF7 hsa-miR-101-3p Overexpression 24h 

GSE19777 ncbi.nlm.nih.gov/
geo 

Rao et al. microarrays MCF7FR hsa-miR-221-3p Silencing 72h 

GSE58004 ncbi.nlm.nih.gov/
geo 

Kiga et al. microarrays MKN45 hsa-miR-210-3p Overexpression 36h 

GSE32876 ncbi.nlm.nih.gov/
geo 

Setty et al. microarrays MSK543 hsa-miR-124-3p Overexpression 24h 

GSE32876 ncbi.nlm.nih.gov/
geo 

Setty et al. microarrays MSK543 hsa-miR-132-3p Overexpression 24h 

GSE57158 ncbi.nlm.nih.gov/
geo 

Greenberg et al. microarrays PAG C81-61 hsa-miR-20a-5p Overexpression 3d 

GSE51053 ncbi.nlm.nih.gov/
geo 

Kristensen et al. microarrays PC3 hsa-miR-224-5p Overexpression 48h 

GSE51053 ncbi.nlm.nih.gov/
geo 

Kristensen et al. microarrays PC3 hsa-miR-452-5p Overexpression 48h 

GSE65892 ncbi.nlm.nih.gov/
geo 

Wagenaar et al. microarrays SKHEP1 hsa-miR-21-5p Anti-miR 16h 

GSE19693 ncbi.nlm.nih.gov/
geo 

Chen et al. microarrays U87, HS683 hsa-miR-20a-5p Overexpression NA 

GSE34846 ncbi.nlm.nih.gov/
geo 

Cao et al. microarrays HTERT-
RPE1 

hsa-miR-129-2-
3p 

Overexpression 72h 

GSE37427 ncbi.nlm.nih.gov/
geo 

Zhu et al. microarrays FLS hsa-miR-23b-3p Overexpression NA 

GSE22143 ncbi.nlm.nih.gov/
geo 

Marcet et al. microarrays HAEC hsa-miR-34a-5p Overexpression 48h 

GSE22143 ncbi.nlm.nih.gov/
geo 

Marcet et al. microarrays HAEC hsa-miR-34c-5p Overexpression 48h 

GSE22143 ncbi.nlm.nih.gov/
geo 

Marcet et al. microarrays HAEC hsa-miR-449b-
5p 

Overexpression 48h 

GSE22143 ncbi.nlm.nih.gov/
geo 

Marcet et al. microarrays HAEC hsa-miR-449a Overexpression 48h 
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GSE68424 ncbi.nlm.nih.gov/
geo 

Teplyuk et al. microarrays GBM4, 
GBM6 

hsa-miR-10b-5p Inhibition 24h 

GSE35621 ncbi.nlm.nih.gov/
geo 

Hu et al. microarrays HEK293T, 
HSF2 

hsa-miR-941 Overexpression 24h 

GSE37596 ncbi.nlm.nih.gov/
geo 

Hwang et al. microarrays HT29 hsa-miR-146a-5p Overexpression 2w after 
lentiviral 
infection 

GSE40058 ncbi.nlm.nih.gov/
geo 

Luo et al. microarrays MDA-MB-
231 

hsa-miR-200c-3p Overexpression NA 

GSE40058 ncbi.nlm.nih.gov/
geo 

Luo et al. microarrays MDA-MB-
231 

hsa-miR-205-5p Overexpression NA 

GSE7754 ncbi.nlm.nih.gov/
geo 

Chang et al. microarrays HCT116 hsa-miR-34a-5p Overexpression 2w after 
retroviral 
infection 

GSE51875 ncbi.nlm.nih.gov/
geo 

Lee et al. microarrays HCT116 hsa-miR-147a Overexpression 3d 

GSE50697 ncbi.nlm.nih.gov/
geo 

Taube et al. microarrays SUM159 hsa-miR-203a-3p Overexpression NA 

GSE35208 ncbi.nlm.nih.gov/
geo 

Lin et al. microarrays U87-2M1 hsa-miR-10b-5p Inhibition NA 

GSE14507 ncbi.nlm.nih.gov/
geo 

Webster et al. microarrays A549 hsa-miR-7-5p Overexpression 24h 

GSE21132 ncbi.nlm.nih.gov/
geo 

Li et al. microarrays Jurkat hsa-miR-146a-5p Overexpression, 
Knockdown 

48h 

GSE24824 ncbi.nlm.nih.gov/
geo 

Huynh et al. microarrays Melanoma-
metastatic 
Liver Cells 

hsa-miR-182-5p Anti-miR administered 
twice per 
week over 4 
weeks 

GSE56268 ncbi.nlm.nih.gov/
geo 

Schneider et al. microarrays P3HR1 hsa-miR-28-5p Overexpression 12h, 24h 

GSE52531 ncbi.nlm.nih.gov/
geo 

Nam et al.  HEK293 hsa-miR-155-5p Overexpression 24h 

GSE60426 ncbi.nlm.nih.gov/
geo 

Eichhorn et al. RNA-Seq HeLa hsa-miR-155-5p Overexpression 32h 

GSE60426 ncbi.nlm.nih.gov/
geo 

Eichhorn et al. RNA-Seq U2OS (total) hsa-miR-155-5p Overexpression 32h/poly(A)
-selected 
total RNA 

GSE60426 ncbi.nlm.nih.gov/
geo 

Eichhorn et al. RNA-Seq U2OS (cyto) hsa-miR-155-5p Overexpression 32h/poly(A)
-selected 
cytoplasmic 
RNA 

GSE60426 ncbi.nlm.nih.gov/
geo 

Eichhorn et al. RNA-Seq U2OS (ribo) hsa-miR-155-5p Overexpression tRNA and 
rRNA 
depleted 
RNA 

GSE37918 ncbi.nlm.nih.gov/
geo 

Pellegrino et al. RNA-Seq MDA-MB-
231 

hsa-miR-23b-3p Overexpression NA 

GSE60426 ncbi.nlm.nih.gov/
geo 

Eichhorn et al. RPF-Seq HEK293T hsa-miR-1-3p Overexpression 24h 

GSE60426 ncbi.nlm.nih.gov/
geo 

Eichhorn et al. RPF-Seq HeLa hsa-miR-155-5p Overexpression 32h 

GSE60426 ncbi.nlm.nih.gov/
geo 

Eichhorn et al. RPF-Seq U2OS hsa-miR-1-3p Overexpression 32h 

GSE60426 ncbi.nlm.nih.gov/
geo 

Eichhorn et al. RPF-Seq U2OS hsa-miR-155-5p Overexpression 32h 

GSE60426 ncbi.nlm.nih.gov/
geo 

Eichhorn et al. RPF-Seq HeLa hsa-miR-1-3p Overexpression 32h 

NA psilac.mdc- Selbach et al. pSILAC HeLa hsa-let-7b-5p Overexpression, 8h post-

Institutional Repository - Library & Information Centre - University of Thessaly
11/07/2024 07:57:03 EEST - 3.145.41.45



  

68 

berlin.de Knockdown transfection 
and 24h 
pSILAC 
labelling 

 psilac.mdc-
berlin.de 

Selbach et al. pSILAC HeLa hsa-miR-1-3p Overexpression 8h post-
transfection 
and 24h 
pSILAC 
labelling 

NA psilac.mdc-
berlin.de 

Selbach et al. pSILAC HeLa hsa-miR-16-5p Overexpression 8h post-
transfection 
and 24h 
pSILAC 
labelling 

NA psilac.mdc-
berlin.de 

Selbach et al. pSILAC HeLa hsa-miR-30a-5p Overexpression 8h post-
transfection 
and 24h 
pSILAC 
labelling 

NA psilac.mdc-
berlin.de 

Selbach et al. pSILAC HeLa hsa-miR-155-5p Overexpression 8h post-
transfection 
and 24h 
pSILAC 
labelling 

GSE40408 
ncbi.nlm.nih.gov/
geo 

Martin et al. 
Biotin pull-
down 

HEK293T hsa-miR-23b-3p Overexpression 
24h 

GSE40408 ncbi.nlm.nih.gov/
geo 

Martin et al. Biotin pull-
down 

HEK293T hsa-miR-27a-3p Overexpression 24h 

GSE40408 ncbi.nlm.nih.gov/
geo 

Martin et al. Biotin pull-
down 

HEK293T hsa-miR-17-5p Overexpression 24h 

GSE29101 ncbi.nlm.nih.gov/
geo 

Cloonan et al. Biotin pull-
down 

HEK293T hsa-miR-10a-5p Overexpression 24h 

GSE40411 ncbi.nlm.nih.gov/
geo 

Krishnan et al. Biotin pull-
down 

MCF7 hsa-miR-139-5p Overexpression 24h 

GSE38593 ncbi.nlm.nih.gov/
geo 

Krishnan et al. Biotin pull-
down 

HEK293T hsa-miR-182-5p Overexpression 24h 

GSE11082 ncbi.nlm.nih.gov/
geo 

Hendrickson et 
al. 

AGO-IP HEK293T hsa-miR-1 Overexpression 48h 

GSE11082 ncbi.nlm.nih.gov/
geo 

Hendrickson et 
al. 

AGO-IP HEK293T hsa-miR-124-3p Overexpression 48h 

GSE39227 ncbi.nlm.nih.gov/
geo 

Hu et al. AGO-IP HEK293T hsa-miR-941 Overexpression NA 

NA doi:10.1371/journa
l.pgen.1002363.s00
6 

Lal et al. Biotin pull-
down 

K562 hsa-miR-34a-5p Overexpression 24h 

NA doi:10.1371/journa
l.pgen.1002363.s00
6 

Lal et al. Biotin pull-
down 

HTC116 hsa-miR-34a-5p Overexpression 24h 

Table 5: Summary of microarray and RNA sequencing experiments in human species upon specific miRNA 

deregulation, utilized in benchmarking evaluations of microCLIP model. 

Accession 
 

Repository Authors Cell 
Type 

miRNA miRNA 
treatment 

Post-
Transfection 
Cell Harvest 
Time/Experime
ntal Condition 

GSE46039 ncbi.nlm.nih.gov/geo Helwak et al. HEK293 hsa-miR-92a-3p Knockdown 48h 

Institutional Repository - Library & Information Centre - University of Thessaly
11/07/2024 07:57:03 EEST - 3.145.41.45

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE40408
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE40408
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE40408


  

69 

GSE21577 ncbi.nlm.nih.gov/geo Hafner et al. HEK293 hsa-miR-20a-5p Knockdown simultaneous 
miRNA 
knockdown 
using inhibitor 
cocktail 

GSE21901 ncbi.nlm.nih.gov/geo Hollander et al. HEK293 hsa-miR-212-3p Overexpression NA 

GSE14537 ncbi.nlm.nih.gov/geo Hausser et al. HEK293 hsa-miR-124-3p Overexpression 15h 

GSE14537 ncbi.nlm.nih.gov/geo Hausser et al. HEK293 hsa-miR-7-5p Overexpression 15h 

GSE35621 ncbi.nlm.nih.gov/geo Hu et al. HEK293 hsa-miR-941 Overexpression 24h 

NA psilac.mdc-berlin.de Selbach et al. HeLa hsa-let-7b-5p Overexpression 32h 

NA psilac.mdc-berlin.de Selbach et al. HeLa hsa-miR-1 Overexpression 32h 

NA psilac.mdc-berlin.de Selbach et al. HeLa hsa-miR-155-5p Overexpression 32h 

NA psilac.mdc-berlin.de Selbach et al. HeLa hsa-miR-16-5p Overexpression 32h 

NA psilac.mdc-berlin.de Selbach et al. HeLa hsa-miR-30a-5p Overexpression 32h 

GSE8501 ncbi.nlm.nih.gov/geo Grimson et al. HeLa hsa-miR-7-5p Overexpression 24h 

GSE52531 ncbi.nlm.nih.gov/geo Nam et al. HEK293 hsa-miR-124-3p Overexpression 24h 

GSE68987 ncbi.nlm.nih.gov/geo Zhang et al. HeLa hsa-miR-603 Overexpression 24h 

GSE52531 ncbi.nlm.nih.gov/geo Nam et al. HeLa hsa-miR-155-5p Overexpression 24h 

GSE52531 ncbi.nlm.nih.gov/geo Nam et al. HeLa hsa-miR-124-3p Overexpression 24h 

GSE60426 ncbi.nlm.nih.gov/geo Eichhorn et al. HEK293T hsa-miR-1 Overexpression 24h 

GSE37918 ncbi.nlm.nih.gov/geo Pellegrino et al. MCF7 hsa-miR-23b-3p Overexpression NA 

 

Table 6: Summary of the collected AGO-PAR-CLIP experiments in human species, obtained from 9 studies. 

These datasets provided the source of PAR-CLIP signal (raw reads and transitions) which was integrated 

with experimentally validated positive/negative instances of miRNA-targeted regions. 

Accession Repository Authors Experiment Species Cell line Samples 

GSE28859 ncbi.nlm.nih.gov/geo Kishore et al. PAR-CLIP human HEK293 GSM714644, GSM714645, 
GSM714646, GSM714647 

SRR1045082 ncbi.nlm.nih.gov/sra Farazi et al. PAR-CLIP human MCF7 SRA110557 

SRR359787 ncbi.nlm.nih.gov/sra Lipchina et al. PAR-CLIP human hESC SRA047324 

GSE59944 ncbi.nlm.nih.gov/geo Whisnant et al. PAR-CLIP human C8166 GSM1462572 

GSE59944 ncbi.nlm.nih.gov/geo Whisnant et al. PAR-CLIP human TZMBL GSM1462573, GSM1462574 

GSE32109 ncbi.nlm.nih.gov/geo Gottwein et al. PAR-CLIP human BC-1 GSM796037, GSM796038 

GSE32109 ncbi.nlm.nih.gov/geo Gottwein et al. PAR-CLIP human BC-3 GSM796039, GSM796040 

GSE41437 ncbi.nlm.nih.gov/geo Skalsky et al. PAR-CLIP human EF3D-AGO2 GSM1020021 

GSE41437 ncbi.nlm.nih.gov/geo Skalsky et al. PAR-CLIP human LCL35 GSM1020022  

GSE41437 ncbi.nlm.nih.gov/geo Skalsky et al. PAR-CLIP human LCL-BAC GSM1020023 

GSE41437 ncbi.nlm.nih.gov/geo Skalsky et al. PAR-CLIP human LCL-BAC-D1 GSM1020024 

GSE41437 ncbi.nlm.nih.gov/geo Skalsky et al. PAR-CLIP human LCL-BAC-D3 GSM1020025 

GSE21578 ncbi.nlm.nih.gov/geo Hafner et al. PAR-CLIP human HEK293 GSM545212, GSM545213, 
GSM545214, GSM545215 

GSE43573 ncbi.nlm.nih.gov/geo Memczak et al. PAR-CLIP human HEK293 GSM1065667, GSM1065668, 
GSM1065669, GSM1065670 

GSE43909 ncbi.nlm.nih.gov/geo Erhard et al. PAR-CLIP human BCBL-1 GSM1074233, GSM1074234 
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2.2.2 Analysis of high-throughput experiments 

2.2.2.1 miRNA perturbation experiments 

High-throughput experiments were collected to measure gene expression alterations after 

specific miRNA transfection, silencing or knockout. Log2 fold change values as calculated 

from differential expression analyses of control versus post-treatment state enabled the 

formation of miRNA-mRNA positive and negative interactions. 44 microarray studies of 

distinct experimental conditions (Table 4, Table 5) covering 43 human cell lines and 49 

miRNAs were examined to deduce positive and negative miRNA-target interactions. In-

house analysis was initiated from microarray raw data (Affymetrix .CEL files). Probe set 

summarization was implemented using Robust Multi-Array Average (RMA) with R packages 

affy[80] or oligo[81]. Annotation of probe sets to Ensembl Gene IDs was accomplished using 

the chip-specific annotation R-packages hgu133a2.db, hgu133plus2.db or 

hugene10sttranscriptcluster.db. miRNA-treated and control samples in each experiment were 

analyzed independently of other cell lines or miRNA treatments. Log2 fold change ratios and 

p-values were calculated with limma package[82], following package instructions on Single-

Channel Designs. Probe sets mapping to the same gene were averaged to calculate its fold 

change. A log2 fold change cutoff of ±1 (>1 or <-1, respectively), depending on the type of 

regulation, was applied to determine negative and positive interaction subsets. For GSE8501 

experiment conducted in Rosetta-Merck microarrays, error-weighted log10 intensity ratios 

were retrieved and transformed to log2-scale. 

Ribosome profiling sequencing (RPF-Seq) and RNA-Seq libraries treated with specific 

miRNA overexpression, 12 experimental conditions in total were retrieved from Eichhorn et 

al.[91], Nam et al.[92], Pellegrino et al.[93], Zhang et al.[94]. To identify positive/negative 

miRNA interactions, a ±0.5 log2 fold change threshold was applied to genes presenting >10 

RPKM expression.  

Quantitative proteomics datasets (pSILAC) in HeLa cells following the individual 

overexpression of 5 human miRNAs (let-7b, miR-1, miR-16, miR-30a and miR-155) or 

knockdown of let-7b (Table 4) were derived from Selbach et al.[46]. Positive/negative miRNA 

interactions were deduced using a ±1 log2 fold change threshold respectively.  

2.2.2.2 AGO-PAR-CLIP and (s)RNA-Seq expression datasets 

AGO-PAR-CLIP datasets from 9 studies, corresponding to 13 cell lines in human species, 

were derived from GEO[57, 95] and DDBJ[96] repositories. 15 small RNA-Seq and 9 RNA-Seq 

experiments of similar cell types with PAR-CLIP libraries were analyzed to infer expressed 

miRNAs and transcripts. (s)RNA-Seq datasets were derived from the ENCODE repository 

and from a series of studies (Table 7, Table 8). Whole transcriptome depleted from ribosomal 

RNAs and poly-A selected RNA-Seq libraries were analyzed.  

The libraries were initially quality checked using FastQC  
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(www.bioinformatics.babraham.ac.uk/projects/fastqc/). Adapter sequences were retrieved 

from the original publication or GEO/SRA entries, when available. Contaminants were 

detected utilizing in-house-developed algorithms and the Kraken suite[97]. Pre-processing 

was performed utilizing Cutadapt[98]. PAR-CLIP reads were aligned against human 

reference genome (GRCh37/hg19) with GMAP/GSNAP[99] spliced aligner, appropriately 

parameterized to identify known and novel splice junctions. microRNA expression was 

quantified using miRDeep2[100]. Ensembl v75[101] and miRBase v18[102] were used as 

annotation for genes and microRNAs, respectively. Top expressed miRNAs and AGO-PAR-

CLIP data in each cell type, were jointly utilized as input to microCLIP in silico framework for 

miRNA-target identification.  

 
Table 7: Description of small RNA-Seq datasets of similar cell types to PAR-CLIP libraries, analyzed to infer 

expressed miRNAs. The table displays the source of small RNA-Seq libraries along with its ID, cell type, 

condition and description.  

 

 

 

 

 

 

 

Accession Repository Cell Type/Tissue Description 

GSM897079_Rep1 ncbi.nlm.nih.gov/geo HeLaS3 Cervical Carcinoma 

GSM897079_Rep2 ncbi.nlm.nih.gov/geo HeLaS3 Cervical Carcinoma 

GSM897073_Rep1 ncbi.nlm.nih.gov/geo H1hESC Embryonic Stem Cells 

GSM897073_Rep2 ncbi.nlm.nih.gov/geo H1hESC Embryonic Stem Cells 

GSM973690_Rep3 ncbi.nlm.nih.gov/geo MCF7 Adenocarcinoma 

GSM973690_Rep4 ncbi.nlm.nih.gov/geo MCF7 Adenocarcinoma 

GSM897081_Rep1 ncbi.nlm.nih.gov/geo MCF7 Adenocarcinoma 

GSM897081_Rep2 ncbi.nlm.nih.gov/geo MCF7 Adenocarcinoma 

SRR2084358 ncbi.nlm.nih.gov/sra MCF7 Adenocarcinoma 

GSM1020026 ncbi.nlm.nih.gov/geo EF3D-AGO2 Adenocarcinoma 

GSM1020028 ncbi.nlm.nih.gov/geo LCL-BAC Adenocarcinoma 

GSM1020029 ncbi.nlm.nih.gov/geo LCL-BAC-D1 Adenocarcinoma 

GSM1020030 ncbi.nlm.nih.gov/geo LCL-BAC-D3 Adenocarcinoma 
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Table 8: Description of RNA-Seq datasets of similar cell types to PAR-CLIP libraries, analyzed to infer 

expressed transcripts. The table displays the source of RNA-Seq datasets along with its ID, cell type, 

condition and description. 

2.2.2.3 PARS experimental data 

In order to demarcate RNA Secondary Structures (RSS) of AGO-bound regions compared to a 

set of negative miRNA sites on mRNA transcripts, respective PARS scores as introduced by 

Wan et al.[103] were estimated (GEO accessions GSM1226157, GSM1226158).  In this 

approach, AGO-binding efficiency is revealed by RSS signatures observed on mRNA 

transcripts, since increased structural accessibility is expected in functional conformations 

(Figure 13).  

 

Accession Repository Cell 
Type/Tissue 

Condition Description 

SRR837795 ncbi.nlm.nih.gov/sra LCL-BAC-D1 miR-BHRF1-1 
mutant virus 

LCL infected with an EBV B95-8 
BACmid 

SRR837796 ncbi.nlm.nih.gov/sra LCL-BAC-D1 miR-BHRF1-1 
mutant virus 

LCL infected with an EBV B95-8 
BACmid 

SRR837797 ncbi.nlm.nih.gov/sra LCL-BAC-D2 miR-BHRF1-2 
mutant virus 

LCL infected with an EBV B95-8 
BACmid 

SRR837798 ncbi.nlm.nih.gov/sra LCL-BAC-D3 miR-BHRF1-3 
mutant virus 

LCL infected with an EBV B95-8 
BACmid 

SRR837794 ncbi.nlm.nih.gov/sra LCL-BAC NA LCL infected with an EBV B95-8 
BACmid 

ENCFF002DKY & 
ENCFF002DKX 

encodeproject.org MCF7 NA Adenocarcinoma 

ENCFF000FOV & 
ENCFF000FOM 

encodeproject.org HeLaS3 NA Cervical Carcinoma 

wgEncodeCshlLongRnaSe
qH1hescCellPapFastqRep1 

hgdownload.cse.ucsc.edu H1hESC NA Embryonic Stem Cells 

GSM1370364 ncbi.nlm.nih.gov/geo HEK293 NA Embryonic Kidney Cells 
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Figure 13: Overview of PARS experiment. This figure has been designed for the purpose of this dissertation. 

The identification of single- or double-stranded regions across the human transcriptome was 

derived from deeply sequenced RNA fragments generated from RNase S1 or V1 nuclease 

treatment of GM12878 cells respectively.  

Raw reads of 51nt length, accordingly pre-processed for quality control and contaminant 

removal, were aligned against human reference genome (GRCh37/hg19) with GSNAP 

spliced aligner. This analysis resulted in ~130M uniquely mapped PE-sequenced fragments 

per sample. In order to derive structural signals in RNase S1 or V1 nuclease experiments at 

single base resolution, single (S1) and double (V1) stranded raw reads initiating on each 
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nucleotide were calculated. The number of PARS tags per sample starting at each base were 

normalized by sequencing library depth. These base intensities were subsequently combined 

into the formula described by Wan et al. to compute PARS scores. 

RNA secondary structures (RSS) were defined by estimated PARS scores in the vicinity of 

PAR-CLIP-derived miRNA binding sites in 4 lymphoblastoid cell lines from the study of 

Skalsky et al.[53]. miRNA-mRNA interactions were identified in both T-to-C and non-T-to-C 

PAR-CLIP clusters, corresponding to transcripts with >1 TPM expression in GM12878 cells. 

For expressed miRNAs (≥ 50 aligned reads per miRNA) in respective EFD3-AGO2, LCL-BAC, 

LCL-BAC-D1 and LCL-BAC-D3 EBV infected lymphoblastoid cells, collapsed miRNA 

binding sites residing within the PAR-CLIP clusters were included. For the performed 

comparisons, negative MREs extracted from different high-throughput miRNA perturbation 

experiments were incorporated. MREs utilized for the assessment of RSS signatures on AGO-

bound clusters and the derivation of (non-)functional conformations of miRNA-target base 

pairings, were localized on coding and 3’UTR regions. The examined sites had to present S1 

and V1 signals in at least half of their occupied bases. 

sRNA-Seq and RNA-Seq datasets were retrieved from ENCODE consortium (GEO accession 

numbers GSM605625, GSM1020026, GSM1020027, GSM1020028, GSM1020029, GSM1020030).  

2.2.3 microCLIP in silico framework 

Feature set description. A set of 131 descriptors with non-zero variance was included in 

microCLIP. The extracted features were retrieved from positive/negative miRNA 

interactions, identified on AGO-bound locations in different PAR-CLIP datasets. They 

comprised PAR-CLIP-specific descriptors, such as substitution ratios and distance of 

conversions from the MRE start, as well as coverage metrics. Aggregate substitution ratios, 

positions and distances independent of the transition type were also included. In order to 

estimate MRE and AGO-peak respective sequencing coverage, normalized RPKM values for 

miRNA-target sites and clusters were calculated.  

Moreover, single base and dinucleotide contents for miRNA binding and respective flanking 

regions, complexity features for the MRE and proximal upstream/downstream sequences 

were introduced to microCLIP model. BLAST’s DUST score[104] and Shannon-Wiener 

Index[105] constituted measurements for masking sequence complexity. Other descriptors 

were formed to represent energy-related variables for the duplex structure, while metrics 

capturing sequence content skewness/asymmetry (GC-skew, AT-skew, purine-skew, Ks-

skew) and biases of codon usage were added. Entropy, enthalpy, free energy and melting 

temperature (Tm) thermodynamic properties were calculated for MRE sequences in R. 

miRNA-target hybrids were associated with different descriptors, such as the binding type, 

duplex structure energy calculated with the Vienna package[106], positions and nucleotide 

composition of (un)paired nucleotides. Distinct features have been established to model 

Institutional Repository - Library & Information Centre - University of Thessaly
11/07/2024 07:57:03 EEST - 3.145.41.45



  

75 

(mis)matches, bulges, loops and wobble pairs for miRNA-MRE hybrid structure and sub-

domains encountered in the duplex. The distinct domains for miRNA sequences, as defined 

by microCLIP, are: (i)seed region (2-8 positions), (ii)central region (9-12 positions), (iii)3’ 

supplementary region (13-16 positions), (iv)tail region (17-3’miRNA end) (Figure 14). Similar 

regions were designated on the MREs based on the miRNA binding anchors upon duplex 

formation.  

 

 

Figure 14: Snapshot of the different miRNA binding types formed according to miRNA specific sub-

domains. This figure has been designed for the purpose of this dissertation. 

Current approach incorporates conservation of the MRE and upflank/downflank-MRE 

regions. phastCons pre-computed scores from genome-wide multiple alignments were 

downloaded from the UCSC repository[107] in bigwig format and were utilized to deduce 

respective evolutionary rates. Conservation signals were computed as mean intensities of the 

phastCons base-wise scores on miRNA targeted regions as well as their flanking regions. The 

conservation of the 5’ MRE binding nucleotides was independently modeled. microCLIP 

integrates additional features corresponding to the location of the MRE within the AGO-

enriched cluster and binding length ratios of miRNA and/or target regions.  
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Description of the algorithm. microCLIP operates on AGO-PAR-CLIP sequencing reads, 

requiring a SAM/BAM alignment file and a list of miRNAs as minimum input. It initially 

seeks for AGO-enriched regions and resolves coverage and observed transitions. A sensitive 

pipeline is adopted to scan read clusters for putative targeted sites including a wide range of 

binding types. The algorithm supports an extended set of (non-)canonical matches including 

6mer to 9mer, offset 6mer, 3’supplementary and compensatory sites as well as (im)perfect 

centered bindings (Table 9).  

Table 9: Description of the binding types supported by microCLIP. 

microCLIP extracts features for each candidate MRE and subsequently scores sites through a 

super learning scheme. The adopted framework incorporates two distinct levels of 

classification. The first layer comprises a group of 9 different nodes (base classifiers), which 

are aggregated in the meta-classifier of the second layer. The learning procedure is 

Binding Type Description 

9mer 3prime 9mer canonical with 3′ supplementary binding 

9mer 9mer canonical 

9mer GU base pairing in 1-9 positions with a GU wobble pair 

9mer nonCanonical base pairing in 1-9 positions with a target bulge and/or a GU 
wobble pair 

8mer 3prime 8mer/8mer1A canonical with 3′  supplementary binding 

8mer 8mer canonical 

8mer1A 7mer canonical with additional A in position 1 

8mer GU base pairing in 1-8 or 2-9 positions with a GU wobble pair 

8mer nonCanonical base pairing in 1-9 positions with mismatch or miRNA bulge 
and/or a target bulge and/or a GU wobble pair 

7mer 3prime 7mer/7mer1A canonical  with 3′  supplementary binding 

7mer 7mer canonical  

7mer1A 6mer canonical with an additional A in position 1 

7mer GU base pairing in 2-8 positions with a GU wobble pair 

7mer nonCanonical base pairing in 1-8 positions with a mismatch or miRNA bulge 
and/or a target bulge 

7mer nonCanonical GU base pairing in 1-8 positions with a mismatch or miRNA bulge 
and/or a target bulge and/or a GU wobble pair 

6mer 3prime 6mer canonical  with 3′  supplementary binding 

6mer 6mer canonical  

offset6mer 6mer base pairing in 3-8 positions 

6mer nonCanonical 3prime base pairing in 2-8 positions with a mismatch or miRNA bulge 
and/or a target bulge, with 3′  supplementary binding 

centered base pairing in 4-15 positions with at least 8 consecutive matches 

imperfect centered base pairing in 4-15 positions with at least 8 matches and/or less 
than 2 GU wobble pairs 
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decentralized through the distinct nodes and relevant base classifiers that specialize in 

different subsets of features (Figure 15). 

 

Figure 15: microCLIP in silico framework. Separate subsets of the positive/negative miRNA interactions were 

used to train the distinct levels of the algorithm’s modeling. 9 base classifiers in the first layer comprise 

characteristic feature subsets that assemble into the GBM meta-learner of the second layer. A super learning 

scheme is utilized in 8 of the 9 base nodes, weighing outputs from seven individual models. ‘Region 

features’ node corresponds to an RF classification scheme and consists of CLIP-sequencing-derived features. 

Five base models (2-6) were designed for MRE specific features: ‘Binding Vectors’ describe the (un)paired 

positions along the miRNA/MRE hybrid; ‘Matches per miRNA/MRE domain’ contain attributes of miRNA-

target structure and sub-domains; ‘Duplex Features’ include free energy, secondary structure and AU base 

pairing features for miRNA and/or target; ‘Base pairing’ encompasses composition descriptors of (un)paired 

nucleotides; ‘MRE general’ incorporates general MRE-related descriptors. Three supplementary classifiers 
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(‘Feature Combination Set 1-3’) comprise unique combinations of features found in base nodes 1-6 

(Paraskevopoulou MD and Karagkouni D et al, 2018)[17].  

 ‘Region Features’ node comprises CLIP-Seq-derived features, such as RPKM coverage, 

substitution frequencies and region-related descriptors, including nucleotide composition, 

conservation, sequence energy, complexity, content asymmetry, and biases of codon usage. A 

set of five additional base classifiers were designed for MRE specific features. Binary binding 

vectors of miRNA/MRE hybrid were separately incorporated in a base classifier (‘Binding 

Vectors’). Each vector element corresponds to one (un)paired position in the duplex. Matches 

per miRNA/MRE sub-domain were added to a distinct base classifier introducing a group of 

13 features regarding total and consecutive matches in the miRNA-target structure as well as 

in MRE and miRNA relevant sub-domains. Another base model consists of miRNA-target 

duplex descriptors (‘Duplex Features’) including miRNA-target duplex structure energy, 

bulges, internal loops, GU wobbles and AU base pairing features for the specified miRNA 

and/or target and relevant sub-domains. The ‘Base pairing’ node encompasses composition 

descriptors (A, T, G, C) of the (un)paired nucleotides. An extra base learner incorporates MRE 

general descriptors such as the degree of overlap with the respective cluster, conservation of 

MRE bound nucleotides, MRE location within the cluster, MRE binding type as well as 

metrics for duplex paired nucleotides content asymmetry/skewness. The latter five base 

models are dedicated to the determination of genuine miRNA binding sites. Non-overlapping 

feature sets from the aforementioned base nodes are combined into three supplementary 

classifiers also incorporated into microCLIP framework. A table summarizing the 

incorporated features, associated with the conceptual framework they belong, is presented 

below: 

 

Table 10: Description of features incorporated in microCLIP. 

feature# base classifier node feature description 

1 

Region Features 
(55 features) 

MRE region GC-skew 

2 MRE region Purine-skew 

3 MRE region Ks-skew 

4 Upflank MRE region Purine-skew 

5 Upflank MRE region Ks-skew 

6 MRE DUST score 

7 MRE region AT-skew 

8 MRE dS 

9 MRE Tm 

10 Codon Adaptation Index per codon usage bias 

11 Dinucleotide AA MRE content 

12 Dinucleotide AC MRE content 

13 Dinucleotide AG MRE content 
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14 Dinucleotide AT MRE content 

15 Dinucleotide CA MRE content 

16 Dinucleotide CC MRE content 

17 Dinucleotide CT MRE content 

18 Dinucleotide GA MRE content 

19 Dinucleotide GC MRE content 

20 Dinucleotide GT MRE content 

21 Dinucleotide TA MRE content 

22 Dinucleotide AC content upflank of MRE 

23 Dinucleotide AT content upflank of MRE 

24 Dinucleotide GA content upflank of MRE 

25 Dinucleotide GC content upflank of MRE 

26 Dinucleotide GT content upflank of MRE 

27 Dinucleotide TA content upflank of MRE 

28 Dinucleotide TC content upflank of MRE 

29 Dinucleotide TG content upflank of MRE 

30 A content upflank of MRE 

31 C content upflank of MRE 

32 G content upflank of MRE 

33 T content upflank of MRE 

34 A or G content upflank of MRE 

35 A or T content upflank of MRE 

36 A content in MRE 

37 A or G content in MRE 

38 A or T content in MRE 

39 C content in MRE 

40 G content in MRE 

41 G or T content in MRE 

42 T content in MRE 

43 Average conservation in MRE seed region 

44 Average conservation downstream of MRE region 

45 Average conservation upstream of MRE region 

46 Minimum conservation in MRE seed region 

47 Minimum conservation downstream of MRE region 

48 Minimum conservation upstream of MRE region 

49 MRE coverage (RPKM) 

50 Cluster overlapping reads 

51 MRE coverage (RPKM) per cluster coverage (RPKM) 

52 Cluster length 

53 

Minimum distance - sum of all substitutions +/- 
20nt of MRE start 

54 

Sum of all substitutions +/- 20nt of MRE start - 
minimum distance 
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55 T-to-C substitutions in MRE region 

56 

Binding Vectors 
(30 features) 

Binding event in MRE position 2 

57 Binding event in MRE position 3 

58 Binding event in MRE position 4 

59 Binding event in MRE position 5 

60 Binding event in MRE position 6 

61 Binding event in MRE position 7 

62 Binding event in MRE position 8 

63 Binding event in MRE position 10 

64 Binding event in MRE position 11 

65 Binding event in MRE position 12 

66 Binding event in MRE position 17 

67 Binding event in MRE position 18 

68 miRNA unpaired position 5 

69 miRNA unpaired position 6 

70 miRNA unpaired position 7 

71 miRNA unpaired position 8 

72 Base at MRE position 25 

73 Base at MRE position 26 

74 Base at MRE position 27 

75 Base at MRE position 28 

76 Base at MRE position 29 

77 Base at miRNA position 13 

78 Base at miRNA position 14 

79 Base at miRNA position 15 

80 Base at miRNA position 19 

81 Base at miRNA position 4 

82 Base at miRNA position 5 

83 Base at miRNA position 6 

84 Base at miRNA position 7 

85 Base at miRNA position 12 

86 

Matches per miRNA/MRE 
domain 
(13 features) 

Total matches 

87 Max consecutive matches 

88 Match in position 10 of miRNA 

89 Match in position 2 of miRNA 

90 Consecutive unpaired bases of non-seed region 

91 Consecutive matches per total matches 

92 Matches in seed region per total matches 

93 Consecutive matches in seed region 

94 

Consecutive matches in non-seed region per total 
matches 

95 Matches in seed region 
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96 Matches in central MRE region 

97 Matches in 3' MRE 

98 

Consecutive matches in seed region per max 
consecutive matches 

99 

Duplex Features 
(11 features) 

AU frequency in MRE region 

100 GC frequency in MRE region 

101 GU wobble frequency in MRE region 

102 Internal loop max length in MRE region 

103 AU frequency in seed region 

104 AU frequency in MRE region excluding seed 

105 GC frequency in central MRE region 

106 GC frequency in MRE region excluding seed 

107 GU wobble frequency in tail region 

108 Length of MRE binding region 

109 Bulge positions in MRE region (%) 

110 

Base Pairing 
(9 features) 

Matches in MRE Ks-skew 

111 miRNA unpaired A 

112 miRNA unpaired C 

113 miRNA unpaired G 

114 miRNA unpaired T 

115 miRNA matches A 

116 miRNA matches T 

117 miRNA matches C 

118 miRNA matches G 

119 

MRE General 
(13 features) 

miRNA unpaired position 2 

120 miRNA unpaired position 3 

121 miRNA unpaired position 4 

122 Matches in MRE Purine-skew 

123 Duplex structure energy 

124 Length of miRNA binding region 

125 Distance of MRE start from cluster start 

126 Nucleotides of MRE that overlap with cluster region 

127 Length of MRE binding region per cluster length 

128 

Nucleotides of MRE that overlap with cluster region 
(%) 

129 Average conservation of whole MRE 

130 Average conservation of 5' MRE 

131 Binding Type 

1 

Feature Combination Set 1 
(26 features) 

Binding event in MRE position 4 

2 Binding event in MRE position 11 

3 Binding event in MRE position 18 

4 miRNA unpaired position 5 

5 Base at MRE position 28 
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6 Base at MRE position 29 

7 Base at miRNA position 13 

8 Base at miRNA position 6 

9 Base at miRNA position 7 

10 Base at miRNA position 12 

11 Max consecutive matches 

12 Binding Type 

13 Consecutive matches per total matches 

14 

Consecutive matches in seed region per max 
consecutive matches 

15 Matches in 3' MRE 

16 AU frequency in seed region 

17 GU wobble frequency in MRE region 

18 AU frequency in MRE region excluding seed 

19 Length of MRE binding region 

20 miRNA unpaired C 

21 miRNA matches A 

22 miRNA matches C 

23 miRNA matches G 

24 Duplex structure energy 

25 Length of MRE binding region per cluster length 

26 Average conservation of whole MRE 

1 

Feature Combination Set 2 
(14 features) 

MRE dS 

2 G content upflank of MRE 

3 A or T content upflank of MRE 

4 Average conservation upstream of MRE region 

5 MRE coverage (RPKM) 

6 

Sum of all substitutions +/- 20nt of MRE start - 
minimum distance 

7 T-to-C substitutions in MRE region 

8 Binding event in MRE position 3 

9 AU frequency in MRE region 

10 GC frequency in MRE region 

11 miRNA matches T 

12 Matches in seed region per total matches 

13 Consecutive matches in seed region 

14 Nucleotides of MRE that overlap with cluster region 

1 

Feature Combination Set 3 
(14 features) 

Binding event in MRE position 6 

2 Match in position 10 of miRNA 

3 Match in position 2 of miRNA 

4 Matches in seed region 

5 Matches in central MRE region 

6 GC frequency in central MRE region 
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7 GC frequency in MRE region excluding seed 

8 Matches in MRE Ks-skew 

9 miRNA unpaired A 

10 miRNA unpaired T 

11 Matches in MRE Purine-skew 

12 Length of miRNA binding region 

13 Distance of MRE start from cluster start 

14 Consecutive unpaired bases of non-seed region 

 

8 of the 9 base nodes adopt a super learning scheme that assembles the output of seven 

individual Random Forest (RF), Generalized Linear Model (GLM), Gradient Boosting Model 

(GBM), Deep Learning (DL) classifiers (2 RF, 2 GBM, 2 DL, 1 GLM models). The ‘Region 

features’ is analyzed by an RF classification scheme. The retrieved scores from each node are 

aggregated in a final GBM meta-classifier.  

Model Training. The DL models developed for the microCLIP framework adopt a feed-

forward multi-layer architecture. The input layers match the respective feature space and 

values are subsequently propagated within three hidden layers. A rectifier activation function 

was utilized to retrieve weighted combinations of the inputs transmitted to interconnected 

neuron units. Dropout regularization was added to achieve model optimization and avoid 

overfitting. A cross entropy cost-function was selected to adapt weights during the learning 

process by minimizing the loss. Bernoulli distribution function was used along with cross 

entropy (log-loss) to model the response variables. The output layer at the end of the network 

applies a Softmax activation function so that each neuron (predicted class) results in a 

probabilistic interpretation. The DL network depth, width and topology as well as activation 

functions and learning parameters were modeled with a tuning-in grid search algorithm 

using H2O[108] R package. The RF, GBM, GLM learning models were developed, 

parameterized and tuned with the caret[109] and H2O[108] R packages.  

Base classifiers were trained against a collection of 8,693 positive and 21,789 negative miRNA 

interactions. The final GBM meta-learner that aggregates the base classifier outcomes was 

trained against an independent dataset comprising 3,276 and 6,702 positive and negative 

instances respectively. Ten-fold cross-validation was performed on the training data to 

estimate each model’s accuracy and finalize the algorithm’s learning architecture. The 

performance of the model was assessed against independent test sets comprising ~5,495 

instances in total. The composition of respective training/test sets is provided in Table 11. 

Training and testing of microCLIP have been performed on independent sets of targeted 

MRE regions. 
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Table 11: Summary of training/test sets utilized for microCLIP deployment. 

 miRNAs in interactions miRNA-target pairs 

 Training Test Training Test 

Positive Instances 

Direct Techniques 244 158 4,707 2,017 
miRNA perturbation 
experiments 

47 5 7,262 679 

Negative Instances 

Background CLIP-Seq 393 122 22,575 1,591 

miRNA perturbation 
experiments 

44 23 5,916 1,208 

 

2.2.4 miRNA interactions from in silico implementations  

microCLIP performance was evaluated against MIRZA[55], microMUMMIE[56] and 

PARma[58] computational approaches. A set of 7 PAR-CLIP HEK293 libraries obtained from 

Kishore et al.[34] and Memczak et al.[110] studies (GEO accessions GSM714644, GSM714645, 

GSM714646, GSM714647, GSM1065667, GSM1065668, GSM1065669 and GSM1065670) was 

utilized. The proposed settings for each implementation were retrieved from the relevant 

publications.  

The MIRZA biophysical model was executed in the “noupdate” mode. The algorithm 

provides an optional parameterization to introduce miRNA expression profiles. Two different 

runs of MIRZA were realized, with and without cell type-specific miRNA expression values 

that were extracted from the CLIPZ web server (http://www.clipz.unibas.ch). MIRZA input 

data were 51-nt AGO-bound sequences centered on T-to-C sites and mature miRNA 

sequences of 21nt length as reported in the model’s restrictions. The “target frequency” score 

was utilized to evaluate the quality of MIRZA-detected sites.  

microMUMMIE algorithm was tested in both Viterbi and posterior decoding modes. 

Following microMUMMIE’s constraints, PARalyzer v1.5[57] was utilized to define the set of 

T-to-C AGO-enriched peaks. An extra prerequisite annotation step to complement PARalyzer 

detected clusters was implemented with the PARpipe tool 

(https://github.com/ohlerlab/PARpipe). Derived files, comprising annotated AGO clusters 

with positions of T-to-C transitions, constituted the input of the microMUMMIE core 

algorithm. Predictions with signal-to-noise ratio (SNR, generally correlated with sensitivity) 

equal to 9.95 were retained, while posterior probabilities were utilized for the evaluation of 

microMUMMIE’s performance.  

PARma was applied on AGO-PAR-CLIP aligned data that were prepared following the 
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algorithm’s described format. The required input files contained genomic locations of aligned 

CLIP-reads along with positions of observed conversion sites. PARma predictions are 

coupled with Cscore and MAscore scores for the cluster and miRNA-seed family activity, 

respectively. The latter score was utilized for PARma-detected miRNA-target sites evaluation.  

Precompiled (non)conserved miRNA-site context++ scores for representative transcripts were 

downloaded from the Targetscan v7.2 site (http://www.targetscan.org/cgi-

bin/targetscan/data_download.vert72.cgi). Targetscan v7 algorithm was additionally 

executed following the proposed settings in order to cover a greater transcript collection, as 

well as the whole spectrum of Targetscan-detected interactions including 6mer sites.  Gene 

annotation files were retrieved from the Targetscan v7.2 official download page, and the 

miRNA seed sequence file that is a prerequisite for the execution of the model was provided 

by Targetscan developers. The local Targetscan run complements the precompiled data with 

miRNA-target interactions on transcripts presenting the longest 3’UTR, in cases they are not 

deposited on the online repository. 

2.3 Implementation of microT, a de novo miRNA target prediction algorithm 

Computational methodologies devoted to miRNA-target characterization unambiguously 

provide the backbone for many miRNA-related studies. An accurate de novo miRNA target 

prediction algorithm contributes as an extra boost to study miRNA function, by eliminating 

time and experimental cost. The last 15 years, a multitude of computational approaches have 

emerged, aiming to accurately characterize miRNA targets. However, even the most 

sophisticated implementations still achieve a far from perfect predictive accuracy[5] followed 

by an increased number of false positive predictions.  

Most of the current approaches heavily rely on decisive features towards miRNA target 

detection such as miRNA seed complementarity, secondary structure and evolutionary 

conservation. Their predictions are often radically diverse, due to the incorporation of 

different experimental datasets and mathematical models in the training process. 

Targetscan[20] is a leading in silico target prediction method, however it detects miRNA-

target pairs with perfect seed complementarity and ignores non-canonical sites. Therefore, a 

large portion of functional miRNA binding-events is disregarded. Also, it does not include in 

its training process recently developed experimental procedures, such as AGO-CLIP-Seq and 

CLASH methods, that provide a wealth of characteristics regarding the AGO-bound 

enriched/preferred regions.  Recently developed models try to fill the existing gap by 

incorporating only a small part of the publicly available CLIP-Seq datasets. Most of them 

prefer to detect seed-based binding sites to scale down the false positive rate, however their 

predictive accuracy still remains low[20]. 

To this end, a novel miRNA target prediction algorithm is presented in this thesis, that 

circumvents pitfalls and limitations of current approaches. microT Super Learning 
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framework maintains and upgrades the pipeline adopted in microCLIP by enhancing the 

training with even more high-throughput experiments under a tissue-specific scheme. The 

new model characterizes interactions with stronger functional efficacy and correctly detects 

1.5-fold more experimentally validated target sites when juxtaposed against Targetscan v7 

and DIANA-microT-CDS22,23. 

2.3.1 Dataset collection 

miRNA-targeted regions, utilized in the training and evaluation of microT Super Learning 

framework, were extracted following the methodology described in microCLIP (Methods 

2.2.1). More precisely, AGO-enriched regions derived from AGO-CLIP-Seq libraries were 

coupled with differentially expressed mRNAs extracted from miRNA specific high-

throughput experiments across 34 different cell types and 11 tissues. 113 CLIP-Seq libraries 

(80 HITS-CLIP, 33 PAR-CLIP), derived from DIANA-TarBase and microCLIP deployment, as 

well as from the analysis of a subsequent set of 9 publicly available datasets corresponding to 

4 different cell types[111], were incorporated. 

In order to quantify miRNA-induced mRNA expression changes and to identify functional 

binding sites, 110 miRNA perturbation experiments were incorporated (91 microarrays, 15 

RNA-Seq, 4 RIP-Seq) and 3 ribosome profiling sequencing (RPF-Seq) libraries (Table 12). 

Approximately 40 of the aforementioned datasets were re-analyzed according to the 

methodology described in section Methods 2.2.2, while the rest were derived from the 

analysis displayed in microCLIP deployment.  

Table 12: Summary of the collected experiments in human species upon specific miRNA deregulation. The 

datasets were utilized to extract a training set of positive and negative MRE regions for microT deployment. 

Accession Repository Authors Experiment Cell Type miRNA miRNA 
treatment 

Post-
Transfection 
Cell Harvest 
Time/Experi

mental 
Condition 

GSE12400 ncbi.nlm.nih.gov/geo Sander et al microarrays CCL86 hsa-miR-26a-5p Overexpression 72h 

GSE12400 ncbi.nlm.nih.gov/geo Sander et al microarrays CRL1432 hsa-miR-26a-5p Overexpression 72h 

GSE12400 ncbi.nlm.nih.gov/geo Sander et al microarrays CRL1596 hsa-miR-26a-5p Overexpression 72h 

GSE35948 ncbi.nlm.nih.gov/geo Misiewicz-
Krzeminska et 

al 

microarrays H929 hsa-miR-214-3p Overexpression NA 

GSE16674 ncbi.nlm.nih.gov/geo Navarro et al microarrays K562 hsa-miR-34a-5p Overexpression 24h 

GSE56268 ncbi.nlm.nih.gov/geo Schneider et al microarrays P3HR1 hsa-miR-28-5p Overexpression 12h, 24h 

GSE27718 ncbi.nlm.nih.gov/geo Gaziel-Sovran et 
al 

microarrays 131/4-5B1 hsa-miR-30d-5p Overexpression 60h 

GSE42823 ncbi.nlm.nih.gov/geo Nelson et al microarrays H4 hsa-miR-103a-3p Overexpression 48h 

GSE42823 ncbi.nlm.nih.gov/geo Nelson et al microarrays H4 hsa-miR-107 Overexpression 48h 

GSE42823 ncbi.nlm.nih.gov/geo Nelson et al microarrays H4 hsa-miR-15b-3p Overexpression 48h 

GSE42823 ncbi.nlm.nih.gov/geo Nelson et al microarrays H4 hsa-miR-16-5p Overexpression 48h 

GSE42823 ncbi.nlm.nih.gov/geo Nelson et al microarrays H4 hsa-miR-195-5p Overexpression 48h 
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GSE42823 ncbi.nlm.nih.gov/geo Nelson et al microarrays H4 hsa-miR-320b Overexpression 48h 

GSE34482 ncbi.nlm.nih.gov/geo Choudhury et al microarrays SW1783 hsa-miR-376a-5p Overexpression 24h 

GSE34482 ncbi.nlm.nih.gov/geo Choudhury et al microarrays U87 hsa-miR-376a-5p Overexpression 24h, 72h 

GSE19693 ncbi.nlm.nih.gov/geo Chen et al microarrays U87 hsa-miR-20a-5p Overexpression NA 

GSE19693 ncbi.nlm.nih.gov/geo Chen et al microarrays HS683 hsa-miR-20a-5p Overexpression NA 

GSE35208 ncbi.nlm.nih.gov/geo Lin et al microarrays U87-2M1 hsa-miR-10b-5p Inhibition NA 

- psilac.mdc-berlin.de Selbach et al microarrays HeLa hsa-let-7b-5p Overexpression 8h, 32h 

- psilac.mdc-berlin.de Selbach et al microarrays HeLa hsa-miR-1-3p Overexpression 8h, 32h 

- psilac.mdc-berlin.de Selbach et al microarrays HeLa hsa-miR-155-5p Overexpression 8h, 32h 

- psilac.mdc-berlin.de Selbach et al microarrays HeLa hsa-miR-16-5p Overexpression 8h, 32h 

- psilac.mdc-berlin.de Selbach et al microarrays HeLa hsa-miR-30a-5p Overexpression 8h, 32h 

GSE14537 ncbi.nlm.nih.gov/geo Hausser et al microarrays HEK293 hsa-miR-124-3p Overexpression 15h 

GSE14537 ncbi.nlm.nih.gov/geo Hausser et al microarrays HEK293 hsa-miR-7-5p Overexpression 15h 

GSE46039 ncbi.nlm.nih.gov/geo Helwak et al microarrays HEK293 hsa-miR-92a-3p Knock-down 48h 

GSE35621 ncbi.nlm.nih.gov/geo Hu et al microarrays HEK293 hsa-miR-941 Overexpression 24h 

GSE35621 ncbi.nlm.nih.gov/geo Hu et al microarrays HEK293T hsa-miR-941 Overexpression 24h 

GSE57158 ncbi.nlm.nih.gov/geo Greenberg et al microarrays PAG C81-61 hsa-miR-20a-5p Overexpression 3d 

GSE57158 ncbi.nlm.nih.gov/geo Greenberg et al microarrays PAG C81-61 hsa-miR-17-5p Overexpression 3d 

GSE33538 ncbi.nlm.nih.gov/geo Bossel Ben-
Moshe et al 

microarrays MCF10A hsa-miR-20a-5p Silencing 0h, 0.5h, 1h, 
2h post EGF 
stimulation 

GSE33538 ncbi.nlm.nih.gov/geo Bossel Ben-
Moshe et al 

microarrays MCF10A hsa-miR-671-5p Silencing 0h, 0.5h, 1h, 
2h post EGF 
stimulation 

GSE58142 ncbi.nlm.nih.gov/geo Frankel et al microarrays MCF7 hsa-miR-95a-3p Overexpression 24h 

GSE31397 ncbi.nlm.nih.gov/geo Frankel et al microarrays MCF7 hsa-miR-101-3p Overexpression 24h 

GSE19777 ncbi.nlm.nih.gov/geo Rao et al microarrays MCF7FR hsa-miR-221-3p Silencing 72h 

GSE19777 ncbi.nlm.nih.gov/geo Rao et al microarrays MCF7FR hsa-miR-222-3p Silencing 72h 

GSE40058 ncbi.nlm.nih.gov/geo Luo et al microarrays MDA-MB-231 hsa-miR-200c-3p Overexpression NA 

GSE40058 ncbi.nlm.nih.gov/geo Luo et al microarrays MDA-MB-231 hsa-miR-205-5p Overexpression NA 

GSE40058 ncbi.nlm.nih.gov/geo Luo et al microarrays MDA-MB-231 hsa-mir-375 Overexpression NA 

GSE50697 ncbi.nlm.nih.gov/geo Taube et al microarrays SUM159 hsa-miR-203a-3p Overexpression NA 

GSE51053 ncbi.nlm.nih.gov/geo Kristensen et al microarrays DU145 hsa-miR-224-5p Overexpression 48h 

GSE51053 ncbi.nlm.nih.gov/geo Kristensen et al microarrays DU145 hsa-miR-452-5p Overexpression 48h 

GSE34893 ncbi.nlm.nih.gov/geo Hudson et al microarrays LNCAP hsa-miR-106b-
5p 

Overexpression 24h 

GSE17362 ncbi.nlm.nih.gov/geo Boll et al microarrays LNCAP hsa-miR-130a-3p Overexpression 24h 

GSE17362 ncbi.nlm.nih.gov/geo Boll et al microarrays LNCAP hsa-miR-203a-3p Overexpression 24h 

GSE17362 ncbi.nlm.nih.gov/geo Boll et al microarrays LNCAP hsa-miR-205-5p Overexpression 24h 

GSE31620 ncbi.nlm.nih.gov/geo Hudson et al microarrays LNCAP hsa-miR-1-3p Overexpression 24h 

GSE31620 ncbi.nlm.nih.gov/geo Hudson et al microarrays LNCAP hsa-miR-206 Overexpression 24h 

GSE31620 ncbi.nlm.nih.gov/geo Hudson et al microarrays LNCAP hsa-miR-27b-3p Overexpression 24h 

GSE51053 ncbi.nlm.nih.gov/geo Kristensen et al microarrays PC3 hsa-miR-224-5p Overexpression 48h 

GSE51053 ncbi.nlm.nih.gov/geo Kristensen et al microarrays PC3 hsa-miR-452-5p Overexpression 48h 

GSE12039 ncbi.nlm.nih.gov/geo Fish et al microarrays HUVEC hsa-miR-126-3p Anti-miR 72h 

GSE18438 ncbi.nlm.nih.gov/geo Coutler E et al microarrays JSC1 hsa-miR-221-3p Overexpression NA 

GSE25215 ncbi.nlm.nih.gov/geo Ikeda Y et al microarrays PaCa-2 hsa-miR-193b-
3p 

Overexpression 48h 
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GSE40189 ncbi.nlm.nih.gov/geo Ouyang H et al microarrays PANC-1 hsa-miR-10b-5p Knockdown NA 

GSE40189 ncbi.nlm.nih.gov/geo Ouyang H et al microarrays PANC-1 hsa-miR-10b-5p Overexpression NA 

GSE13460 ncbi.nlm.nih.gov/geo Tzur G et al microarrays hESC hsa-miR-122-5p Overexpression NA 

GSE86432 ncbi.nlm.nih.gov/geo Dzikiewicz-
Krawczyk A et 

al 

microarrays DG75 hsa-miR-150-5p Overexpression NA 

GSE86432 ncbi.nlm.nih.gov/geo Dzikiewicz-
Krawczyk A et 

al 

microarrays ST486 hsa-miR-150-5p Overexpression NA 

GSE19232 ncbi.nlm.nih.gov/geo Tome M et al microarrays hMSC hsa-miR-335-5p Overexpression NA 

GSE8501 ncbi.nlm.nih.gov/geo Grimson A et al microarrays HELA hsa-miR-7-5p Overexpression 24h 

GSE8501 ncbi.nlm.nih.gov/geo Grimson A et al microarrays HELA hsa-miR-9-5p Overexpression 24h 

GSE8501 ncbi.nlm.nih.gov/geo Grimson A et al microarrays HELA hsa-miR-122-5p Overexpression 24h 

GSE8501 ncbi.nlm.nih.gov/geo Grimson A et al microarrays HELA hsa-miR-128-3p Overexpression 24h 

GSE8501 ncbi.nlm.nih.gov/geo Grimson A et al microarrays HELA hsa-miR-132-3p Overexpression 24h 

GSE8501 ncbi.nlm.nih.gov/geo Grimson A et al microarrays HELA hsa-miR-133a-3p Overexpression 24h 

GSE8501 ncbi.nlm.nih.gov/geo Grimson A et al microarrays HELA hsa-miR-142-3p Overexpression 24h 

GSE8501 ncbi.nlm.nih.gov/geo Grimson A et al microarrays HELA hsa-miR-148b-
3p 

Overexpression 24h 

GSE8501 ncbi.nlm.nih.gov/geo Grimson A et al microarrays HELA hsa-miR-181a-5p Overexpression 24h 

GSE39359 ncbi.nlm.nih.gov/geo Cai J et al microarrays MCF7 hsa-374a-5p Overexpression 36h 

GSE40411 ncbi.nlm.nih.gov/geo Krishnan K et al microarrays MCF7 hsa-miR-139-5p Overexpression NA 

GSE32999 ncbi.nlm.nih.gov/geo Mazda M et al microarrays PC3 hsa-miR-302a-3p Overexpression NA 

GSE32999 ncbi.nlm.nih.gov/geo Mazda M et al microarrays PC3 hsa-miR-372-3p Overexpression NA 

GSE32999 ncbi.nlm.nih.gov/geo Mazda M et al microarrays PC3 hsa-miR-373-3p Overexpression NA 

GSE32999 ncbi.nlm.nih.gov/geo Mazda M et al microarrays PC3 hsa-miR-520c-3p Overexpression NA 

GSE32999 ncbi.nlm.nih.gov/geo Mazda M et al microarrays PC3 hsa-miR-520f-3p Overexpression NA 

GSE60426 ncbi.nlm.nih.gov/geo Eichhorn et al RNA-Seq HEK293T hsa-miR-1-3p Overexpression 24h 

GSE52531 ncbi.nlm.nih.gov/geo Nam et al RNA-Seq HEK293 hsa-miR-124-3p Overexpression 24h 

GSE52531 ncbi.nlm.nih.gov/geo Nam et al RNA-Seq HEK293 hsa-miR-155-5p Overexpression 24h 

GSE68987 ncbi.nlm.nih.gov/geo Zhang et al RNA-Seq HELA hsa-miR-603 Overexpression 24h 

GSE60426 ncbi.nlm.nih.gov/geo Eichhorn et al RNA-Seq HELA hsa-miR-1-3p Overexpression 24h 

GSE60426 ncbi.nlm.nih.gov/geo Eichhorn et al RNA-Seq HELA hsa-miR-155-5p Overexpression 24h 

GSE52531 ncbi.nlm.nih.gov/geo Nam et al RNA-Seq HELA hsa-miR-155-5p Overexpression 24h 

GSE52531 ncbi.nlm.nih.gov/geo Nam et al RNA-Seq HELA hsa-miR-124-3p Overexpression 24h 

GSE68987 ncbi.nlm.nih.gov/geo Zhang et al RNA-Seq HELA hsa-miR-603 Overexpression 24h 

GSE37918 ncbi.nlm.nih.gov/geo Pellegrino et al RNA-Seq MCF7 hsa-miR-23b-3p Overexpression NA 

GSE37918 ncbi.nlm.nih.gov/geo Pellegrino et al RNA-Seq MDAMB231 hsa-miR-23b-3p Overexpression NA 

GSE64615 ncbi.nlm.nih.gov/geo Polioudakis et 
al 

RNA-Seq HELA has-miR-103a-3p Overexpression NA 

GSE64615 ncbi.nlm.nih.gov/geo Polioudakis et 
al 

RNA-Seq HELA has-miR-494 Overexpression NA 

GSE64615 ncbi.nlm.nih.gov/geo Polioudakis et 
al 

RNA-Seq HELA has-miR-503 Overexpression NA 

GSE63555 ncbi.nlm.nih.gov/geo Polioudakis et 
al 

RNA-Seq HELA hsa-miR-191-5p Overexpression NA 
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GSE63555 ncbi.nlm.nih.gov/geo Polioudakis et 
al 

RIP-Seq HELA hsa-miR-191-5p Overexpression NA 

GSE64615 ncbi.nlm.nih.gov/geo Polioudakis et 
al 

RIP-Seq HELA has-miR-103a-3p Overexpression NA 

GSE64615 ncbi.nlm.nih.gov/geo Polioudakis et 
al 

RIP-Seq HELA has-miR-494 Overexpression NA 

GSE64615 ncbi.nlm.nih.gov/geo Polioudakis et 
al 

RIP-Seq HELA has-miR-503 Overexpression NA 

GSE60426 ncbi.nlm.nih.gov/geo Eichhorn et al. RPF-Seq HEK293T hsa-miR-1-3p Overexpression 24h 

GSE60426 ncbi.nlm.nih.gov/geo Eichhorn et al. RPF-Seq HELA hsa-miR-155-5p Overexpression 32h 

GSE60426 ncbi.nlm.nih.gov/geo Eichhorn et al. RPF-Seq HELA hsa-miR-1-3p Overexpression 32h 

To retrieve a concise training set and reduce noise, datasets were combined under a tissue-

specific scheme. Table 13 summarizes the associations regarded between cell types and 

tissues. 

Table 13: Summary of the associations regarded between cell types and tissues for the extraction of miRNA-

targeted regions incorporated in training/test sets.  

Tissue Cell Type CLIP-Seq libraries miRNA perturbation 
experiments 

Kidney HEK293,HEK293T,PAG C81_61 43 11 
B lymphocyte CCL86,CRL1432,CRL1596,H929,P3HR1,JSC1,D

G75,ST486 
18 9 

Bone Marrow HMSC,K562 16 2 
Pancreas PANC1,PACA2 1 4 
Brain H4, SW1783,U87,HS683,U872M1,131_4_5B1 11 13 
Mammary 
Gland 

MCF10A,MCF7,MCF7FR,MDAMB231,MDAM
B468, SUM159 

10 20 

Cervix HELA 6 34 
Embryo HESC 1 1 
Umbilical Vein HUVEC 2 1 
Prostate LNCAP, PC3, DU145 5 16 

Direct miRNA-target pairs derived from Reporter Gene Assay techniques and miRNA 

chimeric fragments were also incorporated in microT deployment (Methods 2.2.1). Published 

background PAR-CLIP libraries (Methods 2.2.1), stably expressing a commonly utilized non-

RBP control (FLAG-GFP) were utilized to characterize negative miRNA-targeted pairs. The 

retrieved miRNA-binding events were annotated against a reference set of coding and 3’ UTR 

exons.  In cases of multiple transcript-gene associations, the transcript with the longest 3’ UTR 

was selected. The adopted methodology is depicted in Figure 16 while Table 14 summarizes 

the miRNA-target positive/negative instances utilized in the training set of the microT 

model, as identified by different indirect/direct, low and high-throughput experiments. Table 

15 outlines the independent test datasets included in the benchmarking evaluations. 
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Figure 16: Overview of miRNA-target positive/negative instances as identified by different indirect/direct, 

low and high-throughput experiments. miRNA-targeted regions derived from miRNA perturbation datasets 

presented an overlap with AGO-bound enriched regions from at least one CLIP-Seq library. Datasets have 

been combined under a tissue-specific scheme. No overlap was allowed between positive and negative 

miRNA-gene interactions and their related MRE-instances. 
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Table 14: Overview of miRNA-target positive/negative instances utilized in training set as identified by 

different indirect/direct, low and high-throughput experiments.  

 

Table 15: Summary of microarray experiments in human species upon specific miRNA deregulation, utilized 

in benchmarking evaluations of microT Super Learning model. 

Accession Repository Authors Cell Type miRNA 
miRNA 
treatment 

Post-Transfection 
Cell Harvest 
Time/Experimental 
Condition 

GSE16962 ncbi.nlm.nih.gov/geo Fasanaro et al HUVEC hsa-miR-210-3p Overexpression 24h 

GSE21901 ncbi.nlm.nih.gov/geo Hollander et al HEK293 hsa-miR-212-3p Overexpression - 

GSE22790 ncbi.nlm.nih.gov/geo Elyakim et al HEPG2 hsa-miR-191-5p Anti-miR - 

GSE21132 ncbi.nlm.nih.gov/geo Li et al Jurkat hsa-miR-146a-5p Overexpression 48h 

GSE42749 ncbi.nlm.nih.gov/geo Salim et al U1810 hsa-miR-214-3p Antagomir 24h 

 

2.3.2 microT in silico framework  

Feature set description. A set of 117 descriptors with non-zero variance was included in 

microT. The extracted features were retrieved from positive/negative miRNA interactions, 

identified on AGO-bound locations in different CLIP-Seq datasets and on chimeric fragments. 

microCLIP descriptors have been re-evaluated in the new enhanced training set by 

implementing feature selection methods. Statistical tests and metrics estimating the predictive 

accuracy of descriptors, e.g. AUC plots, were used to evaluate the behavior of features in one-

dimension. 30 characteristics representing per nucleotide base pairing composition of miRNA 

binding region with weak performance, as well as PAR-CLIP associated descriptors were 

totally discarded. The model integrates 16 new features that outline dinucleotide content and 

sequence accessibility of miRNA binding region and of respective upstream/downstream 

Positive Instances miRNAs in interactions Genes in interactions miRNA-target instances 

Chimeric 313 3,987 9,119 

RNA-Seq 9 1,942 4,244 

Microarrays 55 2,414 5,194 

RPF 2 1,383 2,872 

RIP 2 322 667 

Negative Instances miRNAs in interactions Genes in interactions miRNA-target  instances 

RNA-Seq 8 948 3,005 

Microarrays 28 189 835 

RPF 2 804 2,651 

FLAG_GFP_bg_20kD  393 715 12,371 

FLAG_GFP_bg_35kD 393 2,026 24,832 

FLAG_GFP_bg_45kD 393 2,219 24868 
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regions. The location of the MRE within the 3’ UTR/CDS, the length of the respective exon 

and the distance of the adjacent MREs were also estimated and incorporated. Accessibility 

scores were computed using RNAplfold[112] with the following parameters: w = 150, L = 100 

and u = 31. 

Description of the algorithm. microT operates on the whole transcript. It initially identifies 

putative (non-)canonical MREs located within the 3’ UTR and CDS regions by adopting a 

sensitive pipeline and subsequently scores them following the microCLIP classification 

scheme. Base node components have been re-arranged. Characteristics have been removed or 

inserted based on their conceptual framework. Table 16 describes microT features separated 

into the base nodes. The new entries are denoted with a bold font. 

Table 16: Description of features incorporated in microT. 

feature# base classifier node feature description 

1 

Region Features 
(53 Features) 

MRE region GC-skew 
2 MRE region Purine-skew 
3 MRE region Ks-skew 
4 Upflank MRE region Purine-skew 
5 Upflank MRE region Ks-skew 
6 MRE DUST score 
7 MRE region AT-skew 
8 MRE dS 
9 MRE Tm 
10 Codon Adaptation Index per codon usage bias 
11 Dinucleotide AA MRE content 
12 Dinucleotide AC MRE content 
13 Dinucleotide AG MRE content 
14 Dinucleotide AT MRE content 
15 Dinucleotide CA MRE content 
16 Dinucleotide CC MRE content 
17 Dinucleotide CT MRE content 
18 Dinucleotide GA MRE content 
19 Dinucleotide GC MRE content 
20 Dinucleotide CG MRE content 
21 Dinucleotide GG MRE content 
22 Dinucleotide TT MRE content 
23 Dinucleotide TA MRE content 
24 Dinucleotide AC content upflank of MRE 
25 Dinucleotide AT content upflank of MRE 
26 Dinucleotide GC content upflank of MRE 
27 Dinucleotide GT content upflank of MRE 
28 Dinucleotide TA content upflank of MRE 
29 Dinucleotide AA content upflank of MRE 
30 Dinucleotide TG content upflank of MRE 
31 A content upflank of MRE 
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32 C content upflank of MRE 
33 G content upflank of MRE 
34 T content upflank of MRE 
35 A or T content upflank of MRE 
36 A content in MRE 
37 A or G content in MRE 
38 A or T content in MRE 
39 C content in MRE 
40 G content in MRE 
41 G or T content in MRE 
42 T content in MRE 
43 Average conservation in MRE seed region 
44 Average conservation downstream of MRE region 
45 Average conservation upstream of MRE region 
46 Minimum conservation in MRE seed region 
47 Minimum conservation downstream of MRE region 
48 Minimum conservation upstream of MRE region 
49 Number of MREs per 3’ UTR/CDS length 
50 3’ UTR/CDS length 
51 Accessibility of the 30nt region upstream of MRE 
52 Accessibility of the 30nt region downstream of MRE 
53 Accessibility of the 20nt MRE region  

54 

Binding Vectors 
(23 Features) 

Binding event in MRE position 2 
55 Binding event in MRE position 3 
56 Binding event in MRE position 4 
57 Binding event in MRE position 5 
58 Binding event in MRE position 6 
59 Binding event in MRE position 7 
60 Binding event in MRE position 8 
61 Binding event in MRE position 10 
62 Binding event in MRE position 11 
63 Binding event in MRE position 12 
64 Binding event in MRE position 17 
65 Binding event in MRE position 18 
66 Base at MRE position 25 
67 Base at MRE position 26 
68 Base at MRE position 27 
69 Base at MRE position 28 
70 Base at MRE position 29 
71 Base at miRNA position 13 
72 Base at miRNA position 15 
73 Base at miRNA position 19 
74 Base at miRNA position 4 
75 Base at miRNA position 5 
76 Base at miRNA position 6 

77 Matches per miRNA/MRE 
domain 

(13 Features) 

Total mismatches 
78 Max consecutive matches 
79 Match in position 10 of miRNA 
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80 Match in position 2 of miRNA 
81 Consecutive unpaired bases of non-seed region 
83 Consecutive matches per total matches 
83 Matches in seed region per total matches 
84 Consecutive matches in seed region 
85 Consecutive matches in non-seed region per total 

matches 
86 Matches in seed region 
87 Matches in central MRE region 
88 Matches in 3' MRE 
89 Consecutive matches in seed region per max 

consecutive matches 

90 

Duplex Features 
(10 Features) 

AU frequency in MRE region 
91 GC frequency in MRE region 
92 MRE binding start 
93 Internal loop max length in MRE region 
94 AU frequency in seed region 
95 AU frequency in 3’ MRE region  
96 GC frequency in tail MRE region 
97 GC frequency in MRE region excluding seed 
98 Length of bulges in MRE region 
99 Bulge positions in MRE region (%) 

100 

Base Pairing 
(9 Features) 

Matches in MRE Ks-skew 
101 miRNA unpaired A 
102 miRNA unpaired C 
103 miRNA unpaired G 
104 miRNA unpaired T 
105 miRNA matches A 
106 miRNA matches T 
107 miRNA matches C 
108 miRNA matches G 

109 

MRE General 
(9 Features) 

MRE distance from 3’ UTR/CDS end 
110 Distance of adjacent MREs 
111 Matches in MRE Purine-skew 
112 Duplex structure energy 
113 Length of miRNA binding region 
114 Length of MRE binding region per cluster length 
115 Average conservation of whole MRE 
116 Average conservation of 5' MRE 
117 Binding Type 

1 

Feature Combination Set 1 
(26 Features) 

Binding event in MRE position 4 
2 Binding event in MRE position 11 
3 Binding event in MRE position 18 
4 Base at MRE position 28 
5 Base at MRE position 29 
6 Base at miRNA position 13 
7 Base at miRNA position 6 
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8 Max consecutive matches 
9 Binding Type 
10 Consecutive matches per total matches 
11 Consecutive matches in seed region per max 

consecutive matches 
12 Matches in 3' MRE 
13 AU frequency in seed region 
14 MRE binding start 
15 AU frequency in 3’ MRE region 
16 Length of bulges in MRE region 
17 miRNA unpaired C 
18 miRNA matches A 
19 miRNA matches C 
20 miRNA matches G 
21 Duplex structure energy 
22 Length of MRE binding region per cluster length 
23 Average conservation of whole MRE 
24 Base at miRNA position 15 
25 Binding event in MRE position 5 
26 Binding event in MRE position 7 

1 

Feature Combination Set 2 
(14 Features) 

MRE dS 
2 G content upflank of MRE 
3 A or T content upflank of MRE 
4 miRNA unpaired C 
5 Average conservation upstream of MRE region 
6 Accessibility of the 30nt region upstream the MRE 
7 Accessibility of the 30nt region downstream the MRE 
8 Accessibility of the 20nt MRE region  
9 Binding event in MRE position 3 
10 AU frequency in MRE region 
11 GC frequency in MRE region 
12 Matches in seed region per total matches 
13 Consecutive matches in seed region 
14 Distance of adjacent MREs 

1 

Feature Combination Set 3 
(14 Features) 

Binding event in MRE position 6 
2 Match in position 10 of miRNA 
3 Match in position 2 of miRNA 
4 Matches in seed region 
5 Matches in central MRE region 
6 GC frequency in tail MRE region 
7 GC frequency in MRE region excluding seed 
8 Matches in MRE Ks-skew 
9 miRNA unpaired A 
10 miRNA unpaired T 
11 Matches in MRE Purine-skew 
12 Length of miRNA binding region 
13 MRE distance from 3’ UTR/CDS end 
14 Consecutive unpaired bases of non-seed region 
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microT was trained against a collection of 22,096 positive and 68,562 negative miRNA 

interactions (Table 17, Table 18). The first layer comprised 16,062 positive and 52,592 negative 

instances, while the second one was trained on an independent set of 6,034 positive and 

15,970 negative miRNA-target pairs. Ten-fold cross-validation was performed on the training 

data to estimate each model’s accuracy. An independent test set of 6,192 positive/negative 

instances was utilized in the benchmarking evaluations.  

Table 17: Summary of training set utilized for microT deployment.  

 miRNAs in interactions Genes in interactions miRNA-target instances 

 Training Test Training Test Training Test 

Positive Instances 

 
Direct 
Techniques 

313 292 3,987 2,010 9,119 3,092 

miRNA 
perturbation 
experiments 

60 - 4,700 - 12,977 - 

Negative Instances 
Background 
CLIP-Seq 

393 391 3,883 1,758 62,071 2,801 

miRNA 
perturbation 
experiments 

34 15 1,698 264 6,491 299 

 

Table 18: Summary of miRNA-target instances, located on 3’ UTR and CDS regions, utilized in the 

training/test of microT model. 

 

  

Biotype Positive  set Negative  set 

 Training Test Training Test 

UTR3 13,441 2,215 41,276 1,820 

CDS 8,655 877 27,286 1,280 
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CHAPTER 3 

Results 

3.1 DIANA-TarBase repository 

DIANA-TarBase v8.0 is a reference database devoted to the indexing of experimentally-

supported microRNA (miRNA) targets. Its 8th version is the first database indexing more 

than 1 million entries, corresponding to ~670,000 unique miRNA target pairs. The interactions 

are supported by more than 33 experimental methodologies, applied to ~600 cell 

types/tissues under ~451 experimental conditions. It integrates information on cell-type 

specific miRNA-gene regulation, while hundreds of thousands of miRNA binding locations 

are reported. TarBase is coming of age, with more than a decade of continuous support in the 

non-coding RNA field. Α new module has been implemented that enables the browsing of 

interactions through different filtering combinations. It permits easy retrieval of positive and 

negative miRNA targets per species, methodology, cell type and tissue. An incorporated 

ranking system is utilized for the display of interactions based on the robustness of their 

supporting methodologies. Statistics, pie-charts and interactive bar-plots depicting the 

database content are available through a dedicated result page. An intuitive interface is 

introduced, providing a user-friendly application with flexible options to different queries.  

3.1.1 DIANA-TarBase update: Database statistics 

The current version has been enhanced with a large compilation of high quality miRNA-

binding events derived from chimeric fragments, reporter gene assay and CLIP-Seq 

experiments. More than 200 high-throughput experiments followed by perturbation of a 

specific miRNA have been analyzed and integrated in the database. This extension provides 

an increase of approximately 200,000 interactions and ~300,000 entries since the previous 

version[50]. A concise description of TarBase v8.0 is presented in Table 19. 
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Table 19: TarBase v8.0 Entries.  Statistics regarding the total entries, miRNA-gene interacting pairs derived 

from low-/high-throughput methodologies, distinct cell types/tissues and curated publications are provided. 

The number of analyzed datasets and unique studied conditions are presented for high-throughput 

experiments. The incorporated low-/high-throughput experimental techniques, as well as interface 

improvements are reported. Newly incorporated experimental methods and interface advancements are 

marked as bold. 

 

DIANA-TarBase v8.0 caters more than one million entries, corresponding to the largest 

compilation of experimentally supported miRNA targets. This collection of miRNA-gene 

 
 TarBase v8.0 

Database 

Total entries >1,080,000 

Entries from low-yield methods 10,339 

Entries from high-throughput 
methods 

~1,069,000 

Cell types 516 

Tissues 85 

Publications 1,208 

Support from direct 
experiments 

miRNA-gene entries ~790,300 

miRNAs 1,761 

Targeted genes 27,613 

Publications 968 

Analyzed high-throughput 
datasets 

Datasets 353 

Conditions ~230 

Publications 102 

Experimental Methods Description of major classes 

Reporter Genes, Western Blot, 
qPCR, Proteomics,  Biotin 
miRNA tagging , CLIP-Seq, 
CLEAR-CLIP, CLASH, CLIP-

chimeric, IMPACT-Seq,  
AGO-IP, RPF-Seq, RIP-Seq, 
Degradome, RNA-Seq, TRAP, 
Microarrays, Other 
 

Interface Data visualization 

Re-designed interface, 
support of specific queries, 
Browsing Mode, Ranking 

System, customizable sorting 

of results,  advanced 

interactive statistics,  
advanced filtering options, 
cell type/tissue combinations, 
detailed meta-data, 
interconnection with DIANA-
Tools, ENSEMBL integration 
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interactions has been derived from experiments employing more than 33 distinct low-yield 

and high-throughput techniques, spanning 85 tissues, 516 cell types and ~451 experimental 

conditions from 18 species (Figure 17a). Approximately 1,200 publications were manually 

curated and more than 350 high-throughput datasets have been analyzed. The new database 

version incorporates an assortment of positive and negative direct miRNA interactions. It 

comprises more than 10,000 interactions derived from specific techniques. Approximately 

5,100 of these miRNA targets are verified by reporter gene assays, extracted from ~950 

publications, providing a 1.6-fold increase compared to relevant entries in TarBase v7.0. More 

than 14,000 direct miRNA-mRNA chimeric fragments defined from CLASH and CLEAR-

CLIP experiments, as well as from a previous meta-analysis of published AGO-CLIP 

datasets[113], have been integrated to the repository. Approximately 90,000 new entries were 

generated from the analysis of additional AGO CLIP-Seq libraries from 3 studies. More than 

233,000 interactions have been extracted from miRNA-specific transfection/knockdown 

microarray, RPF-Seq, RIP-Seq and RNA-Seq experiments which were performed in 28 tissues 

and 82 cell types under 206 experimental conditions. Updated entries derived from the 

aforementioned methodologies are summarized in (Figure 17b). 
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Figure 17: TarBase entries divided per methodology. Values are plotted in log2 scale. Each grid line 

corresponds to quadrupling of indexed miRNA interactions. a) Total miRNA-gene entries incorporated in 

TarBase v8.0. b) Comparison of TarBase v8.0 and TarBase v7.0 entries (Karagkouni D and Paraksevopoulou 

MD et al, 2017)[64]. 
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3.1.2 Interface 

3.1.2.1 Querying the database 

A new relational schema, developed in PostgreSQL, is introduced to host TarBase v8.0 data. 

The database interface has also been redesigned using the Yii 2.0 PHP framework and 

enhanced to provide an intuitive user-friendly application as well as flexible options to 

different queries (Figure 18). Users can retrieve interactions by performing a query with 

miRNA and/or gene names. Identifiers from ENSEMBL[83] and miRBase[114] are supported. 

Positive and/or negative miRNA targets can be retrieved through the combination of distinct 

filters such as experimental methodology, cell type and tissue according to the user’s needs. 

Results can be sorted in ascending or descending order based on gene and/or miRNA names 

as well as on the number of experiments, publications and cell types/tissues supporting these 

interactions. Detailed meta-data including the binding location and experimental conditions 

are displayed in the relevant result sections.  

 

Figure 18: Snapshot depicting the DIANA-TarBase v8.0 interface. Users can apply a query with miRNA 

and/or gene names [1] or navigate in the database content through combinations of the filtering criteria [2]. 

Positive/negative interactions can be refined with a series of filtering options including species, tissues/cell 
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types, methodologies, type of validation (direct/indirect), database source, publication year as well as in 

silico predicted score [2]. Brief result statistics are promptly calculated [3]. Interactions can be sorted in 

ascending or descending order based on gene and/or miRNA names, on the number of experiments, 

publications and cell types/tissues supporting them [4].  Gene and miRNA details, complemented with active 

links to Ensembl, miRBase and the DIANA disease tag cloud, are provided [5]. Details regarding the 

experimental procedures such as the methodology, cell type/tissue, experimental conditions and link to the 

actual publication are presented [6]. Methods are color-coded, with green and red portraying validation for 

positive and negative regulation, respectively. Interactions are also accompanied by miRNA-binding site 

details [7]. Links to DIANA-miRPath functional analysis resource [8] and to an informative Help section [9] 

are also available. Users can navigate to the separate database statistics page [10] (Karagkouni D and 

Paraksevopoulou MD et al, 2017)[64]. 

Ranking system: A novel ranking system has been incorporated in the interface. miRNA 

targets are by default sorted according to the robustness of the respective experimental 

techniques. In brief, miRNA-gene interactions determined from low-throughput experiments 

are reported first, followed by those derived from high-throughput techniques. More 

precisely, miRNA-binding events retrieved from reporter gene assays, the gold standard of 

methodologies in miRNA target recognition, are prioritized, followed by those defined from 

any other low-yield technique. Direct interactions inferred from chimeric fragments are 

subsequently presented, followed by those determined from CLIP-Seq methods. miRNA 

targets supported from any other indirect miRNA-specific transfection/knockdown high-

throughput technique are finally displayed. In cases of miRNA-target pairs derived from the 

same category of methods, ranking is performed based on the number of distinct experiments 

they have been validated with. 

Browsing mode: A novel aspect in the new interface is the browsing mode (Figure 18). Users 

can easily retrieve the top targets (up to a maximum of 3,000) without applying any specific 

query. Positive or negative interactions can be obtained based on different combinations of 

the filtering criteria including species, tissues/cell types and methodologies.   

Advanced statistics: DIANA-TarBase v8.0 also provides statistics, advanced interactive pie-

charts and bar plots, implemented using the D3.js JavaScript library, to portray the database 

content and extent for the different species (Figure 19).  
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Figure 19: Screen-shot depicting DIANA-TarBase statistics page. The number of interactions, cell 

types/tissues, publications and low-/high-throughput methodologies are summarized at the top of the page 

[1]. A pie-chart portraying the database content per species is provided [2]. The user can select any species 

combination [3] to obtain relevant statistics [4]. The bar-plot [5] and tables [6] at the end of the page show the 

number of interactions (log2-scaled) per methodology and the cell-type/tissue frequencies respectively. They 

are also dynamically populated depending on the user’s choice of species (Karagkouni D and 

Paraksevopoulou MD et al, 2017)[64]. 

3.1.2.2 Database interconnections 

Since the sixth version, DIANA-TarBase has been integrated in ENSEMBL[83] and 

RNAcental[115] (Figure 20, Figure 21). Interactions accompanied with the exact binding 

location can be viewed in the ENSEMBL Genome Browser via the dedicated “TarBase” track. 

The database is also seamlessly interconnected with other available DIANA-tools, including 

microT-CDS[85] for in silico identification of miRNA targets, LncBase v2.0[116] for the display 

of miRNA-lncRNA interactions and DIANA-miRPath v3.0[117] for functional 

characterization of miRNAs.  
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Additionally to the ~1 million entries indexed in TarBase, miRNA targets retrieved from 

other relevant databases, including miRTarBase[118] and miRecords[32], are also provided to 

users. These entries are disregarded from database statistics. 

 

 
Figure 20: TarBase integration in ENSEMBL.  

 

TarBase 

track 
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Figure 21: TarBase integration in RNAcentral.  

3.2 microCLIP Super Learning framework uncovers functional transcriptome-wide miRNA 

interactions 

microCLIP is a cutting-edge framework, dedicated to the analysis of AGO-CLIP-Seq 

experiments, that combines deep learning classifiers under a super learning scheme. The 

analysis of PAR-CLIP methodology focuses on sequence clusters containing T-to-C 

conversions. In this thesis, it is demonstrated that the non-T-to-C clusters, frequently 

observed in PAR-CLIP experiments, exhibit functional miRNA binding events and strong 

RNA accessibility. This discovery is based on the analysis of an extensive compendium of 

bona fide miRNA-binding events, and is further supported by numerous miRNA perturbation 

experiments and structural sequencing data. The incorporation of these previously neglected 

clusters yields an average of 14% increase in miRNA-target interactions per PAR-CLIP 
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library. The increased performance of microCLIP in CLIP-Seq-guided detection of miRNA 

interactions, uncovers previously elusive regulatory events and miRNA-controlled pathways. 

3.2.1 T-to-C and non-T-to-C PAR-CLIP clusters share common traits 

Clusters depleted on T-to-C conversions, which are always filtered out in PAR-CLIP analysis, 

seem to aid in the identification of functional miRNA binding events (Figure 11).  

One of the most important steps in PAR-CLIP analysis is the identification of AGO-bound 

regions for further investigation. This process is mainly based on the presence and percentage 

of reads harboring T-to-C mutations within a cluster, while all other peaks are omitted from 

the analysis. Importantly, including only T-to-C enhanced cross-linked regions led to a 

significant loss (60-80%) of the AGO-PAR-CLIP reads across 24 libraries. non-T-to-C 

containing regions are examined for the possibility to pinpoint functional miRNA binding 

events. The applied approach assessed a random set of 4,310 and 1,700 miRNA binding sites, 

supported by T-to-C and non-T-to-C clusters respectively, located in 3’UTR and CDS regions. 

More than 65% of miRNA recognition elements (MREs) were derived from direct 

experimental techniques, while the rest originated from the analyzed miRNA high-

throughput perturbation datasets (64 microarray and 12 RNA-Seq experiments). 

Importantly, approximately 28% of the positive MREs, including 1,131 chimeric and reporter 

assay-verified interactions, were observed to be exclusively resolved by non-T-to-C AGO-

enriched clusters. Consequently, downstream evaluations were initially centered on the 

comparison of MRE-specific feature distributions between clusters lacking or containing T-to-

C sites. Known important attributes were calculated for miRNA-target recognition such as 

the AU flanking content, binding type, matches per miRNA-target duplex domain, minimum 

free energy, GU wobble pairs and MRE conservation. Evaluated descriptors of miRNA 

positive interactions residing on T-to-C clusters significantly diverge from respective 

densities observed in negative MREs (Figure 22, range of P values T-to-C: 5.9x10-198 - 4x10-7, two-

tailed Wilcoxon rank-sum test, nT-to-C = 4,310, nnegative = 1,423). It is shown that features related 

to miRNA targeted sites on non-T-to-C clusters also significantly differentiate from relevant 

estimates corresponding to negative miRNA-target instances (Figure 22, range of P values non-

T-to-C: 7.8x10-139 - 14x10-5, two-tailed Wilcoxon rank-sum test, nnon-T-to-C = 1,700, nnegative = 1,423).  
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Figure 22: Distributions of MRE-related features corresponding to positive miRNA interactions in T-to-C and 

non-T-to-C AGO-bound regions against the relevant densities of negative binding sites. Assessed 

characteristics of positive miRNA interactions on (non-)T-to-C clusters significantly diverge from respective 

feature distributions of negative MREs (two-tailed Wilcoxon rank-sum test) (Paraskevopoulou MD and 

Karagkouni D et al, 2018)[17]. 

3.2.2 Structural sequencing data unveil accessible AGO-bound loci 

PARS sequencing profiles were calculated around AGO-PAR-CLIP-derived miRNA binding 

sites in 4 EBV transformed lymphoblastoid cell lines[53]. The analysis of the respective RNase 

S1 or V1 nuclease signals/intensities at single base resolution enabled the assessment of 

miRNA site accessibilities in both T-to-C and non-T-to-C clusters. These measurements were 

juxtaposed against negative MREs comprising miRNAs expressed in the examined 

lymphoblastoid cell types. The per base averaged PARS scores indicate that strong structural 

accessibility occurs in the 3’ end of miRNA-target sites and specifically on 2-4nt positions of 

the miRNA seed region. These results were identified on interactions residing on (non-)T-to-

C clusters and significantly differ from respective base scores along negative MREs located on 

AGO-enriched peaks (Figure 23, yellow window; Methods, range of P values T-to-C: 0.03 - 

3.7x10-5, P values non-T-to-C: 0.01 - 2.4x10-5, two-tailed Wilcoxon rank-sum test, 3,260 < nT-to-C sites 
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< 9,159, 2,119 < nnon-T-to-C sites < 6,473, nnegative sites = 3,059). The outcome of this analysis is 

consistent with previous observations[119] and demonstrates that the highest accessibility 

segregating functional from non-functional binding sites resides towards the initiation of the 

direct miRNA seed pairing.  

 

Figure 23: Average PARS scores of AGO-bound regions deduced from the analysis of 4 EBV transformed 

lymphoblastoid PAR-CLIP libraries. RSS base signals were aligned to the start of the miRNA-target binding 

site. Base 0 corresponds to the 3’-end of the mRNA, at −1 or −2 nt dowstream of the initiation of the direct 

miRNA seed pairing. Negative PARS scores correspond to single stranded RNA structures, while positive 

scores to double stranded sites. In the examined AGO-PAR-CLIP EF3D-AGO2(a), LCL-BAC-D1(b), LCL-

BAC-D3(c) and LCL-BAC(d) datasets, strong structural accessibility occurs in miRNA sites identified on T-to-

C (red) and non-T-to-C (green) clusters in the 2-4nt positions (yellow window) of the miRNA seed pairing. 

These results significantly differ from respective base scores along negative MREs (light blue) located on 

AGO-enriched peaks (Paraskevopoulou MD and Karagkouni D et al, 2018)[17]. 

3.2.3 A super learning approach for AGO-PAR-CLIP analysis 

All the aforementioned observations have been incorporated in an extensive in silico 

framework. microCLIP is based on ensemble super learning and provides a complete pipeline 

for experimentally supported miRNA targetome annotation, initiating from aligned 
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(.sam/.bam) PAR-CLIP sequencing reads. This algorithm, contrary to existing leading 

implementations, operates on every AGO-enriched cluster, utilizing the previously neglected 

non-T-to-C clusters.  

Distribution of base model scores on positive and negative instances and their respective 

performance, in terms of sensitivity and specificity in an independent test set of 

approximately 4,000 instances, are depicted in Figure 24. All the classifiers achieved high 

performance in a range of sensitivity 73.4% - 92.7% and specificity 67.6% – 86.8% (range of 

AUC: 75.3% – 95.4%). Their aggregated outcome in the meta-learner of microCLIP framework 

is provided in a separate curve and exhibits the highest performance in terms of sensitivity 

and specificity (sensitivity: 96.0, specificity: 87.4, AUC: 95.5%). The individual performance of 

internal classifiers (DL, RF, GBM, GLM) in microCLIP base models adopting a super learner 

approach is shown using the same set in Figure 25 and Figure 26.  
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Figure 24: Evaluation of the accuracy of the 9 base model classifiers. Five-fold cross-validation has been 

implemented on a separate set of approximately 4,000 instances to test the performance of each node. a) ROC 

curve of each base model displays the classification of positive/negative miRNA binding sites. b) 

Distribution of base model scores estimated on positive/negative instances of the test set (Paraskevopoulou 

MD and Karagkouni D et al, 2018)[17].  
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Figure 25: Evaluation of constitutive/internal classifiers of 5 microCLIP base models that adopt a super 

learning approach.  Five-fold cross-validation was applied on a separate set (same as in Figure 23), to test the 

performance of the seven individual Random Forest (RF), Generalized Linear Model (GLM), Gradient 

Boosting Model (GBM), Deep Learning (DL) classifiers (2 RF, 2 GBM, 2 DL, 1 GLM models) in each base 
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node. Different colors are consistently utilized to display ROC curves of each sub-classifier incorporated in 

‘Binding Vectors’, ‘Matches per miRNA/MRE domain’, ‘Duplex Features’, ‘Base pairing’ and ‘MRE general’ 

base nodes respectively. Information concerning sensitivity, specificity and AUC of each model is shown in 

the figure legends. The performance of ensemble deep learning models that aggregate the seven independent 

sub-classifiers in each base node are additionally shown (Paraskevopoulou MD and Karagkouni D et al, 

2018)[17]. 

 

Figure 26: Evaluation of the accuracy of sub-classifiers included in ‘Feature Combination Set 1-3’ base nodes. 

The performance of sub-classifiers (2 RF, 2 GBM, 2 DL, 1 GLM models), along with the performance of the 

ensemble deep learning models that aggregate their output are displayed in distinct colors (Paraskevopoulou 

MD and Karagkouni D et al, 2018)[17]. 
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The multi-layer super learner classification scheme of microCLIP benefits from the 

incorporation of the complete array of features, maximizing their contribution through their 

parallel use in different classification models in every node. The impact of weaker features 

and classifiers in optimal super learner design and behavior is shown in Figure 27, where 

microCLIP performance was compared to three different classification schemes using an 

independent validation set of 1,674 positive miRNA binding sites, corresponding to 1,527 

miRNA-gene interactions. 

 
Figure 27: Evaluation of microCLIP performance against 3 alternative classification approaches: a Random 

Forest classifier comprising all the features; a Random Forest classifier including the top 27 discriminative 

features (AUC ≥ 65%); microCLIP super learner classification scheme including top performing features per 

base node (70 descriptors in total, AUC ≥ 65%). The utilized validation set comprised 1,674 positive miRNA 

binding sites, derived from experimentally validated direct miRNA interactions. (a) The number of correctly 

predicted miRNA binding sites for each classification approach is plotted versus the total retrieved predicted 

sites. (b) A separate comparison captures the models’ efficiency to predict correct miRNA-target interactions 

at different levels of total predictions. The validation set is the same as in (a) collapsed into 1,527 miRNA-

gene interactions (Paraskevopoulou MD and Karagkouni D et al, 2018)[17]. 
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3.2.4 microCLIP detects novel miRNA interactions from AGO-PAR-CLIP clusters 

The analysis of 10 public datasets across different experimental conditions (GEO/SRA 

accessions GSE28859, GSE59944, GSE41437, SRR1045082, SRR359787) was revisited with 

microCLIP, in order to explore the extent of miRNA-target pairs that remain uncovered using 

standard AGO-PAR-CLIP computational approaches. Processed CLIP-Seq libraries were 

accompanied by RNA-Seq and small RNA-Seq (sRNA-Seq) data to determine the set of 

expressed transcripts and miRNAs per cell type. By screening every AGO-enriched region, 

microCLIP reveals a significant portion of targeted genes distinguished only from CLIP 

clusters presenting no conversion sites. An average 11 ± 6.4% increase of detected targets was 

observed across the analyzed experiments. Figure 28 summarizes the miRNA-target 

interactions per library, supported by T-to-C and/or non-T-to-C peaks, respectively. The 

retrieved results suggest that the miRNA targetome is not sufficiently covered by inferring 

targets solely in T-to-C enriched cross-linked regions. The impact of the unrecognized 

miRNA interactions is also reflected in functional analyses. 

 

Figure 28: Bar plots featuring the average miRNA-target interactions supported by non-T-to-C and/or T-to-C 

peaks per examined cell type and experimental condition. Mean and standard errors (error bars) of miRNA 

interactions are shown per library. An average increase of 14% (± 8.8%) in the detected interactions was 

observed across analyzed PAR-CLIP libraries by the incorporation of non-T-to-C clusters (Paraskevopoulou 

MD and Karagkouni D et al, 2018)[17]. 

To investigate the functional importance of miRNA sites residing on AGO-enriched regions 

presenting insufficient T-to-C substitutions, 17 public high-throughput gene expression 

profiling datasets following transfection or knockdown of specific miRNAs (GEO accessions 

GSE60426, GSE52531, GSE68987, GSE37918, GSE21901, GSE14537, GSE35621, GSE46039, 

GSE21577, microarrays from the study of Selbach et al.[46]) were utilized. These experiments 

were complemented with AGO-PAR-CLIP datasets conducted in relevant cell types. 

microCLIP was applied to detect miRNA-gene interactions on HEK293, MCF7 and TZMBL 

PAR-CLIP libraries (Kishore et al.[34], Farazi et al.[54], Whisnant et al.[120]). Response of 

Institutional Repository - Library & Information Centre - University of Thessaly
11/07/2024 07:57:03 EEST - 3.145.41.45

https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR1045082


  

115 

targeted mRNAs to miRNA deregulation was evaluated independently per tested cell type. 

In the conducted comparisons, target fold changes in 3 distinct groups were measured: (i) 

mRNAs presenting at least one predicted MRE on T-to-C clusters, (ii) mRNAs participating in 

interactions resolved only by non-T-to-C clusters, (iii) transcripts lacking sites for the 

examined miRNAs. In all miRNA perturbation experiments, detected targets overlapping 

(non-)T-to-C clusters were significantly downregulated or upregulated upon transfection or 

knockdown of different miRNAs compared to transcripts having no miRNA binding site 

(Figure 29, range of P values T-to-C: 5.1x10-138 - 11x10-3, P values non-T-to-C: 8.5x10-29 - 37x10-3, two-

tailed Wilcoxon rank-sum test, 51 < nT-to-C < 1,569, 11 < nnon-T-to-C < 344, 2,677 < nno-site < 

12,330). Regardless of the perturbation type, T-to-C clusters were observed to relate to more 

responsive targets at equal numbers of predicted sites (Figure 29, range of P values (b-f): 

2.7x10-11 – 3.9x10-2, two-tailed Wilcoxon rank-sum test, 11 < nT-to-C/non-T-to-C < 344).  

The definition of T-to-C locations varies in relevant publications and describes T-to-C loci as 

those that are covered with reads having at least 5-25% T-to-C substitutions[11, 121-124]. For 

the analyses presented in the aforementioned figures, a minimum 20% T-to-C incorporation 

ratio defines T-to-C clusters. The selected T-to-C percentage threshold is considered of 

medium stringency to confidently identify clusters following the experiment’s specifications.  
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Figure 29: Functional efficacy of microCLIP-detected MREs residing on T-to-C and non-T-to-C AGO-bound 

enriched regions. miRNA binding sites were obtained from the analysis of PAR-CLIP libraries in 3 different 

cell types. The functional efficiency of predicted targets was examined in 17 public gene expression profiling 

datasets following miRNA transfection or knockdown. Response of targeted mRNAs to miRNA perturbation 

experiments was evaluated independently per tested cell type, experimental technique and conditions (a-g). 

Cumulative distributions of mRNA fold changes for targets comprising at least one predicted MRE on T-to-C 

clusters or supported only by non-T-to-C peaks were compared to those that lack any site of the considered 

miRNAs. The number of transcripts included in each category is presented in parentheses. Identified targets 

supported by T-to-C and non-T-to-C clusters exert a significant difference in expression changes compared to 

transcripts lacking any predicted binding site (two-tailed Wilcoxon rank-sum test). At same numbers of T-to-

C and non-T-to-C sites, the former group relates to more responsive targets at miRNA perturbation 

experiments in (b-f) (Paraskevopoulou MD and Karagkouni D et al, 2018)[17]. 

3.2.5 Functional enrichment shows importance of non-T-to-C targets 

To demonstrate the ability of detected non-T-to-C interactions to statistically empower 

downstream analyses, a functional enrichment investigation on KEGG pathways was 

conducted in highly scored miRNA-target pairs from an independent AGO-PAR-CLIP 

dataset in MCF7 cells (Farazi et al.[54]). The dataset was analyzed with microCLIP, while the 

100 most highly expressed miRNAs and their targets in 3’ UTR regions were retained. 

8,921 and 846 unique interactions retrieved from T-to-C and non-T-to-C peaks, respectively, 

were utilized to form two gene sets: one containing unique T-to-C targets (n = 396), and one 

combining T-to-C and non-T-to-C targets (n = 491). 391 genes were common between the two. 

Pathway analysis of T-to-C targets resulted in 63 significantly enriched terms (P < 0.01, one-

sided Fisher’s exact test, Benjamini-Hochberg adjustment, 6 < nT-to-C < 51), while the 

combined set yielded 67 enriched terms (P < 0.01, one-sided Fisher’s exact test, Benjamini-

Hochberg adjustment, 6 < n(non-)T-to-C < 58). An average of 2.4 more targets per pathway was 

observed when non-T-to-C interactions were included. 

In both analyses, top-ranking terms were pathways modulating endocrine resistance, growth 

factor receptor signaling and typical tumor-related processes, like cell growth, migration and 

apoptosis. Numerous cancer pathways occupied top positions based on P value scores 

(Figure 30). This elementary analysis indicated that non-T-to-C peaks assisted in discovering 

more targeted pathway members.  
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Figure 30: Functional significance of (non-)T-to-C sites in MCF7 AGO-PAR-CLIP dataset. Top 30 KEGG 

pathways enriched by T-to-C or (non-)T-to-C (combined T-to-C and non-T-to-C) peak containing genes. X-

axis depicts number of genes enriching each term. Pathways are ranked according to the enrichment P value 

shown at the end of each bar. The T-to-C site enrichment rank is provided after pathway description to 

facilitate comparison with gene set of (non-)T-to-C sites (Paraskevopoulou MD and Karagkouni D et al, 

2018)[17]. 

To further validate pathway-related interactions from (non-)T-to-C clusters, we investigated 

miRNA-target expression associations in 271 breast cancer patient samples indexed in 

TCGA[125]. miRNA and mRNA expression profiles were measured by ductal breast cancer 

sRNA-Seq and RNA-Seq samples obtained from Firehose 

(http://gdac.broadinstitute.org/runs/stddata__2016_01_28). In downstream analysis 13,346 

mRNAs and 322 expressed miRNAs were incorporated. Pearson correlation analysis of 

expression across samples was conducted for each miRNA-target pair contained in enriched 

KEGG terms. miRNA-gene expression associations, evaluated separately for interactions 

resolved by T-to-C and non-T-to-C clusters, are depicted in cumulative distribution plots 

(Figure 31). The analysis confirmed a significant shift of pathway-related miRNA-target 

interactions towards more negative correlation coefficients, when compared against a 

randomly selected subset from all miRNA-gene interacting pairs lacking target sites for the 
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highly expressed miRNAs (PT-to-C = 6.7x10-22, Pnon-T-to-C = 8x10-4, two-tailed Wilcoxon rank-

sum test, nT-to-C = 2,299, nnon-T-to-C = 494, nno-site = 4,000).  

 
Figure 31: Correlation analysis of expression of pathway-related miRNA-target interactions across 271 TCGA 

ductal breast cancer samples (patients). Cumulative distributions of miRNA-target expression relationships, 

evaluated for interactions supported by T-to-C or non-T-to-C AGO-bound regions were compared to a 

randomly selected set from all the remaining miRNA-gene interacting pairs lacking any target site of the 

highly expressed miRNAs. The number of genes considered in each category is presented in parentheses. 

Pathway-related miRNA-target interactions supported by T-to-C and non-T-to-C clusters reveal a significant 

shift towards more negative correlation coefficient values compared to the no-site distribution (two tailed 

Wilcoxon rank-sum test) (Paraskevopoulou MD and Karagkouni D et al, 2018)[17]. 

3.2.6 Evaluation of microCLIP against AGO-CLIP-guided models 

To assess microCLIP accuracy and to estimate the information gain with the incorporation of 

non-T-to-C AGO-enriched regions, we compared the model against MIRZA[55], 

microMUMMIE[56] and PARma[58]. In the evaluation process, AGO-CLIP-guided algorithm 

performance was also contrasted with Targetscan v7[20] de novo miRNA-target prediction 

algorithm. A model adopting the same super learning scheme, including information only 

from T-to-C enriched sites, microCLIP T-to-C, was also deployed. Clusters from the training 

set incorporating adequate T-to-C transition sites were selected as input to re-train the super 
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learning classifier. Additional support for the robustness of CLIP-guided super learner 

classification irrespective of non-T-to-C site inclusion is provided through the inclusion of 

microCLIP T-to-C algorithm in the evaluation process. 

The performance evaluation was initially accomplished against unified sets of 4 microarray 

and 2 RNA-Seq public datasets in which miRNAs were individually transfected into HEK293 

cells (GEO accessions GSE60426, GSE52531, GSE21901, GSE14537, GSE35621). An extensive 

list of interactions for each CLIP-guided program was derived from the analysis of 7 PAR-

CLIP HEK293 libraries (Kishore et al.[34], Memczak et al.[110]). Each miRNA-target pair was 

characterized by the highest scored miRNA binding site overlapping coding or 3’UTR exons, 

since utilized algorithms provided MRE-oriented prediction scores. In cases of multiple 

transcript-gene associations, the transcript with the longest 3’UTR was selected. The retrieved 

MREs were juxtaposed with deregulated targets identified in the gene expression profiling 

experiments. To determine the ability of each method to identify the most strongly 

downregulated targeted genes, detected interactions were ranked according to their provided 

scores. The median fold changes (log2) of the top predicted targets for the different algorithms 

were subsequently estimated and accordingly compared by applying stepwise thresholds of 

total predictions. The performance of implementations was additionally evaluated against 

averaged log fold changes of 1000 randomly selected genes (without replacement). The mean 

log2 fold change values of the randomly selected genes in different stepwise thresholds were 

taken and the median curve derived from these values was calculated. Genes with zero fold-

change indication were filtered out from the random selection process. 

In the examined miRNA perturbation experiments, microCLIP-detected targets revealed the 

strongest repression, compared to all the assessed approaches (range of P values microarrays : 0 – 

8.2x10-74, P values RNA-Seq: 0 – 8.1x10-30, two-tailed Wilcoxon signed-rank test, 535 < nmicroarrays < 

5,529, 174 < nRNA-Seq< 3,129; Figure 32) and to randomly selected genes (Pmicroarrays = 3.3x10-165, 

PRNA-Seq = 3.3x10-165, two-tailed Wilcoxon signed-rank test, nmicroarrays = 1,000, nRNA-Seq = 1,000; 

Figure 32). microCLIP uncovered interactions with stronger functional impact, when 

equivalent numbers of top predictions, ordered from highest to lowest scores, were 

compared. Importantly, the predictions of the tested algorithms were significantly more 

responsive than expected by chance (range of P values microarrays: 3.3x10-165 – 2x10-89, P values 

RNA-Seq: 3.3x10-165 – 1.8x10-30, two-tailed Wilcoxon signed-rank test, 535 < nmicroarrays < 1,001, 174 

< nRNA-Seq< 1,001; Figure 32). 
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Figure 32: Assessment of microCLIP prediction efficacy against microCLIP T-to-C, MIRZA, microMUMMIE, 

PARma and Targetscan v7. miRNA-target pairs for each AGO-CLIP in silico approach were obtained from 

the analysis of 7 PAR-CLIP HEK293 libraries and functional investigation was performed by measuring 

mRNA responses to miRNA perturbations. Unified sets of (a) 4 microarray and (b) 2 RNA-Seq datasets, in 

which miRNAs were individually transfected into HEK293 cells, were included in the evaluation process. 

Median fold change-values (log2) of the top predicted targets per tested algorithm were plotted and 

accordingly compared by applying stepwise cutoffs on total predictions. Performed comparisons 

additionally incorporate a group comprising mean fold changes of 1000 randomly selected genes (without 

replacement) by using 100 re-samplings. microCLIP significantly outperforms all the juxtaposed 

implementations, detecting targets with the strongest median downregulation, from stringent to loose 

prediction thresholds. microCLIP T-to-C also exhibits greater efficacy than the rest in silico approaches 

(range of P values microarrays: 0 – 2.2x10-7, P values RNA-Seq: 5.5x10-265 – 3.6x10-29, two-tailed Wilcoxon 

signed-rank test, 535 < nmicroarrays < 3,223, 174 < nRNA-Seq< 1,613), (Paraskevopoulou MD and 

Karagkouni D et al, 2018)[17]. 

The performance of microCLIP, MIRZA, microMUMMIE, PARma and Targetscan v7 was 

also tested using 3 HEK293 and 4 HeLa expression profiling datasets following miRNA 

perturbation. Interactions were obtained by analyzing HEK293 and HeLa AGO-PAR-CLIP 

libraries (GEO accessions: GSM714644, GSM1462574) reported in studies by Kishore et al.[34] 

and Whisnant et al.[120], while each miRNA-target pair was characterized by its associated 

miRNA binding site with the highest score. To ascertain an impartial evaluation, cumulative 

distributions of fold changes were compared for equivalent sets of top predicted targets, i.e. 

genes with one or more predicted MRE, against genes lacking any site(s) for the considered 
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miRNAs. microCLIP exerted significant differences in expression changes compared to 

transcripts lacking any predicted binding site (range of P values (a-g): 3.2x10-71 – 1.3x10-6, one-

sided Kolmogorov-Smirnov test, 6,764 < nno-site < 13,122). Compared to the other CLIP-guided 

implementations, microCLIP displayed the greatest site effectiveness in most cases (range of 

P values (a-f): 3.1x10-13 – 0.031, one-sided Kolmogorov-Smirnov test, 70 < n < 321; Figure 33a-f). 

In Figure 33g, it performed similarly as PARma and better than the rest implementations 

(range of P values (g): 0.0005 – 0.1, one-sided Kolmogorov-Smirnov test, n = 192). In this 

evaluation, Targetscan achieved similar site efficacy as microCLIP in Figure 33c,d,g. 

microCLIP demonstrated overall more robust performance compared to this sequence-based 

predictor (range of P values (a-g): 0.002 – 0.5, one-sided Kolmogorov-Smirnov test, 70 < n < 

321). 
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Figure 33: microCLIP performance compared to MIRZA, microMUMMIE, PARma and Targetscan v7 was 

examined in 7 public gene expression profiling datasets following miRNA transfection or knockdown in 

HEK293 and HeLa cell lines. miRNA-target interactions for AGO-CLIP in silico approaches were obtained 
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from the analysis of PAR-CLIP HEK293 and HeLa libraries. Response of targeted mRNAs to miRNA 

perturbation experiments was evaluated independently per tested cell type, experimental technique and 

condition (a-g). Cumulative distributions of mRNA fold changes for targets comprising at least one predicted 

MRE in the CDS or 3’ UTR regions were compared to those that lacked any site of the considered miRNAs 

(one-sided Kolmogorov-Smirnov test). Functional efficacy was assessed for equal numbers of top predictions 

per implementation. Implementations that did not support targets with a fold-change in the examined 

miRNA perturbation experiments were not included in the relevant cumulative plots. (a-f) Identified targets 

by microCLIP revealed greater site effectiveness than the rest AGO-CLIP-guided implementations. (g) 

microCLIP performed similarly as PARma and better than the rest of implementations. Targetscan v7 

identifies responsive targets, operating on par with in silico approaches based on CLIP data such as PARma, 

while in (c-d) and (g) it displays analogous efficacy as microCLIP. The number of transcripts included in 

each comparison is denoted in the parentheses (Paraskevopoulou MD and Karagkouni D et al, 2018)[17]. 

A significant aspect of AGO-CLIP-guided implementations, aside from their ability to detect 

functionally relevant miRNA interactions, is their efficiency to correctly determine bona fide 

miRNA binding sites at a low number of total predictions. Therefore, an extra evaluation was 

implemented against a validation set of experimentally verified direct miRNA-target pairs to 

investigate the accuracy of microCLIP-detected interactions compared to existing methods. 

microCLIP T-to-C model was also tested. The utilized validation set is composed of 1,674 

chimeric and reporter assay-verified interactions from 125 miRNAs. The list of predictions for 

CLIP-guided implementations was obtained from an AGO-PAR-CLIP dataset in HEK293 

cells (GEO accession GSM714644), while Targetscan (all predictions) and Targetscan 

conserved predicted sites were utilized. PARma adopts a seed-based approach and identifies 

miRNA-families with a perfect k-mer match within the PAR-CLIP regions. Accordingly, its 

predictions have been transformed from miRNA-family sites to miRNA-targeted sites, where 

every binding region is assigned to each one of the miRNA-family members. The number of 

correctly predicted MREs per tested in silico method is plotted against the total predictions for 

different score thresholds (Figure 34a). MIRZA algorithm provides the most probable 

prediction per cluster. Therefore, an additional evaluation was performed by including only 

the top scored miRNA binding site per AGO-peak region, in order to ascertain fairness 

against all implementations (Figure 34b). Since PARma cannot provide a single top prediction 

at the miRNA level, all miRNAs bound at a specific site with the same score were considered 

as top predictions. A separate comparison capturing algorithms’ efficiency to predict correct 

miRNA-target interactions at different levels of total predictions was also conducted (Figure 

34c). The validation set was the same as in the aforementioned evaluations, collapsed into 

1,527 miRNA-gene interactions. Targetscan operated in the absence of AGO-CLIP data, while 

predicted interactions of CLIP-guided implementations were defined from PAR-CLIP clusters 

overlapping full transcript regions. The results demonstrate that although Targetscan 

methods perform well, in silico approaches based on CLIP data, like microCLIP and PARma, 

have a significantly better performance. Baseline seed methodologies with and without 

conservation only identify a small proportion of the MREs presented in the positive test set 
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when they operate on AGO-CLIP enriched regions (Figure 34a,b). microCLIP exhibits a 

markedly greater ability to discriminate miRNA interactions at equivalent numbers of total 

predictions, providing a significantly higher sensitivity in the algorithm’s complete 

predictions set (Figure 34a,c).  

 

Figure 34: Evaluation of microCLIP performance against microCLIP T-to-C, MIRZA, microMUMMIE, 

PARma, Targetscan v7 (all predictions) and Targetscan v7 conserved predicted sites. The utilized validation 

set comprised 1,674 positive miRNA binding sites of 125 miRNAs, derived from chimeric miRNA-target 

fragments and direct miRNA bindings supported by Reporter Gene Assays. The number of correctly 

predicted miRNA binding sites for each implementation is plotted versus (a) the total retrieved predictions, 

(b) the top scored miRNA binding site per AGO-bound enriched region. In (a) and (b) comparisons, we 
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restrict each program’s predictions on PAR-CLIP clusters overlapping the validation test set. A separate 

comparison (c) captures algorithms’ efficiency to predict correct miRNA-target interactions at different levels 

of total predictions. The validation set is the same as in (a-b) evaluations, collapsed into 1,527 miRNA-gene 

interactions. For the latter comparison, seed-baseline methods were operating in the absence of AGO-CLIP 

data, while CLIP-guided implementations on PAR-CLIP clusters overlapping full transcript regions 

(Paraskevopoulou MD and Karagkouni D et al, 2018)[17]. 

3.3. microT, a Next Generation de novo miRNA-target prediction algorithm 

microT is a Next Generation target prediction algorithm that maintains and upgrades the 

pipeline adopted in microCLIP deployment.  This section describes the retrieved outcome 

from the assessment of descriptors in the pre-processing steps, as well as the performance of 

the new model in terms of sensitivity and specificity, evaluated on independent test sets. The 

performance of the model is also assessed against Targetscan v7 and microT-CDS, leading in 

silico approaches in miRNA-target detection field22,23.  

3.3.1 Feature selection 

In order to demarcate descriptors with high performance, statistic tests and metrics (ROC 

curves) were implemented in the enhanced training set. Most of the features incorporated 

into microCLIP, such as AU base pairs, matches and mismatches per miRNA-target duplex 

domain, binding type, MRE conservation and minimum free energy, presented the same or 

even higher predictive accuracy. Accessibility features in miRNA binding and in 

upstream/downstream regions presented also high performance. ROC curves and respective 

AUC measurements of prominent features, as well as distributions of MRE-related features, 

corresponding to positive miRNA-target pairs against the relevant densities of negative 

binding sites, are selectively displayed in the following Figures. 

 

Figure 35: ROC curves of sequence accessibility parameters for the classification of positive/negative miRNA 

binding sites, i.e. accessibility of the 20nt miRNA binding region and the 30nt region upstream/downstream 

of the MRE. 
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Figure 36: ROC curves for the classification of positive/negative miRNA binding sites indicating the a) 

aggregated MRE seed binding conservation, b) aggregated conservation in the upstream region of the MRE, 

c) minimum duplex structure energy and d) MRE-related thermodynamic properties. 

Institutional Repository - Library & Information Centre - University of Thessaly
11/07/2024 07:57:03 EEST - 3.145.41.45



  

128 

 

Figure 37: ROC curves for the classification of positive/negative miRNA binding sites indicating AU base 

pairs (MRE, seed), seed matches and mismatches per miRNA-target duplex domain, nucleotide and 

dinucleotide MRE content and binding type. The latter feature comprises an extended set of (non-)canonical 

miRNA base pairings where smaller values indicate stronger seed matches (9mer to 6mer) and greater values 

correspond to non-canonical and 3’ supplementary sites.  
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Figure 38: Distributions of MRE-related features corresponding to positive miRNA-target pairs against the 

relevant densities of negative binding sites. The descriptors present higher performance in microT-training 

set compared to microCLIP-training set. Evaluated descriptors include length of target bulges, start of the 

binding in the MRE region relative to miRNA binding anchors upon duplex formation, AU base pairs in 3’ 

supplementary region, GC base pairs in tail MRE region, total mismatches per miRNA-target duplex and 

dinucleotide MRE content. Assessed characteristics of positive miRNA interactions significantly diverge 

from respective feature distributions of negative MREs (two-tailed Wilcoxon rank-sum test). 
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3.3.2 microT Super Learning framework 

microT identifies putative MREs within the 3’ UTR and CDS regions. The model adopts the 

microCLIP classification scheme with several updates, by incorporating an enhanced training 

set and re-arrangements in features. Evaluation of the accuracy, in terms of sensitivity and 

specificity, of the 9 base nodes and the meta-learner has been performed on a separate 

independent test set of 6,192 instances. Base nodes seem to achieve a better prediction 

accuracy compared to microCLIP (Methods 2.2.3). All the classifiers achieved high 

performance in a range of sensitivity 78.6% - 90.9% and specificity 77.4% – 91.9% (range of 

AUC: 83.7% – 97.6%). Their aggregated outcome in the meta-learner of microT exhibits the 

highest performance in terms of sensitivity and specificity (sensitivity: 95.0, specificity: 93.3, 

AUC: 98.7%). Also the relative distributions of base model scores, estimated on 

positive/negative instances of the test set, demonstrate greater in-between disrelations 

compared to microCLIP relevant evaluation (Figure 39). 
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Figure 39: Evaluation of the accuracy of the 9 base model classifiers. Five-fold cross-validation has been 

implemented on a separate set of approximately 6,192 instances to test the performance of each node. a) ROC 

curve of each base model displays the classification of positive/negative miRNA binding sites. b) 

Distribution of base model scores estimated on positive/negative instances of the test set.  

To further estimate the predictive accuracy of the multi-layer super learner classification 

scheme and to validate the proper partition of the features into the base nodes, 4 different 

super learning models have been deployed. The first one (microT SL - 6 base classifiers) 

combines the same classifiers with microT but without the three supplementary nodes 

(Feature Combination 1, 2, 3). The other three models combine Deep Learning (DL) and/or 
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Random Forest (RF) classifiers in the 1rst layer, either with the whole set of nodes, or by 

eliminating the one with the weakest performance (Base Pairing Classifier, microT SL – 8 Base 

Classifiers – DL, RF). The performance of the models was evaluated against an independent 

test set of 2,092 positive chimeric and reporter assay-verified miRNA binding events, 

corresponding to 2,032 miRNA-gene interactions. The number of correctly predicted miRNA 

targets for each classification approach is plotted versus the mean predictions per miRNA. A 

separate comparison captures the models’ efficiency to predict correct miRNA binding sites 

in different levels of total predicted sites. The results indicate that even if all the approaches 

have similar efficiency to correctly determine bona fide miRNA binding sites, microT Super 

Learning framework demonstrates better sensitivity to correctly predict miRNA-gene 

interactions, i.e. lower false positive rate (Figure 40).  

 

 

Figure 40: Evaluation of microT performance against 4 alternative Super Learning (SL) classification 

approaches: a model incorporating the same classifiers with microT and without 3 base nodes; a model 

consisting only Deep Learning classifiers (DL) in the 1rst layer; a model combining Deep Learning and 

Random Forest (RF) classifiers in the 1rst layer; a model combining Deep Learning and Random Forest 
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classifiers in the 1rst layer and without Base Pairing node. The utilized set comprised 2,092 experimentally 

validated direct miRNA binding events (1,805 chimeric fragments and 287 reporter-assay verified), 

corresponding to 2,032 unique miRNA-gene interactions.  (a) The number of correctly predicted miRNA-

target interactions for each classification approach is plotted versus the mean prediction per miRNA. (b) A 

separate comparison captures the models’ efficiency to predict correct miRNA binding events at different 

levels of total predicted sites.  

To display the impact of features and classifiers under an optimal super learner design, 

different Deep Learning models incorporating all the features were deployed. Deep learning 

models are composed of different number of hidden layers and units, while input dropout of 

descriptors (ID) was allowed up to 20% percentage. The training of the models was executed 

according to the methodology described in Methods 2.2.3. Models with high predictive 

accuracy (AUC >= 0.99, 10-fold cross-validation) were retained. The performance of the 

models was evaluated against the independent validation set described in Figure 40. The 

results indicate that the super learning classification scheme outperforms all the Deep 

Learning models, reinforcing the hypothesis that the contribution of features is maximized 

through their parallel use in different classification models and nodes (Figure 41). 

 

 

Figure 41: Evaluation of microT performance against 7 alternative Deep Learning models. The utilized set 

comprised 2,092 experimentally validated direct miRNA binding events (1,805 chimeric fragments and 287 

reporter-assay verified), corresponding to 2,032 unique miRNA-gene interactions.  (a) The number of 

correctly predicted miRNA-target interactions for each classification approach is plotted versus the mean 

Institutional Repository - Library & Information Centre - University of Thessaly
11/07/2024 07:57:03 EEST - 3.145.41.45



  

134 

prediction per miRNA. (b) A separate comparison captures the models’ efficiency to predict correct miRNA 

binding events at different levels of total predicted sites.  

3.3.3 Evaluation of microT against other in silico models 

To assess the predictive accuracy of microT, we compared the model against leading 

implementations in miRNA-target characterization, Targetscan v7 and microT-CDS. We 

utilized precompiled data from the microT-CDS site (www.microrna.gr/microT-CDS), while 

for Targetscan v7 we incorporated the unified set of predictions, described in section 

“Methods 2.2.4”. In cases of multiple transcript-gene associations, the predictions of the 

models were filtered to retain interactions for the transcripts with the longest 3’UTR. 

The performance of the models was initially tested using 5 profiling datasets following 

miRNA perturbation in different cell types. To estimate the generalization ability of microT, 3 

of the 5 tested cell types were not included in the training process. We followed the 

methodology described in section “Results 3.2.8”, where each miRNA-target pair was 

characterized by its associated miRNA binding site with the highest score and equivalent sets 

of top predicted targets were integrated to compare cumulative distributions of fold changes.  

microT detected targets yielded significant differences in expression changes compared to 

transcripts lacking any predicted binding site (Figure 42, range of P values (a-e): 4x10-38 – 

4x10-18, one-sided Kolmogorov-Smirnov test, 987 < no-site < 4,254). Compared to the other 

two implementations, microT displayed the greatest site effectiveness in most cases (Figure 

42, range of P values (a-d): 7.3x10-21-0.04, one-sided Kolmogorov-Smirnov test, 171 < n < 889). 

In Figure 42e, it performed similarly as microT-CDS and better than Targetscan (range of P 

values (e):  0.035 – 0.16, one-sided Kolmogorov-Smirnov test, n = 270).  
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Figure 42: microT Super Learning performance compared to microT-CDS and Targetscan v7 was examined in 

5 public gene expression profiling datasets following miRNA transfection or knockdown in different cell 

types. Cumulative distributions of mRNA fold changes for targets comprising at least one predicted MRE in 

the CDS or 3’ UTR regions were compared to those that lacked any site of the considered miRNAs (one-sided 
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Kolmogorov-Smirnov test). Functional efficacy was assessed for equal numbers of top predictions per 

implementation. (a-d) Identified targets by microT revealed greater site effectiveness than the rest de novo 

approaches. (e) microT performed similarly as microT-CDS and better than Targetscan v7. The number of 

transcripts included in each comparison is denoted in the parentheses. 

In silico de novo miRNA target prediction approaches were further evaluated for their 

efficiency to correctly determine bona fide miRNA binding sites/target pairs at a low number 

of total predictions. The utilized independent validation set was composed of 2,092 positive 

chimeric and reporter assay-verified miRNA binding events from 186 miRNAs, 

corresponding to 2,032 miRNA-gene interactions. The number of correctly predicted miRNA 

targets for each classification approach is plotted versus the mean predictions per miRNA. A 

separate comparison captures the models’ efficiency to predict correct miRNA binding sites 

in different levels of total predicted sites. The results demonstrate that although all the 

methods perform well, microT has a significantly better performance (Figure 43). The new 

model detects 1.5-fold more experimentally validated miRNA binding events compared to 

the other approaches, verifying that the generalization of our AGO-CLIP-guided model to the 

whole transcript achieves equivalent high predictive accuracy. 

 

Figure 43: Evaluation of microT Super Learning model performance against microT-CDS and Targetscan v7.  

The utilized set comprised 2,092 experimentally validated direct miRNA binding events (1,805 chimeric 

fragments and 287 reporter-assay verified), corresponding to 2,032 unique miRNA-gene interactions.  (a) The 

number of correctly predicted miRNA-target interactions for each classification approach is plotted versus 

the mean prediction per miRNA. (b) A separate comparison captures the models’ efficiency to predict correct 

miRNA binding events at different levels of total predicted sites 
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CHAPTER 4 

Conclusion 

Accurate characterization of miRNA targets is considered fundamental to elucidate their 

regulatory roles. The identification of miRNA targets can be realized with either 

computational or experimental approaches. 

During the last 15 years a multitude of experimental techniques have been emerged.  High-

throughput techniques have enabled the identification of novel experimentally-supported 

miRNA-gene interactions in a transcriptome-wide scale. However, the information of 

validated miRNA targets is dispersed in a great number of publications and raw datasets 

from high-throughput experiments.  

During the course of this thesis, DIANA-Tarbase v8.0, the first new version since the 10th 

anniversary of the database inauguration, was developed.  The repository indexes 

approximately one million entries, the largest compilation of miRNA-gene interactions 

compared to any relevant database. The new re-designed interface facilitates the extraction of 

miRNA interactions derived from more than 33 experimental methodologies, applied to ~600 

distinct cell types/tissues under ~451 experimental conditions.  The direct interconnection 

with DIANA-miRPath v3.0, simplifies the investigation of miRNA exerted regulation in 

physiological/pathological molecular pathways. DIANA-TarBase v8.0 is an important asset 

to the research community, empowering experimental investigations as well as in silico 

miRNA-related exploratory studies. 

CLIP-Seq methodologies have revolutionized the study of protein-RNA interactions by 

enabling the accurate characterization of RBP target sites on a transcriptome-wide scale in 

different species under psychological or pathological conditions. PAR-CLIP variant against 

AGO proteins is considered among the most powerful high-throughput methods for the 

characterization of miRNA targets. During the past few years, computational methods 

devoted to AGO-PAR-CLIP data analysis have been elaborated by employing different 

mathematical models and feature sets. However, even the leading implementations present 

reduced ability to distinguish a large portion of genuine miRNA-targets.  

In the current thesis, microCLIP framework was deployed, a cutting-edge algorithm for the 

identification of transcriptome-wide functional AGO-occupied clusters and associated 

miRNA-target pairs.  microCLIP model circumvents pitfalls and limitations of existing 

implementations dedicated to PAR-CLIP data analysis, with the ability to be generalized to 

other CLIP-Seq variants. It is the first relevant implementation to employ the innovative 

super learner ensemble framework and the only available A-to-Z computational approach for 

the analysis of AGO-PAR-CLIP data initiating from aligned sequence reads (.sam/.bam files).  

Until now, miRNA-gene interactions derived from AGO-bound regions with inadequate T-

to-C substitution rates were excluded from the target identification pipeline. By 
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implementing an extensive and thorough investigation, non-T-to-C clusters were shown to 

exhibit functional miRNA binding events and strong RNA accessibility. 

microCLIP integrates these findings and provides a model that operates on every AGO-

enriched cluster. The model detects interactions with the strongest functional efficacy and 

provides 1.6-fold more validated target sites when juxtaposed against leading 

implementations.  

microCLIP deployment emboldened the development of a next generation de novo miRNA 

target prediction algorithm that will provide accurate miRNA targets and will guide miRNA-

related studies with limited time and experimental cost. Currently, a multitude of 

computational approaches have been emerged aiming to accurate characterize miRNA 

targets. However, even the most sophisticated implementations still achieve a far from perfect 

predictive accuracy followed by an increased number of false positive predictions.  

During this thesis, a novel miRNA target prediction algorithm is presented that overcomes 

limitations of current approaches. microT Super Learning framework maintains and 

upgrades the pipeline adopted in microCLIP by enhancing the training with even more high-

throughput experiments under a tissue-specific scheme. The new model characterizes 

interactions with stronger functional efficacy and correctly detects 1.5-fold more 

experimentally validated target sites when juxtaposed against leading computational 

approaches. 

The increased accuracy of microCLIP and microT frameworks in the multifaceted problem of 

miRNA-target identification can be attributed to the integration of meticulously curated 

high/low-throughput experimental datasets in an avant-garde super learner framework. The 

comprehensive construction of miRNA interactomes can guide downstream investigations 

towards the elucidation of unexplored regulatory mechanisms and key components in 

different biological processes. 
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CHAPTER 5 

Thesis Publications 

During this thesis, the candidate participated in 9 scientific studies, involving computational 

approaches for determining the activity of the non-coding transcripts and in two of them the 

candidate is first author. The candidate’s main research activity and contribution in the 

publications incorporates the implementation of algorithms and automated pipelines for the 

analysis of Next Generation Sequencing data (small-RNA-Seq, RNA-Seq, CLIP-Seq), data 

integration for the elucidation of non-coding RNA function and their involvement in 

mechanisms of post-transcriptional gene regulation.  

The studies are published in international journals of high impact factor and a total of 942 

citations have been received so far, according to Google Scholar. The publications are separated 

and presented below according to their related research field. 

 

miRNA target prediction 

1. Paraskevopoulou MD* and Karagkouni D*, Vlachos IS, Tastsoglou S, Hatzigeorgiou 

AG, microCLIP super learning framework uncovers functional transcriptome-wide 

miRNA interactions, Nature Communications, 2018 IF: 12,353 (*joint first authorship) 

 

Databases of experimentally supported microRNA (non-)coding targets 

2. Karagkouni D*, Paraskevopoulou MD*, Chatzopoulos S, Vlachos IS, Tastsoglou S, 

Kanellos I, Papadimitriou D, Kavakiotis I, Maniou S, Skoufos G, Vergoulis T, 

Dalamagas T, Hatzigeorgiou AG, DIANA-TarBase v8: a decade-long collection of 

experimentally supported miRNA-gene interactions, Nucleic Acids Res. 2017 IF: 

11.561 (*joint first authorship) 

 

3. BA Sweeney, AI Petrov,…, D. Karagkouni, et al., RNAcentral: a hub of information 

for non-coding RNA sequences, Nucleic Acids Res. 2018 IF: 11.561 

RNAcentral (https://rnacentral.org/) is a comprehensive database of non-coding 

transcripts that  incorporates information of all ncRNA types from a broad range of 

organisms. RNAcentral Consortium collaborates a group of 44 Expert Database, while 

31 of them have been totally imported. DIANA-TarBase v8 and DIANA-LncBase v2 

have been included in the latest version of RNAcentral repository, providing miRNA-

mRNA and miRNA-lncRNA interactions on separate intuitive report pages that can be 

easily quired by users. The candidate realized this integration by providing the 
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databases content in special formats and also paricipated in the design of user 

interface.  

4. Paraskevopoulou MD, Vlachos IS*, Karagkouni D*, Georgakilas G, Kanellos I, 

Vergoulis T, Zagganas K, Tsanakas P, Floros E, Dalamagas T, Hatzigeorgiou AG, 

DIANA-LncBase v2: Indexing microRNA targets on non-coding transcripts, Nucleic 

Acids Res. 2015 IF: 11.561 (*joint second authorship) 

DIANA-LncBase (www.microrna.gr/LncBase) is a reference repository, dedicated to 

the cataloguing of miRNA targets on long non-coding transcripts. The latest version 

incorporates more than 70,000 experimentally supported interactions in human and 

mouse species, derived from 13 distinct low/high – throughput techniques, 

accompanied with extensive meta-data. miRNA:lncRNA experimentally supported 

interactions were extracted from manually curated publications and the analysis of 153 

AGO-CLIP-Seq libraries. LncBase v2 also hosts ~1 million of in silico predicted miRNA 

targets on lncRNAs. The candidate collected/combined lncRNA transcripts from 

different repositories and was entrusted with the annotation of the miRNA binding 

events into the reference transcriptome. She also participated in the analysis of the 

AGO-CLIP-Seq datasets and in the statistical investigation concerning the evolutionary 

conservation of miRNA-lncRNA binding events. The manual curation proccess and the 

import of the experimentally supported interactions into the repository were also part 

of the candidate’s responsibilities.   

 

5. Vlachos IS, Paraskevopoulou MD, Karagkouni D, Georgakilas G, Vergoulis T, 

Kanellos I, Anastasopoulos IL, Maniou S, Karathanou K, Kalfakakou D, Dalamagas T, 

Hatzigeorgiou AG, DIANA-TarBase v7.0: Indexing more than half a million 

experimentally supported miRNA:mRNA interactions, Nucleic Acids Res. 2015 IF: 

11.561 

 

DIANA-TarBase v7.0 (www/microrna.gr/tarbasev7) is the first relevant database with 

hundends of thousands of high-quality experimentally supported miRNA-gene 

interactions, extracted from the manual curation of hundrends of publications and the 

analysis of raw AGO-CLIP-Seq libraries. The interactions are enhanced with detailed 

meta-data and tissue/cell type specific information.  The candidate was entrusted with 

the manual curation of numerous publications, the idetification of expressed miRNAs 

in numerous cell types/tissues, as well as the data preparation. 
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Elucidating the combinatorial effect of microRNAs on molecular pathways 

6. Vlachos IS, Zagganas K, Paraskevopoulou MD, Georgakilas G, Karagkouni D, 

Vergoulis T, Dalamagas T, Hatzigeorgiou AG, DIANA-miRPath v3.0: Deciphering 

microRNA function with experimental support, Nucleic Acids Res. 2015 IF: 11.561 

 

DIANA-mirPath v3.0 (http://www.microrna.gr/miRPathv3) is an on-line software 

suite, dedicated to the assesement of the combinatorial effect of multiple miRNAs on 

molecular pathways. The functional annotation of miRNAs is determined by using 

hypergeometric and unbiased empirical distributions, accompanied with meta-analysis 

statistics. DIANA-mirPath supports KEGG molecular pathway analysis and Gene 

Ontology terms in seven species. The suite also incorporates experimentally supproted 

and in silico predicted miRNA targets. The candidate participated in the deployment of 

a modified version of the unbiased empirical distributions algorithm and the 

incorporation of experimenatlly supported miRNA targets into the database. 

  

TF:miRNA:mRNA:TF networks 

7. Vlachos IS, Vergoulis T, Paraskevopoulou MD, Lykokanellos F, Georgakilas G, 

Georgiou P, Chatzopoulos S, Karagkouni D, Christodoulou F, Dalamagas T, 

Hatzigeorgiou AG, DIANA-mirExTra v2.0: Uncovering microRNAs and transcription 

factors with crucial roles in NGS expression data. Nucleic Acids Res. 2016 IF: 11.561 

 

DIANA-mirExTra v2.0 (http://www.microrna.gr/mirextrav2) is an online software 

suite, dedicated to uncover TF:miRNA:mRNA:TF networks. The suite supports A-to-Z 

functional analysis, initiating from NGS expression data to identify important 

regulators with crucial roles in the processed libraries. It enables state-of-the-art 

investigation of miRNAs controlling mRNAs and TFs controlling (activating, 

repressing or regulating) mRNA or miRNA expression. The candidate participated in 

(a) the design of user interface, (b) the data preparation and (c) the integration of 

experimentally supported miRNA targets into the database. 

 

 

Annotation of microRNAs 

8. Papanicolaou A,…, Karagkouni D,  et al.,  The whole genome sequence of the 

Mediterranean fruit fly, Ceratitis capitata (Wiedemann), reveals insights into the 

biology and adaptive evolution of a highly invasive pest species, Genome biology, 

2016 IF: 13.214 
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The candidate participated in the genetic analysis of a major destructive insect pest, the 

Mediterranean fruit fly, Ceratitis capitata. She was entrusted with a part of the 

annotation of previously uncharacterized miRNAs in this species. The annotation was 

based on (a) the analysis of (s)RNA-Seq datasets, (b) the homology of miRNAs in 

relative species, (c) the appropriate adjustement of publicly available algorithms for the 

characterization of pre-miRNAs and their hairpin structure.   

 

Book Chapters  

9. Vlachos IS, Georgakilas G, Tastsoglou S, Paraskevopoulou MD, Karagkouni D, 

Hatzigeorgiou AG, Computational challenges and -omics approaches for the 

identification of miRNAs and targets Essentials of microRNAs in neurogenesis  

Academic Press (Elsevier), 2017 
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ABBREVIATIONS - ACRONYMS 

3’ UTR 3’ UnTranslated Region 

3Life Luminescent Identification of Functional Elements in 3'UTRs 

4SU 4-thiouridine 

5’ UTR 5’ UnTranslated Region 

6SG 6-thioguanosine 

AGO Argonaute 

AGO-IP AGO Immunoprecipitation 

AUC Area Under Curve 

Biotin-Microarrays Biotin miRNA tagging combined with microarrays 

Biotin-qPCR Biotin miRNA tagging combined with qPCR 

Biotin-Seq Biotin miRNA tagging combined with sequencing 

BLAST Basic Local Alignment Search Tool 

C. elegans Caenorhabditis elegans 

CDF Cumulative distribution Function 

CDS Coding Sequence 

CLASH Crosslinking, ligation, and sequencing of hybrids 

CLEAR-CLIP  Covalent ligation of endogenous Argonaute-bound RNAs 

CLIP-Seq Cross-linking immunoprecipitation sequencing 

DDBJ DNA Data Bank of Japan 

dG Free energy 

dH Enthalpy 

DL Deep Learning 

DNA Deoxyribonucleic Acid 

dS Entropy 

EBV Epstein-Barr virus 

ELISA Enzyme-linked immunosorbent assay 

EM Expectation Maximization 

ENCODE Encyclopedia of DNA Elements Consortium 

FastQC Fast Quality Control tool 
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FDR False Discovery Rate 

GBMs Gradient Boosting Machines 

GEEs Generalized estimating equations 

GEO Gene Expression Omnibus 

GFP Green Fluorescent Protein 

GLMMs Generalized linear mixed models 

GLMs Generalized Linear Models 

HEK293 Human Embryonic Kidney Cells 

HELA Human Cervical Cancer Cells 

hESC Human Embryonic stem Cells 

HITS-CLIP High-throughput sequencing of RNA isolated by crosslinking 
immunoprecipitation 

ICA Independent component analysis 

iCLIP Individual-nucleotide resolution UV crosslinking and 
immunoprecipitation 

ID Input-dropout  

ID3 Iterative Dichotomiser 3 

IGV Integrative Genomics Viewer 

IMPACT-Seq Pull-down sequencing of biotin-tagged miRNAs 

KEGG Kyoto Encyclopedia of Genes and Genomes 

KSHV Kaposi's sarcoma-associated herpesvirus 

Ks-skew Keto skew 

lncRNAs long non-coding RNAs 

MCF7 Human Mammary Gland Cancer Cells / Michigan Cancer 
Foundation-7 

miRISC miRNA-induced silencing complex  

miRNA microRNA 

miTRAP miRNA trapping by RNA in vitro affinity purification 

MNase Micrococcal Nuclease 

MREs miRNA Recognition Elements 

mRMR Minimum-redundancy-maximum-relevance 

mRNA messenger RNA 

ncRNAs non-coding RNAs 
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NGS Next Generation Sequencing 

nt nucleotide 

ORF Open Reading Frame 

PAR-CLIP Photoactivatable-ribonucleoside-enhanced crosslinking and 
immunoprecipitation 

PARE/  
Degradome-Seq 

Parallel analysis of RNA ends/ Degradome sequencing 

PARS Parallel analysis of RNA structure 

PCA Principal component analysis 

PDB Protein Data Bank 

PHP Hypertext Preprocessor 

piRNA Piwi-interacting RNA 

Pol II/III RNA polymerase II/III 

poly-A Polyadenylation 

pre-miRNA precursor miRNA 

pri-miRNA  primary miRNA 

qPCR Quantitative real-time polymerase chain reaction 

RBPs RNA-binding proteins 

RF Random Forest 

RIP-Seq  RNA immunoprecipitation combined with sequencing 

RISC RNA-induced silencing complex 

RMA Robust Multi-Array Average 

RNA Ribonucleic Acid 

RNase Ribonuclease 

RNA-Seq RNA sequencing 

ROC Receiver operating characteristic 

RPF-Seq Ribosome profiling sequencing 

RPKM Reads Per Kilobase of transcript per Million mapped reads 

rRNA   Ribosomal RNA 

SDS–PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

SILAC Stable isotope labeling by amino acids in cell culture 

siRNA Short interfering RNA 

Institutional Repository - Library & Information Centre - University of Thessaly
11/07/2024 07:57:03 EEST - 3.145.41.45



  

146 

SL Super Learning 

sncRNA Small non-coding RNA 

SNR Signal-to-noise ratios 

SRA Sequence Read Archive 

sRNA Small RNA 

sRNA-Seq Small RNA sequencing 

SVC Support-vector clustering 

SVMs Support Vector Machines 

TCGA The Cancer Genome Atlas 

TF Transcription Factor 

Tm Melting temperature 

tRNA Transfer RNA 

TZMBL Human Cervical Cancer Cells generated from JC.53 cells 

UV Ultraviolet 
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