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EYXAPIXTIEX

H oelida pe t1g evyapiotieg oovnbwg eivatl amo Tig npaoteg oe kabe didaxktopkr) dratpiPr.
Eipat otyovpn opwg ot 0 kabe vnoynprog S10axktopag v agrvet yia to 1éhog, kabwg Oa
TIPETIEL VA AVAIIOATI0el ONEG EKELVEG TIG OTLYHEG ITOV €CN0e Katd tr) dtapketa Tov H1daKTopKo
TOL Kat 0¢ Alyeg YPAPPES VA OLVOWLOEL TIG EDYAPLOTIEG TOL yla OAOLG ekelvovg Tov avhpariovg
mov vmnPeSav ot MLAMVEG OTNV €KIOVION Tov. XT0 onpeio avto Aourov, Oa nbeda va
EDYAPLOTIO® TOLG AVOPW®IIONG MOL PE TI) OLVEXI] TOLG IIAPOLOLA, LHOOTNPISH GAAA Kal
aveKTKOTTa vAorouwidnke 1 napovoa didaxtopikr) SratpiPr).

O mpwtog avbpwrog mov evxaplot® eivar 1 xabnynrpia xat emPAénovoa pov Apteplg
Xatlnyewpylov. Tnv evyapiote Beppda xkabwg pov edwoe v evkatpia va acyoAnbo pe v
¢pevva, oe medila atypng Tov Topéa g Prodoyiag Kat g PLomAnpoPopIKr|g arod T IP®T
ottypr] mov prrka oto gpyaotipto DIANA-Lab to 2014. Madi g exmovnoa TtOoo T
PETATITOXAKY] POV HeAETH), OO0 Kat Tr) O1daxTopiki) pov épevva. Eipat evyvopov tO0o yia 1)
dtapxkr) kabodr)ynon Kat v TeXVOyvmOold oD HOL IIPOOEPEPE O ALTA TA XPOVid, 00O Kat
yla tm Ovvatotmnta mov pov &woe va ovvepydot® pe eaipetovg ovvadiApovg Kdat
EMOTPOVEG. OeA® VA TNV €DXAPLOTHO® YA TNV DIOOTHPLEN TN, TNV KATAVON 01| TG A Kat
Y1 TIG OTLYHEG IOV MIOTEWE O EPEVA IO TIOAD AIIo OTL ey 1) 1dia.

Eoyapiotw Oeppa tov Kabnynt) Iaviedenjpova Mndayko kat tov Avaninpetr) Kabnyn)
I'epaopo Iotapiavo, mov wg péAn g TpipeAdodg Enttpornrig, pov edwoav ) dvvatomta va
EPYAOT® OTO dlemotnpoviko nedio tng Bromnpogopiki)g xat covePalav oty eKIovnorn g
didaxtopikrig dratpiPrig.

Oa rfela emiong va eoxaplotjom OAA TA LIOAOUIA PEAN THG €SETAOTIKIG EMTPOING, TNV
Avam\npotpia Kabnynpia Toopmavomovlov Ilavaywwta, tov Emikovpo Kabnyntr
Katoapo Anprytpro, tov Epeovntr Babpidag B Xatmuwavvoo ApiototéArn kat tov Epeovrt)
Babpidag B” ITavAomovlo l'ewpyto yia tnv Tijr) oL POV EKAVAV VA OOPPETEYOLV OTNV Kpion
TOL OO AKTOPIKODL pOv.

H napovoa didaxtopikr) dratpiPr) de Ba pmopovoe va oAoxAnpwbdel xwpig Tovg cLVEPYATEG
Kat @iloog too DIANA-Lab.

ISwattepa, Bed va evyaprotrjon ) Ap. Mapia Ilapaokevorovlov. Me ) Mapia apyioape va
ovvepyadopaote amod Tad HPpwTAd Pov Prjpata oTtov Topea g épevvag, Ty mMepiodo Tng
petarrtoytakng pov pedétng. H povadikr) kat aStobavpaotn ovvepyaoia pag, mapdA\nia pe
) apoPaia eKTipnon KAt COPIIAPAOTAOT), eIePePaV IMOANEG dnpootevoets. H odoxArjpwor) tov
d1daktopikov pov ogeiletat oe peyalo Pabpod oe exeivn. Tnv evxapiote Oeppd yia v amo
KOWOL gpyaota pag oty avamntody) tov alyopibpev microCLIP xat microT xabwg xat oty
dnpovpyia g Paong dedopevov DIANA-TarBase.

Oé\w va eoyapilotom Oeppd to Ap. Ioavvn Bhayo. O I'avvng polpdotnke 11§ yV®OELS TOL
pali pov oe xabe otiypr) g epevLVNTIKNG pov Hopeiag. Tov evyaplot® yla TNV aydot)
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ovvepyaoia pag oAa avta Ta xpovia. H apelwtn oopPoAry too ovmrpe kabopiotikog
apayovtag ywa v avamntodn too alyopibpoo microCLIP xat ) dnpovpyia g Paong
DIANA-TarBase. Tov evxaptot® yia tig MoAOTIpEG OLPBOLAEG TOL KAl yid T OTP1Sr) TOL O
kal’ OAn ) dtdpkelda g ovvepyaotag pag.

Eoyapiotw to oovaded@o xat ¢pilo Zndpo TactooyAov yia 1) OOVOAIKI] OLVELCPOPA TOL OTY)
datpiPr), kabwg paypartomnoinoe v avalvor) HOAGV HEPAPATOV IOV eVo®pat®dnKav oto
DIANA-TarBase xat ypnowpomnoufnxkav otnv avamrtodn too microCLIP xat microT.
Evyaplote emiong 1o [wpyo Zxkovgo, apxikda yia ) ovpPolr) tov ot dnpiovpyila tmg Paong
dedopevov DIANA-TarBase, al\d xat ywa v napoooia tov oto epyaotrjpto. O Zmopog pe 1o
[Nopyo pe ompi§av wg ovvepydteg al\d Kat &g @ilot, navta mpoédopot va ovlntrjoovpe
ornolodnmote Oepa pe araoyoAovoe.

Axopn Bed® va evyaplotion 1o Ap. 'ewpylo l'eowpyakida yia v dploty) ovvepyaoia pag Kat
T ToAVTL1) Por)Oeta ToL OtV OAOKAIPOOT| APKET®V HEAETDV.

[a mv npaypdatoon tov oxediaopod kat g Oemagrg tmg Paong DIANA-TarBase,
EVXAPLOT® TOVG OLVEPYATEG Pag oto Ivotitovto «AbBnvar», kabaog 1 aNAnAenidpaon padi Tovg
vrpSe xkaboprotikr). Edwotepa evyaptotw toug Ap. @eddwpo Aalapdyka kat Ap. @avdaor)
BepyooAn yia tm onpavtiki) oopPoAr) tovg TOOO OtV HAPAIAV® HENET) 000 KAl OTIg
IIEPLOCOTEPEG ATIO TIG ONHOOIEDOELG OTIG OITOLEG HETEX®.

IGtaitepn) pveta Oa n0eda va kave oto EAAnviko 1dpopa Epevvag kat Kawvotoptiag (EAIAEK),
Yl TNV OWKOVOHLKY] OTH)P1Er IOV HOL IIPOOEPEPE TOV TEAEDTALO XPOVO ThG dOAKTOPIKIG OV
datpifrs.

KAetvovtag 0éhm va evyapiotion amnod kapdidg tovg dikovg pov avipwrovg. T pntepa poo
EAévn xat tov natépa poo Evotabio, tov adeppod pov AbBavdacto, Tovg ayamrnpeévoog pov
¢@ilovg kat kvpiwg Tov Odvoota, yla v aydmr), v baoootPn Kat IV KAatavonor Iov
rdavta poo detyvoov. Xopig ) Ok} tovg oopPoAr) tinote amo ooa éxm katagepet Oe Oa nrav
EPIKTO.

Institutional Repository - Library & Information Centre - University of Thessaly
11/07/2024 07:57:03 EEST - 3.145.41.45



ABSTRACT

The emerging technological developments during the past decade enable large scale analyses
in the “regulatory RNA” field and have turned non-coding RNA (ncRNA), initially
considered as junk, into a research goldmine. ncRNAs play a crucial role in a remarkable
variety of physiological and pathological biological processes. The vast production of data
has also been the most important factor underlying the accelerated growth of bioinformatics,
a field dedicated to the analysis of data and the development of computational tools
indispensable for handling, manipulating and interpreting the results. This thesis focuses on
the thorough aggregation of high-throughput data and state-of-the-art Machine Learning
techniques in order to develop algorithms for the functional characterization of non-coding
transcripts.

The current dissertation is specialized on a specific category of RNA transcripts, the
microRNAs. microRNAs (miRNAs) are small single stranded non-coding RNA molecules,
~22 nucleotides long, that are loaded into Argonaute (AGO) to induce target cleavage,
degradation or translational suppression. Accurate characterization of their targets is
considered fundamental to elucidate their regulatory roles. Over the last 15 years, a multitude
of in silico and experimental procedures have been developed aiming to determine the
miRNA interactome. Currently, high-throughput techniques have enabled the identification
of novel experimentally-supported miRNA-gene interactions in a transcriptome-wide scale.
This wealth of information is dispersed in a great number of publications and raw datasets.
During this thesis DIANA-TarBase v8.0, a reference database devoted to the indexing of
experimentally-supported miRNA targets, was designed. Its 8th version is the first database to
index more than 1 million entries, corresponding to ~700,000 unique miRNA target pairs,
supported by more than 33 experimental methodologies, applied to 592 cell types/tissues
under ~430 experimental conditions.

AGO-CLIP-Seq experiments are the most widely used high-throughput methodologies. PAR-
CLIP variant against AGO proteins methodology has been performed to map miRNA-gene
interactions on a transcriptome-wide scale for healthy or disease cell types. Computational
methods devoted to AGO-PAR-CLIP present reduced ability to distinguish a large portion of
genuine miRNA-targets. To this end, one of the aims of this thesis was to revisit, identify and
address current obstacles in AGO-CLIP-Seq analysis. An in silico framework for CLIP-guided
identification of miRNA interactions, microCLIP model, was developed. microCLIP is the
first relevant implementation to employ the innovative super learner ensemble framework
and the only available A-to-Z computational approach for the analysis of AGO-PAR-CLIP
datasets. It operates on every AGO-enriched cluster, providing previously neglected
functional miRNA binding events with strong RNA accessibility.

microCLIP deployment emboldened the development of a next generation de novo miRNA
target prediction algorithm. Even the extensive production of relevant approaches observed
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during the past few years, leading implementations still achieve a far from perfect predictive
accuracy followed by an increased number of false positives predictions. Therefore, microT
Super Learning framework is presented that maintains and upgrades the pipeline adopted in
microCLIP, by enhancing the training with even more high-throughput experiments under a
tissue-specific scheme. The new model characterizes interactions with stronger functional
efficacy and correctly detects 1.5-fold more experimentally validated target sites when
juxtaposed against leading computational approaches. The increased performance of
microCLIP and microT frameworks in the detection of miRNA interactions, uncovers
previously elusive regulatory events and miRNA-controlled pathways.

During this thesis, the candidate participated in 9 scientific studies, involving computational
approaches for determining the activity of non-coding transcripts and in two of them is first
author. The candidate’s main research activity and contribution in the publications
incorporates the implementation of algorithms and automated pipelines for the analysis of
Next Generation Sequencing data, data integration for the elucidation of non-coding RNA
function and their involvement in mechanisms of post-transcriptional gene regulation. The
studies are published in international journals of high impact factor and a total of 942
citations have been received so far, according to Google Scholar.

SUBJECT AREA: Computational Biology

KEYWORDS: microRNA, high-throughput experiments, AGO-HITS-CLIP, AGO-PAR-CLIP,
target prediction, experimentally supported targets, in silico predicted targets,
Machine Learning
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ITEPIAHWH

Ot payOateg texvoloyikég eSeAilelg v teAevtaia dekaeTia emeTpeYav avalbOELG PEYAADNG
KAipakag oto 1medio tov «pobpiotikod RNA», petatpénovtag ta pn-Ko@OKd petaypagd, moo
apywd Bempoovvtav «oKovmIidla», 0e gPELVNTIKO «XpLowpLyelo». Ta pn-kwOKAa petaypagpa
dadpapatifoov kaboplotikd polo oe eva adloonpeinto appd amd @LOOAOYIKEG KAt
naboloykég Proloyikeg depyaoieg. H tepaotia napaywyr) dedopevov ftav emiong évag aro
TOLUG  ONUAVTIKOTEPOLG TIAPAYOVTEG TNG emrtayovopevng eSEMng Tov Ttopéa g
PromAnpo@opikr)g, evog Topéa eedikevpevon oty avalvor) Poloyikmv dedopevav Kat TV
avamntodn LIOAOYIOTIK®V ePYANElDV, ATIAPAITNTOV Yyla TNV eneSepydoid KAt Vv epupnvela
TOV AHOTEAEOPATOV TOLG. ADTH 1] €PYAOlAd EMKEVIPMVETAL OTO AEOTOPEPT] KAl aKPlP)
oLVOLAOPO VYNALG OEKIIEPAIDTIKIG KAVOTNTAS OedOPEVOV KAl OLYXPOVAOV TEXVIKDOV
HPNXAVIKIG pabnong yla v avarrtodl alyopldpmv pe otoxo 1o ASTOuPYIKO XAPAKTPLOHO
TOV P1-KOOIKQOV PETAYPAPDV.

H mapovoa OwatpiPr] emKevVIP®OVETAl Of HId OLYKEKPPEVI) KATYOPld HETAYPAP®V, T
microRNAs. Ta microRNAs (miRNAs) eivat pikpd, povoxhava, pn-kodikda popta RNA,
prixovg ~ 22 vooxkAeotdimv, mov mpoodévovial oty mpwteivy) Apyovaovt) (AGO) ywa va
MIPOKAAECOLV Tr) S1A0TIACT) TOL HETAYPAPOV-OTOXOV, TV AIIOIKOOOUNON 1] TV KATACTOAL T
petagpaot)g tov. O axkpiPng XapAKT)POPOg T@V OTOX®V Tovg Dempeitat OepeAwdng yia v
arooa@nvion tov pobptotikod tovg polov. Ta tedevtata 15 ypovia, éxet avamtoybel pia
IANO®pPa DIOAOYIOTIK®V KAl MEPAPRATIKOV IIPOOEYYIOE®V HE OTOXO TOV IIPOOOIOPIOPRO TOV
aMnAemdpdoeov tov pikpov RNAs. Eml tov mapovtog, ot texvikég vynArng amodoong
EMETPEYAV TNV EVPEOCH) VEDV MEPAPATIKA LHOOTNPLOPEVOV aAnAemdpdoemv Tov miRNAs
oe ONO TO petaypd@®pda. Avtdg 0 MAOLTOG T®V HANPOPOPI®V Elval OLAOKOPIIOHEVOG OE
peyalo apipo Onpootedoemv Kat akatepyaotov dedopevov. Kata m dwapkela aotrg g
SwatpiPrg, oxedwaotnke to DIANA-TarBase v8.0, pia pdon Oedopévev avagopds,
APIEPO®UEVT] OTNV EVPETNPIAOT MEPAPATIKA VIIOOTHPOpevVeOV otoxav tov miRNAs. H 8n
¢kdoon etvat 1 mpotn Pdon Oedopévedv mov avagépel meploootepeg amod 1 ekatoppovplo
Kataxopnoeg, mov avtotoryodv oe ~700.000 povadukég miRNA-gene alAnAemdpdoetg,
vrootnPopeveg aro neploootepeg aro 33 nelpapatikeg pebodoAoyieg, mov éxoov epappootet
oe 592 xoTTapikovg TOII0VG/ 10TovG, LIIO~ 430 HelpapaTiKeg ovvorKeg.

Ta newpapata pe avoookataxprpvnorn tg npwteiviig AGO (AGO-CLIP-Seq) amotehobdv Tig
mo Owadedopéveg pebodoloyieg vywnAng amodoong. H AGO-PAR-CLIP texvikr €xet
npaypatomnowdet evpéwg ya ) yaptoypdenon miRNA-gene alnAemdpdoemy oe peydn
KAlpaka oe vylelg 1) aobeveig tomoog kotrapmyv. Ot vmoloyiotikég pedodot mov £xoovv
avarrtoybet pe otox0 TV aAvAAvor avtOV TV 0e00PEVOV ITAPOLOICOVY PEIWHEVT] IKAVOTHTA
va dtaxpivoov eva peyalo pépog tov npaypatikov miRNA-otoyev. I'ia to okorod aoto, evag
arod TOLG OKOMOVG TG HAapovoag OlatPPrig elval va enaveSetdoel, vda evIOMioel Kat va
avtiypetonioet  ta  tpeyovia epmodia  otmyv  avalvon AGO-CLIP-Seq dedopevav.
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[Tapovowaletat, Aourov, to poviého microCLIP, pia vmoloylotikyy mpoogyylon yla tnv
katevBovopevn ano CLIP-Seq dedopéva avayvapion tov alknlemdpdoemv tov miRNAs. To
microCLIP etvat éva kawvotopo ensemble povtého Pabetag expabnong (super learner) xat 1
povn dabeoun vrmoAoytotikr) ipooeyyton mov avalvet AGO-PAR-CLIP Sedopéva amo to A
¢wg 1o Q. EneSepyadletat Oheg tig epmAovtiopéveg oe AGO meploxég, mapéxoviag AeITOLPYIKESG
reploxég 1mpoodeong t@v miRNAs pe 1oxvpr] mpooPactpotnta, mov PEXPL IPOTVOG
ayvooovtav.

H avarrtoln too microCLIP evenvevoe 1 Snpovpyia evog alyoplfpov emopevng yevids, yia
Vv evpeon @V otoxwv T@v miRNAs amovoia nepapartog. IMapd v extevr) avamrtody
OXETIKAV TIPOOEYYLOE®V MOV Hapatnpeital Ta teAevtaia xpovia, akopn Kat ot alyoptdpot
awpng eSakolovbovv va emroyyxavoov yapnAn akpifeta xat aofnpeévo apldpo peodwg
Oetikov mpoPAéwewmv. I'ia aotov 1o Aoyo, avamtoybnke to povtédo microT Super Learning
oo datnpet kat avapadpiler ) pedodoloyia tov microCLIP alyopibpov, evioxbovtag tnv
eKIIaideLOI] TOL pE AKOPN MEPLOCOTEPA MEPARATA LYPNALG AIOdOONG DIIO £VAV 10TO-E1O1KO
oxediaopo. To véo povtélo xapaxtnpifet aAAnAemdpdoelg pe 10XLPOTEPT] AELTOVPYIKOTTA
KAt aviyvevel 0ootd 1.5 popég meproootepeg metpapatikda emfBePatmpeveg IePLoxeg IPOodeong
Tov pkpov RNAs, otav avumapartifetatr pe xopo@aieg vmoloylotikég mpooeyytoelg. H
aofnpevn amodoon twv alyopibpov microCLIP xat microT omv aviyvevon tov
aMnAemdpdoeav T@v miRNAs, avadewkvdet pobplotikd ocopPdavia mov pexpt mpoTvog
ayvooLVTav KAt Ved HOPLAKd HOVOIIATLa ITov eheéyyovtat aro ta miRNAs.

Kata m &wipxela tmg mapovoag epyaoiag, 1 vrmoyneia OWOAKT@OP ovppeteiye oe 9
EIMOTNHOVIKEG  ONPOOLELOELS IIOL  APOPOVLOAV  VLIONOYIOTIKEG IIPOOEYYIOES yid TOV
IPOOOIOPIOPO TNG AELTOVPYIAG TOV P KOOIKOV PETAYPAPOV KAl 0¢ dDO amod avtég eivat 1)
npotn ovyypageas. H xdpla epeovntiky) Opaotnplotta Kat 1) 6OPPOAI) TG DIIOWTPLag OTIg
dnpootedoelg avteg aPopd TV ePApPpRoyI] aAyopldpmV, aLTOPATOIOUHEVAOV PO®Y AVAADOTG
yla v eneepyaoia MEPApATK®V OedOpEVOV  EMOHMEVIIG YEVIAG KAl TOV KATAAANAO
OLVOLAOPO TOVG € OTOXO THV AMIOCAPNVION TNG Aettovpylag Tav pn-ko0koav RNAs xat g
ODPHETOXT|G TOLG O€ HIXAVIOHOVG PETA-PETAYPAPLKIG YOVIOLaKk1)g pvOptong. Ot peléteg exoov
dnpootevbel oe S1ebvr) meplodKa LYNATL|G ATIr)X1ONG KAl Ol CUVOAIKEG ETEPOAVAPOPES PEXPL
ofjpepa, ovppmva pe to Google Scholar, etvat 942.

OEMATIKH ITEPIOXH: YnioAoytotikr) Biohoyia

AEZEIX KAEIAIA: microRNA, netpapata oynArng amnodoong, AGO-HITS-CLIP, AGO-PAR-
CLIP, mpoPAeyn otoxwv, mnepapatka emPefaiopévol  oTtoyOL,
LIIOAOY10TIKA IPoPAeniopevot otoxot, Mnyavikr) Mabnor
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H epyaoia aoty agiepwverar 0TV 01k0yEveld poo
ka1 0Tovg avpwmovg oo eivar oovéyewa dimAa pov,
axoun k1 av Ppiokovrar ytAiopueTpa paxpid
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well-defined functions of miRNAs are observed in the cytoplasm such as: translation
suppression and/or degradation of the mRNA target. Recent studies suggest that some
mature miRNAs are able to re-enter into the nucleus and interact with other transcripts,
something that displays their possible involvement in additional mechanisms that have not
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Figure 9: Snapshot from the IGV Genome Browser depicting the adopted pipeline for the
analysis of the AGO-CLIP-Seq libraries. Raw CLIP-Seq reads are initially aligned into the
reference genome. Regions enriched in AGO are formed by overlapping reads. AGO-CLIP
clusters are annotated in a comprehensive set of transcripts. MRE identification is
subsequently applied to the annotated peaks. The illustrated peaks are derived from 1 AGO-
PAR-CLIP library on HEK293 cells. The brown-and-green vertical lines represent T-to-C
transition sites while MREs are detected by microT-CDS algorithm. This figure has been
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Figure 11: Peaks derived from 5 AGO-PAR-CLIP libraries on HEK293 cells and from 3 non-
RBP background libraries are presented for T-to-C and non-T-to-C AGO-bound regions. The
red-and-blue vertical lines represent T-to-C transition sites. Both types of AGO-enriched
clusters are clearly distinguished from background signal. Chimeric miRNA-target fragments
overlap with (non-)T-to-C peaks providing direct validation for specific miRNA-target pairs
(hsa-miR-19a-3p-Ran and hsa-miR-103a-3p-Rps14). microCLIP identifies the aforementioned
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Figure 12: Dataset collection and methodology for positive and negative MRE identification.
More than 6,000 interactions were retrieved from direct techniques and miRNA-target
chimeric fragments. Numerous high-throughput experimental data following specific
miRNA perturbations enabled the identification of AGO bound or differentially
transcribed/translated genes harboring functional binding sites. In order to resolve the exact

miRNA binding sites, positive and negative instances were coupled with signal from 24
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AGO-PAR-CLIP libraries. The negative set was enhanced by incorporating background CLIP-
Seq clusters. sRNA-Seq datasets were included to determine expressed miRNAs and
accurately extract positive/negative MREs. This dataset collection was processed to form the
training/test sets of microCLIP deployment (Paraskevopoulou MD and Karagkouni D et al,
20L8)[A7]- ettt 64

Figure 13: Overview of PARS experiment. This figure has been designed for the purpose of
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Figure 14: Snapshot of the different miRNA binding types formed according to miRNA
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Figure 15: microCLIP in silico framework. Separate subsets of the positive/negative miRNA
interactions were used to train the distinct levels of the algorithm’s modeling. 9 base
classifiers in the first layer comprise characteristic feature subsets that assemble into the GBM
meta-learner of the second layer. A super learning scheme is utilized in 8 of the 9 base nodes,
weighing outputs from seven individual models. ‘Region features’ node corresponds to an RF
classification scheme and consists of CLIP-sequencing-derived features. Five base models (2-
6) were designed for MRE specific features: ‘Binding Vectors’ describe the (un)paired
positions along the miRNA/MRE hybrid; ‘Matches per miRNA/MRE domain’ contain
attributes of miRNA-target structure and sub-domains; ‘Duplex Features’ include free energy,
secondary structure and AU base pairing features for miRNA and/or target; ‘Base pairing’
encompasses composition descriptors of (un)paired nucleotides; ‘"MRE general’ incorporates
general MRE-related descriptors. Three supplementary classifiers (‘Feature Combination Set
1-3’) comprise unique combinations of features found in base nodes 1-6 (Paraskevopoulou

MD and Karagkouni D et al, 2018)[17]. .....coueuiuiiiiiiiiiiiicice s 77

Figure 16: Overview of miRNA-target positive/negative instances as identified by different
indirect/direct, low and high-throughput experiments. miRNA-targeted regions derived
from miRNA perturbation datasets presented an overlap with AGO-bound enriched regions

from at least one CLIP-Seq library. Datasets have been combined under a tissue-specific
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scheme. No overlap was allowed between positive and negative miRNA-gene interactions

and their related MRE-TNSTANCES. .. ..uneeeeeeeeeeeeeeeeeeeeeee e e e e e e e e e eeeeeeeeeeaeereeeeeeeeeeaaeneneneeens 90

Figure 17: TarBase entries divided per methodology. Values are plotted in log2 scale. Each
grid line corresponds to quadrupling of indexed miRNA interactions. a) Total miRNA-gene
entries incorporated in TarBase v8.0. b) Comparison of TarBase v8.0 and TarBase v7.0 entries

(Karagkouni D and Paraksevopoulou MD et al, 2017)[64].........cccoeiiininiiiiiiicccece, 100

Figure 18: Snapshot depicting the DIANA-TarBase v8.0 interface. Users can apply a query
with miRNA and/or gene names [1] or navigate in the database content through
combinations of the filtering criteria [2]. Positive/negative interactions can be refined with a
series of filtering options including species, tissues/cell types, methodologies, type of
validation (direct/indirect), database source, publication year as well as in silico predicted
score [2]. Brief result statistics are promptly calculated [3]. Interactions can be sorted in
ascending or descending order based on gene and/or miRNA names, on the number of
experiments, publications and cell types/tissues supporting them [4]. Gene and miRNA
details, complemented with active links to Ensembl, miRBase and the DIANA disease tag
cloud, are provided [5]. Details regarding the experimental procedures such as the
methodology, cell type/tissue, experimental conditions and link to the actual publication are
presented [6]. Methods are color-coded, with green and red portraying validation for positive
and negative regulation, respectively. Interactions are also accompanied by miRNA-binding
site details [7]. Links to DIANA-miRPath functional analysis resource [8] and to an
informative Help section [9] are also available. Users can navigate to the separate database

statistics page [10] (Karagkouni D and Paraksevopoulou MD et al, 2017)[64]. ......ccccccevveueuenes 101

Figure 19: Screen-shot depicting DIANA-TarBase statistics page. The number of interactions,
cell types/tissues, publications and low-/high-throughput methodologies are summarized at
the top of the page [1]. A pie-chart portraying the database content per species is provided
[2]. The user can select any species combination [3] to obtain relevant statistics [4]. The bar-
plot [5] and tables [6] at the end of the page show the number of interactions (log2-scaled) per

methodology and the cell-type/tissue frequencies respectively. They are also dynamically
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populated depending on the user’s choice of species (Karagkouni D and Paraksevopoulou

MD et al, 2017)[64]. cecuemeneneneeee s 103
Figure 20: TarBase integration in ENSEMBL. ...........ccccccoiiiiiiiniiiiiicc 104
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Figure 22: Distributions of MRE-related features corresponding to positive miRNA
interactions in T-to-C and non-T-to-C AGO-bound regions against the relevant densities of
negative binding sites. Assessed characteristics of positive miRNA interactions on (non-)T-to-
C clusters significantly diverge from respective feature distributions of negative MREs (two-

tailed Wilcoxon rank-sum test) (Paraskevopoulou MD and Karagkouni D et al, 2018)[17]. .. 107

Figure 23: Average PARS scores of AGO-bound regions deduced from the analysis of 4 EBV
transformed lymphoblastoid PAR-CLIP libraries. RSS base signals were aligned to the start of
the miRNA-target binding site. Base 0 corresponds to the 3’-end of the mRNA, at -1 or -2 nt
dowstream of the initiation of the direct miRNA seed pairing. Negative PARS scores
correspond to single stranded RNA structures, while positive scores to double stranded sites.
In the examined AGO-PAR-CLIP EF3D-AGO2(a), LCL-BAC-D1(b), LCL-BAC-D3(c) and LCL-
BAC(d) datasets, strong structural accessibility occurs in miRNA sites identified on T-to-C
(red) and non-T-to-C (green) clusters in the 2-4nt positions (yellow window) of the miRNA
seed pairing. These results significantly differ from respective base scores along negative
MREs (light blue) located on AGO-enriched peaks (Paraskevopoulou MD and Karagkouni D
EF AL, 20L8)[L7]. ettt 108

Figure 24: Evaluation of the accuracy of the 9 base model classifiers. Five-fold cross-validation
has been implemented on a separate set of approximately 4,000 instances to test the
performance of each node. a) ROC curve of each base model displays the classification of
positive/negative miRNA binding sites. b) Distribution of base model scores estimated on
positive/negative instances of the test set (Paraskevopoulou MD and Karagkouni D et al,
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Figure 25: Evaluation of constitutive/internal classifiers of 5 microCLIP base models that
adopt a super learning approach. Five-fold cross-validation was applied on a separate set
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(same as in Figure 23), to test the performance of the seven individual Random Forest (RF),
Generalized Linear Model (GLM), Gradient Boosting Model (GBM), Deep Learning (DL)
classifiers (2 RF, 2 GBM, 2 DL, 1 GLM models) in each base node. Different colors are
consistently utilized to display ROC curves of each sub-classifier incorporated in ‘Binding
Vectors’, ‘Matches per miRNA/MRE domain’, ‘Duplex Features’, ‘Base pairing’ and ‘MRE
general’ base nodes respectively. Information concerning sensitivity, specificity and AUC of
each model is shown in the figure legends. The performance of ensemble deep learning
models that aggregate the seven independent sub-classifiers in each base node are

additionally shown (Paraskevopoulou MD and Karagkouni D et al, 2018)[17]. ..........ccc....... 111

Figure 26: Evaluation of the accuracy of sub-classifiers included in ‘Feature Combination Set
1-3’ base nodes. The performance of sub-classifiers (2 RF, 2 GBM, 2 DL, 1 GLM models), along
with the performance of the ensemble deep learning models that aggregate their output are

displayed in distinct colors (Paraskevopoulou MD and Karagkouni D et al, 2018)[17]........... 112

Figure 27: Evaluation of microCLIP performance against 3 alternative classification
approaches: a Random Forest classifier comprising all the features; a Random Forest classifier
including the top 27 discriminative features (AUC = 65%); microCLIP super learner
classification scheme including top performing features per base node (70 descriptors in total,
AUC = 65%). The utilized validation set comprised 1,674 positive miRNA binding sites,
derived from experimentally validated direct miRNA interactions. (a) The number of
correctly predicted miRNA binding sites for each classification approach is plotted versus the
total retrieved predicted sites. (b) A separate comparison captures the models” efficiency to
predict correct miRNA-target interactions at different levels of total predictions. The
validation set is the same as in (a) collapsed into 1,527 miRNA-gene interactions

(Paraskevopoulou MD and Karagkouni D et al, 2018)[17]........cccccoeiviiiiiniiniiiiiiiiiiccee, 113

Figure 28: Bar plots featuring the average miRNA-target interactions supported by non-T-to-
C and/or T-to-C peaks per examined cell type and experimental condition. Mean and
standard errors (error bars) of miRNA interactions are shown per library. An average

increase of 14% (+ 8.8%) in the detected interactions was observed across analyzed PAR-CLIP
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libraries by the incorporation of non-T-to-C clusters (Paraskevopoulou MD and Karagkouni

D €F 2l 20I8)[17]- oo eeeeeeeeeeeeeeeseessesessseeeeeseeessssseessesseeesesessssseeeseeseessseeseeeeeeensesessessesseeeeeee 114

Figure 29: Functional efficacy of microCLIP-detected MREs residing on T-to-C and non-T-to-
C AGO-bound enriched regions. miRNA binding sites were obtained from the analysis of
PAR-CLIP libraries in 3 different cell types. The functional efficiency of predicted targets was
examined in 17 public gene expression profiling datasets following miRNA transfection or
knockdown. Response of targeted mRNAs to miRNA perturbation experiments was
evaluated independently per tested cell type, experimental technique and conditions (a-g).
Cumulative distributions of mRNA fold changes for targets comprising at least one predicted
MRE on T-to-C clusters or supported only by non-T-to-C peaks were compared to those that
lack any site of the considered miRNAs. The number of transcripts included in each category
is presented in parentheses. Identified targets supported by T-to-C and non-T-to-C clusters
exert a significant difference in expression changes compared to transcripts lacking any
predicted binding site (two-tailed Wilcoxon rank-sum test). At same numbers of T-to-C and
non-T-to-C sites, the former group relates to more responsive targets at miRNA perturbation

experiments in (b-f) (Paraskevopoulou MD and Karagkouni D et al, 2018)[17]........c..cccc....... 117

Figure 30: Functional significance of (non-)T-to-C sites in MCF7 AGO-PAR-CLIP dataset. Top
30 KEGG pathways enriched by T-to-C or (non-)T-to-C (combined T-to-C and non-T-to-C)
peak containing genes. X-axis depicts number of genes enriching each term. Pathways are
ranked according to the enrichment P value shown at the end of each bar. The T-to-C site

enrichment rank is provided after pathway description to facilitate comparison with gene set

of (non-)T-to-C sites (Paraskevopoulou MD and Karagkouni D et al, 2018)[17]. ..................... 118

Figure 31: Correlation analysis of expression of pathway-related miRNA-target interactions
across 271 TCGA ductal breast cancer samples (patients). Cumulative distributions of
miRNA-target expression relationships, evaluated for interactions supported by T-to-C or
non-T-to-C AGO-bound regions were compared to a randomly selected set from all the
remaining miRNA-gene interacting pairs lacking any target site of the highly expressed

miRNAs. The number of genes considered in each category is presented in parentheses.
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Pathway-related miRNA-target interactions supported by T-to-C and non-T-to-C clusters
reveal a significant shift towards more negative correlation coefficient values compared to the
no-site distribution (two tailed Wilcoxon rank-sum test) (Paraskevopoulou MD and

Karagkouni D et al, 2018)[17]. .....coouiiiiiuiiiiiiiiiieeiccete e 119

Figure 32: Assessment of microCLIP prediction efficacy against microCLIP T-to-C, MIRZA,
microMUMMIE, PARma and Targetscan v7. miRNA-target pairs for each AGO-CLIP in silico
approach were obtained from the analysis of 7 PAR-CLIP HEK293 libraries and functional
investigation was performed by measuring mRNA responses to miRNA perturbations.
Unified sets of (a) 4 microarray and (b) 2 RNA-Seq datasets, in which miRNAs were
individually transfected into HEK293 cells, were included in the evaluation process. Median
fold change-values (logz) of the top predicted targets per tested algorithm were plotted and
accordingly compared by applying stepwise cutoffs on total predictions. Performed
comparisons additionally incorporate a group comprising mean fold changes of 1000
randomly selected genes (without replacement) by using 100 re-samplings. microCLIP
significantly outperforms all the juxtaposed implementations, detecting targets with the
strongest median downregulation, from stringent to loose prediction thresholds. microCLIP
T-to-C also exhibits greater efficacy than the rest in silico approaches (range of P values
microarrays: 0 - 2.2x10-7, P values RNA-Seq: 5.5x10-265 - 3.6x10-29, two-tailed Wilcoxon
signed-rank test, 535 < nmicroarrays < 3,223, 174 < nRNA-Seq< 1,613), (Paraskevopoulou MD
and Karagkouni D et al, 2018)[17]. .......ccccceviriiiiiiiiiniiiiiiicici s 121

Figure 33: microCLIP performance compared to MIRZA, microMUMMIE, PARma and
Targetscan v7 was examined in 7 public gene expression profiling datasets following miRNNA
transfection or knockdown in HEK293 and HeLa cell lines. miRNA-target interactions for
AGO-CLIP in silico approaches were obtained from the analysis of PAR-CLIP HEK293 and
HeLa libraries. Response of targeted mRNAs to miRNA perturbation experiments was
evaluated independently per tested cell type, experimental technique and condition (a-g).
Cumulative distributions of mRNA fold changes for targets comprising at least one predicted
MRE in the CDS or 3" UTR regions were compared to those that lacked any site of the
considered miRNAs (one-sided Kolmogorov-Smirnov test). Functional efficacy was assessed
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for equal numbers of top predictions per implementation. Implementations that did not
support targets with a fold-change in the examined miRNA perturbation experiments were
not included in the relevant cumulative plots. (a-f) Identified targets by microCLIP revealed
greater site effectiveness than the rest AGO-CLIP-guided implementations. (g) microCLIP
performed similarly as PARma and better than the rest of implementations. Targetscan v7
identifies responsive targets, operating on par with in silico approaches based on CLIP data
such as PARma, while in (c-d) and (g) it displays analogous efficacy as microCLIP. The
number of transcripts included in each comparison is denoted in the parentheses

(Paraskevopoulou MD and Karagkouni D et al, 2018)[17]......ccccooviiiiinniniiircccceeee 123

Figure 34: Evaluation of microCLIP performance against microCLIP T-to-C, MIRZA,
microMUMMIE, PARma, Targetscan v7 (all predictions) and Targetscan v7 conserved
predicted sites. The utilized validation set comprised 1,674 positive miRNA binding sites of
125 miRNAs, derived from chimeric miRNA-target fragments and direct miRNA bindings
supported by Reporter Gene Assays. The number of correctly predicted miRNA binding sites
for each implementation is plotted versus (a) the total retrieved predictions, (b) the top scored
miRNA binding site per AGO-bound enriched region. In (a) and (b) comparisons, we restrict
each program’s predictions on PAR-CLIP clusters overlapping the validation test set. A
separate comparison (c) captures algorithms’ efficiency to predict correct miRNA-target
interactions at different levels of total predictions. The validation set is the same as in (a-b)
evaluations, collapsed into 1,527 miRNA-gene interactions. For the latter comparison, seed-
baseline methods were operating in the absence of AGO-CLIP data, while CLIP-guided
implementations on PAR-CLIP clusters overlapping full transcript regions (Paraskevopoulou

MD and Karagkouni D et al, 2018)[17]. ...c.ccooueuiririiiniiiiicinicirieiieetneeeeeeretereee et 125

Figure 35: ROC curves of sequence accessibility parameters for the classification of
positive/negative miRNA binding sites, i.e. accessibility of the 20nt miRNA binding region
and the 30nt region upstream/downstream of the MRE..............cccccccooiiiiiiiiins 126

Figure 36: ROC curves for the classification of positive/negative miRNA binding sites
indicating the a) aggregated MRE seed binding conservation, b) aggregated conservation in
26

Institutional Repository - Library & Information Centre - University of Thessaly
11/07/2024 07:57:03 EEST - 3.145.41.45



the upstream region of the MRE, c¢) minimum duplex structure energy and d) MRE-related

thermodynamic Properties. ..o 127

Figure 37: ROC curves for the classification of positive/negative miRNA binding sites
indicating AU base pairs (MRE, seed), seed matches and mismatches per miRNA-target
duplex domain, nucleotide and dinucleotide MRE content and binding type. The latter
feature comprises an extended set of (non-)canonical miRNA base pairings where smaller
values indicate stronger seed matches (9mer to 6mer) and greater values correspond to non-

canonical and 3" supplementary Sites. .........ccccceeciriiniiiniiiine s 128

Figure 38: Distributions of MRE-related features corresponding to positive miRNA-target
pairs against the relevant densities of negative binding sites. The descriptors present higher
performance in microT-training set compared to microCLIP-training set. Evaluated
descriptors include length of target bulges, start of the binding in the MRE region relative to
miRNA binding anchors upon duplex formation, AU base pairs in 3' supplementary region,
GC base pairs in tail MRE region, total mismatches per miRNA-target duplex and
dinucleotide MRE content. Assessed characteristics of positive miRNA interactions
significantly diverge from respective feature distributions of negative MREs (two-tailed

WiICOXON TanK-SUIM TESL). ....ccveviiiiiiiiiiiiiiiiiccctcc et 129

Figure 39: Evaluation of the accuracy of the 9 base model classifiers. Five-fold cross-validation
has been implemented on a separate set of approximately 6,192 instances to test the
performance of each node. a) ROC curve of each base model displays the classification of
positive/negative miRNA binding sites. b) Distribution of base model scores estimated on

positive/negative instances of the test Set..........cccoeviviiiiiiniiiniiiicccce 131

Figure 40: Evaluation of microT performance against 4 alternative Super Learning (SL)
classification approaches: a model incorporating the same classifiers with microT and without
3 base nodes; a model consisting only Deep Learning classifiers (DL) in the 1rst layer; a model
combining Deep Learning and Random Forest (RF) classifiers in the 1rst layer; a model
combining Deep Learning and Random Forest classifiers in the 1rst layer and without Base

Pairing node. The utilized set comprised 2,092 experimentally validated direct miRNA
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binding events (1,805 chimeric fragments and 287 reporter-assay verified), corresponding to
2,032 unique miRNA-gene interactions. (a) The number of correctly predicted miRNA-target
interactions for each classification approach is plotted versus the mean prediction per
miRNA. (b) A separate comparison captures the models’ efficiency to predict correct miRNA

binding events at different levels of total predicted sites. ...........ccccccoeiiniiiiiiniiiiie 132

Figure 41: Evaluation of microT performance against 7 alternative Deep Learning models. The
utilized set comprised 2,092 experimentally validated direct miRNA binding events (1,805
chimeric fragments and 287 reporter-assay verified), corresponding to 2,032 unique miRNA-
gene interactions. (a) The number of correctly predicted miRNA-target interactions for each
classification approach is plotted versus the mean prediction per miRNA. (b) A separate
comparison captures the models’ efficiency to predict correct miRNA binding events at

different levels of total predicted Sites. ... 133

Figure 42: microT Super Learning performance compared to microT-CDS and Targetscan v7
was examined in 5 public gene expression profiling datasets following miRNA transfection or
knockdown in different cell types. Cumulative distributions of mRNA fold changes for
targets comprising at least one predicted MRE in the CDS or 3" UTR regions were compared
to those that lacked any site of the considered miRNAs (one-sided Kolmogorov-Smirnov
test). Functional efficacy was assessed for equal numbers of top predictions per
implementation. (a-d) Identified targets by microT revealed greater site effectiveness than the
rest de novo approaches. (e) microT performed similarly as microT-CDS and better than
Targetscan v7. The number of transcripts included in each comparison is denoted in the

PATENENESES. ...ttt 135

Figure 43: Evaluation of microT Super Learning model performance against microT-CDS and
Targetscan v7. The utilized set comprised 2,092 experimentally validated direct miRNA
binding events (1,805 chimeric fragments and 287 reporter-assay verified), corresponding to
2,032 unique miRNA-gene interactions. (a) The number of correctly predicted miRNA-target

interactions for each classification approach is plotted versus the mean prediction per
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miRNA. (b) A separate comparison captures the models’ efficiency to predict correct miRNA

binding events at different levels of total predicted sites ...........ccccecevrioinciinniinciniiiicee, 136
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CHAPTER 1

Introduction

1.1 ncRNAs - from “junk” DNA into a research goldmine

The term non-coding RNAs (ncRNAs) is commonly employed for RNAs that do not encode
proteins. However, this does not confirm that these RNAs do not have a function or do not
play a fundamental role in cellular processes. The traditional view of molecular biology is
that almost exclusively RNAs transfer genetic information in order to be subsequently
translated into protein. However, the discovery of families of ncRNAs, such as ribosomal
RNA (rRNA) and transfer RNA (tRNA), comprising a high portion of total RNA and serving
necessary organisms functions, broadened the long-established RNA role. The majority of
mammalian genomes and other complex organisms are transcribed into ncRNAs and seem to
play a key regulatory role in various physiological and pathological processes[1].

ncRNAs are sub-divided according to their size and their biological function (Table 1). There
are ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), >200 nucleotide-long non-coding
RNAs, also known as long non-coding RNAs (IncRNAs), small non-coding RNAs, such as
microRNAs (miRNAs), piwi-interacting RNAs (piRNAs), short interfering RNAs (siRNAs)
etc. These categories also display sub-groups according to the genomic regulatory regions the
ncRNAs originate from. ncRNAs may derive from intergenic, intragenic, intronic regions of
protein coding genes or even from pseudogenes|[2].

Emerging technological developments during the past decade have revolutionized
biomedical research. Extensive sequencing experiments produced by large consortia,
including the Encyclopedia of DNA Elements Consortium (ENCODE)[3, 4] enabled large
scale analyses in the “regulatory RNA” field and turned non-coding RNA, initially
considered as junk, into a research goldmine. Numerous high-throughput experiments
suggest that ncRNAs partake crucially in a remarkable variety of biological processes, such as
gene expression, editing, splicing, heterochromatin formation, histone modification, DNA
methylation etc[1].
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Table 1: Non-coding RNA subfamilies - Their Function and Size.

Category Definition Function Size
miRNA microRNA Small ncRNA that interacts with (non- ~22nt
Jcoding RNAs through the RISC complex
to induce target cleavage/degradation or
translational suppression
piRNA piwi-interacting RNA ncRNA mainly characterized in the male 27nt
germline - directs chromatin modification
to repress transcription

siRNA small interfering RNA Product of Dicer cleavage of dsRNA that ~22nt
targets RNAs to induce their cleavage
snRNA small nuclear RNA ncRNA localized in the eukaryotic cell 100-300nt
nucleus
snoRNA small nucleolar RNA Guide RNA of chemical modifications of 70nt
other RNAs
sRNA small RNA regulator Bacterial ncRNA that interacts with <300nt
mRNAs and regulate gene expression
rRNA ribosomal RNA RNA component of the ribosomal subunit 120,160,1868,
5025nt,human;
120,1541,
2904nt, E. coli
tRNA transfer RNA Facilitates protein synthesis by carrying 70-90nt
amino-acids to ribosomal units
IncRNA long non-coding RNA Transcribed ncRNA, often capped and >200nt
polyadenylated. Epigenetic gene

expression regulator, sponge, transporter

1.2 The discovery of microRNAs

miRNAs are small non-coding RNA molecules, approximately 22 nucleotides long. They are
central post-transcriptional regulators of gene expression and play a pivotal role in numerous
biological processes. For more than a decade, miRNAs are intensively researched for their
involvement in a variety of physiological and pathological conditions[5].

The first microRNAs were discovered in 1993 by C. elegans (Caenorhabditis elegans)[6] by
Ambros, Lee and Feinbaum. The researchers observed that the lin-4 gene produced a non-
coding RNA segment of approximately 22 bases long that binds to the 3'-untranslated region
(3' UTR) of lin-14 mRNA. The interaction between the lin-4 non-coding and lin-14 gene led to
the translational repression of the latter. The above phenomenon is amplified by another
research result in the C. elegans organism, where the let-7 microRNA was identified to target
the 3' UTR region and induce suppression of lin-41 gene expression[7]. Let-7 microRNA
appeared to be conserved in other organisms supporting the existence and regulatory role of
other small non-coding RNA molecules[8]. These first discoveries were the beginning of a
large number of findings for novel microRNAs in various organisms that have established
their function as regulators of gene expression.
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1.2.1 Biogenesis of microRNAs

More than 45% of miRNAs are derived from non-coding transcripts, while the rest are
transcribed from protein coding regions. The majority of miRNA genes are transcribed from
RNA polymerase II (Pol II), generating large primary transcripts (pri-miRNAs). The protein
Drosha processes the pri-miRNAs generating ~60-100 bases long hairpin structures, also
known as pre-miRNA precursors. Rapid cleavage of pri-miRNAs by Drosha in the nucleus
prevents their characterization by conventional sequencing techniques, raising limitations to
the clarification of the regulatory mechanisms that control their transcription. The precursor
sequences are extracted from the nucleus and transferred to the cytoplasm by means of the
exportin-5 and Ran-GTP proteins, which inter alia participate in the transport of molecules
inside and outside the nuclear membrane. After the pre-miRNA comes out of the nucleus,
they are cut with the help of the Dicer enzyme, a highly conserved protein found in most
eukaryotic organisms. The effect of the Dicer enzyme by cutting the loop at the end of the
microRNAs precursors leads to the release of double-stranded ~22 nucleotide microRNAs[9]
(Figure 1).

Both strands of the miRNA duplex-intermediate can be potentially functional. However,
usually one strand (guide strand) accumulates as the mature miRNA. The mature single-
stranded molecule is loaded into protein Argonaute (AGO) while the other strand, termed as
the “passenger” strand, is released and degraded. The main action of microRNAs is observed
in the cytoplasm, while recent studies indicate that some mature miRNAs are able to re-enter
into the nucleus and interact with other transcripts, something that displays their possible
involvement in additional mechanisms that have not been yet characterized[10].
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Figure 1: Biogenesis of microRNAs. miRNAs are transcribed into the nucleus either autonomously or as
polycistronic molecules. The miRNA precursor (pri-miRNA) is treated by the microprocessor complex which
is composed of the DROSHA and DCGRS proteins. The resulting pre-miRNA which is extracted from the
nucleus by means of Exportin-5 and protein Dicer cuts the loop at the end of miRNA precursor. From the
generated double-stranded miRNA, one clone is usually selected, which is incorporated into the RISC
complex. The most well-defined functions of miRNAs are observed in the cytoplasm such as: translation
suppression and/or degradation of the mRNA target. Recent studies suggest that some mature miRNAs are
able to re-enter into the nucleus and interact with other transcripts, something that displays their possible
involvement in additional mechanisms that have not been yet characterized. This figure has been designed
for the purpose of this dissertation.

1.2.2 microRNA function

miRNAs are loaded into protein Argonaute and interact with the RISC complex to form the
miRNA-induced silencing complex (miRISC). Since miRNAs are incorporated into the RISC
complex, they induce gene silencing with partial or full complementary binding with mRNAs
(Figure 2). In particular, interactions of miRNAs with target mRNAs require complementarity
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of 6-8 nucleotides, the so-called seed region at the 5' end of the miRNA. It should be noted
that the base pairing of the seed with the mRNA plays a very important role in the
effectiveness of the interaction.

Initially, miRNAs were demonstrated to systematically and effectively target the 3'
untranslated region (3' UTRs) of mRNA, where highly conserved miRNA Recognition
Elements (MREs) are identified. However, recent studies have shown new functional miRNA
target sites within the 5'-Untranslated Region (5' UTR) and the coding region (CDS) of the
mRNA[11].

At the same time, miRNAs play a key regulatory role in a variety of biological processes such
as stem cell differentiation, involvement in immune mechanisms and cell signaling. Beyond
their physiological role, a large number of studies address the positive or negative role of
miRNAs in various diseases. miRNAs affect the expression levels of genes in different tissues.
Consequently, possible changes in miRNA concentration by mutation, deletion,
amplification, and epigenetic silencing or transcription factors, affect targeted genes,
including oncogenes and tumor suppressors, involved in a wide range of pathological
conditions in the human body, such as carcinogenesis, cardiovascular diseases, metabolic
disorders, autoimmune diseases, etc.[12-16]. miRNAs are therefore intensively studied for
their potential as therapeutic targets.

Figure 2: Illustration of miRNA targeting. miRNAs are loaded on AGO and guide the RISC complex to target
MRE(s). RISC binding to its target genes can either cease their translation or induce their cleavage and/or
degradation (Paraskevopoulou MD and Karagkouni D et al, 2018)[17].

1.3 Identification of miRNA targets

Accurate characterization of miRNA targets is considered fundamental to elucidate their
regulatory roles. Over the last 15 years, a multitude of in silico and experimental procedures
have been developed aiming to determine the miRNA interactome[5]. Currently, high-
throughput techniques have enabled the identification of novel experimentally-supported
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miRNA-gene interactions in a transcriptome-wide scale[18]. The broad use of these
experimental methodologies has advanced miRNA target recognition towards the gradual
substitution of related computational approaches. Despite the contribution of experimental
methods and computational techniques, much of the microRNA targets, even for extensively
studied organisms, such as mouse and human, remain unexplored.

1.3.1 Insilico approaches for the identification of miRNA:mRNA interactions

Target prediction tools constituted the first in silico approaches in miRNA research. miRNAs
may occupy hundreds of thousands of potential target sites, while their validation with
experimental procedures is time consuming and costly. Computational approaches constitute
the backbone of miRNA related studies by facilitating the process and proposing potential
target sites for downstream analyses.

The first miRNA target prediction algorithm was published in 2003 by Lewis et al.[19], who
tirst introduced the concept of the “seed region”. The miRNA “seed region” is a 7 base-long
segment, between the 2nd and 8t nucleotide, counting from the 5 of a miRNA sequence. This
region showed perfect Watson-Crick complementarity with the 3" UTR of the target mRNA
and was highly conserved among miRNAs and species. Since then, several miRNA target
prediction algorithms have been developed and heavily rely on the complementarity of this
region with the respective binding site, as a key biological element for miRNA-target
prediction.

Most of the developed algorithms focused from the very beginning on the prediction of
miRNA binding sites solely on the 3 UTR of mRNAs. However, recent advances in high-
throughput sequencing revealed a significant portion of target sites in CDS[11]. Currently,
there are numerous widely used and promising applications for de novo identification of
miRNA-gene interactions. Most of them rely on decisive features for miRNA target
recognition, such as nucleotide composition of the binding site, thermodynamic stability,
secondary structure and evolutionary conservation. They often produce radically different
outcomes due to the incorporation of diverse experimental data and different mathematical
models, utilized for the deployment of each algorithm. Therefore, selecting the most
appropriate implementation is a common and multifaceted problem.

1.3.1.1 Overview of de novo miRNA Target Prediction Algorithms

Available de novo miRNA Target Prediction algorithms, published in the last decade, are
displayed in Table 2 and a concise description of the most widely used and recently
developed methods, is reviewed below in more detail.
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Table 2: De novo miRNA Target Prediction algorithms, published the last decade.

Algorithm URL Year of the latest
update

miRAW bitbucket.org/account/user/bipous/ projects/ MIRAW 2018
DeepMirTar github.com/Bjoux2/DeepMirTar_SdA 2018
chimiRic bitbucket.org/leslielab/chimiric 2016
MIRZA-G www.clipz.unibas.ch/index.php?r=tools/sub/mirza g 2015
PACCMIT/PACCMIT- paccmit.epfl.ch 2015
CDS

Targetscan www.targetscan.org 2015
MBSTAR www.isical.ac.in/,bioinfo_miu/MBStar30.htm 2014
mirMark github.com/lanagarmire/MirMark 2014
miRmap cegg.unige.ch/mirmap 2013
DIANA-microT-CDS www.microrna.gr/microT-CDS 2012
MiRanda/mirSVR www.microRNA.org 2010

TargetScan[20]: TargetScan is a model with high performance in terms of sensitivity and
precision. The first version of the algorithm was introduced in 2003 by Lewis et al. [19] and
since then is constantly updated. Targetscan v7 provides a quantitative model that
incorporates 14 distinct features, including the target site type, 3’ supplementary pairing,
local AU content, 3 UTR binding site abundance, predicted seed-pairing stability and
conservation. It mainly detects canonical (high level of seed complementarity) sites within 3
UTR regions, according to a seed-dependent scoring system. The latest version of the model
also predicts effective non-canonical site types, such as 3" compensatory sites and centered
sites. The updated context++ model is applicable to all canonical sites, independently to the
evolutionary conservation feature, evaluating not only non-conserved sites to conserved
miRNAs but also sites for non-conserved miRNAs, including viral miRNAs. Each target site
can be evaluated with a cumulative context and/or an aggregated conservation score. The
training and testing of the model was performed on 74 microarray datasets, analyzed from
scratch to minimize technical biases, with clear sSRNA-induced repression using stepwise
regression[21].

DIANA-microT-CDS[22, 23]: DIANA-microT-CDS is a state-of-the-art implementation which
identifies seed-based miRNA binding sites with perfect or partial complementarity, both in
CDS and 3" UTR regions. It achieves increased performance in terms of sensitivity and
precision due to the independent analysis and the distinct feature extraction performed for
CDS and 3" UTR regions. Important microT-CDS features are the target site complementarity,
upflank AU content, accessibility, pairing stability and conservation of miRNA targeted
regions in 30 and 16 species respectively. A dynamic programming algorithm identifies the
optimal alignment between the miRNA extended seed sequence (nucleotides 1-9 from the 5
end of the miRNA) and every 9 nt window on the 3" UTR or the CDS region. Positive and
negative instances are derived from PAR-CLIP data[11]. The separate prediction models are
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combined in a Generalized Linear Model, which is trained on microarray datasets that
measure mRNA expression changes after transfection or knockout of a specific miRNA. The
potency of each miRNA-gene interaction is described by a combined score that represents the
synergistic action of multiple binding sites in the targeted mRNA regions. The overall
performance of the algorithm is estimated on quantitative proteomics and HITS-CLIP

data[24].

miRAW][25]: miRAW is one of the more recently developed de novo miRNA target prediction
algorithms. Its core algorithm identifies (non-)canonical sites within the 3" UTR region.
Decisive features of the model include miRNA:target hybrid stability, site accessibility and
per-nucleotide base pairing composition. The model adopts a Deep Learning classification
scheme of eight dense hidden layers, while the output layer is composed of two softmax
nodes. It was trained and tested on experimentally validated miRNA:gene interactions
indexed on TarBase v7[26] and mirTarBase[27] repositories. The miRNA:target pairs were
further combined with AGO-PAR-CLIP[28] and CLASH[29] experiments to retrieve the exact
miRNA binding locations. The model also integrates evolutionary conservation of targets by
combining broadly conserved sites from Targetscan[20]. The performance of the algorithm
was further evaluated on microarray datasets after miRNNA transfection into HeLa cells[30].

DeepMirTar[31]: DeepMirTar model is another Deep Learning approach that was recently
developed. The algorithm predicts (non-)canonical miRNA target sites within the 3" UTR
region. It incorporates 7 categories of features including sequence composition, duplex free
energy, site location, accessibility and evolutionary conservation. It also integrates hot-
encoding features representing the per-base nucleotide composition of miRNA binding
regions. The model has been trained on experimentally validated miRNA-gene interactions
derived from miRecords[32] database and a CLASH[29] experiment, while mock miRNA-
gene pairs were included as negative regions. DeepMirTar performance was evaluated on a
separate AGO-PAR-CLIP dataset[11].

chimiRic[33]: chimiRic detects seed-based miRNA-target pairs within the 3" UTR region, with
perfect or partial complementarity, by adopting a tissue-specific scheme. To address the
possibility of cell type specific miRNA binding, the model applied a multi-task learning
approach by treating the different cell types separately with related learning tasks. It
integrates decisive features, such as base pairing composition, duplex structure and 3" UTR
related characteristics. chimiRic utilizes a Support Vector Machine approach while positive
and negative miRNA binding sites were extracted from CLASH[29] and AGO-CLIP-
Seq[11][34] experiments. The model was subsequently evaluated on AGO-PAR-CLIP,
CLEAR-CLIP[35] datasets and Reporter Gene Assay experiments.

MIRZA-G[36]: MIRZA-G is another tool able to predict seed-based canonical and non-
canonical miRNA binding sites, residing on 3" UTR region and siRNA off-targets. Decisive
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features for MIRZA-G are the nucleotide composition around putative targeted regions, the
site structural accessibility, the evolutionary conservation and the location of the site within
the 3" UTR region. miRNA binding affinity in mRNA regions is assessed by the MIRZA
biophysical model deduced from AGO-CLIP-Seq data[37]. The latter implementation assigns
base binding energies on the candidate miRNA-mRNA duplexes. The training and testing of
the algorithm was performed using a generalized linear model against 26 miRNA /siRNA
transfection microarray and proteomics datasets.

miRanda/mirSVR[38, 39]: miRanda is the target prediction model provided by
microRNA.org. Its core algorithm identifies putative miRNA:gene interactions which are
scored by mirSVR model. It provides both canonical and non-canonical miRNA binding sites
within the 3" UTR region, by permitting one G:U wobble pair or mismatch in the 6mer seed
region, followed by a perfect binding in the 3° compensatory region. mirSVR utilizes a
Support Vector Regression approach and is trained on miRNA transfection microarray
experiments performed on HeLa cells. The scoring scheme is based on local and global
features. Local features incorporate the AU sequence composition and the accessibility of the
target site, while global features refer to UTR-relevant features and the conservation level of
the targeted region. The performance of miRanda-mirSVR joint usage was assessed on
microarray, proteomics and AGO-IP datasets after miRNA perturbation and AGO-PAR-CLIP
experiments.

mirMark[40]: mirMark provides both canonical and non-canonical miRNA binding sites in
the 3° UTR region, allowing up to 2 G:U wobble pairs. The main characteristic of the
algorithm is the extensive list of site and UTR relevant features that incorporates. Site level
features refer to miRNA/mRNA duplex energy, complementarity, structural accessibility,
composition and evolutionary conservation. The initial identification of candidate miRNA
binding sites is performed with miRanda algorithm. mirMark adopts separate levels of
classification, trained with a random forest model; a first one for the assessment of the target
site and a second one for the evaluation of the miRNA-gene interaction. The training was
performed using experimentally verified miRNA-gene targets derived from miRecords[32]
and miRTarBase[27], while mock miRNA-gene pairs were included as negative targeted
regions. AGO-PAR-CLIP data were used for the evaluation of mirMark’s performance.

mBSTAR[41]: mBSTAR constitutes a learning framework designed for predicting seed-based
binding sites of miRNAs within the 3" UTR region, allowing a single G:U wobble pair. It
incorporates 40 sequence, structural and energy features, including nucleotide frequencies,
internal loops, bulges and minimum free energy of the entire flanking region. mBSTAR
utilizes a Random Forest classifier, while the training and testing was performed on
experimentally supported miRNA-gene targets derived from miRecords[32], Tarbase v6[42]
and StarBase[43].
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PACCMIT/PACCMIT-CDS[44]: PACCMIT algorithm (Prediction of the ACessible
MlIcroRNA Targets) is based on an overrepresentation ranking system. The original model
ranks the candidate seed-based miRNA binding sites which reside on 3" UTR regions,
according to their over-representation with respect to a random background. The ranking
system is based on a Markov model. The sites are subsequently filtered by considering
accessibility and evolutionary conservation. PACCMIT-CDS follows the aforementioned
scheme by searching potential miRNA bindings also in the CDS region. The model was tested
on AGO-PAR-CLIP data[ll] and proteomics experiments, followed by miRNA
transfection[45][46].

1.3.2 Experimental Methods for the identification of miRNA:gene interactions

The experimental techniques, utilized to identify novel miRNA targets and validate predicted
interactions, can significantly differ in their accuracy and robustness. They are mainly
divided into low- and high-throughput experiments according to the amount of information
they produce. In low-throughput techniques, Reporter Gene Assays focus on the recognition
of the exact miRNA binding location, while indirect methodologies like quantitative
Polymerase Chain Reaction (qPCR), Western blot and Enzyme-Linked Immunosorbent
Assay (ELISA) infer interactions by taking into consideration the reduction of mRNA or
protein concentration[47]. High-throughput techniques, such as microarrays and proteomics
are the extension of low-yield methodologies, enabling the indirect detection of numerous
miRNA targets. Current advancements in Next Generation Sequencing (NGS) technologies
have radically changed the characterization of the miRNA interactome[18]. RNA
immunoprecipitation combined with sequencing (RIP-Seq) constitutes one of the first
experiments to enable the identification of RN As bound by a protein of interest[48]. Recently,
Ribosome profiling sequencing (RPF-Seq) experiments have been proposed as a sensitive and
quantitative protocol, able to measure the efficiency and speed of translation, as well as the
ribosome occupancy per transcript. This methodology allows the evaluation of miRNA-
mediated translational repression by the analysis of captured ribosome-bound transcripts[49].
These procedures are coupled with overexpression or knockdown of a specific miRNA in
order to detect genes quantitatively affected by miRNA expression perturbations.
Crosslinking and immunoprecipitation sequencing (CLIP-Seq) methodologies focus on the
transcriptome-wide recognition of RNA-protein binding regions and are usually
complemented with RNA expression experiments[50]. AGO-CLIP-Seq methodologies
inaugurated a new era in miRNA research, providing unprecedented accuracy and multitude
of miRNA targets in a transcriptome-wide scale. Recent modified versions of the later
techniques, such as CLEAR-CLIP(Covalent Ligation of Endogenous Argonaute-bound
RNAs)[35] and CLASH(Crosslinking, Ligation, and Sequencing of Hybrids)[51] protocols,
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include an extra ligation step which links miRNA molecules with their respective target

binding site, resulting in hundreds of chimeric miRNA-mRNA fragments.

Table 3 summarizes the most widely used experimental methodologies for miRNA target

characterization.

Table 3: Experimental methodologies for miRNA:gene interactions characterization.

Method Direct technique Throughput Experiment context

Reporter Gene Assay v Low Identification of interacting
miRNA-gene regions

qPCR, Northern Blot - Low miRNA effect on mRNA levels

Western Blot, ELISA - Low miRNA effect on protein
abundance

Microarrays, RNA-Seq - High miRNA effect on mRNA expression

CLIP-Seq/CLASH/ CLEAR-CLIP v High MRE binding site sequencing

3LIFE v/ High High-throughput Reporter Gene
Assay

RPF-Seq - High Sequencing of actively translated
transcripts

Biotin miRNA tagging (Biotin- - High/Low Biotin-tagged miRNA pull down

Seq, Biotin-Microarrays, Biotin- followed by RNA-

qPCR) Seq/Microarrays/qPCR

Quantitative Proteomics - High miRNA effect on protein
abundance

AGO-IP/RIP-Seq - High Enriched transcripts in AGO
immunoprecipitates

miTRAP - High miRNA trapping by RNA baiting

IMPACT-Seq - High Biotin-tagged miRNA pull down

PARE/Degradome-Seq - High Cleaved mRNA targets

LAMP - High Labeled miRNA pull-down with

digoxigenin

1.3.2.1 AGO-CLIP-Seq experimental methodologies
CLIP-Seq methodologies have revolutionized the study of protein-RNA interactions by

enabling the accurate characterization of RNA binding protein (RBP) target sites on a

transcriptome-wide scale in different species under psychological or pathological conditions.

The inception of the first and original CLIP-Seq protocol was conceived by Ule L et al[52] in

2003 and since then several CLIP-Seq variants have been developed. Photoactivatable
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Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation (PAR-CLIP) and High-
throughput Sequencing of RNA Isolated by Crosslinking Immunoprecipitation (HITS-CLIP)
variants against protein AGO are widely used methodologies for miRNA targetome
characterization. The last decade, these experiments have been performed to map miRNA-
gene interactions on a transcriptome-wide scale for healthy or diseased cell types/tissues and
have provided valuable insights into miRNA regulation of pathogen infections and cancer[53,
54]. They are considered among the most powerful high-throughput methods for the
characterization of miRNA targets.

The experimental protocol adopted in PAR-CLIP and HITS-CLIP methodologies is
summarized in Figure 3. In brief, the implemented steps of the procedures are mentioned
below:

1. Protein-RNA complexes are covalently crosslinked in live cells or tissues.

2. Cells/tissues are lysed and treated with RNase leaving small fragments of RNA
molecules bound with the protein of interest.

3. Protein-RNA complexes are immunoprecipitated, and non-specific RNAs and proteins
are removed by stringent washes.

4. Ligation of the radioactively labeled 5 adapter is performed, while protein-RNA
products are attached to beads, allowing the removal of unligated 5" adapter.

5. The purified protein-RNA complexes are radioactively labeled and separated by SDS-
PAGE.

6. Bound RNA is isolated either directly from SDS-PAGE gels or from nitrocellulose
membranes following transfer by Proteinase K treatment.

7. Eluted RNA is ligated to adapters, reverse transcribed while the resulting cDNA is
PCR amplified and subjected to sequencing.

8. Sequencing reads are processed and mapped to reference genomes. Computational
steps are following for CLIP-Seq analysis.

HITS-CLIP relies on UV crosslinking of protein-RNA complexes at UV 254 nm. The resulting
library usually contains substitutions or deletions at the crosslinking site, induced by reverse
transcriptase, facilitating the downstream analysis.

A major difference of PAR-CLIP against HITS-CLIP protocol is the use of 4-thiouridine (4SU)
and 6-thioguanosine (65G) analogs that significantly enhance the efficiency of protein-RNA
crosslinking. In PAR-CLIP experiments, cells are typically grown in the presence of
ribonucleoside analogs for up to 16 h and UV crosslinking is achieved at UV 365 nm. This
procedure limits the application of PAR-CLIP experiment only to cell cultures.
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The analogs incorporation provokes T-to-C (4SU) and G-to-A (6SG) substitutions at the
crosslinking site during cDNA synthesis, an incident that allows the accurate mapping of
protein RNA targets.

Figure 3: Overview of AGO-HITS-CLIP (left) and AGO-PAR-CLIP (right) protocols. This figure has been
designed for the purpose of this dissertation.

Recently, modified protocols of AGO-CLIP-Seq methodologies have been introduced, such as
CLEAR-CLIP[35] and CLASH[51], that incorporate extra ligation steps which link miRNA

45

Institutional Repository - Library & Information Centre - University of Thessaly
11/07/2024 07:57:03 EEST - 3.145.41.45



molecules with their respective target binding site. This step facilitates the computational
analysis and characterizes more accurate miRNA binding regions. The ligation step is
following after the crosslinking and the AGO-IP process, and is induced by treatment with T4
RNA Ligase I (Figure 4). In the case of CLEAR-CLIP experiment the RNA treatment with
RNA Ligase yields miRNA-target chimeric RNAs in two orientations (5" and 3" ends).

Figure 4: Overview of CLASH experiment. This figure has been designed for the purpose of this dissertation.

1.4 AGO-PAR-CLIP guided implementations

During the past few years, computational methods devoted to AGO-PAR-CLIP data analysis
have been elaborated making the complex analysis of these datasets accessible to a broader
community. They employ different mathematical models and feature sets and they depend
strongly upon the induced T-to-C conversions to pinpoint miRNA binding sites, following
the analysis performed in the seminal paper of Hafner et al[11]. Current models cannot be
readily used on sequencing data, since they require extra pre-processing steps and the
creation of non-standard file types.

A concise description of the most widely used methodologies is reviewed below:
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MIRZA[55]: MIRZA is one of the first computational approaches devoted to the analysis of
AGO-CLIP-Seq datasets. The implementation introduces a biophysical model for the
identification of miRNA targets, leaving behind the conventional miRNA seed-based
approaches. The model incorporates 27 energy parameters, inferred from AGO-CLIP-Seq
data, combined with characteristics associated with base pairs, loops and specific miRNA
positions. More precisely, miRNA binding positions 2-7 (seed region), 13-16 and 18-19 show
the highest energy contribution, contrary to position 9 which is usually disfavored as is
opening a loop. The model characterizes seed-based miRNA binding sites with perfect or
partial complementarity. The algorithm wutilizes a simulated annealing approach for
parameters optimization. It is trained on 2,988 cross-linked regions, derived from 4 AGO-
CLIP-Seq datasets[34] and evaluated against 36 microarray experiments after miRNA
transfection. The model necessitates extra pre-processing steps by the user to run. It requires
30-51nt long AGO bound fragments and discards miRNA sequences shorter than 21nt.

microMUMMIE[56]: microMUMMIE is another state-of-the-art approach, that pioneered in
the analysis of AGO-PAR-CLIP datasets. The algorithm is based on a six-state Hidden
Markov Model for characterizing the background, the AGO-bound clusters and their flanking
regions. The shape of PAR-CLIP has been modeled in a six-state topology, in which state 5
expands into a 41-state submodel for the detection of different types of miRNA seed pairing.
Its core algorithm solely processes T-to-C enriched clusters determined by PARalyzer[57] and
recognizes miRNA binding sites with (im)perfect seed complementarity. Evolutionary
conservation, sequence composition and location of the miRNA binding site within the AGO-
bound region are deemed decisive for this model. Evaluation of the prediction accuracy of the
model was performed via the signal-to-noise ratio (SNR), computed by comparing shuffled
and non-shuffled sites among a set of predictions. The algorithm was trained and evaluated
on AGO-PAR-CLIP data, performed on EBV infected lymphoblastoid and HEK293 cell lines.

PARma[58]: PARma is a leading AGO-PAR-CLIP guided approach which provides canonical
miRNA seed family interactions by processing significantly overrepresented kmers. The
model adopts an iterative procedure. It identifies statistically overrepresented kmers in AGO-
bound regions and all the incorporated parameters, such as seed activity probabilities, are
iteratively refined until convergence. Decisive features for miRNA-targets detection are the
observed positions of the T-to-C conversions and the RNase T1 cleavage sites upstream and
downstream of the seed region. PARma characterizes the most probable miRNA seed in an
AGO enriched cluster (MAscore), accompanied with a cluster score (Cscore). The Cscore
describes the probability that a cluster is indeed a miRNA-AGO bound region, while the
MAscore reflects the efficacy of the miRNA regulator. The model is fitted with an EM
algorithm. The algorithm has been trained on AGO-PAR-CLIP experiments performed on B-
cells. It is evaluated on DG75 cells, as well as on virus infected cell types, such as BCBL1, a
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Kaposi's sarcoma-associated herpesvirus (KSHV) infected cell line and on EBV infected cells.
1.5 Databases indexing miRNA-gene interactions

The emergence of databases devoted to the cataloguing of miRNA-gene interactions has
played a pivotal role in the miRNA research field.

miRTarBase[59] constitutes an extensive repository, integrating 422,517 miRNA targets,
supported from low-/high-throughput experiments for several species, collected from ~8,500
publications. It provides information regarding the miRNA, the targeted gene, the binding
site location, as well as miRNA/mRNA profiles retrieved from the Cancer Genome Atlas
(TCGA)[60].

miRecords[32] and miR2Disease[61] are smaller and not consistently updated repositories.
They contain approximately 3,000 validated interactions from low-yield techniques, while the
latter hosts manually curated miRNA targets combined with information for miRNA
deregulation in human diseases.

Other repositories, such as StarBase[62] and CLIPZ[63], substantially differ in their scope, as
they provide RNA binding protein (RBP) regions from different CLIP-Seq datasets.

DIANA-TarBase v8.0[64] is an extensive repository with approximately one million miRNA-
gene entries corresponding to ~670,000 unique experimentally supported miRNA-gene
interactions. This collection of targets, supported by more than 33 experimental
methodologies, applied to ~600 cell types/tissues under ~451 experimental conditions.
TarBase was initially released in 2006, constituting the first database to catalog experimentally
validated miRNA interactions and since then it is constantly updated. The current version has
been enhanced with a large compilation of high quality miRNA-binding events derived from
chimeric fragments, reporter gene assay and CLIP-Seq experiments. More than 200 high-
throughput experiments followed by perturbation of a specific miRNA have been analyzed
and integrated in the database. This extension provides an increase of approximately 200,000
interactions and ~300,000 entries since the previous version[50].

1.6 Pattern recognition and Machine Learning in Bioinformatics

Over the past two decades, the dramatic evolution of experimental methodologies has
dropped the cost and increased the throughput of the results exponentially. The vast
production of data has likely been the most important factor underlying the accelerated
growth of bioinformatics, a field dedicated to the analysis of data and the development of
computational tools indispensable for handling, manipulating and interpreting the results.

Data-driven approaches are gaining ground over the traditional methods, mainly utilized to
test pre-defined hypotheses in a biological phenomenon. In most cases, in spite of the
availability of data, a theoretical model, able to study the phenomenon is missing. Thus, the
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bioinformatic challenge is to build and generalize predictive models, suited to solve
biological problems.

Pattern recognition, in a more engineering-based approach, handles data modeling and
algorithms development to effectively solve problems, by using a set of instances, represented
by a number of characteristics. These problems are separated into supervised and
unsupervised issues and incorporate clustering, classification and dimensionality reduction
tasks. Pattern recognition is closely related to machine learning however, the latter constitutes
only a part of the first. Supervised machine learning approaches are mainly trained based on
characteristics derived from positive and negative instances (training data), under the
purpose to effectively characterize a novel set of unknown instances. Unsupervised learning
on the other hand, is applied in cases where no positive/negative data are available and
unknown patterns have to be discovered. According to Bishop et al[65], “the field of pattern
recognition is concerned with the automatic discovery of reqularities in data through the use of
computer algorithms and with the use of these reqularities to take actions such as classifying the data
into different categories” .

The following section focuses on machine learning supervised classification approaches
applied to ncRNA-related studies and discusses in detail the function of the algorithms.

1.6.1 Probabilistic classifiers

Probabilistic classifiers[66] are among the most popular classifiers used in the machine
learning community and appear in a wide range of applications. These classifiers are derived
from generative probability models that cover the original space or more involved spaces and
are assigned to the study of complex statistical classification domains such as natural
language and visual processing. A probabilistic classifier is able to predict and classify
unknown observations by considering a set of characteristics. Notably, unlike other
algorithms, it does not simply detect the “best” classification option but also assigns a
probability under which the instance is being described by the label. Probabilistic classifiers
provide classification that can also be utilized in ensemble learners that are discussed later in
this section.

1.6.2 Feature Extraction and Selection

Descriptors are extracted from a positive and negative set of observations (training set) and
are responsible for the training and the performance of the building models. The optimal
selection of features, covering the complexity of the problem, is considered fundamental in a
classification procedure. Transformation techniques are usually applied to descriptors with
respect to the type of the latter (continuous, nominal, dichotomous, ordinal), prior to a
machine learning algorithm in order to achieve the optimal model performance. The most
common techniques are the (a) transformation of the categorical features in numerical, (b)
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scaling or normalizing features within a specific range, e.g. 0-1 and (c) dimensionality
reduction. The latter can be achieved with the Principal Components Analysis (PCA)[67]
which attempts to reduce a large dimensionality feature vector into a smaller dimensionality
vector that encodes less redundancy and can be more efficiently interpreted. Another
transformation method usually used for categorical features is the One Hot Encoding
technique. The transformation actual takes one column with x categories (x>2) and converts it
into x columns, where each one represents one category in the original column. Notably,
several of the classification models mentioned below, such as Neural Networks and Support
Vector Machines, also transform features internally.

Feature selection methods differentiate from the aforementioned techniques as they are
applied to privilege the most optimal subset of the original feature set[68]. The selection of the
optimal subset of descriptors not only accelerates the training process but also improves the
accuracy of the model and reduces overfitting. A brief description of various feature selection
techniques is presented below.

Filtering methods: Statistical tests such as Pearson’s Correlation, Linear discriminant
analysis, Wilcoxon’s exact test etc., investigating the in-between correlations of features, as
well as their equivalence with the outcome variable, are mainly used in this phase of the
modeling procedure. Additionally, tests estimating the predictive accuracy of descriptors
(ROC, AUCQC) are utilized for feature evaluation and ranking. However, these methods
evaluate the behavior of features in one dimension, ignoring their in-between associations in
the multidimensional space.

Wrapper methods: Wrapper methods use subsets of features and train the model to retain
only descriptors that provide the best performance. The sequential training processes make
these methods computationally very expensive. Some of the main wrapper methods are the
forward feature selection, the backward, and the recursive feature elimination. In forward
feature selection, descriptors are added iteratively until the addition of a new parameter does
not improve the model’s performance. The backward feature elimination is the exact opposite
procedure; starting from the initial set of features, a descriptor is detached until no
improvement is observed by removal of another feature. The recursive feature elimination is
a greedy procedure aiming to rank features based on their performance. The best and worst
performing descriptors are retained in each iteration process until the exhaustion of all
features. A great disadvantage of these methods is that by using the selected subset of
features, the model becomes more prone to overfitting.

Embedded methods: Embedded methods combine the advantages of the aforementioned
categories and are usually implemented by algorithms that internally incorporate their own
feature selection methods, performed simultaneously with classification. The most popular
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examples are LASSO and RIDGE regression which include penalization functions to reduce
overfitting. LASSO regression preforms L1 regularization which adds a penalty equivalent to
the absolute value of the dimension of coefficients, while RIDGE regression performs L2
regularization which adds a penalty equivalent to the square of the dimension of coefficients.

1.6.3 Machine Learning Algorithms

1.6.3.1 Generalized Linear Models

The generalized linear models (GLMs) are primary introduced by Nelder and Wedderburn in
1972130 and are considered as an extension of the linear regression model to variables that are
not normally distributed. The idea was conceived in order to unify other statistical models
including linear regression, logistic regression and Poisson regression. In a generalized linear
model the response variable is modelled by a linear predictor of explanatory variables (1)
followed by a link (Error! Reference source not found.Error! Reference source not found.)
and a variance (Error! Reference source not found.Error! Reference source not found.)
function. The link function describes the dependency of the mean against the linear predictor
and the variance associates variance with the mean. In contrast to the simple linear model,
“general” refers to the dependence on potentially more than one explanatory variable and to
an included error term which is independent and identically distributed.

h; = Bo + B1x1,+.... +Bpxp, (1)
EWM)=p=g'h) (2
Var(Y) =Var(w) =V(g~'(h)) ()

The response variable is assumed to be generated from a particular distribution in the
exponential family including the normal, binomial, Poisson and gamma distributions. The
explanatory variables [ are typically estimated with maximum likelihood or Bayesian
techniques.

The GLM models presume that the incorporated descriptors should be uncorrelated.
Extensions of the methodology, such as Generalized estimating equations (GEEs) and
Generalized Linear Mixed Models (GLMMs) permit in-between parameter associations.

1.6.3.2 Naive Bayes classifier

Naive Bayes classifier is a probabilistic machine learning model, ideal for classification
tasks[69]. It is based on the Bayesian theorem in which the final predictions are displayed by
combining prior and likelihood probabilities to form and maximize the probabilities of a class
occurrence for a set of features, known as posterior probabilities. The main assumptions,
adopted by the classifier, are that the input descriptors are independent and they have an
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equal effect on the outcome. Naive Bayes classifier was introduced in 1960s and since then
several extensions of the algorithm have been developed. Some of the dominant types are the
Multinomial Naive Bayes, which is mostly utilized in document classification problems, the
Bernoulli Naive Bayes, which is quite similar with the former type, with the difference that
the predictors are boolean variables and the Gaussian Naive Bayes, which is ideal in cases of
continuous descriptors that follow a Gaussian distribution.

Naive Bayes classifier, despite its simplicity, is still a popular baseline method mostly used in
sentiment analysis, spam filtering, recommendation systems, bioinformatics, medical
diagnosis etc. It is fast and easy to implement as it necessitates only a small number of
training data. However, the worst drawback is the requirement of predictors to be
independent, something practically impossible in most real cases.

1.6.3.3 Support Vector Machines

Support Vector Machines (SVMs) are supervised learning models widely used both in
classification and regression analysis. They were initially introduced by Vapnik in 1963[70]
and belong to the frontline in the machine learning field due to their high accuracy within a
low computational cost. The purpose of this algorithm is to define a hyperplane in N-
dimensional space (N is the number of descriptors) that distinctly classifies the data points.
The optimal hyperplane acquires the maximum margin i.e. the maximum distance between
the data points of both classes (Figure 5), in order to confidently classify future unknown data
points and reduce generalization error. Hyperplanes act as decision boundaries for the
classification of new data, i.e. each side represents the different classes. Also, the dimension of
the hyperplane is associated with the number of features. Support vectors are the data points
that define hyperplane’s limits. SVMs perform a non-linear classification and define their
inputs into high-dimensional feature space in terms of a kernel function k(x,y).

Many extensions of the original SVMs have been proposed providing different options such
as Support-Vector Clustering (SVC) ideal for unsupervised learning, Transductive Support-
Vector Machines adopted in semi-supervised learning, multiclass SVM, Bayesian SVM etc.
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Figure 5: Representation of possible hyperplanes (left) and the optimal hyperplane (right) in a SVM
classification scheme. This figure has been designed for the purpose of this dissertation.

1.6.3.4 Decision Trees

Decision Trees is a widely used machine learning algorithm, ideal for classification and
regression problems. The classification scheme of the algorithm imitates human thinking and
logic with a tree-like approach. A decision tree incorporates nodes assigned to each feature,
links representing a decision rule and leafs attributed to a categorical or continuous outcome.
The modeling of the tree presumes the optimal selection of features and conditions in each
step, followed by its trimming to avoid overfitting. Recursive binary splitting strategy is
usually adopted where all the features are considered and different split strategies are tried
and evaluated to minimize the cost. A large number of features can lead to complex trees and
unavoidable to overfitting. Therefore, parameters indicating the minimum number of utilized
training inputs on each leaf or the maximum depth of the model, i.e. the longest path from a
root to a leaf, should be considered. Pruning is a subsequent method that can be utilized to
remove features (nodes/branches) with low importance with the purpose to reduce tree
complexity.

The most commonly used decision trees are CART and ID3[71]. Decision trees are simple and
can be easily interpreted. They handle both numerical and categorical data, are not affected
by non-linear associations between descriptors and perform internally feature selection.
Therefore, the data preparation process is eliminated. However, the use of this algorithm also
demonstrates several drawbacks. The incorporation of high-dimensional data may lead to
over-complex trees and to overfitting. Decision trees are very unstable - small variations in
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the data may generate a totally different outcome. Also, if some classes dominate, the model
becomes biased.

1.6.3.5 Random Forest

Random Forest (RF) is introduced by Ho in 1995[72] and evolved by Breiman[73] and Culter
in 2001, as an ensemble learning method that constructs and combines a multitude of decision
trees (bagging) at training time. “Bagging” is coupled with the random selection of features to
control variance (Figure 6). It is one of the most widely used machine learning approaches
which can be applied on several tasks including classification and regression. The Random
Forest model displays high performance even with its default parameters and as an upgrade
to the conventional decision trees it avoids overfitting.

The Random Forest algorithm displays the general techniques of bagging/bootstrap
aggregating. On each round, a random sample of the training set is selected with replacement
and trees are subsequently constructed. After the training process, the unseen samples are
predicted and scored by considering the majority vote of the individual trees (classification)
or by averaging their predictions (regression). This procedure controls the variance without
increasing the bias. The bagging process is complemented with the selection of a random
subset of features at each candidate split, in order to avoid the correlation among the
resulting trees. The adopted hyperparameters are nearly the same as in a decision tree or a
bagging classifier.

Random forest can also measure the relative importance of features internally. The estimate is
conducted by evaluating the range of noise redundancy across all trees, achieved by each
node-descriptor. The main limitation of the algorithm is the run-time performance in case of
high-dimensional data processing.
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Figure 6: Random Forest representation with two trees. This figure has been designed for the purpose of this
dissertation.

1.6.3.6 Deep Learning methods

Deep Learning methods[74], also known as deep neural networks, are state-of-the-art
algorithms that are widely used in supervised, semi-supervised and unsupervised tasks.
They are inspired by the human brain to interpret sensory numerical data under a machine
perception system. Deep Learning as a “universal approximator” can easily define
associations between inputs and outputs in classification, clustering and regression analysis.
Walter Pitts and Warren McCulloch were the first who introduced a computational model
based on neural networks of the human brain in 1943. Since then, Deep Learning is constantly
evolving.

Deep learning is composed of several layers, while each one displays several nodes. A node
combines input data with a set of coefficients/ weights that either amplify or scale down these
input parameters. The weighted input data are summed and non-linearly processed by an
activation function to determine nodes impact throughout the whole network and decide
their activation or not. The activation functions are usually s-shaped functions, such as
sigmoid, tanh, hard tanh etc. Deep Learning also utilizes a gradient descent optimization
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function in order to adjust the weights according to the error they provoke. A diagram of a
node representation is displayed in Figure 7.

Inputs Weights

Net input Activation
function function

@—) output

Figure 7: Representation of a node in a Deep Learning scheme. This figure has been designed for the purpose
of this dissertation.

Deep neural networks are characterized by their depth, which indicates the number of node
layers (hidden layers) though which data are processed. The first neural networks consisted
one hidden layer apart from the input and output. More than one hidden layers mark the
“deep” learning condition, where each layer’s output is the input of the subsequent hidden
layer. A representation of deep learning architecture is presented below.

Figure 8: Deep Learning architecture. This figure has been designed for the purpose of this dissertation.
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The ability to aggregate and recombine features successfully constitutes Deep Learning
methods ideal for high-dimensional data manipulation. Notably, these algorithms perform
automatic feature extraction without the user’s intervention, unlike most of the traditional
machine learning techniques. Overfitting can be avoided by applying regularization methods,
such as weight decay (L1 regularization) or sparsity (L2 regularization), as well as dropout
regularization that randomly omits units from the hidden layers during training.

Deep Learning methods have been applied in a multitude of different fields such as computer
vision, natural language processing, audio recognition, social network filtering,
bioinformatics, drug design, medical image analysis and demonstrate high accuracy by
producing results comparable to human experts.

1.6.3.7 Ensemble learning algorithms

In machine learning, Ensemble learning algorithms combine multiple models to achieve
better predictive performance than any individual classifier. A machine learning ensemble
classifier is composed of a concrete finite set of alternative models that can be combined in a
flexible structure. Not only slow algorithms may benefit from ensemble techniques but also
fast algorithms such as decision trees are commonly utilized in ensemble methods e.g.
Random Forests. Ensemble learning is separated into 4 main categories: boosting, bootstrap
aggregating/bagging, ensemble averaging, mixture of experts. Boosting is an ensemble meta-
algorithm, mainly utilized for bias and variance redundancy, able to convert weak learners to
strong ones. Bootstrap aggregating or bagging is specifically designed to improve stability
and accuracy, as well as to evade overfitting. As discussed in the aforementioned sections,
bagging is specifically utilized in decision tree methods. Ensemble averaging is particularly
adopted in neural networks where different models are generated and combined. The final
model displays the best performance because the various errors of the models are averaged
out. In the final category “mixture of experts”, multiple experts (learners) divide the problem
space into homogeneous regions. Therefore, the model decides which experts/learners are
utilized in the different input regions.

1.6.3.8 Gradient Boosting

Gradient Boosting algorithm (GBM) is an ensemble machine learning boosting approach that
combines weak models in a stage-wise fashion, typically decision trees, and generalizes them
by optimizing a loss function. It is used both in regression and classification problems. It was
initially introduced by Breiman[75] while the more recent form of the model was developed
by Bartlett and Frean[76], who presented an iterative gradient descent algorithm.

In contrast to the bagging ensemble methods, gradient boosting is generating trees gradually,
additively and sequentially, i.e. each decision tree is a fit on a modified version of the original
dataset, emerged after the evaluation of the former tree. Final predictions are the weighted
sum of the predictions that were displayed by the previous trees. The algorithm defines the
shortcomings of each learner/decision tree by utilizing gradients in the loss function.

57

Institutional Repository - Library & Information Centre - University of Thessaly
11/07/2024 07:57:03 EEST - 3.145.41.45



One of the commonly used regularization techniques to control overfitting is the number of
gradient boosting iterations attributed to the number of trees. An optimal value of iterations
is often privileged by monitoring prediction error on a separate validation dataset.

Several variants of Gradient Boosting have been developed that are widely used in a
multitude of scientific fields.
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CHAPTER 2
Methods

This section provides an overview of the implemented computational approaches for the
accurate characterization of miRNA-mRNA interactions and their indexing in a
comprehensive repository. The applied methods are summarized below:

1. Methods for the development of DIANA-TarBase v8.0[64], a database dedicated to the
cataloguing of experimentally supported miRNA-mRNA pairs.

2. Implementation of microCLIP[17], a novel Super Learning Algorithm for the analysis
of AGO-CLIP-Seq data.

3. Implementation of microT, a Next Generation de novo framework for the detection of
miRNA-target pairs.

2.1 Methods for the development of the DIANA-TarBase v8.0 repository

DIANA-TarBase[64] is a database devoted to the indexing of experimentally supported
miRNA targets. One of the major aims of this thesis was to extensively study and characterize
miRNA targets. To this end, the 8t version of TarBase has been developed providing more
than a million of entries. It integrates information on cell-type specific miRNA-gene
regulation and hundreds of thousands of miRNA binding locations are reported. The
repository enables users to extract miRNA interactions derived from 33 experimental
methodologies, applied to 603 distinct cell types/tissues under 88 experimental conditions. A
completely redesigned intuitive interface is also introduced, constituting a user-friendly
application with flexible options to different queries.

2.1.1 Collected Data

In DIANA-TarBase v8.0 approximately 419 publications have been manually curated and
added, while more than 245 high-throughput datasets harboring (in-)direct interactions have
been collected and analyzed. Emphasis was placed on extracting extensive meta-data to
accompany indexed entries. Each miRNA-target interaction is coupled with information
regarding the relevant publications and methodologies, tissues, cell types as well as the
positive or negative type of regulation. In the case of direct techniques, the exact miRNA
binding locations have been archived and complementary information of the cloning primers
and the targeted regulatory regions on the transcripts (e.g. 3 UTR, CDS) are included.
Interactions supported from high-throughput experiments, have been extracted either from
relevant publications or from the analysis of raw libraries retrieved from GEO[77] and
DDBJ[78] repositories. Descriptions regarding the experimental procedures/conditions are
also available to the users.
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2.1.2 Analysis of high-throughput datasets incorporated in DIANA-TarBase v8.0

High-throughput experiments were analyzed to retrieve gene expression alterations upon
specific miRNA treatment. Raw microarray datasets have been processed with a standardized
in silico pipeline developed in R[79]. In Affymetrix arrays, Robust Multi-Array Average
(RMA) from Bioconductor packages affy[80] or oligo[81] was utilized to perform probe set
summarization. Agilent and Illumina microarray data sets were background corrected using
normexp method and quantile normalization[82]. Probe sets were mapped to Ensembl gene
IDs[83] utilizing chip-specific Bioconductor R packages[84]. Differential expression was
assessed with limma[82], using moderated t-statistics and adjusting the associated p-values
with Benjamini-Hochberg method to control the false discovery rate. The log> fold change
values of probe sets mapped on the same gene were averaged to calculate its expression
alteration. Positive and negative interactions from each set were inferred using a +0.5 loga
fold change threshold, according to the perturbation type.

Processed RPF-Seq, RNA-Seq and RIP-Seq libraries, submitted to specific miRNA treatment
were collected from the respective publications. Positive/negative miRNA interactions were
formed from genes presenting >10 RPKM and >50% expression change.

2.1.3 Analysis of AGO-CLIP-Seq datasets incorporated in DIANA-TarBase v8.0

The CLIP-Seq analysis has been performed using an in-house developed pipeline. Regions
formed by at least five overlapping reads were included to the analysis. For PAR-CLIP data,
peaks containing adequate T-to-C (sense strand) or A-to-G (antisense strand) incorporation
were selected. At least two transitions in the same position for peaks with less than 50 reads
were required, while for the remaining regions a threshold of >5% was applied, as indicated
by Hafner et al.[11]. For all CLIP-Seq data sets having replicates, a peak had to be present in at
least two replicates in order to be considered as valid. Where available, top expressed
miRNAs were retrieved from the original publication. In all other instances, publicly
available small-RNA-Seq libraries derived from the relevant cell lines were analyzed. The
adopted pipeline for the pre-processing of the AGO-PAR-CLIP libraries and the analysis of
the sSRNA-Seq datasets is described in detail in section Methods 2.2.2.

miRNA:gene interactions were inferred using a modified a version of microT-CDS
algorithm[85] which considers decisive features for the accurate MRE characterization such as
the miRNA:mRNA binding type, binding free energy, MRE conservation and AU flanking
content. In cases where replicates were available, an interaction had to be present in at least
two replicates, in order to be included to the database. Figure 9 depicts the adopted pipeline
for the analysis of the AGO-CLIP-Seq libraries. The snapshot has been retrieved from the
IGV[86] Genome Browser.
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Figure 9: Snapshot from the IGV Genome Browser depicting the adopted pipeline for the analysis of the
AGO-CLIP-Seq libraries. Raw CLIP-Seq reads are initially aligned into the reference genome. Regions
enriched in AGO are formed by overlapping reads. AGO-CLIP clusters are annotated in a comprehensive set
of transcripts. MRE identification is subsequently applied to the annotated peaks. The illustrated peaks are
derived from 1 AGO-PAR-CLIP library on HEK293 cells. The brown-and-green vertical lines represent T-to-
C transition sites while MREs are detected by microT-CDS algorithm. This figure has been designed for the
purpose of this dissertation.

2.1.4 Database interface development

A new relational schema was designed to host TarBase v8.0 data (Figure 10). Indices were
created to guarantee the efficient execution of the system and foreign keys were added to
avoid integrity violations in the data. PostgreSQL was utilized to implement the hosting
database. The web interface of TarBase was designed around the new database schema and
effort was put into making it adaptable to a wide variety of screen formats and devices (PCs,
tablets, smartphones, etc.). The interface was developed using the Yii 2.0 PHP framework.
The interactive charts were implemented using the D3.js JavaScript library.
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Figure 10: TarBase database schema. This figure has been designed for the purpose of this dissertation.

2.2 Implementation of microCLIP, a novel Super Learning Algorithm for the analysis of
AGO-CLIP-Seq data

One of the aims of the current thesis was to revisit, identify and address current obstacles in
AGO-CLIP-Seq analysis, in order to enable the accurate determination of experimentally
supported functional miRNA targets. To this end, microCLIP[17] was developed, an in silico
framework for CLIP-guided identification of miRNA interactions. microCLIP incorporates
novel aspects in PAR-CLIP analysis and increases the experiment’s scope and robustness.
Computational approaches for AGO-CLIP-Seq data analysis incorporate machine learning
techniques and thus rely heavily on training/validation dataset selection. Therefore, an
extensive experimental collection of miRNA interactions was created in order to boost the
proper optimization of microCLIP algorithm and its exposure to the actual search space
complexity. The most remarkable finding was that clusters depleted on T-to-C conversions,
which are always filtered out in such analyses, can aid in the identification of functional
miRNA binding events (Figure 11).
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Figure 11: Peaks derived from 5 AGO-PAR-CLIP libraries on HEK293 cells and from 3 non-RBP background
libraries are presented for T-to-C and non-T-to-C AGO-bound regions. The red-and-blue vertical lines
represent T-to-C transition sites. Both types of AGO-enriched clusters are clearly distinguished from
background signal. Chimeric miRNA-target fragments overlap with (non-)T-to-C peaks providing direct
validation for specific miRNA-target pairs (hsa-miR-19a-3p-Ran and hsa-miR-103a-3p-Rps14). microCLIP
identifies the aforementioned interactions as a 7-mer (chr12:131,361,200-131,361,400, Ran gene 3' UTR) and an
8-mer with a 3’ compensatory site (chr5:149,826,350-149,826,550, Rpsl4 gene CDS) respectively. The 3D
depictions of AGO2 were based in the PDB structure 5JS1 (Paraskevopoulou MD and Karagkouni D et al,
2018)[17].

microCLIP provides a robust pipeline for the analysis of all AGO-enriched regions. It
encompasses an approach based on a super learning scheme and employs combinations of
deep learning, random forest and gradient boosting classifiers. The super learner approach
was introduced by van der Laan et al. in 2007 and has been shown to be an asymptotically
optimal system for machine learning[87]. By using multiple combinations of classifiers, super
learning outperforms a single prediction model.

2.2.1 Dataset collection

microCLIP was trained and evaluated against an extensive set of interactions from hundreds
of miRNA specific low/high-throughput experiments across ~50 different cell types. A high
quality set, composed of direct miRNA binding events retrieved from Reporter Gene Assays
and chimeric miRNA-target fragments[28, 29, 50, 88, 89], was incorporated in the algorithm’s
development and evaluation process (Figure 12).
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Figure 12: Dataset collection and methodology for positive and negative MRE identification. More than 6,000
interactions were retrieved from direct techniques and miRNA-target chimeric fragments. Numerous high-
throughput experimental data following specific miRNA perturbations enabled the identification of AGO
bound or differentially transcribed/translated genes harboring functional binding sites. In order to resolve
the exact miRNA binding sites, positive and negative instances were coupled with signal from 24 AGO-PAR-
CLIP libraries. The negative set was enhanced by incorporating background CLIP-Seq clusters. sSRNA-Seq
datasets were included to determine expressed miRNAs and accurately extract positive/negative MREs. This
dataset collection was processed to form the training/test sets of microCLIP deployment (Paraskevopoulou
MD and Karagkouni D et al, 2018)[17].

6,724 high confidence MREs were retrieved from direct experiments, including reporter gene
assay techniques indexed in DIANA-TarBase repository[50, 89], miRNA-chimeras from
CLASH[29] and CLEAR-CLIP[88] experiments, as well as additional miRNA-target chimeric
fragments derived from a previous meta-analysis of published AGO-CLIP datasets[28]. In
order to quantify miRNA-induced mRNA expression changes and to identify functional
binding sites, 101 miRNA perturbation experiments were analyzed (89 microarray and 12
RNA-Seq experiments, Table 4, Table 5). This process enabled the formation of approximately
3,900 and 4,000 positive and negative miRNA-target pairs respectively. A set of 5 ribosome
profiling sequencing (RPF-Seq) libraries after miRINA overexpression, capturing differentially
ribosome-bound transcripts, and 6 pSILAC (quantitative proteomics) experiments were an
additional source for detecting more than 5,900 miRNA effects at protein expression level
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(Table 4). The inclusion of AGO-IP and biotin pull-down high-throughput experiments upon
specific miRNA perturbation yielded approximately 2,600 miRNA binding events (Table 4).
The aforementioned miRNA perturbation experiments enabled the detection of deregulated
targets without specifying the exact binding sites[50]. miRNA-targeted regions were extracted
from AGO-bound enriched regions present in at least 1 of 24 AGO-PAR-CLIP sequencing
libraries (Table 6).Published background PAR-CLIP libraries[90], stably expressing a
commonly utilized non-RBP control (FLAG-GFP), were incorporated in our pipeline to
identify non-specific AGO-bound transcripts and deduce more than 24,000 negative miRNA
binding sites. A compendium of 96 AGO-CLIP-Seq experiments was derived from DIANA-
TarBase and used to further select background-derived MREs displaying no overlap with
AGO-enriched regions.

Table 4: Summary of the collected experiments in human species upon specific miRNA deregulation. The
datasets were utilized to extract independent training and test sets of positive and negative MRE regions for

microCLIP deployment.
Accession Repository Authors Experiment Cell Type miRNA miRNA Post-
treatment Transfection
Cell Harvest
Time/Experi
mental
Condition
GSE27718 ncbinlm.nih.gov/  Gaziel-Sovranet microarrays 113/6-4L, hsa-miR-30d-5p  Overexpression  60h
geo al. 131/4-5B1
GSE58004 ncbinlm.nih.gov/  Kiga et al. microarrays AGS hsa-miR-210-3p  Overexpression  36h
geo
GSE38956 ncbinlm.nih.gov/  Ramachandran  microarrays CALU3 hsa-miR-138-5p  Overexpression = 48h
geo etal.
GSE12400 ncbinlm.nih.gov/  Sander et al. microarrays CCLS86, hsa-miR-26a-5p  Overexpression  72h
geo CRL1432
GSE51053 ncbinlm.nih.gov/  Kristensenetal.  microarrays DU145 hsa-miR-452-5p  Overexpression  48h
geo
GSE42823 ncbinlm.nih.gov/  Nelson ef al. microarrays H4 hsa-miR-103a-3p Overexpression  48h
geo
GSE42823 ncbinlm.nih.gov/  Nelson ef al. microarrays H4 hsa-miR-107 Overexpression  48h
geo
GSE42823 ncbinlm.nih.gov/  Nelson ef al. microarrays H4 hsa-miR-15b-3p  Overexpression  48h
geo
GSE42823 ncbinlm.nih.gov/  Nelson ef al. microarrays H4 hsa-miR-16-5p Overexpression  48h
geo
GSE42823 ncbinlm.nih.gov/  Nelson et al. microarrays H4 hsa-miR-195-5p  Overexpression  48h
geo
GSE42823 ncbinlm.nih.gov/  Nelson et al. microarrays H4 hsa-miR-320b Overexpression  48h
geo
GSE22790 ncbinlm.nih.gov/  Elyakim et al. microarrays HEPG2 hsa-miR-191-5p  Anti-miR NA
geo
GSE6207 ncbinlm.nih.gov/  Wang et al. microarrays HEPG2 hsa-miR-124-3p ~ Overexpression  4h, 8h, 16h,
geo 24h, 32h, 72h
, 120h
GSE56973 ncbinlm.nih.gov/  Hill et al. microarrays HEY hsa-miR-429 Overexpression  48h
geo
GSE23392 ncbinlm.nih.gov/  Shahab et al. microarrays HEY hsa-miR-128-3p ~ Overexpression  48h
geo
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GSE23392 ncbinlm.nih.gov/  Shahab et al. microarrays HEY hsa-miR-7-5p Overexpression  48h
geo

GSE41737 ncbinlm.nih.gov/  Shirasaki et al. microarrays HUH7.5 hsa-miR-27a-3p  Anti-miR, NA
geo Overexpression

GSE16962 ncbinlm.nih.gov/  Fasanaro et al. microarrays HUVEC hsa-miR-210-3p  Anti-miR, 24h
geo Overexpression

GSE18651 ncbinlm.nih.gov/  Cushing et al. microarrays IMR90 hsa-miR-29a-3p  Knockdown 48h
geo

GSE16674 ncbi.nlm.nih.gov/  Navarro et al. microarrays K562 hsa-miR-34a-5p  Overexpression  24h
geo

GSE17362 ncbinlm.nih.gov/  Boll et al. microarrays LNCAP hsa-miR-130a-3p Overexpression  24h
geo

GSE17362 ncbinlm.nih.gov/  Boll et al. microarrays LNCAP hsa-miR-203a-3p Overexpression  24h
geo

GSE17362 ncbinlm.nih.gov/  Boll et al. microarrays LNCAP hsa-miR-205-5p  Overexpression  24h
geo

GSE31620 ncbinlm.nih.gov/  Hudson et al. microarrays LNCAP hsa-miR-1 Overexpression  24h
geo

GSE31620 ncbinlm.nih.gov/  Hudson et al. microarrays LNCAP hsa-miR-27b-3p  Overexpression  24h
geo

GSE33538 ncbinlm.nih.gov/  Bossel Ben- microarrays MCF10A hsa-miR-20a-5p  Silencing Oh, 0.5h, 1h,
geo Moshe et al. 2h

GSE33538 ncbinlm.nih.gov/  Bossel Ben- microarrays MCF10A hsa-miR-671-5p  Silencing Oh, 1h, 2h
geo Moshe et al.

GSE58142 ncbinlm.nih.gov/  Frankel ef al. microarrays MCEF7 hsa-miR-95a-3p  Overexpression  24h
geo

GSE31397 ncbinlm.nih.gov/  Frankel ef al. microarrays MCEF7 hsa-miR-101-3p  Overexpression  24h
geo

GSE19777 ncbinlm.nih.gov/  Raoetal. microarrays MCF7FR hsa-miR-221-3p  Silencing 72h
geo

GSE58004 ncbinlm.nih.gov/  Kiga et al. microarrays MKN45 hsa-miR-210-3p  Overexpression  36h
geo

GSE32876 ncbinlm.nih.gov/  Setty et al. microarrays MSK543 hsa-miR-124-3p  Overexpression = 24h
geo

GSE32876 ncbinlm.nih.gov/  Setty et al. microarrays MSK543 hsa-miR-132-3p ~ Overexpression  24h
geo

GSE57158 nchbinlm.nih.gov/  Greenbergetal.  microarrays PAG C81-61  hsa-miR-20a-5p  Overexpression  3d
geo

GSE51053 nchbinlm.nih.gov/  Kristensenetal.  microarrays PC3 hsa-miR-224-5p  Overexpression  48h
geo

GSE51053 ncbinlm.nih.gov/  Kristensenetal.  microarrays PC3 hsa-miR-452-5p  Overexpression  48h
geo

GSE65892 ncbinlm.nih.gov/  Wagenaar et al. microarrays SKHEP1 hsa-miR-21-5p Anti-miR 16h
geo

GSE19693 ncbinlm.nih.gov/  Chen et al. microarrays U87, HS683 hsa-miR-20a-5p  Overexpression =~ NA
geo

GSE34846 ncbinlm.nih.gov/  Caoetal. microarrays HTERT- hsa-miR-129-2- Overexpression  72h
geo RPE1 3p

GSE37427 ncbinlm.nih.gov/  Zhuetal. microarrays FLS hsa-miR-23b-3p  Overexpression =~ NA
geo

GSE22143 ncbinlm.nih.gov/  Marcet et al. microarrays HAEC hsa-miR-34a-5p  Overexpression  48h
geo

GSE22143 ncbinlm.nih.gov/  Marcet et al. microarrays HAEC hsa-miR-34c-5p  Overexpression  48h
geo

GSE22143 ncbinlm.nih.gov/  Marcet et al. microarrays HAEC hsa-miR-449b- Overexpression  48h
geo 5p

GSE22143 ncbinlm.nih.gov/  Marcet et al. microarrays HAEC hsa-miR-449a Overexpression  48h
geo
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GSE68424 ncbinlm.nih.gov/  Teplyuk et al. microarrays GBM4, hsa-miR-10b-5p  Inhibition 24h
geo GBM6
GSE35621 ncbinlm.nih.gov/  Huetal. microarrays HEK293T, hsa-miR-941 Overexpression ~ 24h
geo HSF2
GSE37596 ncbinlm.nih.gov/  Hwang et al. microarrays HT29 hsa-miR-146a-5p Overexpression 2w after
geo lentiviral
infection
GSE40058 ncbinlm.nih.gov/  Luoetal. microarrays MDA-MB- hsa-miR-200c-3p  Overexpression =~ NA
geo 231
GSE40058 ncbinlm.nih.gov/  Luoetal. microarrays MDA-MB- hsa-miR-205-5p ~ Overexpression =~ NA
geo 231
GSE7754 ncbinlm.nih.gov/  Chang et al. microarrays HCT116 hsa-miR-34a-5p  Overexpression 2w after
geo retroviral
infection
GSE51875 ncbinlm.nih.gov/  Leeetal. microarrays HCT116 hsa-miR-147a Overexpression ~ 3d
geo
GSE50697 ncbinlm.nih.gov/  Taube ef al. microarrays SUM159 hsa-miR-203a-3p Overexpression =~ NA
geo
GSE35208 ncbinlm.nih.gov/  Linetal. microarrays U87-2M1 hsa-miR-10b-5p  Inhibition NA
geo
GSE14507 ncbinlm.nih.gov/  Webster et al. microarrays A549 hsa-miR-7-5p Overexpression  24h
geo
GSE21132 ncbinlm.nih.gov/  Liefal. microarrays Jurkat hsa-miR-146a-5p Overexpression, 48h
geo Knockdown
GSE24824 ncbinlm.nih.gov/  Huynh ef al. microarrays Melanoma- hsa-miR-182-5p  Anti-miR administered
geo metastatic twice per
Liver Cells week over 4
weeks
GSE56268 ncbinlm.nih.gov/  Schneider ef al. microarrays P3HR1 hsa-miR-28-5p Overexpression  12h, 24h
geo
GSE52531 ncbinlm.nih.gov/  Namet al. HEK293 hsa-miR-155-5p  Overexpression = 24h
geo
GSE60426 ncbinlm.nih.gov/  Eichhorn et al. RNA-Seq HeLa hsa-miR-155-5p  Overexpression  32h
geo
GSE60426 ncbinlm.nih.gov/  Eichhorn et al. RNA-Seq U20S (total)  hsa-miR-155-5p  Overexpression  32h/poly(A)
geo -selected
total RNA
GSE60426 ncbinlm.nih.gov/  Eichhorn et al. RNA-Seq U20S (cyto)  hsa-miR-155-5p  Overexpression  32h/poly(A)
geo -selected
cytoplasmic
RNA
GSE60426 ncbinlm.nih.gov/  Eichhorn et al. RNA-Seq U20S (ribo)  hsa-miR-155-5p  Overexpression = tRNA  and
geo rRNA
depleted
RNA
GSE37918 ncbinlm.nih.gov/  Pellegrino et al. RNA-Seq MDA-MB- hsa-miR-23b-3p  Overexpression = NA
geo 231
GSE60426 ncbinlm.nih.gov/  Eichhorn et al. RPF-Seq HEK293T hsa-miR-1-3p Overexpression  24h
geo
GSE60426 ncbinlm.nih.gov/  Eichhorn et al. RPF-Seq HeLa hsa-miR-155-5p  Overexpression  32h
geo
GSE60426 ncbinlm.nih.gov/  Eichhorn et al. RPF-Seq U20s hsa-miR-1-3p Overexpression  32h
geo
GSE60426 ncbinlm.nih.gov/  Eichhorn et al. RPF-Seq U20s hsa-miR-155-5p  Overexpression  32h
geo
GSE60426 ncbinlm.nih.gov/  Eichhorn et al. RPF-Seq HeLa hsa-miR-1-3p Overexpression ~ 32h
geo
NA psilac.mdc- Selbach et al. pSILAC HeLa hsa-let-7b-5p Overexpression,  8h post-
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berlin.de Knockdown transfection
and 24h
pSILAC
labelling
psilac.mdc- Selbach et al. pSILAC HeLa hsa-miR-1-3p Overexpression  8h post-
berlin.de transfection
and 24h
pSILAC
labelling
NA psilac.mdc- Selbach et al. pSILAC HeLa hsa-miR-16-5p Overexpression  8h post-
berlin.de transfection
and 24h
pSILAC
labelling
NA psilac.mdc- Selbach et al. pSILAC HeLa hsa-miR-30a-5p  Overexpression  8h post-
berlin.de transfection
and 24h
pSILAC
labelling
NA psilac.mdc- Selbach et al. pSILAC HeLa hsa-miR-155-5p  Overexpression  8h post-
berlin.de transfection
and 24h
pSILAC
labelling
GSE40408 ;‘Z‘;"mm'mh"go"/ Martin et al. ggi:;‘ pull- HEK293T hsa-miR-23b-3p  Overexpression 21
GSE40408 ncbinlm.nih.gov/  Martin et al. Biotin pull- HEK293T hsa-miR-27a-3p  Overexpression  24h
geo down
GSE40408 ncbinlm.nih.gov/  Martin et al. Biotin pull- HEK293T hsa-miR-17-5p Overexpression  24h
geo down
GSE29101 ncbinlm.nih.gov/  Cloonan et al. Biotin pull- HEK293T hsa-miR-10a-5p  Overexpression  24h
geo down
GSE40411 ncbinlm.nih.gov/  Krishnan et al. Biotin pull- MCEF7 hsa-miR-139-5p  Overexpression  24h
geo down
GSE38593 ncbinlm.nih.gov/  Krishnan et al. Biotin pull- HEK293T hsa-miR-182-5p  Overexpression  24h
geo down
GSE11082 ncbinlm.nih.gov/  Hendrickson et AGO-IP HEK293T hsa-miR-1 Overexpression  48h
geo al.
GSE11082 ncbinlm.nih.gov/  Hendrickson et AGO-IP HEK293T hsa-miR-124-3p  Overexpression  48h
geo al.
GSE39227 ncbinlm.nih.gov/  Huetal AGO-IP HEK293T hsa-miR-941 Overexpression =~ NA
geo
NA do0i:10.1371/journa  Lal et al. Biotin pull- K562 hsa-miR-34a-5p  Overexpression  24h
1.pgen.1002363.s00 down
6
NA doi:10.1371/journa  Lal et al. Biotin pull- HTC116 hsa-miR-34a-5p  Overexpression  24h
1.pgen.1002363.s00 down
6
Table 5: Summary of microarray and RNA sequencing experiments in human species upon specific miRNA
deregulation, utilized in benchmarking evaluations of microCLIP model.
Accession Repository Authors Cell miRNA miRNA Post-
Type treatment Transfection
Cell Harvest
Time/Experime
ntal Condition
GSE46039 ncbi.nlm.nih.gov/geo  Helwak et al. HEK293  hsa-miR-92a-3p Knockdown 48h
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GSE21577

GSE21901
GSE14537
GSE14537
GSE35621
NA

NA

NA

NA

NA
GSE8501
GSE52531
GSE68987
GSE52531
GSE52531
GSE60426
GSE37918

ncbi.nlm.nih.gov/geo

ncbi.nlm.nih.gov/geo
ncbi.nlm.nih.gov/geo
ncbi.nlm.nih.gov/geo
ncbi.nlm.nih.gov/geo
psilac.mdc-berlin.de
psilac.mdc-berlin.de
psilac.mdc-berlin.de
psilac.mdc-berlin.de
psilac.mdc-berlin.de
ncbi.nlm.nih.gov/geo
ncbi.nlm.nih.gov/geo
ncbi.nlm.nih.gov/geo
ncbi.nlm.nih.gov/geo
ncbi.nlm.nih.gov/geo
ncbi.nlm.nih.gov/geo

ncbi.nlm.nih.gov/geo

Hafner et al.

Hollander et al.

Hausser et al.
Hausser et al.
Huetal.
Selbach et al.
Selbach et al.
Selbach et al.
Selbach et al.
Selbach et al.
Grimson et al.
Nam et al.
Zhang et al.
Nam et al.
Nam et al.
Eichhorn et al.

Pellegrino et al.

HEK293

HEK293
HEK293
HEK293
HEK?293
HeLla
Hela
HeLa
Hela
HeLla
HeLa
HEK293
HeLa
HeLla
HeLa
HEK293T
MCEF7

hsa-miR-20a-5p

hsa-miR-212-3p
hsa-miR-124-3p
hsa-miR-7-5p
hsa-miR-941
hsa-let-7b-5p
hsa-miR-1
hsa-miR-155-5p
hsa-miR-16-5p
hsa-miR-30a-5p
hsa-miR-7-5p
hsa-miR-124-3p
hsa-miR-603
hsa-miR-155-5p
hsa-miR-124-3p
hsa-miR-1
hsa-miR-23b-3p

Knockdown

Overexpression
Overexpression
Overexpression
Overexpression
Overexpression
Overexpression
Overexpression
Overexpression
Overexpression
Overexpression
Overexpression
Overexpression
Overexpression
Overexpression
Overexpression

Overexpression

simultaneous
miRNA
knockdown
using inhibitor
cocktail

NA

15h
15h
24h
32h
32h
32h
32h
32h
24h
24h
24h
24h
24h
24h
NA

Table 6: Summary of the collected AGO-PAR-CLIP experiments in human species, obtained from 9 studies.

These datasets provided the source of PAR-CLIP signal (raw reads and transitions) which was integrated

with experimentally validated positive/negative instances of miRNA-targeted regions.

Accession Repository Authors Experiment  Species Cell line Samples

GSE28859 ncbinlm.nih.gov/geo  Kishore et al. PAR-CLIP human  HEK293 GSM714644, GSM714645,
GSM714646, GSM714647

SRR1045082 ncbinlm.nih.gov/sra  Farazi et al. PAR-CLIP human  MCF7 SRA110557

SRR359787 ncbinlm.nih.gov/sra  Lipchina et al. PAR-CLIP human  hESC SRA047324

GSE59944 ncbinlm.nih.gov/geo  Whisnantetal. PAR-CLIP human  C8166 GSM1462572

GSE59944 ncbinlm.nih.gov/geo  Whisnantetal. PAR-CLIP human TZMBL GSM1462573, GSM1462574

GSE32109 ncbinlm.nih.gov/geo  Gottweinetal. PAR-CLIP human BC-1 GSM796037, GSM796038

GSE32109 ncbinlm.nih.gov/geo  Gottweinetal. PAR-CLIP human BC-3 GSM796039, GSM796040

GSE41437 ncbinlm.nih.gov/geo  Skalsky et al. PAR-CLIP human  EF3D-AGO2 GSM1020021

GSE41437 ncbi.nlm.nih.gov/geo  Skalsky et al. PAR-CLIP human LCL35 GS5M1020022

GSE41437 ncbi.nlm.nih.gov/geo  Skalsky ef al. PAR-CLIP human LCL-BAC GSM1020023

GSE41437 ncbi.nlm.nih.gov/geo  Skalsky et al. PAR-CLIP human LCL-BAC-D1 GS5M1020024

GSE41437 ncbi.nlm.nih.gov/geo  Skalsky et al. PAR-CLIP human LCL-BAC-D3  GSM1020025

GSE21578 ncbi.nlm.nih.gov/geo  Hafner et al. PAR-CLIP human  HEK293 GSMb545212, GSM545213,
GSM545214, GSM545215

GSE43573 ncbinlm.nih.gov/geo  Memczak et al. PAR-CLIP human  HEK293 GS5M1065667, GSM1065668,
GS5M1065669, GSM1065670

GSE43909 ncbi.nlm.nih.gov/geo  Erhard et al. PAR-CLIP human  BCBL-1 GSM1074233, GSM1074234
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2.2.2 Analysis of high-throughput experiments
2.2.2.1 miRNA perturbation experiments

High-throughput experiments were collected to measure gene expression alterations after
specific miRNA transfection, silencing or knockout. Log> fold change values as calculated
from differential expression analyses of control versus post-treatment state enabled the
formation of miRNA-mRNA positive and negative interactions. 44 microarray studies of
distinct experimental conditions (Table 4, Table 5) covering 43 human cell lines and 49
miRNAs were examined to deduce positive and negative miRNA-target interactions. In-
house analysis was initiated from microarray raw data (Affymetrix .CEL files). Probe set
summarization was implemented using Robust Multi-Array Average (RMA) with R packages
affy[80] or oligo[81]. Annotation of probe sets to Ensembl Gene IDs was accomplished using
the chip-specific annotation R-packages hgu133a2.db, hqu133plus2.db or
hugenelOsttranscriptcluster.db. miRNA-treated and control samples in each experiment were
analyzed independently of other cell lines or miRNA treatments. Loga fold change ratios and
p-values were calculated with limma package[82], following package instructions on Single-
Channel Designs. Probe sets mapping to the same gene were averaged to calculate its fold
change. A logy fold change cutoff of +1 (>1 or <-1, respectively), depending on the type of
regulation, was applied to determine negative and positive interaction subsets. For GSE8501
experiment conducted in Rosetta-Merck microarrays, error-weighted logio intensity ratios
were retrieved and transformed to log»-scale.

Ribosome profiling sequencing (RPF-Seq) and RNA-Seq libraries treated with specific
miRNA overexpression, 12 experimental conditions in total were retrieved from Eichhorn et
al.[91], Nam et al.[92], Pellegrino et al.[93], Zhang et al.[94]. To identify positive/negative
miRNA interactions, a +0.5 log2 fold change threshold was applied to genes presenting >10
RPKM expression.

Quantitative proteomics datasets (pSILAC) in HeLa cells following the individual
overexpression of 5 human miRNAs (let-7b, miR-1, miR-16, miR-30a and miR-155) or
knockdown of let-7b (Table 4) were derived from Selbach et al.[46]. Positive/negative miRNA
interactions were deduced using a *1 log> fold change threshold respectively.

2.2.2.2 AGO-PAR-CLIP and (s)RNA-Seq expression datasets

AGO-PAR-CLIP datasets from 9 studies, corresponding to 13 cell lines in human species,
were derived from GEO[57, 95] and DDB]J[96] repositories. 15 small RNA-Seq and 9 RNA-Seq
experiments of similar cell types with PAR-CLIP libraries were analyzed to infer expressed
miRNAs and transcripts. (s)RNA-Seq datasets were derived from the ENCODE repository
and from a series of studies (Table 7, Table 8). Whole transcriptome depleted from ribosomal
RNAs and poly-A selected RNA-Seq libraries were analyzed.

The libraries were initially quality checked using FastQC
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(www.bioinformatics.babraham.ac.uk/projects/fastqc/). Adapter sequences were retrieved
from the original publication or GEO/SRA entries, when available. Contaminants were
detected utilizing in-house-developed algorithms and the Kraken suite[97]. Pre-processing
was performed utilizing Cutadapt[98]. PAR-CLIP reads were aligned against human
reference genome (GRCh37/hgl19) with GMAP/GSNAP[99] spliced aligner, appropriately
parameterized to identify known and novel splice junctions. microRNA expression was
quantified using miRDeep2[100]. Ensembl v75[101] and miRBase v18[102] were used as
annotation for genes and microRNAs, respectively. Top expressed miRNAs and AGO-PAR-
CLIP data in each cell type, were jointly utilized as input to microCLIP in silico framework for
miRNA-target identification.

Table 7: Description of small RNA-Seq datasets of similar cell types to PAR-CLIP libraries, analyzed to infer
expressed miRNAs. The table displays the source of small RNA-Seq libraries along with its ID, cell type,

condition and description.

Accession Repository Cell Type/Tissue Description
GSM897079_Repl ncbi.nlm.nih.gov/geo HeLaS3 Cervical Carcinoma
GSM897079_Rep2 ncbi.nlm.nih.gov/geo HeLaS3 Cervical Carcinoma
GSM897073_Repl ncbi.nlm.nih.gov/geo H1hESC Embryonic Stem Cells
GSM897073_Rep2 ncbi.nlm.nih.gov/geo H1hESC Embryonic Stem Cells
GSM973690_Rep3 ncbi.nlm.nih.gov/geo MCF7 Adenocarcinoma
GSM973690_Rep4 ncbi.nlm.nih.gov/geo MCEF7 Adenocarcinoma
GSM897081_Repl ncbi.nlm.nih.gov/geo MCF7 Adenocarcinoma
GSM897081_Rep2 ncbi.nlm.nih.gov/geo MCF7 Adenocarcinoma
SRR2084358 ncbi.nlm.nih.gov/sra MCEF7 Adenocarcinoma
GSM1020026 ncbi.nlm.nih.gov/geo EF3D-AGO2 Adenocarcinoma
GSM1020028 ncbi.nlm.nih.gov/geo LCL-BAC Adenocarcinoma
GSM1020029 ncbi.nlm.nih.gov/geo LCL-BAC-D1 Adenocarcinoma
GSM1020030 ncbi.nlm.nih.gov/geo LCL-BAC-D3 Adenocarcinoma
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Table 8: Description of RNA-Seq datasets of similar cell types to PAR-CLIP libraries, analyzed to infer
expressed transcripts. The table displays the source of RNA-Seq datasets along with its ID, cell type,

condition and description.

Accession Repository Cell Condition Description
Type/Tissue

SRR837795 ncbi.nlm.nih.gov/sra LCL-BAC-D1 miR-BHRF1-1 LCL infected with an EBV B95-8
mutant virus BACmid

SRR837796 ncbi.nlm.nih.gov/sra LCL-BAC-D1 miR-BHRF1-1 LCL infected with an EBV B95-8
mutant virus BACmid

SRR837797 ncbi.nlm.nih.gov/sra LCL-BAC-D2 miR-BHRF1-2 LCL infected with an EBV B95-8
mutant virus BACmid

SRR837798 ncbi.nlm.nih.gov/sra LCL-BAC-D3 miR-BHRF1-3 LCL infected with an EBV B95-8
mutant virus BACmid

SRR837794 ncbi.nlm.nih.gov/sra LCL-BAC NA LCL infected with an EBV B95-8

BACmid

ENCFF002DKY & encodeproject.org MCF7 NA Adenocarcinoma

ENCFF002DKX

ENCFF000FOV & encodeproject.org HeLaS3 NA Cervical Carcinoma

ENCFF000FOM

wgEncodeCshlLongRnaSe  hgdownload.cse.ucsc.edu HIhESC NA Embryonic Stem Cells

qH1hescCellPapFastqRepl

GSM1370364 ncbi.nlm.nih.gov/geo HEK293 NA Embryonic Kidney Cells

2.2.2.3 PARS experimental data

In order to demarcate RNA Secondary Structures (RSS) of AGO-bound regions compared to a

set of negative miRNA sites on mRNA transcripts, respective PARS scores as introduced by

Wan et al.[103] were estimated (GEO accessions GSM1226157, GSM1226158).

In this

approach, AGO-binding efficiency is revealed by RSS signatures observed on mRNA

transcripts, since increased structural accessibility is expected in functional conformations

(Figure 13).
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Figure 13: Overview of PARS experiment. This figure has been designed for the purpose of this dissertation.

The identification of single- or double-stranded regions across the human transcriptome was
derived from deeply sequenced RNA fragments generated from RNase S1 or V1 nuclease
treatment of GM12878 cells respectively.

Raw reads of 5Int length, accordingly pre-processed for quality control and contaminant
removal, were aligned against human reference genome (GRCh37/hgl19) with GSNAP
spliced aligner. This analysis resulted in ~130M uniquely mapped PE-sequenced fragments
per sample. In order to derive structural signals in RNase S1 or V1 nuclease experiments at
single base resolution, single (S1) and double (V1) stranded raw reads initiating on each
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nucleotide were calculated. The number of PARS tags per sample starting at each base were
normalized by sequencing library depth. These base intensities were subsequently combined
into the formula described by Wan et al. to compute PARS scores.

RNA secondary structures (RSS) were defined by estimated PARS scores in the vicinity of
PAR-CLIP-derived miRNA binding sites in 4 lymphoblastoid cell lines from the study of
Skalsky et al.[53]. miRNA-mRNA interactions were identified in both T-to-C and non-T-to-C
PAR-CLIP clusters, corresponding to transcripts with >1 TPM expression in GM12878 cells.
For expressed miRNAs (= 50 aligned reads per miRNA) in respective EFD3-AGO2, LCL-BAC,
LCL-BAC-D1 and LCL-BAC-D3 EBV infected lymphoblastoid cells, collapsed miRNA
binding sites residing within the PAR-CLIP clusters were included. For the performed
comparisons, negative MREs extracted from different high-throughput miRNA perturbation
experiments were incorporated. MREs utilized for the assessment of RSS signatures on AGO-
bound clusters and the derivation of (non-)functional conformations of miRNA-target base
pairings, were localized on coding and 3'UTR regions. The examined sites had to present S1
and V1 signals in at least half of their occupied bases.

sRNA-Seq and RNA-Seq datasets were retrieved from ENCODE consortium (GEO accession
numbers GSM605625, GSM1020026, GSM1020027, GSM1020028, GSM1020029, GSM1020030).

2.2.3 microCLIP in silico framework

Feature set description. A set of 131 descriptors with non-zero variance was included in
microCLIP. The extracted features were retrieved from positive/negative miRNA
interactions, identified on AGO-bound locations in different PAR-CLIP datasets. They
comprised PAR-CLIP-specific descriptors, such as substitution ratios and distance of
conversions from the MRE start, as well as coverage metrics. Aggregate substitution ratios,
positions and distances independent of the transition type were also included. In order to
estimate MRE and AGO-peak respective sequencing coverage, normalized RPKM values for
miRNA-target sites and clusters were calculated.

Moreover, single base and dinucleotide contents for miRNA binding and respective flanking
regions, complexity features for the MRE and proximal upstream/downstream sequences
were introduced to microCLIP model. BLAST’s DUST score[104] and Shannon-Wiener
Index[105] constituted measurements for masking sequence complexity. Other descriptors
were formed to represent energy-related variables for the duplex structure, while metrics
capturing sequence content skewness/asymmetry (GC-skew, AT-skew, purine-skew, Ks-
skew) and biases of codon usage were added. Entropy, enthalpy, free energy and melting
temperature (Tm) thermodynamic properties were calculated for MRE sequences in R.
miRNA-target hybrids were associated with different descriptors, such as the binding type,
duplex structure energy calculated with the Vienna package[106], positions and nucleotide
composition of (un)paired nucleotides. Distinct features have been established to model
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(mis)matches, bulges, loops and wobble pairs for miRNA-MRE hybrid structure and sub-
domains encountered in the duplex. The distinct domains for miRNA sequences, as defined
by microCLIP, are: (i)seed region (2-8 positions), (ii)central region (9-12 positions), (iii)3’
supplementary region (13-16 positions), (iv)tail region (17-3'miRNA end) (Figure 14). Similar
regions were designated on the MREs based on the miRNA binding anchors upon duplex
formation.

Figure 14: Snapshot of the different miRNA binding types formed according to miRNA specific sub-
domains. This figure has been designed for the purpose of this dissertation.

Current approach incorporates conservation of the MRE and upflank/downflank-MRE
regions. phastCons pre-computed scores from genome-wide multiple alignments were
downloaded from the UCSC repository[107] in bigwig format and were utilized to deduce
respective evolutionary rates. Conservation signals were computed as mean intensities of the
phastCons base-wise scores on miRNA targeted regions as well as their flanking regions. The
conservation of the 5 MRE binding nucleotides was independently modeled. microCLIP
integrates additional features corresponding to the location of the MRE within the AGO-
enriched cluster and binding length ratios of miRNA and/or target regions.
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Description of the algorithm. microCLIP operates on AGO-PAR-CLIP sequencing reads,
requiring a SAM/BAM alignment file and a list of miRNAs as minimum input. It initially
seeks for AGO-enriched regions and resolves coverage and observed transitions. A sensitive
pipeline is adopted to scan read clusters for putative targeted sites including a wide range of
binding types. The algorithm supports an extended set of (non-)canonical matches including
6mer to 9mer, offset 6mer, 3'supplementary and compensatory sites as well as (im)perfect
centered bindings (Table 9).

Table 9: Description of the binding types supported by microCLIP.

Binding Type Description

9mer 3prime 9mer canonical with 3' supplementary binding

9mer 9mer canonical

9mer GU base pairing in 1-9 positions with a GU wobble pair

9mer nonCanonical base pairing in 1-9 positions with a target bulge and/or a GU
wobble pair

8mer 3prime 8mer/8merlA canonical with 3' supplementary binding

8mer 8mer canonical

8merlA 7mer canonical with additional A in position 1

8mer GU base pairing in 1-8 or 2-9 positions with a GU wobble pair

8mer nonCanonical base pairing in 1-9 positions with mismatch or miRNA bulge
and/or a target bulge and/or a GU wobble pair

7mer 3prime 7mer/7merlA canonical with 3" supplementary binding

7mer 7mer canonical

7merlA 6mer canonical with an additional A in position 1

7mer GU base pairing in 2-8 positions with a GU wobble pair

7mer nonCanonical base pairing in 1-8 positions with a mismatch or miRNA bulge
and/or a target bulge

7mer nonCanonical GU base pairing in 1-8 positions with a mismatch or miRNA bulge
and/or a target bulge and/or a GU wobble pair

6mer 3prime 6mer canonical with 3' supplementary binding

6mer 6mer canonical

offsetobmer 6mer base pairing in 3-8 positions

6mer nonCanonical 3prime base pairing in 2-8 positions with a mismatch or miRNA bulge
and/or a target bulge, with 3' supplementary binding

centered base pairing in 4-15 positions with at least 8 consecutive matches

imperfect centered base pairing in 4-15 positions with at least 8 matches and/or less
than 2 GU wobble pairs

microCLIP extracts features for each candidate MRE and subsequently scores sites through a
super learning scheme. The adopted framework incorporates two distinct levels of
classification. The first layer comprises a group of 9 different nodes (base classifiers), which
are aggregated in the meta-classifier of the second layer. The learning procedure is
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decentralized through the distinct nodes and relevant base classifiers that specialize in
different subsets of features (Figure 15).

Figure 15: microCLIP in silico framework. Separate subsets of the positive/negative miRNA interactions were
used to train the distinct levels of the algorithm’s modeling. 9 base classifiers in the first layer comprise
characteristic feature subsets that assemble into the GBM meta-learner of the second layer. A super learning
scheme is utilized in 8 of the 9 base nodes, weighing outputs from seven individual models. ‘Region
features’ node corresponds to an RF classification scheme and consists of CLIP-sequencing-derived features.
Five base models (2-6) were designed for MRE specific features: ‘Binding Vectors’ describe the (un)paired
positions along the miRNA/MRE hybrid; “Matches per miRNA/MRE domain’ contain attributes of miRNA -
target structure and sub-domains; ‘Duplex Features’ include free energy, secondary structure and AU base
pairing features for miRNA and/or target; ‘Base pairing’ encompasses composition descriptors of (un)paired
nucleotides; “"MRE general’ incorporates general MRE-related descriptors. Three supplementary classifiers
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(‘Feature Combination Set 1-3’) comprise unique combinations of features found in base nodes 1-6
(Paraskevopoulou MD and Karagkouni D et al, 2018)[17].

‘Region Features’ node comprises CLIP-Seq-derived features, such as RPKM coverage,
substitution frequencies and region-related descriptors, including nucleotide composition,
conservation, sequence energy, complexity, content asymmetry, and biases of codon usage. A
set of five additional base classifiers were designed for MRE specific features. Binary binding
vectors of miRNA/MRE hybrid were separately incorporated in a base classifier (‘Binding
Vectors’). Each vector element corresponds to one (un)paired position in the duplex. Matches
per miRNA/MRE sub-domain were added to a distinct base classifier introducing a group of
13 features regarding total and consecutive matches in the miRNA-target structure as well as
in MRE and miRNA relevant sub-domains. Another base model consists of miRNA-target
duplex descriptors (‘Duplex Features’) including miRNA-target duplex structure energy,
bulges, internal loops, GU wobbles and AU base pairing features for the specified miRNA
and/or target and relevant sub-domains. The ‘Base pairing’ node encompasses composition
descriptors (A, T, G, C) of the (un)paired nucleotides. An extra base learner incorporates MRE
general descriptors such as the degree of overlap with the respective cluster, conservation of
MRE bound nucleotides, MRE location within the cluster, MRE binding type as well as
metrics for duplex paired nucleotides content asymmetry/skewness. The latter five base
models are dedicated to the determination of genuine miRNA binding sites. Non-overlapping
feature sets from the aforementioned base nodes are combined into three supplementary
classifiers also incorporated into microCLIP framework. A table summarizing the
incorporated features, associated with the conceptual framework they belong, is presented
below:

Table 10: Description of features incorporated in microCLIP.

feature# base classifier node feature description

MRE region GC-skew

MRE region Purine-skew

MRE region Ks-skew

Upflank MRE region Purine-skew
Upflank MRE region Ks-skew
MRE DUST score

MRE region AT-skew

MRE dS

MRE Tm

Codon Adaptation Index per codon usage bias
Dinucleotide AA MRE content
Dinucleotide AC MRE content
Dinucleotide AG MRE content

Region Features
(55 features)
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14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

53

54

Dinucleotide AT MRE content

Dinucleotide CA MRE content

Dinucleotide CC MRE content

Dinucleotide CT MRE content

Dinucleotide GA MRE content

Dinucleotide GC MRE content

Dinucleotide GT MRE content

Dinucleotide TA MRE content

Dinucleotide AC content upflank of MRE
Dinucleotide AT content upflank of MRE
Dinucleotide GA content upflank of MRE
Dinucleotide GC content upflank of MRE
Dinucleotide GT content upflank of MRE
Dinucleotide TA content upflank of MRE
Dinucleotide TC content upflank of MRE
Dinucleotide TG content upflank of MRE

A content upflank of MRE

C content upflank of MRE

G content upflank of MRE

T content upflank of MRE

A or G content upflank of MRE

A or T content upflank of MRE

A content in MRE

A or G content in MRE

A or T content in MRE

C content in MRE

G content in MRE

G or T content in MRE

T content in MRE

Average conservation in MRE seed region
Average conservation downstream of MRE region
Average conservation upstream of MRE region
Minimum conservation in MRE seed region
Minimum conservation downstream of MRE region
Minimum conservation upstream of MRE region
MRE coverage (RPKM)

Cluster overlapping reads

MRE coverage (RPKM) per cluster coverage (RPKM)
Cluster length

Minimum distance - sum of all substitutions +/-
20nt of MRE start

Sum of all substitutions +/- 20nt of MRE start -
minimum distance
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55 T-to-C substitutions in MRE region

56 Binding event in MRE position 2

57 Binding event in MRE position 3

58 Binding event in MRE position 4

59 Binding event in MRE position 5

60 Binding event in MRE position 6

61 Binding event in MRE position 7

62 Binding event in MRE position 8

63 Binding event in MRE position 10

64 Binding event in MRE position 11

65 Binding event in MRE position 12

66 Binding event in MRE position 17

67 Binding event in MRE position 18

68 miRNA unpaired position 5

69 miRNA unpaired position 6

70 Binding Vectors miRNA unpaired position 7

71 (30 features) miRNA unpaired position 8

72 Base at MRE position 25

73 Base at MRE position 26

74 Base at MRE position 27

75 Base at MRE position 28

76 Base at MRE position 29

77 Base at miRNA position 13

78 Base at miRNA position 14

79 Base at miRNA position 15

80 Base at miRNA position 19

81 Base at miRNA position 4

82 Base at miRNA position 5

83 Base at miRNA position 6

84 Base at miRNA position 7

85 Base at miRNA position 12

86 Total matches

87 Max consecutive matches

88 Match in position 10 of miRNA

89 Match in position 2 of miRNA

90 Matches per miRNA/MRE Consecutive unpaired bases of non-seed region

91 domain Consecutive matches per total matches

92 (13 features) Matches in seed region per total matches

93 Consecutive matches in seed region
Consecutive matches in non-seed region per total

94 matches

95 Matches in seed region
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96
97

98

Matches in central MRE region
Matches in 3' MRE

Consecutive matches in seed region per max

consecutive matches

99

100
101
102
103
104
105
106
107
108
109

Duplex Features
(11 features)

AU frequency in MRE region

GC frequency in MRE region

GU wobble frequency in MRE region
Internal loop max length in MRE region

AU frequency in seed region

AU frequency in MRE region excluding seed
GC frequency in central MRE region

GC frequency in MRE region excluding seed
GU wobble frequency in tail region

Length of MRE binding region

Bulge positions in MRE region (%)

110
111
112
113
114
115
116
117
118

Base Pairing
(9 features)

Matches in MRE Ks-skew
miRNA unpaired A
miRNA unpaired C
miRNA unpaired G
miRNA unpaired T
miRNA matches A
miRNA matches T
miRNA matches C
miRNA matches G

119
120
121
122
123
124
125
126
127

128
129
130
131

MRE General
(13 features)

miRNA unpaired position 2

miRNA unpaired position 3

miRNA unpaired position 4

Matches in MRE Purine-skew

Duplex structure energy

Length of miRNA binding region

Distance of MRE start from cluster start

Nucleotides of MRE that overlap with cluster region
Length of MRE binding region per cluster length

Nucleotides of MRE that overlap with cluster region

(%)
Average conservation of whole MRE
Average conservation of 5' MRE
Binding Type

g s WO N =

Feature Combination Set 1
(26 features)

Binding event in MRE position 4
Binding event in MRE position 11
Binding event in MRE position 18
miRNA unpaired position 5

Base at MRE position 28
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6 Base at MRE position 29

7 Base at miRNA position 13

8 Base at miRINA position 6

9 Base at miRNA position 7

10 Base at miRNA position 12

11 Max consecutive matches

12 Binding Type

13 Consecutive matches per total matches
Consecutive matches in seed region per max

14 consecutive matches

15 Matches in 3' MRE

16 AU frequency in seed region

17 GU wobble frequency in MRE region

18 AU frequency in MRE region excluding seed

19 Length of MRE binding region

20 miRNA unpaired C

21 miRNA matches A

22 miRNA matches C

23 miRNA matches G

24 Duplex structure energy

25 Length of MRE binding region per cluster length

26 Average conservation of whole MRE

1 MRE dS

2 G content upflank of MRE

3 A or T content upflank of MRE

4 Average conservation upstream of MRE region

5 MRE coverage (RPKM)
Sum of all substitutions +/- 20nt of MRE start -

6 L minimum distance

7 Feature Combination Set 2 T-to-C substitutions in MRE region

(14 features) ) ) -

8 Binding event in MRE position 3

9 AU frequency in MRE region

10 GC frequency in MRE region

11 miRNA matches T

12 Matches in seed region per total matches

13 Consecutive matches in seed region

14 Nucleotides of MRE that overlap with cluster region

1 Binding event in MRE position 6

2 Match in position 10 of miRNA

3 Feature Combination Set 3 Match in position 2 of miRNA

4 (14 features) Matches in seed region

5 Matches in central MRE region

6 GC frequency in central MRE region
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7 GC frequency in MRE region excluding seed

8 Matches in MRE Ks-skew

9 miRNA unpaired A

10 miRNA unpaired T

11 Matches in MRE Purine-skew

12 Length of miRNA binding region

13 Distance of MRE start from cluster start

14 Consecutive unpaired bases of non-seed region

8 of the 9 base nodes adopt a super learning scheme that assembles the output of seven
individual Random Forest (RF), Generalized Linear Model (GLM), Gradient Boosting Model
(GBM), Deep Learning (DL) classifiers (2 RF, 2 GBM, 2 DL, 1 GLM models). The ‘Region
features’ is analyzed by an RF classification scheme. The retrieved scores from each node are
aggregated in a final GBM meta-classifier.

Model Training. The DL models developed for the microCLIP framework adopt a feed-
forward multi-layer architecture. The input layers match the respective feature space and
values are subsequently propagated within three hidden layers. A rectifier activation function
was utilized to retrieve weighted combinations of the inputs transmitted to interconnected
neuron units. Dropout regularization was added to achieve model optimization and avoid
overfitting. A cross entropy cost-function was selected to adapt weights during the learning
process by minimizing the loss. Bernoulli distribution function was used along with cross
entropy (log-loss) to model the response variables. The output layer at the end of the network
applies a Softmax activation function so that each neuron (predicted class) results in a
probabilistic interpretation. The DL network depth, width and topology as well as activation
functions and learning parameters were modeled with a tuning-in grid search algorithm
using H20[108] R package. The RF, GBM, GLM learning models were developed,
parameterized and tuned with the caret[109] and H20[108] R packages.

Base classifiers were trained against a collection of 8,693 positive and 21,789 negative miRNA
interactions. The final GBM meta-learner that aggregates the base classifier outcomes was
trained against an independent dataset comprising 3,276 and 6,702 positive and negative
instances respectively. Ten-fold cross-validation was performed on the training data to
estimate each model’s accuracy and finalize the algorithm’s learning architecture. The
performance of the model was assessed against independent test sets comprising ~5,495
instances in total. The composition of respective training/test sets is provided in Table 11.
Training and testing of microCLIP have been performed on independent sets of targeted
MRE regions.
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Table 11: Summary of training/test sets utilized for microCLIP deployment.

miRNAs in interactions miRNA-target pairs

Training Test Training Test
Positive Instances
Direct Techniques 244 158 4,707 2,017
miRNA perturbation 47 5 7,262 679
experiments
Negative Instances
Background CLIP-Seq 393 122 22,575 1,591
eerimnte 44 23 5,916 1,208

2.2.4 miRNA interactions from in silico implementations

microCLIP performance was evaluated against MIRZA[55], microMUMMIE[56] and
PARma[58] computational approaches. A set of 7 PAR-CLIP HEK293 libraries obtained from
Kishore et al.[34] and Memczak et al.[110] studies (GEO accessions GSM714644, GSM714645,
GSM714646, GSM714647, GSM1065667, GSM1065668, GSM1065669 and GSM1065670) was
utilized. The proposed settings for each implementation were retrieved from the relevant
publications.

The MIRZA biophysical model was executed in the “noupdate” mode. The algorithm
provides an optional parameterization to introduce miRNA expression profiles. Two different
runs of MIRZA were realized, with and without cell type-specific miRNA expression values
that were extracted from the CLIPZ web server (http://www.clipz.unibas.ch). MIRZA input
data were 51-nt AGO-bound sequences centered on T-to-C sites and mature miRNA

sequences of 2Int length as reported in the model’s restrictions. The “target frequency” score
was utilized to evaluate the quality of MIRZA-detected sites.

microMUMMIE algorithm was tested in both Viterbi and posterior decoding modes.
Following microMUMMIE’s constraints, PARalyzer v1.5[57] was utilized to define the set of
T-to-C AGO-enriched peaks. An extra prerequisite annotation step to complement PARalyzer
detected clusters was implemented with the PARpipe tool

(https:/ / github.com/ohlerlab/PARpipe). Derived files, comprising annotated AGO clusters
with positions of T-to-C transitions, constituted the input of the microMUMMIE core
algorithm. Predictions with signal-to-noise ratio (SNR, generally correlated with sensitivity)
equal to 9.95 were retained, while posterior probabilities were utilized for the evaluation of
microMUMMIE’s performance.

PARma was applied on AGO-PAR-CLIP aligned data that were prepared following the
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algorithm’s described format. The required input files contained genomic locations of aligned
CLIP-reads along with positions of observed conversion sites. PARma predictions are
coupled with Cscore and MAscore scores for the cluster and miRNA-seed family activity,
respectively. The latter score was utilized for PARma-detected miRNA-target sites evaluation.
Precompiled (non)conserved miRNA-site context++ scores for representative transcripts were

downloaded from the Targetscan v7.2 site (http://www.targetscan.org/cgi-
bin/targetscan/data_download.vert72.cgi). Targetscan v7 algorithm was additionally

executed following the proposed settings in order to cover a greater transcript collection, as
well as the whole spectrum of Targetscan-detected interactions including émer sites. Gene
annotation files were retrieved from the Targetscan v7.2 official download page, and the
miRNA seed sequence file that is a prerequisite for the execution of the model was provided
by Targetscan developers. The local Targetscan run complements the precompiled data with
miRNA-target interactions on transcripts presenting the longest 3'UTR, in cases they are not
deposited on the online repository.

2.3 Implementation of microT, a de novo miRNA target prediction algorithm

Computational methodologies devoted to miRNA-target characterization unambiguously
provide the backbone for many miRNA-related studies. An accurate de novo miRNA target
prediction algorithm contributes as an extra boost to study miRNA function, by eliminating
time and experimental cost. The last 15 years, a multitude of computational approaches have
emerged, aiming to accurately characterize miRNA targets. However, even the most
sophisticated implementations still achieve a far from perfect predictive accuracy[5] followed
by an increased number of false positive predictions.

Most of the current approaches heavily rely on decisive features towards miRNA target
detection such as miRNA seed complementarity, secondary structure and evolutionary
conservation. Their predictions are often radically diverse, due to the incorporation of
different experimental datasets and mathematical models in the training process.
Targetscan[20] is a leading in silico target prediction method, however it detects miRNA-
target pairs with perfect seed complementarity and ignores non-canonical sites. Therefore, a
large portion of functional miRNA binding-events is disregarded. Also, it does not include in
its training process recently developed experimental procedures, such as AGO-CLIP-Seq and
CLASH methods, that provide a wealth of characteristics regarding the AGO-bound
enriched/preferred regions. Recently developed models try to fill the existing gap by
incorporating only a small part of the publicly available CLIP-Seq datasets. Most of them
prefer to detect seed-based binding sites to scale down the false positive rate, however their
predictive accuracy still remains low[20].

To this end, a novel miRNA target prediction algorithm is presented in this thesis, that
circumvents pitfalls and limitations of current approaches. microT Super Learning
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framework maintains and upgrades the pipeline adopted in microCLIP by enhancing the
training with even more high-throughput experiments under a tissue-specific scheme. The
new model characterizes interactions with stronger functional efficacy and correctly detects
1.5-fold more experimentally validated target sites when juxtaposed against Targetscan v7
and DIANA-microT-CDS?223,

2.3.1 Dataset collection

miRNA-targeted regions, utilized in the training and evaluation of microT Super Learning
framework, were extracted following the methodology described in microCLIP (Methods
2.2.1). More precisely, AGO-enriched regions derived from AGO-CLIP-Seq libraries were
coupled with differentially expressed mRNAs extracted from miRNA specific high-
throughput experiments across 34 different cell types and 11 tissues. 113 CLIP-Seq libraries
(80 HITS-CLIP, 33 PAR-CLIP), derived from DIANA-TarBase and microCLIP deployment, as
well as from the analysis of a subsequent set of 9 publicly available datasets corresponding to
4 different cell types[111], were incorporated.

In order to quantify miRNA-induced mRNA expression changes and to identify functional
binding sites, 110 miRNA perturbation experiments were incorporated (91 microarrays, 15
RNA-Seq, 4 RIP-Seq) and 3 ribosome profiling sequencing (RPF-Seq) libraries (Table 12).
Approximately 40 of the aforementioned datasets were re-analyzed according to the
methodology described in section Methods 2.2.2, while the rest were derived from the
analysis displayed in microCLIP deployment.

Table 12: Summary of the collected experiments in human species upon specific miRNA deregulation. The
datasets were utilized to extract a training set of positive and negative MRE regions for microT deployment.

Accession Repository Authors Experiment Cell Type miRNA miRNA Post-
treatment Transfection
Cell Harvest
Time/Experi
mental
Condition
GSE12400 ncbinlm.nih.gov/geo Sander et al microarrays CCL86 hsa-miR-26a-5p  Overexpression 72h
GSE12400 ncbi.nlm.nih.gov/geo Sander et al microarrays CRL1432 hsa-miR-26a-5p  Overexpression 72h
GSE12400 ncbinlm.nih.gov/geo Sander et al microarrays CRL1596 hsa-miR-26a-5p  Overexpression 72h
GSE35948 ncbi.nlm.nih.gov/geo Misiewicz- microarrays H929 hsa-miR-214-3p  Overexpression NA
Krzeminska et
al
GSE16674 ncbi.nlm.nih.gov/geo Navarro et al microarrays K562 hsa-miR-34a-5p  Overexpression 24h
GSE56268 ncbinlm.nih.gov/geo  Schneideretal = microarrays P3HR1 hsa-miR-28-5p  Overexpression 12h, 24h
GSE27718 ncbinlm.nih.gov/geo Gaziel-Sovran et microarrays 131/4-5B1 hsa-miR-30d-5p  Overexpression 60h
al
GSE42823 ncbi.nlm.nih.gov/geo Nelson et al microarrays H4 hsa-miR-103a-3p  Overexpression 48h
GSE42823 ncbi.nlm.nih.gov/geo Nelson et al microarrays H4 hsa-miR-107 Overexpression 48h
GSE42823 ncbi.nlm.nih.gov/geo Nelson et al microarrays H4 hsa-miR-15b-3p  Overexpression 48h
GSE42823 ncbi.nlm.nih.gov/geo Nelson et al microarrays H4 hsa-miR-16-5p Overexpression 48h
GSE42823 ncbi.nlm.nih.gov/geo Nelson et al microarrays H4 hsa-miR-195-5p  Overexpression 48h
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GSE42823  ncbi.nlm.nih.gov/geo Nelson et al microarrays H4 hsa-miR-320b Overexpression 48h
GSE34482 ncbinlm.nih.gov/geo Choudhury etal microarrays SW1783 hsa-miR-376a-5p  Overexpression 24h
GSE34482 ncbinlm.nih.gov/geo Choudhury etal microarrays us7 hsa-miR-376a-5p  Overexpression 24h, 72h
GSE19693 ncbi.nlm.nih.gov/geo Chen et al microarrays us7 hsa-miR-20a-5p  Overexpression NA
GSE19693 ncbi.nlm.nih.gov/geo Chen et al microarrays HS683 hsa-miR-20a-5p  Overexpression NA
GSE35208 ncbi.nlm.nih.gov/geo Linetal microarrays U87-2M1 hsa-miR-10b-5p Inhibition NA
- psilac.mdc-berlin.de Selbach et al microarrays HeLa hsa-let-7b-5p Overexpression 8h, 32h
- psilac.mdc-berlin.de Selbach et al microarrays HeLa hsa-miR-1-3p Overexpression 8h, 32h
- psilac.mdc-berlin.de Selbach et al microarrays HeLa hsa-miR-155-5p  Overexpression 8h, 32h
- psilac.mdc-berlin.de Selbach et al microarrays HeLa hsa-miR-16-5p  Overexpression 8h, 32h
- psilac.mdc-berlin.de Selbach et al microarrays HeLa hsa-miR-30a-5p  Overexpression 8h, 32h
GSE14537 ncbinlmnih.gov/geo  Hausser et al microarrays HEK293 hsa-miR-124-3p ~ Overexpression 15h
GSE14537 ncbi.nlm.nih.gov/geo Hausser et al microarrays HEK293 hsa-miR-7-5p Overexpression 15h
GSE46039 ncbi.nlm.nih.gov/geo Helwak et al microarrays HEK293 hsa-miR-92a-3p Knock-down 48h
GSE35621 ncbi.nlm.nih.gov/geo Huetal microarrays HEK293 hsa-miR-941 Overexpression 24h
GSE35621 ncbi.nlm.nih.gov/geo Huetal microarrays HEK293T hsa-miR-941 Overexpression 24h
GSE57158 ncbinlm.nih.gov/geo  Greenbergetal  microarrays PAG C81-61 hsa-miR-20a-5p  Overexpression 3d
GSE57158 ncbinlm.nih.gov/geo  Greenbergetal  microarrays PAG C81-61 hsa-miR-17-5p Overexpression 3d
GSE33538 ncbi.nlm.nih.gov/geo Bossel Ben- microarrays MCF10A hsa-miR-20a-5p Silencing Oh, 0.5h, 1h,
Moshe et al 2h post EGF
stimulation
GSE33538 ncbi.nlm.nih.gov/geo Bossel Ben- microarrays MCF10A hsa-miR-671-5p Silencing Oh, 0.5h, 1h,
Moshe et al 2h post EGF
stimulation
GSE58142 ncbi.nlm.nih.gov/geo Frankel et al microarrays MCEF7 hsa-miR-95a-3p  Overexpression 24h
GSE31397 ncbi.nlm.nih.gov/geo Frankel et al microarrays MCEF7 hsa-miR-101-3p  Overexpression 24h
GSE19777 ncbi.nlm.nih.gov/geo Rao et al microarrays MCF7FR hsa-miR-221-3p Silencing 72h
GSE19777 ncbinlm.nih.gov/geo Rao et al microarrays MCEF7FR hsa-miR-222-3p Silencing 72h
GSE40058 ncbi.nlm.nih.gov/geo Luo et al microarrays ~ MDA-MB-231  hsa-miR-200c-3p  Overexpression NA
GSE40058 ncbi.nlm.nih.gov/geo Luo et al microarrays ~ MDA-MB-231  hsa-miR-205-5p  Overexpression NA
GSE40058 ncbinlm.nih.gov/geo Luoetal microarrays ~MDA-MB-231 hsa-mir-375 Overexpression NA
GSE50697 ncbi.nlm.nih.gov/geo Taube et al microarrays SUM159 hsa-miR-203a-3p  Overexpression NA
GSE51053 ncbinlm.nih.gov/geo  Kristensenetal  microarrays DU145 hsa-miR-224-5p  Overexpression 48h
GSE51053 ncbinlm.nih.gov/geo  Kristensenetal  microarrays DU145 hsa-miR-452-5p  Overexpression 48h
GSE34893 ncbi.nlm.nih.gov/geo Hudson et al microarrays LNCAP hsa-miR-106b- Overexpression 24h
5
GSE17362 ncbi.nlm.nih.gov/geo Boll et al microarrays LNCAP hsa-miRi?)Oa-?)p Overexpression 24h
GSE17362 ncbinlm.nih.gov/geo Boll et al microarrays LNCAP hsa-miR-203a-3p  Overexpression 24h
GSE17362 ncbi.nlm.nih.gov/geo Boll et al microarrays LNCAP hsa-miR-205-5p  Overexpression 24h
GSE31620 ncbi.nlm.nih.gov/geo Hudson et al microarrays LNCAP hsa-miR-1-3p Overexpression 24h
GSE31620 ncbi.nlm.nih.gov/geo Hudson et al microarrays LNCAP hsa-miR-206 Overexpression 24h
GSE31620 ncbi.nlm.nih.gov/geo Hudson et al microarrays LNCAP hsa-miR-27b-3p ~ Overexpression 24h
GSE51053 ncbinlm.nih.gov/geo  Kristensenetal = microarrays PC3 hsa-miR-224-5p  Overexpression 48h
GSE51053 ncbinlm.nih.gov/geo  Kristensenetal  microarrays PC3 hsa-miR-452-5p  Overexpression 48h
GSE12039 ncbi.nlm.nih.gov/geo Fish et al microarrays HUVEC hsa-miR-126-3p Anti-miR 72h
GSE18438 ncbi.nlm.nih.gov/geo  Coutler E et al microarrays JsC1 hsa-miR-221-3p  Overexpression NA
GSE25215 ncbi.nlm.nih.gov/geo Ikeda Y etal microarrays PaCa-2 hsa-miR-193b-  Overexpression 48h
3p
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GSE40189 ncbinlm.nih.gov/geo Ouyang Hetal  microarrays PANC-1 hsa-miR-10b-5p Knockdown NA
GSE40189 ncbinlm.nih.gov/geo Ouyang Hetal  microarrays PANC-1 hsa-miR-10b-5p  Overexpression NA
GSE13460 ncbi.nlm.nih.gov/geo Tzur G et al microarrays hESC hsa-miR-122-5p ~ Overexpression NA
GSE86432 ncbi.nlm.nih.gov/geo Dzikiewicz- microarrays DG75 hsa-miR-150-5p ~ Overexpression NA
Krawczyk A et

al

GSE86432 ncbi.nlm.nih.gov/geo Dzikiewicz- microarrays ST486 hsa-miR-150-5p ~ Overexpression NA
Krawczyk A et

al
GSE19232 ncbinlm.nih.gov/geo  Tome M et al microarrays hMSC hsa-miR-335-5p  Overexpression NA
GSE8501 ncbi.nlm.nih.gov/geo Grimson Aetal microarrays HELA hsa-miR-7-5p Overexpression 24h
GSE8501 ncbi.nlm.nih.gov/geo Grimson Aetal microarrays HELA hsa-miR-9-5p Overexpression 24h
GSE8501 ncbi.nlm.nih.gov/geo Grimson Aetal microarrays HELA hsa-miR-122-5p  Overexpression 24h
GSE8501 ncbi.nlm.nih.gov/geo Grimson Aetal microarrays HELA hsa-miR-128-3p ~ Overexpression 24h
GSE8501 ncbi.nlm.nih.gov/geo Grimson Aetal microarrays HELA hsa-miR-132-3p  Overexpression 24h
GSE8501 ncbi.nlm.nih.gov/geo Grimson A etal microarrays HELA hsa-miR-133a-3p  Overexpression 24h
GSE8501 ncbi.nlm.nih.gov/geo Grimson Aetal microarrays HELA hsa-miR-142-3p  Overexpression 24h
GSE8501 ncbi.nlm.nih.gov/geo Grimson Aetal microarrays HELA hsa-miR-148b- Overexpression 24h
GSE8501 ncbi.nlm.nih.gov/geo Grimson Aetal microarrays HELA hsa-milziSla-Sp Overexpression 24h
GSE39359 ncbi.nlm.nih.gov/geo CaiJetal microarrays MCEF7 hsa-374a-5p Overexpression 36h
GSE40411 ncbinlm.nih.gov/geo Krishnan Ketal microarrays MCF7 hsa-miR-139-5p  Overexpression NA
GSE32999 ncbinlm.nih.gov/geo  Mazda M et al microarrays PC3 hsa-miR-302a-3p  Overexpression NA
GSE32999 ncbinlm.nih.gov/geo  Mazda M et al microarrays PC3 hsa-miR-372-3p  Overexpression NA
GSE32999 ncbinlm.nih.gov/geo  Mazda M etal microarrays PC3 hsa-miR-373-3p  Overexpression NA
GSE32999 ncbinlm.nih.gov/geo  Mazda M etal microarrays PC3 hsa-miR-520c-3p  Overexpression NA
GSE32999 ncbinlm.nih.gov/geo  Mazda M et al microarrays PC3 hsa-miR-520f-3p  Overexpression NA
GSE60426 ncbinlm.nih.gov/geo  Eichhorn et al RNA-Seq HEK293T hsa-miR-1-3p Overexpression 24h
GSE52531 ncbinlm.nih.gov/geo Nam et al RNA-Seq HEK293 hsa-miR-124-3p  Overexpression 24h
GSE52531  ncbi.nlm.nih.gov/geo Nam et al RNA-Seq HEK293 hsa-miR-155-5p  Overexpression 24h
GSE68987 ncbi.nlm.nih.gov/geo Zhang et al RNA-Seq HELA hsa-miR-603 Overexpression 24h
GSE60426 ncbinlm.nih.gov/geo  Eichhorn et al RNA-Seq HELA hsa-miR-1-3p Overexpression 24h
GSE60426 ncbinlm.nih.gov/geo  Eichhorn et al RNA-Seq HELA hsa-miR-155-5p  Overexpression 24h
GSE52531  ncbi.nlm.nih.gov/geo Nam et al RNA-Seq HELA hsa-miR-155-5p  Overexpression 24h
GSE52531  ncbinlm.nih.gov/geo Nam et al RNA-Seq HELA hsa-miR-124-3p ~ Overexpression 24h
GSE68987 ncbi.nlm.nih.gov/geo Zhang et al RNA-Seq HELA hsa-miR-603 Overexpression 24h
GSE37918 ncbinlm.nih.gov/geo  Pellegrino et al RNA-Seq MCEF7 hsa-miR-23b-3p  Overexpression NA
GSE37918 ncbi.nlm.nih.gov/geo  Pellegrino et al RNA-Seq MDAMB231 hsa-miR-23b-3p ~ Overexpression NA
GSE64615 ncbinlm.nih.gov/geo  Polioudakis et RNA-Seq HELA has-miR-103a-3p  Overexpression NA
GSE64615 ncbi.nlm.nih.gov/geo Poliou?ilakis et RNA-Seq HELA has-miR-494 Overexpression NA
GSE64615 ncbi.nlm.nih.gov/geo Poliou?ilakis et RNA-Seq HELA has-miR-503 Overexpression NA
GSE63555 ncbi.nlm.nih.gov/geo Poliou?ilakis et RNA-Seq HELA hsa-miR-191-5p  Overexpression NA

al
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GSE63555 ncbinlm.nih.gov/geo  Polioudakis et RIP-Seq HELA hsa-miR-191-5p  Overexpression NA
al

GSE64615 ncbi.nlm.nih.gov/geo  Polioudakis et RIP-Seq HELA has-miR-103a-3p  Overexpression NA
al

GSE64615 ncbi.nlm.nih.gov/geo  Polioudakis et RIP-Seq HELA has-miR-494 Overexpression NA
al

GSE64615 ncbi.nlm.nih.gov/geo  Polioudakis et RIP-Seq HELA has-miR-503 Overexpression NA
al

GSE60426 ncbi.nlm.nih.gov/geo  Eichhorn et al. RPF-Seq HEK293T hsa-miR-1-3p Overexpression 24h

GSE60426 ncbi.nlm.nih.gov/geo  Eichhorn et al. RPF-Seq HELA hsa-miR-155-5p ~ Overexpression 32h

GSE60426 ncbi.nlm.nih.gov/geo  Eichhorn et al. RPF-Seq HELA hsa-miR-1-3p Overexpression 32h

To retrieve a concise training set and reduce noise, datasets were combined under a tissue-

specific scheme. Table 13 summarizes the associations regarded between cell types and

tissues.

Table 13: Summary of the associations regarded between cell types and tissues for the extraction of miRNA-

targeted regions incorporated in training/test sets.

Tissue Cell Type CLIP-Seq libraries miRNA  perturbation
experiments
Kidney HEK293,HEK293T,PAG C81_61 43 11
B lymphocyte CCL86,CRL1432,CRL1596,H929,P3HR1,J]SC1,D 18 9
G75,5T486
Bone Marrow HMSC, K562 16 2
Pancreas PANC1,PACA2 1 4
Brain H4, SW1783,U87,HS683,U872M1,131_4_5B1 11 13
Mammary MCF10A,MCF7 MCF7FR MDAMB231,MDAM 10 20
Gland B468, SUM159
Cervix HELA 6 34
Embryo HESC 1 1
Umbilical Vein HUVEC 2 1
Prostate LNCAP, PC3, DU145 5 16

Direct miRNA-target pairs derived from Reporter Gene Assay techniques and miRNA

chimeric fragments were also incorporated in microT deployment (Methods 2.2.1). Published

background PAR-CLIP libraries (Methods 2.2.1), stably expressing a commonly utilized non-
RBP control (FLAG-GFP) were utilized to characterize negative miRNA-targeted pairs. The
retrieved miRNA-binding events were annotated against a reference set of coding and 3" UTR

exons. In cases of multiple transcript-gene associations, the transcript with the longest 3" UTR

was selected. The adopted methodology is depicted in Figure 16 while Table 14 summarizes

the miRNA-target positive/negative instances utilized in the training set of the microT

model, as identified by different indirect/direct, low and high-throughput experiments. Table

15 outlines the independent test datasets included in the benchmarking evaluations.
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Figure 16: Overview of miRNA-target positive/negative instances as identified by different indirect/direct,
low and high-throughput experiments. miRNA-targeted regions derived from miRNA perturbation datasets
presented an overlap with AGO-bound enriched regions from at least one CLIP-Seq library. Datasets have
been combined under a tissue-specific scheme. No overlap was allowed between positive and negative
miRNA-gene interactions and their related MRE-instances.

90

Institutional Repository - Library & Information Centre - University of Thessaly
11/07/2024 07:57:03 EEST - 3.145.41.45



Table 14: Overview of miRNA-target positive/negative instances utilized in training set as identified by

different indirect/direct, low and high-throughput experiments.

Positive Instances

miRNAS in interactions

Genes in interactions

miRNA-target instances

Chimeric 313 3,987 9,119
RNA-Seq 9 1,942 4,244
Microarrays 55 2,414 5,194
RPF 2 1,383 2,872
RIP 2 322 667
Negative Instances miRNAs in interactions = Genes in interactions =~ miRNA-target instances
RNA-Seq 8 948 3,005
Microarrays 28 189 835
RPF 2 804 2,651
FLAG_GFP_bg 20kD 393 715 12,371
FLAG_GFP_bg 35kD 393 2,026 24,832
FLAG_GFP_bg 45kD 393 2,219 24868

Table 15: Summary of microarray experiments in human species upon specific miRNA deregulation, utilized

in benchmarking evaluations of microT Super Learning model.

Post-Transfection

Accession  Repository Authors Cell Type miRNA g:;{tijznt gfxﬂe}/lliag::itmental
Condition

GSE16962  ncbinlm.nih.gov/geo Fasanaro et al HUVEC hsa-miR-210-3p Overexpression  24h

GSE21901  ncbi.nlm.nih.gov/geo Hollander et al HEK?293 hsa-miR-212-3p Overexpression -

GSE22790  ncbi.nlm.nih.gov/geo Elyakim et al HEPG2 hsa-miR-191-5p Anti-miR -

GSE21132  ncbinlm.nih.gov/geo Lietal Jurkat hsa-miR-146a-5p Overexpression ~ 48h

GSE42749  ncbi.nlm.nih.gov/geo Salim et al U1810 hsa-miR-214-3p Antagomir 24h

2.3.2 microT in silico framework

Feature set description. A set of 117 descriptors with non-zero variance was included in

microT. The extracted features were retrieved from positive/negative miRNA interactions,

identified on AGO-bound locations in different CLIP-Seq datasets and on chimeric fragments.

microCLIP descriptors have been re-evaluated in the new enhanced training set by

implementing feature selection methods. Statistical tests and metrics estimating the predictive

accuracy of descriptors, e.g. AUC plots, were used to evaluate the behavior of features in one-

dimension. 30 characteristics representing per nucleotide base pairing composition of miRNA

binding region with weak performance, as well as PAR-CLIP associated descriptors were

totally discarded. The model integrates 16 new features that outline dinucleotide content and

sequence accessibility of miRNA binding region and of respective upstream/downstream
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regions. The location of the MRE within the 3" UTR/CDS, the length of the respective exon
and the distance of the adjacent MREs were also estimated and incorporated. Accessibility
scores were computed using RNAplfold[112] with the following parameters: w = 150, L =100
and u =31.

Description of the algorithm. microT operates on the whole transcript. It initially identifies
putative (non-)canonical MREs located within the 3 UTR and CDS regions by adopting a
sensitive pipeline and subsequently scores them following the microCLIP classification
scheme. Base node components have been re-arranged. Characteristics have been removed or
inserted based on their conceptual framework. Table 16 describes microT features separated
into the base nodes. The new entries are denoted with a bold font.

Table 16: Description of features incorporated in microT.

feature# base classifier node feature description
MRE region GC-skew

p—

2 MRE region Purine-skew
3 MRE region Ks-skew
4 Upflank MRE region Purine-skew
5 Upflank MRE region Ks-skew
6 MRE DUST score
7 MRE region AT-skew
8 MRE dS
9 MRE Tm
10 Codon Adaptation Index per codon usage bias
11 Dinucleotide AA MRE content
12 Dinucleotide AC MRE content
13 Dinucleotide AG MRE content
14 Dinucleotide AT MRE content
15 Region Features Dinucleotide CA MRE content
16 Dinucleotide CC MRE content
(53 Features) . )
17 Dinucleotide CT MRE content
18 Dinucleotide GA MRE content
19 Dinucleotide GC MRE content
20 Dinucleotide CG MRE content
21 Dinucleotide GG MRE content
22 Dinucleotide TT MRE content
23 Dinucleotide TA MRE content
24 Dinucleotide AC content upflank of MRE
25 Dinucleotide AT content upflank of MRE
26 Dinucleotide GC content upflank of MRE
27 Dinucleotide GT content upflank of MRE
28 Dinucleotide TA content upflank of MRE
29 Dinucleotide AA content upflank of MRE
30 Dinucleotide TG content upflank of MRE
31 A content upflank of MRE
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32 C content upflank of MRE
33 G content upflank of MRE
34 T content upflank of MRE
35 A or T content upflank of MRE
36 A content in MRE
37 A or G content in MRE
38 A or T content in MRE
39 C content in MRE
40 G content in MRE
41 G or T content in MRE
42 T content in MRE
43 Average conservation in MRE seed region
44 Average conservation downstream of MRE region
45 Average conservation upstream of MRE region
46 Minimum conservation in MRE seed region
47 Minimum conservation downstream of MRE region
48 Minimum conservation upstream of MRE region
49 Number of MREs per 3 UTR/CDS length
50 3’ UTR/CDS length
51 Accessibility of the 30nt region upstream of MRE
52 Accessibility of the 30nt region downstream of MRE
53 Accessibility of the 20nt MRE region
54 Binding event in MRE position 2
55 Binding event in MRE position 3
56 Binding event in MRE position 4
57 Binding event in MRE position 5
58 Binding event in MRE position 6
59 Binding event in MRE position 7
60 Binding event in MRE position 8
61 Binding event in MRE position 10
62 Binding event in MRE position 11
63 Binding event in MRE position 12
2: Binding Vectors g%nj%ng event %n ﬁgg pos%t%on 1;
(23 Features) Inding event m' / position
66 Base at MRE position 25
67 Base at MRE position 26
68 Base at MRE position 27
69 Base at MRE position 28
70 Base at MRE position 29
71 Base at miRINA position 13
72 Base at miRINA position 15
73 Base at miRNA position 19
74 Base at miRINA position 4
75 Base at miRNA position 5
76 Base at miRINA position 6
77 Matches per miRNA/MRE  Total mismatches
78 domain Max consecutive matches
79 (13 Features) Match in position 10 of miRNA
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80 Match in position 2 of miRNA
81 Consecutive unpaired bases of non-seed region
83 Consecutive matches per total matches
83 Matches in seed region per total matches
84 Consecutive matches in seed region
85 Consecutive matches in non-seed region per total
matches
86 Matches in seed region
87 Matches in central MRE region
88 Matches in 3' MRE
89 Consecutive matches in seed region per max
consecutive matches
90 AU frequency in MRE region
91 GC frequency in MRE region
92 MRE binding start
93 Internal loop max length in MRE region
9 Duplex Features AU frequency in seed region
95 (10 Features) AU frequency in 3 MRE region
96 GC frequency in tail MRE region
97 GC frequency in MRE region excluding seed
98 Length of bulges in MRE region
99 Bulge positions in MRE region (%)
100 Matches in MRE Ks-skew
101 miRNA unpaired A
102 miRNA unpaired C
103 .. miRNA unpaired G
104 B(ZSEeZSJ:;Sg miRNA unpaired T
105 miRNA matches A
106 miRNA matches T
107 miRNA matches C
108 miRNA matches G
109 MRE distance from 3 UTR/CDS end
110 Distance of adjacent MREs
111 Matches in MRE Purine-skew
112 Duplex structure energy
113 N[(I;Eeiﬁ?;l)‘al Length of miRNA binding region
114 Length of MRE binding region per cluster length
115 Average conservation of whole MRE
116 Average conservation of 5' MRE
117 Binding Type
1 Binding event in MRE position 4
2 Binding event in MRE position 11
Z Feature Combination Set 1 ginding event in .MRE position 18
(26 Features) ase at MRE pos%t%on 28
5 Base at MRE position 29
6 Base at miRNA position 13
7 Base at miRINA position 6
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Max consecutive matches

9 Binding Type

10 Consecutive matches per total matches

11 Consecutive matches in seed region per max
consecutive matches

12 Matches in 3' MRE

13 AU frequency in seed region

14 MRE binding start

15 AU frequency in 3 MRE region

16 Length of bulges in MRE region

17 miRNA unpaired C

18 miRNA matches A

19 miRNA matches C

20 miRNA matches G

21 Duplex structure energy

22 Length of MRE binding region per cluster length

23 Average conservation of whole MRE

24 Base at miRINA position 15

25 Binding event in MRE position 5

26 Binding event in MRE position 7

1 MRE dS

2 G content upflank of MRE

3 A or T content upflank of MRE

4 miRNA unpaired C

5 Average conservation upstream of MRE region

6 Accessibility of the 30nt region upstream the MRE

7 Feature Combination Set 2  Accessibility of the 30nt region downstream the MRE

8 (14 Features) Accessibility of the 20nt MRE region

9 Binding event in MRE position 3

10 AU frequency in MRE region

11 GC frequency in MRE region

12 Matches in seed region per total matches

13 Consecutive matches in seed region

14 Distance of adjacent MREs

1 Binding event in MRE position 6

2 Match in position 10 of miRNA

3 Match in position 2 of miRNA

4 Matches in seed region

5 Matches in central MRE region

6 GC frequency in tail MRE region

7 Feature Combination Set 3 GC frequency in MRE region excluding seed

8 (14 Features) Matches in MRE Ks-skew

9 miRNA unpaired A

10 miRNA unpaired T

11 Matches in MRE Purine-skew

12 Length of miRNA binding region

13 MRE distance from 3 UTR/CDS end

14 Consecutive unpaired bases of non-seed region
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microT was trained against a collection of 22,096 positive and 68,562 negative miRNA
interactions (Table 17, Table 18). The first layer comprised 16,062 positive and 52,592 negative
instances, while the second one was trained on an independent set of 6,034 positive and
15,970 negative miRNA-target pairs. Ten-fold cross-validation was performed on the training
data to estimate each model’s accuracy. An independent test set of 6,192 positive/negative
instances was utilized in the benchmarking evaluations.

Table 17: Summary of training set utilized for microT deployment.

miRNAs in interactions Genes in interactions miRNA-target instances

Training Test Training Test Training Test

Positive Instances

Direct 313 292 3,987 2,010 9,119 3,092
Techniques
miRNA 60 - 4,700 - 12,977 -
perturbation
experiments

Negative Instances
Background 393 391 3,883 1,758 62,071 2,801
CLIP-Seq
miRNA 34 15 1,698 264 6,491 299
perturbation
experiments

Table 18: Summary of miRNA-target instances, located on 3° UTR and CDS regions, utilized in the
training/test of microT model.

Biotype Positive set Negative set
Training Test Training Test

UTR3 13,441 2,215 41,276 1,820

CDS 8,655 877 27,286 1,280
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CHAPTER 3
Results

3.1 DIANA-TarBase repository

DIANA-TarBase v8.0 is a reference database devoted to the indexing of experimentally-
supported microRNA (miRNA) targets. Its 8th version is the first database indexing more
than 1 million entries, corresponding to ~670,000 unique miRNA target pairs. The interactions
are supported by more than 33 experimental methodologies, applied to ~600 cell
types/tissues under ~451 experimental conditions. It integrates information on cell-type
specific miRNA-gene regulation, while hundreds of thousands of miRNA binding locations
are reported. TarBase is coming of age, with more than a decade of continuous support in the
non-coding RNA field. A new module has been implemented that enables the browsing of
interactions through different filtering combinations. It permits easy retrieval of positive and
negative miRNA targets per species, methodology, cell type and tissue. An incorporated
ranking system is utilized for the display of interactions based on the robustness of their
supporting methodologies. Statistics, pie-charts and interactive bar-plots depicting the
database content are available through a dedicated result page. An intuitive interface is
introduced, providing a user-friendly application with flexible options to different queries.

3.1.1 DIANA-TarBase update: Database statistics

The current version has been enhanced with a large compilation of high quality miRNA-
binding events derived from chimeric fragments, reporter gene assay and CLIP-Seq
experiments. More than 200 high-throughput experiments followed by perturbation of a
specific miRNA have been analyzed and integrated in the database. This extension provides
an increase of approximately 200,000 interactions and ~300,000 entries since the previous
version[50]. A concise description of TarBase v8.0 is presented in Table 19.
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Table 19: TarBase v8.0 Entries. Statistics regarding the total entries, miRNA-gene interacting pairs derived
from low-/high-throughput methodologies, distinct cell types/tissues and curated publications are provided.
The number of analyzed datasets and unique studied conditions are presented for high-throughput
experiments. The incorporated low-/high-throughput experimental techniques, as well as interface
improvements are reported. Newly incorporated experimental methods and interface advancements are

marked as bold.

TarBase v8.0
Total entries >1,080,000
Entries from low-yield methods 10,339
Entries from high-throughput 1,069,000
Database methods
Cell types 516
Tissues 85
Publications 1,208
miRNA-gene entries ~790,300
Support from direct miRNAs 1,761
experiments Targeted genes 27,613
Publications 968
. Datasets 353
Analyzed high-throughput .
e Conditions ~230
Publications 102

Experimental Methods

Description of major classes

Reporter Genes, Western Blot,
qPCR, Proteomics, Biotin
miRNA tagging , CLIP-Seq,
CLEAR-CLIP, CLASH, CLIP-
chimeric, IMPACT-Seq,
AGO-IP, RPF-Seq, RIP-Seq,
Degradome, RNA-Seq, TRAP,
Microarrays, Other

Interface

Data visualization

Re-designed interface,
support of specific queries,
Browsing Mode, Ranking
System, customizable sorting
of results, advanced
interactive statistics,
advanced filtering options,
cell type/tissue combinations,
detailed meta-data,
interconnection with DIANA-
Tools, ENSEMBL integration

DIANA-TarBase v8.0 caters more than one million entries, corresponding to the largest
compilation of experimentally supported miRNA targets. This collection of miRNA-gene
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interactions has been derived from experiments employing more than 33 distinct low-yield
and high-throughput techniques, spanning 85 tissues, 516 cell types and ~451 experimental
conditions from 18 species (Figure 17a). Approximately 1,200 publications were manually
curated and more than 350 high-throughput datasets have been analyzed. The new database
version incorporates an assortment of positive and negative direct miRNA interactions. It
comprises more than 10,000 interactions derived from specific techniques. Approximately
5100 of these miRNA targets are verified by reporter gene assays, extracted from ~950
publications, providing a 1.6-fold increase compared to relevant entries in TarBase v7.0. More
than 14,000 direct miRNA-mRNA chimeric fragments defined from CLASH and CLEAR-
CLIP experiments, as well as from a previous meta-analysis of published AGO-CLIP
datasets[113], have been integrated to the repository. Approximately 90,000 new entries were
generated from the analysis of additional AGO CLIP-Seq libraries from 3 studies. More than
233,000 interactions have been extracted from miRNA-specific transfection/knockdown
microarray, RPF-Seq, RIP-Seq and RNA-Seq experiments which were performed in 28 tissues
and 82 cell types under 206 experimental conditions. Updated entries derived from the
aforementioned methodologies are summarized in (Figure 17b).
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Figure 17: TarBase entries divided per methodology. Values are plotted in log2 scale. Each grid line
corresponds to quadrupling of indexed miRNA interactions. a) Total miRNA-gene entries incorporated in
TarBase v8.0. b) Comparison of TarBase v8.0 and TarBase v7.0 entries (Karagkouni D and Paraksevopoulou
MD et al, 2017)[64].
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3.1.2 Interface
3.1.2.1 Querying the database

A new relational schema, developed in PostgreSQL, is introduced to host TarBase v8.0 data.
The database interface has also been redesigned using the Yii 2.0 PHP framework and
enhanced to provide an intuitive user-friendly application as well as flexible options to
different queries (Figure 18). Users can retrieve interactions by performing a query with
miRNA and/or gene names. Identifiers from ENSEMBL[83] and miRBase[114] are supported.
Positive and/or negative miRNA targets can be retrieved through the combination of distinct
filters such as experimental methodology, cell type and tissue according to the user’s needs.
Results can be sorted in ascending or descending order based on gene and/or miRNA names
as well as on the number of experiments, publications and cell types/tissues supporting these
interactions. Detailed meta-data including the binding location and experimental conditions
are displayed in the relevant result sections.

Figure 18: Snapshot depicting the DIANA-TarBase v8.0 interface. Users can apply a query with miRNA
and/or gene names [1] or navigate in the database content through combinations of the filtering criteria [2].
Positive/negative interactions can be refined with a series of filtering options including species, tissues/cell
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types, methodologies, type of validation (direct/indirect), database source, publication year as well as in
silico predicted score [2]. Brief result statistics are promptly calculated [3]. Interactions can be sorted in
ascending or descending order based on gene and/or miRNA names, on the number of experiments,
publications and cell types/tissues supporting them [4]. Gene and miRNA details, complemented with active
links to Ensembl, miRBase and the DIANA disease tag cloud, are provided [5]. Details regarding the
experimental procedures such as the methodology, cell type/tissue, experimental conditions and link to the
actual publication are presented [6]. Methods are color-coded, with green and red portraying validation for
positive and negative regulation, respectively. Interactions are also accompanied by miRNA-binding site
details [7]. Links to DIANA-miRPath functional analysis resource [8] and to an informative Help section [9]
are also available. Users can navigate to the separate database statistics page [10] (Karagkouni D and
Paraksevopoulou MD et al, 2017)[64].

Ranking system: A novel ranking system has been incorporated in the interface. miRNA
targets are by default sorted according to the robustness of the respective experimental
techniques. In brief, miRNA-gene interactions determined from low-throughput experiments
are reported first, followed by those derived from high-throughput techniques. More
precisely, miRNA-binding events retrieved from reporter gene assays, the gold standard of
methodologies in miRNA target recognition, are prioritized, followed by those defined from
any other low-yield technique. Direct interactions inferred from chimeric fragments are
subsequently presented, followed by those determined from CLIP-Seq methods. miRNA
targets supported from any other indirect miRNA-specific transfection/knockdown high-
throughput technique are finally displayed. In cases of miRNA-target pairs derived from the
same category of methods, ranking is performed based on the number of distinct experiments
they have been validated with.

Browsing mode: A novel aspect in the new interface is the browsing mode (Figure 18). Users
can easily retrieve the top targets (up to a maximum of 3,000) without applying any specific
query. Positive or negative interactions can be obtained based on different combinations of
the filtering criteria including species, tissues/cell types and methodologies.

Advanced statistics: DIANA-TarBase v8.0 also provides statistics, advanced interactive pie-
charts and bar plots, implemented using the D3.js JavaScript library, to portray the database
content and extent for the different species (Figure 19).
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Figure 19: Screen-shot depicting DIANA-TarBase statistics page. The number of interactions, cell
types/tissues, publications and low-/high-throughput methodologies are summarized at the top of the page
[1]. A pie-chart portraying the database content per species is provided [2]. The user can select any species
combination [3] to obtain relevant statistics [4]. The bar-plot [5] and tables [6] at the end of the page show the
number of interactions (log2-scaled) per methodology and the cell-type/tissue frequencies respectively. They
are also dynamically populated depending on the user’s choice of species (Karagkouni D and
Paraksevopoulou MD et al, 2017)[64].

3.1.2.2 Database interconnections

Since the sixth version, DIANA-TarBase has been integrated in ENSEMBL[83] and
RNAcental[115] (Figure 20, Figure 21). Interactions accompanied with the exact binding
location can be viewed in the ENSEMBL Genome Browser via the dedicated “TarBase” track.
The database is also seamlessly interconnected with other available DIANA-tools, including
microT-CDS[85] for in silico identification of miRNA targets, LncBase v2.0[116] for the display
of miRNA-IncRNA interactions and DIANA-miRPath v3.0[117] for functional
characterization of miRNAs.
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Additionally to the ~1 million entries indexed in TarBase, miRNA targets retrieved from
other relevant databases, including miRTarBase[118] and miRecords[32], are also provided to
users. These entries are disregarded from database statistics.

TarBase

track --=>

Figure 20: TarBase integration in ENSEMBL.
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-::'.R NA Search by gene, species, accession, or any keyword

Examples: human RN7SL, Homo sapiens, IncRNA, LNCipedia, ENSG00000228630 © How to search

@) Databases ~ Tools~ API~ Downloads Browse About Help Feedback @@

Sequence URS0000021B51

Mus musculus (house mouse) mmu-miR-155-5p

23 nucleotides 4 databases (ENA, miRBase, RefSeq, TarBase) Found in 2 species (QILLLY

QOverview Taxonomy & Download ~

Annotations 3total

Database Description

miRBase Mus musculus (house mouse) mmu-miR-155-5p
> miRBase: MIMATO000165 =
» @16 : 84,714,143 - 84,714,165 : + | Ensembl @ UCSC

TarBase Mus musculus (house mouse) TARBASE:mmu-miR-155-5p
» TarBase: mmu-miR-155-5p =

RefSeq Mus musculus (house mouse) mmu-miR-155-5p.
» RefSeq: NR_029565.1 - mature miRNA (precursor URS0000723DEBE)
» NCBI GenelD: 387173

Target proteins 8,285 total @

TarBase Ensembl Description Methods
Eml6 = ENSMUSG00000044072 = echinoderm microtubule associated protein like & RMNA-Seq, RPF-Seq
Q
Chmpsc ENSMUSG00000028419 charged multivesicular body protein 5 RMNA-Seq
Q
Prpf3g = ENSMUSG00000035597 =  pre-mRMNA processing factor 39 RPF-Seq
Q
Marfl = ENSMUSGO0000060657 = meiosis regulator and mRNA stability 1 RPF-Seq
Q
Gmi4137 = ENSMUSG0O0000055926 = predicted gene 14137 RMNA-Seq
Q
n 2 1657 5 ¥ |records per page

Figure 21: TarBase integration in RNAcentral.

3.2 microCLIP Super Learning framework uncovers functional transcriptome-wide miRNA
interactions
microCLIP is a cutting-edge framework, dedicated to the analysis of AGO-CLIP-Seq
experiments, that combines deep learning classifiers under a super learning scheme. The
analysis of PAR-CLIP methodology focuses on sequence clusters containing T-to-C
conversions. In this thesis, it is demonstrated that the non-T-to-C clusters, frequently
observed in PAR-CLIP experiments, exhibit functional miRNA binding events and strong
RNA accessibility. This discovery is based on the analysis of an extensive compendium of
bona fide miRNA-binding events, and is further supported by numerous miRNA perturbation
experiments and structural sequencing data. The incorporation of these previously neglected
clusters yields an average of 14% increase in miRNA-target interactions per PAR-CLIP
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library. The increased performance of microCLIP in CLIP-Seq-guided detection of miRNA
interactions, uncovers previously elusive regulatory events and miRNA-controlled pathways.

3.2.1 T-to-C and non-T-to-C PAR-CLIP clusters share common traits

Clusters depleted on T-to-C conversions, which are always filtered out in PAR-CLIP analysis,
seem to aid in the identification of functional miRNA binding events (Figure 11).

One of the most important steps in PAR-CLIP analysis is the identification of AGO-bound
regions for further investigation. This process is mainly based on the presence and percentage
of reads harboring T-to-C mutations within a cluster, while all other peaks are omitted from
the analysis. Importantly, including only T-to-C enhanced cross-linked regions led to a
significant loss (60-80%) of the AGO-PAR-CLIP reads across 24 libraries. non-T-to-C
containing regions are examined for the possibility to pinpoint functional miRNA binding
events. The applied approach assessed a random set of 4,310 and 1,700 miRNA binding sites,
supported by T-to-C and non-T-to-C clusters respectively, located in 3'UTR and CDS regions.
More than 65% of miRNA recognition elements (MREs) were derived from direct
experimental techniques, while the rest originated from the analyzed miRNA high-
throughput perturbation datasets (64 microarray and 12 RNA-Seq experiments).

Importantly, approximately 28% of the positive MREs, including 1,131 chimeric and reporter
assay-verified interactions, were observed to be exclusively resolved by non-T-to-C AGO-
enriched clusters. Consequently, downstream evaluations were initially centered on the
comparison of MRE-specific feature distributions between clusters lacking or containing T-to-
C sites. Known important attributes were calculated for miRNA-target recognition such as
the AU flanking content, binding type, matches per miRNA-target duplex domain, minimum
free energy, GU wobble pairs and MRE conservation. Evaluated descriptors of miRNA
positive interactions residing on T-to-C clusters significantly diverge from respective
densities observed in negative MREs (Figure 22, range of P values r-to-c: 5.9x10-1% - 4x10-7, two-
tailed Wilcoxon rank-sum test, nr.to-c = 4,310, Nnegative = 1,423). It is shown that features related
to miRNA targeted sites on non-T-to-C clusters also significantly differentiate from relevant
estimates corresponding to negative miRNA-target instances (Figure 22, range of P values non-
T-to-C: 7.8x10139 - 14x10-5, two-tailed Wilcoxon rank-sum test, nnon-1-to-c = 1,700, Nnegative = 1,423).
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Figure 22: Distributions of MRE-related features corresponding to positive miRNA interactions in T-to-C and
non-T-to-C AGO-bound regions against the relevant densities of negative binding sites. Assessed
characteristics of positive miRNA interactions on (non-)T-to-C clusters significantly diverge from respective
feature distributions of negative MREs (two-tailed Wilcoxon rank-sum test) (Paraskevopoulou MD and
Karagkouni D et al, 2018)[17].

3.2.2 Structural sequencing data unveil accessible AGO-bound loci

PARS sequencing profiles were calculated around AGO-PAR-CLIP-derived miRNA binding
sites in 4 EBV transformed lymphoblastoid cell lines[53]. The analysis of the respective RNase
S1 or V1 nuclease signals/intensities at single base resolution enabled the assessment of
miRNA site accessibilities in both T-to-C and non-T-to-C clusters. These measurements were
juxtaposed against negative MREs comprising miRNAs expressed in the examined
lymphoblastoid cell types. The per base averaged PARS scores indicate that strong structural
accessibility occurs in the 3’ end of miRNA-target sites and specifically on 2-4nt positions of
the miRNA seed region. These results were identified on interactions residing on (non-)T-to-
C clusters and significantly differ from respective base scores along negative MREs located on
AGO-enriched peaks (Figure 23, yellow window; Methods, range of P values T.toc: 0.03 -
3.7x105, P values non-T-to-c: 0.01 - 2.4x10-5, two-tailed Wilcoxon rank-sum test, 3,260 < NT-to-C sites
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< 9,159, 2,119 < Nnon-T-to-C sites < 6,473, Nnegative sites = 3,059). The outcome of this analysis is
consistent with previous observations[119] and demonstrates that the highest accessibility
segregating functional from non-functional binding sites resides towards the initiation of the
direct miRNA seed pairing.

Figure 23: Average PARS scores of AGO-bound regions deduced from the analysis of 4 EBV transformed
lymphoblastoid PAR-CLIP libraries. RSS base signals were aligned to the start of the miRNA-target binding
site. Base 0 corresponds to the 3’-end of the mRNA, at -1 or —2 nt dowstream of the initiation of the direct
miRNA seed pairing. Negative PARS scores correspond to single stranded RNA structures, while positive
scores to double stranded sites. In the examined AGO-PAR-CLIP EF3D-AGO2(a), LCL-BAC-D1(b), LCL-
BAC-D3(c) and LCL-BAC(d) datasets, strong structural accessibility occurs in miRNA sites identified on T-to-
C (red) and non-T-to-C (green) clusters in the 2-4nt positions (yellow window) of the miRNA seed pairing.
These results significantly differ from respective base scores along negative MREs (light blue) located on
AGO-enriched peaks (Paraskevopoulou MD and Karagkouni D et al, 2018)[17].

3.2.3 A super learning approach for AGO-PAR-CLIP analysis

All the aforementioned observations have been incorporated in an extensive in silico
framework. microCLIP is based on ensemble super learning and provides a complete pipeline
for experimentally supported miRNA targetome annotation, initiating from aligned
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(.sam/.bam) PAR-CLIP sequencing reads. This algorithm, contrary to existing leading
implementations, operates on every AGO-enriched cluster, utilizing the previously neglected
non-T-to-C clusters.

Distribution of base model scores on positive and negative instances and their respective
performance, in terms of sensitivity and specificity in an independent test set of
approximately 4,000 instances, are depicted in Figure 24. All the classifiers achieved high
performance in a range of sensitivity 73.4% - 92.7% and specificity 67.6% - 86.8% (range of
AUC: 75.3% - 95.4%). Their aggregated outcome in the meta-learner of microCLIP framework
is provided in a separate curve and exhibits the highest performance in terms of sensitivity
and specificity (sensitivity: 96.0, specificity: 87.4, AUC: 95.5%). The individual performance of
internal classifiers (DL, RF, GBM, GLM) in microCLIP base models adopting a super learner
approach is shown using the same set in Figure 25 and Figure 26.
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Figure 24: Evaluation of the accuracy of the 9 base model classifiers. Five-fold cross-validation has been
implemented on a separate set of approximately 4,000 instances to test the performance of each node. a) ROC
curve of each base model displays the classification of positive/negative miRNA binding sites. b)
Distribution of base model scores estimated on positive/negative instances of the test set (Paraskevopoulou
MD and Karagkouni D et al, 2018)[17].
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Figure 25: Evaluation of constitutive/internal classifiers of 5 microCLIP base models that adopt a super
learning approach. Five-fold cross-validation was applied on a separate set (same as in Figure 23), to test the
performance of the seven individual Random Forest (RF), Generalized Linear Model (GLM), Gradient
Boosting Model (GBM), Deep Learning (DL) classifiers (2 RF, 2 GBM, 2 DL, 1 GLM models) in each base
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node. Different colors are consistently utilized to display ROC curves of each sub-classifier incorporated in
‘Binding Vectors’, ‘Matches per miRNA/MRE domain’, “Duplex Features’, ‘Base pairing’ and “"MRE general’
base nodes respectively. Information concerning sensitivity, specificity and AUC of each model is shown in
the figure legends. The performance of ensemble deep learning models that aggregate the seven independent

sub-classifiers in each base node are additionally shown (Paraskevopoulou MD and Karagkouni D et al,
2018)[17].

Figure 26: Evaluation of the accuracy of sub-classifiers included in ‘Feature Combination Set 1-3" base nodes.
The performance of sub-classifiers (2 RF, 2 GBM, 2 DL, 1 GLM models), along with the performance of the

ensemble deep learning models that aggregate their output are displayed in distinct colors (Paraskevopoulou
MD and Karagkouni D et al, 2018)[17].
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The multi-layer super learner classification scheme of microCLIP benefits from the
incorporation of the complete array of features, maximizing their contribution through their
parallel use in different classification models in every node. The impact of weaker features
and classifiers in optimal super learner design and behavior is shown in Figure 27, where
microCLIP performance was compared to three different classification schemes using an
independent validation set of 1,674 positive miRNA binding sites, corresponding to 1,527
miRNA-gene interactions.

Figure 27: Evaluation of microCLIP performance against 3 alternative classification approaches: a Random
Forest classifier comprising all the features; a Random Forest classifier including the top 27 discriminative
features (AUC 2 65%); microCLIP super learner classification scheme including top performing features per
base node (70 descriptors in total, AUC 2 65%). The utilized validation set comprised 1,674 positive miRNA
binding sites, derived from experimentally validated direct miRNA interactions. (a) The number of correctly
predicted miRNA binding sites for each classification approach is plotted versus the total retrieved predicted
sites. (b) A separate comparison captures the models’ efficiency to predict correct miRNA-target interactions
at different levels of total predictions. The validation set is the same as in (a) collapsed into 1,527 miRNA -
gene interactions (Paraskevopoulou MD and Karagkouni D et al, 2018)[17].
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3.2.4 microCLIP detects novel miRNA interactions from AGO-PAR-CLIP clusters

The analysis of 10 public datasets across different experimental conditions (GEO/SRA
accessions GSE28859, GSE59944, GSE41437, SRR1045082, SRR359787) was revisited with
microCLIP, in order to explore the extent of miRNA-target pairs that remain uncovered using
standard AGO-PAR-CLIP computational approaches. Processed CLIP-Seq libraries were
accompanied by RNA-Seq and small RNA-Seq (sRNA-Seq) data to determine the set of
expressed transcripts and miRNAs per cell type. By screening every AGO-enriched region,
microCLIP reveals a significant portion of targeted genes distinguished only from CLIP
clusters presenting no conversion sites. An average 11 + 6.4% increase of detected targets was
observed across the analyzed experiments. Figure 28 summarizes the miRNA-target
interactions per library, supported by T-to-C and/or non-T-to-C peaks, respectively. The
retrieved results suggest that the miRNA targetome is not sufficiently covered by inferring
targets solely in T-to-C enriched cross-linked regions. The impact of the unrecognized
miRNA interactions is also reflected in functional analyses.

Figure 28: Bar plots featuring the average miRNA-target interactions supported by non-T-to-C and/or T-to-C
peaks per examined cell type and experimental condition. Mean and standard errors (error bars) of miRNA
interactions are shown per library. An average increase of 14% (t 8.8%) in the detected interactions was
observed across analyzed PAR-CLIP libraries by the incorporation of non-T-to-C clusters (Paraskevopoulou
MD and Karagkouni D et al, 2018)[17].

To investigate the functional importance of miRNA sites residing on AGO-enriched regions
presenting insufficient T-to-C substitutions, 17 public high-throughput gene expression
profiling datasets following transfection or knockdown of specific miRNAs (GEO accessions
GSE60426, GSE52531, GSE68987, GSE37918, GSE21901, GSE14537, GSE35621, GSE46039,
GSE21577, microarrays from the study of Selbach et al.[46]) were utilized. These experiments
were complemented with AGO-PAR-CLIP datasets conducted in relevant cell types.
microCLIP was applied to detect miRNA-gene interactions on HEK293, MCF7 and TZMBL
PAR-CLIP libraries (Kishore et al.[34], Farazi et al.[54], Whisnant et al.[120]). Response of
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targeted mRNAs to miRNA deregulation was evaluated independently per tested cell type.
In the conducted comparisons, target fold changes in 3 distinct groups were measured: (i)
mRNAs presenting at least one predicted MRE on T-to-C clusters, (ii)) mRNAs participating in
interactions resolved only by non-T-to-C clusters, (iii) transcripts lacking sites for the
examined miRNAs. In all miRNA perturbation experiments, detected targets overlapping
(non-)T-to-C clusters were significantly downregulated or upregulated upon transfection or
knockdown of different miRNAs compared to transcripts having no miRNA binding site
(Figure 29, range of P values r.to-c: 5.1x10-138 - 11x10-3, P values non-1-to-c: 8.5x10-% - 37x10-3, two-
tailed Wilcoxon rank-sum test, 51 < nr.to-c < 1,569, 11 < Nnon-T-to-c < 344, 2,677 < Nnosite <
12,330). Regardless of the perturbation type, T-to-C clusters were observed to relate to more
responsive targets at equal numbers of predicted sites (Figure 29, range of P values -
2.7x1011-3.9x102, two-tailed Wilcoxon rank-sum test, 11 < Nr-to-c/non-T-to-c < 344).

The definition of T-to-C locations varies in relevant publications and describes T-to-C loci as
those that are covered with reads having at least 5-25% T-to-C substitutions[11, 121-124]. For
the analyses presented in the aforementioned figures, a minimum 20% T-to-C incorporation
ratio defines T-to-C clusters. The selected T-to-C percentage threshold is considered of
medium stringency to confidently identify clusters following the experiment’s specifications.
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Figure 29: Functional efficacy of microCLIP-detected MREs residing on T-to-C and non-T-to-C AGO-bound
enriched regions. miRNA binding sites were obtained from the analysis of PAR-CLIP libraries in 3 different
cell types. The functional efficiency of predicted targets was examined in 17 public gene expression profiling
datasets following miRNA transfection or knockdown. Response of targeted mRNAs to miRNA perturbation
experiments was evaluated independently per tested cell type, experimental technique and conditions (a-g).
Cumulative distributions of mRNA fold changes for targets comprising at least one predicted MRE on T-to-C
clusters or supported only by non-T-to-C peaks were compared to those that lack any site of the considered
miRNAs. The number of transcripts included in each category is presented in parentheses. Identified targets
supported by T-to-C and non-T-to-C clusters exert a significant difference in expression changes compared to
transcripts lacking any predicted binding site (two-tailed Wilcoxon rank-sum test). At same numbers of T-to-
C and non-T-to-C sites, the former group relates to more responsive targets at miRNA perturbation
experiments in (b-f) (Paraskevopoulou MD and Karagkouni D et al, 2018)[17].

3.2.5 Functional enrichment shows importance of non-T-to-C targets

To demonstrate the ability of detected non-T-to-C interactions to statistically empower
downstream analyses, a functional enrichment investigation on KEGG pathways was
conducted in highly scored miRNA-target pairs from an independent AGO-PAR-CLIP
dataset in MCF7 cells (Farazi et al.[54]). The dataset was analyzed with microCLIP, while the
100 most highly expressed miRNAs and their targets in 3" UTR regions were retained.

8,921 and 846 unique interactions retrieved from T-to-C and non-T-to-C peaks, respectively,
were utilized to form two gene sets: one containing unique T-to-C targets (n = 396), and one
combining T-to-C and non-T-to-C targets (n = 491). 391 genes were common between the two.
Pathway analysis of T-to-C targets resulted in 63 significantly enriched terms (P < 0.01, one-
sided Fisher’s exact test, Benjamini-Hochberg adjustment, 6 < nr.ioc < 51), while the
combined set yielded 67 enriched terms (P < 0.01, one-sided Fisher’s exact test, Benjamini-
Hochberg adjustment, 6 < nmon)T-to-c < 58). An average of 2.4 more targets per pathway was
observed when non-T-to-C interactions were included.

In both analyses, top-ranking terms were pathways modulating endocrine resistance, growth
factor receptor signaling and typical tumor-related processes, like cell growth, migration and
apoptosis. Numerous cancer pathways occupied top positions based on P value scores
(Figure 30). This elementary analysis indicated that non-T-to-C peaks assisted in discovering
more targeted pathway members.
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Figure 30: Functional significance of (non-)T-to-C sites in MCF7 AGO-PAR-CLIP dataset. Top 30 KEGG
pathways enriched by T-to-C or (non-)T-to-C (combined T-to-C and non-T-to-C) peak containing genes. X-
axis depicts number of genes enriching each term. Pathways are ranked according to the enrichment P value
shown at the end of each bar. The T-to-C site enrichment rank is provided after pathway description to
facilitate comparison with gene set of (non-)T-to-C sites (Paraskevopoulou MD and Karagkouni D et al,
2018)[17].

To further validate pathway-related interactions from (non-)T-to-C clusters, we investigated
miRNA-target expression associations in 271 breast cancer patient samples indexed in
TCGA[125]. miRNA and mRNA expression profiles were measured by ductal breast cancer
sRNA-Seq and RNA-Seq samples obtained from Firehose
(http:/ /gdac.broadinstitute.org/runs/stddata__2016_01_28). In downstream analysis 13,346
mRNAs and 322 expressed miRNAs were incorporated. Pearson correlation analysis of

expression across samples was conducted for each miRNA-target pair contained in enriched
KEGG terms. miRNA-gene expression associations, evaluated separately for interactions
resolved by T-to-C and non-T-to-C clusters, are depicted in cumulative distribution plots
(Figure 31). The analysis confirmed a significant shift of pathway-related miRNA-target
interactions towards more negative correlation coefficients, when compared against a
randomly selected subset from all miRNA-gene interacting pairs lacking target sites for the
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highly expressed miRNAs (Pr.toc = 6.7x1022, PronT-toc = 8x10+4, two-tailed Wilcoxon rank-
sum test, NT-to-C = 2,299, Nnon-T-to-C — 494, Nno-site = 4,000).

Figure 31: Correlation analysis of expression of pathway-related miRNA-target interactions across 271 TCGA
ductal breast cancer samples (patients). Cumulative distributions of miRNA -target expression relationships,
evaluated for interactions supported by T-to-C or non-T-to-C AGO-bound regions were compared to a
randomly selected set from all the remaining miRNA-gene interacting pairs lacking any target site of the
highly expressed miRNAs. The number of genes considered in each category is presented in parentheses.
Pathway-related miRNA-target interactions supported by T-to-C and non-T-to-C clusters reveal a significant
shift towards more negative correlation coefficient values compared to the no-site distribution (two tailed
Wilcoxon rank-sum test) (Paraskevopoulou MD and Karagkouni D et al, 2018)[17].

3.2.6 Evaluation of microCLIP against AGO-CLIP-guided models

To assess microCLIP accuracy and to estimate the information gain with the incorporation of
non-T-to-C AGO-enriched regions, we compared the model against MIRZA[55],
microMUMMIE[56] and PARma[58]. In the evaluation process, AGO-CLIP-guided algorithm
performance was also contrasted with Targetscan v7[20] de novo miRNA-target prediction
algorithm. A model adopting the same super learning scheme, including information only
from T-to-C enriched sites, microCLIP T-to-C, was also deployed. Clusters from the training
set incorporating adequate T-to-C transition sites were selected as input to re-train the super
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learning classifier. Additional support for the robustness of CLIP-guided super learner
classification irrespective of non-T-to-C site inclusion is provided through the inclusion of
microCLIP T-to-C algorithm in the evaluation process.

The performance evaluation was initially accomplished against unified sets of 4 microarray
and 2 RNA-Seq public datasets in which miRNAs were individually transfected into HEK293
cells (GEO accessions GSE60426, GSE52531, GSE21901, GSE14537, GSE35621). An extensive
list of interactions for each CLIP-guided program was derived from the analysis of 7 PAR-
CLIP HEK293 libraries (Kishore et al.[34], Memczak et al.[110]). Each miRNA-target pair was
characterized by the highest scored miRNA binding site overlapping coding or 3’'UTR exons,
since utilized algorithms provided MRE-oriented prediction scores. In cases of multiple
transcript-gene associations, the transcript with the longest 3'UTR was selected. The retrieved
MREs were juxtaposed with deregulated targets identified in the gene expression profiling
experiments. To determine the ability of each method to identify the most strongly
downregulated targeted genes, detected interactions were ranked according to their provided
scores. The median fold changes (log?) of the top predicted targets for the different algorithms
were subsequently estimated and accordingly compared by applying stepwise thresholds of
total predictions. The performance of implementations was additionally evaluated against
averaged log fold changes of 1000 randomly selected genes (without replacement). The mean
log> fold change values of the randomly selected genes in different stepwise thresholds were
taken and the median curve derived from these values was calculated. Genes with zero fold-
change indication were filtered out from the random selection process.

In the examined miRNA perturbation experiments, microCLIP-detected targets revealed the
strongest repression, compared to all the assessed approaches (range of P values microarrays : 0 -
8.2x1074, P values rNASeq: 0 - 8.1x10-39, two-tailed Wilcoxon signed-rank test, 535 < Nmicroarrays <
5,529, 174 < nrNA-seq< 3,129; Figure 32) and to randomly selected genes (Pmicroarrays = 3.3x10-165,
PrNA-seq = 3.3x10-165, two-tailed Wilcoxon signed-rank test, Nmicroarrays = 1,000, NrRNA-seq = 1,000;
Figure 32). microCLIP uncovered interactions with stronger functional impact, when
equivalent numbers of top predictions, ordered from highest to lowest scores, were
compared. Importantly, the predictions of the tested algorithms were significantly more
responsive than expected by chance (range of P values microarrays: 3.3x10165 - 2x10-89, P values
RNA-Seq: 3.3x10-165 — 1.8x10-30, two-tailed Wilcoxon signed-rank test, 535 < Nmicroarrays < 1,001, 174
< nrRNA-Seq< 1,001; Figure 32).
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Figure 32: Assessment of microCLIP prediction efficacy against microCLIP T-to-C, MIRZA, microMUMMIE,
PARma and Targetscan v7. miRNA-target pairs for each AGO-CLIP in silico approach were obtained from
the analysis of 7 PAR-CLIP HEK293 libraries and functional investigation was performed by measuring
mRNA responses to miRNA perturbations. Unified sets of (a) 4 microarray and (b) 2 RNA-Seq datasets, in
which miRNAs were individually transfected into HEK293 cells, were included in the evaluation process.
Median fold change-values (log:) of the top predicted targets per tested algorithm were plotted and
accordingly compared by applying stepwise cutoffs on total predictions. Performed comparisons
additionally incorporate a group comprising mean fold changes of 1000 randomly selected genes (without
replacement) by wusing 100 re-samplings. microCLIP significantly outperforms all the juxtaposed
implementations, detecting targets with the strongest median downregulation, from stringent to loose
prediction thresholds. microCLIP T-to-C also exhibits greater efficacy than the rest in silico approaches
(range of P values microarrays: 0 - 2.2x10-7, P values RNA-Seq: 5.5x10-265 - 3.6x10-29, two-tailed Wilcoxon
signed-rank test, 535 < nmicroarrays < 3,223, 174 < nRNA-Seq< 1,613), (Paraskevopoulou MD and
Karagkouni D et al, 2018)[17].

The performance of microCLIP, MIRZA, microMUMMIE, PARma and Targetscan v7 was
also tested using 3 HEK293 and 4 HeLa expression profiling datasets following miRNA
perturbation. Interactions were obtained by analyzing HEK293 and HeLa AGO-PAR-CLIP
libraries (GEO accessions: GSM714644, GSM1462574) reported in studies by Kishore et al.[34]
and Whisnant et al.[120], while each miRNA-target pair was characterized by its associated
miRNA binding site with the highest score. To ascertain an impartial evaluation, cumulative
distributions of fold changes were compared for equivalent sets of top predicted targets, i.e.
genes with one or more predicted MRE, against genes lacking any site(s) for the considered
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miRNAs. microCLIP exerted significant differences in expression changes compared to
transcripts lacking any predicted binding site (range of P values (ag): 3.2x1071 - 1.3x10-, one-
sided Kolmogorov-Smirnov test, 6,764 < nnosite < 13,122). Compared to the other CLIP-guided
implementations, microCLIP displayed the greatest site effectiveness in most cases (range of
P values (a-1): 3.1x10-13 - 0.031, one-sided Kolmogorov-Smirnov test, 70 < n < 321; Figure 33a-f).
In Figure 33g, it performed similarly as PARma and better than the rest implementations
(range of P values g: 0.0005 - 0.1, one-sided Kolmogorov-Smirnov test, n = 192). In this
evaluation, Targetscan achieved similar site efficacy as microCLIP in Figure 33c,d,g.
microCLIP demonstrated overall more robust performance compared to this sequence-based
predictor (range of P values (ag: 0.002 - 0.5, one-sided Kolmogorov-Smirnov test, 70 < n <
321).
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Figure 33: microCLIP performance compared to MIRZA, microMUMMIE, PARma and Targetscan v7 was
examined in 7 public gene expression profiling datasets following miRNA transfection or knockdown in
HEK293 and HeLa cell lines. miRNA-target interactions for AGO-CLIP in silico approaches were obtained
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from the analysis of PAR-CLIP HEK293 and HeLa libraries. Response of targeted mRNAs to miRNA
perturbation experiments was evaluated independently per tested cell type, experimental technique and
condition (a-g). Cumulative distributions of mRNA fold changes for targets comprising at least one predicted
MRE in the CDS or 3’ UTR regions were compared to those that lacked any site of the considered miRNAs
(one-sided Kolmogorov-Smirnov test). Functional efficacy was assessed for equal numbers of top predictions
per implementation. Implementations that did not support targets with a fold-change in the examined
miRNA perturbation experiments were not included in the relevant cumulative plots. (a-f) Identified targets
by microCLIP revealed greater site effectiveness than the rest AGO-CLIP-guided implementations. (g)
microCLIP performed similarly as PARma and better than the rest of implementations. Targetscan v7
identifies responsive targets, operating on par with in silico approaches based on CLIP data such as PARma,
while in (c-d) and (g) it displays analogous efficacy as microCLIP. The number of transcripts included in
each comparison is denoted in the parentheses (Paraskevopoulou MD and Karagkouni D et al, 2018)[17].

A significant aspect of AGO-CLIP-guided implementations, aside from their ability to detect
functionally relevant miRNA interactions, is their efficiency to correctly determine bona fide
miRNA binding sites at a low number of total predictions. Therefore, an extra evaluation was
implemented against a validation set of experimentally verified direct miRNA-target pairs to
investigate the accuracy of microCLIP-detected interactions compared to existing methods.
microCLIP T-to-C model was also tested. The utilized validation set is composed of 1,674
chimeric and reporter assay-verified interactions from 125 miRNAs. The list of predictions for
CLIP-guided implementations was obtained from an AGO-PAR-CLIP dataset in HEK293
cells (GEO accession GSM714644), while Targetscan (all predictions) and Targetscan
conserved predicted sites were utilized. PARma adopts a seed-based approach and identifies
miRNA-families with a perfect k-mer match within the PAR-CLIP regions. Accordingly, its
predictions have been transformed from miRNA-family sites to miRNA-targeted sites, where
every binding region is assigned to each one of the miRNA-family members. The number of
correctly predicted MREs per tested in silico method is plotted against the total predictions for
different score thresholds (Figure 34a). MIRZA algorithm provides the most probable
prediction per cluster. Therefore, an additional evaluation was performed by including only
the top scored miRNA binding site per AGO-peak region, in order to ascertain fairness
against all implementations (Figure 34b). Since PARma cannot provide a single top prediction
at the miRNA level, all miRNAs bound at a specific site with the same score were considered
as top predictions. A separate comparison capturing algorithms’ efficiency to predict correct
miRNA-target interactions at different levels of total predictions was also conducted (Figure
34c). The validation set was the same as in the aforementioned evaluations, collapsed into
1,527 miRNA-gene interactions. Targetscan operated in the absence of AGO-CLIP data, while
predicted interactions of CLIP-guided implementations were defined from PAR-CLIP clusters
overlapping full transcript regions. The results demonstrate that although Targetscan
methods perform well, in silico approaches based on CLIP data, like microCLIP and PARma,
have a significantly better performance. Baseline seed methodologies with and without
conservation only identify a small proportion of the MREs presented in the positive test set
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when they operate on AGO-CLIP enriched regions (Figure 34a,b). microCLIP exhibits a
markedly greater ability to discriminate miRNA interactions at equivalent numbers of total
predictions, providing a significantly higher sensitivity in the algorithm’s complete
predictions set (Figure 34a,c).

Figure 34: Evaluation of microCLIP performance against microCLIP T-to-C, MIRZA, microMUMMIE,
PARma, Targetscan v7 (all predictions) and Targetscan v7 conserved predicted sites. The utilized validation
set comprised 1,674 positive miRNA binding sites of 125 miRNAs, derived from chimeric miRNA-target
fragments and direct miRNA bindings supported by Reporter Gene Assays. The number of correctly
predicted miRNA binding sites for each implementation is plotted versus (a) the total retrieved predictions,
(b) the top scored miRNA binding site per AGO-bound enriched region. In (a) and (b) comparisons, we
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restrict each program’s predictions on PAR-CLIP clusters overlapping the validation test set. A separate
comparison (c) captures algorithms’ efficiency to predict correct miRN A-target interactions at different levels
of total predictions. The validation set is the same as in (a-b) evaluations, collapsed into 1,527 miRNA-gene
interactions. For the latter comparison, seed-baseline methods were operating in the absence of AGO-CLIP
data, while CLIP-guided implementations on PAR-CLIP clusters overlapping full transcript regions
(Paraskevopoulou MD and Karagkouni D et al, 2018)[17].

3.3. microT, a Next Generation de novo miRNA-target prediction algorithm

microT is a Next Generation target prediction algorithm that maintains and upgrades the
pipeline adopted in microCLIP deployment. This section describes the retrieved outcome
from the assessment of descriptors in the pre-processing steps, as well as the performance of
the new model in terms of sensitivity and specificity, evaluated on independent test sets. The
performance of the model is also assessed against Targetscan v7 and microT-CDS, leading in
silico approaches in miRNA-target detection field?223.

3.3.1 Feature selection

In order to demarcate descriptors with high performance, statistic tests and metrics (ROC
curves) were implemented in the enhanced training set. Most of the features incorporated
into microCLIP, such as AU base pairs, matches and mismatches per miRNA-target duplex
domain, binding type, MRE conservation and minimum free energy, presented the same or
even higher predictive accuracy. Accessibility features in miRNA binding and in
upstream/downstream regions presented also high performance. ROC curves and respective
AUC measurements of prominent features, as well as distributions of MRE-related features,
corresponding to positive miRNA-target pairs against the relevant densities of negative
binding sites, are selectively displayed in the following Figures.

Figure 35: ROC curves of sequence accessibility parameters for the classification of positive/negative miRNA
binding sites, i.e. accessibility of the 20nt miRNA binding region and the 30nt region upstream/downstream
of the MRE.
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Figure 36: ROC curves for the classification of positive/negative miRNA binding sites indicating the a)
aggregated MRE seed binding conservation, b) aggregated conservation in the upstream region of the MRE,
¢) minimum duplex structure energy and d) MRE-related thermodynamic properties.
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Figure 37: ROC curves for the classification of positive/negative miRNA binding sites indicating AU base
pairs (MRE, seed), seed matches and mismatches per miRNA-target duplex domain, nucleotide and
dinucleotide MRE content and binding type. The latter feature comprises an extended set of (non-)canonical
miRNA base pairings where smaller values indicate stronger seed matches (9mer to 6mer) and greater values
correspond to non-canonical and 3’ supplementary sites.
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Figure 38: Distributions of MRE-related features corresponding to positive miRNA-target pairs against the
relevant densities of negative binding sites. The descriptors present higher performance in microT-training
set compared to microCLIP-training set. Evaluated descriptors include length of target bulges, start of the
binding in the MRE region relative to miRNA binding anchors upon duplex formation, AU base pairs in 3’
supplementary region, GC base pairs in tail MRE region, total mismatches per miRNA-target duplex and
dinucleotide MRE content. Assessed characteristics of positive miRNA interactions significantly diverge
from respective feature distributions of negative MREs (two-tailed Wilcoxon rank-sum test).
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3.3.2 microT Super Learning framework

microT identifies putative MREs within the 3’ UTR and CDS regions. The model adopts the
microCLIP classification scheme with several updates, by incorporating an enhanced training
set and re-arrangements in features. Evaluation of the accuracy, in terms of sensitivity and
specificity, of the 9 base nodes and the meta-learner has been performed on a separate
independent test set of 6,192 instances. Base nodes seem to achieve a better prediction
accuracy compared to microCLIP (Methods 2.2.3). All the classifiers achieved high
performance in a range of sensitivity 78.6% - 90.9% and specificity 77.4% - 91.9% (range of
AUC: 83.7% - 97.6%). Their aggregated outcome in the meta-learner of microT exhibits the
highest performance in terms of sensitivity and specificity (sensitivity: 95.0, specificity: 93.3,
AUC: 98.7%). Also the relative distributions of base model scores, estimated on
positive/negative instances of the test set, demonstrate greater in-between disrelations
compared to microCLIP relevant evaluation (Figure 39).
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Figure 39: Evaluation of the accuracy of the 9 base model classifiers. Five-fold cross-validation has been
implemented on a separate set of approximately 6,192 instances to test the performance of each node. a) ROC
curve of each base model displays the classification of positive/negative miRNA binding sites. b)
Distribution of base model scores estimated on positive/negative instances of the test set.

To further estimate the predictive accuracy of the multi-layer super learner classification
scheme and to validate the proper partition of the features into the base nodes, 4 different
super learning models have been deployed. The first one (microT SL - 6 base classifiers)

combines the same classifiers with microT but without the three supplementary nodes
(Feature Combination 1, 2, 3). The other three models combine Deep Learning (DL) and/or
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Random Forest (RF) classifiers in the 1t layer, either with the whole set of nodes, or by
eliminating the one with the weakest performance (Base Pairing Classifier, microT SL - 8 Base
Classifiers - DL, RF). The performance of the models was evaluated against an independent
test set of 2,092 positive chimeric and reporter assay-verified miRNA binding events,
corresponding to 2,032 miRNA-gene interactions. The number of correctly predicted miRNA
targets for each classification approach is plotted versus the mean predictions per miRNA. A
separate comparison captures the models” efficiency to predict correct miRNA binding sites
in different levels of total predicted sites. The results indicate that even if all the approaches
have similar efficiency to correctly determine bona fide miRNA binding sites, microT Super
Learning framework demonstrates better sensitivity to correctly predict miRNA-gene
interactions, i.e. lower false positive rate (Figure 40).

Figure 40: Evaluation of microT performance against 4 alternative Super Learning (SL) classification
approaches: a model incorporating the same classifiers with microT and without 3 base nodes; a model
consisting only Deep Learning classifiers (DL) in the 1rst layer; a model combining Deep Learning and
Random Forest (RF) classifiers in the 1rst layer; a model combining Deep Learning and Random Forest
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classifiers in the 1rst layer and without Base Pairing node. The utilized set comprised 2,092 experimentally
validated direct miRNA binding events (1,805 chimeric fragments and 287 reporter-assay verified),
corresponding to 2,032 unique miRNA-gene interactions. (a) The number of correctly predicted miRNA-
target interactions for each classification approach is plotted versus the mean prediction per miRNA. (b) A
separate comparison captures the models’ efficiency to predict correct miRNA binding events at different
levels of total predicted sites.

To display the impact of features and classifiers under an optimal super learner design,
different Deep Learning models incorporating all the features were deployed. Deep learning
models are composed of different number of hidden layers and units, while input dropout of
descriptors (ID) was allowed up to 20% percentage. The training of the models was executed
according to the methodology described in Methods 2.2.3. Models with high predictive
accuracy (AUC >= 0.99, 10-fold cross-validation) were retained. The performance of the
models was evaluated against the independent validation set described in Figure 40. The
results indicate that the super learning classification scheme outperforms all the Deep
Learning models, reinforcing the hypothesis that the contribution of features is maximized
through their parallel use in different classification models and nodes (Figure 41).

Figure 41: Evaluation of microT performance against 7 alternative Deep Learning models. The utilized set
comprised 2,092 experimentally validated direct miRNA binding events (1,805 chimeric fragments and 287
reporter-assay verified), corresponding to 2,032 unique miRNA-gene interactions. (a) The number of
correctly predicted miRNA-target interactions for each classification approach is plotted versus the mean
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prediction per miRNA. (b) A separate comparison captures the models’ efficiency to predict correct miRNA
binding events at different levels of total predicted sites.

3.3.3 Evaluation of microT against other in silico models

To assess the predictive accuracy of microT, we compared the model against leading
implementations in miRNA-target characterization, Targetscan v7 and microT-CDS. We
utilized precompiled data from the microT-CDS site (www.microrna.gr/microT-CDS), while
for Targetscan v7 we incorporated the unified set of predictions, described in section
“Methods 2.2.4”. In cases of multiple transcript-gene associations, the predictions of the
models were filtered to retain interactions for the transcripts with the longest 3'UTR.

The performance of the models was initially tested using 5 profiling datasets following
miRNA perturbation in different cell types. To estimate the generalization ability of microT, 3
of the 5 tested cell types were not included in the training process. We followed the
methodology described in section “Results 3.2.8”, where each miRNA-target pair was
characterized by its associated miRNA binding site with the highest score and equivalent sets
of top predicted targets were integrated to compare cumulative distributions of fold changes.
microT detected targets yielded significant differences in expression changes compared to
transcripts lacking any predicted binding site (Figure 42, range of P values (a-e): 4x10-38 -
4x10-18, one-sided Kolmogorov-Smirnov test, 987 < no-site < 4,254). Compared to the other
two implementations, microT displayed the greatest site effectiveness in most cases (Figure
42, range of P values (a-d): 7.3x1021-0.04, one-sided Kolmogorov-Smirnov test, 171 < n < 889).
In Figure 42e, it performed similarly as microT-CDS and better than Targetscan (range of P
values (e): 0.035 - 0.16, one-sided Kolmogorov-Smirnov test, n = 270).
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Figure 42: microT Super Learning performance compared to microT-CDS and Targetscan v7 was examined in
5 public gene expression profiling datasets following miRNA transfection or knockdown in different cell
types. Cumulative distributions of mRNA fold changes for targets comprising at least one predicted MRE in
the CDS or 3" UTR regions were compared to those that lacked any site of the considered miRNAs (one-sided
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Kolmogorov-Smirnov test). Functional efficacy was assessed for equal numbers of top predictions per
implementation. (a-d) Identified targets by microT revealed greater site effectiveness than the rest de novo
approaches. (e) microT performed similarly as microT-CDS and better than Targetscan v7. The number of
transcripts included in each comparison is denoted in the parentheses.

In silico de novo miRNA target prediction approaches were further evaluated for their
efficiency to correctly determine bona fide miRNA binding sites/target pairs at a low number
of total predictions. The utilized independent validation set was composed of 2,092 positive
chimeric and reporter assay-verified miRNA binding events from 186 miRNAs,
corresponding to 2,032 miRNA-gene interactions. The number of correctly predicted miRNA
targets for each classification approach is plotted versus the mean predictions per miRNA. A
separate comparison captures the models” efficiency to predict correct miRNA binding sites
in different levels of total predicted sites. The results demonstrate that although all the
methods perform well, microT has a significantly better performance (Figure 43). The new
model detects 1.5-fold more experimentally validated miRNA binding events compared to
the other approaches, verifying that the generalization of our AGO-CLIP-guided model to the
whole transcript achieves equivalent high predictive accuracy.

Figure 43: Evaluation of microT Super Learning model performance against microT-CDS and Targetscan v7.
The utilized set comprised 2,092 experimentally validated direct miRNA binding events (1,805 chimeric
fragments and 287 reporter-assay verified), corresponding to 2,032 unique miRNA-gene interactions. (a) The
number of correctly predicted miRNA-target interactions for each classification approach is plotted versus
the mean prediction per miRNA. (b) A separate comparison captures the models” efficiency to predict correct
miRNA binding events at different levels of total predicted sites
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CHAPTER 4

Conclusion

Accurate characterization of miRNA targets is considered fundamental to elucidate their
regulatory roles. The identification of miRNA targets can be realized with either
computational or experimental approaches.

During the last 15 years a multitude of experimental techniques have been emerged. High-
throughput techniques have enabled the identification of novel experimentally-supported
miRNA-gene interactions in a transcriptome-wide scale. However, the information of
validated miRNA targets is dispersed in a great number of publications and raw datasets
from high-throughput experiments.

During the course of this thesis, DIANA-Tarbase v8.0, the first new version since the 10t
anniversary of the database inauguration, was developed. The repository indexes
approximately one million entries, the largest compilation of miRNA-gene interactions
compared to any relevant database. The new re-designed interface facilitates the extraction of
miRNA interactions derived from more than 33 experimental methodologies, applied to ~600
distinct cell types/tissues under ~451 experimental conditions. The direct interconnection
with DIANA-miRPath v3.0, simplifies the investigation of miRNA exerted regulation in
physiological / pathological molecular pathways. DIANA-TarBase v8.0 is an important asset
to the research community, empowering experimental investigations as well as in silico
miRNA-related exploratory studies.

CLIP-Seq methodologies have revolutionized the study of protein-RNA interactions by
enabling the accurate characterization of RBP target sites on a transcriptome-wide scale in
different species under psychological or pathological conditions. PAR-CLIP variant against
AGO proteins is considered among the most powerful high-throughput methods for the
characterization of miRNA targets. During the past few years, computational methods
devoted to AGO-PAR-CLIP data analysis have been elaborated by employing different
mathematical models and feature sets. However, even the leading implementations present
reduced ability to distinguish a large portion of genuine miRNA-targets.

In the current thesis, microCLIP framework was deployed, a cutting-edge algorithm for the
identification of transcriptome-wide functional AGO-occupied clusters and associated
miRNA-target pairs. microCLIP model circumvents pitfalls and limitations of existing
implementations dedicated to PAR-CLIP data analysis, with the ability to be generalized to
other CLIP-Seq variants. It is the first relevant implementation to employ the innovative
super learner ensemble framework and the only available A-to-Z computational approach for
the analysis of AGO-PAR-CLIP data initiating from aligned sequence reads (.sam/.bam files).
Until now, miRNA-gene interactions derived from AGO-bound regions with inadequate T-
to-C substitution rates were excluded from the target identification pipeline. By
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implementing an extensive and thorough investigation, non-T-to-C clusters were shown to
exhibit functional miRNA binding events and strong RNA accessibility.

microCLIP integrates these findings and provides a model that operates on every AGO-
enriched cluster. The model detects interactions with the strongest functional efficacy and
provides 1.6-fold more validated target sites when juxtaposed against leading
implementations.

microCLIP deployment emboldened the development of a next generation de novo miRNA
target prediction algorithm that will provide accurate miRNA targets and will guide miRNA-
related studies with limited time and experimental cost. Currently, a multitude of
computational approaches have been emerged aiming to accurate characterize miRNA
targets. However, even the most sophisticated implementations still achieve a far from perfect
predictive accuracy followed by an increased number of false positive predictions.

During this thesis, a novel miRNA target prediction algorithm is presented that overcomes
limitations of current approaches. microT Super Learning framework maintains and
upgrades the pipeline adopted in microCLIP by enhancing the training with even more high-
throughput experiments under a tissue-specific scheme. The new model characterizes
interactions with stronger functional efficacy and correctly detects 1.5-fold more
experimentally validated target sites when juxtaposed against leading computational
approaches.

The increased accuracy of microCLIP and microT frameworks in the multifaceted problem of
miRNA-target identification can be attributed to the integration of meticulously curated
high/low-throughput experimental datasets in an avant-garde super learner framework. The
comprehensive construction of miRNA interactomes can guide downstream investigations
towards the elucidation of unexplored regulatory mechanisms and key components in
different biological processes.
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CHAPTER 5

Thesis Publications

During this thesis, the candidate participated in 9 scientific studies, involving computational
approaches for determining the activity of the non-coding transcripts and in two of them the
candidate is first author. The candidate’s main research activity and contribution in the
publications incorporates the implementation of algorithms and automated pipelines for the
analysis of Next Generation Sequencing data (small-RNA-Seq, RNA-Seq, CLIP-Seq), data
integration for the elucidation of non-coding RNA function and their involvement in
mechanisms of post-transcriptional gene regulation.

The studies are published in international journals of high impact factor and a total of 942
citations have been received so far, according to Google Scholar. The publications are separated
and presented below according to their related research field.

miRNA target prediction

1. Paraskevopoulou MD* and Karagkouni D*, Vlachos IS, Tastsoglou S, Hatzigeorgiou
AG, microCLIP super learning framework uncovers functional transcriptome-wide
miRNA interactions, Nature Communications, 2018 IF: 12,353 (*joint first authorship)

Databases of experimentally supported microRNA (non-)coding targets

2. Karagkouni D*, Paraskevopoulou MD*, Chatzopoulos S, Vlachos IS, Tastsoglou S,
Kanellos I, Papadimitriou D, Kavakiotis I, Maniou S, Skoufos G, Vergoulis T,
Dalamagas T, Hatzigeorgiou AG, DIANA-TarBase v8: a decade-long collection of
experimentally supported miRNA-gene interactions, Nucleic Acids Res. 2017 IF:
11.561 (*joint first authorship)

3. BA Sweeney, Al Petrov,..., D. Karagkouni, ef al., RNAcentral: a hub of information
for non-coding RNA sequences, Nucleic Acids Res. 2018 IF: 11.561

RNAcentral (https://rnacentral.org/) is a comprehensive database of non-coding
transcripts that incorporates information of all ncRNA types from a broad range of
organisms. RNAcentral Consortium collaborates a group of 44 Expert Database, while
31 of them have been totally imported. DIANA-TarBase v8 and DIANA-LncBase v2
have been included in the latest version of RN Acentral repository, providing miRNA-
mRNA and miRNA-IncRNA interactions on separate intuitive report pages that can be
easily quired by users. The candidate realized this integration by providing the
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databases content in special formats and also paricipated in the design of user
interface.

4. Paraskevopoulou MD, Vlachos IS*, Karagkouni D* Georgakilas G, Kanellos I,
Vergoulis T, Zagganas K, Tsanakas P, Floros E, Dalamagas T, Hatzigeorgiou AG,
DIANA-LncBase v2: Indexing microRNA targets on non-coding transcripts, Nucleic
Acids Res. 2015 IF: 11.561 (*joint second authorship)

DIANA-LncBase (www.microrna.gr/LncBase) is a reference repository, dedicated to
the cataloguing of miRNA targets on long non-coding transcripts. The latest version
incorporates more than 70,000 experimentally supported interactions in human and
mouse species, derived from 13 distinct low/high - throughput techniques,
accompanied with extensive meta-data. miRNA:IncRNA experimentally supported
interactions were extracted from manually curated publications and the analysis of 153
AGO-CLIP-Seq libraries. LncBase v2 also hosts ~1 million of in silico predicted miRNA
targets on IncRNAs. The candidate collected/combined IncRNA transcripts from
different repositories and was entrusted with the annotation of the miRNA binding
events into the reference transcriptome. She also participated in the analysis of the
AGO-CLIP-Seq datasets and in the statistical investigation concerning the evolutionary
conservation of miRNA-IncRNA binding events. The manual curation proccess and the
import of the experimentally supported interactions into the repository were also part
of the candidate’s responsibilities.

5. Vlachos IS, Paraskevopoulou MD, Karagkouni D, Georgakilas G, Vergoulis T,
Kanellos I, Anastasopoulos IL, Maniou S, Karathanou K, Kalfakakou D, Dalamagas T,
Hatzigeorgiou AG, DIANA-TarBase v7.0: Indexing more than half a million
experimentally supported miRNA:mRNA interactions, Nucleic Acids Res. 2015 IF:
11.561

DIANA-TarBase v7.0 (www/microrna.gr/tarbasev?) is the first relevant database with
hundends of thousands of high-quality experimentally supported miRNA-gene
interactions, extracted from the manual curation of hundrends of publications and the
analysis of raw AGO-CLIP-Seq libraries. The interactions are enhanced with detailed
meta-data and tissue/cell type specific information. The candidate was entrusted with
the manual curation of numerous publications, the idetification of expressed miRNAs
in numerous cell types/tissues, as well as the data preparation.
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Elucidating the combinatorial effect of microRNAs on molecular pathways

6. Vlachos IS, Zagganas K, Paraskevopoulou MD, Georgakilas G, Karagkouni D,
Vergoulis T, Dalamagas T, Hatzigeorgiou AG, DIANA-miRPath v3.0: Deciphering
microRNA function with experimental support, Nucleic Acids Res. 2015 IF: 11.561

DIANA-mirPath v3.0 (http://www.microrna.gr/miRPathv3) is an on-line software
suite, dedicated to the assesement of the combinatorial effect of multiple miRNAs on
molecular pathways. The functional annotation of miRNAs is determined by using
hypergeometric and unbiased empirical distributions, accompanied with meta-analysis
statistics. DIANA-mirPath supports KEGG molecular pathway analysis and Gene
Ontology terms in seven species. The suite also incorporates experimentally supproted
and in silico predicted miRNA targets. The candidate participated in the deployment of
a modified version of the unbiased empirical distributions algorithm and the
incorporation of experimenatlly supported miRNA targets into the database.

TF:miRNA:mRNA:TF networks

7. Vlachos IS, Vergoulis T, Paraskevopoulou MD, Lykokanellos F, Georgakilas G,
Georgiou P, Chatzopoulos S, Karagkouni D, Christodoulou F, Dalamagas T,
Hatzigeorgiou AG, DIANA-mirExTra v2.0: Uncovering microRNAs and transcription
factors with crucial roles in NGS expression data. Nucleic Acids Res. 2016 IF: 11.561

DIANA-mirExTra v2.0 (http://www.microrna.gr/mirextrav2) is an online software
suite, dedicated to uncover TF:miRNA:mRNA:TF networks. The suite supports A-to-Z
functional analysis, initiating from NGS expression data to identify important
regulators with crucial roles in the processed libraries. It enables state-of-the-art
investigation of miRNAs controlling mRNAs and TFs controlling (activating,
repressing or regulating) mRNA or miRNA expression. The candidate participated in
(a) the design of user interface, (b) the data preparation and (c) the integration of
experimentally supported miRNA targets into the database.

Annotation of microRNAs

8. Papanicolaou A,..., Karagkouni D, et al, The whole genome sequence of the
Mediterranean fruit fly, Ceratitis capitata (Wiedemann), reveals insights into the
biology and adaptive evolution of a highly invasive pest species, Genome biology,
2016 IF: 13.214
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The candidate participated in the genetic analysis of a major destructive insect pest, the
Mediterranean fruit fly, Ceratitis capitata. She was entrusted with a part of the
annotation of previously uncharacterized miRNAs in this species. The annotation was
based on (a) the analysis of (s)RNA-Seq datasets, (b) the homology of miRNAs in
relative species, (c) the appropriate adjustement of publicly available algorithms for the
characterization of pre-miRNAs and their hairpin structure.

Book Chapters

9. Vlachos IS, Georgakilas G, Tastsoglou S, Paraskevopoulou MD, Karagkouni D,
Hatzigeorgiou AG, Computational challenges and -omics approaches for the

identification of miRNAs and targets Essentials of microRNAs in neurogenesis
Academic Press (Elsevier), 2017
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ABBREVIATIONS - ACRONYMS

3’ UTR
3Life
4SU

5 UTR
6SG
AGO
AGO-IP
AUC

Biotin-Microarrays

Biotin-qPCR
Biotin-Seq
BLAST

C. elegans
CDF

CDS
CLASH
CLEAR-CLIP
CLIP-Seq
DDB]J

dG

dH

DL

DNA

ds

EBV

ELISA

EM
ENCODE
FastQC

3" UnTranslated Region

Luminescent Identification of Functional Elements in 3'UTRs
4-thiouridine

5" UnTranslated Region

6-thioguanosine

Argonaute

AGO Immunoprecipitation

Area Under Curve

Biotin miRNA tagging combined with microarrays
Biotin miRNA tagging combined with qPCR
Biotin miRNA tagging combined with sequencing
Basic Local Alignment Search Tool

Caenorhabditis elegans

Cumulative distribution Function

Coding Sequence

Crosslinking, ligation, and sequencing of hybrids
Covalent ligation of endogenous Argonaute-bound RNAs
Cross-linking immunoprecipitation sequencing
DNA Data Bank of Japan

Free energy

Enthalpy

Deep Learning

Deoxyribonucleic Acid

Entropy

Epstein-Barr virus

Enzyme-linked immunosorbent assay

Expectation Maximization

Encyclopedia of DNA Elements Consortium

Fast Quality Control tool
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FDR
GBMs
GEEs
GEO
GFP
GLMMs
GLMs
HEK?293
HELA
hESC
HITS-CLIP

ICA
iCLIP

ID

ID3

IGV
IMPACT-Seq
KEGG

KSHV
Ks-skew
IncRNAs
MCF7

miRISC
miRNA
miTRAP
MNase
MREs
mRMR
mRNA
ncRNAs

False Discovery Rate

Gradient Boosting Machines
Generalized estimating equations
Gene Expression Omnibus

Green Fluorescent Protein
Generalized linear mixed models
Generalized Linear Models
Human Embryonic Kidney Cells
Human Cervical Cancer Cells

Human Embryonic stem Cells

High-throughput sequencing of RNA isolated by crosslinking

immunoprecipitation
Independent component analysis

Individual-nucleotide resolution uv
immunoprecipitation

Input-dropout

crosslinking

Iterative Dichotomiser 3

Integrative Genomics Viewer

Pull-down sequencing of biotin-tagged miRNAs
Kyoto Encyclopedia of Genes and Genomes
Kaposi's sarcoma-associated herpesvirus

Keto skew

long non-coding RNAs

Human Mammary Gland Cancer Cells / Michigan
Foundation-7
miRNA-induced silencing complex

microRNA

miRNA trapping by RNA in vitro affinity purification
Micrococcal Nuclease

miRNA Recognition Elements
Minimum-redundancy-maximum-relevance
messenger RNA

non-coding RNAs
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Cancer
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NGS

nt

ORF
PAR-CLIP

PARE/

Degradome-Seq

PARS

PCA

PDB

PHP
piRNA

Pol II/111
poly-A
pre-miRNA
pri-miRNA
qPCR

RBPs

RF

RIP-Seq
RISC

RMA

RNA
RNase
RNA-Seq
ROC
RPF-Seq
RPKM
rRNA
SDS-PAGE
SILAC
siRNA

Next Generation Sequencing
nucleotide
Open Reading Frame

Photoactivatable-ribonucleoside-enhanced
immunoprecipitation
Parallel analysis of RNA ends/ Degradome sequencing

crosslinking

Parallel analysis of RNA structure

Principal component analysis

Protein Data Bank

Hypertext Preprocessor

Piwi-interacting RNA

RNA polymerase II/1I1

Polyadenylation

precursor miRNA

primary miRNA

Quantitative real-time polymerase chain reaction
RNA-binding proteins

Random Forest

RNA immunoprecipitation combined with sequencing
RNA-induced silencing complex

Robust Multi-Array Average

Ribonucleic Acid

Ribonuclease

RNA sequencing

Receiver operating characteristic

Ribosome profiling sequencing

Reads Per Kilobase of transcript per Million mapped reads
Ribosomal RNA

Sodium dodecyl sulfate polyacrylamide gel electrophoresis
Stable isotope labeling by amino acids in cell culture

Short interfering RNA
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SL Super Learning

sncRNA Small non-coding RNA
SNR Signal-to-noise ratios

SRA Sequence Read Archive
sRNA Small RNA

sRNA-Seq Small RNA sequencing
SvC Support-vector clustering
SVMs Support Vector Machines
TCGA The Cancer Genome Atlas
TF Transcription Factor

Tm Melting temperature
tRNA Transfer RNA

TZMBL Human Cervical Cancer Cells generated from JC.53 cells
uv Ultraviolet
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