Awwaktopikn Awotpipn
ue titho
“@mvopevo Khipokog o Hu-yaBopd Yikd ko Oempieg
BaOpochootikotnTog pe EQappoyn oto Xxvpooepna”

TOV
Avtaviov Tpravra@ivirov

Tunua HoAtikdv Mryovikdv
[ToAvteyvikn Zyoln, [Tavemiom o Oeocoariog
BoAog

Emprénov: Kabnyntmg @ilMnrog K. Tlepducapng

Entopemc E€etactuc) Emtponny
diMmrog K. Tepdwcdpng, Koabnyntig (emifrérnwv kou uélog 3ueiovg),
Tunpo [HoMtikdv Mnyoavikav, Iav. Oscoaiiog

Avioviog INavvakomovrog, Kabnyntg (cvvemiflénwv kou uélog 3ucloiq),
Tuqpa Holtwev Mnyavikov, Iav. @sccariog

Mapiva Mopétm, Erikovpn Kabnyntpia (uélog 3ueloig),
Tunpa [HoMtikdv Mnyavikav, [av. @scoaiiog

['edpyroc Boywatlng, Kabnynmg
Tuqpo Moty kot [epiforl/yov Mnyavikov, Ioltelokd IMav. Aoviliavog

Xoaparapmog [N'empyrdong, Kadnynmg
Yyoa Epapp. Mabnupatikdv ko ve. Emomuav, EBv. Metoofio [ToAvteyveio

AnpocBévnc TToAvlog, Kabnynmg
Tunpa Mnyovordymv Mnyovikav, Tav. Idtpag

HMovayivtg Todneiag, Avarinpwtg Kabnyntrg
2ol Epapp. MoOnpatikov kot Gve. Emotpav, EBv. Metoopro Ioivteyveio

EMIXEIPHLIAK POTrPAMMA
2 2 EKMAIAEYZH KAI AIA BIOY MABHEH
* * EMLEVOLOY OTHY WolVivig The pVwdne
L H
YNOYPTEIO NAIAEIAL KAl BPHIKEYMATON  EYPONAIKO KOINONIKD TAME
EvpuwnaikiBvwon EI!AIKH YNHPEEIA AIAXEIPIZHE
Evpumdind Konwvmd Tapsio

Me tn) ouyypnuarodérnon g EMabdag kat e Evpwmaikng Evwong

Iavovdprog, 2015

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 05:17:52 EEST - 18.221.57.191



PhD dissertation
on

“Size Effects in Semi-brittle Materials and Gradient Theories with
Application to Concrete”

by
Antonios Triantafyllou
Department of Civil Engineering

School of Engineering, University of Thessaly
Volos, Greece

Advisor: Prof. Philip C. Perdikaris

Submitted for review to the

Examining Committee

Professor Philip C. Perdikari@dvisor, member of advising committee)
Department of Civil Engineering, Univ. of Thessaly, Volos, Greece

Professor Antonios Giannakopoulos (co-advisor, member of advising committee)
Department of Civil Engineering, Univ. of Thessaly, Volos, Greece

Assistant Professor Marina Morefthember of the advising committee)
Department of Civil Engineering, Univ. of Thessaly, Volos, Greece

Professor George Voyiadjis,
Department of Civil & Environ. Engineering, State Univ. of Louisiana, U.S.A.

Professor Charalampos Georgiadis,
School of Applied Mathematical & Phys. Sciences, Nat. Tech. Univ. of Athens, Greece

Professor Dimosthenis Polyzos,
Department of Mechanical Engineering, Univ. of Patras, Greece

Associate Professor Panos Tsopelas,
School of Applied Mathematical & Phys. Sciences, Nat. Tech. Univ. of Athens, Greece

OPERAT L PRO AMMI
EDUCATION AND LIFELONG LEARNING =% NSRF
ey i Rocledee e My UV Al

MINISTRY OF EDUCATION & RELIC IS AFFAI
European Union MANAGING AUTHORITY
Elirepson Saciat Fusd Co-financed by Greece and the European Union

January, 2015

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 05:17:52 EEST - 18.221.57.191



SIZE EFFECT IN SEMI-BRITTLE MATERIALS AND GRADIENT THEORIES WITH APPLICATION TO CONCRETE

PREFACE - ACKNOWLEDGMENTS

Upon agreeing on a research assistantship offer by Prof. Philip Perdikaris in order to study size
effects in cementitious materials, in reality | did not know much of these subjects. Four years have
passed since then and this thesis is the outcome of what | learned from two people: Prof. Philip
Perdikaris and Prof. Antonios Giannakopoulos who supervised my PhD thesis.

For the first two years | worked mainly with Prof. A. Giannakopoulos trying to grasp the
concepts of strain gradient elasticity and damage. During this period most of the theoretical work
was finalized. The following year was devoted to the experimental program. It was during this time
that | worked exclusively with Prof. P. Perdikaris. Within a time period of ten months (January to
November 2013), the experimental setup details were organized and the final setup was constructed,
eight castings of various cementitious materials were performed and a total of one hundred and
ninety (190) beam specimens were tested. Afterwards, every modelling detail had to be scrutinized
in light of the experimental results, many issues had to be resolved and lengthy discussions took
place with both supervisors.

During these four years, | was stationed in the Laboratory of “Reinforced Concrete
Technology and Structures” of the Department of Civil Engineering at the University of Thessaly.
The coexistence with Mr. Theocharis Papatheocharis, a Ph.D. candidate, and the technicians Mr.
Alekos Koutselinis and Mr. Dimitris Karaberopoulos only helped to solve problems | faced and
never created a single one. Their help in the research undertaken was substantial in many ways. |
couldn't have asked for better colleagues. Also, the contribution of Dr. K. Tzaros regarding
programming issues in the thesis is gratefully acknowledged.

The Maranoglou and Panayiotopoulos machine shop was responsible for manufacturing the
experimental setup components and their suggestions helped in improving the design of the setup.
The facilities of the Regional Public Works Laboratory in Volos, Greece, were used for sawing
some of the specimens and the author is grateful to the personnel for their useful advice in handling
the machinery. The author is also thankful to Ms. O. Nikitaki, head of quality control for of Lafarge
Ltd. in northern Greece for her extra effort in meeting our concrete mix specifications and needs.

Finally, this work was made possible by the financial support of “Herakleitos II” research
project of the Greek Ministry of National Education for basic research on “Size Effects Phenomena
of Concrete” and was co-financed by the European Union (European Social Fund) and Greek
National funds through the Operational Program "Education and Lifelong Learning" of the National

Strategic Reference Framework.

Preface - Acknowledgements iii

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 05:17:52 EEST - 18.221.57.191



SIZE EFFECT IN SEMI-BRITTLE MATERIALS AND GRADIENT THEORIES WITH APPLICATION TO CONCRETE

CONTENTS
' PAGE
INTRODUCTION 1
1. Scope 1
2. Microstructure and dipolar elasticity 1
3. Microcracking and damage 4
4.  Experimental program 6
5.  Numerical predictions 8
6. Size effects 10
Il. GRADIENT LENGTH VIA HOMOGENIZATION OF HETEROGENEOUS
MATERIALS 11
1. Introduction 11
2.  Effective Material Properties of Transversely Isotropic Materials 12
3. Classical Elasticity Solutions 16
4.  Gradient Elasticity Solutions for the Annulus Problem 20
5.  Estimation of Internal Length 27
6. Remote Uniaxial Tension 32
7.  Application to Fiber-Reinforced Concrete 35
8. Conclusions 36
.  STRUCTURAL ANALYSIS USING A DIPOLAR ELASTIC TIMOSHENKO
BEAM — APPLICATION TO MICROCANTILEVERS 37
1. Introduction 37
2.  Governing Equations and Boundary Conditions 40
3. Examples 47
4.  Non-Local Timoshenko Beam Models 55
5. Experimental Evidence on Microcantilevers 57
6. Conclusions 61
IV. A GRADIENT ELASTO-DAMAGE MODEL FOR SEMI-BRITTLE
MATERIALS WITH EVOLVING INTERNAL LENGTH — CONCRETE
BEAMS UNDER 4 POINT BENDING 62
1. Introduction 62
2.  Thermodynamic Formulation 63
3.  Energy Dissipated for Microcrack Extension 71
4.  Proposed Model for Concrete Beams under 4-Point Bending 73
5. Objectivity of the Proposed Model 76
6. Midspan Deflection for 4-Point Bending Based on Gradient Elasticity 78
7. Conclusions 80
Contents iV

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 05:17:52 EEST - 18.221.57.191



SIZE EFFECT IN SEMI-BRITTLE MATERIALS AND GRADIENT THEORIES WITH APPLICATION TO CONCRETE

PAGE
V. EXPERIMENTAL PROGRAM 81
1 Materials 81
2. Classical Mechanical Properties 82
3.  Split Cylinder Tests 86
4. 4-Point Bending Tests 90
VI. SIZE EFFECT OF CEMENTITIOUS MATERIALS IN ELASTICITY 93
1. Introduction 93
2 Elastic Stiffness and Curvature 93
3. Discussion of the Results 100
4. Conclusions 105
VII. SIZE EFFECT OF CEMENTITIOUS MATERIALS IN INELASTICITY 106
1. Introduction 106
2. Comparison with the Present Experimental Results 106
3. Discussion of the Results 117
4. Highly Brittle Materials 119
5. Flexural Strain Measurements 120
6. Conclusions 124
VIll. SIZE EFFECT ON STRENGTH FOR CEMENTITIOUS MATERIALS 125
1. Introduction 125
2. Size Effect on Strength 125
3. Discussion 132
MAIN CONCLUSIONS 134
REFERENCES 137
Contents \Y

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 05:17:52 EEST - 18.221.57.191



SIZE EFFECT IN SEMI-BRITTLE MATERIALS AND GRADIENT THEORIES WITH APPLICATION TO CONCRETE

CHAPTER |
INTRODUCTION

1. SCOPE
Throughout this work a simplified gradient model with one length parameter, which is the simplest
case of Mindlin’'s Form Il strain gradient elasticity theory, is employed. This automatically limits
the range of considered materials to initially isotropic. The aim of the present thesis is to verify
experimentally the theoretical findings for a series of problems associated with this gradient model
and its application to the specific case of semi-brittle materials such as concrete.

2. MICROSTRUCTURE AND DIPOLAR ELASTICITY
All materials have a microstructure which is visible under specific magnification. The influence of
microstructure on the macrostructural response is typically neglected under the assumption that the
material is homogenous. Isotropic homogeneous materials are defined by two material constants,
the Young’s modulus and Poisson’s ratio and these constants are determined experimentally from
uniaxial tests. However, in many cases when classical elasticity predictions are applied to structural
problems, a stiffer response than the one predicted by classical elasticity depending on the member
size, is measured. A possible physically justifiable explanation for the source of this size effect is
the existence of a microstructure which has not been accounted in the analysis. Gradient theories
attempt to account for the presence of a microstructure by assuming that there is an additional
material constant with dimensions of length.

The simplest definition of a composite material is that of inclusions embedded inside a
matrix material. Knowledge of the properties of the different phases and of the inclusion volume
fraction is the minimum input information required to model the composite microstructure.
Therefore the first issue to be addresses is how changes in the microstructure of a composite affect
the internal length assumed by gradient theories. This is explored in Chapter Il. It is apparent from
these theoretical results that the internal length is best viewed as a measure of the heterogeneity of
the composite and that heterogeneity can not be simply defined by the size of inclusions. It is the
inclusions size and elastic mismatch combined that determine the magnitude of heterogeneity of a
composite.

Concrete is a multi-scale material. At the micrometer scalé (P cement grains are

distinguished and in its hardened state cement calcium and silicate hydrates as well as pores are
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formed. At the meso-scale (3@n), sand and aggregate particles can be distinguished and concrete
can be viewed as a composite consisting of a matrix material and inclusions. The laboratory scale
(10'° m) is the beginning of the macro-scale concerning structural use of concrete. At the meso-
scale, concrete is a 3-phase material consisting of the hardened cement paste (hcp), the aggregate
and the interfacial transition zone (ITZ) between the hcp and the aggregates. The thickness of ITZ is
typically 50um but despite its small dimensions, it greatly afemicro-stress concentration
because it is the weakest link of the bond between the matrix material and the aggregates. However,
the particle structure is the most important at the meso-scale. At the macro-scale of any structural
member, at which material constants are assumed in order to model its structural response, the
material is by definition assumed to be a continuum. Gradient theories do not depart from this
assumption, since stresses and strains continue to be specified at every material point. Gradient
theories are continuum theories which introduce an additional constant associated with presence of
heterogeneity in what otherwise is assumed to be a homogeneous material. The fact that the matrix
material and the inclusions have different properties is the source of heterogeneity. On that respect
concrete can be viewed as a model material in order to study size effect in elasticity.

Concrete’s heterogeneity is three dimensional and contains various size aggregates of
irregular shapes in different volume fractions. Hence, its composite nature deviates significantly
from the idealized case of either circular or spherical inclusions. However, two aspects of its mix
proportions are of particular interest. One is the maximum aggregate size and the other the strength
of the matrix material which can be increased by reducing the water-to-cement ratio. In the
experimental program undertaken, the concrete mixes used had the same maximum aggregate anc
approximately the same volume fraction of aggregates but the relative stiffness of matrix and
inclusions varied. As a result, in some mixes crack propagated bypassing the aggregates and in
others aggregate fracture occurred along the crack path. Cement mortar was also employed mainly

for comparison purposes since this material can be viewed as completely homogeneous.
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Cementitious composites:

(a) Concrete (heterogeneous) with
max. aggregate sizengd=32 mm.

(b) Cement mortar (homogeneous
with max. aggregate size.g=1 mm

Microstructure details:

(c) Concrete: presence of ITZ at the
interface of hydrated cement paste
and aggregate

(d) Cement mortar: composite
nature becomes visible at higher
magnification

The internal length is a function of the microstructure but the microstructure’s influence is
manifested if triggered by the applied stress. This is due to the fact that the internal length, g, is
introduced in association with the gradient of the strain:

£=¢-0V’%
Therefore, in the absence of gradient as for example in the case of uniaxial stresses, even a
heterogeneous material is predicted to behave as a homogeneous one. This allows extracting the
two classical material constants from a uniaxial test and use flexure tests, where the gradient is
significant, to quantify the internal length.

In order to estimate the internal length from flexure experiments, the associated structural
problem must be solved using gradient elasticity. This is done in Chapter Ill. Naturally, any solution
to a boundary value problem relies on the correct choice of boundary conditions. Gradient theories
are essentially higher-order theories in the sense that they extend the continuity assumed to the
second spatial derivative of the strain. This extension of continuity introduced through the
constitutive equation results in additional boundary conditions whose physical interpretation is less

straightforward. However, there is way to bypass the ambiguity of the non-local boundary
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conditions since in all cases for a zero value of the internal length the classical result should be
recovered. This must be true for all the classical kinematic variables and not just the deflections
since a certain set of non-local boundary conditions can yield the correct asymptotic behavior for
deflections but not for the slope or curvature. A unique set of boundary conditions exist which has
the correct asymptotic behavior for all classical kinematic variables.

The above discussion is the basis for the study of size effects in elasticity for the concrete

mixes considered, which is described in Chapter VI.

3. MICROCRACKING AND DAMAGE
Material’'s response can be described as the initial one where once the excitation is removed the
deformation disappears (elasticity) and another one where upon removal of the cause, the material
does not return to its original state (inelasticity). Semi-brittle materials exhibit microcracking once
their elastic limit is exceeded. A macrocrack is formed after microcracking has been localized but
microcracking will continue to occur while the macrocrack propagates. Microcracking and
macrocracks should not be confused. Microcracking is characterized by randomness which by
definition is not the case for a macrocrack. Microcracking is the source of softening whereas a
macrocrack represents points with zero-transfer capability. Essentially, a macrocrack refers to
complete damage at a material point whereas microcracking refers to softening experienced at this
point. During softening, stresses and strains continue to be specified at each material point and this
is done by assuming a stress-strain law for the material. However, damage also implies that the
initial stiffness is reduced. This is revealed upon unloading once the elastic limit has been exceeded.
The initial stiffness of an uncracked material is always greater than that of unloading-reloading.
Therefore, since damage can be viewed as a process which reduces the initial stiffness it is linked
with elasticity by definition.

The tensile strength of concrete is far less than its compressive strength, hence failure
initiates from tensile stresses when plain concrete is tested under flexure. Of course, it is a known
fact that failure also occurs under a compressive stress which is in apparent contradiction to the
second law of thermodynamics that requires that cracks open only under tension. However, this can
be explained if the composite nature of concrete is considered since even under compressive
stresses, a composite with inclusions may develop tensile stresses around these inclusions. The
composite nature of concrete also affects macrocrack propagation. If the inclusions’ response is
stiffer than that of the matrix material failure will occur there, hence the crack path becomes more
tortuous. The more brittle the composite, the less tortuous the crack path would be. On the other
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hand, the term semi-brittle refers to the fact that concrete is not perfectly brittle, that is, it maintains
its stress bearing capacity to some extend after the peak stress is reached. This softening behavior
(microcracking) is also affected by the degree of heterogeneity of the material. The so-called
fracture process zone (FPZ) which refers to the degree of localization of microcracking increases as
inclusion dimensions increase. If inclusions are negligibly small as for example for cement mortar,

the size of FPZ should be much smaller than the one measured in concrete.

Microcracking :

Crack patterns from
fluorescent epoxy
impregnation tests on cube
specimens under uniaxial
compression. Cut shown is:

(a) parallel and
(b) perpendicular to the
direction of loading.

(Photography RA Vonk. Reprinted from
the book “Fracture Processes of
Concrete™

The irreversible character of damage implies that the initial heterogeneity of a composite is altered.
Homogenization procedures have been applied to microcracked continuums and it has been found
that the stiffness associated with the Cauchy strains (local stiffness) reduces but the stiffness
associated with the gradient of the strains (non-local stiffness) increases with increasing degree of
microcracking. In the context of gradient theories, this implies that the initial value of an internal
length based on the elastic response of the material should increase with increasing damage. A
thermodynamic proof for this is included in Chapter IV. This also implies that damage
characterization should be local, that is a local parameter should be used to determine the level of
damage. The alternative choice of using a non-local parameter such as the total strain or the total
stress within the context of gradient theories has been shown to lead to incorrect damage
characterization.

The experimental program undertaken in this work also aims to address the issue of how the
internal length increases with damage or in other words which is the particular form of the
relationship between damage and the internal length. An exponential evolution law is proposed of

the form:
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9= ge™

where g, = initial value of the internal length (elasticityip,= damage parameteo €D <1) and
n = positive constant.

The choice for this particular expression for the evolution law of the gradient internal length
is rooted in the correlation between damage and deflection. The inclusion of an internal length in
the formulation affects the predicted deflection at a given load level. The relation of damage and
deflection increase resembles that of an exponential law whereas the relation between damage and
load decrease is approximately linear. Furthermore, since the initial value of the internal length is
determined from the elastic response of the material, there is only one parameter to be calibrated
based on the experimental results in the inelastic region. This evolution law is applied in order to
study size effects in the inelastic range of the concrete mixes considered in Chapter VII. It is shown
that with increasing brittleness of the composite, n increases. Note that the opposite is true for the
initial value of the internal length, since as the material becomes more homogeneous the size effect
in elasticity would be negligibly small. Correlation between the brittleness of the concrete mixes

and evolution law parameter n is also discussed in Chapter VII.

4. EXPERIMENTAL PROGRAM
All experiments were carried out in the Laboratory of “Reinforced Concrete Technology and
Structures” of the Civil Engineering Department at the University of Thessaly. However, not all
experiments are reported in the present thesis. Experimental results on un-notched fiber-reinforced
concrete and notched medium-strength concrete beam specimens are not within the scope of this
work.

Experimental results on un-notched low-, normal- and medium-strength plain concrete and
cement mortar beam specimens are presented. Three types of tests were carried out for each mix:
uniaxial compression on cylinder and cube specimens, splitting on cylinder specimens and 4-point
bending on un-notched plain concrete beam specimens of 3 different sizes with complete geometric
similarity. The classical material properties of Young’s modulus and Poisson’s ratio were measured
in both the uniaxial and split cylinder tests based on strain gage (SG) measurements. Typically,
concrete is assumed to be initially isotropic and this hypothesis was verified by comparing the
Young’'s modulus estimates based on the uniaxial compression tests with the Young's modulus
estimated values in the split cylinder tests. Similar values where obtained for each cementicious mix
(see Chapter V).

Introduction 6
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The geometrically similar un-notched beam specimens with sizes of 100x100x300 (width x
height x span) mm, 150x150x450 mm and 200x200x600 mm were tested under midspan deflection
control. SG’s were used extensively also in the flexural tests. The aim was to determine the midspan
curvature and deflection through strain measurements and, independently verify any size effect in
elasticity. Strain gradient theories are able to predict a size effect in the stiffness because essentially
they assume that for a given level of stress the corresponding strain is less than that predicted by
classical elasticity. Based on the measured stiffer response compared to the classical elasticity
predictions (in terms of both stiffness and curvature), an internal length estimate for each mix was
determined. It is also shown that the use of SG’s can yield meaningful measurements for the
inelastic response, as well. SG measurements for the neutral axis location at high damage levels and
plastic strains measured upon unloading were compared with the proposed model predictions and
good agreement was found. This discussion is presented in Chapters VI and VII.

In order to establish the relationship between the internal length predictions based on the
flexural test results and the microstructural details of the concrete mix, selected beam specimens
were sawed and their microstructure was mapped. The aim was to estimate the average inclusion
size of the given concrete mix. Gradient theories attempt to account for the presence of
microstructure in an average sense since they model the detail of the microstructure through a single
length scale parameter. The internal length value for each cementitious mix was compared with the

average inclusion size estimate in Chapter VI.
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Experimental program

(a) 4-point bending specimen and testing setup
(b) specimen casting

(¢) uniaxial cube compression test

(d) uniaxial cylinder compression test

(e) split cylinder test

SRR,
oo
it

v

5. NUMERICAL PREDICTIONS
Experimental results are compared with numerical predictions in Chapter VII. Under 4-point
bending, the middle part of the beam experiences pure bending and, therefore, an assumed stress:
strain law in tension and compression is sufficient for damage characterization in this region. Since

the tensile strength of concrete is far less than its compressive strength, the compressive zone of the
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cross-section under pure bending remains elastic. The stress-strain law chosen, besides the value for
the Young's modulus which is measured experimentally, requires an assumed uniaxial tensile
strength and a positive non-dimensional parameter defining the degree of softening. The flexural
strength predictions under 4-point bending and the corresponding deflections are influenced by
these two parameters. The split cylinder tests can provide indicative values of the direct tensile
strength. Thus, the uniaxial stress-strain law used was calibrated based on the experimental data of
the 4-point bending tests performed in this study.

Materials exhibiting softening:
1t--- - ; Concrete Assumed stress-strain law in tension
! for the concrete and cement mortar
\ Cement mortar . .
- | mixes (Popovics, 1973):
B 081 !
|
(f; |
@ | Low-strength /
et | ! (e) ele
7 06 } Normal-strength o__ Bele) ;
o \ f, B,—1+(ele)™
(O] | H
N | Medium-strength
= 0.4 1 |
£ |
o |
|
< 021 |
|
1
0 ‘ : ‘ ‘ ‘
0.0 0.5 1.0 1.5 2.0 25 3.0

Normalized strain €/«

The constitutive law in the form of the expressigr = (B (¢/,))/(B, —1+(c/2)" ),

proposed by Popovics (1973) for numerical modeling of the uniaxial stress-strain response in
tension or compression of cementitious materials, is very versatile since by altering a single
parameter one can model a response from perfectly brittle to perfectly plastic. In other words, it can
model cement mortar, concrete and fiber-reinforced concrete, thus, covering the entire range from
very brittle to very ductile softening materials. In examining inelasticity of cementitious materials
this allows for a unified treatment of the problem.

Once a stress-strain law is assigned, through a simple iteration procedure the moment vs.
curvature prediction for a cross-section can be determined. Applied bending moment is translated
into applied force through equilibrium and curvature is translated into deflection by using a
kinematic relation. The kinematic relation can be obtained in closed-form from the solution of the
boundary value problem in elasticity. The influence of the internal length on the classical

predictions is then considered by scaling the curvature and by using the kinematic relation furnished
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by the gradient solution to the same boundary value problem. The numerical predictions essentially
rely on the assumed stress-strain law and on the gradient solution of the structural problem of 4-
point bending. The predictions of the local and non-local model are numerical in nature but closed-

form solutions are used and their objectivity is demonstrated in Chapter IV.

6. SIZE EFFECTS
Size effect in cementitious materials does not manifest itself only in deformation-related issues such
as stiffness but also in strength-related such as flexural strength. The adopted strain gradient theory
with a minus sign in the strain gradient cannot predict size effect in strength. Gradient theories with
a plus sign in the gradient have been shown to predict size effect in strength but there is very little
physical justification for these models and furthermore when applied to elasticity, they predict the
opposite of what is observed experimentally in composites with inclusions stiffer than the matrix
material. The issue of how the present strain gradient model can be improved with the inclusion of
an additional constitutive parameter in order to be able to predict size effect in the flexural strength
as well is beyond the scope of this thesis. If the principle of superposition is applicable in this case,
it can be said that the present findings concerning the internal length, g, should still hold true. The
problem would then simplify to the experimental calibration of tHigdnstitutive parameter. This
4™ constant could be physically associated with microstress concentration due to the composite
nature of the material since as the scale decreases the redistribution of microstresses in the
composite becomes more limited.

The experimental program undertaken in this work included specimen sizes of a rather
limited scale range (1:1.5:2) concerning the study of size effects in the flexural strength.
Nevertheless, the present experimental results on flexural strength are discussed in detail in Chapter
VIII. Fracture mechanics and statistical size effects are the two main sources of size effect in
strength which has been shown experimentally to occur. However, their predictions do not offer a
satisfactory explanation of the observed behavior when the present experimental results are
reviewed. Size effect in strength is closely related with the fact that a tensile strength is assigned to
the material. When un-notched specimens are tested failure initiates at a location which is known to
differ from the bulk material. The so-called wall effect is unavoidable since concrete is cast in
plywood molds and the material in close proximity to the molds is altered to some effect. This is not
accounted in the present study since a single stress-strain law is assumed for each mix but its

presence may explain some of the experimental findings.
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CHAPTER Il
STRAIN GRADIENT LENGTH VIA HOMOGENIZATION OF
HETEROGENEOUS ELASTIC MATERIALS

1. INTRODUCTION
The novelty of gradient elasticity theories is the inclusion of an intrinsic length parameter or internal
length in the constitutive equations that describe the mechanical behavior of the material. The
inclusion of this parameter allows these theories to explain the size effect that has been shown
experimentally to exist in heterogeneous materials. The two simplest and well studied gradient
elasticity theories are the couple stress elasticity (or Cosserat fifeang) the dipolar elasticity
theory (or grade-two theord/J The main difference between these two theories is that in the
assumed strain-energy density function the first associates the internal length with the gradient of the
rotations, whereas the second with the gradient of the strains. However, in both theories the internal
length is associated with the microstresses that are developed due to the microstructure of the
material. In the present work, the simplest possible dipolar model of just one additional length
parameter is employed. This model based on a one length parameter appears to be adequate f
predicting size effects in elasticity while it is difficult to verify experimentally models incorporating
more than one internal length parameters.

A typical composite material consists of a matrix and inclusions. The macroscopic material
properties of the composite depend on the individual properties of these two phases. The aim of
homogenization is to replace the composite material with an equivalent material of uniform
macroscopic properties. Micro-mechanical models have been developed for both cases of particulate
and fiber-reinforcement. Among the many homogenization methods that have been proposed are the
Mori-Tanaka methotl the Self Consistent methot the Generalized Self Consistent methadd
the Differential methot!®. All these methods aim at deriving the material properties of elasticity
which in the case of isotropy are the modulus of elasticity and the Poisson’s ratio. However, when
gradient theories are considered, an additional material parameter, the internal length, must be addec
Nevertheless, the same strategy of homogenization can be used to yield an estimate for this new
parameter.

In the present work, the elastic energy of the heterogeneous Cauchy-elastic material will be

compared with that of the homogeneous strain gradient elastic material and the characteristic length
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will be estimated as function of the inclusion radius, volume fraction and elastic constants. The

analysis will be limited to the two-dimensional (2D) case of circular inclusions.

2. EFFECTIVE MATERIAL PROPERTIES OF TRANSVERSELY ISOTROPIC
MATERIALS

The following relationships for the effective material properties are derived with the Generalized Self
Consistent method for the specific case of cylindrical inclusions, as predicted in [11]. It is noted that
subscript m stands for the heterogeneous matrix material and subscript i stands for the inclusion. The
symbols without subscript are the effective material properties of the homogeneous material. The
overall elastic behavior is that of a transversely isotropic homogeneous material, requiring five
material constants with two of them, (v) describing the isotropy of the plane,(x3) which is of
interest in this thesis work.

The in-plane shear modulus,ig given by:

A(Lj + 2E{Lj +C=0 (1)
T, .

with
A= (- c)z(i— 1j(i+ nij
Hm Hm
J{ﬂ n+ n m—(ﬁ n, — rilj é}{cq{ﬁ—lj—( i +1ﬂ
Hm M Hm M
B= — (1~ C)2 (L — ]_j(i + n.j (2)
Hm
+1[nmi %{(r;n 1£—+ r]j 2(“‘ nm—nijcs}
2] " Hn o
i< (n + J{i— ]J{LJF n +(£ Ny = nijcs}
2 Hm Hm Hm
C= (- c)z(i— 1j(i+ nij
Hm Hm
+[nmi+(i— ﬂc+ 1}[&+ n +(i n, — nijcﬁ
Hm M Hm Hm
=4-3v,,
3
= 4-3v, ®)
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where c is the volume fraction of the inclusions amlgmotes the Poisson’s ratio.
The in-plane bulk modulus K is:

Hm C
K=K, +—/—+ , 4

+
Ki - Km + (1/3)(M| _Mm) Km + (4/3)um

the axial modulus £(in the x direction, normal to the ¢xxs) plane) is:

46— O)(v, ~ V) by

E=cE+(@-0E,+ : (5)
Hm
1-¢ —Em 1
i e (e
the axial Poisson’s ratig is:
u u
cl-o)(v,—-v m — m
( )( I m)|:Km+um/3 Ki+ui/3j|
v, =0, + l-C)v,, + (6)
Hm
1-c +1
i LT ()
and the in-plane Poisson’s ratig,is given by
K —
= L (7)
+yp
where
2
v _ 14 K (8)
El

The above solution can be simplified for the two extreme cases of rigid inclusions and porous
materials. The limiting case of a porous material can be derived directly from the general case
represented by Egs. (1) to (8), if weset v, =0.

For the case of fibers much stiffer than the matrix, only the coefficients ¢f, tterms in A,

B, C of Eq. (2) need be retained with the other being vanishing small. Hence, the A, B, C
coefficients, when inclusions are much stiffer than the matrix, take the form:

A= @ cf + n° (- c)c-1)

B- kM e ( 120+ - + 2n &k (c/2(n, + H@A+n,c®) (9)

G X cf + (n, + )@+ n,c®)
If u, > o is assumed, the rest of the solution for the case of rigid inclusions is found and Egs. (4) to

(8) are modified, accordingly.
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These results have been shown to give good estimates not only for the case of dilute
composition but also for the limiting case of full packing of the inclusion phasgl). In addition
to the physical consistency of the results, it should be noted that the Generalized Self Consistent
method is the only complete, exact, closed-form solution for the 2D case of cylindrical inclusions.

The normalized composite shear modulus ratigy,,, for elastic cylindrical inclusions for
inclusion to matrix shear modulus ratio values ranging from 1.5 to 15 is shown in Fig. 1. The
assumed matrix and inclusion Poisson’s ratio for all cases considered are 0.2 and 0.25, respectively.

The limiting cases of rigid fibers and porous materials are shown in a semi-logarithmic plot in
Fig. 2 and Fig. 3, respectively. Both results depend (weakly) only on the Poisson’s ratio of the matrix
and four cases are plotted corresponding to matrix Poisson’s ratios of 0.1, 0.15, 0.2 and 0.25. A
comparison between three cases with a matrix Poisson’s ratio of 0.2 is shown in Fig. 4. The shear

modulus ratio for the elastic inclusion casg,isu,, =2. The rigid inclusion and the void solution

are upper and lower bounds foy/p,,, respectively.

5.0

rea] Hlp,=15 £ ;
il =2 !-’J ; 4 _,-"

4.0 U MIK,=25 3

I W by =5 A o
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g o -

E 25 S o

@ ol G

® e o int®”
1.0
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Fig. 1. Effective shear modulus ratios for the case of elastic cylindrical inclusions for inclusion to
matrix shear modulus ratio valugs,/p = 1.5, 2, 2.5, 5, 10, 15 (Poisson’s ratio for matrixs= ,0.2

and for inclusionsg;, = 02h
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Fig. 2. Effective shear modulus ratio for the case of cylindrical inclusions much stiffer than the

matrix for matrix Poisson’s ratio valuas, = 0.1, 0.15, 0.2, and 0.25.
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Fig. 3. Effective shear modulus ratio for the case of a porous matgrial{, = 0) for matrix

Poisson’s ratio values, = (0.D.15, 0.2, and 0.25.
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Fig. 4. Comparison between the cases of a porous and elastic matrix material with rigid or elastic
inclusions @, /p,, =2) forv,, = 02.

3. CLASSICAL ELASTICITY SOLUTIONS
The solution of a circular ring under plain strain conditions subjected to uniform pressure p applied

at the outer boundary=b and to uniform pressure q applied at the inner boundary is'> 14 (see

Fig. 5):
! =;{b2a2(q—p)1+ * 2 )(qaZ—pr)r}
T, (-8 r " (10)
u, =0
(p- gq)b’a® 1 ga —pb’
P g
(p- gq)b’a® 1 ga’ —pb?
Goo =~ b2 _ a2 I’_2+ b? — a2 (1)
G,=0

where u, is the radial displacements,, the radial stress,,the hoop stress;,y the Poisson’s ratio
and p, the shear modulus of elasticity. Subscripts r &ndenote radial and circumferential

directions of the ring.

The elastic energy is:
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b
Ug = 275].%(5 + G g€ o )I (12)

I'I’gl'l’

The expressions for the strains can be found directly from those of the stresses assuming

plane-strain constitutive equatidfsThe constitutive expressions of the non-zero strains are:

€, = i {(1— V)G” — VG, }
. ; (13)
€go = m {(1_ V)Gee VGO, }
__ 0;.;
o ¢

Fig. 5. Circular ring subjected to uniform external and internal pressure.

Rigid inclusions

The above general solution of the annulus problem can be modified to yield the solution for the case
of a rigid inclusion of radiug. In this case, the displacements at the inner boundary must be zero. By
using (10) and setting (r=a)=0, we obtain a relation between the inner and outer pressures that
satisfies this condition. The inner pressure g must be:

P (@A-v,)p
CBP+a@-2v,)

(14)

If we substitute this specific value of q back to (10) and (11), we will have the solution for the
problem of a circular ring with a rigid inclusion.

The elastic energydd would then be:

@ opdd-v, —2v,’)

ch — (15)
2, &v, )d+c-20v,)
where c is the composition value equaldse a’ /b® for the 2D case.
We can rearrange (15) to become:
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(- c)pzfz(?j A-v, —-2v_ %)

2, v, )d+c—2cv,)

Uy - =Xy g 6 ) (16)

wheret is an internal length used to normalize the exjpoassf elastic energy. The inclusion of this
parameter might appear unnecessary at the moment since it does not affect the solution but its
usefulness will become apparent in Section 11.4

The first derivative ofu, at r = bis:

ou, @& opl-2v,) o

—Q = — Hmr (17)
or iy Ay I+ cd-2v,))

Porous material (voids)
The general solution for the case of pores is directly obtained from the general results of (10) and

(11), if we seyj=0. The elastic energy is then:

_ tPl’ @+c-2v,,)

U 18
cl2 Zim (1_ C) ( )
and if we normalize the expression of the elastic energy with the internal lengthobtain:
2
fznpz % (I+c 2vpy) b

Ucl2 = 2um (@ ) = nfzpzfz(um'Vm’Cj) (19)
The first derivative ofu, at r= bis in this case:

or |, A, (1-0)

Elastic inclusions
The solution for this case can be obtained by superimposing the solution of two sub-problems
following the well-known Eshelby methodology We first remove the inclusion and assume an

internal pressure q acting at the inner boundaxy (r. BY solving this problem we obtain the
displacement(r= a) = u,. We then assume a solid circle with the inclusion properties of radius
under normal pressure q. By solving this problem, we obtain the displace(mers) = u,. The two

sub-problems are shown in Fig. 1.6. The solutions to both of these problems can be obtained from
the general solution represented by (10) and (11) applying the necessary simplifications for the

second sub-problem.
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Sub-problem 1 Sub-problem 2 Generic problem

Fig. 6. Superposition of sub-problems 1 and 2 yields the generic case of an annulus with elastic
circular inclusions.

The radial displacement; at r = aof the sub-problem 1, is:

u, = hq(]:'_ C- 20jm )_ Zp(l_vm)] (21)
a’lm (1_ C)
The radial displacement, at r = aof the sub-problem 2, is:
2u,

The boundary condition of the generic problem demanéau,. Using (21) and (22), we

obtain the value of q as a function of the outer pressure p and the material properties of the matrix

and inclusion. The pressure g must be:

2pu (L-v
My @ O 2 J+p @+ c—20v,)
If we feed this value of q back to the solution of the two sub-problems, we obtain the solution
of the annulus with a circular inclusion. The elastic energy of the matrix would then be:
& (L-o)p?n y
20, Q-Chy @2 )+ @+ c-2ov ) (24)
din? @27 € ¢ ) 20-Quy 02 )02y Jru’ QB )0 cl-2v,)]

cl3_m =

and, if we normalize the expression of the elastic energy with the internal lengtlobtain:
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2
aws
Ucg m = 2 [ Q-0 -2 ) @ c-2ov)F |

dun? @22 @ cg ) 20-Qu, Q-2 )A-2y Fp® Q-3 ) cl-2v,)] (25)

= 2 B x g it Y1,00)

The elastic energy of the inclusions is:

Uy i = 2 Py (- 2v)A-v,,)? (26)
Tl oy @ 3w @ c-2ov,)F

and, if we normalize the expression of the elastic energy with the internal ermgthobtain:

Zc@ 02, (- 29, )1~ v,.)° ;
Ucl3_i = [ @ o (- Yp (bt o ZCVm)]2 =Xl x pz X f3_i m Vm Hi Vi 1C’z) (27)

Therefore, the total elastic energy of an annulus with an elastic circular inclusion is:
U a3 = u cl3_m + UcI3_i = TEXEZ x p2 ><[fs_m @m Vm i sV 1C’%)+ f3_i (um Vm i 4V ’C’%)} (28)

and the first derivative ofi, at r = bis:

ou| - b gy @ 3y rp, G 2)0-c-2v]_

- Y (29)
ol B[ @ oy & 2 )y @ c-20v,)]

Note that Eq. (29) gives Eq. (20) in the case of a porous materiad @,v, =0) and for rigid
inclusions (1, — «), EQ. (29) becomes Eq. (17).

4. GRADIENT ELASTICITY SOLUTION FOR THE ANNULUS PROBLEM
Eshel and Rosenféftiwere the first to provide the outline of the gradient elasticity solution for the
annulus problem. The problem was solved analytically by Atdwasl Gao and Parkfor plain
strain conditions. The key points of the solution of the annulus problem (see Fig. 5) are presented
next.
The material is an in-plane isotropic, compressible, homogeneous, linear elastic material and

is described by an elastic strain energy density function W which incorporates strain gradient effects:

v %
W(e,x) = u|:8ij g + Egu & + ? (i K + 1-ov K K )} (30)
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where ist is a material lengthg is the infinitesimal strain tensor amdthe strain gradient8Border

tensor. Note that the deformation in the out-of-plane directios xero (y= Q and als@,, = 0
Kgg =0.

The Cauchy stress and double stress quantitesld.are defined as follows:

oW oW \Y
T 25—2}1{8 +1 > & 0; } andi = o =2ul |:Kuk +l > Klppéjk} (31)
i
The following relations also hold true:
A=1V71 (hy =0%01; Jox, ) andk =Ve (i« =g, [0X, ) (32)

The dynamic boundary conditions required by the principal of virtual work, are the Cauchy

(P.) and the double stress tractior® § in the radial direction:

& S k(M) Nlyet G L°
P (r) = {2 = Czr{vKl(gj @ 2v)K2(£ﬂ+c r{vl (z] 1-2v)l, (zﬂ : r4}(33)
R, (r)= —czf{(l— v) Kl[%j +(1-2v)K ZGH + csf{(l— )l IGJ — (1-2v)l ZGH (34)

where K and | are modified Bessel functions of tfi@dd 29 kind (the subscript indicates the order)

and @, ¢, & and @ are unknown constants to be determined from the following boundary

conditions:
P@=-q, R@=0atr=a
PMO=-p, R(b)=0atr=>b (35)

The radial displacements are:

@1-2v)c, r
u,(r)_—u{T 2r - @ 2V)€|:C K bj cg{gﬂ} (36)

and the rest of the solution is:

T (1) =70 + ;[07 —‘:—8j +C—2{K0Gj + (1—2V)K16ﬂ +°—23{| OGJ + (- 2v)|1(%ﬂ 37)
T4 (N =2 (1) +%[c7 +f—gj +C—2{K0Gj - (1—2V)K1Gﬂ +°—23{| OGJ - (1—2v)|1[%ﬂ (38)

and
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1|@-2v) Cq
N=e2(r)+-— c, -
srr( ) ‘grr( ) 2}1{ 2 7 2r2
, , (39)
r r r r
+ (@A=2V)3C,| Ko| = |+ =K | = | |+C4 Io| = |- =14 =
( V){ { (zj r [ﬁﬂ { @ r (fﬂ}}
1|@-2v) C l r r
See(r) = 889 (I’) +2—H{ 2 C; + 2r82 - (1_ ZV)?{CzK{ZJ_Csh(zﬂ} (40)
wheret?, 13,, €2 andel, represent the classical linear isotropic elasticity solution ,{i=€0).
B B 1 B
L =A+r—2,rge =A—r—2 andu;, :Z—M[(l—Zv)Ar—T} (41)
with
ga — pb? a’b?
AZW, B=(p-0q) b?_a? (42)
and
C,=C,+2A, g=G-2B (43)

The solution of interest corresponds te~»a . The constants;@nd ¢ must be zero in order
for the displacements to be finite and zero=atr TBerefore, the unknown constants reduce to just
two, @ and e. However, when trying to calculate the values of these two constants from traction
type boundary conditions, they both vanish and the gradient solution reduces to the classical
elasticity solution. This is not surprising because in order for the gradient effects to participate in the
solution, they must be triggered somehow by the boundary conditions. This is in agreement with the
finding of Bigoni and Drugali who considered corresponding results for Cosserat materials.

In order to overcome this, a kinematic boundary condition is assumed at r b

ou, _— (44)
or r=b

This condition implies that the 2D gradient elastic material representing the composite,
assumes a homogeneous gradient of the radial displacement. Eq. (44) together with the traction type
conditionP (b)=—-p will be used. Thus, the gradient material is loaded with tractions and
displacements gradients that are the same with these of the inhomogeneous classic composite syster

The constants now become:

GG=C,=B=0,A=—p (45)

and
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20[(1- 2v)p+ 2uxu? ]

T e (Dol
I Lt bl
2o )2 (1) )-2(7))

The elastic energy of the gradient solutiofp ik

(46)

b
Ugr = “g r(TrrSrr + Too€eo + A Ky + Ao K opo )dr

e

b/¢ r r
or Uy = | Z(Trrgrr +Tgo€p + A Ky + Agoe Koo )dz (48)
0

The values ofk and A are obtained after substituting Eqs. (37) to (40) into (32). After

substituting all the quantities and integrating, the gradient elastic energy becomes:
o, 2wt afe (o) ya O], (0] (0
o A 2\ p ¢) 2tp)le) ) *tlu
2 2 2 2
Y Ej |12(Ej_|0(9j|2(9j _ G ﬁ_z (E HGI Z’E(Ej
2\ p 4 4 l l plp 4 4\ ¢
2 2 2 B 2]
LN | B {1} ,{u},(Ej | S| -1+ HG {1} ,{12},(%
2\ p 2 l p 2 l

o s fenl)]
|

N——

o |
N—
N
~|lo
=
+
2
I
(0]
1
——
N
%,_/
——
N
N
\:v—/
7\
~|o
N
+

34

or Ug =mx(®x fx {u,v,cg,cﬁc,%j
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where HG is a generalized hypergeometric function andl’ H& a regularized confluent
hypergeometric functici. Both functions are described as:

HO[@ .8} 0. 4, F @DXF 3 @) ) (B0

and  HG [ax, F@x)T @)
where I(a) is the Euler gamma function.

Alternatively, the gradient elastic energy can be found from the external work. The elastic

energy is then equal to:
Y == bP®Y O} R (B)u,' ()} (50)
where prime denotes derivative with respect to r.
Substituting the value ai’, from (29) into (46) and (47), the gradient elasticity solutions can
be equated with the classic elasticity solutions for the three cases of rigid inclusion, porous material
and elastic inclusions discussed in Section I1.3. This approach is similar to that of Bigoni and
Drugart®for Cosserat gradient elastic materials.

Thus, we obtain the constantsamd ¢ for each case separately:

For the case aigid inclusions (Fig. 7), the constants become:

L PPN O a0 2vm)}
4 u, +cd-2v,)
Cas = - (51)
- ZV){bil o( b +1 z[bJj - 2(' z[bJ + vl 1(bJ —2vl z(bJﬂ
l l l l l l
—@{lz(bjwh bj—Zvlz(bﬂ{(l— D ) ZVm)}
4 ¢ ¢ n, +cld-2v,)
Cra= (52)
e A ool
/ / 14 14 1 14
For the case gforous materials(Fig. 8), the constants become:
r{ - 2v)- u (l-c-2v, )}
- Mo @-0) (53)
ol IACC) )
l l l l l l
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b b b u (@-c-2v,)
i —4p{|2(gj+ vll(gj—Zvl Z(KH[ 1-2v) _Llrn(l—C)}

C72= (54)
oS ) AL 2oL
l l l l l l
For the case of elastic inclusions (Fig. 9), the constants become:
2P {(1_ oy ML O O 3, prn, (- 20 c—2vm]}
o ! Mol & Oty (& 3 Jrpy @+ o= 2ov,)] (55)

o5 () A )20 )

-4p |2(bj+vll(bj_2\,|2(bj (1_2\/)_“[ @ Cbli * 2., )—Fum (- &, )(1- C—2Vm]
= ! ! ‘ Rl & O, & 2 )+p; @+ c- 2ov,)]

T e L LAL)) )]

Note that for all expressions of the constastard ¢, the internal length appears only in the

normalized fornb/ /. By substitutingc, ; andc, ; (i= 1 2, 3) in (49), we obtain three expressions

for the gradient elastic enerdy,,, U, andU respectively.

gr3?
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(a) (b)
Fig. 7. Homogenization procedure of a material containing rigid inclusions: (a) Heterogeneous
Cauchy material; (b) Homogeneous gradient material.

(a) (b)
Fig. 8. Homogenization procedure of a porous material: (a) Heterogeneous Cauchy material; (b)
Homogeneous gradient material.

(a) (b)
Fig. 9. Homogenization procedure of a material containing elastic inclusions: (a) Heterogeneous
Cauchy material; (b) Homogeneous gradient material.
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5. ESTIMATION OF INTERNAL LENGTH
The energy for a heterogeneous material shown in Section I1.3 and that for a gradient homogeneous
material shown in Section 1.4 were determined based on the same boundary conditions. By equating
the two energies, we can derive an estimation of the internal length for a gradient material as a
function of the inclusion radiws, the composition value ratio ¢ and the elastic material constants of

the matrix and the inclusiomu(/p,,,v,,v,,). However, before proceeding, we must face the problem

of how to settle with the other two material properties of the gradient material which in the general
case will not be equal to the matrix material properties.

The problem has three unknowns, namely, the internal lenglie in-plane shear modulus
and Poisson’s ratio and there is only one equation to work with, namely

Ug=U, (57)

One approach is to limit the solution of diluting the concentration of inclusions and hence assume
that the material properties of the matrix and composite material remain the same. It is noted that the
results of Bigoni and Drugdhwere derived using this assumption. However, another engineering
approach is to extract the two material properties of shear modulus and Poisson’s ratio from a
classical composite model suitable to the problem under consideration and substitute them to Eq.
(57). By doing so, there is only one unknown left, the internal lefigttvhich can then be
determined. This approach is justified by the fact that the gradient material should always reduce to
the classical material if the gradient effect is neglected,/i€0. Therefore the effective material
properties predicted by the classical homogenization schemes hold true for the composite gradient
material as well. Estimates of the effective material properties of the homogeneous gradient material

that correspond to our problem are given in Section Il.2.

The expression ob , is highly non-linear and can not be solved explicitly with respect to

It can, however, be solved numerically through an iteration process for different values of all the
parameters. The solution path is shown schematically in Fig.10. Throughout the calculations, a 5-
digit accuracy was maintained. The numerical integration of the curves presented in Fig. 11-13

converges as the interpolation order is increased.
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Assumption of a heterogeneous material with elastic properties,
um, vm, Wi ,vi and composition value c

Estimation of effective in-plane elastic propertiggndv, for each problem
(Section 11.2)

A\ 4

1

Estimation ofb//¢ based on Eq. (57), anda=———
& 7 Jel )

Fig. 10.Iteration process for estimating the internal length as a function of the composition value, c,
and the inclusion radius,

Rigid Inclusions
Estimation for the internal length for rigid inclusions is derived by equating the two associated

energiesy ,= U, (see Fig.7). The variation of the gradient internal lengtmormalized by the

radius of the inclusiom,, with a composition value ratio ¢ is shown in Fig. 11 in a semi-logarithmic

plot for v, values of 0.1, 0.15, 0.2 and 0.25. The results are also presented in Table 1. It can be seer

that the internal length increases with increasing value of the matrix’s Poisson’s ratio.
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Table 1. Estimated normalized gradient internal length values for the case of rigid inclusions.

c b/t ta*
Vm:0,1 Vm=0,15 Vm:0,2 Vm=0,25 Vm=0,1 Vm:0,15 Vm:0,2 Vm:0,25

0.1% 4.6 4.5 4.5 4.7 6.802 7.088 7.058 6.707

1% 7.2 5.4 4.9 5.0 1.390 1.844 2.028 2.017

5% 17.1 9.6 7.0 6.1 0.262 0.468 0.640 0.732

10% 27.8 14.7 10.2 7.8 0.114 0.214 0.309 0.408

20% 47.9 26.4 16.7 12.0 0.047 0.085 0.134 0.186

30% 71.7 42.0 26.7 18.6 0.025 0.043 0.068 0.098

40% 106.2 66.1 43.1 29.6 0.015 0.024 0.037 0.053
50% 163.0 107.3 72.3 50.0 0.009 0.013 0.020 0.028
60% 268,2 186.3 130.2 91.7 0.005 0.007 0.010 0.014
70% 495.5 362.2 263.6 191.0 0.002 0.003 0.005 0.006
80% 1140.7 875.8 664.8 498.6 0.001 0.001 0.002 0.002
90% 4583.1 3685.0 2921.5 2277.0 0.000 0.000 0.000 0.000

* the composition valuec= a2 /b? for the 2D case

e/a

Gradient internal length to inclusion radius ratio,

0.1%

Fig. 11. Variation of the gradient internal length to inclusion radius ratio vakuewith respect to

1.0%

Composition, ¢

the composition value c for the case of rigid cylindrical inclusions.

R=R=0mmi —Q—0-0-0-

100.0%
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Elastic Inclusions

Estimation for the internal length for the case of elastic inclusions is derived by equating the two
associated energidd,,=U . (see Fig. 9). The variation of the gradient internal length,
normalized by the radius of the inclusien with respect to the composition value ratio ¢ is shown in
Fig. 12 in a semi-logarithmic plot for inclusion to matrix shear modulus rafip,, , values of 2,

2.5, 5, 10 and 15\, = 0.2,v, = 025). For comparison purposes, the rigid case with= 9.2
plotted as well. These results are also presented in Table 2. The rigid inclusion ¢g$g of> «©

gives the upper bound of/o. and //a increases monotonically far,/u,, >1. The normalized

internal length{/a., is a decreasing function of the composition value c, With -/ as@—> 1 It
1 4

is noted that in all cases, whensx then//o — o with I Edc finite. Note also that when
0

u;/n, =1 andv, /v, =1, no physically meaningful prediction was found as expected, because this

case is essentially the case of a homogeneous material. The same was found to be true when th

inclusion is less stiff than the matrix.

Table 2.Variation of the normalized gradient internal length value for the case of elastic inclusions.

b/ ®) o, &)
¢ wlpm=2  pilpm=2.5 pilpm=5 pilpm=10 pilpm=15 | pilpm=2  pilpm=2.5  pilpm=5  pilpm=10  pilum=15
0.1% 52.5 44.1 16.6 9.4 7.5 0.602 0.717 1.909 3.350 4.193
1% 55.5 36.8 16.4 9.8 8.0 0.180 0.272 0.611 1.018 1.252
5% 54.6 38.5 18.6 12.0 10.2 0.082 0.116 0.240 0.372 0.440
10% 57.3 41.7 21.8 15.0 13.1 0.055 0.076 0.145 0.210 0.241
20% 64.3 49.4 29.4 22.4 20.3 0.035 0.045 0.076 0.100 0.110
30% 72.5 58.9 39.6 325 30.5 0.025 0.031 0.046 0.056 0.060
40% 82.5 70.7 54.0 47.9 46.1 0.019 0.022 0.029 0.033 0.034
50% 93.9 85.4 74.9 72.4 72.0 0.015 0.017 0.019 0.020 0.020
60% 106.7 103.5 106.0 113.6 117.7 0.012 0.012 0.012 0.011 0.011
70% 121.2 125.4 153.1 187.4 205.7 0.010 0.010 0.008 0.006 0.006
80% 136.4 152.1 227.2 332.6 398.5 0.008 0.007 0.005 0.003 0.003
90% 164.5 185.9 - 674.2 938.2 0.006 0.006 - 0.002 0.001
&) Poisson’s ratio for matrix and inclusions is 0.2 and 0.25, respectively.
(**) composition valuec= a?/b? for the 2D case
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/a

Gradient internal length to inclusion radius ratio,

100.0%

Composition, ¢
Fig. 12. Variation of the normalized gradient internal length to inclusion radius ratio with respect to
the composition value, c, for the case of elastic cylindrical inclusiops-(0.2,v, = 025).

Porous material

Estimation for the internal length for the case of voids present in a material is derived by equating the

two associated energigs,,= U ,(see Fig.8). The estimate of the normalized internal length, b/

for the case of porous materials is either in the order &fothegative. This is not acceptable since

it lacks physical justification. In other words, it is not possible to predict an internal length for the
case of porous materials or generally when the inclusions are less stiff than the matrix. When
inclusions are less stiff than the matrix, the micro-structural load path changes and strain gradient
theories may be no longer applicable. This is in agreement with Bigoni and Erudem proved

that predicting the Cosserat microstructural length when particles are stiffer than the matrix is not
feasible. It could be argued that the present results are complementary to those of Bigoni and

Drugart® who were interested in gradients of rotations and not of strains as in the present work.

Micromechanical explanation of the results

The internal length predictions in this work showed that as the composition value is increased, the
internal length estimate decreases. The internal length is associated with the microstresses tha
develop due to the microstructure of the composite. However, when composition value increases the

distance between particles, decreases. Instead of having an inclusion embedded in a continuum, th
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problem resembles that of a particle with a thin layer around it. It has been?$tioatrwhen this
occurs, the strain gradients reduce drastically.

The estimates shown above were based on an axisymmetric type of loading. In order to verify
that these predictions hold true for other loading cases, a different loading system that removes this
symmetry is considered next. This loading case corresponds to a remote uniaxial tension and the
details of the solutions are presented in Section 11.6. The limiting case of rigid inclusions was
considered only and it was found that the material length predictions obtained for both loading cases

are identical.

6. REMOTE UNIAXIAL TENSION
The problem of a circular inclusion of radias,in an infinite isotropic plate under remote uniform
uniaxial tension, P, is considered, as shown in Fig. 13. Outside the inclusion, the gradient solution for

the radial and angular displacements, respectivels: are

R

LRI A R

Fig. 13. Inclusion of radius, a, in an infinite plate subjected to uniform uniaxial tension, P.

{A19+A39+A5%K1(£H
r

P r b4
u, (r,0)=u’(r,0) +—

n +I:Al%+A2§K2[%j A{?jg+A6(%K2(zrj+2%K{%D}cos{ze)

(58)
Pl 1-2v a l ry 1 r a\’ a r :
u, (r,0)=ud(r,0) +—1{- A —+AL —K | = [+ZK = ||+A,] = | +A =K,| = [Fsin(20
9( ) 9( ) “{ 2(1—V) 1r Z(r 2(£j 2 1(£jJ 4([,} 6 r 2(5)} r( )
(59)
Strain gradient length via homogenization of heterogeneous elastic materials 32

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 05:17:52 EEST - 18.221.57.191



SIZE EFFECT IN SEMI-BRITTLE MATERIALS AND GRADIENT THEORIES WITH APPLICATION TO CONCRETE

where A , . are unknown coefficients andf (r,0) and ug (r,0) are the classical expressions of radial

and angular displacements.
The classical expressions of the displacements outside the inclusion for the case of rigid

inclusions aré-

W (r,0) = E{{(ko LIPS 9} . {21 B, +1) 2+ 25[% } 005{26)} (60)
8u a r a r r

L) P 2, 552) g

ue(r,e)_8“{ 2~ B(k0+1)r+25(rj }sm(ze) (61)

It is demanded that the gradient displacements are equal to the classical predictions tatevery
r=aandr=b (b>a):

y @0)=f @6) Vo

(62)
Yy @0)=u;@0) vo
Eqgs. (62) describe a system of 6 equations that can be solved for the six unkkpwn$he
coefficients should be:
A,=A,=A,=0 (63)

Therefore, the gradient solution reduces to the classical solution but this does not mean that
the gradient effect disappears as in the case of axisymmetric loading. In essence, the same kinemati
admissible field for either a gradient homogeneous material or classical heterogeneous material is
applied. Obviously, this kinematic field is the same only fara, but for the case of dilute
composites f<< b) the total elastic energy calculated for r> a is approximately the same with
the total elastic energy calculated for r > 0.

The expression for the total classical elastic energy is:

n/2b

Ucl = 4 J I%r(rrrgrr + Teegee + eregre )drCB (63)
0 a

and that for the total gradient elastic energy is:

U = 4“"{23? 1r Tp€y T Tgo€go T ZTregre
o +7\' k +7‘ree kree + Z}ere krre +7\‘9rr kerr +}\‘969 keee + Z}L k

0a2 oro "™ 0ro

jdrd@ (64)

rer e

It is reminded that for the case of cylindrical coordinates the following relations hold true:

Strain gradient length via homogenization of heterogeneous elastic materials 33

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 05:17:52 EEST - 18.221.57.191



SIZE EFFECT IN SEMI-BRITTLE MATERIALS AND GRADIENT THEORIES WITH APPLICATION TO CONCRETE

ot ot ot
Vi=—" e+—2 epe+—2 +ee
TE Pt EFET e(eg +ae)
0 10 1( ot 1({ ot
veelie -2, 10, 1f Orgq 65
&5 %0 +r[69 ZIreJ%e,erJrr( 5 +2¢rejeg,eeee (65)

+1' 8Tre+r -1 (eg +ee€,)
r ae rr 60 g e% eB r

Under the assumption of dilute composition, equality of the two energies can be demanded
since both systems have the same kinematic field. The other two material properties, i.e. in-plane
shear modulus and Poisson’s ratio for the gradient material, are extracted from Christensen’s
predictions (see Section 11.2). In Fig. 14, the prediction for rigid inclusions is plotted assuming that
the matrix Poisson’s ratio vs= 0.2. The solid line corresponds to loading case 1 (see Fig. 7) and the
diamond symbols correspond to loading case 2 (Fig. 13). The predictions for loading case 2 were
derived under the assumption of dilute concentration of inclusions and hence only the predictions for
c< 5% are plotted. As it can be seen, the agreement for the two estimates is very good for values of

¢ up to 1% while the deviation between the two predictions increases for higher values.

—+—Loading case 1

/a

¢ Loading Case 2

O+

\$\

1] \ Lo

—
+\+\+\+ .

Gradient internal length to inclusion radius ratio,
w

0.1% 1.0% 10.0%

Composition, ¢
Fig. 14. Variation of the normalized gradient internal length to inclusion radius ratjast the
composition value c for the case of rigid cylindrical inclusions and two loading cases02).
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7. APPLICATION TO FIBER-REINFORCED CONCRETE
In order to obtain an estimate of the internal length for fiber-reinforced concrete (FRC), one can use

either the assumption of elastic or that of rigid inclusions. In this study, a typical FREwittx
hooked-end steel fibers and the following properfigg, =40GPa,v, =02, Ej =210GPa,
v, =03 and c= 08%used for retrofitting RC structures is considered. The steel fibers have a

circular cross-section with a 5-mm diameter and the fibers to cement matrix shear modulus ratio

isp; lu, =485. The density for the cement matrix and the “fiber” inclusions is

3

Pm =2350kg/m3andpi =7850kg/m*, respectively.

The normalized internal length/a, and internal length, estimate according to the proposed

model for the assumption of elastic and rigid “fiber” inclusions/iga=06 ¢ =150mm) and

¢ la=23 ( =575mm), respectively. It is noted that this specific FRC mix was designed to be

used as a 3- to 5-cm thick jacket to existing RC columns.

The Ben-Amoz modét for predicting the internal length parameter is based on a dynamic
analysis of the micro- and macro-structure. It is noted that, in the absence of the dynamic conditions
imposed, the validity of this model becomes questionable. Nevertheless, the Ben-Amoz model is the
only model in the literature that can predict the strain gradient internal length parameter and for this
reason it is interesting to compare its predictions with the proposed model predictions. The key
points of Ben-Amoz model are described next.

A normalized scale parameter, L/d, which can be seen as a measure of the strength of

heterogeneity, is introduced as follows:

L/d=[p, 0+ 2u), /pg (L +2u)g ] (66)

where d= 2for the 2D case and subscriptsand R denote the Voigt and Reuss averaging
guantities, respectively, which are defined as follows:
( )U :Cm( )m +Ci( )i
1 Cc C. (67)

m |

Or On O

where c is the volume fraction of the inclusions and subscripts m and i denote the matrix and “fiber”

inclusion material, respectively. It is noted that this scale parameter is derived by assuming that the
strain energy and kinetic energy are of the same order of magnitude but this assumption is not always

true..
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The internal length parameters of Mindlin’s work for the long wave-length approximation,
and/, (pp. 69 in [4]) are then associated with the scale parameter L by the following equations for

the shear and dilatation modes:

02 :L—Z{l—M(ci —4|i)}

4 Hy

, (68)
522 :I—_|:1_ (7v+2H). _(7\'+2M)m (Ci _4||):|

4 A+2u),

where | = (a/b)* = ¢,*for the 2D case.

Applying the simplifications of the simplified strain gradient theory used throughout this
thesis, that isg =a,=a, =0, a, = (\/2)¢*and a, = ul*(see [4], pp. 73), the Mindlin’s internal
length parameters beconte =/, = /. Hence, the Ben-Amoz model gives two different estimates

for the internal length parameter, which for small values of the composition \alwee
approximately the same. The Ben-Amoz predictions, for the specific FRC mix considered here, are:
¢ [a=1128and =282mm, for the shear mode,

and (¢ /a=1122and/ =2805mm, for the dilatation mode

The predicted internal length estimates for the same FRC material of the present (about 6
mm) and the Ben-Amoz model (about 28 mm) are significantly different. A definite answer as to
which model is more appropriate would require the estimation of an internal length for an FRC mix

independently based on flexure tests.

8. CONCLUSIONS
A homogenization of a plane-strain heterogeneous Cauchy-elastic material was performed and the
internal length parameter assumed in the strain gradient theory was estimated for the case of elasti
inclusions stiffer than the matrix in the case of fiber-reinforced composites. The internal length was
found to be 0.5 to 7 times the inclusion radius for very small values=00.1% depending on the
inclusion to matrix shear modulus ratio. The internal length estimate decreases rather rapidly as the
composition value c is increased and is approximately zera>for ¢ . RBoprediction was possible

for inclusions less stiff than the matrix and for the extreme case of porous materials.
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CHAPTER 1lI
STRUCTURAL ANALYSIS USING A DIPOLAR ELASTIC TIMOSHENKO

BEAM - APPLICATION TO MICROCANTILEVERS

1. INTRODUCTION
A term so-called “size effect” is usually used to describe the effect of the microstructure on the
mechanical behavior of a member which for different sizes deviates from that expected based on
similitude laws. When the dimensions of the microstructure (grain size, inclusion size, lattice
distance etc.) becomes comparable with the dimensions of the member itself, the assumption of a
homogeneous medium of classical elasticity and its implication concerning the very definition of
stress and strain no longer suffice. In other words, as structures are scaled down their behavior
becomes increasingly dominated by the inhomogeneous nature of the material itself. The need to
model such behavior without modeling the full detail of the microstructure has led to the
development of enriched continuum models. This is done in an average sense by introducing length
scale parameters in the constitutive equations that account for the effect that the microstructure has
on the deformation process. By doing so, these theories have the advantage over classical elasticit
of explaining why scaled down structures are stiffer and stronger. However, in their original
form>?34these theories become unpractical since it is impossible to quantify all these new length
scale parameters with the available experimental data, i.e. static or dynamic flexural tests.
Nevertheless, by simplifying these theories and keeping just one length scale parameter (for static
cases), calibration becomes rather straight forward and at the same time the key novelty of such
theories which is the prediction of size effect is preserved. For this reason, in this work, a simplified
(dipolar) isotropic strain gradient theory is used with just one material length scale parameter, g, in
addition to the two classical elasticity parameters, that is the elastic modulus, E, and the Poisson’s
ratio, v.

Quite small structural elements that are used in the design of micro-electromechanical
systems (MEMS) are often in the form of beams (e.g. sensors and actuators) and their design require:
them to deform within their elastic domailthough the stiffness of such micro-devices is essential
information for their design, in many cases their stiffness is determined experimentally and is found
to be higher than that predicted by classical elasticity. Salvetat pedibrmed flexural experiments
on single-wall carbon nanotube beams with both ends fixed arranged in a close-packed lattice with
dimensions of 1.4 nm and used rope diameters from 3 to 20 nm in flexural tests. They found that as
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the diameter decreased the nanotubes exhibited a much stiffer response. The same behavior we
observed in carbon nanotubes by Poncharal etRihg et af tested polysilicon microcantilevers

with grain size in the order of 0.2ry thickness of 2.4m and variable aspect ratios and although the
authors attributed the stiffness differences in the beams to measurement errors, a closer look at thei
results suggests the existence of a size effect. Lam %epefformed bending tests on epoxy
polymeric microcantilevers with thickness values varying from 20 topbi%®nd showed that as the
thickness decreased the stiffness increased beyond the predictions of classical elasticity. Although nc
information about the microstructure of the PP microcantilevers is included in this work, high
crosslink-density regions with a diameter of 6 to 104 nm have been observed in cross-linked resins
forming on that scale a heterogeneous rather than a homogeneous ¥h&teNmiFarland and
Colton'? tested polypropylene (PP) microcantilevers which have a nonhomogeneous microstructure
due to their semi-crystalline nature and found that the microcantilevers with a thickness of 15 and 29
um exhibited a much stiffer response which cannatXy@ained by any of the possible error sources
associated with the experiments. It is noted that the nonhomogeneous nature of PP is due to the
formation of spherical particles called spherulites during its manufacturing process. The authors did
not provide any information about the size of the spherulites in their material but typically their size
can be up to 1@m when the specimen is manufactured via injectiofding'®. Hong et af* tested

copper (Cu) microcantilevers with a thickness of 10.5 angu2.8nder flexure and reported a stiffer
response for the thinner films. Grain size of copper films manufactured by electroplating and
annealed in vacuum can be up®th pm. Yang et al® tested native and cross-linked type | collagen
fibrils with diameters ranging from 187 to 424 nm and found that the stiffness increased as the
diameter of the fibrils decreased. Note that collagen fibrils are assembled of parallel collagen
molecules arranged with a longitudinal stagger and also contain mineral particles (typically flat and
elongated) with the elongated dimension reaching values'(h@® nm. It is also worth mentioning

the work of Namazu et &f.and Liu et al® who carried out flexure experiments on single-crystal
silicon beams which have a continuous crystal lattice (no grain boundaries) and hence can be seen a
completely homogeneous and found absence of size effect in stiffness as the specimens ranged fror
a nano- to a mm scale. Size effect in strength, however, was significant. This review of the available
experimental evidence is not meant to be exhaustive but only indicative of the phenomenon which
the current work attempts to explain, which is that size effect in the elastic deformation range of
beams is to be expected when the scale of the structure becomes comparable with the scale of th

microstructure.
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The need to quantify the departure from the classical elasticity predictions and offer the
designer of MEMS a theoretical tool in the form of closed-form solutions for predicting size effect is
one of the motivations in this work. Of interest is the solution of a Timoshenko?*bézaded
statically. Papargyri-Beskou et @l.have used the same simplified strain gradient theory using
surface enerdy to solve the bending and buckling of the Bernoulli-Euler beam. Their model has
been investigated further by Giannakopoulos and Stambfdisthe case of a cantilever beam under
flexure and a cracked bar under tension. Nevertheless, the Bernoulli-Euler beam is only applicable to
slender beams where shear forces have a negligible influence on the deformations of the beam.

In the present work using the Timoshenko beam kinematics it is examined how the gradient
solution is affected when the shear forces are included in the analysis. It is noted here that the same
strain gradient elasticity theory has been used by Wangeaiadl Lazopoulos and Lazopouleor
the case of Timoshenko beam kinematics. Both these works employ Fourier series to solve the
boundary value problem, whereas in the present work closed-form solutions are provided.
Furthermore, none of these works address the issue of indeterminate members and how they shoul
be treated and only refer to the isostatic case of a simply-supported beam. As it would become
apparent, by solving the problem in a closed-form, a methodology for treating more complex
structural problems (hyperstatic beams, frames etc.) emerges. However, it is beyond the scope of thic
work to explore all beam configurations and only the example of a doubly-clamped beam is
considered in detail. More differences exist if the solution in the present model is compared to that of
Wang et af* and Lazopoulos and Lazopouldsind those are discussed in detail in Section I11.4.
Finally, other non-local theories for the case of Timoshenko beam kinematics have also been
considered by Lam et &|.Reddy® Ma et alP’, Asghari et af®, Ramezani et &°. These works
employ different gradient elasticity theories than the presented one and are briefly discussed in
Section Ill.4. Models that are based on integral (strong) non-local theories will not be examined in
this work.

Concerning the structure of the present chapter, Section IIl.2 includes the governing
equations and boundary conditions for the Timoshenko beam, while in Section 11.3 the proposed
model is applied to the specific problem of a cantilever beam with a point load at its free end and the
details of the solution are investigated. An indeterminate beam is also investigated, i.e. a beam
clamped at both ends, loaded by a point load at midspan. In Section Ill.4, the present approach is
compared with the various Timoshenko beam theories in the literature. Finally, in Section III.5,
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available experimental data on microcantilevers in the literature are used to compare the predictions

of the length parameter for the strain gradient elasticity with those for the micropolar elasticity.

2. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS
We consider a straight prismatic beam subjected to a static lateratj(gadistributed along the
longitudinal axis x of the beam, as shown in Fig. 1(a). The loading plane coincides with the xz plane
and the cross-section of the beam is parallel to the yz plane and symmetric with respect to the xz
plane. The displacement field following the Timoshenko beam kinematics can be described by the

following relations:

Uy =2 y(X)
Uy =0 (1)
Uz = w(x)

where y (X)is the rotation angle of the cross-section with respect to the z-direction and w(x)is the z

component of the displacements along the axis x. Note that the Timoshenko kinematics allow the
boundary conditions to be only defined on the beam’s cross-section at the two ends keeping the 1D
character of the solution. It is beyond the scope of this work to solve analytically the true 3D
problem. The important question is whether such approach is justified and this question is addressec
by comparing the predictions of the present model with the 2D finite element results, which suffice
for the case of beams (see Fig. 8).

Using the geometric relations (Egs. (1)), the non-zero axial and shear strains are equal to:

g =M, 0
OX dx @)
ou, ou, dw
Ve = 2,, = + =

2" 5z | ox dx

The material is a homogeneous, linear elastic material and thus the non-zero Cauchy stresse:

are equal to:
(_Txx = ESXX (Sa)
ox =kGy,, (3b)

where k is a correctioff factor which depends on the shape of the beamsseection, v is the
Poisson’s ratio introduced to account for the non-uniformity of the shear strain over the beam’s
cross-section, E is the Young’s modulus of elasticity and G the shear modulus which for an isotropic

material is G= E/2(1+ v). Note that Eq. (3a) is based on the assumption that the Poissonisigatio

Structural analysis using a dipolar elastic Timoshenko beam — Application to microcantilevirs

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 05:17:52 EEST - 18.221.57.191



SIZE EFFECT IN SEMI-BRITTLE MATERIALS AND GRADIENT THEORIES WITH APPLICATION TO CONCRETE

zero. Equation (3a) can be modified to account for the effect of isotropic Poisson’s ratio, as in Ma et
1-v

al?’ if E =—————E is used instead of E. The simplified form of Eca)(8vill be kept but
1+ v)@-2v)

throughout the manuscript the numerical results are derived ESing

XY . Fully Clamped end
|

— Ux

)
(
o]
|
|
|
g

~___
<

4

vZ V4
Partially Clamped end
(a) (b)
Fig. 1. (a) Beam configuration and coordinate system (C.G. = center of gravity), (b) Clamped-end
configurations.

The employed strain gradient theory is a simplification of Mindlifosm Il gradient theory,
using just one material length scale parameter. In this case, the non-zero total axial and shear stresse
can be expressed with respect to the Cauchy stresses, as:
o, = (1-gV?)ox @)
= (1-9°V®)ox
where g is the strain gradient material length, the over-bar quantities are the Cauchy stresses (se
Egs. (3)) andv >=0%/0x*+ 0% /0z” is the Laplace operator.
The total internal elastic strain energy for the beam is:

U= Uy + U, (5)

tot—

where U, is the internal elastic strain energy of a classical beam given by:
u, -2 [ (c}xxaxx+ 26 sxzjdxdydz (6)
2 \%

and U is the internal elastic strain energy of a purely gradient beam given by:

J-.”- anx (98 6C_sz 68)(2 ac_Sxx 68)0(

+ xdydz (7)
OX ax oX 0X 0z 0z
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The variation of the total elastic strain energy for a beam of length L is:
d> \d*y d® | dw dy
) 1-g¢° + kAG 1-¢° —+vy |-EAQ*—
W( ( J dx? jdx ( J dx? j(dx j J dxzj
2 2
+ow - kAG 1-¢° d dw  dv
dx? dx

L
2
+ SW(E 1-g? dd jdw+kAGg (d d“’j + EAQ? d“’ﬂ
X
0

ot

L
38U, =
0

dx dx2  dx dx

+ vv(kAG(l— 2 dzj wm (8)
dx .
+_6\y (g El ‘;X"’HO
+ Sw(kAGg (d w dwjﬂ
i dx?  dx .

whered indicates variation,|= .[J' Zdydz is the moment of inertia about the z-axis afe ”dydz

is the cross-sectional area. Eq. (8) is obtained from Eg. (5), using Egs. (6) and (7) by expressing all
guantities in terms of the independent kinematic variables v, w’' and y' and applying
integration by parts. Note that classical analysis uses wnlgand ¥V as independent kinematic
variables.

The variation of the works Wone by the distributed forceg(x), the classical and non-
classical boundary shear forces Q and Y, respectively, and the classical and non-classical bending

momentsM and m, respectively, is:
L
SW = [ gowdx +[Qaw s +May]s +[Yow']; +[mdyT; 9)
0

while the principle of minimum potential energy states that,
8(Uy,, —W)=0 (10)
It is recalled that in classical elasticity, the bending monnand shear force® are equal

to:

M= [[onzda=EI-L dy
(11)
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Substituting Eqgs (8) and (9) into Eq. (10) and using Egs. (11), the following governing
equations (see Egs. 12) and boundary conditions (see Eqgs. 13) are derived for the gradient
Timoshenko beam:

A, ,d*\dMm , d? =
1+ 2 g2 - — =|1- 12
i I g-9 dxzj dx ( g dx? Q (122)
d® \dQ
2 - _ 12b
g dxzjdx g (120)

{Q— (l—g2 d22 ]QJ}SW} =0 (13a)
dx

{Y— gZ@J}SW} -0 (13b)
dx .

-~ B _
M — 1—gzd—2 M+égzM+gzd—Q Sy| =0 (13c)
dx I dx

m—(g2 Z—TJ}SW} =0 (13d)

Note that all the above relations reduce to the classical Timoshenko beam expressions in the

absence of gradient, i.gg=0. Also note that the coefficiemd/1 in Eqgs. (12a) and (13c) stems
directly from the cross-termoé 0/ 2¥, o/ #) the expression of the strain gradient elastic

energy (Eq. (7)). Considering only the leading gradient shear tern{p ./ ox)(ds, / 0x), will
not capture this additional scaling effect for shear. Therefore, for a complete gradient Timoshenko
beam solution both terms must be considered.

The boundary conditions (Egs. (13)) are mutually exclusive. This means that one can
prescribe the following:

2
d2 _
either Q= (1-92—d 5) Q or w (14a)
X
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_ 2dQ p
Y=g ™ or w (14b)
M= 1 Xl M+ 2 2N +g2 @Q or
=12 F9TMFgt v (14c)
m = 2_dM or ’ 14d
=97 v (14d)

The end conditions and continuity requirements that stem from the boundary conditions (Egs.
1l4a-d) for a gradient Timoshenko beam are summarized in Table 1. This table is of utmost
importance for solving beam systems with various end conditions and connectivity, both statically
determinate and indeterminate. The issue of the appropriateness of the non-classical boundary
conditions recommended in Table 1 is discussed in Section 111.3 where the finite element solution of
a cantilever beam is considered (see comments made regarding Fig. 8). The physical implication for

y' =0 is that a fully-clamped condition is accounted for, i.e. preventing deformation in all directions

at the clamped end. This brings into consideration the actual implementation of “clamping”. For

example, it is true thay' = @r a partially clamped end support, as shown in Fig. 1(b).

Table 1L Beam boundary conditions and continuity requirements for the gradient Timoshenko beam.

End Boundary Conditions Continuity Requirements

Condition Classical Non-Classical

End Hinge w=0,M=0 Y=0,m=0 -

Clamped End w=0, y=0 w=0,y'=0 -

Free End Q=0,M=0 Y=0,m=0 .

Internal Hinge M =0 m=0 W= W, W =W, W =W, gt =y
+: —’ r+: r—’ rr+: ”_,V\/+=V\/_,

Internal Roller w=0 - y =y .y =y oy =y

V\/H— — V\/'_ , V\/”+ — Wﬂ—
Note: In the case of concentrated moments or forces, the BC’s should be modified accordingly. This also applies to
the case of intermediate supports such as springs.

To illustrate the details of the general solution, Egs. (11) are substituted back into Egs. (12) to

obtain the two differential equations for tlex)andy(x)functions describing the solution. The

differential equations are:

2
E|(1+— —gzd—J

2
and kAG(l " - d J{ " d_"’J q (15b)
dx dx
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In order to solve theorder differential equations, it is convenient to set:

dw
Q(X) = &4‘\]} (16)
So, Egs. (15) become:
2 2 2 2
(1—52 dd 2}3 v ké? (fj (1— gz%jﬂ (17a)
x* ) dx g X
d? \dQ q
1-¢" 5 o= 17b
( J dsz dx  kAG (17)

where/ is a length, which can be seen as the shear gradient internal length equal to:

1
e 0

Note that whe=0, then /=0 and ¢/g=1. Also, if (A/1)g° <<1, then /= gand ¢ /g= 1
Therefore, for all cases it is true that® <g 1

For a constarg, Eq. (17b) has a general solution of the form:

QX)=——3_ x ce’9 - ce™ '+, (19)

kKAG
Substituting Eq. (19) into Eq. (17a), the general solution is obtained:for

2 2
E kAG g X/
"’(X):‘%KEJ X”E(EJ ¢ R+ @7 e+ Qe d,dx 20)

Also, substituting Eq. (20) back to Eq. (16), the general solution is obtained for
(c3—d3)x—d—24 x or g e - gP¥ + ¢de’?+cge?

2
q Xz_CskAG (ﬁ} x2

2 (22)
LA (1)
24E| [QJ 2kAG 6ElI \g

w(X) =

Equations (20) and (21) contain a total of 8 constamtseindd, (i=1.4). These constants can be

obtained from the 4 boundary conditions, which allow for 8 independent boundary conditions (Egs.
l4ato 14d).
It is interesting to examine the physical implication of the shear gradient léngihce is a

function of the cross-sectional shape and the internal lemgthhe shear gradient length, for a

rectangular and a circular cross-section, respectively, is:
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grect — 1 ' and gcirc — 1 (22)

2 2
S e 12(9’] 9 16(9’)
h D

where D is the diameter of the circular cross-section and h is the height of the rectangular cross-

section.
The normalized internal length parameitéqg, is plotted vs. the ratio g/h and g/D for the

case of rectangular and circular cross-section, respectively, in Fig. 2. It is observed that the shape o
cross-section has a minor effect on the normalized internal length.

Also, the ratio? ./ /.., (circular vs. rectangular cross-section) is plottedthe ratioh/Din

Fig. 3 for different values of the internal lengtdn, As noted above, agbecomes very small, the

ratio ¢ /¢

«t approaches asymptotically the value of one. Thesefas g becomes very small the

influence of the shear gradient length is not greatly affected by the shape of the cross-section.
Furthermore, there is an interception point of the curves for different g/h valbesO&6D , the

same for all values @f, for which it is true that, =/, It is noted that wher? . > ¢ ., the

circular cross-section is stiffer than the rectangular one and vice versa.

1
= 0.81 — Circular cross-section
é’ ------- Rectangular cross-section
@)
< 0.6
£
b
£
- 0.4
)
N
[
E
o 0.2
z

0 T T T T

0 0.2 0.4 0.6 0.8 1

g/h org/D

Fig. 2. Influence of g/horg/D, on the ratio figr the case of rectangular and circular cross-
section, respectively.
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3. EXAMPLES
Determinate beam: cantilever with a point load at the free-end
We consider a cantilever beam of length L, loaded by a point load at its free-end, as shown in Fig. 4.

The beam has a rectangular cross-section with a width, b, and height, ks=af@d+ 5) /(6v + 6) C.

| L [

lp

" pUuUX

W,z

Fig. 4. Clamped beam of length L, loaded by a point load, P, at its free-end.

The classical boundary conditions are:

w(0)=0, y(0)=0, Q(L)=P, M(L)=0 (23)
The non-classical boundary conditions are assumed to be:

o, ¥ o m=0, Y(L)=0 (24)

dx|,_o dx|,_o
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The first two non-classical conditions imply that the beam achieves maximum flexural and shear
stiffness without enforcingn and Y at the fixed-end. The last two conditions imply that there are

no double bending moments and double shear forces at the free-end. The above conditions define
set of 8 linear algebraic equations that can be solved for the 8 unknown coefficients of Egs. (20) and

(21). The coefficients for the case of fixed-end beam loaded by a point load at its free-end are:

c - P N i - P
' kAGd1+e*'t)’ 7 kAGgl 1+et )" T KAG

_ RKAL® @ €% ) 20 v)PIE 0 -D) | Pr(e —L)

c ,d, = , 25
N KAG? El(1+ e?-'9) Y OEIf @+ et (25)
L (T I Al (X e ad ®) _PL?
? Elgf Q+e*'") " ° Elgf (1+e™'") 'Y Elg?
The deflection at the free end of the gradient Timoshenko beam is:
2Ll
1+{£j1 e2L//
L)1+e™"
PE(eY| (Y mé'" —4" | PL (gjl—ezug \
w, (x=L)=—| = | |+3 — + 1+| = |—— |=wW_ +W; 26
o ) 3El(g] 3(Lj 1+ e’ kKAG L )1+ oo (26)
VAN |
+3— | ———
3(Lj et 41

Wherewgr is the flexural part anav;, the shear part of the deflection.

Note that Eq. (26) predicts the classical Timoshenko beam elasticity solution (including the influence
of shear) in the limit thag— 0 (¢ /g— 1):

P PL

3 kag We T @)

w, =w(x=L,g=0)=

wherew?is the flexural part andvthe shear part of the deflection. Note that@s-> «, then
W, =Ww) andw, = Wgr, which is similar to the Bernoulli-Euler solution.

The deflection at the free end of the beam predicted by the gradient Bernoulli-Euler solution

(see Eq. (9) in Giannakopoulos and Stamé&i)lis:
1- {gj (cosf(kj + _ + (Ej tan}{hj - 1}
_PC L g) coshl/g) g g
- + {gj (tan}{LJ + (Ljsmb{hj tan}{LD
L g g g g
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The normalized flexural deflectiow,‘g’rlwlc’l, is plotted in Fig. 5 against the normalized parameter,

g/ L, for both the Timoshenko and Bernoulli-Euler gradient solutions assuming=tliatThis is

true when g/k< 03(see Eq. 18). The two solutions then become identical and yield the same
prediction for the beam deflections. Therefore, the Timoshenko solution reduces to the Bernoulli-
Euler solution when: (a)G >« and (b) the scaling influence og through the length/is
neglected.

The normalized deflectionw, /w,,, is plotted in Fig. 6 against the normalized parameter

g/h,assumingL/BE 3andv= Q As g/h increases, i.e. as the dimensions of the cross-section of

geometrically similar beams become smaller, the beam becomes stiffer. Unlike the gradient

Bernoulli-Euler solution, which can account only for the influence ofg/L on the deflections, the
gradient Timoshenko solution is able to capture the additional stiffening effect of the ratiog/h . On
the contrary, the Bernoulli-Euler prediction remains the same for the same span but different cross-

section. Also, the normalized shear deflectiar, /wy, is plotted in Fig. 7 against the normalized

cl?

parameterg/Lfor L/B 3and v= Q The shear stiffness increases as g/L increases, but the

increase in the shear stiffness is less significant than that observed in the flexural part of the
deflections.

In order to compare the present model against the results from a 2D finite element model by
Giannakopoulos et &, a complete expression for the deflections of the gradient Timoshenko beam
is used the finite element results were derived assuwmiag an@éare shown in Fig. 8 (triangle
symbols). The present model (gradient Timoshenko beam) matches overall the finite elements results
much better than the gradient Bernoulli-Euler solution, as expected. The finite element results
support the present choice of boundary conditions, since considering alternative non-classical
boundary conditions resulted in a considerable deviation from the finite element results. For quite
short beams, the error is of the order of about 40% and comparable to that for the Bernoulli-Euler
beam. The error is rooted in the Timoshenko kinematics (see Eq. (1)) which neglect the prismatic
surface boundary layers. Taking a Poisson’s ratio value=d§ brings the FEM results for a very

short beam closer to the Timoshenko approximation.
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Fig. 5. Influence ofy/ L on the normalized bending deflectiovf, /w{, at the free-end of a

cantilever beam for the gradient Timoshenko and Bernoulli-Euler predigier (v = 0).
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Fig. 6.Influence of g/h on the normalized deflection, /w,, at the free- end of a cantilever beam

with L/h=3, v =0 for the gradient Timoshenko prediction.
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Fig. 7.Influence ofg/ L on the normalized shear deflectior, /w
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Fig. 8. Comparison of the finite element analysis results (plane-strainQ) for the 2D gradient

model by Giannakopoulos et3lwith the gradient Timoshenko (L 4 ,2 = 026) and gradient

Bernoulli-Euler beam predictions.

Next, the variation of the axial and shear strains along the length of the beam is considered.

The axial strain at the extreme fiber of the cross-seetjonis:
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x @/ (éL/( + eZ(x/L)(L/())

oY 1_I_ 1+ et
€x (x) = go(aj AR (ez(x/L)(L/() _1) (29)
L 1+ et
whereg, is the maximum strain as predicted by classical Bernoulli-Euler beam analysis and is equal
to:
PL
€y = W (30)
The shear strain,, is:
@2LIg)H(x/L)(LIg) | g(x/L)(LIQ)
e +€
¥xz (X):YO 1- 1+ e2|_/g i| (31)
wherey, is the shear strain as predicted by classical Timoshenko beam analysis and equal to:
P
Yo = KAG (32)

The normalized axial straia,, /¢, is plotted vs. the non-dimensional distaxde. in Fig. 9
for the gradient Timoshenko beam for different values of the normalized pargiieteand
L/h=3, v=0 (the diamond symbols correspond to the classical Bernoulli-Euler beam predictions).
The solution for small values of g/L approaches asymptotically the classical Bernoulli-Euler

prediction €,, —¢&,). As g/L increases the departure from the classical solution becomes more

significant (,, — 0). As observed in the gradient Bernoulli-Euler solution, the maximum strain
does not occur at the fixed end of the beam (see Fig. 3 in Giannakopoulos and Sfmoulis
However, unlike the gradient Bernoulli-Euler solution, the gradient Timoshenko beam has

approximately zero axial strain at the free end, even for large values ofg/L. The fact that the
maximum strain does not occur at the clamped end of the beam is due to the imposed boundary

conditions,\|f'|X:0 = 0. Actual measurements of strains on the microcantilever’'s clamped end, to the

best of our knowledge, do not exist in the literature. Such measurements are hard to obtain due to the
scale of the problem. A definite answer on whether a boundary layer exists is an issue still to be
explored. However, it is interesting to note that recent fatigue tests on microcantilevers with

dimensions comparable to the dimensions of the microstructure have shown that the fracture location

does not occur at the fixed eRAd*3*of the cantilever. On the other hand, a fatigue test on
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microcantilevers with a fully homogeneous microstructure results in a failure at the fixed end of the
beant®3¢

The normalized shear strajn, /y,, is plotted against the non-dimensional distaréé in
Fig. 10 for the gradient Timoshenko cantilever beam for different values of the normalized
parameteg/ L (diamond symbols correspond to the classical Timoshenko beam predictions). The
solution for large g/ L values approaches asymptotically the classical Timoshenko beam predictions
(v, = 7,)- This is the opposite to what was observed for the normalized axial strains. For very
small g/L values shear can be neglected (> 0), but, as it was pointed out above, it does not

mean that the gradient Bernoulli-Euler solution is recovered. Furthermore, as g/L increases, shear
becomes important, which is true when the slenderness is decreased or when the microstructura

average scale is of the same order of magnitude as the dimensions of the beam.

1
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g/L=0.01
c
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Fig. 9.Influence of the normalized parametgtl. , on the normalized axial straia,, /¢, , along
the length of a cantilever beam with= a@d L/h= 3
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Fig. 10. Influence of the normalized parameggt, , on the normalized shear straip,/y, , along
the length of a cantilever beam with=0 and L/h= 3

Indeterminate beam: beam with both ends fixed

Little attention has been given to the solution of statically indeterminate structural problems within
the framework of gradient elasticity. In order to demonstrate how the gradient Timoshenko beam
solution can be applied to such problems, a beam of span L and both ends fixed loaded by a point
load P at midspan is considered, as shown in Fig. 11. It is noted that this beam configuration can be

found in nanoscale elements (see Salvetat%Niland LP9).

L/2 . L/2

BT -

w,Z

Fig. 11.Beam of span L with both ends clamped loaded by a point load P at midspan.

Making use of the symmetry of the problem, only half of the beam is modeled. The boundary
conditions at the fixed end at the left support are:

w(0)=0, y(0)=0, awl - _g, dv

=0 33
dx|, o dx (33)

x=0
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The 4 additional conditions in order to define the solution at midspan are:

dw

o v
dx

x=L/2 dX

Q(L/2)=-P/2, y(L/2)=0, =0, (34)

x=L/2
The conditions at midspan imply that the beam is in essence fixed but allowed to deflect

vertically. The coefficients for this case are:

c - P . - Pe-'% o - PL d - PL(
t2KkAGdlret®) TP XAGg+et®)’ T 2kAGT ' gEId (1-e')

P
C, = 8I(k+v )d — 8e/% (1+ v)g® + KAL/* (L+ e“'%)), 35
e ngI(1+emg)( @ v )g 1+v)g (1+e"'™)) (35)
_ Puet’” PR E* +)) _ PLOA L+ 20%)
? BElf (1-e“'*)" 7 &EIF €'¥ -1 8Elg?

The plots and details of the solution will not be repeated here as in Section Ill.1 since all comments
and remarks hold true regardless of the loading and support conditions. The prediction for the

maximum deflection at midspan will be simply presented as:

0)1+e""*
T e (e 1-eti
wy, (x=L/2)= - g | 1+ A(QJT (36)
1921\ g 4[@} 1+ 26429 | 4KAG L )1+e"'
+24 — | ——
L) l+e''™®
In the limit, g— O, the classical Timoshenko beam solution is recovered:
PL® PL
Wy =w(Xx=1L,g=0)= + 37
o =W 9=0= 10261 * kac (37)

If, it is also true thas — o , the classical Bernoulli-Euler solution, *PL /(92f)obtained.

4. NON-LOCAL TIMOSHENKO BEAM MODELS
It is interesting to compare our solution with other gradient Timoshenko beam solutions available in
the bibliography. Non-local Timoshenko beam models have been proposed by Lafn Mt adt
al2’, Wang et af4, Asghari et af® and Lazopoulos and LazopowulasAn epoxy beam with material
properties, £ 144GPav = 038and g 17.6.mis considered as an example. The beam’s length,
width and height are £ 1Ghb= 2hand h= 2g, respectively. The applied load B=50uN . Note
that most of the above authors have considered a similar case of a simply supported beam loaded b

a point load at midspan. The maximum deflection of the cantilever beam is equal to the maximum

deflection of a simply supported beam if we set the applied load and span of the simply supported
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beam to be double of those for the cantilever beam (i.e. for the simply supportedPee00uN

and L= 20h). Itis noted that only Lam et 3l Asghari et af® and the present work have solved the
problem in closed-form. The other works use Fourier series to describe the solution to the problem.
The normalized maximum deflection predictions for each model are listed in Table 2.

All models assume the same Timoshenko kinematic assumptions and all can capture the size
effect in stiffness. As it can be seen in Table 2, dipolar elasticity models give stiffer response than
both the micropolar and couple stress models, as they should. Furthermore, micropolar elasticity
models give stiffer response than the couple stress models, as expected.

Two other Timoshenko beam models have been reported by Lazopoulos and LaZdpoulos
and Wang et &? using the same dipolar strain gradient theory. In particular, Wang“aissd three

material lengths (,,/,,/,) that are taken equal in their numerical examples. Lazopoulos and

Lazopoulo$® have correctly used the principle of minimum potential energy and have come up with
4 boundary conditions (BC), as in the present work. However, instead of enforcing M anthé®
hinge supports, they useg =y'= (3ee the recommendations of Table 1 and Egs. (25) in
Lazopoulos and Lazopoufds

Although the variational principle allows their choice of these BC’s, a hinge support implies
absence of bending moment and, in the case of a gradient beam, absence of double bending mome

as well, something which is not satisfied by choosing y' = . 10 the case of Wang et4.in

their minimization principle, the term associated with, was attributed to the work done by the
bending moment M and not by the double shear forces Y, as has been also done in this work.
Actually, they do not prescribe at all the double shear force quantity in the expression of the external
work done and, by doing so, the tefy in the strain energy has no equivalent in the expression of
the external work (see Egs. (27) and (30) in Wang &).al is believed that since the inclusion of

axial stress gradient results in double bending moment, the inclusion of shear gradients should result:
in double shear forces. Furthermore, double shear forces should be treated as a separate quantity
the classical bending moment, although their dimensions are the same. For this reason, although thei
formulation requires four (4) BC’s, one of them, i.e. the BC steaming thoms suppressed (see

Egs. (35) in Wang et &f). Regarding their choice of BC's, they assumed the same BC’s with the
couple stress model of Ma et?4].but this is possible for the particular choice of the Fourier series

expansion fow andy that was assumed in their work.
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Next, the three works (present, Lam ef alnd Asghari et &) that solve the problem in
closed-form are considered and their predictions in the case of a less slender beam are compared. T

same example as before is considered but for a length=08h. The w ,/w, ratio for the three

models becomes 4.42, 2.19 and 12.35, respectively. Assuming a slenderness value equal to one-ha
of the original value didn’t affect the Lam et%gbredictions since this model accounts only for the

influence of theg/h ratio. If g/h is kept the same, any changes in the slenderness of the beam will

not affect the Lam’s prediction. Both, the present and the Asghari?&taidels predict higher
flexural stiffness values than the classical model. However, the Asgharf®maldel predicts
surprisingly high increases in the stiffness values, since it predicts that the stiffness for g/L=0.1 is
eight times that for g/L=0.05.

The aforementioned comparisons assumed the same value for the internal length. Clearly, all
theories can be forced to give the same stiffness, if the material length is taken appropriately. How
appropriate each theory is depends on the material system. Consistency for a theory requires testin
independent beam configurations for the same material. To the best of our knowledge such tests dc

not exist.

Table 2. Maximum prediction values for different non-local Timoshenko beam models for the case
of an epoxy beam (internal length is assumed the same in all cases).

Non-local Timoshenko models W, /Wgr
Dipolar elasticity

Proposed model 412
Lazopoulos and Lazopoufés 3.85
Wang et aP 3.00
Micropolar elasticity

Lam et aP 2.19
Couple dgress elasticity

Ma et al?’ 1.58
Asghari et af® 1.59

5. EXPERIMENTAL EVIDENCE ON MICROCANTILEVERS
In this Section, experimental results on microcantilevers available in the bibliography are used in
order to explain the size effect observed. Furthermore, the predictions of the present model for the
microstructural length are compared with the predictions of micropolar elasticity in order to illustrate

another import issue concerning the validity of non-local models.

Micropolar elasticity predicts that the stiffness of a cantilever be#nf;dP/dwgr , is:
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b, )
K =K1+ (Tj (38)

where K is the classical prediction ar‘ﬁnL is a length parameter equal to:

B® = (L06-154v))° (39)
where) is the micropolar elasticity length, if all the material length scale parameters are assumed to
be the same.

McFarland and Coltdd tested polypropylene (PP, Basel/Montell ProFax 6323)
microcantilever beams manufactured by injection molding with two different mold geometries and
compared the measured stiffness of the beams. The geometry of the microcantilevers and the

experimental to classical model stiffness ratio vakigs/ K, are summarized in Table 3. The last

cl?
two columns of Table 3, list the internal length estimate according to the gradient Timoshenko beam

solution and micropolar elasticity, respectively.

Table 3. Geometry and results for polypropylene microcantilever tests by McFarland and€olton

E v L b h Kexp/ Kel 9@ L O
(GPa) (um) (um)  (um) (um)  (um)

3.3 0.3 836 125 29.37 5.075 16.87 24.24

3.1 ' 398 123 15.85 4.347 8.23 11.86

@ strain gradient Timoshenko solution
®) micropolar elasticity solution

Lam et aP tested epoxy polymeric (Bisphenol-A epichlorohydrin resin with 20phr
diethylenetriamine hardener) casted microcantilevers of the same slenderness ratio and four differen

thicknesses. The geometry of the microcantilevers and their stiffness Katjdx,, are

cl?
summarized in Table 4 (Fig. 12 in Lam ePjalThe last two columns of Table 4 include the gradient
Timoshenko beam and micropolar elasticity internal length estimates. The proposed model predicts

an internal length value of 6.73 £15#hwhile the micropolar elasticity a value of 10.61 +1/%

Table 4. Geometry and results for the epoxy polymeric microcantilevers tested by Laf et al.

E h Slenderness g®@ A ©
\Y K / K
(GPa) (um) Lih PRl um) )
20 2.357 6.41 9.53
38 1.321 572 8.80
1.5 0.3 75 10 1.143 7.27 11.60
115 1.071 7.51 12.53

@ strain gradient Timoshenko solution
®) micropolar elasticity solution
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Ding et al® tested LPCVD polysilicon microcantilevers with constant thickness and varying
the L/h ratio. Based on these flexure tests they derived an estimate for the modulus of elasticity, E,
using classical elasticity. However, in a separate p4pke same authors tested the same material in
tension and found a different value for the modulus of elasticity. The modulus of elasticity estimate
derived by the tension experiments was used in this work to interpret the flexure experiments and it
was found that the beams exhibit a stiffer response than that predicted by classical elasticity. The

geometry of the microcantilevers and their relative stiffnésg ( K,) are summarized in Table 5.

The last two columns of Table 5, list the estimates of the internal length obtained from the gradient
Timoshenko beam solution and micropolar elasticity, respectively. Our model predicts a value for the

internal length of 0.29 +13%mwhile micropolar elasticity predicts a value of 0.42 +14%6

Table 5.Geometry and results for the LPCVD polysilicon microcantilevers tested by Din§ et al.

E© L b h g® A®
\Y Kexp/ Kl

(GPa) @m  (wm)  (um) P (um) (um)

16 50 1.215 0.278 0.425

34 40 1.209 0.295 0.413

164 023 4 40 24 1.154 0.248 0.354

18 10 1.276 0.324 0.475

@ strain gradient Timoshenko solution
®) micropolar elasticity solution
© derived from tension experiments (see Ding &f)al.

Hong et alt* tested Cu microcantilevers keeping the same width and varying the L/h ratio.
They also used the flexure experiments to derive an estimate for the modulus of elasticity, E, using
classical elasticity. Hunag and Spaeffezonducted uniaxial tensile experiments on thin Cu films
and reported a Young’'s modulus value. The value based on the uniaxial tests was used in this work
and the experimental stiffness reported with the one predicted by classical elasticity were compared.
The geometry and the relative stiffndsg,,/ K ,, of the microcantilevers are summarized in Table 6.
The last two columns of Table 6, list the estimates of the internal length obtained from the gradient

Timoshenko beam solution and micropolar elasticity.
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Table 6. Geometry and results for the copper (Cu) microcantilevers tested by Hort) et al.

E© L b h g®@ )
\Y Kexp/ K¢l
(GPa) (@m)  (um)  (um) P (um) (um)
129 50 10.5 1.021 0.361 0.630
102 0.31 104 50 2.8 1.177 0.351 0.497

@ strain gradient Timoshenko solution
®) micropolar elasticity solution
© derived from tension experiments (see Huang and Sp®epen

Obviously, all non-local theories can predict a microstructural length and the magnitude of
this length will vary depending on the theory used. Nevertheless, consistency of a theory requires this
prediction to be the same for different geometries but for the same material. Both non-local theories
predict an average value with approximately the same error. Furthermore, both theories are able tc
explain the size effect measured in the experiments, and quantify the departure form the classical
elasticity predictions. The main difference is in the magnitude of the internal length predicted by the

two theories. The micropolar length is approximately 50% greater than the dipolar lergitbg ).

As mentioned in the introduction (Section Ill.1), the microstructural length parameter is
associated with the microstructure of the material in an average sense. In other words, the exac
physical correlation between the internal length and the dominant feature of a material’'s
microstructure is a topic still wide open. The simplest correlation would be for the internal length to
be equal to the size of the dominant feature of the microstructure. From the experimental results
presented in this Section, only Ding et® grovide information about the microstructure of the
material used in the experiments under flexure (grain size of polysilicon in the ordenaf)0.Bhe

present model predicts an internal length value of 0.29 £18% whereas micropolar elasticity
predicts a value of 0.42 £144mn. It seems that the proposed model successfully predicts the size

effect dependence on the microstructure’s scale in this particular case. Concerning the other three
experimental works, information concerning the microstructure is not provided by the authors. The
predictions of both theories fall within the typical range of values for the microstructure scale for
these materials. In the absence of the explicit information for the material used in the experiments, no
conclusion can be made on which theory is more accurate.

The correlation between the dominant feature of the microstructure and the internal length
may be more complex. For example, size effect has been also observed on ZnO nanobelts with the
structures being stiffer as the diameter of the cross-section decreased from 40 nm .10 nm

Although the ZnO nanobelts are single crystalline (quartzite-structured) and can be seen as
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homogeneous materials, their source of size effect is somehow geometric. Essentially, as the scale
decreases, the surface-to-volume ratio increases considerably and this results in more atoms being ¢
the surface than in the bulk. When deformation occurs, the surface reconstruction affects the
mechanical properties of the nanowire. This was sufficiently explained by molecular dyfamics
simulations, but can be equivalently explained in the context of gradient elasticity, if an internal
length is assumed. Obviously this line of thinking is rather speculative at this point, but as structures
are pushed to the limit, surface effects could provide explanation on why materials that are
homogeneous in the atomic level will exhibit size effects.

Finally, the difference between the predicted internal length values leads to another important
observation regarding the limitation of both theories. Although the formulae allow for any value of
the internal length, it is tacitly presupposed that the microstructural length is of the same order or less
than the dimensions of the cross-section, otherwise the assumption of a continuum is compromised.

In other words, the prediction must satisfy tlgth or A /h is less than or equal to 1. Son efal.

performed cantilever flexure tests on thin films of aluminum and gold with grain size to thickness
ratios close to 1 and in some cases greater than 1. In this extreme limit, it is questionable whether
isotropic gradient theories are still applicable. Micropolar elasticity reaches this threshold for smaller

stiffness rations than the present strain gradient Timoshenko model.

6. CONCLUSIONS
The governing equations and boundary conditions for the proposed model were derived for a strain
gradient Timoshenko beam using a simplified (dipolar) strain gradient theory assuming only one
additional material length. The problem was solved in closed-form and a methodology was described
for solving more complex beam problems, i.e. indeterminate beam configurations. This model
reduces to the gradient Bernoulli-Euler solution and to the classical Timoshenko solution, when the
necessary simplifications and limits are considered and also is in good agreement with the 2D finite
element model. Furthermore, the proposed model was used to interconnect the size effect observed ii
experiments of microcantilevers, obtaining good results regarding the material length. Finally, the
proposed model was compared with the micropolar elasticity model and it was found that both can
capture the size effect in a consistent manner, while the proposed model predicts approximately 50%

smaller values for the internal length than that predicted by micropolar elasticity.
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CHAPTER IV
A GRADIENT ELASTO-DAMAGE MODEL FOR SEMI-BRITTLE

MATERIALS WITH EVOLVING INTERNAL LENGTH —
BEAMS UNDER 4-POINT BENDING

1. INTRODUCTION
The aim of this work is to present a new approach which is based on a strain gradient damage
constitutive law for modeling semi-brittle materials and composites. There are two reasons that
justify such an effort. Materials which exhibit strain softening are size sensitidetheir inelastic
response manifesting itself through microcracking should be described using a non-local imodel
other words, a length parameter is necessary not only for modeling any size effect present but also
for ensuring that damage is not localized. A strain gradient theory can include such a length
parameter and can address these issues in a physically consistent manner. Gradient theories can als
address the issue of size effect in elasticity.

Elasticity and inelasticity for the case of softening materials are coupled by the very nature
of the problem since damage is defined as a loss of the initial (elastic) stiffness due to material
degradation. In this work, a weak type non-local formulation based on strain gradient elasticity is
used and damage is seen as a process affecting the gradient internal length.

The first issue addressed is whether the gradient internal length should evolve with damage.
A constant internal length is assumed by a number of existing non-local damage 2bries
there is strong evidence that this length is not constant. Geer&®afoakidered a finite element
formulation of a gradient damage model and concluded that an evolving internal length with an
upper bound limit is necessary in order to predict a damage zone of a finite width. Pijaudier-Cabot
et all’ used acoustic emission experimental results and micromechanical arguments to justify that
the internal length increases with damage starting from an initial value. Aggelis and $hidtani
considering Rayleigh wave propagation in cementitious materials with thin inclusions simulating
prescribed levels of damage, found increasingly stronger dispersion of the Rayleigh waves with
increasing damage. This, in the context of a gradient elastic damage model, can be explained by
assuming an internal length increasing with darffage?! and Li et af? arrived at the same
conclusion by using a homogenization procedure in order to derive a strain gradient constitutive law
for the case of linear-elastic materials with microcracks. In the present work, a thermodynamic

formulation is employed to confirm this. However, it has been shown that, based on
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thermodynamic® and experimental evidence on aluminum and nickel micro-brféathis length
should decrease with accumulated plastic strain. This is due to the inherent differences in the

physics of gradient plasticity and damage theory (see Fig. 1).

»Cel 777777 S

\J

(allasticity (Wamage

Fig.1. Stress-strain diagram illustrating a loading-unloading cycle: (a) plasticity addr{lajge

(“el”, “pl” and “d” denote elastic, plastic and damage, respectively).

2. THERMODYNAMIC FORMULATION

A thermodynamic formulation of a classical damage model based on the Helmholtz free energy was
proposed by Mazars and Pijaudier-C&hdWlurakami and Kamiy®, Wu et ak’ and many others.
However, in the present work, the approach of &rbased on Gibbs energy is followed (implying
isothermal conditions). Ortiz’'s model for concrete was extended to include strain gradient effects by
employing a simplified model with only one length parameter, g, which is the simplest case of
Mindlin’s?® Form Il strain gradient elasticity theory.

Gibb’s energy density for isothermal process within the framework of strain gradient

elasticity in a Cartesian frame() is:
G=1T1C1T+17\..'.BZQ\.—AC 1)
2 2
wheres(7;) is the Cauchy stres§; (Cy, ) the 4th-order elasticity tensdt(1;, ) the double-stress

taken ash =gVt (A =9°0t; /X, ), B the 4™order tensor taken &8 = (1/g*)C and A°the free
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energy density for microcrack formation. The symbols () anjldenote the two- and three-index

product, respectively, i.e. (B:A)y =By hgms A Bih =k By A (Cx); =Cy T

jmn jmnokmn »
1:C:1=1Cy 1y, and repeated indices imply summation from 1 to 3.
The stress-strain relations corresponding to Gibb’s energy density (Eqg. (1)) are given by
£=0G/0r=C:t=¢"+¢andk=0G/0h=C:Vt=Ve=V(e°+¢'), where g(g) is the
infinitesimal strain tensor and = Ve («,; = d¢;/0x, ) the strain gradient8order tensor. Also, the

total stress isc=1-VA=1-g°V?t. The equilibrium equations and the kinematic boundary
conditions originating from the total stress expression can be found in Georgiadis and Gréntzelou
The stress-strain time rate relations are given hy=C:1+C:t=¢°+¢ and
k=Vi®+Ve =k°+Kk', where ()=0/6t and the superscript “e” and “i” denotes the elastic and

inelastic rate of deformation due to degradation of the elastic material properties, respectively.
Microcracking can be physically viewed as added flexibility to the initial flexibility of an
uncracked material. Following Ortfz the elastic compliance tensor is taken as a characterization of
the state of material damage. Therefore, the elastic compliance can be described by an additive
formulation:
C=C’+C° 2
where C° is the elasticity tensor of the uncracked material initially assumed as isotropie’ dad
the added flexibility due to microcrack opening under the current applied stress field.
In essence, the inelastic flexibility is the sum of the initial plus the additional flexibility due
to the presence of distributed microcracking in the material which is justifiable in terms of the
softening and is in line with self-consistent calculations of the overall elastic compliance of elastic
media with distributed crackidg®’ Hence, the total strain and strain gradient due to cracking can
be written as:
e=(C°+C%):1=2"+¢° 3)
k=Ve®+Ve® =k’ +xk°
Opening and closing of microcracks
Cracks in concrete, as well as in other quasi-brittle materials, can develop even under compressive

stress conditions. Also, opened cracks can close and not propagate further. The closing of cracks
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and the resulting stiffening of the material explains the characteristic S-shaped hysteretic loops that
for example are observed experimentally in flexural members subjected to cyclic loading.

In order to mathematically model opening or closed microcracks, the positive and negative
orthogonal projectiong®”and P~ of the strain space onto the positive and negative c@iesd
C are introduced. This operator assigns to every state of strais point P'sand P ¢ on

C*"andC", respectively. If:®and d®( a= 1,2,3) denote the eigenvalues and eigenvectors of the

total straing , respectively, so that; = >c®d®d® , then, the positive projection afis given by:
a=1

P'e), =¢; :§l<s(a)>di(a)dj(a), where <x>:(x+|x|)/2 is the Macauley bracket, and the negative

projection isP~ =1 — P (I =identity tensor).
For a given state of stressconsistent with the closing mode of microcracks, the following

minimization problem must be satisfied:
—C 1 .
minimize:%s:(C%C ) :g-1:¢ subjecttoe*@ >0 (4)

where C’ is the added flexibility due to opening of all microcracks afffl are the eigenvalues of

the inelastic straing® =¢-C°: 7. For a given state of stress gradi&ht, the minimization problem
is:
o 1 —c |1 .
minimize: EVa (CO +C'] :Ve-Vr.. Ve subject to:Ve*®@>0 (5)

The solution to problems (4) and (5) can be approximated respectively as:

£~C%:1+P*(C :1") andVe~C°:Vt+P*(C : (V1)) (6)
where 1, = P' (t; )= §<r(a) >qi("")qj(""), t®and q® the eigenvalues and eigenvectors of and

a=1

(Vo) = §(6<r‘a)> /10X )+qj(a)qf‘) (for Eq. (6a) see Orttd). In order the stress-strain relations are
a=1

consistent with Egs. (6), thesf =C°:1=P*(C :1*) and Ve*=C°:Vr=P*(C":(V1)*) should
hold true.

Finally, the added flexibility tensor due to the opening of microcracks can be approximated
as:

C=P:C:P ( Cia = Pimn C mopaP" paia ) ()
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Recalling also that” = C°: 1, the positive and negative strain projections based on the positive and
negative stress projections can be approximated Rigs®) =P’ (Ec P* ('r)): P*(EC :'r+)

andP (g°) = P’(C_Zc ; 1,-’), respectively.
To further illustrate the necessity of the above mathematical manipulations, a microcrack
normal to a unit vecton is considered. Any stress acting upon a planar microcrack can be analyzed

in any of the four possible loading configurations depicted in Fig.2. Cases (b) and (d) refer to
nonzero positive projectionstE& ") while cases (a) and (c) to nonzero negative projections
(t=17"). The orientation of the stress in cases (b) and (c) is normal to the crack plane, that is

n-t"-n=0 and n-t~-n=0, respectively, preventing crack propagation. Therefore, microcrack
opening occurs due to a tensile stress in case (d) and a compressive stress in case (a). These tw

cases correspond to a tensile and a compressive opening mauae E, respectively. Thus, the
added flexibility tensor due to microcrack opening can be decompogecd:zi_ﬁCT +6|CC , and the

inelastic deformation due to microcracking can be expresszéd:a$r +st. Microcrack opening

under moded and t implies that::«:fT > Oand sfc <0, respectively.

Summarizing, the Gibbs energy becomes:

l‘lr:CO :1'+£1'+ :Cip i1’ +11'7 ‘Cle i1 +
c=12 2 2 )
1 2y, . 0. 1 2 + . RC . + _pC
2g Vt..C .V‘t+zg (V)" -.Cir (V1) -A
It is true that the stress gradient in Eq. (8) induces only modeatk opening since there are no

terms of the typ&vt) . This is further clarified in Section IV.3.
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(a) v ()
(©) (@

Fig. 2. State of microcracks: (a) and (d) opening mode; (b) and (c) closing mode (Ortiz, 1985).

Damage rules

The evolution of the tensorial damage parameéZ&(Eq. (2)) can be described based on the

evolution of C¢ according to a damage rule of the general f@f- é,CT +€,°C (Ortiz?®) with:
E|CT =pR,, () andE|cC =[R, (1) 9)
whereR,_(t), R, (r)are material response functions™@rder dimensionless tensors) which

determine the direction in which damage should occur @n an internal scalar parameter

(dimensions “arealforce”), which may be regarded as a measure of the cumulative damage resulting
in a decrease of the unloading elastic modulus. In plasticity theory, the paramesembles the
accumulated equivalent plastic strain. A localization analysis for the case of uniaxial tension is
included in Section IV.5, where it is shown that the proposed non-local model leads to objective and
mesh-independent results if used in a FEM analysis.

Initially, the material is assumed to be uncrackgé Q) and initial conditions reign. The

proposed damage rules presented include only the Cauchy (local) part of the total stress. The
proposed model will be calibrated through experimental strain data and hence the damage rules will
be associated with the energetically conjugate quantity of strain, that is the Cauchy part of the total
stress. It should be emphasized that this assumption has a physical justification since the damage
surface of a quasi-brittle material is established through experimental results of uniaxial tests and in
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the case of uniform loading there in no gradient effect. The choice of local stress in Eq. (9) can be
further justified from the work of Simone et *Al.who showed that the use of a non-local
dissipation-driving state variable (i.e. the total stress or total strain of the gradient formulation) leads
to an incorrect failure characterisation in terms of damage initiation and propagation ahead of a
macro-crack. In the proposed approach, the inelastic strains are used for the tensorial
characterization of damage. A similar approach was used BY, Buioducing a mixed (local and
non-local) formulation for damage characterization.

The irreversible character of damage necessitatesthkad,. The conditiong > 0 refers to
active damage mechanisms, whjle- Orefers to elastic behavior. Thereforig, (r)and R, )

must be positive definite. Furthermore, the internal length of the material, g, is assumed to be a
function of the damage level, thatgis g(u), and the rate of change of the internal length is,
g=(dg/dy).

It should be emphasized that the present work is based on gradient elasticity, while
inelasticity (damage) is treated as a process affecting the parameters of gradient elasticity, the
internal length and the classical elastic propeitida this thermodynamic formulation there are
two internal variables, the damage paramatemand the internal lengthg, with a constraint
demand for the internal length to be a function of the damage parameter. Based on these
assumptions, the energy density dissipation inequality (see Eq. (1)) can be expressed as:

d :%17 .Ct:t +%92VT . C°:V1 +%(gz)(w)+ A C i (VT) —A°>0 (10)

where d signifies the rate of energy dissipation density.

Substituting Egs.(9) in Eq. (10), the rate of energy dissipation becomes:

%f ‘Rt +%1¢‘ ‘Rt +%92(VT)+ SR, (VT)'
d= d B n—-A°>0 (11)
g8 (vr) . C 1 (vVa)*
du

The rate of energy dissipation should be positive according to"thkav2 of thermodynamics.
SinceR, , R,_, C/ andC] are positive definite and >0, it follows that
dg/du>0 (12)

is true. This shows that if the internal length is allowed to evolve with damage, then it must increase

or remain constant with increasing damage.
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The inelastic free energy density,, associated with microcrack formation is a function of

u. The rate of the free energy coincides with the energy release rate per unit microcrack length.

Using a micromechanical model of fracture, as a justification (see Section V.3 for diluted

microcracking), the rate of the inelastic free energy is defined as:

Ac=p 3 =(Et(u)2 +3[@a(u)j Ju (13)

du |2 3\ oo

where t(u)is a critical stress for damage extension ands the direction normal to the critical
stress (along the microcrack). Note tlaén) Is half the microcrack length and Eq. (13) requires two
tests: a uniaxial testf(u) /0w = 0) to establisht(u) and a pure bending test to estabdigh)/ow .
Substituting Eq. (13) into Eq. (12), it yields:
1

§T+ ‘R, 17 +%‘r" ‘R T —gt(u)2+%gz(Vr)+ ~R (V)T

d= g 10 at) » >0 (14)
g + . S + Y
+g—(Vr)" .C (V)" -=| —=
9, (VD' -C (V) 3( = a(u)j
Since >0, Eqg. (15) necessitates:
%T+:R,T:r++%r:Rlc:r—gt(u)zzO,and (15a)
2

1gZ(V‘r)+ SR (V) +g%(V‘r)+ ~.C: (V)" -E(wﬁ(u)j >0 (15b)
2 T du 3\ do

The effects of stress gradient and damage which influence the inelastic response can be treated
separately in Egs. (15a) and (15b). Eq. (15a) corresponds to the caseOofand Eq. (15b)

addresses the influence of the internal length, g, and consequently of the stress gradient. In the
absence of the stress gradient effect in Gibb’s energy, Ortiz’s fAiatcovered using Eq. (15a).

Next, a stress function F is defined, in the form:

1 . L1 .
F(r):zr ‘Rt +§1- ‘Rt =R, +F, (16)

‘R, ‘R,
Substituting Eq. (16) into Eq. (15a), a damage funchias obtained as:
@ (t,n)=F(1) _gt(“)z >0, (17)

and if inequality in Eq. (17) is not satisfied the material behaves elastically. Also, for further

damage to occur, the equality must be satisfied in expression (17) (see Fig. 3). Therefore,
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F(t)= (n/2)t(n)* defines the elasto-damage boundary in the local stress space. Thus, the onset of

damage is characterized by the criteria:
@ (1,1) = F(1) —%t(u)2 -0 and(0® /ot) 1 = (OF/8t):1 >0 (18)

These relations imply that for further damage the stress point must lie on the current damage surface
and the stress increment must point outwards of the elastic domain. A stress point inside the current

damage surface will imply gradient elasticity.

I

t(u g =p' =
ext(y) \< 7

Elastic region t(w)
(No damage)

Damag @ (r,n)<0

surface

cxt(n)

Fig. 3. Damage surface and damage criterion in the local principal stress space.

Associated damage rule

The damage rule is associated, if the following relations hold true for the damage direction tensors:
_ __ R
T vttt ' oot
This assumption reduces the calibration to the determination of the scalar functions F rather than the

R (19)

tensorial quantitie®R,_andR, _ . Furthermore, the inelastic strain rate tensor due to damage is:
¢ =Crt=C":1 :(P+ . C°: P*):rzp(R,T T HR, :r’) , (20)

which, using Egs. (19), can be written as:

g L[OR. OF,
g =L to

! j =noF/ ot =pod/ ot (21)

ot

Eq. (21) implies that the inelastic part of the strain rate tensor points outwards and in a normal
direction to the damage surface (see Fig. 3). In the context of a rate independent damage

formulation, as suggested by Ortiz (1983), it is true that
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|:‘t+®‘t+ andR _C‘r_®17_
To(ttith) (7 :1)

R o =
where gis the “cross-effect” coefficient governing the level of damage under compression

(22)

(c. =0 for no cross-effect)(x® 1), =17, the dyadic product tensor aift: ) = 7, 7; the trace of

the (t®1) tensor. The value of the critical streigg) and the “cross-effect” coefficiente, can be

determined from uniaxial test results. Then, the damage surface simplifies to:

®=%1+:r++%cer":r_—gt2(u) (23)

It is worth noting that according to the present approach since the effect of microcracking is
directly linked with the elasticity tensor, an initially isotropic material would become anisotropic
with damage. In the case of non-associative damage evolution and/or initially anisotropic elastic
behavior, as observed in rocks, microcracking may not occur along the principal stress trajectories

but localizes along specific weak surfaces in the matéridiny existing directionality of

microcrack opening, can be included in the response funcRorend R, _.

3. ENERGY DISSIPATION DURING MICROCRACK EXTENSION
Two 2D isotropic cases are considered, as shown in Fig. 4. Case (a) depicts a microcrack subjected
to a uniform tensile stress and case (b) a microcrack under a stress gradient. The model predictions

in this study do not assume interaction between the microcracks and elastic anisotropy.

y
7 7
() (b)

Fig. 4.A crack with a length of 2a under: (a) uniaxial tension and (b) pure bending.

A
U A

For a crack of length 2a, loaded by a uniform tensile stregs shown in Fig. 4(a), neglecting

mode Il the stress intensity factors for modes | and 11%areK, =t/rasin’¢ and
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K =1tym asinpcosp, and the energy release rate ds: (K|2 + KHZ)/E*, where E" = E for plane

stress andE" = E/(1-v?) for plane strain, E is the elastic modulus aride Poisson’s ratio.
The crack can occur at an arbitrary angle valpassuming the same probability of

occurrence at all possible angle values. Therefore, the 2D average energy release rate per unit

microcrack length extension, is

dG\ w17, nt?
— )= — | sin = 24
<da> E*njz (oMo =—— (24)

Where< > denotes the average of the quantity enclosed in the brackets.

For a crack of length 2a, under pure bending, as shown in Fig. 4(b), the stress intensity
factors for mode I and 1118 K =(d /dy( 2a/3**sin®(¢p) and K= (d /dy)(2a/3}? sirt ¢ }cosE)

respectively. The average 2D energy release rate per unit microcrack length, a, for all possible

angles, is:

23 foreom-2 {9

-n/2

Crack propagation under a non-uniform stress field has been considered by St&flgnchssed
by Huang and Detourn&yto improve the accuracy of crack propagation predictions in quasi-brittle
materials subjected to an indentation.

Damage can be introduced in different ways depending on the damage parameter definition.
The damage parametgr, is associated to the damage parameter D through Eq. (31) and
differentiating both parts yields:

_dD
~ (1-D)?

d(E" ) (26)

Accounting for the effect of damage on the Young’'s modulus, the free energy density

required to form microcracks should be:

A=t <d—G> (27)
1-D\ da
Thus, the energy dissipated during microcrack propagation is:
dA, 1 2<dG> (28)
dD (@-D)°\da

Making use of Eq. (26), the energy dissipated during crack propagation can be expressed with

respect touas:
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= (1-DYE e =E
du dD

da

dA, dA *<dG> E‘EZ—F:—L(%ajZ (29)
2 3\ dy
Obviously, the crack length, a, and the internal length, g, are a function of the damage
parameter. Therefore,g= gu)=y @) anda=y™"(g)=&(u). It should be noted that a stress
gradient cannot induce crack opening under a compressive mode (see Fig. 4). The stress gradient is
essentially a bending moment and thus, one-half of the crack length will be under a compressive
stress and the other half under a tensile stress. The latter corresponds to a tensile opening mode |

whereas the former to case (c) of Fig. 2, which does not induce crack extension.

4. APPLICATION TO PLAIN CONCRETE
The proposed model is applied to plain concrete beams subjected to 4-point bending, with damage
occurring in the middle part of the beam subjected to pure bending, where since axial normal
stresses are principal and a uniaxial law for the concrete is assumed to be sufficient for damage

characterization.

Uniaxial Response

The uniaxial response of plain concrete under tension or compression is assumed to be of the form:

T, = Eye,, for g <gg, and,t; = (1- D, )Egg; ::LE';igi,forsi > g, (30)
+ B

where E,, is the Young’s modulus of elasticity of the uncracked mategjalthe strain value
depicting the end of a perfectly elastic response and initiation of damagde, giaiimensionless),
u, (stresd) are two equivalent damage parameters. The indeg,t is a subscript denoting
compression or tension, respectively.

In a thermodynamic formulation,u is used to avoid imposing the additional
constrainD <1. However, both damage parameters can be used, since:

1
1+ Ep

D=1- (31)

It is obvious from Eq. (31) that i =0, then D=0 and if u —» «, then D—1. In other words,

both u and D describe the initiation and the evolution of damage in the same way but the limit for

complete damage is bounded in the cas®gfbut this is not true fqr. There is a one-to-one

correspondence between D andnd dD/dHL:o =E,.
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If a relationship of the form:

_ Bi(e/e)
OB S (el ) 2

is assumed for the stress-strain response of plain caticieberef; is the maximum stress, the
strain at maximum stress arff] a material parameter defining the steepness of the softening
branch, a damage law for compressioa ¢) and tensioni(=t) can be derived based on Egs. (30)
and (32):

B, —1+ (& lsi)[Si

D =0for e<gy, and D, =1- — for e>¢ (33)
B —1+(e/e)"
where the Young’s modulul,, , is equal to:
Bifi (34)

S B e (e 16" R,
The threshold strain valueg,and ¢, for uniaxial tension and compression, respectively,
are assumed to occur at a sttéss =08f, and t_=04f_, respectively. Therefore, the critical
strain, g,, , signifying the onset of damage can be determined using Eq. (32). Furthermore, assuming

that the Young’s modulus is the same in uniaxial tension and compression, an estimate for the

tensile to compressive strain ratio at the peak stress (Eg. (35)) is obtained as follows:

& _ Btft(Bc _1+ (SOC/SC)BC) (35)

g, Bofo(B —1+ (e /2)")

Flexural response
The local normal longitudinal strains in the part of the concrete beam specimens under pure bending
are assumed to be linearly distributed along the depth of the beam’s cross-section (z-
axis)e,, =¢,, +kz, whereeg_ is the strain az=0 and Kk is the curvature. In the elastic region of
the beang , =0 and beyond the elastic limit the neutral axis shifts upwargs:(0).

For a given value of k, and using the assumed law for uniaxial tension and compression, the
value ofg  which satisfies equilibrium is determined through an iteration procedure. This implies a

1D discretization of the cross-section to strips of depth dz in order to evaluate numerically the

h/2
integral, N= b [c,,dz=0. Essentially, in the proposed model, the input parameter is the curvature
-h/2
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at midspan and the output is the bending moment capM&ybhjzsxx Zz, corresponding to the
assumed linear axial strain distribution along the height of the cross-section. The number of strips
used to discretize the cross-sectional area is chosen based on a convergence requirement of a mes
refinement so that when the number of strips is doubled there is a change of less®tkidm 10
the predicted value of M. It is noted that the output of this procedure is a local M vs. k prediction
curve which is size independent, since it is only a function of the assumed uniaxial stress-strain
response. A 2D mesh refinement study is also included in Section IV.5. The non-local M vs. k
prediction curve is obtained by scaling the local curvature estimate using Eq. (44) for 4-point
bending (see Section IV.6). This implies that predicting size effect for ultimate strength is not
feasible for the proposed non-local model.

The local M vs. k response prediction can be transformed to a force vs. midspan deflection
curve by solving the boundary value problem for a simply supported Timoshenko beam under 4-

poind bending (see Section IV.6). Using Egs. (44) and (46), a local kinematic expression for the
midspan deflectiors_ is obtained in terms of the curvatuke,, 8, = 013611L°k ., whered,,
is the midspan deflection corresponding to the curvatyre The non-local force vs. midspan
deflection curve is determined by imposing a similar kinematic relation between curvature and
deflection, based on the gradient solution of the boundary problem (Eqgs. 41 and 45). Unlike, the
local (classical) predictions, the non-local kinematic relation is affected by the internal length, g,
which evolves with damage. Therefore, this kinematic relation is computed for the current value of
g, which evolves with damage.

Regarding the evolution law for the gradient length, an exponential expression is assumed of
the form:

g= g,e"™, for nD>0 (36)
where g,is the initial internal length, D the damage parameter and n a positive constant which
defines the ratio of the gradient valge (at D=1) to the initial gradient internal length (gt D=0).
Since the initial value of the gradient internal length is based on elasticity, there is only a single
unknown parameter, n, to be determined based on experimental data in the inelastic region. It is
worth noting that, according to Le Bellego ef‘alattempting to calibrate a gradient damage model
assuming a constant internal length (independent of the damage level) resulted in a lack of

objectivity when experimental data from geometrical similar notched beam specimens were
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considered. This could be partially remedied if an increasing value for the internal length is
assumed with damage.

5. OBJECTIVITY OF THE PROPOSED MODEL PREDICTIONS
The total strairg, is related to the total displacemeut(eg; = @y /0%, +0u, /0x,)/2), whereg; is
the gradient enriched strain. The damage rules of Eq. (9) provide the stiffness evolution as functions

of the Cauchy stress, which in turn relates to the total strain as:C™":¢. For a 1D case, the

equilibrium equation §o /6x = 0) within the framework of the proposed gradient model becomes:

86@4_ dc O, 0c0d°U doc O'u _

= = + = 38
Oc OX 0Og,, OX Ot ox? O 4 OX* (38)

The constitutive law assumed in this work can be expressed as:

0 € £, )=(1- DE)E(E-g% ) (39)
where D(g) =[e, (e —¢,)]/[¢(e, —¢,)] is the damage loading function for uniaxial tensientte
strain signifying end of elastic behaviog, the strain signifying complete damage aadthe
applied uniform axial tensile strain equatjp

Assuming a harmonic perturbation for the displacemeatAcos@x), where ¢ = wave

number and A = amplitude, Eq. (38) becomes:

= Hg—“-l)jg%z-ll}o (40

u~g t0

€

It can be seen that Eq. (40) yields a real wave number with a critical value of

L
g

Oy == | S0 , which is identical to that in Rodriguez-Ferran et®aSuch a result renders a
€€y

non-local model suitable for regularization if employed in a FEM analysis.
A 2D mesh refinement study of the presented model for the beam specimen with dimensions

200x200x600 mm at a load level of 0.84Rin the post-peak softening branch is shown in Fig. 10.
The numerical results are derived assuming tk=88f MPa, = 389, f =309 MPa, 3, = 65

( ¢=12313), E= 34 GPa,v=02 ande~=0.0015. Based on the 1D-discretized midspan cross-

section (strips of depth dz), this load level of 0.84Pcorresponds to the first detection of a
damage value of D=0.95. Three sizes for an “xyz” grid with a width of b=200 mm are used: (a) 20 x
200 x 20 mm, (b) 10 x 200 x 10 mm and (c) 5 x 200 x 5 mm. It can be seen that mesh-independent
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damage predictions are obtained along the beam’s length. The calculated damage levels are the

same for both local and non-loc&lvs.§ predictions (see Fig. 8c). A damage value of @95,
corresponding practically to zero stress transfer capability, may signify major crack development.
The present model’s prediction that a major crack forms at a load level of aboui-£.BdEhe
post-peak softening branch is in agreement with acoustic emission findings for concrete beams
under flexuré® and uniaxial tensidfi. Also, it is noted that a non-zero midspan damage vBlue
computed at 0.74Rx in the ascending branch of response. A damage value of D>0, signifying
softening under uniaxial tension, can be associated with microcracking activity. Acoustic emission
measurements on notched and un-notched concrete beam specimens tested under flexure have
shown that microcracking activity becomes detectable before the peak applied load is reached and
at load level of 70% to 80% of the peak It

t y
L
: " D<0.1
I 0.1<D<0.3
— 0.3<D<0.5
5 | 0.5<D<0.7
—_—
: : W 0.7<D<0.9
t ! e— 0.9<D<0.95
(b) D>0.95
-
t t

(c) midspan
Fig. 10. Numerical damage level predictions of a 2D mesh refinement study of the proposed model
for specimen size S3 (200x200x600 mm) at Ox&4kh the post-peak softening branch: (a) grid of
20x20 mm, (b) grid of 10x10 mm and (c) grid of 5x5 mm.
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6. MIDSPAN DEFLECTION FOR 4-POINT BENDING BASED ON GRADIENT
ELASTICITY
The boundary value problem for a dipolar elastic Timoshenko simply supported beam has been
solved in closed-form by Triantafyllou and Giannakopotflaend only the relevant work is
included here.
The expression for the midspan deflection of a simply supported beam with an orthogonal

cross-section subjected to two equal concentrated loads, P/2, at a distance L/3 from the supports is:

2o 2 e

where P is the applied load by the actuatoE= (-v ) /(+ v )(@- 2v)|E,, Eo = Young’s modulus

of elasticity, E:g\/1/(1+(A/I)g2) is a “shear” gradient internal length, arig,f,, are non-

dimensional functions of the internal length g, see Eqgs. (42) and (43),
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Note that in Eq. (41), the effect of the Poisson’s ratio on the Young’s modulus is taken into account.

In the absence of gradient, ig=0 (¢ /g=1), Eq. (41) reduces to the classical elasticity solution:
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129¢E|

216
+
115

h

L

[

j

1-v
1-2v

i)

(44)

The expression for the normal axial strain of the beam at midspan at a distance z from the n.a. is

z

given by:
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where k = beam’s curvature ardh/2< z<h/2. Of course, in the absence of gradient, ge.0,

Eq. (45) reduces to the classical expression for the axial strains:

PL
= k Z=—""7717Z 46
Sxx_cl cl 6E| ( )

7. CONCLUSIONS

In the present study, a strain gradient damage theory is proposed based on the influence of the stress
gradient on Gibb’s energy. It was shown that, if a microstructural internal length is related to the
level of damage, then this length should be either increasing with damage or remaining constant.
Furthermore, a simple continuous damage model was proposed for the case of 4-point bending.
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CHAPTER V
EXPERIMENTAL PROGRAM

1. MATERIALS

Five (5) cementitious mixes were used for the beam specimens tested: low-strength concrete (LC),
normal-strength concrete (NC), medium-strength concrete (MC1, MC2) and cement mortar (CM).
The mix proportions are shown in Table 1 and the sieve analysis for the aggregates used is
described in Table 2.

Table 1. Concrete and cement mortar mix proportioning.

Quantities (Kg/m®) Dry Air-
Mix o @ &) wic dditives ©  density Slump-— - tent©

ement® Aggregate ratio Additives (kg/md) (cm) (%)

CM 450 1350 293 (0.65) 3.6 2100 CE 2.5
LC 208 1980 162 (0.78) 1.6 2335 25 3.0
NC 276 2080 176 (0.64) 1.5 2365 10 2.5
MC1 448 1720 204 (0.45) 4.0 2410 22.4 2.0
MC2 447 1640 207 (0.46) 6.0 2440 15.6 2.0

@ cement type CEM 11/42.5

®) crushed limestone (compressive strength 100 MPa)

© plasticizer Sik& Viscocret® for M, MC1, MC2; Sik&Sikamen® for NC; Sik&®Plastime® for LC
@ air content of fresh mix (Gilson HM-30 pressure meter)

© not measured

Table 2. Sieve analysis of the aggregates used in the cementicious mixes.

Sieve % passing
opening

(mm) LC NC MC1 MC2 CM
32 100 100 100 100 -@
16 85.8 84.1 80.6 787 -
8 70.7 67.8 60.0 577 -
4 62.7 59.7 49.6 491 -
2 45.4 43.3 35.7 355 -
1 29.6 28.2 23.3 23.2 100

0.5 - - - - 30
0.25 12.9 12.3 10.2 10.1 -
0.075 8.0 7.6 6.3 6.3 -
@ not measured
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2. CLASSICAL MECHANICAL PROPERTIES

The classical mechanical properties of the five (5) cementicious mixes were determined based on
uniaxial compression and split cylinder tension tests. The cylinder (150x300 mm) and cube
(150x150x150 mm) specimens were tested under uniaxial compression using a DMG 3000kN
testing machine. The tests were performed following the ASTM recommendétiand the
determination of the Young’'s modulus and Poisson’s ratio from the compression test was obtained
using four strain gages (SG) placed at mid-height (two SG’s®ar®@ach diametrically opposite

location). The Young's modulusEf, and E;p) and Poisson’s ratio were also estimated from the
split cylinder tension tests based on SG measurements of two SG’s attached on each of the flat faces

of the cylinder specimens (see Fig. 1) and using the elasticity solution of a disc subjected to

diametrically opposite compressigh The split cylinder test data except to an estimate for the
Poisson'’s ratio also provide a second independent estimate of the Young's mtEdy)Ltm(sed on

the two tensile measured strains, in addition to the estimate based on the compressive strain
measurements of the uniaxial compression te§f)((see Section V.4). Loading rates ranging from

0.7 to 1 MPa/min were used for this fefthe measured mechanical properties are summarized in
Table 3.

2> Wooden

. . strip ; :
- 1% configuration 2" configuration

Fig. 1 — Split cylinder tension test setup and strain gage instrumentation.
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Table 3 — Measured mechanical properties for the LC, NC, MC1, MC2 and CM mixes.

rl\)/lrigé?tri‘(iecsal LC NC MC1 MC2 cM
Uniaxial compression of cubes (150x150x150 mm)

f28day, MPa 19.96:0.4 (3)®  26.48:0.8 (3) 45.05:1.1(3) 48.480.7(3) 30.540.1(3)
f, MPa® 21.63:0.4 (3) 29.7605(3) 52521.0(4) 54.620.7(3) -@

Uniaxial compression of cylinders (150x300 mm)

fc, MPE® 15.92+ 0.4 (5) 20.5%2.1(4) 34.64253) 38.0%+:3.6(4) 32.422.4(4)
E, GPa® 25.40+ 2.1 (4) 30.6815(3) 33.634.3(3) 345306(3) 22.16:1.1(3)
v ©® 0.22+0.01 (4) 0.230.02(3) 0.21+0.01(2) 0.230.04(2) 0.230.01(3)
Split cylinder tension (150x300 mm cylinders)

fsp, MPa® 2.67+0.3 (3) 3.06-0.4 (3) 3.38:0.1 (4) 3.430.1(3) 2.8%0.1(2)

Etsp,GPéb)v(C) 22.17+1.4 (3) 30.841.1(3) 31.681.4(3) 31.821.1(3) 22.38 (1)

ESy GP&)©  2620:1.4(3)  31.9234(2) 327%0.8(3) 359306 (3) 25.41 (1)

v ©) 0.23+0.04 (3) 0.17(2) 0.210.02 (3) 0.21:0.06 (2) 0.25 (1)
@ number in parenthesis denotes the number of tested specimens considered for the reported average value.
®) tests performed after 1 month for LC, NC, MC1, MC2 and after 8.5 months for CM.

© estimated Young's modulus far= 02 (see Section V.3).

@ not measured

The Young’'s modulus and Poisson’s ratio values obtained from the uniaxial compression and split
cylinder tension tests for all mixes are shown versus the compressive strength in Figs. 2 and 3,
respectively. The 95% confidence limit for the Young's modulus of elasticity (in MPa) from
reported experiments dataorresponding to at 20% deviation of the value predicted by the

empirical formula of Eq. (3) is also shown in Fig. 2,
E- 1783210 %% ° 3)
where f_ is the cylinder compressive strength (in MPa)s the specific weight (in kg/fp It is

noted that Eq. (3) is applicable to concretes with limestone aggregates and normal additives

The majority of the experimental values for the Young’s modulus fall within the expected
range as represented by the limits of Eq. (3). As expected, the Young’s modulus of the concrete
mixes considered in this study is higher than that of the cement mortar. It is known that the Young’s
modulus of limestone varies from 50 to70 GRad hence limestone aggregates should be stiffer
than the matrix material at least for a normal- and medium-strength concrete resulting in a higher
Young’s modulus value.

The experimental values for Poisson’s ratio range from 0.16 to 0.27 and apparently seem to

be independent of the compressive strength. This is in agreement with the findings df°others
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Furthermore, similar values for the Poisson’s ratio were obtained for both concrete and cement
mortar mixes since the range of the Poisson’s ratio value for limestone (0.15 t§i6.8®)ilar to
that of cement paste. Hence, the limestone aggregates inclusions have a negligible effect on the
Poisson’s ratio of the composite.

The compressive strains obtained from the uniaxial compression cylinder test at 40% and
55% of the peak stress are plotted versus the compressive strength in Fig. 4. It can be seen that as
the compressive strength of the material increases, the strain values for the same level of stress
increase as well. This is a due to the fact that the Young’s modulus increases with increasing
compressive strength. Also, the difference in strains for the two assumed stress levels remains
approximately the same with increasing compressive strength. This observed behaviot'renders

constitutive law expressed in a normalized form particularly suitable for cementitious materials.

45

95% confidence

limits of Eq. (3) T
40 T
o
X4
g 35 | ° 0o o
; . 37 -
o ¥ O
- 30 0 oy g
3 & mcy — LiMCz
9 xod
g 25 o A4
NC
5 1! L.
]
3 20] LC
>
O Uniaxial Compression
15 4 ¢ Splitting tension (vertical SGs of Fig.1)
+ Splitting tesnion (horizontal SGs of Fig. 1)

10

12 16 20 24 28 32 36 40 44
Compressive strength, f . (MPa)

Fig. 2. Measured Young’s modulus vs. compressive strength for mixes LC, NC, MC1, MC2 and
CM (solid symbols are for CM mix).
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0.28
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0.26 -
g * . + o
0.24 +
> u] [m] [ ]
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- ] o
g 0.22 - o
s * oo
2 0.20 ] o o o
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3 0.18
o . i
o +
0.16 - +
0.14 - O Uniaxial Compression  + Splitting tension
0.12 T T T T T T T

12 16 20 24 28

32

36 40 44
Compressive strength, f . (MPa)

Fig. 3. Measured Poisson’s ratio vs. compressive strength for mixes LC, NC, MC1, MC2 and CM

(solid symbols are for CM mix).
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35
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Fig. 4. Measuredompressive strain at 40% and 55% of the peak stress vs. compressive strength

(solid symbols are for CM mix).

Mechanical properties used in the analysis

The Poisson’s ratio of concrete ranges typically between 0.14 antf.Qr2éhis work, a similar

value range was observed with the majority of the data being greater or equal to 0.2. This can be

attributed to the stress limit chosen for deriving these estifpas40% of the peak stress, since

the Poisson’s ratio of concrete appears to increase with the load level from about 0.15 for a
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relatively low stress level to about 0.25 at a load level close to 70% of the peak.dtreswidely

accepted that a reasonable value for the Poisson ratio of concrete to be used in an analysis is 0.2.
The measured values for the two classical material properties used in Egs. (1b) and (2b) for each
mix in order to compare their experimental flexural response to the classical elasticity predictions

are presented in Table 4.

Table 4. Measured material parameters used in the analysis.
Mix LC NC MC1 MC2 CM

(Glia) 250 30.70 32.7 34.0 22.3
v 0.2

Based on the predictions of Eq. (1b) and (2b) for a beam specimen with L/h=3, a deviation
of +1 GPa in the Young’s modulus value translates t@5® difference in both the flexural
stiffness and the curvature predictions, while a deviatior: @01 in the Poisson’s ratio value
translates to a less thanl% and +1.5% difference in the flexural stiffness and curvature
prediction, respectively. Thus, it is reasonable to assume that a deviation of the measured flexural
stiffness and curvature values from the classical predictions of up to about 10% can be attributed to

the expected variation of the E andalues.

3. SPLIT CYLINDER TESTS
The stresses for the 2D problem of a disc subjected to diametrically opposite uniformly distributed

compression (see Fig. 5a) &re

G, (1,0)=—P(A,+A,+B,+B,+) (4)
T

5, (F0)=—P(-A,~A,+B,+B, +D) 5)
T

T, (1, 0) = B(C1_C2) (6)
T

with

(-7)sin2@+0)  , _ (1-T)sin2(a-0)
YUof4 1 2P co20+0) 2 f+ 1 2P co2(o—0)
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w2

B - taﬂﬁi;z (=P) -7 + co2(a - 0))

~ “f+ 1 27 co2(a - 0)

=2
tan( + e)j , B = tanl(% tan(o — e)j C,

2

(= P)- P + co2(o + 0)) o) 0for 0<0<n/2-a
- f+ L 2Pco2(a+0)  |nfor m/2—0<0<m/2

where ¢, = the normal stress in the r-directios, = the normal stress in thedirection, t = the

shear stress in thebrplane, p = the applied uniform pressure =2the angle at the disc’s centre that
defines the part of the disc’s circumference under compression, R = the radius of the disc and
T=r/Ris the normalized radial coordinate.

For a loading width of 20 mm and a radius of 75 mum=(764°), the maximum stresses at
the center of the dis®= andr=0) are:

5, (00)=0,= {,= 0976 ands, (00)=oc, =- 29765 (7)
wherecs= 2P/r LD, P =total load, L= cylinder’'s length arld = 2R = disc’s diameter. Note that

when o — 0, theno, (00)=c and o, (00)=-3c, which corresponds to the idealized case of a

disc subjected to a point load.

0.75 f\

0.5 |

0.25 -

(]
Normalized radial distance

-0.75 /

Normalized stress

pL LT

Fig. 5 (a) Disc subjected to diametrically opposite compression (b) Normalized principal stress
distribution along the y-axis fas, /6 ando, /o .
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The principal stresses are shown in Fig. 5b and the corresponding strains along the x- and y-

axis assuming plane-stress conditionst®are

B _. _ obl_ (- 7 )sin2a ~ (1472

e, (O=n/2)=¢, = = d( (1+v)_fl 1L of c032a+ (@-v)cot (1__2 cotaD (8)
m_. _ ob (-7 )sin2a ~ L[ 1+T2

g (10=0)=¢, = = ((1+v)_fl T L 27 co2a + (- v)tan [1—?2 tanaD (9)

where E =Young’'s modulus,=Poisson’s ratio and d =loading width.
For the strain measurements on each flat face of the cylinder specimens, the ratio

e,/e,yields an estimate for the Poisson’s ratioand for an assumed value of(v=0.2 was

assumed in the present study) the ratw's, and /¢, yield two independent estimates for the

Young’s modulus of eIasticityE‘Sp and Egp, respectively (see Fig. 6, experimental results using

the P! configuration shown in Fig. 1). It is noted that the split cylinder test has also been used by

others®>1’to determine a value for Young’'s modulus and Poisson’s ratio.

250 250 2.50
omax = 2.49 MPa
\?'/ o o
= =3 =
w
— 1501 ® 50 © 150 |
c - -
g g g
? Q Q
- 100 - % 1.00 2 1.00 {
g - .
3 kS 2
3 I —sG1 o
@ 1 =3 9 0.50
s 50 ——SG1,4 & 0.50 <2 < )
——SG2,3 SG4
0 ———— 0.00 ‘ : ‘ 0.00 ‘ ‘ ‘
0 25 50 75 100 125 0 50 100 150 200 0 80 160 240 320
Measured strain g, (MS) Measured strain €, (MS) Measured strain | gl (us)
(a) (b) (c)

Fig. 6. Split cylinder test tensile strain SG measurements on the flat cylinder faces for the LC mix:
(8) ey vs.ex, (b)o vs.ex and (C)o vs.gy.

A number of studié§?° have examined the failure mechanism of concrete under the biaxial
stress state present in a split cylinder test by monitoring the evolution of microcracking. They found
that cracking starts at approximately 70% of the peak load and that the geometry and that the test
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setup may significantly affect this value. In the present study, the Young’'s modulus and Poisson’s
ratio estimates were determined based on the slope of the principal stress-strain curve between a
stress at a tensile strain of 88 and a stress at 50% of the peak stress, sincdneamity was
apparent around 60% of the peak tensile stress (see Fig. 5b). The tensile and compressive strains
that correspond to 50% of the peak values are plotted against the splitting tensile strength in Fig. 7.
It is interesting to notice that the strain values corresponding to the 50% of the peak load are
approximately the same for both concrete and cement mortar mixes and are not significantly
affected from the material’s strength.

The measured splitting to compressive strength ratio together with the results of empirical
formulag!-?3are plotted versus the compressive strength for each mix in Figa®d(€, values are
shown in Table 3). Good agreement with the empirical equations is observed for the normal- and
medium-strength concrete and less so for the low-strength concrete although the deviation is not
significant. The empirical equations are not applicable to cement mortar which is also included in
Fig. 8.

Finally, it is noted that a gradient elasticity solution to any problem reduces to the classical
solution if the internal length is zer@ € 0) or if the stress gradient is zerdof; /0%, =0). In the
split cylinder test, the stress distribution is approximately uniform near the center of the cylinder
where the measurements are made (see Fig. 5b) resulting in a negligibly small stress gradient

(0o, /0r=0). This implies that the measured Young’s modulus and Poisson’s ratio from the split

cylinder test can be seen as independent of the gradient internal length of the material as is the case

for the uniaxial cylinder compression test as well.
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Fig. 7. Tensile and compressive strains at 50% of the splitting strength vs. splitting strength (solid
symbols are for CM mix).
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Fig. 8. Splitting to compressive strength ratio vs. compressive strength.

4. FOUR-POINT BENDING TESTS
Setup and specimens
A total of seventy-one (71) geometrically similar beam specimens with an aspect ratio of L/h=3 (see
Table 5) were tested under 4-point bending. The three (3) nominal beam sizes considered have
dimensions of 100x100x300 (width x height x span) nm®i)( 150x150x450 mmS@) and

200x200x600 mm §3). The specimens were tested using an MASOKN hydraulic actuator

under midspan deflection-control. The midspan deflection was the average of two DC displacement
transducers (DCDT’s) measurements one on each side of the specimen. Two instrumentation
configurations were used for estimating the beam curvature: either using two SG’s placed at
midspan in the axial direction (one at the top and one at the bottom fiber of the cross-section) or
four SG’s placed at midspan in the axial direction (two on each side of the beam at a distance 2 or 1
cm from the top and bottom fiber). For a limited number of specimens both arrangements were used
(see Fig. 11). The experimental setup is shown in Fig. 9 together with a detailed representation of
the instrumentation.

The beam specimens of each mix were cured together with the cylinder and cube specimens
in the same environmental conditions and the date of testing for each mix is included in Table 3.
The uniaxial compression, split cylinder tension and 4-point bending tests for each mix were

conducted in parallel and were completed in less than a two weeks period.
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Table 5. Experimental program.

Specimen Number of specimens tested
size CM__LC__NC_MCl_ MC2
S1 3(3) 8(4) 8@ 81 43
S2 20 7)) 72 812 4@
S3 200 3(1) 3@ 20 2(0

Note: Number in parenthesis denotes the number of specimens with strain
gage instrumentation.

Applied
1 load, P

==l [

SG

I
DCDT 1 DCDT 2
] h=L/3

CDT

Aluminum frame\ 1,2

o o

i J
SGli I SG

| Leather pad - SG
2
71

b=h

- Midspan
cross-section

Pin support

(@)

(b)
Fig. 9. Experimental setup for the 4-point bending tests: (a) schematic of the testing setup and (b)
photo for size S2 beam specimen.
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Experimental post-peak softening response

The post-peak flexural response of the concrete beams tested under 4-point bending is captured by
displacement control. A DCDT located at midspan was used as the controlling displacement sensor
and all tests were performed at a constant rate of 0.001 mm/sec. However, once softening initiates,
the experiment becomes unstable since energy is released back from the elastically deformed steel
reaction frame where the hydraulic load actuator is attacfeBetore the peak load is reached the
hydraulic jack is moving downwards increasing the applied load but after the peak load is reached,
through the controller the jack’s cylinder moves upwards resulting in unloading of the beam
specimen. This is done through a Proportional-Integral-Derivative (PID) closed-loop feedback
algorithn?* of the Flex-40 MTS controllét. The choice of the proper PID value is essentially done
through a trial and error procedure since it is specific to the experimental setup used (stiffness of the
reaction frame) and the stiffness of the specimen. This procedure unavoidably resulted in the loss of
the post-peak response for some of the specimens. The specimens for which a post-peak softening
branch was captured successfully for each mix and specimen size considered in this work are listed
in Table 6. Concerning the CM mix, although various PID values were used, the post-peak response
was lost for all specimens. It appears that the response of the CM specimens in the post-peak
softening branch was the most brittle, resulting in an extremely unstable crack growth. Note that for
the rest of the concrete specimens, even when the post-peak response was not fully recorded, failure
was not catastrophic since the specimen didn’t collapse although it was almost fully cracked.

Table 6 - Number of beam specimens with recorded post-peak softening branch.

Specimen Mix
size CM LC NC MC1 MC2
S1 0(3) 7 (8) 0 (8) 6 (8) 5 (5)
S2 0(3) 6 (7) 4(7) 8 (8) 3(5)
S3 0(3) 3(3) 3(3) 3(3) 2(3)

Note: number in the parenthesis denotes the total number of tested specimens
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CHAPTER VI
SIZE EFFECT OF CEMENTITIOUS MATERIALS IN ELASTICITY

1. INTRODUCTION
The aim of this work is to demonstrate that size effect in elasticity exists in composite materials
when the size of the microstructural details is comparable with the macrostructure. On that respect,
cementitious materials such as concrete are ideal since they can be viewed as composites with
inclusions (aggregates, fibers etc.) embedded in a matrix material. It is noted that this simplified
view of the microstructure of concrete is sufficient for the aim and purposes of gradient elasticity
which attempts to introduce a new constitutive parameter (length) that accounts for the influence
that the meso-scale microstructure has on the macrostructural response. So far, the attention of
researchers to gradient elasticity was motivated from flexural tests on micro-beams and this field
was the first actual implementation of these thetrigsthis work, in order to test the hypothesis
that for a given composite a certain microstructure can result in size effect phenomena in elasticity,
four (4) concrete mixes of maximum aggregate size=82 mm and cement mortar ofg=1 mm
are considered. However, the scale of the microstructure is not the only factor that affects size effect
phenomena. The relative stiffness of the two phases in a composite, i.e. matrix and inclusions, is an
equally significant factr To investigate this issue, similar component volume fractions and
aggregate gradation is used for the four (4) concrete mixes considered, while the water to cement

(w/c) of the mixes is altered from 0.78 to 0.45 (low to medium strength concrete).

2. ELASTIC STIFFNESS AND CURVATURE

The measured elastic stiffness and curvature data of the flexural response for each specimen
reported here correspond to the slope between a load level of 10% and that of 50% of the peak
applied load. The experimental to classical elastic flexural stiffness ratio is plotted vs. the nominal
beam size in Figs. 1(a) to 1(e). The curvature estimates correspond to the stiffness ratio with the
internal length estimate derived from Eq. (45) in Section 1V.6 and substituted back to Eq. (41) in
Section IV.6. Also, the theoretical predictions of the dipolar elasticity model for different beam
sizes and for different values of the gradient internal length are shown in Fig. 1. The experimental
results are also presented in Tables 1 to 5.

The experimental applied total load vs. midspan curvature results for a representative MC1-
S1 specimen are shown in Fig. 2. A total of six SG’s are attached to that specimen. It is noted that
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two types of axial SG’s were used: 20-mm long (SG2, SG3, SG4, SG5) and 10-mm long SG’s
(SGO, SG1).
For this particular setup, the following observations were made:

i) the SG’s in tension (SGO and SG2) at the two opposite vertical beam faces record practically
the same strain indicating that the concrete strain measurements appear not to be affected by the SG
lengths used, while the SG at the extreme bottom tensile fiber (SG4) records higher strains than
SGO0 and SG2 for the same load level, as it should (see Fig. 2b),

i) the SG at the top extreme fiber of the compression zone (SG5) records lower values than it
should, practically the same as those of SG1 and SG3 on the side faces (see Fig. 2¢),

lii) midspan curvature estimates derived from the SG measurements on the vertical beam faces
predict a n.a. location that deviates less than 5% from the centroid of the cross-section, while if the
top/bottom extreme fiber SG measurements are used the deviation is more than 15% because of the
unreasonably high measured strains at the bottom extreme fiber (SG4),

Iv) the measured elastic force to curvature ratio value of S=7.64 Nm for this specimen (see Fig.
2d) is based on the average of the consistent in terms of the n.a. prediction curvature measurements
(SGO, SG1, SG2 and SG3).

Based on the midspan deflection and curvature measurements, the gradient internal length
estimate for specimen MC1-S1 wag =106 mm and g= 116 mm, respectively, while the
overall average gradient internal length of the mix MC1 was found t@,be= 123+ 23 mm (see

Fig. 5).
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Stiffness ratio, K exp/Ka

Stiffness ratio, K exp/Ka

Stiffness ratio, K exp/Ka

Fig. 1 — Experimental to classical elastic flexural stiffness ratio: (a) mix CM, (b) mix LC, (c) mix
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Table 1 - Experimental results in the elastic response range of CM mix.

Average Stiffness, K = P Curvature Coefficient, S = P/k

Specimen Dimensions (N/m) (Nm)

Code b h Ka Kexp Kexp/KcI Ok @ S Sexp Sexp/ S Os ®)

(mm)  (mm) (mm) (mm)

CM-S1-01 100.7 100.3 341.67 357.75 1.047 2.6 4.190 4.251 1.014 3.4
CM-S1-02 100.5 100.2 340.14 349.63 1.028 1.6 4.170 4.541 1.089 8.5
CM-S1-03 99.9 100.2 338.20 371.06 1.097 4.7 4.146 4.400 1.061 7.1
CM-S2-02 150.0 149.9 505.29 535.23 1.059 4.7 - - (™% - -
CM-S2-03 150.6 150.7 514.27 487.43 0.948 0.0 - - (%% - -
CM-S3-01 197.6 198.6 654.23 675.28 1.032 3.7 - - (*%) - -
CM-S3-02 198.6 198.6 657.54 705.00 1.072 7.3 - - - -

@ internal length estimate based on the stiffness ratio (see Eq. 41 in section IV.6)
®) internal length estimate based on the curvature coefficient ratio (see Eq. 45 in section IV.6).
) data not used{? not measured

Table 2 - Experimental results in the elastic response range of LC mix.

Average Stiffness, K = Pb Curvature Coefficient, S = P/k
Specimen Dimensions (N/m) (Nm)
Code b h Kei Kep Kep/Ka gk®@ G Sexp S/ S gs®
(mm)  (mm) (mm) (mm)
LC-S1-01  99.4 100.9 384.89 517.50 1.345 11.9 - - - -
LC-S1-02 100.1 1015 39322 567.75 1.444 14.1 - -0 -
LC-S1-03 99.8 101.2 388.44 485.22 1.249 9.5 - -0 -
LC-S1-04 995 101.5 390.98 484.60 1.239 9.2 - -0 -
LC-S1-05 99.7 102.0 396.21 497.74 1.256 9.7 4896 6.881 1.405 17.2
LC-S1-06 100.2 101.4 392,58 515.56 1.313 11.1 4.839 6.277 1.297 14.8
LC-S1-07  99.6 102.1 - - - - 4904  6.117 1.247 13.7
LC-S1-08 100.2 101.6 - - (*%) - - 4869 5.553 1.141 10.6
LC-S2-01  149.3 152.3 59359 704.94 1.188 11.7 - N.M. - -
LC-S2-02 1499 150.7 578.74 830.69 1.435 20.8 - N.M. - -
LC-S2-03 150.4 152.7 592.82 78851 1.330 17.2 - N.M. - -
LC-S2-04 151.0 150.2 602.63 811.53 1.347 17.8  16.77 21.039 1.255 20.7
LC-S2-05 150.6 150.6 586.17 790.66 1.349 17.9 - (*%)
LC-S2-06 150.4 151.2 596.09 761.89 1.278 15.3 16.56 18.841 1.138 15.6
LC-S2-07 150.2 152.7 607.65 755.84 1.244 13.9 16.94 19.618 1.158 16.6
LC-S3-01 197.9 198.8 753.42 981.53 1.303 21.5 - - (*%) . -
LC-S3-02 199.0 200.0 738.73 989.80 1.340 233 36.12 41.336 1.144 21.1
LC-S3-03 199.5 1995 749.14 992.35 1.325 225 - -(*% - -

@Internal length estimate based on the stiffness ratio (see Eq. 41 in section IV.6)
®)nternal length estimate based on the curvature coefficient ratio (see Eq. 45 in section IV.6).
(" data not used? not measured.
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Table 3 - Experimental results in the elastic response range of NC mix

Average Stiffness, K = P$ Curvature Coefficient, S = P/k

Specimen Dimensions (N/m) (Nm)

Code b h Kcl Kexp Kexp/KcI Ok @ Scl Sexp Sexp/ Scl Os ®

(mm) (mm) (mm) (mm)

NC-S1-01 101.0 102.0 493.22 671.06 1.361 12.3 - - -
NC-S1-03  99.4 100.7 469.32 605.95  1.291 10.5 - -0 -
NC-S1-04 101.2 102.0 49476 65840  1.331 11.6 - -0 -
NC-S1-05 995 101.8 483.15 673.49  1.394 13.1 - -0 -
NC-S1-06 1009 101.7 - - - - 6.036  7.394  1.225 13.1
NC-S1-07 99.4 102.7 - - - - 6.125 8.190  1.337 15.9
NC-S1-08 100.6 101.8 488.03 617.24  1.265 10.0 - -0 - -
NC-S2-01 149.3 1523 719.76 84885  1.179 11.3 - -0 - -
NC-S2-02 1499 150.7 703.61 902.75  1.283 15.5 - -0 - -
NC-S2-03 150.4 152.7 730.57 940.20  1.287 15.8 - -0 - -
NC-S2-04 151.0 150.2 703.21 892.15  1.269 14.9 - -0 - -
NC-S2-05 150.6 150.6 706.43 897.31  1.270 15.0 - -, - -

NC-S2-06 1504 151.2 71213 892.86 1.254 14.4 19.69 22735 1154 16.5
NC-S2-07 150.2 152.7 728.84 872.15 1.197 12.1 20.24 22.968 1.135 15.6
NC-S3-01 1979 198.8 903.88 1163.3 1.287 20.6 - =M - -
NC-S3-02 199.0 200.0 92355 1128.8 1.222 17.3 - oM - -
NC-S3-03 1995 1995 91995 12156 1.321 22.4 45.03 51.529 1.144 211

@Internal length estimate based on the stiffness ratio (see Eq. 41 in section IV.6)
®)nternal length estimate based on the curvature coefficient ratio (see Eq. 45 in section IV.6).
(" data not used? not measured
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Table 4 - Experimental results in the elastic response range of MC1 mix.

Average Stiffness, K = P Curvature Coefficient, S = P/k
Specimen Dimensions (N/m) (Nm)
Code b h Kol Kexp Kexp/KcI OK @ S Sexp Sexp/ S Os ®)

(mm)  (mm) (mm) (mm)
MC1-S1-02 100.9 1034 543.68 647.00 1.190 7.9 - -0 - -
MC1-S1-03 100.4 102.6 529.96 708.99 1.338 11.9 - -0 - -
MC1-S1-05 99.7 102.7 526.97 678.86 1.288 106  6.531  7.636 1.169 11.6
MC1-S1-06 100.0 103.3 537.70 660.51 1.228 9.0 6.684  7.646 1.144 10.9
MC1-S1-07 99.6 102.3 - - - - 6.448  8.004 1.241 13.6
MC1-S1-08 99.7 102.4 523.11 662.54 1.267 100  6.475  8.378 1.294 14.9
MC1-S2-01 150.6 151.4 762.85 967.82 1.269 15.0 - -0 - -
MC1-S2-02 149.6 154.3 795.08 981.83 1.235 13.8 - -0 - -
MC1-S2-03 149.8 1534 78351 979.52 1.250 14.4 - -0 - -
MC1-S2-04 150.5 153.1 783.30 876.87 1.119 8.3 21783  24.02 1.103 13.8
MC1-S2-05 150.1 151.1 756.27 950.48 1.257 145 20914  23.10 1.105 13.8
MC1-S2-06 150.8 153.9 795.86 998.12 1.254 14.6 - - - -
MC1-S2-07 150.0 153.3 783.51 970.20 1.238 13.9 - -0 - -
MC1-S2-08 150.0 153.0 779.79 1009.6 1.295 16.1 - -0 - -
MC1-S3-01 200.9 200.8 1003.7 1128.3 1.124 11.3 - =M - -
MC1-S3-03 200.0 200.4 9940 1081.6 1.088 8.6 - - - -

@Internal length estimate based on the stiffness ratio (see Eq. 41 in section IV.6)
®)nternal length estimate based on the curvature coefficient ratio (see Eq. 45 in section IV.6).
(Mdata not used) not measured

Table 5 - Experimental results in the elastic response range of MC2 mix.

Average Stiffness, K = Pb Curvature Coefficient, S = P/k

Specimen Dimensions (N/m) (Nm)

Code b h K Kep Kep/Ka  g® Sy Sexp Sexp/ S gs®

(mm) (mm) (mm) (mm)

MC2-S1-01 100.7 103.4 563.42 625.00 1.109 5.2 - -(® - -
MC2-S1-02 995 102.8 - - - 6.799 8.570 1.260 14.1
MC2-S1-04 999 102.7 548.99 579.25 1.055 3.0 6.804 8.130 1.195 12.4
MC2-S1-05 100.2 103.3 559.97 647.10 1.156 6.9 6.961 7.343 1.055 8.9
MC2-S2-01 150.1 152.9 810.11 879.65 1.086 6.4 22.518 22.659 1.006 34
MC2-S2-02 150.8 152.7 811.15 93535 1.153 10.0 - - - -
MC2-S2-03 150.0 153.0 810.92 878.38 1.083 6.3 22.548 23.055 1.023 6.7
MC2-S2-05 150.8 150.9 787.57 905.95 1.150 9.8 21.766 24,304 1.117 145
MC2-S3-01 200.3 200.8 1040.1 12176 1.171 14.4 - =M - -
MC2-S3-03 199.5 200.8 1035.3 10685 1.032 3.7 - -(® - -

@Internal length estimate based on the stiffness ratio (see Eq. 41 in section IV.6)
®)nternal length estimate based on the curvature coefficient ratio (see Eq. 45 in section IV.6).

™ data not used? not measured
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Fig. 2. Experimental data for beam size S1 of MC1 mix: (a) schematic and photo of the
experimental setup, (b) normalized applied load vs. tensile axial strain, (c) normalized applied load
vs. compressive axial strain and (d) applied load vs. calculated midspan curvature based on the
strain measurements.
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3. DISCUSSION OF RESULTS
In this section, the magnitude and the observed scatter of the gradient internal length estimate is
discussed with reference to the details of the material’s microstructure. It is noted that for a gradient
elasticity theory:
(i) the predicted internal length based on curvature and deflection experimental data should be
the same for all sizes and
(i) for a given material, a consistent model should be able to predict adequately its flexural

response with an estimated internal length value independent of the specimen size.

Influence of the microstructure on the gradient internal length

The gradient internal length is an additional constitutive parameter which is introduced for
modeling the details of the material’'s microstructure. It has the dimension of length because it is
introduced in association with the strain gradierthus, it is reasonable to assume that its
magnitude is related to the dominant feature of the microstructure. However, this correlation is done
in an average sense, since the microstructure incorporates many scales and this is especially true for
concrete which contains inclusions of various sizes (aggregate gradation) and of different volume
fractions (see Fig. 3a). Furthermore, in the case of concrete one can only control the quantities of
the different constituents, but after mixing and casting the actual locations of the aggregate patrticles
is completely random, and it is possible for a given mix to have different microstructural details in
specimens of the same size. This is especially true for the beam specimen size S1 with cross-
sectional dimensions only about 3 times the maximum aggregate sizeaB2mm. Thus, it is
reasonable to expect a significantly higher scatter and difference between the internal length
estimates based on curvature measurements and those based on deflection data for specimen size S
than for larger sizes S2 and S3. This can be attributed to the lack of the necessary material volume
for the average prevalent microstructural details of the mix to be represented at any cross-section. It
is true that gradient theories are continuum theories, in which although what constitutes a
representative volume element (RVE) for the material is not directly addressed, it is always
presupposed in the analysis. However, in terms of consistency of the theory the influence of the
RVE on the gradient internal length is “naturally” accounted for by the present model, since for
decreasing the size the scatter in the predicted stiffness ratios is predicted to increase as well (see

theoretical curves of Fig. 1).
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The results for the CM (cement mortar) mix, which can be perceived as almost
homogeneous mix relative to the other concrete mixes (see Fig. 3b), show that even the gradient
model predictions for g = 1 mm does not deviate much from the classical elasticity predictions (see
Fig. 1a). Furthermore, experimental elastic stiffness ratio values higher and lower than 1 with a
scatter less than 10% were obtained for the majority of the cases. The CM mix was also the most
brittle of all the mixes resulting in relatively smoother crack surfaces. For the concrete mixes, on the
other hand, significantly rougher crack surfaces were obtained due to the presence of larger size
aggregates. In addition, as the strength of the material increases the less torturous the crack surface
is expected and more aggregates will fracture along the crack path (see Fig. 4). This is due to the
fact that the matrix and inclusion heterogeneity is reduced and hence a crack will not be forced to
change direction. Thus, the gradient internal length value should decrease with increasing

compressive strength (or Young’'s modulus of elasticity) and should decrease with decreasing

average inclusion si2é

Fig. 3 —Microstructure at different scales: (a) concrete, (b) cement mortar.
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(b) (€) (d)

Fig. 4 —Cross-sectional fracture surfaces 150x150 mm for specimen size S2 (a) mix LC, (b) mix
NC, (c) mix MC1 and (d) mix MC2 (marked areas denote fractured aggregates).

The average gradient internal length estimate considering all tested specimens for each mix
is plotted versus the Young’s modulus of elasticity in Fig. 5. It is noted that estimates of the
gradient internal length of up to 4.8 mm for size S1, 7.2 mm for size S2 and 9.6 mm for size S3
correspond to a stiffness ratio ob4Kcq=1.1. Therefore, also shown with dashed line in Fig. 5, is
the average gradient internal length limit value of 7.2 mm which can be seen as a lower limit for the
experimental findings for size effect in elasticity. Internal length estimates lower than this value can
be interpreted as proof of insignificant size effect in elasticity and vice.v&rsi&ze effect in
elasticity is found only for the concrete mixes and not for the cement mortar and similar internal
length values were determined for all mixes independently of the use of either the midspan
deflection or the axial strain (curvature) measurements. Concerning the magnitude of the internal
length of the concrete mixes, it is found to decrease with increase of the Young’s modulus and is
similar for mixes LC and NC. The first can be attributed to the decrease of the elastic mismatch of
the mixes and the latter possibly indicates that above a specific inclusion to matrix stiffness ratio
value, the internal length is less sensitive to further increasing this ratio (non-linear correlation
between g and E for mixes with the sameq
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Fig. 5 — Gradient internal length estimate, g, for each mix vs. the Young’s modulus of elasticity, E,
based on the 4-point bending test results of geometrically similar beam specimens.

Gradient internal length and average inclusion size

The average size of the inclusiorts,() for a concrete mix is difficult to define, because aggregates

have irregular shapes and their average size can be easily up to 1.5 to 2 times the sieve opening usec
for gradation. In order to establish the average size of the material’s microstructure, selected
specimens of all sizes for each mix were sawed perpendicular to the beam axis at random locations.
The average inclusion size was estimated using two methods. The first was to average their
maximum size identified in a cross-sectional cut. The second method accounted for the irregular
shape of the aggregates and the estimation of the average inclusion size was based on an averag
aggregate area. The shortcoming of the latter is that a nominal shape for the aggregates must be
assumed in order to transform an average equivalent aggregate area on the plane of the saw-cut tc
an average length. Truly, heterogeneity is three-dimen$§jonhlle the above averaging methods

are either 1D or 2D. The mapping of the microstructure for the MC1 mix for specimen size S1

using both methods is shown in Fig. 6. For this particular specimen, the first method yielded a value

of d, =129mm, whereas based on the second method the estiea¢ads on the assumed shape
of the “equivalent” aggregate, i.e. for square-shaped aggregate, dmm8.tor circular-shaped,

d,, =92 and for equilateral triangular-shaped, =  I8. Given the angular shape of the

av —
aggregates used, the triangular shape seems more representative
The results on aggregate measurements from a total of twelve (12) cross-sectional cuts of

the tested beam specimens are shown in Table 6. It is noted that aggregates with a maximum
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dimension of less than 5 mm were assumed to be part of the matrix material. It is obviously rather
difficult to determine the average inclusion size for heterogeneous materials such as concrete. The
measurements included in Table 6 suggest an “average” inclusion size ranging from 10 to 20 mm
for all mixes, thus verifying that all concrete mixes have approximately the same microstructure
(see also Tables V.1 and V.2). This “average” inclusion size range corresponds to a gradient
internal length value of about 15 mm with+e880% scatter. The standard deviation for the internal
length estimate based on the 4-point bending test results is 27.4%, 22.8%, 19.5% and 52.6% for
mixes LC, NC, MC1 and MC2, respectively (see Fig. 14). This can explain most of the scatter
observed without considering the experimental errors and uncertainties accompanying the
measurements. On the other hand, the apparent association of the measured average aggregate siz
with the gradient internal length estimates for the low- and normal-strength concrete mixes is far

too good to be coincidental since the internal length value was found tg=bkb7+ 43 and

149+ 34 mm for the LC and NC mixes, respectively. It is concluded that the gradient internal
length is about equal to the average inclusion size of a composite material provided that the
heterogeneity is high (high of matrix and inclusions mismatch) as in the low-strength concrete. For
lower values of the elastic mismatch as in the case of the higher-strength concrete mixes (MC1 and

MC2), the internal length estimate based on the experimental results for MC1 and MC2 is
o= 123+ 24 and 7.8+ 4.1 mm, respectively.

compressive fiber

i . VA RS j D

X E k

> A Tre > @
e - Qzl 19

o : d%bﬁa (P o 3y

tensile fiber

&
@
U
A 0
Q
4— Castlng direction

Fig. 6 — Mapping of the microstructure for estimating the “average” inclusion size in a 100 x100
mm cross-sectional cut of size S1 specimen for mix MC1.
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Table 6. Average inclusion size of the microstructure for particles larger than 5 mm.

dgy (mm) @ day (mm) ®
Mix
S1 S2 S3 S1 S2 S3
LC 15.3 17.3 18.6 13.8 16.6 16.8
NC 11.8 14.7 16.8 11.5 13.7 15.4
MC1 12.9 13.2 16.4 12.4 12.7 15.8
MC2 13.5 14.7 16.0 12.5 14.2 15.0

@ 1D averaging
®) 2D averaging assuming equilateral triangle shape for aggregates

4. CONCLUSIONS

The size effect in elasticity was investigated using a Timoshenko dipolar elastic bearh anddel

the experimental results of un-notched geometrically similar beams of five (5) cementitious mixes

(four concrete mixes with»@d=32 mm and one cement mortar mix withuek1 mm) tested under 4-

point bending. The size effect was verified independently from both the experimental load versus

midspan deflection and load versus midspan curvature data. The key findings of the present work

can be summarized as follows:

1. A stiffer response than that predicted by classical elasticity theory is measured for cementitious
composites withdfup to 40 MPa in the flexural elastic response range of geometrically similar
un-notched concrete beam specimens for specimen height to maximum aggregate size ratio
values up to about 6.5.

2. The internal length introduced by the gradient theory and described in this work is estimated to
be about equal to the average inclusion size of the material’s microstructure for the lower-
strength mixes considered in this study, while it is equal to about one-half of the average
inclusion size for the medium-strength mixes. It appears that the internal length parameter value
for a truly high-strength concrete mix with a compressive strength of above 45 MPa will be
even lower.

3. The size effect in elasticity is affected by both the inclusion size and the elastic mismatch of the
different phases of the composite, and it increases with increasing inclusion size and decreases

with less elastic mismatch.
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CHAPTER VII
SIZE EFFECT OF CEMENTITIOUS MATERIALS IN INELASTICITY

1. INTRODUCTION

Size effect in elasticity was investigated and an estimate for the internal lengihf@ytge mixes
considered was obtained based on a proposed gradient elasticity model. The microstructure of
cementitious materials undergoes significant changes due to microcracking in the inelastic range of
response. This in the context of a continuum damage formulation is defined as a degradation of the
elastic material properties (softening). Therefore, the initial value of the internal leggtbh(@uld

also be affected by this evolution of damage. Microcracking can be seen as a source of
heterogeneity which augments any initial heterogeneity of the composite due to the presence of
stiffer inclusions inside a matrix material (see chapter V). This implies that with increasing the
accumulated microcracking activity (increasing accumulate damage), the initial value of the internal
length @ should increase. A thermodynamic formulation of the problems shown this to be true.

The present experimental results are compared against the predictions of a gradient elasto-
damage modélfor the case of beams under flexure. Damage characterization is based on an
assumed uniaxial stress-strain law for each mix and is defined in a classical manner through the use
of a damage parameter £ D<1), with D=0 signifying elastic behavior and D=1 zero stress
transfer capability (complete failure). The aim of this work is to examine whether sufficient
experimental evidence can be found in support of the hypothesis that the internal length should
increase with damage and furthermore to investigate its evolution law based on the experimental

evidence.

2. COMPARISON WITH THE PRESENT EXPERIMENTAL RESULTS

Peak applied load

The uniaxial stress-strain law parameters (see Section IV.4) in tension and compression used in the

analysis for each mix are summarized in Table 1. The value of axial stratorresponding to the

uniaxial compressive strength, was determined from the SG measurements in the uniaxial
compression cylinder test. A strain value of about 0.0015 for the concrete and 0.0018 for the CM
specimens was measured in the present tests. Although, SG measurements are probably highly

unreliable during inelastic deformations, the consistency of the measurements appears convincing

Size effect of cementitious materials in inelasticity 106

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 05:17:52 EEST - 18.221.57.191



SIZE EFFECT IN SEMI-BRITTLE MATERIALS AND GRADIENT THEORIES WITH APPLICATION TO CONCRETE

for considering these values in the analysis. Furthermore, based on the present uniaxial formulation
(see Section IV.4), the predicted strain valuessgand g (threshold strain value that signifies the

end of a perfectly elastic response), are also included in Table 1. It can be seen in Figs. V.4 and V.7,
that similar strain values were measured by SG’s in the uniaxial cylinder compression and the split

cylinder tests, respectively.

Table 1 - Input material parameters for each cementicious mix.

Uniaxial stress-strain law parameters Young's
Mix Compression Tension modulus
fc@ &  g0c® bc® ft O f@ bt © gor@ g @ E®@
(MPa) (x10°) (x109) - - - (x10%) (x109) (GPa)
LC 15.9 1500 250 1.643 0.80 4.5 70 110 25.0
NC 20.5 1500 270 1.707 0.85 5.0 65 100 30.7
MC1 34.7 1500 430 3.360 0.88 6.0 80 120 32.7
MC2 38.0 1500 450 3.890 0.90 6.5 80 110 34.0
CM © 32.4 1800 600 5.183 0.95 10 130 130 22.4

@ measured (see Table V.3).

®) Eq. (4) and assumed elastic limit at @.4f

© based on the 4-point bending peak load and corresponding midspan deflection.
@ Eq. (5) and assumed elastic limit at .8f

©) assumed elastic behavior up to peak strgss, =<, ).

The measured peak applied load and midspan deflection for all sizes of each mix where used
in this work in order to judge which values for the uniaxial tensile stress-strain law parameters b
and f were more appropriate for each mix since direct uniaxial tensile tests were not performed.
Concerning the details of the present model, the effectaidf on the predicted peak load and
midspan deflection can be decomposed as follows: lowering the vand keeping the same b
results in a decrease of the predicdgehk and Beak While increasing fand keeping the same f
results in a decrease of the predidggdkand RBeax

The measured peak load value for each beam size and mix is included together with the
model predictions in Figs. 1(a) to 1(e). The scatter of the predicted peak load values corresponds to
a + 5% deviation of the assumed tensile strength values. This deviation is not significant given the
number of uncertainties of the assumption that the tensile strength is a material frépeatybe
seen that with the exception of size S1 specimens of the NC and CM mixes, no size effect in the
flexural strength is apparent since the predicted peak load values shown in Fig. 1, if computed as

o, = P/bh, yield a size-independent flexural strength. Also, note that for all mixes specimens

considered it is true that, >f_ > f,, as expected

Size effect of cementitious materials in inelasticity 107

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 05:17:52 EEST - 18.221.57.191



SIZE EFFECT IN SEMI-BRITTLE MATERIALS AND GRADIENT THEORIES WITH APPLICATION TO CONCRETE

The measured peak load midspan deflections for all tested specimens are listed in Table 2. It
can be seen that for mixes MC1 and MC2, an increase of the peak load with size is accompanied by
an increase in the corresponding midspan deflection. This is not observed in mixes LC and NC,
where the peak load of beam sizes S2 and S3 occurs at the same midspan deflection. A similar

inconsistency is observed in the CM mix for beam sizes S1 and S2.

Table 2 - Measured midspan deflection at peak load (values in mm).

Mix size S1 size S2 size S3
LC 0.035:0.004 0.0490.010 0.0490.009
NC 0.036:0.003 0.0420.004 0.0450.008
MC1 0.029:0.005 0.0460.004 0.0580.004
MC2 0.034:0.005 0.0480.007 0.0680.002
CM 0.053:0.001 0.0520.003 0.0720.007
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Fig. 1 — Peak load vs. size (experimental results and numerical predictions): (a) LC mix, (b) NC
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Initial softening and large deflections

The model predictions are compared with the experimental results in Figs. 2 to 5. The classical
(local) and gradient (non-local) predictions are also shown. The non-local predictions were derived
using the internal length parameters shown in Table 3. It can be seen that the non-local predictions
are in better agreement with the experimental results than the local predictions, especially for large
deflections. Furthermore, a significant scatter in the softening response is observed for the size S1

specimens for all mixes. Regarding the CM mix, this is discussed in Section VII.4.

Table 3 - Gradient internal length evolution law parameters.

Non-local Mix
parameters LC NC MC1 MC2
Averagego 17 15 12.5 8.0
(mm)
n 0.90 1.30 1.65 2.00
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Fig. 2 — Comparison of the experimental results with numerical predictions for the LC mix: (a) size
S1, (b) size S2, (c) size S3 and (d) all sizes.
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Fig. 3 — Comparison of the experimental results with numerical predictions for the NC mix: (a) size
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Unloading path predictions
Unloading/reloading and monotonic (no unloading) tests were performed with the majority of beam
specimens being unloaded/reloaded at least three times at different load levels in the post-peak

softening branch of response. The unloading pathdHs depicted by an expression of the

form,P=P—-(1-D)K,(8-3), where Pand & are the values on the load vs. midspan deflection

softening branch where unloading star, is the average cross-section damage parameter at point
(P,3) and K, the initial flexural stiffness for the uncracked concrete. Thus, the inelastic (plastic)
midspan deflection upon complete unloading is:
8, =8-PIL-D)K, (7)
Three representative experimental Povsurves including the unloading/reloading cycles
for the MC2 mix, one for each beam size, are compared with the non-local predictions in Fig. 6.

The analytical normalized applied load at unloading with respect to the peal@ldﬁ,gm(, vs. the

normalized inelastic midspan deflectidi, /8, and midspan plastic strain, / €, curves (see

Section VII.5) are plotted in Figs. 7(a) to 7(d) together with the experimental results for all
specimen sizes. Both local and non-local predictions are shown in Fig. 7. The unloading estimates
depend on the initial flexural stiffness of the mateKal, and thePvs.5 model predictions. These

predictions are closer to the experimental findings when the influence of the gradient internal length
is considered and this is reflected in the unloading values shown in Fig. 7.
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mix: (a) beam size S1, (b) beam size S2, and (c) beam size S3.
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3. DISCUSSION OF RESULTS

The assumption of an increasing internal length

A measure of the difference between the local and non-local predictions is the ratio of predicted
midspan deflectiondiocaldnon-loca at @ given load level in the post-peak softening branch of the
flexural response. It can be seen in Figs. 2 to 5 that this ratio increases with increasing damage level

or increasing midspan deflection. For example, for the beam specimen NC-S3 (see Fig. 3c), at load

Size effect of cementitious materials in inelasticity

Institutional Repository - Library & Information Centre - University of Thessaly

09/06/2024 05:17:52 EEST - 18.221.57.191



SIZE EFFECT IN SEMI-BRITTLE MATERIALS AND GRADIENT THEORIES WITH APPLICATION TO CONCRETE

levels of 0.75F:ak 0.5Reakand 0.25F:akin the softening branch the predicted deflection rétia/

dnon-ocal IS 1.47, 1.74 and 2.26, respectively. This is due to assuming an increasing internal length.

On the other hand, the experimental results (see Figs. 2 to 5) clearly show that the accuracy of the
local predictions deteriorates with increasing damage level and within the context of gradient theory

this is naturally modeled by assuming progressively higher values for the stiffness associated with

the strain gradient, that is dg/dD>0. For the stiffness associated with the Cauchy strain it is true

that dK/dD=-K, <0 (see also Fig. 6) with the difference between theall and non-local
predictions being that ograd> Ko,cl, if g, is not negligibly small, that is the rate of decrease of

the elastic stiffness of the uncracked material is reduced. This “stiffening effect” is revealed upon
unloading and it shows that the assumption of an exponential evolution law for the internal length is

appropriate yielding predictions for all mixes closer to the present experimental results (see Fig. 7).

Evolution of gradient internal length with damage

The post-peak response in the 4-point bending tests for imposing midspan deflection at a constant
rate, right after the peak applied load shows a rather sharp loss of load resistance with a subsequent
continuously decreasing rate of loss of resistance. This behavior shows that the relation between
damage and midspan deflection is non-linear. In the present strain gradient model, the relation
between damage and predicted resisted load is not affected by the value of g since damage
characterization is based on the Cauchy stresses and ‘stramsgh Eq. (39) of Section IV.5.

Forg> 0, however, the predicted strains and hence the curvature and deflection values for the same

load level are lower than the predictions of the local model. In addition, consistency of the theory

requires the internal length evolution law to be a material property. The cases of a constant internal

length (g=9,) and a linear evolution lawd=g,(@+yD)) were examined but in both cases

calibration of the associated parameters was not objective. This lack of objectivity was remedied by
assuming a nonlinear relation for the evolution law.

Microcracking, which is the source of damage in cementitious materials, is influenced by
the composite nature of the materials. Stress redistribution due to microcracking becomes more
limited with decreasing brittleness because it is forced to occur in the matrix material. Naturally,
localization of microcracking leads to major-crack development and, in that respect, brittleness is
related also to the number and size of fractured aggregates along the fracturé Ysdacaso Fig.

VI1.4). Furthermore, it has been shown that microcracking activity becomes more localized for

increasing brittlene&sandthis abrupt degradation of the material due to high localization of damage
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naturally results to a decrease of its deformation capacity. Therefore, increasing brittleness should
affect the rate of increase of the internal length with damage. The present findings support this
hypothesis since the non-local parameter, n, for concretes with the samesl found to increases

from 0.9 to 2 for concrete mixes with increasing brittleness (see Fig. 8).

The evolution law assumed in this wods g,e™, implies that if g = Q then g(D)=0.
However, a different evolution law which allows for=g a D=0 might be applicable to high-
strength concrete and CM mix or concrete mixes wjth g. InOprinciple, absence of size effect in
elasticity does not necessarily mean no size effect in inelasticity, since microcracking although
influenced by the microstructure occurs even in nearly homogeneous quassi-brittle materials like
CM. The present experimental results for CM are discussed and compared to the experimental
findings of Gettu et afor high-strength concrete in Section VII.4. Thus, for materials exhibiting
practically no size effect in elasticity { g )0an evolution law of the forng=g,D", should result

in reasonable predictions.
1

7 '\ — - —--LC(bt=45) T
/ S NC (bt=5) o] [ =-=--c=090)
« 0.8 1 p N | — —MCl(bt=6) | O || NC (n=1.30)
5 5 \;\ MC2 (bt=6.5) 61| — —mc1 (n=1.65)
/ \‘\\ CM (bt=10) MC2 (n=2.00)
0.6 ) 5 | _
. \ CM (n=4)
Y/ /

Normalized stress,
=} o
N H

Normalized internal length, g(D)/g o

0 ‘ 0 ‘ ‘ ‘ ‘
0 0.5 1 18 2 25 3 0 02 04 06 08 1
Normalized strain €/g; Damage, D
() (b)

Fig. 8 — (a) Normalized stress-strain law in tensioif, = (Bt (S/St))/(Bt -1+ (a/st)ﬁ‘)and (b)

Normalized internal length evolution vs. damage D for all mixes baseg{D)= g,e™ for the
local and non-local numerical predictions.

4. HIGHLY BRITTLE MATERIALS
It was not possible to capture the post-peak softening branch for any of the cement mortar beam
specimens due to the extremely unstable crack growth typical of very brittle material. Furthermore,
the experimental load vs. midspan deflection, shown in Fig. 9 with the model predictions, showed
no sign of non-linearity up to the peak load for all beam sizes. Note that the local and non-local
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predictions coincide up to the peak load since elastic behavior is assumed up to the peak tensile

strength (see Table 1) amydis negligibly small for this mix.

60

50

Load (kN)
w »
o o

N
o
|

M-S1
— M:S2
2 M-S3
O  Model pred.

=

o
|
a

0d T T T
0.00 0.04 0.08 0.12 0.16 0.20

Midspan deflections (mm)

Fig. 9 — Experimental load vs. midspan deflection curves for CM mix up to peak applied load with
the numerical predictions.

Gettu et aP investigated size effect in high strength concrete=(f MB&, d., = 95mm)

in notched beam specimens subjected to 3-point bending. They reported the midspan deflection
recorded at the peak applied loage(R and at 0.1Rakin the softening branch of the response. The
ratio of these two deflections can be seen as a measure of brittleness. The value of this ratio was

found to be 212+ 063 based on the test results of seven (7) specimens of various sizes. For

comparison, the same ratio for the MC2 mix£38 MPa, d, = 32mm) was 758 192 If an

evolution law of the formg=g,D" with ;:=54.6 mm and n=4 (orogl mm and n=4 using Eq. 7) is
assumed for the gradient internal length and applied to the cement mortar mix, then the local
estimate of the deflection ratio is 6.80, whereas the non-local one is8348 don-loca= 2.2).
Although the post-peak softening branch of the cement mortar beam specimens was not recorded, it
is reasonable to assume that the brittleness of this material should be similar to the brittleness of
high-strength concrete and in that respect the non-local model predictions appear to be more

realistic.

5. FLEXURAL STRAIN MEASUREMENTS
Casting of beam specimens in plywood forms unavoidably creates a boundary layer whose

properties can differ from the core mateflal However, it is shown that despite the objectibns
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concerning what is actually being measured on the surface of specimens with strain gages (SG’s)
due to the complex nature of microcracking, some useful information can be extracted from the SG
measurements.

The tensile concrete strain measurements at the bottom side of the midspan cross-section for
two LC-S2 specimens are shown in Fig. 10. It can be seen that the axial normal tensile strain value
stops increasing before the peak load indicating that certain damage has already occurred before the
peak load and that within the elastic deformation range every cross-section experiences a level of
strain proportional to the applied load. However, once cracking occurs, tensile strain measurements
cannot be fully trusted.

The location of a major crack for un-notched specimens under 4-point bending cannot be
predicted neither forced to occur at the midspan cross-section although in some specimens a crack
developed nearly at the midspan section. When this occurs, the recordings of the SG’s placed on the
top extreme compressive fiber of the midspan cross-section show interesting measurements and two
examples are shown in Figs. 11 and 12.

The strain values measured on the side face of the beam specimen at a distance of 2 cm from
the top compressive fiber for two LC-S3 specimens are shown in Fig. 11. The following sequence
of events is observed. Initially compressive strains increase linearly, i.e. the n.a. coincides with the
centroid of the cross-section. In the post-peak softening branch, as a consequence of the n.a. shifting
upwards towards the fiber where the SG was attached, the strains start to decrease. As damage
increases, the measured strain value from compressive turns to tensile indicating that for
P/Ppeak=0.33 and P/Ppeak=0.28 for LC-S3-01 and LC-S3-02, respectively, the n.a. should be
located at z=80 mm, where the SG is placed. The stress distribution predicted by the present model
corresponding to these load levels is shown in Fig. 11c. It can be seen that the location of n.a. is
predicted very well.

Representative SG measurements at the extreme top compressive fiber of an MC2-S3 beam
specimen are shown in Fig. 12. It can be seen that upon complete unloading a permanesnt)strain (
is recorded which, however, is not due to inelastic deformations at the top fiber, since that part of
the cross-section subjected to compressive stresses should remain elastic. Furthermore, as shown ir
Fig. 7, the normalized plastic midpsan deflections and strains after unloading are similar for each
mix. The strains measurements confirm a “stiffer response” in the inelastic beam’s response range

and this can be seen as experimental evidence that the adopted constitutive equation

G €&, )=(1- DE)EE-9%,,) , is appropriate.
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Fig. 10 — Measured longitudinal flexural strains at the extreme bottom (tensile) fiber for two size S2
beams of the LC mix.
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Fig. 11. (a) Normalized applied load vs. midspan deflection, (b) Normalized applied load vs. SG
measurements at=80 mm and (c) numerical predictions of axial stress distribution at midspan
along the beam height for load levels in the softening brangh.RM33 and P/Ra=0.28 for two

size S3 beams of the LC mix.
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Fig. 12 (a) Normalized applied load vs. midspan deflection, (b) Normalized applied load vs.
compressive strain at the extreme top fiber for specimen size S3 of MC2 mix.

6. CONCLUSIONS
The size effect in the inelastic flexural deformation range of the concrete beam specimens tested
under 4-point bending was investigated for five (5) cementitious mixes (four concrete mixes with
dmax=32 mm and one cement mortar mix withagtl mm) by testing un-notched geometrically
similar beams under midspan displacement control. The key finding of the present study can be
summarized as follows:
1. An increasing gradient internal length with damage yields non-local predictions that are in
better agreement with the experimental results than the local predictions
2. A non-linear (exponential) relation between damage and the gradient internal length was found
to satisfy the objectivity requirement of a size-independent internal length evolution law.
3. The brittleness level of the response for the cementicious mixes studied is found to affect the
internal length rate of increase with damage, that is higher rates of increase of the internal length
are found for higher brittleness levels.
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CHAPTER VIII
SIZE EFFECT ON STRENGTH FOR CEMENTITIOUS MATERIALS

1. INTRODUCTION

Size effect in cementitious materials does not manifest itself only in deformation related parameters
such as stiffness but also in tensile or compressive strength such as peak load predictions. In
Chapters VI and VII, a strain gradient formulation of the problem was used in order to account for
the former, while predicting size effect in strength was not possible. The study on size effect in
flexural strength is presented in detail in this chapter and the present experimental results are
discussed. The fracture mechanics prediction of size effect in flexural strength for the case of un-
notched beam specimens and the statistical size effect are investigated and it is shown that they only
partially explain the experimental results. The composite nature of concrete, the boundary layer
effects and diffusion phenomena are also discussed and it is argued that the observed behavior can

be attributed partially to these factors.

2. SIZE EFFECT ON STRENGTH
Size effect in flexural strength is not possible in the present formulation of the problem which relies
on an assumed uniaxial stress-strain law for concrete in tension and compression. However, a size
effect in flexural strength is apparent based on the experimental results for some cementitious mixes
(see Fig. 1). These results are discussed and are compared with the predictions based on other

possible sources of size effégt!12

Statistical size effect

The statistical size effect preditishat the flexural strength of concrete, ds affected by size as

h™™ which ish™/8 for n=3 (3D similitude}and Weibull modulus m = 24 according to Bazant
and Novak”,

The measured flexural strength for all concrete mixes is plotted against the beam size in a
logarithmic plot in Fig. 2. If statistical size effect was present, the slope of a linear approximation
for the on vs. size data plotted in a logarithmic plot should be equal to -3/24= -0.125. If the
statistical size effect predictions are compared with the present experimental results it is concluded
that the source of the deviations observed cannot be attributed only to statistical reasons and that the

main source of the observed behavior is because other sources of size effect are present.
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Fig. 1. Comparison of measured flexural strength values vs. size with the present model predictions:
(@) mix LC, (b) mix NC, (c) mix MC1, (d) mix MC2, and (e) mix CM.
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Fig. 2. Measured flexural strength values vs. beam size.
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Specific fracture energy
The fracture energy of concrete is typically obtained according to the RILEM mdtbad a 3-
point bending test of beam specimens with specific dimensions depending on the maximum

aggregate sized For a notch depth, a, and beam height, h, a minimum ratio, (fhaa)3dL25

is specified. In the present study, for the un-notched concrete beam specimens tested under 4-point
bending the ratio of hfgx is equal to 3.125, 4.69, and 6.25 for beam size S1, S2 and S3,
respectively.

The fracture energy per unit fracture surface area is defiéd-a8v./ A, where A is the
nominal cross-sectional area of the beam specimerwWant the work supplied to statically

fracture the beam specimen and is equfal to

V\ész@)cBJrZPqSU:WPWLWq (1)

0

where Pis the applied loadP, is the equivalent self-weight of the beam and fixtures supported by
the beam andl, the ultimate midspan deflection. The equivalent concentrated self-weight at each of
the two load points,, B 0734qL(g= uniformly distributed self-weight), is estimated by equating

the midspan deflection for linear elastic behavior in the case of a simply supported beam subjected
to a uniformly distributed load, g, to the midspan deflection under 4-point bending and of the same
span. Note that, if the equivalent self-weight is determined based on equating the maximum bending

moment at midspan an equivalent logd=P  0.75e found. It is noted tha®, for the un-notched

beam specimens tested for this study, was less than 1% of the total peak applied load. For all beam
specimens tested, the 4-point bending test was terminated in the softening branch region of response
after at least 90% of the maximum load resistance was lost.

The fracture energy per unit fracture surface area results for each concrete mix are plotted
against the specimen size in Figs. 3(a) to.3d3jignificant but similar scatter is observed for all
beam sizes and no trend of the reduced scatter is apparent with increasing size.
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Fig. 3. Fracture energy3or all beam sizes: (a) mix LC, (b) mix NC, (c) mix MC1 and (d) mix
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The average value of the specific fracture energy for each size is shown in Table 1. The

average value of all tested specimens for each mix is assumed to be the fracture energy of the

material and is used in the analysis. This average value for each mix, is similar to values reported by

other$->89or concrete mixes with . d > 20mm

Table 1. Measured specific fracture energy values for all concrete mixes and beam sizes.

Fracture Energy, G (J/m?)

Mix Average
S1 S2 S3 G
F
LC 232+65 276+37 257+53 255+56
NC - (%) 220+35 186+13 205+ 32
MC1 202+39 21816 193:31 207/429
MC2 212+52 201+38 22554 211+47

) not measured
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The specific fracture energy and the characteristic lenigth for each concrete mix are
plotted against the compressive strength in Figs. 4(a) and 4(b), respectively. The so-called
“characteristic” length of a cementicious material is defined las=EG./f’ (E=Young’s
modulus, f,=tensile strength and.=fracture energy), which is a measure of the inverse of the

material’s brittleness. Note that an increase of the compressive strength does not necessarily result
in an increase of the specific fracture energy. This is due to the fact that the fracture energy can not
distinguish the different effect on ductility and brittleness resulting from an increase of the
compressive strength However, regarding the brittleness of the concrete mix (see Fig.4), the
calibration of the softening parameterielded 4.5, 5, 6, 6.5 and 10 for mixes LC, NC, MC1, MC2

and CM, respectively. Increasing the softening parameter is equivalent to assigning a steeper
softening branch to the material's uniaxial stress-strain law (see Chapter VII). Furthermore, the
non-local parameter, n, of the assumed gradient internal length evolution law was found to increase

with increasing brittleness.
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Fig. 4. Fracture parameters vs. compressive strength for mixes NC, LC, MC1 and MC2: (a) Specific
fracture energy, 6(b) Characteristic lengthgl
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Fracture mechanics size effect on flexural strength
Expression (2¥° for the size effect on the modulus of rupture for the case of un-notched concrete
beams based on a cohesive crack model predicts that:
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f

_":(P+

f

3-+99h/1,)

(3 244(n/1)(1+87(h/1,))

(@)

wheref, is the modulus of rupturef( =c ), f, is the uniaxial tensile strengtip,=1 for pure

bending and, is a length parameter. The length paraméteis linked to the characteristic

length|,, through the relationl,, =c |, , where the factoc, ranges from 0.4 to 0.6 and is

associated with the softening branch of conéretde steeper the initial softening after the peak

load, the smaller thg . It is assumed that, &

MC1 and MC2.

Gor mixes LC and NC, and, &  (6r mixes

The predictions based on Eqg. (2) are plotted with the present experimental results in Fig. 5.

It is noted that concerning the tensile strengihlife values shown in Table VII.1 are used.

i
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Fig. 5. Normalized measured flexural strength values with respect to the assumed tensile strength of
the concrete mixes vs. beam size compared to the cohesive crack model predictions.

Fracture mechanics size effect on splitting strength

For the case of the split cylinder test configuration used in this study (see Chapter V), the splitting

to the uniaxial tensile strength ratio can be predicted by the expressfan (3)

f
=2 - 10233+ 1 3)
f, - 673+ 2627D /1,
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where f_jis the splitting strength ardl,is the cylinder diameter. It is noted that Eq. (3) is

applicable for 04<D_, /1, <10 and that it was showh to be in good agreement with the

experimental results for cement mortar, (, & S5mamd granite specimens.

The measured splitting strength (see Table V.3) to the assumed uniaxial tensile strength (see
Table VII.1) ratios are shown together with Eg. (3) in Fig.6. The predictions of Eq. (3) are good for

the concrete mixes witb ,/1,<0.4 and the asymptotic behavior predicted is also realistic.

oLC XNC AaMC1 oMC2

=
w

=
N
(6)]
|
[m]

Eq. (3)
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z-‘\

1.15 4
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=
|
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=
o
a1

[N

0 0.5 1 15
Normalized size, D y/l;

Fig. 5. Comparison of the measured splitting strengghtd the calibrated uniaxial tensile strength,
ft, ratio with the cohesive crack model predictions.

Empirical prediction of size effect in flexural strength
The CEB-FB modéfcode empirical expression (5) can predict the size effect on flexural strength:
0.7

= o0e ®)
where h is the beam height in mm.

The predictions of Eq. (5) are plotted with the present experimental results in Fig. 6. It can
be seen that correlation with the present experimental results is good for beam size S3 for all mixes
and significant deviations are observed for sizes S1 and S2.
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Fig. 6. Comparison of the measured flexural strength, and calibrated uniaxial tensile strength,
ft, with the predictions of the CEB-FIB model code empirical Eq. (5).

3. DISCUSSION

The heterogeneity of a material and the relative strength of the different phases of a composite have
been shown experimentally to affect the details of macrocrack propagatitowever, with regard
to how microcracking may affect the measured peak load, the issue of propagation of a macrocrack
offers little insight for an un-notched beam specimen. Impregnation tests have shown that
microcracking in concrete exhibits some random characteristics that a major crack by definition can
not include. Any effect microcracking will have on the peak load should be the same for all sizes
according to the present model predictions, since damage at peak load is size-independent.
However, lattice model simulatiofshave shown that as the scale of concrete specimens is
decreased, the detail of the microstructure can significantly affect the predicted peak load. This
implies that as the macroscale of specimens decreases, the measured behavior will be less
representative of the material. Note that in interpreting uniaxial tension tests for concrete, a ratio of
h/dma=3.75 was argued to be too sn¥all

Other inherit uncertainties associated with casting and curing of the beam specimens like
formation of a boundary layer with different propertieand diffusion phenomepfalue to different
cooling times of the core and surface material, can be important for the case of un-notched
specimens and their influence cannot be neglected. For example, the reduced flexural strength of
size S3 specimen of the MC1 mix could be attributed to induced microcracking due to hydration

heat phenomena since relatively very small size effect is observed in sizes S1 and S2. Also, the very
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high flexural strength especially for size S1 for the CM mix h&IL00) which showed no size
effect for sizes S2 and S3, could be the result of a boundary layer rich in cement concentrated at the
bottom of the specimen during casting. The same could be argued for the very high peak values
measured in specimen size S1 of the NC mix. Also, a size effect on flexural strength was not
present for mix MC2. This might be seen as proof of the absence of the material’'s size effect or as
proof that the true material’s size effect is shadowed by other factors affecting the results. Finally,
the size effect on flexural strength measured for the LC mix can be attributed to material’'s size
effect since a regression analysis of Bazant’s two parameter size efféetdavpossible only for
this mix.

A review of the present experimental results collectively does not reveal a single source of
size effect which can be identified as the source of the observed behavior. However, considering the
relatively small size range of specimens used in this study (1 : 1.5 : 2), other $not@ssociated

with the material size effect on strength are expected to influence the measured peak load values.
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MAIN CONCLUSIONS

Given the increasing awareness regarding the usefulness of gradient elasticity theories and
the significant amount of theoretical work that has been produced in the last decade or so, it is
rather surprising that the discussion concerning the relationship between the internal length and the
material’s microstructure is more or less limited usually to the vague statement that the internal
length parameter of the material is a function of the dominant feature of the material's
microstructure. The main aim of this thesis was to investigate the physical correlation of this
internal length assumed by dipolar elasticity to the material’'s microstructure. To the author’s
knowledge, the estimation of an evolving internal length parameter for cementitious materials based
on experimental evidence has not been done in the past. For this to be attempted and in order to
investigate a possible size effect in elasticity from flexure tests of concrete beams, the two classical
material constants, the Young’s modulus and Poisson’s ratio, should be determined independently.

A homogenization procedure applied to heterogeneous materials in this study showed that
the internal length is best described as a measure of the heterogeneity which cannot be defined only
in terms of the dominant feature of the microstructure (size of inclusions) but also of the
matrix/inclusions elastic mismatch in the material. This was verified experimentally by testing
concrete specimens of various mixes with similar microstructural details but with different
matrix/aggregate elastic mismatch. The internal length estimate determined based on this model
was found to decrease with decreasing level of elastic mismatch.

A gradient enhanced elasto-damage model applicable to the case of concrete beams under
flexure, which relies heavily on the elasticity solution of the boundary value problem for the case of
a dipolar elastic Timoshenko beam, is presented in this work. A closed-form solution of this
problem and a methodology for solving more complex beam problems, such as indeterminate beam
configurations, is described. This model reduces to the gradient Bernoulli-Euler solution and the
classical Timoshenko solution if the necessary simplifications and limits are considered. The
elasticity solution of the boundary value problem was used in conjunction with an assumed stress-
strain law applicable to semi-brittle materials in order to produce numerical predictions for the
inelastic response of the beams tested. The model proposed is shown to lead to an objective (mesh-
independent) damage characterization.

In this study, the presence of size effects in elasticity and inelasticity of cementitious

materials was investigated based on midspan deflection and axial strain measurements of un-
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notched concrete beam specimens tested under true displacement-controlled 4-point bending for
concrete with a compressive strength of up to 40 MPa. The geometrically similar un-notched beam
specimens tested had a beam height to maximum aggregate size ratio of up to about 6.5. Since
concrete possesses rather complex microstructural details due to the presence of different aggregate
sizes with specific volume fractions (aggregate gradation), the internal length estimate for a given
mix is compared with its average inclusion size, which describes its inherent heterogeneity. The
average inclusion size for the concrete mixes considered in this study with a maximum aggregate
size of 32 mm, obtained by mapping the actual microstructure on cross-sectional cuts of the
specimens, ranged between 10 and 20 mm. An estimate of the internal length for a given concrete
mix was obtained based on the applied load vs. midspan deflection and curvature measurements of
the beam tests. A stiffer response than that predicted by the classical elasticity theory is measured in
the flexural elastic response range of the beams tested. The proposed model predicted an internal
length estimate of abolb+5 mm in the case of the concrete mixes with a significant elastic
mismatch for which cracking occurs predominantly in the matrix material (lower-strength concrete).

It should be noted, that the same internal length estimate was obtained independently of the use of
either the midspan deflection or the axial strain measurements. These concrete mixes are
representative of a composite with inclusions much stiffer than the matrix material. It is important
that the internal length parameter in this case appears to be practically equal to the average inclusion
size of such a microstructure. On the other hand, lower internal length estimates dfzah?wand

8+ 4 mm (about one-half the average inclusion size), were found for the two concrete mixes with a
higher compressive strength. The lower internal length estimates for the higher-strength concrete is
attributed to the lower elastic mismatch in the microstructure of these mixes, due to which a
significant number of aggregates were fractured along the crack path. As expected, the size effect in
elasticity is found to be insignificant in the case of the cement mortar mix with a maximum
aggregate size of 1 mm, which can be viewed as a completely homogeneous material.

Furthermore, it is argued that microcracking in semi-brittle materials, which is the source of
material softening, should also affect the initial internal length parameter valughigh is
associated with the given heterogeneity of the material. If a microstructural internal length is related
to the level of damage, a thermodynamic formulation of the problem showed that this length should
be either increasing or remaining constant with damage. An experimental investigation of the
particular form of the gradient internal length evolution law verified this theoretical finding since it

was shown that an increasing gradient internal length with damage yields non-local predictions that
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are in better agreement with the experimental results than the local predictions. Finally, a non-linear
(exponential) relationship between damage and the gradient internal length was found to satisfy the
objectivity requirement of a size-independent internal length evolution law for the cementicious
mixes considered in this study. Also, it was found that the rate of increase in the internal length

value with damage is increasing with increasing brittleness level of response.
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