
Indexes for Blockchain Data

Ευρετήρια για Δεδομένα Blockchain

Kalimeris Markos

Supervisor: Assist. Prof. Katsaros Dimitrios

2nd committee member: Prof. Tousidou Eleni

A Thesis submitted in fulfillment of the requirements
for the degree of Diploma Thesis

in the

Department of Electrical and Computer Engineering
University of Thessaly

Volos, Greece

February 2019

Dedicated to
my family and friends

Ευρετήρια για Δεδομένα Blockchain

Περίληψη

Το Blockchain είναι μια νέα τεχνολογία, η οποία διαθέτει τεράστιες δυνατότητες ε-

φαρμογής σε ποικίλες βιομηχανίες. ΄Εγινε ευρεύως γνωστή ώντας η βασική τεχνολο-

γία πίσω από τη δημιουργία του ψηφιακού νομίσματος Bitcoin το 2008. Ωστόσο οι

τομείς της σημερινής τεχνολογίας που μπορεί να εφαρμοστεί δεν περιορίζονται στον

χρηματοοικονομικό τομέα. Το αντικείμενο της παρούσας διπλωματικής είναι η μελέτη

αυτής της τεχνολογίας, αλλά και η κατασκευή μιας βάσης δεδομένων για τα δεδομένα

της συγκεκριμένης τεχνολογίας ώστε να παρέχεται ένας εύκολος τρόπος αναζήτη-

σης πληροφορίων βάση ευρετηρίου. Πιο συγκεκριμένα αρχικά ερευνά και αναλύει τις

έννοιες της τεχνολογίας Blockchain καθώς και τον προσδιορισμό των τεχνικών συνε-

πειών που παρέχει η τεχνολογία, με βάση τις σημαντικότερες υπάρχουσες πλατφόρμες

όπως είναι το Bitcoin, το Ethereum, το Ripple, το Hyperledger κ.α. Δεδομένου

του γεγονότος πως το Blockchain , είναι μια συνεχώς αυξανόμενη λίστα εγγραφών,

συνδεδεμένη μέσω κρυπτογραφίας, προκύπτει το πρόβλημα της αδυναμίας αναζήτησης

πληροφορίων που βρίσκονται κατανεμημένες σε αυτό. Γι’ αυτό το λόγο υλοποιείται

ένα ευρετήριο βασισμένο στο μοντέλο κλειδιού-τιμής (key-value) χρησιμοποιώντας την

κατανεμημένη βάση δεδομένων Redis, και χρησιμοποιώντας τα δεδομένα που εξάγουμε

από μια Blockchain πλατφόρμα, το Ethereum στη συγκεκριμένη περίπτωση, μέσω μιας

διεπαφής, που προσφέρει το ίδιο το Ethereum σε μορφή βιβλιοθήκης ονομαζόμενης

web3, και επιτρέπει την πρόσβαση στην ίδια του τη δομή ανακτώντας δεδομένα από

αυτήν.

Indexes for Blockchain Data

Abstract

Blockchain is a brand new technology, which has enormous application capabilities

in a variety of industries. It became well-known as the basic technology underlying

the creation of the digital cryptocurrency Bitcoin back in 2008. However, the areas

of the current technology that can be applied are not limited to the financial sec-

tor. The subject of this diploma thesis is to study this technology, but also build

database, thus providing and easy and fast way to search for information based on an

index. More specifically, it initially explores and analyzes the concepts of Blockchain

technology and identifies the technical and financial implications provided by the

Blockchain technology based on the most important existing platforms such as Bit-

coin, Ethereum, Ripple, Hyperledger and others. Given the fact that the Blockchain

is an ever-growing list of records linked via cryptography, it emerges the problem

of searching for information distributed into it. For this purpose, and index based

on the key-value model is implemented using the distributed Redis database, stor-

ing the data we extract from a Blockchain platform, in this case we use Ethereum

through an interface that Ethereum itself offers in the form of a library called web3,

allowing access to its own structure and retrieving data from it.

Acknowledgements

First of all, I would like to express my deepest appreciation to my supervising

professor Dimitrios Katsaros, for his guidance and invaluable support, which has

been defining for the implementation of this diploma thesis.

I would also like to thank my friends and fellow students for the help and the

support they have provided to me all these years of my studies, and the experiences

and memories we have shared which can hardly be forgotten.

Finally, I would like to thank my family for having always been there supporting

and helping in every possible and amazing way, and they will always be the most

important thing I have in my life.

v

Contents

Abstract iv

Acknowledgements v

1 Introduction 1

1.1 Importance of the problem . 1

1.2 Approach . 2

1.3 Thesis structure . 2

2 Background 4

2.1 Ledgers . 4

2.1.1 Centralized Ledgers . 4

2.1.2 Distributed Ledgers . 5

2.2 Decentralized vs Distributed . 6

2.3 History and Background . 7

2.4 Web 3 . 9

2.4.1 Stack Layers . 9

2.4.2 Architecture . 16

2.4.3 JSON-RPC . 18

2.4.4 web3 Library . 19

2.4.5 Web3 Provider . 20

2.5 REST API . 20

3 Blockchain Infrastructure 23

3.1 Blockchain Categorization . 23

vi

Contents vii

3.1.1 Permissionless Model . 23

3.1.2 Permissioned Model . 24

3.2 Blockchain Infrastructure . 25

3.3 Consensus Models . 35

3.3.1 Proof of Work Model . 37

3.3.2 Proof of Stake Model . 40

3.4 Blockchain Conflicts and Resolutions 42

3.5 Forking . 44

3.5.1 Soft Forks . 44

3.5.2 Hard Forks . 45

3.5.3 Cryptographic Changes and Forks 47

3.6 Smart Contracts . 47

3.6.1 Smart contract Applications 49

4 Ethereum Platform 51

4.1 System Overview . 51

4.1.1 Blockchain component . 51

4.1.2 Peer-to-Peer network component 52

4.1.3 EVM component . 53

4.2 Merkle Tree Structure . 53

4.3 Scalability . 55

4.3.1 Plasma Chains . 56

4.3.2 Sharding . 56

4.4 Protocol Basics . 57

4.4.1 Specification . 57

4.4.2 Data Transfer . 58

4.5 Transactions . 59

5 Implementation 64

5.1 Combining existing parts . 64

5.1.1 Illustration of the System Architecture 64

5.2 Redis Storage . 66

Contents viii

5.2.1 Redis Functionality . 67

5.3 Ethereum Network . 69

5.3.1 Blocks . 72

5.4 Utilities and Configurations . 74

5.4.1 Serialization . 76

5.4.2 Address Indexer . 77

5.4.3 Getting Addresses and Transactions 78

5.4.4 REST Server . 79

5.4.5 Configurations . 80

5.4.6 Error Module . 81

5.4.7 The Logger . 83

5.4.8 Connecting to a node . 83

5.4.9 State . 84

5.4.10 Loading Components . 85

5.5 Running the Indexer . 86

6 Conclusion 87

List of Figures

2.1 (a) Centralized Ledger (b) Decentralized Ledger. 5

2.2 (a) Decentralized network. (b) Distributed network. 6

2.3 Distributed DBMS Architecture. 7

2.4 The Web 3 Stack. 10

2.5 Anatomy of a Transaction on the Ethereum Blockchain. 15

2.6 Architecture of a Web 2.0 application vs that of a Web 3.0 application 17

3.1 Anatomy of a single block. 26

3.2 Transaction to transaction payment as used in Bitcoin 29

3.3 Generic Chain of Blocks. 36

3.4 Consensus finality violation resulting in a fork 43

3.5 The chain with block n(B) adds the next block, the chain with block n(A)

is now orphaned, and longest chain wins 43

3.6 Old nodes, having the white blocks, will accept the black blocks, mak-

ing a soft fork backwards compatible. The white chain will eventually

“die out” as no white blocks are mined any longer when all nodes and

mines are upgraded. 45

3.7 The black chain will not accept white blocks, and vice versa, making

a hard fork not backwards compatible. Unlike a soft fork, the “old

chain”, here the chain of black blocks, does not “die out”, because it

still has enough miners and nodes using it. The chain splits into two

separate chains, that share the same transaction history as before the

split. 46

4.1 A simple Merkle tree . 54

ix

List of Figures x

4.2 Sharding in Blockchain . 57

4.3 State transition in Ethereum . 59

4.4 Ethereum Tries . 60

4.5 Relationship between the State Trie and an Ethereum block 61

5.1 Indexer interacting with the Ethereum Blockchain to get data 65

5.2 How Geth communicates with the user running the node and the

network . 66

5.3 Indexer module requesting data from the REST server, who in turn

requests the data from the Redis Database 67

List of Tables

3.1 Examples of Input Values and Corresponding SHA-256 Message Values 31

5.1 Redis Functions used . 68

5.2 SyncProgress gives progress indications when the node is synchronis-

ing with the Ethereum network. 71

5.3 Every value of the configuration file. 82

xi

Chapter 1

Introduction

In this chapter, a preface is given in order to understand the aim of this thesis. In

particular, it explains why indexing data which are scattered across the Blockchain

is crucial as what strategy does this thesis follows, in order to index these data and

provide an efficient way to query them.

1.1 Importance of the problem

Information relating to an entity in a distributed ledger, specifically the Blockchain,

may be scattered throughout it with no index, thus making an extremely difficult

task the search of these information. The blockchain technology is becoming more

established and it is being used to represent transactions in the real world so the

search requirements are growing. Moreover because of the time-ordered structure of

the blockchain, the related data exists across multiple blocks and there is no build-in

way to identify, group or query it. Thus an index providing the ability to search us-

ing specific terms across the blockchain will enhance the scope, power and usability

of it. There are different levels of detail at which indexing can be accomplished. It is

necessary to index the basic entities of the blockchain, meaning the accounts, blocks

and transactions, at a low level. The total data stored across the blockchain requires

the ability to locate and retrieve it, so indexing at this basic level is fundamental to

high level querying of the blockchain.

1

1.2. Approach 2

1.2 Approach

At first, this thesis approaches the Blockchain technology overall and how it

works by explaining its complex nature and structure. It breaks down the compo-

nents of the Blockchain and analyzes each one of them. Moreover the Ethereum

Blockchain platform is discussed in detail because it is used for the purpose of de-

veloping the indexing service. This service will index the Ethereum Blockchain and

provide a REST API to query all transactions related to a given address and a

Socket.IO subscription mechanism to be notified when those are indexed. The Go

Ethereum implementation provides web3, which a Javascript programming library

that is used to talk to an Ethereum node, providing also a convenient interface the

RPC methods. The data extracted from the blocks of the Blockchain will be indexed

in Redis, which is a distributed key-value database. For the indexer to work, either

an Ethereum client can be used, such as Geth or Parity, syncing a full node locally,

or Infura can be used, which is a hosted Ethereum node cluster, meaning that there

is no need for a user to set up his own Ethereum node.

1.3 Thesis structure

This thesis is divided into 5 main chapters, each one including smaller sections

and possibly subsections. Chapter 2 provides a background and history of the

blockchain technology, describing its evolution through time from distributed ledger

to the first true Blockchain implementation, the Bitcoin. Chapter 3 breaks down

the Blockchain infrastructure analyzing its components individually and explaining

how a Blockchain works in general. Chapter 4 focuses on a specific Blockchain

implementation, the Ethereum Blockchain, which is used as the main platform for

the integration of the indexing service. Explanations on how Ethereum works and

information about the REST API are provided, necessary for one to understand the

development process and the components used in this project. In Chapter 5 the

implementation of the project is presented and how the data from the Ethereum

node are being extracted and indexed in Redis and how the query using the REST

API is executed. Finally, Chapter 6 concludes the thesis stating our contributions

1.3. Thesis structure 3

and the future work.

Chapter 2

Background

2.1 Ledgers

Ledger by definition is a book of record keeping all the financial transactions of

one organization. In educational facilities is often called register.

2.1.1 Centralized Ledgers

A centralized ledger (Fig. 2.1a) contains all the accounts for recording transac-

tions relating to a company’s assets, revenue, liabilities, expenses and owners’ equity.

Anything that holds financial value needs a ledger. Computerized ledger came into

existence, i.e. Enterprise recourse planning (ERP), the general ledger works

as a central repository for accounting data transferred from all sub-ledgers cash

management, fixed assets and purchasing. That ledger is the backbone of any ac-

counting system which holds financial and non-financial data for an organization.

For example the bank, which is a centralized asset ledger, has total control over

which transactions are posted on it. All transactions are controlled by a single en-

tity, that being the bank, and if the entity-in-charge has malicious intent it can do

serious harm to its clients.

4

2.1. Ledgers 5

2.1.2 Distributed Ledgers

A distributed ledger (Fig. 2.1b) is a database that is consensually shared, repli-

cated and synchronized across network spread across multiple sites or institutions.

It allows transactions to have public ”witnesses”, thereby making a cyberattack

more difficult. The participant at each node of the network can access the record-

ings shared across that network and can own an identical copy of it. Further, any

changes or additions made to the ledger are reflected and copied to all participants

in a matter of seconds or minutes. When a ledger update happens, each node con-

structs the new transaction, and then the nodes vote by consensus algorithm on

which copy is correct. Once a consensus has been determined, all the other nodes

update themselves with the new, correct copy of the ledger. The operation of dis-

tributed ledger technology (DLT) may involve the use of a public or private network

potentially containing digitally represented assets, where the participants on the

network conduct and verify transactions, and record related data on the network

in an encrypted format. Distributed ledgers have many advantages over centralized

ledgers. These advantages involve users being in control of their own information

and transactions, data being complete, consistent, accurate and widely available and

because of decentralization there is no central point of failure. Underlying the dis-

tributed ledger technology is the blockchain, which is the technology that underlies

bitcoin.

(a) (b)

Figure 2.1: (a) Centralized Ledger (b) Decentralized Ledger.

2.2. Decentralized vs Distributed 6

2.2 Decentralized vs Distributed

A clear distriction between decentralized and distributed systems is made by

Baran (1964). In a decentralized system (Fig. 2.2a) there are some central-hierarchical

nodes. Decentralized means that there is no single point where the decision is made.

Every node makes a decision for its own behavior and the resulting system behavior

is the aggregate response. However in a distributed system (Fig. 2.2b) there are

no central nodes. Distributed means that the processing is shared across multiple

nodes, but the decisions may still be centralized and use complete system knowledge.

The difference that essentially separated decentralized from distributed databases

is that decentralized databases are a collection of independent databases while a

distributed database is a single logical database that is spread physically across

computers in multiple locations that are connected by a data communication link.

(a) (b)

Figure 2.2: (a) Decentralized network. (b) Distributed network.

Tanenbaum and Van Steen define distributed computing systems as “A collec-

tion of independent computers that appears to its users as a single coherent sys-

tem” [1]. This definition is further explored by Ozsu and Valduriez as “a number

2.3. History and Background 7

of autonomous processing elements (not necessarily homogeneous) that are inter-

connected by a computer network and that cooperate in performing their assigned

tasks” [2]. Blockchain technology adheres to both definitions, as it appears as sin-

gle system to its users and cooperate in performing an assigned task in a network.

Therefore, Blockchain is a form of a distributed computing system. Ozsu and Val-

duriez define a distributed database (Fig. 2.3) as “a collection of multiple, logically

interrelated databases distributed over a computer network”, a distributed database

management system as “the software system that permits the management of the

distributed database and makes the distribution transparent to the users”. The com-

bination of these two terms is called a Distributed Database System. Blockchain is

a collection of multiple, logically interrelated databases distributed over a network.

Furthermore, it adds a layer of software that manages these databases. Therefore,

blockchain is also a form of a Distributed Database System.

Figure 2.3: Distributed DBMS Architecture.

2.3 History and Background

As mentioned before the technology became widely known in 2008 with the

invention of the Bitcoin. However, the used ideas have their roots in the late 1980

and 1990s. In 1991 a research on cryptographically secured chain of blocks and how

2.3. History and Background 8

to electronically sign digital documents was conducted by Haber and Stornetta [3].

In 1998 a paper called The Part-Time Parliament was published by Leslie Lamport.

The paper describes a consensus model for reaching agreement on a result in a

network of computers where the computers or network itself may be unreliable.

Combining the above concepts Satoshi Nakamoto published his paper “Bitcoin: A

peer-to-peer electronic cash system” [4], and a year later in 2009 the Bitcoin network

was established. This paper contained actually the blueprint that most modern

cryptocurrency schemes follow and Bitcoin was the predecessor of many blockchain

applications. Before the invention of Bitcoin, many other electronic cash schemes

existed, such as eCash conceived by David Chaum in 1982, but it was the use

of Blockchain that enabled Bitcoin to be implemented in a distributed way such

that no single user controlled the money and there was no single point of failure. Its

primary benefit was to enable direct transactions between users without the need for

a trusted third party or intermediary such as banks. Bitcoin introduced the concept

of miners, users who essentially manage to publish new blocks and maintain copies of

the ledger. The automated payment of miners enabled distributed administration of

the system. By using a consensus-based maintenance and the Blockchain, it can be

ensured that only valid transactions and blocks are added to the Blockchain. Because

of the Bitcoin, and the Blockchain in general, anonymity, it is crucial for mechanisms

that create trust in an environment where users are strangers to each other. Before

the use of the Blockchain, this trust was achieved through intermediaries trusted by

both parties. However to reach such a level of trust without intermediaries, four key

characteristics are deployed within the Blockchain network, described below:

• Distributed – the Blockchain can be distributed. This allows for scaling

the number of nodes of a Blockchain network to make it more resilient to

attacks by malicious users. A higher number of nodes in the network decrease

the ability of the malicious users to tamper with the consensus protocol the

Blockchain uses.

• Ledger – the technology uses an append only ledger to provide full trans-

actional history. Unlike traditional databases, transactions in a Blockchain

cannot be overridden.

2.4. Web 3 9

• Secure – the data integrity is ensured by Blockchain’s cryptographic secure

nature, meaning that everything contained within the ledger will not be tam-

pered with.

• Shared – the ledger is shared amongst multiple participants, thus providing

transparency across the node participants in the Blockchain network.

Some Blockchain networks allow anyone who wants to join to anonymously create

an account and participate (these blockchain networks are called permissionless), so

the above capabilities deliver a lever of trust amongst parties with no prior knowledge

of one another. This level of trust allows individuals to transact directly, resulting

in transactions being delivered at lower costs and faster.

2.4 Web 3

2.4.1 Stack Layers

Today’s internet is a stateless internet, its participants can’t hold their own state,

nor transfer it from one to another, natively. Blockchains gave a way to hold state

in a digitally native way. This new fundamental capability is often referred to as

Web 3.

2.4. Web 3 10

Figure 2.4: The Web 3 Stack.

The layers in the framework above start from the top and get build downwards.

Compatibility between modules is represented by colors. For example, Stable Coins

(yellow), are compatible with EVM (blue to yellow) but not with the Bitcoin Script

(green to red). EVM is compatible with the Ethereum Blockchain (blue), but not

with the Bitcoin Blockchain (green). Such modularity is crucial to the robustness

of Web 3, because upgrading one of the layers should not require a complete rewrite

of everything below it.

State Layer

The state layer preserves the state of all that happens below it. It is provided

by blockchain infrastructure and allows for any participant to take part as long as

they follow the rules of the preferred network. This layer can either be a public or

private layer. There are technical differentiators between public and private layers,

and they will be discussed on a later chapter.

2.4. Web 3 11

Computation Layer

Instructions to computers are given with software. The Web 3 Computation

Layer allows users to instruct the State Layer to do what they want. Not every

Computation Layer allows for anything to be done. For example the Ethereum

Virtual Machine (EVM) is a full Turing Complete machine and allows for any

arbitrarily complex computation to be executed by a state layer that supports EVM.

On the other end Bitcoin’s Script is very limited and allows very little beyond

transaction orders.

The choice of Computation Layer for blockchain developers is a key one as it

determines which blockchains a given application can run on. For example an ap-

plication compiled to EVM can run on the Ethereum Blockchain but not on the

Bitcoin Blockchain. The Ethereum Foundation is working to change Ethereum’s

default Computation Layer to a technology called eWASM, meaning that an app

compiled to eWASM can theoretically run on both Ethereum and another WASM

compatible blockchain.

Component Layer

Combining the two previous layers, State Layer with the Computation Layer,

the design space for new types of digital assets increases 1000 times. There are

implementations that have potential to be build entire sub-economies on top of

them. Components are build on the Computation Layer are reusing standardized

smart contract templates.

2.4. Web 3 12

For example, OpenZeppelin is a well established resource to access such tem-

plates. Component’s creators are required to issue new smart contracts onto the

State Layer. Some examples of these components are presented below.

• Native Currency: It is a core part and a required one for any public

Blockchain. It gives the right to any participant to pay the Blockchain and

receive the desired service, in the form of a transaction. Such examples are

Bitcoin or Ether.

• Crypto Assets: Exchangeable assets with a basic set of functionalities and

associated metadata. The ICO rise because of them, as it allows anyone to

create their own currency. Beyond currency, it allowed many other asset types

to be digitized such as stocks or ownership rights. The most common standard

is ERC-20.

• Stablecoins: They are Crypto Assets with a stable value, fixed with a source

such as the value of EUR. A stablecoin claims to be an asset that prices itself

rather than an asset that is priced by supply and demand. There are different

types of practical and theoretical solutions. Such examples are Dai or Reserve.

• Crypto Goods: They are non-exchangeable assets with a basic set of func-

tionalities and a wider set of metadata associated with it. They are also

known as Non-Fungible Tokens (NFT). It enables unique goods be digi-

talized such as art, game assets, collectible items, or access rights. The most

common standard is ERC-721.

• Identity: An independent container for identity information. By definition,

it provides very little valuable information about what it identifies. However,

it allows claims to be associated with the container, which can come from

a large pool of sources such as trusted third parties. Common standards

are ERC-725 /ERC-735. Ethereum Naming Service (ENS) is a relevant

different type of identifier resembling the DNS protocol, offering a secure and

decentralized way to address resources both on and off the Blockchain using

2.4. Web 3 13

simple, human-readable names. Also there exists some protocol proposals by

uPort.

Protocol Layer

Components created on the State Layer need to come alive. There are certain

functions that they have become the standard because they are fundamental and

common to the lifecycle of these components. These protocols enable the formation

of healthy markets for relevant components, like the physical world, only orders of

magnitude cheaper and more efficient. Multiple different protocols have started to

gain traction. These take the form of canonical smart contracts that are deployed

by the team developing the protocol and called by each application that wants to

apply the relevant function onto a component.

• Trading: If a component is to have value, it needs to be tradable. Trading

protocols allow trading assets in a trustless way. There is a difference between

relayers and decentralized exchanges, which take care of assets on a smart

contract. Trades promoted by trading protocols never take care of the traded

assets. Such example are Kyber Network and 0x.

• Lending: Lending increases the efficiency of any asset as it enables a return

on the investment, which may have been zero. With this protocol one can lend

money or another digital asset to another, without the restriction of borders.

Examples of this protocol are Dharma and ETHLend.

Transfer Layer

One significant Blockchain problem is its scalability issues. Bitcoin has transac-

tion capacity of 7 transactions per second and Ethereum a capacity of 15 transactions

per second. A different layer, known as Layer 2 scalability, for the transfer of state

2.4. Web 3 14

is required to support a robust topology. These scalability solutions need to be

compatible with the Computation Layer of the Blockchain. There are proposals for

how can this be achieved.

• Payment Channels: These channels allow only transfers of a given native

currency. The transfer is done via verifiable signatures, attached to the trans-

actions on the State Layer. Examples are Bitcoin’s Lightning Network and

Ethereum’s Raiden

• Side Chains: Allows for transfer of any state. It is done by other Blockchains

that are compatible with the main chain. The side chain must be able to

interact with the Computation Layer on the main chain. The side chain may

be centrally or privately managed infrastructure. Some examples are PoA

Network and Loom Network for EVM.

• State Channels: These channels allow for the transfer of any state. Sig-

natures are attached to transactions at the State Layer. Some examples are

Counterfactual and Celer Network for EVM.

User Control Layer

Until this layer, it is impossible for a user to utilize any of the functionality

created. The main functionality of this layer is to manage a user’s private keys

and be able to sign transactions on the State Layer. The state of a user’s account

changes by a transaction at the State Layer, that way being at the core of users’

interaction with Web 3 applications.

2.4. Web 3 15

Figure 2.5: Anatomy of a Transaction on the Ethereum Blockchain.

Wallets are of two types the first called hosted wallets and the second user

controlled wallets.

• Hosted Wallets: They manage the digital assets on behalf of the user by

controlling a limited set of balances on the State Layer. These may group

users’ digital assets into aggregated accounts and manage individual users’

states themselves, outside of the State Layer. This is possible if the assets are

of monetary value, however Web 3 applications have brought an increasing

number of states making it more complex.

• User controlled Wallets: They provide a more flexible and direct way to

utilize all the complex operations of Web 3. A User Controlled Wallet takes

care of a user’s private keys and local signing of each transaction. This means

that the wallet software does not replicate the user’s private keys allowing a

third party to submit transactions on the user’s end.

2.4. Web 3 16

There are some front-end libraries for exposing all available functionality to ap-

plications accesses through this layer. In this thesis, such a library is used, called

web3.js described in detail later.

Application Layer

The majority of the activity on Web 3 will be through third party applications

build on all the layers below. Applications build on Web 3 have different prop-

erties and requirements than traditional web applications, and are referred to as

decentralized applications, or DApps.

2.4.2 Architecture

A version of Web 2.0 architecture includes a client software, and a suite of servers

providing the content and logic, all controlled by the same single entity. This entity

has control over who access its servers’ contents, as well as the records of which users

own what. There are many examples in the course of years where companies have

changed the rules on their users or stopped the service, with users having no power

to preserve the value. However, Web 3.0 architecture leverages what’s enabled by a

universal State Layer. It does this by allowing two things:

1. Applications are allowed to place some or all of content and logic onto a pubic

Blockchain. Contrary to Web 2.0 this is public and accessible by anyone

2. Users are allowed to maintain direct control over this content and logic. Con-

trary to Web 2.0 usually they don’t need accounts to interact with blockchain’s

content

2.4. Web 3 17

Figure 2.6: Architecture of a Web 2.0 application vs that of a Web 3.0 application

Web 3.0 applications allow this with the help of two key infrastructure pieces.

• Blockchain Node: There are two types of users that monitor and interact

with the Blockchain – miners and nodes. Miners directly maintain and run the

Blockchain. Nodes, on the other hand, monitor and submit transactions to the

blockchain. When a wallet wants to submit a transaction to the Blockchain,

or query state information from the Blockchain, it makes a call to the node

provider, such as Infura. Applications’ app servers can also interact with the

node provider themselves by making similar RPC calls.

• Wallets: They interact with the main client front-end to allow a seamless

user experience . They do this by allowing applications to send requests to the

wallet itself using standard libraries, such as web3.js. A sample web3.js call

can be a payment request, asking the user to confirm that the wallet can send

2.4. Web 3 18

a specified amount of digital currency to the application’s address. When

the user accepts, the wallet first lets the application front-end know with a

response, so it can present a “Payment Submitted” message, and then the

wallet makes and RPC call to the Blockchain server to submit the approved

transaction to the Blockchain. This is where the Blockchain Node comes into

play.

1 // Get the contract instance using your contract 's abi and address:

2 const contractInstance = web3.eth.contract(abi).at(contractAddress)

;

3

4 // Get user s web3 address

5 var sender = web3.eth.accounts [0];

6

7 // Call a function of the contract:

8 contractInstance.someFunction ({ from: sender , value: someValue , gas

: limit }, (err , res) => { /** do something with results **/ });

Code Listing 2.1: Sample web 3 code allowing a DApp to call a smart contract

function from a user’s wallet

2.4.3 JSON-RPC

JSON is widely known nowadays because is the standard file-format to transmit

data objects in the web. It is a lightweight data-interchange format. It can represent

numbers, strings, ordered sequences of values, and collections of name/value pairs.

JSON-RPC is a stateless, light-weight remote procedure call (RPC) protocol.

Primarily this specification defines several data structures and the rules around their

processing. It is transport agnostic in that the concepts can be used within the same

process, over sockets, over HTTP, or in many various message passing environments.

It uses JSON as data format.

2.4. Web 3 19

2.4.4 web3 Library

The Ethereum network is formulated out of nodes, which each contain a copy of

the Blockchain. When a user wants to call a function on a smart contract, he needs

to query one of these nodes and tell it the address of the smart contract, the function

he wants to call and the variables to be passed to that function. However Ethereum

nodes, like Geth or Parity, communicating with a language called JSON-RPC,

that is difficult for human to read.

1 {

2 "jsonrpc":"2.0",

3 "method":"eth_sendTransaction",

4 "params":[{"from":"0xb60e8dd61c5d32be8058bb8eb970870f07233155","to"

:"0xd46e8dd67c5d32be8058bb8eb970870f07244567","gas":"0x76c0","

gasPrice":"0x9184e72a000","value":"0x9184e72a","data":"0

xd46e8dd67c5d32be8d46e8dd67c5d32be8058bb8eb970870f072445675058bb8eb9

70870 f072445675"}],

5 "id":1

6 }

Code Listing 2.2: Example of eth sendTransaction method

The library used in this project is called web3.js [5], and it provides a way to

interact with an Ethereum node from inside a JavaScript application. Web3.js also

provides a convenient interface for the RPC methods, meaning that under the hood

it communicates to a local node through RPC calls. The library works with any

Ethereum node which exposes an RPC layer. Web3.js provides a web3 object. This

object contains two other objects. The first called eth (web3.eth) and it is used

for Ethereum blockchain interactions. The second is called shh (web3.shh) and it

is used for Whisper interactions. Essentially whispers are a part of the Ethereum

peer-to-peer (P2P) protocol suite that allows messaging between users via the same

network the Blockchain runs on. Smart contracts do not have access because the

protocol is separate from the Blockchain.

2.5. REST API 20

1 #!/usr/bin/env node

2

3 var Web3 = require('../ index.js');

4 var web3 = new Web3();

5

6 web3.setProvider(new web3.providers.HttpProvider('http :// localhost

:8545'));

7

8 var coinbase = web3.eth.coinbase;

9 console.log(coinbase);

10

11 var balance = web3.eth.getBalance(coinbase);

12 console.log(balance.toString (10));

Code Listing 2.3: Example of setting a provider and getting the balance of an

account

2.4.5 Web3 Provider

As already stated the Ethereum network is formulated out of nodes that all share

a copy of the same data. Setting a Web3 Provider in web3.js tells the code which

node it should be talking to handle the reads and writes. This process is equal to

setting the URL of the remote web server for the API calls in a traditional web

application. Usually as a provider the user host its own Ethereum node. However

one also has the choice of a third-party service, called Infura, which essentially is a

service that maintains a set of Ethereum nodes with a caching layer for fast reads,

eliminating the need to set up and maintain a Blockchain node locally.

2.5 REST API

According to Wikipedia, ”REST (Representational State Transfer) is a

software architectural style that defines a set of constraints to be used for creating

web services. Web services that conform to the REST architectural style, termed

RESTful web services, provide interoperability between computer systems on the

Internet.” RESTful is the interpretation of this architectural style. That means,

2.5. REST API 21

if a back-end server has REST API and the user makes client-side requests, from a

website or an application, to this API, then the client is RESTful. REST relies heav-

ily on the HTTP protocol. RESTful API comes down to four essential operations,

each one of them using its own HTTP method:

• Creating new data (POST)

• Receiving data in a convenient format, such as JSON, XML or YAML (GET)

• Updating data (PUT)

• Deleting data (DELETE)

These four methods are also the basic functions in databases so the fact that

REST uses a common interface for both request and databases is one great advan-

tage.

Versioning

Versioning for REST APIs is important and should provided at all times. For

example, in this project, the API is at the URL http://localhost:3000/thesis, changes

are made to it at http://localhost:3000/thesis/v1.

Architecture Design

All resources in REST are entities. They can be independent like

GET /localhost:3000/height which gives us the processed Blockchain height, or

they can be depentant models that rely on their parent model such as

GET /localhost:3000/address/:hash which retrieves an address transaction by

2.5. REST API 22

its hash. The colons (:) on a path denotes a variable. They should be replaced

by values with actual values of when the request is sent. The above examples are

demonstrating GET which retrieves the entity the user requested. A successful

request returns an entity representation combined with status code 200 (OK), or a

status code based on the HTTP response status codes. In this thesis project, we

want just to retrieve data from the Blockchain so only the GET request can be

used.

Chapter 3

Blockchain Infrastructure

This chapter gives an overview about how a Blockchain network works. It ana-

lyzes the very different categories of a Blockchain, and it breaks down its core parts,

and how the work together and how the Blockchain is formed when everything comes

together.

3.1 Blockchain Categorization

Blockchain networks can be categorized based on their permission model, which

determines who can maintain them (e.g. publish blocks). If anyone can publish

new blocks it is called permissionless. If only a number of users can publish blocks,

it is called permissioned. Put it simply, a permissioned blockchain network is like

a corporate intranet, while a permissionless blockchain network is like the public

internet. Permissioned blockchain networks are often referred to as consortium

blockchains.

3.1.1 Permissionless Model

Permissionless blockchain networks are decentralized ledger platforms open to

anyone mining blocks, without needing permission from any authority. Since anyone

has the right to publish new blocks, this results in the property that anyone can

read the blockchain and issue transactions (these transactions are included within

the published blocks). Any user within this specific network can read or write to

23

3.1. Blockchain Categorization 24

the ledger. Since permissionless blockchain networks are open to everyone, malicious

user may as well attempt to publish corrupted blocks or tamper with the validity

of the chain. However, for this to be avoided, these networks deploy consensus

algorithms that require users to expend or maintain resources when attempting

to publish new blocks. This prevents malicious users from corrupting the system.

These consensus models include various methods such as proof of work or proof of

stake. Using these methods, the consensus systems reward the publishers of the

blocks (miners) with the native cryptocurrency, as a way to deal with the malicious

behaviors.

3.1.2 Permissioned Model

Permissioned blockchain networks are the ones where mining new blocks must

be authorized by some authority (decentralized or centralized). In these types of

blockchains there is the need of special permission to read, access and write infor-

mation on them. They also may allow anyone or restrict access to only authorized

participants to submit transactions. These blockchain networks also use consensus

models for mining blocks but these methods often do not require the expense of

some resource like permissionless blockchains. This is because the identity of each

blockchain participant is required and known, maintaining the level of trust with

each other. Consensus models in permissioned blockchains are usually faster and

computationally cheaper. Such blockchains are also popular among industry-level

enterprises and businesses, for which security, identity and role definition are impor-

tant. Permissioned blockchains may also be used by organizations that wish to work

together but not fully trust one another. They can establish such a network and

invite business partners to record their transaction on a shared distributed ledger.

They can determine the consensus model to be used, based on their mutual trust.

Beyond trust permissioned blockchains provide transparency. Moreover some degree

of privacy in transactions may be obtained because some permissioned networks pro-

vide the ability to selectively reveal transaction information based on participant’s

identity. For example, it could be that the blockchain records that a transaction

between two blockchain network users took place, but the actual contents of trans-

3.2. Blockchain Infrastructure 25

actions is only accessible to the involved parties.

3.2 Blockchain Infrastructure

At a high level Blockchain technology utilizes computer science mechanisms and

cryptography, such as cryptographic hash functions, digital signatures, asymmetric-

key cryptography, mixed with record keeping concepts, such as append only ledgers.

The main components of blockchain are introduced in this section and are: blocks,

addresses, transactions, cryptographic hash functions, asymmetric-key cryptogra-

phy, ledgers, and how blocks are chained together.

Blocks

Blockchain users submit their transactions to the network via software such as

digital wallets. The software sends these transactions to a node (or nodes) within

the network. The chosen nodes may either be mining nodes or non-mining. The

transaction is then propagated to the other nodes in the network, but still is not

placed in the Blockchain. Most implementations of the Blockchain, send the pending

transaction into a queue once it is distributed to nodes, and then waits until a

mining node add it to the Blockchain. Transactions are added to the Blockchain

when a block is published (mined) by a miner. A block (Fig. 3.1) contains the block

header and the block data. The block header contains metadata for the block. The

block data contains a list of validated transactions which have been submitted to

the Blockchain. If the providers of the digital assets in each transaction (listed in

transaction’s “input” values) have each cryptographically signed the transaction and

if the transaction is correctly formatted then validity can be ensured. This verifies

that the providers had access to the private key which could sign over the available

digital assets.

The other full nodes will check the validity of all transactions in a published

block and discard the block if it contains invalid information. Note that differ-

ent Blockchain implementations could define different data fields, however in most

Blockchain implementations the data fields of a block are:

3.2. Blockchain Infrastructure 26

Figure 3.1: Anatomy of a single block.

• Block Header

– The block number, also known as block height in some Blockchain net-

works.

– The previous block header’s hash value.

– A timestamp.

– The size of the block.

– The nonce value. A number which is manipulated by the mining node to

solve the hash puzzle. Some Blockchain networks use it for mining new

blocks, however there are networks that may use it for another purpose

other than solving a hash puzzle.

– A hash representation of the block data (for example generating a Merkle

tree, and storing the root hash, or by utilizing a hash of all the combined

block data).

• Block Data

– A list of transactions and ledger events included within the block.

– Other relevant data.

3.2. Blockchain Infrastructure 27

Addresses

Blockchain networks make use of an address, which is an alphanumeric string of

characters derived from the blockchain user’s public key using a cryptographic hash

function, along with some additional data, such as checksums and version number.

Blockchain implementations make use of address as the “from” and “to” endpoints

in a transaction. Addresses are not secret and are shorter than the public keys.

One of the methods to generate an address is to create a public key, apply a cryp-

tographic hash function to it, and convert the hash to text:

Public key →cryptographic hash function →address

Each blockchain implementation may use a different method to create an address,

such as using different cryptographic hash function, Bitcoin for example uses SHA-

256 algorithm in contrast to Ethereum that uses the KECCAK-256 or SHA-3 cryp-

tographic function, or derive the public key from a generated private key. For

permissionless blockchains, which allow anonymous account creation, a user can

generate as many asymmetric-key pairs, and as a result as many addresses as de-

sired, thus allowing a varying level of anonymity. Addresses act as the public-facing

identifier in a blockchain network. However users aren’t the only source of addresses

within a blockchain. With the introduction of smart contracts from Ethereum it

become a direct need for them to obtain an address for the purpose of accessing

them once they have been deployed within the blockchain. For Ethereum, smart

contracts are accessible via a special address called a contract account. This address

is created when a smart contract is deployed (the address for a contract account is

deterministatically computed from the address of the creator of the smart contract).

This contract account allows the execution of the contract whenever it receives a

transaction.

Private Key Storage (Wallet)

Users must manage and securely store their own private keys. For this purpose

software has been develop to securely store them, instead of having users record

them manually. This piece of software is called wallet and it can store public keys,

private keys and associated addresses. It may also perform other functionalities,

3.2. Blockchain Infrastructure 28

such as calculating the total number of digital assets a user may have. If a user

loses the private key, then any digital asset associated with that key is lost, because

it is computationally impossible to regenerate the same private key. If it is stolen,

the attacker will have full access to every digital asset controlled by that key. That

makes the security of private keys extremely important so users tend to use special

secure hardware to store them. Storage of these private keys is extremely important.

That is because data in the Blockchain cannot be modified, and once an attacker

steals the private key and publicly transfers the associated funds to another account,

the transaction cannot be undone.

Transactions

A transaction represents an interaction between users. For example a transaction

represents the transfer of a specific amount of Bitcoins, or other cryptocurrency,

between Blockchain users. For business scenarios, it could be a way of recording

activities occurring on digital or even physical assets. Each block contains either zero

or more transactions. A constant supply of new blocks, even with zero transactions,

is critical to maintain security over the Blockchain, that means by having a constant

supply of new blocks being published, malicious users are being prevented from

“catching up” and producing a longer and altered Blockchain. The data which a

transaction hold can be different for different blockchain implementations, but the

mechanism for sending transactions is largely the same. A user sends information

to the blockchain including some identifier, such as the sender’s address, his public

key, a digital signature and also transaction inputs and outputs.

Typically a cryptocurrency transaction requires the following information:

• Inputs – are usually a list of the digital assets the user wants to transfer. The

transaction will reference the source of the digital asset, either the previous

transaction where it was given to sender, or the origin event if he is sending new

digital assets. The sender digitally signs the transaction for providing proof

that they have access to the funds. The digital assets do not change since the

input is a reference to past events. Value cannot be added or removed from

existing digital assets in case of cryptocurrencies. Instead a single asset can

3.2. Blockchain Infrastructure 29

be split into multiple new assets, each with lesser value, or it is possible for

multiple assets to be combined to form fewer new assets, with greater value

of course. The transaction output is the one who specifies the split or join of

these digital assets.

• Outputs – are usually accounts that are the receivers of the digital assets

along with the quantity they will receive. Each output specifies the number of

the assets to be transferred, the identifier of the receiver and usually some set

of conditions that must be meet to spend the specific value. Extra funds are

explicitly sent back to the sender if the assets provided are more than required.

Figure 3.2: Transaction to transaction payment as used in Bitcoin

Generally transactions are used to transfer data not only digital assets. For

example someone may simply want to publicly post data on the Blockchain. In the

case of smart contract system, transactions can be used to send and process some

data and then store the result on the Blockchain. Determining the validity and

3.2. Blockchain Infrastructure 30

authenticity of a transaction is of utmost importance. That is because the validity

ensures the transaction meets the protocol requirements and any data formats or

smart contract requirements. The authenticity on the other hand, determines that

the sender had access to the digital assets which have been send. Transactions are

digitally signed by the sender’s private key and can be verified using his public key.

Cryptographic Hash functions

One of the most important component of the blockchain is the cryptographic

hash functions. Hashing is the method of applying a cryptographic hash function

to data, which calculates a relatively unique output (called message digest) for an

input of nearly any size (e.g. a file, an image or a text). It allows to independently

take input data, hash that data, and get the same result, if and only if the was

no change in the data. Even the smallest change to the input data will result in a

completely different output. An example is shown in the table below.

Generally, according to Wikipedia, the security of cryptographic hash functions

can be seen from three different angles: pre-image resistance, second pre-image

resistance, and collision resistance.

• Pre-image resistance. This means that they are one-way functions, and it

is impossible to compute the initial input value given the output value. For

example given a hash h find a message m such that h = hash(m).

• Second pre-image resistance. This means that given a specific input m1

it should be impossible to find another input m2 such that

hash(m1) = hash(m2). Put in simple words it is impossible given a specific

input to find a second input which produces the same result.

• Collision resistance. This means that it must be impossible to find two

different inputs that hash to the same output. Mathematically put there

should be impossible to find m1 and m2 such that hash(m1) = hash(m2).

A hash function used in many Blockchains, such as Bitcoin, is the Secure Hash

Algorithm (SHA) with an output size of 256 bits (SHA-256). Due to hardware

3.2. Blockchain Infrastructure 31

support in many systems this algorithm can be calculated extremely fast. SHA-256

has an output of 32 bytes, generally displayed as a 64-character hexadecimal string.

This means that there are 2256 = 1077 possible hash values.

Input Value SHA-256 Message Value

1 0x6b86b273ff34fce19d6b804eff5a3f5747ada4eaa22f1d49c01e52ddb7875b4b

2 0xd4735e3a265e16eee03f59718b9b5d03019c07d8b6c51f90da3a666eec13ab35

Blockchain Thesis 0xd4735e3a265e16eee03f59718b9b5d03019c07d8b6c51f90da3a666eec13ab35

Table 3.1: Examples of Input Values and Corresponding SHA-256 Message Values

Having said that it is clear that since there are an infinite number of possible

input values but a finite number of possible output values, it is possible but highly

unlikely to have a collision where hash(m1) = hash(m2), meaning two different

inputs produce the same output). SHA-256 is said to be collision resistant, since to

find a collision in the algorithm one must execute it on average about 2128 times,

which is 340 undecillions or roughly 3.402 x 1038. To put this into perspective,

the hash rate (hash per second) of the entire Bitcoin network in 2015 was 300

quadrillion hashes per second (300.000.000.000.000.000 / s). At that rate, it would

take the entire Bitcoin network roughly 35.942.991.748.521 (roughly 3.6 x 1013) years

to manufacture a collision (note that the universe is estimated to be 1.37 x 1010 years

old as estimated by measurements made by the Wilkinson Microwave Anisotropy

Probe). Even if any such input m1 and m2 that produce the same hash, it would

be very unlikely for both inputs to be valid in the context of Blockchain, meaning

to be both valid transactions. Within the blockchain, hash functions are used for

many tasks, such as:

• Address creation

• Unique identifiers creation

• Securing the block header – a mining node will hash the block header. If the

Blockchain is using a proof of work consensus model, the node will need to hash

the block header with different nonce values, until it solves the cryptographic

3.2. Blockchain Infrastructure 32

puzzle. The current block header’s hash will be included within the next

block’s header, where it will secure the current block header data.

• Securing the block data – a mining node will hash the block data, creating a

hash that will be stored within the block header.

The block header also includes a hash representation of the block data, the block

data itself is also secured when the block header hash is stored in the next block.

Cryptographic Nonce

Blocks in the blockchain have a field called nonce which stands for number used

only once. Nonce is an integer number and along with the block number, block

data and previous hash serves as an input for the SHA-256 function to calculate

the current block’s hash. Unlike other components of a block, nonce is designed to

be totally under our control. This means that we have a mechanism to vary the

hash of the current block while keeping the data inside it intact. Miners compete to

find a nonce which will generate a valid hash for the upcoming block. The one that

finds it first is allowed to add the block to the Blockchain and gets a reward (e.g.

bitcoins, ethers etc).

Asymmetric-key cryptography

Blockchain uses asymmetric-key cryptography (public-key cryptography).

Asymmetric-key cryptography uses a pair of keys: a private and a public key that

are mathematically related to each other. The public key is made public without

reducing the security of the process, however the private key must remain secret for

the cryptographic protection of the data. Even though these two keys are related to

each other, the private key cannot be determined by the public key. The encryption

is done using the private key and the decryption using the public key. The reverse

process can also be done, meaning that one can encrypt using the public and decrypt

with the private key. This type of cryptography provides a trusting relationship

between users who do not know or trust each other, by providing a mechanism to

verify the integrity and authenticity of transactions while at the same time it allows

3.2. Blockchain Infrastructure 33

transactions to remain public. The transactions are digitally signed, meaning that

the private key is used to encrypt the transaction such that anyone with the public

key can decrypt it. Since the public key, as its name states is public, encrypting the

transaction with the private key proves that the signer of the transaction has access

to private key. Another way is to encrypt data with the user’s public key, so only

users with access to private key can decrypt it. Asymmetric-key cryptography finds

use in many blockchain networks:

• Private keys are used to create addresses.

• Private keys are used to digitally sign transactions.

• Public keys are used to verify signatures generated with private keys.

• Asymmetric-key cryptography provides the ability to verify the possession of

the private key of the sender of a transaction since he is digitally signs it.

Ledger

A ledger is essentially a collection of transactions. In the past years people used

to keep track of the transactions using pen and paper. However, in modern times,

ledgers have been stored digitally, often in large databases owned and operated by

a centralized trusted third party. Ledgers like these, with centralized ownership can

be implemented in a centralized or in a distributed way (one server for centralized

access or coordinating a cluster of servers for distributed fashion). The recent years

there is a growing interest in distributed ledgers. Blockchain technology enables such

an approach using both distributed architecture as well as distributed ownership.

The distributed architecture of blockchain networks involves a much larger set of

computers than the typical distributed physical architecture. This growing interest

in distributed ledgers is due to possible trust, security and reliability concerns in

contrast to ledgers with centralized authority. For such a reason some of the dif-

ferences between centrally owned ledgers and distributed ledger will be discussed

below.

3.2. Blockchain Infrastructure 34

Centrally owned ledgers

• Centrally owned ledgers may be on a homogenous network, where all software

and hardware infrastructure may be the same. Because of this, an attack on

one part of the network will work on everyone, so the total system security

and resiliency are significantly reduced.

• They may be lost or destroyed, so users of ledgers like these must trust that

the central authority is backing up the system properly.

• The transactions are not made transparently and sometimes may not be valid,

again the users must trust the central authority for validating each transaction.

• The transaction list may not be complete, central authority must include all

valid transactions that have been received.

• The transaction data may have been altered, users must trust that past trans-

actions have not been altered by the central authority.

• Such systems may be insecure, they may be breached and personal information

be stolen, so it is crucial that once again the central authority implements the

best security practices.

• Such ledgers may be located in specific locations. If a network problem were

to occur in that location, services of the ledger may become unavailable.

Blockchain as a distributed ledger

• A blockchain network, on the other hand, is heterogeneous network, which

means that the software and hardware infrastructure are all different. So an

attack on one node is not guaranteed to work on other nodes.

• It is distributed, creating backup copies all updating and syncing to the same

ledger data between peers. Every user can maintain their own copy of the

blockchain. Whenever new full nodes join the blockchain, they try to discover

other full nodes and request the full copy of the blockchain, thus making loss

or destruction rather difficult.

3.3. Consensus Models 35

• The blockchain must check that all transactions are valid. If a malicious node

was transmitting invalid transactions, others would detect and ignore them,

preventing them from propagating throughout the entire blockchain.

• The blockchain holds all accepted transactions within its distributed ledger. A

new block must be build on top of previous blocks, so if the mining node did

not include this reference (the previous hash) to the latest block, it is rejected.

• Utilizing cryptographic mechanisms such as cryptographic hash functions and

digital signatures it achieves being tamper resistance.

• Due to its distributed nature, Blockchain has no centralized point of attack. All

information a viewable by everyone. An attacker would need to individually

target every user on the blockchain. It is almost impossible to target the

blockchain itself because of the resistance of the other nodes present in the

system. An attack on an individual node would harm only this node, the

system overall would remain intact.

• Nodes of the blockchain may be found all around the world, because of the

peer-to-peer (P2P) fashion. This reason alone makes it resilient to the loss of

any node, or even multiple nodes.

Chaining Blocks

Blocks are chained together through the hash of the previous block’s header

which every block contains, thus forming the Blockchain. If a previous mined block

were changed, it would have a different hash causing all the following blocks to also

have different hashes since they include the hash of the previous block. This way

altered blocks are easily detected and rejected. Figure 3.3 shows a generic chain of

blocks.

3.3 Consensus Models

A key feature of the Blockchain is determining which user publishes the next

block. The solution to this problem is the implementation of many possible con-

3.3. Consensus Models 36

Figure 3.3: Generic Chain of Blocks.

sensus models. Blockchain networks are generally mining nodes competing at the

same time to publish the next block. This usually grants them some sort of fee,

like bitcoins or ethers. They are usually users who do not trust each other but they

know each other by their public addresses. Financial gain is what motivates each

node, rather than the well-being of the network. Question such as why would a user

propagates a block that another is attempting to publish or how conflicts resolve

when multiple nodes publish a block at approximately the same time arises. In such

cases the Blockchain uses consensus models to enable distrusting users to work to-

gether. There is a pre-configured block called the genesis block, which exists in every

Blockchain implementation and every block must be added after it, based on the

agreed consensus model. Each must be valid and be able to independently validated

by every user in the Blockchain. If there are more than two valid chains presented

to a full node, the default mechanism in most Blockchains is that the “longer” chain

is the correct one and will be adopted, that’s because it has the most amount of

work put into it. This is a very frequent event with some consensus models. The

software handles the following properties:

• The initial state of the system is agreed upon (the genesis block)

• The consensus model is agreed upon

• Every block is linked to the previous block by including the previous block

header’s hash, except for the genesis block which has no previous block so the

3.3. Consensus Models 37

previous block hash is set to all zeros.

• Every block can be independently verified.

A key feature of the Blockchain is that it eliminates the need for a trusted third

party to provide the state of the system – every user within the system can verify

its integrity. To add a new block all nodes must come to a common agreement over

time. For permissionless Blockchains the consensus model must work even when

there are malicious users in the network trying to corrupt or alter the Blockchain.

In some permissioned Blockchains there may exist a level of trust between nodes so

there may not be the need for a resource intensive consensus model to determine

the addition of the new block in the chain. Generally if the level of trust increases,

the need for intense resource usage for generating trust decreases. In the following

sections, the two most used consensus models are presented.

3.3.1 Proof of Work Model

In the proof of work model (PoW), a user publishes the next block by being

the first to solve a computationally intensive puzzle. That solution is the “proof”

that work has been performed by the user. Checking if the puzzle’s solution is valid

is easy however solving the puzzle is rather difficult. This enables all other nodes

to easily validate any proposed blocks, and reject others who would not satisfy the

puzzle. One method is to require that the hash of a block header is less than a target

value. Mining nodes make many small changes to their block header, for example

they change their nonce, trying to find the correct hash value. The hash of the

entire block header must be calculated by the mining node, however because this

happens many times it becomes a computationally intensive process. The difficulty

is adjusted by the modification of the target value to regulate the mining of blocks.

Such an example is Bitcoin, which uses proof of work model, adjusting the mining

difficulty every 2016 blocks so the publication rate of a block is around every ten

minutes. Essentially by increasing or decreasing the number of zeros leading is

adjusting the puzzle’s difficulty level. By increasing the number or leading zeros,

the difficulty increases, because any solution must be less than the difficulty level –

3.3. Consensus Models 38

meaning there are fewer possible solutions. By decreasing the number, the difficulty

decreases, because there are more possible solutions. Adjustments like these are

made to maintain the computational difficulty of the puzzle, for maintaining the core

security mechanism of the network. The puzzle difficulty is increasing as the number

of mining nodes increasing. Moreover they try to ensure that no one can take over

the block production, but this leads to the necessity of more resource consumption

because of the computations. Due to this significant increase, some proof of work

Blockchains, move the addition of the mining nodes to areas with remarkable cheaper

power supply. An important feature of the proof of work algorithm is that the work

of solving one puzzle is independent of the work that needs to be done for another

puzzle. This means that when a user receives a completed and valid block from

another user, they discard the work they have done so far and start building off the

newly received block, because the other mining node will be building off it.

An example using the SHA-256 algorithm, which is the one Bitcoin uses, is

demonstrated below, where a computer must find a hash value matching the diffi-

culty level:

SHA-256(“markos” + nonce) = hash value starting with “00000” (meaning dif-

ficulty = 5).

Above the text string “markos” is appended with a nonce value and a hash value is

being calculated. The nonce values are numeric values. The solution to the puzzle

is as follows:

SHA-256("markos0") =

7989d85d7d71f2afe904bf306175270cf4fc682e17ef63c08f6287a0e0dfea96

(not yet solved)

SHA-256("markos1") =

a5d41d22b7c0d464142a2916d780ebdfa4ef1c5c2647ffa55c89b6be28371fe3

(not yet solved)

SHA-256("markos2") =

3.3. Consensus Models 39

2bc658bcf21d5e4f4d870e38d593343c209d87a621ac1fbcd147aebe09ad998d

(not yet solved)

...

SHA-256("markos256742") =

000006a7ea83acf484dbc634986ec7b104a8b44acef169b019105420b2e3941c

(SOLVED)

To solve the above puzzle took 256741 guesses and it was completed in 4,951 sec-

onds. Each addition leading zero increases difficulty. For example if we increase the

zero by one so difficulty equals 6 then it takes 43684682 guesses and it completes in

737,629 seconds (12,29 minutes):

SHA-256("markos43684683") =

00000043d5da7661022f922bed3ce9030b16da88c95c2af95ae8f4dafb45a839

There is no way to cut down the completion time of this process; mining nodes

cost computation effort, resources and time to find the correct nonce values. The

mining nodes attempt to solve the puzzle to claim some sort of reward, usually an

amount of cryptocurrency. The user is motivated to mine nodes because of the

prospect of reward. Once a mining node has performed this work, the mined block

is send with a valid nonce to full nodes in the blockchain. The receiver nodes verify

that it fulfills the puzzle requirements, and then add the block to their copy of the

blockchain and resend the block to their peer nodes. In this manner, the new block

is quickly distributed over the network. Verification of the nonce is extremely easy

task since only a single hash needs to be done to check to see if it is the correct

solution to the puzzle. For many proof of work blockchains, the mining nodes tend

to organize themselves into “pools” where they work together to find the solution

to the puzzle and afterwards split the reward. This is done because the work can

be distributed between nodes to share the workload and rewards.

3.3. Consensus Models 40

3.3.2 Proof of Stake Model

The proof of stake (PoS) model is based on the idea that the more stake a user has

invested into the system, the more likely they will want the system to succeed, and

the less likely they will want to corrupt it. By stake it is usually meant an amount

of cryptocurrency that the user has invested into the blockchain. Once staked, the

cryptocurrency is no longer available for spending. Proof of stake blockchains use

this amount of stake as a factor for mining new blocks. Thus the possibility of a

user mining a new block is tied to the ratio of their stake to the overall blockchain

amount of staked cryptocurrency. Ethereum is the most known blockchain network

to use the proof of stake consensus model. With this consensus model, the need

of intensive and resourceful calculations is eliminated. Some blockchains are giving

rewards for block creation in advance, since fewer resources are needed. Systems

like this are designed so that all cryptocurrency is already distributed among users

rather than being generated at a constant pace. The reward for block publication

is usually the earning of user provided transaction fees. How any blockchain uses

the stake varies. Below four approaches are discussed below: delegate systems, coin

aging systems, multi-round voting and random selection of staked users. Regardless

the approach, the more the stake of a user the more likely he is to publish new

blocks. When the choice of block publisher is through delegate system, the users

vote for nodes to become mining nodes. Users’ voting power is directly proportional

to their amount of stake, so the larger the stake, the more weight their vote has.

Those with the most votes become mining nodes and can validate and publish

blocks. Users can also vote against a mining node, trying to remove them from the

set of mining nodes. This voting process is continuous and competitive for a node

to remain a mining one. Nodes are motivated not to be malicious by the threat

of losing their mining status and their rewards. Moreover users vote for delegates,

who in turn participate in the governance of the blockchain. Delegates will propose

improvements and changes, which will be voted by the other users. With the coin

age system, staked cryptocurrency has an age property. After a certain amount

of time, such as 10 days or even a month, the staked cryptocurrency can count

towards the owning user being selected to publish the next block. Then the age

3.3. Consensus Models 41

of the staked cryptocurrency is then reset, and becomes unavailable for use until

the required amount of time has passed. Users with more stake are allowed to

publish more blocks, but they cannot dominate the system, and that’s because of

a cooldown timer attached to every cryptocurrency coin counted towards creating

blocks. Larger group or older coins will increase the probability of being chosen to

publish the next block. Usually there is a built-in maximum probability of winning

so the stake holders are prevented from hoarding aged cryptocurrencies. With the

multi-round voting system, often referred to as Byzantine fault tolerance proof of

stake, added complexity is introduced. Several users are selected to create proposed

blocks. Then all staked users will cast a vote for a proposed block. After several

rounds of voting the new block is decided. This method allows everyone to have

a voice in the block selection process. When the choice of block publisher is a

random choice, also referred to as chain-based proof of stake, the blockchain will

look at all users with stake and choose amongst them based on the ration of stake

to the total amount of cryptocurrency staked. So, for example, if a user had 33%

of the blockchain stake they would be chosen 33% of the time. There is a known

problem when using the proof of stake algorithms called “nothing at stake”. If

multiple competing blockchains were to exist at some point, due to a temporary

ledger conflict, a staked user could act on every competing chain. He may as such

for increasing his odds of earning rewards. This can cause the growth of multiple

blockchain branches without adjusting into a singular branch. Under proof of stake

system, the “rich” users can earn more digital assets due to the fact that they can

stake more, however to obtain the majority of digital assets within a system to

“control” it is cost restrained.

Other consensus models, less frequently used in the blockchain are the Round

Robin Consensus Model, the Proof of Authority Consensus Model and the Proof of

Elapsed Time Consensus Model.

3.4. Blockchain Conflicts and Resolutions 42

3.4 Blockchain Conflicts and Resolutions

There are times when multiple blocks are published at approximately the same

time. This can cause differing versions of a blockchain to exist at the same mo-

ment, and these must be resolved quickly so the blockchain can achieve consistency.

On many distributed networks, it is possible for some systems to remain behind

on information or have alternative information. This happens because of the net-

work latency between the nodes. Permissionless blockchains are more likely to have

conflicts due to their number or competing nodes trying to publish blocks. Using

consensus, the matter of conflicting data can be efficiently resolved. For example:

• node a creates block n(a) with transactions #1,2,3. node a distributes it to

some nodes.

• node b creates block n(b) with transactions #1,2,4. node b distributes it to

some nodes.

• There is a conflict

� block n will not be the same across the network.

∗ block n(a) contains transaction #3, but not #4

∗ block n(b) contains transaction #4, but not #3

These conflicts generate two different versions of the Blockchain, like shown in

the Figure below. However, none of these versions are “wrong”, they were created

with the transaction information each node had at that moment. The competing

blocks will likely contain different transactions, so one will see different transactions

in block n(a) not being present in block n(b). If the blockchain deals with some sort

of cryptocurrency, then a situation where some cryptocurrency may be both spend

and unspent may occur.

Conflicts must be quickly resolved. Most blockchains will wait until another

block is mined and use that chain as the “official” blockchain, meaning that the

“longer” chain is the one that wins. As shown in the Figure below the blockchain

containing block n(b) becomes the “official” chain, as it got the next valid block.

3.4. Blockchain Conflicts and Resolutions 43

Figure 3.4: Consensus finality violation resulting in a fork

Any transaction present in block n(a), is returned to the pending transaction pool,

where all transactions which have not yet been included within a block reside. This

set of pending transactions is maintained locally at each node as there is no central

server.

Figure 3.5: The chain with block n(B) adds the next block, the chain with

block n(A) is now orphaned, and longest chain wins

Because there is a possibility of blocks being overwritten, a transaction is not

usually accepted as confirmed until several additional blocks have been created on

top of the block containing this transaction. Since blocks can be discarded accepting

3.5. Forking 44

a block is often probabilistic rather than deterministic, meaning that if more blocks

have been built on top of a published block, the more likely for the initial block is

to not be overwritten. Some blockchain implementations lock specific older block

within the blockchain by creating checkpoints to ensure that a node in a proof of

work blockchain gain enormous amount of computing power and create a longer

chain that the current, thereby wiping out the entire blockchain.

3.5 Forking

Updating or performing changes the blockchain can be difficult most of the times.

Especially for permissionless blockchains is extremely difficult because they are dis-

tributed, governed by the consensus of users and they include many users. These

changes to the blockchain’s data structures and protocol are called forks, and they

are divided into two categories: soft forks and hard forks. For a soft fork the changes

are backwards compatible with nodes that are not updated yet. For a hard fork, the

changes are not backwards compatible because nodes that have not been updated

yet will reject the blocks following the changes. This can potentially lead to the

creation of multiple versions of the same blockchain. The term fork is also used by

some blockchains to describe ledger conflicts, such as two or more blocks having the

same block number.

3.5.1 Soft Forks

A soft fork is a change to the blockchain, that as stated before, it is backwards

compatible. Updated nodes can continue to transact with non-updated nodes. If

no nodes have been upgraded or a very few of them have done it, the updated

rules will not be applied. An example of a soft fork occurred on Bitcoin when a

new rule was added to support escrow, meaning funds placed into a third party

to be disseminated based on conditions such as via multi-signature transactions,

and time locked refunds. A proposal was made to repurpose an operation code that

performed no operation (OP NOP2) to CHECKLOCKTIMEVERIFY, which allows

a transaction output to be made spendable at a point in the future [14]. Nodes that

3.5. Forking 45

implemented this change, the software will perform this new operation, but nodes

that do not support this change, the transaction is still valid and the execution will

continue as if a NOP operation had been executed.

Figure 3.6: Old nodes, having the white blocks, will accept the black blocks, making

a soft fork backwards compatible. The white chain will eventually “die out” as no

white blocks are mined any longer when all nodes and mines are upgraded.

An example of a soft fork might be that if a blockchain decided to reduce the

size of blocks, for example from 2.0 MB to 1.0 MB, updated nodes would adjust

the new size of the blocks and continue to transact as normal. Non-updated nodes

would still see these blocks as valid – since the change made is not against the rules,

meaning that the new block size is lower than their maximum allowed. However

if a non-updated node were to create a block with size greater than 1.0 MB, the

updated nodes would reject it.

3.5.2 Hard Forks

A hard fork is a change to the blockchain that is not backwards compatible. At

some point in time (usually at a specific block number), all nodes will need to switch

to using the updated protocol. All nodes need to upgrade to the new protocol so

newly formatted blocks are not rejected. Nodes that have not been updated cannot

continue to transact because they are programmed to reject blocks that do not follow

their version of the block specification. Nodes that do not update will continue to

publish blocks using the old format. User nodes that have not updated will reject

3.5. Forking 46

the new blocks and only accept blocks that match the old format. This leads to the

creation of two versions of the same blockchain to exist simultaneously. There is no

possible way for two users to interact with each other if they use different hard fork

versions. The most known example of hard forking is from Ethereum. In 2016, a

smart contract was constructed on Ethereum called the Decentralized Autonomous

Organization (DAO). Because of a flow in the smart contract creation, an attacker

extracted Ether, resulting in the theft of $50 million. A hard fork proposal was

voted on by Ether holders, and the majority of the users agreed to hard fork and

create a new version of the blockchain, without the flaw, and that also returned the

stolen funds.

Figure 3.7: The black chain will not accept white blocks, and vice versa, making

a hard fork not backwards compatible. Unlike a soft fork, the “old chain”, here

the chain of black blocks, does not “die out”, because it still has enough miners

and nodes using it. The chain splits into two separate chains, that share the same

transaction history as before the split.

With cryptocurrencies, if there is a hard fork and the blockchain splits then users

will have independent currency on both forks, resulting in double the number of the

amount of cryptocurrency owned by them. If all activity moves to the new chain,

the old one may become useless since the two chains are not compatible. When the

Ethereum hard fork took place, the clear users moved to the new fork, and the old

fork was renamed and continued its operation.

3.6. Smart Contracts 47

3.5.3 Cryptographic Changes and Forks

If flaws are found in the cryptographic technologies within the blockchain, cre-

ating a hard fork is usually the only possible solution, depending of course on the

importance of the error. If, for example, there is an error in the underlying algo-

rithms, a fork would require all future clients to use stronger algorithms. Switching

to a new hashing algorithm could pose an important problem because all existing

mining hardware would be invalidated. If, for example, a flaw in the SHA-256 al-

gorithm was discovered, blockchains that uses the SHA-256 algorithm would need a

hard fork to migrate to a new hashing algorithm. The block that switched over to

the new hashing scheme would lock all previous blocks into SHA-256 for verification,

and the new hashing algorithm would the one to use from now on. For example, as

stated also before the Bitcoin uses the SHA-256 algorithm, while Ethereum uses the

Keccak-256 algorithm. However a change of a cryptographic function in a blockchain

seems unnecessary right now, and only if sometime in the future quantum computers

are developed there will be the need for replacing them.

3.6 Smart Contracts

Nick Szabo was the first to describe the term smart contract back in 1994. He

described them as “a computerized transaction protocol that executes the terms of

a contract. The general objectives of smart contract design are to satisfy common

contractual conditions (such as payment terms, liens, confidentiality, and even en-

forcement), minimize exceptions both malicious and accidental, and minimize the

need for trusted intermediaries. Related economic goals include lowering fraud loss,

arbitrations and enforcement costs, and other transaction costs.” [6]. Smart con-

tracts extend and take advantage of the blockchain technology. A smart contract is

a collection of code and data, also referred as functions or state, that is deployed us-

ing cryptographically signed transactions on the blockchain. Such examples are the

well-known Ethereum’s smart contracts or Hyperledger Fabric’s chaincode. Nodes

are responsible for the execution of smart contracts within the blockchain, and they

must obtain the same results from this execution, which in turn are recorded on

3.6. Smart Contracts 48

the blockchain. Essentially, smart contracts are blocks of code that can self-execute

certain functions, with certain parameters, when predefined criteria are met. They

are activated by someone sending a transaction to their address on the blockchain.

Blockchain users are able to create transactions which send data to public functions

offered by a smart contract. The smart contract executes the appropriate method

using the data provided by the user to perform a service. The code exists on the

blockchain and it is tamper evident and resistant and among other purposes can

also be used as a trusted third party. A smart contract can store information, per-

form calculations, and if appropriate, automatically send funds to other accounts.

It is not necessary for a smart to perform only financial actions. Also not every

blockchain is able to run smart contracts. Smart contracts must be deterministic

and are meant to be Turing complete. That means that given a specific input they

will always produce the same output, and ideally should be capable of computing

everything that can be computed as long as the code has access to unlimited re-

sources and there’s no shortage of time. Additionally, after the execution, all nodes

executing the smart contract must agree on the new state. To achieve this, smart

contracts cannot operate on data outside of what is directly passed into it, every-

thing a user wish the smart contract to obtain must pass it as a parameter to it. For

smart contracts that uses data from outside the context of its own system is said to

use an “Oracle”. Typically in the context of a business process, a smart contract

code can represent a multi-party transaction. In such a scenario, the benefit is that

this can provide validated data and transparency that can create trust, reduce the

time needed for a transaction to complete and reduce costs from reconciliation that

exists in traditional business to business applications. The mining nodes execute

the smart contract code simultaneously when mining new blocks. There are some

blockchain implementations where some mining nodes validate the results of the

nodes that execute the smart contract code. For permissionless blockchains, such

as Ethereum, the user is issuing a transaction to a smart contract will have to pay

for the cost of the code execution. This fee in Ethereum is called Gas and it will

be discussed in detail later. There is a limit on the amount of execution time a call

to a smart contract can consume, and it is based on the complexity of the code. If

3.6. Smart Contracts 49

this limit is exceeded, the execution stops, and the transaction is discarded. Using

this mechanism publisher (miners) are rewarded for executing the smart contract,

but also malicious users are prevented from deploying and then accessing smart

contracts that will perform Denial of Service (DDos) attacks on the mining nodes

by consuming all resources. On the other hand for pemissioned blockchain, such as

Hyperledger Fabric’s chaincode, there may not a requirement for users to pay for

the execution of the code because blockchains like theses are designed around having

known participants.

3.6.1 Smart contract Applications

ICOs

Currently the most popular use case for smart contracts is Initial Coin Offerings

(ICO). They are means by which startups raise funds for their ventures, avoiding

conventional investing regulations and nowadays are produced at an insane rate,

roughly one new ICO a week, on the Ethereum blockchain. That’s because Ethereum

itself was initially an ICO back in 2013, and its founders had acquired nearly $25

million prior to launching a public facing blockchain in 2015. The blockchain evolved

from a platform that just runs cryptocurrencies on. It enabled smart contracts which

had the following properties:

• Multisignature functionality meaning two or more parties could approve or

reject a transaction execution independently

• Automatic execution based on logic programmed into a contract

Mortgages

This process is far from simple. For example, the terms of a mortgage agree-

ment are based on an assessment of the mortgagee’s income, outgoings and other

circumstances. The process can be made a lot more complicated for both the lender

and the mortgagee, by the need to carry out these checks, which third parties take

care of. But if the middle men are cut out, the parties could deal directly with each

other.

3.6. Smart Contracts 50

Supply chain management

Supply chain management involves the flow of good from raw material to fin-

ished products. Smart contracts can record ownership rights as items move through

the supply chain, confirming who is responsible for the product at any given time.

Internet of Things sensors made this process a lot easier, by tracking goods from

producers to warehouses, from warehouses to manufacturers, and from manufac-

tures to suppliers. The finished product can be verified at each stage of the delivery

process until it reaches a customer. Smart contracts can be consulted to find an

item which is lost or delayed. Because everything along the way is recorded smart

contracts restore the trust in trades.

Protecting copyrighted content

Existing systems do not work well every time multiple parties are involved in

the rights of a piece of content that is used for commercial purposes. This has lead

to confusion over entitlement, giving some contributors more while others receive

nothing. Smart contracts can ensure that royalties go to the intended recipients by

recording ownership rights in a decentralized blockchain network.

Smart contracts have many benefits for a wide range of industries, reducing

unnecessary costs and time investment while enhancing transparency. Theoretically

are more efficient and trustworthy than traditional contract law, and also offer better

security as every action is recorded and verified.

Chapter 4

Ethereum Platform

This chapter gives an overview about how the Ethereum Blockchain is working,

how nodes in the network communicate with each other and the basic protocol for

data transfer.

4.1 System Overview

The Ethereum Blockchain is probably the most evolved yet complex Blockchain

system to date. However despite the complexity of the protocol and the security

mechanisms that have been designed so far a full Ethereum node is composed of three

essential parts: a) the Blockchain component, b) the peer-to-peer (p2p) network,

c) the virtual machine

4.1.1 Blockchain component

The Blockchain component of the Ethereum network has been thoroughly ex-

plained in the Chapter 3, but to sum up the Blockchain is nothing more than a series

of blocks that are chained to each other in specific order. By breaking any one block

b will also break all its successors b+1, b+2,. . . b+n. Each block stores together a

number of transactions with the hash of the previous block and the proof of work

of the current block. The proof of work as already explained is just the result of an

intensive computation that aims to find the first number, that is called nonce, that,

together with the content of the block returns a certain hash. This hash usually

51

4.1. System Overview 52

starts with a number of 0s that increases according to a parameter called difficulty.

The higher the difficulty the longer it takes to find a hash. Each block is connected

to the previous block with its hash, meaning that the previous block’s hash is a part

of the content of the current block hash, making the chain hard to break. Breaking a

chain means forging a special block at any position in the chain, but with no change

to all the following blocks. The network rejects such a change in the chain because

it cannot be a legitimate one, which brings the second component: the peer-to-peer

network.

4.1.2 Peer-to-Peer network component

The Ethereum network is formed by nodes connecting to each other. A full node

broadcasts transactions and blocks to the network and receives other transactions

and blocks from it. It is also responsible for the synchronization of the current state

of the Blockchain with the rest of the network. Except for other experimental or

private networks, the official Ethereum networks that are usually used are Mainnet

and Testnet. The Testnet is used to perform experiments of new protocols or features

that usually get adopted by the Mainnet when they are ready. The Ethereum

Blockchain is way more complex than the Bitcoin due to the fact that on Ethereum

it is possible to execute arbitrary code in the form of smart contract. A smart

contract in Ethereum is a type of account that contains code, compiled from a

high level language like Solidity, a contract-oriented programming language and

is is designed to target the Ethereum Virtual Machine (EVM). As for any other

compiled language, the smart contract code is hosted in the form of bytecode (or

object code) on the Blockchain. Types of data that can be stored on the Ethereum

Blockchain are wallets, accounts, transactions and bytecode. Hosting code would be

useless if it is not executed. The most well known mechanism to execute bytecode

compiled from a high level language is called VM or Virtual Machine.

4.2. Merkle Tree Structure 53

4.1.3 EVM component

Like many programming languages such as JavaScript, Ethereum has its own

virtual machine, a stack based machine to push and pop instructions as in a regular

computer with Intel, ARM or AMD CPUs. It is a simple but powerful, Turing

complete 256bit Virtual Machine that allows anyone to execute arbitrary EVM

Byte Code. The EVM is part of the Ethereum Protocol and plays a crucial role

in the consensus engine of the Ethereum system. Anyone is allowed to execute

arbitrary code in a trustless environment in which the outcome of an execution can

be guaranteed and is fully deterministic. Having said that, the purpose of the virtual

machine is to execute smart contract code. This mechanism allows transitions from

one state to another, just like a real machine. Thus given a certain block, which

stores a number of transactions and given a state s, performing the computation

will bring the machine into a new state s′. The state transition mechanism consists

of accessing transaction-related accounts, computing operations, and updating or

writing the state of the virtual machine. Everything that is executed on the virtual

machine will alter its state. After executing all the transactions of a block, the

current state will be stored into what will become the next block.

4.2 Merkle Tree Structure

In the process of block verification an important component plays a fundamental

role to increase the performance and scalability, the Merkle trees and the Merkle

proofs. A Merkle tree is a data structure, a binary tree, in which each node con-

tains the hash of the concatenation of its direct children. Using this structure it

is possible to hash large data while still ensuring verification of a branch of the

tree independently from the rest. This way if a data chunk has changed, the path,

meaning all the hashes of the parent chunks, to the root will change, while a very

large part of the tree will stay unchanged. The root of the tree will be changed

after modifying any leaf, so checking the root is sufficient to detect such changes.

Merkle trees, in Ethereum, are used to save space in each block and allow the light

clients to detect and verify changes efficiently. In any other way, the nodes would

4.2. Merkle Tree Structure 54

have to store and verify large data making it extremely inefficient. Storing only the

root of the Merkle tree that represents the hash of all the transactions in that block

is sufficient for verification. It is not necessary to store all the transactions in the

block. In each Ethereum’s block, three Merkle roots are actually stored, not just

one as in a Bitcoin’s block.

Figure 4.1: A simple Merkle tree

The three Merkle roots in each block header are:

• a Merkle root of the Merkle tree of all transactions

• a Merkle root for receipts (pieces of data that show the effect of executing each

transaction)

• a Merkle root for the state of the virtual machine (EVM state)

This way the performance and scalability are increased, because transactions, re-

ceipts and states do not need to be stored in each block, only full nodes would do

that. For the proof to be computed the node creates a fake block on the local filesys-

tem, sets the state s from the current block, and applies a transaction. The same

node also pretends to be a light client, using only the Merkle roots in the block. All

4.3. Scalability 55

queries to fulfill requirements from the transaction are sent to the server. The server

responds by sending the requested data as a proof. Then the client executes the

same and checks if the local result matches what the server sent as a proof, finally

accepting or rejecting it.

4.3 Scalability

One major issue of every Blockchain is scalability. Every full-node executes each

transaction and stores the entire state for security reasons and to maintain high

degree of decentralisation. However there is an exponential increase in the number

of transactions generated by the system. This would be the case as more and more

DApps (distributed applications) are created and executed on the same Blockchain.

Several forms of parallelization are being investigated trying to solve the scalability

issue in Ethereum. As a matter of fact, to be comparable to traditional centralised

systems, a Blockchain should be scalable, secure and decentralised. However as

of today two of such properties are possible. Currently four different ways are

being investigated to solve the scalability issue: a) plasma chains, b) sharding,

c) interactive verification for scalable computation and d) state channels However

only plasma chains and sharding seems to be the most promising ones. Scalability

is affected by the Blockchain’s architecture. In all blockchain protocols each node

stores all states and all transactions. State in Blockchain as already mentioned is

account balances, contract code and storage. Every node processes all transactions,

by executing them on their local virtual machine and saving receipts and next state

back to the Blockchain. While this ensures that every node can check everything,

this reduces scalability. Such a node would require a larger and larger filesystem

to store blocks and more and more computing resources to verify all transactions.

Ethereum can process around 12-30 transactions per second, mainly because it is

limited by the computational power of one node. Such a system is definitely very

secure but not scalable at all. The key to break such a hard limit is to process many

transactions in parallel.

4.3. Scalability 56

4.3.1 Plasma Chains

Plasma is a proposal that introduces the concept of sidechain or child Blockchain.

It uses a series of smart contracts to create hierarchical trees of sidechains. Plasma

can be compared to having a blockchain into a blockchain relaying information back

to the main chain whenever required. In the main chain a smart contract creates the

sidechain. Therefore the rules of the main Blockchain also apply to the sidechain.

However the sidechain is maintained and controlled by independent nodes, thus

making it easier for the nodes on the main chain to process other transactions. Such

an approach seems to work very well for micropayments among parties that report

their balances to the main chain only after the series of payments have been ac-

cepted and validated. From a scalability perspective, Plasma does not impose any

constraint about the number of sidechains that can be created, leading to theoret-

ically infinite scaling. The major benefits of plasma are faster and way cheaper

transactions off-chain.

4.3.2 Sharding

Sharding is a concept that’s widely used in databases, to make them more ef-

ficient. A shard is a horizontal portion of a database, with each shard stored in

a separate server instance. This spreads the load and makes the database more

efficient. In case of the Blockchain, each node will have only a part of the data

on the Blockchain, and not the entire information, when sharding is implemented.

Nodes that maintain a shard maintain information only on that shard in a shared

manner, so within a shard, the decentralization is still maintained. However, each

node doesn’t load the information on the entire blockchain, thus helping in scalabil-

ity. Thus the number of transactions in such a blockchain would be the sum of the

transactions of every single asset. If each shard is dedicated to each asset, shard-

specific nodes can process shard-specific transactions in parallel, still maintaining

strong security guarantees.

In order to perform the aforementioned capability, special nodes called collators

accept transactions on shard k and create collations. A collation has a collation

4.4. Protocol Basics 57

Figure 4.2: Sharding in Blockchain

header, that will be stored in a block on the main Blockchain. With such information

it is possible to verify that all the transactions of a collation are valid, after they have

been processed by nodes other than those on the main Blockchain. This, in turn,

increases the throughput of the entire Blockchain and the number of transactions

per second.

4.4 Protocol Basics

For a peer-to-peer network to be complete there must be an implementation of

node discovery, which allows peers to discover more nodes that support and run

an Ethereum client. Ethereum uses a Kademlia-like protocol for node discovery.

Kademlia is a Distributed Hash Table for peer-to-peer networks that can create a

distributed server that all peers can store and read data in a decentralized way.

4.4.1 Specification

Every node has a specific ID that is unique. This said Ethereum uses the SHA3

hash of our public key, node-IDs also consist of global IP and port so a connection

can be established. Each node stores a table of known active nodes each has K

nodes in it. The node’s main goal is to maintain exactly K known nodes in each

row. Row i represents all the known nodes that have the same first i bits in their

4.4. Protocol Basics 58

address as the current node (row numbering starts at 0). Each node can request

from another node to lookup a node. A lookup request consists of the requested

node ID and the source node ID.

This protocol allows Ethereum nodes to discover nodes and connect to them

efficiently on order to maintain the network’s decentralized factor. When a new

node tries to join the network, it needs to establish a list of some known peers that

it can communicate with. Ethereum clients are hard-coded with three main peers

that are maintained by the Ethereum Foundation and so upon joining the network

for the first time, the new peer will ask one of these bootstrap peers for a list of

active nodes. These three bootstrap peers are a form of centralization.

4.4.2 Data Transfer

Ethereum uses a protocol named Recursive-Length Prefix, RLP, for data trans-

fer. This protocol enables nodes to transfer encrypted, serialized data. When two

nodes want to communicate, they send each other some cryptographic data, such as

the public keys, to make sure all of the subsequent data transfer is encrypted and

cryptographically signed. Then, both nodes send to each other the protocols and the

versions of these protocols they support. The three Ethereum protocols are: a) eth

for the Ethereum protocol, b) shh for Ethereum’s Whisper protocol and c) les for

4.5. Transactions 59

Light Ethereum Node Subprotocol After all messages are encrypted and a protocol

agreed upon, the subsequent messages are dependant on the protocol chosen.

4.5 Transactions

In this thesis the indexer maps addresses to transactions, and in this section

a closer look at the Ethereum’s transactions structure is provided. As the yellow

paper [7] mentions, Ethereum is a transaction-based “state” machine, a technology

on which all transaction based state machine concepts may be built.

Figure 4.3: State transition in Ethereum

The Ethereum blockchain begins at its own genesis block. From the genesis

state, at block 0, onward, actions such as transactions, contracts and mining will

continually change the state of Ethereum. Data such as account balances are not

stored directly in the block headers of the Ethereum Blockchain. Only the root node

hashes of the transaction trie, state trie and receipts trie are stored directly in the

block headers as shown in figure 4.4

A transaction that has been fully confirmed it is recorded in the transaction trie

and it is never altered thus making it parmanent data in the Blockchain. Ethereum

4.5. Transactions 60

Figure 4.4: Ethereum Tries

uses trie data structures to manage data, all explained below.

State trie

There is one, and one only, global state trie in Ethereum, and it is constantly

updated. The state trie contains a key and value pair for every account which exists

on the Ethereum network. This key is a single 160 bit identifier and is essentially

the address of an Ethereum account. The value in the global state trie is created by

encoding the following account details of an Ethereum account by using the RLP

encoding method:

4.5. Transactions 61

• nonce: the count of the number of outgoing transactions, starting with 0

• balance: the amount of ether in the account

• storageRoot: the hash associated with the storage of the account

• codeHash: the hash of the code governing the account, if this is empty then

the account is a normal account that can be accessed with its private key else

it is a smart contract whose interactions are determined by its code

The state trie’s root node (a hash of the entire state trie at a given point in time)

is used as a secure and unique identifier for the state trie; the state trie’s root node

is cryptographically dependent on all internal state trie data.

Figure 4.5: Relationship between the State Trie and an Ethereum block

Storage trie

A storage trie is where all of the contract data lives. Each Ethereum account

has its own storage trie. A 256-bit hash of the storage trie’s root node is stored as

the storageRoot value in the global state trie.

Transaction trie

Each Ethereum block has its own separate transaction trie and a block contains

many transactions. The miner who assembles the block is the one who decides the

4.5. Transactions 62

order of the transactions in a block. The path to a specific transaction in the trans-

action trie, is via the index, which is RLP encoded, of where the transaction exists

in the block. Mined blocks are never updated and so the position of the transaction

in a block is never changed, meaning that once the location of a transaction in a

block’s transaction trie is located, the same path can be taken to retrieve the same

result.

Transactions fields

A transaction in Ethereum is stored as [nonce, gasprice, startgas, to, value, data,

v, r, s]. These input fields are explained below:

• nonce: the count of the number of outgoing transactions, starting with 0

4.5. Transactions 63

• gasPrice: the price to determine the amount of ether the transaction will cost

• startgas: maximum amount of gas allowed for the transaction

• to: the account the transaction is sent to, if empty, the transaction will create

a contract

• value: the amount of ether to send

• data: could be an arbitrary message or function call to a contract or code to

create a contract

• v, r, s: all three of them make up the ECDSA signature

Chapter 5

Implementation

This chapter discusses the components that have been implemented, so as the

Indexer extracts the data from the Ethereum Blockchain, index them using Redis

as a transactional database, and then provide a REST API to query all transactions

related to a given address. Moreover, a bigger picture from a software engineering

perspective is shown, so that the reader understands how the different components

and modules are combined. Finally, it explains the steps that are followed in order

to implement the data extraction and how they are indexed in the database.

5.1 Combining existing parts

5.1.1 Illustration of the System Architecture

It is of high importance, before going into much details, to show the overall il-

lustration of the whole system architecture. In Figure 5.1, we see that we use the

Ethereum network as the Blockchain platform and Geth which is an Ethereum client

that runs a full Ethereum node implemented in Go. Geth offers three interfaces,

these being the command line subcommands and options, a JSON-RPC server and

an interactive console as shown in Figure 5.2. Put it simply Geth is a program which

serves as a node for the Ethereum blockchain, and via which a user can mine Ether

and create software which runs on the Ethereum Virtual Machine (EVM). Another

Ethereum client that can be used is Parity [8]. Parity has some advantages over

64

5.1. Combining existing parts 65

Figure 5.1: Indexer interacting with the Ethereum Blockchain to get data

Geth, mostly because it uses the pruning algorithm and the hard drive usage won’t

grow exponentially, meaning that the chaindata folder which stores the Blockchain

won’t add many gigabytes of blocks every week. Moreover Parity has a passive mode

to reduce CPU and network load on leaf nodes, and the warp sync allows the user to

sync the Blockchain from scratch in hours as opposed to days. In this project Geth

is used as a node, and we need to connect to an Ethereum network to download the

Blockchain. We connect to the Rinkeby testnet to download an synchronize a full

node, using the following command

1 geth --rinkeby --datadir=$HOME/. ethereum --cache =2048 --rpc --

rpcapi=eth ,web3 ,net ,personal --syncmode=fast

We use a testnet instead of the mainnet, because this way we do not have to use

real Ether and there is no way we can cause a conflict to the main chain as described

before. Also they are fast and provide more feedback.

After the node is fully synced we can find the chaindata folder, where the

Blockchain is actually stored in the ./˜ethereum directory. The file testnet is our

test Blockchain. We also have RPC and IPC API provided to communicate with

our node through console. IPC generally works on your local computer. In the

Ethereum space, IPC normally involves geth creating a IPC pipe (which is rep-

5.2. Redis Storage 66

Figure 5.2: How Geth communicates with the user running the node and the network

resented by the file $HOME/.ethereum/geth.ipc) on our computer’s local filesys-

tem. Other processes on the same computer can then use the IPC file to create

bi-directional communications with geth. In this thesis an IPC communication is

disabled. We use the RPC communication protocol. Our endpoint is set to local-

host:8545 (127.0.0.1:8545), so only other processes in our system can communicate

via this RPC endpoint. For the purpose of communication we use the web3.js library,

which is provided by Geth and it is a compatible JavaScript API. The web3.js is a

collection of libraries which allow you to interact with a local or remote Ethereum

node, using a HTTP or IPC connection.

5.2 Redis Storage

In this thesis, we use Redis as our primary storage. Redis is an open source

in-memory data structure store, used as a database supports data structures such

as strings, hashes, lists and sets. Redis is written in C, thus making it extremely

fast, and it is a NoSQL database. Redis provides a command line interface, named

redis-cli, that enables us to communicate with the Redis Server running in the

background. Redis is supported by JavaScript, and it offers many commands to in-

teract with the server. The ones used will be explained in a later section. By default

Redis Client uses 127.0.0.1 and port 6379 but it can be easily changed. Redis is

5.2. Redis Storage 67

a key value database and as shown in Fig 5.3 the values are stored in Address to

Transactions manner. After queried for a specific transaction by its hash, Redis will

return an answer of the form ”txs”:[”blockNumber”: number, ”hash”: string] as

shown in the figure above. We also used Redis Desktop Manager, which is a tool

that offers a GUI to access the Redis DB and also perform some basic operations

such as view keys as a tree, CRUD keys, execute commands via shell.

Figure 5.3: Indexer module requesting data from the REST server, who in turn

requests the data from the Redis Database

The implementation of the Redis storage used can be found in the ./src/re-

dis storage folder. We create a client, to perform any action we want after the

connection is established, with the command redis.createClient() provided by the

API for Node.js using the default IP, but we change the default port to 6380 if not

specified. The Database uses a set of functions to store and return the data after a

query from the REST Server.

5.2.1 Redis Functionality

We use the Bluebird API instead of native Promises, making everything asyn-

chronous. By using the following commands

1 bluebird.promisifyAll(redis.RedisClient.prototype);

2 bluebird.promisifyAll(redis.Multi.prototype);

we add a Async to all node redis functions.

5.2. Redis Storage 68

Redis Functions After Bluebird

multi -

set setAsync

get getAsync

sadd -

exec execAsync

smembers smembersAsync

Table 5.1: Redis Functions used

Starting Block

By defining a blockNumber from which we want to start searching, we imple-

mented a function to ignore previous blocks or start from the beginning if there is

a wrong index as shown below:

1 const startFromBlock = (blockNumber , txs) => {

2 let idx = txs.findIndex((tx) => tx.blockNumber > blockNumber);

3 if(idx === -1) {

4 idx = 0;

5 }

6 return txs.slice(idx);

7 }

Update Address

To asynchronously update an address, we update them as a Redis transaction,

meaning that they will update as group and sequentially. This will happen using

the multi command, the Redis transaction will be serialized, and then executed

asynchronously with the exec command as shown:

1 const updateAddr = async (addresses) => {

2 const multi = client.multi ();

3 for(let addr in addresses) {

4 let { txs } = addresses[addr];

5 txs.forEach (({ hash , blockNumber , inbound }) =>

5.3. Ethereum Network 69

6 multi.sadd(addr , serializeRow(blockNumber , hash , inbound)))

;

7 }

8 await multi.execAsync ();

9 }

Adding and Returning Values

To get the requested Ethereum transaction given an address we get all transac-

tions related to the specific address, unserialize them and then as described above we

use the startBlock() function. Adding a value to database is a simple as turning the

hexadecimal address to buffer JavaScript object and invoking the setAsync Redis

method to add it to the set.

5.3 Ethereum Network

Web3 Instantiation

Web3 is the main class of anything related to Ethereum. The property modules

returns an object with the classes of all major sub modules, and in this thesis we use

the Eth module, which provides us with the ability to interact with the Ethereum

network, and the Net module, which is used for interacting with network properties

of the Blockchain. We need to give client a way to connect to the Blockchain. Specif-

ically, the web3.js library requires a Provider object that includes the connection

protocol and the address/port of the node we are going to connect to. We create a

web3 module to configure the provider setting the host to 127.0.0.1(the localhost).

The web3.js library supports 3 different providers, but in this thesis we use either

the HTTP provider or the WebSocket one.

Web3 Methods

As previously said, we first used a provider to connect to Ethereum, and we set

up the Redis storage where our data will be stored. We have also implemented a

5.3. Ethereum Network 70

module to get the needed data from the Ethereum network. We use the following

methods provided by the web3.js library:

• web3.eth.getBlock

• web3.eth.getBlockNumber

• web3.eth.isSyncing

• web3.eth.getTransaction

• web3.eth.subcribe

At first we use the p limit package to limit the aforementioned web3 methods

queries in the Ethereum network because at times there can be a large amount

of requests, thus making sure they are not hitting the network with thousand of

concurrent HTTP requests. We bind each method to create a new function of that

method and we try to call each web3 method after a 5 second delay if the call has

failed. The sample code of binding is featured below:

1 web3methods.forEach ((method) => {

2 const original = this[method].bind(this);

3 this[method] = (options , execOpts) => {

4 const wrapped = wrap(original , [options]);

5 return execWithLimitedConcur (() => this.tryWeb3Call(wrapped ,

execOpts));

6 }

7 });

The tryWeb3Call(wrapped, execOpts) that is used above is a function that

first tries to call the method that is stated above and if that fails then checks if there

is an Ethereum Node running when trying to use that method, and after a delay

tries to connect again.

The rest functions of the Ethereum class are utilizing the web3.js methods for

returning data from the Blockchain such as getting a block containing all transaction

as objects using the web3.eth.getBlock(num, true) build-in function or getting a

transaction by its hash using web3.eth.getTransaction(prefixHex(hash)).

5.3. Ethereum Network 71

Moreover we have implemented a function for getting the block number based to

the syncing state of the Blockchain. Based on the API a syncing object looks like

1 {

2 startingBlock: 100,

3 currentBlock: 312,

4 highestBlock: 512,

5 knownStates: 234566 ,

6 pulledStates: 123455

7 }

and by examining the go-ethereum (Geth), which can be found on Github [9], we

can understand the meaning of each property of the syncing object, as seen at the

table below

Field Name Type Description

StartingBlock uint64
Block number where sync

began

CurrentBlock uint64
Current block number

where sync is at

HighestBlock uint64
Highest alleged block

number in the chain

KnownStates uint64
Total number os state trie

entries known about

PulledStates uint64
Number of state trie entries

already downloaded

Table 5.2: SyncProgress gives progress indications when the node is synchronising

with the Ethereum network.

Also we use the web3.eth.isSyncing() function to check the sync status of the

Blockchain. If it is not syncing we just request and get the number of the most

recent block, otherwise we get the current block by checking the pulled states with

the current block as shown below

1 let syncing = sync.currentBlock || sync.pulledStates

5.3. Ethereum Network 72

The web3.eth.getTransaction(hash) function is used as stated in the API,

using only the hash to retrieve the wanted transaction and after retrieving the

transaction we create a function to get the defaults from the transaction we just

received. The defaults in a transaction are a) the chain ID, b) the gas Price, c) the

nonce, d) the value and e) the data Every one of them can either be retrieved by

extracting them from the web3 object, or by using the build-on function provided

by the API, such as web3.eth.net.getId() or web3.eth.getGasPrice() and if we

can a wrong gas value, we utilize the web3.eth.estimateGas function to execute the

transaction and get the correct gas value.

A function to check for changes in the Blockchain is also implemented which uses

the web3.eth.subscribe(). We know by the API that we can subscribe for specific

events in the Blockchain. There are many types of subscription but we subscribe to

newBlockHeaders, which as the name states subscribes to incoming block headers

and can be used as timer to check for changes on the Blockchain.

1 if(this.canSub) {

2 return this.web3.eth.subcribe('newBlockHeaders ');

3 }

If the canSub variable is true we return a block header.

5.3.1 Blocks

Event Emitter

In this thesis we use an implementation of the native Event Emitter module

found in Node.js. This new module is called EventEmitter2 and is extending the

interface of EventEmitter with additional features and can simply be installed using

the npm package manager. We use its constructor with just two options: a) wildcard

and b) delimiter. Setting the wildcard to true so we are able to use wildcards and

the delimiter to ’:’, so we can segment namespaces, such as ’blocks:number’, which

will be used.

5.3. Ethereum Network 73

Lodash Library

In many modules we created we used functional programming to achieve the

needed utilities. Lodash [10] is the JavaScript library that provides such utility

functions. Here the .debounce function of this library is used to ensure a given task

does not fire too often to destroy the performance.

Block class

Thus we create a class Block which extends the above mentioned EventEmitter2

interface. We create a block cache, and we use again the p limit library to set the

prefetch of the blocks to one at a time, so we can process it and then save it in

the cache. There is an event emitted called ’block:number’ to get the block, but is

filtered through a debounce function waiting 1 millisecond and invoking the event

at the leading edge of the timeout.

At the initialization we ensure the correct network connectivity and load the latest

Blockchain block as well as our latest saved block. We get these blocks utilizing

the functions we created and explained in the previous Ethereum section. Also the

subscription is enabled so we get the data from the latest block header as mentioned

in the previous section, and we are polling for new blocks in a 6 second interval,

before prefetching a new block again. The prefetch function starts at the latest

saved block number and ends 20 blocks after as we set this fixed number as the

standard block fetch size. First the function checks if the block exists in the cache

and if it reaches the end it means that every block is up to date.

1 let prefetchCount = 0;

2 let index = start;

3 while(index < end) {

4 if(!this.blockCache.has(index)) {

5 prefetchCount ++;

6 }

7 index ++;

8 }

9

10 if(! prefetchCount) {

5.4. Utilities and Configurations 74

11 return;

12 }

Then starting from the top again, and for a batch size of 20 blocks it fetches

them and updates the index accordingly.

Moreover using the getBlocks() function implemented in the previous section,

we retrieve a block, and using the getBlocks() in the cache module we get all the

needed blocks asynchronously to set them into the actual cache. To assist these two

functions we implemented a getNextBlocks() function, which prepares the next

batch of blocks, starting each time from the latest processed block, and adds them

into the cache. We get the buffered height by subtracting the latest block number

from the Blockchain, from the our latest saved block number.

1 const bufferedHeight = this.latestBlockNum - this.savedBlockNum;

Minimum buffered height is also defined as it is equal to the already confirmed height

plus one. If the minimum buffered height is lower than the buffered height, we find

the target block that is our latest saved block plus the minimum buffered height,

and we wait until we get this block. In any other occasion we prepare the next batch

of blocks for processing.

5.4 Utilities and Configurations

For the sake of simplicity and reusability we have implemented an utility module

that provides many functions useful for processing the transactions of a block. A

detailed overview of these functions is described below.

Prefix and Unprefix

The prefix function takes as an argument a hexadecimal address, or a transaction

hash and checks if this string starts with ’0x’. If that is the case it just returns it.

In any other occasion it adds the ’0x’ to the start of the string.

The unprefix function does the exact opposite of the prefix function, that is

cutting the ’0x’ from the beginning of the hexadecimal string, or returning the

string untouched if there is no ’0x’ in the transaction hash or the address.

5.4. Utilities and Configurations 75

This is extremely useful when we are trying to identify if a hash is a transaction

hash, and as already stated in previous section it must be equal to 64 bytes without

the prefix. In the same manner we are trying to identify an address hash which is

equal to 40 bytes without its prefix.

Treating other Hexadecimals

Other functions for treating hexadecimals consists of using the build-in JavaScript

functions to convert a hexadecimal number to a string buffer or vice versa, a utility

useful for serialization or unserialization of an address hash for example. We have

created functions for checking if a given string is a hexadecimal using regular ex-

pressions for testing it. Also given a block number we implemented a function to

convert that decimal number, to hexadecimal.

Jitter and Retries

In general jitter is the difference in packet delay, meaning that it is the measuring

time difference in packet inter-arrival time. We implemented a function to calculate

the backoff to assist us in the number of retries in the network.

1 if(jitter <= 0 || jitter >= 1) {

2 throw new errors.InvalidInput('Jitter must between 0 and 1 (0 <

jitter < 1)');

3 }

4 let min = 1 - jitter;

5 let max = 1 + jitter;

6

7 let factor = (Math.random () * (max - min)) + min;

8 backoff = factor * delay;

9

10 return backoff;

Code Listing 5.1: Code to calculate the backoff for retrying

Using the code snippet from above we created a function to retry when we are

trying to get a block, setting always the maximum attempts to infinity, but trying

to acquire the block in a 30 second window. When that time passes we are giving

5.4. Utilities and Configurations 76

up.

Assert Option Type

One last utility function used throughout in the entire project in this thesis is

a function called assertOptionType. The purpose of this function is to evaluate the

type of an object provided and if it does not match the actual type it throws an

error stating the exact type of the object provided. Below the code for asserting an

option type is demonstrated.

1 const assertOptionType = (object , option , optionType) => {

2 const real = typeof object[option];

3 if(real !== optionType) {

4 throw new errors.InvalidInput(`Expected ${optionType} "${option

}", but got "${real}"`);

5 }

6 }

5.4.1 Serialization

For a transaction to be sent, it must be serialized. Also when we want to add

a transaction to our Redis database we must first serialize it and then store it.

Checking how a transaction is stored in the Blockchain, we found that it is stored

as

1 [nonce , gasprice , startgas , to, value , data , v, r, s]

and all these field are stored in the Big Endian format as shown below:

1 fields = [

2 ('nonce ', big_endian_int),

3 ('gasprice ', big_endian_int),

4 ('startgas ', big_endian_int),

5 ('to', utils.address),

6 ('value ', big_endian_int),

7 ('data', binary),

8 ('v', big_endian_int),

9 ('r', big_endian_int),

10 ('s', big_endian_int),

5.4. Utilities and Configurations 77

11]

Code Listing 5.2: Taken from pyethereum library

The Geth Ethereum Client is storing everything also in the Big Endian format.

Having said that we create two function to write a number when we want to seri-

alize and to read it for deserialization. We use the build-in JavaScript function for

reading or writing in the Big Endian format, and based on a offset we read or write

from the specified position on the buffer. We use the build-in JavaScript functions

a) writeUInt8(length, offset) b) writeUInt16BE(length, offset) c) writeUInt32BE(length,

offset) for writing the value in the buffer, below there are option for an 8-bit, 16-bit

or 32-bit integer. The default is set to 8-bit integers.

The same also applies for the reading procedure when we want to deserialize

we use the a) readUInt8(offset) b) readUInt16BE(offset) c) readUInt32BE(offset)

functions provided by the JavaScript language.

We use the first writeInt() function to create a buffer to store the serialized

object, and we take advantage of it in the redis.js module when we want to store a

serialized row. In the same way the readInt() function works for deserialization. To

deserialize a row in redis.js we just use the buffer created by the serialize function,

we use the unserialize function and we get as a result the block number, the hash

and the inbound as single objects, in their original format, meaning from buffer to

int, as far as block number is concerned, and from buffer to hex for the hash and

the inbound.

5.4.2 Address Indexer

The transaction addresses module, is a module that creates an indexer for the

address. We are setting an interval of 10 seconds, that is resetting periodically so

our average will not be weighed down by the past too much as shown below:

1 setInterval (() => {

2 const secPass = (Date.now() - startTime) / 1000;

3 logger.log('Blocks per second: ', total / secPass);

4 startTime = Date.now();

5 total = 0;

5.4. Utilities and Configurations 78

6 }, 10000).unref();

While there is no error we are waiting always for the next batch of blocks and

when we get it we are adding them to our database and emit an event ’block:number ’

for every block stored. After that we count the total number of blocks stored so far.

1 while (!stop) {

2 try {

3 blocks = await processor.getNextBlocks({ maxBatchSize:

blksPerBatch , confirmHeight })

4 }

5 catch(error) {

6 eventEmitter.emit('error', error);

7 stop = true;

8 break;

9 }

10 await state.addBlocks(blocks.slice ())

11 blocks.forEach ((blk) => {

12 eventEmitter.emit('block:number ', blk.number);

13 });

14 total += blocks.length;

15 }

5.4.3 Getting Addresses and Transactions

Moving on we find an address based on its hash and block number, and we

use this address and the forementioned eth.getTransaction function, to get all

transactions related to that address.

1 txs = await bluebird.map(txs , async (tx) => getTransaction(tx.hash ,

timeoutOpts));

Moreover based on the inbound of our node, we check and we assign the address

to the sender (from field) or to the recipient (to field).

1 if(tx.inbound) {

2 fromAccount = null;

3 toAccount = addr;

4 }

5.4. Utilities and Configurations 79

5 else {

6 fromAccount = addr;

7 toAccount = null;

8 }

With the help of the bluebird library, we take advantage of its .map function, to

create two functions, one for getting the addresses and the other for retrieving the

transactions, both of them were needed in the implementation of the REST Server

which will be explained in the next section.

5.4.4 REST Server

The REST Server responds to requests about block numbers, addresses, trans-

actions and the health of the server. For this purpose we assigned these routes to a

JavaScript object we called routes. The properties of the object are displayed below:

1 const routes = {

2 blockNumber: '/blockNumber ',

3 addresses: '/addresses ',

4 transactions: '/transactions ',

5 transactionsDefaults: '/transactionsDefaults ',

6 health: '/health '

7 }

For implementing the server we chose the Koa Library over the widely used

Express Library.

Koa Library

Koa is a web framework for Node.js [11]. It is leveraging async functions in

JavaScript, allowing us to discard callback functions, and increases error-handling.

The core module of Koa.js does not support routes, however, so we had to also install

koa-router module to use routes. Koa.js identifies and understands the operations

required by HTTP methods and it provides a request and response object, and

it allows to encapsulate these two objects into a single on using Context, which

provides additional functionality.

5.4. Utilities and Configurations 80

Server Module

We set the timeout options to 10 seconds and we wrapped to it the getTransac-

tions, the getTransactionDefaults, and the proccessed block number. We used

a body parser for the errors and a http proxy using the koa-better-http-proxy library

for checking if all RPC methods exists else the access is forbidden, and finally the

proxy path resolver is set to ’/’. Our server port is set to run on port 3000 but it

can be changed through a config file which will be explained in the next section.

Using the object routes, which as already stated holds the routes, using the koa

library the requests are matched to corresponding route, meaning the we can check

the health of the server in route ’/health’, or retrieve the requested block number

in the route ’/blockNumber’. Also the batch size for the addresses and the trans-

action requests is set to a max 100. Finally there is an error handler on the HTTP

status error codes, for not being able to find the route if it does not exists, or for

bad requests or timeouts.

5.4.5 Configurations

Configuration Module

In the configuration module, there are functions that parse the conf.js file, which

holds the critical values for the indexer to function. The module uses the asser-

tOptionType, from the utility module, to check the validity of every single field

of the conf.js file. The fields that the function check their correctness are: a) the

starting block b) the block per batch c) the port d) the confirmation height e) the

node f) the hostname g) the use of a websocket and its port h) the HTTP port and

i) Redis and its port.

After the validity check, the data the indexer needs are parsed from the conf.js

file. Then a path is resolved from the current working directory, and a file for the

database is created at this path, named transaction address-index.db

5.4. Utilities and Configurations 81

The Config File

The configuration file holds values crucial for the indexer to operate. The form

is as follows

1 module.exports = {

2 network: 'mainnet ',

3 dir: './',

4 blocksPerBatch: 100,

5 startBlock: 300000 ,

6 confirmHeight: 15,

7 port: 3000,

8 storage: 'redis ',

9 redis: {

10 port: 6379

11 }

12 node: {

13 host: 'localhost ',

14 httpPort: 8545,

15 wsPort: 8546

16 }

17 }

And presented in the Table 5.3 below, every value is explained.

The last field called node, with subfields host, httpPort, wsPort is implemented

for non-private networks. If a node is up and running the value of the network

field can be set to ’private’ and there will be no need for the node field.

5.4.6 Error Module

In this thesis, in every module, whenever something went wrong an error value

was raised. For this purpose we created an error module to handle every single error

that happened throughout the operation of the indexer. The main error classes

for this thesis are: a) InvalidInput, b) NotFound, c) Timeout, d) Duplicate and

e) InsufficientFunds. If any of the above errors are caught during execution the

indexer throws an error invoking one of the above error classes with the appropriate

message. Moreover we set the following key errors for extra safety. a) RangeError

5.4. Utilities and Configurations 82

Field Value Description

network mainnet
the chosen Ethereum

Network

dir ./
The current working

directory

blocksPerBatch 100

How many blocks to wait

for, before processing, can

be any value

startBlock 309562
The block to start

indexing, can be any value

confirmHeight 15
Height at which a block is

considered confirmed

port 3000
Port to run HTTP server

on

storage ’redis’

Our database, if another

database is used this field

can change

redis port: 6379
The port which Redis

database is running

Table 5.3: Every value of the configuration file.

b) ReferenceError c) EvalError d) URIError e) TypeError f) SyntaxError

The Error module, also has functions to check if a node is connected, or ignore

an error it not matches to any of those implemented and needed. The function

matches() is the one that identifies if the thrown error exists in the pool of errors we

used and based on that assumption it returns either true or false. This particular

function is crucial to the implementation of the REST Server as it is the one that

matches the error type produced with the corresponding status code and constructs

the returned error value that consists of this status and the type and message of the

error as shown:

5.4. Utilities and Configurations 83

1 let errorValue = {

2 status ,

3 body: {

4 type ,

5 msg ,

6 }

7 }

5.4.7 The Logger

To have a complete overview of everything that happens, make sure everything

is working as expected and find problems or errors, and for this purposes we have

created a logger. The logger is a very simple module that creates a wrapper of five

attributes: a) the actual log, b) the info, c) the warnings, d) the debug and e) the

error. They are created five different log files, each one with the corresponding

names, meaning that there is a different file for the actual logs, the info, the warnings,

the debugging info when needed and the errors. We have also binded the logs to

the console, so if used one can see every output in the console instead of a file. For

instance, in the block.js module an debug log was instantiated, named BLOCKS, for

diagnosing problems, and giving detailed information and monitoring the Blockchain

or when prefetching blocks for the cache. For the storage output, a log file named

storage:redis is created. As long as the main indexer is concerned a log called

indexer is created and one for the REST Server is also created, under the name

server. Finally a log called web3 is created for the purpose of logging data related

to the Node in use and the Blockchain network. A prefix in front of every log file is

set so every one begins with markos thesis: followed by the forementioned names.

5.4.8 Connecting to a node

A provider is how web3 talks to the Blockchain. Providers take JSON-RPC

requests and return the response. This is normally done by submitting the request

to an HTTP or IPC socket based server. In this thesis two ways to connect to a

node are provided:

5.4. Utilities and Configurations 84

• an HTTP provider, because most nodes support it and

• a WebSocket provider which works remotely and it is faster than an HTTP.

There also exists the IPC Provider, which uses the local filesystem and it is faster

and the most secure but it is not implemented in this thesis.

We use an option variable to get infomation about the hostname, the http port,

the websocket port, the logger and a boolean variable indicating if we use the Web-

Socket provider (useWS).

Based on this we check if the useWS is false, and if thats the case we connect

using the HTTP provider like:

1 web3.setProvider(new Web3.providers.HttpProvider(`http://${host}:${

httpPort}`));

If the useWS is true, then we instatiate a variable called wsOptions with a timeout

of 30 seconds, and an origin header using the hostname, as a JavaScript object.

We also set a provider variable using the WebSocket provider, with 10 sec-

onds reconnect time if something goes wrong. If everything runs correctly, and

provider connects successfully we log it, and finally set the valid provider using the

web3.setProvider(provider) function.

5.4.9 State

The module state.js creates and handles the state of the Redis storage. First we

are getting the hash, the sender and the recipient of a transaction and un-prefixing

the hexadecimal using a function we implemented called getTxFromToHash(),

and then we map this transaction to an address. The core of this module however

is to provide a way to store the blocks with every transaction that they hold. First

it calculates the valid number of transactions, meaning that every transaction in

a block has send an amount of ether and it is not an empty transaction. Then it

ensures that every block and every transaction of each block is valid, and associates

all transactions that have been executed. If a block does not have any transactions

it stores it at the end. Otherwise it ensures the next block has the correct block

number stores it and update Redis.

5.4. Utilities and Configurations 85

1 const mapTxsToAddr = (transactions) => transactions.reduce ((map , tx

) => {

2 const { blockNumber } = tx;

3 const { hash , from , to } = getTxFromToHash(tx);

4 if(!map[from]) {

5 map[from] = createAddr ();

6 }

7 if(!map[to]) {

8 map[to] = createAddr ();

9 }

10

11 map[from].txs.push({hash , blockNumber , inbound: false});

12 map[to].txs.push({hash , blockNumber , inbound: true});

13

14 return map;

15 }, {});

5.4.10 Loading Components

In the index.js module everything comes together. When creating the instance

to run the Blockchain Indexer the components like the blocks per batch or the

starting block, explained in the previous subsection 5.4.5, are set by a config file,

and we implemented a module to process these components so we are able to get

them individually. We create the default components variable above all, setting the

indexer and the server value to true. Then it basically uses all of the already created

modules, meaning a) the blocks module, b) the server module, c) the eth module,

d) the api module and e) the state module to create and initiate every one of them.

We set a JavaScript object variable to hold every value. The ret val as is called,

uses the redis module, getting from the config file the host name and the port to

create our database. It also holds the state of our storage, and the Ethereum API

calls. It also instatiates the REST Server using the standard V1 prefix, creating a

logger for the server, and setting the RPC methods for it, and it saves them as its

properties. Finally it utilizes the block.js module as explained in subsection 5.3.1, to

process every incoming block, and the transaction addresses.js module as explained

5.5. Running the Indexer 86

in subsection 5.4.2. The indexer then starts and logs every component with its

corresponding value.

5.5 Running the Indexer

In order to run the indexer from the command line we use a JavaScript Library

called

1 npm start

in the console, a message is displayed stating the the process of Blockchain and the

REST server is starting. The command can also be chained if we run

1 npm start get <hash >

so it will check if this hash corresponds to a certain address or a transaction and it

will log it on the console.

Chapter 6

Conclusion

In this thesis we dive into the new technology, the Blockchain, explaining every

detail of the way it is structured as well as its functionality of Blockchain’s complex

nature presenting the overall architecture of the backbone of a system many widely

known platforms and cryptocurrencies, like Ethereum and Bitcoin, uses. On the

second part we presented a way to index Blockchain data so it will be possible to

query and retrieve them from the database stored. The service also provides a REST

API to query all transactions related to a given address. In this implementation

Geth is used as the Ethereum node, but it is possible to use Infura which is a hosted

Ethereum node cluster. The JavaScript Library, web3.js, provided a way to access

the Ethereum Network to extract the necessary block data for the indexing purposes.

The data then are indexed into Redis, a key-value database, thus becoming available

for querying using the REST API. However due to the ordered nature of data in

Blockchain, they must be processed in order from genesis to the Blockchain tip for

data integrity to be ensured. In this thesis the indexing begins from the Genesis block

and then iterate through each transaction in the next blocks, indexing the needed

values, and this process is repeated. This works but it scales linearly because as the

Blockchain grows the time to index the entire chain will grow at the same pace as the

total number of transactions. Nonetheless there is room for future improvements. As

this project is implemented it is relatively easy to create another database and use

it after changing the config file. Instead of a key-value storage, as Redis is, a NoSQL

document orientated database can be used because data is encoded in JSON format

87

Chapter 6. Conclusion 88

which is the format every method from the web.js library returns. Proper choices

for future development can be MongoDB and Apache CouchDB. Another approach

to the problem of Blockchain indexing is to represent Blockchain concepts using

standard OWL ontology or vocabulary. For example EthON is an OWL ontology

designed to describe the Ethereum blockchain. So an idea is to create an entirely

new solution where the fundamental underlying data model is the collection of linked

named RDF graphs, and to build an index for these RDF graphs which can be easily

queried using techniques like SPARQL. Finally, as far as performance is concerned,

it would be improved by parallelizing the indexing of the Blockchain, a difficult task

though given the static and time-ordered nature of the Blockchain. A possible way

to deal with this is to load pre-validated Ethereum blocks, thus skipping the work

of checking input dependencies, into Hadoop Distributed File System (HDFS) and

then process them with a MapReduce cluster. Then the indexing service runs to

keep the Blockchain up to date.

Bibliography

[1] Andrew Tanenbaum and Maarten van Steen. Distributed Systems: Principles

and Paradigms. Vol. 3. Jan. 2002.

[2] M. Tamer Özsu and Patrick Valduriez. Principles of Distributed Database Sys-

tems, Third Edition. Jan. 1999. doi: 10.1007/978-1-4419-8834-8.

[3] Stuart Haber and W Scott Stornetta. “How to Time-Stamp a Digital Docu-

ment”. In: Journal of Cryptology 3 (Sept. 1999). doi: 10.1007/BF00196791.

[4] Satoshi Nakamoto. “Bitcoin: A Peer-to-Peer Electronic Cash System”. In:

Cryptography Mailing list at https://metzdowd.com (Mar. 2009).

[5] JavaScript web3.js API. https : / / github . com / ethereum / wiki / wiki /

JavaScript-API.

[6] Nick Szabo. Smart contracts. http://www.fon.hum.uva.nl/rob/Courses/

InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.

best.vwh.net/smart.contracts.html. 1994.

[7] D. Wood. “Ethereum: a Secure Decentralised Generalised Transaction Ledger”.

In: 2014.

[8] Parity - The fast, light, and robust EVM and WASM client. https://github.

com/paritytech/parity-ethereum.

[9] Official Go implementation of the Ethereum protocol. https://github.com/

ethereum/go-ethereum.

[10] The Lodash API reference. Lodash — A modern JavaScript utility library de-

livering modularity, performance & extras. https://lodash.com/docs/4.

17.11.

89

https://doi.org/10.1007/978-1-4419-8834-8
https://doi.org/10.1007/BF00196791
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
https://github.com/paritytech/parity-ethereum
https://github.com/paritytech/parity-ethereum
https://github.com/ethereum/go-ethereum
https://github.com/ethereum/go-ethereum
https://lodash.com/docs/4.17.11
https://lodash.com/docs/4.17.11

BIBLIOGRAPHY 90

[11] Koa web framework for Node.js. https://github.com/koajs/koa.

[12] Yannis Manolopoulos, Yannis Theodoridis, and Vassilis Tsotras. “Advanced

Database Indexing”. In: 17 (Jan. 2000). doi: 10.1007/978-1-4419-8590-3.

[13] Allan Third and John Domingue. “Linked Data Indexing of Distributed Ledgers”.

In: (Apr. 2017), pp. 1431–1436. doi: 10.1145/3041021.3053895.

[14] Zibin Zheng et al. “An Overview of Blockchain Technology: Architecture, Con-

sensus, and Future Trends”. In: June 2017. doi: 10.1109/BigDataCongress.

2017.85.

[15] Héctor Ugarte. “A more pragmatic Web 3.0: Linked Blockchain Data”. In:

(Mar. 2017). doi: 10.13140/RG.2.2.10304.12807/1.

[16] Shailak Jani. “An Overview of Ethereum & Its Comparison with Bitcoin”. In:

(Feb. 2018).

[17] Imen Filali et al. “RDF Data Indexing and Retrieval: A survey of Peer-to-Peer

based solutions”. In: (Nov. 2010).

[18] Wren Chan and Aspen Olmsted. “Ethereum transaction graph analysis”. In:

Dec. 2017, pp. 498–500. doi: 10.23919/ICITST.2017.8356459.

[19] Ethereum Light Client Protocol. https://github.com/ethereum/wiki/

wiki/Light-client-protocol.

[20] Oleksandr Vashchuk and Roman Shuwar. “Pros and cons of consensus algo-

rithm proof of stake. Difference in the network safety in proof of work and

proof of stake”. In: Electronics and Information Technologies 9 (Jan. 2018).

doi: 10.30970/eli.9.106.

[21] Vitalik Buterin. Ethereum: A next-generation smart contract and decentralized

application platform. Accessed: 2016-08-22. 2014. url: https://github.com/

ethereum/wiki/wiki/White-Paper.

[22] Deepa Kumar and Mustafa Abdul Rahman. “Simplified HDFS architecture

with blockchain distribution of metadata”. In: International Journal of Applied

Engineering Research 12 (Jan. 2017), pp. 11374–11382.

https://github.com/koajs/koa
https://doi.org/10.1007/978-1-4419-8590-3
https://doi.org/10.1145/3041021.3053895
https://doi.org/10.1109/BigDataCongress.2017.85
https://doi.org/10.1109/BigDataCongress.2017.85
https://doi.org/10.13140/RG.2.2.10304.12807/1
https://doi.org/10.23919/ICITST.2017.8356459
https://github.com/ethereum/wiki/wiki/Light-client-protocol
https://github.com/ethereum/wiki/wiki/Light-client-protocol
https://doi.org/10.30970/eli.9.106
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper

BIBLIOGRAPHY 91

[23] Heiner Stuckenschmidt et al. “Index Structures and Algorithms for Querying

Distributed RDF Repositories”. In: Jan. 2004, pp. 631–639. doi: 10.1145/

988672.988758.

[24] Sergei Tikhomirov. Ethereum: State of Knowledge and Research Perspectives.

Feb. 2018, pp. 206–221. isbn: 978-3-319-75649-3. doi: 10.1007/978-3-319-

75650-9_14.

[25] Tobin Lehman and Michael Carey. “A Study of Index Structures for Main

Memory Database Management Systems”. In: Aug. 1986, pp. 294–303.

[26] Dejan Vujicic, Dijana Jagodic, and Randjic Sinisa. “Blockchain technology,

bitcoin, and Ethereum: A brief overview”. In: Mar. 2018, pp. 1–6. doi: 10.

1109/INFOTEH.2018.8345547.

[27] Elisa Bertino et al. Indexing Techniques for Advanced Database Systems. Jan.

1997. isbn: 0-7923-9985-4. doi: 10.1007/978-1-4615-6227-6.

https://doi.org/10.1145/988672.988758
https://doi.org/10.1145/988672.988758
https://doi.org/10.1007/978-3-319-75650-9_14
https://doi.org/10.1007/978-3-319-75650-9_14
https://doi.org/10.1109/INFOTEH.2018.8345547
https://doi.org/10.1109/INFOTEH.2018.8345547
https://doi.org/10.1007/978-1-4615-6227-6

	Abstract
	Acknowledgements
	Introduction
	Importance of the problem
	Approach
	Thesis structure

	Background
	Ledgers
	Centralized Ledgers
	Distributed Ledgers

	Decentralized vs Distributed
	History and Background
	Web 3
	Stack Layers
	Architecture
	JSON-RPC
	web3 Library
	Web3 Provider

	REST API

	Blockchain Infrastructure
	Blockchain Categorization
	Permissionless Model
	Permissioned Model

	Blockchain Infrastructure
	Consensus Models
	Proof of Work Model
	Proof of Stake Model

	Blockchain Conflicts and Resolutions
	Forking
	Soft Forks
	Hard Forks
	Cryptographic Changes and Forks

	Smart Contracts
	Smart contract Applications

	Ethereum Platform
	System Overview
	Blockchain component
	Peer-to-Peer network component
	EVM component

	Merkle Tree Structure
	Scalability
	Plasma Chains
	Sharding

	Protocol Basics
	Specification
	Data Transfer

	Transactions

	Implementation
	Combining existing parts
	Illustration of the System Architecture

	Redis Storage
	Redis Functionality

	Ethereum Network
	Blocks

	Utilities and Configurations
	Serialization
	Address Indexer
	Getting Addresses and Transactions
	REST Server
	Configurations
	Error Module
	The Logger
	Connecting to a node
	State
	Loading Components

	Running the Indexer

	Conclusion

