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Abstract

With range anxiety becoming the every day problem for Battery Electric
Vehicles (BEVs) owners, even more research is being conducted in the
field of BEV charging and Charging Stations (CSs) scheduling optimiza-
tion. In this context our work addresses the problem of BEV charging
in an urban environment with no a-priori knowledge of vehicle arrivals.
Our system is modeled as a M/G/K queuing system. Two adaptive
charging algorithms are proposed, both of them relying on queue stabil-
ity. The first one charges BEVs up to a percentage of their maximum
capacity when charging queues become unstable. The second one when
detects instability charges BEVs sufficiently enough to reach their next
destination. Both algorithms can be used in combination with an admis-
sion control algorithm that does not allow BEVs that do not fulfill certain
criteria into the charging stations. The First-Come-First-Serve algorithm
is directly compared to our proposed algorithms, with prominent im-
provement concerning congestion in charging stations and waiting time
of electric vehicles.
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[TepiAnd

Me 7o &y 0g ™ amHOTOOYG VO LETATPETETOL OE EVa X ONUEPLYO TTROPBANUO
YLO TOVG LOLOXTNTES NAEXTOLYWY VTOXLYNTWY, OAO X0 TTEPLOGOTEPES EPEVYVEG
ONUOGLEDOYTAL GTOVG TOUELS TNG QPOPTLONG NAEXTOLXWY XVTOXLYNTWY XL
TOUL TTPOYPAULATLOUOD OTtd TOLG GTOOUOVG POPTLONG. XE OVTO TO TAALOLO

7 TAPOVO 0L SLTTAWUOTLYY] EQYAOLOL LTYOAELTAL UE TO TTPOPANLOL TNG POPTLOYG
NAEXTOLUWY AVTOXLYNTWY OE EVA OOTLXO TLEPLREAAOY YWELS TTEATEEN YVWIOY
Ty aplEewy. To cbotnuo propel vo povtehomoinbel wg éva M/G/K
oVo o 0LPWY. VGOV APOPA TNV ETTLAVGT TOL TTPOPANUATOG TTPOTELVOYTOL
dvo Tpoaapp.oatixol akydpLipol, oL omoiotl Baocilovtal oty oTabepdTrTol
TWY 0LVPWY. XTOY TTPWTO aAYOpLiuo o oTtabuds QopTilel Tor NAexTELXA
ovToxXivTo WG EVOL GUYXEXPLULEVO TTOCOOTO OTOY OL OVPES (POPTLOMG
Yivouy aotabeic. Ltov dedtepo arydpLio dTay vTtapyel aotabelo oTig
0LPEEC, 0 ot PG POPTLLEL T NAEXTELUE otV TOXIVNTA TOTO WO TE VOL PTACOLY
OTOV ETOUEVO TPOOPLOKO Tovg. Kat ot dVo aiydpibpol pmopody vo
yonotpomotnbody oe cuvdvoaoud pe Evav akydpLbpo ereyyouv eladdov, o
omotoLg TteELopLlel 6o NAEXTELXA oL TOXIVNTOL BEY TTANPOVY CUXYEXPLULEVOL
xpttnpta voo etoéAfovy otov otafud @dptiong. Qg pétpo odyxpLomg
yonorpomoteitor o aAyéplbuog First — Come — First — Serve, pe o
OTTOTEAEGLOLTOL VOL (POVEPWVOLY Ll ELPAVETTATY] BEATIWOY HTOY OUPOPE
OTN OLUPOENOY TWY CTUHUWDY EOPTLONG HAAG XOL TOU XPOVOU AVOLOVIG
TWY NAEXTOLXWY CVTOXLNTWY GTNY OLEA.
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Chapter 1

Introduction

As of 2017 a total of 3 million Electric Vehicles (EVs) have been sold
worldwide with an increase of 50% in the sales just between 2016 and
2017. The predictions, based on the legislation voted and the constraints
imposed by the European Union and other developed countries, are that
by 2030 more than 130 million EVs will have made their way in the
market [1]. The turn of the automotive industry in the all-electric car is
unprecedented [2] and as a result a vast amount of resources is being
invested in the development of Battery Electric Vehicles (BEVs). The
market is still growing and there are many opportunities for innovation
and profit. The impact of this turn is obvious in terms of Electric Ve-
hicle Supply Equipment (EVSE) increased availability and rapid battery
development. The fact that all major automotive companies have set
the goal for electrification of vehicles can also be seen by the fact that
the development of Internal Combustion Engines (ICE) has dramatically
slowed down, with some companies soon retiring them completely. This
shift will drastically change the driving habits of millions of people as
both the range and charging time of EVs are still not comparable to those
of an ICE vehicle.

To address this issue, in this work we attack the problem of EV charg-
ing in urban environments, by reducing the time an EV is waiting to be
charged. We adopt an adaptive queuing-based approach by scheduling
in a way that keeps all the charging queues stable [3]. We propose two
algorithms for this purpose. The first algorithm adjusts the target charg-
ing percentage of each EV when the queue grows more than the service
rate of the charging station. However, when the queue backlog is stable,
each EV battery is charged at its maximum capacity. The second algo-
rithm considers the distance that EVs need to cover for their next trip.
Every time we observe queue growth the system enters what we call a
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Next-Trip-Mode where each EV is charged just enough to reach its next
destination. As in the first algorithm, when the queue backlogs are nor-
mal charging takes place at the maximum EV battery capacity. The main
advantage of our approach is that we use an adaptive technique, while
at the same time we model the system based on realistic assumptions.

The rest of this thesis is organized as follows. In Chapter 2 we pro-
vide a thorough analysis of the relevant bibliography on the field of EV
charging. In Chapter 3 we describe the fundamental principles on which
our model is built. In Chapter 4 we formulate our optimization problem
and set the constraints needed. A detailed explanation of our proposed
algorithms is provided in Chapter 5, while the results of computer sim-
ulations are presented in Chapter 6. Finally, Chapter 7 concludes this
work.
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Chapter 2
Related Work

This rise in interest of both the society and the automotive industry
has led into considerable research in the field of BEV charging and its
integration into the existing infrastructure, as can be seen in [4] and [5].
Those detailed articles review the literature in BEV Charging Scheduling
Optimization and present the problem formulation adopted in every case.

In [6] the authors focus on optimizing the driving range of EVs by
deploying several mobile CSs beyond the static CSs. They formulate an
optimization problem and due to its complexity they solve deterministic
formulation of it that leads to significant extension of the driving range.
In [7] the authors propose two techniques that exploit BEV charging dur-
ing their workplace parking and utilize it through both Vehicle-to-Grid
(V2G) and Grid-to-Vehicle (G2V) technologies. Their two strategies min-
imize daily cost and Peak-to-Average Ratio (PAR) respectively. In [8], the
authors propose a predictive management technique in order to allocate
optimally the BEV deployment into a community micro-gird. With day-
ahead energy prediction and real-time optimal allocation they achieve a
reduction in netload ramping and total energy cost as in the previous
work. However both of these works do not consider the BEV owner
and his convenience, something which is accomplished in [9], where a
bi-objective optimization problem is formulated that jointly minimizes
operation cost of the charging station and maximizes the convenience of
the BEV owners. Despite the effectiveness of the proposed algorithm the
authors did not take into account the diversity of BEV batteries, and the
stochastic nature of the BEV arrivals. Similarly in [10] while a queu-
ing model with V2G communication is proposed, the BEV arrival rate is
considered steady, the number of BEVs in the system is predefined and
there is no diversity in BEV battery capacity or Charging Station (CS)
charging rate. A very interesting technique that involves BEV admission

9
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control and optimal charging is studied in [11]. The authors propose a
two-stage process that ensures both CS owner profit and customer sat-
isfaction. Several researchers have tried a game-theoretic approaches in
dealing with BEVs Charging Scheduling [12] [13]. A notable effort in the
same field, is [14] where an on-line distributed game-theoretic approach
has been proposed that minimizes waiting time of BEVs in CSs.

10
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Chapter 3

System Model

Our system consists of N CSs co-located in an urban environment, each
having K chargers. We adopt a queuing model for characterizing the
behavior of a CS. The system is modeled as a M/ /G/K queuing system.
In each CS the incoming EVs are serviced in order of their arrival (FIFO).
Charging time is divided into 7' time slots each having a duration 7
seconds. These time slots are indexed by ¢, that is ¢t € {1,2,...,T}.

3.1 Electric Vehicle Arrivals

As mentioned in Chapter 2 the literature typically assumes a steady ar-
rival rate in the models to capture vehicle behavior. This may result in
large deviations between simulation and reality [11,15]. In real life vehi-
cle arrivals in refueling stations (both electric and conventional) are more
frequent in some intervals of the day and less frequent in some others.
Thus, in our work EV arrivals in CSs are modeled as a Poisson stochastic
process, with a variable, i.e. time-dependent, mean arrival rate Ay (). As
a result the number of EV arrivals during ¢ is ay(t) ~ Poiss(A(t)).

3.2 Electric Vehicle Model

Each EV i € I, arrives with a state-of-charge SOC!, € [0, 1] which is a
normally distributed random variable, where a value equal to 1 indicates
tull battery and a value equal to 0 indicates empty battery. Its battery
capacity is modeled by a discrete random variable B in kW h that follows
the distribution shown in Figure. 3.1. This probability mass function
results from the market shares each EV type occupies as mentioned in

11
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EV Type | Battery Capacity (kWh) | EE (kWh/Km)
Small 25 0.1897

Mid-Size 50 0.1757
Large 75 0.2008
SUvV 100 0.2487

Table 3.1: EV Efficiency

[16]. The Electric Efficiency (EE) per Kilometer is presented in Table 3.2
and was extracted from [17], which contained the latest data on EE of All-
Electric Vehicles as of 2018. Finally, every EV knows the information
about the distance of its next trip. This is modeled as a continuous
normally distributed random variable 7; € [0,120] given in K'm.

05 ¢ :
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o o o
) w e
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Figure 3.1: Battery Capacity Probability Mass Function

3.3 Charging Station Model

Every CS has a Central Control Unit (CCU). This CCU monitors the charg-
ing procedure in every charger and is responsible for gathering the charg-
ing information from the recently arrived EVs as described in Section 3.2.
Every charger has its charging rate L, and a queue Q(¢) which repre-
sents the amount of energy the charger has to deliver to the EV charging
in time ¢. The charging rate depends on the type of the charger [1]. The

12
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charger types we use in our model are summarized in Table 3.3. Also a
binary variable x,(t) € {0,1} is used to indicate whether the k), charger
is available at time t (z;(t) = 0), or not (z(¢) = 1). Finally each CS has a
cumulative queue U,,(¢) for unallocated EVs, which in turn represents the
amount of energy the charging station has to give to the EVs currently
waiting to be charged.

Charger Type Charging Rate (k1V)
Level-1 5
Level-2 15
Level-3 30
Tesla Super Charger <200

Table 3.2: Types of Chargers

3.4 EV Allocation

Every CS has an Allocation Matrix HY; that contains all z(¢) variables.
Every time slot the CCU checks if there are any arrivals a(t), and whether
any charger is available. If there is an available charger, the CCU allocates
the i;, EV to the ky, charger by queuing its battery requirement R =
SOC!™ x B; into the Q. If there is no charger available the CCU queues
R, into queue U,. The allocation procedure is explained in detail in
Algorithm 1.

13
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Algorithm 1 EV Allocation Algorithm

Input: Hi', a(t), and SOC!,, B; for currently arrived EVs
Output: HY and @y, Uy for every CS
1: for i = FirstArrived to LastArrived do

2: forn=1to N do

3: if a,(t) > 0 then

4: for k=1 to K do
5: Check xi(t)

6: if x;(t) = 0 then
7: Qr +— Qi + Rzn
8: SL’k<t) =1

9: else if x;(¢) =1 then
10: Up < Uy + R
11: end if
12: end for
13: end if

14:  end for
15: end for

16: Recalculate HY,
17: return HY

14
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Chapter 4

Problem Formulation

Having clarified our system model, we will now formulate our optimiza-
tion problem. First we define the charging time to be the sum of the
time an EV waits in the queue to be charged w] and the time it takes to
charge wy.

w; = wi +wj (4.1)

Also by average waiting time we will be referring to:

M
2 wi(m)

Wi = %zo,me (1,2, ..., M) (4.2)

where M is the set of EVs that have been charged and have left the

station.
Our main objective is to minimize the waiting time w; for each EV 1.
The original problem can be formulated as follows:

min Zwi (4.3)
el
subject to RI"< B; Vi € I (4.4a)
R < w¢x L, < (B; — R™) (4.4b)
N K
> (Un+ > Q)
lim = =L ) (4.4¢)
t—o0 t

With constraint (4.4a) we ensure all EVs will have an initial charging re-
quirement lower than their battery capacity. In constraint (4.4b) charging

15
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time is bound to a maximum of a full battery charge. Finally constraint
(4.4¢) ensures queue stability of the system [3].
The queuing dynamics of the system are defined as:

QT +1) = Q(7) +a(r) = (1) (4.5)

Where Q(7 + 1) and (1) are the charging queue backlogs in respective
time slots, a(7) is the new energy demand and /() is the energy demand
that was satisfied during the current time slot. As a consequence the
above constraint (4.4c) can be fulfilled only when a(7) ~ [(7). However,
this will result in some EVs having to stop charging and leave the system

even though they do not have enough battery charge to reach another
CS.

16
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Chapter 5
Proposed Algorithms

In order to issue with the inequity described above, we propose two
algorithms that both minimize the waiting time but at the same time do
not force EVs out of the system in a way that is sub-optimal for them
and the system overall.

5.1 Adaptive Percentage Charging Algorithm
(APCA)

In this first algorithm we modify our optimization problem (4.3) - (4.4¢)
so that the CCU adjusts the charging percentage up to which every EV
charges, if the current charging queues become unstable. To achieve that
we introduce a constraint variable p;(7). So our optimization problem
now is reformulated as follows:

min Z w; (5.1

el
subject to R"< B; Vi € I (5.2a)
R™ < wf x Ly, < pi(t) » (B; — RI™) (5.2b)

N K

lim 2= k=1 =0 (5.2¢)

t—o0 t
pi(t) £dp € [0, 1] (5.2d)

When the current queuing time becomes greater than the average queuing
time then the charging percentage drops by dp. Respectively when the

17

Institutional Repository - Library & Information Centre - University of Thessaly
15/06/2024 16:48:09 EEST - 52.15.60.169



current queuing time is smaller than the average queuing time, charging
percentage grows by dp. The APCA is explained in detail in Algorithm 2.

Algorithm 2 Adaptive Percentage Charging Algorithm

Input: wf, Qx(t), Un(t)
Output: p;(t)
I

- if > w! > w; then
i=1
2: pi(t)=pi(t—1)—dp
I

3: else if )" w! < w; then
i=1

4 pit)=pi(t—1)+dp

5: end if

6: return p;(t)

5.2 Adaptive Next Trip Charging Algorithm (ANTCA)

In the second algorithm we propose, when the CCU detects queue insta-
bility, it changes its charging policy, so that EVs are charged sufficiently
enough to reach their next destination. Our optimization problem is
again slightly modified as shown in Eq. (5.3) - (5.4¢) next:

min Zwi (5.3)
el
subject to RI"< B; Vi € I (5.4a)
RI™ < wf Ly, < pi(t) (5.4b)
N K
> (Un+ - Q)
lim 2= h=1 =0 (5.4¢)
t—00 t
pi(t) € [0,1] (5.4d)

As in Algorithm 2, when waiting time exceeds the queue average
waiting time, the charging station charges EVs sufficiently enough to reach
their next destination, based on the information they provide about the
distance they have to drive. When the current queue waiting time does
not exceed the queue average waiting time EVs are charged to maximum
percentage. The ANTCA is described in in Algorithm 3.

18
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Algorithm 3 Adaptive Next Trip Charging Algorithm

Input: w, Qx(t), Un(t)
Output: p;(t)
I

t: if > w! > w; then
=1
1

w

else if > w! < w; then
i=1

end if

return p;(t)

5.3 Admission Control Algorithm (ACA)

We designed an Admission Control Algorithm (ACA) that minimizes
charging demands in CSs, when EV arrivals increase. Specifically with
ACA, CSs have the option of rejecting some EVs whose charging demands
are smaller than those of other EVs. Let us assume, for example, that a
CS is currently charging its EVs at a maximum of 60% of their maximum
battery. When an EV arrives with a SOC!, > 60% it is rejected. This
obviously minimizes waiting time observed in CSs and is an additional
technique used in conjunction with either of the algorithms described in
this Chapter.

Algorithm 4 Admission Control Algorithm
Input: Qy, Uy, pi(t), SOC: . B;
Output: HY,
1: if p;(t) > SOC! then
2:  Allocate EV per Algorithm 1
3: end if
4: return HY

19
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Chapter 6

Simulation Results

Our simulation is conducted in an urban environment in a full 24-hour
cycle. During this cycle there are periods with difference in frequency of
arrivals as can be seen in Figure 6.1. We consider CSs that have three
chargers, two of them are Level-2 and one is Level-3. The total EVs
entering each CS are average to 450. This happens because we opted for
an arrival process which is of stochastic nature.

Our algorithms are put to comparison with the First-Come-First-Serve
(FCFS) algorithm which is the basic serving algorithm of Queuing Sys-
tems.

6.1 APCA & ANTCA Queue Congestion Eval-
uation

Here we evaluate the effect the proposed algorithms have on the system.
As we can see in Figure 6.2 with ACPA we achieve almost a 25% reduc-
tion in waiting time over FCFS algorithm. However, there is still room
for improvement, something that ANTCA achieves, practically eliminat-
ing waiting time when queues are unstable.

Concerning the average queue backlog we can see in Figure 6.3 that
the results were similar as above. In FCFS it is expected that the average
queue backlog will keep growing as no EV is leaving until it is fully
charged. With APCA we see that, when the queue starts growing so that
the system becomes unstable, some EVs leave the system because they
are charged not at 100% as in FCFS but at a lower percentage. Finally
ANTCA is the algorithm that burdens the least the CS as when it detects
instability starts charging EVs sufficiently enough for their next trip.

20
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12 15

3 6 9 18 21 24
Time (h)

Figure 6.1: EV Arrivals versus time.

We observe the same behavior in the number of total EVs in the system
as seen in Figure 5. It is worth noticing that both APCA and ANTCA
have almost identical behavior concerning both Average Backlog and
Total EVs in the system as the have the same notion of a stable system
embedded in them.

As mentioned in Section 5.3, another way to decongest CSs is via
ACA. The results, shown in Figure 6, reveal an obvious reduction of the
average waiting time EVs experience for APCA and in Figure 6.6 for
ANTCA.

Table 6.1 provides a summary on the evaluation of our algorithms. It
can be seen that neither of the proposed algorithms is superior in every
way to the others. APCA does offer a higher SOC*" but it charges 20%
less EVs than ANTCA in the same time period. On the other hand, we
see that the application of ACA on both the proposed algorithms does
reduce the load from the CSs but does not increase SOC*** dramatically.
This can be explained by the fact that EVs that are not rejected have such
a low SOC™, that it does not suffice for their next trip.
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Figure 6.2: Average waiting time versus time.
Table 6.1: Algorithm Evaluation Summary
Algorithm FCFS | APCA | APCA+ACA | ANTCA | ANTCA+ACA
Rejection Probability | 0 - 0.75 - 0.7
EVs Charged (%) 14 40 25 20 30
Mean SOC** 1 0.58 0.60 0.48 0.50
22
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Figure 6.3: Average queue backlog
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Chapter 7

Conclusion

In this work, we proposed two adaptive algorithms for optimizing the
waiting time of EVs in charging stations. Our algorithms and our results
in Chapter 6 we suggest that both algorithms can be applied in charg-
ing stations located in urban environments, with a fraction of charging
stations adopting APCA and another fraction of them ANTCA. We be-
lieve that in combination those two algorithms can handle charging rush
hours, without any modification to the charging stations or the power
grid. A detailed exploration of such a combined approach is part of our
future work. Furthermore, we also plan to evaluate our approach over
networks of CSs.
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