
Department of Electrical And Computer

Engineering

University of Thessaly

 MSc: "Science and Technology of ECE"

Diploma Thesis:

Enhancing the NITOS Testbed virtualization capabilities by using Docker Containers

by Panagiotis Theodosiou

Supervisor: Athanasios Korakis, Assistant Professor

October 2018

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

2

Ευχαριστίες

Η συγγραφή της πτυχιακής εργασίας σηματοδοτεί το τέλος του μεταπτυχιακού

προγράμματος σπουδών και παράλληλα μιας διαδρομής που περιείχε τα πάντα: γνώσεις,

εξετάσεις, αγωνίες και δημιουργικούς προβληματισμούς. Αρωγοί σε όλη αυτή τη μοναδική

διαδρομή στάθηκαν πέρα από την οικογένειά μου και οι καθηγητές μου. Θα ήθελα όμως

ξεχωριστά να ευχαριστήσω τον καθηγητή κ. Κοράκη Αθανάσιο για την βοήθεια και

στήριξη που μου παρείχε κατά τη διάρκεια της παρούσας μεταπτυχιακής εργασίας. Τέλος,

δεν θα ήθελα να λησμονήσω να αναφέρω τα ονόματα των Κατσαλή Κώστα, Ιωάννη

Ηγούμενο, Χάρη Νιαβή και Άρη Δαδούκη που με τις γνώσεις και την θετική τους στάση

με βοήθησαν να φέρω σε πέρας την υλοποίησή μου.

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

3

Στη μνήμη του πατέρα μου

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

4

Περίληψη

Οι εικονικές μηχανές (VMs), όπως έχουν εξελιχθεί, αποτελούν αναπόσπαστο και

πολύτιμο κρίκο των σύγχρονων cluster, grid και cloud συστημάτων. Ευκολία διαχείρισης,

ευελιξία και υψηλή χρησιμοποίηση πόρων είναι μερικά μόνο από τα αδιαμφισβήτητα

πλεονεκτήματα που προσφέρει η εικονικοποίηση (virtualization), σήμερα. Σε ένα κόσμο

πληροφοριακών συστημάτων που η τεχνολογία εικονοποίησης φαίνεται να κυριαρχεί,

πόσος χώρος υπάρχει για εναλλακτικές λύσεις; Η αναδυόμενη τεχνολογία των Container

δείχνει ότι θα μπορούσε να προσφέρει, μέχρι ένα βαθμό, παρόμοιες ή συμπληρωματικές

υπηρεσίες. Στην παρούσα εργασία εξετάζουμε τις δυνατότητες και τους περιορισμούς

των Container, ενσωματώνοντάς την νέα αυτή τεχνολογία στις υποδομές του Nitos

Testbed. Παράλληλα επισημαίνονται τα πλεονεκτήματα και τα όρια, όχι για λόγους

σύγκρισης αλλά περισσότερο για πληρέστερη κατανόηση αυτής της νέας πολλά

υποσχόμενης τεχνολογίας.

Λέξεις κλειδιά: Virtual Machine, Linux container, Docker

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

5

Abstract

Recent reincarnation of virtual machines (VMs) presented a great opportunity for parallel,

cluster, grid, cloud, and distributed computing. Whether the motivation is higher utilization,

reduced management, or business agility, virtualization technology offers compelling

possibilities. In an IT world dominated by virtualization computing, is there space for

alternative concepts? Answer comes from the emerging Container technology that could

provide similar or supplementary services, to the already established virtualization

practice. In this paper, we explore container’s potentials and boundaries by enhancing

Nitos Testbed with Docker containers capabilities. Advantages and limitations are

pinpointed, not for comparison purposes but for providing a clearer understanding of this

new promising technology.

Keywords: Virtual Machine, Linux container, Docker

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

6

Πίνακας περιεχομένων
Department of Electrical And Computer Engineering .. 1

University of Thessaly .. 1

Ευχαριστίες ... 2

 Introduction .. 9

1.1 Cloud computing .. 9

1.2 Hypervisor Technologies .. 10

1.2.1 Type-1: native or bare-metal hypervisors .. 10

1.2.2 Type-2 or hosted hypervisors .. 10

1.3 Linux Containers (Introduction and Comparison with Hypervisors) 11

 Linux Containers .. 13

2.1 Linux Containers Architecture .. 13

2.1.1 Namespaces .. 14

2.1.2 Control Groups (cgroups) .. 19

2.1.3 Linux Capabilities .. 21

2.1.4 Chroot and pivot_root .. 22

2.1.5 Linux Security Modules.. 23

 LXC .. 26

3.1 Components ... 26

3.2 Security .. 27

3.2.1 Privileged Containers .. 27

3.2.2 Unprivileged containers ... 27

3.3 LXD .. 27

3.3.1 Features .. 28

3.3.2 Relationship with LXC.. 28

 Docker .. 28

4.1 What is Docker? ... 28

4.2 Comparing Docker containers and Virtual machines 29

4.3 Solving portability problems ... 29

4.4 Docker Features ... 30

4.4.1 Docker Images .. 30

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

7

4.4.2 Container and Layers .. 31

4.4.3 Docker storage driver .. 32

4.4.4 Data Volume .. 34

4.4.5 Docker Hub .. 34

4.5 Docker architecture .. 35

4.6 Inside Docker Network Configuration ... 35

4.6.1 The Container Networking Model .. 36

4.6.2 Docker Host Network Driver .. 37

4.6.3 Docker Bridge Network Driver ... 38

4.6.4 User-Defined Bridge Networks .. 39

4.6.5 External Access for Standalone Containers .. 39

4.6.6 Overlay Driver Network Architecture ... 40

4.6.7 MACVLAN ... 41

4.6.8 VLAN Trunking with MACVLAN ... 43

4.6.9 None (Isolated) Network Driver ... 43

4.7 Orchestration of Docker containers .. 44

4.7.1 Docker Compose ... 44

4.7.2 Docker Swarm ... 45

4.7.3 Docker Machine ... 45

4.8 Differences between Docker and LXC ... 45

4.9 Linux Containers vs Virtual Machines .. 46

4.9.1 Performance comparison ... 46

4.9.2 Deciding between containers and virtual machines 48

4.9.3 Advantages and limitations of Docker ... 49

 Software presentation .. 51

5.1 Overview of the initial problem ... 51

5.2 Describing basic parts .. 52

5.2.1 Docker ... 52

5.2.2 RabbitMQ .. 52

5.2.3 Chart JS Library ... 55

5.2.4 Sinatra ... 56

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

8

5.2.5 Bootstrap ... 56

5.3 Detailed description of the implementation .. 56

5.3.1 The big picture ... 56

5.3.2 Nitos Server Side ... 57

5.3.3 Node side .. 59

5.4 Future Work ... 61

 Table of images.. 62

 References ... 63

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

9

Intro

 Introduction

1.1 Cloud computing

Cloud computing is a type of Internet-based computing that provides shared computer

processing resources and data to computers and other devices on demand. It is a model

for enabling ubiquitous, on-demand access to a shared pool of configurable computing

resources (e.g., computer networks, servers, storage, applications and services), which

can be rapidly provisioned and released with minimal management effort. Cloud

computing relies on sharing of resources to achieve coherence and economy of scale,

similar to a utility (like the electricity grid) over an electricity network.

Cloud computing exhibits the following key characteristics [1]:

 Agility for organizations may be improved, as cloud computing may increase

users' flexibility with re-provisioning, adding, or expanding technological

infrastructure resources.

 Device and location independence enables users to access systems regardless

of their location or what device they use.

 Maintenance of cloud computing applications is easier, they do not need to be

installed on each user's computer and can be accessed from different places

 Multitenancy enables sharing of resources and costs across a large pool of users

thus

 Performance is continuously monitored, and consistent and loosely coupled

architectures are constructed using web services as the system interface.

 Increase of Productivity allowing multiple access on the same data

simultaneously.

 Resource pooling: a multi-tenant model with different physical and virtual

resources dynamically assigned and reassigned according to demand.

 Reliability improves with the use of multiple redundant sites

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

10

 Scalability and elasticity via dynamic ("on-demand") provisioning of resources on

a fine-grained, self-service basis in near real-time

 Security can improve due to centralization of data, increased security-focused

resources.

1.2 Hypervisor Technologies

Hypervisor, or virtual machine monitor (VMM) as it is usually encountered in computer
science, is a piece of computer software, firmware or hardware that creates, manages
and runs virtual machines. A computer on which a hypervisor is running one or more
virtual machines is defined as a host machine. Each virtual machine running on host is
called guest machine. The hypervisor presents the guest operating systems with a virtual
operating platform and manages the execution of the guest operating systems. Multiple
instances of a variety of different operating systems may share the same virtualized
hardware resources. The Hypervisor actually provides a virtual working platform that
services and manages the requests for resources of the different operating systems
running above it. Depending on the environment in which the hypervisor is installed
hypervisors can be classified into two categories.

1.2.1 Type-1: native or bare-metal hypervisors

These hypervisors run directly on the host's hardware to control the hardware and to
manage guest operating systems. For this reason, they are sometimes called bare metal
hypervisors. A guest operating system runs as a process on the host. The first
hypervisors, which IBM developed in the 1960s, were native hypervisors, nowadays,
software products such as Vmware vSphere, Citrix XenServer, Oracle VM Server and
Microsoft Hyper V are representative of the specific category. It’s inherent property to
communicate directly with the hardware layers stands as the major advantage of the
particular implementation.

1.2.2 Type-2 or hosted hypervisors

These hypervisors run on a conventional operating system just as other computer
programs do. Type-2 hypervisors abstract guest operating systems from the host
operating system. VMware Workstation, VMware Player, VirtualBox and QEMU are
commercial software examples of type-2 hypervisors.

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

11

Figure 1 : Native vs Hosted Hypervisor

The figure above visualizes the concepts of the two technologies. The importance and
the role of each category in the industry is underlined by the continuous research and
development of leading software companies on both types of hypervisor implementation.

1.3 Linux Containers (Introduction and Comparison with Hypervisors)

Having explained the concept of hypervisors and virtual machines, allows us to introduce
the idea of Linux Containers. Term Linux Container describes an environment similar to
a virtual machine but without the payload of executing a new kernel. Originally, the idea
of a container was born as a need to address the problem of developing, deploying and
conveying different application with specific configurations between different targets of
development environments such as production and staging servers, virtual machines or
even shared hosting. Linux containers, using a high level approach, are commonly
characterized as lightweight virtual machines. Typically, Linux Container is an operating-
system-level virtualization environment for running multiple isolated Linux systems
(Containers) on a single Linux control host. Linux containers make use of kernel's cgroups
functionality and support for isolated namespaces to provide an isolated environment for
applications.

Some of the great advantages of the specific concept lie on the fact that containers are
executed directly on the kernel without the need of an intermediate software layer,
resulting in astounding performance. Efficiency is guaranteed since there is almost any
overhead in the individual parts of the architecture (CPU native performance, only small
amount of memory is used for accounting and very small overhead to network
performance). Creating and running containers may require few seconds or even
milliseconds in some cases emphasizing the effectiveness of the technology [2]. The
ability and flexibility to combine (contain) different applications or even whole systems

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

12

contributes to the growing popularity this concept was given. Comparison of linux
containers and hypervisor technology is presented clearly in the picture below.

Figure 2 : Hypervisor vs Linux Container

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

13

Part I: Theory

 Linux Containers

As already mentioned Linux Containers (LXC) allow the usage of Operating-system-
level virtualization technology, by creating containers that resemble complete isolated
Linux virtual machines on the physical Linux machine, sharing the kernel with the virtual
portion of the system. A container is a virtual environment, with its own process and
network space. LXC makes use of Linux kernel Control Groups and Namespaces to
provide the isolation. Containers have their own view of the OS, the process ID space,
the file system structure, and the network’s interfaces. Since they use kernel features,
and there’s no emulation of hardware at all, the impact on performance is minimal. Figure
3 illustrates the concept of a linux container.

Figure 3 : Concept of Linux Container

2.1 Linux Containers Architecture

Linux Containers are implemented using three modern core technologies:

 Control Groups (Cgroups) for resource management

 Namespaces for process isolation and

 Linux security modules for security, enabling secure multi-tenancy and reducing
the potential for security exploits.

 There is also a management interface that forms a higher layer which interacts with the
aforementioned kernel components and provides tools for the construction and

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

14

management of containers. As an example, the following scheme illustrates the
architecture of Linux Containers in Red Hat Enterprise Linux 7 [3]:

Figure 4 : Linux Containers in Red Hat Enterprise Linux 7

2.1.1 Namespaces

The kernel provides process isolation by creating separate namespaces for containers.
Namespaces, a feature introduced between kernel 2.6.15 -2.6.26, enable creating an
abstraction of a particular global system resource and make it appear as a separated
instance to processes within a namespace [4]. Consequently, several containers can use
the same resource simultaneously without creating a conflict.

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

15

Figure 5 : Linux namespaces conceptual view

There are several types of namespaces:

 Mount namespaces

Mount namespaces isolate the set of file system mount points seen by a group of
processes so that processes in different mount namespaces can have different views of

the file system hierarchy. With mount namespaces, the mount() and umount() system
calls cease to operate on a global set of mount points (visible to all processes) and instead
perform operations that affect just the mount namespace associated with the container

process. For example, each container can have its own /tmp or /var directory or even

have an entirely different user space. This characteristic is typically used with chroot()

or pivot_root() for effective file system isolation.

 UTS namespaces

UTS namespaces isolate two system identifiers – nodename and domainname, returned

by the uname() system call. This allows each container to have its own hostname and NIS
domain name, which is useful for initialization and configuration scripts based on these
names. Processes in a namespace can change UTS values but changes will only be
reflected in the child namespace. Running hostname command on the container can
confirm the above assertion.

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

16

 IPC namespaces

IPC namespaces isolate certain interprocess communication (IPC) resources, such as
System V IP objects and POSIX message queues. This means that two containers can
create shared memory segments and semaphores with the same name, but are not able
to interact with other containers memory segment or shared memory. Parent namespace
connectivity is attained by the use of mechanisms like memory polling, signals, sockets
(if there is no Network namespace), files / file descriptors (if there is no mount namespace)
and events over pipe pair.

 PID namespaces

PID namespaces introduced a new feature of Linux kernel that of multiple “nested”
process trees. This enables each process tree to have an entirely isolated set of
processes, ensuring that processes belonging to one process tree cannot inspect or kill
or even know of the existence of processes in other sibling or parent process trees. So,
from a container point of view you can only monitor processes running inside this
container (limited visibility). In other words, the container is only aware of its native
processes and cannot be aware of other processes running in different parts of the
system.

On the other hand, the host operating system has a complete view of all processes
running inside the container, but assigns them different PID numbers. This way, there is
no PID conflict between namespaces which permits migrating namespace processes
between hosts while keeping same PID. Namespaces allow processes in different
containers to have the same PID, so each container can have its own init (PID1) process
that manages various system initialization tasks as well as containers life cycle.

Additionally, each container has its unique /proc directory.

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

17

Figure 6 : Pid namespace visualization

 Network namespaces

Network namespaces provide isolation of network controllers, system resources

associated with networking, firewall and routing tables. This allows container to use

separate virtual network stack, loopback device and process space, providing the

capability of adding virtual or real devices to the container, assigning them their own IP

addresses, and even full iptables rules. The different network settings can be revealed by

executing the ip addr command on the host and inside the container. Connectivity

between namespaces is sustained by the use of veth pairs, where each part is moved

inside each namespace and configured accordingly, this scheme works like a pipe

between the namespaces.

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

18

Figure 7 : Network namespace

 User namespaces

User namespaces are similar to PID namespaces they allow mapping of UID / GID from
outside the container to UID / GID inside the container. They also permit non-root users
to launch Linux containers. There is a significant amount of work in progress for this
specific feature, eventually user namespaces will mitigate many perceived Linux
container security concerns.

Namespaces are materialized by pseudo-files in /proc/<pid>/ns. Three system calls

are used for namespaces

 clone(): creates a new process and a new namespace, the process is attached

to the new namespace.

 unshare(): does not create a new process; creates a new namespace and
attaches the current process to it.

 setns(): a new system call was added, for joining an existing namespace

When the last process of a namespace exits, it is destroyed but can also be preserved
by bind-mounting the pseudo-file. Summing up, a set of namespaces is created for each

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

19

container and all processes are executed inside the specific namespace set. All
processes in the container have an isolated view of resources. Linux container is realized
with integrating all the above namespace features. There are multiple container
management tools such as lxctools, libvirt and docker, discussed later in the current
paper, that use different parts of these features and their main role is to simplify the
tedious work needed to organize and coordinate all these parameters.

Figure 8 : Linux container namespace

2.1.2 Control Groups (cgroups)

Control Groups (cgroups) is a Linux kernel feature that provides a mechanism for easily

managing and monitoring system resources, by partitioning resource usage such as CPU,

memory, disk I/O, network bandwidth, etc into groups and then assigning tasks

(processes) to those groups, thus providing guaranteed allocation of needful resources

to an application. Cgroups can be monitored, reconfigured or even denied access to

certain resources on a running system. All in all, cgroups provide fine-grained control over

allocating, prioritizing, denying, managing, and monitoring system resources, thus

increasing overall efficiency [5].

Cgroups main features can be summarized in the following points:

 Access: which devices can be used per cgroup

 Resource limiting: memory, CPU, device accessibility, block I/O, etc.

 Prioritization: assign different amount of CPU, memory, etc to some
groups

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

20

 Accounting: measure resource usage per cgroup

 Control: freezing groups or check pointing and restarting

 Injection: packet tagging

Cgroups are organized hierarchically, like processes, and child cgroups inherit some of

the attributes of their parents. However, there are differences between the two models.

 The Linux Process Model

All processes on a Linux system are child processes of a common parent: the init process,

which is executed by the kernel at boot time and starts other processes (which may in

turn start child processes of their own). Because all processes descend from a single

parent, the Linux process model is a single hierarchy, or tree. Additionally, every Linux

process except init inherits the environment (such as the PATH variable) and certain

other attributes (such as open file descriptors) of its parent process.

 The Cgroup Model

Cgroups are similar to processes in that, they are hierarchical, and child cgroups inherit

certain attributes from their parent cgroup.

The fundamental difference is that many different hierarchies of cgroups can exist

simultaneously on a system. If the Linux process model is a single tree of processes, then

the cgroup model is one or more separate, unconnected trees of tasks.

Cgroup functionality is exposed by the term “resource controllers” (also called
“subsystems”). A subsystem represents a single resource, such as CPU time or memory.
Multiple separate hierarchies of cgroups are necessary because each hierarchy is
attached to one or more subsystems. These subsystems are mounted on the File System
with the root cgroup being the top-level subsystem mount and all other child directories
per cgroup being mounted under this one. For clarification reasons, the available
subsystems of the Red Hat Enterprise Linux, are listed below.

 blkio: this subsystem sets limits on input/output access to and from block devices
such as physical drives (disk, solid state, or USB).

 Cpu: this subsystem uses the scheduler to provide cgroup tasks access to the
CPU.

 Cpuacct: this subsystem generates automatic reports on CPU resources used by
tasks in a cgroup.

 Cpuset: this subsystem assigns individual CPUs (on a multicore system) and
memory nodes to tasks in a cgroup.

 devices: this subsystem allows or denies access to devices by tasks in a cgroup.

 Freezer: this subsystem suspends or resumes tasks in a cgroup.

 Memory: this subsystem sets limits on memory use by tasks in a cgroup and
generates automatic reports on memory resources used by those tasks.

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

21

 net_cls: this subsystem tags network packets with a class identifier (classid) that
allows the Linux traffic controller (tc) to identify packets originating from a particular
cgroup task.

 net_prio: this subsystem provides a way to dynamically set the priority of network
traffic per network interface.

One cgroup is created per container, Linux pseudo FS is the interface to cgroups, and
various libraries have been developed for programmers to interface with this pseudo file
system. Processes assigned to a cgroup are placed inside the tasks file. The following
picture illustrates some of the cgroups main features described above and summarizes
how these characteristics are combined to enforce resource limitations to Linux
containers.

Figure 9 : Cgroup, Linux container realization

2.1.3 Linux Capabilities

One aspect of security is user privileges. UNIX-style user privileges come in two varieties,

user and root. Regular users are relatively powerless; they cannot modify any process or

file but their own. Access to hardware and most network specifications is also denied.

Root, on the other hand, has full control of anything inside the operating system, from

modifying all processes and files to having unrestricted network and hardware access.

Very soon, the need for a middle ground solution aroused. It is a common occasion for a

utility to need special privileges to perform its function, but unquestionably full root access

cannot be granted to a user process. The most common example of this situation is ping

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

22

command which needs root access to send and receive ICMP messages. Fortunately,

such a middle ground now exists, and it's called POSIX capabilities. Capabilities divide

system access into logical groups that may be individually granted to, or removed

from, different processes. Capabilities allow system administrators to fine-tune what a

process is allowed to do, which may help them significantly reduce security risks to their

system.

 POSIX capabilities

A process has three sets of bitmaps called the inheritable (I), permitted (P), and effective
(E) capabilities. Each capability is implemented as a bit in each of these bitmaps that is
either set or unset. When a process tries to do a privileged operation, the operating
system will check the appropriate bit in the effective set of the process (instead of
checking whether the effective uid of the process is 0 as is normally done). The permitted
set of the process indicates the capabilities the process can use. The process can have
capabilities set in the permitted set that are not in the effective set. This indicates that the
process has temporarily disabled this capability. A process is allowed to set a bit in its
effective set only if it is available in the permitted set. The distinction between effective
and permitted exists so that processes can "bracket" operations that need privilege. The
inheritable capabilities are the capabilities of the current process that should be inherited
by a program executed by the current process. The permitted set of a process is masked
against the inheritable set during exec(). Nothing special happens during fork() or clone().
Child processes and threads are given an exact copy of the capabilities of the parent
process. The implementation in Linux stopped at this point, whereas POSIX Capabilities
require the addition of capability sets to files too, to replace the SUID flag (at least for
executables)

 Containers, capabilities and security

Linux capabilities are thoroughly enforced inside containers, limiting root’s privileges
within a container and thus making an intruder that managed to grand root access inside
a container, powerless and incapable to escalate to host or cause serious damage to the
system. Container technologies (such as LXC and Docker) support the addition or
removal of capabilities, this way adjusting the security policies of a container to the needs
of the creator.

2.1.4 Chroot and pivot_root

Chroot is an operation that changes the apparent root directory for the current running

process and their children. A program that is run in such a modified environment cannot

access files and commands outside that environmental directory tree. This modified

environment is called a chroot jail. Using chroot can be escaped given the proper

capabilities, thus pivot_root is often used instead. There is a substantial difference

between the two commands. The former points the processes root file system to the new

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

23

directory with the rest system continuing to run on the old root directory while the latter

detaches the new root and attaches it to process root directory, removing dependencies

on the old one, being able to unmount the original root directory and proceed as it had

never being used. In the case of Linux containers, they are used for bind mounting

container root file system (image) and launching LXC init process in a new mount

namespace [6].

Figure 10 : chroot and pivot_root

2.1.5 Linux Security Modules

Linux was initially developed as a clone of the Unix operating system and thus inherited
the core Unix security model which is a form of Discretionary Access Control (DAC).
Briefly, Unix DAC allows the owner of an object (i.e a file) to set the security policy for that
object, which is why it was given the name "discretionary". This policy is implemented as
permission bits attached to the file's inode, set by the owner of the file. Permissions for
accessing the file, such as read and write could be set separately for the owner, a specific
group, and others (i.e. everyone else).This relatively simple control scheme resembles
access control list (ACL) mechanism.

However, functional requirements for security evolved over time making this security
design insufficient. Nowadays, new requirements for finer-grained policy and precise
access control to resources aroused that were not adequately covered by this Unix DAC
scheme. The need for new features to be retrofitted and compatible with the existing

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

24

design of the system became evident and Linux Security Modules (LSM), a security
enhancement was introduced. Linux Security Modules (LSM) is a framework that allows
the Linux kernel to support a variety of computer security models while avoiding favoritism
toward any single security implementation [7]. The framework is licensed under the terms
of the GNU General Public License and is standard part of the Linux kernel since Linux
2.6. Apparmor, SELinux, Smack and TOMOYO Linux are the currently accepted modules
in the official kernel. LSM was designed to provide the specific needs of everything
needed to successfully implement a mandatory access control module, while imposing
the fewest possible changes to the Linux kernel.

The Linux Security Modules (LSM) API implements hooks at all security-critical points
within the kernel. A user of the framework (an “LSM”) can register with the API and
receive callbacks from these hooks. All security-relevant information is safely passed to
the LSM, avoiding race conditions, and the LSM decides whether to allow the operation,
or deny it forcing an error code return, as explained in the diagram of figure 7. The LSM
API allows different security models to be plugged into the kernel - typically access control
frameworks. To ensure compatibility with existing applications, the LSM hooks are placed
so that the Unix DAC checks are performed first, and only if they succeed, is LSM code
invoked.

Figure 11 : LSM Hook Architecture

The basic abstraction of the LSM interface is to mediate access to internal kernel objects.

LSM seeks to allow modules to answer the question "May a subject S perform a kernel

operation OP on an internal kernel object OBJ?"

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

25

 SELinux

Security Enhanced Linux (SELinux) is an implementation of fine-grained Mandatory

Access Control (MAC) designed to meet a wide range of security requirements, from

general purpose use, through to government and military systems which manage

classified information. MAC security differs from DAC in that the security policy is

administered centrally, and users do not administer policy for their own resources. This

helps contain attacks which exploit user software bugs and misconfiguration.

Figure 12 : MAC vs DAC

In SELinux, all objects on the system, such as files and processes, are assigned security
labels. All security-relevant interactions between entities on the system are hooked by
LSM and passed to the SELinux module, which consults its security policy to determine
whether the operation should be allowed.

 Smack

The Smack LSM was designed to provide a simple form of MAC security, in response to

the relative complexity of SELinux. It's also implemented as a label-based scheme with a

customizable policy. Smack is part of the Tizen security architecture and has seen

adoption generally in the embedded space.

 AppArmor

AppArmor is a MAC scheme for confining applications and was designed for simplicity in

management. Policy is configured as application profiles using familiar Unix-style

abstractions such as pathnames. It is fundamentally different to SELinux and Smack in

that instead of direct labeling of objects, security policy is applied to

pathnames. AppArmor also features a learning mode, where the security behavior of an

application is observed and converted automatically into a security profile.

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

26

 TOMOYO

The TOMOYO module is another MAC scheme which implements path-based security

rather than object labeling. It's also aimed at simplicity, by utilizing a learning mode similar

to AppArmor's where the behavior of the system is observed for the purpose of generating

security policy.

What's different about TOMOYO is that what's recorded are trees of process invocation,

described as “domains”. For example, when the system boots, from init, as series of tasks

are invoked, this particular chain of tasks is recorded as a valid domain for the execution

of that application, and other invocations which have not been recorded are denied.

In conclusion, LSM is a framework to enforce more advanced security politics in modern

Linux operating systems than the initial obsolete Unix DAC scheme and its value lies on

the fact that it is modular and appropriately designed to support a variety of security

models.

 LXC

LXC is a userspace interface for the Linux kernel containment features. Through a

powerful API and simple tools, it allows Linux users to create and manage system or

application containers, effortless. LXC containers are often considered as something in

the middle between a chroot and a full-fledged virtual machine. The goal of LXC is to

create an environment as close as possible to a standard Linux installation but without

the need for a separate kernel [8].

Current LXC uses the following kernel features to contain processes:

 Kernel namespaces (ipc, uts, mount, pid, network and user)

 Apparmor and SELinux profiles

 Seccomp policies

 Chroots (using pivot_root)

 Kernel capabilities

 CGroups (control groups)

3.1 Components

LXC is currently made of a few separate components:

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

27

 The liblxc library
 Several language bindings for the API:
 A set of standard tools to control the containers
 Distribution container templates

3.2 Security

LXC containers can be of two kinds:

 Privileged containers
 Unprivileged containers

3.2.1 Privileged Containers

Privileged containers are defined as any container where the container uid 0 is mapped

to the host's uid 0. In such containers, protection of the host and prevention of escape is

entirely applied through Mandatory Access Control (apparmor, selinux),seccomp filters,

dropping of capabilities and namespaces. Those technologies combined will typically

prevent any accidental damage of the host, where damage is defined as reconfiguring

host hardware, the host kernel or accessing the host file system. LXC upstream's position

is that those containers aren't and cannot be root-safe. They are still valuable in an

environment where you are running trusted workloads or where no untrusted task is

running as root in the container.

3.2.2 Unprivileged containers

Unprivileged containers are safe by design. The container uid 0 is mapped to an
unprivileged user outside of the container and only has extra rights on resources that it
owns itself.With such container, the use of SELinux, AppArmor, Seccomp and capabilities
isn't necessary for security. LXC will still use those to add an extra layer of security which
may be handy in the event of a kernel security issue but the security model isn't enforced
by them. As a result, most security issues (container escape, resource abuse, etc) in
those containers will apply just as well to a random unprivileged user and so would be a
generic kernel security bug rather than a LXC issue.

3.3 LXD

LXD is a container "hypervisor" consisting of three components:

 A system-wide daemon (lxd)
 A command line client (lxc)
 An OpenStack Nova plugin (nova-compute-lxd)

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

28

The core of LXD is a daemon which offers a REST API to drive full system containers the
same way as driving virtual machines. The command line tool provides a simple yet
effective management of containers. It can handle connection to multiple container hosts
and easily provide an overview of all the containers of the network. LXD supports
effortless creation of containers and the ability of relocation, while running. Lastly, the
OpenStack plugin allows the use of LXD hosts as compute nodes that run workloads on
containers rather than virtual machines.

3.3.1 Features

Some of the biggest features of LXD are:

 Secure by design (unprivileged containers, resource restrictions and much more)
 Scalable (from containers on your laptop to thousands of compute nodes)
 Intuitive (simple, clear API and crisp command line experience)
 Image based (no more distribution templates, only good, trusted images)
 Live migration

3.3.2 Relationship with LXC

It is worth mentioning that LXD isn't a rewrite of LXC, in fact it's a set of tools built on top

of LXC. It uses the stable LXC API to accomplish container management behind the

scene, adding the REST API on top and providing a much simpler, more consistent user

experience. It's basically an alternative to LXC's tools and distribution template system

with the added features that come from being controllable over the network. The focus of

LXD is on system containers, that is, containers which run a clean copy of a Linux

distribution or a full appliance.

 Docker

4.1 What is Docker?

A technology that packages software into standardized units for development, shipment
and deployment. Docker container technology was launched in 2013 as an open source
project that automates the deployment of applications inside software containers. A
Docker container image is a lightweight, standalone, executable package of that contains
everything needed to run correctly and seamlessly: code, runtime, system tools, system
libraries and settings. This guarantees that the software will always run the same,
regardless of its environment.

Container images become containers at runtime and in the case of Docker containers -
images become containers when they run on Docker Engine. Available for both Linux and
Windows-based applications, containerized software will always run the same, regardless

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

29

of the infrastructure. Containers isolate software from its environment and ensure that it
works uniformly despite differences for instance between development and staging.

Docker containers characteristics:

 Standard: Docker created the industry standard for containers, so they could be
portable anywhere

 Lightweight: Containers share the machine’s OS system kernel and therefore
do not require an OS per application avoiding the overhead of creating and
maintaining virtual machines

 Secure: Applications are safer in containers and Docker provides the strongest
default isolation capabilities in the industry

4.2 Comparing Docker containers and Virtual machines

Containers and virtual machines have similar resource isolation and allocation benefits,
but function differently due to containers virtualizing the operating system instead of
hardware. Containers’ advantages include portability and efficiency.

Virtual machines’ (VMs) architecture relies on an abstraction of physical hardware,
allowing the hypervisor to run multiple VM instances on a single machine. Each VM
includes a copy of an operating system, the application, all necessary binaries and
libraries, resulting in considerable amount of storage. Each OS running demands its own
resources thus impeding overall system performance.

Containers on the other hand, provide an abstraction of the application layer packaging
code, dependencies and appropriate settings together. Multiple containers can run on the
same machine, sharing the OS kernel with other containers, each running as isolated
processes. Containers take up considerably smaller space (container images are typically
tens of MBs in size), can handle more applications and require fewer system resources
in comparison to VMs [9].

We have mentioned briefly the advantages of each technology but given the fact that are
totally different in conception and as a result target different needs, it would be of no
practical usage proceeding in point to point comparisons. It would be of much more
interest if we could see them as complementary technologies which is the case of Docker
Swarm we will examine later in this paper.

4.3 Solving portability problems

In our introductory part of Linux containers, we mentioned that the key concept of
container technology was to solve efficiently the problem of migration between many
different software environments and various hardware implementations. "Containerizing"

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

30

an application with all its dependencies, provides an autonomous software block capable
of being moved among numerous environments.

Packaging an application in a container with its configurations and dependencies
guarantees that the application will always work as designed in any environment, locally,
or on another machine, leaving developers the space to focus only on the deployment of
their application. Docker extends this idea and containers are not tied to any specific
infrastructure, they run on any computer, on any infrastructure, and in any cloud, provided
Docker engine is installed. Features like Docker images and Docker registries, assist in
distributing and sharing content between developers and system administrators.

4.4 Docker Features

Docker introduced new features that facilitated the deployment and portability of
application containers.

4.4.1 Docker Images

Docker containers are based on Docker images. A Docker image is a binary that includes
all of the requirements for running a single Docker container, as well as metadata
describing its needs and capabilities. It is actually the basic unit this packaging technology
is built on. Docker containers have access only to resources defined in the image, unless
you the container is given additional access while creating it.

Technically a Docker image is actually, a read-only template that contains all the
ingredients of a container to run, including the operating system and the application with
its dependencies. In detail, each Docker image references a list of read-only layers that
represent file system differences. Layers are stacked on top of each other to form a base
for a container’s root file system. The diagram below shows the Ubuntu 15.04 image
comprising 4 stacked image layers.

Figure 13 : Image consisting of layers

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

31

The Docker storage driver is responsible for stacking these layers and providing a single
unified view.

4.4.2 Container and Layers

The major difference between a container and an image is the top writable layer. All writes
to the container that add new or modify existing data are stored in this writable layer.
When the container is deleted, the writable layer is also deleted, while the underlying
image remains unchanged. The diagram below shows a container based on the image
presented earlier.

Figure 14 : Container Layer

Because each container has its own writable container layer, and all changes are stored
in this container layer, multiple containers can share access to the same underlying image
and yet have their own data state. The diagram below shows multiple containers sharing
the same Ubuntu 15.04 image.

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

32

Figure 15 : Containers sharing the same image

Docker 1.10 introduced a new content addressable storage model. This is a completely
new way to address image and layer data on disk. Previously, image and layer data was
referenced and stored using a randomly generated UUID. In the new model this is
replaced by a secure content hash. The new model improves security, provides a built-in
way to avoid ID collisions, and guarantees data integrity. It also enables better sharing of
layers by allowing many images to freely share their layers even if they didn’t come from
the same build.

4.4.3 Docker storage driver

The Docker storage driver is responsible for enabling and managing both the image
layers and the writable container layer. How a storage driver accomplishes these can vary
between drivers. Two key technologies behind Docker image and container management
are stackable image layers and copy-on-write (CoW).

Copy-on-write is a strategy that includes sharing and copying. In this strategy, system
processes that need the same data share the same instance of that data rather than
having their own copy. At some point, if one process needs to modify or write to the data,
only then does the operating system make a copy of the data for that process to use. Only
the process that needs to write has access to the data copy. All the other processes
continue using the original data. Docker uses a copy-on-write technology with both
images and containers. This CoW strategy optimizes both image disk space usage and
the performance of container start times. In the diagram bellow we can see how sharing
of image layers takes effect in the creation of a new image based on an existing one and
how this technique promotes smaller images.

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

33

Figure 16 : New image created from an existing one

This sharing of image layers is what makes Docker images and containers so space

efficient. As, already explained all writes made to a container are stored in the thin writable

container layer. The other layers are read-only (RO) image layers and can’t be changed.

This means that multiple containers can safely share a single underlying image.

When an existing file in a container is modified, the storage driver performs a copy-on-

write operation. The specifics steps involved depend on the specific storage driver. For

the default aufs driver and the overlay and overlay2 drivers, the copy-on-write operation

follows this rough sequence:

 Search through the image layers for the file to update. The process starts at the

newest layer and works down to the base layer one layer at a time. When results

are found, they are added to a cache to speed future operations.

 Perform a copy_up operation on the first copy of the file that is found, to copy the

file to the container’s writable layer.

 Any modifications are made to this copy of the file, and the container cannot see

the read-only copy of the file that exists in the lower layer.

Btrfs, ZFS, and other drivers handle the copy-on-write differently.

This copy-on-write strategy not only reduces the amount of space consumed by
containers, it also reduces the time required for a container to start. Docker only has to
create the thin writable layer for each container, not needing to make an entire copy of
the image stack, thus significantly reducing the startup time.

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

34

4.4.4 Data Volume

A data volume is a directory or file in the Docker host’s file system that is mounted directly
into a container. Data volumes are not controlled by the storage driver. Reads and writes
to data volumes bypass the storage driver and operate at native host speeds. Any number
of data volumes can be mounted into a container. Multiple containers can also share one
or more data volumes. The diagram below shows a single Docker host running two
containers. Each container exists inside of its own address space within the Docker host’s

local storage area (/var/lib/docker/...). There is also a single shared data volume

located at /data on the Docker host. This is mounted directly into both containers.

Figure 17 : Data volumes

Data volumes reside outside of the local storage area on the Docker host, further
reinforcing their independence from the storage driver’s control [10]. When a container is
deleted, any data stored in data volumes persists on the Docker host.

4.4.5 Docker Hub

Docker moved one step further in the direction portability by introducing of the tool Docker
Hub which leverages the sharing and reuse of Docker images. Docker Hub is a cloud-
based registry service which allows linking to code repositories, building and storing of
manually pushed images. It provides a centralized resource for container image
discovery, distribution and change management, user and team collaboration, and
workflow automation throughout the development pipeline.
Its features can be summarized in the following list:

 Image Repositories: Find, manage, and push and pull images from community,
official and private image libraries.

 Automated Builds: Automatically create new images when you make changes to
a source code repository.

 Webhooks: A feature of Automated Builds, Webhooks let you trigger actions after
a successful push to a repository.

 Organizations: Create work groups to manage access to image repositories.

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

35

 GitHub and Bit bucket Integration: Add the Hub and your Docker Images to your
current workflows.

4.5 Docker architecture

At its core, Docker provides a way to run almost any application securely isolated in a
container. Isolation and security are the aspects that allow many containers to run
simultaneously on the host. The lightweight nature of containers, which run without the
extra load of a hypervisor, gives the opportunity to fully exploit hardware performance.

Docker platform and its tooling surrounds the container and is responsible for the
following tasks

 Packing applications and supporting components into Docker containers

 Distribution and shipping of those containers

 Deployment of those applications to the production environment, whether it is in a
local data center or the Cloud

It is critical, for understanding Docker architecture, to introduce Docker Engine, a client-
server application with three major components:

 A server which is a type of long-running program called a daemon process.
 A REST API which specifies interfaces, used for programs to communicate with

Docker daemon
 A command line interface (CLI) client.

The role of Docker daemon is to create and manage Docker objects. Docker objects
include images, containers, networks and data volumes. The Docker client talks to the
Docker daemon, which is responsible of building, running, and distributing your Docker
containers. Both the Docker client and the daemon can run on the same system, or a
Docker client can be connected to a remote Docker daemon and communicate via Linux
sockets or through a RESTful API.

4.6 Inside Docker Network Configuration

Containers’ default behavior is to promote application isolation from other containers

and the underlying infrastructure, providing an overall layer of protection. However,

networking connectivity and the way of delivering efficiently containerized microservice

applications is an aspect Docker engineers took of great consideration.

Docker’s networking architecture was designed to favor:

 Portability

 Service Discovery

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

36

 Load Balancing

 Security

 Performance

 Scalability

4.6.1 The Container Networking Model

The Docker networking architecture is built on a set of interfaces called the Container
Networking Model (CNM) [11]. The philosophy of CNM is to provide application portability
across diverse infrastructures. This model strikes a balance to achieve application
portability and also takes advantage of special features and capabilities of the
infrastructure. Figure below emphasizes the key points of this model.

Figure 18 : Container Networking Model

 Sandbox: A Sandbox contains the configuration of a container's network stack.
This includes management of the container's interfaces, routing table, and DNS
settings. An implementation of a Sandbox could be a Linux Network Namespace.
A Sandbox may contain many endpoints from multiple networks.

 Endpoint: An Endpoint joins a Sandbox to a Network. The Endpoint construct
exists so the actual connection to the network can be abstracted away from the
application. This helps maintain portability so that a service can use different types
of network drivers without being concerned with how it's connected to that network.

 Network: The CNM does not specify a Network in terms of the OSI model. An
implementation of a Network could be a Linux bridge, a VLAN, etc. A Network is a
collection of endpoints that have connectivity between them. Endpoints that are
not connected to a network do not have connectivity on a network.

Network Drivers: Docker Network Drivers provide the actual implementation that makes
networks work. They are pluggable so that different drivers can be used and interchanged
easily to support different use cases. Multiple network drivers can be used on a given

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

37

Docker Engine, but each Docker network is only instantiated through a single network
driver. There are two broad types of CNM network drivers:

 Native Network Drivers: Native Network Drivers are a native part of the Docker
Engine and are provided by Docker. There are multiple drivers to choose from that
support different capabilities like overlay networks or local bridges.

 Remote Network Drivers: Remote Network Drivers are network drivers created
by the community and other vendors.

IPAM Drivers: Docker has a native IP Address Management Driver that provides default
subnets or IP addresses for networks and endpoints if they are not specified. IP
addressing can also be manually assigned through network, container, and service create
commands. Remote IPAM drivers also exist and provide integration to existing IPAM
tools.

Docker Native Network Drivers

The following native network drivers exist:

 Host: With the host driver, a container uses the networking stack of the host. There
is no namespace separation, and all interfaces on the host can be used directly by
the container

 Bridge: The bridge driver creates a Linux bridge on the host that is managed by
Docker. By default containers on a bridge can communicate with each other.
External access to containers can also be configured through the bridge driver,
with limitations.

 Overlay: The overlay driver creates an overlay network that supports multi-host
networks out of the box. It uses a combination of local Linux bridges and VXLAN
to overlay container-to-container communications over physical network
infrastructure

 MacVlan: The macvlan driver uses the MACVLAN bridge mode to establish a
connection between container interfaces and a parent host interface (or sub-
interfaces). It can be used to provide IP addresses to containers that are routable
on the physical network. Additionally VLANs can be trunked to the macvlan driver
to enforce Layer 2 container segmentation

 None: The none driver gives a container its own networking stack and network
namespace but does not configure interfaces inside the container. Without
additional configuration, the container is completely isolated from the host
networking stack

4.6.2 Docker Host Network Driver

It's the same networking configuration that Linux uses. --net=host effectively turns
Docker networking off and containers use the host (or default) networking stack of the
host operating system.

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

38

Typically with other networking drivers, each container is placed in its own network
namespace (or sandbox) to provide complete network isolation from each other. With the
host driver containers are all in the same host network namespace and use the network
interfaces and IP stack of the host. All containers in the host network are able to
communicate with each other on the host interfaces.

From a networking standpoint this is equivalent to multiple processes running on a host
without containers. Because they are using the same host interfaces, no two containers
are able to bind to the same TCP port. This may cause port contention if multiple
containers are being scheduled on the same host.

Figure 19 : Host Network Driver

4.6.3 Docker Bridge Network Driver

On any host running Docker Engine, there is, by default, a local Docker network named

bridge. This network is created using a bridge network driver which instantiates a Linux

bridge called docker0.

The bridge driver creates a private network internal to the host so containers on this

network can communicate. External access is granted by exposing ports to containers.

Docker secures the network by managing rules that block connectivity between different

Docker networks. A container can have zero to many interfaces depending on how many

networks it is connected to. Each Docker network can only have a single interface per

container.

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

39

Figure 20 : Bridge Networking Driver

The host routing table provides connectivity between docker0 and eth0 on the external
network, completing the path from inside the container to the external network. By default

bridge is assigned one subnet from the ranges 172.[17-31].0.0/16 or 192.168.[0-

240].0/20 which does not overlap with any existing host interface. The default bridge
network can also be configured to use user-supplied address ranges. Also, an existing

Linux bridge can be used for the bridge network rather than Docker creating one.

4.6.4 User-Defined Bridge Networks

In addition to the default networks, Docker provides the capability of creating user-defined
networks of any network driver type. In the case of user-defined bridge networks, a new
Linux bridge is setup on the host. Unlike the default bridge network, user-defined
networks supports manual IP address and subnet assignment. If an assignment isn't
given, then Docker's default IPAM driver assigns the next subnet available in the private
IP space.

4.6.5 External Access for Standalone Containers

By default all containers on the same Docker network (multi-host swarm scope or local
scope) have connectivity with each other on all ports. Communication between different
Docker networks and container ingress traffic that originates from outside Docker is

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

40

firewalled. This is a fundamental security aspect that protects container applications from
the outside world and from each other.

For most types of Docker networks (bridge and overlay included) external ingress access
for applications must be explicitly granted. This is done through internal port mapping.
Docker publishes ports exposed on host interfaces to internal container interfaces. The
following diagram depicts ingress (bottom arrow) and egress (top arrow) traffic to
container C2. Outbound (egress) container traffic is allowed by default. Egress
connections initiated by containers are masqueraded/SNATed to an ephemeral port
(typically in the range of 32768 to 60999). Return traffic on this connection is allowed, and
thus the container uses the best routable IP address of the host on the ephemeral port

Figure 21 : Container Exposes Ports

Ingress access is provided through explicit port publishing. Port publishing is done by
Docker Engine and can be controlled through UCP or the Engine CLI. A specific or
randomly chosen port can be configured to expose a service or container. The port can
be set to listen on a specific (or all) host interfaces, and all traffic is mapped from this port
to a port and interface inside the container.

4.6.6 Overlay Driver Network Architecture

The overlay network driver creates a distributed network among multiple Docker daemon

hosts. This network sits on top of (overlays) the host-specific networks, allowing

containers connected to it (including swarm service containers) to communicate securely.

Docker transparently handles routing of each packet to and from the correct Docker

daemon host and the correct destination container.

The overlay driver utilizes an industry-standard VXLAN data plane that decouples the

container network from the underlying physical network (the underlay). The Docker

overlay network encapsulates container traffic in a VXLAN header which allows the traffic

to traverse the physical Layer 2 or Layer 3 network. The overlay makes network

segmentation dynamic and easy to control no matter what the underlying physical

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

41

topology. Use of the standard IETF VXLAN header promotes standard tooling to inspect

and analyze network traffic.

IETF VXLAN (RFC 7348) is a data-layer encapsulation format that overlays Layer 2

segments over Layer 3 networks. VXLAN is designed to be used in standard IP networks

and can support large-scale, multi-tenant designs on shared physical network

infrastructure. Existing on-premises and cloud-based networks can support VXLAN

transparently.

VXLAN is defined as a MAC-in-UDP encapsulation that places container Layer 2 frames

inside an underlay IP/UDP header. The underlay IP/UDP header provides the transport

between hosts on the underlay network. The overlay is the stateless VXLAN tunnel that

exists as point-to-multipoint connections between each host participating in a given

overlay network.

Figure 22 : Overlay driver perspective

Because the overlay is independent of the underlay topology, applications become more

portable. Thus, network policy and connectivity can be transported with the application

whether it is on-premises, on a developer desktop, or in a public cloud.

4.6.7 MACVLAN

The macvlan driver is a new implementation of the network virtualization technique. Linux

implementations are extremely lightweight because rather than using a Linux bridge for

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

42

isolation, they are simply associated with a Linux Ethernet interface or sub-interface to

enforce separation between networks and connectivity to the physical network.

MACVLAN offers a number of unique features and capabilities. It has positive

performance implications by virtue of having a very simple and lightweight architecture.

Rather than port mapping, the MACVLAN driver provides direct access between

containers and the physical network. It also allows containers to receive routable IP

addresses that are on the subnet of the physical network.

MACVLAN use-cases may include:

 Very low-latency applications

 Network design that requires containers be on the same subnet as and using IPs

as the external host network

The macvlan driver uses the concept of a parent interface. This interface can be a

physical interface such as eth0, a sub-interface for 802.1q VLAN tagging like eth0.10 (.10

representing VLAN 10), or even a bonded host adaptor which bundles two Ethernet

interfaces into a single logical interface.

Figure 23 : Macvlan driver

A gateway address is required during MACVLAN network configuration. The gateway

must be external to the host provided by the network infrastructure. MACVLAN networks

allow access between containers on the same network. Access between different

MACVLAN networks on routing outside the host.

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

43

4.6.8 VLAN Trunking with MACVLAN

The macvlan driver completely manages sub-interfaces and other components of the

MACVLAN network through creation, destruction, and host reboots. When the macvlan

driver is instantiated with sub-interfaces it allows VLAN trunking to the host and segments

containers at L2. The macvlan driver automatically creates the sub-interfaces and

connects them to the container interfaces. As a result each container is in a different

VLAN, and communication is not possible between them unless traffic is routed in the

physical network. Figure below presents an example of macvlan truncking

implementation

Figure 24 : Macvlan truncing

4.6.9 None (Isolated) Network Driver

Similar to the host network driver, none network driver is essentially an unmanaged

networking option. Docker Engine does not create interfaces inside the container,

establish port mapping, or install routes for connectivity. A container using --net=none is

completely isolated from other containers and the host. The networking admin or external

tools must be responsible for providing this plumbing. A container using none only has a

loopback interface and no other interfaces. Unlike the host driver, the none driver creates

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

44

a separate namespace for each container. This guarantees container network isolation

between any containers and the host.

4.7 Orchestration of Docker containers

Presentation of Docker, in this paper, focused mainly on the isolation of containers, which

was part of the initial goal of this technology, the remaining part aims in composition and

the challenges it introduces. Most valuable systems are composed of two or more

components. Simple management of multiple components is more important than ever

due to the rise of large-scale server software, service-oriented architectures, micro-

services, and now the Internet-of-Things. Various Docker software tools and solutions

exist to facilitate with these challenges and cover each of the following areas to a greater

or lesser degree:

 Clustering: Grouping hosts (VMs or bare-metal) and networking them together. A

cluster should feel like a single resource rather than a group of disparate machines.

 Orchestration: All components working together seamlessly. Starting containers

on appropriate hosts and connecting them. An orchestration system may also

include support for scaling, automatic failover and node rebalancing.

 Management: Providing oversight into the system and supporting various

administrative tasks.

4.7.1 Docker Compose

Compose is a tool for defining, launching, and managing services, where a service is
defined as one or more replicas of a Docker container. Services and systems of services
are defined in YAML files and managed with the command-line program Docker-
compose.

With compose simple commands are used to accomplish the following tasks:

 Build Docker images

 Launch containerized applications as services

 Launch full systems of services

 Manage the state of individual services in a system

 Scale services up or down

 View logs for the collection of containers making a service

Compose moves focus from individual containers to describing full environments and
service component interactions. A Compose file might describe four or five unique
services that are interrelated but should maintain isolated and may scale independently.

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

45

This level of interaction covers most of the everyday use cases for system management.
For that reason, most interactions with Docker will be through Compose.

4.7.2 Docker Swarm

Swarm is the native clustering tool for Docker. Swarm uses the standard Docker API so,
containers can be launched using normal Docker run commands and Swarm will take
care of selecting an appropriate host to run the container on. This also means that other
tools that use the Docker API, such as Compose, can use Swarm without any changes
and take advantage of running on a cluster rather than a single host.

The basic architecture of Swarm is fairly straightforward: each host runs a Swarm Agent
and one host runs a Swarm manager (on small test clusters both the agent and manager
many be installed on the same node). The manager is responsible for the orchestration
and scheduling of containers on the hosts.

4.7.3 Docker Machine

Docker Machine is a tool which facilitates the installation of Docker Engine on virtual
hosts, and manages the hosts with Docker-machine commands. Machine can be used to
create Docker hosts on local Mac or Windows boxes, on company networks, in data
centers, or on cloud providers like AWS or Digital Ocean. Docker-machine can start,
inspect, stop, and restart a managed host, upgrade the Docker client and daemon and
configure properly a Docker client, with the convenience of simple and straightforward
commands.

4.8 Differences between Docker and LXC

Docker technology is not a replacement for LXC. “LXC” refers to capabilities of the Linux

kernel (specifically namespaces and control groups) which allow sandboxing processes

from one another, and controlling their resource allocations. On top of this low-level

foundation of kernel features, Docker offers a high-level tool with several powerful

functionalities further discussed below [12].

Portable deployment: Portable deployment across machines. Docker defines a format

for bundling an application and all its dependencies into a single object which can be

transferred to any Docker-enabled machine, and executed there with the guarantee that

the execution environment exposed to the application will be the same. LXC implements

process sandboxing, which is an important pre-requisite for portable deployment, but that

alone is not enough for portable deployment. An application installed in a custom LXC

configuration, would almost certainly not run properly if installed in another node, because

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

46

it is tied to the machine’s specific configuration: networking, storage, logging, distro, etc.

Docker defines an abstraction for these machine-specific settings, so that the exact same

Docker container can run unchanged, on many different machines, with many different

configurations.

Application centric: Docker is optimized for the deployment of applications, as opposed

to machines. This is reflected in its API, user interface, design philosophy and

documentation. By contrast, the LXC helper scripts focus on containers as lightweight

machines - basically servers that boot faster and need less RAM.

Automatic build: Docker includes a tool for developers to automatically assemble a

container from their source code, with full control over application dependencies, build

tools, packaging etc. User is free to use make, maven, chef, puppet, salt, Debian

packages, RPMs, source tarballs, or any combination of the above, regardless of the

configuration of the machines.

Component re-use: Any container can be used as a base image to create more

specialized components. This can be done manually or as part of an automated build.

Sharing: Docker has access to a public registry on Docker Hub, an open registry with

pre-configured images, for sharing

Tool ecosystem: Docker defines an API for automating and customizing the creation

and deployment of containers. There are a huge number of tools integrating with Docker

to extend its capabilities

4.9 Linux Containers vs Virtual Machines

4.9.1 Performance comparison

Virtual machines are used extensively in cloud computing. In particular, the state-of-the-

art in Infrastructure as a Service (IaaS) is largely synonymous with virtual machines.

Recently though, popular commercial cloud platforms in their need of better performance

and density, exploiting the inherit benefits of containers, began to adopt container

technology. Their interest and the depth of specialization on this new technology, is

emphasized not only by the fact that they use it internally along with virtual machines but

they also offer simple and manageable container interfaces for the end users. Container’s

promising features arouse serious discuss on performance issues and instantaneously

numerous researches that focus on containers and virtual machines emerged.

Initially, we will examine the various results of relatively recent papers and then elaborate

on specific advantages of each technology. Details and graphs of each case study are

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

47

avoided and can be found in the reference part at the end of this paper, we emphasize

on the quality results that become apparent after each survey. This paragraph is not

intended to outbid on the usage of containers over virtual machines, but better aims to

clarify the appropriate solution for a given set of preconditions.

Representative of the interest Linux containers have gathered is the fact that leading

companies in the computer industry like IBM reported a research exactly on the

performance comparison of virtual machines and containers [13]. In the specific paper,

researchers of IBM compare overhead imposed by virtual machines (created by KVM)

and containers (using Docker) relative to non-virtualized Linux. Benchmarks and

workloads used are relevant to the cloud in attempt to collect results of practical usage.

In general, Docker equals or exceeds KVM performance in every case of testing. Test

results show that both KVM and Docker introduce negligible overhead for CPU and

memory performance (except in extreme cases). For I/O intensive workloads, both forms

of virtualization should be used carefully. Although KVM performance has improved

considerably since its creation, and even using the fastest available forms of

paravirtualization, KVM stills adds some overhead to every I/O operation. This overhead

ranges from significant when performing small I/O operations to negligible when it is

amortized over large ones. Although containers have almost no overhead, Docker is

not without performance obstacles. Docker volumes have noticeable better performance

than files stored in AUFS. Docker’s NAT also introduces overhead for workloads [14] with

high packet rates. These features represent a tradeoff between ease of management and

performance and should be considered on a case-by-case basis.

Another, interesting and relatively recent study focuses on the performance comparison

of a WebRTC server on Docker containers versus virtual machines (KVM) [15]. WebRTC

is an API standard that supports voice and video chat and P2P file sharing, without the

need to install external plugin on browsers. As lots of services will switch to WebRTC, a

performance test between container and virtual machines for a real-time service seemed

a very interesting scenario that would pinpoint the advantages and pitfalls of each

mechanism. More details on the experiments and graphs can be found on the referenced

paper but the overall picture of extensive experimenting on different testing scenarios is

that CPU usage found to be 5-10% lower for the Docker instances where latency, a

critical metric for real-time applications, is more stable and a bit lower compared to KVM

machines.

Impressive results are drawn from the paper entitled “Performance comparison Analysis

of Linux Container and Virtual Machine for building Cloud” [16]. Authors of this paper used

Openstack, which is opensource software for building public and private cloud, for the

construction of the environment and used Docker containers and KVM Hypervisors as

virtualizations tools for comparison. Cloud comprised of Docker doesn't contain guest OS,

so CPU resource and storage overhead is minimal. For this reason, boot-time, time of

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

48

generating and distributing images is little compared to the corresponding times

of virtual machines.

Similar results on Cloud performance and deployment are underlined by the paper

released from HP with the tile “Linux container performance on HPE ProLiant servers”

[17] which container enhanced testing scenarios on distributed environments and web -

based applications. Detailed diagrams and graphs of this paper explain every aspect of

performance comparison and conclude to the fact that containers usually have a

performance edge, as long as the mix of apps is suitable to containerization. This

performance edge comes usually from the lack of hypervisor overhead, elimination of

duplicated OS services inside each VM and less waste of available memory. Testing also

showed that containers become more efficient as the number of containers

increases. Interesting results occurred when memory requirements exceed available

resources in the server. Both containers and VMs continued to work. However, container

performance remained better. If resource needs increase beyond the available system

resources, some VMs will hang while containers will continue to work, but could become

unstable.

4.9.2 Deciding between containers and virtual machines

A common fact underlined by all papers examined above, is that containers’ approach of
virtualization results on minimal performance overhead which translates into better
exploitation of existing hardware and efficient use of system resources. However,
all papers imply that the choice of containers should be carefully considered and only
applied if certain preconditions are met. Scott S. Lowe, a VMware engineering architect,
in his article suggests that each time we should look at the "scope" of our work [18].
Containers offer a more narrowed view of a system, that of an application and should
be used accordingly. In other words if we want to test and run multiple copies of a single
application (MySQL for example), then it would be wise to use a container. If the flexibility
of running multiple applications is needed then a virtual machine rises as a better and
completed choice.

Examples of real-life applications that show better performance in containers include [19]:

 High-loaded, multi-component and multi-instance web and application servers
 Data analytic software (especially running in a SaaS model and using

VM/container partitioning for tenancy)
 Applications built on a micro-services architecture
 Multiple concurrent batch-processing workloads that use all available resources

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

49

4.9.3 Advantages and limitations of Docker

Summing up, Docker is a container management solution that provides:

 A simple way to package and deliver applications and all their dependencies, one
that enables seamless application portability and mobility.

 Relative ease of use and low administration requirements.
 A rich set of tools and utilities.

After a detailed presentation of Docker containers’ features and a thorough comparison

to virtual machines, follows a list of Dockers’ advantages as long as the limitations it

imposes. Some of these drawbacks will be addressed as containers continue to mature.

Others reflect fundamental limitations of container architecture, emphasizing that their

usage should be applied after careful thought of each case separately.

Docker benefits:

 Lightweight footprint and minimal overhead. Docker images are typically very

small, which facilitates rapid delivery and reduces the time to deploy new

application containers.

 Reduces a container to a single process which is then easily managed with Docker
tools.

 Offers version control and component reuse, successive versions of a container
can be tracked, providing the ability of rolling back to previous versions. Containers
reuse components from the preceding layers, which makes them noticeably
lightweight.

 Encapsulates application configuration and delivery complexity to dramatically
simplify and eliminate the need to repeat these activities manually.

 Provides a strongly supportive user community for many aspects of using
containers for significant implementations.

 Provides a highly efficient compute environment for applications that are stateless
and micro-services based, as well as many stateful applications like databases,
message bus, etc.

 Is used very successfully by many groups, particularly Dev and Test, as well as
microservices-based production environments.

 Docker limitations

 Treats containers differently from a standard host, such as sharing the host’s IP
address and providing access to the container via a selectable port. This approach
can cause management issues when using traditional applications and
management tools that require access to Linux utilities such as cron, ssh,
daemons, and logging.

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

50

 Uses a layered storage system, which in some I/O intensive applications may
decrease overall performance, usage of volumes is the proposed solution in such
cases.

 Is not ideal for stateful applications due to limited volume management in case of
container failover.

 Security and isolation of containers although inherit should be taken into great
consideration from administrators

 Temporary nature of container can also work as a major disadvantage, being an
obstacle in cases of troubleshooting.

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

51

Part II: Implementation

 Software presentation

5.1 Overview of the initial problem

In this section we will provide a complete presentation of the software we developed,

analyze in detail the main components it consists of, discuss the benefits it offers and

conclude with future additions-improvements. Before, explaining the internal parts of our

implementation, it is essential to present the initial problem that we tried to deal with.

There are certain occasions where it is necessary to create and run simultaneously a

considerable amount of virtual machines in certain and limited amount of resources. This

might contradict with the ease of obtaining new machines from a cloud computing service,

nowadays, but this is not always the case, university labs or small businesses have a

narrow amount of available machines making a task like the above a real challenge.

Particularly, in NITOS Testbed, usually during lab classes or on major experiments, there

is a need of starting, concurrently, a considerable amount of virtual machines. This was

the initial problem which at first seemed unbearable without the addition of auxiliary

resources. On top of this, we had to take into account the time needed for the concurrent

creation of all these machines.

Refining the problem and looking through the details, we understood that not always the

virtual machines needed the complete functionality an operating system offers but where

only partially used, especially for running certain applications. The latter point was the key

that helped in exploring alternative solutions.

 Linux container was the first candidate since this technology combined all preconditions

needed to solve the existing problem. Containers are secure, astounding fast in creating

and running and could easily handle the applications users needed for their experiments.

Docker containers, an implementation of this technology, similar to LXC but using a

different interface for interacting with the kernel, included additional useful characteristics

that made it impossible to oversee, so our implementation is based on Docker solution.

In the previous chapter we have included a discussion on Docker features that justifies

our choice.

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

52

5.2 Describing basic parts

5.2.1 Docker

 Docker Api

Docker’s rest-ish API [20] was one of the most important factors that played a major role

in the decision of the most appropriate solution, regarding linux containers. Docker offers

a restful API (with the exception of few commands) that can be used for remote

communicating with Docker Server [21]. Docker daemon offers the ability to listen to a

specific TCP port on all network interfaces tcp://0.0.0.0:2375, other than the default

linux socket which is unix:///var/run/docker.sock [22] providing the capability of

controlling containers remotely. Docker’s API was the structure element for building and

designing our application.

 Docker Macvlan Driver

Docker, as explained in previous section, offers a variety of networking driver solutions

designed for the different needs of each network. We wanted to create a network of

containers that resembles the topology and structure of a physical one, so using the

Macvlan driver was the appropriate choice. Macvlan network driver provides the capability

of assigning a MAC address to each container’s virtual network interface, making it

appear to be a physical network interface directly connected to the physical network [23].

Summing up, the advantages of macvlan driver that justify our choice:

 Positive performance implications of bypassing the Linux bridge (The bridge

docker0 that traditionally resides in between the Docker host NIC and container

interface)

 Very simple setup consisting of container interfaces, attached directly to the

Docker host interface

 Easy access for external facing services as there is no port mappings in these

scenarios

5.2.2 RabbitMQ

As already mentioned, the environment we wanted to incorporate our implementation

offers a limited amount of resources and despite the fact that containers add almost

minimal overhead to the system, we wanted for administrative reasons, to have a detailed

view of the amount of resources containers consume. While Docker’s API has a

corresponding command that returns, in streaming form, statistics of each running

container, this solution could not be characterized efficient in terms of network usage.

This can become clearer if we consider the overhead of continuous messages being

transmitted between nodes of a laboratory where other probably more critical network

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

53

information is being exchanged. Nitos Lab has already solved the above problem using

the technology of a message broker (RabbitMQ), so we had to adapt, including this

messaging mechanism.

RabbitMQ is open source message broker or queue manager software (sometimes

called message-oriented middleware) that implements the Advanced Message Queuing

Protocol (AMQP) [24]. Its use lies on the fact that offers applications a common platform

for sending and receiving messages, minimizing the need of re-planning and developing

communication protocols between applications. Messaging in RabbitMQ is

asynchronous, decoupling applications by separating sending and receiving data. It can

be thought of as data delivery of non-blocking operations or push notification, as

publish/subscribe asynchronous processing, or as work queues. The RabbitMQ server is

written in the Erlang programming language and is built on the Open Telecom Platform

framework for clustering and failover. There are client libraries available to interface with

the broker for all major programming languages, in our project we used the corresponding

ruby client [25].

RabbitMQ’s main features are highlighted below [26]:

 Reliability: Offers a variety of features allowing to trade off performance with

reliability, including persistence, delivery acknowledgements, publisher confirms,

and high availability

 Flexible Routing: Messages are routed through exchanges before arriving at

queues. RabbitMQ features several built-in exchange types for typical routing

logic.

 Clustering: Several RabbitMQ servers on a local network can be clustered

together, forming a single logical broker

 Federation: For servers that need to be more loosely and unreliably connected

than clustering allows, RabbitMQ offers a federation model

 Highly Available Queues: Queues can be mirrored across several machines in a

cluster, ensuring that even in the event of hardware failure your messages are safe

 Multi-protocol: RabbitMQ supports messaging over a variety of messaging

protocols.

 Many Clients: There are RabbitMQ clients for almost any language

 Management UI: RabbitMQ ships with an easy-to use management UI that allows

monitoring and controlling of the message broker.

 Tracing: RabbitMQ offers tracing support for troubleshooting purposes

 Plugin System: RabbitMQ ships with a variety of plugins extending it in different

ways.

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

54

 Topic Exchange

The AMQP 0-9-1 Protocol Model, which RabbitMQ implements, uses exchanges for

message management. An exchange is responsible for the routing of the messages to

the different queues. An exchange accepts messages from the producer application and

routes them to message queues with help of header attributes, bindings, and routing keys.

A binding acts as a link that binds a queue to an exchange, while routing key is an attribute

of the message. The exchange, depending on exchange type, takes this key into

consideration in the process of routing the message to queues. Then, broker either

delivers messages to consumers subscribed to queues, or consumers fetch/pull

messages from queues on demand. Exchanges, connections, and queues can be

configured with parameters such as durable, temporary, and auto delete upon creation.

Durable exchanges survive server restarts and last until they are explicitly deleted.

Temporary exchanges exist until RabbitMQ is shut down. Auto-deleted exchanges are

removed once the last bound object unbound from the exchange.

For our implementation Topic Exchange type was chosen and specifically the default

pre-declared amq.topic for storing and transmitting all collecting data. Topic exchanges

route messages to one or many queues based on matching between a message routing

key and the pattern that was used to bind a queue to an exchange.

Then, broker either delivers messages to consumers subscribed to queues, or consumers

fetch/pull messages from queues on demand.

Figure 25 : Topic Exchange: Messages are routed to one or many queues based on a matching between a
message routing key the routing pattern

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

55

The topic exchange type is often used to implement various publish/subscribe pattern

variations, usually for multicast routing message scenarios.

 RabbitMQ Web STOMP Plugin

For visualizing the statistics we collect from Docker Server we used Stomp technology

and particularly its implementation in RabbitMQ [27]. The Web STOMP plugin is a simple

bridge exposing the STOMP protocol over direct or emulated HTML5 WebSockets.

STOMP, Simple (or Streaming) Text Oriented Message Protocol, is a simple text-based

protocol used for transmitting data across applications. It is much simpler and less

complex protocol than AMQP, it is more similar to HTTP. STOMP clients can

communicate with almost every available STOMP message broker, this provide easy and

widespread messaging interoperability among many languages, platforms and brokers.

STOMP does not deal with queues and topics, it uses a SEND semantic with a destination

string. RabbitMQ maps the message to topics, queues or exchanges. Application

consumers then subscribe to those destinations, in order to reach stored messages.

WebSocket is a computer communications protocol, providing full-duplex communication

channels over a single TCP connection. It is a different protocol from HTTP, although

both protocols are located at layer 7 in the OSI model and, as such, depend on TCP at

layer 4. The WebSocket protocol enables interaction between a web client (such as a

browser) and a web server with lower overheads, facilitating real-time data transfer from

and to the server. This is made possible by providing a standardized way (WebSocket

protocol was standardized by the IETF as RFC 6455 in 2011 [28]) for the server to send

content to the client without being first requested by the client, and allowing messages to

be passed back and forth while keeping the connection open. In this way, a two-way

ongoing conversation can take place between the client and the server. The

communications are done over TCP port number 80 (or 443 in the case of TLS-encrypted

connections), which is of benefit for those environments which block non-web Internet

connections using a firewall. The WebSocket protocol is currently supported in most

major browsers including Google Chrome, Microsoft Edge, Internet Explorer, Firefox,

Safari and Opera.

5.2.3 Chart JS Library

We wanted to enhance monitoring experience so we used an opensource Javascript

library for the presentation of our data collection. The Chart JS library is an HTML5 based

JavaScript library that employs the <canvas> element for creating animated, interactive

and customizable charts and graphs [29].

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

56

5.2.4 Sinatra

Our ruby implementation used Sinatra as an elegant and effective way to invoke remote

calls to the Docker Server. Sinatra is a free and open source software web application

library and Domain Specific Language implemented in Ruby [30]. It is an alternative to

other Ruby web application frameworks such as Ruby on Rails, Merb, Nitro, and

Camping. Created by Blake Mizerany, Sinatra is Rack-based, which means it can fit into

any Rack-based application stack, including Rails. Unlike Ruby on Rails, which is a Full

Stack Web Development Framework that provides everything needed from front to back,

Sinatra is designed to be lightweight and flexible. Sinatra is designed to provide with the

bare minimum requirements and abstractions for building simple and dynamic Ruby web

applications.

5.2.5 Bootstrap

Our application front-end was built with the use of one of the most popular frameworks,

Bootstrap. Bootstrap is a free and open-source front-end framework for designing

websites and web applications. It contains HTML- and CSS-based design templates for

typography, forms, buttons, navigation and other interface components, as well as

optional JavaScript extensions. Unlike many earlier web frameworks, it concerns itself

with front-end development only [31].

5.3 Detailed description of the implementation

Having explained the basic elements our implementation consists of, we can proceed

describing in detail our project.

5.3.1 The big picture

Our goal, as already explained, was to build a platform for creating and running rapidly a

great amount of containers that offer the major advantages of a virtual machine but with

minimal resource costs. Application residing in Nitos Server should provide us the

capability of creating, running and stopping containers on a Testbed Node of our choice.

Containers should have IP addresses on the range 10.64.98.52 -10.64.98.240 and the

user should be able to use ssh to connect directly to the container. Adding a second

network interface on a container was a feature also needed for specific scenarios.

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

57

5.3.2 Nitos Server Side

 Docker Control Page

The main core of our application resides in the nitlab3.inf.uth.gr server. By calling the link

nitlab3.inf.uth.gr:4003/docker we are introduced to our bootstrap designed Docker

Control Page. This is the main page that gives us the capability to control container

remotely by the use of a graphical, intuitive interface. Creating and running a single or a

number of containers to the node we choose, is as simple as selecting values from the

appropriate fields as seen in the main Docker Control Page below.

Figure 26 : Main control Page

Additional tools for stopping and removing containers from the node are also provided in

the same interface. On creating containers, users can choose the name of the container,

the operating system (ubuntu1604) wanting to use and also the IP address of the

container from a predefined range. Batch Create and Run tab provides the very useful

capability of creating and running a number of containers simultaneously. User provides

a name and a base IP address and all containers created will have ascending IPs from

the given range.

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

58

Figure 27 : Batch Creating & Running Containers

Interface also provides the ability of adding or removing a network to the container giving

the opportunity for experimenting with networking. This procedure adds a new Ethernet

Interface on the Docker container specified, giving it a “dummy” IP address in the range

of 172.10.0.0/24. User can then change the default address of the second interface

(eth1) into one of the appropriate range 10.64.98.52 -10.64.98.240. The tab which

displays running or stopped containers on the node is a tool of great importance for

administrator purposes, giving each time a correct view of containers states on the node.

 Monitor Page

Front page of our application has also a link that transfers us to the monitor page. In this

section, we are presented with a complete and detailed view of all Docker containers

running on the node. A client utilizing the Websocket library Sock.js and the Stomp

protocol connects to RabbitMQ server and presents collected data in a meaningful

manner.

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

59

Figure 28 : Monitoring Page

Each line on the table corresponds to a running container and information about its name,

id, CPU, memory usage and eth I/O is displayed. At the end of each container line, a stop

button exists, providing the extra feature of immediately stopping a container, for

administrating purposes, without even leaving the page.

In order to have a complete view of the resources Docker containers acquire on the node,

monitoring page has also the ability to provide graphic representations of the total CPU

and memory usage of running containers. It should be noted that container statistics and

graphical charts are dynamically updated in a 3 second interval. This supplementary view

completes the overall picture an administrator should have on node running numerous

containers.

5.3.3 Node side

Node is the side where Docker Engine configuration, networking and statistic collection

takes place.

 Docker Configuration and networking

By default, Docker Daemon will listen on socket unix:///var/run/docker.sock allowing

only local connections by the root user. For accessing Docker Server remotely, though,

TCP socket (tcp://0.0.0.0:2375) was enabled, allowing remote calls from our

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

60

application located at nitlab3.inf.uth.gr server. The default Unix domain socket was

retained for debugging purposes. As mentioned in the previous paragraph, Macvlan driver

was chosen for network configuration, as this model suited best the needs of our

implementation. The second ethernet interface of the node (eth1) is configured with the

IP address 10.64.98.51 and all containers created are assigned an address of the default

network 10.64.98.0/23, specifically in the range of 10.64.98.52 -10.64.98.240. The

following picture gives an overview of network configuration on the node.

Figure 29

Figure 29: Network configuration on the Node

 Collecting Data

On the node part of our implementation we needed a way to export the appropriate data

(CPU, memory usage, Eth I/O) from the host and publish them to a RabbitMQ queue for

collection and analysis. Pseudo files, the subsystem mechanism control groups’ uses,

was the way we could extract the information needed. For each cgroup subsystem

(memory, CPU, cpuacct, devices, etc.) Docker creates a pseudo-file with the name (full

ID) of the container containing corresponding information. For example in order to gather

information about CPU usage the file to examine is

/sys/fs/cgroup/cpuacct/docker/container_id/cpuacct.usage.

All remaining statistics were collected in a similar manner with the exception of network

metrics that are not exposed directly by control groups. This is because network

interfaces exist within the context of network namespaces. Metrics per interface is needed

but since processes in a single cgroup can belong to multiple network namespaces, those

metrics would be harder to interpret and not accurate information could be collected from

cgroups. The most appropriate way was to examine the PID of the container and

specifically the file /proc/container_pid/net/dev.

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

61

After collecting the needed data, we used the topic exchange type of RabbitMq server,

described earlier in this document, for publishing stats. Statistics gathered, are then ready

to be presented with the use of charts by the monitor client on the nitlab3.inf.uth.gr

server.

5.4 Future Work

Admitting an application is completed, is definitely a characterization that has very little

relevance with reality, especially in the case of being only in the first version. Procedure

of debugging is non stopping and surely new bugs will be revealed in the future, as the

application is being used. Besides this, new ideas for adding more features and tools will

always be welcomed as there are a number of ways to expand and explore the

possibilities of Docker Containers in the structure of Nitos Testbed.

Some features that could also be implemented in the future:

 Creating and adding new networks using applications’ interface

 Extending container creation for multiple nodes

 Adjusting monitoring page for including multiple nodes

 Integrate with the existing Virtual Machine Creating Tool Platform for combining

vm and container features

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

62

 Table of images

Figure 1 : Native vs Hosted Hypervisor .. 11

Figure 2 : Hypervisor vs Linux Container ... 12

Figure 3 : Concept of Linux Container .. 13

Figure 4 : Linux Containers in Red Hat Enterprise Linux 7 ... 14

Figure 5 : Linux namespaces conceptual view ... 15

Figure 6 : Pid namespace visualization .. 17

Figure 7 : Network namespace .. 18

Figure 8 : Linux container namespace ... 19

Figure 9 : Cgroup, Linux container realization .. 21

Figure 10 : chroot and pivot_root ... 23

Figure 11 : LSM Hook Architecture .. 24

Figure 12 : MAC vs DAC .. 25

Figure 13 : Image consisting of layers .. 30

Figure 14 : Container Layer .. 31

Figure 15 : Containers sharing the same image ... 32

Figure 16 : New image created from an existing one ... 33

Figure 17 : Data volumes ... 34

Figure 18 : Container Networking Model .. 36

Figure 19 : Host Network Driver ... 38

Figure 20 : Bridge Networking Driver ... 39

Figure 21 : Container Exposes Ports.. 40

Figure 22 : Overlay driver perspective .. 41

Figure 23 : Macvlan driver .. 42

Figure 24 : Macvlan truncing .. 43

Figure 25 : Topic Exchange: Messages are routed to one or many queues based on a

matching between a message routing key the routing pattern 54

Figure 26 : Main control Page .. 57

Figure 27 : Batch Creating & Running Containers ... 58

Figure 28 : Monitoring Page ... 59

Figure 29 .. 60

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

63

 References

[1] Wikimedia Foundation, Inc, "Cloud computing," [Online]. Available:

https://en.wikipedia.org/wiki/Cloud_computing.

[2] A. Mouat, "Containers Vs Vm," in Using Docker, Developing and Deploying

Software With Containers, O’Reilly Media, 2016, p. 355.

[3] Red Hat, "Overview of Containers in Red Hat Systems," [Online]. Available:

https://access.redhat.com/documentation/en-

us/red_hat_enterprise_linux_atomic_host/7/html-

single/overview_of_containers_in_red_hat_systems/index.

[4] M. s. O. L. namespace. [Online]. Available:

https://prefetch.net/blog/2018/02/22/making-sense-of-linux-namespaces/.

[5] J. Weissig, "Introduction to Linux Control Groups (Cgroups)," [Online]. Available:

https://sysadmincasts.com/episodes/14-introduction-to-linux-control-groups-

cgroups.

[6] m. s. k, "chroot, cgroups and namespaces," [Online]. Available:

https://itnext.io/chroot-cgroups-and-namespaces-an-overview-37124d995e3d.

[7] T. L. Foundation, "Overview of Linux Kernel Security Features," 11 July 2013.

[Online]. Available: https://www.linux.com/learn/overview-linux-kernel-security-

features.

[8] Canonical Ltd., "Infrastructure for container projects," [Online]. Available:

https://linuxcontainers.org/.

[9] L. L. C. P. Q. D. L. W. a. W. Z. Qi Zhang, "A Comparative Study of Containers and

Virtual Machines in Big Data Environment," p. 8, 5 Jul 2018.

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

64

[10] J. Nickoloff, "4.1 Introducing Volumes," in Docker in Action, Manning Publications

Co, 2016, p. 306.

[11] M. Church, "Docker Reference Architecture: Designing Scalable, Portable Docker

Container Networks," [Online]. Available:

https://success.docker.com/article/networking.

[12] T. Vase, "Advantages Of Docker," [Online]. Available:

https://jyx.jyu.fi/bitstream/handle/123456789/48029/URN:NBN:fi:jyu-

201512093942.pdf?sequence=1.

[13] A. F. R. R. J. R. Wes Felter, "An Updated Performance Comparison of Virtual

Machines," IBM Research Division, Austin, TX 78758 USA, July 21, 2014.

[14] N. Kratzke, "About Microservices, Containers," p. 5, 14 September 2017.

[15] A. C. C. O. T. C. F. Cristian Constantin Spoiala, "Performance comparison of a

WebRTC server on," 13th International Conference on DEVELOPMENT AND

APPLICATION SYSTEMS, Suceava, Romania, May 19-21, 2016.

[16] H.-S. H. I.-Y. M. O.-Y. K. B.-J. K. Kyoung-Taek Seo, "Performance Comparison

Analysis of Linux Container," Advanced Science and Technology Letters , 2014.

[17] HP Enterprise, "Linux container performance on HPE ProLiant servers," p. 22.

[18] S. Lowe, "Virtual Machines Vs. Containers: A Matter Of Scope," 28 May 2014.

[Online]. Available: https://www.networkcomputing.com/cloud-infrastructure/virtual-

machines-vs-containers-matter-scope/2039932943.

[19] "Performance Expectations of Container-Based Infrastructure," 24 June 2016.

[Online]. Available:

https://www.virtuozzo.com/connect/details/blog/view/performance-expectations-of-

container-based-infrastructure.html.

[20] Docker, "Docker Engine API v1.24," 2017. [Online]. Available:

https://docs.docker.com/engine/api/v1.24/.

[21] J. Turnbull, "Using the Docker API," in The Docker Book.

[22] Docker, "doackerd," 2017. [Online]. Available:

https://docs.docker.com/engine/reference/commandline/dockerd/#daemon-socket-

option.

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

65

[23] Docker, "Get started with Macvlan network driver," 2017. [Online]. Available:

https://docs.docker.com/v17.09/engine/userguide/networking/get-started-macvlan/.

[24] Wikipedia, "RabbitMQ," 28 September 2018. [Online]. Available:

https://en.wikipedia.org/wiki/RabbitMQ.

[25] Ruby RabbitMQ Client Maintainers Team, "Bunny: all documentation guides,"

2017. [Online]. Available: http://rubybunny.info/articles/guides.html.

[26] RabbitMQ, "What can RabbitMQ do for you?," [Online]. Available:

https://www.rabbitmq.com/features.html.

[27] RabbitMq, "Introducing RabbitMQ-Web-Stomp," 2017. [Online]. Available:

http://www.rabbitmq.com/blog/2012/05/14/introducing-rabbitmq-web-stomp/.

[28] Wikipedia, "WebSocket," 21 September 2018. [Online]. Available:

https://en.wikipedia.org/wiki/WebSocket.

[29] Chartjs.org, "Chart.js," 2018. [Online]. Available: https://www.chartjs.org/.

[30] Wikimedia Foundation, Inc, "Sinatra (software)," 13 June 2018. [Online]. Available:

https://en.wikipedia.org/wiki/Sinatra_(software).

[31] Wikimedia Foundation, Inc., "Bootstrap (front-end framework)," 19 October 2018.

[Online]. Available: https://en.wikipedia.org/wiki/Bootstrap_(front-end_framework).

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 14:20:22 EEST - 44.192.75.148

