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Introduction

A gradient-enhanced elastoplasticity model is introduced in the direction of circumventing the
numerous-negative analysis accuracy issues linked to the finite element modeling of failure mechanisms of
ductile metals. In addition, an enhanced assumed strain (EAS) hourglass control theory is developed for
the purpose of addressing the numerical phenomenon of zero-energy modes - a phenomenon which often
leads to an approximate solution with no physical meaning. Later, the (EAS) model is implemented in a
reduced-integrated non-linear (gradient-enhanced), hexahedral finite element which is eventually ”imported”
to the commercial finite element analysis software ”ABAQUS”, with the programming of a proper user
element subroutine.

Of course this provided us with the opportunity of exploiting the explicit as well as implicit solvers
of ”ABAQUS” in order to perform F.E. analyses using our newly proposed brick. Ultimately, in a series of
demanding patch problems, the user element is examined thoroughly and its accuracy as well as simulation
convergence rate are measured, evaluated and compared with relevant simulation results of various other
commercial elements. This thesis aims to familiarize the reader with the difficulties of hourglass control as
well as the practical and theoretical challenges of finite element formulation in the non-linear regime and
certainly demonstrates a systematic approach of F.E. efficiency estimation with a comprehensive element
testing problem set.
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Theoretical Section

The first part of this particular section contains a summary of the constitutive model theory implemented in
our non-linear, hexahedral finite element. Then follows a brief discussion concerning the concept of reduced
integration schemes as well as hourglass modes and ultimately, in the context of the last theoretical subsection,
the ideas of hourglass control and specifically those of the enhanced assumed strain techniques are thoroughly
explained.

2.1 Constitutive model: Gradient-enhanced elastoplasticity for
softening behaviour

2.1.1 Introduction to elastoplastic models for softening behavior

For years, various researchers have been focusing their efforts on the numerical modeling of failure mechanisms
of engineering materials. Especially for the case of ductile materials in the non-linear regime, a great challenge
rises due to the fact that their deformation is intensively localized into a narrow zone - a zone whose thickness is
determined by the underlying microstructure of the material. Of course, the characteristic softening response
in plastically deforming solids and eventually the formation of shear bands lead to an ill-condition where the
finite element solution strongly depends on the direction and the fineness of the selected computational mesh.
From a mathematical point of view the boundary value problem loses ellipticity in statics (or hyperbolicity
in dynamics) and ultimately the deformation tends to localize into a singularity.

In the direction of circumventing the critical (for the accuracy of the finite element analysis) issue
stated above, different theories have been developed during the past decades, with the most common of them
being the high-order continuum based models (Aifantis E. C. (a) ,Aifantis E. C. (b) ; Stolken J. S. and Evans
A. G.; Shu J. Y. and Barlow C. Y.) as well as the non local plasticity models( Strömberg L. and Ristinmaa
M.; Nilsson C. ). The later ones introduce a nonlocal quantity which is defined as the spatially weighted
average of the local values of plastic deformation (non local plastic deformation), however these models tend
to be computationally inefficient as the non local variable which ”measures” the plasticity length scale gets
computed in an integral format.

The USER element presented in the context of this thesis utilizes a gradient-enhanced plasticity
formulation (e.g. de Borst R. and Mühlaus H. B. ), a theory which is essentially an extension-upgrade of the
nonlocal plasticity models with the nonlocal quantity being computed with a Taylor series approximation
instead of the integral format. Of course, in contrast with the ’explicit’ gradient-enhanced formulations which
are directly using the high-order gradient terms of the non local quantity, an ’implicit’ format which exploits
the high-order derivatives of the nonlocal value is implemented in our USER element.

2.1.2 General isotropic plasticity model with damage

Following the introduction to gradient-enhanced elastoplasticity models and in the context of the following
subsections, the basic equations integrated in our ABAQUS USER subroutines are presented in detail.

To begin with we can express the yield function as:

Φ = Φ̂ (I1, J2, J3, ε̄
p) = Φ̃ (p, σe, θ, ε̄

p) (2.1)
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CHAPTER 2. THEORETICAL SECTION

where

p =
σkk
3

=
I1
3

(2.2)

σe =

√
3

2
sij sij =

√
3 J2 (2.3)

sin 3 θ = −27

2

J3

σ3
e

(
−π

2
≤ 3 θ ≤ π

2

)
(2.4)

and

J3 =
1

3
tr
(
s3
)

= det s (2.5)

Note that J3 = 0⇔ θ = 0

2.1.3 Gradient Plasticity with damage

The constitutive equations for our model can be defined as follows:

D = De + Dp (2.6)

De = Me : σ (2.7)

Dp = λ̇P (2.8)

P =
∂Φ

∂σ
(2.9)

.
ε̄
p

=

√
2

3
Dp : Dp = λ̇P̄ (2.10)

and of course

P̄ =

√
2

3
P : P (2.11)

at this stage we can express the yield function implemented in our model as:

Φ (σ, ε̄p, ep) = σe − [1−D (ep)]F (θ)σY (ε̄p) = 0 (2.12)

and note that:

ep − `2∇2ep = ε̄p or ep − ε̄p = `2∇2ep (2.13)

with ∂ep

∂n = 0 on S

Acknowledge that if ∇2ep = 0, then ep = ε̄p

Also:

P =
1

3

∂Φ

∂p
δ +

∂Φ

∂σe
N +

1

σe

∂Φ

∂θ
M = N + [1−D (ep)]

dF (θ)

dθ

σY (ε̄p)

σe
M (2.14)
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CHAPTER 2. THEORETICAL SECTION

thus:

∂P

∂ε̄p
= [1−D (ep)]

dF (θ)

dθ

h (ε̄p)

σe
M and

∂P

∂ep
= −dD

dep
dF

dθ

σY
σe

M (2.15)

with

h (ε̄p) =
dσY (ε̄p)

dε̄p
(2.16)

We can now define the boundary value problem

equilibrium : σij,j + ρ bi = 0 (2.17)

kinematics : Dij =
1

2
(ui,j + uj,i) (2.18)

constitutive : D = De + Dp (2.19)

De = Me : σ, Me =
1

2G
K +

1

3κ
J (2.20)

Dp = λ̇P P =
∂Φ

∂σ

.
ε̄
p

=

√
2

3
Dp : Dp = λ̇P̄ P̄ =

√
2

3
P : P (2.21)

Φ (σ, ε̄p, ep) = 0 (2.22)

ep − `2∇2ep = ε̄p (2.23)

Finally, we apply the following boundary conditions:

ui = ûi on Su (2.24)

σij nj = t̂i on St (Su ∪ St = S, Su ∩ St = ∅) (2.25)

∂ep

∂n
=
∂ep

∂xi
ni = 0 on S (2.26)

Of course our gradient plasticity model is defined with the nodal displacements ui as well as the non local
plastic deformation ep treated as primary unknowns and the integral statement for our given problem is
expressed as:

∫
V

[σij,j (u, ep) + ρ bi]u
∗
i dV +

∫
St

[
σij (u, ep)nj − t̂i

]
v∗i dS = 0 ∀u∗,v∗ (2.27)

∫
V

[
ep − `2∇2ep − ε̄p (u, ep)

]
ep∗ dV+

∫
S

ep,i ni γ
∗ dS = 0 ∀ ep∗, γ∗ (2.28)

where u∗ = 0 on Su and with σ = σ (u, ep) , as well as ε̄p (u, ep) determined in VUMAT (ABAQUS
EXPLICIT user defined material)

Now

∫
V

σij,j u
∗
i dV =

∫
V

[
(σij u

∗
i ),j − σij u

∗
i,j

]
dV =

∫
St

σij u
∗
i nj dS −

∫
V

σij ε
∗
ij dV (2.29)
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CHAPTER 2. THEORETICAL SECTION

so 2.27 becomes

∫
V

[
−σij ε∗ij + ρ bi u

∗
i

]
dV +

∫
St

[
σij nj (u∗i + v∗i )− t̂i v∗i

]
dS = 0 ∀u∗,v∗ (2.30)

Then we choose v∗ = −u∗ and we end up with

∫
V

ρ bi u
∗
i dV +

∫
St

t̂i u
∗
i dS −

∫
V

σij (u, ep) ε∗ij dV = 0 ∀u∗ (2.31)

Additionally

−
∫
V

`2∇2ep ep∗ dV = −`2
∫
V

ep,ii e
p∗ dV = −`2

∫
V

[(
ep,i e

p∗)
,i
− ep,i e

p
,i
∗
]
dV = −`2

∫
S

ep,i e
p∗ ni dS+`2

∫
V

ep,i e
p
,i
∗
dV

(2.32)

and 2.28 becomes

∫
V

{
[ep − ε̄p (u, ep)] ep∗ + `2 ep,i e

p
,i
∗}
dV+

∫
S

ep,i
(
γ∗ − `2 ep∗

)
ni dS = 0 ∀ ep∗, γ∗ (2.33)

Then we set γ∗ = `2 e∗ to find

∫
V

{
[ep − ε̄p (u, ep)] ep∗ + `2 ep,i e

p
,i
∗}
dV = 0 ∀ ep∗ (2.34)

Ultimately, we can express the residual for our gradient plasticity problem

R1 (u, ep) ≡
∫
V

ρ bi u
∗
i dV +

∫
St

t̂i u
∗
i dS −

∫
V

σij (u, ep) ε∗ij dV = 0 ∀u∗, ep∗ (2.35)

R2 (u, ep) ≡
∫
V

{
[ep − ε̄p (u, ep)] ep∗ + `2 ep,i e

p
,i
∗}
dV = 0 ∀u∗, ep∗ (2.36)

Notice that σ = σ (u, ep) as well as ε̄p (u, ep) are determined in VUMAT

Generally, the user defined material subroutine operation can be defined as follows:

given σn,En,Ep
n,ε̄pn,epn,∆E and epn+1

Calculate σn+1,Ep
n+1 and ε̄pn+1.

Apparently, our VUMAT performs its calculations almost identically as the standard VUMAT, with the only
difference being that σy is now a function of both ε̄p as well as ep.

2.1.4 Finite element implementation

The 8-node finite element used in the context of this thesis exhibits 32 degrees of freedom, thus for the
following relations,consider n = 32

{u (x)}
3×1

=

 u1 (x)
u2 (x)
u3 (x)


3×1

= [Nu (x)]
3×n

{de}
n×1

and {u∗ (x)}
3×1

= [Nu (x)]
3×n

{de∗}
n×1

(2.37)
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Node DOF Nodal unknowns
1 1-4 (u1, u2, u3, e

p)
2 5-8 (u1, u2, u3, e

p)
3 9-12 (u1, u2, u3, e

p)
4 13-16 (u1, u2, u3, e

p)
5 17-20 (u1, u2, u3, e

p)
6 21-24 (u1, u2, u3, e

p)
7 25-28 (u1, u2, u3, e

p)
8 29-32 (u1, u2, u3, e

p)

[Nu (x)]
3×n

=
[

[Nu1]
3×4

[Nu2]
3×4

[Nu3]
3×4

[Nu4]
3×4

[Nu5]
3×4

[Nu6]
3×4

[Nu7]
3×4

[Nu8]
3×4

]
(2.38)

where

[Nui]
3×4

=

 Ni 0 0 0
0 Ni 0 0
0 0 Ni 0

 i = 1, 2, ..., 8 (2.39)

By operating accordingly, we end up with the following equations for the non-local plasticity ep:

ep (x) = bNe (x)c
1×n

{de}
n×1

and ep∗ (x) = bNe (x)c
1×n

{de∗}
n×1

(2.40)

with

bNe (x)c
1×n

=
⌊

[Ne1]
1×4

[Ne2]
1×4

[Ne3]
1×4

[Ne4]
1×4

[Ne5]
1×4

[Ne6]
1×4

[Ne7]
1×4

[Ne8]
1×4

⌋
(2.41)

bNei (x)c
1×4

=
⌊

0 0 0 Ni
⌋

i = 1, 2, ..., 8 (2.42)

We can now formulate the element strain matrix as:

{ε (x)}
6×1

=



ε11(x)
ε22(x)
ε33(x)
2ε12(x)
2ε13(x)
2ε23(x)


= [Bu (x)]

6×n
{de}
n×1

{ε∗ (x)}
6×1

= [Bu (x)]
6×n

{de∗}
n×1

(2.43)

We also write:

[Bu (x)]
6×n

=
[

[Bu1]
6×4

[Bu2]
6×4

[Bu3]
6×4

[Bu4]
6×4

[Bu5]
6×4

[Bu6]
6×4

[Bu7]
6×4

[Bu8]
6×4

]
(2.44)

and note that:

[Bui]
6×4

=



∂Ni

∂x 0 0 0

0 ∂Ni

∂y 0 0

0 0 ∂Ni

∂z 0
∂Ni

∂y
∂Ni

∂x 0 0
∂Ni

∂z 0 ∂Ni

∂x 0

0 ∂Ni

∂z
∂Ni

∂y 0


i = 1, 2, ..., 8 (2.45)

For the derivatives of non local plastic deformation ∇ep we express the following equations:
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{∇ep (x)}
3×1

=


∂ep

∂x
∂ep

∂y
∂ep

∂z


3×1

= [Be (x)]
3×n

{de}
n×1

and {∇ep∗ (x)}
3×1

= [Be (x)]
3×n

{de∗}
n×1

(2.46)

and finally

[Be (x)]
3×n

=
⌊

[Be1]
3×4

[Be2]
3×4

[Be3]
3×4

[Be4]
3×4

[Be5]
3×4

[Be6]
3×4

[Be7]
3×4

[Be8]
3×4

⌋
(2.47)

with

[Bei]
3×4

=

 0 0 0 ∂Ni

∂x

0 0 0 ∂Ni

∂y

0 0 0 ∂Ni

∂z

 i = 1, 2, ..., 8 (2.48)

At this stage recall from equation 2.36 that the residual of our problem can be defined as:

R ≡
∫
V

ρ bi u
∗
i dV +

∫
St

t̂i u
∗
i dS −

∫
V

[
σij ε

∗
ij + (ep − ε̄p) ep∗ + `2 ep,i e

p
,i
∗]
dV = 0 ∀u∗, ep∗ (2.49)

or in matrix form:

R = bD∗c
1×N

{F}
N×1

= 0 ∀ {D∗}
N×1

{F}
N×1

=
NELEM

A
e=1

{fe}
n×1

(2.50)

and ultimately,

{fe}
n×1

=
∫
V e

[Nu]
T

n×3
{ρb}
3×1

dV +
∫
Se
t

[Nu]
T

n×3

{
t̂
}

3×1

dS −
∫
V e

[
[Bu]

T

n×6
{σ}
6×1

+ (ep − ε̄p) {Ne}
n×1

+`2 [Be]
T

n×3
{∇ep}

3×1

]
dV .

(2.51)

2.1.5 Numerical integration of elastoplastic equations

Recall from section 2.1.2, that our VUMAT treats σn,En,Ep
n,ε̄pn,epn,∆E and epn+1 as known quantities and

eventually calculates σn+1,Ep
n+1 as well as ε̄pn+1.

Also, note that the plastic predictor, as usual, is expressed as:

σe = σn + Le : ∆E (2.52)

and, of course that, two possible conditions exist, regarding the yield criterion:

Condition 1 : Φ (σe, ε̄pn) ≤ 0 which refers to elastic response (2.53)

Condition 2 : Φ (σe, ε̄pn) > 0 which refers to plastic response (2.54)

Acknowledge that for the above statements:

σn+1 = σe, ε̄pn+1 = ε̄pn (2.55)

Then

8
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σn+1 (∆Ep) = σn + Le : (∆E−∆Ep) = σe − 2G∆Ep pn+1 = σekk = known (2.56)

sn+1 (∆Ep) = se − 2G∆Ep (2.57)

∆Ep = ∆λP (σn+1) (2.58)

with 2.58, referring to the backward Euler equation

Now we express the following non-linear system of equations with (∆λ,∆Ep), as unknowns

Φ
(
σn+1 (∆Ep) , ε̄pn+1 (∆Ep)

)
= 0 (2.59)

F (∆λ,∆Ep) = ∆Ep −∆λP (σn+1 (∆Ep)) = 0 (2.60)

where

σn+1 (∆Ep) = σe − 2G∆Ep (2.61)

ε̄pn+1 (∆Ep) = ε̄pn +

√
2

3
∆Ep : ∆Ep (2.62)

As a first estimate, for the initialization of the Newton loop, we can utilize the following:

∆λ =
1

Ln
Pn : Le : ∆E =

2G

Ln
Pn : ∆E, Ln = Pn : Le : Pn+Hn = 3G P̄ 2

n+Hn, Hn = − ∂Φ

∂ε̄p

∣∣∣∣
n

P̄n (2.63)

∆Ep = ∆λPn (2.64)

Ultimately and after (∆λ,∆Ep) become known quantities, we can calculate:

σn+1 = σe − 2G∆Ep, ∆ε̄p =

√
2

3
∆Ep : ∆Ep, ε̄pn+1 = ε̄pn + ∆ε̄p,

∂∆ε̄p

∂∆εp
=

2

3 ∆ε̄p
∆Ep (2.65)

Without getting into deep detail, it can be proven that for our case, (σe,σn+1,∆Ep) are all co-axial, thus
the principal directions of ∆Ep can be estimated from the principal directions of the elastic predictor such
as:

σe =
3∑
i=1

σei n(i) n(i) = known (2.66)

Of course, solving the system of equations 2.59 and 2.60 in the principal system defined by the principal
directions n(i) will significantly lessen the difficulty of our calculations. Obviously, at this point we have to
express the following quantities with accordance to the principal system

∆Ep =
3∑
i=1

∆Epi n(i) n(i), σn+1 =
3∑
i=1

σi n
(i) n(i), Pn+1 =

3∑
i=1

Pi n
(i) n(i) (2.67)

where n(i) are known

Notice that in a three dimensional problem and for the case of an arbitrary coordinate system, there are a
total of 7 unknowns ( ∆λ and the six elements of ∆Epij matrix ) while in the principal system, only 4 unknown

9
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quantities exist (∆λ,∆Ep1 ,∆E
p
2 ,∆E

p
3 ). By re-writing equations 2.59, 2.60, 2.61 and 2.62 with respect to the

principal system we get:

Φ
(
σj
(
∆Epj

)
, Ēpn+1

(
∆Epj

))
= 0 (2.68)

Fi
(
∆λ,∆Epj

)
= ∆Epi −∆λPi

(
σj
(
∆Epj

)
, ε̄p
(
∆Epj

))
= 0 (i = 1, 2, 3) (2.69)

where

σi (∆Epi ) = σei − 2G∆Epi (i = 1, 2, 3) (2.70)

and

ε̄pn+1 (∆Epi ) = ε̄pn +

√
2

3

[
(∆Ep1 )

2
+ (∆Ep2 )

2
+ (∆Ep3 )

2
]

(2.71)

Finally with the values of ∆λ as well as ∆Epi treated as known quantities we proceed with the following
calculations

∆Ep =
3∑
i=1

∆Epi ni ni, σi = σei − 2G∆Epi , σn+1 =
3∑
i=1

σi n
(i) n(i) (2.72)

ε̄pn+1

(
∆Epj

)
= ε̄pn +

√
2

3

[
(∆Ep1 )

2
+ (∆Ep2 )

2
+ (∆Ep3 )

2
]

(2.73)

Where, in case the reader desires to obtain additional information concerning the derivatives in the principal
direction regime, he should refer to Auricchio F. and Taylor R. L.

Prior to advancing to the next theoretical section, it becomes important to state that the gradient-enhanced
elastoplasticity F.E. model presented in the context of the previous subsections corresponds to a more general
finite element, which uses a total of 8 Gauss-Legendre integration points (full-integration scheme). For
reasons comprehensively clarified in the following paragraphs, it is selected that our USER element employs
a single integration point to execute every necessary numerical operation, thus it appears significant that the
previously presented F.E. theory gets modified and generally upgraded.

2.2 Hourglass control with enhanced interpolation techniques

2.2.1 Reduced integration and Hourglass

For 3-D non-linear analysis, it is certainly common that a reduced integration scheme gets utilized for the
purpose of performing the demanding integral operations which ultimately lead to an approximate solution
for a given finite element problem. Of course, reduced integration not only significantly increases our model’s
computational efficiency, but at the same time it usually, successfully tackles the phenomenon of shear or
volumetric locking by “underestimating” the finite element stiffness matrix (it is known that the finite element
method “overestimates” the values of the element stiffness matrix, thus element locking could rise due to
excessive stiffness which can be exhibited for particular loading and/or irregular geometries).

Unfortunately, apart from their beneficial effects mentioned above, reduced integration schemes can
often cause hourglass, a “numerical anomaly” which gives rise to zero-energy modes and essentially occurs
when an eigenvalue analysis performed on the element’s stiffness matrix leads to an abnormal solution,
where the number of calculated zero eigenvalues exceeds our elements’ rigid body modes, as discussed above
Figure 2.2. Definitely, these zero-energy modes are non-physical responses which produce meaningless results
in the event they propagate through the computational mesh. Figure 2.1 demonstrates the deformation of
an 8-node hexahedral element with a single integration point (at the center of the element) under bending
moment. Notice that the vertical and horizontal dotted lines at the center of the element remain perpendicular
preceding the application of the bending moment, which essentially proves that normal and shear stresses
are indeed zero at the integration point and of course, that element deformation occurs with the absence of
strain energy.
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CHAPTER 2. THEORETICAL SECTION

Figure 2.1: Shape change of a reduced integration element under bending moment, the ”hourglass effect”

Figure 2.2 exhibits the fully-integrated/analytic stiffness matrix eigenvalues for a 4-node, 2-D finite
element.Acknowledge that the actual F.E. deformation is expressed as a linear combination of the depicted
modes. Also notice that 2 zero eigenvalues correspond to x and y axis translations and additionally that
a zero eigenvalue refers to rotation around the z axis. In the event that a reduced integration scheme is
introduced, the eigenproblem solution will lead to λ4 = λ5 = 0 because of the fact that the deformation
values (εx, εy, γxy) are calculated as zero at the center of the element (position of the integration point).
Thus spurious modes will rise and deformation will occur with zero deformation energy.

Figure 2.2: Analytic Stiffness matrix for the case of a 4-node,2-D finite element

2.2.2 Introduction to hourglass control

Assuredly, it is clearly understood that hourglass is a factor that typically leads to accuracy/analysis failure
as well as an undesirable phenomenon that has to be methodically addressed and countered in order for a
finite element simulation to be considered as successful.

However, prior to thoroughly discussing the specific hourglass control techniques implemented in our
USER element, it is important to dedicate a few paragraphs in the direction of providing some general
information/knowledge regarding hourglass control as well as finite element formulation and explicit/implicit
algorithms.

For 3-D non-linear analysis, while high-order finite elements suffer from calculation difficulties
concerning the Jacobian inversion of irregular geometries, low-order elements and especially the eight-node
hexahedral element is characterized by exceptional computational efficiency , robustness and ease of use.
Thus, for plastic, elastoplastic, hyperelastic and for non-linear materials in general, various formulations
have been developed for the sake of enhancing and eventually maximizing the efficiency of the eight-node
brick. Of course the implicit algorithms tend to be more accurate, however they present inadequate
computational efficiency and consequently reduced integration schemes (for the case of the hexahedral, a
single point Gauss-Legendre integration is performed) are commonly implemented in finite element analysis.

11
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Unfortunately, for certain demanding mesh types (excessively deformed) or for extreme non-linear conditions
and quasi-static analysis, the convergence rate is so strongly unsatisfying (even for reduced integrated
elements) that it becomes obligatory to sacrifice the reduced error of implicit algorithms for the improved
convergence of explicit formulation. With all the above being said, an explicit formulation for hourglass
control on non-linear elements is presented during the last segment of this theoretical subsection.

As far as it concerns the elimination of spurious modes on reduced integrated and non-linear, finite
elements , a lot of papers including those of Liu W. K. , Ong J. S. and Uras R. A., Koh B. C. and Kikuchi
N., Zhu Y. Y. and Cescotto S. as well as Belytschko T. and Binderman L. P. suggest different methods in the
direction of resolving the issue of hourglass. The specific USER element presented and tested through a series
of patch tests in the context of this Thesis, takes advantage of an hourglass control theory which combines
the incompatible modes method with the physical stabilization method. This theory features enhanced strain
fields which do not require any matrix inversions to solve for the internal element degrees of freedom, it was
primarly introduced by Puso M. A. and afterwards slightly modified as well as upgraded prior to getting
integrated in our USER finite element.

Definitely, an in-depth presentation of the enhanced interpolation hourglass control theory does not
comply with the overall purpose of this specific thesis, thus it appears more appropriate that a brief
discussion regarding the model is pursued, so as the reader gets to understand the general concept and
equations implemented in the hexahedral finite element formulation. After all, in the event that an extensive
comprehension of the enhanced interpolation theory is desired the user should refer to the papers and books
noted in the Bibliographic section. Ultimately, during the last segment of this subsection, a demonstration
of the incremental formulation for our User element in explicit finite element setting, is performed.

2.2.3 Presentation of the enhanced assumed strain hourglass control model

The ”Assumed strain” method assumes geometric linearity and treats stresses σh,displacement increments
∆uh as well as displacement gradients ∆Lh as independent unknowns. Note that subscript h will be deployed
if necessary to declare the interpolated field. Also recall from theoretical section 2.1, that our gradient
plasticity model introduces an additional nodal unknown (non local plastic deformation), thus the element
formulation presented below, also includes ep as well gi, qi (where gi and qi are introduced due to mixed
formulation) to the set of primary unknowns. Recall also, from N. Aravas and J. Papadioti that:

ep + qi,i = ε̄p (2.74)

gi = ep,i (2.75)

qi = −`2 gi (2.76)

Prior to proceeding to the theoretical discussion, it is important to state that the reader should consult
appendinx A for additional information regarding the matrices involved in this section.

For openers, the variational statements can be expressed as:

∫
Ω

(
σhij,j + ρ bi − ρ ühi

)
δuhi dΩ +

∫
∂Ωt

(
t̂i − σhij nj

)
δui dΩ +

∫
Ω

[
σhij − σij

(
∆Lh

)]
δLij dΩ+

+

∫
Ω

(
∆Lhij −∆uhi,j

)
δσij dΩ = 0∀ δu, δL, δσ .

(2.77)

∫
V

(ep + qi,i − ε̄p) ep∗ dV+

∫
S

− qi
`2
ni γ

∗ dS = 0 ∀ ep∗, γ∗ (2.78)

∫
V

(gi − ep,i) q∗i dV = 0 ∀ q∗i (2.79)

∫
V

(
qi + `2 gi

)
g∗i dV = 0 ∀ g∗i (2.80)

While the element interpolation for the ui primary unknowns is defined in the equations below

12
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{
∆uh (x)

}
3×1

= [N (x)]
3×24

{
∆uNe

}
24×1

⇒
{
∇
(
∆uh

)
(x)
}

9×1

=
{

∆uhi,j (x)
}

9×1

= [BL (x)]
9×24

{
∆uNe

}
24×1

(2.81)

{
∆Lh (x)

}
9×1

=

(
[BL]
9×24

+ [Bstab (x)]
9×24

){
∆uNe

}
24×1

+ [G (x)]
9×6

{
∆αNe

}
6×1

(2.82){
σh (x)

}
9×1

= {σ0}
9×1

= const. (2.83)

Where

[BL]
9×24

=
1

V e

∫
Ωe

[BL (x)]
9×24

dΩ (2.84)

and we choose [Bstab (x)]
9×24

as well as [G (x)]
6×6

so that[
Bstab|ξ=0

]
9×24

= [0]
9×24

,
[
G|ξ=0

]
9×24

= [0]
9×6

(2.85)

∫
Ωe

[Bstab (x)]
9×24

dΩ = [0]
9×24

,

∫
Ωe

[G (x)]
9×24

dΩ = [0]
9×6

(2.86)

Notice that 2.82 introduces
{

∆αNe
}

6x1

, however these additional 6 degrees of freedom are internal instead

of nodal and eventually they are eliminated by static condensation. As Puso M. A. states,
{

∆αNe
}

6x1

is

implemented in the finite element formulation in the direction of addressing the phenomenon of shear locking.
Afterwards we can express the element interpolation for ep as:

ep (x) = bNep (x)c
1×8

{
epNe

}
8×1

ep∗ (x) = bNep (x)c
1×8

{
epNe

}
8×1

(2.87)

{∇ep (x)}
3×1

= [Bep (x)]
3×8

{
epNe

}
8×1

{∇ep∗ (x)}
3×1

= [Bep (x)]
3×8

{
epN∗e

}
8×1

(2.88)

{g (x)}
3×1

=

(
[Bep ]
3×8

+
[
Bstab
ep (x)

]
3×8

){
epNe

}
8×1

{g∗ (x)}
3×1

=

(
[Bep ]
3×8

+
[
Bstab
ep (x)

]
3×8

){
epN∗e

}
8×1

(2.89)

{q (x)}
3×1

= {q0}
3×1

{q∗ (x)}
3×1

= {q∗0}
3×1

(2.90)

with

[
Bstab
ep

∣∣
ξ=0

]
3×8

= [0]
3×8

,

∫
Ωe

[
Bstab
ep (x)

]
3×8

dΩ = [0]
3×8

(2.91)

At this stage recall that the shape functions can be written in the following form:

{N (x)}
8×1

= {b0}
8×1

+
3∑
j=1

{bj}
8×1

xj +
4∑
k=1

hk (ξ (x)) {γk}
8×1

(2.92)

with

{b0}
8×1

+
3∑
j=1

{bj}
8×1

xj (2.93)

resulting to constant strain, i.e. B matrix and

4∑
k=1

hk (ξ (x)) {γk}
8×1

(2.94)
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leading to non-constant strain and exploited for stabilization purposes.

Of course {xi}
8×1

, (i = 1, 2, 3) represent the nodal Cartesian coordinates. Also

{γi}
8×1

=
1

8

{hi}
8×1
−

3∑
j=1

(
bhic
1×8
{xj}
8×1

)
{bj}
8×1

 (i = 1, 2, 3, 4) (2.95)

{bi}
8×1

=
1

8

3∑
j=1

(
J−1

0

)
ji
{ξj}
8×1

=

(
∂

∂xi
{N}
8×1

)
ξ=0

(i = 1, 2, 3) (2.96)

At this moment, we can express the residuals as:

R ≡
∫
Ω

ρ bi δui dΩ +

∫
∂Ωt

t̂i δui dΩ−
∫
Ω

σij
(
∆Lh

)
δLij dΩ−

∫
Ω

ρ üi δui dΩ = 0∀ δu, δL (2.97)

ultimately we get

{Ru}
N×1

≡
{
F ext

}
N×1

−
NELEM

A
e=1

∫
dΩ

(
[BL]

T

24×9
+ [Bstab (ξ)]

T

24×9

){
σ
(

∆Lh (ξ)
)}

9×1

dΩ

︸ ︷︷ ︸
{feu}
24×1

− [M ]
N×N

{
üN
}

N×1

= {0} (2.98)

where

[Bstab (ξ)]
9×24

=
J0

J (ξ)
[K0]
9×9

[
B̃stab (ξ)

]
9×24

[G]
24×24

(2.99)

[
B̃stab (ξ)

]
9×24

=
4∑
i=1

[
B̂i (ξ)

]
9×3

[Γi]
T

3×24
(2.100)

and we can calculate
{

∆αNe
}

6×1

from the equations below

∫
dΩ

[G (ξ)]
T

6×9

{
σ
(
∆Lh (ξ)

)}
9×1

dΩ = {0}
6×1

(2.101)

∫
dΩ

[G (ξ)]
T

6×9

{
σ
(
∆Lh (ξ)

)}
9×1

dΩ = {0}
6×1
⇒
{

∆αN
}

6×1

= − [Kαα]
6×6

−1
[Kαu]
6×24

{
∆uN

}
24×1

(2.102)

Note that

[G (ξ)]
9×6

=
J0

J (ξ)
[K0]
9×9

[
G̃ (ξ)

]
9×6

(2.103)

Without getting into deep detail, we can now express the equations for the external forces stabilization
vectors. It can be proven that for the ui primary unknowns we can write:

{festab}
24×1

= J0

4∑
i=1

[Mi]
T

24×3
{fi}
3×1

(2.104)

with

{fi}
3×1

=

∫
dΩ

[
B̂i

]T
3×9

[K0]
T

9×9
{σstab}

9×1
dΩ, [Mi]

24×3

T
= [Γi]

24×3
[J0]
3×3

(2.105)
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and finally we end up with the stabilization equation:

{fi}
3×1

∼= {fi}n
3×1

+ {∆fi}
3×1

(2.106)

where

{∆fi}
3×1

=
[
Ki
uu

]
3×24

{
∆uNe

}
24×1

+
[
Ki
αu

]T
3×6

{
∆αNe

}
6×1

(2.107)

[
Kij
uu

]
3×3

=

∫
dΩ

[
B̂i

]T
3×9

[
C̃0

]
9×9

[
B̂j

]
9×3

dΩ i, j = 1, 2, 3, 4 (2.108)

[
Ki
uu

]
3×24

=
4∑
j=1

[
Kij
uu

]
3×3

[Mj ]
3×24

[Mi]
3×24

= [J0]
T

3×3
[Γi]

T

24×3
i = 1, 2, 3, 4 (2.109)

By operating accordingly we can obtain the following relation for ep:

{reep}
8×1

= 8J0 (ε̄p0 − ep0) {Nep}
1×8 ξ=0

−

`2Ve [Bep ]
T

8×3
[Bep ]
3×8

+`2
∫
dΩ

[
Bstab
ep (ξ)

]T
8×3

[
Bstab
ep (ξ)

]
3×8

dΩ

{epNe }
8×1

= {0}
8×1

(2.110)

and later we end up with

{Ru}
N×1

≡
NELEM

A
e=1

{reep}
8×1

= {0}
N×1

(2.111)

Of course for the (u+ep) formulation, we must combine the residual equations for the ui primary unknowns
with those of ep and obtain the full residual vector: {Re}

32×1
and the full residual matrix is assembled in

accordance with the following ”rules”:

(reep)i → Re4i i = 1, 2,K, 8 (2.112)

(
Jeequil,ep

)
3(i−1)+k,j

→ Je4(i−1)+k,4j i = 1, 2,K, 8 k = 1, 2, 3 (2.113)
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Applications section

The accuracy of the elements is arguably the most important contributor to a successful finite element
analysis. Thus, it is necessary that every newly proposed finite element is subjected to a series of demanding
patch tests in order for the designer to verify that their performance is satisfactory prior to their actual use
in any application.

It became evident that a comprehensive set of element test problems which takes into consideration
various parameters that affect the element accuracy, such as the type of loading, the element geometry, the
material properties or the plasticity flow rule, had to be designed. Of course, the above mentioned patch
test series had to also be able to “detect” the most critical indicators of element accuracy failure: the zero
energy-modes and the volumetric as well as shear locking phenomena.

It is believed that a finite element that does not pass a series of challenging tests, should not even be
used for commercial or research purposes, however it is more than critical for the user to understand that
even if the element successfully corresponds to the needs of a certain problem set, it is not assured that its
performance is sufficient since the rate of convergence could possibly be observably slow for any practical use.

In the context of this thesis’ applications section, a variety of tests is utilized in the direction of
validating the suitability of the enhanced assumed strain method for hourglass control on hexahedral,
non-linear finite elements. In general, straight cantilever beams dominate this particular problem set, due to
their evident simplicity and because of the fact that every principal element deformation mode can be evoked
by loads applied to their free end. Ultimately, it is indeed important to state that every patch test is also
executed using the ABAQUS elements: C3D8, C3D8H and C3D8R and of course comparison of the results
is performed not only among the ABAQUS elements and the USER element but also between every element
and the analytic (benchmark) solution. Note that when applicable, the analysis for ABAQUS elements is
run implicitly so as to achieve simulation results with increased accuracy.

Prior to advancing to our first application, it is important to state that β is a parameter which controls
the “amount of information” actually used in finite element stiffness matrix calculations. Our subroutine
provides the user with the option of manually setting β equal to zero and thus neglecting certain elements
of [Kuu](matrices involved in the calculation of hourglass stabilization forces - Refer to N. Aravas and J.
Papadioti), or else retaining the β parameter value equal to 1 and performing every necessary numerical
operation while using the complete [Kuu] matrices. Puso M. A. mentions that we can set β =0 to eliminate
shear locking in rectangular parallelepiped elements with sides parallel to the coordinate axes, but of course
the user can choose any value for β parameter that ranges from zero to one in the direction of “adjusting”
the USER element to the needs of any given problem/geometry in his attempt of tackling the phenomenon
of shear locking.

3.1 Patch test 1: Extension of a 3-D, 7-element model

Apparently, geometrical deviation from the element’s standard shape (in the case of the hexahedral finite
element the standard shape is a cube) can lead to accuracy failure, especially when the numerical analysis
transits from the purely elastic to the non-linear region or in the instance of demanding loading conditions.
Taking all the above into consideration, it becomes evident that our USER element has to be tested with
a mesh of sensibly irregular finite elements and of course, it is understood that the problem proposed by
Macneal R. H. and Harder R. L., perfectly fits the needs of our study. Our geometry consists of a unit, solid
cube, the selected material properties are: E=2 ∗ 105MPa ; ν=0.25 ; σ0 = 400MPa and a displacement of
magnitude 0.4 mm is implemented in the top face of the cube. Figure 3.1 depicts this particular patch test’s
geometry and provides additional information regarding the exact position of nodes in the mesh.
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Figure 3.1: Patch test number one, geometry description. Length Units: mm

Figure 3.2: σyy principal stress posterior to the implementation of the displacement
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Figure 3.3: Equivalent Von Misses stress σe at the end of the analysis

Figure 3.4: Results for equivalent plastic strain ep

Obviously this analysis’ results confirm that the principal stress at the direction of the implemented
displacement, the equivalent stress as well as the plastic deformation, are indeed homogenous even during
the last increments of the explicit analysis where our material exhibits nonlinear behavior. Undoubtedly
this is an indication that our USER element has the ability to provide trustworthy results for the case of
unidirectional extension, without displaying any signs of accuracy failure.
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3.2 Patch test 2: Nearly incompressible eigenvalue test

In the direction of testing our element’s behavior in the nearly incompressible range, an eigenvalue analysis
is performed for the stiffness matrix of a cubic element with sides of length =1 m. While Young’s modulus
remains constant at E=1 GPa, two separate tests are executed in the elastic material regime and for different
values of Poisson’s constant (ν=0.3 and ν=0.499). Note that, as it is not possible to perform an eigenvalue
analysis using the ABAQUS explicit solver (explicit solution does not formulate an element stiffness matrix),
our analysis is based on the ABAQUS implicit solver. Of course, in the context of this particular patch
problem, a variety of USER elements (UEL/UMAT) with or without hourglass control are tested and the
results of the eigenvalue problem are presented and discussed in the paragraphs below.

Figure 3.5: A simple unit cube used for our eigenvalue analysis

Figure 3.6: Eigenvalue analysis results for ν=0.3 and ν=0.499

Our model presents a total of 32 degrees of freedom (8 nodes with u1,u2,u3 and ep treated as unknows
for each node), thus the overall number of eigenvalues for this problem is, as well 32, and it is expected that
the eigenproblem solution leads to exactly 6 zero eigenvalues (for this 3-D problem there are 6 acceptable rigid
body motions, 3 translational and 3 rotational). Of course, when ν=0.499 the correct eigenproblem solution
should also include an infinite eigenvalue which corresponds to an incompressible mode. As anticipated, the
8-node fully integrated element (utilizing a 2x2x2 Gauss-Legendre integration scheme) performs perfectly for
both given values of Poisson’s ratio, however when it comes to the case of the reduced integrated element with
no hourglass control, more than 6 zero eigenvalues are observed. Obviously, from a total of 32 eigenvalues,
only 10 are non-zero which essentially means that our solution consists of 16 zero-energy modes (spurious
mechanisms with no physical meaning) and that accuracy failure has occurred.
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With all that being said it is understandable that every reduced integrated finite element formulation
has to take into consideration an hourglass control theory. Eventually, this eigenvalue analysis proves that the
only hexahedral that produces meaningful results is the finite element which employs the enhanced assumed
strain hourglass control model discussed in the context of section 2.2.

3.3 Patch test 3: Two-element beam in pure bending

Test number 3 introduces a two-element, elastic cantilever beam which is subjected to pure bending. The
vertical tip displacement u2 is measured for different values of the applied skew distance ”a” and this patch
problem aims to evaluate the distortion sensitivity of the USER element, thus a variety of irregularly shaped
element meshes is examined and ultimately the analysis results are compared with the benchmark solution.
Our cantilever beam is of length=10 mm; height=2 mm; thickness=1 mm and the elastic material properties
are set: E=3000 MPa; ν=0. As displayed in figure Figure 3.7a, a force couple is applied at our geometry’s
tip and the implement force is of magnitude F=10−3N in the direction of generating an equivalent bending
moment M=0.002 Nmm.

(a) Two-element beam with geometric irregularity, in pure bending. Analytic solution: u2 = 0.0005mm

(b) Patch test 3 analysis results

(c) Patch test 3 relative error (percentage deviation from analytic solution)

Figure 3.7: Patch 3: Geometry description (a) and analysis results (b) , (c)

By reviewing this patch test’s results it becomes obvious that the USER element with β parameter
set to zero performs better than every other tested element. For the case of the uniform two-element mesh
the USER element presents astonishingly small relative error while , in addition, and as depicted in 3.8 and
3.9 the USER element still exhibits reduced relative error compared to the ABAQUS explicit elements, even
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for large values of the applied skew distance ”a” . For specific instances where (a > 3) it can be observed
that the reduced integrated ABAQUS element C3D8R or the USER element with β=1, achieve diminished
error, however it is important to acknowledge the possibility of having better approximation of the analytic
solution due to severe accuracy failure, as both of the above mentioned elements are unable to simulate the
analytic solution even for the case of uniform two element mesh.

Figure 3.8: Distortion sensitivity for the USER element, as well as the ABAQUS elements C3D8, C3D8H.

Figure 3.9: Distortion sensitivity for C3D8R (presented separately due to scaling issues caused by extreme
relative error values).
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3.4 Patch test 4: Cantilever beam subjected to shear tip loading

For this patch test proposed by Puso M. A., a cantilever beam is subjected to pure bending load. The
material properties used are: E=2 ∗ 105 MPa, ν=0.3, the analysis is restricted to the purely elastic region,
also a vertical load F of magnitude 15 ∗ 10−3N is applied to the beam’s free end and our geometry is of
length=20 mm, height=2 mm as well as thickness=1 mm. As stated before, geometrical deviation from the
finite element’s standard shape (in the hexahedral finite element case, the standard shape is a cube) can
certainly lead to accuracy failure, thus testing of irregularly shaped meshes is prioritized in the context of
this specific patch test. Figure 3.10 displays all three cantilever beams tested.

Figure 3.10: Mesh types of patch test number 4. Analytic solution: u2 = 0.0003mm

Figure 3.11: Patch test 4 analysis results, for different element types. It is apparent that the displacement
value for most of the cases is “underestimated” which essentially proves the strong presence of the shear
locking phenomenon ( Refer to section2.2).

Figure 3.12: Solution error, percentage deviation from analytic solution

It becomes evident that for this patch test’s rectangular geometry, the USER element with parameter
β set to zero has to outperform the USER element with parameter β set to one. Undoubtedly the analysis
results not only prove that the above statement is indeed true, but at the same time they actually underline,
that when β=0 the USER element presents observably smaller relative error (percentage deviation from
theoretical solution value) than every explicit ABAQUS finite element tested at any given mesh type, while
at the same time the USER element demonstrates almost zero relative error for the case of the uniform
mesh. Unfortunately for the instances of Type A mesh as well as Type B mesh the USER element cannot
successfully encounter the severe presence of shear locking phenomenon, however it still accomplishes reduced
relative error compared to the tested ABAQUS elements and especially compared to the C3D8R, a reduced
integrated finite element which completely fails to simulate the accurate (according the benchmark solution)
tip deflection, not only for the TYPE A mesh but also for TYPE B mesh and even for the case of the uniform
mesh.
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(a) Type A mesh (b) Type B mesh

(c) Uniform mesh

Figure 3.13: Vertical deformation for different mesh types, using the USER element with β = 0

3.5 Patch test 5: Cantilever beam subjected to various loading
conditions

Figure 3.14: Different mesh types of this patch test’s cantilever beam; (a) Uniform mesh/regular shape
elements ; (b) Trapezoidal shape elements ; (c) Parallelogram shape elements
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Patch test number 5, proposed by Macneal R. H. and Harder R. L., suggests that a cantilever beam
of length=6.0 m; Height=0.2 m; Thickness=0.1 m is subjected to various tip loading conditions, such as
extension, in-plane shear and out-of-plane shear. The material properties for our given geometry are: E=1.0∗
107Pa; ν=0.3 and in accordance with patch test number 4 the simulation is bounded in the linear regime,
while the total tip force is set at F = 10−3N . The purpose of this particular patch test is similar to that
of the previous one, as our USER element’s performance is challenged through a series of different (regular
or irregular) mesh types, however this analysis aims to additionally test the behavior of an elastic cantilever
beam, under tensile and out-of-plane shear loading conditions, instead of solely focusing on pure bending.

Figure 3.15: Analysis results for the case of in-plane shear tip loading. Benchmark solution: u2 = 0.000108m

Figure 3.16: Analysis results for the case of extension. Benchmark solution: u1 = 0.00003m

Figure 3.17: Analysis results forout-of-plane shear tip loading. Benchmark solution: u3 = 0.000432m

As far as it concerns the cases of in-plane and out-of-plane shear tip loading the USER element exhibits
great performance characteristics when it comes to the uniform mesh, however it is apparent that the relative
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error rises significantly for the instances of trapezoidal or parallelogram shaped elements. Unfortunately, for
the specific occasion of trapezoidal shape elements subjected to in-plane shear tip loading, it is observable that
the USER element with parameter β set to one, actually, outperforms the USER element with parameter
β set equal to zero, which is definitely not something that should be expected, however, both elements
exhibit signs of severe shear locking phenomena which ultimately leads to accuracy failure and the above
results shouldn’t be taken into consideration. When the cantilever beam is subjected to tensile tip loading,
it becomes clear that the ABAQUS elements present reduced relative error compared to the USER element
but it can be stated that the actual performance improvement is indeed insignificant.

(a) in-plane shear tip loading (b) Out-of-plane shear tip loading

(c) Tensile tip loading

Figure 3.18: Tip loading description

3.6 Patch test 6: Twisted beam under various loading conditions

Figure 3.19: The twisted beam of patch test 6

In the context of patch test number 6, a twisted beam is subjected to pure bending as well as
out-of plane shear tip loading and the displacement in the direction of the implemented force is measured
and eventually correlated to the analytic solution. Our beam is of length=12.0 mm; height=1.1 mm;
thickness=0.32 mm and presents a twist of 90◦ (root to tip). Furthermore, the elastic material properties
are set at: E = 29.0 ∗ 105MPa; ν = 0.22 and a 12x2x1 computational mesh is utilized.

Dissimilar to the straight beam problem, for the case of the curved cantilever beam, variations of the
principal deformation modes can be elicited by pure shear loading conditions (in-plane-shear or out-of plane
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shear at tip). Note that this particular patch test is the only one in this thesis’ applications section, which
essentially tests the effect of warp on hexahedral elements, as a twist of 7.5◦ is exhibited at each element of the
beam. In addition, it is certain that the element’s shape is far from a normal cube (the standard shape for our
hexahedral finite element) which will essentially assist in the examination of the effect of shape irregularity
in the analysis accuracy. Notice that the reference solution utilized for error estimation purposes is suggested
by Macneal R. H. and Harder R. L.. Of course newer theories such as the linearized three-dimensional beam
theory proposed by Zupan D. and Saje M. reach an analytic result for the material linear regime but their
deviation from MacNeal’s solution is definitely insignificant.

(a) Deformed result for twisted beam subjected to
out-of-plane shear. Scale factor=300

(b) Deformed result for twisted beam subjected to in-plane
shear. Scale factor=300

Figure 3.20: Deformed results for patch 6

Analysis results, prove that the USER element (with β = 0) does not exhibit any signs of accuracy
failure even in the event of warped and heavily irregular shaped elements .It is obvious that both for the case
of out-of-plane shear and that of in-plane shear tip loading the USER element’s performance is spectacular
as the error (percentage deviation from benchmark solution) is almost zero, while, in contrary, the tested
ABAQUS elements fail to keep up with the twisted geometry of patch six’s cantilever beam.

Figure 3.21: Patch 6 results for the case of in-plane shear tip loading. MacNeal’s Benchmark solution:
u2 = 0.001754mm. Zupan’s Benchmark solution: u2 = 0.001749mm

Figure 3.22: Patch 6 results for the case of out-of-plane shear tip loading. MacNeal’s Benchmark solution:
u3 = 0.005424mm. Zupan’s Benchmark solution: u3 = 0.005429mm
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3.7 Patch test 7: Cyclic loading of a cantilever beam

As Puso M. A. mentions, incremental methods occasionally exhibit remaining-permanent deformation, when
an elastic material is loaded and unloaded, which is indeed a negative numerical phenomenon with no
physical meaning. Thus, it becomes important that our problem set features a patch test that evaluates
the performance of our USER element in the event of cyclic loading. For the needs of patch test number
7, a straight cantilever beam of length=10m; Height=1m; depth=1m is used, the elastic material properties
are set to E=20GPa(≡ 2 ∗ 1010Pa); ν = 0.4 and the analysis is restricted to the purely linear deformation
regime (Green-St. Venant material model).At first, a 6x2x1 coarse mesh is used, however later, a fine 45x8x8
mesh is established and the problem is run explicitly using a large number of time increments (approximately
10 ∗ 6), for convergence validation purposes. Ultimately, for this example, a beam is subjected to an axial
load, then a shear load and finally unloaded, with the loading sequence being as follows:

(1)The axial load is ramped up from P=0 to P=2∗104N and eventually deformed by u1 = 0.101319m (USER
element with β = 0) at time t = 3.3 ∗ 10−3s, while the vertical load V, is set at zero.
(2)The axial load P remains at P=2 ∗ 104N and the vertical load is ramped up from V=0 to V=50N at
time t = 6.6 ∗ 10−3s. We can calculate the total deformation at the end of step 2 as: u1 = 0.101248m and
u2 = 0.0.0364161m (USER element with β = 0)
(3)From t = 6.6 ∗ 10−3s to t = 10−2s both the shear and axial forces are removed (ramped down).
Spurious/permanent deflection at this point is not observable as depicted at Figure 3.23 (c). However a
minimal amount of remaining total deformation can still be calculated as : u1 = −1.96592 ∗ 10−7m and
u2 = 0.0.000131642m.
Notice that P and V retain their orientation with respect to the global coordinate system for the whole
duration of the simulation.

Prior to proceeding to the test results, acknowledge that this particular analysis is time independent,
thus the time duration of each step won’t affect our simulation results. Of course, in the event that the
user desires to obtain a solution for rate-dependent material models (viscoelastic materials for example) , it
becomes clear that step duration should be thoroughly considered.

Figure 3.23: (a) Description of the beam for t = 3.3 ∗ 10−3s. ; (b) Beam for t = 6.6 ∗ 10−3s .; (c) Final shape
of the beam. Spurious deformation is not visible.; Deformation Scale factor=1 for every instance.
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Figure 3.24: Horizontal Deflection u1 vs analysis time

Figure 3.25: Vertical Deflection u2 vs analysis time

Every tested element exhibits a certain amount of permanent vertical as well as horizontal deformation,
however the ammount of remaining distortion succeeding the unloading is truly insignificant when correlated
to the maximum value of shear or tensile deformation respectively. It is clear that the Abaqus elements
perform really well, but especially for the case of our USER element (with β = 0), the magnitude of permanent
shear deformation (which according to Puso M. A. is the most critical factor that has to be thoroughly
examined in the context of this patch test) is sensibly reduced compared to that of C3D8. Also, signs of
shear locking are indeed observable for the instances of the USER element (with β = 1) as well as the
C3D8R ABAQUS element and of course, it can be stated that the value of permanent spurious deformation

28



CHAPTER 3. APPLICATIONS SECTION

is actually analogous to the intensity of the shear locking phenomenon.Note that the analysis is run explicitly
for ABAQUS elements C3D8 , however the C3D8H is not support by the explicit solver, thus an implicit
simulation is performed for this specific element.

Figure 3.26: Absolute percentage difference for horizontal deflection u1 (Maximum value/End Value)

Figure 3.27: Absolute percentage difference for vertical deflection u2 (Maximum value/End Value)

3.8 Patch test 8: Necking of a tensile specimen

It has been sporadically reported that a variety of elements using the enhanced assumed strain hourglass
control techniques, exhibit problematic behavior when loaded in the large tensile strain regime. In order
to examine if the above statement applies to our USER element, a plain strain bar of length=100 mm ;
diameter=24 mm is utilized and it can be observed that the computational mesh is finer at the tip than
the base of the bar. Of course this linear perturbation is implemented in our geometry, in the direction of
initiating and eventually accelerating the process of necking of our tensile specimen. Eventually, the strain
bar is constrained at its bottom end, while a displacement of magnitude u2 = 30mm is applied on its tip.
Notice that a power law plasticity model of type:

σy (ε̄p) = σ0

(
1 +

ε̄p

ε0

)1/n

, ε0 =
σ0

E
(3.1)

is used and the material constants for this patch test are: Young’s Modulus E=2∗105MPa; Poisson’s constant

ν = 0.3; Yield strength σ0=200MPa; Density ρ = 7.85 · 10−9 N s2

mm4 as well as hardening exponent n=10. Note
that the analysis is rate independent and additionally that effects of temperature are neglected.

Figure 3.28: Deformation visualization for different parameter β options of the USER element.
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Figure 3.29: Force-displacement diagram for tested elements. Noise/oscillations for the user elements are due
to the usage of ABAQUS explicit solver.

Figure 3.30: Strain bar deformation for different elements.
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Figure 3.29 shows that the USER element as well as the ABAQUS element C3D8 actually perform
well in the large strain tensile regime, however the C3D8R exhibits signs of volumetric locking. Furthermore,
our analysis results prove that the ABAQUS element C3D8H, which introduces a supplementary degree of
freedom - the hydrostatic pressure p, operates excellent and with reduced signs of volumetric locking that the
other tested elements. Ultimately it can be acknowledged that the non-linear simulations lead to identical
results for the cases of β = 0 as well as β = 1 and this behavior is definitely expected as the β is introduced
to address the undesirable phenomenon of shear locking. Of course in the context of this patch problem, our
strain bar is subjected to pure tensile load, thus the absence of shear deformation secures that shear locking
is not probable to emerge.
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Conclusions

It becomes obvious that the introduction of non-local plasticity ep, to the set of primary nodal unknowns in
finite element analysis,certainly resolves the disastrous phenomenon of solution dependence on the direction
as well as fineness of the computational mesh. At the same time, the enhanced-assumed strain method for
hourglass control provides a non-arbitrary (in contrast to the ”classic” hourglass control models) solution
to the rise of spurious modes. Unfortunately, even when a proper theoretical basis is established in finite
element formulation, the user elements suffer from certain types of accuracy failure, with the shear as well
as volumetric phenomena certainly being the most characteristic ones.

Thus, in the direction of validating the quality of simulation associated with our hexahedral brick,
a series of demanding patch tests is performed on the user element as well as the commercial elements
C3D8,C3D8H and C3D8R, and ultimately the analysis results are correlated with the corresponding
benchmark solutions. By taking into consideration the patch tests executed in the context of this thesis,
it can be stated that for most of the cases, and with a comprehensive selection for the value of β parameter,
the newly-proposed finite element performs indeed well and noticeably better than the commercial, ABAQUS
elements. Obviously the USER element operates well in the linear, as well as the plastic material regime,
however it exhibits signs of accuracy failure when tested in elastic problems with heavily distorted meshes
but, undoubtedly, this phenomenon certainly affects most of user or commercial finite element formulations.
Fortunately the numerical analysis’ results remain trustworthy for moderately wrapped elements and
additionally, the user element presents minor to neglectable volumetric locking when tested in the large
plastic strain region, where necking occurs.
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Appendix

A.1 Average Matrices and stabilization forces

as proposed by Flanagan D. P. and Belytschko T.:
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=
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A = 1, 2, 3, 4, 5, 6, 7, 8 (A.2)

{bi}
8×1

=
1

Ve

∫
Ωe

∂

∂xi
{N}
8×1

dΩ i = 1, 2, 3 (A.3)

A.2 Strains in natural space

For the natural space (x,n,ζ) we define: (as mentioned by Simo J. C. and Rifai M. S.)

∆L̃ij =
J

J0
(J0)mi(J0)nj∆Lmn, ∆ũAi = (J0)ki ∆uAk (A.4)

(J0)ik =
∂xi
∂ξk

∣∣∣∣
ξ=0

, jik =
(
J−1

0

)
ik

=
∂ξi
∂xk

∣∣∣∣
ξ=0

(A.5)

and note that

∆Lij =
J0

J
jmi jnj ∆L̃mn, ∆uAi = jki ∆ũAk (A.6)

In matrix form (
[K0]
9×9

=
[
J−1

0

]
9×9

)
{

∆L̃
}

9×1

=
J

J0
[J0]
9×9
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=
J0
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{
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}

9×1

(A.7)

and
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{
∆ũNe,i
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where
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. . .
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Finally we can write:
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A.3 Stabilization matrices at natural space

Definition for shape functions:

{N (ξ)}
8×1

=
1

8

{s}
8×1

+
3∑
j=1

ξj {ξj}
8×1

+
4∑
k=1

hk (ξ) {hk}
8×1

 (A.11)

where {ξi}
8×1

, (i = 1, 2, 3), or alternatively

{N (x)}
8×1

= {b0}
8×1

+
3∑
j=1

{bj}
8×1

xj +
4∑
k=1

hk (ξ (x)) {γk}
8×1

(A.12)

bsc
1×8

=
⌊

1 1 1 1 1 1 1 1
⌋

(A.13)

h1 (ξ) = ξ1 ξ2, h2 (ξ) = ξ2 ξ3, h3 (ξ) = ξ3 ξ, h4 (ξ) = ξ1 ξ2 ξ3 (A.14)

bh1c
1×8

=
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1 −1 1 −1 1 −1 1 −1
⌋
, bh2c

1×8
=
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(A.15)

bh3c
1×8

=
⌊

1 −1 −1 1 −1 1 1 −1
⌋
, bh4c

1×8
=
⌊
−1 1 −1 1 1 −1 1 −1

⌋
(A.16)

We utilize the second term of A.12 to define the stabilization matrices
[
B̃A (ξ)

]
9×3

so as:

Ñ (ξ)
8×1

≡
4∑
i=1

hi (ξ) γi
8×1

or ÑA (ξ) ≡
4∑
i=1

hi (ξ) γAi A = 1, 2, 3, 4, 5, 6, 7, 8 (A.17)

[
B̃A

stab (ξ)
]

9×3

=



η γA1 + ζ γA3 + η ζ γA4 0 0
0 ξ γA1 + ζ γA2 + ζ ξ γA4 0
0 0 η γA2 + ξ γA3 + ξ η γA4

ξ γA1 + ζ γA2 + ζ ξ γA4 0 0

0 η γA1 + ζ γA3 + η ζ γA4 0

η γA2 + ξ γA3 + ξ η γA4 0 0

0 0 η γA1 + ζ γA3 + η ζ γA4
0 η γA2 + ξ γA3 + ξ η γA4 0

0 0 ξ γA1 + ζ γA2 + ζ ξ γA4


(A.18)
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and finally we get:
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A.4 Useful formulas/equations
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ultimately, we end up with:

[K0]
9×9

= diagonal
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j2
1 j2

2 j2
3 j1 j2 j1 j2 j1 j3 j1 j3 j2 j3 j2 j3

}
(A.24)
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