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Περίληψη

Σε αυτό το έγγραφο, το οποίο είναι γραμμένο στην Αγγλική γλώσσα, παρουσιάζο­

νται τρεις διαφορετικοί αλγόριθμοι ομαδοποίησης σε υπεργραφήματα, χρησιμοποιώντας 

δεδομένα από το χρηματιστήριο της Αμερικής. Παρουσιάζεται ο τρόπος που 

λειτουργούν, ο ορισμός τους και γίνονται για τον καθένα πειράματα, με την ίδια είσοδο. 

Επιπλέον, παρουσιάζεται ένας αλγόριθμος εύρεσης κοινών χαρακτηριστικών διάφορων 

στοιχείων που θα χρησιμοποιηθεί για την δημιουργία του υπεργραφήματος των μετοχών. 

Η υλοποίηση των αλγορίθμων που χρησιμοποιήθηκαν έγινε σε Python, εκτός από τα 

συστήματα ομαδοποίησης υπεργραφημάτων που χρησιμοποιήθηκαν τα πακέτα που προ- 

σφέρονται δωρεάν από τους δημιουργούς τους.

Έπειτα, τα αποτελέσματα συγκρίνονται μεταξύ τους με βάση τα πραγματικά μελλοντικά 

δεδομένα του χρηματιστηρίου, προσπαθώντας να προβλέψουμε τις κινήσεις των μετο­

χών μία συγκεκριμένη μελλοντική ημέρα. Χρήσιμα συμπεράσματα αποκομούνται την 

αποδοτικότητα και την ορθότητά τους στον συγκεκριμένο τομέα.
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Abstract
In this thesis, the use of various hypergraph clustering algorithms is examined, some 

of which are commonly used in the scientific community, in hypergraph networks and 

their application in stock prediction. Stock prediction is the study of stock market 

trends to predict future stock prices. After creating the hypergraph using one of 

asssociation rules algorithms eg. Apriori [6], three algorithms are used in this project 

to find stock clusters and these are by order: hmetis [13, 14], KaHyPar [21] and 

PaToH [7]. Each of these has its own advantages, however, the best method of these 

three is defined based on which one produces more accurate results.
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Chapter 1

Introduction

The extension of conventional clustering to hypergraph clustering, which involves 

higher order similarities instead of pairwise similarities, is increasingly gaining atten­

tion in many scientific areas. This is due to the fact that many clustering problems 

require an affinity measure that must involve a subset of data of size more than two. 

Hypergraph clustering can be very usefull to solve some problems in variety of social, 

biological, and technological fields, including data mining, wireless communications, 

computer vision, very large scale integration circuits (VLSI), and stock prediction.

In this chapter, hypergraph theory will be introduced. In the following, hypergraph 

clustering problem and stock prediction problem will be introduced.

13



1.1 Hypergraph Thoery

Hypergraphs are generalization of graphs having edges, called hyperedges that connect 

more than two vertices. As shown in Fig. 1-1 a hyperedge is an edge that can be 

any subset of a given set of vertices rather than two-element subsets. In Fig. 1-1, 

we can see that e5 is a two-element set of vertices (4,7), so edge e5 is both edge 

and hyperedge, but e\ is a three-element subset of vertices (4,5,6) called hyperedge. 

Following the nomenclature of [23], we have:

e4

Figure 1-1: An example of hypergraph

Definition 1.1. Let X  = {χ ι ,  X2,. . . ,  xn} be a finite set, and let E  = {βχ, β2, . . . ,  en} 

be a familt ob subsets of X such that:

6* Φ (i 1,2, . .·  m),
mU ei =  X.

i=1

(1 .1)

The pair Η — (X , E) is called a hypergraph with vertex set X and hyperedge set 

E. The elements x\, X2 , . . . ,  xn of X axe vertices of Hypergraph H, and the sets 

βχ, β2, . . . ,  en are hyperedges of hypergraph H.
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In addition, E(x), x  e  X  denotes the set of all the hyperedges which contains vertex 

x. The cardinality of E(x), i.e., \E(x)\, is called the degree of vertex x. The maximum 

degree of the hypergraph H is denoted by:

A(H)  =  m ax \E(x)\. (1.2)
x € X

A hypergraph in which each vertex in the vertex set is with the same degree k > 0 

is called k-regular.Also a hypergraph in which each hyperedge in the hyperedge set 

have the same degree of cardinality r  > 0 is called r-uniform. It is clear, that if all 

hyperedges have same degree r = 2 the hypergraph will be two-uniform graph and it 

will be a standard graph where a hyperedge connects two verticies like the standard 

edge.

Definition 1.2. The incidence matrix of a hypergraph H ( X , E ) is a matrix 1(H) 

with rows representing the vertices and columns representing the hyperedges of H 

such that:
1, when Xi e ej 

0, when x  ̂ ej
1.3)

An example of the incidence matrix is shown in Fig. 1-2. In contrast with regular 

graph, which can be specified with both its incidence matrix or its adjacency matrix, 

in hypergraph there is no one-to-one correspondence with its adjacency matrix, so a 

hypergrapg can only be determined by its incidence matrix. An entry of 1 in location 

(i, j) where i corresponds to i-th vertex and j corresponds to j-th hyperedge, means 

that this vertex belongs to this hyperedge. On the contrary an entry of 0 in location 

(i, j) means that the i-th vertex is not part of the j-th hyperedge. Similar to the

15



incidence matrix of graph, it also follows that empty hyperedges mean zero columns 

and isolated vertices mean zero rows in the incidence matrix. If the vertex set of a 

hypergraph is empty, then the incidence matrix consists only of the row containing 

the names of hyperedges. Similarly, if the hyperedge set is empty, then the incidence 

matrix consists only of the column containing the names of vertices.

e l e 2 e 3 e 4 e 5 e 6

1 (1 1 1 43 a 0

2 0 i (1 1 0 1)

3 (3 0 (1 1 0 1

4 t 0 (1 ] 1 1)

5 I 1) 1 13 t) 4)

6 1 0 l 4» 0 It

7 41 0 (3 1 It

1(H)

Figure 1-2: Example of a hypergraph and its incidence matrix 1(H)

1.2 Hypergraph Clustering

CLustering is a grouping task that intends to group a set of objects, in our case ver­

tices, in such way that objects who belong in the same group, called a cluster, are 

more similar to each other, in some way, than to those who belongs in other groups. 

The theory behind the hypergraph clustering generalises the the traditional idea of 

clustering, whereby the affinity measure is now defined over more than a pair of ob­

jects. The process itself become more complex than the corresponding proccess of 

graph clustering, beacause, the graph itself become more complex and the similarity 

of objects begin to be more uncertain.
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In the graph partitioning view, a partitioning of H split the set of objects (vertices) 

into K discrepant clusters. Especially, a two-way partitioning results in (Vi, V2), where 

V i\ jV 2 = V  and Vi P) V2 = 0. The "goodness" of the partitioning is inversely pro­

portional to the cost of the cut that separates the vertices. Many methods have been 

proposed to find the best K-way partitioning, given an arbitrary hypergraph H.

1.3 Stock prediction

Stock prediction is the act of trying to determine the future value of a company stock, 

or other financial instrument traded on an exchange. The successful prediction of a 

stock’s future price could yield significant profit. The efficient-market hypothesis sug­

gests that stock prices reflect all currently available information and any price changes 

that are not based on newly revealed information thus are inherently unpredictable. 

But many studies show that stocks belonging to the same group tend to rise or fall 

together in a specific time-space.

So instead of trying to predict the actual prices of stocks, clustering technics will be 

used to group the stocks. After that, an algorithm will be used to predict an increase 

or decrease of the stocks prices in specific future date.
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Chapter 2

Input Data

The main input data for the tests applied on algorithms was a dataset extracted from 

S&P 500 index[l], which is an American stock market index based on the capitaliza­

tions of 500 large companies.

In this chapter, data extraction will be representing. In the following, the data trans­

formation will be explained and the hypergraph creation approach will be introduced.

2.1 S&P 500 extraction

The data was extracted from the pandas-datareader[2] which is a Python [3] library 

primarly has the form as shown in Table 2.1. The table consists of the date that we 

are referring, the opening price in US dollars, the higher and lower price of the stock 

in this particular date, the closing price, the volume which is the number of shares or 

contracts traded in a security or an entire market during a given period of time and 

the reference name of the stock (eg. AAL is the reference name of American Airlines 

Group Inc.).

19



date open high low close volume Name
2016-08-11 33.64 34.4552 33.6302 34.3374 7666723 AAL
2016-08-12 34.1213 34.5436 34.0427 34.2981 6064005 AAL
2016-08-15 34.3374 35.408 34.2784 34.2312 7137204 AAL
2016-08-16 35.0347 36.1348 34.9954 34.0955 9384959 AAL
2016-08-11 105.0504 105.4473 104.4019 104.4793 27484506 AAPL
2016-08-12 104.3341 104.973 104.3341 104.7213 18660434 AAPL
2016-08-15 104.6826 106.0378 104.6245 105.9798 25868209 AAPL
2016-08-16 106.125 106.7058 105.7184 105.883 33794448 AAPL
2016-08-11 167.1584 169.7684 166.0228 166.0726 829368 AAP
2016-08-12 165.4549 165.8634 162.8649 165.3653 1165191 AAP
2016-08-15 166.1124 169.2504 164.917 167.1185 1854564 AAP
2016-08-16 161.3806 164.7676 159.7269 159.7867 3030792 AAP
2016-08-11 55.1848 55.9403 54.4637 55.1942 9353242 ABBV
2016-08-12 60.159 60.7174 56.6958 58.7887 18693998 ABBV
2016-08-15 59.1829 61.0506 58.9295 60.0651 15948718 ABBV
2016-08-16 59.6334 59.9243 58.9295 59.2204 10201578 ABBV

Table 2.1: Example of S&P 500 extracted data

2.2 S&P 500 transform ation

Because the information shown in Table 2.1 is not very handy additional algorithm 

running over this data to create a binary table as shown in Table 2.2. Two datasets 

will be used in this project. The first data set consists of a binary table 1010 x 525. 

Each row of this table corresponds to up or down movement indicator for one of the 

505 stocks in S&P 500, and each collumn corresponds to one of 525 trading days from 

1st Mar. 2016 to 31st Mar. 2018. The second data set consists of a binary table 

1006 x 525. Similarly as the first data set each row of this table corresponds to up 

or down movement indicator for one of the 503 stocks in S&P 500, and each collumn 

corresponds to one of 525 trading days from 1st Sept. 2015 to 30st Sept. 2017. An 

entry of 1 in each data set in location (i,j) where i corresponds to up indicator of 

a stock means that the closing price of this stock on j-th day is significantly higher 

(2% or 1/2 point or more) than the day before. Similarly, an entry of 1 in location 

(i,j) where i corresponds to down indicator of a stock means that the closing price of 

this stock on j-th day is significantly lower (2 % or 1/2 point or more) than the day 

before.
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Up Indicator

Down Indicator

2016-08-11 2016-08-12 2016-08-15 2016-08-16
AAL 0 0 1 1
AAPL 0 0 0 0
AAP 0 0 0 0
ABBV 0 1 1 0
AAL 0 0 0 0
AAPL 0 0 0 0
AAP 0 0 0 1
ABBV 0 0 0 0

Table 2.2: Example of binary table based on the extracted data used in Table 2.1

2.3 HyperGraph Creation

In order to create the hypergraph from the binary table, we can assume that the 

hyperedges will be the set of vertices that have the same up or down indicator for 

each day. This process will lead to a very small amount of hyperedges and in some 

cases, this relation between two or more vertices may be useless. So to overcome these 

problems in the determination of related items that can be grouped as hyperedges 

and to include some useful information, we will use frequent item sets computed by 

an association rule algorithm. In this project, the association rule algorithm that will 

be used is the well known Apriori [6] algorithm to find related item sets.

2.3.1 Apriori

One of the first algorithms for mining all frequent itemsets and strong association 

rules trying to solve the problem of mining association rules over basket data was 

introduced by in [5]. Shortly after that, the algorithm was improved and renamed 

to Apriori [6]. Apriori algorithm is, the most classical and important algorithm for 

mining frequent itemsets. Apriori is used to extract all frequent itemsets from input 

data that consists of a set of transactions, where each transaction is a set of items.
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An example of an association rule migth be that 98% of customers that purchase 

tomatos and bread also get and cheese.

The following is a formal statement of the problem as described in [5]. Let I  = 

{*i, i2, ■ · · , in} be a set of literals, called items. Let D be a set of transactions, where 

each transaction T  is a set of items such that T C I .  Associated with each transaction 

is a unique identifier, called its TID.  We say that transaction T  contains X ,  a set of 

some items in I, if X  C T. An association rule is an implication of the form X  => Y, 

where X  C / , Y  C / , and X  Π Y  =  0. The rule X  => Y  holds in the transaction set 

D with confidence c if c% of transactions in D that contains X also contains Y. The 

rule X  => Y  has a support s in the transaction set D if s% of the transactions in D 

contains X  ΓλΥ.

Given a set of transactions D , the problem of mining association rules is to generate 

all association rules that have support and confidence greater than the user-specified 

minimum support (called minsup) and minimum confidence (called minconf) respec­

tively.

Apriori Algorithm Description

The key idea behind the Apriori is to make multiple passes over the dataset. It make 

use of breadth-first search to iterate through the search space, where k-itemsets are 

used to find (k+l)-itemsets. The basic steps to mine the frequent elements are as 

follows:

• Generate and Test: In this step, find the 1-itemset frequent elements Li by 

scanning the database and removing all those elements from C\ which cannot 

satisfy the minimum support criteria.

•  Join step: To proceed in the next step all elements of C& join the previous 

frequent elements by self join i.e. Τ&_ι * L^- 1 , which is also known as Cartesian 

product of Lk- i . This step generates new candidate k-itemsets based on joining
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Lk-i with itself which is found in the previous iteration. Let Ck denote candidate 

k-itemset and Lk be the frequent k-itemset.

•  Prune step: In this step let Ck be the superset of Lk so members of Ck may­

be frequent or not, but all K  — 1 frequent itemsets will be included in Ck thus 

prunes the Ck to find K  frequent itemsets with the help of Apriori property. In 

this step, some of the candidate k-itemsets will be removed using the Apriori 

preperty. A scan of the database to determine the count of each candidate in 

Ck would result in the determination of Lk, all candidates having a count no 

less than the minimum support count are frequent by definition, and therefore 

belong to Lk■ Ck·, however, can be very huge, so in order to shrink its size, the 

Apriori property is used as follows:

— Any (k-l)-itemsets that is not frequent cannot be a subset of a frequent 

k-itemset. Hence, if any (k-l)-subset of candidate k-itemset is not in Lk- 1 

then the candidate cannot be frequent either and so can be removed from

ck.

The last two steps (Join step and Prune step) is repeated until no new candidate set 

is generated.

Apriori Algorithm

Summarizing all the above and as described in [6] we have the following:

k-itemset An itemset having k items

Lk
Set of large k-itemsets 
(those with minimum support).
Each member of this set has two fields: 
i) itemset and ii) support count.

ck
Set of candidate k-itemsets 
(potentially large itemsets).
Each member of this set has two fields: 
i) itemset and ii) support count.

Table 2.3: Notation used in Apriori algorithm
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Algorithm 1 Apriori Algorithm 
l: procedure A priori

Input: Transactions list, minsup (minimum support) 
Output: Large itemsets 

2: Lx =  {large 1-itemsets};
3: for (k =  2; Lk_χ φ  0; k +  + ) do
4: Ck =  apriori_gen(Lfc_i); / /  New candidates
5: for all transactions t £ D do
6: Ct =  subset (C*,, i); / /  Candidates contained in t
7: for all candidates c £ Ct do
8: c.count + +;
9: Lk = {c £ Ck \ c.count > minsup}·,

10: Answer =  UkLk

The apriori_gen function takes as argument Lk_ the set of all large (k-1) -itemsets. 

The function works as follows:

First, in the join step Lk_χ and Lk_x will be joined.

1: insert in to  Ck
2: select p.itemx,p.item2 , ...,p.itemk-x,q.itemk-x 
3: from  Lfe_i p, Lk_χ q
4: w here p.itemx =  q.itemx, ...,p.itemk_2 =  q.itemk- 2,P-itemk- 2 < q.itemk- 2',

Next, in the prune step, all itemsets c £ Ck such that some (k-l)-subset of c is not in 

Lfc_i will be deleted:

1: for all itemsets c £ Ck do 
2: for all (k-l)-subsets s of c do
3: if (s ^ Lfc_) then
4: delete c from Ck

Apriori Example

As an example Table 2.4, 2.5, 2.6 of running the Apriori algorithm we get some 

hypothetical data from a super market [4]. Assuming that the "Tid" be the hypo­

thetical transaction identifier and "items bought" the hypothetical items bought in 

each transaction. Also, assume that the min support will be 2, then we wil have:
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Tid Items Bought Items Bought Support
1 Milk,Tea,Cake ......... Milk 2
2 Eggs,Tea,Cold Drink Eggs 3
3 Milk,Eggs,Tea,Cold Drink Tea 3
4 Eggs,Cold Drink Cold Drink 3
5 Juice Juice 1

Cake 1
Items Bought

Milk, Eggs 
Milk, Tea 

Milk, Cold Drink 
Eggs, Tea 

Eggs, Cold Drink 
Tea, Cold Drink

Items Bought Support
Milk 2
Eggs 3
Tea 3

Cold Drink 3

Table 2.4: First Iteration of Apriori algorithm

Items Bought Support Items Bought Support
Milk, Eggs 1 _______ Milk, Tea 2
Milk, Tea 2 Eggs, Tea 2

Milk, Cold Drink 1 Eggs, Cold Drink 3
Eggs, Tea 2 Tea, Cold Drink 2

Eggs, Cold Drink 3
Tea, Cold Drink 2

Items Bought
Milk, Tea, Eggs

Milk, Tea, Cold Drinks ----------"
Eggs, Tea, Cold Drink

Table 2.5: Second Iteration of Apriori algorithm

Items Bought Support

Milk, Tea, Eggs 1

Milk, Tea, Cold Drinks 1

Eggs, Tea, Cold Drink 2

Items Bought Support

Eggs, Tea, Cold Drink 2

Table 2.6: Third Iteration of Apriori algorithm
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In the first table in Table 2.4 the data in the database will present. Each transaction 

has its own unique identifier Tid and the items bought in this transaction. In the 

second table the support (frequency) of each item will be computed. After this step, 

in the third table all items with support less than the minimum support threshold, 

which defined in the beginning of the Apriori algorithm, will be removed from the 

item list. Finally, in the fourth table, the remaining items will be combined to gen­

erate the two-items item set.

In the second Table 2.5 the second iteration of Apriori will be present. Firstly, in the 

first table the support of all items from two-items item set will be computed. After 

that, all items with support less than than the minimum support threshold, will be 

removed from the item list as shown in the second table. At the end of the second 

iteration, as we can see in the third table all the remaining items will be combined 

to generate the three-items item set.

Finally, in the third and last iteration, for this example, of Apriori (Table 2.5) the 

support of all items from three-items item set will be computed as shown in the first 

table. After removing all the items that have support less than the minimum support 

we get that only one itemset is frequent (Eggs, Tea, Cold Drink). So at the end of 

Apriori running we will get nine frequent itemesets as shown in Table 2.7.

Itemsets Itemsets Itemsets

{Milk}

{Eggs}

{Tea}

{Cold Drink} 

{Milk, Tea} 

{Eggs, Tea}

{Eggs, Cold Drink} 

{Tea, Cold Drink} 

{Eggs, Tea, Cold Drink}

Table 2.7: Apriori result itemsets
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2.3.2 HyperGraph M odeling

In order to create the hypergraph from the previously detailed binary table using the 

Apriori algorithm, two things must be computed. The first is to find the hyperedges, 

which is the easy part of the hypergraph creation. All the frequent itemsets produced 

from Apriori, with minimum support being equal to 0.04 which means that all stocks 

in a frequent itemset must have moved together for at least 21 days, will be the hy­

peredges for our hypergraph.

The second thing that must be computed, and the more tricky, is the assignment 

of weights in each resulting hyperedge. As proposed in [11, 10], weights in hyper­

edges will be a function of the confidence of the underlying association rules. For 

example, if {A, B, C} is a frequent itemset, then the hypergraph will contain a hy­

peredge that will connect A, B, and C. Consider the following rules for this itemset 

{A, B, C}: {A, B} {C}, {A, C} ^ 4  {B}, {B , C} {A}. Then a weight of 0.6 

(0.4+CL6+0.8 _  q g) wiH be assigned to the hyperedge that connects A, B, and C.
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Chapter 3

Clustering Algorithms

After creating the hypergraph, the next step in this project is to partition the stocks 

in proper clusters by partitioning the vertices (stocks) into k roughly equal parts, such 

that the number of hyperedges connecting vertices in different parts is minimized. To 

achieve that, one of the following partitioning tools (hMetis, KaHyPar, and PaToH) 

will be used.

In this chapter, three partitioning algorithms will be representing and by order these 

will be hMetis, KaHyPar, and PaToH. In the following, two algorithms for making 

the clusters more connected will be introduced.

3.1 hM etis

hMetis[16, 12, 15] is a well known and state of the art software package for partition­

ing large hypergraphs. It was original developed for partitioning large hypergraphs 

that arising in circuit design, and more specific in VLSI, but it has very good capa­

bilities for partitioning any hypergraph. The algorithms used by hMetis are based 

on multilevel hypergraph partition. The multilevel algorithm consists of 4 phases: 

the coarsening phase, the initial partition phase, the uncoarsening and refinement 

phase, and the v-Cycle refinement phase. Unlike, the traditional graph partitioning
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algorithms that compute a partition of a graph or a hypergraph directly on the orig­

inal graph, multilevel partitioning algorithms take a completely different approach 

as shown in Fig. 3-1. The traditional algorithms are often too slow and very often 

produce poor quality of partitions especially in large hypergraphs. The multilevel 

algorithms, on the other hand, can produce very quickly high-quality partitions for a 

large variety of hypergraphs.

As detailed in [16] and shown in 3-1, the multilevel algorithm consists of the fol­

lowing phases: •

Figure 3-1: Multilevel partitioning algorithms

•  Coarsening Phase: During the hypergraph coarsening phase, a sequence of 

successively smaller hypergraphs is constructed. The purpose of coarsening is 

to create a small hypergraph, such that a good bisection of the small hyper­

graph is not significantly worse than the bisection directly obtained for the 

original hypergraph. In addition to that, hypergraph coarsening also helos in 

successively reducing the size of the hyperedges. That is particularly hepful, 

since refinement heuristics based on Kernighan-Lin [9, 17], Appendix A.2, algo­

rithm are very effective in refining small hyperedges but are quite ineffective in
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refining hyperedges with a large number of vertices belonging to different parti­

tions. The group of vertices that are contracted together to form single vertices 

in the next level coarse hypergraph can be selected in different ways. hMetis 

implements various such grouping schemes,which is also known as matching 

schemes. More specific in shMetis, which is the algorithm used in this project, 

the hybrid first-choice scheme (HFC) is implemented. This scheme is a combi­

nation of the first-choice (FC) and greedy first-choice (GFC) schemes. In the 

first-choice scheme vertices are grouped together if they are present in multi­

ple hyperedges. Groups of vertices of arbitary size are allowed to be collapsed 

together. In greedy first-choice scheme vertices are grouped based on the first- 

choice scheme, but the grouping is biased in favor of faster reduction in the 

number of the hyperedges that remain in the coarse hypergraphs.

•  Initial Partitioning Phase: During the initial partitioning phase, a bisection 

of the coarsened hypergraph is computed. In this many different algorithms can 

be used without significantly affecting the overall runtime and quality of the 

algorithm, because in most cases the hypergraph will be having a small number 

of vertices. More specific in shMetis, a multiple random bisection followed by 

the Fiduccia-Mattheyses (FM) [9] ,Appendix A.l, refinement algorithm will be 

used.

•  Uncoarsening and Refinement Phase: During the uncoarsening phase, the 

partitioning of the coarsest hypergraph is used to obtain a partitioning for the 

finer hypergraph. This is done by successively projecting the partitioning to 

the next level finer hypergraph and using a partitioning refinement algorithm to 

reduce the cut and thus improve the quality of the partitioning. Since the next 

level finer hypergraph has more degrees of freedom, such refinement algorithms 

tend to improve the quality. As described in [16] hMetis and especially in 

shMetis, that is used here, implements an FM based algorithm (Appendix A.l).

•  v-Cycle Phase: The idea behind this refinement algorithm is to use the power 

of the multilevel paradigm to further improve the quality of a bisection. The
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V-cycle refinement algorithm consists of two phases, namely a coarsening and 

an uncoarsening phase. The coarsening phase preserves the initial partitioning 

that is input to the algorithm. This will be refered as restricted coarsening 

scheme. In this restricted coarsening scheme, the groups of vertices that are 

combined to form the vertices of the coarse graphs correspond to vertices that 

belong only to one of the two partitions. As a result, the original bisection 

is preserved through out the coarsening process, and becomes the initial par­

tition from which the refinement performing during the uncoarsening phase is 

started. The uncoarsening phase of the V -cycle refinement algorithm is identical 

to the uncoarsening phase of the multilevel hypergraph partitioning algorithm 

described earlier. It moves vertices between partitions as long as such moves im­

prove the quality of the bisection. Note that the various coarse representations 

of the original hypergraph, allow refinement to further improve the quality as it 

helps it climb out of local minima. In shmetis the v-Cycle refinement performs 

on the final solution of each bisection step.

3.2 PaToH

PaToH [7] is developed by Catalyurek and Aykanat and it is another state of the art 

hypergraph partitioning tool. Patoh is a fast multilevel recursive bipartitioning based 

tool that supports partitioning with fixed vertices and multi-constrained objectives. 

It is optimized for partitioning sparse matrix instances and uses multilevel paradigm 

as shown in Fig. 3-1.

As mentioned and before and detailed in [7], the multilevel algorithm, implemented 

in PaToH, consists of the following phases:

•  Coarsening Phase: During the hypergraph coarsening phase, as detailed and 

in hMetis algorithm 3.1, a sequence of successively smaller hypergraphs is con­

structed. For this purpose PaToH uses two algorithms: the heavy connectivity 

matching algorithm (HCM) and the heavy connectivity clustering algorithm
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(HCC).

— Heavy Connectivity Matching (HCM) is a matching based coarsening 

scheme. In this scheme, if a hypernode v should be matched with another 

hypernode, then all unmatched hypernodes u G Γ(υ) are consider. The 

set Γ(υ) =  {u\3e e E : v E E A u E E}  defines all adjacent vertices 

of a hypernode v. Also a vertex u G Γ(υ) is called neighbour of v. The 

hypernode u with the largest edge weight between v and u forms a matching 

pair («, v). The weight of an edge between two hypernodes u and v is 

defined as the number of all common incident nets that u and v belongs 

to. Formally, the weight of an edge ω'  : V  x V  —> M between to hypernodes 

u and v in a hypergraph H as follows:

d ' { u , v ) =  | / ( u ) p | / ( u ) |

I is defined as I  : V  —> P(E), which maps a vertex v to all its incident 

nets.The contraction partner u G Γ(υ) maximize the u/(it, v). In this 

scheme, the hypernodes are visited randomly.

— Heavy Connectivity Clustering (HCC) is a method for finding higly 

connected clusters. At the beginning of these method all hypernodes are 

sigleton clusters Cu =  u. In order to find a contraction partner for a 

sigleton cluster this method consider all incident sigleton and multinode 

clusters. This method choose the cluster Cv = v as contraction partner for 

Cu =  u the cluster that maximizes the following rule:

oj"(Cu,Cv) ι ^ η ^ σ ,  *(«))!
c (u f\C v)

With the division c(u P| Cv) very heavy clusters should be avoided.

•  Initial Partitioning Phase: During the initial partitioning phase, as detailed 

and in hMetis algorithm 3.1, a bisection of the coarsened hypergraph is com­

puted. PaToH impliments eleven different initial partition methods which can
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be categories into random, hypergraph growing and greedy hypergraph grow­

ing variants. In this project, only the Greedy Hypergraph Growing (GHG) 

algorithm is be used, so for all the other different variants, we refer to PaToH 

manual [8]. In GHG, a cluster around a randomly selected vertex is growing. 

During the coarse of the algorithm, the selected and unselected vertices induce 

a bipartition on the coarsest hypergraph Hm. The unselected vertices connected 

to the growing cluster are inserted into a priority queue according to their FM 

gains. In this step, the gain of an unselected vertex corresponds to the decrease 

in the cut size of the current bipartition if the vertex moves to the growing clus­

ter. Then, a vertex with the highest gain is selected from the priority queue. 

After a vertex moves to the growing cluster, the gains of its unselected adjacent 

vertices which are currently in the priority queue are updated and those not in 

the priority queue are inserted. This cluster growing operation continues until 

a predetermined bipartition balance criterion is reached. Because the quality 

of this algorithm is sensitive to the choice of the initial random vertex, PaToH 

runs GHG algorithm multiple times starting from different random vertices and 

select the best bipartition for refinement during the uncoarsening phase.

•  Uncoarsening and Refinement Phase: During this phase, as detailed in [7], 

at each level i (for i =  m, m-1, ..., 1), bipartition Π* found on Hi is projecting 

back to bipartition Π^χ on i7j_i. The constituent vertices of each multinode in 

Hi_i is assigned to the part of the respective vertex in iTj. Then this bipartition 

is refined by running a Boundary FM (BFM) hypergraph bipartitioning algo­

rithm on Hi- 1  starting from the initial bipartition Πί_χ. BFM moves only the 

boundary vertices from the overload part to the underloaded part, where vertex 

is said to be a boundary vertex if it is connected to an at least on cut net. The 

refinement stops if no feasible move remains or maa:(50, 0.001 |U|) moves with 

no decrease into the cut are performed.
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3.3 KaHyPar

KaHyPar [21] is a multilevel hypergraph partitioning framework for optimizing the 

net-cut of the hypergraph. As a multilevel algorithm, like hMetis, it consists of three 

phases: the coarsening phase, the initial partition phase, and the uncoarsening and 

refinement phase. KaHyPar, in contrast, the other two partitioning tools is an open 

source tool.

As a multivel algorithm, KaHyPar also consists of three main phases. The coars­

ening phase, the initial partitioning phase and the uncoarsening phase. A general 

overview of this hypergraph partitioning framework is summarised in Algorithm 2, 

and the details of the main phases will be described below.

Algorithm 2 Multilevel Hypergraph Partitioning 
l: procedure Multilevel Hypergraph  Partitioning

Input: Hypergraph H, number of desired blocks k, balance parameter e 
Output: e-balanced k-way partition Π =  V i,..., 14 

2: while H is not small enough do / /coarsening phase
3: («, v) := argmaxuevscore(u) / /  choose vertex pair with highest rating
4: H  := contract(H, u,v) / /  H := H \{ u }
5: Π := partition(H, k,e) / /  initial partitioning phase
6: while H is not completely uncoarsened do / /uncoarsening phase
7: (Η , Π ,«, v ) := uncontract(H, Π)
8: (Η , Π) := re fine(H , Π, u, v, k , e) •

•  Coarsening Phase: During the hypergraph coarsening phase, as detailed and 

in [24], the main goal is to contract highly connected vertices such that the 

number of the remaining nets in the hypergraph and their size to be reduced. 

This approach leads to simpler instances for the initial partitioning and al­

low the FM-based local search algorithms to identify more moves that improve 

the quality of the partitioning solution based on small net sizes. In order to 

achieve this, Kahypar’s coarsening algorithm prefers vertex pairs that have a 

large number of heavy nets with small size in common. This coarsening process 

is repeated until the number of remaining vertices is below a specific threshold
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or the priority queue becomes empty.

•  In itia l P artition ing  Phase: After the coarsening phase is finished, the hy­

pergraph will be small enough to be initial partitioned by an initial partition 

algorithm. KaHyPar framework does not impliments a new algorithm, but in­

stead uses the recursive bisection variant of hMetis for the initial partioning 

proccedure. Because this variant can be defined differently, KaHyPar, uses an 

imbalance parameter which defines as follows:

/ + ε maxvGyc(v) .  !  „ .e1 := 100((—r -  + ----- -  0.5)
k c( V)

for initial partioning with hMetis. The initial partioner will be called multiple 

times with different random seeds and KaHyPar will be use the best partition 

as the initial partioning of the coarsest graph. •

•  U ncoarsening and Refinem ent Phase: During this step, the initial solution 

produced in the previous step is transfered to the next finer level by performing 

a sigle uncontraction step. After that, KaHyPar uses a localized local search 

algorithm in order to improve further the solution quality. The local search algo­

rithm used by KaHyPar follows ideas similar to the k-way FM-based algorithm 

proposed by Sanchis [20] and inspired further by the local search algorithm used 

by Sanders and Osipov [19]. Counter to Sanchis algorithm, KaHyPar reduce the 

number of priority queues to k, one queue Pi for each cluster Vi. Additionaly, 

they only consider to move a vertex to adjacent blocks rather that calculating 

and maintaining gains for moves to all blocks, as in the case of Sanchis. The 

local search pass started by performing a highly localized local search starting 

with only the represenative and the just uncontracted vertex. The search pro­

cedure then expands around this vertex pair by successively inserting moves for 

neighboring vertices into the queues.
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3.4 Fitness & C onnectivity M easures

As proposed in [11, 10] it is important to eliminate bad clusters and to remove vertices 

that are not highly connected to the rest of the vertices of the remaining clusters. 

This job is important in order to achieve better overall results in our stock prediction.

3.4.1 Fitness function

Once, the overall hypergraph has been partitioned into k parts (clusters), the cluster 

fitness criterion is been used in order to eliminate bad clusters. The fitness function 

measures the ratio of weights of edges that are within the partition and weights of 

edges involving any vertex of this partition. Let e be a set of vertices representing 

a hyperedge and C be a set of vertices representing a partition. Then the fitness 

function that measures how good the partition C is defined as follow:

fitness(C )
Σ βςο  Weightje) 

E|enc|>o W eighty)

High fitness value suggests that the partition has more weights fot the edges connect­

ing vertices within the partition. The partitions with fitness measure greater than 

a given threshold value are consider to be good clusters and will be used for stock 

prediction.

3.4.2 Connectivity measure function

Once good partitions are found, using the fitness measure algorithm described above, 

each good partition is examined to filter out vertices that are not highly connected 

to the rest of the vertices of the partition. The connectivity measures the percentage 

of edges that each vertex is associated with. The connectivity function of vertex u in 

C is defined as follow:
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connectivity (u, C ) =  ^ ej6
\{e\e C C}|

High connectivity value suggests that the vertex has many edges connecting good 

proportion of the vertices in the partition. The vertices with connectivity measure 

greater than a give threshold value are considered to belong to the partition, and the 

remaining vertices are dropped from the partition.

3.5 Prediction

As mentioned before in 1.3 prediction of stock’s price trend only based on historical 

data may be difficult due to stock’s inherent indeterminacy. However, observing the 

closely related stocks in the same cluster which determined by their previous syn- 

chronicity we can analyze a stock. In order to do that, as proposed in [18, 22], after 

the hypergraph have been partitioned in k clustersfirstly we must find an overall pa­

rameter of rise or fall for every cluster. Let, S  be the set of vertices in a cluster, and 

v a vertex in S. Then, we can calculate the overall parameter f(S )  as follows:

ves

Where, T(v) stands for the average of the gains of a stock in m days. T(v) will be 

positive if stock rises in m days, or negative otherwise.

Then the Τ '(it), which stands for inter-stocks global movement for the past m  days, 

must be calculated. T'(it) calculated as follows:

n « )  =  Σ
i * Ti(u)

Where, Ti(u) means how much gains the stock it, i days ago. Tj(it) will be positive if
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stock rises, or negative otherwise.

Now having the f ( s ) and the T'(u) parameters we can run our prediction according 

to R{u). R(u) reflects if the stock u will rise the day after the last of our m days used 

in /(s), or if it falls by judging if it is positive or negative. R(u) calculated as follows:

R(u) = 0.7 * T \u )  +  0.3 * /(S )

3.5.1 Prediction Algorithm

All the above logic for stock prediction will summarise in the following algorithm.

Algorithm 3 Prediction Algorithm 
l: procedure P redict

Input: Transactions list, clusters 
Output: Predictions 

2: L  =  {Clusters};
3: P  = {};
4: for all clusters S  e  L  do
5: f ( S ) =  CalculateCluserGlobalVariable;
6: for all stocks u € C do
7: T'(u) =  CalculateStock;
8: R(u) =  0.7*T '(u) +  0 .3* /(S );
9: if R(u) > 0 then

10: P.append(u,RISE)·,
11: else
12: P.append(u, FALL)\
13: Answer =  P

1: f(S) = 0;
2: for all stocks v G S' do
3: T(v) =  sum(dailymovements(v))
4: f (s)+ = T(V)

1: T'(ti) =  0;
2: K = sum([j in range(l, m]))
3: for i in range(l,m) do / /m  =  prior known days 
4: T'(«)+ =  i * T {u)/K
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Chapter 4

Experimental Results

In this chapter, the experimental results of this thesis will be presented. In Section 

4.1 the test environment for our experiments will be detailed. After that, in Sections 

4.2, 4.3, 4.4 the results of each partition algorithm will represented. In Appendix 

B you can find the full list of our results which produced from the most promising 

technique.

4.1 Test Environment

4.1.1 Instances

For our experiments we used two data sets from S&P 500 from two different time 

frames. The first dataset consists of stock data from 1st March 2016 to 31st March 

2018, while the second one consists of stock data from 1st September 2015 to 30st 

September 2017. For both time frames, we predict the stock movements of 10th May 

2018 based on their movements for 3, 7, and 21 days ago.

4.1.2 System

All the experiments were done in a MacBook Pro laptop running macOS 10.13 (High 

Sierra), which contains an Intel Core i5 2,6 GHz processor with two cores. Further­

41



more, the system has two L2-Caches, one per core, of size 256KB, L3-Cache of size 

3MB and the main memory consists of two 1600MHz DDR3 chips with total size 

8GB. For the three partition algorithms, we are using the official packages provided 

by their authors, which are available free of charge for non-commercial and research 

use.

4.1.3 M ethology

Firtly, a bash script which also running a simple python script is been used for 

extracting the data from S&P 500. After this step, the Apriori algoithm is used for 

creating the two hypergraphs, one for each time period. We set the minimum support 

value of Apriori algorithm to 0.04 which means that all stocks in a frequent item set 

must have moved together at least on 21 days. After creating our hypergraphs, for 

each hypergraph we run the pardoning algorithms with their default settings (and 

set the desired partitions to 40) to find our stock clusters and for each result we run 

additionally the fitness and connectivity criterions. Once we have all our results, we 

run our prediction algorithm to predict stock movements and evaluate each partioning 

technique.

4.2 hM etis results

During our experiments we found that hMetis make the partitions of our hypergraphs 

in 0 minutes and 21 seconds and 3 minutes and 47 seconds respectively. During the 

hypergraph creation we found that our hypergraphs consists of 352 verticies and 16118 

hyperedges for the first one (starting from March 2016), and 480 verticies and 210709 

hyperedges for the second one. Note that the number of verticies in both hypergraphs 

is considerably smaller than the original distinct items in our data sets. This is be­

cause some stocks do not move very frequently, hence the corresponding items do not 

have sufficient support.

After running hMetis for both hypergraphs, 40 clusters for each hypergraph was
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generated. Out of this partitions, in both cases after running the fitness measure 

function and the connectivity function, only 21 partitions was remaining and the 

number of verticies was reduced again. Some of the results are shown in Table 4.1 

and the complete list of the best scenario found by our experiments is available in 

Appendix B. In Table 4.2 and 4.3 some of our prediction results are shown for both 

hypergraphs. Finally, Fig. 4-1 shows the report of the prediction accuracy for both 

hypergraphs and for all available clusters.

Cluster ID Cluster Items Movement
1 l y b i  ,k m x |  ,n w s a |  ,n w s i  ,f l r i DOWN
2 FLR4- ,N E M | ,P N R | ,F L S | ,F O X | , 

F O X A | ,C O T Y | ,A L G N | ,X L N X |
U P

3 UNM| ,LNC| ,M ET| ,AM P| ,PFG | ,
p b c t ;  ,p r u i

UP

4 STX| ,AAI4 ,UAI4 ,ALK| ,LUV| , 
DAL|

UP

(a) Original clusters produced by hMetis

Cluster ID Cluster Items Movement
1 L Y B | ,K M X | ,NWSA| ,NWS| ,FLR| DO W N
3 UNM| ,LNC| ,M ET| ,AM P| ,PFG | , 

PB C T| ,PRU|
UP

4 STX| ,AAL| ,UAL| ,ALK| ,LUV| , 
DAL|

UP

(b) Clusters satisfying the fitness function (Cluster 2 is been removed)

Cluster ID Cluster Items Movement
1 NWSA| ,NWS| ,FLR| DO W N
3 UNM| ,LNC| ,M ET| ,AM P| ,PFG | , 

PB C T| ,PRU|
UP

4 STX| ,AAL| ,UAL| ,ALK| ,LUV| , 
DAL|

UP

(c) Clusters after applying both fitness and connectivity functions (Verticies LYB, NEM was 
removed based on connectivity function)

Table 4.1: Sample of clusters produced from hMetis partioning our first hypergraph
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Stock Actually Prediction Result

GOOGL Rise Rise True

GOOG Rise Rise True

OXY Rise Rise True

ROK Rise Rise True

NWS Rise Rise True

NWSA Rise Rise True

FLR Rise Rise True

NEM Rise Rise True

PNR Fall Rise False

FLS Rise Rise True

Table 4.2: Sample of prediction results for 10th May 2018 using the original clusters 
produced by hMetis on our first hypergraph and using real for the previous 3 days.

Stock Actually Prediction Result

GOOGL Rise Rise True

GOOG Rise Rise True

OXY Rise Rise True

ROK Rise Rise True

NWS Rise Rise True

NWSA Rise Rise True

FLR Rise Rise True

NEM Rise Fall False

PNR Fall Rise False

FLS Rise Rise True

T able 4.3: P red iction  resu lts for 10th  M ay 2018 u sin g  th e  original clusters produced
by h M etis  on  our secon d  hypergraph and u sin g  real for th e  previous 3 days.
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(a) la (b) lb

Figure 4-1: hMetis report of the prediction accuracy for both hypergraphs and for all 
available clusters, (la) shows the prediction scores for various scenarios over our first 
hypergraph, while the (lb) is using the second hypergraph

4.3 PaToH results

During our experiments we found that PaToH make the partitions of our hypergraphs 

in 0 minutes and 9 seconds and 1 minute and 15 seconds respectively. During the hy­

pergraph creation we found that our hypergraphs consists of 352 verticies and 16118 

hyperedges for the first one (starting from March 2016), and 480 verticies and 210709 

hyperedges for the second one. Note that the number of verticies in both hypergraphs 

is considerably smaller than the original distinct items in our data sets. This is be­

cause some stocks do not move very frequently, hence the corresponding items do not 

have sufficient support.

After running PaToH for both hypergraphs, 40 clusters for each hypergraph was 

generated. Out of this partitions, in both cases after running the fitness measure 

function and the connectivity function, only 18 partitions was remaining for the first 

hypergraph and only 6 for the second one. The number of verticies was reduced again. 

Some of the results are shown in Table 4.4 and the complete list of the best scenario 

found by our experiments is available in Appendix B. In Table 4.5 and 4.6 some of 

our prediction results are shown for both hypergraphs. Finally, Fig. 4-2 shows the 

report of the prediction accuracy for both hypergraphs and for all available clusters.
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Stock Actually Prediction Result

GOOGL Rise Rise True

GOOG Rise Rise True

OXY Rise Rise True

ROK Rise Rise True

NWS Rise Rise True

NWSA Rise Rise True

FLR Rise Rise True

NEM Rise Rise True

PNR Fall Rise False

FLS Rise Rise True

Table 4.5: Prediction results for 10th May 2018 using the original clusters produced 
by PaToH on our first hypergraph and using real for the previous 7 days.

Stock Actually Prediction Result

GOOGL Rise Rise True

GOOG Rise Rise True

OXY Rise Rise True

ROK Rise Rise True

NWS Rise Rise True

NWSA Rise Rise True

FLR Rise Rise True

NEM Rise Rise True

PNR Fall Rise False

FLS Rise Rise True

T able 4.6: P red iction  resu lts for 10th  M ay 2018 u sin g  th e  original clusters produced
by P aT oH  on our secon d  hypergraph and  u sin g  real for th e  previous 7 days.
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(a) la (b) lb

Figure 4-2: PaToH report of the prediction accuracy for both hypergraphs and for 
all available clusters, (la) shows the prediction scores for various scenarios over our 
first hypergraph, while the (lb) is using the second hypergraph

4.4 K aH yPar results

During our experiments we found that KaHyPar make the partitions of our hyper­

graphs in 0 minutes and 21 seconds and 5 minutes and 20 seconds respectively. During 

the hypergraph creation we found that our hypergraphs consists of 352 verticies and 

16118 hyperedges for the first one (starting from March 2016), and 480 verticies and 

210709 hyperedges for the second one. Note that the number of verticies in both 

hypergraphs is considerably smaller than the original distinct items in our data sets. 

This is because some stocks do not move very frequently, hence the corresponding 

items do not have sufficient support.

After running KaHyPar for both hypergraphs, 40 clusters for each hypergraph was 

generated. Out of this partitions, in both cases after running the fitness measure 

function and the connectivity function, only 22 partitions was remaining for the first 

hypergraph and only 8 for the second one. The number of verticies was reduced again. 

Some of the results are shown in Table 4.7 and the complete list of the best scenario 

found by our experiments is available in Appendix B. In Table 4.8 and 4.9 some of 

our prediction results are shown for both hypergraphs. As you can see in this tables 

some of stocks dont have any prediction. This heppens because after applying the
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fitness and connectivity function the number of stocks remaining in clusters reduced 

significantly, so the number of stocks that we can predict their future movement re­

duced as well. Finally, Fig. 4-3 shows the report of the prediction accuracy for both 

hypergraphs and for all available clusters.

Stock Actually Prediction Result

GOOGL Rise Rise True

GOOG Rise Rise True

OXY Rise Rise True

ROK Rise Rise True

NWS Rise Rise True

NWSA Rise Rise True

FLR Rise Rise True

NEM - - -

PNR - - -

FLS - - -

Table 4.8: Prediction results for 10th May 2018 using the clusters produced by KaHy- 
Par after running the fitness and connectivity functions on our second hypergraph 
and using real for the previous 7 days.

Stock Actually Prediction Result

GOOGL Rise Rise True

GOOG Rise Rise True

OXY - - -

ROK - - -

NWS - - -

NWSA - - -

FLR - - -

T able 4.9: P red iction  resu lts for 10th  M ay 2018 u sin g  th e  clusters produced  by  K aH y-
Par after running th e  fitn ess and  co n n ectiv ity  fu n ction s on  our secon d  hypergraph
and u sin g  real for th e  previous 7 days.

48



(a) la (b) lb

Figure 4-3: KaHyPar report of the prediction accuracy for both hypergraphs and for 
all available clusters, (la) shows the prediction scores for various scenarios over our 
first hypergraph, while the (lb) is using the second hypergraph

4.5 Comparison

After running all our experiments, we found that the partitions produced by the 

partioning tools, without applying neither fitness or connectivity functions can lead 

to better prediction results. Furthermore, as you can see in Fig. 4-4 the number of 

vertices-stocks that remain after applying this functions are considerable smaller than 

the original.

Figure 4-4: Number of stocks that will be predicted in our scenarios, (la) is referring 
to our first hypergraph, while (lb) is produced by our second hypergraph.
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So considering all the above information, we are going to summarize and compare the 

three partioning tools used in this project, in the aspect of how well they can used 

to predict future stock movements for both hypergraphs and without applying any 

additional function in the result clusters.

hMetis
KaHyPar
PaToH
hMetis (2nd hypergraph) 

KaHyPar (2nd hypergraph) 
PaToH (2nd hypergraph)

Based on 3 days defore 
stock movements

Based on 7 days defore 
stock movements

Based on 21 days defore 
stock movements

Figure 4-5: Comparison of all scenarios based on their prediction accuracy

As you can see in Fig. 4-5, the predictions produced using the stock movements for 

the past 21 days prior of the desired day, which is the number of days used in Apriori 

to create our hypergraphs, are considerable lower than the other two scenarios. For 

the other two scenarios, the accuracy for each partitioning tool is almost the same 

for either 3 days prior knowledge of stocks movement or 7 days. In our experiments, 

we saw that PaToH system has the leading accuracy comparing with the other two 

systems, and although the results of the second hypergraph are slightly better, the 

time you need to run Apriori is bigger enough to choose the second hypergraph as 

the best. Apriori took only 1 minutes and 7 seconds to build the first hypergraph, 

while for the second it took 2 hours, 44 minutes and 7 seconds.
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Cluster ID Cluster Items Movement
1 A L K i  ,AAIfy ,U A I4  ,L U V | ,N C L H ! , 

G P N ! ,N F L X ; ,D A I4 ,RCIfy
D O W N

2 AYI4, ,PWR! ,ABC| ,m c k ;  ,0 ; ,  
CAH! ,NWSA| ,NWS;

DOWN

3 AALt ,WDCt ,MUt ,UALt ,ALKt , 
LUVt ,HPEt ,DALt ,HPQt

UP

4 GPS! ,RL! ,JWN! ,LB! ,KSS! , 
HBI! ,M! ,BBY| ,FL |

DOWN

(a) Original clusters produced by PaToH

Cluster ID Cluster Items Movement
2 AY I! ,PWR! ,a b c ;  ,MCK! ,0 !  , 

CAH! ,NWSA! ,NWS!
DOWN

3 AALt ,WDCt ,MU| ,UALt ,ALKt , 
LUVt ,HPEt ,DALt ,HPQt

UP

4 GPS! ,RL! ,JWN! ,LB! ,KSS! , 
HBI! ,M! ,BBY! ,FL!

DOWN

(b) Clusters satisfying the fitness function (Cluster 2 is been removed)

Cluster ID Cluster Items Movement
2 PW R! ,ABC! ,MCK! ,0 !  , 

CAH! ,NWSA! ,NWS!
DOWN

3 AALt ,WDCt ,MUt ,UALt ,ALKt , 
LUVt ,HPEt ,DALt ,HPQt

UP

4 GPS! ,RL! ,JWN! ,LB! ,KSS! , 
HBI! ,M! ,BBY! ,FL!

DOWN

(c) Clusters after applying both fitness and connectivity functions (Verticies LYB, NEM was 
removed based on connectivity function)

Table 4.4: Sample of clusters produced from PaToH partioning our first hypergraph
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Cluster ID Cluster Items Movement
1 m p c ;  ,v l o ;  ,n e m ;  ,f ;  ,f l ;  , 

h o g .| ,a l b ;  ,a l g n ;  ,n w l ;
DO W N

2 MTBt ,G 00G I4  ,GOOG; ,RHIt ,A Y It, 
ROKt ,ADBEf ,XLNXf

UP

3 HBi; ,COTY| ,ABC; ,ΒΒΥΙ ,BHGE| ,
m c k ;  ,c m i;  ,c n c ;  ,c a h ^

DOWN

4 LENt ,DHIt ,PHMt ,JECt ,CTLt , 
PH t ,NWSt ,NWSAt ,ALGNt

UP

(a) Original clusters produced by KaHyPar

Cluster ID Cluster Items Movement
2 MTBt ,GOOGI4 ,GOOG| ,RHIt ,ΑΥΙΤ, 

ROKt ,ADBEt ,XLNXt
UP

3 h b i ;  ,c o t y ;  ,a b c ;  ,b b y ;  ,b h g e ;  ,
MCK4- ,CMIt ,CNCt ,CAH|

D O W N

4 LENt ,DHIt ,PHMt ,JECt ,CTLt , 
PH t ,NWSt ,NWSAt ,ALGNt

UP

(b) Clusters satisfying the fitness function (Cluster 2 is been removed)

Cluster ID Cluster Items Movement
2 MTBt ,GOOGLt ,GOOGt ,RHIt ,A Y It, 

ROKt ,ADBEt ,XLNXt
UP

3 ABCt ,ΒΒΥ| ,BHGEt , MCKt ,CMi; ,
c n c ;  ,c a h ;

DOWN

4 LENt ,DHIt ,PHMt ,JECt ,CTLt , 
PH t ,NWSt ,NWSAt ,ALGNt

UP

(c) Clusters after applying both fitness and connectivity functions (Verticies LYB, NEM was 
removed based on connectivity function)

Table 4.7: Sample of clusters produced from KaHyPar partioning our first hypergraph
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Chapter 5

Conclusion

Determine the future movements of stocks is a rather difficult process, and in many 

cases you need to have a lot of info. But as we shown, you can predict future stock 

movements of several stocks at a good rate, only having the knowledge of historical 

stock data.

Using the Apriori algorithm, we can construct a good hypergraph of the stock mar­

ket, but as the dataset become larger or the data become more closely related the 

time of execution increased rapidly. After our experiments, we find that all the three 

partiotion tools have approximately the same rate, but PaToH has the leading both 

execution time and to produce more accurate results.

5.1 Future Work

As a future step at the end of the project, further research needs to be done to optimize 

the number of partitions produced by the partitiong tools and find the optimal number 

of days that stocks move together. Also new association rules algorithms must be 

developed in order to find related item-sets in less time and to include additional 

information of the stocks eg. the current market needs.

53



54



Appendix A

Algorithms

In this section, the pseudo-code of two algoritms (FM, and Kernighan-Lin) used in 

multilevel-partition algorithm will be presenting.
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A .l FM Algorithm

Algorithm 4 Fiduccia-Matheyses 
1: procedure FM

Input: Hypergraph H =  (V,E,w), ε and a bipartition P  = (Vi, V2) with V* <
\ ψ ] ( 1 + ε ) ί Ε 0 , 1 )
O utput: Improved partition P' =  (V{, Vi)

2: b0 4— initialize with gain values from Vi, if we move those hypernodes from Vi
to V2;

3: bi <r- initialize with gain values from V2, if we move those hypernodes from V2
to Vi;

4: V{ <- 14;
5: Vi <- V2;
6: rep eat
7: X i  «- V{-
8: X 2 4- Vi;
9: for i =  1 until \V\ V (b0.empty() Λ bi.empty()) do

10: repeat
11: pi 4- argmaxje{o,i}bj ,πιαχι
12: Qi 4 bpumax,
13: Vi 4 bPiimax.node(),
14: bPi.remove(vi);
15: until c(Vp) + c(ui) >  \^p-] (1 +  ε)
16: X Pi 4 X Pi \  {Uj};
17: Χ ι-pi t— Χ ι-pi U {uj};
18: lock(vi);
19: update gain of bo and b\;
20: k 4- argmax1<kz\v\ Σ ί = ι  9t,
21: 9<~T,i=i9i‘,
22: if  g > 0 th en
23: for i =  1 until k do
2* K ^ K \  M ;
25: K-p, <- K-p, \  {Vih
26: un til g >  0
27: Return =  P' = (A', B')\

56



A.2 Kernighan-Lin Algorithm

Algorithm 5 Kernighan-Lin 
1: procedure KL

Input: Hypergraph H =  (V,E,w) and perfect balanced partition P =(A, B) 
Output: Improved partition P' =  (A B ' )

2: initialize all D values;
3: A '«- A;
4: B' <r- B;
5: repeat
6 :  X  4 -  V{;
7: Y  4- Vi'
8: for i = l  until ^  do
9: (a\ tf) <- argmaxaieXjbieYg(ai, V)

10: g% 4 bpi,max
11: 4 bPijmaX.node()
12: bPi.remove(vi)
13: X pi 4— X pi \  {Uj}
14: X l-Pi 4— Xl-pi U {Vi}
15: lock(vi)
16: update gain of bo and b\
17: k 4- argmaxi<kz\v\ Σ ί= ι 9%
18: 9 Σ ί= ι 9i
19: if g > 0 then
20: for i = 1 until k do
21: K  <- K, \  M
22: νί_κ 4- νί_κ \ { » , }

23: until g > 0
24: Return =  P' =  (A', B ')
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Appendix B

Tables

In this section the complete results of our best scenario will be presenting. After our 

experiments the best scenario produced by running the PaToH partioning tool over 

our first hypergraph and make our predictions based on stock movements for 7 days 

prior the 10th May 2018. Also, neither fitness function neither connectivity function 

applied in the result clusters.
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Cluster ID Cluster Items (stocks)
0 QRVOt, STXf, AMDt, COGf, ARNCt, LYBf, CFt, INCYt, FLSf
1 MPCf, KSSf, UAAf, UAt, KMIf, M f, GPSf, JW Nf, SIGt
2 U R I|, W MBf, OKEt, MOSt, EQTf, PW Rf, FTIf, NRGt, SLBt
3 FCXt, HALt, A PA |, EOGt, HPt, XECf, NOYf, NFXf, PX D t
4 CHK|, HESt, MROf, CXOt, DVNf, RRCf, APCt, NBLt, COPt
5 LRCXt, AMATt, NVDAt, SWKSt, NTAPt, ADSKt, AVGOt, MCHPt, KLACt
6 AAPf, LBt, BBYt, FLt, ORLYt, COTYt, AZOt, CMGf, XLNXt
7 FLR|, PNRt, VLOt, TG Tf, XRXt, JECt, CTI/f, ROK|, ALGNt
8 ANDVt, CNCt, HBIt, W RKt, PCARt, OXYt, AYIf, PHt, HOGt
9 DOVt, NEMf, KORSt, CATf, HSTf, CMIf, SYMCt, A E S|
10 ILMNt, REGNt, ALXNt, VRTXt, NFLXt, TRIPt, M YL|, BIIBf, CELGf
11 W YN N|, MGMt, N U E |, MLMf, VMCt, FOXf, FOXA|, FO X|, FOXAt
12 BWAt, RCLt, NCLHt, LENt, ATVIt, DHIt, PHMt, RHIt, EAf
13 AALt, W DCf, MUt, UALf, ALKt, LUVf, HPEf, DAL|, HPQf
14 ALBf, FMCt, VIABt, DISCKt, DISCAt, PYPLt, ADIt, ADBEt
15 AMGf, KMXt, STTf, GSt, AM Pt, ETFCt, SYFf, BENt, BK f
16 NTRSt, BBTt, PNCt, M TBf, WFCf, GOOG;, NSCf, BLKf, NW SA|
17 ZIONt, NAVIt, RJFt, IVZt, METf, PFGf, LUKt, GOOGLf, NW St
18 LNCf, BA C|, FITBt, R F |, CMAf, Η ΒΑΝ|, CFGt, KEYf, STIt
19 COFt, CSXt, Ct, PRUf, SCHWf, UNMf, JPM f, MSt
20 ADSKt, NAVIt, MUt, VIABt, VRTXt, W DCt, URIt, DISCAt, DISCKt
21 UAt, SIGt, UAAt, COGt, EQTt, KMIt, ANDVt, NRGt, OKEt
22 CFt, ARNCt, AMDt, W MBt, MOSt, FLSt, NOVt, FTIt, TRIPt
23 XECt, NFXt, CHKt, DVNt, APAt, HESt, APCt, MROt, PX D t
24 NBLt, RRCt, HPt, FCXt, CXOt, EOGt, HALt, COPt
25 GPSt, RLt, JW Nt, LBt, KSSt, HBIt, m I, BBYt, FLt
26 DISHt, CTLt, CMGt, HRBt, W YNNt, ALBt, JNPRt, TSCOt, KORSt
27 ILMNt, HPQt, NEMt, STXt, F t, FMCt, CMIt, ALGNt, FLRt
28 SLBt, NUEt, NTAPt, PNRt, LYBt, AM Pt, HOGt, KMXt, ADBEt
29 MPCt, MATt, AKAMt, COTYt, CATt, BHGEt, CNCt, NWLt
30 MACt, GGPt, HCPt, KIMt, REGt, FRTt, SPGt, VTRt, HCNt
31 VLOt, AYIt, PW Rt, ABCt, MCKt, Ot, CAHt, NWSAt, NW St
32 AMGt, MGMt, BENt, BWAt, VMCt, MLMt, ADSt, IVZt, GMt
33 INCYt, MYLt, PRGOt, ALXNt, REGNt, SYFt, AGNt, BIIBt, CELGt
34 ATVIt, W RKt, IPt, KLACt, EAt, AAPt, IDXXt, ORLYt
35 AVGOt, NVDAt, LRCXt, SWKSt, QRVOt, AMATt, ADIt, XLNXt, MCHPt
36 ALKt, AALt, UALt, LUVt, NCLHt, GPNt, NFLXt, DALt, RCLt
37 SCHWt, RJFt, UNMt, LNCt, METt, PFGt, LUKt, PRUt, TXNt
38 RFt, ZIONt, FITBt, PNCt, CFGt, HBANt, CMAt, KEYt, STIt
39 BACt, MSt, COFt, ETFCt, MTBt, Ct, PBCTt, GSt

Table B.l: Complete clustering of S&P 500 stock data, using Apriori and PaToH 
partioning tool
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Stock  N am e P red ic tion A ctual R esu lt S tock  N am e P red ic tion A ctual R esu lt S tock  N am e P red ic tion A ctual R esu lt

QRVO Rise Rise T rue ST X Rise Rise T rue AM D Rise Rise T rue
C O G Rise Fall False A R N C Rise Rise T rue LYB Rise Rise T rue
C F Rise Rise T rue IN C Y Rise Rise T rue FL S Rise Rise T rue
M P C Rise Rise T rue KSS Fall Fall T rue U A A Fall Rise False
UA Fall Rise False K M I Fall Rise False M Fall Fall T rue
G PS Fall Fall T rue JW N Fall Fall T rue SIG Fall Rise False
URL Rise Rise T rue W M B Rise Rise T rue O K E Rise Rise T rue
M OS Rise Rise T rue E Q T Rise Rise T rue P W R Rise Rise T rue
F T I Rise Fall False N R G Rise Rise True SLB Rise Rise True
FC X Rise Rise T rue H AL Rise Rise T rue A PA Rise Rise T rue
E O G Rise Rise T rue H P Rise Rise T rue X E C Rise Rise T rue
NOV Rise Rise T rue N FX Rise Fall False P X D Rise Rise T rue
C H K Rise Rise T rue HES Rise Rise True M RO Rise Fall False
CX O Rise Fall False DVN Rise Rise T rue R R C Rise Fall False
A P C Rise Rise T rue NBL Rise Rise T rue C O P Rise Rise T rue
LR C X Rise Rise T rue A M A T Rise Rise T rue N V D A Rise Rise T rue
SW K S Rise Rise T rue N TA P Rise Rise T rue A D SK Rise Rise T rue
AVGO Rise Rise T rue M C H P Rise Rise T rue K LA C Rise Rise T rue
A A P Rise Rise T rue LB Rise Fall False B B Y Rise Rise T rue
FL Rise Rise T rue O RLY Rise Fall False C O T Y Rise Fall False
A ZO Rise Rise T rue CM G Rise Fall False X LN X Rise Rise T rue
F L R Fall Rise False P N R Fall Fall T rue V LO Fall Fall T rue
T G T Fall Rise False X R X Fall Rise False JE C Fall Rise False
C T L M l Rise False R O K Rise Rise True A LG N Rise Rise True
A N D V Rise Rise T rue CN C Rise Rise T rue H BI Rise Rise T rue
W R K Rise Rise T rue P C A R Rise Fall False OXY Rise Rise T rue
AYI Rise Fall False PH Rise Fall False H O G Rise Rise T rue
D O V Rise Fall False N EM Rise Rise T rue K O R S Rise Rise T rue
CA T Rise Rise T rue H ST Rise Rise T rue C M I Rise Fall False
SYM C Rise Rise T rue A ES Rise Rise T rue ILM N Rise Rise T rue
R E G N Rise Rise T rue A LX N Rise Fall False V R TX Rise Rise T rue
N FL X Rise Fall False T R IP Rise Rise T rue M YL Rise Rise T rue
B IIB Rise Fall False C EL G Rise Fall False W Y N N Rise Rise T rue
M GM Rise Rise T rue N U E Rise Rise T rue M LM Rise Fall False
V M C Rise Fall False FO X Rise Rise T rue FO X A Rise Rise T rue
FO X Rise Rise T rue FO X A Rise Rise T rue BW A Rise Rise T rue
R CL Rise Rise T rue N CLH Rise Rise T rue LEN Rise Rise T rue
A TV I Rise Rise T rue D H I Rise Rise T rue P H M Rise Rise T rue
R H I Rise Fall False EA Rise Rise T rue A AL Fall Rise False
W D C Rise Rise T rue M U Rise Rise T rue U AL Rise Rise T rue

Table B.2: Complete of predictions of S&P 500, using Apriori and PaToH partioning 
tool, for 10th May 2018 (part 1)
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Stock  N am e P red ic tion A ctual R esu lt S tock  N am e P red ic tion A ctual R esu lt S tock  N am e P red ic tion A ctual R esu lt
A LK Rise Rise T rue LUV Rise Rise T rue H P E Rise Rise T rue
DAL Rise Rise T rue H P Q Rise Rise T rue ALB Rise Fall False
FM C Rise Rise T rue V IA B Rise Rise T rue D ISC K Rise Rise T rue
D ISC A Rise Rise T rue P Y P L Rise Rise T rue A D I Rise Rise T rue
A D B E Rise Rise T rue A M G Rise Rise T rue K M X Rise Fall False
S T T Rise Rise T rue GS Rise Rise T rue A M P Rise Rise T rue
E T F C Rise Rise T rue SY F Rise Rise T rue B EN Rise Rise T rue
BK Rise Rise T rue N T R S Rise Rise T rue B B T Rise Rise T rue
P N C Rise Rise T rue M T B Rise Rise True W F C Rise Rise True
G O O G Rise Rise T rue NSC Rise Rise T rue B LK Rise Rise T rue
N W SA Rise Rise T rue ZIO N Rise Rise T rue NAVI Rise Rise T rue
R JF Rise Rise T rue IVZ Rise Rise T rue M E T Rise Rise T rue
P F G Rise Rise T rue LUK Rise Rise True G O O G L Rise Rise True
NW S Rise Rise T rue LNC Rise Rise T rue BAC Rise Rise T rue
F IT B Rise Rise T rue R F Rise Rise T rue CM A Rise Rise T rue
H BA N Rise Rise T rue C F G Rise Rise T rue K E Y Rise Rise T rue
ST I Rise Rise T rue C O F Rise Rise T rue CSX Rise Rise T rue
C Rise Rise T rue P R U Rise Rise T rue SC H W Rise Rise T rue
UNM Rise Rise T rue JP M Rise Rise T rue MS Rise Rise T rue
A D SK Rise Rise T rue NAVI Rise Rise T rue M U Rise Rise T rue
V IA B Rise Rise T rue V R T X Rise Rise T rue W D C Rise Rise T rue
U R I Rise Rise T rue D ISC A Rise Rise T rue D ISC K Rise Rise T rue
UA Rise Rise T rue SIG Rise Rise T rue U A A Rise Rise T rue
C O G Rise Fall False E Q T Rise Rise True K M I Rise Rise True
A N D V Rise Rise T rue N R G Rise Rise T rue O K E Rise Rise T rue
C F Rise Rise T rue A R N C Rise Rise T rue AM D Rise Rise T rue
W M B Rise Rise T rue M OS Rise Rise T rue FL S Rise Rise T rue
NOV Rise Rise T rue F T I Rise Fall False T R IP Rise Rise T rue
X E C Rise Rise T rue N FX Rise Fall False CH K Rise Rise T rue
DVN Rise Rise T rue A PA Rise Rise T rue H ES Rise Rise T rue
A P C Rise Rise T rue M RO Rise Fall False P X D Rise Rise T rue
NBL Rise Rise T rue R R C Rise Fall False H P Rise Rise T rue
FC X Rise Rise T rue CX O Rise Fall False E O G Rise Rise T rue
H AL Rise Rise T rue C O P Rise Rise T rue G PS Fall Fall T rue
RL Rise Fall False JW N Rise Fall False LB Rise Fall False
KSS Fall Fall T rue H BI Fall Rise False M Fall Fall T rue
B B Y Fall Rise False FL Fall Rise False D ISH Rise Rise T rue
C T L Rise Rise T rue CM G Rise Fall False H R B Rise Rise T rue
W Y N N Rise Rise T rue ALB Rise Fall False JN P R Rise Rise T rue
T S C O Rise Rise T rue K O RS Rise Rise T rue ILM N Rise Rise T rue

Table B.3: Complete of predictions of S&P 500, using Apriori and PaToH partioning 
tool, for 10th May 2018 (part 2)
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Stock  N am e P red ic tion A ctual R esu lt S tock  N am e P red ic tion A ctual R esu lt S tock  N am e P red ic tion A ctual R esu lt
H P Q Rise Rise T rue N EM Rise Rise T rue ST X Rise Rise T rue
F Rise Rise T rue FM C Rise Rise T rue C M I Rise FaH False
A LG N Rise Rise T rue F L R Rise Rise T rue SLB Rise Rise T rue
N U E Rise Rise T rue N TA P Rise Rise T rue P N R Rise FaH False
LYB Rise Rise T rue A M P Rise Rise T rue H O G Rise Rise T rue
K M X Rise Fall False A D B E Rise Rise T rue M P C Rise Rise T rue
M AT Rise Rise T rue A K A M Rise Fall False C O T Y Rise FaH False
CA T Rise Rise T rue B H G E Rise FaH False CN C Rise Rise True
N W L Rise Rise T rue M AC Rise Rise T rue G G P Rise Rise T rue
H C P Rise Rise T rue K IM Rise Rise T rue R E G Rise FaH False
F R T Rise Rise T rue SP G Rise Rise T rue V T R Rise Rise T rue
V LO M l M l T rue AYI Fall FaH True P W R Fall Rise False
A B C Fall Rise False M CK Fall Rise False 0 Fall Rise False
CA H Fall Rise False N W SA Fall Rise False N W S Fall Rise False
A M G Rise Rise T rue M GM Rise Rise T rue B EN Rise Rise T rue
BW A Rise Rise T rue V M C Rise FaH False M LM Rise FaH False
ADS Rise Rise T rue IVZ Rise Rise T rue GM Rise Rise T rue
IN C Y Fall Rise False M YL Fall Rise False P R G O Fall Rise False
A LX N Fall Fall T rue R E G N Fall Rise False SY F Fall Rise False
A G N Fall Rise False B IIB Fall Fan T rue C EL G Fall FaU T rue
A TV I Rise Rise T rue W R K Rise Rise T rue IP Rise Rise T rue
K LA C Rise Rise T rue EA Rise Rise T rue A A P Rise Rise T rue
ID X X Rise Rise T rue O RLY Rise Fan False AVGO Rise Rise True
N V D A Rise Rise T rue LR C X Rise Rise T rue SW K S Rise Rise T rue
QRVO Rise Rise T rue A M A T Rise Rise T rue A D I Rise Rise T rue
X LN X Rise Rise T rue M C H P Rise Rise T rue A LK Rise Rise T rue
A A L Rise Rise T rue U AL Fall Rise False LU V Fall Rise False
N CLH Fall Rise False G P N Fall Rise False N FL X Rise FaU False
DAL Rise Rise T rue R CL Rise Rise T rue SC H W Rise Rise T rue
R JF Rise Rise T rue UNM Rise Rise T rue LN C Rise Rise T rue
M E T Rise Rise T rue P F G Rise Rise T rue LU K Rise Rise T rue
P R U Rise Rise T rue TX N Rise Rise T rue R F Rise Rise T rue
ZIO N Rise Rise T rue F IT B Rise Rise T rue P N C Rise Rise T rue
C F G Rise Rise T rue H BA N Rise Rise T rue CM A Rise Rise T rue
K E Y Rise Rise T rue ST I Rise Rise T rue BAC Rise Rise T rue
MS Rise Rise T rue C O F Rise Rise T rue E T F C Rise Rise T rue
M T B Rise Rise T rue C Rise Rise T rue P B C T Rise Rise T rue
GS Rise Rise T rue

Table B.4: Complete of predictions of S&P 500, using Apriori and PaToH partioning 
tool, for 10th May 2018 (part 3)
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