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Περίληψη 

Σκοπός αυτής της μελέτης είναι η παρουσίαση στον αναγνώστη, των σημαντικότερων 

εννοιών γύρω από τα ενεργά φίλτρα, μαζί με ανάλυση κυκλωμάτων και σύγκριση μεταξύ 

των διαφορετικών τοπολογιών ενεργών φίλτρων. Μπορεί να χρησιμοποιηθεί από 

αρχάριους, που ενδιαφέρονται για την σχεδίαση ενεργών φίλτρων, σαν σημείο αναφοράς 

ώστε να μυηθούν στα ενεργά φίλτρα. Το πρώτο κεφάλαιο παρουσιάζει σημαντική 

ορολογία και βασικές γνώσεις γύρω από τα φίλτρα, όπως, δημοφιλείς τύπους και 

προσεγγίσεις, καθώς και τεχνικές επίτευξης φίλτρων μεγάλου βαθμού, ανάλογα με τις 

απαιτήσεις της εφαρμογής τους. Το δεύτερο και τρίτο κεφάλαιο παρουσιάζουν 

αντίστοιχα, την Sallen-Key (SK) και την Multiple Feedback (MFB) τοπολογία, με 

λεπτομερή ανάλυση των κυκλωμάτων των χαμηλοπερατών, υψιπερατών και 

ζωνοπερατών περιπτώσεων, και παρουσιάζονται οι εξισώσεις που τα διέπουν. 

Παρομοίως, το τέταρτο κεφάλαιο επικεντρώνεται στην State Variable Filter (SVF) 

τοπολογία, καθώς και στο Biquad φίλτρο, το οποίο είναι μια παραλλαγή του SVF. Το 

τελευταίο κεφάλαιο είναι μια προσπάθεια προσέγγισης του ιδανικού φίλτρου αποκοπής 

συχνοτήτων ανάλογα με τις συνθήκες που πρέπει να ικανοποιηθούν. Στο κεφάλαιο αυτό 

παρουσιάζεται το Twin-T φίλτρο αποκοπής και το φίλτρο Bainter. 
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Preface 

The purpose of this study is to introduce to the reader, the most essential concepts of 

active filters, along with circuit analysis and comparison between the different active 

filter topologies. It can be used by beginners, interested in active filter design, as a 

reference point to grasp the essence of active filtering. The first chapter presents 

important terminology and basic filter knowledge, such as, popular types and 

approximations, as well as the technique of cascading filter stages to achieve high order 

designs and various applications. The second and third chapter present the Sallen-Key 

(SK) and Multiple Feedback (MFB) topologies respectively. Both chapters provide 

thorough circuit analysis of the lowpass, highpass and bandpass scenarios, and present 

the equations that govern each case. In the same sense, the fourth chapter focuses on the 

State Variable Filter (SVF) topology, as well as, the Biquad filter, which is a variation of 

the SVF. The last chapter is an effort to approach the ideal notch filter topology, 

presenting different realizations, such as the Twin-T notch and the Bainter notch, 

depending on the requirements of the application. 
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1. Introduction 

1.1 Filters and Signals 

The term filter can have a large number of different meanings. In general, it can be seen 

as a way to select certain elements with desired properties from a larger set. In circuit 

analysis a filter is a frequency-selective network that favors certain frequencies of input 

signal at the expense of others, depending on the application. A frequent task is to 

attenuate for example, noise or harmonic distortion (Figure 1.1). The fundamental idea 

upon which filter behavior is relied, is the frequency dependent nature of capacitors and 

inductors. Capacitors more easily pass high frequencies, while inductors handle better, 

lower frequencies. The first filter topologies had been designed using solely combinations 

of passive components, thus we refer to them as passive filters. Nowadays, a modern 

approach for designing filters is by using operational amplifiers (op-amps) along with 

resistors and capacitors. These filter networks are called active filters. 

 

 

Figure 1.1 using a filter to reduce the effect of an undesired signal 

 

Active filtering outweighs passive one for many reasons: 

- The first and most evident difference between the two is that active filters do not 

need large and expensive inductors, thus enabling small-scale low-cost 

manufacturing, especially when it comes to low frequency systems, where 

inductors are bulky and heavy. 

- The existence of op-amps in active filters makes their response independent of 

source and load impedances, due to their ability to set a high input and a low 

output impedance. 
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- Another attribute that originates from the isolation of active filters is the ability to 

cascade filter stages in order to design higher order circuits and satisfy more 

complex problems. 

- Active filters can provide gain or loss as needed to suit filter requirements. 

Current gain is almost always provided, while voltage gain is an option. 

- Many active filters can be easily tuned over a wide range without changing their 

response shape. Tuning can be done manually, electronically or by voltage 

control. Tuning ranges can go much higher than is usually possible with passive 

circuits. 

 

 

Figure 1.2 a performance comparison of the available filtering technologies 

 

Of course all those advantages come along with some limitations that are op-amp-related 

and have to do with the signal limits set by the op-amp’s characteristics and sensitivity 

issues due to component and op-amp tolerance, especially in high frequency applications. 
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In figure 1.2 a comparison is presented among the filter approaches used today. As 

regards with the active filters, they are limited by the gain-bandwidth product of the op-

amp. The gain-bandwidth product is an indicative of the op-amp’s open-loop gain at any 

frequency or vice versa and it must be large for all frequencies of interest, including 

frequencies in the stopband as well. Though, within the op-amp’s operating frequency 

range, active filters can achieve – depending on the task - ease of tuning, minimum 

component number, high Q factor or a fixed bandwidth. Some topologies that can 

achieve these objectives and will be examined later are the Sallen-Key, the multiple 

feedback (MFB), the state-variable filter (SVF) and the biquad. On the contrary, passive 

filtering incorporates the use of inductors, and excludes the use of amplifying elements, 

therefore its applications are not restricted by the bandwidth limitations making them 

suitable for high frequency systems. 

1.2 Filter Terminology 

Some essential filter concepts should be introduced for future reference: 

- The cutoff frequency is the point at which the filter response drops 3dB or to 

0.707 of its peak value. 

- The center frequency is an attribute of bandpass filters. In wide-band bandpass 

filters, where the bandwidth is greater than an octave, center frequency is 

computed by 

𝑓𝑜 =  √𝑓1𝑓2 

Where 𝑓1 is the lower cutoff and 𝑓2 is the upper cutoff frequency. 

In narrow-band bandpass filters, center frequency is calculated as the average of 

the cutoff frequencies: 

𝑓0 =  
𝑓1 + 𝑓2

2
 

- Damping or ζ is an index of a filters tendency towards oscillation. Practical 

damping values range from 2 to 0, with zero being the value of an oscillator, and a 

value of 1 being a critical value that gives maximum flatness without overshoot 

(figure 1.3). 
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Figure 1.3 overshoot and ringing for different damping values 

 

- Q Factor is simply the inverse of damping, 𝑄 = 1/2𝜁, and is used to measure the 

peaking of 2nd order filters. The higher the Q, the higher the peak of the response 

at the cutoff frequency (figure 1.4). Q factor along with the center frequency are 

indicative of a filters bandwidth (BW): 

𝐵𝑊 =
𝜔𝑛

𝑄
 

- Filter order determines the slope of its rolloff – the transition region between 

stopband and passband – with frequency. The higher the order, the steeper the 

rolloff slope.  

- Decibel (dB) is a logarithmic unit that indicates ratio or gain. It is used to indicate 

the level of acoustic waves and electronic signals. Decibels are defined as 

20 log10 𝑉0/𝑉𝑖𝑛. A rolloff slope of -6 dB/octave or -20 dB/decade, simply means 

that the amplitude of a transfer function decreases by 6 dB at each doubling of the 

frequency, or by 20 dB at each multiplication of the frequency by 10.  
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Figure 1.4 peak behavior of a filter for different Q factors 

1.3 Basic Filter Types 

The frequency-domain behavior of a filter is described mathematically in terms of its 

transfer function. This is the ratio of the Laplace transforms of its output and input 

signals. The voltage transfer function of a filter can therefore be written as 

 

𝐻(𝑠) =  
𝑉𝑜(𝑠)

𝑉𝑖(𝑠)
     (1.1) 

  

where 

𝑠 = 𝜎 + 𝑗𝜔 

Where σ is the Neper frequency in nepers per second (NP/s) and ω is the angular 

frequency is radians per second (rad/s). 

The transfer function defines the filter’s response to any arbitrary input signals. The 

transfer function magnitude versus frequency is called the amplitude response or 

sometimes, especially in audio applications, the frequency response. 

|𝐻(𝑗𝜔)| = |
𝑉𝑜(𝑗𝜔)

𝑉𝑖(𝑗𝜔)
|     (1.2) 

or 

𝐴 = 20 log |𝐻(𝑗𝜔)|     (1.3) 

and the phase is 
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arg 𝐻(𝑗𝜔) = arg
𝑉𝑜(𝑗𝜔)

𝑉𝑖(𝑗𝜔)
     (1.4) 

 

The general form of a filters transfer equation is  

𝐻(𝑠) =
𝑎𝑚𝑠𝑚 + 𝑎𝑚−1𝑠𝑚−1 + ⋯ + 𝑎1𝑠 + 𝑎0

𝑏𝑛𝑠𝑛 + 𝑏𝑛−1𝑠𝑛−1 + ⋯ + 𝑏1𝑠 + 𝑏0
     (1.5) 

The degree of the denominator is the order of the filter. Solving for the roots of the 

equation determines the poles and zeros of the circuit. Each pole provides a -6 dB/octave 

or -20 dB/decade response, while each zero provides a +6 dB/octave or +20 dB/decade 

response. 

The various filter types can be defined according to the following classification: 

1. Lowpass filters (LPF) pass low-frequency signals, and reject signals at 

frequencies above the filter’s cutoff frequency (Figure 1.5). Its transfer function 

is: 

𝐻𝐿𝑃(𝑠) =
𝐻0

𝑠2 +
𝜔0

𝑄 𝑠 + 𝜔0
2
 

 

Figure 1.5 lowpass frequency response. 

 

2. A high-pass filter (HPF) is the inverse of the low-pass filter and rejects signals 

below its cutoff frequency (Figure 1.6). Its transfer function is: 
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𝐻𝐻𝑃(𝑠) =
𝐻0𝑠2

𝑠2 +
𝜔0

𝑄 𝑠 + 𝜔0
2
 

 

Figure 1.6 highpass frequency response 

 

3. Band-pass filters (BPF) pass frequencies within a specified band and reject 

components outside the band (Figure 1.7). When a narrow bandwidth bandpass 

filter is amplified, it is called a resonator filter. Its transfer function is: 

𝐻𝐵𝑃(𝑠) =
𝐻0𝜔0

2

𝑠2 +
𝜔0

𝑄 𝑠 + 𝜔0
2
 

𝛨0 = 𝐻/𝑄 

Q has a particular meaning for the bandpass response. It is the selectivity of the 

filter. 

4. Band-reject filters are filters with effectively the opposite function of the 

bandpass filter (Figure 1.8). A subcategory of band-reject filters are the notch 

filters, which attenuate frequencies in a very narrow bandwidth around the cutoff 

frequency. Its transfer function is: 

𝐻𝐵𝑅(𝑠) =
𝐻0(𝑠2 + 𝜔0

2)

𝑠2 +
𝜔0

𝑄 𝑠 + 𝜔0
2
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5. All-pass or phase-shift filters leave the frequency response intact. Their function 

is to change the phase of the signal without affecting its amplitude. 

𝐻𝐴𝑃(𝑠) =
𝑠2 −

𝜔0

𝑄 𝑠 + 𝜔0
2

𝑠2 +
𝜔0

𝑄 𝑠 + 𝜔0
2
 

 

 

Figure 1.7 bandpass frequency response. 

 

Figure 1.8 band-reject frequency response. 
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1.4 Filter Types 

Α great deal of work has already been done and a number of standard filter characteristics 

have already been defined. These usually provide sufficient flexibility to solve the 

majority of filtering problems. The classic filter functions were developed by 

mathematicians (most bear their inventors' names), and each was designed to optimize 

some filter property. The most widely-used of these are presented below. 

1.4.1 Butterworth Filters 

Butterworth or maximally flat response is one of the most popular filters, designed to 

have a frequency response as flat as possible in the passband. The rolloff is smooth and 

monotonic with a rate of 20 dB/decade or 6 dB/octave for every pole. 

The general equation for a Butterworth filter’s amplitude response is 

 

|𝐻(𝑗𝜔)| =  
𝐾

[1 + (
𝑠

𝜔1
)

2𝑛

]

1
2

     (1.6) 

 

where n is the order of the filter, 𝜔1 is the -3 dB frequency of the filter, and K is the gain 

of the filter. 

We see that |𝐻(0)| = 𝐾 and |𝐻(𝑗𝜔)| is monotonically decreasing with ω. In addition, the 

-3 dB cutoff frequency is at 𝜔 = 1 for all n 

 

|𝐻(𝑗𝜔)| =  
𝐾

√2
     for all n     (1.7) 
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The cutoff frequency is thus seen to be 𝜔 = 1. The parameter n controls the closeness of 

approximation in both the band and the stop-band. 

For 𝜔 ≫ 1, the amplitude response of a Butterworth function can be written as (with 

 𝐾 = 1)  

|𝐻(𝑗𝜔)| ≅
1

𝜔𝑛
     ω ≫ 1     (1.8) 

 

Hence the slope is obtained as 

 

𝐴 = 20 log|𝐻(𝑗𝜔)| = 20 log |
1

𝜔𝑛
| = −20𝑛𝑙𝑜𝑔(𝜔)     (1.9) 

 

Consequently, the amplitude response falls at a rate of -20n dB/ decade or -6n dB/octave. 

1.4.2 Chebyshev Filters 

Another approximation to the ideal filter is the Chebyshev or equal ripple response. This 

sort of filter will have ripple in the passband amplitude response. As the ripple increases, 

the rolloff becomes sharper. The amount of passband ripple is one of the parameters used 

Figure 1.9 amplitude response curves for Butterworth filters of various 
orders (K=1) 
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in specifying a Chebyshev filter. The Chebyshev characteristic has a steeper rolloff near 

the cutoff frequency when compared to the Butterworth, but at the expense of 

monotonicity in the passband and poorer transient response. The ripple height, or distance 

between maximum and minimum in the pass-band is given as 

 

𝑅𝑖𝑝𝑝𝑙𝑒 = 1 −
1

(1 + 𝜀2)
1
2

 

 

In figure 1.10 we see the amplitude response for various Chebyshev filter orders. An 

important thing is that for a filter of order n we will have n-1 peaks or dips in the pass-

band response. The most important attribute of this filter realization is that it sacrifices 

passband amplitude stability for a steeper cut-off slope. 

1.4.3 Bessel-Thomson Filters 

Another filter approximation is the Bessel-Thompson. It is useful when linear phase shift 

with frequency is needed to avoid overshoot or ringing on the output of a filtering stage. 

The higher the filter order, the more linear the phase response. If a square wave is to be 

passed through a Butterworth or Chebyshev filter overshoot or ringing will appear on the 

output. In that case a Bessel-Thompson filter can be used. Figure 1.11 depicts the 

difference for a square wave through a 4th order Butterworth and a 4th order Bessel filter. 

It is obvious that the signal passing through the Butterworth filter causes ringing and 

Figure 1.10 amplitude response curves for Chebyshev filters of various 
orders 
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overshoot while the Bessel filter will introduce linear phase shift with respect to 

frequency (figure 1.12). Hence it will act as a delay line and will just round off the input 

square wave at the places where high frequency harmonic components are present in the 

input waveform. 

1.4.4 Elliptic or Cauer Filters 

Elliptic or Cauer filter has the sharpest rolloff of all previous mentioned types but has 

ripples in both the passband and the stopband, as illustrated in figure 1.13. The phase 

response is very non-linear as well. Despite the ripple effect, if frequency selectivity is of 

great concern, the elliptic filter is the design to be used. 

 

 

Figure 1.11 a square wave input passing through a 4th order Butterworth filter on the left and a 

4th order Bessel filter on the right. 

 

Figure 1.12 phase response comparison between a Butterworth and a Bessel filter with respect 

to frequency. 
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Figure 1.13 response curve of an elliptic filter of various orders. 

1.5 Cascading Filter Stages 

First and second order filters perform much better when they are combined by suitable 

cascading to build higher-order filters, in order to achieve a greater stopband attenuation 

or a broad passband with some special transmission characteristic. Because of the use of 

op-amps which theoretically provide an infinite input and zero output impedance, a 

simple cascade of first and second order filters can be made without interactions between 

the individual stages. The system’s transfer function is the product of each stage’s 

transfer function and each filter can be tuned separately. 

The order of the filter is given by the highest power of frequency that appears under the 

transfer function. As the order of the filter increases, the ultimate response falloff versus 

frequency gets better. The rate is 6N dB/octave, where N is the order. 

Figure 1.14 shows how to construct even and odd-order filters. The filter is broken into 

complex-conjugate-pole pairs that can be realized by either Sallen-Key, or MFB circuits. 

To implement an n-order filter, n/2 stages are required. Adding a first-order real pole at 

the beginning of the system an odd-order filter can be constructed, as shown in 3.b. The 

stages are normally arranged with the lowest Q near the input and the highest Q near the 

output. 

Each stage is carefully chosen to be a factor of the overall response shape desired, the 

stages cascaded are rarely identical and the response shape of the individual stages 

normally appears wildly different from the final response shape. Further, the cutoff 
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frequencies of each individual stage may also be very much different from the final 

overall cutoff frequency desired. 

 

 

Figure 1.14 cascading filter stages for odd or even order filter construction. 

 

1.6 Applications of Active Filters 

Active filtering plays an important role in audio processing. An active filter added to a 

guitar preamplifier can dramatically change the sound of the instrument by selectively 

emphasizing portions of the acoustic spectrum of the guitar. Synthesizers with many real 

instrument options are realized with the aid of active filtering. Their function depend on 

the control of the harmonics of a sinusoidal, sawtooth or square wave input signal and the 

envelope or the amplitude, as seen in figure 1.15. Audio equalizers cut or boost certain 

audio bands by setting up an arrangement of active bandpass filters. A general schematic 

of an audio equalizer is presented in figure 1.16. 

Another field active filters are used is brainwave research, where a method similar to that 

of an audio equalizer is used to segregate the four commonly recognized brainwaves, 

delta, theta, alpha and beta. 

Oscillators and signal sources can be created by providing enough feedback to a filter. 

Moreover, tone creation or detection and noise rejection heavily rely upon active filters 
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and their characteristics. Such as in modems, biomedical instrumentation, 

communications, lowpass noise filtering for general instrumentation and anti-alias 

filtering for data acquisition systems. Active filters excel in controlled frequency filtering 

(vcf) as well, applied in spectrum analysis. 

 

 

Figure 1.15 input manipulation through filtering for simulating instrument tones. 
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Figure 1.16 general schematic for a sound equalizer. 
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2. Sallen-Key Filter Topology 

2.1 General Sallen-Key scheme 

One of the most widely used filter topologies is that of Sallen and Key, also known as a 

voltage control-controlled voltage source (VCVS). It was first introduced in 1955 by R.P. 

Sallen and E. L. Key of MIT’s Lincoln Labs. It utilizes an op-amp and a voltage divider 

configuring an amplifier and as such it offers good stability, requires minimum number of 

elements and has low impedance, which is important for cascading filters with four or 

more poles. 

The popularity of this topology is attributed to the fact that it shows the least dependence 

of filter performance on the performance of the op-amp. That is because the op-amp is 

configured as an amplifier whose gain bandwidth product does not limit the performance 

of the filter, in contrast to an integrator configuration, allowing the design of a higher 

frequency filter for a given op-amp. 

Another advantage is the small component spread which is good for manufacturability. 

Plus, frequency and Q value are somewhat independent though very sensitive to gain 

parameter which renders this topology unsuitable for high Q applications. 

2.1.1 The Voltage-Controlled Voltage Source (VCVS) 

The need for buffering a high impedance source to a filter is satisfied with a non-

inverting VCVS op-amp. Typical input impedances are greater than tens of mega ohms 

and output impedances are typically less than a few ohms, depending on the amplifier 

being used. 

 

 

Figure 2.1 A non-inverting VCVS op-amp with resistive feedback 
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From figure 1.16, we have: 

node 𝑣1 

𝐺1𝑉1 + 𝐺2(𝑉1 − 𝑉0) = 0 

𝑉0 = (
𝐺1 + 𝐺2

𝐺2
) 𝑉1 

but, 

 𝑉1 = 𝑉− = 𝑉+ = 𝑉𝑖    (ideal opamp) 

therefore, 

𝑉0 = (1 +
𝐺1

𝐺2
) 𝑉𝑖 = (1 +

𝑅2

𝑅1
) 𝑉𝑖 

𝐾 =
𝑉0

𝑉𝑖
= 1 +

𝑅2

𝑅1
     (2.1) 

 

 

2.2 First and second-order Sallen-Key filters 

In figure 2.2 we have the general second-order Sallen-Key circuit from which we can 

obtain the first-order one by omitting Z2 and Z3 impedances. For example let’s analyze 

the first-order LPF circuit in figure 2.3: 

Figure 2.2 2nd-Order General Sallen-Key topology 
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For node V1: 

1

𝑅
(𝑉1 − 𝑉𝑖) + 𝑠𝐶𝑉1 = 0 → 𝑉1 =

1

1 + 𝑠𝑅𝐶
𝑉𝑖 

Also  

𝑉0 = 𝐾𝑉𝑖   𝑎𝑛𝑑   𝐾 = 1 +  
𝑅𝑏

𝑅𝑎
 

 

𝑉0(𝑠) =
𝐾

1 + 𝑠𝑅𝐶
𝑉𝑖(𝑠) 

𝐻(𝑠) =
𝑉0(𝑠)

𝑉𝑖(𝑠)
=

𝐾

1 +
𝑠

𝜔1

     (2.4) 

Where 

𝑠 = 𝑗𝜔  𝑎𝑛𝑑 𝜔1 =
1

𝑅𝐶
 

𝜔1 = 2𝜋𝑓1, 𝑓1 is the cutoff frequency of the filter. 

From the transfer function we have: 

FIGURE 2.3 First-order LPF 
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1. For 𝑠/𝜔1  ≪ 1 we have: 

 

|𝐻(𝑗𝜔)| ≅ 𝐾 

 

𝐴 = 20 log|𝐻(𝑗𝜔)| = 20 log 𝐾  𝑑𝐵 

 

Hence the slope is 0 dB/decade. 

 

2. For 𝑠/𝜔1 ≫ 1 we have: 

 

|𝐻(𝑗𝜔)| =
𝐾
𝜔
𝜔1

= 𝛫 (
𝜔

𝜔1
)

−1

 

 

𝛢 = 20 log|𝐻(𝑗𝜔)| = 20 log 𝐾 + 20 log (
𝜔

𝜔1
)

−1

= 20 log 𝐾 − 20 log (
𝜔

𝜔1
)  𝑑𝐵 

 

Hence the slope for 𝜔 𝜔1⁄ = 10 is -20 dB/decade 

 

3. For 𝑠/𝜔1 = 1: 

 

|𝐻(𝑗𝜔)| =  
𝛫

√2
 

 

𝐴 = 20 log
𝐾

√2
= 20 log 𝐾 − 20 log √2 = 20 log 𝐾 − 3 𝑑𝐵 

 

Which is the -3dB cutoff frequency point. 
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Figure 2.4 shows the frequency response of the filter. 

 

 

We’re going to analyze the general second-order Sallen-Key topology. From figure 2.2 

we have: 

For node V1: 

1

𝑍1

(𝑉1 − 𝑉𝑖) +
1

𝑍2

(𝑉1 − 𝑉0) +
1

𝑍3

(𝑉1 − 𝑉2) = 0     (2.2) 

For node V2: 

1

𝑍3

(𝑉2 − 𝑉1) +
1

𝑍4
𝑉2 = 0 → 

𝑉1 = 𝑉2 (1 +
𝑍3

𝑍4
)    (2.3) 

Also 

𝑉2 =
𝑉0

𝐾
     (2.4) 

Combining equations (2.3) and (2.4) we obtain: 

Figure 2.4 First-order LPF frequency response 
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𝑉1 =
𝑉0

𝐾
(1 +

𝑍3

𝑍4
)    (2.5) 

And by substituting (2.5) in (2.2): 

𝑉0

𝑉𝑖
= 𝐾

𝑍2𝑍4

𝑍1𝑍2 + 𝑍1𝑍3 + 𝑍2𝑍3 + 𝑍2𝑍4 + 𝑍1𝑍4(1 − 𝐾)
     (2.6) 

 

To extract the equations that define a second-order low-pass Sallen-Key filter we 

substitute 𝑍1 → 𝑅1, 𝑍3 → 𝑅2, 𝑍2 → 1/𝑠𝐶1 and 𝑍4 → 1/𝑠𝐶2. Therefore: 

𝐻(𝑠) =
𝐾

1
𝑠𝐶1

1
𝑠𝐶2

 

𝑅1
1

𝑠𝐶1
+ 𝑅1𝑅2 + 𝑅2

1
𝑠𝐶1

+
1

𝑠𝐶1

1
𝑠𝐶2

+ 𝑅1
1

𝑠𝐶2
(1 − 𝐾)

 → 

𝐻(𝑠) =
𝐾

𝑠2𝑅1𝑅2𝐶1𝐶2 + 𝑠[𝐶2(𝑅1 + 𝑅2) + 𝐶1𝑅1(1 − 𝐾)] + 1
→ 

𝐻(𝑠) =
𝐾

1
𝑅1𝑅2𝐶1𝐶2

𝑠2 + 𝑠
[𝐶2(𝑅1 + 𝑅2) + 𝐶1𝑅1(1 − 𝐾)]

𝑅1𝑅2𝐶1𝐶2
+

1
𝑅1𝑅2𝐶1𝐶2

     (2.7) 

From the standard second-order form: 

𝐻(𝑠) =
𝐾𝜔𝑛

2

𝑠2 +
𝜔𝑛

𝑄 𝑠 + 𝜔𝑛
2

     (2.8) 

Therefore we can calculate the natural frequency, and the Q factor as follows: 

𝜔𝑛 = √
1

𝑅1𝑅2𝐶1𝐶2
     (2.9) 

𝜔𝑛

𝑄
=

𝐶2(𝑅1 + 𝑅2) + 𝐶1𝑅1(1 − 𝐾)

𝑅1𝑅2𝐶1𝐶2
→ 
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𝑄 =
√𝑅1𝑅2𝐶1𝐶2

𝐶2(𝑅1 + 𝑅2) + 𝐶1𝑅1(1 − 𝐾)
     (2.10) 

In order to observe the frequency response of the filter, from equation (2.8): 

𝐻(𝑠) =
𝐾

(
𝑠

𝜔𝑛
)

2

+ (
𝑠

𝜔𝑛
) 𝑄 + 1

 

1. For 𝑠 𝜔𝑛⁄ ≪ 1  

 

𝐻(𝑗𝜔) ≅ 𝐾 

 

𝐴 = 20 log|H(𝑗𝜔)| = 20 log 𝐾 𝑑𝐵 

 

2. For 𝑠 𝜔𝑛 ≫ 1⁄  

𝐻(𝑗𝜔) ≅
𝛫

(
𝜔

𝜔𝑛
)

2 = 𝐾 (
𝜔

𝜔𝑛
)

−2

 

 

𝐴 = 20 log|𝐻(𝑗𝜔)| = 20 log 𝐾 (
𝜔

𝜔𝑛
)

−2

= 20 log 𝐾 − 40 log (
𝜔

𝜔𝑛
) 𝑑𝐵 

 

For 𝜔 𝜔𝑛 = 10⁄   

 

𝐴 = 20 log 𝐾 − 40 𝑑𝐵 

 

The slope is -40 dB/decade 

 

3. For 𝑠 𝜔𝑛 = 1⁄  

 

|𝐻(𝑗𝜔)| ≅ |
𝐾

1 + 𝑗
| =

𝐾

√2
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𝐴 = 20 log
𝐾

√2
= 20 log 𝐾 − 20 log √2 = 20 log 𝐾 − 3 𝑑𝐵 

 

We see that the slope is two times steeper than the slope of the first order one, due to the 

order of the filter. 

Likewise for the second-order high-pass filter: 

𝑍1 → 1/𝑠𝐶1, 𝑍3 → 1/𝑠𝐶2, 𝑍2 → 𝑅1 and 𝑍4 → 𝑅2. Therefore: 

𝐻(𝑠) =
𝐾𝑅1𝑅2

1
𝑠𝐶1

𝑅1 +
1

𝑠𝐶1

1
𝑠𝐶2

+ 𝑅1
1

𝑠𝐶2
+ 𝑅1𝑅2 +

1
𝑠𝐶1

𝑅2(1 − 𝐾)
→ 

𝐻(𝑠) =
𝐾𝑠2𝑅1𝑅2𝐶1𝐶2

𝑠2𝑅1𝑅2𝐶1𝐶2 + 𝑠[𝑅1(𝐶1 + 𝐶2) + 𝑅2𝐶2(1 − 𝐾)] + 1
→ 

𝐻(𝑠) =
𝐾𝑠2

𝑠2 + 𝑠
[𝑅1(𝐶1 + 𝐶2) + 𝑅2𝐶2(1 − 𝐾)]

𝑅1𝑅2𝐶1𝐶2
+

1
𝑅1𝑅2𝐶1𝐶2

 

 

From the standard form of high-pass filter: 

𝐻(𝑠) =
𝐾𝑠2

𝑠2 +
𝜔𝑛

𝑄 𝑠 + 𝜔𝑛
2
 

Figure 2.5 2nd SK LP frequency response 
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We evaluate: 

𝜔𝑛 = √
1

𝑅1𝑅2𝐶1𝐶2
 

𝜔𝑛

𝑄
=

𝑅1(𝐶1 + 𝐶2) + 𝐶2𝑅2(1 − 𝐾)

𝑅1𝑅2𝐶1𝐶2
→ 

𝑄 =
√𝑅1𝑅2𝐶1𝐶2

𝑅1(𝐶1 + 𝐶2) + 𝐶2𝑅2(1 − 𝐾)
 

2.3 Wide-band Band-pass/reject Filters 

Wide-band bandpass filters with relatively constant gain can be realized simply by 

clarifying the specifications into lowpass and highpass filter stages and cascading them. 

A wide-band approach is valid when the separation between cutoffs is at least an octave 

so that minimum interaction occurs in the passband. 

In the same manner, a wide-band band-reject filter can be constructed according to figure 

2.6. The first step is to parallel the filter stages and sum both outputs with the aid of an 

inverting amplifier. The amplifier can also provide K gain to the circuit. 

 

 

Figure 2.6 wide-band band-reject building block 
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Sallen-Key filters exhibit serious disadvantages in forming notch filters. The 

resonant/notch frequency cannot be adjusted easily due to component interaction. 

Moreover, the gain is fixed by other design parameters and there is a wide spread in 

component values. Since there are easier to use circuits, Sallen-Key topology is avoided 

for notch filter construction. 
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3. Multiple Feedback Filter Topology 

Another very popular configuration is the multiple feedback filter (MFB) which uses a 

single op-amp as an integrator, providing RC feedback around it. A general configuration 

for the 2nd order case is shown in figure 3.1. The MFB configuration exhibits greater 

dependence of the transfer function on the op-amp parameters in contrast to the Sallen-

Key, responsible for which, is the integrator configuration. It is difficult to generate high 

Q, high frequency sections due to the limitations of the open-loop gain of the op-amp. It 

is called a multiple feedback infinite gain amplifier filter and it inverts the phase of the 

signal. Another thing to mention is that the component spread is higher than that of the 

Sallen-Key. 

With this configuration we can have a low-pass, a high-pass, and narrow-band band-pass 

characteristic. 

 

For node V1: 

1

𝑍1

(𝑉1 − 𝑉𝑖) +
1

𝑍2

(𝑉1 − 𝑉0) +
1

𝑍4
𝑉1 +

1

𝑍3

(𝑉1 − 𝑉2) = 0     (3.1) 

For node V2: 

1

𝑍3

(𝑉2 − 𝑉1) +
1

𝑍5

(𝑉2 − 𝑉0) = 0     (3.2) 

 

Figure 3.1 General multiple feedback 
filter topology 
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Also 

𝑉2 = 𝑉− = 𝑉+ = 0     (3.3) 

By replacing equation (3.3) into (3.2) we get 

𝑉1 = −
𝑍3

𝑍5
𝑉0     (3.4) 

Utilizing equations (3.3) and (3.4) into (3.1) we get 

−𝑉0 (
𝑍3

𝑍5𝑍1
+

𝑍3

𝑍2𝑍5
+

1

𝑍5
+

𝑍3

𝑍4𝑍5
+

1

𝑍2
) =

1

𝑍1
𝑉𝑖 → 

𝐻(𝑠) =
𝑉0

𝑉𝑖
= −

𝑍2𝑍4𝑍5

𝑍2𝑍3𝑍4 + 𝑍1𝑍3𝑍4 + 𝑍1𝑍2𝑍4 + 𝑍1𝑍2𝑍3 + 𝑍1𝑍4𝑍5
     (3.5) 

 

3.1 Low pass filters 

We’re going to calculate the frequency response of the second-order low-pass MFB 

circuit in Figure 3.1. We substitute  𝑍1 → 𝑅1, 𝑍2 → 𝑅2, 𝑍3 → 𝑅3, 𝑍4 → 1/𝑠𝐶1 and 𝑍5 →

1/𝑠𝐶2. From equation (3.5) and for these impedance values we get: 

𝐻(𝑠) = −
𝑅2

1
𝑠𝐶1

1
𝑠𝐶2

𝑅2𝑅3
1

𝑠𝐶1
+ 𝑅1𝑅3

1
𝑠𝐶1

+ 𝑅1𝑅2
1

𝑠𝐶1
+ 𝑅1𝑅2𝑅3 + 𝑅1

1
𝑠𝐶1

1
𝑠𝐶2

→ 

Figure 3.2 2nd order low pass MFB 
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𝐻(𝑠) = −

1
𝑅1𝑅3𝐶1𝐶2

𝑠2 + 𝑠
(

1
𝑅1

+
1

𝑅2
+

1
𝑅3

)

𝐶1
+

1
𝑅2𝑅3𝐶1𝐶2

     (3.6) 

We can calculate the gain K by setting s = 0: 

𝐾 = 𝐻(0) = −
𝑅2

𝑅1
    (3.7) 

And rewrite the equation (3.6) as: 

𝐻(𝑠) =
𝐾

1
𝑅2𝑅3𝐶1𝐶2

𝑠2 + 𝑠

1
𝑅1

+
1

𝑅2
+

1
𝑅3

𝐶1
+

1
𝑅2𝑅3𝐶1𝐶2

     (3.8) 

𝐻(𝑠) =
𝐾𝜔𝑛

2

𝑠2 +
𝜔𝑛

𝑄 𝑠 + 𝜔𝑛
2

     (3.9) 

Where  

𝜔𝑛 = √
1

𝑅2𝑅3𝐶1𝐶2
     (3.10) 

𝑄 =
𝜔𝑛𝐶1

1
𝑅1

+
1

𝑅2
+

1
𝑅3

→ 

𝑄 =
√𝑅2𝑅3𝐶1𝐶2𝑅1

𝐶2(𝑅1𝑅2 + 𝑅1𝑅3 + 𝑅2𝑅3)
→ 

𝑄 =
√𝑅2𝑅3𝐶1𝐶2

(𝑅2 + (1 − 𝐾)𝑅3)𝐶2
     (3.11) 
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3.2 High pass filters 

For the high-pass circuit we substitute 𝑍1 → 1/𝑠𝐶1, 𝑍2 → 1/𝑠𝐶2, 𝑍3 → 1/𝑠𝐶3, 𝑍4 → 𝑅1 

and 𝑍5 → 𝑅2 

𝐻(𝑠) = −

1
𝑠𝐶2

𝑅1𝑅2

1
𝑠𝐶2

1
𝑠𝐶3

𝑅1 +
1

𝑠𝐶1

1
𝑠𝐶3

𝑅1 +
1

𝑠𝐶1

1
𝑠𝐶2

𝑅1 +
1

𝑠𝐶1

1
𝑠𝐶2

1
𝑠𝐶3

+
1

𝑠𝐶1
𝑅1𝑅2

→ 

𝐻(𝑠) = −
𝑠2 𝐶1

𝐶2

𝑠2 + 𝑠
(𝐶1 + 𝐶2 + 𝐶3)

𝑅2𝐶2𝐶3
+

1
𝑅1𝑅2𝐶2𝐶3

 

𝐾 = lim
𝑠→∞

𝐻(𝑠) = −
𝐶1

𝐶2
 

𝐻(𝑠) =
𝐾𝑠2

𝑠2 +
𝜔𝑛

𝑄 𝑠 + 𝜔𝑛

 

𝜔𝑛 =
1

√𝑅1𝑅2𝐶2𝐶3

 

𝜔𝑛

𝑄
=

(𝐶1 + 𝐶2 + 𝐶3)

𝑅2𝐶2𝐶3
→ 

𝑄 =
𝜔𝑛𝑅2𝐶2𝐶3

𝐶1 + 𝐶2 + 𝐶3
→ 

Figure 3.3 HP MFB 
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𝑄 =
√𝑅1𝑅2𝐶2𝐶3

𝑅1(𝐶3 + (1 − 𝐾)𝐶2)
 

3.3 Band Pass MFB 

When the separation between the upper and lower frequencies exceeds a ratio of 

approximately 2, the bandpass filter is considered a wide-band type of filter. The 

specification is then separated into individual lowpass and highpass requirements and met 

by cascade of active lowpass and highpass filters. 

Though, with the MFB topology we can design a 2nd order narrow-band bandpass filter as 

shown in figure 3.4. 

 

Figure 3.4 2nd order bandpass MFB filter. 

From this circuit, working in the same sense as above: 

node v1: 

−
𝑉𝑖

𝑅1
+ (

1

𝑅1
+

1

𝑅3
+ 𝑠𝐶1 + 𝑠𝐶2) 𝑉1 − 𝑠𝐶1𝑉2 − 𝑠𝐶1𝑉𝑜 = 0 

Node v2: 

−𝑠𝐶1𝑉1 + (𝑠𝐶1 +
1

𝑅2
) 𝑉2 −

1

𝑅2
𝑉𝑜 = 0 

Again 𝑉2 = 0, hence 

𝑉1 = −
1

𝑠𝐶1𝑅2
𝑉𝑜 
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𝐻(𝑠) =
𝑉𝑜

𝑉𝑖
= −

𝑠
𝐶1

𝑅1

𝑠2𝐶1𝐶2 + 𝑠(𝐶1 + 𝐶2)
1

𝑅2
+ (

1
𝑅1

+
1

𝑅3
)

1
𝑅2

 

Transforming it to the general form 

𝐻(𝑠) = −
𝑠

1
𝑅1𝐶2

𝑠2 + 𝑠
𝐶1 + 𝐶2

𝐶1𝐶2

1
𝑅2

+ (
1

𝑅1
+

1
𝑅3

)
1

𝑅2

1
𝐶1𝐶2

 
 

Let  𝐶1 = 𝐶2 = 𝐶, 𝑅1 = 1/𝑅2, 𝑅3 → ∞ 

𝜔𝑛 =
1

√𝑅1𝑅2𝐶1𝐶2

=
1

𝐶
  

At 𝜔 = 1 rad/s, 

𝜔𝑛

𝑄
=

𝐶1 + 𝐶2

𝐶1𝐶2

1

𝑅2
    =>      𝑄 =

1

2
𝑅2 

𝐾 = 𝐻(𝑗𝜔0) = −
1

2

𝑅2

𝑅1
= −2𝑄2 

𝑅2 = 2𝑄 , 𝑅1 =
1

2𝑄
 

From the equations above we can deduct that the tuning of the resonant frequency is 

possible by altering the two capacitors, but keeping their values identical. Damping or its 

inverse Q factor can be varied by varying the ratio of the two resistors, keeping their 

product constant. Though the limitation this circuit exhibits is pointed out by the 

dependency between gain and Q. The gain of this circuit is fixed at −2𝑄2 and cannot be 

independently adjusted. Increasing the Q has the result of lowering the input resistance 

and raising the op-amp feedback resistance. Using the R3 resistor it is possible to lower 

the circuit gain and raise the input impedance at the same time, without affecting any 

other attribute of the filter. Overall, this is a good, general-purpose, low-Q filter. The 

upper Q limit depends on the op-amp and the desired frequency. 
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From the transfer function we have: 

𝐻(𝑠) = −

1
𝑅1𝐶𝜔0

(
𝑠

𝜔0
)

(
𝑠

𝜔0
)

2

+
2

𝑅2𝐶𝜔0
(

𝑠
𝜔0

) + 1
 

The general form is: 

𝐻(𝑠) = −
𝐾0 (

𝑠
𝜔0

)

(
𝑠

𝜔0
)

2

+
1
𝑄 (

𝑠
𝜔0

) + 1
 

1. for  𝑠 𝜔0⁄ ≪ 1 

𝐻(𝑗𝜔0) = −𝐾0(𝑗
𝜔

𝜔0
) 

𝐴 = 20 log 𝐾0 (
𝜔

𝜔0
) 

𝛢 = 20 log 𝐾0 + 20 log
𝜔

𝜔0
 

Hence the slope is 20 dB/dec 

2. for  𝑠 𝜔0⁄ ≫ 1 

𝐻(𝑗𝜔0) = −𝐾0 (𝑗
𝜔

𝜔0
)

−1

 

𝐴 = 20 log 𝐾0 (
𝜔

𝜔0
)

−1

 

𝐴 = 20 log 𝐾0 − 20 log (
𝜔

𝜔0
) 

Hence the slope is -20 dB/dec 

2. for  𝑠 𝜔0⁄ = 1 
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𝐻(𝑗𝜔0) = −
𝑗𝐾0

−1 + 𝑗
1
𝑄 + 1

= −𝑄𝐾0 = 𝐾 

𝐾0 =
𝐾

𝑄
 

Figure 3.5 depicts the frequency response of the narrow-band bandpass filter.  

 

Figure 3.5 narrow-band bandpass filter frequency response 
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4. State Variable Filter Topology 

4.1 State variable filter general scheme 

The state variable filter or SVF, is a type of multiple-feedback filter circuit that can 

produce all three filter responses, low pass, high pass and band pass simultaneously from 

the same single active filter design. Figure 4.1 shows that it uses three op-amps for its 

basic operation cascaded together to produce the individual filter outputs and more 

specifically, a summing amplifier followed by two consecutive integrator stages. The 

input signal is injected in the summing amplifier along with the feedback networks of the 

two integrator stages to obtain the high pass response. Subsequently the high pass signal 

is passed through the first integrator stage. Integrators use a capacitor within their 

feedback loop and as such, the output voltage is proportional to the integral of the input 

voltage. 

Because of its versatility, this filter is called the universal filter. This filter provides the 

user with easy control of the gain and Q-factor. It offers several features which are not 

available with the other simpler filters. By properly summing all three filter types outputs 

some very interesting responses can be made. Bandpass filters with high Q can be built. 

The damping and/or critical frequency could be electronically tuned. The low-pass and 

high-pass outputs are inverted in phase while the band-pass output maintains the phase. 

The gain of each of the outputs of the filter is also independently variable. With an added 

amplifier section summing the low-pass and high-pass sections the notch function can 

also be synthesized. By changing the ratio of the summed sections, low-pass notch, 

standard notch and high-pass notch functions can be realized.  

Beginning with the analysis of the SVF, we start from the first stage which is a summing 

amplifier. The input signal, the high pass and the low pass outputs are fed back to the 

negative connector, while a portion of the band pass output is fed back to the positive 

connector. 
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Figure 4.1 state-variable filter general scheme 

For the negative connector we have: 

𝑉𝑖 − 𝑉−

𝑅𝑔
+

𝑉𝐻𝑃 − 𝑉−

𝑅2
+

𝑉𝐿𝑃 − 𝑉−

𝑅3
= 0 

𝑉− (
1

𝑅𝑔
+

1

𝑅2
+

1

𝑅3
) =

𝑉𝑖

𝑅𝑔
+

𝑉𝐻𝑃

𝑅2
+

𝑉𝐿𝑃

𝑅3
     (4.1) 

 

For the positive connector we have: 

𝑉𝐵𝑃 − 𝑉+

𝑅1
=

𝑉+

𝑅𝑞
 

𝑉𝐵𝑃

𝑅1
= 𝑉+(

1

𝑅1
+

1

𝑅𝑞
) 

𝑉+ = 𝑉𝐵𝑃

𝑅𝑞

𝑅𝑞 + 𝑅1
     (4.2) 

Though, 𝑉− = 𝑉+ 

Hence equation 4.1 becomes 

𝑅𝑞

𝑅𝑞 + 𝑅1
(

1

𝑅𝑔
+

1

𝑅2
+

1

𝑅3
) 𝑉𝐵𝑃 =

𝑉𝑖

𝑅𝑔
+

𝑉𝐻𝑃

𝑅2
+

𝑉𝐿𝑃

𝑅3
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𝑉𝐻𝑃 = −
𝑅2

𝑅3
𝑉𝐿𝑃 −

𝑅2

𝑅𝑔
𝑉𝑖 +

𝑅𝑞

𝑅𝑞 + 𝑅1
(1 +

𝑅2

𝑅3
+

𝑅2

𝑅𝑔
) 𝑉𝐵𝑃     (4.3) 

After the summing amplifier stage, signal 𝑉𝐻𝑃 is passed through two consecutive 

identical integrator stages. Integrators use a frequency dependent impedance in the form 

of a capacitor within their feedback loop. As a capacitor is used the output voltage is 

proportional to the integral of the input voltage. More thoroughly: 

𝑉− − 𝑉𝐻𝑃

𝑅
+ (𝑉− − 𝑉𝐵𝑃)𝑠𝐶 = 0 

But, 𝑉− = 𝑉+ = 0 

𝑉𝐵𝑃 = −
1

𝑠𝑅𝐶
𝑉𝐻𝑃     (4.4) 

Which can be re-written in the frequency domain as: 

𝑉𝐵𝑃 = −
1

2𝜋𝑓𝑐𝑅𝐶
𝑉𝐻𝑃 

Frequency-wise the output signal is 1/2𝜋𝑓𝑐𝑅𝐶 times the input signal. 1/2𝜋𝑅𝐶 is a 

constant, therefore, as frequency grows the magnitude of the output falls. Plus, integrators 

exhibit a -180 degrees phase lag because the input signal is connected directly to the 

inverting input terminal of the op-amp. 

Likewise, for the following integrator: 

𝑉𝐿𝑃 = −
1

𝑠𝑅𝐶
𝑉𝐵𝑃     (4.5) 

4.2 Low Pass SVF 

From equation 4.4 and 4.5 

𝑉𝐻𝑃 = −𝑠𝑅𝐶𝑉𝐵𝑃     (4.6) 

𝑉𝐵𝑃 = −𝑠𝑅𝐶𝑉𝐿𝑃     (4.7) 

Hence: 
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𝑉𝐻𝑃 = 𝑠2𝑅2𝐶2𝑉𝐿𝑃     (4.8) 

From equation 4.3 and 4.7 we have: 

𝑠2𝑅2𝐶2𝑉𝐿𝑃 = −
𝑅2

𝑅3
𝑉𝐿𝑃 −

𝑅2

𝑅𝑔
𝑉𝑖 −

𝑅𝑞

𝑅𝑞 + 𝑅1
(1 +

𝑅2

𝑅3
+

𝑅2

𝑅𝑔
) 𝑠𝑅𝐶𝑉𝐿𝑃 

[𝑠2𝑅2𝐶2 +
𝑅𝑞

𝑅𝑞 + 𝑅1
(1 +

𝑅2

𝑅3
+

𝑅2

𝑅𝑔
) 𝑠𝑅𝐶 +

𝑅2

𝑅3
] 𝑉𝐿𝑃 = −

𝑅2

𝑅𝑔
𝑉𝑖 

𝐻𝐿𝑃 =
𝑉𝐿𝑃

𝑉𝑖
= −

𝑅2
𝑅𝑔

𝑠2𝑅2𝐶2 +
𝑅𝑞

𝑅𝑞 + 𝑅1
(1 +

𝑅2

𝑅3
+

𝑅2

𝑅𝑔
) 𝑠𝑅𝐶 +

𝑅2

𝑅3

 

The general for of a low pass filter is 

𝐻(𝑠) =
𝐾𝜔𝑛

2

𝑠2 +
𝜔𝑛

𝑄 𝑠 + 𝜔𝑛
2
 

Hence  

𝐻𝐿𝑃 =
𝑉𝐿𝑃

𝑉𝑖
= −

𝑅2
𝑅𝑔

1
𝑅2𝐶2

𝑠2 +
𝑅𝑞

𝑅𝑞 + 𝑅1
(1 +

𝑅2

𝑅3
+

𝑅2

𝑅𝑔
)

1
𝑅𝐶 𝑠 +

𝑅2

𝑅3

1
𝑅2𝐶2

     (4.9) 

We can calculate the gain K by setting s = 0: 

𝐾 = 𝐻(0) =
𝑅3

𝑅𝑔
 

4.3 High Pass SVF 

From equation 4.4 and 4.5 

𝑉𝐿𝑃 =
1

𝑠2𝑅2𝐶2
𝑉𝐻𝑃     (4.10) 
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Equation 4.3 from equations 4.4 and 4.10: 

𝑉𝐻𝑃 = −
𝑅2

𝑅3

1

𝑠2𝑅2𝐶2
𝑉𝐻𝑃 −

𝑅2

𝑅𝑔
𝑉𝑖 −

𝑅𝑞

𝑅𝑞 + 𝑅1
(1 +

𝑅2

𝑅3
+

𝑅2

𝑅𝑔
)

1

𝑠𝑅𝐶
𝑉𝐻𝑃 

𝑉𝐻𝑃 [1 +
𝑅2

𝑅3

1

𝑠2𝑅2𝐶2
+

𝑅𝑞

𝑅𝑞 + 𝑅1
(1 +

𝑅2

𝑅3
+

𝑅2

𝑅𝑔
)

1

𝑠𝑅𝐶
] = −

𝑅2

𝑅𝑔
𝑉𝑖 

𝐻𝐻𝑃 =
𝑉𝐻𝑃

𝑉𝑖
= −

𝑅2
𝑅𝑔

1 +
𝑅2

𝑅3

1
𝑠2𝑅2𝐶2 +

𝑅𝑞

𝑅𝑞 + 𝑅1
(1 +

𝑅2

𝑅3
+

𝑅2

𝑅𝑔
)

1
𝑠𝑅𝐶

 

The general for of a high pass filter is 

𝐻 =
𝐾𝑠2

𝑠2 +
𝜔𝑛

𝑄 𝑠 + 𝜔𝑛
2
 

Hence 

𝐻𝐻𝑃 = −

𝑅2
𝑅𝑔

𝑠2

𝑠2 +
𝑅𝑞

𝑅𝑞 + 𝑅1
(1 +

𝑅2

𝑅3
+

𝑅2

𝑅𝑔
)

1
𝑅𝐶 𝑠 +

𝑅2

𝑅3

1
𝑅2𝐶2

 

Gain K is 

𝐾 = lim
𝑠→∞

𝐻𝐻𝑃(𝑠) =
𝑅2

𝑅𝑔
 

4.4 Band Pass SVF 

Equation 4.3 from equations 4.5 and 4.6: 

−𝑠𝑅𝐶𝑉𝐵𝑃 = −
𝑅2

𝑅3
(−

1

𝑠𝑅𝐶
) 𝑉𝐵𝑃 −

𝑅2

𝑅𝑔
𝑉𝑖 +

𝑅𝑞

𝑅𝑞 + 𝑅1
(1 +

𝑅2

𝑅3
+

𝑅2

𝑅𝑔
) 𝑉𝐵𝑃 

𝐻𝐵𝑃 =
𝑉𝐵𝑃

𝑉𝑖
=

𝑅2
𝑅𝑔

1
𝑅𝐶 𝑠

𝑠2 +
𝑅𝑞

𝑅𝑞 + 𝑅1
(1 +

𝑅2

𝑅3
+

𝑅2

𝑅𝑔
)

1
𝑅𝐶 𝑠 +

𝑅2

𝑅3

1
𝑅2𝐶2
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𝜔𝑛 = √
𝑅2

𝑅3

1

𝑅𝐶
 

From the general bandpass equation: 

𝐻𝐵𝑃(𝑠) =
𝐻0𝜔0

2

𝑠2 +
𝜔0

𝑄 𝑠 + 𝜔0
2
 

Hence 

𝑄 =
𝑅𝑞 + 𝑅1

𝑅𝑞(1 +
𝑅2

𝑅3
+

𝑅2

𝑅𝑔
)

√
𝑅2

𝑅3

1

𝑅𝐶
 

For 𝑠 = 𝑗𝜔 

𝐾 = 𝐻𝐵𝑃(𝑗𝜔) =

𝑅2
𝑅𝑔

𝑅𝑞

𝑅𝑞 + 𝑅1
(1 +

𝑅2

𝑅3
+

𝑅2

𝑅𝑔
)

 

For 𝜔 = 1 𝑟𝑎𝑑/𝑠 

For a normalized filter: 

𝑅 = 𝑅𝑔 = 𝑅2 = 1𝛺 

𝐶 = 1𝐹 

Hence 

𝑅3 = 1𝛺 

Substituting in the above equations: 

𝑄 =
𝑅𝑞 + 𝑅1

3𝑅𝑞
=> 𝑅1 = (3𝑄 − 1)𝑅𝑞 

𝐾 =
𝑅𝑞 + 𝑅1

3𝑅𝑞
=

𝑅𝑞 + (3𝑄 − 1)𝑅𝑞

3𝑅𝑞
= 𝑄 

As repeated before frequency can be tuned in steps by switching the capacitors or by 

varying the frequency-determining resistors, independent of Q or gain. Circuit Q and 

bandwidth are adjusted with a single resistor. As the frequency changes, the Q and 
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percentage bandwidth stay constant. The absolute bandwidth goes up or down 

proportionately with the center frequency. 

The circuit gain is Q and the op-amp need only have a gain of 3Q or so, open-loop, at the 

resonance frequency. This is a much less severe restriction than the earlier filters, so 

state-variable techniques are ideal for high Q and high frequency uses. 

4.5 Other SVF Realizations 

A SVF notch can be constructed by summing the highpass and lowpass outputs along 

with an appropriate voltage divider network. 

 

Figure 4.2 state-variable filter notch construction 

𝑅8 = 𝑅9 

𝐾 =
𝑅10

𝑅8
 

In the same manner an all-pass filter can be realized by summing the input signal along 

with the bandpass output of the filter.  

 

Figure 4.3 state-variable filter all-pass filter construction 

𝑅8 = 𝑅10 
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𝑅9 =
𝑅8

2
 

 

4.6 The Biquad Filter 

The Biquad filter consists of two integrators and inverter. Loss is introduced into one of 

the integrators with a damping and Q-setting resistor. The Biquad demonstrates a 

particular useful characteristic, constant bandwidth. In the Biquad filter, as the frequency 

changes, the absolute bandwidth remains constant, while in the SVF, the bandwidth 

narrows at lower and expands at higher frequencies.  

 

Figure 4.4 biquad filter scheme 

𝑌 =
1

𝑅𝑞
+ 𝑠𝐶𝑓 =

1 + 𝑠𝑅𝑞𝐶𝑓

𝑅𝑞
=> 𝑍 =

𝑅𝑞

1 + 𝑠𝑅𝑞𝐶𝑓
 

𝑉𝐵𝑃 = −
𝑍

𝑅𝑔
𝑉𝑖 −

𝑍

𝑅𝑓
𝑉𝐿𝑃     (4.11) 

𝑉1 = −𝑉𝐵𝑃     (4.12) 

Equation 4.11 from 4.12 

𝑉𝐵𝑃 = −
𝑍

𝑅𝑔
𝑉𝑖 −

𝑍

𝑅𝑓

1

𝑠𝑅𝑓𝐶𝑓
𝑉𝐵𝑃 
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𝑉𝐵𝑃 (1 +
𝑍

𝑠𝑅𝑓
2𝐶𝑓

) = −
𝑍

𝑅𝑔
𝑉𝑖 

𝑉𝐵𝑃 (
𝑠𝑅𝑓

2𝐶𝑓 + 𝑍

𝑠𝑅𝑓
2𝐶𝑓

) = −
𝑍

𝑅𝑔
𝑉𝑖 

𝑉𝐵𝑃

𝑉𝑖
= −

𝑠𝑅𝑓
2𝐶𝑓𝑍

(𝑠𝑅𝑓
2𝐶𝑓 + 𝑍)𝑅𝑔

= −
𝑠𝑅𝑓

2𝐶𝑓

𝑅𝑔 (1 +
𝑠𝑅𝑓

2𝐶𝑓

𝑍 )

= −

𝑠𝑅𝑓
2𝐶𝑓

𝑅𝑔

1 + 𝑠𝑅𝑓
2𝐶𝑓

1 + 𝑠𝑅𝑞𝐶𝑓

𝑅𝑞

 

𝐻𝐵𝑃 = −

𝑠𝑅𝑓
2𝐶𝑓𝑅𝑞

𝑅𝑔

𝑅𝑞  + 𝑠𝑅𝑓
2𝐶𝑓 + 𝑠2𝑅𝑓

2𝑅𝑞𝐶𝑓
2)

= −

1
𝑅𝑔𝐶𝑓

𝑠

𝑠2 +
1

𝑅𝑞𝐶𝑓
𝑠 +

1
𝑅𝑓

2𝐶𝑓
2

 

𝜔𝑛 =
1

𝑅𝑓𝐶𝑓
 

𝛣𝑊 =
𝜔𝑛

𝑄
=

1

𝑅𝑞𝐶𝑓
=> 𝑄 =

𝑅𝑞

𝐶𝑓
     (4.13) 

𝐾 = 𝐻𝐵𝑃(𝑗𝜔𝑛) = −
𝑅𝑞

𝑅𝑔
 

The center frequency is easily tuned by merely adjusting the value of 𝑅𝑓. Also, Q may be 

adjusted by changing the value of 𝑅𝑞, and the gain of the filter may be changed by 

adjusting the value of 𝑅𝑔. The biquad filter is capable of attaining high values of Q, in the 

neighborhood of 100, and is a much more stable network than those discussed in the 

previous bandpass filters. 

With a little observation of equation 4.13, it can be seen that bandwidth is independent of 

frequency tuning resistor 𝑅𝑓. The Q goes up and the percentage bandwidth goes down as 

frequency is increased and vice versa. 

The biquad is handy if you want a group of identical absolute bandwidth channels in a 

system, such as in telephone applications and spectrum analyzers. 
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5. The Perfect Notch Filter 

The notch filter’s significance is found in applications where elimination of undesirable 

signals is needed, such as, tone-signaling, hearing-aid feedback, and mains rejection 

systems. Another use is in distortion analyzers for calculating the total harmonic 

distortion (THD) of an input signal. Variable notch filters are also used in sound 

engineering for graphic equalizers, synthesizers and electronic crossovers to deal with 

narrow peaks in the acoustic response of the music. 

For example, 50/60 Hz hum or prominent acoustic feedback can be eliminated thanks to 

the very narrow band-stop region of notch filters. The bandwidth can be as low as around 

10-20 Hz, with the unwanted frequency reduced by 40dB or more. 

In the previous chapters, the inadequacy of Sallen-Key and MFB topologies to deliver a 

satisfying notch behavior was pointed out. While, by summing the highpass and lowpass 

output of a SVF, a satisfying, medium Q notch can be realized, if there is a need for 

greater precision, higher Q and generally a more independent control over the center 

frequency and component selection, there are more elaborate designs to choose. 

5.1 Twin-T Notch 

Twin-T filter (figure 5.1) consists of three resistors and three capacitors. It is widely used 

as a general-purpose notch circuit. The passive implementation has a Q that is fixed at 

0.25. This issue can be rectified with the application of positive feedback to the reference 

node. The amount of signal feedback, set by the R4/R5 ratio, determines the value of Q 

of the circuit which in turn determines the notch depth. For maximum notch depth R4, R5 

and the associated op-amp can be eliminated. 

It operates by phase shifting the signals in the different legs and adding them to the 

output. At the notch frequency, the signals passing through each leg are 180 degrees out 

of phase and cancel out. In order to achieve such a precise response the components 

tolerances must be very low. 
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Figure 5.1 Twin-T notch filter. The passive configuration on the left and the active configuration 
on the right 

From the two circuits above: 

𝑅1 = 𝑅2 = 𝑅 , 𝑅3 = 𝑅/2 

𝐶1 = 𝐶2 = 𝐶 , 𝐶3 = 2𝐶 

𝑉𝑂𝑈𝑇

𝑉𝐼𝑁
=

𝑠2 + 𝜔0
2

𝑠2 +
𝜔0

𝑄 𝑠 + 𝜔0
2

=
𝑠2 + (

1
𝑅𝐶)

2

𝑠2 + (
1

𝑅𝐶) (
4

1 +
𝑅5

𝑅4

) 𝑠 + (
1

𝑅𝐶)
2

 

Center frequency is calculated by 

𝑓0 =
1

2𝜋𝑅𝐶
 

And Q is set by the R5/R4 ratio as such 

𝑄 = (1 +
𝑅5

𝑅4
) /4  
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Figure 5.2 2nd order Twin-T notch filter response 

Figure 5.2 shows the response of a 2nd order Twin-T notch filter. Such a narrow 

bandwidth and abrupt attenuation behavior could be very useful for example, in removing 

the 60 Hz interference component in measuring instruments.  

5.2 Bainter Notch  

Another notch filter topology that differentiates from the others is the Bainter notch. In 

contrast to most notch realizations, its Q is not based on component matching, yet on the 

gain of the amplifiers. Consequently, the notch depth is not affected by temperature drift 

or circuit aging and it remains relatively constant even though the filter’s notch frequency 

may shift. 

As seen in figure 5.3, it is made up of three amplifier stages with two feedback loops. A 

highpass filter, a lowpass filter and the last amplifier providing the notch output. 

The transfer function for the Bainter notch topology is: 

𝑉𝑂𝑈𝑇

𝑉𝐼𝑁
=

𝑠2 + 𝜔𝑧
2

𝑠2 +
𝜔0

𝑄 𝑠 + 𝜔0
2

=
𝐾2 (𝑠2 +

𝐾1

𝑅3𝑅5𝐶1𝐶2
)

𝑠2 +
𝑅5 + 𝑅6

𝑅5𝑅6𝐶2
𝑠 +

𝐾2

𝑅4𝑅5𝐶1𝐶2
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Figure 5.3 Bainter notch filter circuit 

R6 tunes Q, R1 tunes center frequency, varying R3 sets the ratio of ω0/ωz producing 

lowpass notch (R4 > R3), standard notch (R4 = R3) and highpass notch (R4 < R3). K1 and 

K2 set the gain above and below the notch frequency. With an appropriate op-amp, a Q 

factor of 200 and above can be achieved. 

 

Figure 5.4 6th order Bainter notch filter response. 

 

Figure 5.4 shows the frequency response of a 6th order Bainter notch circuit. With correct 

component selection and by cascading 2nd order filters, an attenuation less than -100 dB 
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can be achieved. Also the rolloff alongside the notch frequency is smooth with no peaks, 

providing a stable behavior. 
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