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Εντοπισμός και προσέγγιση σημείων ενδιαφέροντος με Drones

χρησιμοποιώντας οπτικά σημάδια

Περίληψη

Το αντικείμενο της διπλωματικής είναι ο εντοπισμός και η προσέγγιση οπτικών ση-

μαδιών χρησιμοποιώντας μία κάμερα σε μη επανδρομένα οχήματα, όπως ένα Drone.

Πιο συγκεκριμένα, για να εντοπιστούν τετράγωνα οπτικά σημάδια, χρησιμοποιούνται

τεχνικές της βιβλιοθήκης OpenCV. Επιπλέον, για να επιτευχθεί η εκτιμήση της θέσης

της κάμερας σε σχέση με τα οπτικά σημάδια, η κάμερα πρέπει να είναι βαθμονομη-

μένη. Η διπλωματική προτείνει δύο μεθόδους για να καθοδηγήσει το Drone έτσι ώστε

να προσεγγίσει τα σημάδια. Η πρώτη μέθοδος, χρησιμοποιεί διανύσματα μετατόπισης

και περιστροφής που εξάγονται από την εκτίμηση της θέσης της κάμερας σε σχέση

με τα οπτικά σημάδια. Η δεύτερη μέθοδος, βρίσκει τις GPS συντεταγμένες του ο-

πτικού σημαδιού, κάνοντας χρήση την γνωστή GPS θέση του Drone, την απόσταση

μεταξύ αυτού και του οπτικού σημαδιού αλλά και την γωνία που ορίζεται μεταξύ τους.

Η κυριότερη διαφορά ανάμεσα στις δύο μεθόδους είναι η ακρίβεια της προσέγγισης,

με την πρώτη να υπερτερεί έναντι της δεύτερης. Τέλος, οι δύο μέθοδοι μπορούν να

συνδυαστούν, ώστε το όχημα, πρώτα, να προσεγγίσει τον στόχο μέσα στα πλαίσια

της ακρίβειας του GPS, και στην συνέχεια να προσεγγίσει τον στόχο με μεγαλύτερη

ακρίβεια χρησιμοποιώντας τα διανύσματα μετατόπισης και περιστροφής.



Detecting and Approaching Points of Interest

with Drones using Visual Markers

Abstract

The aim of this thesis is to detect visual markers using a monocular camera in un-

manned vehicles, such as quadcopters, in order to approach them. More specifically,

to detect squared fiducial markers, OpenCV (Open Source Computer Vision library)

techniques are used. Moreover, to achieve a pose estimation of the camera with re-

spect to the visual marker, a camera has to be calibrated. This thesis proposes

two procedures to guide the quadcopter so as to approach the marker. The first

procedure uses the translation and rotation vectors that are extracted from the pose

estimation of the camera. The second procedure finds the GPS (Global Position

System) position of the visual marker using the known GPS position of the quad-

copter, the ground distance and the relative bearing between. The main difference

between these methods is the precision of the approach, with the former having

better accuracy. Finally, these two methods can be combined, so that the vehicle,

firstly, approaches the target within the error range of the GPS, and secondly within

the more accurate method of direct navigation commands.



Acknowledgements

First of all, I would like to thank to my supervisor Professor Spyros Lalis for his

guidance, great support and kind advice throughout my undergraduate years, espe-

cially in the development of this thesis. It was an honour for me and privilege to

absorb a small chunk of his exceptional knowledge.

I also would like to thank to my co-supervisor Professor Antonios Argyriou for

his valuable advice and helpful suggestions for the accomplishment of this thesis.

I am grateful to my friend Tryfon Tsakiris for our excellent collaboration while

working on several projects throughout these years, and my fellow students for all

their support, unconditional friendship and patience.

Last, but not least, I would like to express my deepest gratitude to my parents

and my brother who have always supported and helped me with their own unique

way to achieve my goals, and will always be the most important thing of my life.

v



Contents

Abstract iv

Acknowledgements v

1 Introduction 1

1.1 Importance of the problem . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 4

2.1 Visual Marker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Marker’s composition . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Marker Detection . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Gazebo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Gazebo Components . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Robot Operating System . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 What is ROS? . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.2 ROS architecture . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Conceptual Approach 18

3.1 Perspective Projection - Transformation . . . . . . . . . . . . . . . . 18

3.1.1 Pinhole Camera Model . . . . . . . . . . . . . . . . . . . . . . 18

3.1.2 Camera Movement . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.3 Homogeneous Coordinates . . . . . . . . . . . . . . . . . . . . 23

3.1.4 Camera Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 23

vi



Contents vii

3.2 Camera Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Geometrical Distortion . . . . . . . . . . . . . . . . . . . . . . 26

3.2.2 Calibration Process . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.1 Axis angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.2 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.3 Euler Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 GPS Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.1 Navigation Angles . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5 Proposed Approaching Methods . . . . . . . . . . . . . . . . . . . . . 39

3.5.1 Pose Extraction Method . . . . . . . . . . . . . . . . . . . . . 39

3.5.2 GPS Navigation Method . . . . . . . . . . . . . . . . . . . . . 39

4 Implementation 41

4.1 Combining existing parts . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.1 Illustration of the overall System Architecture . . . . . . . . . 41

4.1.2 ArduPilot-SITL . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.3 Ground Control Station . . . . . . . . . . . . . . . . . . . . . 44

4.1.4 MAVLink Protocol . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1.5 Ardupilot Gazebo Plugin & Models . . . . . . . . . . . . . . . 45

4.1.6 Gazebo with ROS . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Gazebo Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.1 Creation of the visual marker . . . . . . . . . . . . . . . . . . 47

4.2.2 Camera sensor plugin . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.3 Joint Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 ROS Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.1 Creation of the package . . . . . . . . . . . . . . . . . . . . . 53

4.3.2 Pose Extraction Node . . . . . . . . . . . . . . . . . . . . . . 53

4.3.3 Navigation Node . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Proof of Concept Scenario 63

5.1 Mission Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63



Contents viii

5.2 Approachment of the target . . . . . . . . . . . . . . . . . . . . . . . 65

5.3 Planned Mission and Actual Path Followed . . . . . . . . . . . . . . . 66

6 Related Work 75

6.1 Similar work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.1.1 ROS package aruco ros . . . . . . . . . . . . . . . . . . . . . . 75

6.1.2 ROS package aruco detect . . . . . . . . . . . . . . . . . . . . 76

6.1.3 ROS package asr aruco marker recognition . . . . . . . . . . . 76

6.2 Main differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7 Conclusions 79

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.2 Possible improvements . . . . . . . . . . . . . . . . . . . . . . . . . . 80



List of Figures

2.1 (a) Visual Marker and (b) Visual Marker with Augmented Reality. . . 4

2.2 (a) Coordinate system of a marker (X is to the right, Y is up and Z

is forward-out of the page). (b) The first and the last row - column

of the mark is the black border and the rest is the inner part. . . . . 5

2.3 Markers of different sizes. Black cells denotes to 0 and white cells

denotes to 1. From the left to right: n = 5, n = 6 and n = 8. . . . . . 6

2.4 Steps of the process of marker detection. . . . . . . . . . . . . . . . . 6

2.5 A picture of a square with a lot of zoom. The corner does not lie on

a single pixel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.6 Structure of the ROS Graph layer. . . . . . . . . . . . . . . . . . . . 15

2.7 An example of ROS Topic. . . . . . . . . . . . . . . . . . . . . . . . . 16

2.8 An example of ROS Service. . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Pinhole Camera Model. One can think of the virtual image plane as

being in front of the camera and hold the upright image of the scene. 19

3.2 The mathematical model and the geometry of a pinhole camera. . . . 19

3.3 The correlation between the Camera Coordinate System (Bottom -

Left) and the World Coordinate System (Top - Left). . . . . . . . . . 22

3.4 Definition of the TCamera Target transformation that defines the loca-

tion and orientation of the camera coordinate system with respect to

the known target coordinate system. . . . . . . . . . . . . . . . . . . 25

ix



List of Figures x

3.5 Upper image before the camera calibration procedure. Here, straight

lines are seen curved because of distortion of the lens. Down im-

age after the camera calibration procedure and correction of the lens

distortion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.6 Left image with positive distortion. Right image with negative dis-

tortion. In the middle there is not any distortion. . . . . . . . . . . . 28

3.7 Left image with no distortion. Right image with tangential distortion

as the image plane and lens are not parallel. . . . . . . . . . . . . . . 28

3.8 A square chessboard used to do the calibration process. . . . . . . . . 30

3.9 Axis angle rotation about a unit vector and an angle. . . . . . . . . . 33

3.10 Rotation along each axis. . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.11 Shows the yaw, pitch and roll angles in a vehicle and how they rotate

the aircraft. Notice that is uses the right-hand rule to determine the

positive and negative rotation. . . . . . . . . . . . . . . . . . . . . . . 37

3.12 Representation of heading, course, track and bearing angles. . . . . . 38

4.1 Illustration of the overall System Architecture . . . . . . . . . . . . . 42

4.2 Communication between the two nodes. . . . . . . . . . . . . . . . . . 43

4.3 SITL Simulator architecture. . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Visual box with textures upon its surfaces. On the upper surface

of the box, the coordinate system of the visual marker is presented.

Also, in the middle right, the x, y, z dimensions of the box are presented. 49

4.5 Cv bridge for converting OpenCV images to ROS format to be pub-

lished over ROS and vice versa. . . . . . . . . . . . . . . . . . . . . . 54

4.6 Quadcopter coordinate system with Z up, Y left and X forward. . . . 55

4.7 Quadcopter Coordinate System (Upper) and Camera Coordinate Sys-

tem (Bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1 The path that the Drone follows in order to find and approach the

Visual Marker. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66



List of Figures xi

5.2 Illustrates the Gazebo world-environment. Here, the Drone is taking

off and starting its mission, while the visual marker (purple triangle

on the Fig. 5.1) lies randomly within the world. The Drone is at its

home position (white building in Fig. 5.1). . . . . . . . . . . . . . . . 67

5.3 While the Drone is searching for the visual marker, it reaches the

point A (blue) in Fig. 5.1 without finds the visual marker. . . . . . . 68

5.4 The Drone reaches the waypoint #1 of the planned mission, point

B (blue) in Fig. 5.1, without finds the visual marker. After that, it

continues its navigation to the next waypoint #2. . . . . . . . . . . . 68

5.5 While the Drone is reaching the waypoint #2, it sees the visual marker

in its camera frame at the blue point C in Fig. 5.1. After that, it is

navigating with the method that uses the GPS coordinates of the

visual marker in order to approach it. . . . . . . . . . . . . . . . . . . 69

5.6 The Drone reaches its destination of the new GPS coordinates, point

D (blue) in Fig. 5.1, and it is hovering upon the visual marker (purple

triangle in Fig. 5.1) without decreases its altitude (i.e it remaines 4m

above the ground). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.7 The Drone is hovering upon the visual marker. Just another screen

snapshots from another perspective. The image window shows the

detected visual marker. . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.8 After some seconds the Drone starts approaching the visual marker

with the translation vector. Thus, it increases the accuracy of the

approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.9 Meanwhile the Drone starts rotating (change it’s heading - nose of

the quadcopter) in order to align its axes with the marker’s one. . . . 73

5.10 Illustration of the Drone’s position and orientation after the comple-

tion of the translation and rotation commands. Note that the Drone

decreases its altitude at the half of its initial altitude. . . . . . . . . . 74

5.11 Illustration of the alignment of the Drone’s axis with the Marker’s one. 74

6.1 The robot of the pal robotics. . . . . . . . . . . . . . . . . . . . . . . 76



List of Tables

3.1 An illustration of different orientation presentations. . . . . . . . . . . 32

4.1 ArduPilot MAVLink Mission Command Package Format . . . . . . . 46

5.1 ArduPilot MAV CMD NAV WAYPOINT Command. . . . . . . . . . 64

xii



Chapter 1

Introduction

In this chapter, a preface is given in order to understand the aim of this thesis. In

particular, it explains why the camera pose estimation is an importance problem as

well as what strategy does this thesis follows, in order to guide the drone so as to

approach the visual marker.

1.1 Importance of the problem

Camera pose estimation is a popular problem in numerous computer vision applica-

tions such as robot navigation or AR (Augmented Reality), which is usually based

on obtaining correspondences between known points on the environment and their

camera projections-image points. Using natural features to estimate the pose, such

as key points on images, is a very common strategy which does not require modify-

ing the environment. However, the use of visual markers is still of great importance

and an attractive approach for camera pose estimation since it provides easy detec-

tion and point correspondences more precisely, robustly and efficiently. Moreover,

they, easily, allow the camera to extract pose from their four corners, given that

the camera is properly calibrated. One only needs to create visual markers with a

regular printer and place them in the target environment.

1
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1.2 Approach

This thesis propose two methods in order the Drone to approach the visual marker.

In the first method, the quadcopter navigates in the environment with the help

of the camera pose relative to the visual marker. On the other hand, the second

procedure makes use of the GPS coordinates. More specifically, it extracts the GPS

coordinates of a the visual marker with the help of the known GPS position of the

quadcopter, the distance and the relative bearing between them.

Moreover, the Gazebo simulator is used in order to implement and visualize a

quadcopter model. In particular, the SITL (Software in the Loop) simulator of the

ArduPilot, which allows to run a quadcopter without any hardware, interact with

the Gazebo simulator. Also, a visual marker box is created within the Gazebo so as

the camera, that is mounted on the gimbal of the quadcopter, can detect it.

The image processing of the frames that are produced by the quadcopter’s cam-

era, is done on ROS (Robotics Operating System) in order to detect the visual

marker. After the extraction of the marker’s GPS coordinates as well as the transla-

tion and rotation vectors between the camera and the visual marker, the ArduPilot

flight controller receives commands via the MAVLink protocol so as the quadcopter

can be guided successfully which will allow it to localize itself and approach the

target.

1.3 Thesis structure

The rest of this thesis is structured as follows. Chapter 2 provides a background

of the visual markers, the Gazebo Simulator as well as the ROS (Robot Operating

System). Chapter 3 provides information, necessary for one, to understand the basic

concepts of a perspective projection and a rigid transformation. In other words, how

does a 3-dimensional world point is projected onto an image plane. Then, it explains

why a camera calibration is an obligatory step in order to estimate the pose of a

camera. Moreover, it shows the procedure of how the quadcopter extracts the visual

marker’s GPS coordinates, as well as the meaning of rotations in the 3-dimensional

space. Finally, Chapter 3 illustrates the two methods that the quadcopter uses in
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order to approach the visual marker. Chapter 4 begins with a brief overview of each

different component that have been implemented, so as the UAV (unmanned aerial

vehicle) is able to reach the target - visual marker. Moreover, a bigger picture from

a software engineering perspective is shown, so that the reader understands how the

different components are combined. Finally, it demonstrates the procedures that

are followed so as the quadcopter is able to localize itself and approach the target.

In Chapter 5 an indicative test is presented in order to verify that what this thesis

builds is actually works. Chapter 6 mentions some related works and the main

differences between them and this thesis. Finally, Chapter 7 concludes the thesis

and describes future work.



Chapter 2

Background

2.1 Visual Marker

Recognition of visual markers (Fig. 2.1a) is an intersection topic, which has appli-

cations in different areas. One application is AR (augmented reality), where with

the help of computer vision one can find them in a picture or a video stream and

substitute them (Fig. 2.1b) for artificially generated objects creating a view which

is half real and half virtual - virtual objects in a real world. Another application

is robotics, where markers can be used either to give commands to a robot or as

directions so as a robot can navigate within some environment.

(a) (b)

Figure 2.1: (a) Visual Marker and (b) Visual Marker with Augmented Reality.

4
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2.1.1 Marker’s composition

Markers are comprised by an external black border and an inner region that encodes

a binary pattern (Fig. 2.2b). The binary pattern is unique and identifies each marker.

Depending on the dictionary (which is a set of visual markers with equal bits), there

are markers with more or less bits (Fig. 2.3). The more bits, the more words in the

dictionary, and the smaller chance of a confusion. However, more bits means that

more resolution is required for correct detection.

(a) (b)

Figure 2.2: (a) Coordinate system of a marker (X is to the right, Y is up and Z is

forward-out of the page). (b) The first and the last row - column of the mark is the

black border and the rest is the inner part.

In other words, all the markers, are represented with a square grid divided equally

to the same number of rows and columns. Each cell of the grid is filled with either

black or white color. The first and the last row - column of each marker contain

only black cells, creating a black border around each marker. All such markers are

printed on white paper in such a way, that there is white area around black borders

of a marker and we denote s the size of the marker once it is measured (Fig. 2.2a).
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Figure 2.3: Markers of different sizes. Black cells denotes to 0 and white cells denotes

to 1. From the left to right: n = 5, n = 6 and n = 8.

2.1.2 Marker Detection

In order to detect the visual marker, this thesis uses the ArUco library [1], [2], [3].

More specifically, the process (Fig. 2.4) of ArUco, which is comprised by several

steps aimed to detecting rectangles and extracting the binary code from them, is

as follows: a) Image segmentation, b) Contour extraction and filtering, c) Marker

Code extraction and d) Corner refinement.

Figure 2.4: Steps of the process of marker detection.
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Image segmentation

The goal of image segmentation is to partition an image into multiple segments and

to simplify or change the representation of an image into something more meaningful

and easier to analyze. In other words, image segmentation is typically used to

locate objects and boundaries (lines, curves, etc.) in images. More precisely, image

segmentation is the process of assigning a label to every pixel in an image such that

pixels with the same label share certain characteristics.

Since a marker is designed to have an external black border surrounded by a

white space, the borders can be found by segmentation. In their approach, an

adaptive thresholding is employed. More specifically, the mean intensity value m of

each pixel is computed using a window size w. If the intensity value of its pixel is

below than m− c then the pixel is set to one, otherwise is set to zero, where the c

is a constant value (Fig. 2.4b).

Contour extraction and filtering

On the thresholded image that was produced by the previous step, a contour (outline

of a shape) extraction and filtering must be applied in order to take the four-vertex

rectangles.

Firstly, using the Suzuki and Abe algorithm, we obtain a set of contours from the

thesholded image. However, it is possible to have irrelevant background elements

in the output image (Fig. 2.4c). That is to say, a filtering step is required in order

to wipe out them. For this purpose, the Douglas-Peucker algorithm is used to

perform a polygonal approximation. More specifically, we care about contours with

four-corner polygons, since markers are squares. Thus, the elements, that do not

approximate well to a four-corner polygon, are discarded. Finally, too small contours

are discarded, leaving only the external ones. The resulting polygons from this

process can be seen by (Fig. 2.4d).

Marker Code extraction

The ArUco library, in order to determine which of the remaining contours are valid

markers, firstly, removes the perspective projection, so as to obtain a frontal view
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of the rectangle using a homography and then is thresholding the image using the

Otsu’s method, which provides the optimal image threshold value (Fig. 2.4e).

Then, the binarized image (Fig. 2.4f) is divided into a regular grid and each

element is assigned the value 0 or 1 depending on the values of the majority of the

pixels into it. For each marker candidate, it is necessary to determine whether it

belongs to the set of valid markers or if it is a background element.

For example, if we divide the binarized image into a 6x6 grid, the 5x5 cells

contains the id information, while the rest coorespond to the external black border.

First, it must check that the external black border is present. After that, it reads

the internal cells and see if they provide a valid code. Four possible identifiers

are obtained for each candidate, corresponding to the four possible rotations of the

canonical image. If any of the identifiers belong to the set of valid markers, then it

is accepted.

Corner refinement

The last step, of the ArUco process, consists of estimating the location of the corners

with subpixel accuracy.

Working with images on a digital system, the smallest part of an image is a pixel.

There is no way to access information ”between” pixels. Fig. 2.5 shows a corner that

does not lie on a single pixel. Since several application, like tracking and camera

calibration, require higher accuracy than a camera can provide, it is fundamental to

find the corner more precisely.

To do so, the method estimates the lines of the marker’s sides employing all the

contour pixels and computes the intersections in order to get higher accuracy at the

corner.
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Figure 2.5: A picture of a square with a lot of zoom. The corner does not lie on a

single pixel.

2.2 Gazebo

Robot simulation is a fundamental tool for every roboticist. A well-designed sim-

ulator offers the ability to immediately test algorithms, design robots and perform

regression testing using realistic scenarios.

In order to simulate the quadcopter to detect and approach a visual marker

without a hardware, this thesis uses a robot simulator.

Gazebo [4] offers this ability since it is a 3D dynamic simulator with the capa-

bility to accurately and efficiently simulate populations of robots in complex indoor

and outdoor environments. While similar to game engines, Gazebo offers physics

simulation at a much higher degree of fidelity, a suite of sensors, and interfaces for

both users and programs.

2.2.1 Gazebo Components

In order to understand the components that comprise the Gazebo simulator, the

thesis makes a brief overview about its terminology. More specifically, a) the term

Model is used to describe all the objects, static or dynamic. To be more specific,

models can range from simple shapes to complex robots. b) The term Static is for

those objects that have only a collision geometry. In other words, all the objects
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which are not meant to move and they only declare their geometry in order to

determine their collisions with the other elements of the environment. c) The term

Dynamic is for those objects that have both inertia and collision geometry. This

kind of objects, can be managed by a programmer in order to move them within the

simulation environment or acquire their sensor data (if they have one). d) The term

Word is used to describe a collection of models, i.e robots and static objects (such

as buildings, tables, and lights), and global parameters including the sky, ambient

light, and physics properties.

All of the above elements of the simulation are represented by the SDF (Simula-

tion Description Format). More specifically, SDF is an XML format that describes

robots, and environments for robot simulators, visualization, and robot control.

Within the robot, SDF can describe it’s kinematic and dynamic attributes, sensors,

joint frictions and many more properties. Finally, within the environment, SDF

describes the existence of the various models (such as robots, objects) and their

interaction.

The items involved in describing the elements and running the Gazebo Simulation

are:

World Files

The world description file contains all the elements in a simulation, such as robots,

lights, sensors, and static objects. This file is formatted by SDF (Simulation De-

scription Format) using XML, and typically has a .world extension.

A simple example of a world file is:

1 <?xml version="1.0" ?>

2 <sdf version="1.5">

3 <world name="default">

4

5 <!-- A global light source -->

6 <include>

7 <uri>model://sun</uri>

8 </include>
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9

10 <!-- A ground plane -->

11 <include>

12 <uri>model://ground_plane</uri>

13 </include>

14 </world>

15 </sdf>

Model Files

A model file uses the same SDF format as world files, but should only contain a

single tag <model>...</model>. Moreover, a model can have multiple sensors that

acquire data. The purpose of these files is to facilitate model reuse, and simplify

world files. Once a model file is created, it can be included in a world file using the

following SDF syntax:

1 <include>

2 <uri>model://model_file_name</uri>

3 </include>

A simple example of a model file that represents a box is:

1 <?xml version='1.0'?>

2 <sdf version="1.4">

3 <model name="visual_marker">

4 <pose>0 0 0.1 0 0 0</pose>

5 <static>true</static>

6 <link name="box">

7 <collision name="collision">

8 <geometry>

9 <box>

10 <size>0.2 0.2 0.2</size>

11 </box>

12 </geometry>

13 </collision>

14 <visual name="visual">
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15 <geometry>

16 <box>

17 <size>0.2 0.2 0.2</size>

18 <!-- here one can use their own mesh with textures that improve

visual appearance -->

19 </box>

20 </geometry>

21 </visual>

22 </link>

23 </model>

24 </sdf>

The tag link contains the physical properties of one body of the model. For the case

that the model is a simple wheel, only one link must be listed in order to represent

a model. However, a model may be more complex and consists of different parts,

e.g, a table or a robot. In this case, a model is described by multiple links, each

one of them corresponds to a different part of the model. These links are connected

together with the joint tag. The joint tag connects two links, a parent and child

relationship. For example, a table model could consist of 5 links (4 for the legs and

1 for the top) connected via joints.

Since each link contains the physical properties of one body of the model, these

physical properties consist of collision and visual elements. A collision element

encapsulates a geometry that is used to collision checking, while the visual element

is used to visualize parts of a link in the simulator. Finally, a link may have inertial,

sensor and light elements. An inertial element describes the dynamic properties of

the link, like the mass of the body. The sensor element describes a sensor that a

body of the model may have which collects data from the world. Finally, a light

element describes a light source attached to a link.

Gazebo Server

The server parses a world description file given on the command line, and then

simulates the world using a physics and sensor engine.
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Graphical Client

The graphical client connects to a running server and visualizes the elements. This

application provides a nice visualization of simulation. Moreover, the user within

the client may also modify the scene by adding, modifying, or removing models.

Additionally, there are some tools for visualizing and logging simulated sensor data.

Plugins

A plugin, or alternatively a controller, is a chunk of code that is compiled as a shared

library and is inserted either into the SDF files (world or model) or as an argument

in the command line (when the simulation starts). The plugin lets developers con-

trol almost any aspect of the functionality of Gazebo through the standard C++

classes. Moreover, one should use a plugin when a) want to programmatically alter

a simulation, b) move models, respond to events, insert new models given a set of

preconditions.

Plugins should be chosen based on the desired functionality and are managed by

a different component of Gazebo. More specifically, a world plugin is attached to a

world file and is able to control physics engine, lighting. A model plugin is attached

to a model file and controls joints and state of a model. Moreover, one should use a

sensor plugin to acquire sensor information or control sensor properties. Finally, a

system plugin is specified on the command line and gives the user control the startup

process. For example, a user can use a system plugin in order to save images from

user camera of the simulator into a directory.

2.3 Robot Operating System

2.3.1 What is ROS?

The Robot Operating System (ROS) [5], [6], [7] is an open-source, meta-operating

system for robots. It provides the services one would expect from an operating

system, including hardware abstraction, low-level device control, implementation

of commonly-used functionality, message-passing between processes, and package
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management. It also provides tools and libraries for obtaining, building, writing,

and running code across multiple computers.

Moreover, the ROS runtime ”graph” is a peer-to-peer network of processes. In

other words, a system built using ROS consists of a number of processes, possibly

on a number of different hosts, connected at runtime in a peer-to-peer topology.

The peer-to-peer topology requires a lookup-mechanism to allow processes to find

each other at runtime. ROS call this, the name master. If processes are running on

different hosts, only one host is required to start the master process.

Finally ROS implements several different styles of communication between pro-

cesses, including synchronous RPC (Remote Procedure Calls)-style communication

over services, asynchronous streaming of data over topics and storage of data on a

Parameter Server.

2.3.2 ROS architecture

The fundamental concepts of the ROS implementation are nodes, messages, topics,

and services.

The computation in ROS is done by using a network of process called ROS nodes.

This computation network is called the computation graph (Fig. 2.6). The main

concepts in the computation graph are Nodes, Master, Parameter Server, Messages,

Topics, Services, and Bags. Each one of these, has its own role in the computation

graph.
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Figure 2.6: Structure of the ROS Graph layer.

Nodes

Nodes are processes that perform computation. There is a peer-to-peer communica-

tion between nodes. The name node arises from the fact that when multiple nodes

are running, it is easy to translate the peer-to-peer communication as a graph, the

processes as graph nodes and the peer-to-peer links as arrows between them.

A basic example of a robot is that a robot control system comprises many pro-

cesses (nodes). In other words, one node may control a laser, one node may control

the wheel motors, one node may control the localization e.t.c.

Finally, a ROS node is written with the use of a ROS client library (roscpp,

rospy).

Master

The ROS Master provides name registration and lookup to the rest of the Com-

putation Graph. Without the Master, nodes would not be able to find each other,

trade messages, or apply services.

Parameter Server

The Parameter Server runs inside the ROS Master and is a shared, multi-variate

dictionary. Nodes can use this server in order to retrieve or store parameters at
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runtime.

Messages and Topics

A message is a a strictly typed data structure. Also, messages can be composed of

other messages, and arrays of other messages. A node sends a message by publishing

it to a given topic. The topic is a name that is used to identify the content of the

message. A node that is interested in a certain kind of data will subscribe to the

appropriate topic. There may be multiple concurrent publishers and subscribers for

a single topic (Fig. 2.7), and a single node may publish and/or subscribe to multiple

topics. In general, publishers and subscribers are not aware of each others’ existence.

Figure 2.7: An example of ROS Topic.

Services

Although messages are the primary method in order to communicate in ROS, there

are a few limitations. For this purpose, ROS introduce another way of communica-

tion, services. The differences between messages and services are:

• Service calls are bi-directional. One node sends information to another node

and waits for a response. That is to say, both directions share the same

information. On the other hand, when a message is published, there is no

concept of a response, and no one guarantee that any node is subscribing to

those messages.
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• Service calls implement one-to-one communication. Each service call is initi-

ated by one node, and the response goes back to the same node. On the other

hand, each message (as mentioned before) is related to a topic that might have

plenty of publishers and subscribers.

Services are defined by a pair of message structures: one for the request and one

for the reply. A provider node offers a service under a specific name and a client

uses this service by sending the request message and waiting the reply message. See

Fig. 2.8.

Figure 2.8: An example of ROS Service.



Chapter 3

Conceptual Approach

This chapter, firstly, gives an overview about the pinhole camera model (i.e how does

a 3-dimensional world point is projected onto an image plane) and the fundamental

parameters of a camera, in order to understand the importance of the calibration

method. Then, it illustrates the two proposed methods that the quadcopter follows

in order to approach the visual marker, by explaining the meaning of rotations and

translations in the 3-dimensional space, as well as, the meaning of the navigation

angles.

3.1 Perspective Projection - Transformation

Before we continue talking about camera calibration, we must first, make an overview

of perspective projection. In other words, how we are mapping three-dimensional

points that a camera sees in the scene to a two-dimensional plane (screen - image

plane).

3.1.1 Pinhole Camera Model

Pinhole camera is an ideal camera with a small aperture (Fig. 3.1) and without lens,

therefore geometric distortions or blurring of unfocused objects are not included.

The model of a pinhole camera describes the relationship between the 3D coordinates

of a point in space and its projection onto the image plane. Also, notice that the

pinhole camera model does not take into account the coordinate transformations

18
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from one reference system to another, for example a point transformation from a

world coordinate system to a camera coordinate system. Thus, this model can only

be used as a first order approximation of the mapping from a 3D scene to a 2D

image.

Figure 3.1: Pinhole Camera Model. One can think of the virtual image plane as

being in front of the camera and hold the upright image of the scene.

Figure 3.2: The mathematical model and the geometry of a pinhole camera.

Figure 3.2 shows the 3D coordinate system (Xc, Y c, Zc) of a camera with its Fc

as origin (where the small aperture of the pinhole camera is located). The Zc axis
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is referred as the optical axis, principal ray or principal axis. Also the origin of

the camera Fc is a point in the 3D space which is referred as the opticalcenter, lens

center or camera center.

It is important to mention that in reality the image plane is located behind the

3D orthogonal system of the camera. However, it is easier for someone to see the

connection between the coordinate systems if the image plane is reflected, so that

it is located in front.

Moreover, the Fig. 3.2 contains the following basic objects:

• An image plane where the 3D point is projected and is located at a distance

f from the origin Fc, called focallength.

• The principal point - image center, which is the intersection of the optical

axis and the image plane.

• A point P with coordinates (X, Y, Z), which is located in the world.

• The projection line (red line in the Fig. 3.2) of the point P and the origin of

the camera Fc.

• The projection of the point P onto the image plane, which is the intersection

of the projection line (red line) and the image plane.

Lastly, the image plane has its own coordinate system, with its origin at the

principal point and the axes x and y parallel to Xc and Yc, respectively.

To associate the coordinates (x, y) in the image plane with those (X, Y, Z) of a

point P in the scene is done via similar triangles and we ended up with the following

equations.

x = f
X

Z
(3.1.1)

y = f
Y

Z
(3.1.2)
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3.1.2 Camera Movement

Most of the time, cameras have to capture images from different viewpoints, such

as in this thesis; remember that the camera is mounted on the drone. Therefore, we

need to have a way of modeling camera movements. A camera can apply rotations

and translations. A translation is represented by the vector t ε R3 and it means

that a camera can move from its current 3D location (X, Y, Z) to a new 3D location

(X
′
, Y

′
, Z

′
). The rotation is represented by a 3 x 3 matrix R and it means that a

camera can rotate about the X, Y and Z axes. Also, in order for a matrix R to

represent a rotation has to fulfill two requirements:

det(R) = 1 (3.1.3)

R−1R = I, where I corresponds to the identical matrix. (3.1.4)

Lastly, since R represents the rotation of a three orthogonal axes from a specific

coordinate system, is an orthogonal. Thus, it follows that:

RT = R−1 (3.1.5)

R−1R = RTR = I (3.1.6)

The Fig. 3.3 shows the two coordinate systems, world and camera. A world

coordinate system can be anything, since the camera movements will be related to

a specific coordinate system that we will define.

Now, let’s suppose a scene point P with coordinates (X, Y, Z) in the world coor-

dinate system and (X
′
, Y

′
, Z

′
) in the camera coordinate system. These two different

coordinates of the same point P can be related through:


X

′

Y
′

Z
′

 = R


X

Y

Z

 + t (3.1.7)

Thus, a rotation matrix R and a translation vector t relates the two different coor-

dinate frames.

The points of the equation 3.1.7 can be written in the form of homogeneous

coordinates (see subsection 3.1.3). Thus, in a matrix form we end up:
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Z
′


X

′
/Z

′

Y
′
/Z

′

1

 =


X

′

Y
′

Z
′

 =
[
R t

]

X

Y

Z

1

 (3.1.8)

The
[
R t

]
is a 3 x 4 matrix, where the first three rows and columns are consti-

tute the rotation matrix R and the last column is the translation vector t. In the

subsection 3.1.1, we ended up into two equations 3.1.1, 3.1.2, which represent the

projection of the point P onto the image plane (assume that the focal length is 1).

Thus, the equation 3.1.8 computes the projection of the scene point P , but with

the coordinates given in the world reference system rather than in the camera’s one.

Moreover, this equation shows that, in order to obtain the projected point onto

the image plane, a vector a =
[
X

′
Y

′
Z

′
]T

=
[
R t

] [
X Y Z 1

]T
must be

computed followed by a division of its elements by the third coordinate.

Figure 3.3: The correlation between the Camera Coordinate System (Bottom - Left)

and the World Coordinate System (Top - Left).
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3.1.3 Homogeneous Coordinates

Most of the time, in 3D computer vision or computer graphics, is much simpler

to represent coordinates in the form of homogeneous coordinates. Homogeneous

coordinates (or projective coordinates) are the system used in projective geometry,

as the cartesian coordinates used in euclidian geometry. Moreover, homogeneous

coordinates take an advantage over its opponent, since they include points at infinity.

To summarize, they are always applied in computer graphics, since they allow vector

operations such as translation, rotation and scaling to be combined in a form of a

matrix.

To represent cartesian coordinates in the form of homogeneous coordinates, an

extra dimension must be added. Thus, for a given point 2D (x, y) on the euclidean

plane, the triple (wx,wy, w) is called a set of homogeneous coordinates of that

point for any non-zero real number w. By this definition, multiplying this triple

of homogeneous coordinates by a common, non-zero factor, gives a new set of ho-

mogeneous coordinates for the same point. Particularly, (x, y, 1) is such a system

of homogeneous coordinates for the point (x, y). For example, the point (16, 2) of

the cartesian coordinates can be represented by the homogeneous coordinates as

(16, 2, 1) or (32, 4, 2). In this example, the point (16, 2) was multiplied by the non-

zero factor 2. Lastly, to recover the original point in the cartesian geometry, the

coordinates of the homogeneous point must be divided by its third - last element.

Therefore, in the previous example, the homogeneous point (32, 4, 2) is divided by

its third element, i.e 2, in order to recover the point (16, 2) in the cartesian geometry.

All of the above definition can be easily expanded to projective spaces greater

than the 2D image projective plane. Thus, for example, a 3D point (X, Y, Z) can be

represented in the cartesian coordinates as a (WX,WY,WZ,W ) in homogeneous

coordinates, where in the simplest situation is (X, Y, Z, 1).

3.1.4 Camera Matrix

The Camera matrix is given by C = K
[
R t

]
, where matrix K includes the intrinsic

parameters and matrix
[
R t

]
includes the extrinsic parameters.
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Extrinsic Camera Parameters

So far, we have seen how the pinhole camera model (subsection 3.1.1) represents

the projection of a 3D point in the scene into a 2D point in the image plane.

Also, in the subsection 3.1.2, we have seen how to relate the world coordinates to

camera coordinates and then, finally, to the image plane coordinates, when a camera

movement take place. Moreover, in order to apply the rotation and translation in a

matrix (3 x 4) form, rather than separately as the equation 3.1.7 does, we changed

the euclidian world coordinates of a 3D point P into the homogeneous coordinates

4D point. This is why, rotation only require three columns to be applied, but in

order to do a translation, the matrix requires one more column to be added. So,

we end up with a four-column matrix. Thus, to multiple a four-column matrix with

a point P in the scene, is obligated to have a four-element vector (homogeneous

coordinates) rather than a three-element vector (cartesian coordinates).

The above 3 x 4 matrix
[
R t

]
represents the extrinsic parameters of the camera

matrix. The more analytically representation of this matrix is:

[
R t

]
=


r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3

 (3.1.9)

To summarize extrinsic parameters are the parameters that define the location

and orientation of the camera reference frame with respect to a known target refer-

ence frame. So, once we multiple a point P in the target reference frame, assume

a word reference frame, with the matrix
[
R t

]
, we end up with the same point P

but now expressed in the camera reference frame. Fig. 3.4 shows an illustration of

those coordinate systems.

Intrinsic Camera Parameters

In the subsection 3.1.1 as we discussed the pinhole camera model, this model assumes

that image plane coordinates ε R3. That is to say, image projections are given in the

length unit (e.g meters) of R3. Furthermore, the center of the image is located, in

homogeneous coordinates at (0, 0, 1), so the image coordinates are (0, 0) (the point
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Figure 3.4: Definition of the TCamera Target transformation that defines the location

and orientation of the camera coordinate system with respect to the known target

coordinate system.

O in Fig. 3.3).

On the other hand, real cameras capture images which are measured in pixels

with the (0, 0) in the upper left corner (point Op in Fig. 3.3). Consequently, to be

able to do geometrically meaningful computations we need to transform from image

plane coordinates to pixel coordinates.

As extrinsic parameters are formed by a matrix
[
R t

]
, intrinsic parameters can

be formed by a 3 x 3 triangular matrix K. This matrix 3.1.10 contains the focal

length in pixels (fx = f/px, fy = f/py, where f is the focal length in word units,

and px, py is the size of the pixel in word units) and the principal point (cx, cy) and

as we mentioned before, transforms the image plane to image coordinates.

K =


fx 0 cx

0 fy cy

0 0 1

 (3.1.10)

So, in this case, K matrix transforms the point in the image plane coordinates

to pixel coordinates according to:
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
fxx+ cx

fyy + cy

1

 =


fx 0 cx

0 fy cy

0 0 1



x

y

1

 (3.1.11)

In other words, the coordinates are scaled by the focal length and translated by

the principal point.

Combining extrinsic and intrinsic camera parameters we end up with the camera

matrix C that projects 3D points in space onto the camera sensor.

C =


fx 0 cx

0 fy cy

0 0 1



r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3

 (3.1.12)

3.2 Camera Calibration

Camera calibration is the process that estimates the parameters of a camera lens

and image sensor. These parameters, as mentioned before, are called fundamental

parameters of a camera and are categorized into intrinsics and extrinsics. These

two categories are included into the camera matrix C (see subsection 3.1.4). One

can use these parameters in order to correct lens distortion, determine the location

of the camera in the scene, e.t.c. Fig. 3.5 shows an example of how the image is

presented before and after the correction of the lens distortion.

Moreover, the matrix of intrinsic parameters K, does not depend on the scene

viewed. So, once estimated, it can be re-used as long as the focal length is fixed.

By the phrase ”focal length is fixed”, we mean that there is not any zoom lens, so

the parameters fx, fx are always the same. In this thesis, we assume that there is

not any zoom lens, so once the camera is calibrated the K matrix can be used for

the rest of the process.

3.2.1 Geometrical Distortion

Another important thing that a camera calibration take into account, is the lens

distortion [8]. That is because the camera matrix does not account for lens distor-
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Figure 3.5: Upper image before the camera calibration procedure. Here, straight

lines are seen curved because of distortion of the lens. Down image after the camera

calibration procedure and correction of the lens distortion.

tion, since an ideal pinhole camera does not have any lens. To accurately represent

a real camera, the camera model includes the radial and tangential lens distortion.

Radial Distortion

Radial distortion causes an inward or outward displacement of a given image point

from its ideal location. There are two subcategories of a radial distortion, negative

and positive. A negative radial displacement of the image points is referred to as

barrel distortion and it causes points to crowd increasingly together and the scale to

decrease. A positive radial displacement is referred to as pincushion distortion and

it causes points to spread and the scale to increase. Fig. 3.6 illustrates the effect of

radial distortion.

The distorted points (xdistorted, ydistorted) are denoted as:
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Figure 3.6: Left image with positive distortion. Right image with negative distor-

tion. In the middle there is not any distortion.

xdistorted = x(1 + k1r
2 + k2r

4 + k3r
6) (3.2.13)

ydistorted = y(1 + k1r
2 + k2r

4 + k3r
6) (3.2.14)

where: a) x, y are the coordinates of the projection of a 3D point in camera coordi-

nates, as found in eq. 3.1.8, b) k1, k2, k3 are the radial distortion coefficients of the

lens, and c) r2 is equal to x2 + y2.

Tangential distortion

Tangential distortion occurs when the lens and the image plane are not parallel.

Fig. 3.7 illustrates the effect of radial distortion.

Figure 3.7: Left image with no distortion. Right image with tangential distortion

as the image plane and lens are not parallel.
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The distorted points (xdistorted, ydistorted) are denoted as:

xdistorted = x+ [2p1xy + p2(r
2 + 2x2)] (3.2.15)

ydistorted = y + [p1(r
2 + 2y2) + 2p2xy] (3.2.16)

where: a) x, y as mentioned before, b) p1, p2 are the tangential distortion coefficients

of the lens, and c) r2 as mentioned before.

If we add radial and tangential distortion together for the x, from the equations

3.2.13 and 3.2.15 we end up with xdistorted:

xdistorted = x(1 + k1r
2 + k2r

4 + k3r
6) + [2p1xy + p2(r

2 + 2x2)] (3.2.17)

Similarly for ydistorted:

ydistorted = y(1 + k1r
2 + k2r

4 + k3r
6) + [p1(r

2 + 2y2) + 2p2xy] (3.2.18)

Lastly, in contrast to an ideal camera model where projected image coordinates

x, y extract the u, v pixel coordinates (as subsection 3.1.4 mentions), now we use

the xdistorted, ydistorted in order to extract them. More specifically:

u = fxxdistorted + cx (3.2.19)

v = fyydistorted + cy (3.2.20)

The distortion coefficients do not depend, like the intrinsic parameters, on the

scene viewed. Therefore, they are also called intrinsic parameters and remain the

same regardless of the captured image resolution. For example, if the calibration was

done on images with resolution of 640 x 480, the distortion coefficients remain the

same on resolution of 1024 x 768. On the contrary, focal length fx, fy and principal

point cx, cy need to be scaled appropriately.

3.2.2 Calibration Process

The calibration process can be done via different ways and is trying to extract the

fundamental parameter of the camera. This can be done by a set of 3D to 2D
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correspondences. In this thesis, the calibration process of the camera is done with

the help of the OpenCV library [9], [10], [11]. More analytically, this can be done

within an image sequence of a square chessboard (Fig. 3.8) that is captured from

different poses.

Figure 3.8: A square chessboard used to do the calibration process.

Therefore, the important input data needed for a camera calibration is a set of 3D

real world points and its correspondences in 2D image plane. The points of interest

are the locations where two black squares touch each other in the chessboard.

The 2D image points can be found every time from the current captured image,

with the help of the openCV function - findChessboardCorners().

On the other hand, in order to find the 3D (X, Y, Z) points we need to make

one simplicity. A chessboard is a plane, so the Z-dimension is always zero (Z = 0).

Thus, only the (X, Y ) elements are required to specify. Moreover, we set a world

coordinate system with the origin at the top left corner of the chessboard. In this

way, the first object point of interest is a corner with coordinates (0, 0), the second

(0, square size) and so on. This is a collection of the points where these important

points are present. The square size one can measure it from the time is in printed

form (in a paper).

Once we find the 3D object points and 2D image points we can use the openCV

function - calibrateCamera(), which takes input the 3D and 2D correspondences and

returns the intrinsic, extrinsic parameters of the camera matrix and the distortion

coefficients.
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Note that we are not going into much details about the calibration process. For

more information see [12], [13], [14].

3.3 Rotations

At this point, since we have already spoken about the importance of the rotation

matrix in the subsection 3.1.2, the next step is to find a way to determine a method,

which it represents the rotation of a body as expressed in a given coordinate system.

There are different ways to specify and perform a rotation in 3D of a body frame

[15], like. a) Matrices, b) Euler angles, c) Quaternions, d) Axis-angle. There are

positives and negatives in each one of the different rotations.

To be more specific, axis-angle and Euler angles representations can be com-

prehend more easily but they suffer from significant problems. For example, Euler

angles, have the Gimbal Lock problem. Axis-angle (as euler angles) representation

suffers when they are applying two rotations in a row, since it is not valid to say

that the total rotation is the sum of the individual rotations.

Matrix representation have the advantage of defining both angular and linear

motion (i.e both rotation and translation), so they used most in kinematics, where

they need to be done both and do not keep transferring between mathematical

notations. Moreover, a matrix multiplication lets the addition of n rotations (i.e to

be combined) in order to extract the total rotation of a body.

Lastly, quaternions can represent operations in 3D space such as a complex

number represents operations in 2D space. One of these operations in 3D space,

is a rotation. Moreover, it takes an advantage over the euler angles, since it is not

suffering from the instabilities that associated with the euler angles or axis-angle

representations.

The table 3.1 gives an illustration about different orientation presentations.

3.3.1 Axis angle

Axis angle, as defined before, is one of the many ways we can use to represent

the rotation of an object in 3 dimensional world (Fig. 3.9). More specifically, this
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No. Parameters

Concatenate

Rotations by

Multiplication

Def. both Rotation

and Translation

Axis-Angle 4 no no

Euler angles 3 no no

Quaternions 4 yes yes, dual quaternions

3x3 Matrix 9 yes
yes, 4x4 Matrix with

16 param

Table 3.1: An illustration of different orientation presentations.

rotation is comprised of a unit vector, that indicates the direction of an axis of

rotation, and an angle, that describes the magnitude of the rotation about that

axis. The openCV library always works with the axis-angle notation and returns a

3D rvec rotation vector from which we can extract the unit vector and the angle as

follows:

angle =
√
rvec21 + rvec22 + rvec23 (3.3.21)

axis = rvec/theta (3.3.22)

The basic flaw of axis angle representation is that we can not combine two

rotations to give an equivalent total rotation. Fortunately, it is easy for someone to

convert between axis angle and matrix rotation or quaternions. Lastly, is given an

example of this representation.

Assume we want to rotate an object 90 deg about the Z axis in 3D world with

X, Y and Z axes coordinate system then the axis angle would be:

[
axis

]
=


0

0

1

, angle = π
2
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Figure 3.9: Axis angle rotation about a unit vector and an angle.

3.3.2 Matrices

In order to represent 3D rotations with 3x3 matrices, a matrix must be an orthogonal.

This means that: a) the determinant is +1, b) the transpose is equal to the inverse

matrix, M−1 = MT and c) the construction of the matrix M is done by a set

of mutually perpendicular basis vectors (e.g a 3D coordinate system). Since basis

vector are perpendicular to each other, the dot product of any two basis vectors

is zero. Also, the basis vectors must have unit length, therefore are unit vectors.

Finally, if we know two basis vector, we can derive the other one by using the cross

product.

An illustration of an orthogonal matrix that represents a rotation is:

Rtotal =


r00 r01 r02

r10 r11 r12

r20 r21 r22

 (3.3.23)

The column vectors
[
r00 r10 r20

]T
,
[
r01 r11 r21

]T
,
[
r02 r12 r22

]T
are the basis

vectors of a coordinate system, which each one of them rotates a specific axis about

an angle θ.
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Finally, the direction of each rotation is given by the right hand rule, where the

thumb is in the direction of the axis, while the fingers show the positive direction.

An example of how to rotate about an angle θ on each axis (Fig. 3.10) is shown

below:

Rotation about X axis

This rotation is given by a matrix Rx =


1 0 0

0 cos(θ) − sin(θ)

0 sin(θ) cos(θ)


Rotation about Y axis

This rotation is given by a matrix Ry =


cos(θ) 0 sin(θ)

0 1 0

− sin(θ) 0 cos(θ)


Rotation about Z axis

This rotation is given by a matrix Rz =


cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1



Figure 3.10: Rotation along each axis.

If we want to do successive rotation then we must multiple the matrices Rx,

Ry and Rz representing the individual rotations. The order of rotations that we
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multiple is a great importance. This can be seen by the following example:

Firstly, assume that the order of successive rotations are: a) 90 degrees about

the x axis, b) 90 degrees about the y axis, and c) -90 degrees about the x axis. Then,

the final rotation is Rtotal =


1 0 0

0 0 −1

0 1 0




0 0 −1

0 1 0

1 0 0




1 0 0

0 0 1

0 −1 0

 =


0 −1 0

1 0 0

0 0 1

 .

In other words, this outputs a 90 degree rotation about the Z axis.

But, if we assume that the order of successive rotations are: a) 90 degrees about

the x axis, b) -90 degrees about the x axis, and c) 90 degrees about the y axis. This

outputs a 90 rotation about the Y axis (calculations are done similarly).

3.3.3 Euler Angles

Euler Angles represents the three dimensional rotation of a body as expressed in a

given coordinate system. Moreover, they are three successive rotations relative to the

three axes of the coordinate system. So, there are three angles of rotation, assume

the angles θ, φ and ψ. These three rotations can be categorized into extrinsics and

intrinsics.

Extrinsics rotations

Are rotations about the axes xyz of the original coordinate system, which assumed

to remain motionless. For example, assume we want to apply three rotations, first

to the x axis, second to the y axis and third to the z axis. With the first rotation,

we end up with a new coordinate system with the axes as xy
′
z
′
. In other words, the

two axes y, z are transformed to a new y
′

and new z
′

axes but the x remains the

same. The second rotation, however, is applied in the first coordinate system xyz

and not in the new rotated xy
′
z
′

system. Similarly is done with the third rotation.

Intrinsics rotations

Are rotations about the axes of the rotating coordinate system xyz, solidary with

the moving body, which changes its orientation after each rotation. In this thesis,

we make use of the intrinsic rotations.
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There are twelve possible sequences of rotation axes (i.e the order in which

multiplication will take place in order to build the rotation matrix, see subsection

3.3.2). This is very important, since we need to define which rotations applied

1st, 2nd and 3rd, so we can extract the euler angles from the rotation matrix. The

sequences are: a) Proper Euler angles (z-x-z, x-y-x, y-z-y, z-y-z, x-z-x, y-x-y) and

b) Tait–Bryan angles (x-y-z, y-z-x, z-x-y, x-z-y, z-y-x, y-x-z).

Also, notice that, the three angles θ, φ and ψ, are also called yaw, pitch and roll

angles. The illustration of what exactly these angles mean is given in the figure 3.11.

In this particular figure, an aircraft can rotate in all of the three dimensions. More

specifically, it can rotate its nose to the left or to the right, about an axis that is

running from up and down of the aircraft. This is called yaw. Moreover, it can

rotate its nose up or down, about an axis that is running from wing to wing. This is

called pitch. Finally, it can move up or down its wings about an axis that is running

from the nose to tail, this is call roll. This thesis makes the assumption that the

yaw angle is applied first, the pitch angle is applied second, and the roll angle is

applied third. This assumption plays a major role in order to find the solution of

the problem. To be more specific, since this thesis, already, defines in which order

these angles are applied, it remains the matter which one of these angles rotates

each one of the axes x, y and z.

3.4 GPS Coordinates

The aim of this section is to show how to find the GPS coordinates of the visual

marker. More specifically, in order to find the latitude and longitude of the marker

we make use of the haversine formula. This formula is:

latitude = φ2 = arcsin (sinφ1 cos δ + cosφ1 sin δ cos θ) (3.4.24)

longitude = λ2 = λ1 + atan2(sin θ sin δ cosφ1, cos δ − sinφ1 sinφ2) (3.4.25)

, where φ1, λ1 is the latitude, longitude of the quadcopter respectively, θ is the

bearing clockwise from North, δ is the angular distance d
R

; d being the distance

between quadcopter and visual marker, R the earth’s radius.
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Figure 3.11: Shows the yaw, pitch and roll angles in a vehicle and how they rotate

the aircraft. Notice that is uses the right-hand rule to determine the positive and

negative rotation.

3.4.1 Navigation Angles

In order to understand what is the bearing and heading angles, so as to use them in

guiding the quadcopter with GPS coordinates, we give the following definitions and

an example.

Heading

Angle of where the vehicle’s nose points. In other words, this is where the head of

the vehicle is pointing relative to North.

Course

Angle that represents the intended path of travel that have calculated taking into

account winds and variation.
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Track

Angle that represents the actual path traveled over ground relative to North.

Bearing

This is the angle between the location of an object (destination) and either:

• Current heading. This is called Relative Bearing.

• Magnetic north (direction toward the magnetic north pole). This is called

Magnetic Bearing.

Figure 3.12: Representation of heading, course, track and bearing angles.

From the figure 3.12 we can easily see, that if we take off from Springfield on

the way to Shelbyville, the course (the intended path) is 90 degrees. But due to

the winds we make the vehicle’s heading 95 degrees so as to compensate for wind

drift. Normally, the course and track are the same. However, due to misjudging

the winds, the track over the ground is 81 degrees and not 90 degrees. Therefore,

we should correct the heading to get back to course. This can be done if we take

the bearing to the Shelbyville NDB either relative to current heading or relative to

magnetic North to find its position.
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3.5 Proposed Approaching Methods

This section illustrates the two approaching methods, that are proposed by the

thesis, in order to navigate the quadcopter and approach the visual marker. The

details of these methods are described in the implementation chapter 4.

3.5.1 Pose Extraction Method

This method makes use of the camera pose estimation relative to the visual marker.

More specifically, since this thesis uses the ArUco library in order to detect the visual

marker, the ArUco returns the rotation and translation vectors that represent the

pose of the camera with respect to the visual marker. In others words, ArUco

outputs the transformation between the camera and the visual marker.

However, the goal is to find the pose of the quadcopter relative to the visual

marker. Therefore, this method does an extra transformation between the cam-

era’s reference frame and the quadcopter’s one. In this way, this method extracts

the rotation and translation vectors that the quadcopter uses to localize itself and

approach the marker.

Finally, the method manipulates these vectors as follows: a) It uses the transla-

tion vector (dx, dy, dz), which represents the displacement that the quadcopter has

to do in its three body axes (X, Y, Z) respectively, in order to direct navigate the

vehicle to approach the target. b) It extracts the euler angles from the rotation

vector, that represents the rotation that the quadcopter has to do in its three body

axes (X, Y, Z), in order to align the quadcopter’s coordinate system with the visual

marker’s one. Notice that, since the visual marker lies on the ground (therefore it

has not any inclines) only a yaw rotation has to be applied to the vehicle so that

the axes of the quadcopter can be aligned with the marker’s one.

3.5.2 GPS Navigation Method

This method makes use of the formulas 3.4.24, 3.4.25 described in the subsection 3.4.

For this purpose, this method needs to find the GPS position of the quadcopter, the

magnetic bearing of the marker relative to North and the ground distance between
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the quadcopter and the marker. Each of these elements are founded as follows.

a) The GPS position of the quadcopter is founded via the autopilot and it is used

as the initial point in the above formulas. b) The magnetic bearing of the visual

marker is founded by adding the relative bearing (of the quadcopter and the marker)

with the current heading of the quadcopter. The relative bearing is the yaw angle

that is extracting from the rotation of the quadcopter with respect to the visual

marker. The current heading, similarly to the vehicle’s GPS position, is founded via

the autopilot and it describes the heading of the quadcopter relative to the North.

c) The ground distance is founded via the translation vector (this vector is extracted

by the pose of the quadcopter relative to the marker, as explained in the previous

method).



Chapter 4

Implementation

This chapter discusses the components that have been implemented, so as the UAV

(unmanned aerial vehicle) is able to reach the target - visual marker. Moreover, a

bigger picture from a software engineering perspective is shown, so that the reader

understands how the different components are combined. Finally, it explains the

steps that are followed in order to implement the detection of the visual marker and

the guidance of the quadcopter so as to approach the target.

4.1 Combining existing parts

4.1.1 Illustration of the overall System Architecture

It is of high importance, before going into much details, to show the overall illus-

tration of the whole system architecture. In figure 4.1, we see that we use Gazebo

as the Physics Simulator on our system. Gazebo provides us the visualization of

a virtual world that represents the model files of the quadcopter, the gimbal and

the camera which is attached upon the gimbal. These models are controlled by

the plugins that are located inside the Ardupilot SITL Gazebo plugin repository.

Model plugins, as explained in the subsection 2.2.1, control joints and state of the

models (here, quadcopter and gimbal). Moreover, there are plugins, inside this

repository, that enable the communication between the Physics Simulator Gazebo

and the ArduPilot code. Notice that, since we use the SITL ArduPilot code, SITL

41
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Figure 4.1: Illustration of the overall System Architecture

is communicating via TCP with a default command-line MAVProxy GCS (Ground

Control Station). In order to send commands and guide the quadcopter, this system

make use of the DroneKit platform that communicates with the default MAVProxy

via UDP. However, DroneKit API is used inside of a ROS Node that is subscribing

to specific topics in order to take pose data of the quadcopter after the image pro-

cessing. On the other hand, the node on the upper right of the Fig. 4.1 make use of

the gazebo ros camera plugin. This plugin, is attached to a sensor on a model SDF

file that represents the camera inside the Gazebo environment. Then it publishes

to a topic, image raw data from the Gazebo environemnt to ROS in order for fur-

ther processing. In other words, the upper right node, subscribes to a specific topic

and then takes the raw data from the physics simulator in order to convert them

to OpenCV format and complete the detection of the marker with the help of the

ArUco library. Figure 4.2 shows a more detailed illustration of how these two nodes
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communicate.

Figure 4.2: Communication between the two nodes.

The rest of this section represents each component of the Fig. 4.1.

4.1.2 ArduPilot-SITL

In this thesis, we use the ArduPilot [16], [17], also known as APM to represent

the quadcopter. Ardupilot is an open source autopilot software suite for unmanned

vehicles. Moreover, in order to simulate the quadcopter we use the SITL Simulator

(Software in the Loop). SITL simulator is a build of the autopilot code using a C++

compiler, giving us the functionality to run the quadcopter and test the behaviour of

the code without any hardware. Running in SITL, sensor data comes from a flight

dynamics model in a flight simulator. Therefore, we use the Gazebo Simulator for

the real time physics simulation that it provides. Gazebo, as said in 2.2, offers a

variety of sensors to be simulated and includes models of cameras, range finders, etc.

All of these sensors, models and an excellent GUI that provides for visualization,

was chosen as a physics simulation for the ArduPilot code.

SITL Architecture

Fig 4.3 shows an illustration of the architecture of SITL Simulator. The port num-

bers here are indicative and can be vary. For example, ArduPilot and the Physics

Simulation (i.e Gazebo) are connected via the ports 5501/5502 but they can easily

vary to be ports 5504/5505 or other ports depending on the machine that one is

running the SITL.
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Figure 4.3: SITL Simulator architecture.

4.1.3 Ground Control Station

Ground Control Station, also know as GCS is a control centre that provices the

facilities for a user to control the unmanned aerial vehicles. ArduPilot SITL includes

MAVProxy GCS and starts by default.

MAVProxy

MAVProxy is a command-line, console base application that sends MAVLink mes-

sages on UAVs (such as APM) which support the protocol MAVLink.

DroneKit

Because MAVProxy is a command-line application, we use the DroneKit [18] aerial

platform. DroneKit can be connected to SITL via UDP on a localhost ip and

port 14550 or one can add additional ips : ports created by the MAVProxy’s com-

mandoutput add ”ip:port”. Moreover, through the DroneKit we send MAVLink
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commands to guiding and controlling the quadcopter.

4.1.4 MAVLink Protocol

MAVLink (Micro Air Vehicle Link) is the protocol to allow the communication

between Unmmanned Vehicles and a Ground Control Station (GCS) so as to change

the configuration of the system or to report the current state of the vehicle like the

orientation, the GPS location and the speed. Moreover, MAVLink can be used for

the inter-communication of the subsystem of the vehicle.

The MAVLink protocol defines a large number of MAVLink mission command

messages (MAV CMDs) in order to guide the quadcopter. ArduPilot, however, has

adopted only a subset of the MAVLink protocol command set [19] and unsupported

commands that are sent to the autopilot will simply be dropped. Table 4.1 shows

the structure of ArduPilot’s MAVLink mission command package format. Finally,

there are Movement commands like:

• SET POSITION TARGET LOCAL NED

• SET POSITION TARGET GLOBAL INT

• SET ATTITUDE TARGET (for Guided NoGPS mode)

Each one of these movement commands has a different format which will be

explained in section 4.3.3 when we are setting the movement of the quadcopter in

order to approach the visual marker.

4.1.5 Ardupilot Gazebo Plugin & Models

As explained in subsection 4.1.2 we make use of the Gazebo simulator for the Physics

Simulator that it provides. In order to set up the Gazebo Simulator for SITL, we use

the repository in [20]. This repository includes model SDF files of the quadcopter,

gimbal, cameras e.t.c. Moreover, it includes the appropriate plugins that attached to

the rotors, the IMU and the communication between the Gazebo (Physics Simulator)

and the ArduPilot.
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Field Name Type Description

target system uint8 t
System which execute the

command

target component uint8 t
Component which execute

the command, 0 for all

command uint16 t Command ID

confirmation uint8 t

0: First transmission of

this command. 1-255:

Confirmation transmissions

parameter 1 float
Param 1, as defined for this

command

parameter 2 float
Param 2, as defined for this

command

parameter 3 float
Param 3, as defined for this

command

parameter 4 float
Param 4, as defined for this

command

parameter 5 float
Param 5, as defined for this

command

parameter 6 float
Param 6, as defined for this

command

parameter 7 float
Param 7, as defined for this

command

Table 4.1: ArduPilot MAVLink Mission Command Package Format

4.1.6 Gazebo with ROS

Gazebo runs along ROS (Robot Operation System). To achieve ROS integration

with Gazebo, a set of ROS packages provides wrappers around the Gazebo. These

packages are called gazebo ros pkgs and provide the necessary interfaces so as to use

ROS messages and services in order to simulate the robot (quadcopter) inside the
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Gazebo environment. These gazebo ros pkgs packages, also, provide the necessary

gazebo plugins so as to grab various sensor data to ROS.

In this thesis, in order to make the image processing, for the visual marker detec-

tion and extraction of the orientation of the quadcopter with respect to the visual

marker, from the visual camera of the Gazebo to ROS, we need to add a camera

plugin to the model SDF file that represents the gimbal model of the quadcopter

and holds the camera sensor. This camera plugin is called gazebo ros camera and

provides the raw image data from the Gazebo environment to ROS.

4.2 Gazebo Part

This section shows the necessary configuration that has been done in the Gazebo

environment.

4.2.1 Creation of the visual marker

The first step was to create a SDF model file that represents and holds the infor-

mation of the visual marker. To achieve this, first of all, we had to create a simple

model box on the Gazebo. Then we had to improve the model appearance to include

the visual marker so as simulated camera that feed information to vision processing

can detect the marker. This can be done with textures on its surfaces (and 3D

meshes). More specifically, on the top surface of the box we attach a texture of

the visual marker and on the rest surfaces (i.e left, right, frontal, back and bottom)

random textures.

A simple box

The creation of a simple box in Gazebo is describing in the next chunk of XML

code. Notice that we only give the collision geometry, i.e how does it interacts with

the other models in the environment of Gazebo, and the geometry visual, i.e how

does it looks like in the environment of Gazebo. The size of both of them is 0.2

meters of all the directions (x, y and z). Also, notice that the coordinate system is

the same as described in the figure 2.2a.
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1 <?xml version='1.0'?>

2 <sdf version="1.4">

3 <model name="aruco_marker">

4 <pose>0 0 0.1 0 0 0</pose>

5 <static>true</static>

6 <link name="box">

7

8 <collision name="collision">

9 <geometry>

10 <box>

11 <size>0.2 0.2 0.2</size>

12 </box>

13 </geometry>

14 </collision>

15

16 <visual name="visual">

17 <geometry>

18 <size>0.2 0.2 0.2</size>

19 </geometry>

20 </visual>

21

22 </link>

23 </model>

24 </sdf>

Add textures

In order to add our textures in the box-model-SDF-file, Gazebo recognize STL,

OBJ and Collada files. Here, we make use of Collada files. Moreover, textures were

added with the help of the Blender (an open source 3D creation suite). Figure 4.4

shows the textures that has been added. After the insertion of the textures upon

the surfaces of the box, we export the file from the Blender as Collada (.dae) file.

Then it can be added in the SDF file that represents the box as follows:

Replace:

1 <visual name="visual">
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2 <geometry>

3 <size>0.2 0.2 0.2</size>

4 </geometry>

5 </visual>

with:

1 <visual name="visual">

2 <geometry>

3 <mesh>

4 <uri>model://aruco_marker/meshes/aruco_marker.dae</uri>

5 </mesh>

6 </geometry>

7 </visual>

Figure 4.4: Visual box with textures upon its surfaces. On the upper surface of the

box, the coordinate system of the visual marker is presented. Also, in the middle

right, the x, y, z dimensions of the box are presented.
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4.2.2 Camera sensor plugin

As explained in subsection 4.1.6, in order to make the image processing and capture

the frames from the virtual camera of Gazebo to ROS we need to add a plugin to

the camera sensor. The camera sensor is attached to a gimbal model-SDF-file. This

functionality can be achieved by adding the following code in the gimbal’s model-

SDF-file. Note that all the SDF files (i.e gimbal, quadcopter e.t.c) are provided by

the repository of Seunghwan Jo as said in 4.1.5).

1 <sensor name="camera1" type="camera">

2 <pose>0 0 0 -1.57 -1.57 0</pose>

3 <updateRate>10.0</updateRate>

4 <camera>

5 <horizontal_fov>1.0471975512</horizontal_fov> <!-- 60 degrees -->

6 <image>

7 <width>640</width>

8 <height>480</height>

9 </image>

10 <clip>

11 <near>0.05</near>

12 <far>300</far>

13 </clip>

14 </camera>

15

16 <plugin name="camera_controller" filename="libgazebo_ros_camera.so">

17 <alwaysOn>true</alwaysOn>

18 <updateRate>10.0</updateRate>

19 <cameraName>iris/camera1</cameraName>

20 <imageTopicName>image_raw</imageTopicName>

21 <cameraInfoTopicName>camera_info</cameraInfoTopicName>

22 <frameName>tilt_link</frameName>

23 <hackBaseline>0.07</hackBaseline>

24 <Cx>3.3765716562185179e+02</Cx>

25 <Cy>2.3847924463232465e+02</Cy>

26 <focalLength>8.1706663835848678e+02</focalLength>

27 <distortionK1>-2.4333343952387267e-02</distortionK1>

28 <distortionK2>1.2902389844068224e-01</distortionK2>

29 <distortionK3>-3.3069024740403519e-01</distortionK3>
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30 <distortionT1>-4.3578152766553984e-03</distortionT1>

31 <distortionT2>2.1160667357386460e-03</distortionT2>

32 </plugin>

33 </sensor>

These properties of this sensor plugin are for a Logitech HD Webcam C270. Let’s

discuss some of the properties:

The sensor name camera1 must be unique from all the other sensor names.

1 <sensor name="camera1" type="camera">

A rotation of the camera sensor so as the coordinate axes of the camera are

matched with those of OpenCV (Z: forward, Y: down, X: right), in contrast with the

Gazebo default coordinate system (X: forward, Z: up, Y: right). More specifically,

a negative π
2

rotation over the x axis followed by a negative π
2

rotation over the y

axis. Therefore, after the rotation, Z axis becomes the optical axis, see Fig. 3.1.

1 <pose>0 0 0 -1.57 -1.57 0</pose>

Number of times per second a new camera image is taken within Gazebo simu-

lator.

1 <updateRate>10.0</updateRate>

These values are matched with these of manufacturer’s specs on our physical

camera hardware. The near and far clip parameters are simulation-specific parame-

ters that give an upper and lower bound to the distance in which the camera is able

to see objects in the Gazebo environment.

1 <horizontal_fov>1.0471975512</horizontal_fov> <!-- 60 degrees -->

2 <image>

3 <width>640</width>

4 <height>480</height>

5 </image>
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6 <clip>

7 <near>0.05</near>

8 <far>300</far>

9 </clip>

Here we define topics on ROS that the camera will be publishing to, for both

the image topic and the camera info topic.

1 <cameraName>iris/camera1</cameraName>

2 <imageTopicName>image_raw</imageTopicName>

3 <cameraInfoTopicName>camera_info</cameraInfoTopicName>

Finally, the parameters Cx, Cy, focalLength and distortion coefficients K1, K2,

K3, T1, T2 are found via the calibration process. Notice that in Gazebo environment

there is not any distortion on capture frames, so these values are optional and can

be replaced by zeros or not add them at all.

4.2.3 Joint Frames

The final step, for the Gazebo setup, is to make the quadcopter model-sdf-file, called

Iris, to integrate the camera gimbal. This can be done by the joint tag in the iris

model-SDF-file with the following way:

1 <include>

2 <uri>model://gimbal_small_2d</uri>

3 </include>

4

5 <joint name="iris_gimbal_mount" type="revolute">

6 <parent>iris::base_link</parent>

7 <child>gimbal_small_2d::base_link</child>

8 </joint>

First we must include the gimbal model-SDF-file to the iris model-SDF-file. After

that we join the two models, with the Iris model as the parent and the gimbal model

as the child.
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4.3 ROS Part

This section shows the process that have done in the ROS part. In particular, in

this thesis, firstly we have to create a catkin package so as to execute the nodes. To

achieve are goal we construct two nodes. The first node does the image processing

and detect the visual marker. After that, it extracts the yaw, pitch, roll angles and

the translation vector and publishes them to topics. The second node is subscribing

to those topics and is guiding the quadcopter with the help of those values that is

receiving. The guidance of the quadcopter, as said in previous sections is done via

the API of DroneKit which sends command messages to ArduPilot.

4.3.1 Creation of the package

First of all, we need to create a catkin package. To be more specific, catkin is a

CMake-based build system that is used to build all packages in ROS. On the other

hand, packages are the software organization unit of ROS code and contain libraries,

executables, scripts e.t.c. Moreover, a catkin package must contain a package.xml

file which is a description of the package and it servers to define dependencies be-

tween other packages of ROS system and meta information about it like version,

maintainer, license e.t.c.

Our package has dependencies on geometry messages (to publish the pose of the

quadcopter), sensor messages (to receive the capture images of the virtual camera

of Gazebo), cv bridge package (to interface OpenCV with the ROS raw data of the

sensor, see Fig 4.5) and ArUco library (to detect the visual marker).

4.3.2 Pose Extraction Node

This pose extraction node is subscribing to the topic iris/camera1/image raw so as

to take the sensor data of the virtual camera (as explained in the subsection 4.2.2).

The next step is to transform the raw data that is sending from the Gazebo environ-

ment to the OpenCV format. In other words, converting ROS images into OpenCV

images with the CvBridge ROS library that provides that interface. More analyti-

cally, ROS passes around images in its own sensor msgs/Image message format, but



4.3. ROS Part 54

Figure 4.5: Cv bridge for converting OpenCV images to ROS format to be published

over ROS and vice versa.

we want to use images in conjunction with OpenCV. After he have a capture image

in OpenCV format we can, then, do the appropriate image processing in order to

detect the visual marker with the help of the ArUco library.

The ArUco library uses the detect function which takes the intrinsic camera

parameters, the distortion coefficients and the current image and outputs the pose

(rotation and translation) of the camera with respect to visual marker if it exists in

the current frame. Since ArUco library rely on the OpenCV library, OpenCV works

with the Axis-Angle notation. More specifically, it always returns a vector rvec that

represents the rotation of a coordinate system with respect to another reference

coordinate system (e.g the rotation of the camera coordinate system with respect

to the visual marker coordinate system), see subsection 3.3.1. The first step, is to

transform the Axis-angle rotation to a 3 x 3 matrix rotation. This can be done, easily,

with the build-in Rodrigues function that the openCV library provides. After that

we end up with a 3 x 3 matrix that represent the rotation of the camera with respect

to the visual marker. The next step, is to take the orientation of the quadcopter

with respect to the visual marker. Thus, we need to make an extra rotation by a

post multiplication of the 3 x 3 rotation matrix from camera to visual marker with

the 3 x 3 rotation matrix from the quadcopter to the camera. The second matrix,

in other words, represents how the axes of the quadcopter are aligned with those of

the camera. Equation 4.3.1, shows the rotation chain that has to be done.
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Rmarker
quadcopter = Rmarker

cameraR
camera
quadcopter

(4.3.1)

In order to find the second matrix we need to define the quadcopter and camera

coordinate systems. These definitions are explained in the following subsection.

Different Coordinate Systems

As previously said, we assume that the coordinate system of the camera, as defined

in the OpenCV, is Y axis down, Z axis forward and X axis to the right (see Fig. 3.1).

Moreover, we assume that the coordinate system of the UAVs body frame is Z axis

up, X axis forward and Y axis to the left. Figure 4.6 shows an illustration of the

UAVs body frame.

Figure 4.6: Quadcopter coordinate system with Z up, Y left and X forward.

Before we construct the 3 x 3 matrix Rcamera
quadcopter, we need to remember that the

camera is pointing straight down. Therefore, we have the two coordinate systems

(quadcopter, camera) as the Fig. 4.7 shows.

Therefore, the 3 x 3 matrix Rcamera
quadcopter will be:

Rcamera
quadcopter =


0 −1 0

−1 0 0

0 0 −1

 (4.3.2)
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Figure 4.7: Quadcopter Coordinate System (Upper) and Camera Coordinate System

(Bottom).

Equation 4.3.2 shows that the X axis of the quadcopter coordinate system is

parallel but in the opposite direction of the Yc axis of the camera’s one. Similarly,

the Z axis of the quadcopter with the Zc axis of the camera and the Y axis of the

quadcopter with the Xc axis of the camera.

After this step and the multiplication of the equation 4.3.1 we are ready to

extract the euler angles that represent the rotation of the quadcopter with respect

to the visual marker.

Euler Angles Extraction

In order to extract the euler angles from the rotation of the quadcopter coordinate

system relative to the visual marker we make use of the 3 x 3 rotation matrix of the

eq. 4.3.1. This matrix, can be transformed to euler angles if we determine which

of these angles applied first, second and third (see subsection 3.3.3). Therefore, the

yaw angle (heading) is applied on the Z axis, the roll angle on the X axis and the

pitch angle on the Y axis (see Fig. 4.6.
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In short, what we have, so far, is the order of the successive rotations for the

quadcopter as z-y-x and,

• yaw angle (heading) θ applied first on Z axis

• pitch angle φ applied second on Y axis

• roll angle ψ applied third on X axis

In a more mathematical representation we can express the above operations as

follows:
cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1




cos(φ) 0 sin(φ)

0 1 0

− sin(φ) 0 cos(φ)




1 0 0

0 cos(ψ) − sin(ψ)

0 sin(ψ) cos(ψ)

 =


c(θ)c(φ) c(θ)s(φ)s(ψ) − c(ψ)s(θ) s(θ)s(ψ) + c(θ)c(ψ)s(φ)

c(φ)s(θ) c(θ)c(ψ) + s(θ)s(φ)s(ψ) c(ψ)s(θ)s(φ) − c(θ)s(ψ)

−s(φ) c(φ)s(ψ) c(φ)c(ψ)


, where c denotes to cos and s denotes to sin.

After that we can get the euler angles as follows:

yaw = θ = atan2(m10,m00) (4.3.3)

pitch = φ = atan2(−m20,
√
m2

00 +m2
10) (4.3.4)

roll = ψ = atan2(m21,m22) (4.3.5)

, where mi,j denote to a cell of the matrix with i, j the row and column respec-

tively.

Publish Transformation

After the extraction of the euler angles and the translation vector, the pose ex-

traction node is publishing the transformation (rotation and translation) of the

quadcopter with respect to the visual marker with the help of ROS messages. To

be more specific, it advertise a geometry msgs/Pose and a geometry msgs/Vector3

messages.

The geometry msgs/Vector3 is advertising to the topic ”aruco/linear/ypr” and

is on the form:
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float64 x // rotation on the X axis

float64 y // rotation on the y axis

float64 z // rotation on the z axis

The geometry msgs/Pose is advertising to the topic aruco/linear/pose and is on

the form:

geometry_msgs/Point position

geometry_msgs/Quaternion orientation

As we see, it is comprised of geometry msgs/Point and geometry msgs/Quaternion.

More specifically, geometry msgs/Point and geometry msgs/Quaternion, respectively,

are:

/* geometry_msgs/Point */

float64 x // translation on the x direction

float64 y // translation on the y direction

float64 z // translation on the z direction

/* geometry_msgs/Quaternion */

float64 x

float64 y

float64 z

float64 w

Notice that, in this thesis, we do not make use of the quaternions. However,

to cover all the aspects of rotations (for future work) we simply transform to Axis-

Angle rotation (as explained in the subsection 3.3.1) to quaternions with the help of

a function that tf ROS package provides. This function is called q axes(axis, angle)

and takes as input the axis and the angle of rotation of the Axis Angle representation

and outputs the quaternion. Alternatively, we could just fill the quaternion elements

with arbitrary numbers.
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4.3.3 Navigation Node

This navigation node subscribes to the topics aruco/linear/ypr and aruco/linear/-

pose so as to take the rotation and translation of the quadcopter. When the quad-

copter’s camera captures the visual marker on its image frames, the pose extraction

node is advertising the data to the navigation node. More analytically, in order

the navigation node to retrieve these data, is having two callback function for each

topic. The callback functions of the aruco/linear/ypr and aruco/linear/pose topics

are retrieving, respectively, the data as follow:

1 def ypr_callback(data):

2 yaw =data.z

3 pitch =data.y

4 roll =data.x

5

6 def pose_callback(data):

7 dx =data.position.x

8 dy =data.position.y

9 dz =data.position.z

10 # quaternion data not used

Then, through three procedures, with the help of DroneKit API, we are guiding

and giving commands to the quadcopter. More analytically, these procedures are:

Position Target Global

This procedure, after the extraction of the new GPS coordinates (latitude, longitude)

as explained in the section 3.4, is guiding the quadcopter to approach the visual

marker using the new GPS coordinates and is given by the following command:

1 msg =vehicle.message_factory.set_position_target_global_int_encode(

2 0, # time_boot_ms (not used)

3 0, 0, # target system, target component

4 mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT_INT, # frame

5 0b0000111111111000, # type_mask (only positions enabled)

6 location.lat*1e7, # lat_int - X Position in WGS84 frame in 1e7 * meters

7 location.lon*1e7, # lon_int - Y Position in WGS84 frame in 1e7 * meters
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8 location.alt, # alt

9 0, # X velocity in NED frame in m/s

10 0, # Y velocity in NED frame in m/s

11 0, # Z velocity in NED frame in m/s

12 0, 0, 0, # afx, afy, afz acceleration (not supported)

13 0, 0) # yaw, yaw_rate (not supported)

14 # send command to vehicle

15 vehicle.send_mavlink(msg)

Notice that, the MAV FRAME GLOBAL RELATIVE ALT INT is the frame of

reference which uses the WGS84 global coordinate system for latitude and longitude,

but sets altitude as relative to the home position in metres rather than the mean

sea level (MSL).

Position Target Local

This procedure, takes the translation vector from the aruco/linear/pose topic. More

analytically, the quadcopter is guided with the following command:

1 msg =vehicle.message_factory.set_position_target_local_ned_encode(

2 0, # time_boot_ms (not used)

3 0, 0, # target system, target component

4 mavutil.mavlink.MAV_FRAME_BODY_OFFSET_NED, # frame, x: forward, y:right, z

: down

5 0b0000111111111000, # type_mask (only positions enabled)

6 north, east, down, # x, y, z positions

7 0, 0, 0, # x, y, z velocity in m/s (not used)

8 0, 0, 0, # x, y, z acceleration (not supported yet)

9 0, 0) # yaw, yaw_rate (not supported yet)

10 # send command to vehicle

11 vehicle.send_mavlink(msg)

Notice that, there are four frames of reference that can be used in the SET POSITION

TARGET LOCAL NED command,

• MAV FRAME LOCAL NED
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• MAV FRAME LOCAL OFFSET NED

• MAV FRAME BODY OFFSET NED

• MAV FRAME BODY NED

Here, we use the MAV FRAME BODY OFFSET NED frame, in order to move

the vehicle relative to its current position. More specifically, within this frame,

positions are relative to the current vehicle position in a frame based on the vehicle’s

current heading. We use this to specify a position x metres forward from the current

vehicle position, y metres to the right, and z metres down.

Condition Yaw

This procedure, sends MAV CMD CONDITION YAW message command to point

the quadcopter at a specified heading in degrees. In other words, point (yaw) the

nose of the vehicle towards a specified heading. This command has the following

form:

1 msg =vehicle.message_factory.command_long_encode(

2 0, 0, # target system, target component

3 mavutil.mavlink.MAV_CMD_CONDITION_YAW, #command

4 0, #confirmation

5 heading, # param 1, yaw in degrees

6 0, # param 2, yaw speed deg/s

7 1, # param 3, direction -1 ccw, 1 cw

8 is_relative, # param 4, relative offset 1, absolute angle 0

9 0, 0, 0) # param 5 ~ 7 not used

10 # send command to vehicle

11 vehicle.send_mavlink(msg)

Note that, the parameter 4 allows us to specify whether the target direction is

absolute (i.e target heading in degrees [0-360] with 0 degrees as North) or relative

to the current yaw direction (i.e the change in heading in degrees).

Moreover, if the direction is relative, as specified in parameter 4, we can also

specify, with the parameter 3, whether the value is added or subtracted from the
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current heading.

For our purpose, we set the parameter 4 to 1, so as to point the noise of the

quadcopter to a new direction but relative to the previous heading.

Finally, in order to approach the visual marker, this thesis is applied the three

procedures in a row (i.e in the order they were explained). In other words, firstly,

the quadcopter approaches the target with the help of the GPS coordinates. Then,

it increases the precision of the approachment while navigating with the help of the

translation vector. Finally, it aligns its coordinate axes with the visual marker’s one

by setting its yaw angle that was published by the pose extraction ROS node. How-

ever, it is up to the application writer to determine how the quadcopter approaches

the visual marker.



Chapter 5

Proof of Concept Scenario

This chapter shows an indicative test that has been done in order to verify that

what this thesis proposes actually works. This test demonstrates a simple mission

planning process that the Drone does, in order to find and approach the visual

marker within the Gazebo environment with the methods that have been described

in the implementation chapter 4.

5.1 Mission Planning

First of all, we define a new mission with five way points arranged in a square around

the central position of the Drone. To define the five way points we make use of the

MAV mission navigation command MAV CMD NAV WAYPOINT (Table 5.1 shows

the format).

63
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Command

Field

Mission

Planner

Field

Description

param 1 Delay
Hold time at mission waypoint in

decimal seconds

param 2 (not supported)

param 3 (not supported)

param 4 (not supported)

param 5 Lat
Target latitude. If zero, the Copter

will hold at the current latitude.

param 6 Lot
Target longitude. If zero, the Copter

will hold at the current longitude.

param 7 Alt
Target altitude. If zero, the Copter

will hold at the current altitude.

Table 5.1: ArduPilot MAV CMD NAV WAYPOINT Command.

DroneKit’s API sends this type of navigation command message with the fol-

lowing way.

1 Command(0, # target_system

2 0, # target_component

3 0, # seq number within the mission, API will automatically set this

4 mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT, # The frame of reference

used for the location parameters

5, 6, 7. This frame uses the

WGS84 global coordinate system

for latitude and longitude, but

sets altitude as relative to the

home position in metres (home

altitude = 0)

5 mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, # The specific mission command

6 0, 0, # (not supported)

7 0, # param 1
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8 0, # param 2

9 0, # param 3

10 0, # param 4

11 point.lat, # param 5

12 point.lon, # param 6

13 altitude # param 7))

We set five commands with different points to define the mission. The waypoints

are positioned to form a square of side length 8 meters around the current Drone’s

position.

5.2 Approachment of the target

While the Drone is doing the mission, is looking for the visual marker within the

environment. To be more specific, the navigation node is listening on a callback

function to hear the data that will be published from the pose extraction node

which estimates the pose of the Drone with respect to visual marker. When the

Drone, finally, detects the marker, the pose extraction node publishes the pose and

the navigation node receives the data. The final step is the navigation node to send

MAVLink commands so as the Drone can localize itself and approach the target.

After that, firstly, the Drone approaches the visual marker within the first proce-

dure (as described in the chapter 4). In other words, we are giving to the Drone the

new location to follow which is the GPS coordinates of the visual marker. Secondly,

we increase the accuracy of the approach. This can be done, by giving the Drone

a command to navigate itself with the second procedure (i.e the translation vector

of the Drone with respect to the visual marker). Finally, we rotate the axes of the

Drone to be aligned with those of the marker. If the drone does not detect the visual

marker, it returns to the home position.
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5.3 Planned Mission and Actual Path Followed

Bellow, in Fig. 5.1, is given a plot that shows the planned mission and the actual

path travelled by the Drone so as to reach the visual marker, as well as, the position

of the visual marker within the environment. To be more specific, the white building

shows the home position of the Drone while the black line illustrates the planned

mission that was set. Moreover, the red WP1,WP2 and so on, are the waypoints of

the planned mission, while the yellow dots illustrated the actual path that the drone

followed. Also, the purple triangle shows the location of the visual marker within

the environment. Finally, the orange rectangles correspond to each blue letters A,B

and so on, which show the points that are captured within the gazebo environment

to illustrate the motion of the Drone.

Figure 5.1: The path that the Drone follows in order to find and approach the Visual

Marker.

As the Fig. 5.1 shows, the Drone is starting the mission from its home position.
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While is looking for the visual marker within the environment without a success,

it reaches the waypoint 1. Then, it continues its mission, and once it reaches the

waypont 2 the visual marker is, finally, detected (purple triangle in the Fig. 5.1).

Then, the Drone approaches the target, firstly, with the method that makes use of

the GPS position of the visual marker, and, after that, with the method that makes

use of the translation vector that is extracted from the pose of the quadcopter

relative to the marker. Finally, it aligns its axis with the visual marker’s axis by

applying a yaw rotation.

The next figures illustrate the above mission, as well as the motion of the Drone

until it reaches the destination (i.e detect the visual marker and approach it).

Figure 5.2: Illustrates the Gazebo world-environment. Here, the Drone is taking off

and starting its mission, while the visual marker (purple triangle on the Fig. 5.1)

lies randomly within the world. The Drone is at its home position (white building

in Fig. 5.1).
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Figure 5.3: While the Drone is searching for the visual marker, it reaches the point

A (blue) in Fig. 5.1 without finds the visual marker.

Figure 5.4: The Drone reaches the waypoint #1 of the planned mission, point B

(blue) in Fig. 5.1, without finds the visual marker. After that, it continues its

navigation to the next waypoint #2.
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Figure 5.5: While the Drone is reaching the waypoint #2, it sees the visual marker

in its camera frame at the blue point C in Fig. 5.1. After that, it is navigating with

the method that uses the GPS coordinates of the visual marker in order to approach

it.
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Figure 5.6: The Drone reaches its destination of the new GPS coordinates, point

D (blue) in Fig. 5.1, and it is hovering upon the visual marker (purple triangle in

Fig. 5.1) without decreases its altitude (i.e it remaines 4m above the ground).
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Figure 5.7: The Drone is hovering upon the visual marker. Just another screen

snapshots from another perspective. The image window shows the detected visual

marker.
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Figure 5.8: After some seconds the Drone starts approaching the visual marker with

the translation vector. Thus, it increases the accuracy of the approach.
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Figure 5.9: Meanwhile the Drone starts rotating (change it’s heading - nose of the

quadcopter) in order to align its axes with the marker’s one.
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Figure 5.10: Illustration of the Drone’s position and orientation after the completion

of the translation and rotation commands. Note that the Drone decreases its altitude

at the half of its initial altitude.

Figure 5.11: Illustration of the alignment of the Drone’s axis with the Marker’s one.



Chapter 6

Related Work

This chapter discusses similar works that have been done in the detection of a

visual marker with the ArUco library in ROS. Moreover, it demonstrates the main

differences between those works and this thesis.

6.1 Similar work

There are several packages in the ROS environment that can be used in order to

detect fiducial markers with the ArUco library and the OpenCV in ROS. Some of

these packages are the following.

6.1.1 ROS package aruco ros

This package [21] has been developed by the Ava group of the University of Cordoba

(Spain). It provides real-time marker based 3D pose estimation using AR markers.

It is a software package and ROS wrappers of the ArUco Augmented Reality marker

detector library.

More analytically, it uses the cv bridge package in order to convert image raw

data from ROS to OpenCV format. After that, the ArUco library is applied, so as

to detect the marker and extract the pose of the camera with respect to a specific

visual marker. Moreover, this package utilizes the tf ROS package in order to take

and publish the pose of Ava’s robot (Fig. 6.1) with respect to a stereo camera.

Thus, within this way the package achieves visual servoing. Finally, it provides a
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generation of AR markers with a given size.

Figure 6.1: The robot of the pal robotics.

6.1.2 ROS package aruco detect

This package [22] has been developed by the Ubiquity Robotics team. It provides

a node which finds ArUco markers in images stream and publishes their vertices

(corner points), as well as the 3D pose estimation of the camera with respect to the

fiducials. It is based on the Aruco contributed module to OpenCV. Similarly with

the package that is provided by Ava group (subsection 6.1.1), it uses the tf ROS

package to publish the translation and rotation. However, it publishes only the pose

of the camera with respect to a marker and not to another frame of reference (e.g a

robot).

6.1.3 ROS package asr aruco marker recognition

This package [23] has been developed by the Active Scene Recognition team of the

Humanoids and Intelligence Systems Lab (HIS), Karlsruhe Institute of Technology

(KIT). It contains a recognition system for square, binary 2D-markers using the

ArUco library. It can be used with a monocular or stereo camera system. Moreover,
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if a stereo camera system is used, the found markers are further processed. More

specifically, the final marker pose is calculated based on the positions of the markers

in the left and right image. That is to say, if a marker with the same id was

found in each of them, the 3D corner points are calculated using triangulation of

the 2D corner points in each image. Then, the published pose is calculated using

ICP (Iterative Closest Point: is an algorithm employed to minimize the difference

between two clouds of points and is used to reconstruct 2D or 3D surfaces from

different scans, to localize robots and achieve optimal path planning). Finally, it

provides marker image generation similarly to the package in the subsection 6.1.1.

6.2 Main differences

First of all, the above packages publish poses, but with rotations represented by

quaternions rather than in euler angles format, as this thesis follows. It is crucial to

extract euler angles rather than quaternions, since this thesis uses the DroneKit’s

API in order to guide the quadcopter within the commands that have been repre-

sented. Although someone could post-processing their outputs in order to transform

quaternions to euler angles, the extracted euler angles will not to be the same. The

last paragraph answers this statement.

Secondly, the first two packages (subsections 6.1.1, 6.1.2) make use of the tf ROS

package. This package lets the user keep track of multiple coordinate frames over

time. In other words, tf maintains the relationship between coordinate frames in a

tree structure buffered in time, and lets the user transform points, vectors between

any two coordinate frames at any desired point in time. Thus, the first package

(subsection 6.1.1), uses the tf in order to take the relationship between the body-

robot coordinate frame and the stereo camera, so as to obtain the pose of the robot

with respect to the marker.

However, in order to take advantage of the tf package (i.e to build the tree

structure that holds all the relationships between coordinate frames), the description

of the robots must be in a URDF format (Unified Robot Description Format is an

XML file format used in ROS to describe all elements of a robot) rather than the
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SDF format which is used by the Gazebo Simulator. Nevertheless, Gazebo deals

with this issue by adding several elements to the URDF files, in order to work

properly inside its simulator. In other words, Gazebo has the ability to read URDF

files instead of SDF files within some modifications.

On the other hand, included models in the repository [20] (as discussed in the

subsection 4.1.5), are in the SDF format. To deal with this problem, this thesis does

not use the tf package to take the transformation between the body-quadcopter

frame and the camera frame, and does an alternative as described in paragraph

”Different Coordinate Systems” within the subsection 4.3.2. In other words, this

thesis, is post-processing the pose of the camera, which the ArUco library returns,

so as to take the pose of the quadcopter with respect to the marker. Thus, a user

who desires to simulate a quadcopter, which does image processing in order to detect

ArUco visual markers in Gazebo using an APM autopilot with SITL and ROS, will

struggle to achieve it by using the above packages if he lacks of URDF model files

and a knowledge about transformations between different coordinate frames.

Furthemore, the tf package, also, provides built-in functions to transform be-

tween rotation representation (i.e rotation matrix to quaternions, quaternions to

axis-angle e.t.c). Since the ArUco library makes use of the OpenCV library, as

discussed in this thesis, the returning rotation of the camera with respect to the

marker is a rvec vector (see subsection 3.3.1). Thus, the first two packages (sub-

sections 6.1.1, 6.1.2) in order to publish the final pose in quaternions form, they

make use of the built-in functions that tf package provide. Tf package, also, pro-

vides built-in function to transform rotations from rotation matrix to euler angles

but the user can not control neither the rotation sequence nor the axes of a body

frame within those functions (see subsection 3.3.3), so he lacks of freedom to choose.

Thus, this thesis, does not use built-in functions of the tf package and creates its

own functions in order to generate euler angles, with the sequence of rotations and

the axes of the body frame (quadcopter) as explained in previous chapters.



Chapter 7

Conclusions

7.1 Summary

The point of this thesis is the implementation of the detection and approachment

of the visual markers with Drones within the Gazebo environment using ROS. The

image processing is being executed by a ROS node, which is a subscriber and a

publisher simultaneously, using the ArUco and OpenCV library. Moreover, during

the extraction of the Drone’s pose, a critical requirement of the localization of the

drone and the approach of the target, pose data are being published to the ROS

ecosystem. A second ROS node, now being a subscriber, grasps the publishing pose

and makes use of the DroneKit API to communicate with the APM autopilot in

order to guide the Drone safely.

In order to achieve this functionality, we had to fetch a repository [20], that

provides SDF model files thus making it possible to represent the quadcopter and

the gimbal in the Gazebo environment. This repository is recommended by the

ArduPilot community and achieves the communication between the ArduPilot SITL

and the Gazebo (Physics) Simulator. Finally, in order to make the Gazebo work

with the ROS (for publishing Gazebo’s virtual camera stream to a ROS topic),

small modifications had to be made to the gimbal model SDF file and attach the

ros gazebo camera plugin as well as the joint link of the quadcopter model SDF file

with the gimbal model SDF file.

79
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7.2 Possible improvements

Obvisously, there is still room for future improvements for increasing the perfor-

mance of the system. First of all, what can be done is to test the system with a

camera that has a better FoV (Field of View) and image resolution so that the

Drone can search for visual markers at a larger distance. Secondly, the calibration

for estimating the fundamental parameters of the camera can be improved and the

re-projection error between the 2D image points and 3D word points must be de-

creased, so that the detection of the marker will be more accurate. Moreover, the

SDF files can be transformed to URDF files so the tf ROS package can be used,

for maintaining the relationship between the body-quadcopter coordinate frame and

the camera coordinate frame in a tree structure. That being said, the camera can

change its orientation in real-time (not pointing e.g always straight down or straight

forward, but for changing its orientation within a flight searching mission) and the

quadcopter can still extract its pose with respect to it. To conclude, one last modifi-

cation that can be achieved is making the system run in real world conditions rather

than the Gazebo environment.
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