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“Always take the position that you are to some degree wrong, and your goal is to be less wrong over
time.”

Elon Musk
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Abstract

Dimitrios PARASCHAS

Computational Analysis of Genomic Sequences utilizing Machine
Learning

Modern high-throughput sequencing has produced a deluge of sequencing data, that promise
the extraction of new insights from the code of life. Due to the enormous size of these data
and the accelerated rate of their production, they cannot be manually parsed by humans
in a timely fashion. Automated programmatic pipelines are instead required to extract the
functions of novel sequences and pinpoint the specific sites they originate from. Machine
Learning algorithms and specifically Neural Networks are well suited for this task; they can
learn the representation of complex functions from characteristics of sequences with known
functionality and efficiently parse and categorize novel ones, as well as find the origin site
for each functionality. This project addresses the specific problem of recognizing whether a
novel Homo Sapiens DNA sequence encodes one or more proteins, and pinpoints the Trans-
lation Initiation Sites if they exist in this sequence. An end-to-end processing pipeline has
been created that parses the input sequence, locates existing open reading frames, extracts
required features and finally determines whether a protein is encoded by each open reading
frame with excellent accuracy, precision, and recall.
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Περίληψη

Δημήτριος Παρασχάς

Υπολογιστική Ανάλυση Γονιδιακών Ακολουθιών με χρήση

Μηχανικής Μάθησης

Οι σύγχρονες μέθοδοι αλληλούχισης γονιδιακών ακολουθιών έχουν παράξει έναν τεράστιο όγκο

δεδομένων, που μας υπόσχονται την εξαγωγή νέων σημαντικών πληροφοριών από τον κώδικα

της ζωής. Εξαιτίας του γιγαντιαίου μεγέθους αυτών των δεδομένων και του επιταχυνόμενου

ρυθμού παραγωγής τους, είναι αδύνατο να αναλυθούν χειροκίνητα από τους επιστήμονες. Α-

ντίθετα, απαιτούνται αυτοματοποιημένες διαδικασίες και προγράμματα τα οποία θα εξάγουν την

πληροφορία της λειτουργικότητας ακολουθιών που επεξεργάζονται για πρώτη φορά, και θα προσ-

διορίζουν με ακρίβεια τη θέση στην οποία αυτές εκκινούν. Οι αλγόριθμοι μηχανικής μάθησης

και συγκεκριμένα τα νευρωνικά δίκτυα είναι κατάλληλοι για αυτήν την εργασία, εφόσον μπο-

ρούν να μάθουν την αναπαράσταση σύνθετης λειτουργίας από χαρακτηριστικά ακολουθιών με

γνωστή λειτουργικότητα, καθώς και να αναλύσουν με ταχύτητα νέες, να τις ταξινομήσουν, αλλά

και να ανιχνεύσουν το σημείο εκκίνησης για κάθε λειτουργία. Η εργασία αυτή αντιμετωπίζει το

πρόβλημα της αναγνώρισης αν μια ακολουθία από DNA του Homo Sapiens κωδικοποιεί μία ή
περισσότερες πρωτεΐνες και προσδιορίζει τις θέσεις εκκίνησης της μετάφρασης, αν υπάρχουν σε

αυτήν την ακολουθία. ΄Εχει υλοποιηθεί ένα πλήρες πρόγραμμα επεξεργασίας, το οποίο αναλύει

την ακολουθία της εισόδου, εντοπίζει τα υπάρχοντα open reading frames, εξάγει τα χαρακτηρι-
στικά του μοντέλου και τελικά καθορίζει για κάθε open reading frame αν κωδικοποιεί κάποια
πρωτεΐνη με εξαιρετικά accuracy, precision, και recall.
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Chapter 1

Translation Initiation Sites

1.1 Proteins and protein synthesis

Proteins are the main structural and functional molecules in the cells of living organisms
and consequently one of the most important type of molecules in all of Life.

A few of the vast array of functions performed by proteins within organisms are the catalysis
of metabolic reactions, signal transmission, molecule storage, and molecule transportation.
Protein assemblies can perform higher level functions in a cell or organism, as exemplified
by the flagellum, a lash-like appendage that protrudes from the cell body of some bacteria
and eukaryotic cells and provide them with the capability of locomotion, and the motor that
drives it. 1.2

FIGURE 1.1: Structure of human hemoglobin. α and β subunits are in red
and blue, and the iron-containing heme groups in green. (Image by Richard

Wheeler, Wikimedia Commons)

Proteins are composed of one or more polypeptides, which are long linear chains of amino
acid residues, usually called amino acids for short, bonded together by peptide bonds. The



Chapter 1. Translation Initiation Sites 2

unique sequence of the amino acids for each kind of protein results in a specific three-
dimensional structure that determines its activity and function.

FIGURE 1.2: The overall structure of the Bacterial Flagellar Motor. Each ele-
ment with different color is a distinct protein. (Image from Xing et al., 2006)

Proteins are synthesized by ribosomes, which are complex molecular machines that link
amino acids in the order specified by messenger RNA (mRNA) molecules they parse, in a
process called translation, to produce the polypeptides that will result in the final functional
protein, after a possible post-translational modification. The precise process of protein gen-
eration in cells is a multi step one called protein synthesis.

The information that encodes the exact amino acid sequence of each protein resides orig-
inally in the genome of the organism that generates and utilizes the protein, where the
genome being the sum of the genetic material of an organism. Eukaryotic organisms such
as homo sapiens use DNA strands to store this information. (Alberts et al., 2014)

1.1.1 DNA and RNA

DNA, short for deoxyribonucleic acid, is a macromolecule and specifically a thread-like
chain of nucleotides.



Chapter 1. Translation Initiation Sites 3

Most DNA molecules consist of two biopolymer strands coiled around each other to form
a double helix. The two DNA strands are called polynucleotides as they are composed of
simpler monomer units called nucleotides. (Alberts et al., 2014) Each nucleotide is com-
posed of one of four nitrogen-containing nucleobases (adenine [A], cytosine [C], guanine
[G], thymine [T]), a sugar called deoxyribose, and a phosphate group. The nucleotides are
joined to one another in a chain by covalent bonds between the sugar of one nucleotide and
the phosphate of the next, resulting in an alternating sugar-phosphate backbone. The ni-
trogenous bases of the two separate polynucleotide strands are bound together, according to
base pairing rules (A with T and C with G), with hydrogen bonds to make double-stranded
DNA.

In a double helix, the direction of the nucleotides in one strand is opposite to their direc-
tion in the other strand: the strands are antiparallel. The asymmetric ends of DNA strands
are called the 5’ (five prime) and 3’ (three prime) ends, with the 5’ end having a terminal
phosphate group and the 3’ end a terminal hydroxyl group.

FIGURE 1.3: The structure of the DNA double helix. (Image by Richard
Wheeler, Wikimedia Commons)

The information in DNA is organized in units called genes. A gene is defined as a sequence
in DNA that codes for a molecule that has a function.
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The structure of a protein coding gene consists of many elements of which the actual pro-
tein coding sequence is often only a small part. These include DNA regions that are not
transcribed as well as untranslated regions of the RNA.

Flanking the open reading frame, genes contain a regulatory sequence that is required for
their expression. First, genes require a promoter sequence. The promoter is recognized and
bound by transcription factors and RNA polymerase to initiate transcription. The recogni-
tion typically occurs as a consensus sequence like the TATA box. A gene can have more
than one promoter, resulting in messenger RNAs that differ in how far they extend in the
5’ end. (Mortazavi et al., 2008) Highly transcribed genes have "strong" promoter sequences
that form strong associations with transcription factors, thereby initiating transcription at a
high rate. Others genes have "weak" promoters that form weak associations with transcrip-
tion factors and initiate transcription less frequently. Eukaryotic promoter regions are much
more complex and difficult to identify than prokaryotic promoters. (Alberts et al., 2014)

Additionally, genes can have regulatory regions many kilobases upstream or downstream
of the open reading frame that alter expression. These act by binding to transcription factors
which then cause the DNA to loop so that the regulatory sequence (and bound transcription
factor) become close to the RNA polymerase binding site. For example, enhancers increase
transcription by binding an activator protein which then helps to recruit the RNA poly-
merase to the promoter; conversely silencers bind repressor proteins and make the DNA
less available for RNA polymerase. (Maston, Evans, and Green, 2006)

The transcribed pre-mRNA contains untranslated regions at both ends which contain a ri-
bosome binding site, terminator and start and stop codons. In addition, most eukaryotic
open reading frames contain untranslated introns which are removed before the exons are
translated. The sequences at the ends of the introns, dictate the splice sites to generate the
final mature mRNA which encodes the protein or RNA product. (Bicknell et al., 2012)

Many prokaryotic genes are organized into operons, with multiple protein-coding sequences
that are transcribed as a unit. The genes in an operon are transcribed as a continuous mes-
senger RNA, referred to as a polycistronic mRNA. The term cistron in this context is equiv-
alent to gene. The transcription of an operon’s mRNA is often controlled by a repressor that
can occur in an active or inactive state depending on the presence of certain specific metabo-
lites. When active, the repressor binds to a DNA sequence at the beginning of the operon,
called the operator region, and represses transcription of the operon; when the repressor is
inactive transcription of the operon can occur (see e.g. Lac operon). The products of operon
genes typically have related functions and are involved in the same regulatory network.
(Jacob and Monod, 1961)

1.1.2 Transcription

During a process called transcription, an mRNA chain is generated with one strand of the
DNA double helix in the genome as a template. In eucaryotes, the original product of the
transcription called precursor messenger RNA (pre-mRNA) undergoes a post-transcriptional
modification to produce the final mature messenger RNA.

RNA, short for ribonucleic acid, is a polymeric molecule essential in various biological roles
in coding, decoding, regulation, and expression of genes. RNA is assembled as a chain of
nucleotides, in the same way to DNA, but unlike DNA it is more often found in nature as
a single-strand folded onto itself, rather than a paired double-strand. Cellular organisms
use messenger RNA (mRNA) to convey genetic information (using the nitrogenous bases



Chapter 1. Translation Initiation Sites 5

of adenine, cytosine, guanine, and uracil, denoted by the letters A, C, G, and U) that directs
synthesis of specific proteins.

The genetic information of mRNA is encoded in the sequence of nucleotides, which are
arranged into codons consisting of three nucleotides each. Each codon encodes for a specific
amino acid, except for the stop codons, which terminate protein synthesis.

Transcription is divided into the major steps of initiation, promoter escape, elongation, and
termination.

Initiation

Transcription begins with the binding of RNA polymerase, together with one or more gen-
eral transcription factors, to a specific DNA sequence, referred to as a promoter, to form an
RNA polymerase-promoter "closed complex". In the closed complex the promoter DNA is
still fully double-stranded.

RNA polymerase, assisted by one or more general transcription factors, then unwinds ap-
proximately 14 base pairs of DNA to form an RNA polymerase-promoter "open complex".
In the open complex the promoter DNA is partly unwound and single-stranded. The ex-
posed, single-stranded DNA is referred to as the "transcription bubble".

RNA polymerase, assisted by one or more general transcription factors, then selects a tran-
scription start site in the transcription bubble, binds to an initiating NTP and an extending
NTP (or a short RNA primer and an extending NTP) complementary to the transcription
start site sequence, and catalyzes bond formation to yield an initial RNA product.

In bacteria, RNA polymerase holoenzyme consists of five subunits: 2 α subunits, 1 β subunit,
1 β’ subunit, and 1 ω subunit. In bacteria, there is one general RNA transcription factor:
sigma. RNA polymerase core enzyme binds to the bacterial general transcription factor
sigma to form RNA polymerase holoenzyme and then binds to a promoter. (Watson, 2008)

In archaea and eukaryotes, RNA polymerase contains subunits homologous to each of the
five RNA polymerase subunits in bacteria and also contains additional subunits. In archaea
and eukaryotes, the functions of the bacterial general transcription factor sigma are per-
formed by multiple general transcription factors that work together. In archaea, there are
three general transcription factors: TBP, TFB, and TFE. In eukaryotes, in RNA polymerase
II-dependent transcription, there are six general transcription factors: TFIIA, TFIIB (an or-
tholog of archaeal TFB), TFIID (a multisubunit factor in which the key subunit, TBP, is an
ortholog of archaeal TBP), TFIIE (an ortholog of archaeal TFE), TFIIF, and TFIIH. In archaea
and eukaryotes, the RNA polymerase-promoter closed complex is usually referred to as the
"preinitiation complex". (Roeder, 1991)

Transcription initiation is regulated by additional proteins, known as activators and repres-
sors, and, in some cases, associated coactivators or corepressors, which modulate formation
and function of the transcription initiation complex.

Promoter escape

After the first bond is synthesized, the RNA polymerase must escape the promoter. During
this time there is a tendency to release the RNA transcript and produce truncated tran-
scripts. This is called abortive initiation, and is common for both eukaryotes and prokary-
otes. (Goldman, Ebright, and Nickels, 2009) Abortive initiation continues to occur until an
RNA product of a threshold length of approximately 10 nucleotides is synthesized, at which
point promoter escape occurs and a transcription elongation complex is formed.
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Mechanistically, promoter escape occurs through DNA scrunching, providing the energy
needed to break interactions between RNA polymerase holoenzyme and the promoter.

In bacteria, upon and following promoter clearance, the σ factor is released according to a
stochastic model.

In eukaryotes, at an RNA polymerase II-dependent promoter, upon promoter clearance,
TFIIH phosphorylates serine 5 on the carboxy terminal domain of RNA polymerase II, lead-
ing to the recruitment of capping enzyme (CE). The exact mechanism of how CE induces
promoter clearance in eukaryotes is not yet known. (Mandal et al., 2004)

Elongation

One strand of the DNA, the template strand (or noncoding strand), is used as a template
for RNA synthesis. As transcription proceeds, RNA polymerase traverses the template
strand and uses base pairing complementarity with the DNA template to create an RNA
copy. Although RNA polymerase traverses the template strand from 3’ to 5’, the coding
(non-template) strand and newly formed RNA can also be used as reference points, so tran-
scription can be described as occurring 5’ to 3’. This produces an RNA molecule from 5’ to
3’, an exact copy of the coding strand (except that thymines are replaced with uracils, and
the nucleotides are composed of a ribose (5-carbon) sugar where DNA has deoxyribose (one
fewer oxygen atom) in its sugar-phosphate backbone).

mRNA transcription can involve multiple RNA polymerases on a single DNA template
and multiple rounds of transcription (amplification of particular mRNA), so many mRNA
molecules can be rapidly produced from a single copy of a gene. The characteristic elon-
gation rates in prokaryotes and eukaryotes are about 10-100 nts/sec. In eukaryotes, how-
ever, nucleosomes act as major barriers to transcribing polymerases during transcription
elongation. In these organisms, the pausing induced by nucleosomes can be regulated by
transcription elongation factors such as TFIIS. (Fitz et al., 2016)

Elongation also involves a proofreading mechanism that can replace incorrectly incorpo-
rated bases. In eukaryotes, this may correspond with short pauses during transcription that
allow appropriate RNA editing factors to bind. These pauses may be intrinsic to the RNA
polymerase or due to chromatin structure.

Termination

Bacteria use two different strategies for transcription termination – Rho-independent ter-
mination and Rho-dependent termination. In Rho-independent transcription termination,
RNA transcription stops when the newly synthesized RNA molecule forms a G-C-rich hair-
pin loop followed by a run of Us. When the hairpin forms, the mechanical stress breaks the
weak rU-dA bonds, now filling the DNA-RNA hybrid. This pulls the poly-U transcript out
of the active site of the RNA polymerase, terminating transcription. In the Rho-dependent
type of termination, a protein factor called Rho destabilizes the interaction between the tem-
plate and the mRNA, thus releasing the newly synthesized mRNA from the elongation com-
plex. (Richardson, 2002)

Transcription termination in eukaryotes is less well understood than in bacteria, but in-
volves cleavage of the new transcript followed by template-independent addition of adenines
at its new 3’ end, in a process called polyadenylation. (Lykke-Andersen and Jensen, 2007)
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FIGURE 1.4: Diagram of mRNA synthesis and processing. (Image by Kelvin
Ma, Wikimedia Commons)

1.1.3 Translation

Translation is the process in which ribosomes in the cytoplasm or endoplasmic reticulum
(ER) synthesize proteins.

Specifically, messenger RNA (mRNA) is decoded in a ribosome to produce a specific amino
acid chain, or polypeptide. The polypeptide later folds into an active protein and performs
its functions in the cell. The ribosome facilitates decoding by inducing the binding of com-
plementary tRNA anticodon sequences to mRNA codons. The tRNAs carry specific amino
acids that are chained together into a polypeptide as the mRNA passes through and is "read"
by the ribosome.

There are generally three phases in the translation process:

Initiation, where the ribosome assembles around the target mRNA. The first tRNA is at-
tached at the start codon.
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Elongation, where the tRNA transfers an amino acid to the tRNA corresponding to the next
codon. The ribosome then moves (translocates) to the next mRNA codon to continue the
process, creating an amino acid chain.

Termination, in which a stop codon is reached and the ribosome releases the polypeptide.

The basic process of translation is the addition of one amino acid at a time to the end of
the polypeptide being formed. This process takes place inside the ribosome. A ribosome
is made up of two subunits, a small 40S subunit and a large 60S subunit. These subunits
come together before translation of mRNA into a protein to provide a location for trans-
lation to be carried out and a polypeptide to be produced. The choice of amino acid type
to be added is determined by the genetic code on the mRNA molecule. Each amino acid
added is mismatched to a three codon sequence of the mRNA. For each such triplet pos-
sible, the corresponding amino acid is accepted. The successive amino acids added to the
chain are matched to successive nucleotide triplets in the mRNA. In this way, the sequence
of nucleotides in the template mRNA chain determines the sequence of amino acids in the
generated polypeptide. Addition of an amino acid occurs at the C-terminus of the peptide
and thus translation is said to be amino-to-carboxyl directed.

The tRNA carries genetic information encoded as a DNA sequence from the chromosomes
to the nucleolus. The ribonucleotides are "read" by translational machinery in a sequence of
nucleotide triplets called codons. Each of those triplets codes for a specific amino acid.

The ribosome molecules translate this code to a specific sequence of amino acids. The ri-
bosome is a multisubunit structure containing rRNA and proteins. It is the "factory" where
amino acids are assembled into proteins. tRNAs are small noncoding RNA chains (74-93
nucleotides) that transport amino acids to the ribosome. tRNAs have a site for amino acid
attachment, and a site called an anticodon. The anticodon is an RNA triplet complementary
to the mRNA triplet that codes for their cargo amino acid.

Aminoacyl tRNA synthetases (enzymes) catalyze the bonding between specific tRNAs and
the amino acids that their anticodon sequences call for. The product of this reaction is an
aminoacyl-tRNA. In prokaryotes, this aminoacyl-tRNA is carried to the ribosome by EF-Tu,
where mRNA codons are matched through complementary base pairing to specific tRNA
anticodons. Aminoacyl-tRNA synthetases that mispair tRNAs with the wrong amino acids
can produce mischarged aminoacyl-tRNAs, which can result in inappropriate amino acids
at the respective position in protein. This "mistranslation" (Moghal, Mohler, and Ibba, 2014)
of the genetic code naturally occurs at low levels in most organisms, but certain cellular
environments cause an increase in permissive mRNA decoding, sometimes to the benefit of
the cell.

The ribosome has three sites for tRNA to bind. They are the aminoacyl site (abbreviated
A), the peptidyl site (abbreviated P) and the exit site (abbreviated E). With respect to the
mRNA, the three sites are oriented 5’ to 3’ E-P-A, because ribosomes move toward the 3’
end of mRNA. The A-site binds the incoming tRNA with the complementary codon on the
mRNA. The P-site holds the tRNA with the growing polypeptide chain. The E-site holds the
tRNA without its amino acid. When an aminoacyl-tRNA initially binds to its corresponding
codon on the mRNA, it is in the A site. Then, a peptide bond forms between the amino acid
of the tRNA in the A site and the amino acid of the charged tRNA in the P site. The growing
polypeptide chain is transferred to the tRNA in the A site. Translocation occurs, moving the
tRNA in the P site, now without an amino acid, to the E site; the tRNA that was in the A
site, now charged with the polypeptide chain, is moved to the P site. The tRNA in the E site
leaves and another aminoacyl-tRNA enters the A site to repeat the process. (Griffiths, 2008)
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After the new amino acid is added to the chain, and after the mRNA is released out of
the nucleus and into the ribosome’s core, the energy provided by the hydrolysis of a GTP
bound to the translocase EF-G (in prokaryotes) and eEF-2 (in eukaryotes) moves the ribo-
some down one codon towards the 3’ end. The energy required for translation of proteins
is significant. For a protein containing n amino acids, the number of high-energy phosphate
bonds required to translate it is 4n-1. The rate of translation varies; it is significantly higher
in prokaryotic cells (up to 17-21 amino acid residues per second) than in eukaryotic cells (up
to 6-9 amino acid residues per second). (Ross and Orlowski, 1982)

Even though the ribosomes are usually considered accurate and processive machines, the
translation process is subject to errors that can lead either to the synthesis of erroneous pro-
teins or to the premature abandonment of translation. The rate of error in synthesizing
proteins has been estimated to be between 1/105 and 1/103 misincorporated amino acids,
depending on the experimental conditions. (Wohlgemuth et al., 2011) The rate of premature
translation abandonment, instead, has been estimated to be of the order of magnitude of
10-4 events per translated codon. The correct amino acid is covalently bonded to the correct
transfer RNA (tRNA) by amino acyl transferases. The amino acid is joined by its carboxyl
group to the 3’ OH of the tRNA by an ester bond. When the tRNA has an amino acid linked
to it, the tRNA is termed "charged". Initiation involves the small subunit of the ribosome
binding to the 5’ end of mRNA with the help of initiation factors (IF). In prokaryotes, initia-
tion of protein synthesis involves the recognition of a purine-rich initiation sequence on the
mRNA called the Shine-Dalgarno sequence. The Shine-Dalgarno sequence binds to a com-
plementary pyrimidine-rich sequence on the 3’ end of the 16S rRNA part of the 30S riboso-
mal subunit. The binding of these complementary sequences ensures that the 30S ribosomal
subunit is bound to the mRNA and is aligned such that the initiation codon is placed in the
30S portion of the P-site. Once the mRNA and 30S subunit are properly bound, an initiation
factor brings the initiator tRNA-amino acid complex, f-Met-tRNA, to the 30S P site. The
initiation phase is completed once a 50S subunit joins the 30 subunit, forming an active 70S
ribosome. Termination of the polypeptide happens when the A site of the ribosome faces
a stop codon (UAA, UAG, or UGA) on the mRNA. tRNA usually cannot recognize or bind
to stop codons. Instead, the stop codon induces the binding of a release factor protein that
prompts the disassembly of the entire ribosome/mRNA complex and the hydrolysis and
the release of the polypeptide chain from the ribosome. Drugs or special sequence motifs on
the mRNA can change the ribosomal structure so that near-cognate tRNAs are bound to the
stop codon instead of the release factors. In such cases of ’translational readthrough’, trans-
lation continues until the ribosome encounters the next stop codon. (Schueren and Thoms,
2016)

The process of translation is highly regulated in both eukaryotic and prokaryotic organisms.
Regulation of translation can impact the global rate of protein synthesis which is closely cou-
pled to the metabolic and proliferative state of a cell. In addition, recent work has revealed
that genetic differences and their subsequent expression as mRNAs can also impact transla-
tion rate in an RNA-specific manner. (Cenik et al., 2015)
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FIGURE 1.5: Diagram of RNA translation. (Image by Kelvin Ma, Wikimedia
Commons)
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1.2 Translation Initiation Sites identification

In February 2001, the first assembly of the human genome was published by the Inter-
national Human Genome Sequencing Consortium (Lander, [...], and International Human
Genome Sequencing Consortium, 2001). According to this study human genes tend to have
small exons (encoding in average only 50 codons) separated by long introns (some exceed-
ing 10 kb). This phenomenon increases the signal-to-noise ratio for algorithms that attempt
to facilitate gene prediction, leading to significantly limited accuracy. The performance of
such algorithms relies mostly on the availability of coding sequences that can be utilized
to develop robust predictive models. The current thesis presents an in silico approach that
can readily identify the coding segments of either known or putative genic loci. To this end,
the algorithm must be capable of locating all Open Reading Frames (ORFs) located in the
queried sequence, and identifying the correct ORF, whose 5’ end is considered the Trans-
lation Initiation Site (TIS). The ORF is defined as a stretch of DNA codons that start with
the start codon (ATG) and terminate with any of the stop codons (TAA/TAG/TGA). Stop
codons are not considered part of the ORF. Since all codons represent triplets of nucleotides,
there can be up to three ORFs per single stranded DNA sequence. The immediate flanking
loci of coding regions do not encode for proteins and can be considered as non-coding (3’
and 5’ UnTranslated Regions, UTRs). This is a phenomenon that the proposed methodology
attempts to exploit since in general, the patterns of nucleotide composition greatly differ
between coding and non-coding sequences.

The original work for the identification of TIS in coding sequences dates back to 1987, when
Kozak developed the first weight matrix from an extended collection of data (Kozak, 1987).
The consensus motif derived from this matrix was GCCACCatgG, describing a G residue
following the ATG codon, and a purine, preferably A, three nucleotides upstream, as two
highly conserved positions that exert the strongest effect. While attempting to describe what
really happens in the cell, Kozak developed the ribosome-scanning model. According to this
model, ribosomes initially attach to the specific cap region in the 5’ end of mRNAs and sub-
sequently scan the sequence until they find the first ATG located in an optimal nucleotide
context. This is described as the site where the translation of codons into amino acids be-
gins. Although this process characterizes most studied mRNA’s, there are some notable
exceptions.

In cases where the first ATG codon of the sequence has a less than optimal nucleotide con-
text, it can actually be bypassed by the ribosome, which then initiates translation from a
subsequent start codon located in a more optimal nucleotide context further downstream.
This phenomenon is also known as leaky scanning. In reinitiation, the translation starts from
an ATG codon upstream of the coding region, located in optimal nucleotide context inside
the 5’ UTR region and is terminated at the first stop codon, normally in a short downstream
distance. Scanning then continues until the authentic ATG codon (start codon) is reached.

During the last decade, a plethora of computational methods has emerged aiming to facil-
itate the distinction between coding and non-coding sequences. Even though the amount
of available implementations is quite large, only a small fraction provides source code for
stand-alone usage, while the vast majority can only be accessed through web servers of lim-
ited throughput capacity. Most importantly, the vast majority of the implementations use
outdated programming languages and methodologies, thus signifying the need for an open
source and streamlined implementation based on a modern toolset.
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Chapter 2

Deep Learning

2.1 Machine Learning

Machine Learning is a field of computer science that uses statistical techniques to give com-
puter systems the ability to learn from data, or to progressively improve performance on a
specific task without being explicitly programmed how to accomplish that.

A core objective of a learner is to generalize from its experience. (Bishop, 2006) General-
ization in this context is the ability of a learning machine to perform accurately on new,
unseen examples/tasks after having experienced a learning data set. The training examples
come from some generally unknown probability distribution, considered representative of
the space of occurrences, and the learner has to build a general model about this space that
enables it to produce sufficiently accurate predictions in new cases.

The computational analysis of machine learning algorithms and their performance is a branch
of theoretical computer science known as computational learning theory. Because training
sets are finite and the future is uncertain, learning theory usually does not yield guaran-
tees of the performance of algorithms. Instead, probabilistic bounds on the performance
are quite common. The bias-variance decomposition is one way to quantify generalization
error.

For the best performance in the context of generalization, the complexity of the hypothe-
sis should match the complexity of the function underlying the data. If the hypothesis is
less complex than the function, then the model has underfit the data. If the complexity of
the model is increased in response, then the training error decreases. But if the hypothesis
is too complex, then the model is subject to overfitting and generalization will be poorer.
(Alpaydin, 2010)

In addition to performance bounds, computational learning theorists study the time com-
plexity and feasibility of learning. In computational learning theory, a computation is con-
sidered feasible if it can be done in polynomial time. There are two kinds of time complexity
results. Positive results show that a certain class of functions can be learned in polynomial
time. Negative results show that certain classes cannot be learned in polynomial time.

Today, Machine Learning is employed in a vast range of computing tasks where designing
and programming explicit algorithms with good performance is difficult or infeasible, such
as image recognition, facial recognition, speech recognition, automated translation, email
spam filtering, network intrusion detection, and driverless driving. More recently, a great
number of tasks in Bioinformatics, Biotechnology, and Medicine have also been tackled with
Machine Learning, such as gene expression, sequence allignment, metabolic pathways mod-
eling, and protein structure and function prediction.
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2.2 Neural Networks

Neural Networks (NNs) are machine learning algorithms vaguely inspired by the biological
neural networks that constitute animal brains. Neural networks have favorable properties
that set them apart and beyond other machine learning algorithms. The most important
of them are the ability of improve performance with scale and the ability to improve per-
formance with increased amounts of training data. These characteristics, along with their
inherent property of being able to be expressed by simple linear algebra operations, so they
can be run very efficiently on off-the-self Graphics Processing Units, lead to their adoption
for almost all tasks in the modern machine learning pipelines.

A Neural Network (NN) is composed of a collection of connected units or nodes called
artificial neurons which loosely model the neurons in a biological brain. Each connection,
like the synapses in a biological brain, can transmit a signal from one artificial neuron to
another. An artificial neuron that receives a signal can process it and then signal additional
artificial neurons connected to it.

In common neural network implementations, the signal at a connection between artificial
neurons is a real number, and the output of each artificial neuron is computed by some non-
linear function of the sum of its inputs. The connections between artificial neurons are called
’edges’. Artificial neurons and edges typically have a weight that adjusts as learning pro-
ceeds. The weight increases or decreases the strength of the signal at a connection. Artificial
neurons may have a threshold such that the signal is only sent if the aggregate signal crosses
that threshold. Typically, artificial neurons are aggregated into layers. Different layers may
perform different kinds of transformations on their inputs. Signals travel from the first layer,
called the input layer, to the last layer, called the output layer, possibly after traversing the
layers multiple times.

2.2.1 Multi-layer Perceptron

The most used neural network algorithm is the exceedingly effective and powerful Multi-
layer Perceptron (MLP). The Multi-layer Perceptron is a supervised machine learning algo-
rithm that learns a function f (·) : Rm → Ro by training on a dataset, where m is the number
of dimensions for input and o is the number of dimensions for output. Given a set of fea-
tures X = x1, x2, ..., xm and a target y, it can learn a non-linear function approximator for
either classification or regression. It is different from logistic regression, in that between the
input and the output layer, there can be one or more non-linear layers, called hidden layers.
Figure 2.1 shows a one hidden layer MLP with scalar output.
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FIGURE 2.1: A single hidden layer Multi-layer Perceptron network (Image
from Pedregosa et al., 2011)

The leftmost layer, known as the input layer, consists of a set of neurons {xi|x1, x2, ..., xm}
representing the input features. Each neuron in the hidden layer transforms the values from
the previous layer with a weighted linear summation w1x1 +w2x2 + ...+wmxm, followed by
a non-linear activation function g(·) : R → R - like the hyperbolic tan function. The output
layer receives the values from the last hidden layer and transforms them into output values.

2.3 Convolutional Neural Networks

Convolutional Neural Networks are very similar to ordinary Neural Networks, as they are
made up of neurons that have learnable weights and biases. Each neuron receives some
inputs, performs a dot product and optionally follows it with a non-linearity. The whole
network still expresses a single differentiable score function: from the raw image pixels on
one end to class scores at the other and they still have a loss function on the last, fully-
connected layer. On the other hand, Convolutional Neural Networks, or ConvNet for short,
architectures make the explicit assumption that the inputs are images or other data with
spacial relationship between the distinct features, which allows us to encode certain proper-
ties into the architecture. These then make the forward function more efficient to implement
and vastly reduce the amount of parameters in the network.

Convolutional Neural Networks take advantage of the fact that the input consists of images
and they constrain the architecture in a more sensible way. In particular, unlike a regular
Neural Network, the layers of a ConvNet have neurons arranged in 3 dimensions: width,
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height, depth. The neurons in a layer will only be connected to a small region of the layer
before it, instead of all of the neurons in a fully-connected manner. Moreover, the final out-
put layer would have reduced dimensions, because by the end of the ConvNet architecture
we will reduce the full image into a single vector of class scores, arranged along the depth
dimension. 2.2

FIGURE 2.2: A Convolutional Neural Network arranges its neurons in three
dimensions (width, height, depth), as visualized in one of the layers. Every
layer of a ConvNet transforms the 3D input volume to a 3D output volume
of neuron activations. In the case of an image, the red input layer holds the
image data, so its width and height would be the dimensions of that image,
and the depth would be 3, one for each of Red, Green, and Blue channels.

(Image from Stanford CS231n: Convolutional Neural Networks)

2.3.1 ConvNets Layers

A simple ConvNet is a sequence of layers, and every layer of a ConvNet transforms one
volume of activations to another through a differentiable function. We use three main types
of layers to build ConvNet architectures: Convolutional Layer, Pooling Layer, and Fully-
Connected Layer, the latter being the same used in regular Neural Networks. We stack
these layers to form a full ConvNet architecture.

2.3.2 Convolutional Layer

The Convolutional layer is the core building block of a Convolutional Network that does
most of the computational heavy lifting. The Conv layer’s parameters consist of a set of
learnable filters. Every filter is small spatially, along width and height, but extends through
the full depth of the input volume. For example, a typical filter on a first layer of a ConvNet
might have size 5x5x3, i.e. 5 pixels width and height, and 3 because images have depth 3,
the color channels. During the forward pass, we slide, or more precisely, convolve, each
filter across the width and height of the input volume and compute dot products between
the entries of the filter and the input at any position. As we slide the filter over the width
and height of the input volume we will produce a 2-dimensional activation map that gives
the responses of that filter at every spatial position. Intuitively, the network will learn filters
that activate when they see some type of visual feature such as an edge of some orientation
or a blotch of some color on the first layer, or eventually entire honeycomb or wheel-like
patterns on higher layers of the network. Now, we will have an entire set of filters in each



Chapter 2. Deep Learning 16

Conv layer, and each of them will produce a separate 2-dimensional activation map. We will
stack these activation maps along the depth dimension and produce the output volume.

When dealing with high-dimensional inputs such as images, as we saw above it is impracti-
cal to connect neurons to all neurons in the previous volume. Instead, we will connect each
neuron to only a local region of the input volume. The spatial extent of this connectivity is
a hyperparameter called the receptive field of the neuron; equivalently this is the filter size.
The extent of the connectivity along the depth axis is always equal to the depth of the input
volume. It is important to emphasize again this asymmetry in how we treat the spatial di-
mensions, width and height, and the depth dimension: The connections are local in space,
along width and height, but always full along the entire depth of the input volume.

Having explained the connectivity of each neuron in the Conv Layer to the input volume,
we will now discuss how many neurons there are in the output volume and how they are
arranged. Three hyperparameters control the size of the output volume: the depth, stride
and zero-padding.

The depth of the output volume is a hyperparameter: it corresponds to the number of filters
we would like to use, each learning to look for something different in the input. For example,
if the first Convolutional Layer takes as input the raw image, then different neurons along
the depth dimension may activate in presence of various oriented edges, or blobs of color.
We will refer to a set of neurons that are all looking at the same region of the input as a depth
column. 2.4

FIGURE 2.3: An example input volume in red, with the dimensions 32× 32× 3
of CIFAR-10 images, and an example volume of neurons in the first Convo-
lutional layer. Each neuron in the convolutional layer is connected only to a
local region in the input volume spatially, but to the full depth, i.e. all color
channels. There are multiple neurons (5 in this example) along the depth, all
looking at the same region in the input. (Image from Stanford CS231n: Con-

volutional Neural Networks)

Subsequently, we must specify the stride with which we slide the filter. When the stride is 1
then we move the filters one pixel at a time. When the stride is 2 then the filters jump 2 pixels
at a time as we slide them around. This will produce smaller output volumes spatially.

Sometimes it will be convenient to pad the input volume with zeros around the border. The
size of this zero-padding is a hyperparameter. The nice feature of zero padding is that it
will allow us to control the spatial size of the output volumes (most commonly as we’ll see
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soon we will use it to exactly preserve the spatial size of the input volume so the input and
output width and height are the same).

We can compute the spatial size of the output volume as a function of the input volume
size W, the receptive field size of the Conv Layer neurons F, the stride with which they
are applied P, and the amount of zero padding used P on the border. You can convince
yourself that the correct formula for calculating how many neurons "fit" is given by (W−
F + 2P)/S + 1.

A parameter sharing scheme is used in Convolutional Layers to control the number of pa-
rameters. It turns out that we can dramatically reduce the number of parameters by making
one reasonable assumption: That if one feature is useful to compute at some spatial position
(x,y), then it should also be useful to compute at a different position (x2,y2). In other words,
denoting a single 2-dimensional slice of depth as a depth slice, we are going to constrain the
neurons in each depth slice to use the same weights and bias. In practice during backprop-
agation, every neuron in the volume will compute the gradient for its weights, but these
gradients will be added up across each depth slice and only update a single set of weights
per slice. Notice that if all neurons in a single depth slice are using the same weight vector,
then the forward pass of the Conv layer can in each depth slice be computed as a convolution
of the neuron’s weights with the input volume –hence the name: Convolutional Layer. This
is why it is common to refer to the sets of weights as a filter, or a kernel, that is convolved
with the input.

2.3.3 Pooling Layer

It is common to periodically insert a Pooling layer in-between successive Conv layers in a
ConvNet architecture. Its function is to progressively reduce the spatial size of the repre-
sentation to reduce the amount of parameters and computation in the network, and hence
to also control overfitting. The Pooling Layer operates independently on every depth slice
of the input and resizes it spatially, using the MAX operation. Here we should say that the
most common form is a pooling layer with filters of size 2x2 applied with a stride of 2 down-
samples every depth slice in the input by 2 along both width and height, discarding 75% of
the activations. Every MAX operation would in this case be taking a max over 4 numbers, a
little 2x2 region in some depth slice. The depth dimension remains unchanged. Concretely,
the pooling layer accepts a volume of size W1 ×H1 ×D1, requires the hyperparameters F
which is their spatial extent, and the stride S, produces a volume of size W2 × H2 × D2
where: W2 = (W1 − F)/S + 1, H2 = (H1 − F)/S + 1, and D2 = D1, and introduces zero
parameters since it computes a fixed function of the input. 2.4
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FIGURE 2.4: An input volume of size [224x224x64] is pooled with filter size 2
and stride 2 into the output volume of size [112x112x64]. The volume depth is
preserved. (Image from Stanford CS231n: Convolutional Neural Networks)

In addition to max pooling, the pooling units can also perform other functions, such as
average pooling or even L2-norm pooling. Average pooling was often used historically but
has recently fallen out of favor compared to the max pooling operation, which has been
shown to work better in practice.
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Chapter 3

Translation Initiation Site prediction

3.1 Overview

The TIS prediction project was designed and implemented with modern software engineer-
ing practices in mind. Furthermore, a special care was taken to produce a completely repro-
ducible implementation, which is a prerequisite for scientific progress.

To this end, a significant part of the project was the design and implementation of scripts to
automatically download and process genomic data and generate the required datasets used
to train and test the neural network models. The other major task was the experimentation
with multiple neural network architectures and the search in the hyperparameter space to
reach a trained model that generalizes over the data while avoiding overfitting.

3.2 Dataset

The dataset used for the implementation of the TIS prediction programs was generated by
the Human genome produced and hosted by the Ensembl genome database project (Zerbino
et al., 2018), a joint scientific project between the European Bioinformatics Institute and the
Wellcome Trust Sanger Institute. The complete set of the transcription sequences from the
"Human genes (GRCh38.p12)" dataset of the "Ensembl Genes 92" database from the En-
sembl BioMart service was downloaded programmatically using an auxiliary library that
consumes the BioMart’s API.

Two sets of examples were required to train the models: the positive and the negative set.
The positive set was constructed by downloading the cDNA transcripts that code for pro-
tein, along with their annotation metadata. During filtering, the transcripts with APPRIS
annotation, and with Transcript support level (TSL) equal to "tsl1", "tsl2", or "tsl3" were se-
lected. A single transcript for each unique gene was randomly selected.

The negatives examples where generated from long intergening non-coding RNA (lincRNA)
transcripts of the dataset. During filtering, the transcripts with a GENCODE basic annota-
tion were selected. A single transcript for each unique gene was randomly selected. Addi-
tionally, for each lincRNA transcript, all of the open reading frames of the sequence were
selected and those with length less than a specified minimum were filtered out and one
ORF from the remaining was randomly selected. The exclusion of sequences shorter than
the minimum length was necessary to allow for the selection of the model features, 12 for the
preceding sequence to the start codon of the Ribosome Signal feature and a variable number
for the maximum length of the Coding Potential window feature.

https://github.com/paraschas/TIS_prediction
http://www.ensembl.org/biomart/martview
http://www.ensembl.org/biomart/martview
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3.2.1 Training and Testing sets

In the first prototype build of the project, we used the labels of 1 and -1 to represent the
positive and the negative examples respectively. In the later and currenct implementation,
the more general representation of an one hot array was used. The positive and negative
examples were then merged and randomly shuffled, before splitting the resulting dataset to
a training and a testing set, with 70% and 30% of the examples respectively.

3.3 Features

Two features were used for the creation of the Machine Learning model built. The first,
called Ribosome Signal, represents the statistical significance of the coding potential around
the start codon of the sequence. A 18-length nucleotide window was extracted from each
sequence, consisting of the -12 to +9 nucleotides surrounding the start codon (itself starting
at +1). The second feature, called Coding Potential, represents the statistical significance of
the coding potential of the conserved motif of the sequence. It utilizes a scanning window
that starts 60 nucleotides downstream of the start codon.

The nucleotide sequence windows extracted for the two features were concatenated to a sin-
gle nucleotide array. In the prototype implementation, the nucleotides of the sequence (A,
T, C, G) were mapped to the integers (1, 2, 3, 4). This numeric representation enabled their
subsequent transformation to NumPy arrays in order to achieve efficient computations and
utilization throughout the Machine Learning pipeline. In the latter and current implemen-
tation, to achieve the same goal, we used the representation of one hot arrays, to same as the
label data.

3.4 Model Architecture

Two architectures classes of architectures were tested and experimented with in order to
achieve the highest prediction accuracy for the target at hand. Both were Neural Network
algorithms, using the high-level Keras API (Chollet et al., 2015) running on top of the Ten-
sorFlow Machine Learning framework (Abadi et al., 2015). We should note here that an
initial implementation that utilized Support Vector Machines (SVM) was glued together but
the subsequent neural network implementation was superior in every regard.

3.4.1 Fully-connected Neural Network

The first class of Neural Network architectures that was tested were fully connected net-
works. Trying to avoid giving additional information to the network by generating special
features, simple sequential fully connected architectures were tested, with a varying num-
ber of layers and number of neurons for each of them. Increasing the number of layers lead
to an increased efficiency of the neural network. The optimal number of hidden layers were
12, each them with 128 neurons, apart from the first and last neural network with 256 and 8
neurons respectively. 3.1

The neural network achieves an accuracy of 0.8660 with testing loss of 0.3161 and Area
Under Curve (AUC) of 0.906124. These metrics fluctuate to a small amount between runs,
due to the randomized process of selecting the examples from the initial dataset.
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FIGURE 3.1: The best performing fully-connected TIS prediction neural net-
work.
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Figure 3.2 shows the training history of the neural network, while figure 3.3 shows the Re-
ceiver Operating Characteristic (ROC) curve of the neural network.

FIGURE 3.2: Training history of the fully-connected TIS prediction NN.

FIGURE 3.3: Training history of the fully-connected TIS prediction NN.

3.4.2 Convolutional Neural Network

The second class of Neural Network architectures that was tested were Convolutional Neu-
ral Networks. With the convolutional layer of a CNN, we hope to capture the information
of the locality between the nucleotides. Due to the way the translation of the mRNAs is
achieved by the ribosome, the exact sequence of the nucleotides is expected to play a signif-
icant role to whether an mRNA transcript is coding or non-coding. We adopted the same
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FIGURE 3.4: The best performing fully-connected TIS prediction neural net-
work.

approach that is frequently utilized in CNNs for image classification, that uses an initial con-
volutional layer, a subsequent pooling layer and then a varying number of fully connected
layers. 3.4

The neural network achieves an accuracy of 0.8625 with testing loss of 0.5871 and Area
Under Curve (AUC) of 0.879967. These metrics fluctuate to a small amount, due to the
randomized process of selecting the examples from the initial dataset.
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Figure 3.5 shows the training history of the neural network, while figure 3.6 shows the Re-
ceiver Operating Characteristic (ROC) curve of the neural network.

FIGURE 3.5: Training history of the fully-connected TIS prediction NN.

FIGURE 3.6: Training history of the fully-connected TIS prediction NN.
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3.5 Conclusion and future work

In this project, we showed how a neural network adapted to the task of Translation Initiation
Site prediction can achieve excellent results, that render it useful to practical implementa-
tions in genome sequencing and database annotation.

The two classes of neural networks achieved very similar levels of accuracy. A convolutional
neural network would be expected to outperform a fully-connected one in cases where the
sequences to be classified would be too large to construct a big enough fully-connected
NN. In our case and the task at hand, and since the CNN model utilizes an information
lossy procedure, the fully connected deep NN is preferred, as it places no limits to further
improvements and extension.

3.5.1 Future work

There are two distinct places where there is opportunity of improvement in the predictive
power of the classification program.

The first lies in the preparation of the dataset and, specifically, the selection of the training
examples and the model features. The former is the idea that the dataset can be augmented
by expanding the sets of positive and negative examples. Both sets can be expanded by
including all the transcripts for each unique gene. The negative example set can be further
expanded by including open reading frames from the untranslated regions of the genome,
as well as start codon sites, close to true Translation Initiation Sites, that are not themselves
true TIS. This is expected to provide an additional nuance to the training data that will
increase the specificity of the network.

The second and most important idea for improving the efficiency of the program, is adopt-
ing a Recurrent Neural Network (RNN) architecture for the neural network. The attribute of
RNNs of storing information in their internal memory units, makes them a very good can-
didate of modelling the actual behavior of the ribosome, learning the sequence of distinct
steps that lead to a successful translation of coding mRNAs to proteins.
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Appendix A

Codon table

FIGURE A.1: Codon table, the standard genetic code. (Template:Codon table,
Wikipedia)
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Appendix B

Project setup and reproduction

B.1 Python

We use pyenv to install Python, which is a simple and powerful Python version manager,
that lets us install the specific version of Python required for this project without interfering
with the system’s Python installation.

Install pyenv using pyenv-installer:

curl -L https://github.com/pyenv/pyenv-installer/raw/master/bin/pyenv-installer | bash

Add the following lines to your .profile and reboot, or logout and start a new session:

### pyenv
export PATH="$HOME/.pyenv/bin:$PATH"
eval "$(pyenv init -)"
eval "$(pyenv virtualenv-init -)"

Run the following command to install any missing requirements for building Python:

sudo apt install make build-essential libssl-dev zlib1g-dev libbz2-dev \
libreadline-dev libsqlite3-dev wget curl llvm libncurses5-dev \
libncursesw5-dev xz-utils tk-dev libffi-dev

Install Python version 3.6.6:

pyenv install 3.6.6

B.2 pipenv

For package management, we use pipenv, a package and virtual environment management
tool, that brings the best of packaging tools for multiple programming languages to Python.

Install pipenv with pip, that is included in the Python installation:

pip install pipenv

Clone the project git repository, hosted at GitHub.

Move into the project directory and use pipenv to create a virtual environment and install
the dependencies:

cd TIS_prediction/
pipenv install

https://github.com/pyenv/pyenv
https://github.com/pyenv/pyenv-installer
https://github.com/pypa/pipenv
https://github.com/paraschas/TIS_prediction
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