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Summary 

Modern day structures are subject to unknown input forces during their operational life 

span leading to fatigue damage accumulation over time. The current diploma thesis utilizes a 

dual Kalman filtering methodology in a stochastic framework in order to identify these input 

forces applied on a spring mass like chain model, equivalent to a simplified linear model of a 

structure. The extent of estimating accuracy of the proposed scheme is investigated in a 

variety of cases for multiple forces non or collocated. It is shown that by obtaining a number 

of response measurements at certain locations i.e. degrees of freedom of the system, strain 

and consequently stress time histories can by calculated. An estimate of the fatigue damage 

and subsequently an accurate lifetime prognosis can be obtained. The effect of the 

measurement location in relation to load application is examined and tuning methods are 

implemented in order to obtain more accurate response and input estimates. Lastly, the 

algorithm is tested on a substructure model of a linear system in order to evaluate the 

efficiency of the algorithm in terms of response, strain and stress time histories and 

subsequently fatigue damage.   
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Introduction 

Vibration induced by uncertain loading is a common case in structures that operate in 

dynamic environments such as wind turbines, bridges and buildings etc. while technological 

advancement causes the emergence of structures of ever growing complexity. It is therefore 

imperative the development of accurate modeling tools and prediction methodologies in 

order to insure a safe operational environment for these structures as well as for the people   

surrounding them. This task lies in the field of structural health monitoring and extensive 

research is under way in that direction. 

The subject of this diploma thesis tackles the problem of jointly estimating the state and 

unknown input in a linear model via the implementation of a Dual Kalman filtering algorithm 

for a number of applied inputs. Dealing with structural systems, the states of the system are 

displacements and velocities of the response of the system at some points, namely degrees 

of freedom (DOF) on the structure. The kinematic relations between these parameters enter 

the dynamic model of the system and coupled with a number of partially observed states i.e. 

measurements, produce estimates for all the states of the system as well as for the input 

forces that are applied.  The filter used in this case is the one proposed be Eftekhar Azam, E. 

Chatzi and C. Papadimitriou [1] for a number of acceleration measurements and C. 

Papadimitriou and C. P. Fritzen [2] and focuses on linear systems. Dealing with non – linear 

systems other algorithms are studied such as the unscented Kalman filter and the particle 

filter [3] [4]. 

 An important aspect of the estimating efficiency of the proposed algorithm is conditioned 

on the appropriate selection of the Covariance matrices that consist the statistical 

knowledge of the excitation at hand. Such techniques for tuning the appropriate Covariance 

values have been studied from S. Gillijns, B. De Moor [5 ]and S.Bittanti, S. M. Savaresi [6] ,[7] 

in order to mitigate the drift effects arising in parameter estimates and are implemented 

throughout this thesis. 

The process of obtaining accurate displacement time histories all over the structure, enables 

the formulation of the displacement field an thus the calculation of the strain and  stress 

time histories. Making use of existing stress cycle counting methods such as Rainflow 

counting methods and implementing them in linear damage accumulation laws like the 

Palmgren-Miner [8], [9] and experimental S-N curves,  furnished estimates on the fatigue 
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damage on all locations of the structure can be produced as studied from C. Papadimitriou, 

C. P. Fritzen [10]. 

Lastly, the proposed case and methodology formed in this thesis is implemented in a sub-

structured system of an original shear type building formulation as an equivalent to 

earthquake base excitation.  
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Chapter 1  

Dual Kalman Filtering algorithm for joint input state estimation in mass-spring 
chain like models 
 

1.1 Mathematical Formulation of discrete state space equations 

The governing equation of a linear structural dynamics problem is typically formulated using 

the following continuous time second order differential equation:     

𝑴𝒖̈(𝑡)+ C𝒖̇(𝑡) + 𝑲𝒖(𝑡) = 𝒇(𝑡) = 𝑺𝒑𝒑(𝑡)                                                                                                   (1) 

 

where 𝒖 (𝑡) is a matrix ∈ 𝑅𝑛𝑥𝑛  stands for the displacement, K, M and C ∈ 𝑅𝑛𝑥𝑛   are 

symmetric matrices that stand for stiffness, damping and mass respectively. The notation 

𝑛 stands for the degrees of freedom of the system and vector 𝒇 (𝑡)  ∈  𝑅𝑛 is defined as the 

excitation force. The excitation force will be herein presented as a superposition of time 

histories 𝒑(𝑡) ∈ 𝑅𝑛𝑝  that are influencing certain degrees of freedom of the system according 

to the respective influence matrix 𝑺𝒑 ∈  𝑅𝑛𝑥𝑛𝑝 .  

The problem is subsequently formulated in state space form by introducing the state vector: 

𝒙(𝑡) =  �
𝒖(𝑡)
𝒖̇ (𝑡)�  

                                                                                                  

(2) 

where 𝒙(𝑡)𝜖 𝑅2𝑛𝑥1 by doing so Eq. (1) can be rewritten to constitute the process equation: 

𝒙̇(𝒕) =  𝑨𝒄𝒙(𝑡) + 𝑩𝒄𝒑(𝑡) (3) 

 

where 𝑨𝒄 𝜖 𝑅2𝑛𝑥2𝑛  𝑎𝑛𝑑 𝑩𝒄  𝜖 𝑅2𝑛𝑥2   are the following matrices :  

 𝑨𝒄 =  � 𝟎 𝜤
−𝑴−𝟏𝜥 −𝑴−𝟏𝑪� 

                             

𝑩𝒄 = �
𝟎

𝑴−𝟏𝑺𝒑�
 

 

Regarding the measurement equation a general case of a vector 𝒅(𝑡) 𝜖 𝑅𝑛𝑜𝑥1  containing 

displacement, velocity and acceleration measurements is considered. 
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𝒅(𝑡) =  �
𝑺𝒅 𝟎 𝟎
𝟎 𝑺𝒗 𝟎
𝟎 𝟎 𝑺𝒂

� �
𝒖(𝑡)
𝒖̇ (𝑡)
𝒖̈(𝑡)

� 

Where 𝑺𝒅,𝑺𝒗, 𝑺𝒂   𝜖 𝑅𝑛𝑑𝑥 𝑛 are the selection matrices of appropriate dimension for the 

displacements, velocities and accelerations respectively. The term 𝑛𝑑 stands for the number 

of observations of displacements, velocities and accelerations for each of component. These 

matrices identify which degree of freedom measurements are taken from and in this thesis 

mainly accelerations and displacement measurements are used.   

The equivalent state space form of the measurement vector can be given by 

where the matrices 𝑮𝒄 𝜖 𝑅𝑛𝑑𝑥 2𝑛𝑎𝑛𝑑 𝑱𝒄 𝜖  𝑅𝑛𝑑𝑥 2 are 

𝑮𝒄 =  �
𝑺𝒅 𝟎
𝟎 𝑺𝒗

−𝑺𝒂𝑴−𝟏𝜥 −𝑺𝒂𝑴−𝟏𝑪
� 

𝑱𝒄 =  �
𝟎
𝟎

𝑺𝒂𝑴−𝟏𝑺𝒑
� 

In practice though, the state vector of Eq. (1) can become relatively large when dealing with 

fine resolution finite element models (FE). Despite that the dynamics of the system could 

effectively be captured by a significantly smaller number of modes. To suppress the 

computational costs associated with the large FE models, Eq. (1) is projected in the subspace 

spanned by a limited number of the undamped eigenmodes of the system. The 

corresponding eigenvalue problem of Eq. (1) is the following: 

𝜥𝜱 = 𝜧𝜱𝜴𝟐 (5) 

  

where 𝜱 ∈ 𝑅𝒏𝒙𝒎  are the eigenvectors of the modes of the system and  have to satisfy the 

orthogonality conditions 𝜱𝜯𝜧𝜱 = 𝜤  , 𝜱𝜯𝑲𝜱 =  𝜴𝟐  , 𝜱𝜯𝑪𝜱  = 𝜞  where  𝜴  ∈ 𝑅𝒏𝒙𝒏 is a 

diagonal matrix containing the values of the eigenfrequencies of the system. 𝜞 ∈ 𝑅𝑛𝑥𝑛 is the 

diagonal damping matrix with 2𝜉𝑖 diagonal elements and 𝜉𝑖  stand for the relevant damping 

ratios of each mode. 

𝒅(𝑡) =  𝑮𝒄 𝒙(𝑡) + 𝑱𝒄𝒑(𝑡) (4) 
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In order to project the coordinate system into the subspace spanned by the undamped 

eigenmodes of the system of Eq. (1) the following coordinate system transform is 

introduced: 

𝒖 (𝑡) = 𝜱 𝒛(𝑡)  (6) 

and Eq.1 becomes: 

𝜱𝜯𝜧𝜱𝒛 ̈ (𝑡) +  𝜱𝜯𝑪𝜱𝒛̇(𝑡) + 𝜱𝜯𝜥𝜱𝒛(𝑡) =  𝜱𝜯𝑺𝒑𝒑(𝑡)   

and based on the orthogonality conditions introduced previously Eq. (1) takes the following 

form:  

𝒛 ̈ (𝑡) +  𝜞𝒛̇(𝑡) + 𝜴𝟐𝒛(𝑡) =  𝜱𝜯𝑺𝒑𝒑(𝑡)   (7) 

In case of a reduced order state space model a truncated eigenvector space can be 

substituted in Eq.(7) and a modal analysis can take place as follows: 

𝒙(𝑡) =  �𝜱𝜞 𝟎
𝟎 𝜱𝜞

� 𝜻(𝑡) 

where 𝜻(𝑡) ∈ 𝑅2𝑚 is the truncated modal vector corresponding to 𝑚 modes that are chosen 

to participate in the response.  In order to obtrain a modal state space representation of the 

original problem the modal state vector is introduced: 

𝜻(𝑡) =  �
𝒛(𝑡)
𝒛̇(𝑡)� 

Consequently, the continuous state space equation takes the following form: 

𝜻̇(𝑡) =  𝑨𝒄𝜻(𝑡) + 𝑩𝒄𝒑(𝑡) (8) 

𝒅(𝑡) =  𝑮𝒄 𝜻(𝑡) + 𝑱𝒄𝒑(𝑡) 

 

(9) 

where  the appropriate matrices are: 

 𝑨𝒄 =  � 𝟎 𝜤
𝜴𝟐 −𝜞� 

                             

𝑩𝒄 = �
𝟎

𝜱𝜞
𝜯𝑺𝒑

� 
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𝑮𝒄 =  �
𝑺𝒅𝜱𝜞 𝟎
𝟎 𝑺𝒗𝜱𝜞

−𝑺𝒂𝜱𝜞𝜴𝟐 −𝑺𝒂𝑴−𝟏𝑪
� 

𝑱𝒄 =  �
𝟎
𝟎

𝑺𝒂𝜱𝜞𝜱𝜞
𝑻𝑺𝒑

� 

In order to discretized Eqs.(8) and (9), the sampling rate is denoted by 1/𝛥𝑡 and the discrete 

state space equation obtains the following form: 

𝜻𝜿+𝟏 =  𝑨𝜻𝜿 +𝑩𝒄𝒑𝒌 (10) 

𝒅𝒌 =  𝑮 𝜻 + 𝑱𝒄𝒑𝒌 (11) 

where   𝑨 = 𝒆𝑨𝒄𝛥𝑡 , 𝑩 = [𝑨 − 𝑰]𝑨𝒄−𝟏𝑩𝒄 , 𝑮 = 𝑮𝒄 and 𝑱 = 𝑱𝒄 . 

1.2 Dual Kalman filter for joint input state estimation 

In this section a dual implementation of the Kalman filter for a joint – input state estimation 

attempt. The state space Eqs. (10) and (11) can be formulated into state process form under 

the following assumption: 

where 𝑣𝑘
𝜁  is the process noise assumed, zero-mean white with Covariance 𝑸𝜻    and 𝑤𝑘 is the 

zero mean, white, measurement noise with covariance 𝑹. The two processes are mutually 

uncorrelated. Also, the unknown input is calibrated through the fictitious process equation : 

𝒑𝑘+1 =  𝒑𝑘 + 𝒗𝑘
𝑝 (14) 

where 𝑣𝑘
𝑝 is a zero mean white Gaussian process with it’s associated covariance matrix  𝑄𝑝. 

Recombining Eqs. (13) and (14) a new state process equation can be obtained: 

𝒑𝒌+𝟏 =  𝒑𝒌 + 𝒗𝒌
𝒑 (15) 

𝒅𝒌 = 𝑮𝜻𝒌 + 𝑱𝒑𝒌 + 𝒘𝒌 (16) 

In that respect, the sought for parameter of estimation is now the fictitious force process 𝒑𝑘 

based on observations 𝒅𝑘 and now 𝜻𝑘 plays the role of the input of the system.  

𝜻𝑘+1 = 𝑨𝜻𝑘 +  𝑩𝒑𝑘 +  𝒗𝑘
𝜁  (12) 

𝒅𝑘 = 𝑮𝜻𝑘 + 𝑱𝒑𝑘 + 𝒘𝑘 (13) 
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Thus a two stage scheme can be proposed with the Kalman Gain pertaining in both stages. 

The first part of the algorithm is constituted by the estimation of the input and the second 

by the updating of the state based on the updated input.  

Specifically, the algorithm is initiated by evaluating the estimates at time = 0 for the state 

and the input. The same applies for the initial values of their corresponding Covariances:  

𝛇𝟎� = Ε[𝛇𝟎]  

𝐩𝟎� = E[𝐩𝟎] 

𝑃0 = 𝐸[�𝛇𝟎 − 𝛇𝟎� �] 

𝑃0
𝑝 = 𝐸[(𝐩𝟎 − 𝐩𝟎�)(𝐩𝟎 − 𝐩𝟎�)T] 

The successive structure of the DKF algorithm starts with the evolution of the input and the 

prediction of it’s corresponding Covariance: 

𝒑𝒌− = 𝒑𝒌−𝟏 

𝑷𝒌𝑷− = 𝑷𝒌−𝟏𝑷 + 𝑸𝒑 

Next, follows the calculation of the Kalman gain for the input: 

𝑮𝒌𝑷 = 𝑷𝒌𝑷−𝑱𝑻(𝑱𝑷𝒌𝑷−𝑱𝑻 +  𝑹)−𝟏 

The predictions are then improved based on the latest observations: 

𝒑𝒌� = 𝒑𝒌− + 𝑮𝒌
𝒑�𝒅𝒌 − 𝑮𝜻�𝒌−𝟏 − 𝑱𝒑𝒌−� 

𝑷𝒌𝑷 = 𝑷𝒌𝑷− − 𝑮𝒌
𝒑𝑱𝑷𝒌

𝒑− 

Next, the state and its Covariance are predicted: 

𝜻𝜿− = 𝑨𝜻�𝒌−𝟏 +  𝑩𝒑�𝒌 

𝑷𝒌−=𝑨𝑷𝒌−𝟏𝑨𝑻 + 𝑸𝜻 

Lastly, the Kalman Gain for the state is calculated and the predictions are improved in the 

same fashion as in the previous stage of the input: 

𝑮𝒌
𝜻 =  𝑷𝒌−𝑮𝑻(𝑮𝑷𝒌−𝑮𝑻 + 𝑹)−𝟏 
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𝜻�𝒌 = 𝜻𝜿− + 𝑮𝒌
𝜻(𝒅𝒌 − 𝑮𝜻𝜿− − 𝑱𝒑�𝒌) 

𝑃𝑘 = 𝑃𝑘− − 𝑮𝒌
𝜻𝑮𝑷𝒌− 

 

 

  



 
 

  15 
 

Chapter 2 

Algorithm Description 

2.1 Methodology 

The methodology followed in this diploma thesis can be captured in the following simplified 

flow diagram. At first, model matrices are formed i.e., K, M and C depending on the system 

properties specified or can either be loaded from data obtained by a finite element analysis.  

As stated in the mathematical formulation, two different approaches of estimation can be 

followed with one being through the calculation of the matrices K, M and C and the other by 

solving the eigenvalue problem. 

These are then can be rewritten to have a state space representation in time continuous 

form and then are discretized in time via a zero order hold (ZOH) assumption, which 

assumes a constant inter – sample behavior of the input.  In this case the sampling 

frequency is 100 Hz. The measurements are thought to be lasting 25 𝑠𝑒𝑐𝑠 and as a result the 

signal composes of  2500 discrete time instances 

The simulated location of the load has to be subsequently specified and a generated 

response (output) of the system is obtained considering known accelerations or 

displacements according to the observations that are available for the system each time. 

These measurements are thought to be noise contaminated with a Gaussian white noise 

process with zero mean and Covariance 𝑅.  

The same state space formulation is used for the implementation of the Dual Kalman Filter 

(DKF) according to the location of the force that is considered. It is worth noting that for the 

DKF to produce reasonable results, the number of observations should be equal or greater 

than the number of applied loads in case of non-collocated inputs.  Moreover, it is 

considered that at points of measurement loads are being applied. Inputs are produced 

through a Gaussian White process with zero mean and variance of value of 1.  

State and input are computed into process equation forms and as such, they have two 

associated noise Covariance matrices  𝑄𝑥 , 𝑄𝑝. A prior knowledge of the initial values of 

these Covariances is a presupposition for the DKF procedure to produce results. 

 These Covariances together with measurement Covariance 𝑅 are of essential importance to 

the estimation accuracy of the sought for parameter and serve as a tuning knob for the 

estimation task at hand. Their importance will be illustrated later in this thesis. 
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Generally, state Covariance 𝑄𝑥 indicates the confidence put in the model. The lower the 

value of 𝑄𝑥 is, the more accurate the model is considered to be. In the same manner the 

Covariance value  𝑅  reveals the confidence put into the measurement and the lower its 

value, the tighter the fit of the estimation to the data should be.  

After the implementation of the DKF procedure the estimated data are plotted in cross 

comparison to the simulated ones in order to test the estimating accuracy of the algorithm.  

The prominent goal is to be able to estimate all the partially observed states of the system as 

well as the input through a number of acceleration measurements and/or displacements.  

The accurate estimation of the displacements of the system can serve the purpose of the 

estimation of the fatigue of the structure and help calculate its remaining time life.  

Also great emphasis is given to the estimation of the input forces whose locations are not 

always known or are at certain cases collocated.  
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Fig. 2.1 : Schematic representation of the Dual Kalman filtering algorithm. 
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Chapter 3  

Application to spring-mass model 

3. 1 Model specification  

The model which will be herein considered will be one of spring mass chain.  Specifically, it is 

considered to have the following properties: 

 

𝑁𝑑𝑜𝑓 =  10  are the degrees of freedom of the system. 

𝑚 =  0.35 𝑘𝑔  is each mass of the respecting degree of freedom. 

𝐾 =  600 𝑁/𝑚 is the stiffness of each spring. 

𝜁 =  0.05 is the damping ratio of each mode. 

 

The  system is supposed to model the properties of a 10 degree of freedom spring-mass 

chain like system where each mass represents the mass of the DOF, the spring stiffness 

represents the inter mass stiffness with a respective damping ratio of 5% at each mode.  

The eigenvalues of each node of the system i.e. the natural frequencies are presented in the 

following table.  

Vibration mode index Natural  frequency (Hz) 

1 1,0251 

2 3,0524 

3 5,0115 

4 6,8587 

5 8,5527 

6 10,056 

7 11,334 

8 12,359 

9 13,109 

10 13,564 

 

Table 3.1: Vibrational eigenfrequencies of the system 
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3.2 Simulated examples  

3.2.1 Case no.1 -Two collocated Inputs at a known location 

In the first case, two inputs are being asked both at three degrees of freedom of the system 

and one measurement of acceleration is being obtained.  The number of inputs is considered 

to be known as well as the location of their application. 

Simulation parameters 

Number of loads = 2 DOF 

Load #1 3rd   

Load #2 3rd 

Table3.1: Simulation Parameters for case no.1 

DKF parameters 

Number of observations = 1 DOF 

Observation of accelerations 3rd  

Table3.2: DKF Parameters for case no.1 

The initial values of the Covariance of the diagonal components of the state Covariance 

matrix are set at  𝑄𝑥 = 10−20  whereas the corresponding values of the Input Covariance 

are set at 𝑄𝑝 = 10−1. Also, the initial values for the measurement covariance 𝑅 are set to  

1% of the maximum measured acceleration. 

 

 

 

 

 

 

 

 

Figure 3.1: Response time histories for the observed 3rd degree of freedom for case no.1 
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By examining the results of the response time histories for the  observed 3rd and the 

unobserved 9th degree of freedom it is evident that despite only one acceleration 

measurement, the DKF algorithm produces a good estimate regarding the accelerations of 

the system both observed and unobserved. On the other hand, significant drifts tend to 

appear in terms of displacements between the simulated and DKF values.  

3.2.2 Tuning the measurement Covariance matrix 

In order to mitigate the lack of estimation accuracy the values of the values of noise 

Covariance 𝑅 are reexamined. A methodology is proposed for a more accurate evaluation of 

these values that constitute à priori knowledge for the system.  

In that respect the standard deviation of each acceleration measurement is introduced:  

𝑠𝑡𝑑𝑘 = �∑ 𝑑𝑖𝑁𝑡
𝑖=1
𝑁𝑡

 

Where 𝑁𝑡 is the number of time instances the signal is composed of and 𝑑𝑖  are the 

respective measurements in the 𝑖𝑡ℎ  degree of freedom of the system. Furthermore, it is 

considered that the standard deviation is approximately 1% of the measurement of each 

peak acceleration and thus  𝑠𝑘  =  𝑠𝑡𝑑𝑘
100

 , where 𝑘 corresponds to the reciprocal number of 

measurement.  

Figure 3.2: Response time histories for the unobserved 9th degree of freedom for case no.1 
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Concluding, the values of the noise Covariance 𝑅 will have the following form 𝑹 = 𝒔𝟐 ∗ 𝑰 

where 𝑰 is the identity matrix with the appropriate dimensions conditioned on the number 

of measurements available.  

In this case, 𝑅1 = 𝟎.𝟎𝟎𝟑  whereas the previous value was 𝑅2 = 𝟎.𝟏𝟗𝟓𝟏   

 

 

 

  

Fig. 3.3: Displacement time history of the 9th  degree of freedom for case no.1 

 

Fig. 3.3: Displacement time history of the 3rd degree of freedom fo case no.1 
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The same methodology can be used without loss of generality for displacement 

measurements. The updated estimates in cross comparison to the ones before the tuning 

are presented in Fig 3.3 and Fig 3.4.  

Examining the results presented in these figures, it becomes evident that the updated values 

of the noise Covariance do not achieve to produce completely furnished results mainly 

because drifts appear with periodicity within the signal. Notwithstanding, the updated 

estimates tend to follow the path of the simulated outputs in a more accurate manner even 

when drifts appear. More noticeable drifts occur in the 3rd degree of freedom where the 

loads are being applied. This tendency is less intense in the 9th degree of freedom where a 

noticeably better estimate is produced compared to the previous one. 

Regarding the accuracy of the estimate of the Inputs it comes with significant drifts as 

illustrated in Fig. 3.5: 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Displacement time histories for the unobserved 9h   degree of freedom for t = 0-10 sec and 10 -25 sec for 

different measurement Covariances 
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The main reason for this discrepancy is the fact that the number of measurements is less 

than the number of applied loads. However, the fact that the loads are applied at the same 

degree of freedom which is observed enables DKF to produce a rough estimate on the Input 

forces.  

3.2.3 Case no.2 -2 non-collocated Inputs at partially measured locations 

In the second case, two different loads are applied at four different degrees of freedom of 

the system (DOF). The applied loads are not collocated and acceleration and displacement 

measurements are taken into account, only from two of the four degrees of freedom in 

which the loads are applied.  

Simulation parameters 

Number of loads =2 DOF 

Load #1 3rd , 5th 

Load #2 7th, 10th 

Table 3.3 : Simulation Parameters for case no.2 

 
DKF parameters 

Number of observations  = 2 DOF 

Observation of accelerations 5th  , 7th  

Table 3.4 DKF Parameters for case no.2 

The initial values of the Covariance of the diagonal components of the state Covariance 

matrix are set at  𝑄𝑥 = 10−30  whereas the corresponding values of the Input Covariance 

are set at 𝑄𝑝 = 10−1. Regarding the values of the noise Covariance 𝑅 the values are set in 

the same methodology as proposed previously. 

At this stage two separate individual sub -cases are examined, regarding the knowledge of 

the location of the applied loads.  

In the first sub - case it is considered that the exact distribution of the loads is known and 

therefore it is taken into account that first and second load are acting upon the 3rd, 5th and 

7th and 10th degree of freedom respectively.   
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By close examination of the responses of the 5th and 3rd degree of freedom DKF once again 

proves as a good estimating tool in terms of acceleration estimates. Despite that drifts seem 

to appear in displacement estimates in all degrees of freedom of the system even at points 

where no load is applied as shown for instance in Fig. 3.8 

 

Figure 3.6 : Response time histories for the observed 5th degree of freedom for case no.2 

Figure3.7: Response time histories for the unobserved 3rd  degree of freedom where load is applied for case no.2 
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Figure3.8: Response time histories for the unobserved 3rd  degree of freedom where no  load is applied for case 
no.2 

As far as the input estimation is concerned, no drifts seem to appear and the inputs are 

approximated at high level of accuracy as shown in Fig. 3.9 

 

 

 

 

Effect of displacement measurements 

One way to ensure the eliminations  

 

 

 

The ability of DKF to produce good results regarding the input loads is in partly conditioned 

on the knowledge of the location of the loads. Despite not obtaining measurements at 

points where the forces are acting upon, the knowledge of their application proves to be 

sufficient for an accurate estimation of the input forces.  

 

 

Figure: Displacement time history for 6th degree of freedom where no force is applied  

 

Figure 3.9 : Force time histories estimates for t = 0 – 25 sec and t =9-10sec 
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Considering the second sub - case it is considered that the exact distribution of the loads is 

partially known and thus the first and second load are thought to be acting now only on the 

5th and 7th degrees of freedom i.e. only on the points where measures are being obtained 

from which the most usual case when trying to estimate unknown input forces. 

In this case, the lack of information deteriorates the estimates in regard of accelerations 

where as the ones of displacements are mildly affected. This tendency is especially high for 

the unobserved points of load application. Moreover, the estimates on the unknown input 

forces seem to be presenting noticeable drifts. The indicative results are presented in Fig. 

3.10 and 3.11    

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11: Force time history estimate for t = 0 – 25 sec of the 1st input for case no.2b 

 

Figure 3.10: Response time histories for the unobserved 3rd  degree of freedom where load is applied 
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3.2.4 Effects of displacement measurements 

In this part, the effect of the displacement measurements are being examined in order to 

examine whether obtaining such measurements contributes to the elimination of the drifts 

that seem to appear. In this direction, the case no. 2a is being revisited but this time 

obtaining two displacement measurements on the 5th and 7th degree of freedom where also 

the acceleration measurements are obtained from. 

The results are presented in Fig. 3.12 

 

 

 

 

 

 

 

 

 

 

 

One can notice that by obtaining displacement measurements the resulting drifts do not 

seem to be reduced and the results are overall unaffected compared to solely obtaining 

acceleration measurements as presented before. Although, this effect could be conditioned 

on the loading and the measurement combination in this case as well as the value of the 

state covariance that dictates at what degree the state will be updated based on the current 

measurement.  

 

  

Fig 3.12: Displacement time histories for 3rd and 8th degree of freedom for displacement measurements of case no.2 
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3.2.5 Effects of the  Covariance matrices  

As proposed in the formulation of the methodology of the DKF previously, the covariance 

matrices 𝑄𝑥  and  𝑄𝑝 serve as the tuning knob of the system and provide a tool to furnishing 

the estimates based on the measurements provided each time for the system. Bearing that 

in mind the state process equations namely Eq. (13) and Eq. (14) are reintroduced.  

𝒙𝑘+1 = 𝑨𝒙𝑘 +  𝑩𝒑𝑘 + 𝒗𝑘𝑥    

𝒅𝑘 = 𝑮𝒙𝑘 + 𝑱𝒑𝑘 + 𝒘𝑘  

These equations correspond to the problem being solved through the matrices K, M and C  

and in case where a modal analysis is needed to suppress the computational cost, Eq. (1) can 

be formed in terms of  a modal truncated subspace:  

𝜻𝑘+1 = 𝑨𝜻𝑘 +  𝑩𝒑𝑘 +  𝒗𝑘
𝜁    

𝒅𝑘 = 𝑮𝜻𝑘 + 𝑱𝒑𝑘 + 𝒘𝑘  

Where 𝑣𝑘𝑥 is the process noise assumed, zero-mean white with Covariance 𝑄𝑥    and 𝑤𝑘 is 

the zero mean, white, measurement noise with covariance𝑅. The two processes are 

mutually uncorrelated. Also, the unknown input is calibrated through the fictitious process 

equation : 

𝒑𝑘+1 =  𝒑𝑘 + 𝒗𝑘
𝑝 

Where 𝑣𝑘
𝑝 is a zero mean white Gaussian process with it’s associated covariance matrix 𝑄𝑝. 

By fine tuning the values of the Covariance matrices one can obtain better estimates and 

eliminate the drifts associated.  

The effects of these values were initially introduced in case no.1 with the tuning of the noise 

Covariance of the measurement. Herein the effects of the selection of these values are 

illustrated for case no.2 and a general methodology is then proposed for a systematic 

scheme of selection of these values. 

In that respect case no.2 is revisited and several combinations of the Covariances are 

implemented as presented in the following table:  
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For an initial value of the state Covariance matrix 𝑄𝑥 =  10−30  and for two different values 

of the input Covariance, namely  𝑄𝑝 = 10−5 and  𝑄𝑝 = 10−1  responses of two indicative 

degrees of freedom are plotted in cross comparison as illustrated in Fig 3.13 and 3.14 

 

 

  

 

  

 

Figure 3.13: Displacement time histories for time t = 8 – 15 sec for case no.2 for the 3rd and 6th degree of 
freedom 

Figure 3.14 : Acceleration time histories for time t = 10 - 11 sec for case no.2 for the 3rd and 6th degree of freedom 
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The same process is repeated but now with an initial value of the state Covariance matrix 

𝑄𝑥 =  10−10 with the following results.  

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure3.15: Displacement time histories for time t = 8 – 15 sec for case no.2 for the 3rd and 6th degree of 
freedom 

 

Figure 3.16: Acceleration time histories for time t = 10 - 11 sec for case no.2 for the 3rd and 6th degree of 
freedom 
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Regarding the input estimation, for the two different values of 𝑄𝑥 =  10−30 𝑎𝑛𝑑 𝑄𝑥 =

 10−10 the results are presented in Fig.3.17 in order to conclude the current analysis. 

 

 

 

 

 

 

 

 

 

 

Concluding, by careful examination of the different variants of the Covariance values, one 

can conclude that they severely affect the estimation and thus the performance of the DKF. 

Moreover, one can notice that by keeping a constant value for 𝑄𝑥  and differentiating 

between certain values of  𝑄𝑝   one can find an optimum value that minimizes the 

discrepancy between the estimation and the simulated value in terms of displacements.  The 

same applies for the estimated values of the input forces .  

Also, for different values all parameters of estimation are affected.  In this case by increasing 

the value of 𝑄𝑥  i.e. the confidence given to the model, one obtains slightly better estimates 

for the displacements but the corresponding values for the input and the accelerations are 

deteriorating. Therefore, it is imperative to find the optimal combination of values 

 𝑄𝑝𝑎𝑛𝑑 𝑄𝑥  in order to obtain an overall good estimate for the sought for parameters of 

estimation. 

In that respect, rather than arbitrarily selecting values for the Covariances a more systematic 

method is proposed.  

Figure 3.17: 2nd Force time histories estimates for t = 10 – 12 sec for 𝑸𝒙 =  𝟏𝟎−𝟑𝟎 𝒂𝒏𝒅 𝑸𝒙 =  𝟏𝟎−𝟏𝟎  respectively 

 



` 
 

  32 
 

3.2.6 Tuning the Covariance matrices 

The main tool for minimizing the discrepancy between estimated and actual parameter is 

the mean squared error (𝑴𝑺𝑬) between the observed and estimated parameter of the state 

of the system. Mathematically this is formulated as the following second norm which 

corresponds to the square novelty term in the Kalman Filter:  

𝑴𝑺𝑬 =  
∑‖𝑑𝑘 −  𝐺𝜁𝜅− −  𝐽 𝑝𝑘�‖2

𝑁𝑡

2

 

 

(17) 

Where 𝑑𝑘  stands for the acceleration measurements at the observed degrees of freedom at 

𝑘𝑡ℎ  time instance of the signal. The term 𝐺𝜁𝜅− −  𝐽 𝑝𝑘� stands for the output values of 

estimation within the Kalman Filter and 𝑁𝑡 is the length of the signal. One can calculate the 

values of the 𝑴𝑺𝑬 for a certain value of 𝑄𝑥  and for different values of  𝑄𝑝 in order to 

acquire an L- curve shaped diagram from which intuitively can select the proper value of  𝑄𝑝 

as the one that minimizes the 𝑴𝑺𝑬. 

Revisiting Case no.2a the L-curve can be created for different values of the state covariance 

in order to investigate the optimum value of 𝑄𝑝 conditioned each time on the value of 𝑄𝑥 .  

The values selected in this case are the following: 

𝑸𝒙 = 10−30 , 10−20and 10−15 and for each L-curve  𝑄𝑝 spans from 10−20 to 10 20. 
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By observing the L-curve one it is noticeable that for values of   𝑄𝑝 between 10−20 to 10−2 

the error ordinate seems to be  stable and between 10−2 and 10−8     the error norm 

increases rapidly until destabilizing at a higher value for decreasing   𝑄𝑝 beyond 10−8. For an 

intuitive observation of the L-curve the crucial value for the force process should be the 

minimum one after which the error rapidly increases. In that sense, one can notice from 

Fig.3.18 that the crucial value that reduces the MSE lies between  𝑄𝑝 =  10−2  and 𝑄𝑝 =

 10−1. 

The state process on the other hand should be predetermined and be associated with the 

confidence put in the mathematical representation of the physical system at hand. 

Therefore, manipulating these values may produce low errors in the L-curve but consist a 

misconception and produce false results in regards of the estimates.  

Last but not least, the ordinate of the error seems to attain a high value even for an 

optimum covariance selection due to the fact that measurements are not obtained at all 

points where the forces are applied. 

Fig. 3.18: L_curve for case no.2 for different values of the state covariance 
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3.2.7 Case no.3 - Modal analysis 

In this section of the analysis the efficiency of the DKF is evaluated in the case of a modal 

analysis approach. As presented in Eq. (6) the equations of motions can be reformulated in 

order to introduce a coordinate transformation using the eigenvalues, the eigenvectors and 

the damping ratio of the system. This transformation enables to reduce the order of the 

system i.e. truncated model and consider the response as a superposition of some 

undamped modes. 

For that purpose, a new system is introduced similar to the one in the previous analysis 

which now is consisted of 20 degrees of freedom.  

The system is subject to 3 non – collocated forces where measurements are obtained from. 

 

 

 

 

 

 

DKF parameters 

Number of observations  = 2 DOF 

Observation of accelerations 5th  9th  12th  

Observation of displacements 5th   9th  12th  

      Table 3.6: DKF parameters for modal analysis case 

 

The natural frequencies are presented as following: 

 

 

 

 

Simulation parameters 

Number of loads = 2 DOF 

Load #1 5th 

Load #2 9th 

Load #2 12th  

      Table 3.5: Simulation parameters for modal analysis case 
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Table 3.7:Natural frequencies of 20 DOF sytem 

The initial values of the Covariance of the diagonal components of the state Covariance 

matrix are set at  𝑄𝑥 = 10−20  whereas the corresponding values of the Input Covariance 

are set at 𝑄𝑝 = 10−1. 

In order to determine which modes contribute to the response of the system, the 

power/frequency spectrum is plotted for the measurement of the 9th degree of freedom.  

By a closer examination of the power spectral density in Fig 3.19 and 3.20 one notices that 

all of the eigenfrequencies of the system are excited. This is part to the fact that the inputs 

loads for the purpose of this analysis, are simulated as White noise Gaussian processes and 

therefore attain constant power spectral density over all the frequencies of the system. 

Hence, in this case all the modes of the system should be superpositioned in order to obtain 

a reasonable estimate for the response.  

Vibration mode index Natural frequency (Hz) 

1 0,52541 

2 1,57316 

3 2,61168 

4 3,63487 

5 4,63673 

6 5,61137 

7 6,55309 

8 7,45640 

9 8,31586 

10 9,12656 

11 9,88371 

12 10,5829 

13 11,2199 

14 11,7911 

15 12,2931 

16 12,7230 

17 13,0782 

18 13,3567 

19 13,5567 

20 13,6772 

https://en.wikipedia.org/wiki/Power_spectral_density
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Fig 3.19: Power Spectral Density estimate of the Displacement of 9th degree of freedom 

Fig 3.20 . Power Spectral Density estimate of the acceleration of 9th degree of freedom 

 

 

Fig. 3.21: L-curve for modal analysis case 
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Also, the L – curve is plotted in order to ensure that the selection of the covariance of the 

force process is appropriately selected. The optimal value seems to lie between 10−3 and 

10−2. 

The results of the estimation are presented in Fig 3.23 and 3.24 as follows with estimated 

responses on both measured and non-measured degrees of freedom. 

 

 

 

  

Figure 3.22: Response time histories for the unobserved 4th degree of freedom for modal analysis  

 

Figure 3.23: Response time histories for the observed 9th degree of freedom for modal analysis  
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Again, sufficient estimating accuracy is achieved for all parameters of estimation except for 

the displacements where significant drifts appear. 

It becomes evident that when multiple collocated or non-collocated inputs, formed as 

Gaussian white noise, are applied at certain degrees of freedom, the so far proposed 

methodology of estimation provides estimates with drifts in terms of displacement.  

However, the trajectories of the displacements are mutually dislocated in all degrees of 

freedom and their paths are followed in a sufficient way.  

It is also worth noting that the modal analysis also provides an equivalent method to the one 

that implements the matrices K, M and C while suppressing the associated computational 

cost by reducing the order of the system. 

In order to underline this attribute an alternative case is introduced in which the applied 

inputs are acting on the same measured points but are now rectangular impulses. 

The power/frequency spectrum is plotted for the measurement of the 9th degree of 

freedom. 

Close examination concludes that the first 10 eigenfrequencies are excited and that mainly 

the 10 associated eigenmodes of the system take part in the response of the system and 

they are taken into account in the DKF algorithm. As shown in Fig: 3.27 by only taking into 

account 10 modes of the system, accurate estimates can be achieved although with the 

associated drifts at the displacements encountered so far. 

  

 
Figure 3.24: Force time history estimate for 1st Input force for modal analysis 
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Fig 3.25 . Power Spectral Density estimate of the Displacement of 9th degree of freedom for rectangular 
excitation 

 

Fig 3.26 . Power Spectral Density estimate of the acceleration of 9th degree of freedom for rectangular 
excitation 

 

 
Fig 3.27 : Response time histories for the observed 9th degree of freedom in case of rectangular impulse excitation 
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Chapter 4 

Fatigue damage accumulation 

4.1 Introduction 

Metallic structures tend to suffer from fatigue damage accumulation due to loading and 

therefore it’s prediction is an important safety related parameter in structural health 

monitoring.  Considering various loading events, stress response time histories can be 

obtained in various hotspots of the structure via a sensor network attached to these 

locations. Subsequently, cycle counting methods such as Rainflow counting method can be 

used in order to reduce the varying amplitude stresses into a set of simple stress reversals. 

This in turn, allows the calculation of the lifetime prognosis of the structure through the use 

of the linear Palmgren-Miner rule and data obtained from the S-N curves obtained from 

laboratory experiments of simple specimens subjected to constant amplitude loads.  

In many engineering applications, though it is not possible to obtain measurements at all 

hotspot locations due to practical and economical reasons. Such cases are heated 

components or internal points of the structure. In that respect only a limited number of 

acceleration measurements are available and therefore a Kalman filter implementation is 

proposed in order infer damage due to fatigue to unobserved locations of the structure. This 

can be achieved by coupling the measurements with the dynamic model of the structure in a 

stochastic process framework.  

In this section, an implementation of the Kalman filter is used to make such estimates and 

evaluate it’s estimating efficiency in case of multiple loads and for cases in which the 

measurements are obtained at locations where the loads are not applied. 

4.2 Mathematical formulation of fatigue damage prognosis 

As stated previously, the Palmgren-Miner method can be introduced to calculate the 

remaining timelife of the structure, which follows that: 

𝑫𝒋 =  �
𝑛𝑖
𝑁𝑖

𝑘

𝑖=1
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where 𝑫𝒋  is the damage accumulation at point 𝑗of the structure and 𝑘 stands for the 

number of loading events. Also, 𝑛𝑖 is the is the number of cycles under stress level 𝑠𝑖 and 𝑁𝑖  

the number of cycles required for failure under the same stress level.  

Number of cycles 𝑛𝑖 can be calculated through stress cycle counting methods such as 

Rainflow cycle counting which is used in this case whereas 𝑁𝑖  can be obtained from 

laboratory experiments and the formulation of 𝑆 − 𝑁 curves. The stress cycle ranges are 

modified through the Goodman relationship: 

𝛥𝑠𝑅𝑡 = 𝛥𝑠𝑅(1 −  
𝜎𝑚
𝜎𝑡𝑠

) 

where  𝛥𝑠𝑅𝑡 is the modified stress cycle range,   𝜎𝑚 is the mean stress, 𝛥𝑠𝑅  is the fatigue 

limit for completely reversed loading, and 𝜎𝑡𝑠 is the ultimate tensile strength of the material. 

Eq. * is substituted into  Eq. and the rule of fatigue Damage becomes: 

  

𝑫𝒋 =  ∑ 𝑛𝑖
𝑁𝑓

𝑘1
𝑖=1

𝛥𝑠𝑚

𝛥𝑠𝐷
𝑚 +∑ 𝑛𝑗

𝑁𝑓
𝑘2
𝑖=1

𝛥𝑠𝑗
𝑚+2

𝛥𝑠𝐷
𝑚+2 

where 𝑘1  and 𝑘2 correspond to the different stress range blocks above and below the 

constant amplitude fatigue limit 𝛥𝑠𝐷. The cut off limit is set to be  𝛥𝑠𝐿 and the first 

term applies for𝛥𝑠𝐷  ≤ 𝛥𝑠𝑗  whereas the second for 𝛥𝑠𝐿  ≤ 𝛥𝑠𝑗 ≤ 𝛥𝑠𝐷.  

4.3 Fatigue damage accumulation using Kalman Filtering 

The above proposed methodology is implemented for the following properties of the model:  

Model Properties 

𝑵𝒅𝒐𝒇 =  𝟏𝟎   

𝑴 =  𝟎.𝟑𝟓 𝒌𝒈   

𝑲 =  𝟔𝟎𝟎 𝑵/𝒎  

𝜻 =  𝟓% 

Table 4.1: Model properties 

The fatigue analysis has been implemented under the Material reference Eurocode for steel 

structures [13]   for material with detail category 36 with the following specifications: 

 

https://en.wikipedia.org/wiki/Fatigue_limit
https://en.wikipedia.org/wiki/Fatigue_limit
https://en.wikipedia.org/wiki/Ultimate_tensile_strength
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𝒎*= 𝟑 𝒔𝒍𝒐𝒑𝒆 𝒐𝒇 𝒇𝒂𝒕𝒊𝒈𝒖𝒆 𝒔𝒕𝒓𝒆𝒏𝒈𝒕𝒉 𝒄𝒖𝒓𝒗𝒆 𝜟𝒔𝑳 = 14.5 𝑴𝒑𝒂 

𝑳 =  𝟑 𝒎𝒆𝒕𝒆𝒓𝒔 𝛥𝑠𝐷 =  26.5 𝑀𝑝𝑎 

𝑬 = 21𝟎 ∗ 𝟏𝟎𝟑𝑴𝒑𝒂 𝜎𝑡𝑠 = 100 𝑀𝑃𝑎 

Table 4.2: Fatigue properties 

*𝑁𝑓 = 106 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒 𝑙𝑖𝑓𝑒 𝑐𝑦𝑐𝑙𝑒 

 

 DOF 

 #  Inputs Input(s) Measurement 

Case no.4 1 9th 9th 

Case no.5 2 4th 8th 4th 8th 

Case no.6 3 5th 9th 6th 10th 

Table 4.3: Different cases of loading and measurement 

 

 

 

Fig 4.1 . Fatigue damage accumulation for case no.5 
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In respect to the estimating efficiency of the DKF as far as the fatigue damage is concerned, 

the DKF algorithm produces the expected results in an equivalent manner as in the 

displacements. Since the strains are proportional to the consecutive relative displacements 

of the corresponding degrees of freedom, the estimating efficiency will be conditioned on 

Fig 4.3. Fatigue damage accumulation for case no.6 

 

                Fig 4.2 . Fatigue damage accumulation for case no.5 
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the estimation of displacements. Therefore in cases that the observed points are different 

than the ones where the forces are applied inaccurate estimates will be obtained. On the 

other hand, drifts that arise as number of inputs increases do not deteriorate the estimates. 

Lastly, as expected the degrees of freedom that suffer more in the current thesis are the 

ones that the forces are applied to since this is a simple spring mass linear mode. However, 

in cases of more complex structures, hotspots could be ones not directly subject to forces. 
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Chapter 5 

Input and state prediction using model Substructuring 

5.1 Mathematical Formulation 

The structural dynamics problem, which is herein studied, is the one of the substructured 

system.    

An initial 𝑛 degree of freedom system is considered and is excited by a force at its base as 

indicated in the following figure.  

 

 

 

 

 

 

 

 

 

 

 

 

A subsequent subsystem is then obtained, which contains the 𝑛 − 1 degrees of freedom of 

the initial system.  

The new system now is not subjected to external forces and the excitation comes from the 

response of the subtracted degree of freedom, which now acts as an equivalent ground 

support excitation.  This can be derived by expressing the total displacement as the sum of 

the relative motion plus the displacements resulting from the support motions.  

Fig. 5.1: Schematic representations of Substructure 
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Let 𝒖𝑡(𝑡)𝜖 𝑅𝑛 be a vector containing the total displacements 𝜐𝑖𝑡 of each degree of freedom. 

As shown in the figure the aforementioned relationship can be written as following. 

 𝒖𝑡(𝑡) = 𝒖(𝑡) +  {𝟏} 𝝊𝒈(𝑡)           (18) 

 

in which in which {1} represents a column of ones. This vector expresses the fact that a unit 

static translation of the base of this structure produces directly a unit displacement 

of all degrees of freedom. This hypothesis is applicable only to a certain types of support 

displacement as well as the type of structural configurations but has nonetheless significant 

numerous applications.  

The governing equation of the structural dynamics problem for the substructured system is 

typically formulated, as studied previously, using the following continuous time second 

order differential equation: 

𝑴𝒖̈𝒕+ C𝒖̇ + 𝑲𝒖 = 𝟎 (19) 

Substituting eq. (17) to eq. (18) one gets: 

𝑴𝒖̈𝒕 (𝑡) + C 𝒖̇𝒕(𝑡) + K𝒖𝒕(𝑡) = 𝑲 {𝟏} 𝝊𝒈(𝑡) + 𝐂{𝟏} 𝝊̇𝒈(𝑡)   (20) 

Eq. (19) can now be transformed into :  

𝑴𝒖̈𝒕 (𝑡) + C 𝒖̇𝒕(𝑡) + K𝒖𝒕(𝑡) = 𝑺𝒑𝒑(𝑡) (21) 

where  𝑺𝒑 𝜖 𝑅2𝑛 𝑥 2 is the influence matrix indicating the load distribution at certain degrees 

of freedom of the system and 𝒑(𝑡) are the load time histories. 

This is the typical form encountered so far, but now : 

   𝑺𝒑 = [𝑲 {𝟏} 𝐂{𝟏}]      𝑎𝑛𝑑      

 𝒑(𝑡) = �
𝝊𝒈(𝑡)
𝝊̇𝒈(𝑡)� 

Introducing the state vector 𝒙(𝑡) =  �
𝒖𝒕(𝑡)
𝒖̇𝒕 (𝑡)�

  where 𝒙(𝑡)𝜖 𝑅2𝑛𝑥1   equation (4) can be 

transformed into a first order continuous-time state equation as encountered previously: 

  𝒙̇(𝒕) =  𝑨𝒄𝒙(𝑡) + 𝑩𝒄𝒑(𝑡)              
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where 𝑨𝒄 𝜖 𝑅2𝑛𝑥2𝑛  𝑎𝑛𝑑 𝑩𝒄  𝜖 𝑅2𝑛𝑥2   are the following matrices :  

𝑨𝒄 =  � 𝟎 𝜤
−𝑴−𝟏𝜥 −𝑴−𝟏𝑪� 

 𝑩𝒄 = �
𝟎

𝑴−𝟏𝑺𝒑�
 

Regarding the measurement equation a general case of a vector 𝒅(𝑡) 𝜖 𝑅𝑛𝑜𝑥1  containing 

displacement, velocity and acceleration measurements is considered.  

𝒅(𝑡) =  �
𝑺𝒅 𝟎 𝟎
𝟎 𝑺𝒗 𝟎
𝟎 𝟎 𝑺𝒂

� �
𝒖𝒕(𝑡)
𝒖̇𝒕 (𝑡)
𝒖̈𝒕(𝑡)

� 

Where 𝑺𝒅,𝑺𝒗, 𝑺𝒂   𝜖 𝑅𝑛𝑑𝑥 𝑛 are the selection matrices of appropriate dimension for the 

displacements, velocities and accelerations respectively. The term 𝑛𝑑 stands for the number 

of observations of displacements, velocities and accelerations for each of component. These 

matrices identify which degree of freedom measurements are taken from and in this thesis 

mainly accelerations and displacement measurements are used.   

The equivalent state space form of the measurement vector can be given by 

𝒅(𝑡) =  𝑮𝒄 𝒙(𝑡) + 𝑱𝒄𝒑(𝑡)            

where the matrices 𝑮𝒄 𝜖 𝑅𝑛𝑑𝑥 2𝑛𝑎𝑛𝑑 𝑱𝒄 𝜖  𝑅𝑛𝑑𝑥 2 are 

𝐺𝑐 =  �
𝑺𝒅 𝟎
𝟎 𝑺𝒗

−𝑺𝒂𝑴−𝟏𝜥 −𝑺𝒂𝑴−𝟏𝑪
�         and        

 𝑱𝒄 =  �
𝟎
𝟎

𝑺𝒂𝑴−𝟏𝑺𝒑
� 

Under the assumption that the sampling rate is 1
𝑑𝑡

,  the continuous time equations (5) and (6) 

can be discritised in time in the following form:  

𝒙𝒌+𝟏 = 𝑨𝒙𝒌 +  𝑩𝒑𝒌 

𝒅𝒌  = 𝑮𝒙𝒌 +  𝑱𝒑𝒌 

Where 𝐴 =  𝑒𝑨𝒄𝑑𝑡 ,   𝑩 = [𝑨 − 𝑰]𝑨−𝟏𝑪 𝜝𝒄   ,    𝑮 = 𝑮𝒄,     𝑱 = 𝑱𝒄  
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and 𝒙𝒌 = 𝒙(𝑘𝑑𝑡) , 𝒑𝒌 = 𝒑(𝑘𝑑𝑡),  𝒅𝒌 = 𝒅(𝑘𝑑𝑡).  

The algorithm of the dual Kalman filter is implemented as studied in chapter. 

5.2 Dual Kalman Filter approach for joint input and state estimation of    
substructured system  

The goal now focuses on the problem of estimating the input and state of the system in 

order to predict the strain time histories by considering the relative response of the first as 

an input to the second one. The problem at hand classifies as a similar case to the ones 

studied in this analysis, where now the first term i.e. displacement is applied in the first 

degree of freedom whereas the velocity term of the first degree of freedom is applied in all 

degrees of freedom of the sub-structure.  

 At first, a force is simulated to apply on the system before the substracturing and two noisy 

acceleration measurements are considered in the 2nd and 3rd degree of freedom of the 

original system i.e. 1st and 2nd of the substructured system. Furthermore, the responses of 

the 1st degree of freedom are obtained to be compared with the input at the end of the 

analysis. The substructured model is also composed of 10 degrees of freedom and is 

modeled as mass-spring chain like system with the same properties introduced in the first 

Chapter.  

The state covariance is set to be 𝑄𝑥 = 10−20  where as the noise measurement Covariance 

is set as follows 𝑹 = 𝒔𝟐 ∗ 𝑰,  where 𝑠 is a vector containing the standard deviation of each 

measurement signal. 

The tuning of the force process Covariance  is of particular importance at this case. This is 

due to the fact that the two inputs forces, formulated into a stochastic process framework,  

are likely to have different variances and thus a more investigative L-curve investigative 

scheme should be implemented.  

In the previous analysis it was considered that   𝑸𝒑 = 𝑄 ∗ 𝑰 with 𝑰 being the diagonal matrix 

containing ones with the appropriate dimensions. 

Herein, it is considered that 𝑸𝒑 =  �
𝑄1
𝑝 0

0 𝑄2
𝑝�  where 𝑄1

𝑝  𝑎𝑛𝑑 𝑄2
𝑝  correspond to the 

Covariances of each individual force process respectively. 
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In that respect, two sets of L-curves are in order to find the combination of the diagonal  

components of the Covariance matrix that minimizes the MSE. The two sets are each 

comprised of 42 L- curves with Covariances spanning  𝑸𝒑 = 10−20 𝑡𝑜 = 1020.  

Fig5.2 . L-Curve plots of substructure model for different values of 𝑸𝟏
𝒑 in respect to 𝑸𝟐

𝒑  

Fig 5.3 : L-Curve plots of substructure model for different values of 𝑸𝟐
𝒑 in respect to 𝑸𝟏

𝒑  
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Since the values are spanning in a wide spectrum of values only some L-curves maintain the 

characteristic L shape and for the sake of clarity only the ones that produce reasonable 

results are plotted. Close examination of Fig. and Fig. leads to the conclusion that the most 

reasonable selection can be obtained from the second figure. Not only is the error 

minimized at a greater extent, but the L-curves in the second case seem to follow the 

characteristic shape in a more strict rule. Specifically, 𝑀𝑆𝐸1 ≈  3.9 where as 𝑀𝑆𝐸2 ≈  3.02. 

As far as the choice between the three values of 𝑄2
𝑝 is concerned one wishes to obtain the 

maximum value after which the error is minimized and not drastically affected.  

Taking into consideration the aforementioned reasoning the most suitable subset of values 

for the force process Covariance would be : 

𝑄1
𝑝 = 10−8 and 𝑄2

𝑝 = 10−9 with a corresponding 𝑀𝑆𝐸 of 3.017. 

The input estimates are presented as follows: 

 

As seems evident the proposed scheme can only achieve an accurate estimate only for the 
displacement while no result is produced for the velocity input.  

  

Fig 5.4 : Force estimates for the substructured system 
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Nonetheless, reasonable estimates are obtained in respect of all accelerations as indicatively 
presented in Fig 5.5 for the first degree of freedom: 

 

 

 

In a similar fashion, the displacement estimates are sufficient although with the associated 
drifts due to the number of inputs as shown in Fig 5.6:    

 

 

 

 

 

Adopting the same methodology developed in Chapter 4, the stress and strain time history 
estimates can be produced with high accuracy in this case.  

 

  

Fig 5.5 : Acceleration time history estimate for the 1st degree of freedom 

    Fig 5.6 : Displacement time history estimate for the 1st degree of freedom 

Fig 5.5 : Acceleration time history estimate for the 1st degree of freedom 

Fig 5.6 : Displacement time history estimate for the 1st degree of freedom 

Fig 5.7: Strain time history estimate for the 1st degree of freedom 

Fig 5.8: Stress time history estimate for the 1st degree of freedom 
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Concluding, the fatigue damage accumulation all over the structure can be estimated with a 
relative margin of error especially on the 1st degree of freedom where both terms of velocity 
and displacement are applied. 

 

Fig 5.11 : Fatigue damage accumulation estimate on substructured system 

  

 

 

Fig 5.9 : Strain time history estimate for the 5th degree of freedom 

Fig 5.10: Stress time history estimate for the 5th degree of freedom 
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In order to further improve the estimates several other combinations of measurements 
could be acquired in the scope of maximizing the information obtained regarding the states. 

 One last way to alleviate the lack of estimation would be to consider the input of 
displacement known as estimated and then attempt to estimate the velocity term through 
the used so far Kalman filtering methodology. 
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Chapter 6 

Conclusion 

In this work a dual implementation of a Kalman filtering scheme was used in order to jointly 

estimate the state and the input of a spring mass chain like model. It was shown that the 

degree of estimating accuracy is heavily conditioned on the knowledge of the location of the 

applied inputs and subsequently the location of the measurements.   The lack of knowledge 

seems to deteriorate the estimates on the states while on the other hand reasonable results 

can be produced in terms of input when measured locations identify with load locations. The 

number of inputs in non collocated cases should not be greater than the number of applied 

forces. Furthermore, the effects of the values of the diagonal components of the 

Covariances on the parameter estimation were studied and systematic methods of tuning 

these values were implemented. It was shown that the state Covariance should be correctly 

identified in a model identification framework before attempting to estimate while the 

measurement and force process Covariances served as the tuning knobs of the estimating 

scheme. The efficiency of a modal analysis of a truncated system was also proven and a 

fatigue analysis was put forward in order to locate the hotspot locations of the system under 

uncertain loading. Lastly, the developed methodology was applied in a substructured system 

of the original 𝑛 𝑑𝑜𝑓 structure in where the responses of the first degree of freedom were 

introduced as inputs on the substructured system. Responses, stress time histories and 

subsequently fatigue analysis estimates were produced with sufficient level o accuracy. 

The current strategy could be improved by proposing a more systematic scheme of 

obtaining the maximum information for the input and the states through the 

measurements. In other words, an optimal measurement combination could improve the 

estimating efficiency coupled with new tuning techniques. Lastly, a modified DKF procedure 

could be developed in order to consider only some of the inputs known and attempt to 

estimate the remaining unknown ones. 
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