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Abstract 

 

In this study, two micropolar fluid flows are simulated using the OpenFOAM software, in 

order to test the validity of the micropolarFoam solver and to investigate the fluid behavior 

under changing parameters. For each type of flow, namely Couette and Poiseuille flow, 

several cases are examined and the numerical results are consistently found to be in 

agreement with the corresponding analytical solutions. Additionally, the effect of specific 

micropolar parameters on the flow attributes, is detailed for both flow types through a 

parametric analysis. 
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CHAPTER 1  INTRODUCTION 

1.1 Basic concepts 

Matter can be found in nature in a solid, liquid or gas state. These are referred to as the 

three stages of matter. Solids are characterized by having defined shape and volume, liquids 

can alter their shape but have consistent volume and, finally, gases have the ability to alter 

both their shape and volume. Gases and liquids deform continuously when subjected to 

shear stress, they are thus defined as fluids. Fluids are made up of randomly oriented 

molecules, held together by weak cohesion forces. Flow, the characteristic property of 

fluids, represents the continuous and irrecoverable change of position of their molecules 

relative to one another when under shear stress. The degree of deformation that a fluid 

exhibits when put under stress is dependent on a quantity called viscosity [1]. In science, the 

discipline that involves the understanding, predicting and controlling the patterns of fluid 

flow is called Fluid Mechanics. Because it provides an effective methodology for the study of 

fluids, Fluid Mechanics evidently branches into many scientific fields, like Physics, 

Astrophysics, Medicine, Biology, Chemistry, Aeronautics, etc {2]. 

There are several types and categories of fluids, possessing a variety of properties and 

characterized by varying equations. Fluids in which the viscous shear stress is analogous to 

the rate of angular deformation, are termed Newtonian; the proportionality constant 

corresponds to the viscosity of the fluid. In contrast, many fluids do not present a linear 

relationship between the viscous shear stress and the deformation rate; these are defined as 

non-Newtonian. 

The majority of flow phenomena are described by the standard Navier-Stokes equations. 

However, many of the parameters involved in the relationships exhibit non-linear behavior; 

for these, analytical solutions cannot be applied. To overcome this inconvenience, 
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researchers resort to the application of numerical methods in order to explore the flow 

phenomena. Computational Fluid Mechanics is the scientific discipline that aims in the study 

and analysis of systems involving flow (of fluid or heat), along with related phenomena, such 

as diffusion, convection, dispersion and boundary layers, which are studied through 

computational simulations. Computational Fluid Mechanics encompasses the development 

and implementation of methods that employ computational codes as their tool. 

A specific category of fluids involves fluids containing microelements and possessing internal 

microstructure. These materials present properties that cannot be described by the classical 

Fluid Mechanics. In order to interpret their behavior, it was necessary to develop theoretical 

concepts that would take into account the geometrical characteristics, deformation 

phenomena and the intrinsic movement of the material particles. Subsequently, several 

theories have appeared in the field of Fluid Mechanics, such as, the theory of micropolar 

fluids, simple microfluids, dipolar fluids, couple stress theory [3], [4] and simple deformable 

directed fluids. 

Eringen [5] first introduced the theory of simple microfluids. According to the theory, the 

term 'microfluid' refers to a category of fluids exhibiting specific patterns of behavior. These 

patterns stem from certain spatial characteristics of the internal structure, as well as from 

micro-movements of the elements contained into the fluid mass. Microfluids have the ability 

to support stress moments and body moments and are influenced by rotational inertia. 

Because of the above, the theory of microfluids, along with the mathematical model that 

describes it, are referred to be highly complicated, especially in cases that the problem 

under consideration is complex. Consequently, Eringen's theory was refined and 

subcategories of microfluids were introduced.  

Micropolar fluids represent a category of fluids showing micro-rotational phenomena and 

micro-rotational inertia. The mathematical relationships that arise for this fluid subclass are 
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simpler in comparison to the rest of microfluids. Micropolar fluids can support couple 

stresses and body couples only, thus they are simpler than the rest of the microfluids. 

Micropolar fluids possess microstructure, as they contain non-deformable solid particles, 

randomly oriented, and/or spherical, suspended in a viscous medium [6]. Lukaszewicz [7] 

states that, because of the aforementioned microstructure, micropolar fluids possess a 

certain degree of polarity. The microstructure within the fluid acts as an additional factor 

affecting the fluid behavior in various flows. The internal particles may possess varying shape 

and size, shrink, expand or change their geometry. Additionally, they can rotate individually, 

apart from the rotation of the fluid, and move independently of the flow volume. Micropolar 

fluids also belong to a class of fluids with non-symmetrical stress tensor, called polar fluids. 

[7] 

In a physical sense, they can be effectively simulated as fluids containing small-sized bar-like 

/rod-shaped elements and micro-additives. The behavior of these liquids can be described 

by the mathematical model for micropolar fluids [8], [9] Examples of such liquids may be 

liquid crystals, animal blood, liquid suspensions and polymeric liquids. 

The concept /theory of micropolar fluids found immediately a plethora of applications in the 

description of physical phenomena that could not be safely described by the classical fluid 

mechanics. Examples of these phenomena are Stoke’s flow around a spherical geometry, 

stagnation flow, Taylor-Benard instability, and flow of boundary layers over a horizontal 

plate. A detailed description of the distinct cases and corresponding equations can be found 

in the extensive review of Ariman [10], [11]. 

The experimental data have shown that the solutions resulting from micropolar theory tend 

to better describe the behavior of physical fluids with microstructure, such as blood, 
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compared to the classical models. This advantage becomes much more pronounced for 

smaller values of the characteristic length, i.e. for a smaller scale [7]. 

1.2 Couette and Poiseuille Flows 

Flows inside channels or conduits are of great interest in fluid mechanics, as they constitute 

a plethora of everyday life applications, Fluids moving through enclosed spaces, are in 

contact with solid boundaries that may sometimes move and affect the flow characteristics. 

Practical analysis and exact description of every-day examples is difficult, due to complex 

geometries and the time it takes for a flow to be fully developed. Because of this, simplified 

examples using basic geometrical models and steady state flows of ideal fluids, are generally 

used to understand fluids behavior. Two of the most basic and fundamental examples of 

movement in a viscous medium are Couette and Poiseuille flow.  

The term 'Couette flow', in general, describes the flow of a viscous fluid between 

two parallel plates caused by the movement of one plate relative to the other; however, the 

case could also involve an external change in pressure in the direction of the flow. The 

simplest form of Couette flow is the steady state, two-dimensional, planar Couette flow with 

no external pressure input. This flow pattern will be examined in the present study. 

 

Figure 1.1. Couette flow velocity profile 
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Mainly, steady viscous fluid flow induced by the existence of pressure difference, is known 

as Poiseuille flow. It is given its name by Jean Poiseuille (1797-1869), as he was the first to 

experimentally study it. Although the term describes flows usually taking place inside a long 

pipe, in the present work the analysis is focused on flows between two infinite long, parallel 

to each other plates, using Cartesian and not polar coordinates, as shown in Figure 1.2. 

Poiseuille flow has to be distinguished from previously described, drag induced flow, 

because of the fact that both of the channel walls are fixed.  

 

Figure 1.2 Poiseuille flow velocity profile 

1.3 Aims and objectives  

The aim of the present study was to verify the validity of the micropolar solver and 

investigate the behaviour of micropolar fluids under specific types of flows.  

To pursue this goal, two distinct fluid flows, namely micropolar Couette and Poiseuille flow, 

were simulated using the OpenFoam software. The results were compared with the 

corresponding analytical solutions, in order to test their validity. Furthermore, for each type 

of flow, several cases were examined, aiming to investigate the effect of specific micropolar 

parameters on the flow attributes. 
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CHAPTER 2  THEORY 

2.1 Introduction  

Eringen’s model for microfluids and his theory remains the basis for the current knowledge 

[5]. The theory presents numerous assets; in general, it is recognized as a simple, yet 

powerful extension of the classic Navier-Stokes equations. In these, a new vector field, the 

angular velocity field of rotation of particles (microrotation field), is introduced, as well as 

four additional viscosity coefficients. Of these, the vortex viscosity connects the linear 

momentum to the existence of microstructure; if this is zeroed, the linear momentum 

becomes independent of the microstructure [7]. 

In the present Chapter, the equations describing micropolar fluid flow will be analysed. The 

fundamental differential equations for the laws of conservation (mass, momentum, etc), and 

their deviations from the classic Νavier-Stokes model, will first be presented. Moreover, new 

parameters will be introduced through the non-dimensionalization process. The distinct 

cases of boundary conditions relating to the corresponding physical quantities, more 

specifically microrotation, will be discussed, along with the limitations governing the 

viscosity coeffients. Finally, the analytical solutions of micropolar fluid flow, regarding 

momentum, mass and microrotation, will be analysed. 

2.2 Mathematical formulation 

In order to describe the general case of a viscous, compressible, micropolar fluid flow we 

need to utilize the mathematical formulas for the conservation of mass, momentum and 

microrotation, as well as the corresponding boundary and initial conditions that define each 

model. We can begin with gathering and defining all the quantities that will be used in the 

mathematical analysis of this chapter in the following table.   
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Table 2.1. Quantities used in the mathematical analysis  

Symbol Quantity Unit 
  Density   [     ] 

  Pressure     [    

     Del Operator  

  Time     [ ] 
     Velocity vector [   ] 
   Dynamic viscosity     [      
   Second order viscosity  [      
   Vortex viscosity     [      
   Viscosity Coefficient  [    ] 

   Viscosity Coefficient  [    ] 
   Spin gradient viscosity    [    ] 

   Body Moment per unit mass    [    ] 

    Body Force per unit mass    [     ] 

  Microinertia [  ] 

     Microrotation Vector [   ] 

 

For the case of an isothermal fluid flow, the following micropolar equations are presented: 

                                                             
  

   
                                                                       

 
   

  
                                                                          

           
     

  
                                                                           

[12] 

Εquations (1) to (3) formulate the laws of conversation of mass, momentum, and 

microrotation respectively. Scalar quantities   and   are fluid density and microinertia; in 

this specific case they are considered constant parameters. Vector fields    ,   ,   ,      which 

mark fluid velocity, body forces per unit mass, body couple per unit mass, and microrotation 

respectively, may change with respect to location. Variables   ,   ,    denote different 

viscosity types and similarly,   ,   ,    denote viscosity coefficients. Those aforementioned 
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viscosities and viscosity coefficients do not take arbitrary values, but are instead bound to 

the following inequalities: 

                    ,          ,              , 

[13] 

An attentive observation is that for               and the withdrawal of vectors    

and   , microrotation is nullified and equation (2) reduces to the classical Navier-Stokes 

equation. Moreover, with the elimination of just   , microrotation phenomena do not affect 

the velocity field [13] 

Considering equations (1) to (3) presented above, the following assessments and 

assumptions can be made: Differential operator 
    

  
 

    

  
             , marks the Stokes 

material derivative. Both types of flow under study are steady state, fully developed laminar 

flows of an incompressible micropolar fluid. Mass density as well all micropolar fluid 

properties (  ,   ,   ,   ,   ,   ,  ) remain constant and vectors    and    are set to zero. 

Therefore, using vector algebra                           , the equation system can 

further be simplified as follows:  

                                                                                                                                                                 

                                                     
   

  
                                                                        

                                                           
     

  
                                                                         

[12] 
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2.3  Dimensional Analysis of the flow field equations  

In fluid mechanics non-dimensionalization is the conversion of a modeling equation to a 

non-dimensional form. When dexterously performed, this eases the analysis of the problem 

by reducing the free parameters. The magnitude of certain dimensionless parameters 

indicate the importance of the corresponding terms in the equations. Scaling, refers to the 

process of selecting the proper scales to be used in the non-dimensionalization of the flow 

equation. Since the resulting equations need to be dimensionless, a suitable combination of 

parameters and constants has to be found. As a result of this procedure, the number of 

analyzed parameters is reduced and the results are obtained in terms of the scaled variables.  

In the vast majority of published literature, a non-dimensional form of the equations 

describing conservation laws is used, as it tends to better describe the effects of the 

parameters involved. The main purpose of this Chapter is to present the effects of the non-

dimensional quantities, resulting as a combination of geometrical and micropolar 

parameters, on the behavior of the fluid flow. 

For a start, it is assumed that, for a particular flow, the characteristic quantities         are 

respectively a set characteristic length and time. Also    is used to denote the maximum 

velocity of the fluid. Symbols with asterisk (*) are used to showcase non-dimensional 

variables: 

     
  

  
                              

 

  
                            

  

  
 

                      
 

  
                          

     
      

  
                        

   

         
 

By substituting these into (4) - (6) and applying the standard method of dimensional analysis, 

the governing equations may be written again.  
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For equation (4), introducing the non-dimensional variables and expanding, results in: 

            

  

  
              

                                                                                                                                                               

Following the same approach for equation (5):  

 
   

  
                                 

  
   

  
                                              

 
  

  

    

   
  

  
 

  

                
         

  
          

         

  
       

    

  
               

       
     

       
 

  

    

    

   
                                 

  

       
                      

And finally for the microrotation equation (6): 
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At this step, taking into consideration the non-dimensional form of the aforementioned field 

equations, we need to differentiate and adapt the terms for each flow case separately. 

Substantial differences in the definition of classical counterparts of the non-dimensional 

quantities, mainly present in the classical Navier-Stokes equations, will be presented, and 

new quantities will be introduced.  

2.3.1 Dimensional analysis for Couette flow 

The complete form for the non-dimensional differential flow equations regarding Couette 

flow, can be acquired by following the mathematical process below. Relationships (8) and (9) 

for velocity and microrotation respectively, are considered as a starting point. 

Initially, for the velocity equation, the following is derived: 

     

       
 

  

    

    

   
                                 

  

       
               

  

    

    

   
                 

     

     
         

     

     
      

  

     
             

This is a steady state and fully developed flow, therefore  
     

     . If relationship (7) is taken 

into account, the velocity equation is simplified to: 

 
     

     
         

     

     
      

  

     
               

In order to gather more information from the above expression, the micropolar parameters 

need to be isolated. As a result, quantity   is introduced. 

  
  

  
 

Subsequently,   is extracted from each term, while vortex viscosity   is absorbed in the 

process.  
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In this particular analysis, the Reynolds number is defined as follows: 

                                                                   
     

  
                                                                 

This format for producing the Reynolds number has also been attested and used by previous 

research, more specifically by Kim [14]. Finally, with the involvement of   , the relationship 

takes a final form: 

                                   
   

 
  

  
         

   
 
  

  
      

 

    
                                             

Evidently, a high value on   is negated on the first two terms, but it does affect the third 

term expressing the influence of the Microrotation. A low value on the other hand, 

influences all terms of the relationship.  

Next, the microrotation equation is examined in a similar manner. 

      
 

  
 

  

    

      

   
                           

    
 

  
           

     
 

  
      

  

    

      

   
                  

  

      
         

  

      
           

   

      
      

Akin to the velocity analysis, utilizing relationship (8) and 
      

     , as a result of a fully 

developed flow, the equation is simplified to:  

  

      
         

  

      
           

   

      
        

For the purpose of isolating the spin gradient viscosity   , non dimensional quantity   is 

introduced. 
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With the inclusion of  , the microrotation equation takes the concluding form presented 

below: 

   

      

 

 
        

  

      

 

 
           

   

      

 

 
        

                                            
 

   

 

 
        

 

   

 

 
           

 

   

 

 
                                              

  appears only in the first term of the equation, while   directly influences the other two. It 

is apparent that both quantities play a more direct role in the outcome of microrotation that 

that of velocity, although   can still affect velocity independently. For     (    ), 

microrotation may exist, but the connection between the two vector fields is severed, and 

thus, the velocity equation reverts back to the classic Navier Stokes model. 

2.3.2  Dimensional analysis for Poiseuille flow 

Following the same steps, the non dimensional form of the equations regarding Poiseuille 

flow can easily be obtained. Consider the final form of eq(7) - (9) above. Term 
     

       
 refers 

to the definition of Reynolds -Re- number, with some minor adjustments to the classical one, 

as it can clearly be seen that the term of micro-rotation viscosity    is taking place. There are 

many cases in literature, where the term  
  

    
    is denoted as the Strouhal [15] number. 

Due to the fact that the case studied here, involves a steady state – fully developed flow, all 

time dependent terms can be successfully ignored. Besides classical counterparts of the non-

dimensional parameters previously arose, there occur many new non dimensional 

parameters:  
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a) N- is a combination of kinematic viscosity and viscosity of microrotation, 

mathematically denoted as    
  

     
 . 

b) k-  is denoted as the material parameter 
  

  
, and as it can be seen is part of the 

previously mentioned parameter N. 

c) L-    is the ratio of characteristic length    over  ,   
  

 
   where    

  

   
.  

Generally speaking, after taking into consideration all the aforementioned quantities, 

mathematical expressions (8) - (9) can be transformed into the following ones: 

                         
 

  

    

   
                                                                    

                                                                                                                                      

and 

      
 

  
 

  

    

      

   
                           

    
 

  
           

     
 

  
       

      
     

 
 

  

    

      

   
                           

    
 

  

   

   

           
     

 

  

   

   

       

                                                               
   

 
           

   

 
                                                     

Taking into consideration every aspect of the aforementioned analysis, a sufficient 

conclusion about the effects of dimensionless parameters can be conducted. On the one 

hand, dimensionless parameter   is taking place only in the equation of momentum (13). It 

can clearly be seen that in case of      equations become independent of each other. In 

other words it is safe to say that, the bigger the value of  , the more perceptible the 

microrotational effects should be. On the other hand, dimensionless parameter  , is a 
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combination of the characteristic length     with   . Parameter  , has dimension of length 

and its value is indicative of the size of fluid particles[7,16,17* [15]. 

As a result, in contrast to parameter    it should be mentioned that, the smaller the value of 

 , the greater the non-newtonian effects, as the particle size increases. 

It is a necessity, to represent the actual behavior of dimensionless parameters as a function 

of fluid properties. Specifically, it is appropriate to say that         and        . For 

different values of    and   , their representation is on Figures 2.1 and 2.2, below. 

 

Figure 2.1. Change of N with respect to    

 

Figure 2.2. Change of L with respect to    
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2.4 Theory behind different types of boundary conditions 

Every micropolar fluid flow problem analyzed is governed by some set of the partial 

differential field equations (4) to (6). Under appropriate initial and boundary conditions, 

these equations are capable of predicting in full the behavior of such fluids. Boundary 

conditions mathematically define the case geometry, a subset of the three-dimensional 

Euclidean space    that comprises the location for the problem. Let Ω be such a subset and 

∂Ω its boundary. Concerning stationary problem modeling, Dirichlet boundary conditions for 

the unknown functions of   and  ,(i.e.      and     ) on ∂Ω are assumed.  

Expressing exact boundary conditions depends on the geometrical, static and dynamic 

aspects of each case. The inclusion of microrotation raises the issue of the behavior of the 

fluid, and more specifically the microrotation vector, near solid walls. A general type of 

boundary condition used for the microrotation field on ∂Ω, was presented by Rees & Basson 

[16]: 

                                                          
   

  
 ,                                                                 

It should be noted that for    , microrotation becomes zero at the boundary walls. This 

correlates to substantial particle density near the wall surface, hence disabling the rotation 

of microelements [16]. The value   
 

 
 denotes weak particle concentration and indicates 

the vanishing of the anti-symmetrical part of the stress tensor. [17] Finally, cases where 

    are indicative of turbulent boundary layers [16], and are naturally used for modeling 

turbulent layer flows [18]. Any condition involving     implies that the influence of 

microstructure is exceptionally weak in the vicinity of a solid boundary, since the particles 

are limited in approaching the boundary by their radius. This in turn, results in the 

microrotational field being unaffected by microstructure and the only rotational effects 

exhibited are due to fluid shear.  
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Regarding velocity, boundary conditions really depend on the modeling problem. The cases 

of Poiseuille and Couette flow are mathematically characterized by different boundary 

conditions in both velocity and pressure. Additionally, the well-known no-slip and no-

penetration boundary conditions are assumed for both cases. The microrotation boundary 

condition is considered zero, which aligns with the aforementioned general type of 

microrotation boundary condition for     [19]. 

2.3.1  Couette flow 

Simple, two-dimensional Couette Flow is mathematically described by the following 

boundary conditions. Pressure is assumed to be the same in the inlet and the outlet of the 

flow: 

               

Following the no-slip condition, velocity at the boundary walls is considered as: 

                          

                      

Where   represents the velocity value of the upper wall. 

2.3.2  Poiseuille flow 

As it was previously mentioned, Poiseuille is mainly a pressure driven flow. This indicates 

that the pressure along the flow should gradually decline. 

Thus: 
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Regarding velocity, the first one, can be expressed as      = (        ) = (0, 0, 0) and states 

that that there is no velocity component near the solid boundary. In other words the fluid 

near the surface cannot be moved. The second one, states that the fluid can only flow 

parallel to the solid wall and not penetrate it, which mathematically can be shown as        = 

0, where    is the unit normal to the boundary   . 

2.5  Exact solutions  

Under common geometrical and dynamical assumptions made in classical cases (e.g., 

symmetry, linearization of the equations), the micropolar fluid flow equations can be 

explicitly solved. This is due to the mathematical simplicity of the micropolar model. Strictly 

speaking, the derived equations will only be applicable to the studied flow cases. Solving the 

differential field equations (4) to (6) and acquiring exact solutions has already been 

accomplished by various researchers, among them Verma [8] and Ariman [20]. The analytical 

solutions that were used in the present thesis are based on the examples of exact solutions 

given by Lukaszewicz [7], and aid the comparison with numerical data.  

The differential equations used by Lukaszewicz differ from (5) and (6) at specific points. The 

modified formulas are presented as follows:   

                                                                         
  

  
                                                                          

                              
   

  
                                                                     

        
     

  
                                                                                       

It is apparent that a difference in mathematical denotation exists between (17), (18) and (5), 

(6). The material time derivative of (2) and (3) has been expanded and additional alterations 

have been made. Βy comparing the equations, the following correlation is derived:  
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To avoid unneeded confusion, the    symbolism was adopted.  

An additional difference between the mathematical expressions is that the vortex viscosity 

(  ) is multiplied by 2 in equations (17) and (18). This occurs in all terms, except within the 

parenthesis that multiplies the Laplacian of velocity in equation (17). For a better 

understanding of this divergence, we contrast the relationships (5) and (17). The difference 

in the 2nd and 3rd terms of the 2nd part of the equations becomes evident and can be seen 

below:  

5)  
    

  
                             

17)    
    

  
                                                

This difference is fundamental in the mathematical analysis of Lukaszewicz and should be 

always taken into account in any attempt to compare results. 

Bearing in mind that the flow under study is fully developed and incompressible, the time 

derivatives can be disregarded and the equations can be divided by density, thus producing 

a corresponding change in the coefficients. Also, microinertia ( ) becomes equal to 1, for 

simplification. Consequently, from (16), (17) and (18) we respectively arrive at:  

                                                                                                                                                              

                                                                                                                    

                                                                                                  

An important observation concerning the above equations is that the viscosity coefficients 

refer to quantities that are now divided by density. This can be seen in   and    which now 

correspond to kinematic viscosity ( ) and kinematic vortex viscosity (  ), but it also applies 
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to   ,   ,   ,    and  . In his book, Lukaszewicz chooses not to divide the equations by 

density, but to set     for simplicity. This differentiation ultimately does not affect the 

final analytical result. 

2.5.1  Exact Couette Flow  

For a final solution to the Couette flow problem, the parameters involved need to be strictly 

defined. Hence, for two-dimensional Couette flow between two parallel plates, we can 

assume the following: 

There are 2 plates in Cartesian space: 

                                  

where   represents the distance between them. The plate set at level    moves with a stable 

velocity    in the direction of the  -axis. The forces and moments per unit mass are 

considered equal to zero. Because the analysis involves a two-dimensional flow on the  -  

level, velocity, microrotation and pressure are considered as:  

                                           

Applying the above adjustments, relationships (21) and (22) are modified as follows:  

                                                                  
   

   
    

  

  
                                                       

                                                            
   

   
        

  

  
                                                      

The boundary conditions of Couette flow for velocity are mathematically expressed as: 

                                                                                                                                                

For microrotation, the boundary condition assumes the following general expression: 
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The above condition is a direct equivalent of the Rees & Basson [16] microrotation boundary 

condition already presented. The coefficient 
 

 
 is directly analogous to  . 

The general analytical solution deriving from the above differential equations, (23) and (24), 

accompanied with the specific boundary conditions (25) and (26), is presented in the 

relationships (26) and (28). 

              
 

 
  

         

       
         

 

 
         

 

 
   

         

       

 

 
          

            
  

   

    

  
        

 

 
  

         

       
      

 

 
  

         

           
       

Numbers   and   in the above relationships can be calculated with the formulas: 

                                                                      
  

    

  

  
                                                                   

                                                        
         

       
  

         

       
                                         

A short representative example of an analytical solution is presented below. Firstly, the 

values for the coefficients and variables are given: 
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Within the limits of the study, microrotation at the plate walls is set to zero. This boundary 

condition can be expressed mathematically by setting    .  

Using the above values, the non-dimensional variables   and   can be calculated: 

  
 

  
 

     

     
     

  
    

 

   
  

    

  
 

             

       
        

The Reynolds number is determined based on the maximum flow velocity, that is, the speed 

of the upper plate  : 

   
   

 
 

          

     
      

Through   and  , the variables   and   can be transformed as: 

   
    

   
  

        

     
         

    
 

     
     

         

       
  

         
   

 
     

               

             
         

Finally, the velocity and microrotation relations can likewise be expressed as: 

     
 

 
  

         

       
         

 

 
         

 

 
    

 

   
   

 

 
  

     
  

   
             

 

 
  

         

       
      

 

 
  

     

          
  

The solution is clearly shown in the following diagrams (Figures 2.3, 2.4): 
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Figure 2.3. Micropolar couette flow velocity profile for       and         

 

Figure 2.4. Micropolar couette flow microrotation profile for       and         

 

2.5.2  Exact Poiseuille Flow  

As a final step, the flow of micropolar fluids between two infinite-parallel and stationary 

planes at distance 2h, is considered. Mathematically described as: 
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             R3 :             ,   = 1, 2 

Assuming that the fluid initially was at rest, flow was suddenly induced by a constant 

gradient of pressure 
  

  
, in sheer absence of body moments and mass forces (  =    = 0). 

Using cartesian coordinates, with x-axis located at the plane of symmetry, parallel to the 

flow and y-axis normal to the plates, the case is graphically illustrated in Figure 2.5. 

 

Figure 2.5.  Characteristics of micropolar poiseuille flow 

Due to the assumption of infinitely long plates, setting                ,                    

and p = p( ), in the aforementioned equations of motion (11) – (13), formulation of the 

problem is slightly transformed into the following form: 

                                                                
   

   
    

  

  
 

  

  
                                                     

                                                           

   

   
        

  

  
                                                        

Equations (31) - (32), can simultaneously be solved for unknown quantities          . They 

ought to be treated, as a system of ordinary differential equations with constant 

coefficients. To fully define the set of equations, several types of boundary conditions need 

to be established at     . 

For convenience it is assumed, that:  

                                                        at                                                                        
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                                                        at                                                                         

Taking into account formulas (33) - (34), a solution to the following system of differential 

equations, need to be derived: 

                                                       
   

   
 

   

    

  

  
 

  

  

 

    
                                                       

                                                           
   

   
 

   

  

  

  
 

    

  
                                                           

Setting    
   

    
 ,   

  

  

 

    
 ,   

   

  
 ,   

   

  
 , differentiation of eq (35), finally gives: 

                                                                     
   

   
   

  

  
                                                                 

   

   
  

  

  
      

         
        

   

   
  

   

   
  

  

  
   

Substitution of the 
   

    term, into the 3rd order differential equation, provides the following: 

   

   
 

  

  
              

Using the method of undetermined coefficients and summing up the complementary and 

particular parts of the solution, the general analytical form of      is presented: 

     
     

    
 

         

      
    

          

      
       

Calculation of constant parameters involved in the eq (--) can easily be achieved by setting 

                 . Thus, the following expressions regarding   ,    and     arise 

   
               

                                   
   

     ,       
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Bear in mind that                         and also          , the expression of 

microrotation, can further be simplified to: 

                                                       
   

     
 

   

     
 
           

            
                                        

Regarding equation (38), it is clearly seen that an exact expression for the flow velocity 

equation can be derived using the same principles, as previously described. The final form of 

the differential equation is presented below: 

   

   
   

    

     
 

                   

                
 

As far as it is concerned, constant parameters    and   , can be established using the 

expressions for the velocity boundary conditions, at     . Needless to say, that following 

the steps described, the general form of the velocity flow equation is described as: 

             
    

     
 

                                  

      
 

Where: 

   
                           

          
            

 

Substituting    ,    into the previous form, the final equation for the velocity is derived: 

      
                                                              

          
        

An interesting yet significant observation, regarding the previous analysis, focuses on deeper 

understanding of all the aforementioned parameters. For start, a new coefficient  , is 
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introduced, which is a combination of the channel pressure drop     and kinematic viscosity 

 , defined as:  

  
    

      
 

  
  
  

    

  
 

Considering that change, the final form of the exact solutions of microrotation and velocity 

are reconstructed. The main purpose of the rearrangement of the terms, is to show the level 

of similarities within the equations proposed by Lukaszewicz [7]. 

Following the process detailed below, the velocity and microrotation profiles can be 

acquired: 

VELOCITY PROFILE 
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MICROROTATION PROFILE 

     
   

     
 

   

     
 
           

            
  

                                                
    

      
  

 

  
 

 

 
 
           

            
                                           

                                              
         

    
 

 

  
 

 

 
 
           

            
                              

 

The final form of the equations is in complete agreement with the solutions of Lukaszewicz. 

The velocity term of equation (40) appears in a non-dimensional form, since in the book it is 

multiplied with the term 
  

  

  
    

  
  , which uses velocity measurement units.  

Additionally, the microrotation field resulting from the above process, ends up using [     

measurement units. Importantly, the normal parabolic profile appears in the formula and 

the second term of the parenthesis reduces the classical parabola, based on the parameter 

values involved in the equation   

Derivation of exact solutions for planar poiseuille flow of Newtonian fluids   

Let us consider again the geometry of the problem mentioned in the previous section. To 

start with, we are taking into account the same boundary conditions for the velocity field. 

Further, the flow is considered far downstream from the entrance so that it can be treated 

as fully-developed. Using continuity equation, it leads to the conclusion that the only 

component is         . Also,        , and gravity is neglected. The momentum 

equations in the respective direction reduces as follows;  
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 By integrating the last equation with respect to         , and using the previously 

known boundary conditions we obtain a formula for     ; 

                                                                      
 

  
 
  

  
                                                            

SIMPLE CASE ILLUSTRATION 

 

Figure 2.6. Micropolar poiseuille flow microrotation profile 
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Figure 2.7. Newtonian and Micropolar poiseuille flow velocity profiles 
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CHAPTER 3   OPEN FOAM 

3.1 Introduction 

All the simulations were carried out using OpenFOAM. It is an open source CFD software 

released and developed primarily by OpenCFD Ltd since 2004. OpenFOAM is predominately 

a framework for developing executables, named applications, that use packaged 

functionality contained within a collection of C++ libraries. The applications fall under two 

major categories: Solvers, which are designed to solve a specific problem of fluid 

(continuum) mechanics, and utilities, which are designed to perform tasks that involve data 

manipulation. [21] 

Users can develop a direct relationship with the software, as they are given the option to 

create additional solvers and utilities. The software also offers pre- and post-processing 

environments that aid in the setup and analysis of the problem. 

 

Figure 3.1. OpenFoam structure (openfoam user guide) 

The software is accompanied by numerous tutorials and instructions which aim to make the 

environment familiar to the users. Visualization of all scientific data-sets is performed by 

using ParaView, an open source multiple platform application, designed for interactive data 

analysis by means of qualitative and quantitative techniques. An additional advantage of the 

platform is the plethora of problems of different scientific fields that can be simulated. Each 
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application solver corresponds to a distinct set of problems. The range of cases that these 

solvers are applicable to, is presented below: 

 Compressible – incompressible – multiphase flows 

 Direct numerical simulations  

 Combustion – heat transfer – electromagnetism problems  

 Stress analysis of solids 

 Molecular dynamic methods 

 Finance  

3.2  Preprocessing Case Geometry and Mesh Generation  

Pre-processing involves all the necessary steps made in the simulation preparation. Cases 

are set up in OpenFoam by creating, editing or using existing case files. Data for mesh, fluid 

physical properties, boundary and initial conditions, fields, as well as all control parameters 

need to be in agreement with the simulated case.  

3.2.1 Mesh Generation  

The OpenFoam software perceives physical geometry as a defined mesh or grid, comprised 

by cells. Every mesh generated is acknowledged by the software as a 3D entity, even in cases 

of 2D simulations. In such 2D cases, the third dimension is specified by the user and does not 

interfere with the result.  

OpenFoam is supplied with a mesh generator, which creates a mesh using an input file, 

blockMeshDict, located in the case directory. In this file, the mesh details, including corner 

points, cell shape and cell number, are specified. This process is launched by the command 

blockMesh (Figure 3.2).  
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Figure 3.2. OpenFoam blockMeshDict file  

In both cases examined in the present work, the focus was placed on the construction of a 3 

dimensional space that could effectively simulate the ideal conditions of Couette and 

Poiseuille flow. The derived mesh which was uniformly transformed, outlines a closed 

channel with a square cross section. The block structure is shown in Figure 3.3.  

 

Figure 3.3. OpenFoam case Mesh  
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3.2.2 Boundary Conditions  

After the geometry of the problem has been defined and the mesh has been generated, a 

boundary description must be provided. This again takes place within the blockMeshDict file 

of the case directory. For the current case geometry, 5 boundary sets, or patches, needed to 

be specified, namely: 

 inlet:  The boundary where the flow enters the channel 

 outlet:  The boundary where the flow exits the channel 

 top:  The top wall boundary 

 bottom:  The bottom wall boundary 

 frontAndBack:  The side surfaces perpendicular to the flow  

In the case of Poiseuille flow, there is no need for a special distinction between the top and 

low wall boundaries. Thus, they were replaced by fixedWalls (Figure 3.4). 
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Figure 3.4. OpenFoam blockMeshDict file  

The special variable values in the aforementioned boundary surfaces are given in the 0 

folder. There, a field file is assigned to all main problem variables, in this case microrotation, 

pressure and velocity. Both the boundary and the initial conditions for the problem are 
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expressed in subdirectories within the corresponding files. Boundary conditions in particular, 

are designated by specific entries in the type line; the most useful in this case are: 

 fixedvalue:  where variable value is directly given 

 movingWallVelocity: where the boundary moves at a constant, pre-specified velocity 

 zeroGradient:  where the gradient of the variable is zero 

3.2.3 Physical Properties  

The physical properties of a fluid, also known as mechanical properties, play a crucial role in 

the field of fluid mechanics, as they determine aspects of the flow behavior. In an 

OpenFoam case, the physical properties of fluids are defined in the transportProperties file. 

In order to solve a micropolar flow problem, the relevant parameters, such as the kinematic 

fluid viscosity (  ), as well as the added micropolar parameters  ,   , and    have to be 

specified (Figure 3.5).  

 

Figure 3.5. OpenFoam transportProperties file  

 



44 
 

The scope of the study involved examining the behavior of the flow profiles as the 

micropolar parameters    and    change values. Microinertia   remains constant at     . 

Along with the parameter values, the units of measurement for each quantity are specified. 

This functions through a combination of seven basic measurement units in S.I. outlined in 

the bracket before each quantity value. Each number denotes the power in which the 

measurement unit is set at. The correspondence between the units and the bracket 

positions is shown in Table 3.1: 

Table 3.1. Correspondence between the units and the bracket positions 

Position Quantity Measurement Unit 

1 Mass kg 

2 Length m 

3 Time s 

4 Temperature K 

5 Amount of Substance mol 

6 Electric Current A 

7 Luminous Intensity cd 

 

The values for the new quantities introduced must be given in the S.I units specified. These 

are      for   ,      for    and    for  .  

3.2.4 Control  

The execution of flow simulations requires input data relating to time control and general 

output control. These, as well as other information regarding the resulting solution, are 

given in the controlDict dictionary. 



45 
 

Start and end times for the solver along with the timestep, are set in subdictionaries within 

the file. These values are not the same for every case but instead vary from case to case 

(Figure 3.5).  

 

Figure 3.6. OpenFoam controlDict file 

Aside from time control, controlDict also specifies important output information. These 

mainly include information about recording and storing the results (Figure 3.6).  

 

Figure 3.7. OpenFoam controlDict file 

3.3 MicropolarFoam solver 

The application solver used in the study is micropolarFoam and it was created by modifying 

one of the preexisting solvers provided with the OpenFoam software. As the name implies, 
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MicropolarFoam has been developed with the aim to provide numerical solutions for 

problems of micropolar flow. The solver uses essentially the basic differential equations of 

velocity (5) and microrotation (6) for micropolar fluids referred by Zadravec [Zadravec2008]. 

These simplified differential equations are not applied unchanged. Instead, some notable 

modifications have been implemented. These are: 

 Contrary to (5) and (6), the solver equations are divided by density. Consequently, fluid 

viscosity is kinematic and not dynamic. Likewise, solver vortex viscosity    and pressure 

  are divided by density and refer to kinematic vortex viscosity and 
 

 
 respectively. Finally, 

the spin gradient viscosity (  ) is also divided by density. 

 The solver is designed to take into account the effects of temperature on the fluid flow. 

That is achieved by including one more differential equation, while adding one more 

variable, temperature ( ), and two more entry data,    and a coefficient of thermal 

expansion     . The analytical equations for Couette and Poiseuille flow employed in the 

later comparisons, do not take into account the temperature effects. Thus, the solver was 

simplified in order to produce comparable results.  

 There exists a fundamental difference in the micropolar equations between the methods 

of Zadravec and Lukaszewicz. It involves the multiplication of    by two in some, but not 

all, equation terms, and it is explained in more detail in the subchapter “Exact Solutions” 

of Chapter 2. In order to fix this asymmetry, the solver was modified to include the extra 

multipliers for    in the key terms (Figure 3.7).  
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Figure 3.8. OpenFoam micropolarFoam file 

 

3.4 Numerical schemes 

In order to calculate certain equation terms, for example a derivative in the form of a 

gradient or divergence, OpenFoam employs a collection of numerical schemes. These 

schemes refer, fundamentally, to calculation techniques used to approximate a result value. 

They are selected and assigned in the fvSchemes file, to specified term categories. 

Time derivatives, gradient derivatives, laplacians and others, constitute term categories in 

need of a specified numerical scheme, so as to be effectively calculated. Within the 

fvSchemes file, a scheme is appointed to a term set in a given subdirectory (Figure 3.8).  
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Figure 3.9. OpenFoam fvschemes file 

Concerning time derivatives, time schemes include steadyState, Euler, backward, 

CrankNicolson and localEuler. MicropolarFoam is based on the transient IcoFoam solver, and 

the equations include a first order time derivative. Euler functions best in this setting and 

was thus chosen as time scheme (Figure 3.9). 

 

Figure 3.10. Time scheme sub dictionary 

 

Terms that require interpolation of values use interpolationSchemes. By far the most 

common such scheme, and the one chosen, is linear (Figure 3.10). 
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Figure 3.11. Interpolation sub dictionary 

Gradient schemes refer to schemes involved in the calculation of gradient derivatives. Gauss 

linear is the most commonly used scheme for this task. Gauss signifies the standard finite 

volume discretisation of Gaussian integration, and the scheme for the interpolation is given 

by the entry linear. Occasionally in more complex tasks, other options, such as leastSquares 

or Gauss cubic, are used (Figure 3.11).  

 

Figure 3.12. Grad Scheme sub dictionary 

Similarly, Divergence schemes usually involve Gauss linear or some variation of it, depending 

on the given case. The none entry in default requires the scheme for each divergence term 

to be defined individually (Figure 3.12). 

 

Figure 3.13. Div scheme sub dictionary 

For surface normal gradient schemes (snGradScheme), possible entries are: corrected, 

limited corrected 0.33, limited corrected 0.5, orthogonal and uncorrected. In this case the 

orthogonal scheme was selected (Figure 3.13). 
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Figure 3.14. snGrad scheme sub dictionary 

To calculate Laplacian terms, corresponding laplacian schemes were utilized. These schemes 

exhibit a specific pattern involving the Gauss scheme, as well as an interpolationScheme and 

a snGradScheme. Following the previous entries, Gauss linear orthogonal was selected 

(Figure 3.14).  

 

Figure 3.15. Laplacian scheme sub dictionary 

3.5 Linear solvers and algorithms 

Application solvers, like icoFoam, solve a comprehensive and complex problem that may 

include multiple equations and variables. The task of solving the simple matrix equations 

during the solution process, for each distinct system equation, is designated to the linear 

solvers. OpenFoam includes five different linear solvers: 

o PCG/PBiCGStab 

o PCG/PBiCG 

o smoothSolver 

o GAMG 

o diagonal 

Linear solvers may function exclusively with asymmetrical matrixes, symmetrical matrixes or 

both. When a symmetric solver is incorrectly appointed to a process involving an asymmetric 
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matrix, an error message stops the task. Linear solvers are designated by the user within the 

fvSolutions file, in the appropriate subdictionary. Multiple solvers were tested for each main 

variable, in order to sufficiently reduce the calculation time of the application solver. The 

tolerance for each individual case was selected separately, since a small tolerance is 

necessary for a correct result in the extreme cases, but tends to increase overall calculation 

time (Figure 3.15).  

 

Figure 3.16. OpenFoam fvsolutions file 

The coupling of solver equations, and specifically mass conservation and momentum 

equations, can be accomplished by three algorithms. These are PISO and PIMPLE, applied in 

transient cases, and SIMPLE applied in steady state cases. The selection of the algorithm 

takes place in the corresponding subdirectory of the fvSolutions file. MicropolarFoam, like 
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icoFoam, is designed to solve a transient problem, so, in this case, the PISO algorithm was 

selected (Figure 3.16). 

 

Figure 3.17. PISO sub dictionary 

3.5 Post Processing 

After the ending of the simulations, all results are successfully retrieved and stored to time 

directories. Visualization of the case results can be achieved with the help of the reader 

module ParaView, provided with the software. ParaView uses the Visualization Toolkit (VTK) 

as its data processing and rendering engine and can therefore read any data in VTK format. 

The generated mesh can be viewed only in ParaView, since there is no other suitable pre-

processing tool. There is a plethora of tools, each and every one for a specific kind of task. 

The plot over line option was used repeatedly for the visualization of the velocity and 

microrotation fields in order to extract 2-D profiles. The utility was applied perpendicular to 

the flow direction in the middle of the   axis.  

3.6 Experimental settings  

The main focus of the following chapters is the presentation and analysis of numerical 

results, derived from the OpenFoam micropolar solver, as well as their comparison with the 

corresponding analytical equations, presented in Chapter 2. For the two distinct cases under 

study, namely Couette and Poiseuille flow, fixed geometries of similar scale were tested. The 

micropolar parameters    and   , were selected as the independent variables, in order to 

confirm the validity of the solver and also to test their effect on the numerical results. 
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Throughout this process, all other variables, such as fluid viscosity, microinertia or, in the 

case of Couette flow, wall speed, remained constant. This setting constituted a clear and 

solid framework for understanding the effects of the aforementioned micropolar 

coefficients on the behavior of the fluid  
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CHAPTER 4  RESULTS PRESENTATION AND COMPARISON FOR 

COUETTE FLOW 

4.1 Introduction 

This chapter is devoted to the presentation and analysis of the Couette flow results. Initialy 

the case is formulated and the parameters are defined. Following that, the number of cells is 

established through the mesh refinement process and the results are categorized, presented 

and analyzed.  

4.2 Case Format 

For Couette flow, the problem needs to be accurately formulated and the parameters clearly 

set. The guiding intention in this task is to conclusively produce a low Reynolds number for 

the flow, in order to approximate the behavior of a highly viscous fluid.  

For the present experiment the parameters that were set are presented below:  

 The parallel plates were placed at a distance          from each other.  

 The velocity of the upper plate was            .  

 The kinematic fluid viscosity was set at               

 Microinertia was set at       .  

 The boundary condition for microrotation was considered to be        . 

The Reynolds number for Couette flow was estimated according to the expression (10) 

presented as part of the non dimensionalisation process.  
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The characteristic length    is the distance   between the two plates and the maximum 

speed was decided to be the wall speed  . Hence,    becomes: 

   
  

 
 

                

          
      

Since parameters  ,   and    remain constant throughout the cases, the value of the 

Reynolds number is unaffected and remains steady. 

This small value for the Reynolds number can be attributed to the high kinematic viscosity of 

the fluid. High values of kinematic viscosity can be attested in numerous fluids, especially in 

low temperature environments. Motor oils provide a good example as they are often used in 

subzero temperatures. A 5W engine oil at      exhibits a viscosity of roughly        . 

This, taking into account a mean oil density of          , correlates to a kinematic 

viscosity of            . Another similar example is glycerol at low temperatures.  

In order to obtain a comparison with the exact solutions, a matching model needed to be 

established, using the analytical equations and parameters presented in Chapter 2. By 

attributing appropriate values for fluid viscosity, microinertia, wall velocity and, additionally, 

by setting microrotation boundary coefficient   to zero, the constant elements of the 

analytical model were defined. For the independent variables, the correspondence between 

the two models was implemented via the non dimensional quantities   and  .  

4.3 Mesh Refinement 

Refining the mesh is an important step in ensuring that the numerical results produced are 

sufficiently accurate. After this task was concluded the total number of cells, used in all 

subsequent cases, was set. The process involved testing the solvers response for different 

grid densities, in one individual case. More specifically, the resulting values of microrotation 

were compared with the analytical model, for all grids. The case selected was for non 
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dimensional parameters        and           . It represents a typical example of 

the cases examined. 

Starting from a coarse mesh of 20x20, or 1200 cells, the grid is gradually thickened until the 

numerical results provide an adequate approximation of the analytical profile. The third, 

depth dimension remained unchanged at three cells. The visual change is depicted in the 

diagrams that follow (Figure 4.1): 

 

 

Figure 4.1. Numerical results and analytical profile for the meshes 20x20 (a), 30x30 (b), 40x40 (c) and 

50x50 (d) 

 

It is obvious that as the mesh becomes finer, the analytical and numerical profiles converge. 

It is also evident that for every mesh, there is a visible error that diminishes as the total cell 

number increases. This error can be quantified using the following formula: 

d c 

b a 
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Where n is the total number of points selected.  

With this error definition applied, a comparison of    values can take place (Table 4.1):  

Table 4.1.    values for the meshes used. 

Mesh    

20x20              

30x30              

40x40              

50x50              

 

The quantitative analysis confirms the visual observations. As the mesh becomes denser, the 

error decreases. A 50x50 mesh correlates to 7.500 cells in total. For this number, the relative 

error, that is the error compared to the value scale of microrotation for the same case 

(    ), is considered sufficiently small (     ). Consequently, this is the mesh density used 

in the following examples.  

4.4 Presentation of results 

4.4.1  Ahmadi formula 

The numerical results and the comparisons were grouped based on the interchanging 

variable. Initially, using a formula proposed by Ahmadi [22], 
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which connects vortex viscosity   , microinertia   and spin gradient viscosity   , the two 

independent variables were interlinked. Thus, a change in the value of   produces a change 

in the value of  .  

The results of our measurements are presented in Figures 4.2 – 4.3 

Figures 4.2 and 4.3 present the change in profiles of microtation for varying values of the 

independent variable A.  

 

 

 

Figure 4.2. Numerical velocity for various values of variable A. Units:   in [ ],      in [   ] 
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Figure 4.3. Numerical microrotation for various values of variable A. Units:   in [ ],      in [   ] 

 

Even though A is given a wide range of values, the range of microrotation values remains 

contained. As A decreases, the absolute value of microrotation respectively increases. 

However this rate of change is not analogous to the rate of change in A. Instead there seems 

to be a diminishing effect in microrotation as A decreases further. This is due to the Ahmadi 

formula ensuring that as A decreases, B also decreases and counters the effect. 

The velocity profiles remain seemingly unchanged. This can be explained by the low overall 

values of microrotation, which have a very little effect on the velocity profile. 

The velocity and microrotation profiles of each individual case, along with their 

corresponding solutions predicted by the analytical equations, are presented below (Figures 

4.4 - 4.10). For all following profiles the units are:   in [ ],      in [   ],      in [   ]. 
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Figure 4.4. Solver and analytical profiles for velocity (a) and microrotation (b), case A=10  

  Figure 4.5. Solver and analytical profiles for velocity (a) and microrotation(b), case A=5 

  Figure 4.6. Solver and analytical profiles for velocity (a) and microrotation(b), case A=2,5 

  Figure 4.7. Solver and analytical profiles for velocity (a) and microrotation(b), case A=1 

a b 

a b 

a b 

a b 
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  Figure 4.8. Solver and analytical profiles for velocity (a) and microrotation(b), case A=0,5 

  Figure 4.9. Solver and analytical profiles for velocity (a) and microrotation(b), case A=0,1 

  Figure 4.10. Solver and analytical profiles for velocity (a) and microrotation(b), case A=0.01 

 

For these specific cases, the solver delivers results that effectively match the analytical 

solution.  

4.4.2  B constant 

To fully understand the change in fluid behavior, an independent analysis of the micropolar 

parameters was considered necessary. After removing the binding Ahmadi formula,   was 

a b 

a b 

a b 
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set to a constant value, while   was given selected values. This pattern can provide a clear 

impression of the effect of vortex viscosity    on the fluid.  

Figures 4.11 and 4.12 present the change in profiles of microtation for varying values of the 

independent variable A, while B remains constant at 0,012. 

 

 

 

Figure 4.11. Numerical velocity for various values of variable A, with variable B=0,012. Units:   in [ ], 

     in [   ] 
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Figure 4.12. Numerical microrotation for various values of variable A, with variable B=0,012. Units:   

in [ ],      in [   ] 

 

It is instantly obvious that the range of microrotation is much wider, compared to the 

previous subset of cases, which incorporated the Ahmadi equation. In order to properly 

visualize the excessive variation of the output, the result is additionally presented in a 

logarithmic scale (Figure 4.13). 



64 
 

 

Figure 4.13. Numerical microrotation results in a logarithmic scale. Various values of variable A, 

variable B=0,012. Units:   in [ ],      in [   ] 

 

It can be noted that the microrotation profiles reflect the exponentially changing values of 

the independent variable A, better than in the first measurement subset. 

When A ranges from .0,01. to .0,003. , microrotation responds with notably high values, 

which in turn produce a distinct effect to the corresponding velocity profiles. For these 

extreme cases velocity exhibits a non-linear, sigmoid profile. 

Figures 4.14 - 4.18 present the velocity and microrotation profiles of each individual case, as 

well as their corresponding analytical solutions. For all following profiles the units are:   in 

[ ],      in [   ],      in [   ]. 
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  Figure 4.14. Solver and analytical profiles for velocity (a) and microrotation (b), case A=10 

  Figure 4.15. Solver and analytical profiles for velocity (a) and microrotation(b), case A=1 

  Figure 4.16. Solver and analytical profiles for velocity (a) and microrotation(b), case A=0,1 

  
Figure 4.17. Solver and analytical profiles for velocity (a) and microrotation(b), case A=0,01 

a b 

a b 

a b 

a b 
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Figure 4.18. Solver and analytical profiles for velocity (a) and microrotation(b), case A=0,003 

 

As with the first subset of cases, there is a sufficiently close correspondence between the 

numerical and analytical profiles. The sigmoid curve observed in the numerical velocity data 

is also apparent in the respective analytical solutions. 

4.4.3 A constant 

In the third subset of measurements, the effect of the gyration viscosity coefficient   , was 

studied. For the analysis,   needs to be locked to a constant value, while   is given selected 

values.  

Figures 4.19 and 4.20 depict the change in profiles of microtation for varying values of the 

independent variable B, while A remains constant at 0,01. 

a b 
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Figure 4.19. Numerical velocity for various values of variable B, with variable A=0,01. Units:   in [ ], 

     in [   ] 

 

Figure 4.20. Numerical microrotation for various values of variable B, with variable A=0,01. Units:   in 

[ ],      in [   ] 

 

It is evident that an increase in the values of B affects microrotation similarly to a decrease 

in variable A. In other words, the independent variables when set to act solely, produced 
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opposite outcomes. Again the microrotation values spread over a wide range and thus, a 

logarithmic scale is preferable. (Figure 4.21). 

 

Figure 4.21. Numerical microrotation results in a logarithmic scale. Various values of variable B, 

variable A=0,01. Units:   in [ ],      in [   ] 

 

The wide range of the microrotation values clearly follows the range of values given to 

variable B. The curved velocity profiles are again present and correspond to the highest 

values of microrotation, which in turn appear for high values of B, notably B=0,025 and 

B=0,05. 

The velocity and microrotation profiles for each case, along with the corresponding 

analytical solutions, are presented below (Figures 4.22-4.27). For all following profiles the 

units are:   in [ ],      in [   ],      in [   ]. 
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  Figure 4.22. Solver and analytical profiles for velocity (a) and microrotation (b), case B=5x10
-6 

  Figure 4.23. Solver and analytical profiles for velocity (a) and microrotation(b), case B=5x10
-5

 

  Figure 4.24. Solver and analytical profiles for velocity (a) and microrotation(b), case B=5x10
-4 

  Figure 4.25. Solver and analytical profiles for velocity (a) and microrotation(b), case B=5x10
-3 

a b 

a b 

a b 

a b 
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  Figure 4.26. Solver and analytical profiles for velocity (a) and microrotation(b), case B=0,025 

  Figure 4.27. Solver and analytical profiles for velocity (a) and microrotation(b), case B=0,05 

 

The agreement between the analytical and the numerical results can again be observed. As 

in the previous subsets of cases, the sigmoid velocity profile that was recorded, is verified by 

the analytical solution.  

4.5 Shear Stress Analysis  

The sigmoid response observed in some of the velocity profiles presented above, raises an 

issue regarding the effect on shear stress. In this subchapter, the analysis of two cases, 

exhibiting sigmoid velocity profiles, is expanded in regard to shear stress. Commonly, shear 

stress     is given by relationship: 

     
   

  
 

a b 

a b 
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It is widely known that the simple, fully developed, Newtonian Couette flow, corresponds to 

a constant shear stress. This value is calculated by dividing the wall velocity with the height 

of the channel, and then multiplying by the dynamic viscosity. By applying the above in a 

Newtonian Couette flow, analogous to the cases previously examined, the constant value 

was calculated. 

               
 

 
  

         

      
          

In order to derive a final numerical value, the fluid, and more specifically its dynamic 

viscosity, must be defined. As this would limit the scope of the analysis, the shear rate 

   
   

 
 was instead measured in both the numerical results and the Newtonian fluid.  

The two numerical cases in question are A=0,003, B=0,012 of the second subset, and B=0,05, 

A=0,01 of the third subset. The numerical derivative of velocity was obtained by the 

following numerical scheme: 

  

  
     

 
         

         
 

The result was then smoothed, in both cases, using a polynomial numerical fit. When placed 

alongside the fixed numerical value in Figure 4.28, the variation is easily noticeable. 
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Figure 4.28. Shear Rate comparison of case A=0,003, case B=0,05 and Newtonian case. Units:   in [ ], 

      in [   ] 

The above comparison invites some interesting observations. As   increases from the 

bottom wall, the shear rate also increases, surpassing the Newtonian value. At the middle of 

the channel, the shear rate reaches its maximum value, then it proceeds to decrease as   

increases further, mirroring the ascend. The low shear rate values near the solid walls are 

also worth mentioning.  

The deviation from the fixed Newtonian line appears to increase as the sigmoid 

characteristic becomes more intense. This, as mentioned before, occurs for sufficiently high 

values of microrotation, which is in turn notably effected by A and B. Thus, there is a clear 

correlation between the values of the non dimensional parameters, and the shear rate 

profile. In this comparison, the shear rate profile for B=0,05 appears more intense than that 

of A=0,003, due to the highest values for microrotation in the former case.  

 

 



73 
 

CHAPTER 5  RESULTS PRESENTATION AND COMPARISON FOR 

POISEUILLE FLOW 

5.1 Introduction 

This chapter is dedicated to the analysis and comparison between results obtained by the 

execution of numerical simulations regarding Poiseuille flow. As a starting point, the 

different cases are formulated but also flow parameters closely related to flow 

characteristics are determined. In addition, the final grid density and consequently, the cell 

number is established. As a final step, all results were thoroughly examined and a parametric 

analysis is taking place. 

5.2 Case Format 

The equations of velocity and microrotation have been numerically solved for the case of 

poiseuille flow (flow between two parallel plates). In order to test the suitability of the 

micropolarFoam solver, comparison with the analytical results is performed on this chapter. 

Identification and correct representation of the parameters involved are of great 

importance, before the analysis take place. Accurate problem formulation, involves some set 

of initial and boundary conditions, thus, as a first estimation, the internal boundary velocity 

field was set to (0, 0, 0).  

At this point, a distinct difference between the formulation of the exact problem and 

numerical simulations should be underlined. During the formulation of the problem in 

chapter 2.5.2 geometrical height of the channel was chosen as 2h (in order to be in 

agreement with the formulation of the problem proposed by Lukaszewicz. Taking that into 

consideration, all numerical simulations are based on a total channel height of         

        . Also, the microinertia parameter was set at          . Last but far from least, 
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the boundary condition considered for microrotational parameter was set to       

       . Inlet and outlet pressure was uniformly defined. A good starting point for setting 

the pressure boundary condition seem to be eq (40). Setting  
  

  

  
    

  
    

 

 
 ,  helps in both - 

definition of pressure drop inside the channel, as well as it offers an acceptable  base line for 

results comparison, regarding velocity and microrotation measurement units. 

The Reynolds number for poiseuille flow was first instroduced in the chapter 2 of theory.  

After the process of dimensionization it is proven to be:  

        
     

       
 

          

      

 

 
        

Since the value of the average velocity as well as parameter    are different for every 

simulation, the Reynolds number cannot be assigned with a specific value. That formulation 

is mainly out of use, as it represents some sort of an effective Reynolds number (dynamically 

adjusted, as the parameter    is involved). Due to the fact that the studied cases represent 

a fully developed, steady state, laminar flow, the hydrodynamically formulated Reynolds 

number is much more appreciated. 

   
        

  
    

 
     

         
            

  
 

 
      

     
      

With the objective to showcase any differences or similarities between the two models, an 

effort to use the same fluid material properties was in great need. All simulations were 

executed based on the non-dimensional parameters obtained in chapter 2.   

5.3 Mesh Refinement  

Mesh refinement may be the most crucial part of numerical results acquisition. The main 

purpose lies behind the fact that an increase in the mesh resolution can drastically improve 
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flow characteristics (accurately capture flow attributes). As it has previously been mentioned 

the generated mesh for the case studied was uniformly generated. There are many cases 

that involve multi grading of the mesh with a scaling factor. Besides the fact that many 

simulations have been performed with both meshes, non-significant results were acquired. 

The region that involves the formation of boundary layers is of great importance, due to the 

fact that viscosity phenomena greatly affect the flow characteristics. It is well known that 

the number of elements involved in the generated mesh greatly affect the numerical results. 

That idealized scenario with zero grid spacing is considered to be the finest. In order to find 

the appropriate grid, spatial convergence must be studied.  

The typical case studied, involves the formulation of many meshes with a number of 

elements that gradually increases in the x and y directions. They have all been performed for 

a set of parameters        ,         .             

It is worth mentioning that the mesh density in the z-direction does not affect the results 

since microrotation is given in vectorial form as N=(0, 0, N(y)). 

All the results obtained are graphically represented below: 
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Figure 5.1: Numerical results deviation with regard to exact solution.  

 

 

Figure 5.2: Numerical results deviation with regard to exact solution.  
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Figure 5.3: Numerical results deviation with regard to exact solution.  
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Figure 5.4: Numerical results deviation with regard to exact solution.  

As it is clear, analytical and numerical results tend to coincide as the number of the cells 

increase. For finer meshes, it is obvious that the error between the two sets of results for 

the specific case studied, becomes negligible. Two types of data error, namely relative and 

absolute will be presented for each one the meshes above, using the following: 

                                    

And 

          
      

               

 

   

 

Where  , is the total number of data for both, analytical and numerical results. In other 

words, it is preferably to say that the absolute error is the magnitude formulated, due to the 

difference among the analytical and numerical results. In addition to that, relative error is 

the ratio of absolute error to the magnitude of a specific numerical data point. 

Bearing in mind these two formulas, the final results are summarized in the table below: 

Table 5.1.                                 . 

Mesh                   

20x20                                      

30x30                                      

40x40                                       

50x50                                      

 

As it was expected, all visual observations were confirmed. As the mesh becomes more 

dense, (each of the aforementioned cases consist of 1200, 2700, 4800, 7500 cells 

respectively), absolute as well as relative errors are getting closer to zero. In addition, 

relative error has to be compared to a physical ratio scale in order to be valid. Due to that, it 
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is compared to the magnitude of the microrotational field (    ). It is obvious that is 

adequate small. As a result, the mesh used for the execution of all numerical 

simulations, is the one, with a density of 7500 cells. 

An alternative method used mainly for verification of the results, is affiliated with 

the solution to the volumetric flow rate of the studied poiseuille problem.  

Flow rate of a fluid moving inside a square shaped cross sectional channel, is given 

by the integral of velocity with respect to the area perpendicular to the flow. 

Mathematically is presented by the following closed form integral: 

                

Where the closed form integral, represents the cross section area of the channel. Since it is 

well known, that the velocity field is of the form               , the formula above can be 

transformed into: 

                                

 

 

  

  

                                 
 

 

             

Bearing in mind that the only available data are that of the velocity field, a numerical 

approach needs to be established. Among many numerical schemes, Simpson’s 
 

 
 rule was 

used to approximate the integral form (45). Following the steps below we get: 

        
 

 

 
 

 
                              

The term  , denotes the preferable integration step, but also is in agreement with the total 

number of numerical data. It is determined as  
                           

 
 

   

   
 . 
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The main focus of the analysis, orbits around the fact that the problem is solved once again 

for a continuously increasing number of grid elements. Volumetric flow rate acquired by the 

exact data is set as the absolute target value. Three cases of              and        

were graphically illustrated in figures (5.5)-(5.7) respectively.  

 

Figure 5.5: Numerical results deviation with regard to exact solution, for     
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Figure 5.6: Numerical results deviation with regard to exact solution, for        

 

Figure 5.7: Numerical results deviation with regard to exact solution, for        
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It is safe to say that all of the aforementioned results, were compared based on the previous 

reference levels. In many scientific papers, the criterion of acceptance is the same. Values in 

the range of    , of the convergence one, are considered acceptable. Hence, it is obvious, 

that the mesh used mainly consisted of 7500 elements is acceptable. Although, a more 

meticulous investigation, results to a more strict acceptance percentage. 

Despite which one of these two methods will be adopted, it is concluded that the mesh used 

is in great agreement for both.  

5.4 Presentation of Results 

The quantities and the parameters used as independent variables in this examination are 

presented below: 

Table 5.2.                                                                           . 

1st case (Ahmadi) 2nd case (gu=0.001 - L=0.054) 3rd case (ku=0.14 - N=0.99) 

k=0.1 - ku=0.0003 - gu=0.00315 
N=0.301 – k=0.1 – ku=0.003 

L=0.09 - gu=0.000037 

K=0.5 - ku=0.0015 - gu=0.00375 N=0.667 – k=0.8 – ku=0.0024 L=0.08 - gu=0.000046 

K=1 - ku=0.03 - gu=0.0045 N=0.816 – k=2 – ku=0.006 L=0.06 - gu=0.000083 

K=10 - ku=0.03 - gu=0.018 N=0.953 – k=10 – ku=0.03 L=0.04 - gu=0.000187 

K=50 - ku=0.15 - gu=0.078 N=0.995 – k=100– ku=0.3 L=0.02 - gu=0.00075 

K=100 - ku=0.3 - gu=0.3 
 

 

 

Once the mesh has been refined, and the total number of cells fully established, simulated 

cases have to be organized in such a way that the effects of the parameters introduced in 

chapter 2 ( N and L), would be easily identified. In order to succeed that, the one factor at a 

time method was used. Along these lines, all simulations grouped in such way, involving the 

testing of parameters one at a time.  
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5.4.1  Ahmadi formula 

As a starting point a connection between spin gradient   
 
 and vortex    viscosities, was 

used. Proposed in the paper of Ahmadi [22], and simply states that: 

 
 
    

  

 
   

For the purpose of the non-dimensional parameters proposed in the previous chapter 2, a 

correlation between K, L and the above equation can be made. Setting    , gives: 

 
  

  
   

 

 
 

Different results for microrotation and velocity are presented below for a wide range of 

material parameter values.  

 

Figure 5.8. Numerical velocity for different material parameters K.  

 



84 
 

 

 

Figure 5.9. Numerical microrotation for different material parameters K.  

It is clear that an increase of parameter K, respectively decreases the magnitude of the flow 

velocity. The changes are of significant importance in constrast to the results obtained by 

the couette case flow. 

On the other hand, something extraordinary happens to the microrotation field. That 

monotonous behavior described previously does not take place here. As the parameter K 

increases, the magnitude of the microrotation respectively increases, but that suddenly 

changes at a specific point. To fully understand how microrotation responds to that change, 

another figure is presented below.  
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Figure 5.10. Maximum microrotation with respect to different material parameters K 

The answer really lies behind the formula (). An increase in parameter K actually forces 

microrotational effects to be more substantial. Increase in K forces parameter L to decrease, 

reaching that point, where its significance becomes noticeable. A more thoroughly 

investigation of the effects of parameters will be performed in the next steps. Velocity and 

microrotation profiles for each value of the material parameter K, along with the 

corresponding analytical solutions obtained from exact solutions of chapter 2, are presented 

below. 

 

Figure 5.11. Solver and analytical profiles for velocity (a) and microrotation (b), case       

a b 
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Figure 5.12. Solver and analytical profiles for velocity (a) and microrotation (b), case       

 

Figure 5.13. Solver and analytical profiles for velocity (a) and microrotation (b), case     

 

Figure 5.14. Solver and analytical profiles for velocity (a) and microrotation (b), case      

a b 

a b 

a b 
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Figure 5.15. Solver and analytical profiles for velocity (a) and microrotation (b), case      

 

Figure 5.16. Solver and analytical profiles for velocity (a) and microrotation (b), case       

All simulations above, are in complete agreement with the numerical results obtained by 

micropolarFoam solver.  

5.4.2  L constant 

As a second step to the analysis, a discrete examination of the parameters involved will take 

place. Following this procedure, L is set to a constant value, L=0.05 while simulations 

performed for different material parameters K. The effects of vortex viscosity on the fluid, 

will mainly examined, due to the fact that this is the only parameter affecting K, 

since kinematic viscosity is constant. 

 

a b 

a b 
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Figure 5.17. Numerical microrotation for different material parameters K.  

 

As it an clearly be seen, the range of parameter K is the same one as in the previous 

simulations. There is no specific reason for this to happen. Mainly, that range of parameters  

actually provided with presentable results. The order of magnitude of the parameter nr  
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Figure 5.18. Numerical microrotation for different material parameters K.  

 

It is observable the fact that the magnitude of velocity is much wider than that of 

microrotation. A rushed conclusion, is that the effects of material parameter and thus vortex 

viscosity   , have a greater impact on the velocity response than  microrotation. This 

can be partially explained, if the non-dimensional form of the equation of 

momentum is taken into account. With this in mind, examining the last term, it is 

obvious that the parameter N is present.  

Another thing is that an increase of K, actually triggers a decrease in the velocity magnitude. 

A truly fascinating way of describing what really happens is the one that follows. As K 

increases, also dimnsionless parameter N increases, which contributes to the 

microrotational phenomena to become more intense. As a result, particles contained in the 

fluid start rotating with higher angular velocity. A percentage of the actual fluid momentum 

is used to preserve that rotation and hence the total flow velocity decreases.  
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Moving along the same lines, microrotation and velocity profiles for different values of K are 

presented below: 

 

Figure 5.19. Solver and analytical profiles for velocity (a) and microrotation (b), case       

 

Figure 5.20. Solver and analytical profiles for velocity (a) and microrotation (b), case       

 

Figure 5.21. Solver and analytical profiles for velocity (a) and microrotation (b), case     

a b 

a b 

a b 
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Figure 5.22. Solver and analytical profiles for velocity (a) and microrotation (b), case      

 

 

Figure 5.23. Solver and analytical profiles for velocity (a) and microrotation (b), case       

 

As it is clear, numerical and exact results are also in complete agreement 

 

 

 

 

 

a b 

a b 
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5.4.3  N constant 

For the third and final step to the analysis proposed, the effects of the gyration viscosity   , 

was thoroughly investigated. Therefore, dimensionless parameter N was set to be a 

constant, while at the same time all simulations conducted for the parameter L, 

given a wide range of values. 

 

 

Figure 5.24. Numerical microrotation for different material parameters K. 

 

It is actually observable the fact that, a change in the parameter L, have the opposite impact 

on the velocity behavior, since an increase of the L contributes to an increase of its 

magnitude. That change also does not follow the same rate as the one caused by the change 

in the material parameter K.  
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Figure 5.25. Numerical microrotation for different material parameters K.  

 

In addition to the velocity field, it can be seen that an increase in L has also the same effects 

on microrotation. Among these two profiles it is clear that the magnitude of the velocity 

field seem to be a lot more restricted than that of microrotation. From the definition of 

micropolar fluids, it is well known that a part of their velocity originates from the couple 

stress tensor, introduced by the rotational motion of the particles. It is a reasonable 

conclusion that in the one dimensional fluid flow, velocity is affected by a small percentage. 

As it was mentioned above, the magnitude of microrotation seem to be more significant. 

Thus, it is fair to say that the effects of the parameter L, should be more perceptible on 

microrotation rather than velocity fields.  

As it has been performed previously, all microrotation and velocity profiles obtained by the 

corresponding solver, are presented below, in contrast to the analytical ones.  
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Figure 5.26. Solver and analytical profiles for velocity (a) and microrotation (b), case        

 

 

Figure 5.27. Solver and analytical profiles for velocity (a) and microrotation (b), case        

 

 

a b 

a b 

b a 
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Figure 5.28. Solver and analytical profiles for velocity (a) and microrotation (b), case        

 

Figure 5.29. Solver and analytical profiles for velocity (a) and microrotation (b), case        

 

 

Figure 5.30. Solver and analytical profiles for velocity (a) and microrotation (b), case        

 

One more time the agreement between the analytical and numerical data, can be perceived. 

 

 

 

 

b 

b 

a 

a 
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CHAPTER 6  CONCLUSIONS AND FUTURE SCOPE 

6.1 Conclusions  

As described in the present Chapter, Couette and Poiseuille flow models were developed, in 

order to examine the flow behavior of a micropolar fluid, and to test the validity of the 

micropolarFoam solver through comparison with corresponding analytical data. The process 

involved the parametric analysis of two micropolar variables, vortex viscosity (  ) and spin 

gradient viscosity (  ) through several cases. The results were grouped in distinct categories 

and compared with the exact solutions.  

By comparing the numerical and analytical data, a close agreement between them was 

observed for all cases. Thus, the solver proved valid in predicting the material behavior, for 

both flow types, and can be trusted for simulating analogous cases. 

Based on the parametric analysis, for Couette flow, it was concluded that both vortex 

viscosity and spin gradient viscosity have a significant effect on flow behavior. Specifically, 

both an increase in parameter    and a decrease in parameter   , resulted in higher 

absolute values of microrotation. The velocity profile was in turn affected and, especially for 

microrotation values exceeding              , exhibited a curved sigmoid profile. A 

shear stress analysis of this attribute showcased the non-Newtonian behavior of the fluids 

examined. 

Similarly for poiseuille flow the effects of the aforementioned variables are also taking place 

in both velocity as well as microrotation profiles. More precisely, increasing in both vortex 

viscosity   , as well as spin gradient viscosity   , contributes to a decrase of the velocity 

magnitude. In contrast to what was previously mentioned, microrotation profile exhibits a 

unique behavior. Mainly, an increase in vortex viscosity causes also microrotation magnitude 
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to increase. Last but far from least, a decrease in spin gradient viscosity causes 

microrotational effects to be more pronounced. 

6.2 Implications for future research 

Based on the above conclusions, and considering the limitations of the study, future 

investigations can be proposed, aiming to a more profound and complete understanding of 

the micropolar fluid behavior: 

 Complete study of the the bell shaped velocity profile acquired, due to the increase 

of couple stress parameter L, is of great interest. 

 Focused analysis of the Couette flow sigmoid velocity response is required, as well 

as an accompanying shear stress examination.  

 Experimental results on real micropolar fluids could also aid in the confirmation of 

the observed phenomena. 

 The micropolarFoam solver provides the option of studying micropolar fluid flow 

involving thermal aspects. This characteristic was not included in the present 

project, thus it can form the basis for a future work.  

 Also, the analysis of microropolar flow under the influence of a magnetic field, is a 

field of great importance. In order to fulfill that goal equations of conservation ought 

to be transformed including Ampere’s, Faraday’s  and Ohm’s law. 

 Another non-considered attribute of the micropolar fluid flow is the microrotation 

boundary condition. The full implementation of a Rees and Basson type boundary 

condition on the curved velocity profiles, as well as the derivation of an exact model 

describing poiseuille flow response, with regard to that change on the boundary, 

could be the objective for a future study.  
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