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Synopsis 

 

The current work presents briefly, the methodology of Model Reduction process, 

utilizing firstly, the component mode synthesis techniques to carry out the re-analyses 

efficiently in a substantially reduced space of generalized coordinates using exact 

component modes and characteristic interface modes computed only once from a 

reference finite element model, and subsequently implementing an enhanced 

substructure coupling technique in the context of complex simulation based problems.  

The rest of the thesis demonstrates the computational implementation of the 

aforementioned techniques and evaluates their practical accuracy and efficiency as far 

as computational effort, time and divergence in results are concerned. 
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1 Introduction 

 

1.1   Motive and background of the current thesis 

 

The first incentive of this work is to present in a summarized but inclusive way the 

proposed Model Reduction method, in the context of complex simulation based 

problems. For this purpose both the original formulation as well as an enhanced one are 

examined. 

Component mode synthesis techniques are proposed to carry out the re-analyses 

efficiently in a substantially reduced space of generalized coordinates using exact 

component modes and characteristic interface modes computed only once from a 

reference FE mode.  

The enhanced technique of Static Correction is derived by first considering explicitly 

the effect of higher order substructural modes in the definition of reduced-order models. 

Examining the static solution of those substructural modes, in other words, the fact that 

high frequency modes react essentially in a static manner when excited by low 

frequencies, produces a drastic reduction in computational effort. The model reduction 

is achieved efficiently, without compromising the accuracy of the results and 

computational efforts are reduced by more than two orders of magnitude. 

The second incentive of the project is to explore and cite the effectiveness and accuracy 

in results, of those techniques while implemented computationally. For this purpose, 

two softwares, with the ability to interchange vital structural information, Matlab and 

Comsol, as well as a well-defined structure, were utilized. 
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1.2 Organization of the present thesis 

 

As far as the rest of the project is concerned it is divided in three sections which occupy 

the chapters 2 to 5.  

In Chapter 2 the basic structural model is introduced and a class of model reduction 

techniques known as component mode synthesis or substructure coupling for dynamic 

analysis is briefly reviewed. 

In Chapter 3 the standard formulation of the model reduction method involving 

component mode synthesis technique using fixed normal interface modes and interface 

constrained modes, is demonstrated. 

In Chapter 4 the enhanced formulation of model reduction method, using substructural 

coupling and utilizing the static correction is briefly cited and evaluated as far as 

computational saving and accuracy of results is concerned. 

In Chapter 5 the results of the computational implementation of the above methods on 

a rudimentary as well as a well-defined model are presented with a brief evaluation of 

their accuracy and fluctuation according to a specific input. 

The appendix includes a user’s guide on how to successfully utilize the tools of Comsol 

Multiphysic© and the commands of MatLab© in order to create and study a structure 

and extract the data needed in the most effective way through model reduction. 
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1.3 Synoptic bibliographic overview 

Structural model updating methods [1–3], are used to link mathematical models, 

usually discretized finite element (FE) models, with experimental data. Structural 

model parameter estimation problems based on identified modal characteristics (modal 

frequencies and mode shapes), are often formulated as weighted least-squares problems 

[2, 4–8] in which metrics, measuring the residuals between measured and model 

predicted modal characteristics, are build up into a single weighted residuals metric 

formed as a weighted average of the multiple individual metrics using weighting 

factors. Standard optimization techniques are then used to find the optimal values of 

the structural parameters that minimize the single weighted residuals metric. Due to 

model error and measurement noise, the results of the optimization are affected by the 

values assumed for the weighting factors. The model updating problem has also been 

formulated as a multi-objective optimization problem [9, 10] that allows the 

simultaneous minimization of the multiple metrics, eliminating the need for using 

arbitrary weighting factors for weighting the relative importance of each metric in the 

overall measure of fit. 

The multi-objective parameter estimation methodology provides multiple Pareto 

optimal structural models. The Normal Boundary Intersection algorithm [11], is used 

to compute the Pareto optimal solutions.  

Bayesian techniques [12,13] have also been proposed to quantify the uncertainty in the 

parameters of a FE model, select the best model class from a family of competitive 

model classes [14,15], as well as propagate uncertainties for robust response and 

reliability predictions [16]. 
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The Bayesian tools for identifying uncertainty models as well as offering robust 

prediction analyses are Laplace methods of asymptotic approximation and more 

accurate stochastic simulation algorithms (SSA) such as Markov Chain Monte Carlo 

(MCMC) [17] , Transitional MCMC [18]  and Delayed Rejection Adaptive Metropolis 

[19]. The optimal structural models and their uncertainties resulting from model 

updating methods can be used for improving the model response and reliability 

predictions [16, 20], for assessing structural health and identifying structural damage 

[5–8] and for improving effectiveness of structural control devices. 

The optimization and SSA algorithms require a moderate to very large number of FE 

re-analyses to be performed over the space of model parameters. Consequently, the 

computational demands depend highly on the number of FE re-analyses and the time 

required for performing a FE analysis. In addition, gradient-based optimization 

algorithms require the estimation of the gradients of the residuals which may also add 

substantially to the computational effort. For high fidelity FE models involving 

hundreds of thousands or even million DOFs, the computational demands may be large 

or even excessive.  

Specifically, component mode synthesis (CMS) techniques are widely used to carry out 

system analyses in a significantly reduced space of generalized coordinates. Such 

techniques have been incorporated in methods for uncertainty management in structural 

dynamics to efficiently handle the computational effort in system re-analyses that arise 

from FE model variations caused by variations in the values of the uncertain 

parameters. Such variations in the values of the model parameters require that the 

computation of the component and/or system modes be repeated in each re-analysis.  
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As a result, a computational overhead arises at component level which may be 

substantial. 

The main objective in methods involving re-analyses of models with varying properties 

is to avoid, to the extent possible, the re-computation of the eigenproperties at the 

component or system level. Perturbation techniques provide accurate results locally for 

small variations of the model parameters about a reference structure. To improve the 

accuracy of the approximations for large variation of the model parameters, most efforts 

have been concentrated in approximating the modes at the component or system level 

in terms of the modes of a family of structures corresponding to support points in the 

parameter space.  Linear and quadratic interpolations of the structural mass and stiffness 

matrix and the matrix of eigenvectors at the component and/or system level using 

support points in the larger region in the parameter space have been successfully used 

for model updating of large-order models of structures. Similar methods have been 

developed for damage detection at component level. Such techniques proved to be quite 

effective in substantially reducing the computational demands in problems requiring 

system re-analyses. 

Finally, an appendix is created in order to comprehensively guide an average software 

user on how to exploit the model reduction technique for their own benefit, using the 

MatLab© software combined with the commercial software package COMSOL 

Multiphysics ©, which is used for developing and defining the structure and ultimately 

performing a finite element analysis on it in order to produce necessary data. 
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2 Model Reduction Techniques for Structural Dynamic Analyses 

 

In this chapter the basic structural model defining a general class of dynamic systems 

and its parameters are presented.  The convenience and efficiency of implementing a 

model reduction technique compared to an entire finite element analysis is also 

demonstrated and then further explained through the process of substructure coupling. 

Substructure coupling involves dividing the structure into a number of linear and 

nonlinear substructures, obtaining reduced-order models of the linear substructures and 

then assembling a reduced-order model of the entire structure. 

2.1 Basic Structural Model 

Attention is focused on a general class of structural dynamical systems with localized 

nonlinearities characterized by multi-degrees of freedom models satisfying the  

equation of motion: 

 

𝑀𝑢̈(𝑡) + 𝐶𝑢̇(𝑡) + 𝐾𝑢(𝑡) =  𝑓𝑁𝐿(𝑢(𝑡), 𝑢̇(𝑡), 𝑦(𝑡)) + 𝑓(𝑡)                     (1) 

 

where 𝑢(𝑡) denotes the displacement vector of dimension n,  𝑢̇(𝑡) the velocity vector, 

𝑢̈(𝑡) the acceleration vector,  𝑓𝑁𝐿(𝑢(𝑡), 𝑢̇(𝑡), 𝑦(𝑡)) the vector of non-linear restoring 

forces, 𝑦(𝑡) the vector of a set of variables which describes the state of the nonlinear 

components,  and 𝑓(𝑡) the external force vector.  The matrices M, C, and K describe 

the mass, damping, and stiffness, respectively. The evolution of the set of variables  

𝑦(𝑡) is described by an appropriate nonlinear model which depends on the nature of the 

nonlinearity. The equation of motion for the displacement vector  𝑢(𝑡)  and the equation 
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for the evolution of the set of variables 𝑦(𝑡) constitute a system of coupled non-linear 

equations. This characterization of the dynamical system allows the modeling of 

different types of commonly used nonlinearities such as hysteresis, degradation, 

plasticity, and other types of nonlinearities. 

For the dynamic characterization of this class of structural dynamical systems it is often 

inefficient to carry out a finite element analysis of the entire model. In fact, in many 

dynamic analysis problems the lower frequencies and the corresponding modes tend to 

dominate the dynamic behavior of the structure.  It is also common for complex systems 

the component structures to be analyzed independently, which renders it more 

convenient to perform a dynamic analysis at substructure level.  

In this framework, model reduction techniques have been developed as a practical and 

efficient tool for modeling and analyzing the dynamic of complex structural systems. 

The objective of model reduction techniques is to obtain reduced-order models that run 

significantly faster than the original high-fidelity model, incorporating the important 

dynamics of the system analyzed so that the analyses from the reduced-order models 

are sufficiently accurate.  

 

2.2 Substructure modes and coupling 

Substructure coupling involves dividing the structure into a number of linear and 

nonlinear substructures, obtaining reduced-order models of the linear substructures and 

then assembling a reduced-order model of the entire structure. Specifically, after the 

division of the structure into substructures the model reduction technique involves two 

basic steps: (a) definition of sets of substructure modes and (b) coupling of the 
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substructure modes models, to form a reduced-order system model.  Substructure 

modes include normal, constraint, rigid-body and attachment modes. 

Depending on the substructure modes considered, substructuring can be grouped into 

fixed-interface, free-interface and loaded-interface methods. Among the previous 

methods, the Craig-Bampton method, which is a fixed-interface technique, is widely 

used for its simplicity and computational stability.  In the approach used in the present 

work, the substructure modes correspond to fixed-interface normal modes and interface 

constraint modes. In this manner, the dynamic behavior of the linear components of the 

structural system is described by a set of normal modes of individual substructures plus 

a set of constraint modes that account for the coupling at each interface where the 

substructures are connected. 

The presented method  below exploits the fact that in FE model parameterization 

schemes, the stiffness matrix of the structure often depends linearly on the parameters 

of the model and also that a parameter usually represents a global property (e.g. the 

modulus of elasticity, E) of a substructure. The division of the structure into 

components is then guided by the FE parameterization scheme so that the stiffness 

matrix that arise for each one of the introduced components to depend linearly on only 

one of the parameters to be estimated. 

In this case the fixed-interface and constraint modes of the components for any value 

of the model parameters can be obtained directly from the fixed-interface and constraint 

modes corresponding to a single reference FE model, avoiding re-analyses at 

component level. Additional substantial reductions in computational effort are also 

introduced by reducing the number of interface DOFs, using characteristic interface 

modes through a Ritz coordinate transformation. The repeated solutions of the 
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component and interface eigen-problems are avoided, reducing drastically the 

computational demands in FE formulations, without compromising at a great extent the 

solution accuracy. It is also shown that the linear expansions of the original mass and 

stiffness matrices in terms of the structural parameters are preserved for the reduced 

mass and stiffness matrices. Thus, the re-assembling of the reduced system matrices 

from the original matrices is also avoided in the execution of the system re-analyses. 

The only time consuming operation left is the re-analysis of the eigenproblem of the 

reduced-order model.  
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3 Component mode synthesis (Analysis of the basic method implemented) 

In this chapter component mode synthesis techniques are examined and proposed to 

carry out the re-analyses efficiently in a substantially reduced space of generalized 

coordinates using exact component modes and characteristic interface modes computed 

only once from a reference FE model. The re-assembling of the reduced-order system 

matrices from components and interface modes is avoided. 

 

3.1 Formulation using fixed-interface and constrained interface modes 

In CMS techniques, a structure is divided into several components. For each 

component, the unconstrained DOFs are partitioned into the boundary DOFs, denoted 

by the subscript b and the internal DOFs, denoted by the subscript i. The boundary 

DOFs of a component include only those that are common with the boundary DOFs of 

adjacent components, while the internal DOFs of a component are not shared with any 

adjacent component. The stiffness and mass matrices  𝐾(𝑠) ∈ 𝑅𝑛(𝑠) 𝑥 𝑛(𝑠) and 𝑀(𝑠) ∈

𝑅𝑛(𝑠) 𝑥 𝑛(𝑠)of a component are partitioned to blocks related to the internal and boundary 

DOFs as follows: 

𝑀(𝑠) = [
𝑀𝑖𝑖

(𝑠)
𝑀𝑖𝑏

(𝑠)

𝑀𝑏𝑖
(𝑠)

𝑀𝑏𝑏
(𝑠)

]                   (2) 

 

𝐾(𝑠) = [
𝐾𝑖𝑖

(𝑠)
𝐾𝑖𝑏

(𝑠)

𝐾𝑏𝑖
(𝑠)

𝐾𝑏𝑏
(𝑠)

]                     (3) 
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where the indices i and b are sets containing the internal and boundary DOF of the 

component. According to the Craig–Bampton fixed-interface mode method, the Ritz 

coordinate transformation I mode method, the Ritz coordinate transformation  𝑢(𝑠) =

𝑢𝑖
(𝑠)𝑇 ,   𝑢𝑏

(𝑠)𝑇 = 𝛹(𝑠) 𝑝(𝑠) , where 

 

𝛹(𝑠) = [
𝛷𝑖𝑘

(𝑠)
𝛹𝑖𝑏

(𝑠)

0𝑏𝑘
(𝑠)

𝐼𝑏𝑏
(𝑠)

]                  (4) 

 

is used to relate the physical displacement coordinates 𝑢(𝑠) ∈ 𝑅𝑛(𝑠) of the component 

to the generalized coordinates 𝑝(𝑠) = [  𝑝𝑘
(𝑠)𝑇 , 𝑝𝑏

(𝑠)𝑇
] ∈ 𝑅𝑛(𝑠)  ,  𝑛̂(𝑠) = 𝑛𝑘

(𝑠)
+ 𝑛𝑏

(𝑠)
 

using the kept fixed-interface normal modes 𝛷𝑖𝑘
(𝑠)

∈ 𝑅𝑛𝑖(𝑠) 𝑥 𝑛𝑘(𝑠)     satisfying the eigen-

problem: 

𝐾𝑖𝑖
(𝑠)

𝛷𝑖𝑘
(𝑠)

= 𝑀𝑖𝑖
(𝑠)

𝛷𝑖𝑘
(𝑠)

𝛬𝑘𝑘
(𝑠)

             (5) 

 

and the interface constrained modes  𝛹𝑖𝑏(𝑠) ∈ 𝑅𝑛𝑖(𝑠) 𝑥 𝑛𝑏(𝑠) given by  

 

𝛹𝑖𝑏
(𝑠)

= −[𝐾𝑖𝑖
(𝑠)

]−1𝐾𝑖𝑏
(𝑠)

                 (6) 

 

The matrix 𝛬𝑘𝑘
(𝑠)

= 𝑑𝑖𝑎𝑔 (𝜆1
(𝑠)

, … , 𝜆
𝑛𝑘

(𝑠)
(𝑠)

) ∈ 𝑅𝑛𝑘(𝑠) 𝑥 𝑛𝑘(𝑠) is diagonal containing the 

eigenvalues   𝜆𝑗
(𝑠)

,   𝑗 = 1, … , 𝑛𝑘
(𝑠)

, of the fixed-interface normal modes.   
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The fixed interface modes 𝛷𝑖𝑘
(𝑠)

 are considered to be mass normalized satisfying 

 

𝛷𝑖𝑘
(𝑠)𝑇

𝑀𝑖𝑖
(𝑠)

𝛷𝑖𝑘
(𝑠)

= 𝐼𝑘𝑘
(𝑠)

                   𝛷𝑖𝑘
(𝑠)𝑇

𝐾𝑖𝑖
(𝑠)

𝛷𝑖𝑘
(𝑠)

= 𝛬𝑘𝑘
(𝑠)

          (7) 

 

The components’ mass and stiffness matrices 𝑀̂(𝑠) ∈  𝑅𝑛̂(𝑠)𝑥 𝑛̂(𝑠)
 and 𝐾̂(𝑠) ∈  𝑅𝑛̂(𝑠)𝑥 𝑛̂(𝑠)

   

in the new reduced set of generalized coordinates   𝑝(𝑠)    are transformed as follows: 

 

𝑀̂(𝑠) = 𝛹(𝑠)𝑇𝑀(𝑠)𝛹(𝑠)                𝐾̂(𝑠) = 𝛹(𝑠)𝑇𝐾(𝑠)𝛹(𝑠)        (8) 

 

with the partitions for the component mass matrices: 

𝑀̂𝑘𝑘
(𝑠)

∈  𝑅𝑛𝑘̂
(𝑠)𝑥 𝑛𝑘̂

(𝑠)
 

𝑀̂𝑘𝑏
(𝑠)

∈  𝑅𝑛𝑘̂
(𝑠)𝑥 𝑛𝑏̂

(𝑠)
 

𝑀̂𝑏𝑏
(𝑠)

∈  𝑅𝑛𝑏̂
(𝑠)𝑥 𝑛𝑏̂

(𝑠)
 

and stiffness matrices: 

𝐾̂𝑘𝑘
(𝑠)

∈   𝑅𝑛𝑘̂
(𝑠)𝑥 𝑛𝑘̂

(𝑠)
 

𝐾𝑘𝑏
(𝑠)

∈   𝑅𝑛𝑘̂
(𝑠)𝑥 𝑛𝑏̂

(𝑠)
 

𝐾𝑏𝑏
(𝑠)

∈ 𝑅𝑛𝑏̂
(𝑠)𝑥 𝑛𝑏̂

(𝑠)
 

Given respectively by: 
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𝑀̂𝑘𝑘
(𝑠)

= 𝐼𝑘𝑘
(𝑠)

 

 

𝑀̂𝑘𝑏
(𝑠)

= 𝑀̂𝑏𝑘
(𝑠)𝑇

=  𝛷𝑖𝑘
(𝑠)𝑇

𝑀𝑖𝑖
(𝑠)

𝛹𝑖𝑏
(𝑠)

+  𝛷𝑖𝑘
(𝑠)𝑇

𝑀𝑖𝑏
(𝑠)

 

                                                                                                                                     (9) 

𝑀̂𝑏𝑏
(𝑠)

= ( 𝛹𝑖𝑏
(𝑠)𝑇

𝑀𝑖𝑖
(𝑠)

+ 𝑀̂𝑏𝑖
(𝑠)

)𝛹𝑖𝑏
(𝑠)

+  𝛹𝑖𝑏
(𝑠)𝑇

𝑀𝑖𝑏
(𝑠)

+ 𝑀𝑏𝑏
(𝑠)

 

And 

𝐾̂𝑘𝑘
(𝑠)

= 𝛬𝑘𝑘
(𝑠)

 

 

𝐾̂𝑘𝑏
(𝑠)

= 𝐾̂𝑏𝑘
(𝑠)𝑇

= 0𝑘𝑏
(𝑠)

 

                                                                                                                                  (10) 

𝐾̂𝑏𝑏
(𝑠)

= 𝐾𝑏𝑏
(𝑠)

− 𝐾𝑏𝑖
(𝑠)

[𝐾𝑖𝑖
(𝑠)

]−1𝐾𝑖𝑏
(𝑠)

= 𝐾𝑏𝑏
(𝑠)

+  𝛹𝑖𝑏
(𝑠)𝑇

𝐾𝑖𝑏
(𝑠)

 

 

In the substructure assembly process, the vector   

𝑝 = [𝑝(1)𝑇 , … , 𝑝(𝑁𝑐)𝑇]𝑇 ∈  𝑅𝑛𝑝 ,   𝑛𝑝 = ∑ 𝑛̂(𝑠)𝑁𝑐
𝑠=1 , of the generalized coordinates for all 

Nc components is introduced. 

 

Letting   𝑞 = [𝑝𝑘
(1)𝑇 , … , 𝑝𝑘

(𝑁𝑐)𝑇 , 𝑢𝑏
𝑇]

𝑇
∈  𝑅𝑛𝑞   , be vector that contains the independent 

generalized coordinates consisting of the fixed-interface modal coordinates 𝑝𝑘
(𝑠)

 for 
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each component and the physical coordinates 𝑢𝑏
𝑇 = [𝑢𝑏

(1)𝑇 , … , 𝑢𝑏
(𝑁𝑏)𝑇]

𝑇

  at the Nb 

interfaces, where 𝑢𝑏
(𝑙)

 contains the displacements at the DOF of the interface l , the 

following transformation is introduced: 

             𝑝 = 𝑆𝑞                    (11) 

 

where  the component coupling matrix  𝑆 ∈  𝑅𝑛𝑝 𝑥 𝑛𝑞  is a matrix of zeros and ones that 

couples the independent generalized coordinates q of the reduced system with the 

generalized coordinates of each component.  

 

The assembled Craig–Bampton stiffness matrix 𝐾̂𝐶𝐵 ∈  𝑅𝑛𝑞 𝑥 𝑛𝑞  and mass matrix 

𝑀̂𝐶𝐵 ∈  𝑅𝑛𝑞 𝑥 𝑛𝑞    for the reduced vector q of generalized coordinates are given by: 

     

 𝐾̂𝐶𝐵 = 𝑆𝑇 [
𝐾̂(1) 0 0

0 ⋱ 0
0 0 𝐾̂(𝑁𝑐)

 ] 𝑆 = ∑ 𝐹𝑠
𝑁𝑐
𝑠=1 [𝐾̂(𝑠)]                      (12) 

𝑀̂𝐶𝐵 = 𝑆𝑇 [
𝑀̂(1) 0 0

0 ⋱ 0
0 0 𝑀̂(𝑁𝑐)

 ] 𝑆 = ∑ 𝐹𝑠
𝑁𝑐
𝑠=1 [𝑀̂(𝑠)]                      (13) 

 

where the new mathematical operator 𝐹𝑠[𝐾̂(𝑠)]  is conveniently    introduced by the 

second part of equation (12) as: 
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𝐹𝑠[𝐾̂(𝑠)] = 𝑆𝑇𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑎𝑔[0𝑛̂(1)𝑛̂(1) , … , 0𝑛̂(𝑠−1)𝑛̂(𝑠−1) , 𝐾̂(𝑠), 0𝑛̂(𝑠+1)𝑛̂(𝑠+1) , … , 0𝑛̂(𝑁𝑐)𝑛̂(𝑁𝑐)]𝑆     (14) 

 

Solving the reduced eigen-problem: 

 

𝐾̂𝐶𝐵𝑄 = 𝑀̂𝐶𝐵𝑄𝛬                           (15) 

 

associated with the reduced mass and stiffness matrices   𝑀̂𝐶𝐵  and   𝐾̂𝐶𝐵 , respectively, 

one obtains the modal frequencies  𝛬 = 𝑑𝑖𝑎𝑔(𝜔2) ∈ 𝑅𝑛𝑞 𝑥 𝑛𝑞   and the corresponding 

mode shape matrix 𝑄 = [𝑞̂1, … , 𝑞̂𝑛𝑞
]  ∈ 𝑅𝑛𝑞𝑥 𝑛𝑞 of the reduced system. 

 

3.2 Reduction of the interface DOF using characteristic interface modes 

Further reduction in the generalized coordinates can be achieved by replacing the 

interface DOF by a reduced number of characteristic interface modes. For this, the 

physical displacement coordinates 𝑢𝑏
(𝑙)

∈ 𝑅𝑚𝑏(𝑙)  at an interface l between two 

components are represented in terms of the generalized coordinates 𝜁(𝑙) ∈ 𝑅𝑚𝑘(𝑙) of the 

interface by the Ritz coordinate transformation 

  

                                           𝑢𝑏
(𝑙)

= 𝑉(𝑙)𝜁(𝑙)                              (16) 
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𝑙 = 1, … , 𝑁𝑏, where the columns of  𝑉(𝑙) ∈ 𝑅𝑚𝑏(𝑙)𝑥𝑚𝑘(𝑙) form the reduced basis of the 

𝑚𝑏(𝑙)-dimensional space and  𝑚𝑘(𝑙) is the number of elements in the basis.   

The following transformation from the CMS generalized coordinates 𝑞 to the reduced-

order model generalized coordinates 

𝑢 = [𝑝𝑘
(1)𝑇 , … , 𝑝𝑘

(𝑁𝑠)𝑇 , 𝜁(1)𝛵, … . , 𝜁(𝑁𝑏)𝑇]
𝑇

∈ 𝑅𝑛𝑟 

 𝑛𝑟 = ∑ 𝑛𝑘
(𝑠)

𝑁𝑐

𝑠=1

+ ∑ 𝑚𝑘
(𝑙)

𝑁𝑏

𝑙=1

 

that contains the kept fixed interface modes and the kept characteristic interface modes, 

is introduced as: 

                                𝑞 = 𝑉𝑢                            (17) 

where 𝑉 = 𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑎𝑔(𝐼
𝑛𝑘

(1) , … , 𝐼
𝑛𝑘

(𝑁𝑐) , 𝑉(1), … , 𝑉(𝑁𝑏)) ∈ 𝑅𝑛𝑞 𝑥 𝑛𝑟 and  𝐼𝑛 denotes the 

identity matrix of dimension n.  Using (17), the final reduced mass and stiffness 

matrices take the form:  

 

𝐾̂ = 𝑉𝑇𝐾̂𝐶𝐵𝑉       and   𝑀̂ = 𝑉𝑇𝑀̂𝐶𝐵𝑉        (18) 

and the resulting eigenvalue problem at the reduced system level becomes: 

𝐾̂𝛤 = 𝛭̂𝛤𝛬                           (19) 

 

where the diagonal matrix K contains the modal frequencies and the matrix 𝛤 ∈

𝑅𝑛𝑟 𝑥 𝑛𝑟 contains the corresponding 𝑛𝑟 mode shapes of the reduced system. 
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The kept characteristic interface modes of the matrix 𝑉(𝑙) satisfy the eigen-problem: 

  

𝐾̂𝑏̂𝑙𝑏̂𝑙

𝐶𝐵 𝑉(𝑙) = 𝑀̂𝑏̂𝑙𝑏̂𝑙

𝐶𝐵 𝑉(𝑙)𝛺(𝑙)                 (20) 

 

where 𝑏𝑙   is the index set denoting the positions of the generalized coordinates 𝑢𝑏
(𝑙)

∈

𝑅𝑚𝑏(𝑙)
 in the vector q corresponding to the interface, while the stiffness and mass 

matrices   𝐾̂𝑏̂𝑙𝑏̂𝑙

𝐶𝐵  ∈ 𝑅𝑚𝑏(𝑙)𝑥𝑚𝑏(𝑙)    and     𝑀̂𝑏̂𝑙𝑏̂𝑙

𝐶𝐵 ∈ 𝑅𝑚𝑏(𝑙)𝑥𝑚𝑏(𝑙)  in  (20)  are the partitions 

of the reduced stiffness and mass matrices  𝐾̂𝐶𝐵 and 𝑀̂𝐶𝐵  associated with the 

coordinates 𝑢𝑏
(𝑙)

 at the l-th interface. 

These partitions are easily obtained from the corresponding partitions of the stiffness 

and mass matrices of the components connecting to the interface l in the form: 

 

𝐾̂𝑏̂𝑙𝑏̂𝑙

𝐶𝐵 = ∑ 𝐾̂𝑏𝑙𝑏𝑙

(𝑠)
𝑠∈𝐶𝑙

               and             𝑀̂𝑏̂𝑙𝑏̂𝑙

𝐶𝐵 = ∑ 𝑀̂𝑏𝑙𝑏𝑙

(𝑠)
𝑠∈𝐶𝑙

                 (21) 

 

Where 𝐶𝑙 is the integer set that contains the components that connect  

to the interface l and  𝑏𝑙 , is the index set denoting the positions of the  𝑢𝑏
(𝑙)

∈ 𝑅𝑚𝑏(𝑙)
  

corresponding to the interface l   in the vector  𝑢(𝑠)  of the component s. 
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3.3 Model updating using CMS 

The CMS procedure is integrated into the FE model updating. The linear dependence 

of the mass and stiffness matrices on the parameter θ, implies that at the component 

level the mass and stiffness matrices as well as their partitions admit a similar 

representation, that is: 

𝐾(𝑠) = 𝐾0
(𝑠)

+ ∑ 𝛫𝑗
(𝑠)

𝜃𝑗

𝑁𝜃

𝐽=1

 

                                                                                                                      (22) 

𝑀(𝑠) = 𝑀0
(𝑠)

+ ∑ 𝑀𝑗
(𝑠)

𝜃𝑗

𝑁𝜃

𝐽=1

 

 

Attention is focused on two special cases of the parameterization for a component s.  

 

In the first case it is assumed that the mass and stiffness matrix of a component s do 

not depend on the model parameters in 𝜃.  In this case,  𝛫(𝑠) = 𝐾0
(𝑠)

   and   𝑀(𝑠) = 𝑀0
(𝑠)

.  

The component fixed-interface and constrained modes are independent of the parameter 

values. Only a single analysis is required to estimate the fixed-interface and constrained 

modes for the particular component s. These component modes are computed once for 

a reference model and are then used in the iterations or TMCMC sampling schemes 

involved in model updating. 

The computational savings arise from the fact that the eigenvalue  problem to compute 

the eigenvalues and mode shapes of the kept interface modes 𝛷𝑖𝑘
(𝑠)

 as well as the solution  
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of the linear system to compute the constrained interface modes 𝛹𝑖𝑏
(𝑠)

 for a component 

s  are  not repeated at each iteration or TMCMC sampling point. 

 

In the second case the stiffness matrix of a structural component s depends only on 

one model parameter,  say   𝜃𝑗 ,  in the parameter vector  θ,  while the mass matrix  

𝛭(𝑠) = 𝑀0
(𝑠)

 is constant independent of  θ. This case is enforced by dividing the 

structure into components based on the parameters introduced in the FE model for each 

physical substructure. 

Let  𝛥𝑗 be the set of components that depend on the j-th  variable  𝜃𝑗 .  

The stiffness matrix of a component s ∈ 𝛥𝑗  takes the form: 

 

     𝐾(𝑠) = 𝐾
(𝑠)

𝜃𝑗                                  (23) 

 

Substituting the partitions    𝐾𝑖𝑖
(𝑠)

= 𝐾𝑖𝑖

(𝑠)
𝜃𝑗     and   𝑀𝑖𝑖

(𝑠)
= 𝑀0,𝑖𝑖

(𝑠)
   in (12), it is readily 

derived that the matrix of the kept eigenvalues and eigenvectors of the component 

fixed-interface modes are given with respect to the parameter 𝜃𝑗  in the form: 

𝛬(𝑠) = 𝛬
(𝑠)

𝜃𝑗         and      𝛷𝑖𝑘
(𝑠)

= 𝛷𝑖𝑘

(𝑠)
                          (24) 

 

where the matrices   𝛬
(𝑠)

 and    𝛷𝑖𝑘

(𝑠)
  are solutions of the following eigenproblem: 
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       𝐾𝑖𝑖

(𝑠)
𝛷𝑖𝑘

(𝑠)
= 𝑀0,𝑖𝑖

(𝑠)
𝛷𝑖𝑘

(𝑠)
𝛬𝑘𝑘

(𝑠)
                          (25) 

 

and thus they are independent of the values of  𝜃𝑗  or the FE model variations at the 

component level due to changes in the model parameter. Also using the stiffness matrix 

partitions  𝐾𝑖𝑖
(𝑠)

= 𝐾𝑖𝑖

(𝑠)
𝜃𝑗   and   𝐾𝑖𝑏

(𝑠)
= 𝐾𝑖𝑏

(𝑠)
𝜃𝑗 ,  the constrained modes are given by the 

constant matrix: 

 

𝛹𝑖𝑏
(𝑠)

= −[𝐾𝑖𝑖
(𝑠)

]
−1

𝐾𝑖𝑏
(𝑠)

= − [𝐾𝑖𝑖

(𝑠)
]

−1

𝐾𝑖𝑏

(𝑠)
                (26) 

 

also independent of the values of the parameter 𝜃𝑗  or FE model variations at component 

level.  Thus, a single component analysis is required to provide the exact estimate of 

the fixed-interface modes from (24) and the constrained modes from (26) for any value 

of the model parameter  𝜃𝑗  . 

 

Substituting into the reduced mass and stiffness matrices  (9) and  (10) the partitions of 

the stiffness matrix  (23), the eigenproperties  (22)  and the interface constraint modes  

(26) of the component s, it is straightforward to verify that the reduced stiffness matrix 

of component s takes the form: 

 

𝐾(𝑠) = 𝐾̂
(𝑠)

𝜃𝑗            (27) 
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where the reduced stiffness matrix   𝐾̂
(𝑠)

and the reduced mass matrix 𝛭̂(𝑠) are constant 

matrices, independent of the values of the model parameters θ. 

 

Introduce next the index set R to contain the structural components s that depend on a 

parameter in the vector θ.  Then the set 𝛴 = {1, … , 𝛮𝑐} − 𝛴 contains the component 

numbers for which their properties are constant and independent on the values of the 

parameter vector θ.  Substituting (27) into (12), the stiffness matrix of the Craig–

Bampton reduced system admits the representation: 

 

𝐾̂𝐶𝐵 = 𝐾̂0
𝐶𝐵 + ∑ 𝐾̂𝑗

𝐶𝐵𝑁𝜃
𝑗=1 𝜃𝑗       (28) 

 

 

and the mass matrix is given by 𝛭̂𝐶𝐵 = 𝛭̂0
𝐶𝐵 , where the coefficient matrices 𝐾̂0

𝐶𝐵 and  

𝐾̂𝑗
𝐶𝐵 in the expansion (28) are assembled from the component stiffness matrices, 

defined in (27), by: 

 

𝛫̂0
𝐶𝐵 = ∑ 𝐹𝑠

𝑠∈𝛴

[𝐾̂(𝑠)] 

                                                                                                           (29) 

𝛫̂𝑗
𝐶𝐵 = ∑ 𝐹𝑠

𝑠∈𝛥𝑗

[𝐾̂
(𝑠)

] 
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The sum in the second part of (29) takes into account that more than one components 

s ∈ 𝛥j may depend on the parameter θj. 

It is important to note that the assembled matrices  𝛫̂0
𝐶𝐵  and  𝛫̂𝑗

𝐶𝐵 of the Craig–Bampton 

reduced system in the expansion (28) are independent of the values of θ.  In order to 

save computational time, these constant matrices are computed and assembled once 

and, therefore, there is no need this computation to be repeated during the iterations 

involved in optimization or TMCMC sampling algorithms for model updating due to 

the changes in the values of the parameter vector θ.  

This aforementioned procedure results in substantial computational savings since it 

avoids 

(a)  re-computing the fixed-interface and constrained modes for each component, 

(b)  and assembling the reduced matrices from these components. 

The formulation guarantees that the reduced system is based on the exact component 

modes for all values of the model parameters. 

 

Special attention should be given when the size of the reduced mass and stiffness 

matrices are dominated by a large number of interface DOFs. In this case, the 

coordinate transformation (16) can be used to further reduce the number of interface 

DOFs for one or more interfaces. Using (21), it is clear that the stiffness matrix of the 

eigenvalue problem involved in (20) depends on the parameters associated with the 
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components that connect to the interface l.  The variability of these parameters affects 

the characteristic interface modes 𝑉(𝑙) which are functions of these parameters.  

Exact estimates of the characteristic interface modes in iterative or TMCMC sampling 

algorithms can only be obtained by repeatedly solving (20) for each different value of 

the respective parameters. For large number of DOF at the interface, such re-analysis 

at the interface level may increase substantially the computational demands. 

Interpolation schemes can be used to approximate the characteristic interface modes at 

the interface level in terms of the characteristic interface modes at a number of support 

points in a significantly reduced space of model parameters associated with the 

components that connect to the interface l. 

The choice of constant 𝑉(𝑙) is critical in order to get accurate results with the least 

number of characteristic interface modes over the region of variation of the model 

parameters associated with the interface l.  In FE model updating, the 𝑉(𝑙) can be chosen 

as the eigenvectors of the lowest modes of the eigenvalue problem (20) corresponding 

to a reference model of the structure, avoiding the computational cost involved with the 

repetitive solution of (20) at each iteration or TMCMC sample. This, however, may 

deteriorate the accuracy of the predictions for large variations of the model parameters. 

To improve convergence and maintain the accuracy of the final optimal estimate in 

iterative optimization algorithms, the reduced basis forming  𝑉(𝑙) can be updated every 

few iterations.  Also, to maintain higher level of accuracy in the TMCMC sampling 

algorithm, the reduced basis forming   𝑉(𝑙) can be kept constant within a TMCMC stage, 

with this basis selected to correspond to the most probable model predicted from the 

previous TMCMC stage. Such technique is expected to give sufficiently accurate 

results for the final TMCMC stage. 
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It should be pointed out that the significant savings arising partly from the reduction of 

the size of the eigenvalue problem from n to 𝑛𝑟  in the proposed model reduction 

technique and partly from the fact that the estimation of the component fixed-interface 

modes and the characteristic interface modes need not to be repeated for each iteration 

involved in the optimization or TMCMC sampling algorithms. 

Attention should also be paid on the optimal number of components that should be used 

to represent a substructure with stiffness that depends linearly on a single parameter. 

More components within such substructure introduce extra interface DOFs or 

characteristic interface modes which increase the size and affect the sparsity structure 

of the reduced matrices 𝐾̂  and  𝑀̂.  

The total size of the reduced matrices is also affected by the number of the fixed 

interface modes for all components introduced for the substructure. From the 

computational point of view, the optimal choice of components for such a substructure 

would be to select the number of components and the optimal spatial division which 

will result in a reduced system that requires the least computational time for analysis. 

However, as the number of interface DOFs or characteristic interface modes increases 

by the introduction of more components per substructure, it is unlikely that the resulting 

increase in the size of the reduced matrices be effectively compensated by a decrease 

in the total number of fixed interface modes arising from the multiple components that 

represent the single substructure. Thus, in case where detailed optimal component 

selection studies are not available, the wisest choice is to select a single component per 

substructure. 
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As a final note, it is worth mentioning the treatment of a component in the CMS process 

for the general case for which the component stiffness and mass matrices depends on 

two or more parameters in the vector  𝜃.  In these cases, in order to obtain exact 

estimates of the component modes, the solution of the eigenvalue problems for such a 

component is not avoided. The fixed-interface and characteristic interface modes have 

to be recomputed in each iteration or TMCMC sample involved in the model updating 

procedure and used to form the reduced stiffness and mass matrices of the components. 

This repeated computation, however, is usually confined to a small number of 

components. Interpolation schemes can also be adopted to avoid re-analysis at the 

component or interface level. However, it should be pointed out that the use of 

interpolating schemes for approximating the fixed interface and the characteristic 

interface modes is an open issue and further analyses are required to evaluate the 

effectiveness of such techniques in the general case. 

 

 

3.4 Conclusions regarding the CMS technique 

Iterative optimization algorithms and stochastic simulation algorithms involved in both 

deterministic and Bayesian FE model updating formulations require a moderate to large 

number of FE model re-analyses.  For large size FE models with hundreds of thousands 

or even million DOFs, the computational demands may be excessive. Exploiting certain 

stiffness-related parameterization schemes, often encountered in FE model updating 

formulations, to guide the division of the structure into components, results in exact 

linear representations of the Craig–Bampton reduced stiffness matrix as a function of 
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the model parameters with coefficient matrices computed and assembled once from a 

single CMS analysis of a reference structure. Further significant reductions in the size 

of the reduced system are shown to be possible using characteristic interface modes 

estimated for each interface between components. Re-analyses required in FE model 

updating formulations are associated with the solution of the eigenproblem of the 

reduced-order system, completely avoiding the re-analyses of the component fixed-

interface and characteristic interface modes as well as the re-assembling of the reduced 

system matrices. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

33 
 

 

4 Static Correction expansion 

Expanding the aforementioned techniques known as substructure coupling for dynamic 

analysis, an improved type of reduction method is proposed below. Substructure 

coupling involves dividing the structure into a number of substructures obtaining 

reduced-order models of the substructures and then assembling a reduced order model 

for the entire structure. More specifically, after the division of the structure into 

substructures the model reduction technique involves two basic steps: definition of sets 

of substructure modes; and coupling the substructure-modes models to form a reduced-

order model. Regarding the set of substructure modes, fixed-interface normal modes 

and interface constraint modes are used in the present formulation [21]. 

The standard approach for constructing reduced-order models is based on the 

consideration of the entire set of interface modes and only a small number of sub-

structural fixed-interface normal modes for each substructure. If the residual or higher 

order fixed-interface normal modes are retained in the analysis the accuracy of the 

reduced-order models is expected to improve. In fact, the contribution of higher modes 

implies that reduced-order models are more precisely constructed and therefore their 

accuracy is enhanced. This idea has been explored in the past for estimating relative 

eigenvalue errors [22], and recently for improving the accuracy of eigenvalue 

estimation [23, 24].  A number of considerations and approximations were assumed in 

order to include the effect of residual sub-structural modes. The results reported in the 

previous references show that the accuracy of reduced-order models is significantly 

improved. 



 
 

34 
 

In the present formulation the contribution of residual sub-structural modes is based on 

physical grounds and it is derived by considering the so-called static solution or static 

correction. Such approximation is derived from the fact that high frequency modes react 

essentially in a static manner when excited by low frequencies. This feature is then 

combined with a particular finite element model parametrization scheme. When the 

division of the structure into substructures is guided by such parametrization scheme 

dramatic computational savings are achieved. Such drastic reduction in computational 

effort is obtained without compromising the accuracy of the results. 

 

 

4.1 Reduced order model: original formulation (brief synopsis of the  reduction 

methodology analyzed earlier)  

As previously pointed out, the objective of model reduction techniques is to 

characterize the dynamic behavior of the system by a reduced number of generalized 

coordinates. 

In the standard formulation of component mode synthesis, the dynamics of the system 

is described by a number of generalized coordinates which includes a fraction of the 

fixed-interface modal coordinates of each substructure and the physical interface 

coordinates. The derivation of the corresponding reduced-order model is presented in 

this section. 

The fixed-interface normal modes and interface constraint modes are used to define the 

reduced transformation matrix 𝛵𝑐𝑏 (Craig–Bampton transformation matrix) that relates 
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the displacement vector of physical coordinates of all substructures u(t) with a set of 

generalized coordinates v(t).  Such transformation is given by [21, 25] 

 

       𝑢(𝑡) = 𝛵𝑐𝑏 𝑣(𝑡)                    (30) 

where 

                                 𝑢(𝑡) = {
𝑢𝑖(𝑡)

𝑢𝑏(𝑡)
}                          𝑣(𝑡) = {

𝑣𝑘(𝑡)

𝑢𝑏(𝑡)
} 

                                                                                                                           (31) 

𝛵𝑐𝑏 = [
[𝛷𝑖𝑘

1 , … , 𝛷𝑖𝑘
𝑁𝑠] [𝛹𝑖𝑏

1 , … , 𝛹𝑖𝑏
𝑁𝑠]𝑇̃

0 𝐼
] 

 

* for the purpose of briefly re-examining the current method expansion 𝜯𝒄𝒃 is in a 

way the equivalent of the 𝜳(𝒔) matrix mentioned in Formulation using fixed-

interface modes. However it should be pointed out that 𝜯𝒄𝒃 has a different 

formulation than  𝜳(𝒔), which involves the matrix 𝑻̃. 

 

𝑇̃   is a transformation matrix, consisting of zeros and ones, that maps the vector  𝑢𝑏(𝑡) 

to the vector  𝑢𝑏𝑙(𝑡)𝑇 = (𝑢𝑏𝑙
1 (𝑡)𝑇 , … , 𝑢𝑏𝑙

𝑁𝑠(𝑡)𝑇) ∈ 𝑅𝑛𝑏𝑙  ,   𝑛𝑏𝑡 = ∑ 𝑛𝑏
𝑠𝑁𝑠

𝑠=1    of interface 

coordinates of all substructures. The particular structure of the transformation matrix 

𝑇̃  depends on the definition of the independent interface coordinates 𝑣(𝑡). 

 [·, . . . ,·] indicates a block diagonal matrix having as diagonal blocks the matrices 

inside the square bracket. 
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The assembled mass matrix 𝑀̂ ∈ 𝑅𝑛𝑣 𝑥 𝑛𝑣  and the stiffness matrix 𝐾̂ ∈ 𝑅𝑛𝑣 𝑥 𝑛𝑣  

(𝑛𝑣 = 𝑛𝑘 + 𝑛𝑏) for the independent reduced set v(t) of generalized coordinates take the 

form: 

 

𝑀̂ = 𝑇𝑐𝑏
𝑇 𝑀𝑔𝑇𝑐𝑏                   and                𝐾̂ = 𝑇𝑐𝑏

𝑇 𝐾𝑔𝑇𝑐𝑏      (32) 

 

                                  

where  𝑀𝑔 and  𝐾𝑔 are the mass and stiffness matrices of the unreduced model referred 

to the vector of physical coordinates of all substructures u(t). They are defined in terms 

of the substructures mass and stiffness matrices as: 

 

𝑀𝑔 = [
[𝑀𝑖𝑖

1 , … , 𝑀𝑖𝑖
𝑁𝑠] [𝑀𝑖𝑏

1 , … , 𝑀𝑖𝑏
𝑁𝑠]𝑇̃

𝑇̃𝑇 [𝑀𝑖𝑏
1𝑇

, … , 𝑀𝑖𝑏
𝑁𝑠𝑇

] 𝑇̃𝑇[𝑀𝑏𝑏
1 , … , 𝑀𝑏𝑏

𝑁𝑠]𝑇̃
] 

                                                                                                                                  (33) 

𝐾𝑔 = [
[𝐾𝑖𝑖

1, … , 𝐾𝑖𝑖
𝑁𝑠] [𝐾𝑖𝑏

1 , … , 𝐾𝑖𝑏
𝑁𝑠]𝑇̃

𝑇̃𝑇 [𝐾𝑖𝑏
1𝑇

, … , 𝐾𝑖𝑏
𝑁𝑠𝑇

] 𝑇̃𝑇[𝐾𝑏𝑏
1 , … , 𝐾𝑏𝑏

𝑁𝑠]𝑇̃
] 

 

from where it is easy to show that the reduced mass and stiffness matrices are given by: 

 

𝑀̂ =   [
𝐼 [𝑀̂𝑖𝑏

1 , … , 𝑀̂𝑖𝑏
𝑁𝑠]𝑇̃

𝑇̃𝑇 [𝑀̂𝑖𝑏
1𝑇

, … , 𝑀̂𝑖𝑏
𝑁𝑠𝑇

] 𝑇̃𝑇[𝑀̂𝑏𝑏
1 , … , 𝑀̂𝑏𝑏

𝑁𝑠]𝑇̃
] 
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                                                                                                                   (34) 

𝐾̂  =  [
[𝛬𝑘𝑘

1 , … , 𝛬𝑘𝑘
𝑁𝑠 0

0 𝑇̃𝑇[𝐾̂𝑏𝑏
1 , … , 𝐾̂𝑏𝑏

𝑁𝑠]𝑇̃
] 

With 

𝑀̂𝑖𝑏
𝑠  = 𝛷𝑖𝑘

𝑠𝑇
𝑀𝑖𝑖

𝑠 𝛹𝑖𝑏
𝑠 + 𝛷𝑖𝑘

𝑠𝑇
𝑀𝑖𝑏

𝑠                         𝐾̂𝑏𝑏
𝑠  = 𝐾𝑖𝑏

𝑠𝑇
𝛹𝑖𝑏

𝑠 + 𝐾𝑏𝑏
𝑠  

                                                                                                                               (35)  

𝑀̂𝑏𝑏
𝑠  = (𝛹𝑖𝑏

𝑠𝑇
𝑀𝑖𝑖

𝑠 + 𝑀𝑖𝑏
𝑠𝑇

) 𝛹𝑖𝑏
𝑠 + 𝛹𝑖𝑏

𝑠𝑇
𝑀𝑖𝑏

𝑠 + 𝑀𝑏𝑏
𝑠  ,      𝑠 = 1, … , 𝑁𝑠 

 

 

4.2 Reduced-order model: improved formulation 

According to the transformation matrix 𝑇𝑐𝑏 the vector of physical coordinates at the 

internal degrees of freedom of all substructures is approximated as: 

 

𝑢𝑖(𝑡) = [𝛷𝑖𝑘
1 , … , 𝛷𝑖𝑘

𝑁𝑠]𝑣𝑘(𝑡) + [𝛹𝑖𝑏
1 , … , 𝛹𝑖𝑏

𝑁𝑠]𝑇̃𝑢𝑏(𝑡)                                   (36) 

 

In order to consider the contribution of the residual modes it is first noted that the 

undamped equation of motion of the structural model referred to the set of generalized 

coordinates v(t) (reduced-order model) is given by: 

 

𝑀̂ {
𝑣̈𝑘(𝑡)
𝑢̈𝑏(𝑡)

}   + 𝐾̂ {
𝑣𝑘(𝑡)
𝑢𝑏(𝑡)

} = 0                                  (37) 
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from where the first block of this equation reads: 

𝑣̈𝑘(𝑡) + [𝛬𝑘𝑘
1 , … , 𝛬𝑘𝑘

𝑁𝑠]𝑣𝑘(𝑡) = −[𝑀̂𝑖𝑏
1 , … , 𝑀̂𝑖𝑏

𝑁𝑠]𝑇̃𝑢̈𝑏(𝑡)          (38) 

 

By considering the definition of   𝑀̂𝑖𝑏
𝑠 ,   s = 1, . . . , Ns  given in (35),  and the definition 

of the interface constraint modes matrix 𝛹𝑖𝑏,
𝑠   s = 1, . . . , Ns ,  the previous equation can 

be rewritten as: 

𝑣̈𝑘(𝑡) + [𝛬𝑘𝑘
1 , … , 𝛬𝑘𝑘

𝑁𝑠]𝑣𝑘(𝑡) = − [𝛷̂𝑖𝑘
1 , … , 𝛷̂𝑖𝑘

𝑁𝑠𝑇
] 𝑀∗𝑇̃𝑢̈𝑏(𝑡)      (39) 

 

Where 

 

𝑀∗ = [𝑀𝑖𝑏
1 − 𝑀𝑖𝑖

1𝐾𝑖𝑖
1−1

𝐾𝑖𝑏
1 , … , 𝑀𝑖𝑏

𝑁𝑠 − 𝑀𝑖𝑖
𝑁𝑠𝐾𝑖𝑖

𝑁𝑠−1
𝐾𝑖𝑏

1 ]                (40) 

 

The contribution of the residual fixed-interface normal modes to the response of the 

physical coordinates at the internal degrees of freedom of all substructures 𝑢𝑖(𝑡)  is 

approximated by using the static solution or static correction. This approximation is 

reasonable due to the fact that high frequency modes react essentially in a static manner 

when excited by low frequencies [26]. Then, it can be shown that equation (36) 

becomes [27, 28]: 
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𝑢𝑖(𝑡) = [𝛷𝑖𝑘
1 , … , 𝛷𝑖𝑘

𝑁𝑠]𝑣𝑘(𝑡) + [𝛹𝑖𝑏
1 , … , 𝛹𝑖𝑏

𝑁𝑠]𝑇̃𝑢𝑏(𝑡) − 𝐾∗𝑀∗𝑇̃𝑢̈𝑏(𝑡)      (41) 

 

where the term   𝐾∗𝑀∗𝑇̃𝑢̈𝑏(𝑡)  represents the residual modes contribution (static 

correction), and  𝐾∗is the static residual flexibility matrix given by [28]:  

 

𝐾∗ = [𝐾𝑖𝑖
1−1

− 𝛷𝑖𝑘
1 𝛬𝑘𝑘

1−1
𝛷𝑖𝑘

1𝛵
, … , 𝐾𝑖𝑖

𝑁𝑠−1
− 𝛷𝑖𝑘

𝑁𝑠𝛬𝑘𝑘
𝑁𝑠−1

𝛷𝑖𝑘
𝑁𝑠𝛵

]                      (42) 

 

Using the previous approximation for 𝑢𝑖(𝑡) the vector of physical coordinates of all 

substructures can be expressed as: 

 

𝑢(𝑡) = {
𝑢𝑖(𝑡)

𝑢𝑏(𝑡)
}  =   𝑇𝑐𝑏 {

𝑣𝑘(𝑡)

𝑢𝑏(𝑡)
} + [0 −𝐾∗𝑀∗𝑇̃

0 0
] {

𝑣̈𝑘(𝑡)

𝑢̈𝑏(𝑡)
}                    (43) 

 

It is also seen that: 

{
𝑣̈𝑘(𝑡)
𝑢̈𝑏(𝑡)

} =  −𝑀̂−1𝐾̂ {
𝑣𝑘(𝑡)
𝑢𝑏(𝑡)

}                  (44) 

 

Hence,  𝑢̅(𝑡) can be represented by: 

 

𝑢̅(𝑡) = {
𝑢𝑖(𝑡)

𝑢𝑏(𝑡)
} =  𝑇𝑒𝑐𝑏 {

𝑣𝑘(𝑡)
𝑢𝑏(𝑡)

}               (45) 



 
 

40 
 

 

where  𝑇𝑒𝑐𝑏 is the improved transformation matrix which takes the form, 𝑇𝑒𝑐𝑏 = 𝑇𝑐𝑏 +

𝑇𝑒   with: 

 

𝑇𝑒 = [0 𝐾∗𝑀∗𝑇̃
0 0

] 𝑀̂−1𝐾̂                      (46) 

 

Finally, by considering the definition of  𝑀̂−1 and  𝐾̂,  and by performing the product 

between the 2 by 2 partitioned matrix in (46) and the matrix 𝑀̂−1𝐾̂,  it can be 

demonstrated that the transformation matrix 𝑇𝑒 can be written as: 

 

𝑇𝑒 = [−𝐾∗𝑀∗𝑇̃(𝑇̃𝑇𝑀𝑏𝑖𝑏
∗ 𝑇̃)−1𝑇̃𝑇𝑀̂𝑖𝑏

𝑇 𝛬 𝐾∗𝑀∗𝑇̃(𝑇̃𝑇𝑀𝑏𝑖𝑏
∗ 𝑇̃)−1𝑇̃𝑇𝐾̂𝑏𝑏𝑇̃

0 0
]     (47) 

 

Where 

𝑀𝑏𝑖𝑏
∗ = [𝑀̂𝑏𝑏

1 − 𝑀̂𝑖𝑏
1𝑇

𝑀̂𝑖𝑏
1 , … , 𝑀̂𝑏𝑏

𝑁𝑠 − 𝑀̂𝑖𝑏
𝑁𝑠𝑇

𝑀̂𝑖𝑏
𝑁𝑠 

                                                                                                                               

𝑀̂𝑖𝑏 = [𝑀̂𝑖𝑏
1 , … , 𝑀̂𝑖𝑏

𝑁𝑠] 

                                                                                                                              (48) 

𝛬 = [𝛬𝑘𝑘
1 , … 𝛬𝑘𝑘

𝑁𝑠] 
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𝐾̂𝑏𝑏 = [𝐾̂𝑏𝑏
1 , … , 𝐾̂𝑏𝑏

𝑁𝑠] 

 

Using the redefined transformation matrix 𝑇𝑒𝑐𝑏 instead of  𝑇𝑐𝑏 the improved reduced-

order mass matrix  𝑀̂𝑒 ∈ 𝑅𝑛𝑣 𝑥 𝑛𝑣  and the stiffness matrix   𝐾̂𝑒∈ 𝑅𝑛𝑣 𝑥 𝑛𝑣  take the form 

 

𝑀̂𝑒 = 𝑇𝑒𝑐𝑏
𝑇 𝑀𝑔𝑇𝑒𝑐𝑏 = 𝑀̂ + 𝑇𝑐𝑏

𝑇 𝑀𝑔𝑇𝑒 + 𝑇𝑒
𝑇𝑀𝑔𝑇𝑐𝑏 + 𝑇𝑒

𝑇𝑀𝑔𝑇𝑒 

                                                                                                                             (49) 

𝐾̂𝑒 = 𝑇𝑒𝑐𝑏
𝑇 𝐾𝑔𝑇𝑒𝑐𝑏 = 𝐾̂ + 𝑇𝑐𝑏

𝑇 𝐾𝑔𝑇𝑒 + 𝑇𝑒
𝑇𝐾𝑔𝑇𝑐𝑏 + 𝑇𝑒

𝑇𝐾𝑔𝑇𝑒 

 

Because of the contribution of the residual fixed-interface normal modes in the 

transformation matrix 𝑇𝑒𝑐𝑏,  it is expected that the reduced-order mass and stiffness 

matrices are more precisely constructed than the original reduced order matrices. So, it 

is anticipated that the improved formulation needs reduced-order models of much 

smaller dimension than the original formulation in order to obtain responses of similar 

accuracy. It is interesting to note that all the basic matrices involved in the definition of 

𝑇𝑒  are already available from the original formulation of the model reduction technique. 

 

Considering  the   parametrization of the matrices   𝑀𝑔,  𝐾𝑔, 𝑇𝑐𝑏 (not presented here for 

simplicity in notation) and the parametrization of the different matrices involved in the 

definition of  𝑇𝑒 (47), that is,  𝐾∗ ,  𝑀∗,  𝑀𝑏𝑖𝑏
∗ ,   𝑀̂𝑖𝑏 ,  𝛬 and  𝐾̂𝑏𝑏 ,   it is clear that the 

improved reduced mass matrix  𝑀̂𝑒 and the improved stiffness matrix  𝐾̂𝑒 in (49) can 
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be expressed in terms of a set of matrices, which are independent of the values of the 

vector of system parameters θ, and the parametrization functions ℎ𝑗(𝜃𝑗)  and 

𝑔𝑗(𝜃𝑗).   The set of matrices are computed and assembled once for a reference model. 

This feature results in substantial computational savings since it avoids the re-

assembling of the various matrices involved in the definition of the reduced-order 

matrices for different values of the vector of system parameters θ.  It is interesting to 

note that for problems in which the mass matrix is constant independent of θ, the block 

diagonal matrix   𝑀𝑏𝑖𝑏
∗   is also independent of θ.  Thus, the matrix  𝑇̃𝑇𝑀𝑏𝑖𝑏

∗ 𝑇̃  that 

appears in the definition of the transformation matrix  𝑇𝑒 (47) needs to be inverted once.  

 

It is noted that the independent physical coordinates  𝑢(𝑡) of the original unreduced 

structural model can be written directly in terms of the set of generalized coordinates 

𝑣(𝑡)  as: 

              𝑢(𝑡) = 𝑇𝑇𝑒𝑐𝑏𝑣(𝑡)            (50) 

 

Where   𝑇 ∈ 𝑅𝑛 𝑥 𝑛𝑢   is a constant matrix that maps the vector of physical coordinates 

of all substructures  𝑢(𝑡) to 𝑢(𝑡),  and  𝑇𝑒𝑐𝑏   is the enhanced transformation matrix. 

Based on this transformation, the equation of motion of the reduced-order system can 

be written as: 

𝑀̂𝑒𝑣̈(𝑡) + 𝐶̂𝑒𝑣̇(𝑡) + 𝐾̂𝑒𝑣(𝑡) = 𝑇𝑒𝑐𝑏
𝑇 𝑇

𝑇
𝑓(𝑡)       (51)  
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where   𝐶̂𝑒 ∈ 𝑅𝑛𝑣 𝑥 𝑛𝑣   is the assembled damping matrix for the independent reduced set 

v(t) which can be defined in terms of the damping matrix  𝐶𝑔,  of the unreduced model 

referred to the vector  𝑢(𝑡).  The assembled damping matrix has a similar structure as  

𝑀̂𝑒  and   𝐾̂𝑒  (49).   It is noted that the dimension of the matrices involved in the 

equation of motion of the reduced-order model can be substantially smaller (one or 

more orders of magnitude) than the dimension of the unreduced matrices, e.g. 𝑛𝑣≪ n.  

The equation of motion (51) can be integrated efficiently by an appropriate step-by-

step integration scheme [27] or by modal analysis [29, 30, 31].  

Finally, it is stressed that all matrices involved in the enhanced formulation of the model 

reduction technique are computed and assembled once before the corresponding 

complex-simulation based problem is solved. In other words, the characterization of 

those matrices corresponds to off-line calculations. This in turn implies a drastic 

reduction in computational efforts. 

 

4.3 Conclusions regarding the enhanced formulation 

An enhanced model reduction technique for dealing with a class of complex simulation-

based problems involving medium/large finite element models has been presented. The 

analyses are performed in a reduced space of generalized coordinates. Specifically, a 

method based on substructure coupling is considered in the present implementation. 

Usually a small number of dominant fixed-interface normal modes is used to define 

reduced-order models. In this regard, the contribution of the residual fixed-interface 

normal modes is considered explicitly in the present formulation. 



 
 

44 
 

 This contribution corresponds to the so-called static solution or static correction of the 

higher order modes. The model reduction technique is then combined with a particular 

substructure parametrization scheme. In such scheme all matrices involved in the 

characterization of the reduced-order model can be expressed in terms of a set matrices 

independent of the values of the system parameters and a set of parametrization 

functions. Thus, the different substructure and reduced-order matrices are computed 

and assembled once for a reference model. Results show that the enhanced formulation 

of the model reduction technique requires models of dimension significantly smaller 

than of the model of the original formulation in order to get reduced-order models of 

the same level of accuracy. Thus, the accuracy of the reduced-order model is 

dramatically improved by the enhanced formulation. The corresponding computational 

cost of the enhanced formulation is a fraction of the cost involved in the original 

formulation for similar levels of precision. Additionally, the use of the enhanced 

formulation shows that the computational effort involved in complex simulation-based 

problems is decreased drastically by two or more orders of magnitude with respect to 

the full finite element model. Furthermore, the drastic reduction in computational 

efforts is achieved without compromising the accuracy of the results. Future research 

directions aim at increasing even further the computational savings by considering for 

example not only generalized coordinates in terms of the fixed-interface normal modes 

but in terms of interface constraint modes as well. Finally, the extension of the proposed 

enhanced model reduction technique to a class of nonlinear models and the application 

of the technique to a more variety of complex simulation-based problems are additional 

topics for future research. 
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5 Observation of Results 

In order to evaluate the credibility fluctuation and accuracy of the aforementioned 

model reduction techniques some basic tests were run.  Those tests provided 

valuable information on how this methods operate on different conditions and 

showcased the efficiency of those methods in each condition. 

 

5.1 Original Formulation 

Below are demonstrated observations regarding the results of the original 

formulation of Model Reduction technique without considering the enhanced 

formulation of static correction. 

 

 It is imperative for the model to be as well-defined as possible. That involves 

the proper definition and selection of the material of each component of the 

structure whether the model is created in Comsol or imported from another 

software. Defining a material also includes the definition of certain structural 

parameters such as the young modulus E, the Poisson ratio ν, the density of the 

material ρ, etc… It is also important to correctly define the domains, interfaces 

and fixed boundaries of each component and the relation of it with the other 

components of the structure. For example if two or more components are part 

of the same group it is vital to choose the definition of Group Union and select 

those components accordingly. Furthermore, attention should be paid to the 

definition of fixed boundaries both in the Definitions section and the Physics 

section (Solid Mechanics) where boundaries are concerned. That needs to 

happen because especially in Solid Mechanics all boundaries are by default free. 
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Free boundaries affect the accuracy of the the results in Eigenfrequency Study, 

providing in the form of computational noise, complex numbers for the first 6-

10 eigenfrequencies.  

 

 The Eigenfrequency values given in Comsol are affected at a certain extent by 

the size of the mesh chosen. For each mesh selection a new Study must be run 

and the MatLab code must be updated by closing the program and reopen it 

from the start. 

 

 When Eigenfrequencies are arithmetically quite large, usually even larger than 

1 , the divergence between the values given through Comsol and the ones given 

through MatLab is quite noticeable, especially for smaller structures. 

 

 Structures of small size have higher Eigenfrequencies, as it is expected. Hence 

the Model Reduction Method in MatLab will not be able to provide extremely 

accurate results.  

 

 The error resulting from the difference between the eigenfrequencies in Comsol 

and in Matlab does not follow a certain rate of divergence or convergence. 

Therefore its rate of growth depending on variables like the size and structural 

difference of each model, cannot extremely credibly be predicted.  

 

 

 In order for the model reduction technique to retain a certain number of modes 

to proceed with the model reduction, eigenfrequencies are compared to a 
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predefined cutoff frequency. The modes that are eventually kept are the ones 

that correspond to smaller frequencies than the cutoff frequency. More kept 

modes provide more accurate results. The number of those modes depends on 

the comparison between Eigenfrequencies and the cutoff frequency.  

E.g.:    MatLab code (component reduction): 

Angular frequency: vc 

Frequency derived from the solution of the eigenfrequency problem:  D3 

Frequency compared with eigenfrequency:  par = PAR2*vc     

Kept mode if:  D3 ≤ par  

Cutoff frequency = the eigenfrequency D3 that is bigger than par 

All the previous modes until this value of frequency are kept. 

           The interface modes are kept accordingly. 

Specifically if the parameter vc is kept the same, whereas the parameter PAR2    

changes, the accuracy of results changes accordingly. 

If PAR2 increasespar does toomore modes kept more accurate results. 

If PAR2 decreases par does tooless modes are kept less accurate results. 

 

To examine the efficiency of the model reduction method and the correctness of the 

above observations, a couple of different case scenarios are presented. Firstly, the 

method is applied to a rudimentary 4-component model, presented below, created in 

Comsol.  Secondly it is applied to a 22-component, 16-group model of a Bridge for a 

point of reference as far as the accuracy of the method for a fully defined large structure 

is concerned.  Some indicative results are cited below: 
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Four Components “Beam” 

 

1st Component: 1st block     w=500m   d=400m   h=500m 

2nd Component: 2nd block   w=700m   d=400m   h=500m 

3rd Component: 3rd block     w=800m   d=400m   h=500m 

4th Component: 4th block     w=300m   d=400m   h=500m 

3 interfaces 

Elastic Material:  Cast iron 

Fixed boundaries: The first most-left and the last most-right 

(the constant parameters such as E, ρ, ν are defined through the material, so no separate inputs and 

definitions are required) 

 

Geometry of the beam 
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The picture below depicts the deformation of the structure measured by its spacial 

displacement after the application of the Eigenfrequency Study. Essentially this study 

performs a Finite Element Analysis returning the eigenfrequencies of the structure and 

the displacements generated by the activation of each eigenfrequency. 

 

 

 

 

1st Case 

Extra Coarse mesh     

 DOFs=387   (max k=27)                                         

 Vc = 5     PAR2 = [2 2 2 2]    par = 10 

 

 Stiff_final = Mass_final = 146x146 (size) 
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10 indicative Eigenfrequencies chosen from Comsol & MatLab 

COMSOL MATLAB Error1 

1,57036 1,5966 0,016709544 

2,28784 2,295 0,003129589 

3,40608 3,3773 0,008449596 

4,11584 4,1127 0,000762906 

4,54977 4,5362 0,002982568 

4,7473 4,7338 0,002843722 

4,95911 4,9579 0,000243995 

5,01639 5,0062 0,002031341 

5,25408 5,288 0,006455935 

5,36804 5,3588 0,001721299 

   

Sum Error1   0,045330497 

Mean Error1   0,00453305 

 

 

 

2nd Case 

Extra Coarse mesh     

 DOFs=387   (max k=27)                                         

 Vc = 5     PAR2 = [1 1 1 1 ]    par = 5 

 

 Stiff_final = Mass_final = 99x99 (size) 

 

10 indicative Eigenfrequencies chosen from Comsol & MatLab 

COMSOL MATLAB Error2 

1,57036 1,5968 0,016836904 

2,28784 2,2961 0,003610392 

3,40608 3,4278 0,006376832 

4,11584 4,1221 0,001520953 

4,54977 4,6723 0,026931032 

4,7473 4,7916 0,00933162 
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4,95911 4,8564 0,020711378 

5,01639 5,0088 0,00151304 

5,25408 5,2799 0,004914276 

5,36804 5,303 0,012116154 

   

Sum Error2   0,103862581 

Mean Error2   0,010386258 

 

 

 

3rd Case 

 

Extra Coarse mesh     

 DOFs=387   (max k=27)                                         

 Vc = 3     PAR2 = [1 1 1 1]    par = 3 

 

 Stiff_final = Mass_final = 91x91 (size) 

 

10 indicative Eigenfrequencies chosen from Comsol & MatLab 

COMSOL MATLAB Error3 

1,57036 1,5972 0,017091622 

2,28784 2,3061 0,007981327 

3,40608 3,3684 0,01106257 

4,11584 4,0412 0,018134816 

4,54977 4,2536 0,065095598 

4,7473 4,4372 0,065321341 

4,95911 4,9765 0,003506678 

5,01639 5,1668 0,029983713 

5,25408 5,3123 0,011080912 

5,36804 5,6585 0,054109135 

   

Sum Error3   0,283367713 

Mean Error3   0,028336771 

 

 



 
 

52 
 

4th Case 

 

Normal mesh     

 DOFs=3075     

 Vc = 5     PAR2 = [2 2 2 2]    par = 10 

 

 Stiff_final = Mass_final = 416x416 (size) 

 

10 indicative Eigenfrequencies chosen from Comsol & MatLab 

COMSOL MATLAB Error4 

2,02249 2,0336 0,005493229 

2,818 2,8152 0,000993612 

3,5758 3,5947 0,005285531 

4,07388 4,1039 0,007368896 

4,43965 4,46164 0,004953093 

4,5596 4,559 0,00013159 

4,57296 4,6164 0,009499318 

4,65657 4,6421 0,003107437 

5,02254 5,0287 0,001226471 

5,11157 5,1008 0,002106985 

   

Sum Error4   0,040166163 

Mean Error4   0,004016616 

 

 

 

5th Case 

 

Metsovo Bridge 

Soil nominal values 1. 109 Pa      

Deck nominal values 37. 109 Pa 

Pier nominal values 34. 109 Pa 
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Geometry of the Metsovo Bridge 

 

 

 

 

     

     20 indicative Eigenfrequencies chosen from Comsol & MatLab  

COMSOL MATLAB Error5 

0,29229 0,2923 3,42126E-05 

0,57285 0,5729 8,72829E-05 

0,61889 0,6189 1,6158E-05 

0,84749 0,8475 1,17995E-05 

1,04847 1,0485 2,86131E-05 

1,06912 1,0692 7,48279E-05 

1,38448 1,3848 0,000231134 

1,57685 1,5771 0,000158544 

1,68234 1,6828 0,000273429 

1,96412 1,9647 0,000295298 

2,15487 2,1553 0,000199548 

2,31451 2,315 0,000211708 

2,49529 2,4994 0,001647103 

2,74198 2,7429 0,000335524 
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2,81053 2,8141 0,001270223 

2,87191 2,8753 0,001180399 

2,94499 2,9463 0,000444823 

3,31186 3,318 0,001853943 

3,37427 3,38 0,001698145 

3,5128 3,5205 0,002191984 

   

Sum Error5   0,012244698 

Mean Error5   0,000612235 

 

 

 

5.2   Enhanced formulation 

As a second stage, there was an attempt to perform the Static correction expansion to 

the original formulation, starting from the 4 components simplistic model. However, 

some problems surfaced during the process of generating results due to the different 

formulation that was needed to be done from the beginning. This is probably due to the 

fact that the model reduction technique without static correction was based on an initial 

formulation which even though it produces most of the required matrices for static 

correction, it follows a relatively altered methodology which uses differently 

constructed transformation matrices. Therefore when Static Correction with 

regeneration of the appropriate transformation matrices is implemented, certain 

problems appear, which at the current time frame they could not be solved. 
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5.3 General Conclusion 

Exploiting certain stiffness-related parameterization schemes, often encountered in FE 

model updating formulations, to guide the division of the structure into components 

results inexact linear representations of the Craig–Bampton reduced stiffness matrix as 

a function of the model parameters with coefficient matrices computed and assembled 

once from a single CMS analysis of a reference structure. Further significant reductions 

in the size of the reduced system are shown to be possible using characteristic interface 

modes estimated for each interface between components. Re-analyses required in FE 

model updating formulations are associated with the solution of the eigenproblem of 

the reduced-order system, completely avoiding the re-analyses of the component Fixed-

interface and characteristic interface modes as well as the re-assembling of the reduced 

system matrices. The results of the aforementioned methodology have been examined 

both on a rudimentary model as well as on a complex structure, providing the expected 

data as far as the effectiveness and the accuracy of the CMS method and the error 

fluctuations regarding Eigenfrequencies it generates in various case scenarios. Hence, 

valuable information were provided for future enhancements and/or expansions 

regarding the computational implementation of the model reduction techniques.  

Finally, an enhanced model reduction technique for dealing with a class of complex 

simulation-based problems involving medium to large finite element models has been 

presented. The analyses are performed in a reduced space of generalized coordinates. 

Specifically, a method based on substructure coupling is considered in the present 

implementation. Usually a small number of dominant fixed-interface normal modes is 

used to define reduced-order models. In this regard, the contribution of the residual 

fixed-interface normal modes is considered explicitly in the present formulation. This 
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contribution corresponds to the so-called static solution or static correction of the higher 

order modes. The enhanced formulation of the model reduction technique requires 

models of dimension significantly smaller than of the model of the original formulation 

in order to get reduced-order models of the same level of accuracy. Thus, the accuracy 

of the reduced-order model is dramatically improved by the enhanced formulation. The 

corresponding computational cost of the enhanced formulation is a fraction of the cost 

involved in the original formulation for similar levels of precision. However, it should 

be noted that the enhance formulation in order to be successful, even though it utilizes 

the outputs of the original formulation, requires a different computational approach 

which may prove to be slightly challenging, especially for large structures. 
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APPENDIX 

Computational application and exploitation of the Model reduction techniques 

As far as the computational aspect is concerned, the above methods were implemented 

with the exact order of the mathematical relations in order to produce the reduction 

model. There was an effort to enhance an already existent code by making some 

commands in all files involved, simpler and/or faster with the goal of making the code 

more efficient and applicable on various different case scenarios which do not involve 

the same inputs. Moreover, part of the endeavor to make the code and generally the 

process of model reduction more comprehensive and obtainable for an average user, 

was to examine some of the basic capabilities of Comsol Multiphysics©  and how its 

GUI interacts with a user with no former experience and with the need to perform the 

model reduction technique on a very simplistic structure. This process of creating a 

model, defining it, extracting the appropriate information from it and utilizing it through 

the MatLab code, are briefly analyzed below. 

 

(Simple user’s guide to handling from start to finish, the programs necessary for 

CMS analysis) 

Create a structure in Comsol Multiphysics©, either by utilizing its toolkit or by 

importing an already existing structure designed by another program e.g. Solidworks, 

CAD, e.tc… Comsol is essentially a package software that is capable of either designing 

on its own, from the beginning a structure or simply importing it from another software, 

and analyze its structural and mechanical behavior under specified user defined 

conditions.  
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Analyzing in Comsol involves basically, running an embedded Finite element analysis 

and providing on its GUI and/or through MatLab the appropriate matrices (K, M), 

elements,  eigenfrequencies and structural selections in order to continue with the model 

reduction process. 

 

HOW TO CREATE A VERY SIMPLISTIC MODEL IN COMSOL in order to 

test the model reduction method 

 

Open the Comsol application. Once opened select Model Wizard and choose the 

appropriate dimension for your study (3D, 2D,…,etc). 

If 3D designing is chosen, go to the top toolbar and select Geometry in order to create 

the basic shape of your construct.( In the example the selection Block is used for the 4 

components.)  

After the blocks are designed, some Definitions must be made in order to examine 

accurately the model in the end. Those definitions are also vitas far as the import of 

data from Comsol to MatLab, through Livelink, are concerned.  

 Once your structure is loaded it is imperative to: 

 

1. Make sure to define the exact components of your structure.  

  

2. Firstly change the Label and Name of the Structure from Component1 to Model. 
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3. Go to Definitions on the Model builder bar and add for each component the 

appropriate selection. The most common one as far as the definition of domains, 

interfaces and fixed selections is concerned is Explicit found in the Definitions 

top toolbar.  

 

 

4. Each explicit selection corresponds to a predefined substructure. Every 

substructure is comprised of one or multiple Components, their Interface 

boundaries and their Fixed boundaries that need to be accurately defined, 

both in the Comsol model as well as in the Input Code mat. file. In case where 

detailed optimal component selection studies are not available, the wisest 

choice is to select a single component per substructure 

 

5. You can change the name of the explicit selections to refer directly to the kind 

of selection that is made. However, always keep the serial number that refers 

to the sequence of each selection (e.g. Explicit 3) because this is the number 

that is going to be needed in the input code in order to form the necessary 

matrices with the correspondent names.  

 

 

6. To define fully a Component you need to select the exact Domains that is 

comprised of. Interface selections require Boundaries. Fixed selections 

require Boundaries as well. 

 

 

7. Add Material to the structure if needed by selecting the appropriate command 

on the top toolbar. If there is no material selected it is important to choose one, 

otherwise the Study selection will present an error. 
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8. Add Physics to define the boundary conditions and the exact equations that 

describe accurately your study. (Solid Mechanics is commonly used selection 

with a wide range of implementation). 

 

 

9. Add Study to specify the nature of the solution you expect after the examination 

of the structure. In the simple example presented, the study that has been chosen 

in order to test the accuracy of the reduction method is Eigenfrequency. (If the 

eigenfrequencies given by the Comsol model approximate the eigenfrequencies 

given by MatLab after reduction then the reduction method is accurate). 

 

!! Important Observation: If fixed boundaries are not defined to the Physics 

section (Solid Mechanics), apart from the Definitions section, then the provided 

Eigenfrequencies, especially the first ones will be given as small complex 

numbers due to the fact that all the boundaries of the structure are free. 

 

The model is ready for any extra computation. 

 

 Once an already fully defined Comsol model exists: 

 

1. Open the Comsol application. 

 

 

2. Open the Comsol with Matlab application (Livelink). 

 

 

3. Once Matlab is fully loaded and synced with Comsol, check the directory of 

both the editor file and the command window that has been opened. It should 

be the directory of the file where all the archives concerning the structure are 

placed. Both mat. as well as mph. files. 
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4. Open and examine the Input Code.mat file in case you want to proceed in 

manual changes as far as a specific structure is concerned. Make sure the 

changes in the Matlab code correspond precisely to the model in Comsol. If you 

want to alternate your structure this must be done firstly in Comsol, by saving 

the changes, and subsequently in Matlab. After a certain change has been made, 

Comsol should be closed and MatLab Livelink should be launched anew to 

assure that the MatLab code is processing the newly altered model.  

 

5. The only mat.file that requires user interaction is the Input file. Therefore no 

changes should be required in the other mat.files. 

 

 

6. If the changes in the Input code are completed the Main code is ready to run in 

Matlab’s editor. No further editing is needed in the Main code. 

 

The Matlab results of the CMS analysis of the specific model are now saved with 

distinctive names in the same file as all the other documents.  
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 MatLab commands extracting vital information from the  

Comsol model 

 

Input.m file: specific to each model 

model = mphload(fname); 

(line 73) 

Loading the COMSOL model to obtain the 

information. 

 

 

 

 

a = mphgetselection(model.selection(['sel' 

num2str(domain_selections(i))])); 

(line 85) 

The same command is again used to extract the 

interface_selections  and  fixed_selections of the 

Comsol model 

(In lines 95 and 130 respectively.) 

 

 

 

 

Use the function mphgetselection to retrieve the 

model selection information: 

 

str = mphgetselection(model.selection(<seltag>)) 
where <seltag> is the tag/number a selection node 

was defined as, in the model. Here the <seltag> is 

(['sel' num2str(domain_selections(i))]) 

 

The output str is a MatLab structure with the 

following fields: 

• dimension, the space dimension of the geometry 

entity selected, 

• geom, the tag of the geometry node used in the 

selection, 

• entities, the list of the entity indexes listed in the 

selection, and 

• isGlobal, Boolean value to indicate if the 

selection is global or not. 



 
 

63 
 

      MReduction.m file : general file executing the model reduction process. It is used independently  

of the Input file 

 

xmeshinfo = mphxmeshinfo(model); 

(line 67) 

 

Use the function info = mphxmeshinfo(model,...) 

to extract extended mesh information from the 

active solution object. 

The extended mesh information provide 

information about the numbering of elements, 

nodes, and degrees of freedom (DOFs) in the 

extended mesh and in the matrices returned by 

mphmatrix. 

 

 FIELD DESCRIPTION 

 soltag Tag of the solution object 

 ndofs Number of DOFs 

nod1 = rmfield(nod1,'dofnames'); 

nod1.names = {'u' 'v' 'w'}; 
fieldnames 

Names of the field 

variables 

 fieldndofs 
Number of DOFs per 

field name 

elements1{1}.type='vtx'; 

elements1{2}.type='edg';  

elements1{3}.type='tri'; 

elements1{4}.type='tet'; 

meshtypes Types of mesh element 

nod1.dofs=nod1.dofs+1; dofs 

Structure with 

information about the 

degrees of freedom 

 

nod1 = xmeshinfo.nodes; 

 

nodes 

Structure with 

information about the 

nodes 

 

elements2 = xmeshinfo.elements; 

 

elements 

Structure with 

information about each 

element type 
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The function mphmeshstats also returns the mesh 

data such as element coordinates. Use the function 

with two output variables to get the mesh data. 

Enter:  

[meshstats,meshdata] = mphmeshstats(model)  

where meshdata is a MATLAB structure with the 

following fields: 

[~,meshdata] = mphmeshstats(model); 

(line 93) 

 
• vertex which contains the mesh vertex 

coordinates 

el1{1}.elem=meshdata.elem{4}+1; 

 
• elem which contains the element data information 

el1{1}.dom=meshdata.elementity{4}'; 
• elementity which contains the element entity 

information for each element type. 

 

 

 

 

matrices = mphmatrix(model,'sol1','Out',{'K' 'E'}, 

'initmethod','init'); 

 

(line 215) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Extract the matrices of the COMSOL linearized 

system with the function mphmatrix. To call the 

function mphmatrix, specify a solver node and the 

list of the system matrices to extract:  

 

str = mphmatrix(model, <soltag>, 'out', out)  

 

where <soltag> is the solver node tag used to 

assemble the system matrices and out is a cell array 

containing the list of the matrices to evaluate. The 

output data str returned by mphmatrix is a MatLab 

structure, and the fields correspond to the 

assembled system matrices. 

 

Use the initmethod property as in this command:  

 

str = 

mphmatrix(model,<soltag>,'out',out,'initmethod',

method)  

 

where method corresponds to the type of 

linearization point—the initial value expression 

('init') or a solution ('sol'). 

Without the 'initmethod','init' the above command 

returns error for too many zero elements. With the 

'initmethod','init' it successfully returns the 

matrices. 
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The system matrices that can be extracted with 

mphmatrix : 

 

EXPRESSION 

 

DESCRIPTION 

K Stiffness matrix 

L Load vector 

M Constraint vector 

N Constraint Jacobian 

D Damping matrix 

E Mass matrix 

NF Constraint force Jacobian 

NP 
Optimization constraint 

Jacobian (*) 

MP 
Optimization constraint 

vector (*) 

MLB 
Lower bound constraint 

vector (*) 

MUB 
Upper bound constraint 

vector (*) 

Kc Eliminated stiffness matrix 

Lc Eliminated load vector 

Dc Eliminated damping matrix 

Ec Eliminated mass matrix 

Null Constraint null-space basis 

Nullf 
Constraint force null-space 

matrix 

ud Particular solution ud 

uscale Scale vector 

(*) Requires the Optimization Module. 
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