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The effect of eccentric exercise and iron supplementation on blood redox status
and muscle performance in adults and children

ABSTRACT

Muscle-damaging eccentric exercise can lead to increased production of reactive
oxygen and nitrogen species (RONS). The typical approach so far was to provide
antioxidants to minimize RONS production and improve muscle recovery and
performance, yet, the efficacy of such an approach is still under debate. On the other
hand, the effect of substances such as iron, that are considered pro-oxidants and
could alter the symptoms of muscle damage, has not yet been investigated. The aim
of the present study was to examine if iron supplementation would alter symptoms
of muscle damage, redox status indices, and muscle performance after eccentric
exercise in healthy adults and children. In a randomized, double blind crossover
study, that was conducted in two cycles, healthy adults (n = 15) and children (n = 11)
received daily either the iron supplement (37mg of elemental iron) or the placebo
for 3 weeks prior to, and up to 96 hours after an acute eccentric exercise bout (5 sets
of 15 maximal eccentric contractions). Subjects performed the exercise during the
first cycle with one leg, which was followed by a four-week washout period, before
performing the exercise during the second cycle with the contralateral leg.
Physiological parameters were estimated in both age groups at baseline, after 3
weeks of supplementation (pre-exercise), immediately after exercise, 24, 48, 72, and
96 hours after exercise. Blood samples in adults were collected at baseline, pre-
exercise, 24, 48, 72, and 96 hours post-exercise, while in children at baseline, pre-
exercise, and 72 hours following exercise. Iron supplementation resulted in
improvement of iron status and elevated TBARS levels. Iron supplementation did not
affect muscle damage, muscle performance and blood redox status after eccentric
exercise, as exercise-induced modifications were similar in both groups. On the other
hand, iron supplementation decreased iron concentration and increased transferrin
saturation the days following eccentric exercise.  Children were less susceptible to
muscle damage compared to adults whose symptoms were more severe. Despite its
pro-oxidant character, iron supplementation, as administered in the present study,
did not alter redox responses or muscle function and performance after muscle
damaging exercise.

Keywords: free radicals, pro-oxidants, muscle damage, aseptic inflammation,
soreness
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1. INTRODUCTION

1.1. Oxidative stress

The term oxidative stress refers to the disturbance of the balance between the pro-

oxidant and antioxidant mechanisms of the human body in favor of the former

leading to potential damage (Halliwell & Gutteridge 2007). Such a disturbance results

in increased production of reactive oxygen and nitrogen species (RONS),

overwhelming antioxidants’ response. In principal, oxidative stress can occur either

due to defective antioxidant defense and diminished antioxidants, or due to

excessive production of free radicals (Halliwell & Gutteridge 2007).

1.1.1. Free radicals

Any species capable of independent existence that contains one or more unpaired

electrons in their atomic or molecular orbital is defined as free radical (Halliwell &

Gutteridge 2007). Free radicals are unstable molecules and sometimes can be highly

reactive, due to their effort to become stable, either by accepting, donating or

sharing an electron (Halliwell & Gutteridge, 2007).

Free radicals are products of the physiological cell metabolism and in low to medium

concentration are favorable for stress-induced cell response, signal transduction,

gene transcription, cell proliferation, inflammation and apoptosis (Ji 2007, Ji 2008,

Valko 2007, Reid 1992); free radicals in moderate quantities are also essential for

muscle function and training adaptations (Gomez-Cabrera 2010, Gomez-Cabrera

2005, Reid 2001). However, excess generation can lead to oxidative stress disrupting

that way the normal function of the human organism. Indeed, oxidative stress has

been implicated in various pathological conditions involving cardiovascular disease

(Elnakish 2013), cancer (Che 2015, Valko 2006), neurological disorders (Bhat 2015,

Jenner 2003), ischemia/reperfusion (Valko 2007), diabetes (Kojda & Harrison 1999,

Halliwell 2001), as well as muscle fatigue (Powers 2008) and ageing (McArdle 2002,

Valko 2007).
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Free radicals can be derived both by endogenous and exogenous sources.

Endogenous sources include mitochondrial electron transport chain, several

enzymes such as cyclooxygenase, NADPH oxidases and xanthine oxidase (XO), as well

as auto-oxidation reactions and inflammation (Rahal 2014). Exogenous sources of

free radicals include ultraviolet and ionizing radiation, chemical substances and

drugs, intense exercise, smoking, as well as several environmental pollutants

(Powers 2004, Rahal 2014). Additionally, diet can influence redox homeostasis; poor

consumption of important antioxidant vitamins can negatively affect the overall

antioxidant defense of the human body (Powers 2004).

When a free radical reacts with a molecule, a new radical is produced, and chain

reactions begin, that could adversely affect the physiological function of important

biomolecules, such as lipids (Halliwell & Chirico 1993), proteins (Grune 1997) or DNA

(Dizdaroglu 2002). Free radicals are mainly distinguished in oxygen-centered reactive

species (ROS) and nitrogen-centered reactive species (RNS). RONS are produced as

intermediates in reduction-oxidation reactions leading from O2 to H2O (Halliwell

2007). ROS include superoxide anion (O2
•-), hydroxyl radical (OH•), peroxyl radical

(ROO•), alkoxyl radical (RO•), and hydroperoxyl radical (ΗΟ2
•), whilst RNS include

nitric oxide radical (NO•) and NO2
•. ROS and RNS comprise not only the oxygen and

nitrogen radicals but also some non-radical derivatives of O2 and N2, such as

hydrogen peroxide (H2O2), hypochlorous acid (HOCl), ozone (O3), and peroxynitrate

anion (ONOO–), due to their high chemical reactivity and ability to further exacerbate

oxidative stress. The mechanisms, by which some of the above RONS are produced,

as well as the importance of their generation to either favoring or risking the

integrity of the human body, are discussed in the subsequent paragraphs.

Superoxide radical: Superoxide is generated through the addition of one e─ to O2.

Superoxide anion, is considered the “primary” ROS, and can further interact with

other molecules to generate “secondary” ROS, either directly or prevalently through

enzyme- or metal-catalyzed processes (Valko 2007). The most important source of

O2
•- in vivo is the mitochondrial electron transport chain. About 1 to 3% of the O2

reduced in mitochondria may form O2
•- (Halliwell 2007, Muller 2000).
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Superoxide radical formation:

O2 + e─ O2
•─ (eq. 1)

Superoxide can also be produced in vivo by NADPH oxidase (NOX) enzymes and

xanthine oxidase (XO). Regarding NOX enzymes, they can be activated in several

tissues such as lungs and adipose tissue (Halliwell 2007). NADPH oxidase can also be

activated and contribute to the production of O2
•- through oxidative burst during

phagocytosis (Halliwell 2007, Murray 1993). Xanthine oxidase (XO) can also reduce

O2 to O2
•-. In cases of muscle injury and ischaemia-reperfusion, XO can promote the

generation of O2
•- and H2O2 by oxidizing the accumulated hypoxanthine during the

reoxygenation period (White 2000). Additionally, the binding of O2 to haem proteins

haemoglobin and myoglobin can occasionally result in the release of O2
•-. It has been

estimated that about 3% of the haemoglobin present in human erythrocytes

undergoes oxidation every day and so these cells are exposed to a constant flux of

O2
•- (Halliwell 2007). Moreover, cytochrome P450-dependent oxygenases, but also

peroxisomes, produce O2
•- (Valko 2006). Excess production of O2

•- can damage

proteins, lipids and DNA, and has been implicated in the pathophysiology of a variety

of diseases (Valko 2007).

Hydroxyl radical (OH•): OH• is of the most reactive free radical species known

(Halliwell 2007 p42, 44). With an in vivo half-life of approx. 10−9s (Valko 2007), their

direct chemical action is strictly confined to the close vicinity of the site of its

generation (Asmuss 2000), reacting with normal cells and destructing cellular

enzymes and cellular membranes by lipid peroxidation, or provoking alteration of

DNA molecules (Halliwell & Chirico 1993, Dizdaroglu 2002). In biological fluids, it can

be generated mainly through Fenton (eq. 2) and Haber-Weiss (eq. 3) reactions in the

presence of transition metal ions such as iron (Fe) or copper (Cu). Under stress

conditions, O2
•- releases iron from iron-containing proteins and facilitates OH•

production from H2O2.
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Fenton reaction:

Fe2+ + H2O2 Fe3+ + OH• + OH─ (eq. 2)

Haber-Weiss reaction:

O2
─ + Η2Ο2 O2 + OH• + OH─ (eq. 3)

Hydroxyl radical can also derive from the reaction of HOCl with O2
•- (Folkes 1995),

from decomposition of NOO- (Radi 1991), as well as ultra violet (UV) and ionizing

radiation (Halliwell 2007). The importance of OH• in oxidative stress is precisely due

to its great reactivity. When OH• reacts with an organic compound (lipid, protein or

nucleotide), an oxidized molecule is generated and a chain reaction begins leading to

the formation of other radical species such as ROO•, RO•, and ΗΟ2
•. These species

are of the most abundant radicals in biological systems and are readily formed in any

oxygen containing environment. Therefore, increased production of OH• can

subsequently lead to oxidation of lipids, proteins or DNA (Valko 2006).

Hydrogen peroxide (H2O2): As already been mentioned, H2O2 is not a free radical

itself, yet it is included in ROS, due to its high chemical reactivity and ability to

further exacerbate oxidative stress. It is continually produced in vivo in many tissues,

and can be formed by the addition of hydrogen cations to O2
•- a chemical procedure

called dismutation. The formation is catalyzed by the enzyme superoxide dismutase

(SOD) (Halliwell 2007).

Fe
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Dismutation of superoxide

2O2
•- + 2H+ H2O2 + O2 (eq. 4)

Although H2O2 is not very reactive, it is capable of inactivating a few enzymes directly

through oxidation, such as the glycolytic enzyme glyceraldehyde-3-phospate

dehydrogenase (G3PDH), as well as some protein phosphatases and caspases

involved in apoptosis (Halliwell 1993). Furthermore, H2O2 crosses cell membranes

and reacts with iron and copper (Fenton reaction) forming the very reactive OH•.

What is more, H2O2 also interacts with heme proteins to cause oxidative damage

(Halliwell 2007).

Nitric oxide radical (NO•): NO• is synthesized in vivo in biological tissues by the action

of specific enzymes, the nitric oxide synthases (NOSs), which convert L-arginine into

citruline (Pryor 2006, Ghafourifar 2005). Nitric oxide is a typical example of the

beneficial physiological role of free radicals, in several physiological processes,

including neurotransmission (Knott 2009), blood pressure regulation (Knott 2009

Halliwell 1993), defense mechanisms, smooth muscle relaxation (Halliwell 1993) and

immune regulation (Knott 2009, Valko 2007). Additionally, due to its high reactivity

with other free radicals in vivo, NO• is also considered a free radical scavenger. Thus

the ability to scavenge OH•, or RO2
•, makes NO• a powerful inhibitor of lipid

peroxidation (Denicola 2002) protecting that way against atherosclerosis. On the

other hand, NO• can cause damage to proteins, lipids, and DNA (Rahal 2014), and

has been implicated in many prevalent neurodegenerative diseases, including

Parkinson’s disease, Alzheimer’s disease, and ischemic stroke (Knott 2009).

Additionally, in cases of oxidative burst during inflammatory conditions, NO• and the

O2
•- may react together to produce significant amounts of the much more oxidatively

active molecule, peroxynitrite anion (ONOO−), which is a potent oxidizing agent that

can cause DNA fragmentation (Valko 2007) and lipid oxidation (Carr 2000).

SOD
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1.2. Human body’s antioxidant defense

Human body has developed a defense antioxidant system of enzymatic and non-

enzymatic antioxidant mechanisms that depends on dietary consumption of

antioxidant vitamins and metals and on the endogenous in vivo generation of

antioxidant substances such as glutathione (Ji 1999, Aruoma 1994). The defense

mechanisms comprise of: a) agents that catalytically remove reactive species (RS),

such as superoxide dismutase (SOD), superoxide reductase, catalase and peroxidase

enzymes; b) agents that decrease RS formation, such as mitochondrial uncoupling

proteins, transferrins, albumin, haptoglobins, and heme oxygenases; c) proteins that

protect biomolecules against oxidative damage by other mechanisms, e.g.

chaperons; d) the physical “quenching” of RS, e.g. of singlet O2 by carotenoids; e)

“sacrificial agents” that are preferentially oxidized by RS to preserve more important

biomolecules, such as GSH, α-tocopherol, bilirubin, ascorbate, urate, albumin. This

antioxidant system preserves the balance between the favorable and the damaging

effects of reactive species.

Taken into consideration all of the mechanisms mentioned above, a broad definition

of antioxidant has been proposed, that is, any substance that when present at low

concentrations compared with those of an oxidizing substrate significantly delays or

prevents oxidation of that substrate (Halliwell 2007).

Additionally, to take into account all of the aforementioned antioxidant defenses,

another more simplified definition is also proposed which defines as antioxidant any

substance that delays, prevents or removes oxidative damage to a target molecule

(Halliwell 2007).

1.2.1. Enzymatic antioxidant mechanisms

Enzymatic antioxidant substances are produced endogenously and play an important

role on the maintenance of redox homeostasis in the human body. These substances

convert RONS into less reactive molecules of oxygen and H2O. Enzymatic

Institutional Repository - Library & Information Centre - University of Thessaly
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antioxidants include superoxide dismutase (SOD), glutathione peroxidase (GPx),

catalase (CAT), glutaredoxin (GRX), and thioredoxin (TRX) (Konig 2001).

Superoxide dismutases (SODs): SODs consist a very important defense mechanism

against O2
•- formation which plays a major role in O2 toxicity. SOD exists in three

forms with different metals in their reactive center that are essential for the catalytic

breakdown of O2
•- (Powers & Jackson 2008). In humans, these forms are present as

cytoplasmic CuZnSOD or SOD1, mitochondrial MnSOD or SOD2, and extracellular

SOD (EC-SOD) or SOD3 (Halliwell 2007, Fattman 2003). The first form of SOD,

CuZnSOD, is a dimer that contains copper and zinc in its reactive center and except

for cytoplasm, it is also found in the space between inner and outer mitochondrial

membranes. The second form of SOD, MnSOD, is a tetramer that contains

manganese in its active site and is located in the mitochondria. The third form of

SOD, EC-SOD, is a tetramer which similarly to CuZnSOD, contains copper and zinc in

each subunit. It seems likely that in vivo, EC-SOD is bound to cell surfaces, largely by

association with cell surface carbohydrates. All three forms of SOD catalyze the

conversion of O2
•- to O2 and H2O2 (eq. 4).

Dismutation of superoxide

2O2
•- + 2H+ H2O2 + O2 (eq. 4)

Catalase (CAT): Catalase, like SOD, catalyzes a dismutation reaction and direct

decomposes H2O2 to ground-state O2 (Halliwell 2007) (eq. 5).

The reaction mechanism of catalase

2H2O2 2H2O + O2 (eq. 5)

SOD

CAT
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Catalase is a tetramer containing four subunits, each of which has Fe (III)-heme at its

active site (Reid 1981). It is present in all organs, but especially concentrated in liver,

erythrocytes and kidney. Subcellular, catalase is located mainly in peroxisomes and

in small quantities in mitochondria and endothelial reticulum (Chance 1979, Antunes

2002). Catalase protects erythrocytes against H2O2 generated by dismutation of O2
•-

from hemoglobin autoxidation (Halliwell 2007).

Glutathione peroxidase (GPx): GPx enzymes also catalyze the reduction of H2O2 (eq.

6) or lipid hydroperoxides (eq. 7), using reduced glutathione (GSH) as the reductive

substance.

The reaction mechanism of glutathione peroxidase

H2O2 + 2GSH GSSG + 2H2O (eq. 6)

LOOH + 2GSH GSSG + 2H2O + LOH (eq. 7)

The GPx enzymes are widely distributed in tissues and are mostly specific for GSH as

a hydrogen donor. It exists in four different types: a) the “classical” cytosolic GPx or

GPx1, b) GPx2, mainly found in the cells lining the gastrointestinal tract, c) GPx3 that

is found in plasma and other extracellular fluids, d) phospholipid hydroperoxide

glutathione peroxidase or GPx4, found in lipid membranes and lipoproteins. The

amount of GPx enzymes differs among human tissues; high concentration is found in

the liver, kidney and whole blood, while moderate in lens and erythrocytes and low

in blood plasma (Chance 1979).

GPx

GPx
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Glutathione reductase (GR): The GR catalyzes the conversion of GSSG back to GSH

using NADPH as a reductive agent (eq. 8), so that the normal high ratio of GSH to

GSSG to be sustained (Halliwell 2007).

Regeneration of GSH by glutathione reductase

GSSG + NADPH + H+ 2GSH + NADP+ (eq. 8)

1.2.2. Non enzymatic antioxidant mechanisms

Non-enzymatic antioxidants, include nutritionally derived vitamins and provitamins

(vitamin E, vitamin C, and β-carotene), flavonoids and polyphenols, proteins or

peptides containing thiol groups (mainly glutathione), and various other low

molecular weight compounds as coenzyme Q, uric acid, bilirubin (Konig 2001,

Clarkson 2000), but also some blood components (Halliwell 2007). Under normal

conditions, there is a balance between both the activities and the intracellular levels

of these antioxidants. This balance is essential for the survival of organisms and their

health (Valko 2007).

Glutathione: Glutathione is one of the most critical non-enzymatic antioxidant

substances of the human organism, constituting the main regulator of endocytic

redox homeostasis. Glutathione is a tripeptide, and in the human body can be

synthesized by the amino L-cysteine, L-glutamic acid, and glycine. The sulfhydryl

group (SH) of cysteine serves as a proton donor and is responsible for its biological

activity (Halliwell 2007). Glutathione is a ubiquitous molecule that is produced in all

organs, especially in the liver (Pastore 2003) which supplies 90% of the circulating

GSH (Ji 1995). It is highly abundant in the cytosol, nuclei, and mitochondria and

consists of the major soluble antioxidant in these cell compartments (Masella 2005).

Glutathione has several protective roles against oxidative stress (Masella 2005). One

of the main roles is being a cofactor of several detoxifying enzymes that participate

GR
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in the protection of the cell, such as glutathione peroxidase (GPx) and glutathione

transferase. Another critical role of glutathione is the participation in the transport

of amino acids through the plasma membrane. Additionally, glutathione scavenges

hydroxyl radical and singlet oxygen directly, detoxifying hydrogen peroxide and lipid

peroxides by the catalytic action of glutathione peroxidase (eq. 6). Moreover,

glutathione is able to regenerate the most important antioxidants, Vitamins C and E,

back to their active forms. Glutathione exists in two forms, the reduced (GSH) and

oxidized glutathione (GSSG). In healthy cells and tissue, more than 90% of the total

glutathione pool is in the reduced form (GSH) and less than 10% exists in the

disulfide form (GSSG). In the presence of H2O2 and hydroperoxides, endocytic

glutathione rapidly oxidizes to GSSG, but also rapidly reduces to GSH by the action of

the enzyme glutathione reductase, using NADPH as an electron donor, in low stress

conditions. If the cell is unable to reduce GSSG to GSH, the increase of GSSG can be

used as an indicator of oxidative stress (Clarkson 2000), and the ratio of GSH/GSSG is

used as a reliable measurement of oxidative stress (Ji 1995).

Uric acid: Uric acid is a powerful reduced agent, and the final product of purines

catabolism, produced by hypoxanthine and xanthine by the action of the enzymes

xanthine oxidase and xanthine dehydrogenase. The main antioxidant role of uric acid

is to provide protection against lipid peroxidation by being a powerful scavenger of

OH•, O2
•- and singlet oxygen (Wayner 1987, Ames 1981). Additionally, uric acid also

serves as a metal ions chelator, by binding iron and copper ions, minimizing that way

the potential of metal ions-catalyzed free radical reactions (Halliwell 2007). Uric acid

comprises the main regulator of total antioxidant capacity (TAC) of plasma (Bartosz

2003), which refers to the quantity of oxidant molecules that have been neutralized

by all of the antioxidant substances (Bartosz 2003).

Bilirubin: Bilirubin is the end product of hemoglobin catabolism in the endocytic

reticulum and next to uric acid, one of the most important plasma antioxidants.

Bilirubin circulates in plasma bound to albumin, and effectively suppresses the

oxidation of lipids and lipoproteins (Stocker 1987). About 80% of the bilirubin arises

from the catabolism of haemoglobin from senescent red blood cells, by

reticuloendothelial cells in the spleen, liver and bone marrow (Maines 1988), while
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the rest comes from myoglobin, catalase and cytochromes. Additionally to its

antioxidant properties, bilirubin is also used as an index of hemolysis, due to its

derivation from erythrocytes catabolism (Baranano 2002).

Coenzyme Q10 (CoQ10): Coenzyme Q10 is a fat-soluble, vitamin-like substance present

in nearly all human tissues, with the highest concentrations in the heart, liver and

kidney (Aberg 1992). Coenzyme Q10 can be synthesized endogenously, but is also

supplied to the organism by several foods. Meat and fish are the richest source of

dietary CoQ10; vegetable oils are also quite rich, but dairy products are rather poor

sources CoQ10 (Kubo 2008). Coenzyme Q10 is essential in mitochondrial electron

transport process of cellular respiration and energy production (Ernster and Dallner

1995), and exists in three redox states; ubiquinone-10 is the fully oxidized form,

while ubisemiquinone-10 and ubiquinol-10 are the partially oxidized and the reduced

form respectively. Except for mitochondria, CoQ10 is also found in other cell

membranes and in lipoproteins. Ubiquinol can scavenge RO2
•, and inhibit lipid

peroxidation; it can also regenerate α-tocopherol from its radical in lipoproteins and

membranes (Ernster and Dallner 1995).

Vitamin E: Vitamin E is the major lipid-soluble antioxidant in cell membranes and

lipoproteins that  protects against lipid peroxidation by acting directly with a variety

of oxygen radicals, including singlet oxygen, lipid peroxide products, and the HO•, to

form a relatively innocuous tocopherol radical (Clarkson 2000). Vitamin E inhibits

lipid peroxidation due to its ability to scavenge lipid peroxyl radicals much faster

than these radicals react with adjacent fatty acid side chains or membrane proteins

(Halliwell 2007). Skeletal muscle contains approximately 30 to 50 nmol of vitamin E

per gram of wet weight, whereas the concentration of vitamin E in the heart and

liver amounts to 60 to 70 nmol/g (Ji 1995).

Vitamin C: Vitamin C is a water-soluble vitamin that represents a first-line

antioxidant defense in plasma. Vitamin C can directly react with, and scavenge O2
•-,

OH•, and singlet oxygen (Clarkson 2000, Cesari 2004), therefore being a powerful

inhibitor of lipid peroxidation. Additionally, vitamin C inhibits lipid peroxidation

induced by haemoglobin or myoglobin, but also by activated neutrophils and ROO•
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(Halliwell 2007). Furthermore, vitamin C serves as an electron donor to vitamin E

radicals produced in the cell membrane during oxidative stress to regenerate vitamin

E in lipoproteins and membranes (Ji 1995, Clarkson 2000). Nevertheless, vitamin C in

high concentrations may act as a pro-oxidant, as it can convert iron from its inactive

ferric form (Fe+3) to its active ferrous form (Fe+2) (Powers 2004). Ferrous iron, in turn,

can react with H2O2, and lead to the formation of the very reactive HO• through

Fenton reaction, which can initiate lipid peroxidation.

Carotenoids: Carotenoids are lipid-soluble antioxidants and precursors of vitamin A,

or retinol. In blood they are located in the circulating lipoproteins, while in tissues

(mostly in adipose tissue and liver) they occur within fat stores, in the hydrophobic

interior of membranes and bound to hydrophobic domains of certain proteins

(Halliwell 2007). Beta-carotene, which is considered the major carotenoid, is the

most efficient “quencher” of singlet oxygen (In Clarkson 2000). It is particularly well-

suited for scavenging O2
•-, OH•, and peroxyl radicals such as ONOO−, acting that way

against lipid peroxidation (Powers 2004). Other important carotenoids are lycopene

and α-carotene.

Polyphenols: Phenols are a class of chemical compounds containing a hydroxyl group

(–HO) attached to a benzene (aromatic) hydrocarbon group. Polyphenols consist of

more than two aromatic rings binding to –HO groups (Halliwell 2007). Flavonoids

such as quercetin, resveratrol, curcumin and catechins, are of the best studied

phenols, which include several thousand compounds; they are found in high levels in

onion, grapes and wine, teas, and many other plant products (Manach 2004).

Flavonoids can act as scavengers of peroxyl radical, breaking that way chain

reactions and inhibiting lipid peroxidation; they can also scavenge other RS such as

OH•, NO2
•, ONOOH and HOCl (Halliwell 2008). Additionally, phenols have a chelating

ability as they bind transition metal ions, especially iron and copper, decreasing their

potential of generating free radicals through Fenton and Haber-Weiss reactions

(Nijveldt 2001, Halliwell 2008). Moreover, they can inhibit the ability of

myeloperoxidase to oxidize low-density lipoproteins (LDL), gaining that way a

potential anti-atherosclerotic effect (Halliwell 2008).
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Blood components: Transferrin (the iron-transport protein) and ferritin (the iron-

storage protein) play an important role in maintaining free-iron levels low (Bacic

2008, Murray 1993), and hence restrain the conversion of H2O2 to OH•. Lactoferrin

secreted by neutrophils in situations of inflammation, also acts as an antioxidant by

binding any available iron ions, thus helping iron-dependent OH• generation to be

minimized (Halliwell 2007). Likewise, plasma haptoglobins and haemopexin, confer

antioxidant properties, such that, in cases of release of haem and haem-proteins

from damaged cells (e.g. lysed erythrocytes), they bind to haemoglobin and haem

respectively (Halliwell 2007, Murray 1993), dropping their effectiveness in

stimulating lipid peroxidation. Ceruloplasmin and albumin also assist in the

antioxidant defense protecting important targets against lipid peroxidation (e.g.

LDL), by binding to copper ions that could participate in Fenton chemistry.

Ceruloplasmin binds 90% of the copper present in plasma while albumin carries the

other 10% (Murray 1993). Additionally, albumin contains a –SH group; albumin–SH

reacts with several RS such as ONOO─, NO2
•, HOCl, and RO•, leading to the formation

of less reactive molecules (Halliwell 2007).

The pro-oxidant character of antioxidants: Despite their favorable capacity of

delaying, preventing or removing oxidative damage, it should be noted that under

certain circumstances, non-enzymatic antioxidants may also become pro-oxidative

agents. Flavonoids, as well as antioxidant vitamins have been reported to act as pro-

oxidants when transition metals are available. For example, β-carotene, in the

presence of increased partial pressure of oxygen, can be converted to a peroxyl

radical, and vitamin C can form DNA-damaging genotoxins from lipid hydroperoxides

in the presence of transition metal ions (Halliwell 2008).

1.3. Exercise-induced oxidative stress mechanisms

During exercise oxygen consumption is enhanced and during oxidative metabolism,

most of the consumed oxygen is bound to hydrogen to form H2O through oxidative

phosphorylation in mitochondria. However, it has been estimated that an amount of

2-5% of the consumed oxygen does not fully reduced to H2O, but it leaks out of the
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respiratory chain, as both NADH-ubiquinone reductase and ubiquinone-cytochrome

c reductase generate O2
•─ (Ji 1995). It is well-known that tissue and whole body

oxygen consumption is increased dramatically during strenuous exercise that can

result in a 20-fold whole body and in 100-fold muscle fiber oxygen consumption (Ji

1995). As a result of this increase, an augmentation of the O2
•─ production in the

mitochondria occurs. The O2
•─ that is formed from the oxygen leakage at the

respiratory chain reduces in H2O2 through the enzyme MnSOD, making possible the

formation of OH• through Fenton or Haber-Weiss reactions (Halliwell 2007) in which

iron plays a critical role. Indirect data showing mitochondrial oxidative damage

supports the hypothesis that mitochondria are a primary site of ROS generation

during exercise. Indeed, mitochondrial lipid peroxidation is enhanced after exercise,

accompanied by loss of protein thiol content and inactivation of oxidative enzymes

(Ji 1999). Furthermore, both muscle and heart mitochondria from severely exercised

animals demonstrated lower coupling and decreased GSH redox status (Chandwaney

1998). The mitochondrial theory of ROS production is also indirectly supported by

the training adaptation of mitochondrial antioxidant enzymes, such as MnSOD and

GPx (Ji 1999).

Neutrophils and macrophages comprise cells of the immune system that can

produce great amounts of reactive oxygen species (Malm 1999). In cases of exercise

that includes eccentric contractions and leads to muscle injury and inflammation, the

activity of the above immunity cells increases significantly during, as well as after

exercise through the catalytic action of the reduced nicotinamide adenine

dinucleotide phosphate (NADPH) oxidase and myeloperoxidase (Peake 2005, Close

2005, Vollaard 2005). Neutrophils are the first cells to gather into the injured area

and along with macrophages of the tissue clean the area through phagocytosis. A

subsequent increase of oxygen consumption (oxidative burst) occurs, and the

molecular oxygen initially reduces into superoxide anion and afterwards into

hydrogen peroxide which in turn can form hypochloric acid (Pyne 1996). A number

of reactions after the formation of hypochloric acid can lead to the production of

OH• either through Fenton chemistry or through the reaction of hydrogen peroxide
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with hypochloric acid. Additionally, O2
─ that is produced by polymorphonuclear

leukocytes can release iron from ferritin (Biemond 1984).

Cytokines that are released by neutrophils and the injured myofibers consist of

another source of RONS. These cytokines activate RONS-generating enzymes such as

xanthine oxidase (XO) and cyclooxygenase-2 (Ji 2007, Hellsten 1997). Additionally, in

ischemic muscle contractions, isometric and sprinting exercise, exercise in a hypoxic

environment or exercise with impaired blood flow due to vascular diseases, skeletal

muscle may undergo a significant deficit of adenine nucleotides; in situations like

these, XO may become an important pathway. Xanthine oxidase uses molecular

oxygen as electron donor during purines degradation to uric acid, resulting in the

production of O2
•─ and H2O2 anions (McCord & Fridovich, 1968). Indeed, high

intensity exercise, as well as eccentric exercise lead to the activation of xanthine

oxidase pathway, and the subsequent production of superoxide O2
•─ and H2O2

anions (Hellsten 1997).

The destruction of haemoglobin and myoglobin due to hemolysis that occurs after

muscle-damaging eccentric exercise (Theodorou 2011) can also contribute to

increased production of free radicals by releasing catalytic iron from erythrocytes,

which in turn can participate in Fenton and Haber-Weiss reactions (Gutteridge 1986).
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1.4. Eccentric exercise

The movement of human body is the product of skeletal muscles’ action. Skeletal

muscles are attached to the bones and their volitional contraction leads to force

generation and movement of the body’s skeleton. Each muscle contains many

muscle fibers that comprise the muscle cells. Each muscle fiber consists of many

myofibrils, and each myofibril of thick (myosin) and thin (actin) filaments placed in a

repeated mode along the myofibril. The functional units of this repeated module are

called sarcomeres and their bounds are separated by the Z bands. Thin filaments are

attached to Z bands, while thick filaments lie in the central area of the sarcomere,

known as A band. According to the sliding filament theory (Huxley 1996, Holmes

2000), muscle contraction results from the parallel sliding of actin filaments over

myosin filaments by the binding of myosin heads to actin, while the two groups of

filaments remain at relatively constant length.

Muscle contraction is the activation of tension-generating sites within muscle fibers

(Vander 2001). Muscle contraction does not necessarily mean muscle shortening

because muscle tension can be produced without changes in muscle length. More

specific, muscle contraction can mainly distinguish in: a) isometric contraction, b)

concentric contraction, c) eccentric contraction.

a) Isometric contraction: when muscle tension changes without any corresponding

changes in muscle length, the muscle contraction is described as isometric. An

example can be found when the muscles of the hand and forearm grip an object; the

joints of the hand do not move, but muscles generate sufficient force to overcome

the objects load and prevent the object from being dropped.

b) Concentric contraction: in concentric contraction, muscle tension is sufficient to

overcome the load, and the muscle shortens as it contracts. This occurs when the

force generated by the muscle exceeds the load opposing its contraction. In relation

to the elbow, a concentric contraction of the biceps would cause the arm to bend at

the elbow as the hand moved from the leg to the shoulder (a biceps curl), to lift an

object.
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c) Eccentric contraction: in eccentric contraction, the tension generated by the

muscle is insufficient to overcome the external load and the muscle fibers lengthen

as they contract. Eccentric contractions can occur involuntarily as it happens when

attempting to move a weight too heavy for the muscle to lift, or voluntarily, when

we try to relocate an object from a higher (e.g. the table) to a lower (e.g. the floor)

position.

During the three types of contraction, cross-bridge cycle is continuously repeated. In

isometric contraction, although myosin’s heads are cross-bridged with actin’s

filaments, they cannot move them because of the heavy load of the muscle fibers. In

contrast, during concentric and eccentric contractions there is a movement of actin

filaments; cross-bridges are moving at an angle causing the shortening of sarcomeres

towards A band, whereas the extension of sarcomeres towards the Z band, during

concentric and eccentric contractions, respectively (Vander 2001).

Normally, during the activities of everyday life, and also during athletic actions, all

three types of muscle contraction occur. Eccentric exercise can predominately be

performed by walking or running downhill. Such an activity, allows the quadriceps

muscles to work eccentrically when exerting a braking force to maintain or slow the

pace. Level running can also be considered as a type of eccentric exercise such that,

at the beginning of the stance phase quadriceps muscles are working eccentrically.

Eccentric exercise has been used as a means to develop muscle strength and size

(Dudley 1991). Eccentric muscle contractions produce a greater muscle force than

concentric or isometric contractions (Gault 2013, Stauber 1989). Indeed, muscles are

reported to be approximately 40% stronger during eccentric than during concentric

contractions, whereas exercise that incorporates both eccentric and concentric

contractions produces greater gains in strength than concentric contractions alone

(Colliander 1990). This is probably due to the fact that during eccentric contraction,

some of the cross-bridging heads of myosin instead of performing their usual

rotational movement, retract and remain attached to the actin filaments (Stauber

1989). In the same time, additional cross-bridges are activated during eccentric

contraction and a greater number of activated cross-bridges compared to isometric
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and concentric muscle contractions produce greater force (Stauber 1989). Except for

greater amounts of force, eccentric exercise can also result to greater damage to the

internal membrane system, intermediate filaments, Z discs and contractile proteins

(Nosaka 2008), more intense muscle soreness (Paschalis 2010), as well as greater

inflammation and oxidative stress (Nikolaidis 2007) compared to concentric exercise.

The recruitment of fewer muscle fibers in eccentric contractions, to exert a given

amount of force as compared to concentric contractions, account for the greater

muscle damage with eccentric actions. Since the force-velocity relationship indicates

that each individual muscle fiber can exert a larger force while being stretched than

it can while being shortened (Holmes 2006) and fewer fibers are activated during

eccentric contractions, larger forces per muscle fiber are developed during eccentric

actions thereby resulting in greater damage.

Nevertheless, despite the greater muscle injury provoked by eccentric exercise,

recent research has also shown favorable effects on several health aspects

(Theodorou 2013). Additionally, training adaptations has been shown to be greater

with eccentric exercise than concentric exercise in respect with body strength,

lipidemic profile, and insulin resistance (Nikolaidis 2008, Paschalis 2010b, Paschalis

2011). Paschalis et al. (2011) report that 30 min of eccentric exercise weakly for eight

week improved health risk factors (muscle strength and performance, REE, lipid

oxidation as well as decreased insulin resistance and blood lipid profile). Moreover,

eccentric exercise is also characterized by a lower metabolic demand than concentric

exercise (Gault 2013). For example, when walking or running downhill, oxygen

consumption is reported to be lower compared to level walking or running, at the

same absolute speed (Gault 2013). Therefore, eccentric exercise could be adapted

from sensitive populations such as the elderly, obese, or those suffering from

cardiovascular diseases and diabetes, as an exercise module for ameliorating the

symptoms of the disease and improving their quality of life.
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1.4.1. Eccentric exercise: a valuable model for studying muscle injury

Skeletal muscle injury is manifested in several debilitating diseases that are

characterized by marked proteolysis and muscle wasting such as cancer (Al-Majid

2008), muscular dystrophy (Tidball 2010), rheumatoid arthritis (Stavropoulos-

Kalinoglou 2014), and sepsis (Fehrenbach 2006). Muscle injury causes tissue

disruption and subcellular damage followed by cytokine release and a rapid invasion

of leukocyte subpopulations into the muscle (Peake 2005). This inflammatory

response is followed by a muscle repair/regeneration phase (Peake 2005, Cantini

2002) and muscle recovery (Smith 2008). Intense eccentric exercise induces muscle

micro-trauma characterized by loss of muscle cell integrity and a marked

inflammatory response evidenced by leukocyte infiltration, edema, hyperthermia,

protein release into the plasma and oxidative stress (Jamurtas 2013, Childs 2001,

Gleeson 1995, Theodorou 2011, Paschalis 2007, Goldfarb 2005), but not sepsis

(Fehrenbach 2006). The remarkable resemblances between exercise-induced aseptic

inflammation and muscle trauma make eccentric exercise a valuable tool to

investigate muscle inflammation and oxidative stress in humans.
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1.5. Iron

Iron is one of the most abundant elements, essential for the completion of

numerous important biological functions, including electron transfer reactions, gene

regulation, binding and transport of oxygen, regulation of cell growth and

differentiation. In the human body it is mainly found in the oxygen transport and

storage proteins haemoglobin (60 - 70%) and myoglobin (10%), in various iron-

containing enzymes (2%), as well as in the liver, bone marrow and muscle in the

form of the storage proteins ferritin (Ferr) and hemosiderin (20 - 30%) (Fontecave

1993, Halliwell 1999). Only a minor quantity (0.1 - 0.2%) of total iron, mostly bound

to the iron-transport protein transferrin, circulates in the plasma and other

extracellular fluids (Fontecave 1993, Crichton 2003). The mechanisms by which iron

homeostasis is normally maintained is presented in Figure 1.

Besides its essential character, excessive free iron could adversely affect the human

body, by augmenting oxidative stress, mainly via the Fenton and Haber-Weiss

reactions. As already has been mentioned, ferritin, hemosiderin and transferrin,

assist the system to maintain iron balance under tight control by keeping free iron

levels low and hence restrain the conversion of hydrogen peroxide to the highly

reactive hydroxyl radical (Bacic 2008) that disturbs cellular homeostasis when it is

increased at toxic levels.

Iron absorption is the main mechanism through which iron balance is maintained.

Nevertheless, iron losses may occur at multiple organs, such as the gastrointestinal

tract (Nachtigall 1996, Stewart 1984, de Oliveira 2009), the skin (Brune 1986,

DeRuisseau 2002), the urinary tract (Nachtigall 1996), and additionally due to several

physiological conditions such as the menstrual cycle in women (Harvey 2005, Lyle

1992). To compensate for these losses, as well as for satisfying the body’s demands

during growth and pregnancy, iron is absorbed from the diet. The percentage of

food-iron that is absorbed from the intestine is approximately 10%, with heme iron

being absorbed in greater amounts compared with non-heme-iron (Hurrell 2010,

Anschuetz 2010, Herbert 1987). Thus, from a typical daily diet of 2000 kcal that

contains adequate quantities of meat, 1.8 mg of iron per day are absorbed (Herbert
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1987). In general, daily iron turnover (absorption and excretion) is approximately 1-2

mg per day (Fontecave 1993, Crichton 2003, Brune 1986).

There is a strong body of evidence suggesting that exercise affects iron status

(Koehler 2012, Reinke 2012, Malczewska 2001, Nielsen 1998), although other studies

do not support this association (Malczewska 1997, Malczewska 2000, Magnusson

1984). Iron plays a critical role in oxygen transport and critical for aerobic capacity.

Iron is also needed for the optimal function of many oxidative enzymes affecting the

intracellular metabolism (i.e., the electron transport chain and oxidative

phosphorylation pathway in mitochondria) (Beard 2001). Not only prolonged aerobic

exercise but, to some extent, short duration activities (i.e. sprints), may influence the

above mechanisms (Rowland 2012). Consequently, a compromised iron status would

negatively affect physical performance. On the other hand, iron deficiency is

frequently attributed to exercise (Koehler 2012, Reinke 2012, Malczewska 2001).

Therefore, iron supplementation is commonly used to avoid exercise-induced

perturbations of iron homeostasis and maintain the required iron stores that are

necessary to address exercise needs or enhance physical performance. The

importance of iron homeostasis in exercise is presented in details in section 1.5.1.,

whereas the mechanisms by which iron homeostasis can be compromised due to

exercise are discussed in section 1.5.2.
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Figure 1. Iron homeostasis in the human body. Transferrin supplies iron to cells that require it for cell-

division and/or production of iron-proteins, and erythroblasts in the bone marrow (BM). Most of the iron is

used for haemoglobin (Hb) synthesis. Iron enters plasma from the intestinal mucosa and the macrophage

system. Normally this iron is rapidly bound to transferrin. Non transferrin-bound iron is found in plasma

when transferrin iron-binding capacity is saturated (in conditions of iron overload). Effete red blood cells are

destroyed by macrophages of the reticuloendothelial system. Iron is subsequently released into the plasma

from these cells as ferritin and haemoglobin, as well as in the form of low-molecular complexes. Within cells

iron first enters a labile iron pool which is in equilibrium with the storage pool of iron in ferritin and also

supplies iron for the production of essential iron-containing proteins. Iron is lost from the body together

with exfoliating cells or during blood loss.
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1.5.1. The importance of iron homeostasis during exercise

Exercise and/or physical activity is characterized by a substantial increase in oxygen

needs. Iron is an indispensable factor for the formation of HGB, the protein

responsible for oxygen transport from the respiratory organs to the peripheral

tissues. Lack of adequate amounts of iron for the formation of HGB due to iron

deficiency, can strongly affect physical work capacity, by reducing oxygen

conveyance to the exercising muscles (Beard 2001). Iron is also a vital component for

the formation of myoglobin, the iron-storage protein within the muscle that

regulates the diffusion of oxygen from the erythrocytes to the cytoplasm and on to

the mitochondria where it is used as the final acceptor of electrons processed by the

respiratory chains producing water and forming energy in the process (Dallman

1978, Hood 1992). The concentration of myoglobin in skeletal muscle is drastically

reduced (40 - 60%) following iron deficiency, thus limiting the rate of oxygen

diffusion from erythrocytes to mitochondria (Beaton 1989) which ultimately

compromises the muscle’s oxidative capacity.

Apart from oxygen transport and storage, iron is also needed for the optimal

function of many oxidative enzymes and proteins regulating the intracellular

metabolism (Beard 2001, Hood 1992, Beard 2000). The mitochondrial content of

oxidative enzymes and proteins is an important factor regarding the muscle’s

capacity for work, as there is a strong association between the ability to maintain

prolonged submaximal exercise and the activity of iron-dependent oxidative

enzymes (Beard 2000). Iron deficiency negatively affects mitochondrial respiration

mainly through the decline in heme iron-containing respiratory chain proteins

cytochrome c and cytochrome c oxidase, as well as non-heme iron-containing

enzymes succinate dehydrogenase and NADH dehydrogenase, but also the non-

heme iron-sulfur protein content (Hood 1992). Furthermore, iron is an essential co-

factor in the antioxidant enzyme catalase (Powers 2004). Catalase is located in both

the cytosol and the mitochondria and is responsible for removing hydrogen peroxide

from cells. An iron deficiency would not only impair oxygen transport in the body,

but would also compromise the body’s antioxidant capacity by lowering catalase

activity in cells (Halliwell and Gutteridge, 1999). Therefore, iron deficiency may have
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detrimental effects, especially on endurance performance which is susceptible to,

and negatively affected by disturbances in skeletal muscle’s iron concentrations

(Hood 1992).

Besides athletes’ training at sea level, iron deficiency could also affect athletes

training at altitude. Staying at high altitude causes an increase in erythropoiesis in

the bone marrow, stimulated by hypoxia. This increase in erythropoiesis is followed

by an elevation in red blood cells volume and concentration (Friedmann 1999,

Chapman 1998). Iron deficiency could negatively affect the above mechanism by

limiting the rate of erythropoiesis and consequently aerobic performance. It has

been demonstrated that athletes with low ferritin levels do not increase total red

blood cell volume after 4 weeks at altitude, despite an acute increase in

erythropoietin (Stray-Gundersen 1992). In contrast, a significant increase in

erythropoietin but also in reticulocytes occurred in non-iron-deficient athletes during

training at moderate altitude (Friedmann 1999). Such data suggests that iron

sufficiency is critical for the favorable response of the athletes training to altitude, in

an attempt to enhance their performance.

1.5.2. Potential mechanisms for iron balance disturbances due to exercise

Iron absorption mainly, and to a lesser extent iron nutrition, are the two critical

mechanisms by which iron balance is maintained since there is no other

physiological process for iron excretion. The repletion of iron due to increased losses

as well as the body’s need during growth and pregnancy are covered by dietary iron

intake. Consequently, a low dietary iron intake, could lead to compromised iron

status (Harvey 2005). According to values reported by the Institute of Medicine,

Food & Nutrition Board (2001), the recommended dietary intake (RDI) for total iron

is 8 mg/day for adult men and 18 mg/day for menstruating women. Usually, male,

but not female athletes achieve the RDI for iron (Koehler 2012, Nielsen 1998, Powell

1991). The mechanism of iron absorption by the intestine is regulated by iron

bioavailability in diet and by individual’s iron status. Iron bioavailability has been

found to be affected by the type of the diet and by the type of dietary iron (Hurrell
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2010). Hence, mixed diet and heme iron provide greater bioavailability and

absorption as compared to a vegetarian diet and non-heme iron, (Hurrell 2010,

Anschuetz 2010, Herbert 1987). Furthermore, iron deficiency augments iron

absorption.

Besides iron absorption and intake, several other mechanisms have been proposed

to account for iron loss and iron balance disturbances, and ultimately the prevalence

of iron deficiency in athletes. These mechanisms include increased gastrointestinal

blood loss, hematuria, hemolysis (Stewart 1984, de Oliveira 2009, Nielsen 1998,

Siegel 1979, Choi 2001, Gaudin 1990, Mccabe 1986), increased iron loss in sweat

(Brune 1986, DeRuisseau 2002), as well as menstruation in women (Harvey 2005,

Lyle 1992, Hallberg 1991).

In athletes, gastrointestinal bleeding usually accompanied by occult blood, is a well-

established phenomenon, mostly seen in distance runners (de Oliveira 2009,

Nickerson 1989). Gastrointestinal blood loss has shown to be the main contributor to

the negative iron balance, as the excretion of Fe in sweat and urine appears to be

negligible compared to fecal excretion of 3 - 5 mg/day (Nachtigall 1996). Running a

marathon was associated with a gastrointestinal blood loss (Mccabe 1986), and

positive occult heme stools were found in runners after intensive training or

competitive running (Nachtigall 1996, Stewart 1984, Nickerson 1989, Mccabe 1986).

The origin of running-related intestinal bleeding has still to be clarified, but

endoscopic examination has revealed bleeding lesions in the stomach and colon

(Choi 2001, Gaudin 1990). Gastrointestinal bleeding is partly attributed to ischemic

injury, and running has been shown to reduce visceral blood flow by up to 43% of

pre-exercise levels (Qamar 1987) due to the diversion of blood flow from the

splanchnic viscera to the working muscles. Exercise intensity, seems to play a

significant role in the development of gastric ischemia (Otte 2001), which increases

mucosa permeability and enhances occult blood loss (de Oliveira 2009).

Increased iron loss through sweat has also been proposed as a mechanism related to

the compromise of iron status as a result of increased sweat rates during exercise in
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athletes, or increased temperature in individuals living and exercising in hot climates.

The daily loss of iron from the skin has been reported to be 0.24 mg/d (Green 1968)

or 0.33 mg/d (Jacob 1981). The reported 0.183 mg of iron loss during prolonged

exercise at 50% of VO, represented the 55% - 76% of the estimated daily iron loss

from the skin, and the 23% for men and 10% for women of the estimated total daily

iron loss (DeRuisseau 2002). It has to be mentioned that although the sweat rate

increases during the 1st 2max hour of exercise and remains constant thereafter, and

males have higher sweat rates than females, the iron loss in males and females

remains comparable. Additionally, the sweat iron loss declines in both genders

during the 2nd hour of exercise (DeRuisseau 2002), or after the first 30 min in a hot

environment (Brune 1986). This reduction could be attributed to the initial sweat

containing iron present in cellular debris (Brune 1986), to the increased sweat rates

while the total iron loss remains constant, or to a conservation mechanism that may

prevent excessive iron loss during exercise (DeRuisseau 2002). Still, iron loss in sweat

remains insignificant compared to that of the gastrointestinal tract.

Another explanation for compromised iron status in athletes is the shift of iron

return to hepatocytes, rather than the RES, as a consequence of the increased

intravascular hemolysis occurring mostly in weight-bearing activities, such as

running. In these activities, hemolysis is due to the impact forces generated by the

foot strike (Sureira 2012, Telford 2003). Increased intravascular hemolysis has been

reported in runners (Magnusson 1984) and female artistic gymnasts (Sureira 2012).

However, foot strike cannot totally explain the exercise-induced hemolysis since

hypohaptoglobinemia, a situation that reveals the presence of hemolysis, has also

been observed in swimmers (Selby 1986). In non-weight-bearing activities hemolysis

may result from the compression of the blood vessels caused by the vigorous

contraction of the involved muscles (Selby 1986).

Female athletes seem to be more prone to the development of iron deficiency

(Koehler 2012, Malczewska 2001) and blood loss during menstruation may further

explain this greater prevalence. Although menstrual blood loss in a single woman is

very constant during menarche and throughout the fertile life, there is a large
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variation in blood loss among women (Hallberg 1991). Thus, in a mean cycle length

of 28 days, menstrual blood loss may vary by as much as 26 - 44 ml, with a

corresponding daily iron loss of about 0.5 - 0.7 mg (Harvey 2005, Hallberg 1966). This

great variation in blood and iron loss reported by these two studies could be

associated with an extensive use of oral contraceptives which are known to reduce

the amount of blood loss during menstruation (Larsson 1992). Finally, menstrual iron

loss in women has been shown to negatively correlate with serum Ferr, and iron

status to significantly correlate with the duration and intensity of the menses in

endurance athletes (Malczewska 2000). Taking into consideration the iron loss

during menstruation along with the relative failure to achieve the daily RDI for iron

the greater frequency of iron deficiency in female athletes can be justified.

1.5.3. The pro-oxidant character of iron

On the opposite side of antioxidants, pro-oxidants are substances characterized as

capable of disturbing the redox balance and lead to increased production of RONS

that are involved in critical biological processes such as gene expression, signal

transduction and enzyme activity. The term pro-oxidant refers to any endobiotic or

xenobiotic substances capable of disturbing the redox balance and induce oxidative

stress either by generating RONS, or by inhibiting antioxidant systems (Rahal 2014);

it can include all reactive and free radical-containing molecules in cells or tissues.

Iron is characterized as a pro-oxidant, meaning that excessive free iron could disturb

the redox balance due to its capacity to facilitate the production of the very reactive

OH•, and lead to lipid peroxidation, protein oxidation, or DNA damage (Halliwell

2007). Iron is mainly found in two forms, the trivalent (Fe3+, ferric iron) and the

bivalent (Fe2+, ferrous iron), with the latter being the active form of iron. It is the

ferrous iron that contributes to the formation of hydroxyl radicals through Fenton

reaction (eq. 2) or through Haber-Weiss reaction (eq. 3) (Prousek 2007). Additionally,

as already has been mentioned, iron-containing haem and haem proteins

haemoglobin and myoglobin can occasionally result in the release of O2
•-.

Consequently, ferrous iron by facilitating the formation of free radicals, can

adversely affect the human body, augmenting oxidative stress. Indeed, several
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indices of iron status have been correlated with various pathological conditions such

as hypertension (Galan 2006), cardiovascular diseases (de Valk & Marx 1999, Jomova

and Valko 2011, Berdoukas 2015), cancer (Valko 2007) haemoglobin-associated

diseases (Coates 2014), obesity, serum triglycerides, HDL cholesterol and

inflammation (Williams 2002), situations that are directly or indirectly associated

with enhanced free radicals production.

1.5.4. Iron-induced oxidative stress during eccentric exercise: potent

mechanisms

Considering its pro-oxidant potentiality, iron could affect the magnitude of RONS

production and alter the usual responses following muscle-damaging exercise. The

potential of iron as a pro-oxidant in eccentric exercise rests in its ability to interact

with intermediate RONS, such as O2
•-, HOCl and H2O2. These intermediates are

produced by neutrophils and macrophages, through activation of NADPH oxidases

and cytokines, as a physiological response of the human body to the occurring injury.

The mechanisms by which these RONS are produced during eccentric exercise have

already been described in section 1.2.2.
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1.6. Current approach to exercise-induced muscle damage and oxidative

stress

Research so far has focused on the effort to diminish oxidative stress during and/or

after exercise-induced muscle damage. The typical approach was to provide

antioxidants to minimize the production of RONS with the skeptical that decreased

RONS production during exercise would provoke less damage, ameliorate the

intensity of the injury symptoms, and sustain muscle performance. Nevertheless, the

effectiveness of such an approach is still under debate, as the results between the

studies are divergent. In fact, there is a body of evidence supporting the beneficial

role of antioxidant supplementation on muscle performance and reduction of

oxidative stress (Goldfarb 2005), but there is also studies that either state no

alterations of redox adaptations (Theodorou 2011), or even more, enhanced

oxidative stress due to supplementation (Childs 2001) and a slowing-down of the

adaptive response of the muscle (Khassaf 2003).

Considering its pro-oxidant potentiality, iron could affect the magnitude of RONS

generation and alter the usual responses following muscle-damaging exercise.

Nevertheless, the role of iron, that could modify redox responses and change muscle

function and performance after muscle-damaging exercise, has not yet been

examined. Moreover, despite the extended research conducted in adults, very few

studies have addressed the temporal changes in exercise-induced muscle damage

symptoms in children (Marginson 2005, Gorianovas 2013, Soares 1996). In brief, it

seems that children sustain less severe muscle damage compared to adults,

indicated by the attenuated symptoms of muscle injury following exercise.
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1.7. Aim of the study

The main aims of the present study ware the following:

1) To investigate the effects of iron supplementation for three weeks in male

adults and children at rest on:

a) iron status indices

b) blood redox status indices

c) muscle damage and performance indices

2) To investigate the effects of iron supplementation for three weeks prior to

and another 96h after an acute bout of eccentric exercise in male adults and

children on:

a) iron status indices

b) blood redox status indices

c) muscle damage and performance indices
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1.8. Study hypotheses

The main hypotheses of the present doctoral dissertation were the following:

a) Iron supplementation for three weeks will provoke changes on iron status,

blood redox status, and muscle damage and performance

b) Acute eccentric exercise will provoke changes on iron status, blood redox

status, and muscle damage and performance

c) The responses on the above indices will be different in the iron

supplemented group compared to the placebo group

d) The responses will be different in children compared to adults
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1.9. Study limitations

The limitations of the present dissertation were the following:

a) Only males participated in the study

b) Fewer blood drawings have been conducted in children compared to adults,

and thus it is possible that some of the responses of the estimated

biochemical parameters have not been detected in children.
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1.10. Study eligibility criteria

The eligibility criteria for the present study were the following:

a) Healthy adults and children participated in the study, capable of giving their

consent for participation. Additionally, regarding children, only after the

written consent of their parents they could participate in the study

b) Participation in the study was voluntarily, without any financial or material

reward

c) Participants were of normal iron status, without being allergic in iron salts

d) Only individuals with normal BMI participated in the study

e) Only individuals that did not consume any dietary supplement for at least 3

months prior to the beginning of the investigation participated in the study

f) Participants abstained from eccentric exercise for at least 6 months prior to,

and through the entire study

g) All measurements were conducted by the same investigator, under stable

conditions (room, temperature, humidity, day-time).
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2. LITERATURE REVIEW

2.1. Evaluation of iron status: reference values of the most commonly

used parameters

Due to the significant role of iron in optimal physical performance and health, the

evaluation of iron status in athletes is of great importance in order to prevent iron

deficiency. According to the World Health Organization (Worwood 2004), iron

deficiency progresses in three stages: in the first stage iron stores in bone marrow,

liver, and spleen are depleted (serum Ferr concentrations <12μg/L); in the second

stage, erythropoiesis decreases as iron supply to erythroid marrow is reduced (TS

<16%); in the final stage production falls drastically (concentration <12g/L) resulting

in anemia.

Iron status evaluation is not a single-parameter estimation. Day-to-day or acute

phase response variations occur in several indices of iron status. Therefore, in order

to make a valuable and more accurate assessment, the estimation of iron status

indices and several hematological parameters is needed. The most commonly used

hematological and biochemical indexes are HGB and HCT reflecting red cell mass and

plasma volume (Lynch 2004); serum iron concentration, total iron binding capacity

and transferrin saturation indicating plasma iron status (Tietz 1995, Beard 2004);

serum ferritin and hemosiderin representing body iron stores (Lynch 2004, Tietz

1995); erythrocyte protoporphyrin (EP) or zinc protoporphyrin (ZPP), and the soluble

transferrin receptor (sTfR) reflecting the adequacy or inadequacy of iron for

erythropoiesis into the bone marrow and tissues (Labbe 1999, Labbe 2004);  also,

haptoglobin is used for the estimation of hemolysis (Tietz 1995). Reference range for

the main indicators of iron status, as well as reported values in athletes is presented

in Table 1.
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Table 1. The main iron status indicators: reference values for non-athletes and reported values in athletes

Hb
g/dL

HCT
%

RBC
x 106 c/μL

Ferr
μg/L

Iron
μg/dL

TIBC
μg/dL

TS
%

sTfR
mg/L

HP
mg/dL

EP
µg EP/dL

Reference values for non-athletes adults*

Males
Females

13.2-17.3
11.7-15.5

39-49
35-45

4.3-5.7
3.8-5.1

20-300
10-120

65-175
50-170

250-425
250-425

20-50
15-50

1.15-2.75
1.15-2.75

15-200
15-200

< 40-50
< 40-50

Reported iron status indicators in athletes (M±SD)
Koehler et
al.  (2012) √

Males
Females

14.7±1.1
13.2±0.9

42.3±2.6
38.6±2.4

55.4±36.7
35.4±22.0

Della Valle
& Haas,
(2012) √

Females(N)
(D)

13.1±0.7
13.0±0.7

40.1±2.1
40.2±2.1

43.0±20.3
13.9±5.1

6.4±2.5
6.4±2.1

Reinke et al.
(2012) ↑

Males  (CS)
(R)
(P)

12.2-17.1
11.6-17.2
12.4-16.5

6-127
20-133
15-148

10.7-85.4
9.0-54.2

13.9-43.2
Schumacher
et al.
(2002) √

Males  (EA)
(PA)

15.7±1.0
16.4±1.0

46.6±3.3
47.4±3.1

5.24±0.52
5.47±0.36

125.6±91.5
82.3±61

125.0±50.2
105.5±38.6

73.0±38.9
55.2±30.7

Malczewska
et al.
(2001) √

Males (N)
(D)

Females(N)
(D)

16.38±1.1
15.92±1.1

14.5±0.9
13.8±0.8

0.49±0.0¥

0.47±0.0¥

0.42±0.0¥

0.42±0.0¥

5.26±0.36
5.12±0.32

4.5±0.37
4.6±0.33

65.9±1.83
19.5±2.14

40.6±1.76
20.1±1.54

104.3±28.2
72.8±20.5

105.3±32.9
81.7±20.4

310±36.7
348±41.2

315±42.6
344±49.2

1.78±1.3
3.15±1.2

1.72±1.2
4.36±2.5

1.29±0.58
1.16±0.54

1.29±0.89
1.43±0.60

Rowland et
al. (1987)

Males
Females

14.7±1.0
13.3±0.4

29.4±17.8
26.6±11.4

Magnuson
et al. (1984) Males 14.6±0.9 64.3±47.8 19.1±7.3╬ 31.8±11.6 52.0±32 27±18
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Hb: Haemoglobin; HCT: Hematocrit; RBC: Red blood cells; Ferr: Ferritin; TIBC: Total iron binding capacity; TS: Transferrin saturation; sTfR: soluble transferrin receptor;
HP: Haptoglobin; EP: Erythrocyte protoporphyrin;
(√) Values reported in Mean±SD, ↑ the observed ranges, ¥Values reported in L/L, ╬Values reported in μmol/L
N: normal iron status, D: iron deficiency, CS: Competitive season, R: Recovery, P: Preparation, EA: Endurance trained athletes, PA: Power trained athletes
* WHO, Assessing the Iron Status of populations (2004); Suominen et al., 1998; Tietz, 1995; Lynch, 2004; Beard, 2004; Labbe et al., 1999.
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2.2. Exercise-induced alterations of iron status

Chronic exercise

There is a great body of evidence indicating that several hematological and iron status

parameters often appear altered as a result of chronic exercise giving the impression that

athletes may be iron-deficient (Koehler 2012, Reinke 2012, Malczewska 2001, Nielsen 1998,

Rowland 2012, Schumacher 2002). Table 2 summarizes the effects of iron supplementation

on several indices of iron status. Several hematological variables in strength-trained athletes

have been reported to be similarly low or even lower than that of endurance athletes

(Koehler 2012, Spodaryk 1993). Nevertheless, it is mostly the endurance type of training

that has been linked to lower values of several hematological indices (Brigham 1993,

Schumacher 2002). Actually, although within normal values, lower levels of RBC have been

reported in endurance and/or power athletes compared to sedentary individuals, while HGB

and HCT were significantly lower in endurance athletes only when compared with power

athletes (Schumacher 2002). These lower levels in endurance athletes have been attributed

to reticulocytosis and expansion of plasma volume associated with chronic aerobic training

(Brigham 1993, Schumacher 2002, Schumacher 2002). However, abnormal HGB

concentration (< 13 g/dL) was not only reported in endurance athletes, but in male athletes

of combat sports as well (Koehler 2012). What is more, even levels below 12 g/dL, defining

iron deficiency anemia, has been reported for female rowers, indicating that abnormal

decrements in concentration can be found in athletes other than runners (DellaValle 2011).

While in the general population a serum Ferr concentration below 12μg/L is used for the

identification of first stage iron deficiency, wider serum Ferr cut-offs values (ranging from 12

to 40 μg/L) have been adopted for the identification of diminished iron stores and iron

deficiency in athletes (Koehler 2012, Reinke 2012, Rowland 1988, Peeling 2007, Klingshirn

1992, DellaValle 2011). Additionally, iron deficiency has also been distinguished to absolute,

when serum Ferr is below 30μg/L, or functional, when serum Ferr is within 30 - 90μg/L or

serum Ferr is within 100 - 299μg/L and TS is below 20% (Reinke 2012). Although within

normal range, athletes demonstrated lower values of serum Ferr but similar transferrin and

Hp values compared with sedentary controls (Schumacher 2002). Similarly, in the study of
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Spodaryk (1993) significantly lower Ferr concentration in endurance athletes is reported

compared with strength-trained athletes and controls, and Ferr levels below 50μg/L in 18%

of endurance athletes as compared to 12% in controls. Decreased serum Ferr values (< 35

μg/L) were recorded to one third of elite athletes (Koehler 2012). These results are in

agreement with those of Nachtigall et al. (1996) where decreased serum Ferr values (<

35μg/L) and low, instead of normal, hepatic iron stores were also reported in male distance

runners, indicating a true prelatent iron deficiency. The lower cut-off point of < 20 μg/L for

Ferr adopted by DellaValle et al. (2011), identified 30% of the rowers as being non-anemic

iron-depleted at the beginning of a pre-training period, while another 10% were identified

as anemic according to  values of less than 12.0 g/dl. A very intense training or competitive

period may lead to absolute (Ferr < 30μg/L) and functional (Ferr within 30 - 90μg/L or Ferr

within 100 - 299 μg/L + TS <20%) iron deficiency in professional male soccer players (Reinke

2012, Escanero 1997), elite rowers (Reinke 2012) and female swimmers (Brigham 1993). In

some cases, the allowed recovery period before the next training phase may not be

sufficient for the replenishment of the depleted iron stores (Reinke 2012), and this point

definitely needs closer attention.

Based on data of several investigations, iron status disturbances are more frequent in

female than in male athletes. Female athletes were about twice as likely to exhibit reduced

Ferr levels (Koehler 2012). In that study, 58.8% of females had Ferr below 35 μg/L, whereas

the corresponding percentage of their male counterparts was 31.2%. In another study

(Rowland 1987), 45% of the female cross country runners became iron-deficient at the end

of the competitive season, while in males only 17% of them were characterized as iron-

deficient. Similarly, the prevalence of iron deficiency was greater in female athletes of

several events, as compared to male athletes. Determination of the transferrin receptor-

ferritin index (sTfR/logFerr) revealed values of 2.62±0.94 and 3.33±1.71 for iron-deficient

male and female athletes, respectively (Malczewska 2001). Additionally, critically low Ferr

levels below 15μg/L or even below 12μg/L have also been reported for female runners

(Rowland 1987, Gropper 2006, Nickerson 1989).
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The cause of reduced levels in Ferr or serum iron in athletes is not fully understood. Exercise

induced hemolysis, as documented by the reduced HP values, may offer a plausible

explanation. In the study of Magnusson et al. (1984), although no differences were observed

in iron concentration, Hct, Ferr, TS, and bone marrow hemosiderin were lower in athletes

compared to controls. However, no true iron deficiency was established based on the

normal mean cell volume (MCV) and EP values, as well as on the normal sideroblast count in

bone marrow smears of all athletes, confirming an adequate supply of iron to normoblasts.

The lower Hct and Ferr values in athletes could be explained by the simultaneous marked

decline of HP levels, indicating a shift of iron to the hepatocytes as a result of increased

intravascular hemolysis.

Acute exercise

Not only chronic exercise, but also acute strenuous physical activity may alter several

indices of iron status. A significant reduction in serum iron levels of 12.2 μmol/L was

reported after a triathlon completion (Rogers 1986). The authors proposed that heavy

sweating or a prelatent iron deficiency may explain the observed severe reduction of serum

iron. However, sweat iron concentration does not correlate with the increased whole body

sweat rates (DeRuisseau 2002). A slight increase in sTfR, although within the normal range,

has also been recorded after incremental running to exhaustion, but not after 45 min of

submaximal exercise or after 3 consecutive days of aerobic training in highly trained

endurance cyclists (Schumacher 2002). After the incremental running, an increase in Ferr, as

well as in Packed Cell Volume (PCV) was also observed. This increase was mainly attributed

to the concurrent haemoconcentration, as evidenced by the pronounced fall in plasma

volume.

Regardless the acute or chronic character of exercise where most studies report variable

responses in iron status, there are also studies that do not support significant differences in

iron status between trained and untrained individuals. Indeed, similar incidence of iron

deficiency between male endurance young athletes and non-athletes involved in several
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sport disciplines has been reported (Malczewska 1997). High physical activity of athletes did

not affect iron stores, as it was found to be higher than in control subjects. It has to be

mentioned though, that athletes had higher iron intake from the diet than controls, and that

18% of those that were iron-sufficient reported consumption of iron supplements. In a more

recent study of the same institute (Malczewska 2000) that involved female endurance

athletes, lower incidence of iron deficiency was reported in athletes as compared to

controls. These studies may lead to the assumption that the increased iron dietary intake

and dietary  factors  involved  in  iron  metabolism  compensated  for  the  augmented,

exercise-induced losses of iron in young athletes. Regarding iron deficiency in athletes

whose iron intake was sufficient, the authors attributed its prevalence in its diminished

absorption for the male, and its leak to the blood due to menstrual cycle for the female

athletes.

Taken together, these studies that attempted to evaluate the effects of exercise on iron

status of athletes suggest that high volume training during a competitive season may

compromise iron homeostasis. One determining factor that could help explain the reported

discrepancies in iron status due to acute or chronic exercise is diet. Unfortunately, not many

studies report athletes’ daily dietary intake of iron, and since iron intake or absorption are

determining factors for iron balance future studies need to address this issue.
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2.3. Iron supplementation and exercise-induced alterations of iron status

Numerous studies have attempted to clarify the effectiveness of enhanced iron intake,

either through diet or through supplement consumption, to restore iron status or to

enhance physical performance. Yet, no valid conclusions have been drawn. The results of

these studies are contradictory as some of them produced positive effects (Friedmann 2001,

Rowland 1988) whereas others dispute such effects (Tsalis 2004). An important factor in

iron absorption seems to be the previous iron status of the individual. This means that,

several iron parameters are seen to be ameliorated following iron supplementation in

situations of iron deficiency, whereas this is not always the case for individuals with normal

iron status. Table 3 summarizes the effects of iron supplementation on iron status and

physical performance.

Iron supplementation in iron-deficient individuals

Whether the increased uptake of iron through diet or supplements improves iron status in

athletes is still under debate. This is mainly due to the great divergence of iron doses,

intervention period, population, and exercise regimens used between studies. In situations

of iron deficiency a proposed minimum therapeutic requirement corresponds to 100

mg/day of elemental iron, for a period of 12 weeks (Nielsen 1988). However, in several

studies, much lower quantities of 20 - 50 mg/day of elemental iron for 12 weeks (Lyle 1992,

Brigham 1993) or smaller duration (of even two weeks) of iron supplementation have also

been used and reported to be adequate to restore iron status to normal (Schoene 1983). A

treatment with 100 mg/day of ferrous iron for 3 months significantly increased the values of

serum Ferr (from 34±11 to 54±18 μg/L) and liver iron (from 105±42 to 227±67 μg/g liver)

(Nachtigall 1996). In this study, 23 out of 45 athletes showed decreased baseline serum

values (<35μg/L), and the typical iron deficiency in runners was confirmed in a subgroup of

eight athletes in which iron metabolism was studied in detail using radio-iron labelling and

liver iron quantification. These eight athletes showed up-regulated 59Fe absorption and a

decreased liver iron concentration as compared to a control group. The results of the eight

athletes confirm that in cases of true iron deficiency, iron absorption is greater. A moderate

dose of 39 mg/day of elemental iron for 5 weeks effectively prevented the negative changes
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of iron status over the course of a competitive season in female collegiate swimmers

(Brigham 1993). Absence of iron supplementation resulted in decreased levels despite mean

dietary iron intakes of 16.3 mg/day. The ingestion of 105 mg/day of elemental iron

combined with 500 mg of Vitamin C for 60 days resulted in the amelioration of iron status of

previously iron-depleted, non-anemic elite female athletes (Pitsis 2004). The improved iron

stores were reflected by the increase of Ferr in conjunction with the decrease of transferrin,

sTfR and sTfR/log ferritin index. Taken together the aforementioned results suggest that the

initial stage of either iron sufficiency or iron deficiency, combined with the amount of iron

ingested, plays a critical role in the absorption of iron from diet or supplementation.

Iron supplementation in individuals with normal iron status

Supplementation of iron is commonly used, not only in iron-deficient athletes, but also in

athletes with normal iron status. The rationale behind this practice dictates that

supplementation will preserve or enhance their performance. This concept is probably

based on the catalytic role of iron on the oxygen transport and optimal function of oxidative

enzymes and proteins during exercise. The hypothesis could be that with increased

consumption of iron, the above mechanisms would be reinforced and exercise performance

would be improved. Nevertheless, unlike the numerous studies addressing iron-deficient

individuals, only few (Tsalis 2004, Escanero 1997, Powell 1991) have focused in iron-

sufficient athletes. The response of iron stores during a sports season was assessed in

professional football players with normal iron stores at the beginning of the season

(Escanero 1997). The players consumed 50 mg/day of elemental iron over two periods

during the training season. Supplementation took part for 15 days prior to the beginning of

the season and 15 days during the middle season. Blood was collected three times during

the season, one following the first supplementation period, another following the second

supplementation period and a third time at the end of the season, where no iron

supplementation had occurred. Ferritin, as well as calculated iron stores, showed a

significant reduction at the end of the season which coincided with the absence of iron

supplementation. In contrast, Ferr and iron store levels remained stable following

supplementation regardless of the intensive training. In another study, non-anemic, non-
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iron-deficient adolescent male and female swimmers aged 12-17 years old were either

supplemented with 47 mg of elemental iron daily or consumed a diet rich in iron (Tsalis

2004). Both approaches failed to affect the athletes’ iron status. In that study, despite the

significant fluctuations during the six months of training, iron levels, TS and Ferr levels were

similar at the end of the study as compared to baseline values. The authors attributed the

failure of high iron intake to affect iron status to homeostatic mechanisms such as iron

absorption. It could also be suggested that the quantity of elemental iron was not enough to

improve iron status and that higher doses of iron are needed to achieve a favorable change

in iron status. The younger age and the possible higher demands in the study of Tsalis et al.

(2004) compared with that of Escanero et al. 1997, may have influenced the absorption of

iron that resulted in different responses in these two studies.
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Table 2. The effect of exercise on iron status

Study Study protocol Subjects Estimated indices Results

Compromised iron status

Chronic exercise

Kohler et al.
(2012)

Retrospective estimation of iron
status in athletes from 25
different events

96 males 16.1±2.3yo and
97 females 16.3±3yo elite
athletes

Nutrition, Ferr, Fe,
hematological
parameters, CK, VO2peak

Dietary iron: 81% of male and 39% of female athletes
reached the RDA; iron density was lower in males;
57% of the females and 31% of the males had
Ferr<35μg/L; similar VO2peak in athletes with low and
normal iron status

Della Valle &
Haas (2012)

Determination of the impact of
iron depletion on performance
at the beginning of a training
season

165 female rowers
(19.7±1.2yo)

Hb, Ferr, sTfR, 2-km TT 30% of the athletes were iron deficient (Ferr < 20μg/L)
10% of the athletes had iron deficiency anemia (Hb <

12 g/dL)

Reinke et al.
(2012)

Assessment of iron status after
3 seasons: championship,
recovery, pre-season training

10 professional male
soccer players 20-36yo,

20 elite rowers 21-35yo

Hematological indices,
Ferr, TS

27% of the athletes had iron deficiency after
championship season which persisted in all time
points in 14% of the athletes
Ferr: no significant increase during recovery
sTransf: ↑ in the recovery period, and ↓in the pre-
season training
Hb: 10% of the athletes had apparent or border line
anemia in all time points

Schumacher
et al. (2002a)

Epidimiological study,
estimation of hematological and
iron status in endurance, mixed
of power athletes

747 male athletes
(24.2±8yo), 104 controls
(29.9±6.9yo)

RBC,Hb,Hct, Fe, Ferr, Tf, ,
VO2peak

Hb, Hct, RBC: ↓in athletes than controls; ↓in
endurance athletes
Ferr: ↓in athletes than controls

Fe, Tf, : no differences
VO2peak: ↑in endurance athletes

Malczewska
et al. (2001)

Assessment of frequency of iron
deficiency in athletes

131 males, 121 females of
several events 16-36
years old

sTfR, Fe, TIBC, Ferr,
TfR/log Ferr index

Latent iron deficiency in 29% of female and 11% of
male athletes; higher sTfR and TIBC, lower Ferr levels
in iron deficient compared with normal only in
females

Nachtigall et
al. (1996)

Estimation of iron status and
iron metabolism throughout a

45 male distance runners Ferr, 59Fe absorption Ferr values <35μg in 51% of the athletes; up-regulated
59Fe absorption, decreased liver iron concentration
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training period
Spodaryk et
al. (1993)

Estimation of hematological and
iron status in endurance (E),
strength-trained (S) athletes
and controls (C)

39 male athletes from the
1988 Polish Olympic team
(20.4 ± 2.2yo)

Hb, PCV, RBC, Ret, Fe,
Ferr, Tf, , TS

Hb, PCV, RBC, TS: ↓in E compared with C
Ferr: ↓in E compared with S and C
Ret, GOT: ↓in E compared with S

Brigham et al.
(1993)

Estimation of iron status during
a competitive season

25 female varsity
collegiate swimmers

Hb, Ferr At baseline 17 athletes were iron depleted and 5
athletes were anemic. After 5 wk Hb decreased (≥6
g/L) in 44%, and Ferr (≥5 μg/L) in  24% of the athletes

Nickerson et
al. (1989)

Estimation of stage II iron
deficiency (Ferr<12ng/ml and
TS<16%) during the running
session; iron supplementation
or iron-rich diet or controls

41 female and 25 male
cross-country runners and
controls (15-18yo)

Ferr, TS, blood losses Iron deficiency: 34% of females and 8% of males
became iron deficient by the 45th or 75th day of
running
Blood losses: 14 stools in females and 1 stool in males
with >4mg Hb/g of stool

Rowland et al.
(1987)

Estimation of iron status during
a competitive season;
supplementation of iron in the
iron

30 male and 20 female
cross country runners
(14.3-18.6yo)

Ferr, Hb, RBC parameters 45% of females and 17% of males identified as iron
deficient during the season

Magnusson
et al. (1984b)

Hematological and iron status
comparison between distance
runners

43 runners (19-46yo) and
119 controls (19-37yo)

Hb,Hct, MCV, MCHC, EP,
Fe, TS, Ferr, BMHem,
Sideroblasts,

Hb: no differences between groups
Hct, Fe, Ferr, TS, BMHem: ↓in athletes

MCV, EP, MCHC: no iron deficiency

Acute exercise

Rogers et al
(1986)

Evaluation pre, post, and 30
min, 24h, and 48h after a 160-
km triathlon (canoeing, cycling,
and running)

18 triathlon athletes Fe, TIBC, lactoferrin, Ferr,
cortisol, WCC, CRP,
various enzymes

Post:
TS; 24h: ↑by 300% in CRP,  ↓ in

Schumacher
et al. (2002b)

Estimation of exercise on sTfR
and other variables after an
incremental running test till
exhaustion (IRTTE), 45min
submaximal running, 3d aerobic
cycling

39 athletes (33 men and 6
women) (19.6-32.5y)

Hb, Hct, BV, PV, RCV, sTfR,
Ferr, Fe

Hb, Hct: r exercise
PV, BV: ning

sTfR:
Ferr:
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No alterations in iron status
Malczewska
et al (1997)

Estimation of iron status in
endurance athletes

178 male athletes, 52
male controls 18-20 years
old

Hb, PCV, RBC, WBC,
MCHC, MCV, MCH, Fe,

TS, TIBC, Ferr,

Similar iron depletion in athletes (19%) and controls
(20%); ↓ Ferr, Fe and ↑TIBC in the iron depleted
subgroups

Malczewska
et al (2000)

Estimation of iron status  in
endurance athletes

126 female athletes, 52
female controls (16-20y)

Hb, Hct, RBC, WBC,
MCHC, MCV, MCH, Fe,
TIBC, TS, Ferr,

Lower iron deficiency (26%) in athletes than controls
(50%); ↓ Ferr, Fe and ↑TIBC in the iron deficient
subgroups

VO2max: Maximum Oxygen Consumption; TT: Time Trial; CK: Creatine Kinase; Ferr: Ferritin; Fe: Iron; Tf: Transferrin; TS: Transferrin Saturation; sTfR: Soluble Transferrin Receptor;
TIBC: Total Iron Binding Capacity; Hb: Haemoglobin; Hct: Hematocrit; PCV: Packed Cell Volume; Ret: Reticulocytes; WCC: White Cells Count; RBC: Red Blood Cells; RCV: Red Cells
Volume; WBC: White Blood Cells; MCH: Mean corpuscular Haemoglobin; MCHC: Mean Corpuscular Haemoglobin Concentration; MCV: Mean Corpuscular Volume; BMHem: Bone
Marrow Hemosiderin; EP: Erythrocyte Protoporphyrin; Hp: Haptoglobin; PV: Plasma Volume; BV: Blood Volume; GOT: Glutamic Oxaloacetic Transaminase; CRP: C Reactive Protein.
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2.4. Iron supplementation and physical performance

Iron supplementation in iron-deficient individuals

There is no doubt that iron-deficiency anemia, which amongst other indicators (e.g.

Ferr<12μg/L, TS<16%), is characterized by a decline in blood concentration, clearly

impairs physical performance by limiting oxygen transport to exercising muscles

(Rowland 2012). However, the need for iron supplementation in cases of depleted

iron stores without observed anemia for optimal physical performance is still under

debate (Table 3). Some studies have shown that iron supplementation improved

physical performance (Friedmann 2001, Rowland 1988), whereas others report no

alterations following iron supplementation (Tsalis 2004, Klingshirn 1992, Powell

1991). The improvement of iron status due to iron supplementation has been

accompanied by an improvement in endurance capacity (Friedmann 2001, Rowland

1988). In young elite athletes with normal concentrations, the return of low Ferr to

normal values following supplementation of 200 mg/day of elemental iron for 12

weeks, even in the absence of increased erythropoiesis, has been shown to improve

maximal aerobic capacity (Friedmann 2001). Iron supplementation also prevented

the decline in performance that was associated with the progressive reduction of

serum Ferr levels (Rowland 1988). Iron deficient cross-country female runners were

treated with 975 mg/d of ferrous sulfate or placebo for 4 weeks. Iron

supplementation resulted in an increase in ferritin levels which was accompanied by

an improvement of physical performance. Subjects not receiving iron therapy

exhibited a decline in their performance (Rowland 1988).

Besides the aforementioned positive results in exercise performance there are

studies reporting no beneficial effects due to iron supplementation (Tsalis 2004,

Klingshirn 1992, Powell 1991). In the study of Powell et al. (1991), no significant

improvement of iron status or metabolic parameters related to running performance

was found after 2 weeks of 130 mg elemental iron supplementation in non-anemic,

iron-deficient female cross-country runners. Likewise, Klingshirn et al. (1992), report

that 8 weeks of iron supplementation in iron-depleted, non-anemic female distance

runners, resulted in similar improvement of the endurance capacity in the
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supplemented and the placebo group, despite the improved iron status in the iron-

supplemented group. In another study, the injection of 2 mL of Ferrum H (100mg of

elemental iron) five times daily for 10 days did not result in any beneficial outcomes

and time to fatigue in non-anemic, iron-deficient female runners (Peeling 2007). This

study, failed to demonstrate any beneficial effect of iron supplementation on aerobic

capacity, despite a significant rise in serum Ferr levels (from 19 to 65μg/L).

Iron supplementation in individuals with normal iron status

In one of the very few studies that used healthy, non-iron-depleted and non-anemic

adolescent swimmers, the enhanced iron intake either through supplement or diet

ranging from one to five times the RDA, did not change iron status or result in

favorable changes of physical performance (Tsalis 2004). The authors attributed the

observed fluctuations over the training period of six months to the different

demands of each training phase irrespective of iron treatment. These observations

strengthen the notion that the initial levels of iron status are of critical importance in

the improvement of physical performance as a result of iron supplementation. In

(Brigham 1993), the mean dietary intake of 16.3 mg/day was not adequate to

prevent the disturbance of iron status in female collegiate swimmers. Haemoglobin

levels decreased at about 6 g/L in 44% of the athletes given placebo treatment,

whereas the corresponding decrement in plasma Ferr was 5μg/L in 24% of the

swimmers given the iron supplement. Consequently, the reductions in Ferr levels

were lower in the athletes that were under iron supplementation.
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Table 3. The effect of dietary or supplemented iron on exercise-induced changes of iron status and physical performance

Studies Study protocol Subjects Estimated Indices Results

Improvement in iron status
Nachtigal et al.
(1996)

100mg/d of elemental
iron for 3 months, radio-
iron  labeling (59Fe) in 8
iron deficient athletes

45 runners (23 out of 45
were iron deficient,
Ferr<35μg/L), and controls

Ferr, iron absorption,
liver iron

Ferr: ↑ from 34±11 to 54±18 μg/L
liver Fe: ↑from 105 ±42 to 227±67 μg/g liver

Brigham et al.
(1993)

39mg/d of elemental iron
(IG) or placebo (PG) for 5
wks

25 female,  iron depleted,
varsity collegiate swimmers

Hb, Ferr Hb:↑ in 24% of the subjects in the IG and in 12% in PG
Ferr: ↑ in 68% of the subjects in the IG and in 4% in PG

Pitsis et al.
(2004)

105mg/d elemental iron
+ 500mg/d Vit C for 60
days

36 elite iron-depleted, non-
anemic female athletes of
several disciplines (13-26y)

Red cell & reticulocyte
parameters, Fe, Ferr,

Tf, TS, sTfR

Ferr: ↑
Tf: ↓
sTfR: ↓
sTfR/ log Ferr: ↓
Red cell and reticulocyte parameters: no changes

Rowland et al.
(1987)

Estimation of iron status
during a competitive
season; supplementation
of iron in the iron
deficient athletes (IG) in
the midpoint of the
season (the dose is not
reported)

30 male and 20 female
cross country runners
(14.3-18.6y)

Ferr, Hb, RBC, MCV,
RBCDW,

Ferr: ↑in IG and ↓in untreated athletes at the end of the
season

Hb, RBC, MCV, RBCDW: no changes

Escanero et al.
(1997)

Variation of iron
metabolism through a
season; 50mg of iron/day
for the last 15 days at the
beginning (A) and the
middle of (B), but not at
the end (C) the season

9 soccer players at the 1st

division (24±2.1y)
RBC, MCV, MCH,
MCHC, Fe, Tf, Ferr,
TIBC, TS

Ferr, Iron stores: ↓at the end of the season (no iron
supplement); remained stable at the beginning and the
middle of the season (iron supplementation)
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Improvement of performance

Friedmann et al.
(2001)

2 x 100mg/d elemental
iron (IG) or placebo (PG)
for 12 wks; the usual
training

40 iron depleted
endurance athletes (13.6-
21.1y, Ferr < 20 ng/mL); IG:
20 males and females, PG:
20 females and 8 males
(14.5 -17.5y)

Hematological indices,
Fe, Ferr, Trf, TS, BV,
PV, VO2, VCO2, VE,

MAOD, LA

IG: VO2max, VO2, TTE: ↑
Ferr: ↑ 20.1μg/ L
Tf: ↓
PG: no changes

Rowland et al.
(1988)

975mg/day ferrous
sulfate (IG) or placebo
(PG) for 4 wks (time C),
after a 4wk control period
(time B)

14 iron-deficient (Ferr <
20ng /mL) female cross-
country runners (high-
school age)

TTE, HR, VO2max, VE,
Hb, MCV, RBCDW, Ferr

TTE: B,
C

Ferr: me B in both groups,
Hb, MCV, RBCDW: No changes in both groups

No changes in iron status or performance
Peeling et al.
(2007)

Intramuscular iron
injections (5 x 2mL
Ferrum H/day) (IG) or
placebo  for 20 days

16 iron depleted, female
distance runners and
controls

VO2max, HR, LA, run-
TTE, 10min
submaximal economy
test, Ferr

Ferr: ↑in IG
HR, LA, TTE: no differences between IG and PG

Tsalis et al. (2004) 47mg/d (IG) or dietary
plan rich in iron (DIG) or
regular diet for 6 months
(endurance training: 3m;
power training: 2m;
tapering: 1m)

21 males and 21 females,
12-17y, non-anemic, non-
iron-deficient

Hematological indices;
Fe, TIBC, TS, Ferr;

swimming tests:
2000m, 800m, 200m
and 25sprint

Fe, TIBC, TS, Ferr: fluctuations within the phases
At m6: no differences from baseline
RBC, Hb and PVC: ↑at m6
performance tests: similar ↑in all groups

Klingshirn et al.
(1992)

8wks of iron
supplementation (IG), or
placebo (PG)

18 iron depleted, female
distance runners and
controls, (22-39y)

VO2max, endurance
run-TTE, LA, iron
status

Ferr, TIBC: ↑ in IG compared with PG at wk 8
Endurance performance, LA: similar ↑ both groups

Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:13:31 EEST - 3.149.239.88



61

Powell & Tucker
(1991)

130mg of elemental iron
/day (IG) or placebo (PG),
for 2wks; single blind
design

10 female cross-country
runners (20.2±1.3y) with
normal iron status

VO2max, CO2, RER,
VE,Fe, TIBC, Ferr, Hp,
Hb, Hct, MCHC, MCV,

WCC, LA

Hematological & iron status parameters: no significant
changes
Metabolic parameters: no changes

VO2max: Maximal Oxygen Consumption; VCO2: Exhaled Carbon Dioxide; VE: Ventilation; MAOD: Maximal Accumulated Oxygen Deficit; TTE: Time to Exhaustion;
HR: Heart Rate; CK: Creatine Kinase; LA: Lactate; Ferr: Ferritin; Fe: Iron; Tf: Transferrin; TS: Transferrin Saturation, sTfR: Soluble Transferrin Receptor, TIBC: Total
Iron Binding Capacity, Hb: Haemoglobin, Hct: Hematocrit, PCV: Packed Cell Volume, MCHC: Mean Corpuscular Haemoglobin Concentration, BV: Blood volume, PV:
Plasma Volume, MCV: Mean Corpuscular Volumes, RBC: Red Blood Cells Count, RBCDW: Red Blood Cell Distribution Width, WCC: White Cells Count, MAOD:
Maximal Accumulated Oxygen Deficit.
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2.5. Eccentric exercise and muscle damage

Eccentric muscle lengthening contractions are an essential component of human

daily activities, and almost all of the athletic actions. During this type of contraction

the length of the muscle is increasing whilst the muscle itself attempts to contract. It

is well documented that unaccustomed eccentric exercise can lead to muscle

damage which is accompanied by several physiological, hematological, and

biochemical responses that consist the symptoms of exercise-induced muscle injury.

Alongside with morphological and ultra-structural changes to muscle architecture

(Friden 1984), muscle damage is manifested by muscle soreness, force and power

output decline (Eston 2003, Clarkson 1992), deterioration of range of motion (ROM)

(Cleak 1992), deterioration in running economy (Paschalis 2005, Chen 2009),

alterations in position sense and reaction angle (Paschalis 2007, Paschalis 2010),

connective tissue damage (Tofas 2008, Brown 1997b), muscle swelling (Howell

1993), increased flux of muscle proteins into the circulation (Jamurtas 2000),

migration of monocytes and neutrophils into the injured area (Al-Majid, Tidball 2010,

Stavropoulos-Kalinoglou 2014, Fehrenbach 2006, Peake 2005, Cantini 2002, Smith

2008), and increased oxidative stress in blood and muscle (Paschalis 2007,

Theodorou 2011).

Initial injury: In exercise-induced muscle damage, the initial injury is thought to occur

either via mechanical or metabolic stress (Kendal 2002). Particularly in eccentric

exercise, the contribution of mechanical stress is greater due to relatively low

metabolic demand (Kendal 2002). The primary sequence of events leading to

exercise-induced muscle trauma is believed to involve initial mechanical disruption

of sarcomeres (Friden 1992) followed by impaired excitation-contraction coupling

and calcium (Ca2+) signaling, and finally, activation of calcium-sensitive degradation

pathways (Peake 2005a). The initial myofibril disruption has been attributed to high

forces (Tiidus and Ianuzzo 1983), high tensile stresses (McCully and Faulkner 1985),

or an imbalance in adjacent sarcomere tension (Friden and Lieber 1992). During

eccentric contractions, fewer fibers are activated to exert a given amount of force as

compared to concentric or isometric contractions; therefore, larger forces per

muscle fiber are developed, resulting in greater damage. Furthermore, during an
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eccentric contraction, some sarcomeres in muscle fibers are more resistant to

stretching than others, forcing weaker sarcomeres to absorb more stretch. With

repeated eccentric contractions, the weaker sarcomeres first and then the stronger

sarcomeres are overstretched. If the latter fail to withstand the stretching force

during the relaxation phase, damage may occur (Jamurtas 2012). Histological

evidence indicates that following an intense bout of 300 maximal voluntary eccentric

contractions of the knee extensors, approximately one third of the muscle fibers

show intense myofibrillar disruptions, myofillament disorganization and loss of Z line

integrity (Armstrong 1984). Especially concerning Z-bands of sarcomeres, they seem

to be the most affected region of the myofibrillar and may be broadened, smeared,

or even totally disrupted (Friden 1992).

Secondary injury: After the initial trauma, progressive myofibril degeneration is

observed in some fibers suggesting a secondary sequence of events, with release of

intracellular proteins and infiltration of the tissue by neutrophils and macrophages

(Round 1987). This secondary injury occurs as a result of the disruption of the

membrane of the sarcoplasmic reticulum or sarcolemma and disturbance of Ca2+

homeostasis (Raj 1998). Increases in intracellular Ca2+ concentration lead to

additional degradation of muscle fibers due to activation of calcium-dependent

proteolytic enzymes (Raj 1998, Proske & Allen 2005), such as the calpain mediated

proteases (Raj 1998). These processes are accompanied by inflammatory responses

and associate with fiber breakdown and repair (Proske & Allen 2005). Neutrophils

invade the injured tissue within several hours following the initial insult, while

macrophages and proinflammatory cytokines are produced in the muscle within 24

hours and can be present for several days following eccentric exercise (Beaton

2002). In addition, reactive oxygen and nitrogen species (RONS) that are produced in

excess by neutrophils and macrophages, consequently leading to oxidative stress,

contribute to the initial damage (Close 2005), but they also facilitate the restoration

of the injured muscle by degrading the damaged tissue, and probably by enhancing

the repair processes (Tidball 2005; 2010).
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2.5.1. Effects of eccentric exercise on muscle function and performance

Exercise-induced muscle damage is manifested by a number of classic physiological

symptoms such as DOMS, deterioration in ROM, reduced muscle contractility and

force production, disproportionate loss of force at low frequencies of stimulation

compared to higher frequencies, but also leakage of muscle proteins and muscle

enzymes into the circulation, as well as elevated markers of connective tissue break

down in blood and urine (Howell 1993, Paschalis 2010, Paschalis 2007, Nikolaidis

2007, Lee 2002, Tofas 2008, in Eston 2003, Clarkson 1992, Cleak &Eston 1992,

Edwards 1977). The effect of muscle-damaging exercise on muscle damage, and

muscle function and performance indices are summarized in Table 4.

Force decline

Prolonged strength loss after eccentric exercise is considered to be one of the most

valid and reliable indirect measures of muscle damage in humans (Warren 1999).

Estimation of isometric peak torque (IPT) has been the most widely used method of

determining muscle function after eccentric exercise, but concentric and eccentric

peak torque have also been used. Isometric force declines immediately after

eccentric exercise and recovery is gradual and elongated (Howell 1993, Paschalis

2010, Paschalis 2007, Paschalis 2005, Brown 1997b, Nikolaidis 2007, Lee 2002).

Concentric and eccentric peak torque generally follows the same pattern of

deterioration and recovery (Close 2004, Paschalis 2005, Eston 1996, Tofas 2008).

Upper extremities seem to suffer greater symptoms of muscle damage compared to

lower extremities (Jamurtas 2005). Typically, there is a 50-60% reduction in isometric

force of the elbow flexors immediately after maximal eccentric exercise compared to

baseline that recovers gradually in the next two weeks (Clarkson 1992, Cleak &Eston

1992). The corresponding force decline for knee and ankle extensors is around 35%,

and the recovery is achieved faster than that observed for elbow flexor, that is 4-7

days (Eston 2003, Paschalis 2010, Paschalis 2007, Nikolaidis 2007). The greater

severity of muscle damage in the elbow flexors probably accounts for the greater

force reduction compared to ankle and knee extensors.
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The loss of strength after eccentric exercise, is disproportionate at short versus

optimal or long muscle lengths (Philippou 2003, McHugh & Tetro 2003, Saxton &

Donnelly, 1996) and there is a shift to the right of the optimal angle for torque

generation, indicating a shift in the length-tension relationship towards longer

muscle lengths for maximal force generation (McHugh & Tetro 2003; Whitehead

1998). The “popping sarcomere hypothesis” of Proske & Morgan (2001), could

explain this phenomenon. According to this hypothesis, lengthening of active muscle

does not occur by uniform lengthening of all sarcomeres, with some sarcomeres

rapidly over-extending (“popping”) beyond myofilament overlap and failing to re-

interdigitate upon relaxation. Such over-extended sarcomeres would result in the

remaining functional sarcomeres adopting a shorter length to compensate and a

shift in the length-tension relationship towards longer muscle lengths. Deterioration

of the excitation-contraction coupling process (Ingalls 1999) can further explain the

disproportionate loss of strength at short muscle lengths after a damaging exercise

protocol (Jones 1996).

The type of eccentric exercise, as well as the extent of muscle damage affects muscle

performance in a different way after eccentric exercise. High intensity isokinetic

eccentric exercise provoked greater decrements in eccentric (EPT) and isometric

peak torque (IPT) compared to low intensity exercise of the same volume, although

muscle damage was similar after both high and low intensity eccentric bouts

(Paschalis 2005). On the other hand, an intense acute bout of plyometric exercise

(Tofas 2008), although increased muscle damage, DOMS and collagen breakdown,

did not result in decreased muscle functional capacity as both EPT and concentric

peak torque but also ROM, did not alter after exercise. This was probably due to the

fact that the provoked muscle damage after plyometric exercise was not great

enough compared to high intensity eccentric exercise used in the study of Paschalis

et al. (2005) to decrease muscle performance.

Except for force decline, deterioration of power output (Sargeant and Dolan 1987)

vertical jump (Horita 1999, Fatouros 2010), sprinting ability (Semark 1999, Fatouros

2010) but also endurance performance, has been reported after eccentric exercise-

induced muscle damage.
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Delayed Onset of Muscle Soreness

The development of delayed onset of muscle soreness (DOMS) is one of the most

prevalent symptoms of exercise-induced muscle injury. Soreness is experienced as a

dull, aching pain felt after eccentric exercise, and its sensation is elicited when

mechanical stimuli such as pressure, stretching, or contraction are imposed on the

affected muscles (Nosaka 2008). Sore muscles are often described as being “stiff” or

“tender” (Howel 1993). The inflammatory responses that accompany eccentric

exercise-induced muscle injury lead to prostaglandin and leukotriene synthesis

(Connolly 2003). Prostaglandin E2 directly causes the sensation of pain by

synthesizing type III and IV pain afferents to the effects of chemical stimuli, whereas

leukotrienes increase vascular permeability and attract neutrophils to the site of

damage. Swelling resulting from the movement of cells and fluid from the blood

stream into the interstitial spaces can further contribute to the sensation of pain

(Connolly 2003). Muscle soreness appears many hours after performance of

damage-inducing exercise (Maughan 1989), peaks 24-72 h post exercise, and then

subsides and disappears 5-7 days post-exercise (Connolly 2003, Armstrong 1984,

Nosaka 2008, Paschalis 2010, Paschalis 2007, Eston 1996, Nikolaidis 2007, Lee 2002,

Close 2004, Maughan 1989), although the persistence of DOMS for more than 7 days

has also been reported (Brown 1997b). DOMS is accompanied by reduced mobility

or flexibility, and the muscles are sensitive, particularly upon palpation or

movement. What is interesting though is the fact that the magnitude of DOMS

resulting from exercise-induced muscle damage, does not necessarily represents the

magnitude of muscle damage, and the time-course of DOMS does not represent the

time-course of changes in indicators of muscle damage (Nosaka 2008). In the study

of Jamurtas et al. (2005), eccentric exercise, performed with both arms and legs,

resulted in similar DOMS, although the arm eccentric exercise induced larger

decreases and slower recovery of strength, as well as larger increases in blood

markers of muscle damage (CK, myoglobin), than the leg exercise. Nevertheless,

similarly with greater force reduction, maximal eccentric contractions of the elbow

flexors, also produces greater DOMS than isokinetic eccentric exercise of the knee

extensors or downhill running (Clarkson 2002).
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Range of movement (ROM)

Range of movement is defined as the arc over which a joint may operate and this

constrains the muscle length range (Warren 1999). ROM is determined by skin,

subcutaneous tissue, tendon, articular capsule and bone properties. Pain free ROM,

that is the segment’s movement from 0o extension to flexion where the subject feels

any discomfort, is usually used as a complementary tool to define changes in muscle

function. ROM is disturbed as a result of eccentric exercise. Disturbance of ROM is

evident immediately after eccentric exercise, usually reaching a nadir at 48h, and

returns to resting values several days after exercise (Jamurtas 2005, Paschalis 2010,

Paschalis 2005, Tofas 2008, Lee 2002).

Leakage of muscle proteins and enzymes into the circulation

The presence of muscle proteins and muscle enzymes into the circulation, is used as

an indirect marker of muscle damage in terms of muscle membrane permeability

and as evidence of lethal injury to muscle fibers (Friden 1989). Creatine kinase (CK) is

the most frequently used marker, but other enzymes and proteins such as LDH,

myoglobin (Mb) and glutamic oxaloacetic transaminase (GOT), has also been

engaged.

Changes in CK activity in adults has been shown to occur up to 7days after muscle

damaging exercise (Brown 1997a), usually peaking between 2d and 4d (Jamurtas

2005, Child 1999, Childs 2001, Hellsten 17, Brown 1997b, Gleeson 1995, Paschalis

2010, Paschalis 2007, Paschalis 2005, Eston 1996, Theodorou 2011, Lee 2002, Close

2004, Maughan 1989) while reaching values as high as 150-fold (Hellsten 1997) the

pre-exercise levels. LDH (Brown 1997b, Maughan 1989, Tiidus 1992, Tofas 2008,

Childs 2001), Mb (Jamurtas 2005, Peake 2005, Childs 2001), and GOT (Tiidus 1992)

were also elevated in blood after eccentric exercise.

The intensity, as well as the duration of eccentric exercise, that may reflect muscle

fatigue and damage, has been shown to play a role on muscle membrane

permeability (Brown 1997a, Tiidus 1992). Brown et al. (1997a) demonstrated

elevated CK concentration after 30 and 50, but not after 10 maximal isokinetic
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eccentric voluntary contractions of the knee extensors, although force loss was

evident in all of the above 3 exercise protocols. Similarly, under constant total work,

Tiidus et al. (1992) reported higher CK, LDH and GOT concentration, as well as higher

DOMS after high intensity, short-duration exercise (80% 10RM), compared to low

intensity, long-duration exercise (30% 10RM).

Except for muscle enzymes and muscle proteins, collagen constituents into the blood

or in urine, are used as markers of connective tissue breakdown. Hydroxyproline and

hydroxylysine are reported to increase at several time points following eccentric

exercise (Tofas 2008, Brown 1997b), remaining raised up to 9 days post exercise

(Brown 1997b). It seems that high forces generated during eccentric muscle

contractions are also capable of increasing the susceptibility of connective tissue

structures to exercise-induced injury (Stauber 1989).

2.5.2. Muscle damage and muscle performance after eccentric exercise in

adults compared to children

The well-established symptoms of muscle injury are coming by research that has

mostly been conducted in adults. In contrast, there is limited data regarding

exercise-induced muscle damage responses in children and even less comparing

these responses with those of adults (Marginson 2005, Gorianovas 2013, Soares

1996, Marginson 2001). Nevertheless, it seems that children are more resistant in

exercise-induced muscle damage, as they sustain milder symptoms of muscle injury,

and also, they recover faster compared to adults.

In the study of Marginson et al. (2005), DOMS and isometric strength reduction that

appeared 30 min after 8 sets of 10 plyometric jumps, remained up to 72h in men

while only up to 24h in children. In another study (Soares 1996), participants

performed bench press at 80% of their individual 1RM until subjective exhaustion.

DOMS, although was evident in both men and boys the days after exercise, it was

more pronounced in men compared to boys 2 and 3 days after exercise. Isometric

force significantly reduced up to 6 days after exercise in men, while no changes
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occurred in boys. The response of CK activity was also different, with men

demonstrating higher values 48h and up to 1 week after exercise while no elevations

occurred in boys. In a more recent study (Gorianovas 2013), maximal isometric

voluntary contraction was lower and muscle soreness and CK higher in both adults

and children after 100 intermittent drop jumps, yet, these changes were more

expressed in adult males than in boys. An interesting finding in the study of

Marginson & Eston (2001) was the shift to the right in the length tension curve in

children compared with adults, such that children’s maximal voluntary isometric

force of the quadriceps measured in the sitting position on an isokinetic

dynamometer was lower at 20o, 40o and 60o, and higher at 90o and 100o (0o = full

extension) compared to adults. This, along with other possible reasons that are

debated later in the discussion section, could in part explain the apparent decreased

susceptibility in muscle damage of children.
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Table 4. The effect of eccentric exercise on muscle damage, and muscle function and performance

Authors Study protocol Subjects Estimated indices Results

Adults
Jamurtas et al.
(2005)

6 sets of 12 isokinetic
eccentric contractions
with both ARMS (elbow
flexors) & LEGS (knee
extensors); intensity: 75%
of EPTmax

11 healthy
untrained males
(21.2 ±1.0 y)

EPT, IPT, ROM,
DOMS, CK, LDH,
Mb

EPT: ↓ in ARMS at 3 and 4d post ex, Greater ↓ in ARMS vs LEGS at
2, 3, 4d post ex
IPT: ↓in ARMS 1up to 4d; ↓in LEGS at 1 and 2d, Greater ↓ in ARMS
vs LEGS
ROM: ↓ in ARMS & LEGS 1up to 4d
DOMS: ↑ in ARMS & LEGS 2 up to 4d post ex
CK: ↑ in ARMS & LEGS at 1d and peaked at 4d, Greater ↓ in ARMS
vs LEGS
LDH: ↑ in ARMS: 1up to 4d
Mb: ↑ in ARMS & LEGS 3d and 4d post ex

Paschalis et al.
(2010)

5 sets of 15 isokinetic
eccentric MVC with both
ARMS (elbow flexors) &
LEGS (knee extensors)

12 healthy
active males
(23.1 ±1.0 y)

IPT, ROM, DOMS,
PS, KJRA, CK

IPT: ↓ in ARMS  post and up to 4d and↓ in LEGS post and up to 3d,
Greater ↓ in ARMS vs LEGS at 1 up to 3d
ROM: ↓ in ARMS  post and up to 4d and ↓ in LEGS post and up to
3d, Greater ↓ in ARMS vs LEGS at 1 up to 3d post ex
DOMS: ↑ in ARMS post and up to 4d, ↑ in LEGS at 1d and up to 3d,
Greater ↑ in ARMS vs LEGS at 1up to 3d post ex
CK: ↑ in ARMS & LEGS at 2d, peaked at 3d and remained up to 4d,
Greater ↓ in ARMS vs LEGS at 2d and 4d post ex
Proprioception: ↓ PS and
points, Greater ↓ in ARMS vs LEGS

Paschalis et al.
(2007)

5 sets of 15 isokinetic
eccentric MVC of the
knee extensors

12 healthy
untrained females
(20.0±1.0y)

IPT, ROM, DOMS,
PS, KJRA, CK

IPT: ↓ post and up to 48 h post ex
DOMS: ↑ post and up to 72h post ex
CK: ↑24h and peaked at 72h post ex
Proprioception: ↓ PS post ex; ↑ KJRA post and up to 72h post ex

Brown et al.
(1997a)

G10: 10,  G30: 30, G50:
50 isokinetic eccentric
MVC of the knee
extensors

24 untrained
subjects
(G10: 20.5±1.1y,
G30: 20.1±0.8y,

MVC, ROM, DOMS,
CK, MTF(100Hz),
MTF(20Hz)

MVC: ↓ in all groups, Greater ↓ in G50 vs G30 and G50 at 3, 7, 9d
post ex
CK: G10, no changes; ↑ in G30 2d post ex; ↑ in G50: 2 and up to 7d
post ex
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G50: 22.1±2.4y)
Paschalis et al.
(2005)

Comparison of high (HIG)
and low (LIG) isokinetic
eccentric ex of  equal
volume

12 healthy men
(21.0±1.0)

IPT, EPT, ROM,
DOMS, CK

IPT & EPT:
LIG
ROM: ↓ at 1 and 2d in HIG, ↓at 1d in LIG
DOMS: at 1d up to 4d in HIG & LIG,
CK: ↑at 1d up to 4d in HIG & LIG

Brown et al.
(1997b)

50 isokinetic eccentric
MVC of the knee
extensors

2 males & 6
females (22±2y)

IPT, DOMS,
20:100Hz MTF, CK,
LDH, ALP, PYD:Cr,
HP:Cr, HL:Cr

IPT: ↓post and up to 3d
20:100Hz MTF: ↓ post and up to 1d
DOMS: at 1d and up to 6d
CK: ↑at 3 and 7d
LDH: ↑ at 3d
ALP: no changes
HP:Cr: ↑at 2d
HL:Cr: ↑at 2, 5 and 9d
PYD:Cr: no changes

Eston et al.
(1996)

100 eccentric MVC of the
knee extensors

10 healthy males
CG: (21.8 ±2.9y)
EG: (23.2 ± 2.y)

Muscle tenderness
(MT), CK, EPT, CPT,

MT: ↑at 2d and 4d
EPT & CPT: ↓post and up to 2d
CK: ↑at 2d and 4d

Tiidus et al.
(1992)

INTG: 150 reps at 35%,
70%, and 90% of 10RM;
DURG: 100, 200, and 300
reps at 70% 10RM;
CTWG: constant work, HI-
short duration, LI-long
duration; knee extensors

21 untrained male
and female (20-45
y)

CK, GOT, LDH,
DOMS

CK, GOT, LDH: ↑at 8h up to 1d, Greater ↑at HI, short-duration vs LI,
long-duration ex; Greater
70% 10RM
DOMS: ↑at 1d and 2d; Greater ↑at HI vs LI ex; Greater ↑at long vs
short duration ex

Tofas et al.
(2008)

8 sets of 12  jumps over
50-cm hurdles repetitions
and 8 sets of 12  jumps
onto a 50-cm plyometric
box

18 untrained
healthy men; CG:
(21.3±1.3y)
EG: (22.1±1.8y)

CPT, EPT, ROM,
DOMS, CK, LDH,
HP, HL, LA

CPT, EPT, ROM: no changes
DOMS: ↑at 48h
CK: ↑at 48 & 72h
LDH:↑at 24, 48, 72h
HP: ↑at 24 up to 72h
HL: ↑at 48h; LA: ↑post ex

Peake et al.
(2005)

45 min downhill run at
60% VO2max

10 well-trained
male runner and

TLC, Neutrophils,
CK, Mb, IL-6, IL-8

TLC, Neutrophils, IL-6: ↑post up to 1h
CK, Mb: ↑post up to 1d
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triathletes
(28 ± 3 y)

Gleeson et al.
(1995)

Bench stepping 8 healthy untrained
adults (28.0±8.0 y)

CK,  DOMS, WBC,
CRP, Zinc, Fe, IgG,
IgM, albumin

DOMS, CK: ↑at 1d up to 4d
CRP: ↑at 1d;
WBC: ↑post  up to 4h and ↓ at 2 and 3d
Fe, Zinc: ↓1 and 2d
Albumin, IgG, IgM: ↓at 1d up to 7d

Children vs Adults
Marginson et
al.
(2005)

8 sets of 10 plyometric
jumps

10 boys (9.9±0.3y)
10 men (22.2±2.7y)

Power output,
DOMS, IPT, SJ, CMJ
Torque-joint angle

Power output: ↑ in men;
DOMS: Boys:↑ post up to 24h; Men: ↑ post up to 3d; Greater ↑in
men vs boys
IPT: Boys: ↓post up to 24h; Men: ↓ post up to 3d; Greater ↓in
men vs boys
SJ: Boys: ↓post; Men: ↓ post up to 3d; Greater ↓in men vs boys;
Torque-joint angle: Relative torque was higher in men vs boys at 20,
40, and 60°, but higher in boys, at 100°.

Soares et al.
(1996)

5 sets of bench press at
80% of 1RM until
subjective exhaustion

10 boys (12.1 + 0.2
y)
10 men (28.3
±3.5y)

MIF, DOMS, CK MIF: Boys: no changes; Men: ↓ post up to 72h; Greater↓ in men vs
boys
DOMS: Boys: ↑ post up to 72h; Men: ↑ post up to 72h; Greater↑
in men vs boys
CK: Boys: no changes; Men: ↑at 72h up to 1 wk; Greater ↑ in men
vs boys

Gorianovas et
al.
(2013)

100 intermittent drop
jumps (DJs) from 0.50 m

11 boys (11.8±0.9y)
11 adults (20.8±1.9
y)
11 elderly males
(63.2±3.6 y)

CK, IPT, MTF 20Hz,
MTF 100 Hz, MVC,
DJs height

CK: Boys, Adults, Elderly: ↑at 24h up to 2d; Greater ↑in adults vs
boys and elderly
DOMS: ↑ at 24h in adults and elderly; no changes in boys
MVC: Boys, Adults, Elderly: ↓ post ex up to 2d; Greater ↓ in adults
vs boys and elderly
DJs height: Boys, Adults, Elderly: ↓ post ex up to 2d; Greater ↓ in
adults vs boys and elderly

Marginson &
Eston (2001)

3 s of isometric MVC with
knee extensors at 20o,

8 boys (9.3±0.9 y)
8 men (21±2.1 y)

Torque-joint angle IPT: Men: IPT attained at 80o; Boys: IPT attained at 80o and 90o;
Relative IPT: Greater at 20o, 40o, 60o in men vs boys; Greater at 100o
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40o, 60o, 80o, 90o, 100o in boys vs men.
MVC: Muscular voluntary contractions; G: Group; HIG: High intensity group; LIG: Low intensity group; DJs: Drop jumps; INTG: Intensty group; DURG: Duration group; CTWG:
Constant total work group; CG: Control group; EG: Experimental group; MVC: Maximum voluntary contractions; IPT: Isokinetic peak torque; CPT: Concentric peak torque; EPT:
Eccentric peak torque; MTF: Mean tetanic force; MIF: Maximum isometric force; ROM: Range of movement; DOMS: Delayed onset of muscle soreness; PS: Position sense; KJRA:
Knee joint reaction angle; SJ: Squat jump; CMJ: Countermovement jump; CK: Creatine kinase; LDH: Lactate dehydrogenase; Mb: Myoglobin; ALP; Alkaline phosphatase; PYD:
Pyridinoline; HP: Hydroxyproline; HL: Hydroxylisine; Cr: Creatinine; GOT: Glutamic oxaloacetic transaminase; LA: Lactic acid; IL-6: Interleukin-6; IL-8: Interleukin-8; WBC: White
blood cells; CRP: C-reaction protein; Fe: Iron; IgG: Immunoglobulin G; IgM: Immunoglobulin M;
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2.6. Redox status responses to eccentric exercise

As stated in the previous sections, oxidative stress occurs when the production of

free radicals and RONS overwhelms the antioxidant capacity of the human body,

disturbing that way the redox balance. In blood, oxidative stress is estimated

through the changes in concentration of several indirect indices, mainly byproducts

of the oxidation of important biomolecules, whose increase indicates lipid

peroxidation, protein or DNA oxidation. Malondialdehyde (MDA), TBARS, lipid

hydroperoxides, conjugated dienes and isoprostanes are widely used as markers of

lipid peroxidation, while protein carbonyls (PC) and 8-hydroxy-2'-deoxyguanosine (8-

OHdG) are frequently used as markers of damaged proteins and DNA, respectively

(Nikolidis 2008). In addition, changes in concentration of antioxidants also indicate

oxidative stress; antioxidants may either be up-regulated or diminished, both

resulting from the human body’s effort to combat the excessive free radicals

production through its defense mechanisms. The main enzymatic antioxidant

compounds SOD, GPx and CAT, and nonenzymatic compounds vitamin E, vitamin C

and GSH as well as total antioxidant capacity (TAC), are mostly being investigated.

Total antioxidant capacity represents the ability of a tissue (plasma or serum in most

of the times) to neutralize ROS and NO derivatives (Nikolidis 2008).

Indeed, increased generation of RONS, as well as changes in antioxidants that persist

for, or appear several days after the termination of eccentric or eccentrically biased

exercise, has been reported by a great number of studies (Theodorou 2011, Goldfarb

2011, Lee 2002, Paschalis 2007, Close 2004, Maughan 1989, Sackeck 2003, Hellsten

1997, Goldfarb 2005, Childs 2001). These changes in oxidative stress indices are

usually in accordance with the changes in markers of muscle damage. Nevertheless,

there are also studies that report no changes in redox status indices after muscle-

damaging exercise (Lee 2002, Saxton 1994, Child 1999). The effects of muscle-

damaging exercise on blood redox status are summarized in Table 5.
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Lipid peroxidation

Not all of the studies report similar responses on the above indices after muscle-

damaging exercise. In fact, there are studies that present evidence of lipid

peroxidation in at least one time point after the end of exercise (Sackeck 2003,

Goldfarb 2005, Maughan 1989, Close 2004, Paschalis 2007), whereas others do not

support such results (Hellsten 1997, Saxton 1994, Child 1999). These inconsistencies

may be due in part to variations in duration, intensity, and muscle damage potential

of the exercise examined.

Childs et al. (2001) reported increased levels of isoprostanes 3 and 4 days after

eccentric contractions of the elbow flexors muscles in healthy untrained males, while

lipid hydroperoxides elevated at 2 days and persisted for up to 4 days post exercise.

Similarly, Goldfarb et al. (2005), reported higher MDA concentration 2 days following

the same type of eccentric exercise in healthy women. Eccentric maximal voluntary

contractions of the knee extensors muscles resulted in elevated concentration of

TBARS 2 and 3 days (Paschalis 2007), but also 2 up to 4 days (Nikolaidis 2007) after

the end of exercise. Downhill running increased MDA concentration post exercsise

(Sackek 2003), but also 3 days (Close 2004) after exercise, while isoprostanes rose

above the pre exercise levels 1 day and remained elevated up to 3 days after the end

of exercise (Sackeck 2003).

Usually, lipid peroxidation is evidenced many hours after exercise and muscle

damage does not seem to affect lipid peroxidation shortly after exercise but after

the first 24h. However, in the study of Maughan et al. (1989) a relatively early effect

of exercise on lipid peroxidation is indicated as TBARS increased after only 6h post

exercise. In the same study, those subjects with the greatest increases in CK also

demonstrated higher lipid peroxidation levels. This relationship between muscle-

enzyme release and oxidative damage might have resulted from an increase in

membrane permeability due to lipid peroxidation and/or increased membrane

permeability rendering polyunsaturated fatty acids of membranes more susceptible

to peroxidation (Nikolaidis 2008).
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Except for the studies reporting changes in redox status parameters that indicate the

occurrence of lipid peroxidation after muscle-damaging exercise, there are also

studies that do not support such an effect, although CK, DOMS and force production

capacity are disturbed for several days after, as a result of the provoked muscle

damage. Actually, in the study of Hellsten and colleagues (1997), maximal eccentric

exercise of the knee extensors, although increased xanthine oxidase levels in the

muscle, did not alter MDA levels. Similarly, in the study of Saxton et al (1994),

neither arms’, nor legs’ eccentric maximum voluntary contractions (MVC) resulted in

significant changes of lipid peroxidation indices. More specific, plasma TBARS after

eccentric contractions of the arm flexors, as well as muscle MDA after eccentric

contractions of the knee extensors’ did not change. Childs et al. (1999) also report no

changes in MDA after eccentric MVC of the knee extensors.

Protein oxidation

Protein carbonyls are formed through a variety of pathways, which are not always

dependent on the direct oxidative modification of the protein (Davies 1999).

Additionally, PC assays detect a range of products that are not completely

characterized (Davies 1999). However, since carbonyls are usually formed by

oxidative mechanisms, it would appear that assessment of this protein modification

is likely to provide a reasonable marker of oxidative stress status (Nikolaidis 2008).

Muscle-damaging exercise has been reported to induce significant and high (60-

107%) increases in protein carbonyls mainly 1d post exercise, persisting as long as 4d

after exercise (Goldfarb 2005, Lee 2002, Paschalis 2007, Nikolaidis 2007). Eccentric

MVC of the elbow flexors resulted in marked elevations of PC 1 and 2 d following

exercise (Goldfarb 2005, Lee 2002). The time course and magnitude of PC changes

after arms’ eccentric contractions seems to be similar to those of legs’ eccentric

contractions. Indeed, in the study of Paschalis et al. (2007), PC significantly increased

1 d, and persisted for up to 3 d, while in the study of Nikolaidis et al. (2007), PC

significantly increased 1 d, and persisted for up to 4 d after eccentric MVC of the

knee extensors.
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DNA oxidation

Exercise has been associated with increases in DNA damage and strand breakage

(Okamura 1997). Urinary 8-OHdG excretion, with concomitant plasma TBARS, LDH,

CK, CK-MB, and myoglobin elevations, have been reported after daily distance

running of 30 km during 8-day training camp (Okamura 1997). In contrast, in the

study of Sackeck et al. (2003), no significant changes were demonstrated in 8-OHdG

concentration in leucocytes before and 24 hours post-downhill running in humans.

The different response of 8-OHdG between the two studies could be attributed to

the greater duration and exercise volume in Okamura’s study compared to the study

of Sackeck, probably resulting in greater muscle damage. Yet, although DNA was

adversely affected in Okamura’s study, this effect was not accumulated by

consecutive exercise, although it was sustained as long as the exercise was repeated.

Additionally in the study of Sackeck et al. (2003) measurements were conducted up

to 24h after exercise; thus, the absence of changes in 8-OHdG in the first 24h does

not exclude the possibility that DNA damage may occurred in a subsequent time

point after 24 hours, particularly since this is when the greatest changes in TAC and

lipid peroxidation were observed.

DNA damage has been significantly correlated with the increase in plasma CK activity

in untrained and trained human subjects (Nikolaidis 2008), but also after intensive

exercise in humans (Hartmann 1994). These correlations indicate that exercise-

induced DNA damage is associated with exercise-induced muscle damage.

Antioxidants

Both GSH and GSSG concentration, as well as GSH:GSSG ratio have been reported to

change after muscle-damaging exercise. Typically, GSH and GSH:GSSG decline, whilst

GSSG increases, and these changes are sustained for several days after exercise

(Paschalis 2007, Theodorou 2011, Nikolaidis 2007). Only Goldfarb et al. (2005), refer

elevation in GSSG immediately after and up to only 2h after, but not at 6, 24 and 48

h post eccentric exercise of the elbow flexors. On the other hand, Lee at al. (2002)

refers no significant changes in GSSG and GSSG:TGSH after eccentric exercise,
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whereas Close et al. (2005), report non-significant decline of total GSH after

downhill running.

The activity of the antioxidant enzymes SOD, CAT, and GPx, but also the

concentration of uric acid, ceruloplasmin, and TAC has been investigated after

muscle-damaging exercise. Superoxide dismutase increases 3 d (Childs 2001), while

CAT 2 d after eccentric exercise, and remains in higher levels compared to pre-

exercise, up to 3 d. Ceruloplasmin and Oxygen Radical Absorbance Capacity (ORAC)

decreases 3 days after downhill running (Sackeck 2003). Uric acid and TAC increases

at several time-points following eccentric exercise, remaining in higher than pre-

exercise levels up to 7 d (Childs 2001, Paschalis 2007).

Except for significant effects, there are also studies that do not report any significant

modifications of antioxidants as a result of muscle-damaging exercise. In the study of

Hellsten et al. (1997), no significant changes have been demonstrated in uric acid

and TAC after eccentric MVC of the knee extensors. As uric acid mainly accounts for

plasma antioxidant capacity (Halliwell 2007), the similar responses between these

two markers in this study, can be justified.

2.6.1. Redox status after eccentric exercise in adults compared to children

There is limited data in children (Nikolaidis 2007) and adolescents (Zalavras 2015)

regarding exercise-induced redox alterations. What is more, no study so far has

examined redox status alterations as a result of eccentric exercise-induced muscle

damage in children. Nevertheless, contrary to our results, Nikolaidis et al. (2007)

reported significant increases in TBARS, PC, CAT, TAC, and oxidized glutathione

(GSSG) concentration, as well as significant decreases in GSH and GSH:GSSG, after 12

bouts of 50 m swimming, performed at 70% - 75% of 50 m maximum velocity in

children. The results from a recent study from our laboratory (Zalavras 2015)

indicate a greater rise in PC, TBARS and TAC and greater GSH decline in adults

compared to adolescents following an aerobic exercise bout. Uric acid, CAT and

bilirubin were similar amongst adults and adolescents immediately after and 1 h
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following the aerobic trial. The different exercise modes and experimental designs

probably account for the divergent results between the studies.
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Table 5. The effect of exercise-induced muscle damage on redox status

Authors Study protocol Subjects Estimated indices Results

Adults
Childs et al.
(2001)

Eccentric exercise with
the elbow flexors at
80% of 1 RM

14 healthy untrained
males (24.4 ±3.6 y)

BDI, MPO, IL-6, TAC, 8-
LOOH, Iso-PGF2a, GPx,
SOD,CK, LDH, Mb

PLG: BDI, LOOH, CK, LDH, Mb:↑at 2 up to
4d
TAC: ↑at 2 up to 7d
MPO, IL-6: ↑at 2d
Iso-PGF2a: ↑at 3 and 4d
SOD: ↑at 3d

Theodorou et al.
(2011)

Maximal eccentric
exercise with the knee
extensors

28 healthy active males
(25.6 ±1.2 y)

IPT, ROM, DOMS, CK,
GSH, GSSG, TBARS, PC,
CAT, TAC

IPT, ROM: ↓ at 2d up to 4d
DOMS: ↑1 up to 4d
CK: ↑at 2 up to 4d
GSH, GSH/GSSG: ↓ at 2 up to 4d
GSSG: ↑ at 2d up to 4d

Goldfarb et al.
(2005)

Eccentric exercise with
the elbow flexors

18 women
(19-31 y)

PC, MDA, TGSH, GSSG,
GSSG/TGSH

PC: ↑at 1 and 2d
MDA: ↑at 2d
GSH: ↓ post up to 2h
GSSG, GSSG/TGSH: ↑post up to 2h

Lee et al.
(2002)

High intensity
eccentric ex of the
elbow flexors

8 healthy men
(26.5 ± 1.5 y)

MIF, ROM, DOMS, CK, PC,
GSH, GSSG, GSSG/TGSH

MIF: ↓ post up to 4d
DOMS: ↑1 up to 4d
ROM: ↓ post up to 3d
CK: ↑at 48 up to 96h
PC: ↑at 1d (83%) and 2d (62%)
GSH, GSSG, GSSG/TGSH: no changes

Hellsten et al.
(1997)

Maximal eccentric
exercise with the knee
extensors

7 sedentary men
(20-28 y)

IL-1β, IL-6, CK, XO, HX,
MDA, TAC, Uric acid,
MVC, DOMS

MVC: ↓90 min up to 4d
XO, CK: ↑at 1d up to 4d
DOMS: at 1 and 2d
IL-6L: ↑at 45min up to 4
HX: ↑post ex
IL-1β, MDA, TAC, Uric acid: no changes
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Sackeck et al.
(2003)

Supplementation of vit
E for 12wks prior to
downhill run

16 young (26.4±3.3 y);
healthy men

ORAC, Ceruloplasmin,
MDA, iPF2a, 8-OHdG, LA,
CK

CK: ↑at 1d
Ceruloplasmin, ORAC : ↓at 3d
iPF2a: ↑ at 1d up to 3d
MDA: ↑post  ex
LA: ↑post ex, Greater ↑in older group
8-OHdG: No changes

Maughan et al.
(1989)

45 min downhill
treadmill run

16 healthy young
males (22±1 y)

TBARS, CK, LDH, AST,
DOMS,

CK: ↑at 6h up to 3d
TBARS, AST: ↑at 6h up to 2d
LDH: ↑at 6h up to 1d
DOMS: ↑at 1 up to 3d

Close et al.
(2004)

30 min downhill or flat
run

8 physically active male
(24.9±3.0 y)

ESR, MDA, CK, WBC, LYM,
Neutrophils, DOMS

DWH run:
ESR, MDA: ↑at 3d
CK: ↑at 1 and 2d
DOMS: ↑at 2d and 3d
CPT, EPT: ↓at 1 up to 3d
WBC, LYM, Neutrophils: ↑post ex

Flat run: No changes
Paschalis et al.
(2007)

Maximal eccentric
exercise with the knee
extensors

10 untrained healthy
females (21 ± 3 y)

IPT, DOMS, CK, TBARS,
PC, CAT , BIL, Uric acid,
TAC, GSH, GSSG

IPT: ↓ post up to 1d
DOMS, CK: ↑post up to 3d
GSH, GSH/GSSG: ↓at 24 up to 3d
GSSG, TAC: ↑at 2d
PC, Uric acid: ↑at 1 up to 3d
TBARS, CAT, BIL: ↑at 2 up to 3d

Saxton et al.
(1994)

Maximum concentric
vs eccentric ex;
ARMS and LEGS

14 males (19-39 y) ARMS: CK, TBARS, DCC,
ANG, DOMS, IPT LEGS:
MDA, PCD,

ARMS ECC ex: CK: ↑at 2d up to 7d
DOMS, ANG: ↑at 1 up to 4d
IPT: ↓at 1 up to 3d
plasma TBARS, DCC: No changes
ARMS CON ex: No changes

LEG ECC ex: muscle MDA, PCD: No changes
LEG CON ex: PCD: ↑post ex

Child et al. Maximal eccentric Physically active males IPT, DOMS, 20:100Hz IPT, 20:100Hz: ↓post ex
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(1999) exercise with the knee
extensors

andfemales (21-31 y) force ratio, CK, Urate,
TAC, MDA, G6PDH,
β-Glucuronidase (β-G)

DOMS: ↑at 2 up to 6d
Blood: CK:↑at 3 up to 5d
TAC, β-G, Urate, MDA: No changes
Muscle: G6PDH, β-G, TAC: ↑at 7d

Nikolaidis et al.
(2007a)

Maximal eccentric
exercise with the knee
extensors

12 healthy females
(23±2 y)

IPT, ROM, DOMS, CK,
TBARS, PC, CAT, UA, BIL,
TAC, GSH, GSSG

IPT: ↓post up to 4d
ROM: ↓ post up to 3d
DO:MS: ↑post up to 4d
CK: ↑at 3 and 4 d
GSH, GSH/GSSG: ↓at 2 and 3d
GSSG: ↑ at 2 and 3d
TBARS, PC, CAT, BIL: ↑at 2 up to 4d
UA: ↑ at 2 and 3d

Okamura et al.
(1997)

8-day training camp 10 well trained long
distance runners

8-OHdG, TBARS, LDH, CK,
CK-MB, Mb, β-carotene
α-tocopherol

8-OHdG: ↑ during the camp; no changes
after the camp
TBARS, LDH, CK, CK-MB, Mb: r the
camp
α-tocopherol: ↑ after the camp

Children & adolescents
Zalavras et al.
(2015)

11-month (September
through July), two-
peaked, training
macrocycle

30: adolescents
[13 trained (TAD)
(14.1±1.1 y), 11 controls
(UAD) (14.8±0.9 y)]
30: adults
[13 trained (TA) (25.2±6.8
y), 11 controls (UA) (27±6
y)]

TBARS, PC CAT, GSH, TAC
UA, BIL

PC:
adults vs adolescents
TBARS: Similar resting TBARS in adults and
adolescents
TAC: ↑post and 1h; Higher resting PC in
adults vs adolescents
GSH: ↓post ex and 1h; Higher resting GSH in
adults vs adolescents; greater decline in
adults vs adolescents
CAT, UA, BIL: ↑post ex and 1h; similar
changes in adults and adolescents

Nikolaidis et al.
(2007b)

12 x 50m swimming at
70%–75% of 50 m

11 boys and 11 girls (aged
9-11 y)

TBARS, PC CAT, GSH,
GSSG, TAC

GSH, GSH/GSSG: ↓ post ex
GSSG: ↑ post ex
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maximum velocity TBARS, PC, CAT, TAC: ↑ post ex
PLG: placebo group; SupplG: Supplementation group; IPT: Isometric peak torque; ROM: Range of movement; DOMS: Delayed onset of muscle
soreness; MIF: Maximum isometric force; MVC: Maximal voluntary contractions; BDI: Bleomycin detectable iron; MPO: Myeloperoxidase; IL-6:
Interleukin-6; IL-1β: Interleukin-1β; TAS: Total antioxidant capacity; LOOH: lipid hydroperoxides; Iso-PGF2a: Isoprostanes;  GPx: Glutathione
peroxidase; SOD: Superoxide dismutase; CK: Creatine kinase; LDH: Lactate dehydrogenase; Mb: Myoglobin; 8-OHdG: 8-hydroxy-deoxyguanosine;
GSH: Reduced glutathione; GSSG: Oxidized glutathione; TGSH: Total glutathione; TBARS: Theobarbituric acid reactive substances; PC: Protein
carbonyls; CAT: Catalase; MDA: malonaldehyde; ORAC: Oxygen Radical Absorbance Capacity; 8-OHdG: 8-hydroxy-2'deoxyguanosine; DCC: Diene
conjugated compounds; PCD: Protein carbonyl derivatives; XO: Xanthine oxidase; HX: Hypoxanthine; LA: Lactic acid;  AST: Aspartate transaminase;
ESR: electron spin resonance;  WBC: White blood cells; LYM: Lymphocytes; DCC: Diene conjucated compounds; PCD: Protein carbonyls derivatives;
G6PDH: Glucose-6-phosphate dehydrogenase;
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3. METHODOLOGY

3.1. Participants

Power analysis determined that a sample size of 10 subjects was required to detect a

statistically meaningful treatment effect between consecutive measurements after

acute eccentric dynamometry with a level of 0.90. Eighteen healthy recreationally

active adults (men, 18-45yo) and eleven children (boys, 10-12yo) participated in the

present study. Both adults and children were participating in several health-

promoting physical activities without being systematically-trained. At the first cycle,

one adult dropped the study after the first post exercise evaluation at 24 h, due to

inability of concluding all of the other measurements. Another two adults did not

repeat the second cycle; hence, fifteen adults and eleven boys finished the study.

The anthropometric characteristics of the participants are presented in Table 1.

Participation criteria included a normal BMI, the absence of any injury or a surgery in

their legs, no drug/supplement consumption, and absence of any allergy in iron salts.

Additionally, they did not undertake any scheduled eccentric exercise or other

activities with large eccentric component for at least 6 months before the study, and

they did not spend more than 3h weekly on sport activities. Written informed

consent to participate in the study was provided by all men and boys after the

volunteers were informed about all risks, discomforts, and benefits involved in the

study. Moreover, boys’ parents approved the participation of their children in the

study. The procedures were in accordance with the 1975 Declaration of Helsinki, as

revised in 2000, and approval was received from the institutional review board.

3.2. Supplementation

In a double blind, randomized crossover study that was conducted in two cycles,

participants received daily either the iron supplement [37mg of elemental iron,

Resoferon c.tab 125(37) mg/tab, Novartis Hellas] or the placebo (lactose) for three

weeks prior to, and up to 96 hours after an acute eccentric exercise bout. The

participants were advised to consume the supplement in the morning on an empty
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stomach or at least 2 hours after breakfast and 2 hours before lunch, for better

absorption. Each individual received the supplement pre-packed in daily doses

labeled with the day of consumption, and was asked to return the package with any

capsules left, so that the compliance could be calculated.

3.3. Experimental design of the study

The experimental approach of the study is presented in Figure 2. During their first

visit, participants’ body mass was measured to the nearest 0.5 kg (Beam Balance

710; Seca, Birmingham, United Kingdom) while the subjects were lightly dressed and

barefoot. Standing height was measured to the nearest 0.5 cm (Stadiometer 208;

Seca). Percentage body fat was calculated from 7 skinfold-thickness measures

(average of 2 measurements of each site) by using a Harpenden caliper (John Bull, St

Albans, United Kingdom). The Siri skinfold-thickness equation was used to calculate

body fat. Biological age of children was assessed through self-estimation of the

participants of Tanner’s sexual maturation stages (Morris 1980). Maximum

isometric, concentric and eccentric torque of the knee extensor muscles were

measured on an isokinetic dynamometer (Cybex, Ronkonkoma, NY). Subjects

performed the exercise during the first cycle with one leg, which was followed by a

four-week washout period, before performing the exercise during the second cycle

with the contralateral leg. Physiological parameters were estimated in both age

groups at baseline, after 3 weeks of supplementation (pre-exercise), immediately

after exercise, 24, 48, 72, and 96 hours after exercise. Blood samples in adults were

collected at baseline, pre-exercise, 24, 48, 72, and 96 hours post-exercise, while in

children at baseline, pre-exercise, and 72 hours following exercise.

3.4. Eccentric exercise

Subjects were placed on the dynamometer in a seated position.  The axis of rotation

of the dynamometer was aligned with the knee joint axis of rotation with the line

that passes through the lateral femoral condyle, with the knee flexed at 90o. The
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resistance pad was placed to the ankle joint proximally to the lateral malleolus

(Perrin 1993). The range of motion was determined with the initial point at 0o of full

extension and 120o for flexion to prevent hyperextension and hyperflexion. Gravity

correction was made to account for the effect of limb weight on torque

measurements and valid data to be obtained (Baltzopoulos 1989). The position of

each subject was recorded and used in follow-up measurements. At the first cycle,

each participant performed 5 sets of 15 maximal eccentric voluntary contractions of

knee extensors of their one leg at an angular velocity of 60o.sec-1 in the seated

position and the same procedures were followed during the second cycle using this

time the contralateral leg. A two min rest interval was incorporated between sets.

Before the exercise bout, a warm-up consisting of 8 min of cycling (80-100 rpm and

50 W) was performed on a Monark cycle ergometer (Monark, Vansbro, Sweden) that

was followed by 5 min of stretching exercises of the major muscle groups of the

lower limbs. This protocol of eccentric exercise has been used in several studies by

our laboratory and is capable of inducing severe muscle damage and oxidative stress

(Theodorou 2011, Paschalis 2007, Nikolaidis 2007).

Figure 2. Experimental design of the study. Upward arrows indicate physiological

measurements, and downward arrows indicate blood drawings.
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3.5. Muscle function and muscle performance indices

The isokinetic dynamometer was also used for the measurement of isometric knee

extensor peak torque at 90o knee flexion, as well as concentric and eccentric peak

torque at an angular velocity of 60o.sec-1. The best of 3 maximal, and the best of 5

maximal voluntary contractions were recorded for isometric and concentric or

eccentric peak torque, respectively. To ensure that the subjects provided their

maximal effort, the measurements were repeated if the difference between the

lower and the higher torque values exceeded 10%. A two min rest interval was

incorporated between the efforts. The assessment of pain-free ROM was performed

manually. The investigator moved the calf at a very low angular velocity from 0o

knee extension to the position where the subject felt any discomfort. Each

participant assessed delayed onset of muscle soreness (DOMS) during walking and

squat movement (90o knee flexion), and perceived soreness was rated on a scale

ranging from 1 (normal) to 10 (very sore). All volunteers were instructed to stay

away from strenuous physical activity for 2 days preceding and 2 days following the

experiment.

3.6. Blood collection and handling

Blood samples (20 mL) were drawn from a forearm vein with subjects in a seated

position.  All blood samples were drawn in the morning after an overnight fast and

abstinence from caffeine and alcohol for 3 d before sampling. A blood aliquot (1.5

mL) was collected into ethylenediamine tetraacetic acid (EDTA) tubes for the

estimation of hematological parameters. For plasma, blood was collected into EDTA-

containing tubes and centrifuged immediately at 1370 x g for 10 min at 4o C, and the

plasma was collected. The packed erythrocytes were lysed with 1:1 (v/v) distilled

water, inverted vigorously, and centrifuged at 4000 x g for 15 min at 4o C, for the

collection of red blood cells lysate. For serum, blood was collected into tubes

containing coagulation agent and after staying for 20 min to clot, it was centrifuged

at 1370 x g for 10 min at 4o C, and serum was collected. Plasma, erythrocytes lysate
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and serum, were stored in multiple aliquots at –80o C and thawed only once before

the analyses.

3.7. Assays

3.7.1. Iron status indices

Iron concentration and Total Iron Binding Capacity: Iron concentration and Total Iron

Binding Capacity (TIBC) were measured in a Clinical Chemistry Analyzer Z1145

(Zafiropoulos Diagnostica, Athens, Greece) with commercially available kits

(Zafiropoulos, Athens, Greece). Each sample was analyzed in duplicates.

Transferrin saturation: Transferrin saturation (TS) was calculated through the ratio of

iron concentration and TIBC (TS = iron concentration/TIBC x 100).

Ferritin: For the determination of serum ferritin, an immunoenzymometric assay kit

based on sandwich ELISA was used (Accubind, Monobind Inc., USA®). According to

this method, 25μL of the appropriate serum reference and specimen was added into

the assigned streptavidin coated well. Then 100 μL of biotinylated monoclonal anti-

ferritin antibody were pipetted into each well. After swirling the mixture gently for

30 sec and incubating for 30 min at room temperature, the contents of the

microplate were discarded and three washes of the microplate with 350 μL of wash

buffer were performed. Then 100 μL of ferritin enzyme conjugate were added to

each well and after the incubation of the complex at room temperature for 30 min,

the contents of the microplate were discarded and another three washes of the

microplate with 300 μL of wash buffer were followed. 100 μL of substrate solution

were then added into each well and after 15 min of incubation at room temperature,

50 μL of stop solution were added and a gentle mixing of the complex for 20 sec was

performed. The absorbance in each well was read at 450 nm in a microplate reader

(Biochrom Asys Expert 96, UK) within 30 min of adding the stop solution. For the

calculation of the concentration of ferritin, a dose response curve was used and the

absorbance for each serum reference was plotted versus the corresponding ferritin

concentration in ng/ml on linear graph paper and the best-fit curve through the
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plotted points was drawn. The concentration of ferritin of each sample was

determined by locating the absorbance for each sample on the vertical axis of the

graph and after finding the intersecting point on the curve, the concentration was

read from the horizontal axis (in ng/ml). Assays were performed in duplicate. Inter-

and intra-assay coefficients of variation for all blood parameters ranged from 2.1 to

6.5% and from 2.9 to 7.1%, respectively.

3.7.2. Redox status indices

Thiobarbituric acid reactive substances (TBARS): For TBARS determination, a slightly

modified assay of Keles et al. (2001) was used. According to this method, 100 μL of

plasma was mixed with 500 μL of 35% TCA and 500μlL of

trishydroxymethylaminomethane hydrochloride (Tris–HCl) (200 mM, pH 7.4) and

incubated for 10 min at room temperature. One milliliter of 2 M Na2SO4 and 55 mM

thiobarbituric acid solution was added and the samples were incubated at 95 C for

45 min. The samples were cooled on ice for 5 min and were vortexed after adding 1

mL of 70% TCA. The samples were centrifuged at 15,000g for 3 min and the

absorbance of the supernatant was read at 530 nm. A baseline absorbance was

taken into account by running a blank along with all samples during the

measurement. Calculation of TBARS concentration was based on the molar

extinction coefficient of malondialdehyde. The intra- and inter-assay CV for TBARS

were 3.9% and 5.9%, respectively.

Protein carbonyls (PC): Protein carbonyls were determined based on the method of

Patsoukis et al. (2004). In this assay, 50 lL of 20% TCA was added to 50 lL of plasma

and this mixture was incubated in an ice bath for 15 min and centrifuged at 15,000g

for 5 min at 4o C. The supernatant was discarded and 500 lL of 10 mM 2,4-

dinitrophenylhydrazine (DNPH) [in 2.5 N hydrochloride (HCl)] for the sample, or 500

lL of 2.5 N HCl for the blank, was added in the pellet. The samples were incubated in

the dark at room temperature for 1 h, with intermittent vortexing every 15 min and

were centrifuged at 15,000g for 5 min at 4o C. The supernatant was discarded and 1

mL of 10% TCA was added, vortexed and centrifuged at 15,000g for 5 min at 4o C.
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The supernatant was discarded and 1 mL of ethanol–ethyl acetate (1:1 v/v) was

added, vortexed and centrifuged at 15,000g for 5 min at 4o C. This washing step was

repeated twice. The supernatant was discarded and 1 mL of 5 M urea (pH 2.3) was

added, vortexed and incubated at 37o C for 15 min. The samples were centrifuged at

15,000g for 3 min at 4o C and the absorbance was read at 375 nm. Calculation of

protein carbonyl concentration was based on the molar extinction coefficient of

DNPH. The intra- and inter-assay CV for protein carbonyls were 4.3% and 7.0%,

respectively.

Reduced glutathione (GSH): GSH was measured according to Reddy et al. (Reddy

2004). The intra- and inter-assay CV for GSH were 3.1% and 4.5%, respectively.

Catalase: Catalase activity was determined using the method of Aebi et al. (1984).

The intra- and inter-assay CV for catalase were 6.2% and 10.0%, respectively.

Total antioxidant capacity (TAC): The determination of TAC was based on the

method of Janaszewska and Bartosz (2002). Briefly, 20 lL of plasma were added to

480 lL of 10 mM sodium potassium phosphate (pH 7.4) and 500 lL of 0.1 mM 2,2-

diphenyl-1-picrylhydrazyl (DPPH) free radical and the samples were incubated in the

dark for 30 min at room temperature. The samples were centrifuged for 3 min at

20,000g and the absorbance was read at 520 nm. TAC is presented as mmol of

DPPHreduced to 2,2-diphenyl-1-picrylhydrazine (DPPH:H) by the antioxidants of

plasma. The intra- and inter-assay CV for TAC were 2.9% and 5.4%, respectively.

Uric acid and Bilirubin: Uric acid and Bilirubin were estimated in a Clinical Chemistry

Analyzer Z 1145 (Zafiropoulos Diagnostica, Athens, Greece) with commercially

available kits (Zafiropoulos, Athens, Greece). Each sample was analyzed in

duplicates. The intra- and inter-assay CV for Uric acid and Bilirubin were 4.5% and

3.4%, respectively.
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3.8. Dietary analysis

Participants' food intake was analyzed prior to the commencement of the study to

verify that obtained adequate amounts of iron (above recommended RDA).

Participants were asked to maintain their usual eating habits and completed daily

dietary recall forms that were analyzed with ScienceFit Diet 200A (Science

Technologies, Athens, Greece) during the experimental period. Participants were

given detailed guidelines on how to monitor and record food and drink intake.
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4. Statistical analyses

The normality of the sample distribution was examined with a Kolmogorov-Smirnov

test. To estimate possible differences as a result of 3 weeks of iron supplementation

in iron status, and redox status in adults compared to children, a three way ANOVA

[time (baseline-3wks) x condition (placebo-iron supplement) x age (adults-children)]

with repeated measures on time was used.

Because of fewer blood drawings performed in children following the acute bout of

exercise, the statistical analyses of blood related parameters (iron status, redox

status and CK were done separately in adults and children. Therefore, in adults,

possible differences as a result of eccentric exercise and iron supplementation were

assessed through a two way ANOVA [time (pre exercise-24h-48h-72h-96h after

exercise) x condition (placebo-iron supplement)] with repeated measures on time. In

children, a two way ANOVA [time (pre exercise-72h after exercise) x condition

(placebo-iron supplement)] with repeated measures on time was performed.

To estimate possible differences in physiological indices of muscle damage and

muscle performance in adults compared to children, as a result of eccentric exercise

and iron supplementation, a three way ANOVA [time (pre exercise-post exercise-

24h-48h-72h-96h after exercise)  x condition (placebo-iron supplement) x age

(adults-children)] with repeated measures on time was applied.

When significant main effects or interactions occurred, Sidak pairwise comparisons

were performed. The level of statistical significance was set at p < 0.05. For all

statistical analyses SPSS, version PASW 18.0 (SPSS Inc., Chicago, Ill.) was used.
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5. RESULTS

5.1. Anthropometric characteristics and dietary intake

Significant differences between adults (AD) and children (CHI) came up for all of the

anthropometric and physiological characteristics. Regarding height, weight, BMI, and

body fat AD presented higher values compared to CHI at (Table 6). Concerning

isokinetic strength, AD presented higher absolute values at isometric, concentric and

eccentric strength; in contrast, when body weight was taken into consideration,

relative isokinetic strength was higher in children compared to adults (Table 6).

No significant differences were found in daily energy and macronutrient intakes

between adults and children or between the iron-supplemented (FE) and placebo

(PL) groups before the supplementation except for energy intake in the iron-

supplemented compared to placebo group (Table 7).

Table 6. Anthropometric and physiological characteristics of adults and children at

baseline1

Variable Adults (n = 15) Children (n = 11)

Age (y) 35.7 ± 2.08 11 ± 0.23

Height (cm) 180 ± 0.02*** 154 ± 0.01

Weight (kg) 83.5 ± 3.31*** 42.4 ± 2.1

BMI (kg/m2) 25.7 ± 0.87*** 17.8 ± 0.65

Body fat (%) 19.5 ± 1.7  *** 7.6 ± 1.22

Tanner Stage 2.36 ± 0.15

Isometric torque (N.m) 216 ± 8.3*** 124 ± 4.8

Concentric torque (N.m) 205 ± 6.2*** 93 ± 5.0

Eccentric torque (N.m) 264 ± 10.2*** 137 ± 6.0
1All values are means ± SEMs. Significant differences between adults and children existed for

age, height, weight, body fat, isometric, concentric, and eccentric torque (unpaired student’s

t-test). N.m, Newton meter. *** p=0.000.
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Table 7. Analysis of daily energy intake in adults and children and in iron-

supplemented and placebo groups at baseline1

Variable

Adults

(n = 15)

Children

(n = 11)

Iron group

(n = 26)

Placebo

group

(n = 26)

Energy (kcal) 1940 ± 133.3 1857 ± 120.3 2105 ± 140.9 * 1698 ± 99.2

Carbohydrate (% of energy) 51.4 ± 2.3 56.3 ± 1.6 55.3 ± 1.8 52.5 ± 2.1

Fat (% of energy) 25.7 ± 1.7 23.3 ± 1.2 23.9 ± 1.4 25.1 ± 1.4

Protein (% of energy) 22.9± 1.5 20.4 ± 1.0 20.8 ± 0.9 22.4 ± 1.6

Iron (mg) 12.1 ± 1.1 10.7 ± 0.7 12.4 ± 1.0 10.4 ± 0.8

Vitamin C (mg) 133.6 ± 29.0 87.1 ± 13.4 102.2 ± 24.8 117.4 ± 20.6

1All values are means 6 SEMs. There were no significant differences between adults and

children, neither between iron-supplemented and placebo groups, except for energy intake

between iron-supplemented and placebo groups (unpaired Student’s t test). *Significantly

different from the placebo group, p<.05.
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5.2. The effect of 3 weeks of iron supplementation on iron status, redox

status and muscle damage and performance at rest

5.2.1. Iron status

Main effect of age came up for FE concentration, total iron binding capacity (TIBC),

transferrin saturation (TS) and ferritin (FERR) (Table 8). Adults had lower TIBC and

higher FE, TS and FERR compared to CHI.

Time by condition interaction came up for FE concentration and TS. Iron

supplementation for 3 weeks increased FE concentration and TS (Figure 3).

Time x condition x age interaction came up for TIBC with AD of the PL group showing

lower TIBC after 3 weeks of iron supplementation. TIBC was not altered in CHI or in

FE groups (Figure 3).

Table 8. Iron status in adults and children after 3 weeks of supplementation1

Variable Adults Children

Baseline 3 weeks Baseline 3 weeks

FE (mg/dL) 95.2 ± 5.4 A * 95.2 ± 6.3 A * 68.5 ± 6.3 87.7 ± 7.3

TIBC (μmol/L) 379 ± 15.0 A * 372 ± 13.8 A * 427 ± 17.5 417 ± 16.1

TS (%) 26.5 ± 1.8 A * 30.0 ± 3.1 A * 17.7 ± 2.2 21.8 ± 3.8

FERR (g/mL) 93.1 ± 10.9 A *** 91.6 ± 11.0 A *** 22.2 ± 13.1 22.2 ± 13.2

1All values are means (± SEM). Three way ANOVA (supplement x age x time) with repeated
measures on time and post hoc Sidak pairwise comparisons were applied. A, main effect of
age. ***p<.001; *p<.05. FE, iron concentration; FERR, ferritin; TIBC, total iron binding
capacity; TS, transferrin saturation.
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Figure 3. Iron status after 3 weeks of supplementation. Mean (± SEM) FE

concentration (A), TIBC (B), TS (C) and ferritin (D) after 3 weeks of supplementation in adults

of the iron-supplemented (●) and placebo (○) groups, and in children of the iron-

supplemented (      ) and placebo groups (      ). Three way ANOVAs with repeated measures

on time and post hoc Sidak pairwise comparisons were applied. C, main effect of condition;

A, main effect of age; T, main effect of time. Interactions are shown. 1Significantly different

from baseline in the same group.
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5.2.2. Blood redox status

Main effect of age came up for reduced glutathione (GSH), catalase (CAT), uric acid

(UA) and bilirubin (BIL). Children had higher GSH and CAT, while lower UA and BILL

compared to adults (Table 9).

Main effect of time came up for thiobarbituric acid reactive substances (TBARS).

TBARS increased after 3 weeks of supplementation and the increase was greater in

iron compared to the placebo group (Figure 4).

Table 9. Redox status indices in adults and children after 3 weeks of

supplementation1

Adults Children

Variable Baseline 3 weeks Baseline 3 weeks

GSH (μmol/g HGB) 5.3 ± 0.3 A * 5.3 ± 0.3 A * 6.5 ± 0.4 6.7 ± 0.4

CAT (U/mg HGB) 202.7 ± 8.0 A ** 206.6 ± 8.3 A ** 236.9 ± 8.9 246.1 ± 9.7

TAC (μmol DPPH) 0.91 ± 0.02 0.93 ± 0.02 0.87 ± 0.02 0.87 ± 0.02

UA (mg/dL) 5.6 ± 0.2 A *** 5.6 ± 0.2 A *** 3.8 ± 0.3 3.9 ± 0.3

BIL (μM) 0.8 ± 0.05 A ** 0.8 ± 0.05 A ** 0.6 ± 0.06 0.6 ± 0.05

TBARS (μmol/L) 6.3 ± 0.4 T ** 6.5 ± 0.4 T ** 6.4 ± 0.5 6.9 ± 0.4

PC (nmol/mL) 19.3 ± 0.8 18.5 ± 0.9 19.1 ± 1.0 18.2 ± 1.1
1All values are means (± SEM). Three way ANOVA (supplement x age x time) with repeated
measurements on time and post hoc Sidak pairwise comparisons were applied. A, main
effect of age. T, main effect of time. ***p<.001; **p<0.01; *p<.05. BIL, bilirubin; CAT,
catalase; GSH, reduced glutathione; PC, protein carbonyls; TAC, total antioxidant capacity;
TBARS, thiobarbituric acid reactive substances; UA, uric acid.
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Figure 4. TBARS after 3 weeks of supplementation. Mean (± SEM) thiobarbituric acid
reactive substances (TBARS) after 3 weeks of supplementation in iron ( ) and placebo (      )
groups. Three way ANOVAs with repeated measures on time were applied. C, main effect of
condition; A, main effect of age; T, main effect of time. 1Significantly different from baseline
in the same group.
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5.2.3. Muscle damage and performance

Main effect of time came up for eccentric torque.  Eccentric torque increased after 3

weeks, whereas no other muscle performance or muscle damage index was

changed. Main effect of age came up for isometric, concentric and eccentric torque,

with AD presenting higher values than CHI in both baseline and after 3 weeks.

Nevertheless, when body weight was taken into consideration, the main effect of

age still existed for concentric and eccentric peak torque, but CHI demonstrated

greater relative values compared to AD. No differences between the two age groups

came up for relative isometric peak torque (Table 10).

Iron supplementation had no effect on muscle damage and performance.

Table 10. Absolute and relative to body weight isokinetic force at baseline and

after 3 weeks in adults and children1.

Adults Children

Baseline 3 weeks Baseline 3 weeks

Isometric torque
(N.m) 216± 6.9A*** 218 ± 7.5A*** 123 ± 8.1 126 ± 8.8

Relative to BW
isometric torque
(N.m/kg)

276 ± 10.3 278 ± 10.2 296 ± 12.0 300 ± 11.9

Concentric torque
(N.m) 205 ± 5.6A*** 207 ± 6.3A*** 93 ± 6.5 96 ± 7.3

Relative to BW
concentric torque
(N.m/kg)

261 ± 6.5A** 263 ± 6.7A** 219 ± 7.6 226 ± 7.8

Eccentric torque
(N.m/kg) 246 ± 8.6T,A** 276 ± 8.6A** 137 ± 10.0T** 147 ± 10.0

Relative to BW
eccentric torque
(N.m/kg)

336 ± 9.1T** 351 ± 9.9 324 ± 10.6T** 347 ± 11.6

1All values are means (± SEM). Three way ANOVA (supplement x age x time) with repeated
measurements on time and post hoc Sidak pairwise comparisons were applied. A, main
effect of age. T, main effect of time. ***p<.001; **p<0.01.
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5.3. The effect of eccentric exercise and iron supplementation on iron

status, redox status, and muscle damage and performance

5.3.1. Iron status

Adults: In adults, time x condition interaction came up for FE concentration. In iron

group, FE concentration decreased at 24h and up to 72h compared to pre ex levels,

while no changes occurred for PL group (Figure 5). Time main effect came up for

TIBC which increased at 48h after eccentric exercise with a similar way in both PL

and FE group and remained higher up to 96h compared to pre exercise levels (Figure

4). No significant differences came up for TS and FERR after eccentric exercise as a

result of iron supplementation. Although both parameters exhibited fluctuations in

several time points after eccentric exercise, these fluctuations were not significant

(Figure 5).

Children: In children, no significant changes occurred for any of the estimated iron

status parameters as a result of eccentric exercise or iron supplementation (Figure

5).

5.3.2. Blood redox status

Adults: In adults, time main effect came up for total antioxidant capacity (TAC)

(Figure 6) and protein carbonyls (PC) (Figure 7). Both TAC and PC increased 24h after

eccentric exercise compared to pre exercise levels, and returned to pre exercise

levels thereafter.

Children: In children, no significant main effects or interactions came up for any of

the measured antioxidant substances (Figure 6) or indices of oxidation (Figure 7).

Multiple comparisons showed a trend for lower GSH at 72h after eccentric exercise

in both the iron-supplemented and placebo groups (Figure 6).
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Figure 5. Iron status after eccentric exercise in adults and children. Mean (± SEM) for iron (FE) (A),

total iron binding capacity (TIBC) (B), transferrin saturation (ST) (C) and ferritin (FERR) (D) after muscle-

damaging eccentric exercise in adults and in children of the iron-supplemented (●) and placebo (○)

group. Separate two way ANOVAs (condition x time) with repeated measures on time and post hoc Sidak

pairwise comparisons were applied. C, main effect of condition; T, main effect of time. Interactions are

shown. 2Significantly different from pre exercise in the same group. 3Significantly different from pre

exercise independently of condition.
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Figure 6. Antioxidants after eccentric exercise in adults and children. Mean (± SEM) reduced

glutathione (GSH) (A), catalase (CAT) (B), total antioxidant capacity (TAC) (C), reduced glutathione (GSH)

(C), bilirubin (BIL) (D) and uric acid (UA) (E) after muscle-damaging eccentric exercise in adults and

children of the iron-supplemented (

repeated measures on time and post hoc Sidak pairwise comparisons were applied. C, main effect of

condition; T, main effect of time. Interactions are shown. 3Significantly different from pre exercise

independently of condition.
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Figure 7. Lipid peroxidation and protein oxidation after eccentric exercise in adults and

children. Mean (± SEM) protein carbonyls (PC) (A) and thiobarbituric reactive substances (TBARS) (B)

after muscle-damaging eccentric exercise in adults and children of the iron-supplemented (●) and

placebo (

Sidak pairwise comparisons were applied separately in adults and children. C, main effect of condition; T,

main effect of time. Interactions are shown. 3Significantly different from pre exercise independently of

condition.
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5.3.3 Muscle damage and performance

Main effect of age came up for DOMS at walking and DOMS at squat, isometric,

concentric and eccentric force (Figure 8), as well as relative to body weight isometric

concentric and eccentric force (Figure 9). Adults also demonstrated greater DOMS in

both walking and squat compared to children.  Concerning isokinetic strength, AD

presented higher absolute values in isometric, concentric and eccentric torque

compared to children, in the entire study regardless of condition (Figure 8). When

body weight was taken into consideration, relative isometric and eccentric peak

torque was greater in CHI compared to AD, while concentric peak torque was similar

between the two age groups (Figure 9).

Main effect of time and came up for DOMS at walking and squat, ROM, isometric,

concentric and eccentric torque (Figure 8), and also relative to body weight

isometric, concentric and eccentric torque (Figure 9).

Time by age interaction came up for DOMS at walking and squat, ROM, isometric,

concentric and eccentric peak torque (Figure 8), and also relative to body weight

concentric and eccentric peak torque (Figure 9).  ROM in adults declined post and up

to 72h after the eccentric exercise, whereas in children the deterioration in ROM

remained only up to 24h compared to pre exercise levels (Figure 8). DOMS at

walking was greater post and up to 96h after the eccentric exercise in adults,

whereas in children DOMS at walking was greater post and up to 24h. DOMS at

squat was greater post and up to 96h after the eccentric exercise in adults, whereas

in children DOMS at squat increased and remained greater than pre exercise levels

up to 48h. Additionally, adults had significantly greater DOMS at squat than children

at 48h, 72h and 96h after the eccentric exercise (Figure 8). Isometric force decreased

in adults post and up to 72h after the eccentric exercise, whereas in children

isometric force declined only post exercise compared to pre exercise levels.

Concentric force decreased in adults post and up to 72h after the eccentric exercise,

whereas in children no significant changes occurred. Eccentric torque declined in

adults post and up to 48h after the eccentric exercise, whereas in children only post

exercise compared to pre exercise levels (Figure 8). Regarding relative to body
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weight isokinetic force, in AD concentric peak torque declined post exercise and up

to 48h, whereas in CHI only post exercise. Eccentric peak torque declined in AD post

and 24h after exercise, while in CHI only post exercise; additionally, CHI had greater

relative to body weight eccentric peak torque than AD at 24h, 48h, 72h and 96h after

exercise (Figure 9).
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Figure 8. Muscle damage and performance after eccentric exercise in adults and children. Mean

(± SEM) delayed on set of muscle soreness at squat (DOMSsq) (A) and at walking (DOMSw) (B), range of

motion (ROM) (C), isometric force (ISOF) (D), concentric force (CONF) (E), and eccentric force (ECCF) (F)

after muscle-damaging eccentric exercise in adults (○) compared to children (●). Three way ANOVAs

(condition x age x time) with repeated measures on time and post hoc Sidak pairwise comparisons were

applied. C, main effect of condition; A, main effect of age; T, main effect of time. Interactions are shown.
4Significantly different from pre exercise in the same age group. 5Significantly different between adults and

children at the same time point.
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Figure 9. Relative isokinetic force after eccentric exercise in adults and children.

Mean (± SEM) relative to body weight isometric force (ISOF % BW), concentric force (CONF

%BW), and eccentric force (ECCF %BW) after muscle-damaging eccentric exercise in adults

(

measures on time and post hoc Sidak pairwise comparisons were applied. C, main effect of

condition; A, main effect of age; T, main effect of time. Interactions are shown. 4Significantly

different from pre exercise in the same age group. 5Significantly different between adults

and children at the same time point.
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Regarding CK, separate ANOVAs in adults and children were performed. In adults,

main effect of time came up, and CK increased as a result of eccentric exercise in the

same way, in both PL and FE group, 24h and up to 96h compared to pre exercise

levels (Figure 10). In children, no significant changes occurred in CK (Figure 10).

Figure 10. CK after eccentric exercise in adults and children. Mean (± SEM) CK in adults and in

children. Two way ANOVAs (condition x time) with repeated measures on time and post hoc Sidak

pairwise comparisons were applied separately for adults and children. C, main effect of condition; T,

main effect of time. Interactions are shown. 3Significantly different from pre exercise independently of

condition.
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6. DISCUSSION

The present study investigated the effects of iron supplementation on possible

alterations of indices of muscle damage, performance, iron and redox status, after

muscle-damaging eccentric exercise in adults and children. The current results failed

to support any effect of iron supplementation on muscle damage, muscle

performance and blood redox status, as eccentric exercise provoked similar

modifications in both the iron-supplemented and placebo groups. On the other

hand, iron status was differently modified in adults but not in children of the

supplemented group, the days after eccentric exercise. Furthermore, in the present

study it was apparent the critical role of age on exercise-induced muscle damage as

children practically sustained minimum damage compared to adults, no changes in

redox status, and only few modifications in iron status parameters.

Supplementation effects at rest

Iron status

Supplementation effects: Three weeks of iron supplementation improved iron status

in both age groups, since iron concentration and TS increased. Additionally, in the

iron-supplemented groups TIBC was not significantly modified in contrast to the

observed decline in the placebo group. These results confirm previous reports, using

low-to moderate daily doses of elemental iron and similar duration of

supplementation (Nielsen, Schoene 1983, Lyle 1992), reporting favorable effects on

overall iron homeostasis in healthy individuals.

Age effects: In the present study, age did not affect the supplementation outcome,

as iron supplementation favorably affected iron status in both adults and children.

Independently of supplementation, iron status parameters were different in adults

compared to children, such that FE, TS and FERR were higher and TIBC lower in

adults compared to children. Lower ferritin values have previously been reported in

children compared to adults (Worwood 2004). The increased utilization of iron in
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children due to growth can explain the lower iron status levels compared to adults

(Hallberg 2002). Dietary iron intake could also account for the lower iron status in

children (Zimmermann 2007); yet, dietary analysis revealed that iron intake was

similar between the two age groups. Additionally, all of the participants were

healthy and did not have any gastrointestinal disorders that could affect the iron

absorption from diet (Zimmermann 2007).

Redox status

Supplementation effects: Our hypothesis that iron supplementation results in

elevated basal (independent of exercise) lipid peroxidation was verified since TBARS

appeared elevated after 3 weeks of supplementation. The oxidative damage from

iron comes mainly from the interaction of Fe2+ with H2O2 to produce hydroxyl

radical (HO•) through Fenton reaction. HO• is a potent oxidant that can rapidly react

with most molecules, including lipids and proteins (Halliwell 2007). The increased

amounts of iron due to supplementation may have led to increased lipid

peroxidation through the above mechanism. No other redox status marker was

significantly modified. The reason for that could be the specific low-to moderate

dose, or the rather short duration of supplementation, which although capable of

increasing TBARS production, were not sufficient to affect protein oxidation or

endogenous antioxidants. Therefore, a higher dose, or a longer duration, could

probably lead to different results. The specific dose in the present study was selected

due to the very novel approach to the scientific problem, and due to the fact that

was close to the proposed minimum «therapeutic» requirement that corresponds to

100 mg of iron preparation daily (Nielsen 1998). Additionally, it has been found that

supplementation with quantities of 39 mg - 50 mg per day of elemental iron for 12

weeks (Lyle 1992) or smaller duration (of even two weeks) (Schoene 1983) to

adequately improve iron status. Moreover, according to the Food and Nutritional

Board, Institute of Medicine (Zimmermann 2007), the suggested tolerable upper

intake levels of elemental iron corresponds to 40 mg per day for children aged 9-13

years and to 45 mg per day for individuals aged 14 years and over. Nevertheless, this
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response of TBARS after iron supplementation should be considered with caution

before any conclusions regarding the pro-oxidant character of iron are made, at least

with the present dose and duration of supplementation. More research is needed to

establish the pro-oxidant nature of iron supplementation at rest in healthy

individuals.

Age effects: Regardless of supplementation, the activity of endogenous antioxidants

of different blood components seems to differ between adults and children. More

specifically, children’s erythrocytes presented greater antioxidant capacity compared

to adults as indicated by the higher GSH and CAT activity, while the opposite was

observed for plasma antioxidants with adults presenting higher uric acid and

bilirubin. The higher GSH and CAT activity in children could be due to the lower

overall destruction of senescent erythrocytes by the reticuloendothelial system and

a lower overall iron turnover (Finch 1970, Lutz 2013) compared to adults.

Erythrocytes, which contain approximately 80% of the body's functional iron (Beard

2001), have an average lifespan of 120 days (Kohgo 2008, Lutz 2013). If the number

of erythrocytes destroyed daily by macrophages in children is less compared to

adults, then functional iron released from catabolized hemoglobin (Halliwell 2007,

Beard 2001, Cooper CE) may also be fewer; this probably results in reduced

production of ROS and lower need for the use of endogenous antioxidants, thus

leading to higher GSH and CAT levels in children. Additionally, children’s erythrocytes

are more “fresh” than that of adults’ and more rich in antioxidants, thus there is no

specific need for significant changes in those indices at rest. Previous research

examining children’s and/or adolescents’ antioxidant activity, and comparing it with

that of adult’s, is limited. Nevertheless, children’s basal GSH and CAT concentrations

in the present study are similar with those reported by other studies (Gougoura

2007, abasakalis 2009, Paltoglou 2015) although no comparison with adults was

made. Training is another factor that seems to affect GSH concentration in different

ages since a recent study that compared GSH in trained adolescents and adults

showed significant differences between the two groups, with trained adults

presenting higher resting GSH concentration (Zalavras 2015).
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The higher uric acid and bilirubin concentrations in adults could be explained as a

protective response to increased phagocytosis of senescent erythrocytes and the

higher ROS generation compared with children. Indeed, uric acid has been shown to

protect erythrocytes against lipid peroxidation at physiological concentrations (Ames

1981). Bilirubin is the end product of heme catabolism, and next to uric acid, one of

the most important plasma antioxidants that effectively suppress the oxidation of

lipids and lipoproteins (Stocker 1987). Additionally, the higher uric acid in adults in

the present study could also be due to increased intake of purine-rich foods (Ames

1981, Shatat 2012, Choi 2005), older age, higher BMI, greater height, and greater

weight compared to children (Shatat 2012). More research is warranted before any

conclusions are drawn regarding the differences in antioxidant status between

adults and children and the possible mechanisms underlying these differences.

Muscle damage and performance

Iron supplementation did not yield any changes in muscle damage or performance

indices, except for eccentric torque that appeared to be greater after 3 weeks. This

improvement was independent of supplementation and age, and could be attributed

rather to the fact that all of the participants were more familiarized with the

eccentric type of isokinetic torque production compared to baseline, than an actual

effect of iron supplementation. On the other hand, even 2 maximal voluntary

isometric contractions have been reported to confer a protective effect on muscle

damage induced by maximal isokinetic eccentric contractions of the elbow flexors

that lasted up to 4 days (Chen 2013). In our study, baseline maximal voluntary

eccentric torque was estimated through 5 maximal voluntary eccentric contractions

of the rectus femoris muscles. This short bout of unaccustomed eccentric

contractions could possibly has provoked a repeated bout effect (Brown 1997a), at

least regarding maximal eccentric torque, on the subsequent estimation 3 weeks

later.
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Exercise effects

Iron status

Iron homeostasis is of crucial importance for optimal exercise performance.

Although changes in iron status (Rogers 1986, Malczewsa 2004, Peeling 2014) and

iron supplementation effects (Peeling 2007, De Matos 2013, McClung 2009) have

extensively been examined in relation to non-muscle damaging prolonged exercise,

only few research attempts have been made using short duration activities (Rowland

2012), and muscle-damaging exercise (Jamurtas 2013, Childs 2001, Gleeson 1995).

Hence, there is limited data regarding muscle-damaging related adaptations of iron

status parameters and no data regarding the effect of iron supplementation on these

parameters. In the present study, the changes in iron status indices seem to be both

age- and supplementation-related.

Age effects: Adults’ iron status was affected by eccentric exercise. An interesting

finding of the present study was the decrease of iron concentration 24 h and up to

96 h after eccentric exercise in adults that was observed only in iron-supplemented

group. Possible explanations for this different response in iron status between the

supplementation and placebo groups are discussed in the next section. Progressive

fall in iron concentration has previously been reported (Gleeson 1995). In that study,

despite the fact that no supplementation was prescribed, the fall in iron

concentration reached a minimal value at 48 h after muscle-damaging exercise that

was similar to our study. On the other hand, increases in iron concentration have

been reported after eccentric exercise. High levels of bleomycin-detectable catalytic

iron 24 h and up to 96 h after eccentric exercise of elbow flexors have been

reported, probably due to inflammatory responses that facilitate the release of

catalytic iron from ferritin and myoglobin (Childs 2001).

In children, FE concentration at 72h increased by 20% above the pre exercise levels.

At this point, it has to be mentioned that fewer blood drawings conducted in

children; the only post exercise blood drawing in children was at 72h whereas in

adults, blood drawings were applied 24h and up to 96h after exercise. This comprises

a limitation of the study, since possible changes in iron status parameters could have
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been occurred in children at the first two days as well as the fourth day after the

eccentric exercise. Nevertheless, no data exists in the literature regarding the effect

of acute exercise on iron status in children. Further investigation is warranted in

order to identify possible differences in iron status between adults and children after

eccentric exercise and assess the acute versus the chronic effect of iron

supplementation in both age groups.

Supplementation effects: In the present study, iron status was differently affected by

eccentric exercise in iron-supplemented compared to placebo groups. The reason for

the different response of iron concentration between the iron-supplemented

compared to placebo group is not clear. One can assume that the higher pre exercise

iron concentration in the iron-supplemented group, caused a greater binding of

transferrin to iron (Crichton 2003) resulting in lower iron concentration the days

after eccentric exercise. Furthermore, hemolysis occurring after eccentric exercise

(Theodorou 2011) could lead to release of iron from erythrocytes and further

increase iron concentration into the circulation; this could additionally trigger

transferrin binding to iron. This assumption is supported by the fact that the time (48

hrs post-exercise) of the greater decrease (36%) of iron concentration coincided with

the higher (43%) TS. Another possible explanation could be the participation of iron

in oxidative stress processes that take place after muscle damaging exercise. It is well

known that iron can contribute to increased production of RONS (Halliwell 2007) and

eccentric exercise also leads to oxidative stress (Childs 2001, Theodorou 2011,

Goldfarb 2005). Phagocytosis in the area of the injured muscle and the subsequent

increase in oxygen consumption can lead to the production of superoxide anions

(O2─) and hydrogen peroxide (H2O2) (Halliwell 2007). The higher pre exercise

available iron in the iron-supplemented group together with the enhanced RONS

production in the injured muscle may have provoked greater iron use compared to

the placebo group.

Contrary to our results, Childs et al (Childs 2001) reported higher levels of bleomycin

detectable iron 48h and up to 96h after eccentric exercise. What is interesting in that

study, is that although an antioxidant combination of vitamin C and NAC was used (in

contrast to the potent pro-oxidant in our study), the increase in catalytic serum iron
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was not avoided and was even greater than in the placebo group. The authors

attributed the increase of catalytic iron to the activation of inflammatory cells and

the release of myoglobin due to muscle damage. The authors suggest that

supplementation of antioxidants instead of attenuating or preventing the release of

catalytic iron, may facilitate the mobilization of iron from its stores, gaining that way

a potent pro-oxidant role, at least in cases of exercise-induced muscle damage.

Redox status

Increased generation of RONS for several days after the termination of eccentric or

eccentrically biased exercise has been reported by a great number of studies (Childs

2001, Theodorou 2011, Goldfarb 2005, Lee 2005).

Age effects: To our knowledge, this is the first attempt to investigate the effects of

iron supplementation on blood redox status in adults and children after eccentric

exercise. In the present study, exercise resulted in modulation of oxidative stress

indices only in adults. Previous research has shown that muscle-damaging exercise

affects the concentration of blood antioxidants temporarily and in no constant time-

fashion (either at some hours or days after exercise) (Nikolaidis 2008). According to

the present results, in adults, PC and TAC increased 24h and returned to pre exercise

concentrations thereafter in both the supplemented and the placebo groups. These

results suggest that oxidative stress that was induced by eccentric exercise was

compensated by an increase in the total antioxidant activity of the blood that may

have reduced the effect of oxidative stress the following days. Lee et al (Lee 2002)

also report increased PC 2 h and 48 h after eccentric exercise of the elbow flexors.

No changes occurred in any of the other redox markers. The modifications of redox

status indices that occurred in the present study in adults were either smaller or

shorter in duration compared to other studies, where changes were more intense

and prolonged (Childs 2001, Theodorou 2011, Goldfarb 2005) or similar to others

reporting no changes (Gleeson 1995, Hellsten 1997). The different exercise models,

redox markers, and/or different time points, or even the diversity of study

population may account for the discrepancy in the results. Additionally,
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mitochondria, which greatly contribute to free radicals production, perhaps were not

stressed enough by the type of exercise used in the present study and hence, the

changes in the examined oxidative stress indices were relatively low. Another

possible explanation could be the proposed redox individuality of the participants, as

exercise induces reductive stress in some humans and no stress in others

(Margaritelis, Stagos 2015), indicating that exercise stimulus is not equally perceived

by all individuals.

In children, no changes occurred in redox parameters. Despite the proposed greater

ROS release in children and adolescents in response to exercise than in adults due to

their faster VO2 kinetics and the observed robust increases in circulating neutrophils

in children after exercise (Cooper 2004), this was not the case in the present study.

Neither iron supplementation, nor eccentric exercise alone, were able to provoke

significant oxidative stress in children, as indicated by the absence of changes, at

least in the redox status indices used in the present study. This was probably due to

the lower extent of muscle damage provoked in children that resulted in lower

inflammation-mediated ROS production and lower hemoglobin and myoglobin

catabolism (Kohgo 2008). Once again, the fewer time points of assessment in

children perhaps did not allow pinpointing significant changes as it happened with

the adults. There is limited data in children (Nikolaidis 2007) and adolescents

(Zalavras 2015) regarding exercise-induced redox alterations. Contrary to our results,

Nikolaidis et al. (2007) reported significant increases in TBARS, PC, CAT, TAC, and

oxidized glutathione (GSSG) concentration, as well as significant decreases in GSH

and GSH:GSSG, after 12 bouts of 50 m swimming, performed at 70% - 75% of 50 m

maximum velocity. The results from a recent study from our laboratory (Zalavras

2015) indicate a greater rise in PC, TBARS and TAC and greater GSH decline in adults

compared to adolescents following an aerobic exercise bout. Uric acid, CAT and

bilirubin were similar amongst adults and adolescents immediately after and 1 h

following the aerobic trial. The different exercise modes and experimental designs

probably account for the divergent results between the studies. Additionally, the

evaluation of the biological maturity is performed through Tanner stages; the

present study has also used this method. Although the validity of this method is well
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documented (Morris 1980), testosterone levels are not always related to genital

stage (Lee 2010). Thus, different testosterone levels of young participants may also

account for the inconsistency between studies.

Supplementation effects: iron-supplementation did not provoke altered redox status

responses, and did not prove its pro-oxidant character after muscle-damaging

exercise. The lack of different responses in blood redox status in the iron-

supplemented group could be due to the specific dose of 37mg/day of elemental

iron used in the present study. Although this dose was capable of improving iron

status parameters after 3 weeks it did not manage to alter redox responses induced

by muscle-damaging exercise. It is interesting, however, the fact that the absence of

any significant changes in redox status due to supplementation of a potent pro-

oxidant in the present study is consistent with the results of other studies involving

supplementation of antioxidants that also do not report any different outcome. High

doses of vitamin C and E did not manage to alter the redox status of blood and

skeletal muscle after acute or chronic eccentric exercise (Theodorou 2011). What is

more noteworthy though is the fact that supplementation with vitamin C and NAC

instead of reducing, augmented oxidative stress after eccentric exercise and acted as

pro-oxidants, by helping the mobilization of catalytic iron from its stores (Childs

2001). Therefore, iron supplementation, at least as administered in the present

study, does not adversely affect aseptic muscle trauma. This could be of great

importance in clinical conditions which on one hand they are characterized by

skeletal muscle injury and inflammation, and on the other hand, iron

supplementation is crucial for maintaining iron homeostasis. Nevertheless, more

research is warranted before any valid conclusions are drawn.

Muscle damage and performance

Exercise-induced muscle damage is manifested by a number of classic physiological

symptoms such as DOMS, deterioration in ROM, reduced muscle contractility and

force production, as well as leakage of muscle proteins and muscle enzymes into the

circulation (Gleeson 1995, Theodorou 2011, Peeling 2007, Lee 2002). In the present
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study, eccentric exercise resulted in muscle damage as evidenced by the

deterioration of the above symptoms.

Age effects: Age was a substantial factor on exercise-induced muscle damage, since

adults sustained more severe muscle damage compared to children. That was

evident through more intense and prolonged changes in physiological symptoms, as

well as greater increase in CK activity, the days following the exercise bout. The

temporal changes of the above symptoms of muscle damage in adults of the present

study are in accordance with those usually being observed after eccentric (Childs

2001, Gleeson 1995, Theodorou 2011, Brown 1997a, Paschalis 2010, Child 1999) or

eccentrically biased exercise (Jamurtas 2013, Hellsten 1997, Marginson 2005).

Changes in CK activity in adults has been shown to occur up to 7days after muscle

damaging exercise (Brown 1997a), usually peaking between 2d and 4d (Childs 2001,

Hellsten 1997, Jamurtas 2013, Theodorou 2011) while reaching values as high as 34-

fold (Child 1999) the pre-exercise levels. The fewer blood drawings in children

compared to adults may account for the discrepancy regarding the responses of CK

activity between the two age groups, since different responses in CK activity could

have been detected in children, at different time points.

Data regarding the differences in muscle damage symptoms after eccentric exercise

between adults and children is scarce. Nevertheless, the results of the present study

are in accordance with those of other studies that also report less severe symptoms

of muscle damage in children compared to adults after muscle-damaging exercise

(Marginson 2005, Gorianovas 2013, Soares 1996). The mechanisms underlying the

reduced susceptibility of children to muscle damage are not yet entirely understood.

One possible explanation could be the fact that during eccentric exercise, fast twitch

muscle fibers seem to be preferentially damaged (Choi 2014, Warren 1994). Muscle

fiber composition of children is such that contain fewer fast twitch fibers (Lexell

1992), thus the resulted muscle injury is less severe. Other proposed reasons are the

greater muscle compliance in children (Marginson 2005, Marginson 2001) the

greater body weight of adults that generates more force per fiber unit during

eccentric contractions (Webber 1989), the lower ability of children to produce

strength proportional to muscle size (Kanehisa 1994) and the lower power output of
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children compared to adults (Falk 2006). Finally, a situation of pre-conditioning may

exist in children, as in their everyday life they perform more eccentric actions such as

jumping and hopping compared to adults; thus they may be more familiarized with

eccentric work resulting in milder symptoms of muscle damage after eccentric

exercise. The results of the present study are not in favor of the greater ability of

adults to produce muscle force and power output, since the greater isokinetic force

of adults disappeared when the results were normalized for body weight. Indeed,

children demonstrated similar relative concentric and eccentric peak torque and

higher relative isometric peak torque compared to adults immediately pre-eccentric

exercise, and greater isokinetic force following eccentric exercise. More research is

needed to clarify the mechanisms that are responsible for the lower susceptibility of

children to muscle-damaging exercise and draw generalized conclusions regarding

age effects on exercise-induced muscle damage.

Supplementation effects: In the present study iron supplementation did not result in

different responses following eccentrically-induced muscle damage. Despite the

probable pro-oxidant character of iron and its ability in causing greater ROS-

mediated muscle injury, iron supplementation did not alter the magnitude or the

time course of muscle damage and muscle performance. Both iron-supplemented

and placebo groups sustained muscle injury in the same way. Thus, the potent pro-

oxidant character of iron was not proven to affect muscle function and performance

during the recovery period after muscle-damaging exercise in a different way.

Because of lack of data regarding the effect of iron supplementation on muscle

damage and performance after eccentric exercise, the present results cannot be

compared with the results of other studies. Future research is warranted in order to

draw valid conclusions regarding iron supplementation and muscle damage and

performance.
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7. CONCLUSIONS

This was the first attempt to determine whether a potential pro-oxidant could

differently modify muscle damage symptoms and redox status after muscle-

damaging exercise in adults and in children. Iron supplementation as prescribed in

the present study, did not manage to affect muscle damage, or redox status in a

different way than that typically being observed. Symptoms of muscle damage, as

well as RONS production were comparable between iron-supplemented and non-

supplemented groups. Higher doses of iron supplementation, may be more effective

in producing different amounts of reactive species, and thus alter the responses and

recovery after eccentric exercise. Furthermore, the results of the present study also

indicate that children are less susceptible in muscle damage compared to adults, yet,

due to the limited data, more research is warranted in order to verify this

susceptibility and clarify the possible underlying mechanisms.

The present study, investigated the effect of chronic iron-supplementation prior to

eccentric exercise. Acute effect of iron supplementation starting immediately after

exercise-induced muscle damage was not examined, and future studies should

address this issue. Additionally, other exercise stimulus and redox status indices

should also be incorporated in future research. In the present study, blood drawings

in children were fewer compared to adults, and this may have shielded the true

responses of CK activity, iron status, or blood redox status in children. Thus, similar

time points in adults and children should be incorporated in future studies. Finally,

due to the majority of the research focusing on males, all of the above issues should

be addressed also in women and girls, to determine possible gender-responsible

alterations.
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